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ABSTRACT

APPROACHES FOR MULTI-ATTRIBUTE AUCTIONS

Karakaya, Gigah
M.S., Department of Industrial Engineering

Supervisor: Prof. Dr. Murat Koksalan

July 2009, 89 pages

There is a growing interest in electronic auctiansthe literature. Many
researchers work on the single attribute versiothefproblem. Multi-attribute
version of the problem is more realistic. Howevéhiis brings a substantial
difficulty in solving the problem. In order to owerme the computational
difficulties, we develop an Evolutionary Algorith(&EA) for the case of multi-

attribute multi-item reverse auctions.

We generate the whole Pareto front using the EA. aléde develop heuristic
procedures to find several good initial solutiomsl ansert those in the initial
population of the EA. We test the EA on a numberrarfidomly generated
problems and compare the results with the truet®amatimal front obtained by

solving a series of integer programs.



We also develop an exact interactive approachpitatides aid both to the buyer
and the sellers for a multi-attribute single iteraltnround reverse auction. The
buyer decides on the provisional winner at eachndourhen the approach
provides support in terms of all attributes to eaeller to be competitive in the
next round of the auction.

Keywords: online auctions, multi-attribute auctipnmteractive approach,

evolutionary algorithm



Oz

COK AMACLI ACIK ARTTIRMALAR ICIN COZUM
YAKLA SIMLARI

Karakaya, Giah
Yuksek Lisans, Endustri Mihend&liBolumu

Tez Yoneticisi: Prof. Dr. Murat Koksalan

Temmuz 2009, 89 Sayfa

Literatirdeki elektronik acik arttirma cghalari giderek artmaktadir. Bir¢ok
arggtirmaci bu problemi tek amagl olarak ele gkmi Problemin ¢ok amagcli hali
ise daha gercgekcidir. Buna kar, cok amaclilik problemin ¢éziimine buyuk bir
zorluk getirir. Hesaplama zorluklarinin Ustesindgimek icin, cok amacli ¢ok

aranlu agik arttirmalar icin bir evrimsel algoritrgalistirdik.

Evrimsel algoritma kullanarak, bitin Pareto ylzeyiusturmaya caktik.
Ayrica, iyi balangic ¢ozumleri ve bunlari evrimsel algoritmanissléngic
nufisuna eklemek icin sezgisel yontemler destgeldik. Evrimsel algoritmayi
rassal olarak olturulan problemler Uzerinde denedik ve sonuglamsiay!

programlamalarla elde ettmiz gercek Pareto yizeylerle kdastirdik.

Vi



Ayrica hem aliclya hem de saticlya ¢cok amagcli, delnll, cok turlu agik
arttirmalarda yardim giyan bir etkilgimli yaklasim gelstirdik. Alici her turda
gegici bir kazanan se¢mektedir. Bu yakfa, her saticiya acik arttirmanin bir
sonraki turunda rekabet edebilmesi icin gereklielikter konusunda destek
salamaktadir.

Anahtar Kelimeler: elektronik agik arttirmalar, ¢a@mach acik arttirmalar,

etkilesimli yaklasim, evrimsel algoritma.
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CHAPTER 1

INTRODUCTION

Reaching, sharing and exchanging information hasie much easier with the
help of information and communication technolog{é8T), and some special
web based software. As Koppius et al. (2004) sthese new technologies led to
some changes in business and made electronic rear&st popular. Traditional

auction process has also changed in parallel @dadrated ICTs.

In today’s world, auction processes are very comragpecially the electronic
ones. With growing Internet technologies, onlineteuns have broadened by

enabling people to sell and buy in a wide rangaltefnatives on the Internet.

Auctions are also used by companies and governmigiut®rola is one of these
companies that installed auction mechanisms in 20ty et al. (2005) state
that they enjoy 15% - 20% savings in indirect matecost and 25% - 50%
savings in direct material cost by implementingatine negotiation program
called MINT (Motorola Internet Negotiation Tool). Father different example is
the implementation of the government of Chile. Thaye been providing meals
to public school children by an annual auction foany years (Catalan et al.
2009). Auctions are also commonly used in trangpiori problems (Sheffi,

2004; De Vries et al. 2003) and other large scalgli@ations are reported in
Hohner et al. (2003) and Sandolhm et al. (2006).

There is a growing amount of literature about anbuctions (Bapna et al. 2008;
Pinker et al. 2003). Many researchers have congtwn the single attribute

version of the problem. In this thesis we deal withlti-attribute version of the



problem which is more realistic. We first develap eéxact interactive approach
that provides aid both to the buyer and the seftara multi-attribute single item
multi-round reverse auction. The buyer decideshenprovisional winner at each
iteration. Then the approach provides support imseof all attributes to each
seller to be competitive in the next round of theteon. We also develop an
Evolutionary Algorithm (EA) for the case of multitabute multi-item reverse
auctions to overcome the computational difficultiesulting from multi-attribute
version of the problem. We try to generate the wHeareto front using the EA.
We also develop heuristic procedures to find sévgoad initial solutions and

insert those in the initial population of the EA.

The structure of the thesis is as follows: Someoirtgnt definitions on multi-
criteria decision making and background of the ianctheory are given in
Chapter 2. In Chapter 3, a literature review on trattribute auctions is
presented. An exact interactive method for a natttibute single item multi-
round reverse auction is developed in Chapter €Hapter 5, an EA approach to
multi-attribute multi-item reverse auctions is givéVe test the EA on a number
of randomly generated problems and compare thdtsesith the true Pareto
optimal front obtained by solving a series of imtegrograms. Lastly, future

study issues and conclusive remarks are presamtedapter 6.



CHAPTER 2

DEFINITIONS AND BACKGROUND

2.1 Definitions

In multi-objective optimization problems we try toptimize at least two,
generally conflicting, objectives satisfying theven constraints. A multi-

objective optimization problem can be formulateddisws:

“Maximize” {z 1(x), z2(X),..., (X), }
s.to
x O X

where,

X : decision variable vector
X : feasible decision space

Z : feasible criterion/objective space

In the following definitions from 2.1 to 2.8 it assumed that(x), z(x’) O Z and
X, X' X.

Definition 2.1: z(x’) is said todominatez(x) if and only if z(x’) > z(x) for all j
and z(x") > z(x) for at least one |.

Definition 2.2: z(x) is nondominatedf and only if noz(x’) dominates it.
Definition 2.3: z(x) is strictly dominatedif and only if z(x") > z(x) for all j.
Definition 2.4: z(x) is said to baveakly nondominatedf and only if noz(x’)

strictly dominates it.



Definition 2.5: If z(x) is nondominated thexis said to befficient Otherwise x
is said to benefficient

Definition 2.6: If z(x) is strictly dominated ther is said to bestrictly inefficient
Otherwise x is said to baveakly efficient

Definition 2.7: If Tz, 0 Z for j=1,2, .. .kandw; L w; 20 j=1.2, ...k

k k
satisfying) w, =1 and ) w,z; 2 z, thenz is said to beonvex dominated

j#i j#i
Definition 2.8: If a nondominated solutio(x), is convex dominated theax) is
said to beunsupported nondominated solutio®therwisez(x) is said to be

supported nondominated solution

Note that supported nondominated solutions canobed using weighted-sum
objective functions. However, unsupported nondomeihasolutions cannot be
found by such approaches. These solutions canuvel foy applying Tchebycheff
method.

Definition 2.9: If z(x) consists of the worst objective function value &ach

objective among all nondominated solutions thga) is nadir objective vector

In Figure 2.1 the classification of the solutiorsséd on the domination rules

where both objectives to be maximized are represent



Objective 2
A

o Z1

4]

o 23

0 Zs

o Z6

Dominated Solutions
21,75, 7

Strictly Dominated Solutions
Z5

Weakly Nondominated but
Dominated Solutions

21, Zs

Nondominated Solutions
23, 23, Zy

Supported Nondominated

Solutions
23, 2y

> Unsupported Nondominated

Objective 1 Solutions
Z3

Figure 2.1Classification of the solutions

2.2 Auctions

An auction is a way of buying and selling goods/m®s. The process is
becoming very popular with the advances of theri@etechnologies. Therefore,
in the literature there are studies on online austi specifically English reverse

auctions (further explained in Section 2.2.2).

The reasons why auctions become popular are listddlluri et al. (2007) as
follows:

- improved information coordination with suppliers

- lower transaction times

- lower costs

- higher flexibility

- better supplier integration.



In addition to these, Rothkopf and Park (2001)esthe prominent advantages as
fairness and the appearance of fairness, i.e. @knpial bidders have equal
chance.

2.2.1 The Auction Process

Throughout the history, only valuable objects h&meen sold with the auction

process. The auction process used to take plaaer@om or a square where an
object was shown to the bidders by the auctiorfeeople get together and make
their bids to buy the offered good. However, intcast to the traditional auctions,

in today’s world from cars to books, various typefsthings are being sold

through auctions.

With the rapid development of technological infrasture and invent of the
Internet, the auction process has come to our IsouSkese technological
developments eliminate the need for being in theiamw place physically. There
are some specialized websites that mediate buykrsalter to huge amount of
goods being passed between people. Moreover, caliogon sites allow people
to buy (sell) inexpensive products/services eveerrzil, in contrast to traditional

auction houses.

McAfee and McMillan (1987) define an auction as rferket institution with
explicit set of rules determining resource allomatand prices on the basis of bids
from market participants”. This is a general dggn for the auction and some
classifications are done according to the transactypes. Auctions can be
classified also based on the number of units tedid, the number of attributes
(price, quality, lead time, etc.) considered. Thessification of the auctions with

respect to the number of buyers and sellers is showigure 2.2.

As can be seen from Figure 2.2, if there exist boger and one seller, the

process is called negotiation, whereas if therevamy buyers and many sellers it



is called a double auction. eBay platform is anngxa for the double auction
process. Reverse auction where there should béwyer and many sellers is a
common auction type in the literature. For instarcegovernment (buyer)
determines the supplier(s) for a bridge constractaamong many suppliers
(sellers). The last type is forward auction whdre seller is the auctioneer and

the buyers are the bidders.

One Seller _ One Buyer

Negotiation y
Buyer 1 [«
- < Sellell —
Forward Reverse
Auction P Auction
Buye! 2 [«
—> < Seller Z —
_’ N : —
—> < Seller n —
L Buyeirn «

Double Auction

Figure 2.2Auction types with respect to the number of seléard buyers

2.2.2 Auction Mechanisms

Although Teich et al. (2004, 2006) group the aucttmechanisms into three
(English auction, Dutch auction, Vickrey's seconitg@ sealed-bid auction), in

the literature auction mechanisms are generallgrgia four groups.



English Auction

It is the most known auction type. English aucti®man ascending price auction,
i.e. the auctioneer announces the minimum acceptpbkce and the price
increases with the bids. The winning bidder isdhe who bids the highest price.
This type of auctions are generally open-cry anstihere all bidders know each

other’s bids.

To exemplify this type, in traditional antique sakkhe auction starts with a low
price and with the bidders’ raising hand the pricereases. At the end, the

antique is sold to the one who bids the most.

Dutch Auction

It is a descending price auction. In this type,dhetioneer announces a relatively
high price and gradually decreases the price @antiidder accepts the current
price. Generally this type of auctions are useds#iling perishable goods. In the
Netherlands, the flower sales have been done Wwithtype of auction and its

name comes from there.

The First Price Sealed-bid Auction

In this type of auction, bidders submit their bi@antrary to the English auction,
bidders do not know each other's bids and alsa ifiisingle round auction.
Bidders can submit their bids only once, it is aatiterative process. After the
announcement of the winner, some negotiations reajolme. The winning bidder
is the one who bids the highest (lowest) pricetfar forward (reverse) process.

The winner pays the highest (lowest) price.



The Vickrey's Second Price Sealed-bid Auction

It is similar tothe First Price Sealed-bid Auction except thatthis type the
winner — who bids the highest (lowest) price foe thuying (selling) process -

pays the second highest (lowest) price.

2.2.3 Auction Types

One variation of the auctions is based on the nurnbelifferent items and the
number of units for each item. Iltems can be simglenultiple (different types)
and units can be single or multiple. Different &wctypes are the combination of

these two.

If there exists a single item to be auctionedsitalled a single-item single-unit
auction. This is the simplest version of the auctigpes. If at least two identical
units for a particular item are auctioned; it idlexh a single-item multi-unit

auction.

Multi-item auctions are more complex than sing@¥itauctions. In the single-
item auction, the winning bidder gets the item ggs its price. However, in
multi-item case it is not so trivial to determirteetwinning bidder(s). In such
auctions, generally bidders offer a combinatioriterdns — bundle — they want to
supply. For this bundle, they determine the attebealues and make their bids.
Multi-item auctions are known as combinatorial @&ts and it is one of the

emerging research topics.

Another variation is based on the number of attabun the auction process. If
there is only one attribute, for instance pricetaisen into consideration, this is
called a single attribute auction whereas if thare more than one attribute

(price, quality, lead time, warranty, etc.) it ialled a multi-attribute auction



(Leskela, 2007). Multi-attribute auctions are maealistic, but they bring

computational complexity.

2.2.4 Valuation

Valuation is an important concept in the auctioaotly as mostly the bidding
strategy depends on it. Since in some situatidres,bidders do not know how
much the object worth; they can only realize othielders’ valuation (McAfee
and McMillan, 1987). They define two extreme maed@ describe the valuation

types: independent private value model and comnadurevmodel.

