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ABSTRACT

MULTIPLE CLASSIFIER SYSTEMS FOR A GENERIC
MISSLE WARNER

Bagibiiytik, Kubilay

M. Sc., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Mustafa Kuzuoglu

June 2009, 111 Pages

A generic missile warner decision algorithm for airborne platforms with an

emphasis on multiple classifier systems is proposed within the scope of this thesis.

For developing the algorithm, simulation data are utilized. The simulation data are
created in order to cover a wide range of real-life scenarios and for this purpose a
scenario creation methodology is proposed. The scenarios are simulated by a
generic missile warner simulator and tracked object data for each scenario are

produced.

Various feature extraction techniques are applied to the output data of the scenarios
and feature sets are generated. Feature sets are examined by using various statistical
methods. The performance of selected multiple classifier systems are evaluated for

all feature sets and experimental results are presented.

Keywords: Multiple Classifier Systems, Feature Extraction, Pattern Recognition
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JENERIK BIR FUZE iKAZ SISTEMI iCIN COKLU
SINIFLANDIRICI SISTEMLERI

Bagibiiytik, Kubilay

Yiiksek Lisans, Elektrik Elektronik Miihendisligi Boliimii

Tez Yoneticisi: Prof. Dr. Mustafa Kuzuoglu

Haziran 2009, 111 sayfa

Bu tez kapsaminda hava platformlar i¢in kullanilabilecek jenerik bir fiize ikaz

sistemi algoritmasi1 Onerilmektedir.

Algoritmay1 gelistirmek i¢in sentetik benzetim senaryolar1 hazirlanmistir. Sentetik
senaryolar hazirlanirken gergek hayatta karsilagilabilecek senaryolar1 en iyi sekilde
temsil edebilme yetenegine sahip bir veri kiimesinin hazirlanmasina gayret edilmis
ve bu amagcla kullanilmak iizere bir yontem Onerilmistir. Senaryolar jenerik fiize
ikaz simiilatorii tarafindan islendikten sonra, senaryo i¢indeki takip edilmis nesne

verilerini i¢eren ¢iktilar olusturulmustur.

Cesitli 6znitelik ¢ikarim yontemleri senaryo ¢ikt1 verilerine uygulanmis ve 6znitelik
kiimeleri olusturulmustur. Bu 0Oznitelik kiimeleri, cesitli istatistiksel yontemler
kullanilarak incelenmistir. Coklu smiflandirici  sistemlerinin  performanslari,
olusturulan tiim 6znitelik kiimeleri i¢cin degerlendirilmis ve deneysel calismalarin

sonuclar1 6zet bir sekilde sunulmustur.

Anahtar Kelimeler: Coklu Smiflandirict Sistemleri, Oriintii Tanima, Oznitelik
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CHAPTER 1

INTRODUCTION

1.1 Problem Definition

Missile Warner (MW) can be defined as a system capable of detecting and
declaring the missile threats against the platform on which it is installed. MW
systems play a vital role in helping the survivability of the platforms in hostile
environments. If early warning about the threat may be reported to a counter
measure system by the MW, appropriate countermeasure methods can be applied
and the probability of survival of the platform can be increased dramatically. The
decision making algorithm is one of the key components of the system to increase
the effectiveness of the MW. The main contribution of this thesis is the construction
of a decision making algorithm based on multiple classifier systems for the use of a

Generic Missile Warner (GMW) for airborne platforms.

Contemporary MW systems mainly operate in infrared and ultraviolet spectrum and
they can be considered as electro-optical systems. The infrared spectrum has the
disadvantage of having a highly dense background clutter whereas in the ultraviolet
spectrum the background is very low compared to the infrared spectrum. Within the
context of this thesis, it is assumed that the MW system makes use of the ultraviolet

spectrum.

The MW should detect the radiation emitted from the threat, track the source of the
radiation and classify the tracked entity by applying a decision making algorithm.
Although the background clutter in the ultraviolet domain is relatively low, threats

are not the only signals which are detected by the MW. In the band of the



frequencies occupied by the ultraviolet spectrum, many other sources which emit
radiation exist, like fires, city lights and industrial facilities. These sources will be
named as false alarms throughout the thesis and the main focus of this thesis is on
proposing a feature extraction and classification system to discriminate the false

alarms and threats.

Designing a classification system for a GMW involves the joint optimization of
three performance measures; namely probability of declaration, reaction time and
number of false alarms. Probability of declaration indicates how successfully the
GMW declares the threats. Reaction time is defined as the interval beginning from
the detection of source to the declaration of the object as a threat. False alarms can

be defined as the non-threatening sources which the GMW classifies as threats.

It is worth to mention that, these measures are not equally important. Probability of
declaration is the most vital performance measure. This measure should not be
sacrificed for low false alarm rates or smaller reaction times. The second most
important measure is the reaction time, which is desired to be as low as possible.
False alarm is the measure that has the least significance among all. However false
alarm rate should be kept at minimum in order to increase the reliability of the

system.

In the following section the methodology for creating and testing a GMW algorithm

is explained.

1.2 Methodology

In order to develop an algorithm for a Generic Missile Warner (GMW) system,
firstly a data set should be created. The data set is composed of entities called

scenarios.

A scenario can be defined as a setup consisting of a threat or a false alarm source,
an atmosphere model and a platform carrying the GMW. In each scenario we have
only one signal source that can be detected by the GMW which is labeled as a false

alarm or a threat. In the threat scenarios, the signal source moves by simulating the

2



kinematic model of the missile and in the false alarm scenarios the signal source is
stationary. The intensity characteristics of the signal source is time varying for both
false alarm scenarios and threat scenarios. The details of the scenario generation
process are explained in Section 2.1. The scenarios are simulated by using the

simulation environment of ASELSAN Inc.

After scenario generation step, feature extraction methods are applied to the output
data of the scenario simulator. In this thesis, two feature extraction methods are
used, namely linear model fitting and Fourier Transform. The feature extraction
process is repeated for each generated scenario output and a second data set

consisting of feature sets are generated.

By using the features extracted, the performance of the Multiple Classifier Systems
including feature grouping, bagging and boosting are examined. Two performance
evaluation methods are used. Firstly, feature-based evaluation is used and secondly
a scenario-based evaluation is used. The scenario-based evaluation is only applied

for boosting.

The general overview of the methodology is depicted in Figure 1-1.
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1.3 Organization of the Thesis

The thesis is organized as follows:

In Chapter 2, scenario generation methodology is explained, basic information
about the GMW simulator is provided and a method for creating multiple scenarios

is proposed.

In Chapter 3, feature extraction methods are explained and a method for extracting
information from the GMW simulator’s output is proposed. The feature extraction

methods used within the content of this thesis are linear fit and Fourier transform.

In Chapter 4, statistical properties of the data sets are examined. Self organizing

maps are used to visualize the data sets.

In Chapter 5, theoretical background about Multiple Classifier Systems (MCS) is
provided. The design criteria for MCS are explained and various existing MCS

methods are examined.

In Chapter 6, experimental results are provided for selected MCS methods

including bagging, boosting and feature grouping.

In Chapter 7, a summary about the thesis and its results are given and possible

future works are suggested.

In Appendix — A, scenario parameters are listed.

In Appendix — B, mean and standard deviation values for the data sets are given.
In Appendix — C, histogram plots regarding the feature sets can be found.

In Appendix — D, correlation matrices of the feature sets are given.



CHAPTER 2

DATA SET GENERATION

2.1 General Information

In many classification problems, the characteristic of the data is one of the most
important aspects that should be considered when designing the pattern recognition
system. The data set plays the leading role in determining the feature extraction and
classification methods. The system designer should collect adequate data to
represent the characteristics of the environment and choose the best methods of

feature extraction and classification to maximize the overall system performance.

For a GMW (Generic Missile Warner), collecting real world data is essential for
both designing and evaluating the accuracy of the system. However, due to the fact
that this task involves missile firings in a controlled environment and excessive
hours of false alarm recordings, generation of real world data is difficult and

expensive.

In this study, synthetic data are created for training and test purposes of the GMW
algorithm. The simulation environment of ASELSAN Inc. is utilized in order to

generate the data set that will be used throughout the study.

The sections given below briefly discuss the process of creating scenarios, the

content of the scenarios and the analysis of the created data.



2.2 The Process of Creating Scenarios

The scenarios are created using GMW simulator software. GMW software takes the
scenario parameters which are defined in Section 2.2.1 as inputs and outputs the

features of the object for the given scenario.

Since the main concern of this work is not on modeling of GMW systems, only

basic information about the simulator is provided.

The GMW simulator software is mainly composed of three parts:
1. A camera model which maps the scenario information into digital objects
2. Kinematic models for the moving objects
3. Atmosphere modeling

The output of the GMW software is a list of features belonging to the objects
detected and tracked by the GMW on the platform. Details of the output data are

given in Section 2.2.3.

2.2.1 Scenario Parameters

The classification problem investigated in this thesis involves deciding between two
alternative classes, which will be called as “threats”, and “false-alarms”. Threat
scenarios will be abbreviated as “t-scenarios” and false alarm scenarios will be

abbreviated as “f-scenarios”.

“Threat” scenarios are mainly missile engagement scenarios in which the platform

carrying the GMW encounters an incoming missile.

“False alarm” scenarios are the scenarios, which the system should not classify the

sources which are detected as a threat.



For the purpose of covering a wide range of the real world engagement scenarios,
the simulations are performed in a parameterized way. These parameters allow

simulations to be fit on a grid of sampled possible real world scenarios.

A suitably-defined rectangular coordinate system is used in defining all t and f
scenarios. In Figure 2-1 a generic scenario setup is presented. The parameters of the

scenario are indicated on the figure.
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Figure 2-1: Scenario Setup

As it can be seen from the figure, the platform is located at the reference point of
the x-y plane with an altitude of z. The variables seen on the figure with the
addition of atmospheric parameters and the source specific parameters are
considered as the main parameters that define a scenario. Firing angle is

automatically calculated by using altitude and distance from origin parameters.

The parameters of the t-scenarios and f-scenarios are divided into three main
categories, namely aircraft, threat and atmosphere specific parameters. In Table 2-1

the complete set of the scenario parameters are listed.



Table 2-1: Scenario parameters

AIRCRAFT (FOR ALL SCENARIOS)

Parameter Name Definition Units
Altitude Altitude of the platform m
Velocity Velocity of the platform m/s
Heading Angle Heading of the platform degrees
Climb Angle Climb angle of the platform degrees
MISSILE (FOR T-SCENARIOS ONLY)

Parameter Name Definition Units
Missile Type Type of the missile (I-11-111) -
Position of the missile on | Position of the missile relative to platform m

the x-y plane

Firing Angle1 Firing angle of the missile degrees
FALSE ALARM (FOR F-SCENARIOS ONLY)

Parameter Name Definition Units
FA Source Type Type of the FA (I-1I-11I) -
Position of the FA source | Position of the FA source relative to the platform |m

on the x-y plane

ATMOSPHERE (FOR ALL SCENARIOS)

Parameter Name Definition Units
Atmospheric Attenuation |Parameter characterizing the atmospheric loss km™

2.2.2 Processing Steps of a Scenario

A scenario starts with an initial condition for the missile or the false alarm source

and the platform. In all scenarios, the platform starts at the origin of the x-y plane of

the coordinate system with a scenario specific altitude and the missile is aimed at

" This is not a user defined parameter, it is calculated automatically for a scenario
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the platform. The position and type of the missile or the false alarm is determined

by the scenario parameters.

A platform can be defined as a moving body with an initial speed, heading angle
and climb angle. The kinematic model of the platform is very simple. The platform
moves with a constant velocity and moves in a linear fashion in the direction of the

climb and heading angles.

The missiles are characterized by their radiation emission levels over time and their
kinematics. The GMW simulator software can simulate these behaviors of the
missile models. For this study, three different kinds of generic missiles are used,

each of which has a unique kinematic and emission model.

The false alarm sources are characterized by their radiation emission levels over

time. Since these entities are stationary, no kinematic model is used.

The atmosphere is modeled to reflect the absorption characteristics of the
environment. The radiation emitted from the missile propagates through the
atmosphere and considerably attenuates before it reaches the platform. In order to
simplify the scenario generation process, atmospheric attenuation is modeled with a
single parameter (Table 2-1). Larger values of the atmospheric attenuation
coefficient indicate strong attenuation of the signal. This parameter must be non-

negative.

The irradiance coming from the missile or the false alarm source is detected by the
camera model. The camera model tracks the source of the incoming irradiation and
outputs the values mentioned in Table 2-2. The camera model is assumed to provide

a full spherical coverage for the platform.

The GMW simulator works in discrete-time with fixed time steps. At each time step

the following operations are performed:

1. Calculate the position of the platform by taking into account the position

of the platform in the previous time step.
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2. Calculate the position of the missile by taking into account the kinematic
model of the missile and the position of the missile in the previous time

step.

