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ABSTRACT 
 

 

APPROACHES FOR MULTI-ATTRIBUTE AUCTIONS 

 
 

 

Karakaya, Gülşah 

M.S., Department of Industrial Engineering 

       Supervisor: Prof. Dr. Murat Köksalan 

 

July 2009, 89 pages 

 

 

There is a growing interest in electronic auctions in the literature. Many 

researchers work on the single attribute version of the problem. Multi-attribute 

version of the problem is more realistic. However, this brings a substantial 

difficulty in solving the problem. In order to overcome the computational 

difficulties, we develop an Evolutionary Algorithm (EA) for the case of multi-

attribute multi-item reverse auctions.  

 

We generate the whole Pareto front using the EA. We also develop heuristic 

procedures to find several good initial solutions and insert those in the initial 

population of the EA. We test the EA on a number of randomly generated 

problems and compare the results with the true Pareto optimal front obtained by 

solving a series of integer programs. 
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We also develop an exact interactive approach that provides aid both to the buyer 

and the sellers for a multi-attribute single item multi round reverse auction. The 

buyer decides on the provisional winner at each round. Then the approach 

provides support in terms of all attributes to each seller to be competitive in the 

next round of the auction. 

 

Keywords: online auctions, multi-attribute auctions, interactive approach, 

evolutionary algorithm 
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ÖZ  
 

 

ÇOK AMAÇLI AÇIK ARTTIRMALAR ĐÇĐN ÇÖZÜM 

YAKLA ŞIMLARI 

 
 

 

Karakaya, Gülşah 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

     Tez Yöneticisi: Prof. Dr. Murat Köksalan 

 

Temmuz 2009, 89 Sayfa 

 

 

Literatürdeki elektronik açık arttırma çalışmaları giderek artmaktadır. Birçok 

araştırmacı bu problemi tek amaçlı olarak ele almıştır. Problemin çok amaçlı hali 

ise daha gerçekçidir. Buna karşın, çok amaçlılık problemin çözümüne büyük bir 

zorluk getirir. Hesaplama zorluklarının üstesinden gelmek için, çok amaçlı çok 

ürünlü açık arttırmalar için bir evrimsel algoritma geliştirdik. 

 

Evrimsel algoritma kullanarak, bütün Pareto yüzeyini oluşturmaya çalıştık. 

Ayrıca, iyi başlangıç çözümleri ve bunları evrimsel algoritmanın başlangıç 

nufüsuna eklemek için sezgisel yöntemler de geliştirdik. Evrimsel algoritmayı 

rassal olarak oluşturulan problemler üzerinde denedik ve sonuçları tamsayı 

programlamalarla elde ettiğimiz gerçek Pareto yüzeylerle karşılaştırdık.  
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Ayrıca hem alıcıya hem de satıcıya çok amaçlı, tek ürünlü, çok turlu açık 

arttırmalarda yardım sağlayan bir etkileşimli yaklaşım geliştirdik. Alıcı her turda 

geçici bir kazanan seçmektedir. Bu yaklaşım, her satıcıya açık arttırmanın bir 

sonraki turunda rekabet edebilmesi için gerekli nitelikler konusunda destek 

sağlamaktadır. 

 

Anahtar Kelimeler: elektronik açık arttırmalar, çok amaçlı açık arttırmalar, 

etkileşimli yaklaşım, evrimsel algoritma. 
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CHAPTERS 

 CHAPTER 1 
 

1 INTRODUCTION 

 

 

Reaching, sharing and exchanging information has become much easier with the 

help of information and communication technologies (ICT), and some special 

web based software. As Koppius et al. (2004) state, these new technologies led to 

some changes in business and made electronic markets very popular. Traditional 

auction process has also changed in parallel and integrated ICTs. 

 

In today’s world, auction processes are very common especially the electronic 

ones. With growing Internet technologies, online auctions have broadened by 

enabling people to sell and buy in a wide range of alternatives on the Internet.  

 

Auctions are also used by companies and governments. Motorola is one of these 

companies that installed auction mechanisms in 2001. Metty et al. (2005) state 

that they enjoy 15% - 20% savings in indirect material cost and 25% - 50% 

savings in direct material cost by implementing an online negotiation program 

called MINT (Motorola Internet Negotiation Tool). A rather different example is 

the implementation of the government of Chile. They have been providing meals 

to public school children by an annual auction for many years (Catalán et al. 

2009). Auctions are also commonly used in transportation problems (Sheffi, 

2004; De Vries et al. 2003) and other large scale applications are reported in 

Hohner et al. (2003) and Sandolhm et al. (2006).  

 

There is a growing amount of literature about online auctions (Bapna et al. 2008; 

Pinker et al. 2003). Many researchers have contributed on the single attribute 

version of the problem. In this thesis we deal with multi-attribute version of the 
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problem which is more realistic. We first develop an exact interactive approach 

that provides aid both to the buyer and the sellers for a multi-attribute single item 

multi-round reverse auction. The buyer decides on the provisional winner at each 

iteration. Then the approach provides support in terms of all attributes to each 

seller to be competitive in the next round of the auction. We also develop an 

Evolutionary Algorithm (EA) for the case of multi-attribute multi-item reverse 

auctions to overcome the computational difficulties resulting from multi-attribute 

version of the problem. We try to generate the whole Pareto front using the EA. 

We also develop heuristic procedures to find several good initial solutions and 

insert those in the initial population of the EA. 

 

The structure of the thesis is as follows: Some important definitions on multi-

criteria decision making and background of the auction theory are given in 

Chapter 2. In Chapter 3, a literature review on multi-attribute auctions is 

presented. An exact interactive method for a multi-attribute single item multi-

round reverse auction is developed in Chapter 4. In Chapter 5, an EA approach to 

multi-attribute multi-item reverse auctions is given. We test the EA on a number 

of randomly generated problems and compare the results with the true Pareto 

optimal front obtained by solving a series of integer programs. Lastly, future 

study issues and conclusive remarks are presented in Chapter 6.  
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CHAPTER 2 
 

2 DEFINITIONS AND BACKGROUND 

 

 

2.1 Definitions 

 

In multi-objective optimization problems we try to optimize at least two, 

generally conflicting, objectives satisfying the given constraints. A multi-

objective optimization problem can be formulated as follows: 

 

“Maximize” {z 1(x), z2(x),..., zp(x), }  

s.to 

  x ∈ X 

where, 

 

x : decision variable vector 

X : feasible decision space 

Z : feasible criterion/objective space 

 

In the following definitions from 2.1 to 2.8 it is assumed that z(x), z(x′) ∈ Z and 

x, x′∈ X. 

Definition 2.1: z(x′) is said to dominate z(x) if and only if zj(x′) ≥ zj(x) for all j 

and zj(x′) > zj(x) for at least one j. 

Definition 2.2: z(x) is nondominated if and only if no z(x′) dominates it. 

Definition 2.3: z(x) is strictly dominated, if and only if zj(x′) > zj(x) for all j. 

Definition 2.4: z(x) is said to be weakly nondominated, if and only if no z(x′) 

strictly dominates it.  
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Definition 2.5: If z(x) is nondominated then x is said to be efficient. Otherwise, x 

is said to be inefficient. 

Definition 2.6: If z(x) is strictly dominated then x is said to be strictly inefficient. 

Otherwise, x is said to be weakly efficient. 

Definition 2.7: If ∃ jz ∈ Z for j= 1,2, . . .,k and ∃ jw ∋  0≥jw  j= 1,2, . . .,k 

satisfying 1=∑
≠

k

ij
jw  and ij

k

ij
j zzw ≥∑

≠
, then iz  is said to be convex dominated. 

Definition 2.8: If a nondominated solution, z(x), is convex dominated then z(x) is 

said to be unsupported nondominated solution. Otherwise z(x) is said to be 

supported nondominated solution.  

 

Note that supported nondominated solutions can be found using weighted-sum 

objective functions. However, unsupported nondominated solutions cannot be 

found by such approaches. These solutions can be found by applying Tchebycheff 

method. 

 

Definition 2.9: If z(x) consists of the worst objective function value for each 

objective among all nondominated solutions then z(x) is nadir objective vector.  

 

In Figure 2.1 the classification of the solutions based on the domination rules 

where both objectives to be maximized are represented. 
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   Figure 2.1 Classification of the solutions 
 

 

2.2 Auctions 

 

An auction is a way of buying and selling goods/services. The process is 

becoming very popular with the advances of the Internet technologies. Therefore, 

in the literature there are studies on online auctions, specifically English reverse 

auctions (further explained in Section 2.2.2).  

 

The reasons why auctions become popular are listed in Talluri et al. (2007) as 

follows:  

- improved information coordination with suppliers 

- lower transaction times 

- lower costs 

- higher flexibility 

- better supplier integration. 

 

z1 z2 

z4 

z3 

z6 

z5 

Objective 2 

Objective 1 

Dominated Solutions 
z1, z5, z6 
 
Strictly Dominated Solutions 
z5 
 
Weakly Nondominated but 
Dominated Solutions 
z1, z6 
 
Nondominated Solutions 
z2, z3, z4 
 
Supported Nondominated 
Solutions 
z2, z4 
 
Unsupported Nondominated 
Solutions 
z3 
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In addition to these, Rothkopf and Park (2001) state the prominent advantages as 

fairness and the appearance of fairness, i.e. all potential bidders have equal 

chance.   

 

2.2.1 The Auction Process 

 

Throughout the history, only valuable objects have been sold with the auction 

process. The auction process used to take place in a room or a square where an 

object was shown to the bidders by the auctioneer. People get together and make 

their bids to buy the offered good. However, in contrast to the traditional auctions, 

in today’s world from cars to books, various types of things are being sold 

through auctions.  

 

With the rapid development of technological infrastructure and invent of the 

Internet, the auction process has come to our houses. These technological 

developments eliminate the need for being in the auction place physically. There 

are some specialized websites that mediate buyer and seller to huge amount of 

goods being passed between people. Moreover, online auction sites allow people 

to buy (sell) inexpensive products/services even a pencil, in contrast to traditional 

auction houses.  

 

McAfee and McMillan (1987) define an auction as “a market institution with 

explicit set of rules determining resource allocation and prices on the basis of bids 

from market participants”. This is a general description for the auction and some 

classifications are done according to the transaction types. Auctions can be 

classified also based on the number of units to be sold, the number of attributes 

(price, quality, lead time, etc.) considered. The classification of the auctions with 

respect to the number of buyers and sellers is shown in Figure 2.2.  

 

As can be seen from Figure 2.2, if there exist one buyer and one seller, the 

process is called negotiation, whereas if there are many buyers and many sellers it 
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is called a double auction. eBay platform is an example for the double auction 

process. Reverse auction where there should be one buyer and many sellers is a 

common auction type in the literature. For instance a government (buyer) 

determines the supplier(s) for a bridge construction among many suppliers 

(sellers). The last type is forward auction where the seller is the auctioneer and 

the buyers are the bidders.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Auction types with respect to the number of sellers and buyers 
 

 

2.2.2 Auction Mechanisms 

 

Although Teich et al. (2004, 2006) group the auction mechanisms into three 

(English auction, Dutch auction, Vickrey’s second price sealed-bid auction), in 

the literature auction mechanisms are generally given in four groups.  

Double Auction 

Seller m 

Negotiation 

Reverse 
Auction 

. 

. 

. 

Seller 2 

Seller 1 

Buyer 2 

. 

. 

. 
 

Buyer n 

One Seller  One Buyer 

Forward 
Auction 

Buyer 1 
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English Auction 

 

It is the most known auction type. English auction is an ascending price auction, 

i.e. the auctioneer announces the minimum acceptable price and the price 

increases with the bids. The winning bidder is the one who bids the highest price. 

This type of auctions are generally open-cry auctions where all bidders know each 

other’s bids. 

 

To exemplify this type, in traditional antique sales the auction starts with a low 

price and with the bidders’ raising hand the price increases. At the end, the 

antique is sold to the one who bids the most. 

 

 Dutch Auction 

 

It is a descending price auction. In this type, the auctioneer announces a relatively 

high price and gradually decreases the price until a bidder accepts the current 

price. Generally this type of auctions are used for selling perishable goods. In the 

Netherlands, the flower sales have been done with this type of auction and its 

name comes from there.    

 

 The First Price Sealed-bid Auction 

 

In this type of auction, bidders submit their bids. Contrary to the English auction, 

bidders do not know each other’s bids and also it is a single round auction. 

Bidders can submit their bids only once, it is not an iterative process. After the 

announcement of the winner, some negotiations may be done. The winning bidder 

is the one who bids the highest (lowest) price for the forward (reverse) process. 

The winner pays the highest (lowest) price. 

 

 

 



  

 9 

 The Vickrey’s Second Price Sealed-bid Auction 

 

It is similar to the First Price Sealed-bid Auction except that, in this type the 

winner – who bids the highest (lowest) price for the buying (selling) process - 

pays the second highest (lowest) price. 

 

2.2.3 Auction Types 

 

One variation of the auctions is based on the number of different items and the 

number of units for each item. Items can be single or multiple (different types) 

and units can be single or multiple. Different auction types are the combination of 

these two. 

 

If there exists a single item to be auctioned, it is called a single-item single-unit 

auction. This is the simplest version of the auction types. If at least two identical 

units for a particular item are auctioned; it is called a single-item multi-unit 

auction.  

 

Multi-item auctions are more complex than single-item auctions. In the single-

item auction, the winning bidder gets the item and pays its price. However, in 

multi-item case it is not so trivial to determine the winning bidder(s). In such 

auctions, generally bidders offer a combination of items – bundle – they want to 

supply. For this bundle, they determine the attribute values and make their bids. 

Multi-item auctions are known as combinatorial auctions and it is one of the 

emerging research topics.  

 

Another variation is based on the number of attributes in the auction process. If 

there is only one attribute, for instance price, is taken into consideration, this is 

called a single attribute auction whereas if there are more than one attribute 

(price, quality, lead time, warranty, etc.) it is called a multi-attribute auction 
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(Leskelä, 2007). Multi-attribute auctions are more realistic, but they bring 

computational complexity. 

 

2.2.4 Valuation 

 

Valuation is an important concept in the auction theory as mostly the bidding 

strategy depends on it. Since in some situations, the bidders do not know how 

much the object worth; they can only realize other bidders’ valuation (McAfee 

and McMillan, 1987).  They define two extreme models to describe the valuation 

types: independent private value model and common value model.  