If each bidder knows the true value of the auctibiem to him/her certainly and
his/her valuation is not affected by other biddé&ls it is called independent
private value. McAfee and McMillan (1987) statejstivaluation is generally
valid for the auctions in which the item being s@dor the bidder's own use not

for resale.

The common value model is explained by McAfee anoviflan (1987) as no

one knows the true value of the bidding item. Hoerewall bidders have the same
valuation for the item. The bidders draw the itewédue to them. They use the
same tool to understand their valuation; for instambserving the market or

using the same distribution.

2.2.5 Online Auctions

If the auction is held on the Internet, it is cdlln online auction. The bidder can
see the price of the good/service and time lefbhéoend of the auction. Generally
there are three parties in the online auction E®ee namely website, seller, and
buyer. Website holds the information about the bwae the seller. It provides

security for both parties. Also, the website offarplatform where buyers can

10



reach many goods and sellers can reach many custamtbout a limitation of
time and location. eBay, Gittigidiyor, uBid, etcteasome commonly known

online auction websites.

Generally, online auction sites contain many caiego One can choose his/her
desired category to find a good or simply can deawith a keyword. After

finding the desirable product, the website lists ttescription of the product,
pictures of the product, shipping conditions, catrbid, end time, number of

bids, rating of the seller, etc.

11



CHAPTER 3

MULTI-ATTRIBUTE AUCTIONS

The multi-attribute auction process considers ndy dhe price but also other
attributes such as quality, lead time, etc. Typycdab evaluate bids, a function
called value/scoring function is used. Commonlyestimate the value function
for multi-attribute auctions, linear weighted utilifunctions are used. Also, to
determine the winner of the auction; Winner Deteiatiopn Problems (WDP) are

solved by applying this value/scoring function.

Multi-attribute auctions are used in many areag ohwhich is e-commerce.
Butler et al. (2008) explain the applications ofltrattribute preference models
(MAPM) in e-commerce by giving examples of websitest use MAPM. They
say that mentioned websites use different appr@adbe elicit the users’

preferences.

In the literature, most of the studies in thisdiake on reverse auctions where the
auctioneer is the buyer and the bidders are sellarghe following, some

approaches for multi-attribute reverse auctiongdaeussed.

3.1 Scoring Function

Bichler and Kalagnanam (2005) suggest a weighted-saoring function to
evaluate bids. In their model they set lower andempounds for demand since
the combinations hardly sum up to exact demandceSithey study multi
sourcing, i.e. demand can be supplied by multipfgBers, they add a limitation

constraint on the number of winners. It is an in@or issue for two reasons:

12



Firstly, the buyer does not want to supply from toeany sellers as it creates high
overhead costs and complexity in managing. Alsobilner does not want to be
supplied from very few sellers since there is k& osnot receiving the supplies on
time with a limited number of sellers. Moreovereyhadd a homogeneity

constraint to avoid different levels for an atttdamong the winning bids.

Bichler and Kalagnanam (2005) use a weighted-swrirgg function. However,
as Bellosta et al. (2004) state, although it iy \e&@mmon to use scoring functions
based weighted-sum, it has some drawbacks sudteatifticulty of determining
weights. Also the solutions that can be found aretéd with a weighted-sum

scoring function.

Butler et al. (2006) differentiate attribute andemtive and proposes an approach
to define weights in multi attribute utility theo(MAUT) in two steps. In the first
step, the decision maker (DM) specifies weightd #tew the impact of each
attribute on each objective (predictive model)tHa second step, he/she specifies
weights for objectives according to their importanto his/her (preference

model).

They exemplify the method and it is explained dkves: For a digital camera
price, resolution and zoom are attributes whereas@my and functionality are
the objectives of the user. Firstly, the relatiopsibetween attributes and
objectives are defined (price and resolution arated with economy and
resolution and zoom are related with functionalifgach attribute is normalized
with respect to its range, for instance, if thegeufor price is between $200 and
$500, the price value of $200 is scored as 1 af@ &scored as 0. The values in
the range are calculated by extrapolation. Theooraing to the preferences of
the user, weights of attributes for each objectve determined where weights
can be positive or negative. Afterwards, weightsp@rtance) of the objectives

are defined. Finally, the weights determined indmve and preference models

13



are combined to determine the appropriate weighthe attribute to calculate the
utilities of all alternatives.

3.2 Pricing Out

Teich et al. (2006) define the theoretical sid¢heir method implemented on the
Internet (NegotiAuction). Their approach is basedlee ‘pricing out’ technique,
i.e. they convert all attributes into monetary esu They try to define all
attributes in terms of one attribute which is pricehey use linear/integer
programming to minimize the cost to buyer to deteanhe bid status. They
define three bid status namely, active, inactivel aemi-active. If a bid is
“active”, it will be among the winners. If it is rfactive”, it will completely be
outbid, whereas if it is “semi-active”, it is paily active and it can be outbid
next. They also develop the ‘suggested price’ detisupport component for
bidders. Suggested price refers to the best (higpbdase that makes the bidder’s
bid active. Theyry to maximize the suggested price while keepirdperement

in the buyer’s total cost with a maximization-tylpeear programming (LP).

Teich et al. (2006) use ‘pricing out’ approach foulti-attribute auctions which
does not make it necessary to formulate the buywegerence function. On the
other hand, as stated in Talluri et al. (2007is ihot easy to convert all attributes

into price. The problem is similar to determinihg tweights in the previous case.

Leskeld (2007) suggests a decision support tookéwnbinatorial auctions. In
Leskela et al. (2007), they formulate the problemd single-attribute auction.
However, they say that the formulation can be edeenwith the ‘pricing out’
approach for multi-attribute auction cases. Inrt@proach, they provide bidders
not only the ‘suggested price’ for a new bid, blsbaquantity decision support'.
By quantity support mechanism (QSM), bidders caguest suggestions for
guantities to bid. They first solve the winner detimation problem and use the

dual prices of this problem as the cost estimat@giantity support problem.
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In their study, inactive bids are also kept in ke stream for the reason that an
inactive bid can become active again, if an entebid groups with it. Only
dominated bids are deleted. A dominated bid isneefias a bid with the same
guantities, but with a higher price than the sadeldr's latter bid. They say that
even if a bidder’s bid is higher than the suggegigde, he/she may become
among the winning bidders at the end. At first giarthat bid is inactive but with

the entering bids it can become active unlessdbisinated.

Leskeléa et al. (2007) solve the quantity suppoobf@m for each inactive bidder
separately whether they can become active by gngupie active bids. However,
this approach cannot provide efficiency as it doatsallow a new combination of
inactive bids. Koksalan et al. (2008) develop a uprdSupport Mechanism
(GSM). The main difference of GSM from QSM is that QSM only one
incoming bid can complement the active bids; wheiaahe GSM inactive bids
can make a combination with active bids or withcihae bids. Another difference
is that in the GSM, sellers’ cost functions are carnposed by just using the dual
prices. Kdksalan et al. (2008) define some ranges$iXed and variable costs by
using industry estimates. These ranges are updagethformation becomes

available on inactive bids.

3.3 Interactive Approaches

Bellosta et al. (2004) claim that although it isrsyyeommon to use scoring
functions-based weighted-sum, it has some drawbddiey say that weights are
difficult to obtain and unsupported solutions canme obtained by using
weighted-sum scoring functions. To overcome sudfitditions they suggest a
multi-criteria model based on reference pointsdaingle item English reverse

auction.

In their mechanism, the buyer first defines anrasioin point. He/she also defines

a reservation point consisting of the minimum atakle levels of each attribute
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at the beginning of the auction. The bids are etelll using scaled deviations
from the aspiration levels. They give equal impoactto all attributes. At each
round of the process, ideal (consists of the mawinaf each criterion among

bids) and anti-ideal (consists of the minimum afteariterion among bids) points
are determined by using the current bids for tbahd. By using these ideal and
anti-ideal points, the deviations can be calculaietiebycheff method is applied;
the maximum scaled deviation between all attribigethe deviation of that bid.

The buyer chooses the bid with the smallest denatis the best bid for that
round. Also in this method, the buyer sets an imengt amount for each round,
therefore the reservation point is dynamic andaatheround it improves. The

buyer sends this new reservation point to the b&léacept for the best bidder.
Based on the given information, sellers updatertbas. If a seller does not
update his/her bid, i.e. he/she can not give ehbidng lower deviation than that
of the reservation point, he/she withdraws his/biel. Otherwise, the process

continues until one bidder, the winner remains.

Bellosta et al. (2004) state that their model ceercome some shortcomings of
weighted-sum value functions. They give a numereemple to explain the
process. However, they do not provide experimerdgallts to compare the

efficiency of the model.

Baykal (2007) studies combinatorial auctions. Sleeetbps a discount-based
model for single attribute multi-unit auctions. Shees two models for multi-
attribute multi-item single unit auctions. One isirear model that can find the
supported efficient solutions and the other is aeigi@d weighted Tchebycheff
method which can find both supported and unsupgdatficient solutions. In the
augmented weighted Tchebycheff method, she detireegdeal point by solving
each objective independently. To avoid weakly nonidated but dominated
solutions, she multiplies the differences of sal$ and ideal points with a small

positive constant).
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She solves these two models and compares theeeffisiolutions. Then she

solves the linear model for different bundle-sizeds and she says that as the
size of the bundles gets larger, the number ofciefit solution decreases.

Moreover she says that if the number of bundleeases, the solution space will

get large and thus improved solutions can be fottwmvever, solution time will

also increase as the number of bundles increases.

She also uses an interactive method; namely Achiemé Scalarizing Function
(ASF). She applies a variation of Korhonen and lsa&k(1986) approach, to the
multi-attribute multi-unit combinatorial auctionBy using this method, she tries

to find the best combination of bids for singlemdu

Talluri et al. (2007) use data envelopment anal{iBIEA) to propose a decision
support system tool. They demonstrate the valuetiimm by using four attributes;
namely price, quality, delivery, and quantity. They to reflect the correlation
between the attributes in their value function. yiuefine weights for each
attribute. It is very difficult for a buyer to def exact weights that reflect his/her
preference information for attributes. Thereforestéad of using exact weights
they define ranges. They divide the DEA model imo stages. In stage |, scores

of each bid are evaluated. In stage Il, the wintitg are determined.

Using DEA is a good way of demonstrating correlati@tween attributes. In the
formula (for stage IlI), minimizing the number ofdders is the objective.
However, this contradicts with the saying of Bichbnd Kalagnanam (2005)
about the number of sellers above. Although itds mentioned in the paper, in
open-cry auctions it would be realistic for eachurmd guaranteeing an

improvement in at least one attribute, i.e. dedngathe cost to buyer.
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CHAPTER 4

AN ALGORITHM FOR MULTI-ATTRIBUTE SINGLE ITEM
AUCTIONS

In this chapter we develop an interactive apprdael provides aid both to the
buyer (DM) and the sellers (bidders) innaulti-attribute single item multi-round

reverse auction environment. After an overviewhaf &pproach and problem generation,

we provide a numerical example in Section 4.4.
4.1 The Algorithm

We develop an approach that supports sellers toohida single item. The
approach estimates the parameters of a preferamueidn representing the
buyer’s preferences evaluated on multiple attrib@bed informs the sellers about

the estimations to update their bids for the nexnhd.

The formulation of our problem is as follows: Theme | sellers and J attributes
in the auction. Each seller gives one bid at e&etation and seller i's bid is

represented as = (ail,az,...,aj ,...,a,.J) wherea; stands for the level of attribute

j offered by seller i. The preference function abf the buyer evaluated at seller
I's bid is depicted as ujs We use a weighted ,Lmetric to represent the
preferences of the bids to the buyer. This funcierves to minimize/maximize
the weighted difference of a point from the ideainp in terms of an J. metric.
We estimate the parameter valuesa(d v) based on the past preferences of the
buyer to fit the following preference function as @stimate of the preference to

bid s at any round.
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) Shle -2 )|

i
where

w; : weight of attribute |

Z, : ideal level of attribute j

o : parameter of the ,Lmetric

The contours of the estimated preference functifuisdifferent o and w;

combinations are illustrated in Figure 4.1.

Criterion 2

........... W= 0.8 and o= 0.z

R
4 —— w;=0.5and w=0.5

Z (ideal bid)

Criterion 1

Figure 4.1The contours for different andw; values

In our experiments, we deal with minimization typeblems. Therefore, smaller

u(s) values are preferred by the buyer. If an attribsitef maximization type,
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we would simply replacéaij - z]) with (zJ —aij) in the distance function. Here,
without loss of generality, we assume all attrisuéee of minimization type. In
the following, we explain the algorithm for mininaizon problems.

We use a constant thresholdy"“to represent a minimum preference difference
by which the buyer can distinguish between bids.ifstance if the buyer prefers
A to B, then we require u(Bx u(A)(1+ A). Alternatively, we may choose a
thresholdA’, and require u(B} u(A) +A’. We will see later that the former leads
to additional nonlinearity and using the latter senpler as it is a linear

relationship imA’.

In our approach, we estimate a preference funatging the past preferences of
the buyer. At each round, we expect the sellersmprove their bids by a
predetermined “100 percent of the best bid of the current round. réfme we
improve the estimated preference function and mfdhe sellers about our
estimations. The estimation of preference funcéod improvement procedures

will be explained in detail in the following seatis

Let P and NP denote the sets of preferred and medéenped bids of the current
round, respectively. Let Xdenote the set of constraints derived from the

preferences of the buyer in round h whepe=X¢ .