3. Calculate the irradiance level of the missile by using the radiation

emission profile of the missile.

4. Irradiance emitted by the missile is propagated through the atmosphere

to find the irradiance at the platform location.

5. Construct the object seen by the camera model based on the irradiance

level incident on the platform
6. Calculate the output data of the camera model.

These steps are repeated until the scenario ends and an output data set consisting of
the tracked properties of the object is formed. The workflow of the GMW simulator

software for one time step is depicted in Figure 2-2.
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Figure 2-2: The workflow of the GMW simulator software for one time step

2.2.3 Output Data

An entity detected by the GMW simulator is called an object. Detection time for a
scenario is determined by the camera model of the GMW, the atmospheric
attenuation and the emission level of the missile. If an object is detected by the
GMW, it is tracked and temporal characteristics of the object are presented as the
output, until the object is out of sight or the scenario is finished. The output data

generated by the GMW simulator has three main components:

1. Position: The angular position of the object with respect to the body of the

platform in terms of azimuth and elevation.

2. Area: The number of pixels illuminated on the digital image of the object

12



3. Digital level: The average digital level of the object that is projected on the
GMW.

Owing to the fact that the GMW simulator samples the scenario at defined time-
steps, the output data is a list of the above-mentioned components. To put it in
another way, the GMW simulator outputs the temporal data of the tracked object,
which are angular position, area and digital level of the object. In Table 2-2 the
output data of the GMW simulator software is listed.

Table 2-2: Sample output data of the GMW simulator software

Frame Digital

Number Azimuth | Elevation | Area Level
1 142.49 4 46 88
2 142.49 4 51 90
3 142.48 3.2 56 88
4 142.48 3.2 57 98
5 142.48 3.2 66 104
6 143.25 3.19 81 96
7 142.48 3.2 105 96
8 142.48 3.2 142 82
9 143.25 3.19 194 91
10 143.25 3.19 312 82

The feature extraction process will be carried out on these data. The temporal
correlation of the fields Azimuth, Elevation, Area and Digital Level will be
exploited to get the information needed to classify the tracks. The details of the

feature extraction process are presented in Section 3.3
2.3 Content of the Created Scenarios
In this section, a method to generate multiple scenarios is proposed. Scenarios are

generated by using the combinations of the parameters described in Section 2.2.1.

The scenario generation methodology is explained in Section 2.3.1.
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2.3.1 Scenario Generation Methodology

As mentioned before, a scenario is composed of the parameters listed in Table 2-1.
Technically speaking, any combination of these parameters will result in a scenario.
However, the parameters must have values between specific ranges in order to
claim that the scenarios are realistic. To exemplify this, consider a scenario having
an atmospheric attenuation value equal to one hundred. This would be unreal

because such an extinction coefficient cannot occur in real life.

For a better simulation of reality, the parameter values should be chosen within
realistic limits and scenarios should cover a wide range of real world cases. In order

to achieve this goal the following methodology is applied when creating scenarios:

1. Sample each parameter from a uniform distribution. The parameter type
determines the limits of the distribution. The parameter values and their

limits are listed below (Table 2-3):

Table 2-3: Limit of the parameter values

Minimum Value Maximum Value Units
Altitude 200 1000 m
Velocity 0 80 m/s
Heading Angle -180 180 degrees
Climb Angle -20 20 degrees
Position of the missile/false alarm
-3000 3000 m
on the x-axis
Position of the missile/false alarm
-3000 3000 m
on the y-axis
Atmospheric Attenuation 0.7 1.5 km™

2. Run the scenario for each missile type and false alarm source type. Since the
simulation studies are carried out on three types of missiles and three types

of false alarms, each physical scenario setup is executed six times.
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3. Repeat this step until the desired number of scenarios are created.

If we consider the parameter space as a whole, this method allows us to sample
from the parameter space uniformly within the given limits owing to the fact that

the individual parameters are assumed to be independent of each other.

With the aim of preventing unrealistic scenarios, firing angle is limited between 10
and 45 degrees. The firing angle (&) is calculated by using parameters z (altitude),
my (position of the missile on the x-axis) and m, (the position of the missile on the y-

axis) (Equation 2-1):

0, = arctan(—————) @2-1)

2 2
m. +m,

2.3.2 Distribution of Scenario Parameters

Since the parameters of the scenarios are sampled randomly, it is worth examining
their statistical behavior. The histograms of the parameters altitude, velocity,
heading angle, climb angle and atmospheric attenuation are shown in Figure 2-3.
The missile positions are shown as a scatter plot on the x-y plane. Although firing
angle is not a scenario parameter, it is also shown in because it summarizes the

geometrical structure of the scenario.

The altitude parameter does not show a uniform behavior. This stems from the fact
that the firing angle is limited between 10 and 45 degrees. By imposing a constraint
on the firing angle, the altitude and the position of the missile on the x-y plane
become dependent parameters. This dependency shows itself not only in the
distribution of the altitude but also in the scatter plot indicating the position. The

neighborhood of the origin of the scatter plot indicating the position is not crowded.
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2.3.3 Quantitative Information about Scenarios

In this work a total of two hundred physical scenario setups are created using GMW
simulator. Each scenario setup is used with three types of threats and three types of
false alarms. By this way, a data set of six hundred threats and six hundred false

alarms is produced.

For each element of the data set there exists an output data set whose format is

given in Section 2.2.3.

The detailed list of the scenario setups can be found in Appendix - A.
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CHAPTER 3

FEATURE EXTRACTION

3.1 General Information

The main aim of a pattern recognition system is to assign labels to the samples
described by a set of features. In order to achieve this task, the system should have

at least two essential capabilities:

1. Feature Extraction

2. Classification

Feature extraction is the process of producing valuable information from data for
the use of the classifier. Generally, designing the feature extraction part of a pattern
recognition system requires the accumulation of knowledge about the domain [1].
Alternatively, there exist various methods to extract features from the data set by
using statistical tools without using any explicit knowledge about the domain of the

problem [2].

In this thesis, the challenge is to correctly classify a threat oncoming to a platform
and to keep the false alarm rate at a minimum level. For the feature extraction part
of this problem a modeling approach is utilized. The output data mentioned in
Section 2.2.3 is processed to reflect the time characteristic of the data. The

modeling approach includes the use of linear data fit and the Fourier transform.
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3.2 Definitions

Before going into the details of the feature extraction process, some definitions are
given. The problem we are dealing with might be considered as a classification
problem represented by a time series. A scenario is defined as a number of
consecutive observations. In our case we have two kinds of scenarios, namely T and

F. T represents threat scenarios, and F represents false-alarm scenarios.

T=|" (3-1)

F=|" (3-2)

Each observation at specific time instant in a T or F scenario is a k-dimensional

vector:

T, =[xy 2 2y (3-3)
F =[x x,..x,] 1<t<N (3-4)

If each observation within a scenario is represented by a row vector, we get a matrix
of size N x k, where N is the duration of the scenario and £ is the number of time
series. In other words, we can represent each T-scenario or F-scenario by k distinct
time-series. In our case there exists four time series for a scenario. We can express a

scenario in the following format:
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r= : : : : (3-5)

F=\ : : : (3-6)

It must be noticed that each scenario may have a different duration, however all
scenarios contain the same time-series, namely azimuth, elevation, area and digital
level. The duration of a scenario is mainly determined by the total observation time

during which the object is tracked by the camera model.

Each of these time series gives information about a particular characteristic of the

object tracked by the simulator. For convenience these characteristics are listed in
Table 3-1.

Table 3-1: Time series in a scenario

Parameter Definition
Azimuth Position of the object in azimuth
Elevation Position of the object in elevation
Area Area of the object
Digital level Integer number between 0 and 255
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3.3 Feature Extraction Methods

In this section methods that will be used in the process of feature extraction are

discussed.

Most of the proposed time-series classification methods in the literature depend on
high level representations, which include Fourier Transforms, Wavelet Transforms,
Piecewise Linear Representations, Regression Tree Representations, and Symbolic

Representations [3].
Two methods of feature extraction will be examined within this thesis.

The first method mainly depends on parameterization of the behavior of the time
series by using the linear data fit approach. The other method makes use of the

Fourier transform as a feature extraction approach.

3.3.1 Modeling - Linear Fit

For a GMVW, it is essential to make the decisions for the threat and false alarm
classes quickly and correctly. Also, the system must have the capability of dynamic
decision making so that new information about the object could be used in the

classification process.

In a dynamic classification process, the information about the objects will be
coming one after the other at a rate depending on the sampling rate of the GMW.
Taking into account the fact that the information of the tracker in a single frame
could not be used solely, a windowing approach should be applied to the data and

this window should be moved with each frame.

Assume that we have a window of size W. To start the feature extraction process, a
simple linear polynomial fit is applied to each time series within this window. For
the sake of simplicity “azimuth, elevation, area and digital level” are abbreviated as

az, el, ar and dl respectively in the equations below.
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faziﬁt (t) = aaziﬁtt + baziﬁt

felfﬁt ()= A, plt belfﬁt

fatﬁ; ()= Ay il +bar7ﬁt

fdliﬁt ()= Ay gl +bd17ﬁt

(3-7)

(3-8)

(3-9)

(3-10)

The following features are extracted for each function by using the fit parameters

and statistical values about the fitting process [4].

Table 3-2: Features extracted from the linear fit

Number Feature Definition Equation
1 a 1* coefficient of the line 3-17
2 b 2" coefficient of the line 3-18
3 se(a) Standard error for “a” 3-20
4 se(b) Standard error for “b” 3-21
5 f(t) Fit value of the line at time 3-7..3-10°
6 rmse Root mean square error of the fit 3-23
7 r Square of multiple correlation coefficient 3-22

Since there are four different time series, the linear fit operation will be applied to

each of them and a total of twenty eight features will be extracted from a time

window W.

2 g

indicates the time at the end of the sliding window.

3 For each time series the corresponding equation is used.

22



In order to give the mathematical definitions of the features, assume that we have a

set of N data points in the two-dimensional plane, {y; #;}. We are trying to fit a line

to these data points in the least square sense:

f(a,b,t)y=at+b

In order to calculate a and b, we define the following parameters:

r‘ﬁ;a,&
1Y
y=NZ(yi)

Sty :Z(ti _t_)(yi _y)

Then the parameters a and b can be calculated as [5]:

(3-11)

(3-12)

(3-13)

(3-14)

(3-15)

(3-16)

(3-17)

(3-18)

In order to calculate the standard errors for parameters a and b, we will use the

following definition:
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(3-19)

Using 3-14, 3-15, 3-16 and 3-19 [5], the standard error for @ and b is calculated as :

se(a) = % (3-20)
se(b)=S %+ (212 (3-21)

The multiple correlation coefficient and root mean square error is calculated as

follows [5]:

S 2
rP=—= (3-22)
SttSyy
1 & )
rmse = NZ(yl.—(atl.+b)) (3-23)
i=1

A sliding window approach will be used to extract the linear fit coefficients. With
each newly coming frame the window W is shifted to include the new information
and exclude the oldest one. Throughout this thesis, W is chosen to be 20. The
feature extraction process terminates when the end of the time series is reached. The

methodology is explained in detail in Section 3.3.2.

The logic behind using the parameters of a line fit is to represent the changing
behavior of the time series. For example the first feature in Table 3-2 gives
information about the general trend of the time series, a negative slope indicating a

decrease in the values of the time series and a positive slope indicating an increase.
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As another example, consider the standard errors of the first two parameters. These

values give information about how reliable the first two features are.

In Figure 3-1 an example related to the line fitting procedure is presented. Notice
that the time series corresponding to the digital level is presented in the figure and

the extracted features for the current window are also shown.

Track Name: 110101

I |
| | | | | | ==@== Original Data

‘ ‘ ‘ ‘ [— Line Fit
10 Feature # 1 = 0.318 e L i S p— —

Feature # 2 = 2.605
Feature # 3 = 0.055
Feature # 4 = 0.668

11 ‘

Feature # 5 = 8.979 ‘ ‘ ‘ ‘ ‘
Feature # 6 = 0.684
Feature # 7 = 0.888

Average Digital Level

68 70 72 74 76 78 80 82 84 86 88
Frame Number

Figure 3-1: Line fitting example

3.3.2 Modeling - Fourier Transform

Fourier transform can be used to generate a suitable approximation of a time series
as a weighted sum of some basis functions. The basis functions of the Fourier

transform are cosine and sine functions.
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Assume that the time series that we are dealing with consists of W discrete data
points. Then the discrete time Fourier transform for this data can be defined as

below:

f(n)= a0+Wz/2akcos( )+b,s (2’;”)] (3-24)

The coefficients a; and b; can be found by using the orthogonality principle.
Basically, the orthogonality principle is used to take the inner product of the basis
vectors with the data and normalizing the result in order to find the corresponding

coefficients. The Fourier coefficients are found as:

a, Z f(n)cos( LUNI W—1 (3-25)
a, = %AZV:,[J‘ ()] (3-26)
ay,2 =5 2 f ) cos(ian)] (3-27)

2 w
W; f(n)sm( LIS W—1 (3-28)

The basis functions for the Fourier transform are shown in

Figure 3-2 and Figure 3-3 for the frequencies corresponding to k=1, 2 and 3. When
we are working in discrete-time, these functions will be samples taken at the

defined time steps.
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If we use a window of length W, we can find W coefticients for this window length.
The Fourier coefficients found for this window can be used to construct a feature
vector for this time series. Forming an augmented feature vector which consists of

Fourier coefficients will result in a vector having the form:

v=[a,b,a,b,..a,b,] (3-29)

The Fourier coefficients can be visualized as an indicator of the frequency content
of the data. The representation containing the first 3 basis functions will be used to
construct the feature vectors for the data set. Since by is zero for all time series, our

feature vector for a window of length I will be:

v=[a,a, b, a,b,] (3-30)

A sliding window approach will be used to extract the Fourier coefficients of the
data. With each newly coming frame, this window will be shifted to include the new

information and exclude the oldest one.