 

If each bidder knows the true value of the auctioned item to him/her certainly and 

his/her valuation is not affected by other bidders’ bids it is called independent 

private value. McAfee and McMillan (1987) state, this valuation is generally 

valid for the auctions in which the item being sold is for the bidder’s own use not 

for resale. 

 

The common value model is explained by McAfee and McMillan (1987) as no 

one knows the true value of the bidding item. However, all bidders have the same 

valuation for the item. The bidders draw the item’s value to them. They use the 

same tool to understand their valuation; for instance observing the market or 

using the same distribution. 

 

2.2.5 Online Auctions 

 

If the auction is held on the Internet, it is called an online auction. The bidder can 

see the price of the good/service and time left to the end of the auction. Generally 

there are three parties in the online auction processes namely website, seller, and 

buyer. Website holds the information about the buyer and the seller. It provides 

security for both parties. Also, the website offers a platform where buyers can 
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reach many goods and sellers can reach many customers without a limitation of 

time and location. eBay, Gittigidiyor, uBid, etc. are some commonly known 

online auction websites.  

 

Generally, online auction sites contain many categories. One can choose his/her 

desired category to find a good or simply can search with a keyword. After 

finding the desirable product, the website lists the description of the product, 

pictures of the product, shipping conditions, current bid, end time, number of 

bids, rating of the seller, etc.  
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CHAPTER 3 
 

3 MULTI-ATTRIBUTE AUCTIONS 

 

 

The multi-attribute auction process considers not only the price but also other 

attributes such as quality, lead time, etc. Typically, to evaluate bids, a function 

called value/scoring function is used. Commonly, to estimate the value function 

for multi-attribute auctions, linear weighted utility functions are used. Also, to 

determine the winner of the auction; Winner Determination Problems (WDP) are 

solved by applying this value/scoring function.  

 

Multi-attribute auctions are used in many areas, one of which is e-commerce. 

Butler et al. (2008) explain the applications of multi-attribute preference models 

(MAPM) in e-commerce by giving examples of websites that use MAPM. They 

say that mentioned websites use different approaches to elicit the users’ 

preferences.  

 

In the literature, most of the studies in this field are on reverse auctions where the 

auctioneer is the buyer and the bidders are sellers. In the following, some 

approaches for multi-attribute reverse auctions are discussed. 

 

3.1 Scoring Function 

 

Bichler and Kalagnanam (2005) suggest a weighted-sum scoring function to 

evaluate bids. In their model they set lower and upper bounds for demand since 

the combinations hardly sum up to exact demand. Since they study multi 

sourcing, i.e. demand can be supplied by multiple suppliers, they add a limitation 

constraint on the number of winners. It is an important issue for two reasons: 
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Firstly, the buyer does not want to supply from too many sellers as it creates high 

overhead costs and complexity in managing. Also the buyer does not want to be 

supplied from very few sellers since there is a risk of not receiving the supplies on 

time with a limited number of sellers. Moreover, they add a homogeneity 

constraint to avoid different levels for an attribute among the winning bids.  

 

Bichler and Kalagnanam (2005) use a weighted-sum scoring function. However, 

as Bellosta et al. (2004) state, although it is very common to use scoring functions 

based weighted-sum, it has some drawbacks such as the difficulty of determining 

weights. Also the solutions that can be found are limited with a weighted-sum 

scoring function.  

 

Butler et al. (2006) differentiate attribute and objective and proposes an approach 

to define weights in multi attribute utility theory (MAUT) in two steps. In the first 

step, the decision maker (DM) specifies weights that show the impact of each 

attribute on each objective (predictive model). In the second step, he/she specifies 

weights for objectives according to their importance to his/her (preference 

model).  

 

They exemplify the method and it is explained as follows: For a digital camera 

price, resolution and zoom are attributes whereas economy and functionality are 

the objectives of the user. Firstly, the relationship between attributes and 

objectives are defined (price and resolution are related with economy and 

resolution and zoom are related with functionality). Each attribute is normalized 

with respect to its range, for instance, if the range for price is between $200 and 

$500, the price value of $200 is scored as 1 and $500 is scored as 0. The values in 

the range are calculated by extrapolation.  Then, according to the preferences of 

the user, weights of attributes for each objective are determined where weights 

can be positive or negative. Afterwards, weights (importance) of the objectives 

are defined. Finally, the weights determined in predictive and preference models 
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are combined to determine the appropriate weights on the attribute to calculate the 

utilities of all alternatives. 

 

3.2 Pricing Out 

 

Teich et al. (2006) define the theoretical side of their method implemented on the 

Internet (NegotiAuction). Their approach is based on the ‘pricing out’ technique, 

i.e. they convert all attributes into monetary values. They try to define all 

attributes in terms of one attribute which is price. They use linear/integer 

programming to minimize the cost to buyer to determine the bid status. They 

define three bid status namely, active, inactive and semi-active.  If a bid is 

“active”, it will be among the winners. If it is “inactive”, it will completely be 

outbid, whereas if it is “semi-active”, it is partially active and it can be outbid 

next. They also develop the ‘suggested price’ decision support component for 

bidders. Suggested price refers to the best (highest) price that makes the bidder’s 

bid active. They try to maximize the suggested price while keeping a decrement 

in the buyer’s total cost with a maximization-type linear programming (LP).  

 

Teich et al. (2006) use ‘pricing out’ approach for multi-attribute auctions which 

does not make it necessary to formulate the buyer’s preference function. On the 

other hand, as stated in Talluri et al. (2007), it is not easy to convert all attributes 

into price. The problem is similar to determining the weights in the previous case. 

 

Leskelä (2007) suggests a decision support tool for combinatorial auctions. In 

Leskelä et al. (2007), they formulate the problem for a single-attribute auction. 

However, they say that the formulation can be extended with the ‘pricing out’ 

approach for multi-attribute auction cases. In their approach, they provide bidders 

not only the ‘suggested price’ for a new bid, but also ‘quantity decision support’. 

By quantity support mechanism (QSM), bidders can request suggestions for 

quantities to bid. They first solve the winner determination problem and use the 

dual prices of this problem as the cost estimates in quantity support problem.  
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In their study, inactive bids are also kept in the bid stream for the reason that an 

inactive bid can become active again, if an entering bid groups with it. Only 

dominated bids are deleted. A dominated bid is defined as a bid with the same 

quantities, but with a higher price than the same bidder's latter bid. They say that 

even if a bidder’s bid is higher than the suggested price, he/she may become 

among the winning bidders at the end. At first glance, that bid is inactive but with 

the entering bids it can become active unless it is dominated. 

 

Leskelä et al. (2007) solve the quantity support problem for each inactive bidder 

separately whether they can become active by grouping the active bids. However, 

this approach cannot provide efficiency as it does not allow a new combination of 

inactive bids. Köksalan et al. (2008) develop a Group Support Mechanism 

(GSM). The main difference of GSM from QSM is that in QSM only one 

incoming bid can complement the active bids; whereas in the GSM inactive bids 

can make a combination with active bids or with inactive bids. Another difference 

is that in the GSM, sellers’ cost functions are not composed by just using the dual 

prices. Köksalan et al. (2008) define some ranges for fixed and variable costs by 

using industry estimates. These ranges are updated as information becomes 

available on inactive bids. 

 

3.3 Interactive Approaches 

 

Bellosta et al. (2004) claim that although it is very common to use scoring 

functions-based weighted-sum, it has some drawbacks. They say that weights are 

difficult to obtain and unsupported solutions cannot be obtained by using 

weighted-sum scoring functions. To overcome such limitations they suggest a 

multi-criteria model based on reference points for a single item English reverse 

auction.  

 

In their mechanism, the buyer first defines an aspiration point. He/she also defines 

a reservation point consisting of the minimum acceptable levels of each attribute 



  

 16 

at the beginning of the auction. The bids are evaluated using scaled deviations 

from the aspiration levels. They give equal importance to all attributes. At each 

round of the process, ideal (consists of the maximum of each criterion among 

bids) and anti-ideal (consists of the minimum of each criterion among bids) points 

are determined by using the current bids for that round. By using these ideal and 

anti-ideal points, the deviations can be calculated. Tchebycheff method is applied; 

the maximum scaled deviation between all attributes is the deviation of that bid. 

The buyer chooses the bid with the smallest deviation as the best bid for that 

round. Also in this method, the buyer sets an increment amount for each round, 

therefore the reservation point is dynamic and at each round it improves. The 

buyer sends this new reservation point to the bidders except for the best bidder. 

Based on the given information, sellers update their bids. If a seller does not 

update his/her bid, i.e. he/she can not give a bid having lower deviation than that 

of the reservation point, he/she withdraws his/her bid. Otherwise, the process 

continues until one bidder, the winner remains.  

 

Bellosta et al. (2004) state that their model can overcome some shortcomings of 

weighted-sum value functions. They give a numerical example to explain the 

process.  However, they do not provide experimental results to compare the 

efficiency of the model.  

 

Baykal (2007) studies combinatorial auctions. She develops a discount-based 

model for single attribute multi-unit auctions. She uses two models for multi-

attribute multi-item single unit auctions. One is a linear model that can find the 

supported efficient solutions and the other is augmented weighted Tchebycheff 

method which can find both supported and unsupported efficient solutions. In the 

augmented weighted Tchebycheff method, she defines the ideal point by solving 

each objective independently. To avoid weakly nondominated but dominated 

solutions, she multiplies the differences of solutions and ideal points with a small 

positive constant (ε ).   
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She solves these two models and compares the efficient solutions. Then she 

solves the linear model for different bundle-sized bids and she says that as the 

size of the bundles gets larger, the number of efficient solution decreases. 

Moreover she says that if the number of bundles increases, the solution space will 

get large and thus improved solutions can be found. However, solution time will 

also increase as the number of bundles increases. 

 

She also uses an interactive method; namely Achievement Scalarizing Function 

(ASF). She applies a variation of Korhonen and Laakso’s (1986) approach, to the 

multi-attribute multi-unit combinatorial auctions. By using this method, she tries 

to find the best combination of bids for single round. 

 

Talluri et al. (2007) use data envelopment analysis (DEA) to propose a decision 

support system tool. They demonstrate the value function by using four attributes; 

namely price, quality, delivery, and quantity. They try to reflect the correlation 

between the attributes in their value function. They define weights for each 

attribute. It is very difficult for a buyer to define exact weights that reflect his/her 

preference information for attributes. Therefore, instead of using exact weights 

they define ranges. They divide the DEA model into two stages. In stage I, scores 

of each bid are evaluated. In stage II, the winning bids are determined.  

 

Using DEA is a good way of demonstrating correlation between attributes. In the 

formula (for stage II), minimizing the number of bidders is the objective. 

However, this contradicts with the saying of Bichler and Kalagnanam (2005) 

about the number of sellers above. Although it is not mentioned in the paper, in 

open-cry auctions it would be realistic for each round guaranteeing an 

improvement in at least one attribute, i.e. decreasing the cost to buyer.  
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CHAPTER 4 
Equation Section (Next) 

4 AN ALGORITHM FOR MULTI-ATTRIBUTE SINGLE ITEM 

AUCTIONS 

 

 

In this chapter we develop an interactive approach that provides aid both to the 

buyer (DM) and the sellers (bidders) in a multi-attribute single item multi-round 

reverse auction environment. After an overview of the approach and problem generation, 

we provide a numerical example in Section 4.4. 

 

4.1 The Algorithm 

 

We develop an approach that supports sellers to bid on a single item. The 

approach estimates the parameters of a preference function representing the 

buyer’s preferences evaluated on multiple attributes and informs the sellers about 

the estimations to update their bids for the next round. 

 

The formulation of our problem is as follows: There are I sellers and J attributes 

in the auction. Each seller gives one bid at each iteration and seller i’s bid is 

represented as ( )iJijiii aaaas ,...,,...,, 21=  where ija  stands for the level of attribute 

j offered by seller i. The preference function value of the buyer evaluated at seller 

i’s bid is depicted as u(si). We use a weighted Lα metric to represent the 

preferences of the bids to the buyer. This function serves to minimize/maximize 

the weighted difference of a point from the ideal point in terms of an Lα metric. 

We estimate the parameter values (α and wj) based on the past preferences of the 

buyer to fit the following preference function as an estimate of the preference to 

bid si at any round.  
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j
jijji zawsu  

where  

jw  : weight of attribute j  

*
jz : ideal level of attribute j  

α : parameter of the Lα metric 

 

The contours of the estimated preference functions for different α and jw  

combinations are illustrated in Figure 4.1. 

 

 

 

 

 

 

Figure 4.1 The contours for different α and jw  values 

 

 

In our experiments, we deal with minimization type problems. Therefore, smaller 

)( isu  values are preferred by the buyer. If an attribute is of maximization type, 

Criterion 2 

w1 = 0.8 and w2 = 0.2 
 

w1 = 0.5 and w2 = 0.5 
 

*z  (ideal bid) 

Criterion 1 

∞=α  
 

2=α  
 

2=α  
 

1=α

1=α  
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we would simply replace ( )*
jij za −  with ( )ijj az −*  in the distance function. Here, 

without loss of generality, we assume all attributes are of minimization type. In 

the following, we explain the algorithm for minimization problems.  

We use a constant threshold, “∆” to represent a minimum preference difference 

by which the buyer can distinguish between bids. For instance if the buyer prefers 

A to B, then we require u(B) ≥ u(A)(1+ ∆). Alternatively, we may choose a 

threshold, ∆′, and require u(B) ≥  u(A) + ∆′. We will see later that the former leads 

to additional nonlinearity and using the latter is simpler as it is a linear 

relationship in ∆′.  

 

In our approach, we estimate a preference function using the past preferences of 

the buyer. At each round, we expect the sellers to improve their bids by a 

predetermined “100θ” percent of the best bid of the current round. Therefore we 

improve the estimated preference function and inform the sellers about our 

estimations. The estimation of preference function and improvement procedures 

will be explained in detail in the following sections.  

 

Let P and NP denote the sets of preferred and not preferred bids of the current 

round, respectively. Let Xh denote the set of constraints derived from the 

preferences of the buyer in round h where X0 = φ . 

 

The algorithm can be summarized as follows: 

Step 1. Sellers place initial bids. Set the round counter h = 0. 