The algorithm can be summarized as follows:

Step 1Sellers place initial bids. Set the round couhter0.

Step 2Let P = NP =¢. Present the buyer all bids and ask him/her tmséadhe
most preferred bid(s). Place the preferred bid(set P and the remaining bids in
set NP.

If at least one seller has bid profitably (i.e. hone the buyer’'s estimated value
by 10® %), go to Step 3 Otherwise go t&tep 5

Step 3Update the preference constraint set;

Xh = Xpa U{ u(sm) > u(s).(1+A) OmONP and plP }.
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Fit a preference function that satisfies the camstrset X% for the smallest
positive integer value. Let the estimated preference function valithe best
bid of the current round be.u

Step 4.Move to a 100 percent improved contour with a preference fumctio
value of IV, i.e.,

u = u'(1-0).

Recommend all sellers to move onto this contoumphbyiding them with the
currenta, w; and " values together with the form of the preferenaefion. Let
sellers update their bids and seth = h + 1. Giep 2

Step 5.Stop. g is (are) the winning seller(s) forji°. If there are more than one

winning sellers, the buyer selects one of them.

In Step 4, sellers try to move onto the estimautaur. If they cannot achieve
this by making profit, they move as close to thénested contour as possible
with zero profit. We assumed that sellers can gaien if they make no profit
(bidding unprofitably) while we do not allow anysk for the sellers. Thus the

algorithm continues even when some sellers give With zero profit.

In the following, the algorithm for two attributase is illustrated:

. S1 Sellers make their bids.
1 ., S2 = Present the buyer all bids
<3 and he/she chooses S2.
@
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A
S1 . .
. Fit a preference function
5 S2 = using the buyer's past
preferences.
S3
[ J
(b) u
A
Improve the estimated
3 = preference function value
and inform the sellers.
S3
um

(€)

Figure 4.2The visualization of the algorithm

Sellers update their bids and the auction continfied least one seller gives

profitable bids. Note that, in our study we consigennegative attribute values.

4.2 The Parameter Estimation Model

We estimate the parameters (weights) of the preferdunction by solving the

following nonlinear (WALFA) problem for a givemvalue.
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Parameters:
a : estimated parameter of thg metric
A: predetermined threshold level by which the bwger distinguish between bids

w; : lower bound for estimated weights of attributes
w, : upper bound for estimated weights of attributes

a; : level of attribute j given by seller i

Z, : ideal level of attribute |

We usew; andw, restrictions in order to prevent using extremeghts. If one

wishes to allow extreme weights, these restrictmars be relaxed.

Decision Variables:

€ : minimum difference between the preference fumctialues of the preferred
bids and the other bids

w;: estimated weight of attribute j

Problem (WALFA)

Max & 1)
s.to

J

>w, =1 (2)
j=1

WS w; < W, Oj 3)

) Sl -2 | @

u(s,) zu(s,)1+¢) O s, preferred tos, in all rounds so far (5)

E2A (6)
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For simplification we do not use any subscriptrtdicate rounds. To estimate the
values ofa and weights, we solve the nonlinear (WALFA) praobleabove. The
objective (1) is to find the maximumvalue that satisfies the constraints. We use
normalized weights (2) and to avoid extreme vahfeseights, we set upper and
lower bounds (3). Bids are evaluated in terms ofveighted L, preference
function (4). The preferences of buyer are takém @onsideration in (5). Also we
keep the previous information. Since we take thestmwold level ag\, we add

constraint (6).

At each round, for given values we solve (WALFA) using GAMS 22.5 and the
global optimization solver, BARON. We take the slest positive integew value
that yields a feasible solution for the weight \essatisfying the constraints. The
reason for taking the smallesvalue is that we want to fit a function that Satis

all constraints but has the least curvature. Tloeeefwve start with a linear

preference function case €1) and increase by 1 if necessary.

We can show that there exist preference relatiatisfed bya; but notoy for

o1 > Oo.
Example:
A
Let the buyer prefers B and the
'f‘(lv 9/2) following relations exist
B(3,3)
. u(A) > u(B) (7)
u(C)>u(B) (8)
C(9/2 ,1)

>
Figure 4.3An example of bids
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We can show that (7) and (8) can be satisfiedfer2 but notw = 1.

Fora=2
W12 + (1-w)? (9/2)* > w?3? + (1-w)*3 = (@454 1L-w)* > 8w’
w2 (9/2)% + 1-w)%1* > w*3 + (1-w)*3F = @5/ 4)w’> 8(1-w)®

— _/
~

for w = 0.5 it holds

Fora=1
wl+@-w)(9/2) > w3+ @1L-w)3 = 32 1-w)>2w

w(92)+@L-wil>w3+1-w)3 = 32 w>21-w)

- J
Y

No such weights exist!

In the following theorems and conjecture we asstma¢ the underlying utility
function of the buyer is in the following form:
1/t
o= 3o -2 |
where
A; - weight of attribute |

a;: level of attribute |

Z, : ideal level of attribute j

t : parameter of the underlying metric

In our calculations, we pretend that we do not ktlegvparameter values.
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Theorem 1: For two attributes, J = 2, if preference constsaare satisfied foti;

then they will also be satisfied by aayor o > a;.
See Appendix A for the proof.

Conjecture: For any J > 2, if preference constraints are fsadigor o, then they

will also be satisfied by any for a > a4.
Theorem 2: We satisfy the buyer’s preferences witk t.

Proof: In our approach we start with= 1 and at each round if we can not satisfy
the preference relations with the currentvalue, we increase it by 1. As we
follow an ascending type procedure anddert the preferences are satisfied, the

proof is obvious.

Theorem 3: If preference constraints are satisfied @y at round h, in the

following rounds the estimataedvalue will be at least (an+1> an).

Proof: At each round, we take the smallestatisfying the preference constraints.
If ox does not satisfy the constraints at round k, askeep the previous
information, ax can not satisfy the constraints of the followiogimds. Therefore

if the constraints are satisfied loy at round h, the smallest possible parameter

value of the next round will b&,.

We fit the preference function using and corresponding weight values from
(WALFA) problem. Let the estimated preference fimtvalue of the best bid of
the current round be uThen we construct a contour with a preferencetfan
value of &” where (V= u'(1-6). We provide support to all sellers to move onto
or closest to this estimated contour. We assumieathaach round, sellers give
their most profitable bids based on our estimatidnsstly, each seller tries to

find profitable bids on the estimated contour.dhposing bids on the estimated
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contour cause any loss, he/she moves to a poihisgher cost curve that is the

closest point to the estimated contour.
4.3 Sellers’ Model

The cost of a bid to seller i is a functiof(,sf), of the attributes in the bid. We
assign different cost functions to sellers andagheround, they update their bids
according to their cost functions. Each sellertfisplves the profit model

(P_SEL) to update his/her bid. By solving this he/shedrio compose a bid on
the estimated contour with at least zero profithE objective function value of

(P_SEL) is negative - indicating a loss, he/she thenesolhe zero profit model

(Z_SEL) and updates his/her bid.

Parameters:
w; : the weight of attribute j found from (WALFA)
o : the parameter of the, Imetric used in (WALFA)

Z, : ideal level of attribute j

u®™ : preference function value of the estimated conto

f;: the cost function of seller i

z’; values are typically the best attainable attritustieies for each objective and

can usually be extracted from the problem context.

Decision Variables:

a,, - price seller i offers
g, : level of attribute | to be offered by seller & P

d : the difference corresponding to the preferengetion value of the bid of

seller i, u(g, and the contour,d suggested to all sellers in round h.
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Price is a typical attribute in auctions and weirtefit as attribute 1 for

convenience of notation.
Problem (P_SE|).

Max z = a,— fi(s) 9)

s.to

[iwﬁ-ﬂﬂ <u® (10)

=

Problem (Z_SED

Min d; (11)

s.to
[iwﬁ-ﬂﬂ - <u® (12)

-fi(s)>0 (13)

d >0 (14)

In (P_SEL), the objective is to make a bid that maximizes profit on the

estimated contour while satisfying the constraadsording to each seller's cost
function. On the other hand, in (Z_Skl- for the sellers who cannot bid
profitably on the estimated contour — the objectliveo move to a point that
minimizes the difference between the estimated aonand the seller's cost

function.

We generate the (P_SBEland (Z_SED problems in such a way that sellers

consider only their cost functions and our estiorai while constructing their
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bids. However, sellers can have different constsamreal life. In this case, each
seller could add his/her own constraint(s) and eslhis/her (P_SEL and if

necessary (Z_SE)problems.

The ideal bid consists of the best attainable atte values and generally it
cannot be satisfied by any seller. At each rounel,invite the sellers to a 100
percent improved estimated contour. Although thigmeded parameters of the
preference function can change through auctiorh) M@® percent improvement,
we aim to converge to the ideal bid. As a sellemca place the ideal bid, sellers

have to give zero profit bids at some point andathetion will stop.

In the approach, we estimate the parameters gprbkerence function based on
the preferences of the buyer and the shape ofstiraaged contour would change
as the rounds progress. A seller who makes a tid »éro profit based on the
estimations in round h can be the provisional efrilext round. Therefore, sellers
continue bidding even if they are not on the edtadacontour. In the following

we provide an example showing that a seller casdbected by the buyer even if

he/she bids with zero profit based on our estimiatio

Criterion Z According to his/her
1 preference function

S1 the buyer selects !

S3

B Contour based on the bu’s
.— preference function

[
»

Criterion 1
(a) Bids in Round h
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Criterion

4 Only seller 3 gives
profitable bids on the
........ . S estimated contour and
""" s2
[~ . seller 1 and 2 bid with
DR “.________y Contour based on the buyer's
N preference function zero profit. However,
. S8
[ i th er selects S2 at
\.\/y Estimated contour e buyer selects S
; > this round.
Criterion 1

(b) Bids in Round h+1

Figure 4.4The selection of a seller who makes bid with zedippreviously

4.4 Numerical Example

In this example, we consider two attributes — deefate and price — and take the

buyer’s underlying preference function as follows:

o= (06fs, -z, +(odfa, -}

where,

a, is the price value and, is defect rate value.

The parameter settings will be mentioned in Sectié@n
It should be noted that although most of the nusoethe following tables have
more than four digits after the decimal point, warrd them up to four significant

digits to simplify the tables.

We create the initial bids as mentioned above apdesent them in Table 4.1:

30



Table 4.1 The Initial Bids

Round O
Seller| Price Defect Pref.Fn_DM| Pref.Fn_Estimated 0_Profit
Rate — — Frequency

S1 12.5431 1.2 5.0173 8.0040 0
S2 10.2344 1.7 4.0946 6.5668 0
S3 10.0751 2.2 4.0323 6.4909 0
S4 8.6518 2.7 3.4689 5.6145 0
S5 7.7999 3.2 3.1418 5.0999 0
S6 8.1535 3.7 3.2955 5.3489 0
S7 7.2629 4.2 2.9832 4.8099 0

The provisional winner and his/her bid are writierbold in tables. For instance,
in Round O according to his/her preference functitie buyer selects seller 7
(S7). Based on this information we estimate theampaters of the buyer’s
preference function. We start witlh = 1 and found the following values by
solving the (WALFA) problem for this value.

wg = 0.05 and w= 0.95

u = 4.8099

u® = 4.8099(1-0.05) = 4.5694

The estimated preference function values are giveater “Pref.Fn_Estimated”
column in Table 4.1, whereas “0_Profit Frequenayfumn represents how many
times each seller has bid unprofitably up to tleaind. If all sellers have positive
values in the last column at any round indicatifigsellers bid unprofitably, the

algorithm stops.

We inform sellers about the estimate@nd weight values. Also we recommend
each seller that his/her preference function véduwehis/her updated bid should
not exceed 4.5694 which is the preference funatadne of the estimated contour

after improvement.
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Afterwards, each seller solves his/her own (P_jpRtoblem and it turns out that
all sellers except S1 and S2, can bid profitablyaBd S2 solve (Z_SELand the

resulting bids are provided in Table 4.2.

Table 4.2Bids for Round 1

Round 1

. . 0_Profit

Seller| Price | Defect Rate Pref.Fn_DM| Pref.Fn_Estimated - —
— — Frequency

S1 7.9232 3.1208 3.1882 4.8479 1
S2 7.3235 3.6174 2.9720 4.6282 1
S3 6.8897 4,1182 2.8399 4,4977 0
S4 6.8493 4.6297 2.8727 4.5790 0
S5 6.8099 5.1285 2.9207 4.6582 0
S6 6.7711 5.6202 2.9846 4.7363 0
S7 6.7311 6.1266 3.0682 4.8167 0

In Round 1, the buyer selects S3 as the best amibregs and fon = 1 we find
the following weight values by solving (WALFA):
wg = 0.2009 and w= 0.7991.