The Fourier coefficients will be calculated for each temporal data listed in Table
2-2. Since we have 4 primary temporal data, namely azimuth, elevation, digital
level and area, the feature extraction process will yield a vector of dimension 20.

The features for one temporal data are shown in Table 3-3.

Table 3-3: Features extracted from the Fourier transform

Number Feature Definition Equation
1 ao The coefficient ag (DC component) 3-26
2 a; The coefficient a4 3-25
3 b4 The coefficient b, 3-28
4 a» The coefficient a, 3-25
5 b, The coefficient b, 3-28
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In order to get a better understanding of the feature extraction methods, it is worth

listing the operation steps of the feature extraction algorithm:

1. Wait for the data to accumulate in a /¥ frame-length window. In this work W

is chosen to be 20.

2. Apply Fourier transformation for each temporal data within this window and

construct the following vector:

- [vaz pel vdl] (3-31)
where

P = [agz a” b at bzaz] (3-32)

v = lad af b ad b | (3-33)

v =lay i by ay by (3-34

v =ad af b ad b ] (3-35)

3. Shift the sliding window by 1 and repeat the step 2 until the end of the data

is reached.

In the figures below (Figure 3-4 and Figure 3-5) the process mentioned above is
visualized for a t-scenario. The feature extraction method is applied to digital level
field of the temporal data. Two consecutive windows are used. First window is
between frames 68-88 and the second window is between frames 69-89. The
reconstructed waveform by using cosine and sine basis functions with k =0, 1 and 2

is also shown in the figures.

29



Track Name: 110101
11 I \ I \

T

I I I
==@== Original Data

Reconstructed

Average Digital Level

EE

68 70 72 74 76 78 80 82 84 86 88
Frame Number

Figure 3-4: Windowing of track 110181 between 68-88 frames
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Figure 3-5: Windowing of track 110181 between 69-89 frames
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For this track the evolution of the Fourier coefficients is shown in Fig. 2-8 and Fig.

2-9. In the graphs each point on the x-axis represents a sliding window and the lines

correspond to Fourier coefficients.
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CHAPTER 4

ANALYSIS OF THE FEATURE SETS

4.1 Introduction

In statistical pattern recognition we treat the feature vectors to be classified as
random vectors. So it is of great importance to examine and investigate the

statistical properties of these random vectors.

We have two different data sets for two different feature extraction methods. The
first data set is the result of modeling the time series within a predefined window
size with a line and extracting the parameters mentioned in Table 3-2. The second
data set is the result of applying the Fourier transformation within a predefined
window size and extracting the Fourier coefficients. The set consisting of features
extracted by using the line fit parameters will be abbreviated as LF-Set, and the set
consisting of features extracted by using Fourier transform will be abbreviated as

FT-Set.

Both data sets share the property that the feature extraction operation is applied to
all of the time series mentioned in Table 2-2. In other words, in each data set we
have 4 sub-feature sets, extracted from the primary time series azimuth, elevation,

area and digital level.

In the following sections; the histograms of the feature sets and basic statistical
parameters are examined Then, self organizing maps are used to visualize the data

projected to two-dimensions.
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4.2 Notation

The feature sets used in this work are based on extracting information from four
time series, namely azimuth, elevation, area and digital level. The abbreviations for

each feature and their meaning are summarized in the tables below.

Table 4-1: Summary of features extracted by using Fourier Transform

Features Extracted by Using Fourier Transform

Feature Number Abbreviation Source Definition
1 Az/a0 Azimuth The coefficient a0 of Fourier Transform
2 Az/al Azimuth The coefficient al of Fourier Transform
3 Az/bl Azimuth The coefficient bl of Fourier Transform
4 Az/a2 Azimuth The coefficient a2 of Fourier Transform
5 Az/b2 Azimuth The coefficient b2 of Fourier Transform
6 El/a0 Elevation The coefficient a0 of Fourier Transform
7 Elal Elevation The coefficient al of Fourier Transform
3 El/bl Elevation The coefficient bl of Fourier Transform
9 El/a2 Elevation The coefficient a2 of Fourier Transform
10 Elb2 Elevation The coefficient b2 of Fourier Transform
11 Ar/a0 Area The coefficient a0 of Fourier Transform
12 Ar /al Area The coefficient al of Fourier Transform
13 Ar/bl Area The coefficient bl of Fourier Transform
14 Ar/a2 Area The coefficient a2 of Fourier Transform
15 Ar/b2 Area The coefficient b2 of Fourier Transform
16 DI/a0 Digital Level The coefficient a0 of Fourier Transform
17 DI /al Digital Level The coefficient al of Fourier Transform
18 DI/bl Digital Level The coefficient bl of Fourier Transform
19 Dl/a2 Digital Level The coefficient a2 of Fourier Transform
20 DI/b2 Digital Level The coefficient b2 of Fourier Transform
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Table 4-2: Summary of features extracted by using Linear Fitting

Features Extracted by Using Fourier Transform

Feature Number Abbreviation Source Definition
1 Az/a Azimuth Ist coefficient of the line
2 Az/b Azimuth 2nd coefficient of the line
3 Az/se(a) Azimuth Standard error for “a”
4 Az/se(b) Azimuth Standard error for “b”
5 AzZ/A(t) Azimuth Fit value of the line at time t
6 Az/rmse Azimuth Root mean square error of the fit
7 Az Azimuth Square of multiple correlation coefficient
8 Ela Elevation Ist coefficient of the line
9 El/b Elevation 2nd coefficient of the line
10 El/se(a) Elevation Standard error for “a”
11 EV/se(b) Elevation Standard error for “b”
12 EV/A(t) Elevation Fit value of the line at time t
13 El/rmse Elevation Root mean square error of the fit
14 Elr? Elevation Square of multiple correlation coefficient
15 Ar/a Area Ist coefficient of the line
16 Ar/b Area 2nd coefficient of the line
17 Ar/se(a) Area Standard error for “a”
18 Ar/se(b) Area Standard error for “b”
19 Ar/f(t) Area Fit value of the line at time t
20 Ar/rmse Area Root mean square error of the fit
21 Ar/r? Area Square of multiple correlation coefficient
22 Dl/a Digital Level 1st coefficient of the line
23 Dl/b Digital Level 2nd coefficient of the line
24 DVse(a) Digital Level Standard error for “a”
25 DVse(b) Digital Level Standard error for “b”
26 DI/A(t) Digital Level Fit value of the line at time t
27 DIl/rmse Digital Level Root mean square error of the fit
28 DY Digital Level Square of multiple correlation coefficient
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4.3 Basic Statistical Parameters

The mean and standard deviation can be considered as the most basic statistical
parameters for a data set. It is essential to examine the behavior of these parameters
since they will be used as normalization parameters for data set visualization and
classification. Furthermore, these parameters may give information about the class
separability. Although in higher dimensions joint-statistics of all features should be
considered to calculate the class separability, it is worth to investigate the individual
features. The mean values can be thought as a measure indicating how far away the
class clusters are from each other and the standard deviations indicate the overlap

between the class boundaries.

In Appendix - B, the mean and standard deviation values for t and f-scenarios for
each feature set are presented. In order to get a visual feeling about the mean and
standard deviation values, error bar charts are shown in Figure 4-1 and Figure 4-2.
In Figure 4-3 and Figure 4-4 normalized values for t and f-scenarios are shown.
Normalization is based on the mean and standard deviation of the t- scenarios.
Assume that the mean and the standard deviation of the t-scenarios of the first data
set which consists of the features extracted by using linear fitting are abbreviated as
uyyr and o,y respectively. And let the mean and the standard deviation of the t-
scenarios of the second data set which consists of the features extracted by using
Fourier transform are abbreviated as u,;; and 0,4, respectively. Then for a vector x

the normalization is done in the following way:

oyd xft—/'ltaﬂ

Xft = oL (4'1)
~ X~y
Xif = TJ/’ (4'2)

where X is the normalized version of the vector x.

Inspecting Figure 4-3 and Figure 4-4 reveals that for some features the mean and

the standard deviation values of t and f-scenario classes are not very different from
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each other. This may stem from the fact that these features are unable to
discriminate the classes as compared to the others. However before reaching such a
decision, some feature selection algorithms must be applied and the selected
features should be tested with appropriate classifiers. The mean and standard

deviation values can only give an insight about the feature selection process.

Mean and Standart Deviation for FT features (Unnormalized)
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Figure 4-1: Error bar chart for FT features
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Mean and Standart Deviation for LF features (Unnormalized)
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Figure 4-2: Error bar chart for LF features
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Figure 4-3: Error bar chart for FT features (Normalized)
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Mean and Standart Deviation for LF features (Normalized)
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Figure 4-4: Error bar chart for LF features (Normalized)

4.4 Histograms

Histograms can be used to approximate the distribution of a data set. In this part the
histograms of the individual features are examined. The features are normalized as
explained in Section 4.3. In each histogram plot the distribution of both t and f-

scenarios are shown. The histogram plots are given in Appendix C.

4.5 Correlation Analysis

In this part the correlation between the features of the data set is examined. The
correlation matrix is used to visualize the pair wise correlations among the features.
The correlation matrices are calculated for t and f-scenarios of each data set. The

correlation matrices are given in Appendix D.
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4.6 Self Organizing Maps

4.6.1 Brief Information about Self Organizing Maps

Self Organizing Maps can be used to project higher dimensional data into two
dimensions. A self organizing map consists of neurons on a two dimensional grid.
Each neuron on the grid is associated with a k-dimensional prototype. Here k
represents the number of features for a data set and each entry of the prototype
vector is named as a weight. The neurons are connected to each other by a
neighborhood relationship. Training phase of a self organizing map can be

summarized as follows [21]:
1. The prototype vectors associated with each neuron are randomly initialized.

2. An input pattern from the data set is fed to the network. Let’s assume that

the input pattern is x.

X = [xl,xz,...,xk] (4-3)

3. The nearest prototype vector (in terms of Euclidian distance) is found:

||x -w, || = ml_in{”x -w, ||} (4-4)

where w, indicates the nearest prototype vector in the map.

4. The weights of the nearest prototype and its neighbors are increased. A

proper neighborhood function can be defined as:

hoy(6) = hy exp(-|r, = .| 1 o(t)?) (4-5)

where 7 denotes the coordinate of the prototype vectors on the two dimensional

grid, hy is a constant and o(t) is the variance. o(t) should be chosen as a
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decreasing function of time so that at each iteration of the algorithm the

neighbourhood relations are confined to a smaller area.
5. The update equation for the weights is defined as:

w,(t +1) = w, () + a(t)h, (O]x = w,(0)] (4-6)

where a(?) is a decreasing function of time and represents the learning rate.

After the training process the neurons that have similar weights become clustered in
the two dimensional grid. This property enables one to visualize higher dimensional

data in two dimensions.
4.6.2 Analysis

The analyses are carried out by using self organizing map toolbox [22]. For each
feature set, self organizing maps of 30x15 neurons are trained. Before the training,
no feature selection algorithm is applied and all of the features from each data set

are used.

In the figures below, distance matrices which can be used to visualize the distance
between neighboring neurons are shown. Each value on the map is the median
distance of the neuron to each of its neighboring neurons. High values in Figure 4-5
indicate the possible cluster borders and uniform low areas can be thought as
clusters. We can see more than two clusters in each d-matrix in Figure 4-5 which
are mainly due to three types of false alarms and three types of threats used in the
scenario generation process. However in the scope of this thesis the main aim is to
discriminate between two classes; namely, false alarms and threats and the work is

concentrated on analyzing these two classes.

Another way to visualize the data set on the self organizing map is achieved by
using a simple voting procedure. First best matching units for each neuron in the
map are calculated by using the complete data set, and then the label of the class

which has more hits on a specific neuron is assigned. The best matching unit stands
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for the nearest prototype in the self organizing map to a vector in a data set in terms
of Euclidian distance. The resulting distribution is depicted in Figure 4-7 where T
stands for threats and F stands for false alarm label. Here it can be seen that
although the boundaries between classes are not smooth, t and f-scenarios are

clustered and can be visually discriminated from each other.