Step 2. Let P = NP = φ . Present the buyer all bids and ask him/her to choose the 

most preferred bid(s). Place the preferred bid(s) in set P and the remaining bids in 

set NP. 

If at least one seller has bid profitably (i.e. improve the buyer’s estimated value 

by 100θ %), go to Step 3. Otherwise go to Step 5. 

Step 3. Update the preference constraint set; 

Xh = Xh-1 ∪ { u(sm) ≥ u(sp).(1+∆)  ∀ m∈NP and p∈P } .   



  

 21 

Fit a preference function that satisfies the constraint set Xh for the smallest 

positive integer α value. Let the estimated preference function value of the best 

bid of the current round be u*. 

Step 4. Move to a 100θ percent improved contour with a preference function 

value of u(h), i.e., 

u(h) = u*(1-θ).  

Recommend all sellers to move onto this contour by providing them with the 

current α, wj and u(h) values together with the form of the preference function. Let 

sellers update their bids and set h = h + 1. Go to Step 2. 

Step 5. Stop. sp is (are) the winning seller(s) for p∈P. If there are more than one 

winning sellers, the buyer selects one of them. 

 

In Step 4, sellers try to move onto the estimated contour. If they cannot achieve 

this by making profit, they move as close to the estimated contour as possible 

with zero profit. We assumed that sellers can gain even if they make no profit 

(bidding unprofitably) while we do not allow any loss for the sellers. Thus the 

algorithm continues even when some sellers give bids with zero profit. 

 

In the following, the algorithm for two attribute case is illustrated: 

 

 

 

 

 

S1 

S2 

S3 

Sellers make their bids. 

Present the buyer all bids 

and he/she chooses S2. 
 1 

(a) 
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Figure 4.2 The visualization of the algorithm 
 

 

Sellers update their bids and the auction continues if at least one seller gives 

profitable bids. Note that, in our study we consider nonnegative attribute values. 

 

4.2 The Parameter Estimation Model 

 

We estimate the parameters (weights) of the preference function by solving the 

following nonlinear (WALFA) problem for a given α value. 

 

 

 

S3 

S1 

S2 

 
 

S3 

S1 

S2 

u* 

Fit a preference function 

using the buyer’s past 

preferences.  

Improve the estimated 

preference function value 

and inform the sellers.

  

 

2 

3 

 

u(h) (c) 

(b) 
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Parameters:  

α : estimated parameter of the Lα metric 

∆: predetermined threshold level by which the buyer can distinguish between bids 

lw : lower bound for estimated weights of attributes  

uw : upper bound for estimated weights of attributes  

ija : level of attribute j given by seller i 

*
jz : ideal level of attribute j  

 

We use wl and wu restrictions in order to prevent using extreme weights. If one 

wishes to allow extreme weights, these restrictions can be relaxed. 

 

Decision Variables: 

ε : minimum difference between the preference function values of the preferred 

bids  and the other bids  

wj: estimated weight of attribute j  

 

Problem (WALFA) 

 

Max ε          (1) 
 

s.to   
  

1
1

=∑
=

J

j
jw         (2) 

 
 ujl www ≤≤      j∀    (3) 

 

 ( )( )
α

α
/1

1

*)( 







−= ∑

=

J

j
jijji zawsu   i∀    (4) 

 
 )1)(()( ε+≥ pm susu  ∀     ps preferred to ms in all rounds so far (5) 

 
 ∆≥ε          (6) 
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For simplification we do not use any subscript to indicate rounds. To estimate the 

values of α and weights, we solve the nonlinear (WALFA) problem above. The 

objective (1) is to find the maximum ε value that satisfies the constraints. We use 

normalized weights (2) and to avoid extreme values of weights, we set upper and 

lower bounds (3). Bids are evaluated in terms of a weighted Lα preference 

function (4). The preferences of buyer are taken into consideration in (5). Also we 

keep the previous information. Since we take the threshold level as ∆, we add 

constraint (6).  

 

At each round, for given α values we solve (WALFA) using GAMS 22.5 and the 

global optimization solver, BARON. We take the smallest positive integer α value 

that yields a feasible solution for the weight values satisfying the constraints. The 

reason for taking the smallest α value is that we want to fit a function that satisfies 

all constraints but has the least curvature. Therefore we start with a linear 

preference function case (α =1) and increase α by 1 if necessary. 

 

We can show that there exist preference relations satisfied by α1 but not α2 for     

α1 > α2. 

 

Example: 

 

 

       Figure 4.3 An example of bids 
 

 

 A(1, 9/2) 

 B(3,3) 

C(9/2 ,1) 

Let the buyer prefers B and the 

following relations exist 

 

u(A) ≥ u(B)  (7) 

 u(C) ≥ u(B)  (8) 
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We can show that (7) and (8) can be satisfied for α = 2 but not α = 1. 

 

For  α = 2 

 2222 )29()1(1 ww −+  ≥ 2222 3)1(3 ww −+  ⇒  2)1()445( w−  ≥ 28w  

2222 1)1()29( ww −+  ≥ 2222 3)1(3 ww −+   ⇒           2)445( w ≥ 2)1(8 w−  

 

 

               for w = 0.5 it holds  

 

 

For  α = 1 

 )29)(1(1 ww −+  ≥ 3)1(3 ww −+       ⇒    )1(23 w−  ≥ w2  

1)1()29( ww −+  ≥ 3)1(3 ww −+       ⇒           w23  ≥ )1(2 w−  

 

 

                No such weights exist! 

 

  

In the following theorems and conjecture we assume that the underlying utility 

function of the buyer is in the following form: 

( )( )
t

t

j
jjj zau

/1

*






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


−= ∑ λ                         

where 

λj : weight of attribute j  

ja : level of attribute j  

*
jz : ideal level of attribute j  

t : parameter of the underlying Lα metric 

 

In our calculations, we pretend that we do not know the parameter values. 
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Theorem 1: For two attributes, J = 2, if preference constraints are satisfied for α1 

then they will also be satisfied by any α for α > α1. 

 

See Appendix A for the proof. 

 

Conjecture: For any J > 2, if preference constraints are satisfied for α1 then they 

will also be satisfied by any α for α > α1. 

 

Theorem 2: We satisfy the buyer’s preferences with α ≤ t. 

 

Proof: In our approach we start with α = 1 and at each round if we can not satisfy 

the preference relations with the current α value, we increase it by 1. As we 

follow an ascending type procedure and for α = t  the preferences are satisfied, the 

proof is obvious.  

 

Theorem 3: If preference constraints are satisfied by αh at round h, in the 

following rounds the estimated α value will be at least αh (αh+1 ≥ αh). 

 

Proof: At each round, we take the smallest α satisfying the preference constraints. 

If αk does not satisfy the constraints at round k, as we keep the previous 

information, αk can not satisfy the constraints of the following rounds. Therefore 

if the constraints are satisfied by αh at round h, the smallest possible parameter 

value of the next round will be αh. 

 

We fit the preference function using α and corresponding weight values from 

(WALFA) problem. Let the estimated preference function value of the best bid of 

the current round be u*. Then we construct a contour with a preference function 

value of u(h) where u(h) = u*(1-θ).  We provide support to all sellers to move onto 

or closest to this estimated contour. We assume that at each round, sellers give 

their most profitable bids based on our estimations. Firstly, each seller tries to 

find profitable bids on the estimated contour. If composing bids on the estimated 
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contour cause any loss, he/she moves to a point on his/her cost curve that is the 

closest point to the estimated contour.   

 

4.3 Sellers’ Model 

 

The cost of a bid to seller i is a function, fi( is ), of the attributes in the bid. We 

assign different cost functions to sellers and at each round, they update their bids 

according to their cost functions. Each seller first solves the profit model 

(P_SELi) to update his/her bid. By solving this he/she tries to compose a bid on 

the estimated contour with at least zero profit. If the objective function value of 

(P_SELi) is negative - indicating a loss, he/she then solves the zero profit model 

(Z_SELi) and updates his/her bid.  

  

Parameters:  

wj : the weight of attribute j found from (WALFA) 

α : the parameter of the Lα metric used  in (WALFA) 

*
jz : ideal level of attribute j 

u(h) : preference function value of the estimated contour 

f i : the cost function of seller i 

 

*
jz  values are typically the best attainable attribute values for each  objective and 

can usually be extracted from the problem context.  

 

Decision Variables: 

1ia : price seller i offers 

ija : level of attribute j to be offered by seller i, j ≥ 2 

di : the difference corresponding to the preference function value of the bid of  

seller i, u(si), and the contour, u(h) suggested to all sellers in round h. 
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Price is a typical attribute in auctions and we define it as attribute 1 for 

convenience of notation. 

 

Problem (P_SELi) 

 

Max zi = 1ia – fi( is )    (9) 

s.to 

 ( )( )
α

α
/1

1

*




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Problem (Z_SELi) 

 

Min  di      (11) 

s.to 

( )( )
α

α
/1

1

*








−∑

=

J

j
jijj zaw - di ≤ u(h)  (12) 

  

1ia  - fi( is ) ≥ 0     (13) 

  
di  ≥ 0      (14) 

 

 

In (P_SELi), the objective is to make a bid that maximizes the profit on the 

estimated contour while satisfying the constraints according to each seller’s cost 

function. On the other hand, in (Z_SELi) – for the sellers who cannot bid 

profitably on the estimated contour – the objective is to move to a point that 

minimizes the difference between the estimated contour and the seller’s cost 

function. 

 

We generate the (P_SELi) and (Z_SELi) problems in such a way that sellers 

consider only their cost functions and our estimations while constructing their 



  

 29 

bids. However, sellers can have different constraints in real life. In this case, each 

seller could add his/her own constraint(s) and solves his/her (P_SELi) and if 

necessary (Z_SELi) problems. 

 

The ideal bid consists of the best attainable attribute values and generally it 

cannot be satisfied by any seller. At each round, we invite the sellers to a 100θ 

percent improved estimated contour. Although the estimated parameters of the 

preference function can change through auction, with 100θ percent improvement, 

we aim to converge to the ideal bid. As a seller cannot place the ideal bid, sellers 

have to give zero profit bids at some point and the auction will stop. 

 

In the approach, we estimate the parameters of the preference function based on 

the preferences of the buyer and the shape of the estimated contour would change 

as the rounds progress. A seller who makes a bid with zero profit based on the 

estimations in round h can be the provisional of the next round. Therefore, sellers 

continue bidding even if they are not on the estimated contour. In the following 

we provide an example showing that a seller can be selected by the buyer even if 

he/she bids with zero profit based on our estimations. 

 

 

 

 

 

(a) Bids in Round h 

 

S3 

Contour based on the buyer’s 
preference function 

According to his/her 

preference function 

the buyer selects S3 S1 

S2 

Criterion 1 

Criterion 2 
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(b) Bids in Round h+1 

 
Figure 4.4 The selection of a seller who makes bid with zero profit previously 

 

 

4.4 Numerical Example 

 

In this example, we consider two attributes – defect rate and price – and take the 

buyer’s underlying preference function as follows: 

( )( ) ( )( )( ) 4/14*4* 4.06.0 ddpp zazau −+−=   

where, 

pa  is the price value and da is  defect rate value. 

 

The parameter settings will be mentioned in Section 4.5. 

 

It should be noted that although most of the numbers in the following tables have 

more than four digits after the decimal point, we round them up to four significant 

digits to simplify the tables. 

 

We create the initial bids as mentioned above and represent them in Table 4.1: 

 

Criterion 1 

Contour based on the buyer’s 
preference function 
 

Criterion 2 

Estimated contour 

S1 

S2 

S3 

Only seller 3 gives 

profitable bids on the 

estimated contour and 

seller 1 and 2 bid with 

zero profit. However, 

the buyer selects S2 at 

this round.  
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Table 4.1 The Initial Bids 

Round 0 

Seller Price 
Defect 
Rate 

Pref.Fn_DM Pref.Fn_Estimated 
0_Profit 

Frequency 
S1 12.5431 1.2 5.0173 8.0040 0 
S2 10.2344 1.7 4.0946 6.5668 0 
S3 10.0751 2.2 4.0323 6.4909 0 
S4 8.6518 2.7 3.4689 5.6145 0 
S5 7.7999 3.2 3.1418 5.0999 0 
S6 8.1535 3.7 3.2955 5.3489 0 
S7 7.2629 4.2 2.9832 4.8099 0 

 

 

The provisional winner and his/her bid are written in bold in tables. For instance, 

in Round 0 according to his/her preference function, the buyer selects seller 7 

(S7). Based on this information we estimate the parameters of the buyer’s 

preference function. We start with α = 1 and found the following values by 

solving the (WALFA) problem for this α value. 

wd = 0.05 and wp = 0.95 

u* = 4.8099 

u(0) = 4.8099(1-0.05) = 4.5694 

 

The estimated preference function values are given under “Pref.Fn_Estimated” 

column in Table 4.1, whereas “0_Profit Frequency” column represents how many 

times each seller has bid unprofitably up to that round. If all sellers have positive 

values in the last column at any round indicating all sellers bid unprofitably, the 

algorithm stops. 

 

We inform sellers about the estimated α and weight values. Also we recommend 

each seller that his/her preference function value for his/her updated bid should 

not exceed 4.5694 which is the preference function value of the estimated contour 

after improvement. 
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Afterwards, each seller solves his/her own (P_SELi) problem and it turns out that 

all sellers except S1 and S2, can bid profitably. S1 and S2 solve (Z_SELi) and the 

resulting bids are provided in Table 4.2. 

 

 

Table 4.2 Bids for Round 1 

Round 1 

Seller Price Defect Rate Pref.Fn_DM Pref.Fn_Estimated 
0_Profit 

Frequency 
S1 7.9232 3.1208 3.1882 4.8479 1 
S2 7.3235 3.6174 2.9720 4.6282 1 
S3 6.8897 4.1182 2.8399 4.4977 0 
S4 6.8493 4.6297 2.8727 4.5790 0 
S5 6.8099 5.1285 2.9207 4.6582 0 
S6 6.7711 5.6202 2.9846 4.7363 0 
S7 6.7311 6.1266 3.0682 4.8167 0 

 

 

In Round 1, the buyer selects S3 as the best among others and for α = 1 we find 

the following weight values by solving (WALFA):  

wd = 0.2009 and wp = 0.7991. 