For the next round, the sellers are again providét the information of the
estimatedr and weight values. Also they are given the prefeegunction value
of the estimated contour after improvement. Theatgd bids can be seen from
Table 4.3.
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Table 4.3Bids for Round 2

Round 2

. : 0_Profit

Seller| Price | Defect Rate Pref.Fn_DM| Pref.Fn_Estimated _ —
Frequency

S1 8.1501 1.8513 3.2622 3.6852 2
S2 7.5452 2.3644 3.0253 3.4541 2
S3 6.9494 2.8533 2.7993 3.2394 1
S4 6.7549 3.3563 2.7422 3.2104 0
S5 6.5659 3.8574 2.7013 3.1941 0
S6 6.3773 4.3576 2.6798 3.1887 0
S7 6.1882 4.8590 2.6829 3.1941 0

In Round 2, the buyer selects S6. kor 1 we cannot find a feasible solution to

(WALFA). We increase by 1, set it 2 and find the following values:
wg = 0.3312 and w= 0.6688.

The updated bids for Round 3 are given in Table 4.4

Table 4.4Bids for Round 3

Round 3

. . 0 Profit

Seller| Price | Defect Rate Pref.Fn_DM/| Pref.Fn_Estimated _ —
- - Frequency

S1 8.0032 2.4302 3.2080 3.3403 3
S2 7.4331 2.7688 2.9875 3.1205 3
S3 6.8663 3.1227 2.7754 2.9121 2
S4 6.3034 3.4888 2.5785 2.7203 1
S5 6.1455 3.9002 2.5523 2.7024 0
S6 5.9883 4.3206 2.5433 2.6987 0
S7 5.8076 4.7465 2.5475 2.7024 0

Again S6 is selected in Round 3. We cannot findasible solution foo = 2. We

incremento value by 1 and foa = 3 we estimate the following weight values:
wg = 0.3783 and w= 0.6217.
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The updated bids for Round 4 are given in Table 4.5

Table 4.5Bids for Round 4

Round 4

. . 0 Profit

Seller| Price | Defect Rate Pref.Fn_DM| Pref.Fn_Estimated - —
- - Frequency

S1 7.9442 2.8844 3.1914 3.1917 4
S2 7.3763 3.1083 2.9735 2.9738 4
S3 6.8168 3.3525 2.7657 2.7660 3
S4 6.2679 3.6164 2.5739 2.5741 2
S5 5.7643 3.9017 2.4182 2.4184 0
S6 5.6230 4.2628 2.4156 2.4157 0
S7 5.4416 4.6318 2.4188 2.4188 0

S6 is selected in Round 4 again and the estimateaieter values are as follows:
o =4,

wg = 0.3999 and w= 0.6001.

Sellers update their bids with the given informatitn Round 5, only S6 and S7
give profitable bids. The updated bids for Rourat® given in Table 4.6.

Table 4.6Bids for Round 5

Round 5
. : 0_Profit
Seller| Price | Defect Rate Pref.Fn_DM| Pref.Fn_Estimate dFrequency

S1 7.9132 3.2559 3.1877 3.1880 5
S2 7.3432 3.3942 2.9703 2.9705 5
S3 6.7840 3.5537 2.7633 2.7635 4
S4 6.2399 3.7362 2.5726 2.5728 3
S5 5.7180 3.9426 2.4067 2.4069 1
S6 5.2776 4.1875 2.2948 2.2949 0
S7 5.0870 4.5101 2.2949 2.2949 0
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In Round 5, the buyer is indifferent between S6 &t7dbecause the preference
function values of the buyer for the two sellers aiithin the small threshold
value we use. We still write constraints indicatihg preference of the bids of S6
and S7 over the remaining bids. These, howevernaoprovide us any new
information, i.e. when we solve (WALFA), we foundet sameo and weight
values as in Round 4. Still two sellers bid prdfiya thus the algorithm continues.
To support sellers for the next iteration, we inyaréthe estimated contour and tell
the sellers that their preference functions foirtbpdated bids should not be on
2.1802 (2.2949 x 0.95) to be competitive. The estédo and weight values of

Round 4 are again used for Round 5.

The updated bids for Round 6 are given in Table 4.7

Table 4.7Bids for Round 6

Round 6

_ . Profit

Seller| Price Defect Rate Pref.Fn_DM Pref.Fn_Estimagteg—
- - requency

S1 7.9132 3.2559 3.1877 3.1880 6
S2 7.3432 3.3942 2.9703 2.9705 6
S3 6.7840 3.5537 2.7633 2.7635 5
S4 6.2399 3.7362 2.5726 2.5728 4
S5 5.7180 3.9426 2.4067 2.4069 2
S6 5.2270 4.1764 2.2773 2.2774 1
S7 47779 4.4410 2.1970 2.1970 1

In this round, the buyer selects S7. When we chbek O0_Profit_Frequency
column, we see that all numbers are positive ingligathat there is no seller
bidding profitably. Therefore the algorithm stopslahe winning seller is seller
7.
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4.5 Experiments

We consider two cases in terms of the attributebmns1 two (defect rate-q, price-
p) and three (defect rate-g, price-p, lead timedtyribute cases where all
attributes to be minimized. In the two attributseaeach seller identifiesdefect
rate and aprice value for the auctioned item. Here defect rateised as an
indicator of quality; smaller defect rate stands liagher quality. In the three
attribute case, in addition to these attributelesehlso identify dead timevalue
about the delivery time of the item being auctioreda new attribute. Smaller
lead times causing higher costs to sellers, areesl by the buyer. The relations

between the attributes will be mentioned in théofeing sections.

For our example problems, we generate 7 sellerd émving his/her own
continuous cost function. The cost function of esell for two attribute case is

constructed in the following form:

cost = f(q) =( ! . +(6.5—c)j1.2

(9 -0
where,

gi. defect rate value in seller i's bid
c: constant, ¢ = 0.5(i-1)
i=1,2,..,7.

We consider a cost function which has a negatilegiom in defect rate, i.e. as
defect rate decreases (or quality increases) oaostases. Then we assign such
cost functions to sellers to generate nondomindied. These cost functions
provide each seller to dominate others at diffedsfgct rate ranges. For instance,
seller 1 dominates the others for defect rates adl.b4, whereas seller 2
dominates others for defect rates between 1.542a0l Each seller has his/her
own dominating region with such cost functions. sSThiechanism is created in
order to make the problem more interesting by itatihg the sellers to be

competitive for different attribute combinations.
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While assigning initial defect rates, we take thelkmminating regions into
consideration to generate nondominated bids. Wéhsamaximum defect rate as
10. Then we calculate initial cost values usingesgl cost functions mentioned
above. After finding the cost values, we assigrrafiprate to each seller and
calculate price values for the initial round. W&dgahe minimum profit rate as
20% and the maximum profit rate as 50%. We randog¥perate numbers
between 1.2 and 1.5 for each seller and multiphs¢hnumbers with sellers’ cost
values to assign initial prices. With this, we gasilefect rates and price values to

sellers to compose bids for the beginning round.

For the three attribute case the cost functiors fBows:
cost = fi(q;, It;) :[(Q.%)z +(65- C)Jl.Z + (%}
where,

g defect rate value in seller i’s bid

Iti: lead time value in seller i’s bid

c: constant, ¢ = 0.5(i-1)

i=1,2,...,7.

We construct a cost function that defect rate aadi ltime are related with cost
separately. The relation of the defect rate isstmae as that of in the two attribute
case. Additionally we consider a negative relatmmsbetween cost and lead
time, i.e. as lead time decreases cost increasestaké the minimum value of

lead time as 3 and the maximum value of lead timm&0a

Cost functions can be constructed in different w&sr aim was to generate cost
functions in such a way that the sellers would benpetitive for different
combination of attribute values. Developing differepossibly more realistic,

cost functions can be the subject of future researc
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We use the same initial defect rates in the twabatie case. Then we randomly
generate the lead time values and calculate thevehises according to the cost
function constructed for three attribute case.d’calculation is the same for both

cases. We use these initial bids in our experiments

We take the maximum price value as 15 and scdletiween O and 10 and take
defect rate and lead time values as they are tgyhall attributes to a similar
scale. As we try to minimize all attributes, wedake ideal point such that all

attributes have zero value.

In our example problems, we take the threshaldas 0.001. In Section 4.1 we
discuss two different ways to use such a threskesidl. We consider the former
one and say that if the buyer prefers A to B, guiees u(B)> u(A)(1+ A).
Although it causes nonlinearity in the model, we litssince our problems are
small and do not cause significant computationahmexity. However, for big
problems taking a threshold,, and require u(Bx u(A) + A" will be beneficial

in terms of computational complexity. In some of pwblems we apply the two
methods by setting both and A® to the same constant. The results are not

significantly different.

The parameted is necessary for the improvement of the bid9l i§ too small,
there will be lots of information about the trueefarence function; however the
number of rounds will be too big. On the other hahd is too large, the auction
will end prematurely as it is unlikely for the s# to make such improvements.
In our calculations we set the improvement perggnta0®, be 5 wher®=0.05.
We multiply the preference value of the estimatedtour before improvement
by 0.95 and find the preference value of the eg@dhaontour that will be
presented to the sellers. We set a lower bound0& &d an upper bound of 0.95
for the weights in (WALFA) problem to avoid extremaalues of weights in our

experiments.
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We use an underlying,Lmetric representing the preference function oftthger
as follows:
1/t
=[Sl =)
where
A; - weight of attribute |

a;: level of attribute |

Z, : ideal level of attribute j

t: parameter of the underlying, Imetric

We test the algorithm on 17 problems for differeombinations oft and A

values for both two and three attribute cases.
4.6 Results

To test the performance of the algorithm, we comhe results of the algorithm
with the ones found using the exact parametersegalWe want to see what
would be the results if we know the preference fiamcof the buyer explicitly
and the sellers can bid with zero profit. Thus wke the following (EX_PAR
problem with exact parameter values for each sédflefind the best possible

defect rate and price combination that the setlarsgive with zero profit.

The parameters and the decision variables areathe as before and the model is

as follows:
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Problem (EX_PAR

Min u(s) (15)

s.to

=[Sl -2)] s

=

a, - fi(s)=0 (17)

In (EX_PAR), the objective is to compose a bid that minimittesdistance from
the ideal point in terms of ,Lmetric. Sellers try to find this combination witio

any loss.

When we look at the results of the example prohle®ection 4.4, it can be said
that our estimations are close to the true valundsnge guide the sellers well. The
last rows of Table 4.8 and Table 4.9 in bold shbat the winning sellers are the
same (seller 7 for both) and the preference functadues of the buyer are nearly
the same for both case§e say nearly as for simplicity we round up the valunes

the tables to four significant digits, althoughytHeok the same there are very
small differences. However, these differences aamdyglected due to rounding
off. Also the preference function value of the huyer all bids and the bid

compositions are closely the same as we guide thigmnearly exact parameter

values.

Table 4.8The Results of the Algorithm

Seller | Price | Defect Rate Pref.Fn_DM
S1 7.9132 3.2559 3.1877
S2 7.3432 3.3942 2.9703
S3 6.7840 3.5537 2.7633
S4 6.2399 3.7362 2.5726
S5 5.7180 3.9426 2.4067
S6 5.2270 4.1764 2.2773
S7 4.7779 4.4410 2.1970

40



Table 4.9The Results Found with Exact Values of Parameters

Seller | Price | Defect Rate Pref.Fn_DM
S1 7.9132 3.2554 3.1877
S2 7.3433 3.3937 2.9703
S3 6.7841 3.5532 2.7633
S4 6.2400 3.7358 2.5726
S5 5.7181 3.9422 2.4067
S6 5.2272 4.1760 2.2773
S7 4.7781 4.4407 2.1970

In all problems for both two and three attributses the winning seller(s) found
with the algorithm and (EX_PARproblem with exact parameter values are the
same. We also compare the preference function satdethe buyer for the
winning sellers found with the algorithm and witBX_PAR). To evaluate the

performance of the algorithm for these values we%sdeviations:

u( final _bid) - g(optlmal_bld) 1100
u(optimal)

% deviation =(

In the formulau( final _bid) refers to the preference function value of thelfina
bid of seller i found by the algorithm whereagoptimal _bid) refers to the

preference function value of the optimal solutioorid by (EX_PAR.

For each problem, we check the percent deviatiorthef buyer's preference
function values of the winning sellers. We alsocuakdte the percent deviations
for each seller and report the averages over iddirseAs can be seen from Tables
4.10 and 4.11, the percent deviations are very Ismel for all problems the
buyer’'s preference function found with the alganiths close to that found by
(EX_PAR) with the exact parameters. These imply that éeeémation and

guidance mechanisms of our approach worked waelllithe test problems.
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A%

Table 4.10% Deviations Between the Results of the Algorithmd &xact Solutions for Two Attribute Case

o=1 =2 =3 0=4
w,=0.8 w,=0.5 w,=0.8 w,=0.5 w,=0.3 w,=0.8 w,=0.6 w,=0.5 w,=0.4 w,=0.2
wy=0.2 wy=0.5 wy=0.2 wy=0.5 wy=0.7 wy=0.2 wy=0.4 wy=0.5 wy=0.6 wy=0.8
Winning_seller(s)] 0.0000 0.0013 6.4718 0.0000 0.307p 0.0003 0.0000 0.0209 14P.0 0.1308
Average 0.0000 0.0011 0.9537 0.0000 0.4793 0.0184 0.0000 1060. 0.1665 2.4178

Table 4.11% Deviations Between the Results of the Algoritlimal Exact Solutions for Three Attribute Case

a=1 a=2 a=3 a=4
w,=0.3 w,=0.2 w,=0.7 w,=0.2 w,=0.3 w,=0.7 w,=0.2
wy=0.4 wy=0.1 wy=0.2 wy=0.1 wy=0.4 wy=0.2 wy=0.1
w,;=0.3 w;,=0.7 w,;=0.1 w,=0.7 w,;=0.3 w,;=0.1 w,=0.7
Winning_seller(s)] 1.8714 0.0001 0.1456 0.2149 0.0191 0.0041 0.00B3
Average 1.7383 0.0001 0.0256 0.2782 0.0183 0.0169 0.0026




For practical purposes we use constaas 0.001 in our calculations. As we scale
the attributes, the preference function valueshefliids are not so different from
each other. Therefore, we say that using congtaeshold level is reasonable for
our testing. However it is also possible to chatigethreshold depending en
value instead of taking it as constant. The reasdhat for any given point, as
gets larger the preference value decreases faatime weights and the threshold
level can change. Because of this, the threshuelel & the buyer can be taken as
J"A" where J is the number of attributes showing theedision and\” is a

predetermined value.