Hit histograms are another way to visualize the data set on the self organizing maps.
They indicate how the best matching units of a data set are distributed over the self
organizing map. The size of the shapes is directly proportional to the number of

data hit on a neuron. The hit histograms are shown in

Figure 4-8 and Figure 4-9. Examination of the hit histograms reveals that although
the patterns from t and f-scenarios seem to be grouped together, there exist some
ambiguous regions for each class. The patterns in these ambiguous regions are

generally hard to classify and cannot be easily distinguished from each other.

D-matrix - FT Features D-matrix - LF Features

Figure 4-5: Distance matrices for both feature sets
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Distance matrix - LF Features

Distance matrix - FT Features

Figure 4-6: Distance matrices for both feature sets (3-D View)
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Figure 4-7: Data on self organizing map — Voting Procedure
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Figure 4-8: Hit Histograms for features extracted by using Fourier transform

LF - T Scenarios

LF - F Scenarios

Figure 4-9: Hit Histograms for features extracted by using linear fitting
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CHAPTER 5

CLASSIFICATION

5.1 Introduction

If we look at the problem of developing a GMW algorithm from the pattern
recognition viewpoint, building a successful classifier for the decision making
algorithm is very important to increase the probability of declaration, to achieve
faster reaction times and to obtain lower false alarm rates. An approach developed
in the recent years in the pattern recognition domain is to combine the decisions of
multiple classifiers instead of using only one classifier. By means of such an

approach, better and more reliable classifiers can be built.

In this section classification methods that use multiple classifiers will be examined

and the design criteria for multiple classifier systems are explained.

5.2 Multiple Classifier Systems

The main motivation behind using multiple classifiers instead of a single one is the
intuitive idea that the opinions of multiple decision makers will yield a more

reliable conclusion than the opinion of a single decision maker.

Traditional pattern recognition approaches aim to select the best classifier for a
problem by comparing their error rates via validation data. However, in real world
validation data may be collected in limited amounts preventing it to reflect the true

characteristics of the data. In the worst case, this may result in constructing an
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unsuccessful classifier for a problem. Using multiple classifiers avoids this risk by

combining different classifiers’ decisions.

MCS (Multiple Classifier Systems) are reported to be more successful in terms of
classification performance than the individual members of the set [7]. The necessary
conditions for the MCS to become more efficient than the individual members of
the ensemble can be stated as follows: 1- The classifiers should achieve a
classification rate better than the random guess, in other words they must have a

probability of error less than 1/2. 2 — The classifiers should be diverse.

Diversity implies that the individual classifiers should perform differently on the
same data set. The increased diversity among the members of the classifier

ensemble leads to a reduction of the final classification error of the ensemble [6].

Hansen & Salamon (1990) [8] proved that if the classifiers in an ensemble are
independent and their error rates are equal, then the error rate of the ensemble
decreases with the increasing number of classifiers. Assume that an ensemble is
composed of classifiers, each of which can correctly classify a pattern with a
probability of /-p and the errors they make are independent. Then the probability

for a pattern to be misclassified & times by N classifiers is:

N
P =(kjp"(l—p)“ (5-1)
Now, assume that we want to combine the decision of the individual classifiers by
using the majority voting rule. (The details of the majority voting rule are explained

in 5.3.2.1.) Than the probability that this pattern is misclassified becomes:

NN
P=Y [ kaa—p)“ (5-2)

k>N /2 k

It can be shown that the above equation is a monotonically decreasing function of
N, provided that p is smaller than 0.5 and N is odd. Hansen & Salamon also propose

a model for random error rates; however they report that this model predicts a far

45



superior performance to what they experimentally observe, owing to the fact that

classifiers are not independent.

Another important aspect in creating a MCS is the combination function of the
classifier decisions. Although in the literature it is claimed that the role of the
combination function is not as important as the diversity itself, Kuncheva [9] has

shown its importance in the performance of MCSs.

5.3 Design criteria of MCS Systems

The discussion in the previous section points out the main factors that affect the
design of a MCS. These factors determine the general structure of the MCS and its

decision fusion mechanism.

To be more precise, the issues that are needed to be considered when constructing

the architecture of a MCS, can be listed as follows:

1. Diversity: The classifiers should be as diverse as possible. The training
phases, features used, the parameters of the classifiers or the classifiers
themselves should be adopted to achieve the desired diversity among the
ensemble. The individual classifiers must have an error rate better than the

random guess.

2. Combination Rule: The decision of the individual classifiers should be

fused in a suitable way to minimize the probability of error.

3. Topology: Determines how the operations and the interactions of the
classifiers occur within the ensemble. Topologies that are generally used are

serial, parallel and hybrid topologies.
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5.3.1 Diversity generation

Diversity among the members of the ensemble can be achieved by using various
methods. Most famous methods to achieve diversity are bagging, boosting and

using different feature subsets.
5.3.1.1 Bagging

Bagging is the acronym for “bootstrap aggregation”. Bootstrap sampling is a
method for approximating the distribution underlying a data set [11]. In the method
of bagging, diversity among the members of the ensemble is achieved by a certain

manipulation of the training samples.

The main idea behind bagging is to generate a subset of a training set by bootstrap
sampling. The generated subset has the same size as the original set, however it
contains replicated patterns in it. Breiman [10] proved that if the sample size for a
training set is sufficiently large (i.e. as the training set size approaches infinity)
probability of an instance to be replicated is about 0.632. The proof can be sketched

as follows:

Assume that we have a set of size N, then the probability for a pattern to be

replicated as the sample size goes to infinity becomes:

. N 1
P=lim|l-|1-—| [=1-2=20.632 (5-3)
N

N> e

This suggests that about 63.2 percent of the training set is contained in the re-

sampled set created by using bagging.

Subsequently these subsets are used to train individual classifiers and the decisions
of the individual classifiers are combined by using a simple scheme such as
majority voting or simple averaging. In order to get a better understanding of the

operation, bagging method is illustrated in Figure 5-1.
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BOOTSTRAP COMBINATION

SAMPLING RULE
Training )
> Classifier 1
Set - 1

Training

Set - 2

Classifier 2
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Set-3

Classifier 3 |:> Decision
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Training

Set - N

A 4

Classifier N

Figure 5-1: Bagging Method

5.3.1.2 Boosting

This algorithm achieves the diversity among the members of the ensemble by
changing the sampling distribution adaptively and it also proposes a combination

method.

The concept of boosting was proposed by Schapire in 1990 [12]. In this work, it
was proven that any classifier with an error rate better than random guess can be
used to build a better classifier. In other words, any weak leaner can be boosted into

a strong learner.

Later in 1997 Schapire and Freund [13] introduced the AdaBoost algorithm. This
algorithm is similar to the bagging in approach, because successive classifiers are
trained by sampling the training data. However, the major superiority of the
algorithm is that the distribution from which the samples are drawn is iteratively
updated to give more importance to the misclassified samples. In this way,
successive classifiers are trained to compensate the errors of the previous ones. At

the end of the training phase, weighted majority voting scheme is applied as a
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combination rule for the classifiers. The weight for each classifier is determined by

the error observed on the training sets.

The boosting algorithm proposed by Schapire and Freund is summarized in Table

5-1:

Table 5-1: AdaBoost Algorithm

Definitions:

1. Consider a training set, E. Assume that there are » training instances

denoted by x with their class labels denoted by .
E={x,,y,},i=1,...n

2. Assume that the number of the classifiers in the ensemble is %, and each

classifier is denoted by Sk

3. Let the sampling distribution for the k™ classifier be Wy
W, =W.Q),....W,(n)},k=1,..., kg
4. The error for the k™ classifier is Hy.

Algorithm:

W; = 1/n (Initialize to uniform distribution)
FOR (k = 1:kjay)

1. Sample E by using Wy and create Ej,

2. Train Sy by using Ex and calculate H,.
3. Calculate

a(k)=12m|1-H,)/H ] (5-4)

4. Update the distribution:

W, (@) y {e‘““‘) if x, is correctly classified

Wk+1 (l) = (5-5)

n

NAQ

™ else

END
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5.3.1.3 Using Different Feature Subsets

Choosing different feature subsets may help the classifiers among the ensemble to
achieve diversity. The subsets may be generated either by randomly picking some
combination of the features from a larger feature set or by using different feature
extraction techniques. The classifiers may be trained on these different subsets so

that the ensemble may achieve a good performance.

Random subspace method [14] is one of the most popular ensemble generations
methods that aim to achieve classifier diversity by training classifiers on randomly

selected feature subspaces.

In [15] Cherkauer proposes a method in this direction in the context of image
processing. For this purpose he introduces an ensemble of neural networks trained
on different feature subsets. The input feature subsets are not selected randomly;
however the domain knowledge of the designer is applied in creating subsets. By
using different image processing techniques, different feature subsets are formed
and the neural networks are trained by using these data. The performance of the

method is claimed to be as high as the performance of a human expert.

5.3.2 Combination rules

In the previous section, methods for generating diverse classifiers are discussed.
Although some methods, like AdaBoost, suggest a systematic algorithm to generate
both diverse classifiers and a combination rule for their decisions, the ensemble
decision mechanism must be handled properly for the successful performance of the

multiple classifier systems.

Xu et al, [16] provides a general framework to group similar output combination
methods based on the information supplied by the classifiers. According to their

taxonomy, there exist 3 kinds of output information:

1. Abstract Level: A classifier only outputs a unique label

50



2. Rank Level: A classifier ranks the label of the candidate classes
3. Output Level: A classifier outputs confidence values for classes.

In addition to the output information, combination rules can also be categorized as
trainable or non-trainable rules. Trainable rules require the parameters of the
combination method to be estimated by using training data. For example, these
parameters can be the weights of the classifiers for a weighted voting scheme.
Furthermore, the output of the classifiers can also be treated as random vectors and
provide input for a meta-classifier whose job is to output the decision of the
ensemble. Non-trainable rules do not require training data, their operation is static
rather than dynamic, and these rules do not have parameters that are needed to be

adjusted. Majority voting is the most common example of non-trainable rules.

The output information, structure of the voting rule (trainable vs. non-trainable) and
diversity generation method affect the design of combination rules. In the following

sections, the combination methods that are mainly used are examined.

5.3.2.1 Majority Voting

This method assumes that we have an ensemble of classifiers each of which outputs
the information in abstract level. Final decision is made by counting the votes of
each classifier. The class that achieves the highest vote among all is considered as

the winner. The idea can be formulated mathematically as below:

Assume that we have N classifiers and M classes, denoted by C and J respectively

and the pattern to be classified is denoted by x. The label of the pattern x is assigned

by the operator L as L(x).
C= {C], veey CN}
J={Jn o Iu}

Let O,,,, denote the decision of the n™ classifier for the m™ class:
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_ |1if C, decidesin favor of them" class (5-6)
"™ 10 otherwise
Then, the class label is determined according to the formula below:
N
L(x) = arg max z 0, (5-7)

1<m<M n=1

5.3.2.2 Weighted Majority Voting

Weighted Majority voting is an extension of the procedure mentioned above. In this
case the output of each classifier is multiplied by a factor and the resulting decision
values are summed. By using similar definitions mentioned in Section 5.3.2.1 and
assuming that the weight of each classifier is ,, then the weighted majority voting

rule can be formulated as:

N
L(x) = argmax Z w0, (5-8)

Isms<M ;o

Weighted majority voting is used in the AdaBoost algorithm. The weights of the
classifiers in AdaBoost are calculated in the training phase of the algorithm being
inversely proportional to the error they make on the training set. In fact, this can be
considered as the most intuitive way of assigning weights to an ensemble of

classifiers and can be applied to any other ensemble generation algorithm.
5.3.2.3 Borda Count Method
Borda Count method is an example of rank-level based combination methods. This

method can be used to order the classes with ranks indicating the strength of the

decision of the classifier.
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Assume that we have N classifiers and M classes. The rank assigned by the
classifier n to class m is indicated by R, ,,. Then the Borda Count label assignment

procedure can be formulated as:

N
L(x) = argmax z R

1<m<M n=1

(5-9)

n,m

5.3.2.4 Other Algebraic Combination Rules

There are other algebraic combination rules that can be used for decision

combination purposes. They are listed below:

1. Maximum rule: Assuming that the classifiers provide continuous output

levels, the decision of the classifier which yields the highest output score is
considered as the final decision. The idea behind this rule is to trust the most

confident classifier. However it is sensitive to badly trained classifiers.

Assume that we have N classifiers, then label of the input pattern x

becomes:

L(x) =argmaxC, (x) (5-10)

1<n<N

2. Minimum rule: In this case, depending on how C,(x) is defined, the decision

of the classifier which outputs the minimum score is chosen.