 

For the next round, the sellers are again provided with the information of the 

estimated α and weight values. Also they are given the preference function value 

of the estimated contour after improvement. The updated bids can be seen from 

Table 4.3. 
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Table 4.3 Bids for Round 2 

Round 2 

Seller Price Defect Rate Pref.Fn_DM Pref.Fn_Estimated 
0_Profit 

Frequency 
S1 8.1501 1.8513 3.2622 3.6852 2 
S2 7.5452 2.3644 3.0253 3.4541 2 
S3 6.9494 2.8533 2.7993 3.2394 1 
S4 6.7549 3.3563 2.7422 3.2104 0 
S5 6.5659 3.8574 2.7013 3.1941 0 
S6 6.3773 4.3576 2.6798 3.1887 0 
S7 6.1882 4.8590 2.6829 3.1941 0 

 

 

In Round 2, the buyer selects S6. For α = 1 we cannot find a feasible solution to 

(WALFA).  We increase α by 1, set it 2 and find the following values: 

wd = 0.3312 and wp = 0.6688. 

 

The updated bids for Round 3 are given in Table 4.4. 

 

 

Table 4.4 Bids for Round 3 

Round 3 

Seller Price Defect Rate Pref.Fn_DM Pref.Fn_Estimated 
0_Profit 

Frequency 
S1 8.0032 2.4302 3.2080 3.3403 3 
S2 7.4331 2.7688 2.9875 3.1205 3 
S3 6.8663 3.1227 2.7754 2.9121 2 
S4 6.3034 3.4888 2.5785 2.7203 1 
S5 6.1455 3.9002 2.5523 2.7024 0 
S6 5.9883 4.3206 2.5433 2.6987 0 
S7 5.8076 4.7465 2.5475 2.7024 0 

 

 

Again S6 is selected in Round 3. We cannot find a feasible solution for α = 2. We 

increment α value by 1 and for α = 3 we estimate the following weight values: 

wd = 0.3783 and wp = 0.6217. 
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The updated bids for Round 4 are given in Table 4.5. 

 

 

Table 4.5 Bids for Round 4 

Round 4 

Seller Price Defect Rate Pref.Fn_DM Pref.Fn_Estimated 
0_Profit 

Frequency 
S1 7.9442 2.8844 3.1914 3.1917 4 
S2 7.3763 3.1083 2.9735 2.9738 4 
S3 6.8168 3.3525 2.7657 2.7660 3 
S4 6.2679 3.6164 2.5739 2.5741 2 
S5 5.7643 3.9017 2.4182 2.4184 0 
S6 5.6230 4.2628 2.4156 2.4157 0 
S7 5.4416 4.6318 2.4188 2.4188 0 

 

 

S6 is selected in Round 4 again and the estimated parameter values are as follows: 

α = 4, 

wd = 0.3999 and wp = 0.6001. 

 

Sellers update their bids with the given information. In Round 5, only S6 and S7 

give profitable bids.  The updated bids for Round 5 are given in Table 4.6. 

 

 

Table 4.6 Bids for Round 5 

Round 5 

Seller Price Defect Rate Pref.Fn_DM Pref.Fn_Estimated 
0_Profit 

Frequency 
S1 7.9132 3.2559 3.1877 3.1880 5 
S2 7.3432 3.3942 2.9703 2.9705 5 
S3 6.7840 3.5537 2.7633 2.7635 4 
S4 6.2399 3.7362 2.5726 2.5728 3 
S5 5.7180 3.9426 2.4067 2.4069 1 
S6 5.2776 4.1875 2.2948 2.2949 0 
S7 5.0870 4.5101 2.2949 2.2949 0 
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In Round 5, the buyer is indifferent between S6 and S7 because the preference 

function values of the buyer for the two sellers are within the small threshold ∆ 

value we use. We still write constraints indicating the preference of the bids of S6 

and S7 over the remaining bids. These, however, do not provide us any new 

information, i.e. when we solve (WALFA), we found the same α and weight 

values as in Round 4. Still two sellers bid profitably, thus the algorithm continues. 

To support sellers for the next iteration, we improve the estimated contour and tell 

the sellers that their preference functions for their updated bids should not be on 

2.1802 (2.2949 x 0.95) to be competitive. The estimated α and weight values of 

Round 4 are again used for Round 5. 

 

The updated bids for Round 6 are given in Table 4.7. 

 

 

Table 4.7 Bids for Round 6 

Round 6 

Seller Price Defect Rate Pref.Fn_DM Pref.Fn_Estimated 
0_Profit 

Frequency 
S1 7.9132 3.2559 3.1877 3.1880 6 
S2 7.3432 3.3942 2.9703 2.9705 6 
S3 6.7840 3.5537 2.7633 2.7635 5 
S4 6.2399 3.7362 2.5726 2.5728 4 
S5 5.7180 3.9426 2.4067 2.4069 2 
S6 5.2270 4.1764 2.2773 2.2774 1 
S7 4.7779 4.4410 2.1970 2.1970 1 

 

 

In this round, the buyer selects S7. When we check the 0_Profit_Frequency 

column, we see that all numbers are positive indicating that there is no seller 

bidding profitably. Therefore the algorithm stops and the winning seller is seller 

7. 
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4.5 Experiments 

 

We consider two cases in terms of the attribute numbers: two (defect rate-q, price-

p) and three (defect rate-q, price-p, lead time-lt) attribute cases where all 

attributes to be minimized. In the two attribute case, each seller identifies a defect 

rate and a price value for the auctioned item. Here defect rate is used as an 

indicator of quality; smaller defect rate stands for higher quality.  In the three 

attribute case, in addition to these attributes sellers also identify a lead time value 

about the delivery time of the item being auctioned as a new attribute. Smaller 

lead times causing higher costs to sellers, are preferred by the buyer. The relations 

between the attributes will be mentioned in the following sections. 

 

For our example problems, we generate 7 sellers each having his/her own 

continuous cost function. The cost function of seller i for two attribute case is 

constructed in the following form: 

costi =  fi(qi) = ( ) 2.15.6
)(

1
2 








−+

−
c

cqi

   

where,  

qi:  defect rate value in seller i’s bid 

c: constant, c = 0.5(i-1) 

i =1, 2,…, 7. 

 

We consider a cost function which has a negative relation in defect rate, i.e. as 

defect rate decreases (or quality increases) cost increases. Then we assign such 

cost functions to sellers to generate nondominated bids. These cost functions 

provide each seller to dominate others at different defect rate ranges. For instance, 

seller 1 dominates the others for defect rates up to 1.54, whereas seller 2 

dominates others for defect rates between 1.54 and 2.04. Each seller has his/her 

own dominating region with such cost functions. This mechanism is created in 

order to make the problem more interesting by facilitating the sellers to be 

competitive for different attribute combinations. 
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While assigning initial defect rates, we take these dominating regions into 

consideration to generate nondominated bids. We set the maximum defect rate as 

10. Then we calculate initial cost values using sellers’ cost functions mentioned 

above. After finding the cost values, we assign a profit rate to each seller and 

calculate price values for the initial round. We take the minimum profit rate as 

20% and the maximum profit rate as 50%. We randomly generate numbers 

between 1.2 and 1.5 for each seller and multiply these numbers with sellers’ cost 

values to assign initial prices. With this, we assign defect rates and price values to 

sellers to compose bids for the beginning round.     

 

For the three attribute case the cost function is as follows: 

costi = fi(qi, lti) = ( ) 











+








−+

− 22

15
2.15.6
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ii lt
c
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where, 

qi:  defect rate value in seller i’s bid 

lt i: lead time value in seller i’s bid 

c: constant, c = 0.5(i-1) 

i =1, 2,…, 7. 

 

We construct a cost function that defect rate and lead time are related with cost 

separately. The relation of the defect rate is the same as that of in the two attribute 

case. Additionally we consider a negative relationship between cost and lead 

time, i.e. as lead time decreases cost increases. We take the minimum value of 

lead time as 3 and the maximum value of lead time as 10. 

  

Cost functions can be constructed in different ways. Our aim was to generate cost 

functions in such a way that the sellers would be competitive for different 

combination of attribute values. Developing different, possibly more realistic, 

cost functions can be the subject of future research. 
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We use the same initial defect rates in the two attribute case. Then we randomly 

generate the lead time values and calculate the cost values according to the cost 

function constructed for three attribute case. Price calculation is the same for both 

cases. We use these initial bids in our experiments.  

 

We take the maximum price value as 15 and scale it between 0 and 10 and take 

defect rate and lead time values as they are to bring all attributes to a similar 

scale. As we try to minimize all attributes, we take the ideal point such that all 

attributes have zero value.  

 

In our example problems, we take the threshold, ∆, as 0.001. In Section 4.1 we 

discuss two different ways to use such a threshold level. We consider the former 

one and say that if the buyer prefers A to B, it requires u(B) ≥ u(A)(1+ ∆). 

Although it causes nonlinearity in the model, we use it since our problems are 

small and do not cause significant computational complexity. However, for big 

problems taking a threshold, ∆`, and require u(B) ≥  u(A) + ∆` will be beneficial 

in terms of computational complexity. In some of our problems we apply the two 

methods by setting both ∆ and ∆` to the same constant. The results are not 

significantly different. 

 

The parameter θ is necessary for the improvement of the bids. If θ is too small, 

there will be lots of information about the true preference function; however the 

number of rounds will be too big. On the other hand, if θ is too large, the auction 

will end prematurely as it is unlikely for the sellers to make such improvements. 

In our calculations we set the improvement percentage, 100θ, be 5 where θ=0.05. 

We multiply the preference value of the estimated contour before improvement 

by 0.95 and find the preference value of the estimated contour that will be 

presented to the sellers. We set a lower bound of 0.05 and an upper bound of 0.95 

for the weights in (WALFA) problem to avoid extreme values of weights in our 

experiments. 
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We use an underlying Lα metric representing the preference function of the buyer 

as follows: 

( )( )
t

t

j
jjj zau

/1

*











−= ∑ λ     

where 

λj : weight of attribute j  

ja : level of attribute j  

*
jz : ideal level of attribute j  

t: parameter of the underlying Lα metric 

 

We test the algorithm on 17 problems for different combinations of t  and λj 

values for both two and three attribute cases. 

 

4.6 Results 

 

To test the performance of the algorithm, we compare the results of the algorithm 

with the ones found using the exact parameters values. We want to see what 

would be the results if we know the preference function of the buyer explicitly 

and the sellers can bid with zero profit. Thus we solve the following (EX_PARi) 

problem with exact parameter values for each seller to find the best possible 

defect rate and price combination that the sellers can give with zero profit. 

 

The parameters and the decision variables are the same as before and the model is 

as follows: 
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Problem (EX_PARi) 

 

Min  u(si)      (15) 
 
s.to 
 

u(si) = ( )( )
t

J

j

t

jijj za

/1

1

*








−∑

=

λ     (16) 

  

1ia  -  f i ( is ) ≥ 0     (17) 

 

In (EX_PARi), the objective is to compose a bid that minimizes the distance from 

the ideal point in terms of Lα metric. Sellers try to find this combination without 

any loss. 

 

When we look at the results of the example problem in Section 4.4, it can be said 

that our estimations are close to the true values and we guide the sellers well. The 

last rows of Table 4.8 and Table 4.9 in bold show that the winning sellers are the 

same (seller 7 for both) and the preference function values of the buyer are nearly 

the same for both cases. We say nearly as for simplicity we round up the values in 

the tables to four significant digits, although they look the same there are very 

small differences. However, these differences can be neglected due to rounding 

off. Also the preference function value of the buyer for all bids and the bid 

compositions are closely the same as we guide them with nearly exact parameter 

values. 

 

Table 4.8 The Results of the Algorithm 

Seller Price Defect Rate Pref.Fn_DM 
S1 7.9132 3.2559 3.1877 
S2 7.3432 3.3942 2.9703 
S3 6.7840 3.5537 2.7633 
S4 6.2399 3.7362 2.5726 
S5 5.7180 3.9426 2.4067 
S6 5.2270 4.1764 2.2773 
S7 4.7779 4.4410 2.1970 
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Table 4.9 The Results Found with Exact Values of Parameters 

Seller Price Defect Rate Pref.Fn_DM 
S1 7.9132 3.2554 3.1877 
S2 7.3433 3.3937 2.9703 
S3 6.7841 3.5532 2.7633 
S4 6.2400 3.7358 2.5726 
S5 5.7181 3.9422 2.4067 
S6 5.2272 4.1760 2.2773 
S7 4.7781 4.4407 2.1970 

 
 
 
In all problems for both two and three attribute cases, the winning seller(s) found 

with the algorithm and (EX_PARi) problem with exact parameter values are the 

same. We also compare the preference function values of the buyer for the 

winning sellers found with the algorithm and with (EX_PARi). To evaluate the 

performance of the algorithm for these values we use % deviations:  

 

% deviation = 100)
)(

)_()_(
(

optimalu

bidoptimalubidfinalu −
 

 

In the formula )_( bidfinalu refers to the preference function value of the final 

bid of seller i found by the algorithm whereas )_( bidoptimalu refers to the 

preference function value of the optimal solution found by (EX_PARi). 