Another point is that, in our experiments, we dedh small number of sellers
and at each iteration we present all bids to thgebuHowever, for big sized
auctions a representative group of bids can becteeleusing some filtering
methods like in Steuefl986) and the buyer can be asked to choose thte bes

among them.

Lastly, ideal point can be dynamic. Although we @asstatic ideal point in our
experiments, it can be updated at each round. &feebuyer is presented the bids
of the current round, point based on these bidshiee¢an update the ideal point

for the next round.
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CHAPTER 5

AN EVOLUTIONARY ALGORITHM APPROACH TO
MULTI-ATTRIBUTE MULTI-ITEM AUCTIONS

The Evolutionary Algorithms (EAs) have been verypplar during the last
decade (http://neo.lcc.uma.es/opticomm/introeatiitie application of EAs in
multi-objective optimization has also received gimugvinterest from researchers
(Fonseca and Fleming, 1995). EAs maintain manytisoisi in a single run;

hence, they are particularly useful in multi-objeetproblems (Deb, 2001).
The advantages of EAs are described by FonsecBlaming (1995) as

» the ability to handle complex problems,

» involving features such as discontinuities, multitality, disjoint feasible
spaces and noisy function evaluations,

* reinforces the potential effectiveness of EAs intimabjective search and

optimization

In this chapter, we develop an EA for the case aoitimattribute multi-item
reverse auctions. We try to generate the wholet®#ment using the EA. We also
develop heuristic procedures to seed several ling@dutions in the initial
population. We test the EA on a number of randogéperated problems and
compare the results with the true Pareto optinmaitfobtained by solving a series

of integer programs.
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5.1 EA Applications in Auctions

As discussed in Section 2.2.3, there are diffetgmts of auctions; one of which
is the multi-attribute auction. Multi-attribute @ion process considers not only

the price but also other attributes.

Gaytan et al. (2005) apply an EA to solve multiitite multi-item reverse
auctions. In their approach, sellers make theis bpresenting which items they
want to supply without support for the first rounthen the buyer finds the
efficient front by using the EA. The sellers giveeir bids for the second time
without support. The buyer finds the new efficiérant. Afterwards the buyer
selects a criterion (i.e. price) and finds the pthat has the maximum difference
between the two Pareto fronts in terms of thisaon. If the buyer likes this new
point, the auction ends and the sellers in the imgneombination are informed.
Otherwise the buyer expresses his/her preferenkes duality improvement
while not increasing price too much, etc. to sell&ellers update their bids using

this information and the auction continues.

5.2 Methodology

In this study, a multi-attribute multi-item reveraection problem is solved by
adopting an EA, namely the Non-Dominated Sorting&lie Algorithm NSGA I
(Deb et al. 2002).

5.2.1 Problem Definition

The problem consists of one buyer, | sellers, ribates and K items where there
exists one unit for each item. All sellers can twdall items in our problem. We

try to find the best combination in terms of Jibtites to supply all of these

items. No extra constraint exists.
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In our example problems we consider two objectidesect rateandprice where
both are to be minimized. Each seller identifietefect rate and a price value for
each item he/she wants to supply separately. We desfect rate as an indicator

of quality as in Chapter 4.

We consider two casegriginal caseanddiscounted casehere there exists price

discounts in the latter one.

Original Case:

In the original case, to calculate the defect odta combination, we sum up the
offered defect rates in the combination. It is gglént to taking the average.
Alternatively, maximum of the offered defect raiesthe combination can be
taken as the defect rate of the combination. Inesgituations summing up the
defect rates may not be reasonable. Weighted suld be an option to calculate
the defect rate of the combinatiddn the other hand, to calculate the total price

of the combination we sum the offered prices inabmbination.
We scale both objectives. We find the minimum gassand maximum possible
values for combinations in terms of both objectivEisen we use these values to

linearly scale the objectives between 0 and 1.

Discounted Case:

With the same bids, we also try to find the beshloimation if there exist price
discounts. In this case, sellers have differeneghold levels for applying
discount. If the number of items supplied by aesel$ greater than or equal to
his/her threshold level, an amount of discount meiteed by that seller is applied.
Discount amounts are different for different salldn our study we only consider

one threshold level for each seller. Scaling issttuime as the original case.

The mathematical formulations of the problems aoided below:
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Mathematical Formulation of Original Case

Decision Variables

Xik : {1 if item k is supplied by seller i
0 otherwise

Parameters
gk : defect rate given by seller i for item k

pik : price given by seller i for item k

where; i(sellers):1,2,3,...,landlefits): 1,2,3,...,K

Problem(QOriginal)

Minimize zz = > Xk
ik

Minimize z= )" Xipi

ik

Z Xik =1 Uk (each item will be supplied by a seller)

Mathematical Formulation of Discounted Case

Decision Variables

Xic: {1 if item k is supplied by seller i
0 otherwise
m(i): [ 1 if constraint (1) is active for seller
{ 0 if constraint (2) is active for selle
t(i) : total number of items supplied by seller i inaanbination

prc(i) : total price of items seller i is assigrtedsupply
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Parameters

gi : defect rate given by seller i for item k

pik : price given by seller i for item k

th(i): threshold level determined by seller i

d(i): discount amount determined by seller i at thoéskevel th(i)
M: big number

where; i(sellers):1,2,3,...,landlefits): 1, 2,3,...,K

Problem(Discounted)

Minimize z = ) X0
ik

Minimize z =) prci(i)

s.to
Z Xik=1 [k (each item will be supplied by a seller)
t(i) :Z Xik Oi (total number of items supplied by seller i)
k
t(i) > th(i) — Mm(i) i
pre()> D Xipi — M(1-m(i)) Oi (1)
k
pre(i)> > Xupi(1-d(i)) O (2

Xik, m(i): binary
t(i), prc(i)>0

5.2.2 The EA
As mentioned above, NSGAII (Deb et al. 2002) is ified for our problem. We

use real-valued representation. That is, each geaehromosome is represented

by an integer reflecting the seller of that item.
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3 6 8 4 4

Figure 5.1An example of item — seller relation

In Figure 5.1, a chromosome showing which itemuigpsied by which seller is

depicted. The chromosome cells refer to the itensthe numbers in the cells
refer to the sellers. The chromosome representstéml is supplied by seller 3
whereas item 2 is supplied by seller 6 and itents&td K are supplied by seller
4.

5.2.3 Overview of the Algorithm

Firstly, an initial parent population, ®vith population size of N is generated and
sorted based on the nondomination sorting (Deb1R0hat is, all nondominated
solutions are in the first front. Once the firgirit is eliminated, all nondominated
solutions of the resulting population are in theosel front and so forth. A
solution’s nondomination level, rank, is used asfitness function value. By
using selection, recombination, and mutation ojpesatan offspring population,
Qo, with size N is created. For each generatiomerdafter, parent population and
offspring population are combined to form a glopapulation, G After sorting
G, the best N members among the parents and therioffjsare selected based on
their nondomination level and crowding distanceueal While selecting the N
best solutions, their rank values are checked wisenaller rank values are
preferred. Firstly, the solutions with rank 1, whibave the smallest rank, are
selected. If the number of these solutions is ldsn the predetermined
population size, N, we continue to fill the elitepulation with the solutions
having rank 2. Whenever the total number of sohgiexceed N, we eliminate
those in a denser region based on a crowding distar@asure at the current rank.
We also eliminate all solutions in higher ranks §P2001). This maintains the

diversity among the solutions. Afterwards, thesst ¢ members are referred as
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the new parent population members of the next geioer R.; where t is the

current generation counter.

The outline of the algorithm is as follows:

- Generate the initial population By using the random number generator used in
the NSGA 1l code, population size N.

- Evaluate objective values of the combinations scale them

- Rank the solutions (nondomination sorting)

- Generate offspring populationy@f size N with Selection, Recombination and
Mutation: Tournament Selection is used in the aigor (Deb, 2001). In the
tournament selection, two solutions from the parpopulation are selected.
These solutions are compared and the better opetigito a mating pool. This
procedure continues until the mating pool is filledh N solutions. Afterwards,
uniform crossover is applied to the solutions ia thating pool (Deb, 2001). That
is, two offspring are generated from two parentemgteach gene of one offspring
is inherited with a probability gfrom either parent. The procedure is illustrated

below:

Let P1 and P2 be two parent solutions in the matimg and O1 and O2 be the

offspring solutions generated from P1 and P2, where

P1 P2

For gene 1, a number is randomly generated, r<lfy; than the first gene of O1
takes the value of 4 and the first gene of O2 tdkesvalue of 3. Otherwise, the
first gene of O1 takes the value of 3 and the fjsste of O2 takes the value of 4.

This procedure is repeated for each gene.
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Lastly, mutation is applied to the offspring sobums created with crossover
operation. The mutation probability is selectedp@asEach gene can be mutated
with a probability g, and if it mutates, a randomly generated integdueva
between 1 and | is assigned to the mutated genea Wis, offspring population

Qo is constructed.

For each generation perform the following operation

- Combine parent and offspring populations and fargtobal population, G

- Rank the solutions in the global population amdednine crowding distance
between points having the same rank value

- Fill the elite population (this population is leal elite as they have small ranks)
with size N

- Set the elite population as.P

- Create the next generation with genetic opergs®kection, recombination and

mutation).

5.3 Input Generation

We randomly generate defect rates and prices tetean our problems. We
consider items from different categories and séemint defect rate and price
ranges for these categories. Some items are mbarabla than others with small
defect rates and high prices. We take 3 categameks corresponding attribute

ranges are given in Table 5.1.

Table 5.1Categories vs Attribute Ranges

Category| Defect Rate Price
A 0.1-20 | 61-100
B 21-65 31-60
C 6.6 —10.0 1-30
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We take the minimum defect rate as 0.1 and the maxi defect rate as 10.0
whereas we take the minimum price value as 1 aadrthximum price value as
100. We randomly generate integer price values gusindiscrete uniform
distribution.

Firstly, we randomly assign the categories to thens using uniform distribution.
For each seller, we generate attribute values &h etem using the defect rate

and price value ranges of the corresponding cagegor

After generating the defect rate and price randomby use the defect rate as it is
and to make it realistic (generally there is aextibetween defect rate and price;
if one is small the other is large), we impose gatiee correlation between these
two attributes. We take the reciprocal of the defate and add it to the randomly
generated price to find the final price given fbe titem that has been already
assigned a defect rate and category.

For the discounted case, we also generate threhats (an integer between 2
and 7) for each seller randomly by using a discuetiéorm distribution. Then,

discount amounts between 3% (0.03) and 7% (0.@/Jyaardomly generated with
a discrete uniform distribution. Afterwards, thessdomly generated discount
amounts are added to the threshold levels to fiadihal discounts. The reason is

that, we expect large discounts if the thresholélles high.

The true Pareto optimal frontiers for both the idd and discounted case

problems are obtained on GAMS 22.5 by usinggfm®nstraint method (Haimes
et al. 1971). We use-constraint for defect rate and at each iteratibeg value

is increased by 0.1 over tlievalue of the previous iteratiagince the minimum

value of the defect rate among the items is 0.1.

52



5.4 Simulation Results

In our experiments we choose the selection straasgpurnament selection (Deb,
2001) and use uniform crossover with p0.9 based on our preliminary
experiments and bitwise mutation with, B=0.01. We use the same seed for
random number generator in each run. That is, we eaich run with the same

initial population and generate the same randomhausgnat each run.

We modify the code downloaded from the website ahpur Genetic Algorithms
Laboratory (http://www.iitk.ac.in/kangal/codes.sltmand we implement our

algorithm in C programming language.

We test the algorithm for different problems. Westouct three combinations of
the number of items and sellers (IxK): 10x20, 3Qxa88d 30x100. For each

combination we generate 5 problems and we expetiorethese problems.

For each problem, the numbers of nondominated isokifor both original and

discounted cases are given in Table 5.2.

We run different versions of the algorithm and téstperformance against the
true Pareto frontier. To test the performances,use Hypervolume Indicator
(Zitzler and Thiele, 1998) and the Inverted General Distance Metric (Van

Veldhuizen and Lamont, 2000). The former measunestotal objective space
dominated by a population with respect to a giveierence point. In our study
we take the nadir point as the reference poinhd&arahan (2007). On the other
hand, the latter measures the algorithm’s perfoobmam terms of both

convergence and diversity. In this metric, the Elezn distance of each solution
in the true nondominated front to the closest smhuin the population generated
by the algorithm is calculated. Then the averagéhe$e minimum distances is

taken.
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For the Hypervolume Indicator (HI) larger valueg greferred, whereas for the

Inverted Generational Distance Metric (IGDM) smallalues are desirable.