L(x)=argminC, (x) (5-11)

1<n<N

3. Median rule: The median value of the classifiers’ output score is found and

the corresponding label is assigned to the input pattern.

L(x)= ”ﬁf‘{iﬁ” C,(x) (5-12)
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4. Product Rule: The output score values of the classifiers are multiplied. The

result is used to classify the input pattern.

L(x) :argmaxﬁCn (x) (5-13)

1<m<M n=l1

The final decision obtained by the product rule is highly affected by the least
confident classifiers. In the worst case, this may lead to false decisions if a

badly trained classifier exists in the ensemble. [17]

5. Sum rule: This rule is similar to the majority voting rule. The main
difference is that the output levels of the ensemble members are considered.
The sum of the continuous outputs is used to reach the final decision.

L(x)= argmaxiR (5-14)

1<m<M n=1

n,m

Kittler et al. [17] have reported that the sum rule outperforms the rules such
as maximum, minimum, median, majority voting and product rule under
most restrictive assumptions. This has also been found to be most robust

method among all.

5.3.2.5 Behavior Knowledge Space

The approach of Behavior Knowledge Space for combining multiple classifiers is
proposed by Huang and Suen [18]. In this method there exists two steps: 1- Finding
all possible combinations of the classifiers’ decisions. 2- Taking into account the
real labels of the classes in the training data, assign a decision for each combination
of the classifiers’ decision. In order to exemplify the idea, assume that we have 3
classifiers C = {C;, C,, C;} and 2 classes J = {J;, J>!. In Table 5-2 below all
possible combinations of the classifiers are listed and next to them the number of

classes that belong to these combinations are listed.
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Table 5-2: BKS Example

Assignment of Classifiers True Class
C, C, C; Ji J>
Ji Ji Ji 23 84
Jq Js Jo 71 37
Ji J2 Ji 22 49
Jq Js Jo 45 69
Jo Ji J1 13 26
J2 Js Jo 48 10
J2 J2 Jq 73 21
J2 Js Jo 67 45

For example we have an input pattern x that is classified by the ensemble as {J;, J,
Ji}. If we look at the Table 5-2 it is seen that in the training set this combination
belongs to class J; for 22 times and belongs to class J, for 49 times. So the final

decision of the ensemble for this pattern becomes /.

It should be noted BKS method tries to estimate the posterior class probabilities for
each combination. If we have M classifiers and N classes we need to estimate N™
posterior probabilities which may be formidably large. This may ultimately lead to
serious problems if the number of training samples is low compared to the number

of posterior probabilities to be estimated [19].

5.3.2.6 Stacked Generalization

Stacked generalization method aims to combine the decisions of individual
classifiers by the help of a high-level classifier. The high-level classifier uses the
outputs of the ensemble as its feature space and predicts the label of the input

pattern [20].
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The training phase of the Stacked Generalization method for a 2-level architecture

can be explained as follows:

Assume that we have 3 level-0 classifiers €V = {C;O, c,’ Cgo} and 1 level-1

classifier C. Our training set is Z with 4 disjoint subsets Z;, Z,, Z3, and Zj.

Train each classifier using one of the disjoint sets. An example training set

combination is shown in the following table:

Table 5-3: Example training set setup

Training Set for C,° Training Set for C,° Training Set for C;°
Z1 22 ZS
Z2 ZS Z4
Z3 Z4 Z4

Level-1 classifier is trained on the data set obtained by using the vectors formed
from the outputs of the level-0 classifiers and the correct class labels. The input
patterns to the level-0 classifiers are chosen from the unused disjoint set during the

training.

The major drawback of this approach is the fact that it requires a large amount of
training data. Furthermore the output space of the low level classifiers may not be

appropriate to be used as an input feature space.

5.3.3 Topology

Topology determines the way how the classifiers are trained and how the data is

processed within the ensemble. Commonly used topologies are [23]:

1. Serial: In this topology the classifiers are applied one after another
producing a reduced set of possible classes for each pattern. By this way a

difficult classification problem is gradually reduced to a simpler one.
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2. Parallel: Each classifier in the ensemble operates in parallel. The input
pattern to the ensemble is evaluated by each classifier and their decisions are

combined to reach a final decision.

3. Hybrid: This structure tries to exploit the fact that some classifiers perform
better on particular patterns. A classifier selection rule is applied to input

patterns and best classifier for the input pattern is used.

4. Conditional: If the input pattern fed to the ensemble cannot be easily
classified or appears to be ambiguous for the first classifier, then a
secondary classifier is applied to resolve the conflict. By this way, a more
complex classifier is used for difficult patterns and computational efficiency
can be achieved. This structure becomes complicated if the number of

classifiers is more than two.
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CHAPTER 6

EXPERIMENTAL RESULTS

6.1 Methodology

In this chapter, experimental results for selected multiple classifier systems are
presented. The performance of the classifier ensembles are evaluated for both of the
feature sets presented in Section 3.3. The set consisting of features extracted by
using the line fit parameters will be abbreviated as LF-Set, and the set consisting of

features extracted by using Fourier transform will be abbreviated as F'7-Set.

In order to evaluate the classification performance the approaches given below are

followed.

6.1.1 Feature-based evaluation

In this evaluation method, all features extracted from the scenarios are pooled into a
single data set. The features are labeled by the type of the scenario class that they

are coming from, namely t-scenarios or f-scenarios.

The performances of the classifiers are evaluated on this data set by using the K-
Fold Cross Validation procedure. In this method the data set is divided into K
subsets of size N/K, where N is the size of the data set. Then one of the subsets is
used as a test data set and the remaining K-/ subsets are merged to form the training
set. This process is repeated for each of the K subsets and the classification

accuracies are averaged.
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6.1.2 Scenario-based evaluation

As mentioned in Section 3.3.1 and 3.3.2, the features are extracted from the
scenarios by using a sliding window approach. So each scenario can be visualized

as a series of feature vectors.

In order to get a better understanding about this method, the training and testing

steps should be examined separately.

Training: Firstly, scenarios that will be used in the training phase are selected.
Then the features extracted from these scenarios are used as the training set for the

classifier. The rest of the scenarios are used as test cases.

Testing: For each scenario in the testing set, the feature vectors are evaluated by the
classifier. By this way the series of feature vectors of a scenario is converted to a
series of score values given by the classifier. The score value indicates the

confidence level of the classifier for an input pattern.

At this point, the score values are compared with a threshold and a decision about
each feature vector of a scenario is made. To be more precise, the feature vectors of
a scenario are replaced with score values first, and then, with labels of t-scenario

and f-scenario.

The main aim of the scenario-based evaluation method is to label the whole
scenario, not only the features of the scenario, as threat or false alarm by using a
simple decision rule. According to this decision rule, a scenario is considered as
threat if P consecutive feature vectors for a scenario are labeled as t-class,

otherwise the scenario is labeled as false alarm.
After a scenario is labeled by the classifier, the following measures are extracted:

e If the scenario is a t-scenario and the classifier has labeled it correctly the
reaction time for this scenario is calculated as the number of frames from
the beginning of the scenario to the frame before which P consecutive

frames are labeled as threats.
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e [Ifthe scenario is a t-scenario and the classifier has labeled the scenario as an

f-scenario, then the scenario is considered as a non-declared scenario.

e Ifthe scenario is an f-scenario and the classifier has labeled the scenario as a

t-scenario, then the scenario is considered as a false alarm.

When the measures mentioned above are found for all the scenarios in the testing

set, the following measures are calculated:
Mean Probability of Declaration (MPOD):

MPOD = (Total Number of Scenarios — Non-Declared Scenarios) / Total Number

of Scenarios

Mean Reaction Time (MRT):

MRT = Mean Value for Reaction Time*

Total Number of False Alarms (TNFA):

TNFA = Total Number of False Alarm Scenarios

The scenario based evaluation is depicted in Figure 6-1. The y-axis represents the
output of the classifier and x-axis represents the number of the feature vector in the
scenario. For each feature vector, the confidence output of the classifier is
calculated and plotted. The vertical red line is the score threshold which is -4.5 in
this case. If the score values are below this threshold for three consecutive frames,
alarm is declared. The vertical red line indicates the number of the feature vector

where the alarm is declared.

4 .
Only declared scenarios are used
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Figure 6-1: Example scenario based evaluation
6.2 Base Classifiers

Each classifier used in a MCS is called a base classifier. In this thesis, decision trees

and stumps will be used as base classifiers.

6.2.1 Decision Trees

Decision trees can be used to classi

typical tree structure, the starting node where the first question about a pattern is
asked is called the root node. The root node is connected to other nodes by
branches. The terminal nodes from where no further branches appear are called leaf

nodes. At leaf nodes no more decisions are made and the label of the pattern is

fy patterns by asking a series of questions. In a

assigned. In Figure 6-2, a typical binary decision tree is shown.
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Root Node

Branch

Figure 6-2: Binary decision tree example

Decision trees can be used as base learners for building multiple classifier systems
due to their unstable nature [26]. Instability means that small variations in the
training data might result in a very different tree structure. The instability can be

used to achieve the desired diversity among the members of the ensemble.
The core ideas behind building a decision tree can be summarized as follows [1]:
1. Number of splits

Each split in a tree corresponds to a decision and divides the training data for
that node into two parts. By applying consecutive splits to the training data, the
tree is constructed and threshold values for each node are found. The maximum
number of splits can be limited to increase the speed of the training phase of the
classifier. The results of applying this idea to a multiple classifier system can be

found in Section 6.4 under the heading Boosting Results — 3.
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2. Measuring the node impurity and selecting the best feature for a node

This part may be considered as the most important part of tree growing. The
main aim is to determine the appropriate feature and threshold value for a node.
Several impurity measures are proposed in the literature like entropy impurity,
variance impurity, gini impurity and misclassification impurity. By using one of
these measures, the best feature and the threshold value for a node is

determined.
3. Stopping the split of the tree

The tree building process may be stopped by using one of the following criteria

[26].

The splitting process can be stopped

e when the error in the validation set starts to increase,

e when the impurity gain in the child nodes is below a certain threshold,

e when the number of patterns to train a node is below a certain threshold,
e when the complexity of tree is above a certain measure,

e when further splitting is not beneficial.

4. Pruning the tree

Instead of applying stopping criteria, the tree may first be grown to the full size
and then can be pruned to a smaller size to prevent the horizon effect. The
horizon effect can be described as the lack of getting the further beneficial tree

splits if the training process is stopped early.
5. Assignment of labels to leaf nodes

The label of each leaf is determined in the training process by the number of

majority patterns (“t” or “f’) assigned to it.
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In the experimental work the tree implementation of C4.5 [25] and its slightly

modified java version J4.8 are used.

C4.5 algorithm measures impurity by using the entropy concept. After the complete
tree is built the tree is pruned. Pruning removes the branches with little or no gain.

The pseudo code for C4.5 is given below:

Node creation: Search all features in the training data and find the one d,,;, that

separates the data with minimum entropy and find the corresponding threshold 7.

The node which has the condition is created

x, <T (6-1

The training data is split into two by using the condition in (6-1)

Algorithm:

Root node is formed.

Continue until the errors in the leaves are zero
1. Choose the leaf connected to the parent node that has the biggest error.
2. Construct a node by using the training data on this leaf.
3. Replace the leaf in 1 with the node created in 2

End

Prune the tree after the operation.

In the following sections related to the numerical results, decision trees and decision
stumps are used as base classifiers. A decision stump can be described as a tree
having only one split. In other words, there exists only a root node and two leaf

nodes for a decision stump.
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The output of a decision tree can be given as a confidence level. In Section 5.3.2,
this is referred as output level information. The confidence level is calculated by
using the error of the classifier on a leaf. When the decision tree is used in a MCS,
the corresponding confidence level is multiplied by the weight of the decision tree
assigned by the MCS. The weight assigning process for AdaBoost is explained in
Section 5.3.1.2.

6.3 Bagging

Bagging method described in Section 5.3.1.1 is used in the experiments. The

features are normalized with respect to the t-scenarios as explained in Section 4.3.

Bagging is reported to be more effective when used with unstable classifiers. The
term unstable here refers to the fact that small changes in the training data lead to
significant changes at the output of the classifier [24]. Decision trees are used as the
base learner in experiments since they exhibit an unstable behavior. To demonstrate
the effect of the unstable learner, bagging results for stumps, which are not unstable
learners, are also analyzed. 4-Fold Cross Validation is used as training and testing

procedure.
The results are presented in the following order:
1. Feature Based Evaluation for Bagging — Base Classifier: Decision Stumps

2. Feature Based Evaluation for Bagging — Base Classifier: Decision Trees

6.3.1 Bagging Result — 1

Stumps are not categorized as unstable classifiers. In fact, since they are decision
trees with only one split (i.e. with two leaf nodes), training stumps on bootstrap

replicates is expected to have no effect on the overall performance of the ensemble.