 

For each problem, we check the percent deviation of the buyer’s preference 

function values of the winning sellers. We also calculate the percent deviations 

for each seller and report the averages over all sellers. As can be seen from Tables 

4.10 and 4.11, the percent deviations are very small, i.e. for all problems the 

buyer’s preference function found with the algorithm is close to that found by 

(EX_PARi) with the exact parameters.  These imply that the estimation and 

guidance mechanisms of our approach worked well in all the test problems. 
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Table 4.10 % Deviations Between the Results of the Algorithm and Exact Solutions for Two Attribute Case 

α=1 α=2

wp=0.8 
wd=0.2

wp=0.5 
wd=0.5 

wp=0.8 
wd=0.2 

wp=0.5 
wd=0.5

 wp=0.3 
wd=0.7

wp=0.8 
wd=0.2

wp=0.6 
wd=0.4 

wp=0.5 
wd=0.5

 wp=0.4 
wd=0.6

wp=0.2 
wd=0.8 

Winning_seller(s) 0.0000 0.0013 6.4718 0.0000 0.3072 0.0003 0.0000 0.0209 0.0142 0.1308
Average 0.0000 0.0011 0.9537 0.0000 0.4753 0.0184 0.0000 0.1061 0.1665 2.4178

α=3 α=4

 

 

 

Table 4.11 % Deviations Between the Results of the Algorithm and Exact Solutions for Three Attribute Case 

α=1 α=2

wp=0.3 
wd=0.4  
wlt=0.3

wp=0.2  
wd=0.1 
wlt=0.7

wp=0.7  
wd=0.2 
wlt=0.1

 wp=0.2 
wd=0.1 
wlt=0.7

 wp=0.3 
wd=0.4 
wlt=0.3

wp=0.7 
wd=0.2  
wlt=0.1

wp=0.2  
wd=0.1 
wlt=0.7

Winning_seller(s) 1.8714 0.0001 0.1456 0.2149 0.0191 0.0041 0.0083
Average 1.7383 0.0001 0.0256 0.2782 0.0183 0.0169 0.0026

α=3 α=4
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For practical purposes we use constant ∆ as 0.001 in our calculations. As we scale 

the attributes, the preference function values of the bids are not so different from 

each other. Therefore, we say that using constant threshold level is reasonable for 

our testing. However it is also possible to change the threshold depending on α 

value instead of taking it as constant. The reason is that for any given point, as α 

gets larger the preference value decreases for the same weights and the threshold 

level can change. Because of this, the threshold level of the buyer can be taken as 

J1/α∆* where J is the number of attributes showing the dimension and ∆* is a 

predetermined value.  

 

Another point is that, in our experiments, we deal with small number of sellers 

and at each iteration we present all bids to the buyer. However, for big sized 

auctions a representative group of bids can be selected using some filtering 

methods like in Steuer (1986) and the buyer can be asked to choose the best 

among them.   

 

Lastly, ideal point can be dynamic. Although we use a static ideal point in our 

experiments, it can be updated at each round. After the buyer is presented the bids 

of the current round, point based on these bids he/she can update the ideal point 

for the next round.  
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CHAPTER 5 

 

5 AN EVOLUTIONARY ALGORITHM APPROACH TO 

MULTI-ATTRIBUTE MULTI-ITEM AUCTIONS  

 

 

The Evolutionary Algorithms (EAs) have been very popular during the last 

decade (http://neo.lcc.uma.es/opticomm/introea.html). The application of EAs in 

multi-objective optimization has also received growing interest from researchers 

(Fonseca and Fleming, 1995). EAs maintain many solutions in a single run; 

hence, they are particularly useful in multi-objective problems (Deb, 2001). 

The advantages of EAs are described by Fonseca and Fleming (1995) as 

• the ability to handle complex problems,  

• involving features such as discontinuities, multimodality, disjoint feasible 

spaces and noisy function evaluations,  

• reinforces the potential effectiveness of EAs in multi-objective search and 

optimization 

  

In this chapter, we develop an EA for the case of multi-attribute multi-item 

reverse auctions. We try to generate the whole Pareto front using the EA. We also 

develop heuristic procedures to seed several initial solutions in the initial 

population. We test the EA on a number of randomly generated problems and 

compare the results with the true Pareto optimal front obtained by solving a series 

of integer programs. 

 

 

 



  

 45 

5.1 EA Applications in Auctions 

 

As discussed in Section 2.2.3, there are different types of auctions; one of which 

is the multi-attribute auction.  Multi-attribute auction process considers not only 

the price but also other attributes.  

 

Gaytán et al. (2005) apply an EA to solve multi-attribute multi-item reverse 

auctions. In their approach, sellers make their bids representing which items they 

want to supply without support for the first round. Then the buyer finds the 

efficient front by using the EA. The sellers give their bids for the second time 

without support. The buyer finds the new efficient front. Afterwards the buyer 

selects a criterion (i.e. price) and finds the point that has the maximum difference 

between the two Pareto fronts in terms of this criterion. If the buyer likes this new 

point, the auction ends and the sellers in the winning combination are informed. 

Otherwise the buyer expresses his/her preferences like: quality improvement 

while not increasing price too much, etc. to sellers. Sellers update their bids using 

this information and the auction continues.  

 

5.2 Methodology 

 

In this study, a multi-attribute multi-item reverse auction problem is solved by 

adopting an EA, namely the Non-Dominated Sorting Genetic Algorithm NSGA II 

(Deb et al. 2002).  

 

5.2.1 Problem Definition 

 

The problem consists of one buyer, I sellers, J attributes and K items where there 

exists one unit for each item. All sellers can bid for all items in our problem. We 

try to find the best combination in terms of J attributes to supply all of these 

items. No extra constraint exists.  
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In our example problems we consider two objectives: defect rate and price where 

both are to be minimized. Each seller identifies a defect rate and a price value for 

each item he/she wants to supply separately. We used defect rate as an indicator 

of quality as in Chapter 4.   

 

We consider two cases: original case and discounted case where there exists price 

discounts in the latter one. 

 

Original Case: 
 

In the original case, to calculate the defect rate of a combination, we sum up the 

offered defect rates in the combination. It is equivalent to taking the average. 

Alternatively, maximum of the offered defect rates in the combination can be 

taken as the defect rate of the combination. In some situations summing up the 

defect rates may not be reasonable. Weighted sum could be an option to calculate 

the defect rate of the combination. On the other hand, to calculate the total price 

of the combination we sum the offered prices in the combination. 

  

We scale both objectives. We find the minimum possible and maximum possible 

values for combinations in terms of both objectives. Then we use these values to 

linearly scale the objectives between 0 and 1. 

 

Discounted Case: 
 

With the same bids, we also try to find the best combination if there exist price 

discounts. In this case, sellers have different threshold levels for applying 

discount. If the number of items supplied by a seller is greater than or equal to 

his/her threshold level, an amount of discount determined by that seller is applied.  

Discount amounts are different for different sellers. In our study we only consider 

one threshold level for each seller. Scaling is the same as the original case.  

 

The mathematical formulations of the problems are provided below: 
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Mathematical Formulation of Original Case 

Decision Variables  

 

X ik :     1 if item k is supplied by seller i    

            0 otherwise 

 

Parameters 

qik : defect rate given by seller i for item k 

pik : price given by seller i for item k 
 

where;   i (sellers) : 1, 2, 3, . . . , I and k (items): 1, 2, 3, . . . , K 

 

Problem(Original) 

Minimize z1 = ∑
ki ,

 Xikqik 

Minimize z2 = ∑
ki ,

 Xikpik 

s.to 

∑
i

 Xik   = 1       ∀k (each item will be supplied by a seller) 

X ik ≥ 0 

 

 

Mathematical Formulation of Discounted Case 

Decision Variables  

 

X ik :     1 if item k is supplied by seller i    

            0 otherwise 

m(i):     1 if constraint (1) is active for seller i   

            0 if constraint (2) is active for seller i 

t(i) :  total number of items supplied by seller i in a combination 

prc(i) : total price of items seller i is assigned to supply  
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Parameters 

qik : defect rate given by seller i for item k 

pik : price given by seller i for item k 

th(i) :  threshold level determined by seller i 

d(i) :  discount amount determined by seller i at threshold level th(i) 

M: big  number 
 

where;   i (sellers) : 1, 2, 3, . . . , I and k (items): 1, 2, 3, . . . , K 

 

Problem(Discounted) 

Minimize z1 = ∑
ki ,

 Xikqik 

Minimize z2 = ∑
i

 prci(i) 

s.to 

∑
i

 Xik = 1       ∀k (each item will be supplied by a seller) 

t(i) =∑
k

X ik  ∀i  (total number of items supplied by seller i) 

t(i)  ≥  th(i) – Mm(i)            ∀i   

prc(i) ≥ ∑
k

 Xikpik – M(1-m(i))  ∀i   (1) 

prc(i) ≥ ∑
k

 Xikpik(1-d(i))   ∀i   (2) 

X ik, m(i) : binary 

t(i), prc(i) ≥ 0 

 

5.2.2 The EA 

 

As mentioned above, NSGAII (Deb et al. 2002) is modified for our problem. We 

use real-valued representation. That is, each gene in a chromosome is represented 

by an integer reflecting the seller of that item. 
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3 6 8 . . . . . . 4 4 

Figure 5.1 An example of item – seller relation 
 

 

In Figure 5.1, a chromosome showing which item is supplied by which seller is 

depicted. The chromosome cells refer to the items and the numbers in the cells 

refer to the sellers. The chromosome represents that item1 is supplied by seller 3 

whereas item 2 is supplied by seller 6 and items K-1 and K are supplied by seller 

4. 

 

5.2.3 Overview of the Algorithm   

 

Firstly, an initial parent population P0 with population size of N is generated and 

sorted based on the nondomination sorting (Deb, 2001). That is, all nondominated 

solutions are in the first front. Once the first front is eliminated, all nondominated 

solutions of the resulting population are in the second front and so forth. A 

solution’s nondomination level, rank, is used as its fitness function value. By 

using selection, recombination, and mutation operators, an offspring population, 

Q0, with size N is created. For each generation, t, thereafter, parent population and 

offspring population are combined to form a global population, Gt. After sorting 

Gt, the best N members among the parents and the offspring are selected based on 

their nondomination level and crowding distance values. While selecting the N 

best solutions, their rank values are checked where smaller rank values are 

preferred. Firstly, the solutions with rank 1, which have the smallest rank, are 

selected. If the number of these solutions is less then the predetermined 

population size, N, we continue to fill the elite population with the solutions 

having rank 2. Whenever the total number of solutions exceed N, we eliminate 

those in a denser region based on a crowding distance measure at the current rank.  

We also eliminate all solutions in higher ranks (Deb, 2001). This maintains the 

diversity among the solutions. Afterwards, these best N members are referred as 
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the new parent population members of the next generation, Pt+1 where t is the 

current generation counter. 

 

The outline of the algorithm is as follows: 

- Generate the initial population P0 by using the random number generator used in 

the NSGA II code, population size N. 

- Evaluate objective values of the combinations and scale them 

- Rank the solutions (nondomination sorting) 

- Generate offspring population Q0 of size N with Selection, Recombination and 

Mutation: Tournament Selection is used in the algorithm (Deb, 2001). In the 

tournament selection, two solutions from the parent population are selected. 

These solutions are compared and the better one is put into a mating pool. This 

procedure continues until the mating pool is filled with N solutions. Afterwards, 

uniform crossover is applied to the solutions in the mating pool (Deb, 2001). That 

is, two offspring are generated from two parents where each gene of one offspring 

is inherited with a probability pc from either parent. The procedure is illustrated 

below: 

 

Let P1 and P2 be two parent solutions in the mating pool and O1 and O2 be the 

offspring solutions generated from P1 and P2, where  

 

                   P1                                      P2 

 

 

 

For gene 1, a number is randomly generated, r. If r < pc, than the first gene of O1 

takes the value of 4 and the first gene of O2 takes the value of 3. Otherwise, the 

first gene of O1 takes the value of 3 and the first gene of O2 takes the value of 4. 

This procedure is repeated for each gene. 

 

3 1 2 4 4 1 2 4 
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Lastly, mutation is applied to the offspring solutions created with crossover 

operation. The mutation probability is selected as pm. Each gene can be mutated 

with a probability pm and if it mutates, a randomly generated integer value 

between 1 and I is assigned to the mutated gene. With this, offspring population 

Q0 is constructed. 

 

For each generation perform the following operations: 

- Combine parent and offspring populations and form a global population, Gt 

- Rank the solutions in the global population and determine crowding distance 

between points having the same rank value 

- Fill the elite population (this population is called elite as they have small ranks) 

with size N 

- Set the elite population as Pt+1 

- Create the next generation with genetic operators (selection, recombination and 

mutation). 

 

5.3 Input Generation 

 

We randomly generate defect rates and prices to construct our problems. We 

consider items from different categories and set different defect rate and price 

ranges for these categories. Some items are more valuable than others with small 

defect rates and high prices. We take 3 categories and corresponding attribute 

ranges are given in Table 5.1. 

 

 

Table 5.1 Categories vs Attribute Ranges 

Category Defect Rate Price 

A 0.1 – 2.0 61 – 100 

B 2.1 – 6.5 31 – 60 

C 6.6 – 10.0 1 –30 
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We take the minimum defect rate as 0.1 and the maximum defect rate as 10.0 

whereas we take the minimum price value as 1 and the maximum price value as 

100. We randomly generate integer price values using a discrete uniform 

distribution. 

 

Firstly, we randomly assign the categories to the items using uniform distribution. 

For each seller, we generate attribute values for each item using the defect rate 

and price value ranges of the corresponding category.  

 

After generating the defect rate and price randomly, we use the defect rate as it is 

and to make it realistic (generally there is a tradeoff between defect rate and price; 

if one is small the other is large), we impose a negative correlation between these 

two attributes. We take the reciprocal of the defect rate and add it to the randomly 

generated price to find the final price given for the item that has been already 

assigned a defect rate and category.  

 

For the discounted case, we also generate threshold levels (an integer between 2 

and 7) for each seller randomly by using a discrete uniform distribution. Then, 

discount amounts between 3% (0.03) and 7% (0.07) are randomly generated with 

a discrete uniform distribution. Afterwards, these randomly generated discount 

amounts are added to the threshold levels to find the final discounts. The reason is 

that, we expect large discounts if the threshold level is high.  

 

The true Pareto optimal frontiers for both the original and discounted case 

problems are obtained on GAMS 22.5 by using the ε-constraint method (Haimes 

et al. 1971). We use ε-constraint for defect rate and at each iteration, the ε value 

is increased by 0.1 over the ε value of the previous iteration since the minimum 

value of the defect rate among the items is 0.1.  
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5.4 Simulation Results 

 

In our experiments we choose the selection strategy as tournament selection (Deb, 

2001) and use uniform crossover with pc =0.9 based on our preliminary 

experiments and bitwise mutation with pm =0.01. We use the same seed for 

random number generator in each run. That is, we start each run with the same 

initial population and generate the same random numbers at each run.  

 

We modify the code downloaded from the website of Kanpur Genetic Algorithms 

Laboratory (http://www.iitk.ac.in/kangal/codes.shtml) and we implement our 

algorithm in C programming language. 

 

We test the algorithm for different problems. We construct three combinations of 

the number of items and sellers (IxK): 10x20, 30x30, and 30x100. For each 

combination we generate 5 problems and we experiment on these problems. 