In the following, we give the results of the algbm for a problem called as
30x100_pr4 in combination of 30 items and 100 slé/e discuss the results for
both original and discounted cases of this probl&linperformance results for all

problems are provided in Appendix C.

Table 5.2Number of Nondominated Solutions on the True Pafednt

Problem Original Case¢ Discounted Case
10x20_prl 39 69
10x20_pr2 31 40
10x20_pr3 30 22
10x20_pr4d 37 49
10x20_pr5 23 34
30x30_prl 61 174
30x30_pr2 54 159
30x30_pr3 88 191
30x30_pr4 76 209
30x30_pr5 70 172
30x100_pr1 85 209
30x100_pr2 57 129
30x100_pr3 96 161
30x100_pr4 74 168
30x100_pr5 79 184
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5.4.1 Original Case

In the original case, we run 2 versions of the afgm: without seedingand

seeding by sortingas explained later. Our preliminary experimentewshhat

when we run the algorithm for the original casehaitt seeding, the solutions
converge at the generation number of 7000 for 30xd@mbination. We use
different population sizes in our preliminary expegnts and we get the best
results for population size of 100. Thus in ouremments we set the population
size to 100. In Figure 5.2, resulting solutionsrwhning the algorithm for 7000

generations without seeding are represented.

120+
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110

+ True Pareto front
o without seeding

ss00 o O @

105

defect rate

100 ~

95

®00omon e o o .
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price

Figure 5.2 Solutions found by “without seeding” for Origin@ase

As can be seen from Figure 5.2, when we just run rtfodified NSGA I,
convergence of the algorithm to the true front seeatisfactory; however we

cannot capture some (extreme) regions. It is aiéeity of NSGA II.
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We, then seed the initial population with the Isedtitions for each objective. We
can solve the Problems (Original) in a solver tmimize one of the objectives
with the addition of the other objective multiplidy a small constant to get a
nondominated solution. For instance, to find thstlm@mbination in terms of the
defect rate, the objective function will be in folowing form.

Min z; + A

where

z;: defect rate objective
Z, : price objective

A : small positive constant

When we perform this for each objective we can fihd best nondominated
solutions for each objective. On the other hand,tifi@ original case it is not
difficult to obtain the best nondominated solutidios each objective without
using a solver. We can find the best nondominatadhbination with a simple
sorting procedure Firstly, for each item, we choose the seller vdffers the
minimum price for that item. If there exists ondese we assign this seller to that
item. If there are more than one seller offering thinimum price for that item,
then we compare the defect rate values offerethdsset sellers and choose the one
giving the smallest defect rate value for that it&e continue this procedure for
all items and find the best nondominated combimaitioterms of price objective.
In the same manner, for each item we select therseifering the minimum
defect rate value and find the best nondominatexdbawation for the defect rate
objective. Then these two combinations are addelletanitial population and the
remaining (100-2=98) combinations are randomly gateel. This is referred as
“seeding by sortirfigand the resulting solutions for 3000 generatioas be seen
in Figure 5.3.
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Figure 5.3 Solutions found by “seeding by sorting” for Origii@ase

When we look at the graph, we see that both the@ergence and diversity are

satisfactory. With these solutions, we can reprethentrue front well.

In the original case we have 74 nondominated swiston the true Pareto front.
We try to represent the Pareto front by at most d@@dominated solutions. In
Table 5.3, the performance measures in terms ofadlf IGDM, durations and
the generation numbers for both without seeding sewtling by sorting versions
are provided. We use HI* to represent the ratiotted hypervolumes of the

algorithm and the true Pareto front. Larger HI*ued are preferred.

HI* = Hypervolume of the algorithm / Hypervolume thie true Pareto front
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Table 5.3Performance Measures for Original Case 30x100_pr4

Version HI* IGDM |Duration (second) | Generation
without seeding 0.997)7 0.0102 64.45 7000
seeding by sorting| 0.99850.0029 29.97 3000

The results show that for 30x100_pr4, seeding byirgp outperforms without

seeding. To generalize, we look at the averageaidtk IGDM values for different

combinations in Table 5.4.

Table 5.4Performance Measures for Original Case

Problem Average HI*|  Average IGDM
10x20_without seeding 0.9902 0.0107
10x20_seeding by sorting 0.9979 0.0034
30x30_without seeding 0.9921 0.0082
30x30_ seeding by sorting 0.9942 0.0057
30x100_without seeding 0.9976 0.0062
30x100_ seeding by sorting 0.9977 0.0050

The performance measures in Table 5.4 show thatheroriginal case both
versions seem good. However the seeding by sowmgion of the algorithm
with 3000 generations can be preferred, as it requsignificantly fewer

generations when compared with without seedingimer& 000 generations) and

it is a simple procedure to apply.

5.4.2 Discounted Case

For the discounted case, we compare different messof the algorithm running

each for 10000 generations based on our prelimieapgriments. We have 168
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nondominated solutions on the true Pareto frontvamdry to approximate it with

a population size of 200 according to our prelimnexperiments. We observe
that the price range on the true Pareto frontwsetathan that in the original case,
as discount is applied on the price in the discedicbse. We also observe that the
defect rate range is wider in the discounted cd$® reason is that in the
discounted case we have additional constraints, we try to make groups of
items to take advantage of the price discount. 8fbee, the defect rate value of

the combination gets larger.

In Figure 5.4, we present the solutions correspando thewithout seeding

version of the algorithm.
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Figure 5.4 Solutions found by “without seeding” for Discount€dse

As can be seen in Figure 5.4, without seeding, amct capture some portions
of the true front. Convergence does not seem batjtlcan be improved by
increasing the number of generations. Afterwards,seed the initial population

with the best combinations for each objective. Wistf solve the
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Problems (Discounted) in GAMS to find the best rmmihated combinations for
each objective. In fact, the sorting procedure gitbe best nondominated
solution for the defect rate objective. We use eolonly to find the best
nondominated combination for the price objective.e Viadd these two
combinations to the initial population and generat@aining solutions randomly
and run the algorithm. This version is called tbgtimal seeding We give the

nondominated solutions found with optimal seedmgigure 5.5.

Convergence and diversity are good when we usenapseeding and the true

Pareto front can be represented well.
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Figure 5.5Solutions found by “optimal seeding” for Discouni€dse

The initial population can be seeded by higher nemdé good combinations on
the true Pareto front. However, these combinatgmiablems are generally hard
to solve. Typically good combinations for each alije are found and seed into

the initial population. Therefore, we also consideheuristic named agdhk
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heuristi¢’ developed for the discounted case, for the cadese it is hard to find

the optimal combination for price objective.

Overview of the Rank Heuristic

Firstly, we find the discounted prices offered kacle seller for each item. Then
we sort these discounted prices in ascending dadexach item. At the top, the
minimum discounted price for each item exists. Neve select the seller who
offers the maximum discounted price at the top assign as many items as
his/her threshold level to this seller. Let his/teeshold level be t1 and if t1 is
greater than or equal to K where K is the total benof items to be supplied we
assign all K items to him/her. Otherwise he/she svipply t1 items and we look
for the seller having the second maximum discouptez® at the top. If the seller
is not assigned to supply any item, he/she is asdigp supply as many as his/her
threshold level, t2, if the total items assigndd«t2) is less that K. Else he/she is
assigned to supply K - t1 items. If the seller offg the second maximum
discounted price at the top is assigned to suppiymesamount, we skip and
continue with the item offered by the next maximuhscounted price. We
progress to search until all K items are assigredet supplied. Then we start
from the item having the maximum discounted prictha top and search for the
seller offering smaller price among the ones assigio supply predetermined
amount of items mentioned above. This process moasi until all items are

supplied.

To illustrate the procedure, say we have threestand four sellers. The discount

amounts, threshold levels and the suggested dncesch seller are as follows:
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Table 5.50riginal Prices Table 5.6Parameters Values

Item 1| ltem 2| Item 3 Discount| Threshold
Amount Level
Sellerl| 4 15 6 Seller 1 10% 2
Seller2| 6 20 8 Seller 2 15% 1
Seller3| 2 30 5 Seller3 |  10% 3
Seller4| 5 25 4 Seller 4 20% 2

Firstly, we find the discounted prices offered lagle seller. The values are given
in Table 5.7.

Table 5.7Discounted Prices

tem1l| Item2| Item3
Seller1| 3.6 13.5 5.4
Seller2| 5.1 17.0 6.8
Seller3] 1.8 27.0 4.5
Seller4| 4.0 20.0 3.2

When we sort the discounted prices in ascendingrotfitie following table is

constructed.

Table 5.80rdered Discounted Prices

ltem 1 Item 2 Item 3
1.8(S3)| 13.5(S1) 3.2(S4
3.6(S1)| 17.0(S2) 4.5(S3
40(S4)| 20.0(S4) 5.4(s1
5.1(S2)| 27.0(S3) 6.8(S2

~— ~— ~ ~—
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The minimum discounted prices offered for each itemin the first row of Table
5.8. In the cells of the table, discounted pricd #re seller by whom the price is
offered exist. Then, we find the maximum discountgice among these
minimum values. This value is 13.5 and offered &jes 1 for item 2. We assign
item 2 to seller 1 and as his/her threshold lese? we say that one more item
should be assigned to him/her. Total number of staissigned is 2. We continue
since the total number of assigned items up to isdess than the total number of
items to be assigned. Then we move to the nextrmaniwhich is 3.2 offered by
seller 4. We assign item 3 to seller 4 and althahehthreshold level of seller 4 is
2, we assign him/her only one item as the total memof items assigned becomes
3. According to the heuristic, item 2 is assignedeller 1, item 3 is assigned to
seller 4 and remaining item, item 1, is assigneselter 1 as we say that seller 1

will supply items as amount of his/her thresholkle 2.

With this approach, it is hoped to obtain a repmésive solution for the best
combination in terms of price. Since the calculafior defect rate is the same for
both original and discounted case, we can findkést combination for defect
rate with sorting procedure mentioned above. Th@secombinations are seeded

to the initial population and the result is asdult:
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Figure 5.6 Solutions found by “rank heuristic” for Discount€adse

It can be seen in Figure 5.6 that the algorithmveoges well to the true Pareto
front however it cannot capture the whole fronttHa following, the performance
measures for 30x100_pr4 and for all problems avergin Tables 5.9 and 5.10,

respectively.

Table 5.9Performance Measures for Discounted Case 30x100_pr4

Version HI* IGDM |Duration (second) | Generation
without seeding | 0.898R 0.0876 163.77 10000
optimal seeding| 0.986110.0110 213.04 10000
rank heuristic 0.9494 0.0611 178.57 10000
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Table 5.10Performance Measures for Discounted Case

Problem Average HI*|  Average IGDM
10x20_without seeding 0.9628 0.0393
10x20_optimal seeding 0.9967 0.0029
10x20_rank heuristic 0.9690 0.0307
30x30_without seeding 0.8071 0.1218
30x30_optimal seeding 0.9696 0.0205
30x30_rank heuristic 0.9374 0.0484
30x100_without seeding  0.8675 0.0824
30x100_optimal seeding 0.9770 0.0173
30x100_rank heuristic 0.8842 0.0801

The performance measures in Table 5.9 show thatforspecific problem,
30x100_pr4, optimal seeding is the best. The wamnst among three versions is
without seeding with HI* value of nearly 90% andmall IGDM value. When
we look at Table 5.10, the same analysis can beemalde best version is the
optimal seeding and it has a hypervolume valuelp#ae same as the true Pareto
front with very small IGDM values for all problem®n the other hand, the rank

heuristic is a simple heuristic and it can be imph
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CHAPTER 6

CONCLUSIONS

In this study, we deal with multi-attribute revesaction problems. We develop
two approaches, one for multi-attribute single itaoctions and the other for
multi-attribute multi-item auctions. Former is amtaractive approach where we
support both parties (buyer and sellers), wheteaatter one is an EA approach.

In the interactive approach, we estimate the patemelues of the underlying
preference function of the buyer using his/her pasterences. At each iteration
we improve the estimated preference function valresinform the sellers about
our estimations. Then the sellers update their bi$ the auction continues if
there exists at least one seller bidding profitaye test the algorithm on a
number of problems. The results show that in edt tproblems, the correct
winning sellers (achieved with exact solutions) &and. Also the buyer's
preference function is closely approximated. Tramesfit can be said that we

guide the sellers well with asking reasonable nurobguestions.

We also develop an Evolutionary Algorithm (EA) fowlti-attribute multi-item

reverse auctions where we try to generate the wPateto front. In our study, we
develop different heuristic procedures to find gaoidial solutions to seed the
initial population. We modify the NSGA Il (Deb et 2002) and apply different
versions of the algorithm on randomly generatedblemms. We test the
performance of the algorithm using both the Hypkmt Indicator and Inverted
Generational Distance Metric. The results indic#itat the algorithm can
represent the true Pareto front well. As a futdvelys other multi-objective EAs

developed for different problems can be adoptedsdtve our problem and
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comparisons can be made between the algorithmsthAngoint is that in our
study, we consider single threshold level for easeher for the discounted case
(Section 5.2.1). However, the algorithm can beetk$or problems with different

threshold levels for each seller.