In Figure 6-3 and Figure 6-4 error curves for FT-Set and LF-Set for each fold can

be found. In Figure 6-5 the average error curves for both sets are compared.
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Boosting decision stumps has no significant effect on the performance of the
ensemble, since their structure cannot be changed by sampling the data with
replacement. The average error curves indicate that the LF-Set seems to perform

better than the FT-Set in this experiment.
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Figure 6-3: Iterations versus Error / (FT-Set Bagging, Base Learner: Stumps)
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Error

Figure 6-4: Iterations versus Error / (LF-Set Bagging, Base Learner: Stumps)

Figure 6-5: LF-Set FT-Set Comparison / (Bagging, Base Learner: Stumps)
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6.3.2 Bagging Result — 2

The base classifier used in this experiment is Decision Trees. The decision tree

implementation of J4.8 is used [25].

In Figure 6-6, Figure 6-7 and Figure 6-8 the results are presented. Examining the
figures clearly signifies that by using bagged decision trees we can increase the

overall performance of the ensemble, which is an anticipated result. The

comparison of two data sets reveals that LF-Set is superior to the FT-Set.

Error

Figure 6-6: Iterations versus Error / (FT-Set Bagging, Base Learner: Decision Tree)
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6.4 AdaBoost

The AdaBoost algorithm used in this part is given in Table 5-1. Weak classifiers
used with AdaBoost algorithm are stumps and decision trees. 4-Fold Cross
Validation is used as testing and training procedure. The features are normalized

with respect to the t-scenarios as explained in Section 4.3.
The experimental results are presented in the following order:
1. Feature Based Evaluation for AdaBoost — Weak Classifier: Stumps
2. Feature Based Evaluation for AdaBoost — Weak Classifier: Decision Trees

3. Scenario Based Evaluation for AdaBoost — Weak Classifier: Decision Trees

6.4.1 AdaBoost Result — 1

The weak classifier that has been used in the experiments is stumps. 4-fold cross
validation is used to train and test the data set. In Figure 6-9 and Figure 6-10, the
error versus boosting iteration curves for all folds are shown. The average values for

both data sets can be seen in Figure 6-11.

Examining the results reveals that LF-Set performs better than the FT-Set in terms
of error performance. Furthermore it is clear that increasing the number of boosting

iterations improves the error rates for both feature sets.

It can be seen in Figure 6-11 that the error for LF-Set is 0.065 and FT-Set is 0.087
with 100 boosting iterations. The error curves seem to be asymptotically bounded

around approximately 0.06 and 0.08.
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Figure 6-11: LF-Set FT-Set Comparison / (AdaBoost, Base Learner: Stumps)

6.4.2 AdaBoost Result — 2

In this part decision trees are used as weak classifier. The decision tree

implementation is J4.8 [26].

The error is calculated by using 4-fold cross validation method. The results are

presented in Figure 6-12, Figure 6-13 and Figure 6-14.

Boosting decision trees yields an error rate below 2% for FT-Set and below 1% for
LF-Set. As the boosting iterations increase, the classifiers concentrate more on
difficult samples and with each newly added classifier, the error rate decreases.
Boosting above 50 iterations will seem to further increase the performance,
however the trade off between memory requirements and performance increase
should be considered before deciding to use more boosting iterations when

designing a real system.
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6.4.3 AdaBoost Result — 3

In this part the Receiver Operating Characteristics (ROC) of the AdaBoost is
examined. In order to decrease the computational burden, the AdaBoost algorithm

is iterated 20 times and the trees are allowed to make 10 maximum splits.

The AdaBoost algorithm with decision trees is modified to output confidence levels
instead of class labels so that the effect of applying different score thresholds on the

performance of the system can be examined.

The scenario based training and evaluation are explained in 6.1.2. According to this
methodology, ROCs for probability of declaration, reaction time and number of
false alarms are obtained for all folds. Then the mean of these folds are presented as

the final result.

In Figure 6-15, Figure 6-16 and Figure 6-17 the ROC for FT set can be seen. The
ROCs are obtained for all folds. In Figure 6-18 Figure 6-19 and Figure 6-20 the

average values of these curves are presented to summarize the characteristics of FT-
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Set. From the figures it is clearly seen that as the score value increases, the
probability of declaration increases, warning time decreases and number of false
alarms increases. The optimization for score threshold can be made by using one of
the ROC curves in Figure 6-18 Figure 6-19 and Figure 6-20. For example if you
allow 4 false alarms you will get 99.5 POD and 39.09 frames reaction time on the
average. It is obvious that if higher POD and lower warning time are desired than a

relatively small amount of false alarms should be tolerated.

The results for LF-Set are presented in Figure 6-21, Figure 6-22, Figure 6-23,
Figure 6-24, Figure 6-25 and Figure 6-26 by using the same order explained for FT-
Set. The same trade-off in the ROC curves are also applicable for LF-Set.

Comparing the average ROC curves for LF-Set and FT-Set reveals that LF-Set
performs better than the FT-Set in terms of scenario based evaluation. Because the
ROC for mean reaction time and false alarm of the LF-Set are below their ROC
counterparts of the FT-Set, which in turn means that they result in better
performance for the same score value. Furthermore the ROC for probability of
declaration of LF-Set starts to decrease at lower score values compared to the other

one.
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Figure 6-15: FT-Set, Probability of Declaration vs. Score Value (All Folds)
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Figure 6-18: FT-Set, Probability of Declaration vs. Score Value (Mean Value)
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Figure 6-19: FT-Set, Reaction Time vs. Score Value (Mean Value)
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Figure 6-22: LF-Set, Reaction Time vs. Score Value (All Folds)
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Figure 6-23: LF-Set, False vs. Score Value (All Folds)
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Figure 6-24: LF-Set, Probability of Declaration vs. Score Value (Mean Value)
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Figure 6-25: LF-Set, Reaction Time vs. Score Value (Mean Value)
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Figure 6-26: LF-Set, False Alarm vs. Score Value (Mean Value)
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6.5 Comparison of AdaBoost and Bagging

In this part, the feature-based results of AdaBoost algorithm and Bagging are

summarized and presented in order to compare the performance of both algorithms.

The error versus iteration curves of AdaBoost and Bagging with stumps used as
base learner can be found in Figure 6-27. The following conclusions may be drawn

from the figure:

e Bagging stumps does not increase the performance for both sets. The reason

for this is the fact that the stumps are not unstable classifiers.
¢ Boosting stumps for both sets increase the performance of the ensemble.
e LF-Set performs better than the FT-Set.

The error versus iterations curves of AdaBoost and Bagging with decision trees
used as base learner can be found in Figure 6-28. The following conclusions may be

drawn from the figure:

e For both sets, increasing the iterations for bagging and boosting decreases

the error rate.

e Bagging performs better than boosting at the first iterations; however as the
iterations increase, boosting concentrates more on difficult patterns and

outperforms bagging.

e LF-Set performs better than the FT-Set for each case.
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6.6 Feature Grouping

The main aim of this section is to investigate the effect of combining the decision of
classifiers trained on features extracted from each primary time series. The general

architecture is summarized in Figure 6-29.

Decision
Majority Voting
Base Learner Base Learner Base Learner
Features Features Features
Extracted From Extracted From Extracted From
Azimuth and Area Digital Level

Elevation

Figure 6-29: Feature Grouping Setup

The features are grouped in a natural manner. The first group consists of features
coming from Azimuth and Elevation. The second group is composed of features
coming from Area and the last group is composed of features coming from Digital
Level. Decision trees and stumps are used as base learners. Majority voting is

applied as the combining rule. Results are organized in the following manner:
1. Base Learner Stumps

2. Base Learner Decision Trees
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6.6.1 Feature Grouping Result — 1

The results in Figure 6-30 and Figure 6-31 indicate that the stumps as a base learner
did not yield good performance. The results for all folds and their average values

are presented in the figures.

The output of the ensemble is slightly better than the best classifier with FT-Set and
worse than the best classifier in LF-Set. This result is mainly due to the lack of
classifier diversity that cannot be achieved with stumps. The individual classifiers
should correctly classify different patterns in order the ensemble decision could
achieve a better performance than the best classifier which, in the case with stumps,

cannot be observed.
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Figure 6-30: FT-Set Feature Grouping / Base Learner: Stumps
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Figure 6-31: LF-Set Feature Grouping / Base Learner: Stumps

6.6.2 Feature Grouping Result — 2

Feature grouping seems to be effective when used with decision trees as a base
learner. In Figure 6-32 and Figure 6-33, the results for both sets can be examined.
The overall classification error of the system is better than the best individual
classifier in the set. It shows that the patterns that are misclassified by the best
classifier are correctly classified by the other two classifiers in the set, which, in

turn helps the system to output a better performance.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

In this thesis, a decision making algorithm for a Generic Missile Warner based on
Multiple Classifier Systems is proposed. For this purpose, simulation data are
generated. A method for generating a wide range of real life scenarios is proposed.
Two feature extraction methods, namely Fourier Transform and linear line fit, are

applied.

For the classification part, experiments are carried out by using the MCS methods
bagging, AdaBoost and feature grouping. Decision trees and stumps are used as
base learners. 4-fold cross validation method is used in evaluating the performance

of the classifiers.

Two kinds of evaluation methods are proposed; one is feature based evaluation and
the other is scenario based evaluation. In the feature based evaluation, AdaBoost
algorithm with decision trees as base learners performed better than the other
methods. The scenario based evaluation is carried out for only AdaBoost and
corresponding ROC curves for probability of declaration, number of false alarms

and reaction time are calculated and very promising results are achieved.

In all classification methods, the features extracted by using linear fitting

outperformed the features extracted by using the Fourier Transform.

As a future work, effect of different base learners to the MCS should be
investigated and the experimental results should be tested with real data. Also

different feature extraction methods using statistical approaches should be tested.
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Table A-1: Scenario Parameters

Platform properties Position of the missile Crther
Scenario | Altitude | Velocity Heackg, | Climb x-axis y-axis Pharosphesic| | Faing
SRR (m) (m/s) Angle | Angle (m) (m) Attenuation | Angle

(degress) | (degrees) (1fkm) |(degrees)
0oL 907.562 | 20,401 | 146.440 | 15.782 | -608.897 750.120 1.007 43.209
o002 915.610 | 17,133 | -177.618 | 15223 |-1589.270 | -1530.812 1154 22535
003 443,620 | 66.050 | 137361 | 17.5815 | -655.228 | 1807.920 1.213 12.990
004 700.132 | 55,9159 | -148.259 1.297 2331.399 | -1418.004 0.826 14.390
005 871.726 | 39.643 | -124.453 | -10.769 | 947.724 377.650 0.858 40.512
006 697.844 | 57.272 | -78.498 -3.509 | -B26.766 | 16B8.352 0.933 20.365
007 921.656 | 23.171 | -0.158 11,349 | 1062.372 | -2101.130 0.808 21.378
008 801.794 | 66.164 | 100,752 | -12.365 | <428.152 | -2913.260 0.800 15.232
e J07.762 | 36.081 | 25879 11.681 | -481.580 195219 0.960 30.636
010 919.265 | 43.587 | 143.602 | -17.927 | 1851.615 ( -990.573 1.441 23.642
011 857.921 | 27.859 | -119.762 | <18.875 | 2732.219 | 10B1.744 0.883 16.275
012 951.275 | 54.416 | 149438 | -9.732 | 2313.709 | 2520.257 1.388 15.539
013 258.713 | 61.392 | -148.587 | 9151 -312.662 007492 0.940 15.085
014 825.159 | 50.704 | -173.95% | -1.185 | 2317.956 [ -2315.829 0.836 10.802
015 727.638 | 23.582 | 161.232 7L |-1759.161 32B.574 1.054 22,126
016 646.286 | 60.187 | 141.374 | 13.679 |-2214.860 | -1865.076 1.403 12.582
017 596400 | 20,653 | B3.362 | -15.330 | 1476.249 | 1858.735 0.8931 14.105
018 469.715 | 46.796 | -11.115 | -16509 | 1972.305 [ 1115.668 1.296 11.711
019 075587 | 14.702 | -71.621 -3.553 |-1581.065 | -1529.668 0.914 21.971
020 925.285 | 54.403 5353 0.883 |-2382.489| 29B1.2R3 0.701 13.629
021 F00.194 | 31.469 | -176.257 1.811 54662 1519326 0.957 24.729
02z 873.384 | 3.860 | -65.757 11.337 | 2834.400 518784 0.736 16.862
023 592428 | 10.630 | -21.765 1.906 -629.182 | -610.368 1.236 32.219
024 617.880  39.235 | -147.253 | -9.966 | -314.646 827.765 1.301 34.905
025 994,096 | F4.576 | -145982 | 18142 |-2023.226( 2822.731 1.268 15.973
026 509.651 [ 33.683 | 50.148 11,502 |-1380.033 | 2063.894 0.900 11.600
027 860.882 | 14.575 | 155574 | 4414 1209317 | -2330.294 1292 18.155
028 678.267 | 61.979 | 112,619 | -16.423 | 1387.672 | 2423.139 0.777 13.653
029 256,550 | 19,302 | B3.008 | -18.380 | -452.863 241,291 1.062 26.564
030 853.356 | 66404 | -3.924 10,420 | 2490.648 | 2405.850 1.185 13.844
631 861.501 | 24.077 | H91.569 6.030 1904.223 | 1597597 0.823 1%.116
032 351.890 | 51.720 | -177.709 | -B.6B4 831.604 552447 0.999 19.416
032 991,161 | 9.B59 B4y | -13.735 | -392.116 | 15093.459 0.950 26.006 .
034 260.990 | 44.554 | -B0.933 | -14.718 | 1197.929 -B4.571 0.988 12.261
035 549.821 | 53.527 | 17.075 4.362 2178.808 | -715.824 (0.898 13.982
036 470.589 | 74.239 | 142,636 | 14.028 |-1459.248 | -1287.027 1.184 13.59%
037 Jo1.116 | 39401 | 167425 | 0553 | 2969.433 | -56.528 1323 14.374
038 815.018 | 31.047 | -16.733 | -14.686 | 1551.038 351.422 1.103 26.999
039 838446 | 17.636 | 128.125 | 16189 |-1247.881( 1355.219 1.219 24471
40 544040 | 38.052 | 102,109 | -14.774 |-2691.866 | 765.039 0.541 11.019
641 653.003 | 30,193 | 115128 | 7805 |-1083.761| 1709.879 1.332 17.878
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Table A-1: Scenario Parameters (continued)