 

For each problem, the numbers of nondominated solutions for both original and 

discounted cases are given in Table 5.2. 

 

We run different versions of the algorithm and test its performance against the 

true Pareto frontier. To test the performances, we use Hypervolume Indicator 

(Zitzler and Thiele, 1998) and the Inverted Generational Distance Metric (Van 

Veldhuizen and Lamont, 2000). The former measures the total objective space 

dominated by a population with respect to a given reference point. In our study 

we take the nadir point as the reference point as in Karahan (2007). On the other 

hand, the latter measures the algorithm’s performance in terms of both 

convergence and diversity. In this metric, the Euclidean distance of each solution 

in the true nondominated front to the closest solution in the population generated 

by the algorithm is calculated. Then the average of these minimum distances is 

taken.  
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For the Hypervolume Indicator (HI) larger values are preferred, whereas for the 

Inverted Generational Distance Metric (IGDM) smaller values are desirable. 

 

In the following, we give the results of the algorithm for a problem called as 

30x100_pr4 in combination of 30 items and 100 sellers. We discuss the results for 

both original and discounted cases of this problem. All performance results for all 

problems are provided in Appendix C. 

 

 
Table 5.2 Number of Nondominated Solutions on the True Pareto Front 

Problem Original Case Discounted Case 

10x20_pr1 39 69 

10x20_pr2 31 40 

10x20_pr3 30 22 

10x20_pr4 37 49 

10x20_pr5 23 34 

30x30_pr1 61 174 

30x30_pr2 54 159 

30x30_pr3 88 191 

30x30_pr4 76 209 

30x30_pr5 70 172 

30x100_pr1 85 209 

30x100_pr2 57 129 

30x100_pr3 96 161 

30x100_pr4 74 168 

30x100_pr5 79 184 
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5.4.1 Original Case   

 

In the original case, we run 2 versions of the algorithm: without seeding and 

seeding by sorting as explained later. Our preliminary experiments show that 

when we run the algorithm for the original case without seeding, the solutions 

converge at the generation number of 7000 for 30x100 combination. We use 

different population sizes in our preliminary experiments and we get the best 

results for population size of 100. Thus in our experiments we set the population 

size to 100. In Figure 5.2, resulting solutions of running the algorithm for 7000 

generations without seeding are represented.  
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Figure 5.2 Solutions found by “without seeding” for Original Case 
 

 

As can be seen from Figure 5.2, when we just run the modified NSGA II, 

convergence of the algorithm to the true front seems satisfactory; however we 

cannot capture some (extreme) regions. It is a deficiency of NSGA II.  
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We, then seed the initial population with the best solutions for each objective. We 

can solve the Problems (Original) in a solver to minimize one of the objectives 

with the addition of the other objective multiplied by a small constant to get a 

nondominated solution. For instance, to find the best combination in terms of the 

defect rate, the objective function will be in the following form. 

 

Min z1 + z2∆ 

where 

z1: defect rate objective 

z2 : price objective 

∆ : small positive constant 

  

When we perform this for each objective we can find the best nondominated 

solutions for each objective. On the other hand, for the original case it is not 

difficult to obtain the best nondominated solutions for each objective without 

using a solver. We can find the best nondominated combination with a simple 

sorting procedure. Firstly, for each item, we choose the seller who offers the 

minimum price for that item. If there exists one seller, we assign this seller to that 

item. If there are more than one seller offering the minimum price for that item, 

then we compare the defect rate values offered by these sellers and choose the one 

giving the smallest defect rate value for that item. We continue this procedure for 

all items and find the best nondominated combination in terms of price objective. 

In the same manner, for each item we select the seller offering the minimum 

defect rate value and find the best nondominated combination for the defect rate 

objective. Then these two combinations are added to the initial population and the 

remaining (100-2=98) combinations are randomly generated. This is referred as 

“seeding by sorting” and the resulting solutions for 3000 generations can be seen 

in Figure 5.3.  



  

 57 

90

95

100

105

110

115

120

860 910 960 1010 1060 1110 1160

price

de
fe

ct
 r

at
e

True Pareto front

seeding by sorting

 

Figure 5.3 Solutions found by “seeding by sorting” for Original Case 
 

 

When we look at the graph, we see that both the convergence and diversity are 

satisfactory. With these solutions, we can represent the true front well.  

 

In the original case we have 74 nondominated solutions on the true Pareto front. 

We try to represent the Pareto front by at most 100 nondominated solutions. In 

Table 5.3, the performance measures in terms of HI* and IGDM, durations and 

the generation numbers for both without seeding and seeding by sorting versions 

are provided. We use HI* to represent the ratio of the hypervolumes of the 

algorithm and the true Pareto front. Larger HI* values are preferred. 

 

HI* = Hypervolume of the algorithm / Hypervolume of the true Pareto front 
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Table 5.3 Performance Measures for Original Case 30x100_pr4 

Version HI* IGDM Duration (second) Generation 

without seeding 0.9977 0.0102 64.45 7000 

seeding by sorting 0.9985 0.0029 29.97 3000 

 

 

The results show that for 30x100_pr4, seeding by sorting outperforms without 

seeding. To generalize, we look at the average HI* and IGDM values for different 

combinations in Table 5.4. 

 

 

Table 5.4 Performance Measures for Original Case 

Problem Average HI* Average IGDM 

10x20_without seeding 0.9902 0.0107 

10x20_seeding by sorting 0.9979 0.0034 

30x30_without seeding 0.9921 0.0082 

30x30_ seeding by sorting 0.9942 0.0057 

30x100_without seeding 0.9976 0.0062 

30x100_ seeding by sorting 0.9977 0.0050 

 

 

The performance measures in Table 5.4 show that for the original case both 

versions seem good. However the seeding by sorting version of the algorithm 

with 3000 generations can be preferred, as it requires significantly fewer 

generations when compared with without seeding version (7000 generations) and 

it is a simple procedure to apply. 

 

5.4.2 Discounted Case 

 

For the discounted case, we compare different versions of the algorithm running 

each for 10000 generations based on our preliminary experiments. We have 168 
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nondominated solutions on the true Pareto front and we try to approximate it with 

a population size of 200 according to our preliminary experiments. We observe 

that the price range on the true Pareto front is lower than that in the original case, 

as discount is applied on the price in the discounted case. We also observe that the 

defect rate range is wider in the discounted case. The reason is that in the 

discounted case we have additional constraints, i.e., we try to make groups of 

items to take advantage of the price discount. Therefore, the defect rate value of 

the combination gets larger. 

 

In Figure 5.4, we present the solutions corresponding to the without seeding 

version of the algorithm.  
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Figure 5.4 Solutions found by “without seeding” for Discounted Case 
 

 

As can be seen in Figure 5.4, without seeding, we cannot capture some portions 

of the true front. Convergence does not seem bad, but it can be improved by 

increasing the number of generations. Afterwards, we seed the initial population 

with the best combinations for each objective. We first solve the                   
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Problems (Discounted) in GAMS to find the best nondominated combinations for 

each objective. In fact, the sorting procedure gives the best nondominated 

solution for the defect rate objective. We use solver only to find the best 

nondominated combination for the price objective. We add these two 

combinations to the initial population and generate remaining solutions randomly 

and run the algorithm. This version is called the “optimal seeding”. We give the 

nondominated solutions found with optimal seeding in Figure 5.5. 

 

Convergence and diversity are good when we use optimal seeding and the true 

Pareto front can be represented well.  
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Figure 5.5 Solutions found by “optimal seeding” for Discounted Case 
 

 

The initial population can be seeded by higher number of good combinations on 

the true Pareto front. However, these combinatorial problems are generally hard 

to solve. Typically good combinations for each objective are found and seed into 

the initial population. Therefore, we also consider a heuristic named as “rank 
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heuristic” developed for the discounted case, for the cases where it is hard to find 

the optimal combination for price objective.  

 

Overview of the Rank Heuristic 
 

Firstly, we find the discounted prices offered by each seller for each item. Then 

we sort these discounted prices in ascending order for each item. At the top, the 

minimum discounted price for each item exists. Next, we select the seller who 

offers the maximum discounted price at the top and assign as many items as 

his/her threshold level to this seller. Let his/her threshold level be t1 and if t1 is 

greater than or equal to K where K is the total number of items to be supplied we 

assign all K items to him/her. Otherwise he/she will supply t1 items and we look 

for the seller having the second maximum discounted price at the top. If the seller 

is not assigned to supply any item, he/she is assigned to supply as many as his/her 

threshold level, t2, if the total items assigned (t1 + t2) is less that K. Else he/she is 

assigned to supply K - t1 items. If the seller offering the second maximum 

discounted price at the top is assigned to supply some amount, we skip and 

continue with the item offered by the next maximum discounted price. We 

progress to search until all K items are assigned to be supplied. Then we start 

from the item having the maximum discounted price at the top and search for the 

seller offering smaller price among the ones assigned to supply predetermined 

amount of items mentioned above. This process continues until all items are 

supplied. 

 

To illustrate the procedure, say we have three items and four sellers. The discount 

amounts, threshold levels and the suggested prices for each seller are as follows: 
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       Table 5.5 Original Prices                   Table 5.6 Parameters Values       
             

 Item 1 Item 2 Item 3 

Seller 1 4 15 6 

Seller 2 6 20 8 

Seller 3 2 30 5 

Seller 4 5 25 4 

 

 

Firstly, we find the discounted prices offered by each seller. The values are given 

in Table 5.7. 

 
Table 5.7 Discounted Prices 

 Item 1 Item 2 Item 3 

Seller 1 3.6 13.5 5.4 

Seller 2 5.1 17.0 6.8 

Seller 3 1.8 27.0 4.5 

Seller 4 4.0 20.0 3.2 

 

 

When we sort the discounted prices in ascending order, the following table is 

constructed. 

 

 
Table 5.8 Ordered  Discounted Prices 

Item 1 Item 2 Item 3 

1.8 (S3) 13.5 (S1) 3.2 (S4) 

3.6 (S1) 17.0 (S2) 4.5 (S3) 

4.0 (S4) 20.0 (S4) 5.4 (S1) 

5.1 (S2) 27.0 (S3) 6.8 (S2) 

 
Discount 

Amount 
Threshold 

Level 

Seller 1 10% 2 

Seller 2 15% 1 

Seller 3 10% 3 

Seller 4 20% 2 



  

 63 

The minimum discounted prices offered for each item are in the first row of Table 

5.8. In the cells of the table, discounted price and the seller by whom the price is 

offered exist. Then, we find the maximum discounted price among these 

minimum values. This value is 13.5 and offered by seller 1 for item 2. We assign 

item 2 to seller 1 and as his/her threshold level is 2 we say that one more item 

should be assigned to him/her. Total number of items assigned is 2. We continue 

since the total number of assigned items up to now is less than the total number of 

items to be assigned. Then we move to the next maximum which is 3.2 offered by 

seller 4. We assign item 3 to seller 4 and although the threshold level of seller 4 is 

2, we assign him/her only one item as the total number of items assigned becomes 

3. According to the heuristic, item 2 is assigned to seller 1, item 3 is assigned to 

seller 4 and remaining item, item 1, is assigned to seller 1 as we say that seller 1 

will supply items as amount of his/her threshold level, 2.  

 

With this approach, it is hoped to obtain a representative solution for the best 

combination in terms of price. Since the calculation for defect rate is the same for 

both original and discounted case, we can find the best combination for defect 

rate with sorting procedure mentioned above. These two combinations are seeded 

to the initial population and the result is as follows: 
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Figure 5.6 Solutions found by “rank heuristic” for Discounted Case 
 

 

It can be seen in Figure 5.6 that the algorithm converges well to the true Pareto 

front however it cannot capture the whole front. In the following, the performance 

measures for 30x100_pr4 and for all problems are given in Tables 5.9 and 5.10, 

respectively.  

 

 

Table 5.9 Performance Measures for Discounted Case 30x100_pr4 

Version HI* IGDM Duration (second) Generation 

without seeding 0.8982 0.0876 163.77 10000 

optimal seeding 0.9861 0.0110 213.04 10000 

rank heuristic 0.9494 0.0611 178.57 10000 
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Table 5.10 Performance Measures for Discounted Case 

Problem Average HI* Average IGDM 

10x20_without seeding 0.9628 0.0393 

10x20_optimal seeding 0.9967 0.0029 

10x20_rank heuristic 0.9690 0.0307 

30x30_without seeding 0.8071 0.1218 

30x30_optimal seeding 0.9696 0.0205 

30x30_rank heuristic 0.9374 0.0484 

30x100_without seeding 0.8675 0.0824 

30x100_optimal seeding 0.9770 0.0173 

30x100_rank heuristic 0.8842 0.0801 

 

 

The performance measures in Table 5.9 show that for our specific problem, 

30x100_pr4, optimal seeding is the best. The worst one among three versions is 

without seeding with HI* value of nearly 90% and a small IGDM value. When 

we look at Table 5.10, the same analysis can be made:  the best version is the 

optimal seeding and it has a hypervolume value nearly the same as the true Pareto 

front with very small IGDM values for all problems. On the other hand, the rank 

heuristic is a simple heuristic and it can be improved. 
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   CHAPTER 6 
 

6 CONCLUSIONS 

 

 

In this study, we deal with multi-attribute reverse auction problems. We develop 

two approaches, one for multi-attribute single item auctions and the other for 

multi-attribute multi-item auctions. Former is an interactive approach where we 

support both parties (buyer and sellers), whereas the latter one is an EA approach. 

 

In the interactive approach, we estimate the parameter values of the underlying 

preference function of the buyer using his/her past preferences. At each iteration 

we improve the estimated preference function values and inform the sellers about 

our estimations. Then the sellers update their bids and the auction continues if 

there exists at least one seller bidding profitably. We test the algorithm on a 

number of problems.  The results show that in all test problems, the correct 

winning sellers (achieved with exact solutions) are found.  Also the buyer’s 

preference function is closely approximated. Therefore, it can be said that we 

guide the sellers well with asking reasonable number of questions.  