We intend to develop an interactive EA for multiidute multi-item reverse
auctions. For multi-round auctions using a prefeeemased EA will be beneficial
as we do not need to generate the whole Pareto. froraddition, as a future
study, the interactive approach we develop for Isingem auctions can be

improved for multi-item cases.

Our study shows that decision support tools hayemant potential benefits for
all parties participating in auctions. We beliehattthis is an important area for
future studies, especially for more complex auctienvironments. Also
application of the approach in a web-based platfoan be stated as another

future work.
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APPENDIX A

PROOF OF THEOREM 1

Theorem 1: For two attributes, J=2, if the preference comstsaare satisfied for
a; then they will also be satisfied by amyfor o > a; where the preference

function is in the following form.

)= Sl -2 )|

]
where

u(s): preference function value of the bid offered bifes i
w; : weight of attribute j
Z, : ideal level of attribute

o : parameter of the ,Lmetric
=1, 2.

Proof:

Let Ala,,a,), B(b,b,) andC(c,,c,) be three bids and let u be a preference
function where smaller values imply higher prefeetevels. Let

u(A)>u(B) andu(C)>u(B) *)

We consider the following figure, to visualize tpessible regions where bid

B may be located.
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Criterion 2

N

=

N A Criterion 1

Figure A.1 The possible regions for bid

Note that if we can show that the solutions inoegiR_I, R_V, R_VI satisfy (*),

then the proof of the theorem is complete, because
- we can find solutions in R_II that dominates slodutions in R_I and if we can
show that the solutions in region R_| satisfy Mg proof of the theorem for the

solutions in region R_II is trivial.

- the solutions in region R_IIl dominatés and C, any monotone preference

function satisfies (*).

- the solutions in region R_IV are dominatd&i¢cannot be in this region for such

a preference relation.

Therefore, we prove the theorem by showing (*) Bd@B in region R_I, R_V
and R_VI.
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For Binregion R_1,

c>2b>a 1)
azzbzzcz (2)
All >0
Fora=1
wa, +(1-wa, > wh, +(1-w)b, } From preferenc
lati
wc, +(1-w)c, >whb +1-w)b, retation
- b-a, _1-w_c-b
a, —b, W b, -c,
Let X = b, ~ &, andY = ¢ b , whereX ,Y>0. Then
2 _bz , ~C,
1 Sw=< 1 = XY
1+Y 1+ X
—a _ 6N ~ | ®-a) b, -c)<(c -b) (a, -b,) €)
a, _bz bz -G
Fora=2
wia,” + (1-w)%a,” > w?h” + (1~ w)*b,’ } From preferenc
relation
w?c,” + @1-w)%c,” > w?b? + (1-w)?b,’




We check whether =1 <
B’ -a%) (0, -¢,’) < (¢ -b") (& -b,")

(b, —-a) (b +a) (b, —c,) (b, +¢;) < (¢, —b) (¢, +by) (a, —b,) (a, +b,)
From (3), we only need to check whether the folluyinequality holds.
(b, +a,) (b, +c,) < (c, +b) (@, +b,)  from (1) and (2), it holds.
Fora=n

w'a" +(@-w)"a," > w'b" + (1-w)"b," From preference
n N N N relation
w'c, +(1-w)"c, >w'b" +@-w)"b,

n+l _ n+l n+l _ o n+l n_ n n_RKn
R S T Zln<cl o

We checkwhethera M _p S o an b —on
2 2 2 2 2 2 2 2

DA CSTAL S 0 -a) (0 -6 £ (@b @) b))

a,"-b," b, -c,"

= (b -a) (b +b"7a ++2,"") (b, ~C,) (B, +b, e, +-+¢,") <
(Cl - bl) (C1n_1 + Cln_zbl toee bln_l) (az - bz) (azn_l + azn_zbz +...+ bzn_l)

Multiply both sides withb,b, .
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(b, -a) (b_l.n +b1n_1a1 ot blaln_l) (b, -c,) (bzn +b2n_lC2 +..-+ bgczn_l) <
(6, =by) (6", +¢"207 +-+b") (8, ~b,) (a,"b, +a,"7b,’ +--+b,")

\ J
'
(4)
Write the following inequality.
(Q-%)Gb-%)ka”+~+Q%¢5%”+®J+~*bﬁﬁﬂmﬁ+CJ%ﬂS

(¢, —-b) (a, —by) ((Cln_lbl +--+h")a," + (azn_lbz +ot by + aznc1n)

\

J

~
(5)

Add (4) and (5);

(binﬂ - a1n+1) (bszrl - C2n+1) < (C1nJrl - b1n+l) (azn+1 - bznﬂ) '

For Binregion R_V,

cza,zb (6)
bzzazzcz )
All >0

Fora=1

wa, +(1-w)a, >whb + (1-w)b,

wc, +(1-w)c, > whb +@1-w)b,
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From preference
relation



w > Max{ b, 2, : b, ~¢, } there exist such weights
(bz _a2)+(a1 _bl) (bz _Cz)+(c1 _bl)
Fora=n
w'a" +(@-w)"a," > w'b" + (1-w)"b," From preferenc
relation

w'e"+(@-w)"c,” > w'b" + (1-w)"b,"

n

n
b,” —a

w > Max{ 2 : b, ~¢,’ }
(bzn_azn) +(a1n_b1n) (bzn_czn) +(Cln_b1n)

there exist such weights.

For Binregion R_VI,
b>c>a  (8)

a,2C,>h, 9)

All >0

Fora=1

wa, +(1-w)a, = wbh +{1-w)b, } From preference
relation

wc, +(1-w)c, > whb +(1-w)b,
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a, -b c,—-b . .
w > Min G , 22 } there exist such weights
{(az_bz)"'( _a1) (Cz_b2)+(b1_ )
Fora=n
w'a" +(1-w)"a," > w'h" + 1-w)"b," From preferenc
relation

w'e"+(@1-w)"c,” > w'b" + (@1-w)"b,"

. o’ b | e b }
w In {(azn—bzn) +(b1n_aln) (Czn_bzn) +(b1”—cl“)

there exist such weights
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APPENDIX B

RESULTS OF THE INTERACTIVE APPROACH

2_attributes & alfa=1

w(price)=0.8, w(defect)=0.2

The algorithm EX_PAR with exact parameters

Bidder| price | defect DM u' Bidder | price | defect DM_u®
1 8.1483 1.856p 4.7170 1 8.1482 1.8563 4.7170
2 7.5490 2.3548 4.4970 2 7.54D0 2.35§4 4.4970
3 6.9483 2.856)1 4.277( 3 6.9483 2.85p2 4.27170
4 ]6.3443 3.3669 4.0570 4 6.34B5 3.3689 4.0370
5 5.7490 3.8543 3.8370 5 5.74p0 3.85#3 3.8370
6 5.1449 4.3663 3.617( 6 5.1444 4.36p4 3.6170
7 |4.5457 4.864% 3.3970 7 4.54p1 4.86§6 3.3%970

2_attributes & alfa=2

w(price)=0.5, w(defect)=0.5

The algorithm EX_PAR with exact parameters

Bidder| price | defect DM u' Bidder | price | defect DM_u®
1 8.2109 1.7088 2.867% 1 8.20p6 1.72p0 2.8672
2 7.6873 2.0698 2.7634 2 7.68p5 2.08p3 2.7¢34
3 7.1717 2.448Y 2.6859 3 7.16B6 2.45p2 2.6858
4 |6.6639 2.8448 2.637¢ 4 6.65B8 2.85§i7 2.6375
5 6.1635 3.2537 2.6204 5 6.15p2 3.26B1 2.6206
6 5.6744 3.671% 2.6358 6 5.66[L5 3.68p2 2.6358
7 5.1974 4.0969 2.6828 7 5.18P7 4.10p0 2.6828

! DM_u : preference function value of the DM
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2_attributes & alfa=3

w(price)=0.8, w(defect)=0.2

The algorithm EX_PAR with exact parameters

Bidder| price | defect DM u' Bidder | price | defect DM_u®
1 7.8673 4.2224 4.207 1 7.85p1 4.89p3 4.2(45
2 7.2747 4.5088 3.896 2 7.2582 5.03p1 3.8937
3 6.6825 4.8128 3.5873 3 6.66fy9 5.20§4 3.5857
4 ]16.091§ 5.1204 3.2824 4 6.08p1 5.37)0 3.2815
5 5.5017 5.4343 2.9831 5 5.49p6 5.54B1 2.9829
6 |4.9137 5.749p 2.6924 6 4.91p7 5.72p6 2.6924
7 |4.3281] 6.0604 2.4147 7 4.34P0 5.90f4 2.2¢80

w(price)=0.5, w(defect)=0.5

The algorithm EX_PAR with exact parameters

Bidder| price | defect| DM u’ Bidder | price | defect | DM_u*
1 8.0588 2.153B 2.7427 1 8.0587 2.15B4 2.7427
2 7.5297 2.4079 2.599 2 7.52p6 2.40B0 2.5990
3 7.0195 2.691P 2.4797 3 7.0195 2.6913 2.47197
4 6.5338 2.9994 2.393 4 6.53B7 2.99p5 2.3930
5 6.0765 3.3319 2.347 5 6.07p4 3.33P0 2.3473
6 5.6519 3.6869 2.3484 6 5.65l7 3.68f0 2.3484
7 5.2659 4.0619 2.397% 7 5.26p8 4.06]l11 2.3975

w(price)=0.3, w(defect)=0.7

The algorithm EX PAR with exact parameters

Bidder| price | defect| DM u' Bidder | price | defect | DM u*
1 8.6257 1.2059 1.7899 1 8.48f0 1.32)7 1.7845
2 8.2227 1.583% 1.797{ 2 8.15B2 1.62p0 1.7967
3 7.828¢ 1.9888 1.869% 3 7.88f2 1.96p5 1.8¢91
4 | 7.4449 2.41183 2.0091 4 7.6848 2.34B9 2.0040
5 7.0707 2.847% 2.2068 5 7.5381 2.74p2 2.1935
6 6.7067 3.2938 2.44771 6 7.43p9 3.1746 2.4252
7 6.3549 3.746p 2.718 7 7.37p2 3.61p0 2.6875

! DM_u : preference function value of the DM
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2_attributes & alfa=4

w(price)=0.8, w(defect)=0.2

The algorithm

Bidder| price | defect| DM u'
1 7.8390 5.5448 4.186
2 7.2450 5.6654 3.8711
3 6.6520 5.802P 3.557
4 6.0607] 5.946% 3.2471
5 5.4717 6.0899 2.9401
6 4.8861] 6.2328 2.6394
7 4.305]1] 6.377F 2.348

w(price)=0.6, w(defect)=0.4

The algorithm

Bidder| price | defect| DM u'
1 7.91374 3.2559 3.1877
2 7.3437 3.394P 2.970
3 6.7840 3.553f 2.7638
4 6.2399 3.736p 2.572f
5 5.7180 3.942¢ 2.4067
6 5.2270 4.1764 2.2778
7 47779 4.4410 2.1970

w(price)=0.5, w(defect)=0.5

The algorithm

Bidder| price | defect| DM u!
1 8.0469 2.204% 2.701%
2 7.5134 2.4568 2.539
3 6.9977 2.7371 2.398
4 6.5048 3.041f 2.289
5 6.0391 3.3708 2.224%
6 5.6054 3.7206 2.217%
7 5.2081 4.0910 2.270

1 DM_u : preference function value of the DM
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EX_PAR with exact parameters

Bidder | price | defect | DM u*
1 7.83p9 6.23p4 4.1
2 7.23p4 6.24B4  3.84
3 6.64B4 6.25p2  3.5%
4 6.05p6 6.27F3 3.24
5 5.46p2 6.28D6 2.9
6 4.88P2 6.32p2  2.63
7 4.30p8 6.35[3 2.34
EX_PAR with exact parameters
Bidder | price | defect | DM u*
1 7.91B2 3.25564 3.14
2 7.34B3 3.39B7 2.9
3 6.78¢41 3.55B2 2.74
4 6.24p0 3.7358 2.5
5 5.7181 3.94p2 2.4(
6 5.22f2 4.170 2.2
7 4.7781  4.44p7 2.1
EX_PAR with exact parameters
Bidder | price | defect | DM_u’
1 7.99p5 2.49p7 2.6
2 7.45B9 2.67B6 2.5
3 6.93p9 2.87p0 2.34
4 6.45p5 3.11p1 2.2
5 6.0240 3.38p7 2.21
6 5.6445 3.69p0 2.2]
7 5.32P2 4.03p9 2.24
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w(price)=0.4, w(defect)=0.6

The algorithm EX_PAR with exact parameters

Bidder| price | defect DM u' Bidder | price | defect DM u®
1 8.1813 1.7738 2.211%9 1 8.12p1 1.92)1 2.2(88
2 7.701Y 2.047% 2.1164 2 7.6514 2.13p4 2.1148
3 7.2541) 2.354% 2.0593 3 7.23p5 2.37p6 2.0%91
4 16.8449 2.6918 2.057 4 6.87y0 2.66p7 2.0%67
5 6.4772 3.055% 2.1199 5 6.6014 2.99p4 2.1172
6 6.1527 3.442p 2.2457 6 6.40p8 3.36f5 2.2388
7 5.8701) 3.847Y 2.4220 7 6.2882 3.75p0 2.4104

w(price)=0.2, w(defect)=0.8

The algorithm EX_PAR with exact parameters

Bidder| price | defect DM_u* Bidder | price | defect DM_u®
1 9.0007 0.999Y 1.255 1 8.8982 1.04p3 1.2%37
2 8.7247 1.3871 1.35271 2 8.95p9 1.32f9 1.3480
3 8.4557 1.804p 1.562% 3 9.22p7 1.67p9 1.5329
4 18.1904 2.240% 1.8509% 4 9.66R7 2.07p4 1.7919
5 7.9287 2.6889 2.1818 5 10.0q00 2.51p8 2.0997
6 7.670Y 3.1466 2.534 6 10.0q00 2.98p4  2.4406
7 7.417Q0 3.610f 2.898% 7 10.0Q00 3.4519 2.8(006