Platform properties Position of the missile Other
. . . | Heading | Climb . ) Atmospheric | Firing
oo | e Voo | angle” | Angle | XS | ¥ | attenuation | Angle
=4 | (degress) | (degress) (1/km) (degrees)
=2 815.641 | 65.414 | B6.072 10,330 | 2767.170 | -201.450 0.759 16.382
3 538.054 | 75498 | -178.529 | 19.251 421.165 -921.177 1.330 27.978
=4 439,828 | 12.726 | 59.162 7.368 1754456 | -908.253 1.146 12,551
45 476.003 | 26,291 | 153.040 | 10.243 |-1270.568 | 637.079 0.900 18.516
6 876,922 | 72,158 | 34263 -17.259 |-1691.740 | 2216451 1.313 17.458
o7 728.967 | 62.679 | -90.257 2177 | -1622.488 | -2958.523 1.031 12,191
8 797.139 | 63.974 | 145.992 | 18.983 |-2280.819| 113.819 0.706 19,242
e 709.618 | 76.313 | 160.000 | 18.664 |-2595.935| -374.791 1.358 15.139
050 306,972 | 33.538 2456 -F027 | 1108.133 | -341.439 0.908 14,828
031 437.299 | 44.009 | 167.929 7.065 1307.288 Jo%.175 0.732 17.892
052 900.579 | 31.448 | -15.012 | -11.670 | 1543.639 280.152 1.127 29.857
053 760.798 | 8.738 | -176.633 | 3.802 955.056 480.039 0.986 35.441
054 708.805 | 42.045 | -86.055 | -17.953 | 1391.701 | -2014.252 1.428 16,146
035 657.933 | 12437 0.848 2,709 | -1870.369 | -1054.821 1.424 17.035
056 642.343 | 11.383 | 42.830 -4.137 460.450 | -2883.591 1.273 12.406
057 945.757 | 8.550 83.110 18.821 653.313 1317.9594 1.162 32.738
058 S67.218 | 3.842 | 41044 -5.531 | -1274.4%9 | 1900.276 0.942 13.923
058 845.306 | 63.214 | -77.701 | -17.268 |-2670.416| 825.136 1.060 16.827
060 924.425 | 33.386 | -123.847 1.600 2622.048 965.730 1.039 18.303
061 348.708 | 23.316 | -13.724 -6.121 (-1091.006| -240.513 1.161 17.335
062 222202 | 52,676 | -122.148 | 12,107 | -548.521 | -1035.649 0.B89 10.736
063 797.082 | 13.916 | -136.919 | -13.038 | 764455 2051.342 1.297 20.007
064 887.441 | 41.670 | -8.104 15,595 [-2609.543 36.737 1.369 18.778
065 786.854 | 18400 | -171.170 | -14.440 | 1617.045 | 2818.591 1.197 13.612
066 451.995 | 12,746 | -124.363 | -14.522 | 1258.819 | -210.813 1.133 19.501
067 760.703 | 14.399 | 108.713 0.558 290.630 | -1752.931 0.791 23177
068 621.192 | 45.682 | -27.909 B.846 |-2561.170| 569.172 1.328 13.320
069 259.041 | 52.206 | -70.357 4.298 | -1326.286| 1797.374 1.390 14.050
070 963.270 | 35.547 | -15.436 3.993 2055.731 | -2812.797 1.337 15,455
071 954.876 | 75.834 | -16.832 12,433 | 2573.275 | 1036.304 0.850 18.994
072 524.557 | 35.106 | 63.956 -1.397 | 2719.585 | -871.812 0.998 10.908
073 916.688 | 43.635 | 89.244 | -15.005 | -280.591 | -2551.503 0.971 19.653
074 782.921 | 73.516 | 57.306 7.604 2122.342 | -192.590 1.231 19.697
075 844.883 | 65.981 | -110.824 | -1B.973 |-2659.110| -2142.387 1.067 13.897
076 700.676 | 2.361 -9.905 7.138 |-2311.266| -1583.616 0.837 14.041
077 338.205 | 25.8596 | 107.797 | -8.015 | 1653.754 316.625 0.931 11.357
078 784.518 | 61850 | 143.503 | -14.473 | 1764.461 | -1863.520 1.144 16,998
074 898.025 | 29.366 | -94.440 | -12.507 | 273.896 | -1469.301 1.211 30.999
080 321.482 | 34.910 | -174.460 | -10.839 |-1417.922 68.311 1.179 12.760
081 476.888 | 59.825 | -30.924 | -17.770 | -659.831 | -153.09 0.872 35.147
082 442.915 | 65.743 | 23.513 -17.825 |-1439.915| 534.621 1.360 16.086
083 269.908 | 56083 | -35.367 | -19.425 | -2552.157 | 546.409 1021 12.318
084 941.296 | 7.591 | -H.600 1.840 |-2320.930| 2426.779 1.057 15.632
085 924.329 | 50.444 | -173.906 | -7.341 |-2328.776| 776779 1.207 20.632
085 739.196 | 38.155 | -69.615 0.653 1242.169 | 1881.666 0.749 18.152
087 459.277 | 51.228 | 135.951 | -5.054 | 1600.425 | -1991.480 1.217 10,191
088 701964 | 57.113 | -69.310 -9.453 | 24996.021 690,206 1116 13,166
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Table A-1: Scenario Parameters (continued)

Platform properties Position of the missile Cther
Scenario | Altitude: | velocity Heading dimb i it Atl'ﬂl:lsphl.gril: Firing
iabis (m) (mfs) Angle Angle (m) i} Atterwation | Anagle
4 {degrees) | (degrees) (1/km) |(degrees)
08D F02.158 | 15.362 [ 99.153 14,580 | -998.510 | -21H7.516 0.775 16.278
090 454.891 | 20.190 | -107.373 | -17.2490 | 311.4964 -577.130 1.312 34.746
09l 589747 | 30.783 | -157.016 | -11.452 | 263.2490 =536.132 1.300 44.637
092 589.048 | 54.361 | 73.076 -1.565 | -814.366 | -1318.409 0.979 20.813
083 556700 | 13.257 | -36.248 16,823 68.006 2484854 0.761 12.601
094 313.971 | 68.992 | -BO.179 1.268 133.328 405,706 0.703 36.324
095 530,733 33.148 | 173,248 | -17.690 | -620.743 | 1747.923 0.966 15967
096 447.650 | 72194 [ -145.661 | -7.235 [ 2321.770 944.550 1.175 10.126
097 379.159 | 11.300 | 161.431 | 15300 | -375.369 | 2009.741 1.248 15.816
058 554.192 | 63.188 | 148.040 1.330 1824.459 375.962 0.739 16.568
099 F17.202 | 10.254 | -199.8687 | &3609 [-2835.607| 2911.079 0.8499 10.009
100 499.068 | 56.039 | 160.173 4. 709 | 1157451 612428 1.131 20.863
1061 673467 | 30.094 | 125,532 | -10.971 [ 1781.750 | 2Z9B1.286 1.320 10.974
102 768.305 | 53.171 | -30.489 -0.069 | 2694.738 | 2719.080 0.925 11.348
103 507749 | 3.207 29.690 2.589 -B68.904 | 2281.205 1.286 11.750
104 699.212 | 23.659 | -152.265 | -B.252 [-1591.561( -924.616 1.200 20.800
105 825.815| 21.165 | -66.338 | -12.672 | -315.160 | -1039.928 1.375 37.234
106 945,411 | 31.975 | 43.167 3.719 | -2588.960 | -1768.574 0.924 16,780
107 265,352 | 37,127 | -168.061 | -2.601 347.190 832.6593 0.848 16.390
108 767.920| 13.046 | 33.431 4,323 1634.158 | -2662.358 0.727 13.B11
109 S07.427 | 31.970 | -62.501 2216 |-1227.479 | -B03.280 1354 19.081
110 J.179) 53,155 | 176,170 | 17774 | -897.913 | -1842.012 0.979 18.964
111 430.954 | 44.069 | 150.118 | -16.398 |-1453.822 | -437.712 1.436 15.846
112 919.617 | 17.458 | 167.197 -2.641 170B.935 151.403 1.162 28.192
113 7224968 | 3.222 1.688 15778 | -685.620 | -1247.6B9 1.415 26.907
114 360.759 | 30.424 | 33.935 -9.265 734.656 | 1827404 0.857 10.380
115 783.392 | 51.B87 | -S.074 17,316 |-24921.338 | 5599.642 0.783 3
116 633.671 | 22,565 | -91.335 -8.547 | 2778.806 | -1615.828 1.305 11.152
117 632301 | 65429 | 74613 | -1B.272 (-2124.324 | -1599.9B6 1423 13.374
118 336.226| 18.805 [ -80.385 18.064 | -919.974 | -1216.068 0.897 12.935
11% 441.790 | 60.585 | 50212 | -15.00¢4 | 703.095 -B66,883 1.024 21.5%4
120 720,486 | 16.002 | 164.675 6.604 247.799 2213.813 1.191 18.132
121 400876 25.238 | -71.365 | -18.318 | 167408 | -1463.866 1.491 15.220
122 958.010 | 73.542 | -135.595 3.678 -B42.087 | 1315.842 1.027 31.518
123 BB9.81B | 54.781 | 48.043 | -14.347 [ -2524.187 | 22568572 0.996 14.724
124 590.131 | 36.826 5.612 -9.120 |-1610.521| 2397.204 1.036 11.599
125 682.0914| 29219 | 35.285 €.739 2367.3B5 | -2475.987 1.427 11.274
126 385.804 | 59.187 | 139.259 | 14.392 L582.365 0928.513 1.132 19.392
127 546.546 | 23.181 | 47.214 -B.1B3 J32.173 | -2F4.795 1432 11.000
128 945.500 | 11,769 | -29.798 -8.788 586.602 | -2781.151 1.118 18,398
129 692.165 | 2156 | -63.537 1549 | -2405.8597 | 425.929 1.353 15817
130 560.394 | 46.228 | -152.206 | -17.706 [-1194.261 | 130,327 0.961 25.008
131 848.472 | 36,102 | -B9.511 18,218 |-2144.098 75.380 0.888 21.578
132 71B.656| 949.174 | -10.865 3.111 2967.879 | -M42.678 1.478 15.581
133 538.820 | 21.688 | -19.845 5.101 207.848 =BB7.397 0.883 S6.883
134 912220 | 2.671 | 121.375 0.291 |-2317.701| -57.326 0.779 21.478
135 816.787 | 25,104 | -158.282 | -18.237 | 1877.664 | -527.560 1.495 22,723
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Table A-1: Scenario Parameters (continued)