 

We also develop an Evolutionary Algorithm (EA) for multi-attribute multi-item 

reverse auctions where we try to generate the whole Pareto front. In our study, we 

develop different heuristic procedures to find good initial solutions to seed the 

initial population. We modify the NSGA II (Deb et al. 2002) and apply different 

versions of the algorithm on randomly generated problems. We test the 

performance of the algorithm using both the Hypervolume Indicator and Inverted 

Generational Distance Metric. The results indicate that the algorithm can 

represent the true Pareto front well. As a future study, other multi-objective EAs 

developed for different problems can be adopted to solve our problem and 
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comparisons can be made between the algorithms. Another point is that in our 

study, we consider single threshold level for each seller for the discounted case 

(Section 5.2.1). However, the algorithm can be tested for problems with different 

threshold levels for each seller. 

 

We intend to develop an interactive EA for multi-attribute multi-item reverse 

auctions. For multi-round auctions using a preference based EA will be beneficial 

as we do not need to generate the whole Pareto front. In addition, as a future 

study, the interactive approach we develop for single item auctions can be 

improved for multi-item cases.  

 

Our study shows that decision support tools have important potential benefits for 

all parties participating in auctions. We believe that this is an important area for 

future studies, especially for more complex auction environments. Also 

application of the approach in a web-based platform can be stated as another 

future work.    
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APPENDICES 

    APPENDIX A 
 

A. PROOF OF THEOREM 1 

 

 

Theorem 1: For two attributes, J=2, if the preference constraints are satisfied for 

α1 then they will also be satisfied by any α for α > α1 where the preference 

function is in the following form. 

 

( )( )
α

α
/1

**)( 









−= ∑

j
jijji zawsu  

where  

)( isu : preference function value of the bid offered by seller i 

wj : weight of attribute j  

*
jz : ideal level of attribute j  

α : parameter of the Lα metric 

j=1, 2. 

 

Proof: 

Let ( )21,aaA , ( )21,bbB  and ( )21,ccC  be three bids and let u be a preference 

function where smaller values imply higher preference levels. Let 

 

( )Au ≥ ( )Bu  and ( )Cu ≥ ( )Bu   (*) 

 

We consider the following figure, to visualize the possible regions where bid 

B may be located.   
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Figure A.1 The possible regions for bid 
 

 

Note that if we can show that the solutions in regions R_I, R_V, R_VI satisfy (*), 

then the proof of the theorem is complete, because  

 

- we can find solutions in R_II that dominates the solutions in R_I and if we can 

show that the solutions in region R_I satisfy (*), the proof of the theorem for the 

solutions in region R_II is trivial. 

 

- the solutions in region R_III dominates A  and C , any monotone preference 

function satisfies  (*). 

 

- the solutions in region R_IV are dominated, B cannot be in this region for such 

a preference relation.  

 

Therefore, we prove the theorem by showing (*) holds forB in region R_I, R_V 

and R_VI. 

 

 

 

Criterion 1 

Criterion 2 
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For B in region R_I, 

1c ≥ 1b ≥ 1a             (1) 

2a ≥ 2b ≥ 2c   (2) 

 

All ≥ 0 

 

For a= 1 

 

21 )1( awaw −+  ≥ 21 )1( bwbw −+        

21 )1( cwcw −+  ≥ 21 )1( bwbw −+                    

                                        

   ⇒                 
22

11
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−
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w−1
 ≤ 

22
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cb

bc

−
−

 

 

Let  X =
22

11
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−
−

 and Y  =
22

11

cb

bc

−
−

,  whereX ,Y ≥ 0. Then 

 

Y+1

1
 ≤ w  ≤ 

X+1

1
          ⇒           X ≤ Y                              

22

11

ba

ab

−
−

 ≤ 
22

11

cb

bc

−
−

           ⇒     

 

For a= 2 

 

2
2

22
1

2 )1( awaw −+  ≥ 2
2

22
1

2 )1( bwbw −+        

2
2

22
1

2 )1( cwcw −+  ≥ 2
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22
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2 )1( bwbw −+    

 

 

   ⇒                 
2

2
2

2

2
1

2
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−
−
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1







 −
w

w
 ≤ 

2

2
2

2
2

1
2

1
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−
−

 

From preference 
relation 

)( 11 ab − )( 22 cb − ≤ )( 11 bc − )( 22 ba −  

From preference 
relation 

(3) 
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 We check whether         
2

2
2

2

2
1

2
1

ba

ab

−
−

 ≤ 
2

2
2

2
2

1
2

1

cb

bc

−
−

holds. 

 

)( 2
1

2
1 ab − )( 2

2
2

2 cb −  ≤ )( 2
1

2
1 bc − )( 2

2
2

2 ba −  
 

)( 11 ab − )( 11 ab + )( 22 cb − )( 22 cb +  ≤ )( 11 bc − )( 11 bc + )( 22 ba − )( 22 ba +  

 

From (3), we only need to check whether the following inequality holds. 

 

)( 11 ab + )( 22 cb +  ≤ )( 11 bc + )( 22 ba +       from (1) and (2), it holds. 

 

For a=n  

 

nnnn awaw 21 )1( −+  ≥ nnnn bwbw 21 )1( −+        

nnnn cwcw 21 )1( −+  ≥ nnnn bwbw 21 )1( −+    

 

   ⇒                 
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−
−
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w

w






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−
−

 

        

We check whether 
1

2
1

2

1
1

1
1
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++

−
−
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nn

ba

ab
 ≤ 

1
2

1
2

1
1

1
1
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−
−
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cb
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−
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. 
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−
−

 ≤ 
nn
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cb
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−
−

      ⇒     )( 11
nn ab − )( 22

nn cb −  ≤ )( 11
nn bc − )( 22

nn ba −  

 

⇒ )( 11 ab − )( 1
11

2
1

1
1

−−− +++ nnn aabb L )( 22 cb − )( 1
22

2
2

1
2

−−− +++ nnn ccbb L  ≤               

)( 11 bc − )( 1
11

2
1

1
1

−−− +++ nnn bbcc L )( 22 ba − )( 1
22

2
2

1
2

−−− +++ nnn bbaa L  

 

Multiply both sides with 21bb . 

 

From preference 
relation 
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)( 11 ab − )( 1
111

1
11

−− +++ nnn ababb L )( 22 cb − )( 1
222

1
22

−− +++ nnn cbcbb L  ≤          

)( 11 bc − )( 1
2

1
2

11
1

1
nnn bbcbc +++ −−

L )( 22 ba − )( 2
2

2
2

22
1

2
nnn bbaba +++ −−

L  

 

 

 

 

Write the following inequality. 

 

)( 11 ab − )( 22 cb − ( )nnnnnnnn acacbbcabb 121
1

2222
1

111 )()( ++++++ −−
LL  ≤          

)( 11 bc − )( 22 ba − ( )nnnnnnn cacbbaabbc 12122
1

2211
1

1 )()( ++++++ −−
LL  

  

 

 

 

Add (4) and (5); 

 

)( 1
1

1
1

++ − nn ab )( 1
2

1
2

++ − nn cb  ≤ )( 1
1

1
1

++ − nn bc )( 1
2

1
2

++ − nn ba . 

      

 

For B in region R_V, 

1c ≥ 1a ≥ 1b         (6) 

2b ≥ 2a ≥ 2c   (7) 

 

All ≥ 0 

 

For a= 1 

 

21 )1( awaw −+  ≥ 21 )1( bwbw −+        

21 )1( cwcw −+  ≥ 21 )1( bwbw −+                          

(4) 

(5) 

From preference 
relation 
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   ⇒                 
w

w−1
 ≤ 
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−
−
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       there exist such weights 

 

For a=n  

 

nnnn awaw 21 )1( −+  ≥ nnnn bwbw 21 )1( −+        
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⇒                 
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−
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 ≤ 

nn

nn

cb

bc
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−
−

 

 

w  ≥ Max ( ) ( ) ( ) ( ) 



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

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−+−

−

−+−

−
nnnn

nn

nnnn

nn

bccb

cb

baab

ab

1122

22

1122

22   ,       

 

there exist such weights. 

 

For B in region R_VI, 

1b ≥ 1c ≥ 1a        (8) 

2a ≥ 2c ≥ 2b  (9) 

 

All ≥ 0 

 

For a= 1 

 

21 )1( awaw −+  ≥ 21 )1( bwbw −+        

21 )1( cwcw −+  ≥ 21 )1( bwbw −+                    

From preference 
relation 

From preference 
relation 
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⇒                 
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w  ≥ Min ( ) ( ) ( ) ( )







−+−
−

−+−
−

1122

22

1122

22 ,
cbbc

bc

abba

ba
       there exist such weights 

 

For a=n  
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          #.      

        

 

  

From preference 
relation 
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APPENDIX B 
 

B. RESULTS OF THE INTERACTIVE APPROACH 

 

 

The algorithm EX_PAR with exact parameters

Bidder price defect DM_u1 Bidder price defect DM_u1

1 8.1483 1.8562 4.7170 1 8.1482 1.8563 4.7170
2 7.5490 2.3543 4.4970 2 7.5490 2.3544 4.4970
3 6.9483 2.8561 4.2770 3 6.9483 2.8562 4.2770
4 6.3443 3.3669 4.0570 4 6.3435 3.3689 4.0570
5 5.7490 3.8543 3.8370 5 5.7490 3.8543 3.8370
6 5.1445 4.3663 3.6170 6 5.1444 4.3664 3.6170
7 4.5452 4.8645 3.3970 7 4.5451 4.8646 3.3970

The algorithm EX_PAR with exact parameters

Bidder price defect DM_u1 Bidder price defect DM_u1

1 8.2109 1.7088 2.8672 1 8.2056 1.7200 2.8672
2 7.6873 2.0693 2.7634 2 7.6805 2.0803 2.7634
3 7.1717 2.4487 2.6859 3 7.1636 2.4592 2.6858
4 6.6635 2.8448 2.6376 4 6.6538 2.8547 2.6375
5 6.1635 3.2537 2.6206 5 6.1522 3.2631 2.6206
6 5.6744 3.6715 2.6358 6 5.6615 3.6802 2.6358
7 5.1974 4.0969 2.6828 7 5.1827 4.1050 2.6828

2_attributes & alfa=1

2_attributes & alfa=2

w(price)=0.8, w(defect)=0.2

w(price)=0.5, w(defect)=0.5

1  DM_u : preference function value of the DM
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The algorithm EX_PAR with exact parameters

Bidder price defect DM_u1 Bidder price defect DM_u1

1 7.8673 4.2224 4.2073 1 7.8501 4.8953 4.2045
2 7.2747 4.5083 3.8960 2 7.2582 5.0391 3.8937
3 6.6825 4.8123 3.5873 3 6.6679 5.2044 3.5857
4 6.0915 5.1204 3.2824 4 6.0801 5.3710 3.2815
5 5.5017 5.4343 2.9831 5 5.4956 5.5431 2.9829
6 4.9137 5.7492 2.6924 6 4.9157 5.7206 2.6924
7 4.3281 6.0604 2.4147 7 4.3420 5.9074 2.2680

The algorithm EX_PAR with exact parameters

Bidder price defect DM_u1 Bidder price defect DM_u1

1 8.0588 2.1533 2.7427 1 8.0587 2.1534 2.7427
2 7.5297 2.4079 2.5990 2 7.5296 2.4080 2.5990
3 7.0195 2.6912 2.4797 3 7.0195 2.6913 2.4797
4 6.5338 2.9994 2.3930 4 6.5337 2.9995 2.3930
5 6.0765 3.3319 2.3473 5 6.0764 3.3320 2.3473
6 5.6519 3.6869 2.3484 6 5.6517 3.6870 2.3484
7 5.2659 4.0610 2.3975 7 5.2658 4.0611 2.3975

The algorithm EX_PAR with exact parameters

Bidder price defect DM_u1 Bidder price defect DM_u1

1 8.6252 1.2059 1.7899 1 8.4870 1.3217 1.7845
2 8.2227 1.5832 1.7976 2 8.1532 1.6220 1.7967
3 7.8286 1.9883 1.8695 3 7.8872 1.9655 1.8691
4 7.4448 2.4113 2.0091 4 7.6848 2.3439 2.0040
5 7.0707 2.8475 2.2068 5 7.5381 2.7492 2.1935
6 6.7067 3.2933 2.4477 6 7.4369 3.1746 2.4252
7 6.3549 3.7462 2.7183 7 7.3722 3.6150 2.6875

2_attributes & alfa=3

w(price)=0.3, w(defect)=0.7

w(price)=0.8, w(defect)=0.2

w(price)=0.5, w(defect)=0.5

1  DM_u : preference function value of the DM
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The algorithm EX_PAR with exact parameters

Bidder price defect DM_u1 Bidder price defect DM_u1

1 7.8390 5.5448 4.1860 1 7.8309 6.2304 4.1847
2 7.2450 5.6654 3.8711 2 7.2364 6.2434 3.8699
3 6.6520 5.8022 3.5579 3 6.6434 6.2592 3.5569
4 6.0607 5.9465 3.2471 4 6.0526 6.2773 3.2463
5 5.4717 6.0899 2.9401 5 5.4652 6.2896 2.9397
6 4.8861 6.2323 2.6394 6 4.8822 6.3202 2.6393
7 4.3051 6.3777 2.3489 7 4.3068 6.3513 2.3489

The algorithm EX_PAR with exact parameters

Bidder price defect DM_u1 Bidder price defect DM_u1

1 7.9132 3.2559 3.1877 1 7.9132 3.2554 3.1877
2 7.3432 3.3942 2.9703 2 7.3433 3.3937 2.9703
3 6.7840 3.5537 2.7633 3 6.7841 3.5532 2.7633
4 6.2399 3.7362 2.5726 4 6.2400 3.7358 2.5726
5 5.7180 3.9426 2.4067 5 5.7181 3.9422 2.4067
6 5.2270 4.1764 2.2773 6 5.2272 4.1760 2.2773
7 4.7779 4.4410 2.1970 7 4.7781 4.4407 2.1970

The algorithm EX_PAR with exact parameters

Bidder price defect DM_u1 Bidder price defect DM_u1

1 8.0469 2.2045 2.7012 1 7.9925 2.4967 2.6957
2 7.5134 2.4568 2.5399 2 7.4539 2.6736 2.5351
3 6.9977 2.7371 2.3988 3 6.9399 2.8790 2.3955
4 6.5048 3.0417 2.2890 4 6.4595 3.1161 2.2876
5 6.0391 3.3703 2.2245 5 6.0240 3.3867 2.2243
6 5.6054 3.7206 2.2172 6 5.6445 3.6920 2.2167
7 5.2081 4.0910 2.2708 7 5.3292 4.0309 2.2680