3_attributes & alfa=1

w(price)=0.3, w(defect)=0.4, w(lead time)=0.3

The algorithm EX PAR with exact parameters

Bidder| price | defect]lead time DM_u1 Bidder| price | defect|lead timg DM_u1
1 6.7074 1.0700 3.5163 3.49%1 1 10.5295 1.0p26 3.0p00 3.4309
2 6.3079 1.568p 3.520% 3.57%8 2 9.92Pp3 1.5p26 3.0p00 3.$109
3 5.9079 2.071% 3.511%2 3.6543 3 9.32p7 2.0p25 3.0p00 3.$909
4 55154 2.566]1 3.510] 3.7341 4 8.72p8 2.5p24 3.0p00 3.4$709
5 5.1118 3.0688 3.5119 3.8144 5 8.13p7 3.0p20 3.0p00 3.7509
6 47142 3.5669 3.510% 3.8942 6 7.53[l14 3.5p16 3.0p00 3.$309
7 4.3137] 4.0674 3.5104 3.9742 7 6.92B8 4.0p29 3.0p00  3.9109

1 DM_u : preference function value of the DM
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3_attributes & alfa=2

w(price)=0.2, w(defect)=0.1, w(lead time)=0.7

The algorithm

EX_PAR with exact parameters

Bidder| price | defect]|lead timd DM u® Bidder| price | defect|lead timd DM u*
1 6.4351 2.5408 3.0000 2.4761 1 9.655 2.5p74 3.0p00 2.4761
2 |6.0519 2.8918 3.0000 2.4409 2 9.07B6 2.8f91 3.0p00 2.4409
3 5.6691 3.25038 3.000¢ 2.40$6 3 8.50p1 3.2B85 3.0p00 2.4086
4 |5.2889 3.6211 3.0000 2.3791 4 7.9363 3.6p96 3.0p00  2.3791
5 |4.9109 4.001% 3.0000 2.3526 5 7.36P5 3.9p07 3.0p00  2.3526
6 4.53500 4.390] 3.0000 2.3292 6 6.80p4 4.3f95 3.0p00 2.3292
7 | 4.1624 4.784p 3.0000 2.3091 7 6.24f9 4.7f41 3.0p00  2.3091

3_attributes & alfa=3

w(price)=0.7, w(defect)=0.2, w(lead time)=0.1

The algorithm EX_ PAR with exact parameters

Bidder| price | defect|lead timg DM_u* Bidder| price | defect|lead timeg DM_u®
1 |5.3388 4.5400 10.0090 3.7784 1 8.00[79 4.5499 10.0000 3.y784
2 4.94511 4.7094 10.0000 3.5119 2 74174 A.7184 10.(])000 3.p119
3 ]4.5530 4.8846 10.0090 3.2493 3 6.8200 4.8976 10.000 3.p493
4 ]14.1629 5.0694 10.0040 2.9920 4 6.2435 5.0829 10.0000 2.p920
5 3.7751 5.262Y 10.0090 2.74%22 5 5.6641 5.2//52 9.9p53 2.Y422
6 ]3.3911 5.4628 10.0090 2.50%9 6 5.09B8 5.4B06 9.5[/09 2.5022
7 3.0123 5.6698 10.0000 2.2787 7 45465 5.6Pp32 9.1Dp20 2.2754

w(price)=0.2, w(defect)=0.1, w(lead time)=0.7

The algorithm EX_ PAR with exact parameters

Bidder| price | defect]lead timd DM u'’ Bidder| price | defect|lead timd DM_u*
1 |6.5154 1.9790 2.256(¢ 2.2560 1 9.56p0 3.4p41 3.0p00 2.2492
2 6.14720 2.3406 2.2329% 2.2329 2 8.98p7 3.7157 3.0p00 2.2260
3 |5.783¢ 2.7134 2.2124 2.21%4 3 8.40A3 3.9523 3.0p00 2.2056
4 5.4228 3.102]1 2.1944 2.1944 4 7.83D9 4.2p31 3.0p00 2.1879
5 |]5.0648 3.5040 2.1783 2.17$8 5 7.26B8 4.4p70 3.0p00 2.1728
6 |4.7104 3.91501 2.1657 2.16%7 6 6.7045 4.7462 3.0p00 2.1603
7 4.3612 4.3332 2.1549 2.1549 7 6.15p2 5.0B92 3.0p00 2.1502

! DM_u : preference function value of the DM
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w(price)=0.3, w(defect)=0.4, w(lead time)=0.3

The algorithm

EX_PAR with exact parameters

Bidder| price | defect|lead timg DM u* Bidder| price | defect]lead timeg DM u®
1 6.1577] 1.8931 3.6898 2.00719 1 9.18B2 19023 3.7p16 2.0075
2 5.8528 2.171% 3.612] 1.9435 2 8.72f6 2.1B49 3.6B44 1.9431
3 5.5621] 2.478]1 3.5444 1.8966 3 8.29p8 2.4p18 3.6Pp90 1.$963
4 |5.2937 2.811y 3.473¢ 1.8719 4 7.87p0 2.8p83 3.5B72 1.$716
5 5.042§ 3.174% 3.4041 1.87%4 5 7.50p7 3.1B52 3.4p90 1.8731
6 |4.8134 3.5549 3.343¢ 1.9034 6 7.15B3 3.5p52 3.4p24 1.9030
7 14.6049 3.9554 3.2817 1.9619 7 6.83p8 3.9p25 3.3101 1.9616

3_attributes & alfa=4

w(price)=0.7, w(defect)=0.2, w(lead time)=0.1

The algorithm EX_ PAR with exact parameters

Bidder| price | defect|lead timg DM u® Bidder| price | defect|lead timeg DM_u’
1 5.330Y 5.155% 10.0000 3.7412 1 7.9862 5.7p49 10.0000 3.y401
2 ]14.9344 5.3061 10.0000 3.46}9 2 7.39p9 5.7B84 10.0000 3.}669
3 145402 5.460% 10.0000 3.1968 3 6.801L4 5.8B09 10.0000 3.]960
4 |4.1472 5.6168 10.00J0 2.9292 4 6.21p6 5.8[782 10.0000 2.p286
5 3.756Q 5.7804f 10.0000 2.66¢7 5 5.625 5.9848 10.0000 2.5664
6 3.3677 5.9506 10.0000 2.41p4 6| 5.0484 5.9921 10.000 24124
7 2.9821 6.121 10.0000 2.1715 7 4.47B2 6.0689 10.0000 2.1714

w(price)=0.2, w(defect)=0.1, w(lead time)=0.7

The algorithm EX PAR with exact parameters

Bidder| price | defect|lead timd DM _u’ Bidder| price | defect|lead timd DM u*
1 6.3547 4.2809 3.0000 2.1680 1 9.53p8 4.3p65 3.0p00 2.1680
2 5.9619 4.482% 3.0000 2.1536 2 8.94B6 4.4482 3.0p00 2.1536
3 5.5697 4.695¢ 3.0000 2.1416 3 8.36p1 4.5B44 3.0p00 2.1416
4 ]5.1797 4.9151 3.0000 2.1319 4 7.78[l6 4.7B18 3.0p00 2.1319
5 |4.7921] 5.1429 3.0000 2.1242 5 7.20p9 4.8p49 3.0p00 2.1242
6 |4.4073 5.3838 3.0000 2.118§3 6 6.64f7 5.0f46 3.0p00 2.1182
7 | 4.0269 5.633) 3.0000 2.1139 7 6.09B9 5.232 3.0p00 2.1138

! DM_u : preference function value of the DM
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APPENDIX C

PERFORMANCE MEASURES OF THE EVOLUTIONARY
ALGORITHM FOR ALL PROBLEMS

Table C.1Performance Measures for Original Case Problem @0x2

Problem 10x20 HI* IGDM
prl_without seeding 0.9902 0.0110
prl_seeding by sorting 0.9993 0.0015
pr2_without seeding 0.9971 0.0076
pr2_ seeding by sorting 0.9981 0.0026
pr3_without seeding 0.9943 0.0170
pr3_ seeding by sorting 0.9941 0.0082
pr4_without seeding 1.0000 0.0000
pr4_ seeding by sorting 0.9981 0.0040
pr5_without seeding 0.9693 0.0178
pr5_ seeding by sorting 1.0000 0.0000
Average_without seeding 0.9902 0.0107
Average_ seeding by sorting 0.9979 0.0034
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Table C.2Performance Measures for Original Case Problem @0x3

Problem 30x30 HI* IGDM
prl_without seeding 0.9979 0.0051
prl_ seeding by sorting 0.9992 0.0012
pr2_without seeding 0.9961 0.0029
pr2_ seeding by sorting 0.9991 0.0011
pr3_without seeding 0.9804 0.0162
pr3_ seeding by sorting 0.9863 0.0128
prd_without seeding 0.9972 0.0054
pr4_ seeding by sorting 0.9977 0.0029
pr5_without seeding 0.9889 0.0117
pr5_ seeding by sorting 0.9889 0.0104
Average_without seeding 0.9921 0.0082
Average_ seeding by sorting 0.9942 0.0057

Table C.3Performance Measures for Original Case Probleni@0x

Problem 30x100 HI* IGDM
prl_without seeding 0.9958 0.0067
prl_seeding by sorting 0.9969 0.0059
pr2_without seeding 0.9996 0.0031
pr2_ seeding by sorting 0.9978 0.0055
pr3_without seeding 0.9973 0.0073
pr3_ seeding by sorting 0.9971 0.0052
pr4_without seeding 0.9977 0.0102
prd_ seeding by sorting 0.9985 0.0029
pr5_without seeding 0.9978 0.0039
pr5_ seeding by sorting 0.9983 0.0053
Average_without seeding 0.9976 0.0062
Average_ seeding by sorting 0.9977 0.0050
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Table C.4Performance Measures for Discounted Case Prob0s201

Problem 10x20 HI* IGDM
prl_without seeding 0.9866 0.0092
prl_optimal seeding 0.9989 0.0014
prl_rank heuristic 0.9990 0.0013
pr2_without seeding 0.9823 0.0664
pr2_optimal seeding 0.9995 0.0010
pr2_rank heuristic 0.9823 0.0664
pr3_without seeding 0.9833 0.0205
pr3_optimal seeding 0.9870 0.0085
pr3_rank heuristic 0.9827 0.0205
pr4_without seeding 0.9960 0.0157
pr4_optimal seeding 0.9993 0.0014
prd_rank heuristic 0.9691 0.0151
pr5_without seeding 0.8656 0.0845
pr5_optimal seeding 0.9990 0.0020
pr5_rank heuristic 0.9121 0.0500
Average_without seeding 0.9628 0.0393
Average_optimal seeding 0.9967 0.0029
Average_rank heuristic 0.9690 0.0307
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Table C.5Performance Measures for Discounted Case Prob0s303

Problem 30x30 HI* IGDM
prl_without seeding 0.7385 0.1636
prl_optimal seeding 0.9874 0.0093
prl_rank heuristic 0.9529 0.0391
pr2_without seeding 0.8175 0.1194
pr2_optimal seeding 0.9461 0.0370
pr2_rank heuristic 0.9528 0.0376
pr3_without seeding 0.8577 0.0846
pr3_optimal seeding 0.9805 0.0124
pr3_rank heuristic 0.9700 0.0351
pr4_without seeding 0.8341 0.1030
pr4_optimal seeding 0.9547 0.0317
prd_rank heuristic 0.9003 0.0740
pr5_without seeding 0.7874 0.1385
pr5_optimal seeding 0.9794 0.0121
pr5_rank heuristic 0.9112 0.0564
Average_without seeding 0.8071 0.1218
Average_optimal seeding 0.9696 0.0205
Average_rank heuristic 0.9374 0.0484
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Table C.6Performance Measures for Discounted Case ProbDxt0®

Problem 30x100 HI* IGDM
prl_without seeding 0.8692 0.0711
prl_optimal seeding 0.9720 0.0232
prl_rank heuristic 0.8777 0.0681
pr2_without seeding 0.7789 0.1444
pr2_optimal seeding 0.9780 0.0156
pr2_rank heuristic 0.7666 0.1645
pr3_without seeding 0.9021 0.0588
pr3_optimal seeding 0.9732 0.0185
pr3_rank heuristic 0.9541 0.0425
pr4_without seeding 0.8982 0.0876
pr4_optimal seeding 0.9861 0.0110
prd_rank heuristic 0.9494 0.0611
pr5_without seeding 0.8891 0.0500
pr5_optimal seeding 0.9759 0.0182
pr5_rank heuristic 0.8729 0.0646
Average_without seeding 0.8675 0.0824
Average_optimal seeding 0.9770 0.0173
Average_rank heuristic 0.8842 0.0801
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