Platform properties Position of the missile Cther
. : .| Heading Cimb : b Atmospheric | Firing
Eﬁcf:ﬂ;? M?;U:EE VFJHTST Angle Angle ”if’:.l:g }Eﬂiﬁ:‘* Attenuation | Angle
: {degrees) | (degress) (i/km} |(degrees)
136 61B.501 | 71.372 | -33.680 4.176 | -2431.179( -984.112 L.007 13.269
137 395.904 | 30.318 | -82.226 | -11.376 | 802.3687 | 1798.293 0.816 11.368
138 917.005 | 59.657 | 13.026 18.799 389.299 | -1693.861 0.867 27.8B17
139 889.5099 | 25.064 | -61.940 13.601 -34.803 | -26BB.585 1.386 18.306
140 B9B.148 | 22,865 | 56.152 | -10.725 | 731.724 | -2549.257 1.281 18.708
141 687.976 | 30.697 | -166.056 | 14.303 621.259 | 2087.042 1473 17.533
142 941.995 | 75.537 | 149.368 4. 164 20507.259 | -2288.322 1.256 15.321
143 £24.008 | 42.957 | 96.328 5,00 2358.889 | -2635.558 0.943 13.115
144 533.065 | 59.183 | 140.678 | -18.966 (-2174.622 | -455.475 0.841 13.492
145 619.550 | 60.359 | -118.212 | 6909 711.916 | -2958.923 1.312 11.507
146 993.388 | 10.255 | <49.911 | -12.357 | 1286.386 | -1932.798 1.292 23.164
147 668.724 | 15.259 1.232 -17.963 | -2663.420 | -9B58.816 1115 13.245
148 913.582 | 53.872 | 66.326 7.830 1708.989 063.631 1.205 24.116
149 465.389 | 71.734 | -90.761 0.4498 141,907 | -1474.989 1il6 12714
150 630.524 | 72.811 | -53.447 17413 | 2566.317 526.202 1.376 13.533
151 662.737 | 25,248 | 176.858 | 19,356 | 2787.287 997.591 1.063 12.618
152 L02.7i6 | 27.231 | -156.141 | 10.453 | -584.027 | 1045738 1.075 22.768
153 291166 | 24.600 | 166.629 | 17.259 | -731.840 706021 1141 13392
154 B54.4499 | 76.616 | -151.960 | 15.521 374.684 | -1833.869 1.150 24.789
155 J64.610 | 47741 | 30.854 18740 | 490461 | -2401.198 0.877 17.327
156 §39.981 | 31.883 | 91.333 -8.192 B840.035 2310.703 1L.012 18.852
157 584.285| 9.03% | -131.612 | -17440 |-2524.216( 761.725 {0.B68 12,495
158 J10.872 | 68.525 | 94.360 19.046 | 1689.223 | 2613.499 1.029 12.B68
159 402,896 | 57,590 | £9.278 10.933 | 1483.303 | -10B9.698 1.291 12,3497
160 §18.453 | 45,825 | 162,478 | -13.137 | 2443.411 [ 1513.317 1.108 15.895
161 F01.928 | 37.026 | -132.661 1.975 2817.056 | -347.157 0.925 13.891
162 307.474 | 79.888 4.840 4486 |-1500.883 | -811.485 0.987 10.216
163 o41.041 | 39.638 | 39.089 | -19.B08 | 526.373 1664775 1019 28.323
164 622.652 | 66.062 | 165,551 | -7.451 1782.510 | -1288.945 1.226 15.805
165 745.005 | 57,163 | -14.398 16771 | 2933.661 | 2595.607 1313 10.769
166 923.938 30.916 | 36.880 2413 2075.039 | -1291.170 1.069 20,709
167 681.807 | 52.517 | -6R.D44 -6.734 |-1870.816 | -23095.900 1231 12,6492
168 483.861 | 92.861 | 175,718 | -18.873 | 1257.192 | 2430.942 0.929 10.026
168 891.639 | 1.679 | -151.498 | 4931 |-2104.838| -2795,412 1,205 14,295
170 487.155 | 29.053 | -B3.255 -6.508 |-2478.236( -200.642 0.884 11.047
171 223.228 | 50.968 | -157.714 | -13.232 | 1108.078 327404 1.064 10.935
172 430.468 | 30.129 | -126.555 | -17.019 | -235543 | -777.634 0.705 27.914
173 J74.568 | 12.759 | -79.200 5.798 |[-1276.775| -1068.415 0,993 24.950
174 510,131 | 71.659 | 138.821 | -4.255 1052.746 | -1486.715 0.824 15.644
175 699.746 | 16,556 | -139.743 | 2,634 |-13540.000 | -2573.008 1.460 13532
176 979.864 | 66.701 | -57.244 4650 [-1177.463 | -2464.687 0.816 19.734
177 860.233 | 61.119 | 160.255 | -6.658 | -661.570 | -2097.523 1117 21.362
178 042.943 | 44.029 | -121.569 | -15.316 | -608.697 | 1988.2938 0.967 17.182
i3 600.629 | 10.105 | 130.537 | 10.666 386.121 -662.584 0.638 28.068
180 908.523 | 72404 | -0.577 1.169 2458.204 | 471.591 1.092 19.570
181 720116 37573 | -100.323 | 4104 [ -189%.446 | -1814.942 1.321 15531
182 868.406 | 29.545 | 57.759 15.829 |-1355.406| 29B87.391 0.734 14.827
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Table A-1: Scenario Parameters (continued)

Platform properties Position of the missile Cther
. . _ | Heading | Climb . ) Atmospheric | Firing
%fnr;ig? ATF:J:;:IE ‘u’l:erlno;l]t'f Angle Angle :Ea“::ﬁ \-Eax;s Attenuation | Angle
* | (degress) | (degrees)| " g (1/km)  |(degrees)
183 833.075 | 52.529 | 15635 -4.533 | 1933.393 572.007 1.367 22.450
184 090.140 | 63.060 | 126,346 | -0.575 | 2242536 | -996.918 1.325 21.972
185 595486 | 2497 | 117.272 | -9430 | 1064.996 | 1763.186 0.B64 16.124
186 720,607 | 18,987 | -8.090 17457 |[-1553.379| -1745.317 1.245 17.141
187 §20.65% | 26,513 | 36.801 12,639 [ -2475.2497 | -1146.508 0.91B8 16.7493
188 927.350 | 74.951 | -167.587 3.6 |-2737.095| -450.583 0.885 18.485
189 B72.272 | 50.002 | -87.637 16.188 | 1603.804 | 375.993 1117 27.902
190 4464 | 27.018 | 42,550 | -16.524 | -747.015 | -1875.714 1.418 13.761
191 J7B.099 | 53.974 | 148.205 | 12838 292348 | -2906.750 1.348 14.923
192 611.807 | 76.199 | 122.816 | 17.400 | 2840.479 | -764.842 0.776 11.749
193 |826.508 | 16.078 | 164.376 | 17.209 | -805.623 | -930.526 0.957 33.885
194 F73.283 | 6027 | 33.534 | -16.113F | 357.055 | -2741.4680 1.254 15.627
1595 F2IFIB | 47957 | -97.736 B.599 13470149 | -9394.692 1.306 23.934
196 §74.893 | 61.629 3453 B.279 1747.043 | -1015.986 0.726 23.908
197 |661.364 | 23.083 | -83.462 | 15.607 | -B0D3.393 | -2099.908 1431 16.392
198 B651.567 | 50.684 | -0.680 -17.615 90.979 -2680.830 0.736 13.653
155 675.738 | 55.282 | 52707 4.538 2723.150 | -1938.336 1375 11929
200 873.923 | 39.757 | 93.941 12,805 | 1149.732 | 2486.549 1080 17.693
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APPENDIX B

MEAN AND STANDART DEVIATION OF THE DATA SETS
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Table B-1:

Mean and Standard Deviation of T-Scenarios (Features Extracted By

Using Fourier Transform)

T-SCENARIOS (Features Extracted By Using Fourier Transform)

AZIMUTH ao(1)° a1 (2) b1(3) az(4) b2 (5)
Mean -8.9838 0 0.0025 0 0.0015
Std 102.7505 0.1693 0.2932 0.1042 0.1572
ELEVATION ao (6) a1 (7) b1(8) az2(9) b2(10)
Mean -16.5419 0.0151 -0.0749 0.0129 -0.037
Std 10.0352 0.1789 0.2889 0.1049 0.1541
AREA ao(11) a1 (12) b1(13) az(14) b2 (15)
Mean 8.7594 1.938 -2.4455 1.2848 -1.4485
Std 12.3473 9.3414 5.4014 7.876 3.694
DIGITAL (16) (17) b1(18) (19) b2 (20)
a a a
LEVEL 0 1 1 2 2

Mean 63.7848 0.7071 -1.9865 0.4307 -1.0103
Std 10.6374 2.6565 4.0287 1.9025 2.3486

> (1) Indicates the feature number
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Table B-2: Mean and Standard Deviation of F-Scenarios (Features Extracted By

Using Fourier Transform)

F-SCENARIOS (Features Extracted By Using Fourier Transform)

AZIMUTH ao(1)8 a1(2) b1 (3) az(4) b2 (5)
Mean -10.1180 -0.0051 0.0329 -0.005 0.0157
Std 104.6367 0.2633 0.5985 0.1679 0.3027
ELEVATION ao (6) a1 (7) b1 (8) a2(9) b2(10)
Mean -17.8549 0.0001 -0.0052 0.0006 -0.0026
Std 10.1255 0.1299 0.2353 0.0819 0.123
AREA ao(11) a1(12) b1 (13) az(14) b2 (15)
Mean 28.4078 -0.0401 0.3639 -0.0531 0.1776
Std 32.4068 2.5494 4.0462 1.5033 2.1041
DIGITAL
LEVEL a0 (16) a1(17) b1 (18) a2(19) b2 (20)
Mean 78.2607 -0.0032 0.0127 -0.0053 0.0079
Std 13.1386 1.876 2.4885 1.402 1.6022

% (1) Indicates the feature number
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Table B-3: Mean and Standard Deviation of T-Scenarios (Features Extracted By
Using Linear Fitting)

T-SCENARIOS (Features Extracted By Using Linear Fitting)

AZIMUTH a(1)’ b (2) se(a) (3) | se(b)(4) f(t) (5) rmse (6) r2 (7)
Mean 0.000 -8.940 0.014 0.960 -8.988 0.176 0.519
Std 0.045 | 102.760 0.012 1.115 | 102.790 0.148 0.353
ELEVATION a(8) b (9) se(a) (10) | se(b)(11) | f(t)(12) | rmse (13) | r2(14)
Mean 0.012 | -17.113 0.013 0.817 | -16.428 0.155 0.519
Std 0.046 10.651 0.013 1.062 9.999 0.156 0.357
AREA a(15) b(16) | se(a)(17) | se(b)(18) | f(t)(19) | rmse (20) | r2(21)
Mean 0.511 | -41.178 0.184 16.230 13.610 2.264 0.590
Std 1.652 | 152.530 1.110 99.460 26.955 13.622 0.337
DIGITAL a(22) b (23) se(a) (24) | se(b)(25) | f(t) (26) rmse (27) r2 (28)
LEVEL
Mean 0.330 33.196 0.410 24.689 66.924 5.038 0.270
Std 0.598 48.806 0.169 16.446 14.716 2.079 0.276

7 (1) Indicates the feature number
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Table B-4: Mean and Standard Deviation of F-Scenarios (Features Extracted By
Using Linear Fitting)

F-SCENARIOS (Features Extracted By Using Linear Fitting)

AZIMUTH a(1)8 b (2) se(a) (3) | se(b)(4) f(t) (5) rmse (6) r2 (7)
Mean -0.005 -9.885 0.025 1.304 | -10.167 0.306 0.520
Std 0.090 | 101.970 0.016 1.250 | 105.140 0.196 0.294
ELEVATION a(8) b (9) se(a) (10) | se(b)(11) | f(t)(12) | rmse (13) | r2(14)
Mean 0.001 | -17.893 0.012 0.606 | -17.847 0.146 0.452
Std 0.034 10.236 0.011 0.714 10.144 0.136 0.313
AREA a(15) b(16) | se(a)(17) | se(b)(18) | f(t)(19) | rmse (20) | r2(21)
Mean -0.057 33.201 0.174 8.236 27.864 2.137 0.193
Std 0.564 46.532 0.227 10.486 32.381 2.780 0.248
DIGITAL a(22) b (23) se(a) (24) | se(b)(25) | f(t) (26) rmse (27) r2 (28)
LEVEL
Mean -0.002 79.118 0.304 15.240 78.238 3.736 0.112
Std 0.333 21.502 0.143 10.385 13.776 1.752 0.156

¥ (1) Indicates the feature number
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APPENDIX C

HISTOGRAM PLOTS OF THE DATA SETS
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Histegrams of the Features Exracted by using Fourier Transform
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Figure C-1: Histograms of Features Extracted by Using Fourier Transform
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Histegrams of the Features Exracted by using Fourier Transform
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Figure C-1: Histograms of Features Extracted by Using Fourier Transform

(continued)
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Histograms of the Features Exracted by using Linear Fitting
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Figure C-2: Histograms of Features Extracted by Using Linear Fit
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Histograms of the Features Exracted by using Linear Fitting
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Figure C-2: Histograms of Features Extracted by Using Linear Fit (continued)
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Histoegrams of the Features Exracted by using Linear Fitting
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Figure C-2: Histograms of Features Extracted by Using Linear Fit (continued)
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APPENDIX D

CORRELATION MATRICES
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Figure D- 2: Correlation Matrix for F-Scenarios of FT-Set
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Figure D- 3: Correlation Matrix for T-Scenarios of LF-Set
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Figure D- 4: Correlation Matrix for F-Scenarios of LF-Set
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