2_attributes & alfa=4

w(price)=0.6, w(defect)=0.4

w(price)=0.5, w(defect)=0.5

1  DM_u : preference function value of the DM

w(price)=0.8, w(defect)=0.2
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The algorithm EX_PAR with exact parameters

Bidder price defect DM_u1 Bidder price defect DM_u1

1 8.1813 1.7738 2.2119 1 8.1251 1.9211 2.2088
2 7.7011 2.0475 2.1164 2 7.6514 2.1304 2.1148
3 7.2541 2.3545 2.0593 3 7.2305 2.3796 2.0591
4 6.8449 2.6918 2.0570 4 6.8770 2.6697 2.0567
5 6.4772 3.0555 2.1199 5 6.6014 2.9994 2.1172
6 6.1522 3.4420 2.2457 6 6.4058 3.3645 2.2388
7 5.8701 3.8477 2.4220 7 6.2832 3.7590 2.4104

The algorithm EX_PAR with exact parameters

Bidder price defect DM_u1 Bidder price defect DM_u1

1 9.0007 0.9997 1.2553 1 8.8982 1.0453 1.2537
2 8.7247 1.3871 1.3527 2 8.9509 1.3279 1.3480
3 8.4552 1.8042 1.5622 3 9.2267 1.6759 1.5329
4 8.1904 2.2402 1.8509 4 9.6627 2.0724 1.7919
5 7.9282 2.6889 2.1818 5 10.0000 2.5108 2.0997
6 7.6701 3.1466 2.5343 6 10.0000 2.9804 2.4406
7 7.4170 3.6107 2.8985 7 10.0000 3.4549 2.8006

The algorithm EX_PAR with exact parameters

Bidder price defect lead time DM_u1 Bidder price defect lead time DM_u1

1 6.7074 1.0700 3.5163 3.4951 1 10.5295 1.0626 3.0000 3.4309
2 6.3079 1.5682 3.5205 3.5758 2 9.9293 1.5626 3.0000 3.5109
3 5.9079 2.0715 3.5112 3.6543 3 9.3297 2.0625 3.0000 3.5909
4 5.5156 2.5661 3.5101 3.7341 4 8.7298 2.5624 3.0000 3.6709
5 5.1118 3.0683 3.5119 3.8144 5 8.1307 3.0620 3.0000 3.7509
6 4.7142 3.5669 3.5105 3.8942 6 7.5314 3.5616 3.0000 3.8309
7 4.3137 4.0674 3.5104 3.9742 7 6.9288 4.0629 3.0000 3.9109

1  DM_u : preference function value of the DM

w(price)=0.4, w(defect)=0.6

w(price)=0.2, w(defect)=0.8

w(price)=0.3,  w(defect)=0.4,  w(lead time)=0.3

3_attributes & alfa=1
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The algorithm EX_PAR with exact parameters

Bidder price defect lead time DM_u1 Bidder price defect lead time DM_u1

1 6.4351 2.5403 3.0000 2.4761 1 9.6545 2.5274 3.0000 2.4761
2 6.0510 2.8913 3.0000 2.4409 2 9.0786 2.8791 3.0000 2.4409
3 5.6691 3.2503 3.0000 2.4086 3 8.5061 3.2385 3.0000 2.4086
4 5.2889 3.6211 3.0000 2.3791 4 7.9363 3.6096 3.0000 2.3791
5 4.9108 4.0015 3.0000 2.3526 5 7.3695 3.9907 3.0000 2.3526
6 4.5350 4.3901 3.0000 2.3292 6 6.8064 4.3795 3.0000 2.3292
7 4.1624 4.7842 3.0000 2.3091 7 6.2479 4.7741 3.0000 2.3091

The algorithm EX_PAR with exact parameters

Bidder price defect lead time DM_u1 Bidder price defect lead time DM_u1

1 5.3388 4.5400 10.0000 3.7784 1 8.0079 4.5499 10.0000 3.7784
2 4.9451 4.7094 10.0000 3.5119 2 7.4174 4.7184 10.0000 3.5119
3 4.5530 4.8846 10.0000 3.2493 3 6.8290 4.8976 10.0000 3.2493
4 4.1628 5.0694 10.0000 2.9920 4 6.2435 5.0829 10.0000 2.9920
5 3.7751 5.2627 10.0000 2.7422 5 5.6641 5.2752 9.9253 2.7422
6 3.3911 5.4628 10.0000 2.5029 6 5.0988 5.4806 9.5709 2.5022
7 3.0123 5.6693 10.0000 2.2787 7 4.5465 5.6932 9.1020 2.2754

The algorithm EX_PAR with exact parameters

Bidder price defect lead time DM_u1 Bidder price defect lead time DM_u1

1 6.5154 1.9790 2.2560 2.2560 1 9.5650 3.4941 3.0000 2.2492
2 6.1472 2.3406 2.2329 2.2329 2 8.9827 3.7157 3.0000 2.2260
3 5.7836 2.7134 2.2124 2.2124 3 8.4043 3.9523 3.0000 2.2056
4 5.4228 3.1021 2.1944 2.1944 4 7.8309 4.2031 3.0000 2.1879
5 5.0648 3.5040 2.1788 2.1788 5 7.2638 4.4670 3.0000 2.1728
6 4.7106 3.9151 2.1657 2.1657 6 6.7045 4.7462 3.0000 2.1603
7 4.3612 4.3332 2.1549 2.1549 7 6.1552 5.0392 3.0000 2.1502

1  DM_u : preference function value of the DM

3_attributes & alfa=2

3_attributes & alfa=3

w(price)=0.2,  w(defect)=0.1,  w(lead time)=0.7

w(price)=0.7,  w(defect)=0.2,  w(lead time)=0.1

w(price)=0.2, w(defect)=0.1,  w(lead time)=0.7
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The algorithm EX_PAR with exact parameters

Bidder price defect lead time DM_u1 Bidder price defect lead time DM_u1

1 6.1577 1.8931 3.6898 2.0079 1 9.1882 1.9123 3.7616 2.0075
2 5.8528 2.1715 3.6121 1.9435 2 8.7276 2.1849 3.6844 1.9431
3 5.5621 2.4781 3.5444 1.8966 3 8.2908 2.4918 3.6090 1.8963
4 5.2937 2.8117 3.4736 1.8719 4 7.8790 2.8283 3.5372 1.8716
5 5.0426 3.1745 3.4047 1.8734 5 7.5007 3.1852 3.4690 1.8731
6 4.8134 3.5549 3.3436 1.9034 6 7.1533 3.5652 3.4024 1.9030
7 4.6049 3.9554 3.2817 1.9619 7 6.8398 3.9625 3.3401 1.9616

The algorithm EX_PAR with exact parameters

Bidder price defect lead time DM_u1 Bidder price defect lead time DM_u1

1 5.3301 5.1552 10.0000 3.7412 1 7.9862 5.7549 10.0000 3.7401
2 4.9346 5.3061 10.0000 3.4679 2 7.3929 5.7884 10.0000 3.4669
3 4.5402 5.4605 10.0000 3.1968 3 6.8014 5.8309 10.0000 3.1960
4 4.1472 5.6163 10.0000 2.9292 4 6.2126 5.8782 10.0000 2.9286
5 3.7560 5.7804 10.0000 2.6667 5 5.6275 5.9348 10.0000 2.6664
6 3.3672 5.9506 10.0000 2.4124 6 5.0484 5.9921 10.0000 2.4124
7 2.9821 6.1212 10.0000 2.1715 7 4.4782 6.0589 10.0000 2.1714

The algorithm EX_PAR with exact parameters

Bidder price defect lead time DM_u1 Bidder price defect lead time DM_u1

1 6.3547 4.2809 3.0000 2.1680 1 9.5308 4.3265 3.0000 2.1680
2 5.9615 4.4822 3.0000 2.1536 2 8.9436 4.4482 3.0000 2.1536
3 5.5697 4.6956 3.0000 2.1416 3 8.3601 4.5844 3.0000 2.1416
4 5.1797 4.9151 3.0000 2.1319 4 7.7816 4.7318 3.0000 2.1319
5 4.7921 5.1429 3.0000 2.1242 5 7.2099 4.8949 3.0000 2.1242
6 4.4073 5.3833 3.0000 2.1183 6 6.6477 5.0746 3.0000 2.1182
7 4.0265 5.6330 3.0000 2.1139 7 6.0989 5.2732 3.0000 2.1138

w(price)=0.2, w(defect)=0.1,  w(lead time)=0.7

3_attributes & alfa=4

1  DM_u : preference function value of the DM

w(price)=0.3,  w(defect)=0.4,  w(lead time)=0.3

w(price)=0.7,  w(defect)=0.2,  w(lead time)=0.1
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APPENDIX C 
 

C. PERFORMANCE MEASURES OF THE EVOLUTIONARY 

ALGORITHM FOR ALL PROBLEMS 

 

 

Table C.1 Performance Measures for Original Case Problem 10x20 

Problem 10x20  HI* IGDM 

pr1_without seeding 0.9902 0.0110 

pr1_seeding by sorting 0.9993 0.0015 

pr2_without seeding 0.9971 0.0076 

pr2_ seeding by sorting 0.9981 0.0026 

pr3_without seeding 0.9943 0.0170 

pr3_ seeding by sorting 0.9941 0.0082 

pr4_without seeding 1.0000 0.0000 

pr4_ seeding by sorting 0.9981 0.0040 

pr5_without seeding 0.9693 0.0178 

pr5_ seeding by sorting 1.0000 0.0000 

Average_without seeding 0.9902 0.0107 

Average_ seeding by sorting 0.9979 0.0034 
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Table C.2 Performance Measures for Original Case Problem 30x30 

Problem 30x30  HI* IGDM 

pr1_without seeding 0.9979 0.0051 

pr1_ seeding by sorting 0.9992 0.0012 

pr2_without seeding 0.9961 0.0029 

pr2_ seeding by sorting 0.9991 0.0011 

pr3_without seeding 0.9804 0.0162 

pr3_ seeding by sorting 0.9863 0.0128 

pr4_without seeding 0.9972 0.0054 

pr4_ seeding by sorting 0.9977 0.0029 

pr5_without seeding 0.9889 0.0117 

pr5_ seeding by sorting 0.9889 0.0104 

Average_without seeding 0.9921 0.0082 

Average_ seeding by sorting 0.9942 0.0057 

 
 

 

Table C.3 Performance Measures for Original Case Problem 30x100 

Problem 30x100  HI* IGDM 

pr1_without seeding 0.9958 0.0067 

pr1_ seeding by sorting 0.9969 0.0059 

pr2_without seeding 0.9996 0.0031 

pr2_ seeding by sorting 0.9978 0.0055 

pr3_without seeding 0.9973 0.0073 

pr3_ seeding by sorting 0.9971 0.0052 

pr4_without seeding 0.9977 0.0102 

pr4_ seeding by sorting 0.9985 0.0029 

pr5_without seeding 0.9978 0.0039 

pr5_ seeding by sorting 0.9983 0.0053 

Average_without seeding 0.9976 0.0062 

Average_ seeding by sorting 0.9977 0.0050 
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Table C.4 Performance Measures for Discounted Case Problem 10x20 

Problem 10x20  HI* IGDM 

pr1_without seeding 0.9866 0.0092 

pr1_optimal seeding 0.9989 0.0014 

pr1_rank heuristic 0.9990 0.0013 

pr2_without seeding 0.9823 0.0664 

pr2_optimal seeding 0.9995 0.0010 

pr2_rank heuristic 0.9823 0.0664 

pr3_without seeding 0.9833 0.0205 

pr3_optimal seeding 0.9870 0.0085 

pr3_rank heuristic 0.9827 0.0205 

pr4_without seeding 0.9960 0.0157 

pr4_optimal seeding 0.9993 0.0014 

pr4_rank heuristic 0.9691 0.0151 

pr5_without seeding 0.8656 0.0845 

pr5_optimal seeding 0.9990 0.0020 

pr5_rank heuristic 0.9121 0.0500 

Average_without seeding 0.9628 0.0393 

Average_optimal seeding 0.9967 0.0029 

Average_rank heuristic 0.9690 0.0307 
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Table C.5 Performance Measures for Discounted Case Problem 30x30 

Problem 30x30  HI* IGDM 

pr1_without seeding 0.7385 0.1636 

pr1_optimal seeding 0.9874 0.0093 

pr1_rank heuristic 0.9529 0.0391 

pr2_without seeding 0.8175 0.1194 

pr2_optimal seeding 0.9461 0.0370 

pr2_rank heuristic 0.9528 0.0376 

pr3_without seeding 0.8577 0.0846 

pr3_optimal seeding 0.9805 0.0124 

pr3_rank heuristic 0.9700 0.0351 

pr4_without seeding 0.8341 0.1030 

pr4_optimal seeding 0.9547 0.0317 

pr4_rank heuristic 0.9003 0.0740 

pr5_without seeding 0.7874 0.1385 

pr5_optimal seeding 0.9794 0.0121 

pr5_rank heuristic 0.9112 0.0564 

Average_without seeding 0.8071 0.1218 

Average_optimal seeding 0.9696 0.0205 

Average_rank heuristic 0.9374 0.0484 
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Table C.6 Performance Measures for Discounted Case Problem 30x100 

Problem 30x100  HI* IGDM 

pr1_without seeding 0.8692 0.0711 

pr1_optimal seeding 0.9720 0.0232 

pr1_rank heuristic 0.8777 0.0681 

pr2_without seeding 0.7789 0.1444 

pr2_optimal seeding 0.9780 0.0156 

pr2_rank heuristic 0.7666 0.1645 

pr3_without seeding 0.9021 0.0588 

pr3_optimal seeding 0.9732 0.0185 

pr3_rank heuristic 0.9541 0.0425 

pr4_without seeding 0.8982 0.0876 

pr4_optimal seeding 0.9861 0.0110 

pr4_rank heuristic 0.9494 0.0611 

pr5_without seeding 0.8891 0.0500 

pr5_optimal seeding 0.9759 0.0182 

pr5_rank heuristic 0.8729 0.0646 

Average_without seeding 0.8675 0.0824 

Average_optimal seeding 0.9770 0.0173 

Average_rank heuristic 0.8842 0.0801 
 


