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ABSTRACT 

MULTIPLE CLASSIFIER SYSTEMS FOR A GENERIC 

MISSLE WARNER 

Başıbüyük, Kubilay 

M. Sc., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Mustafa Kuzuoğlu 

June 2009, 111 Pages 

A generic missile warner decision algorithm for airborne platforms with an 

emphasis on multiple classifier systems is proposed within the scope of this thesis.  

 

For developing the algorithm, simulation data are utilized. The simulation data are 

created in order to cover a wide range of real-life scenarios and for this purpose a 

scenario creation methodology is proposed. The scenarios are simulated by a 

generic missile warner simulator and tracked object data for each scenario are 

produced. 

 

Various feature extraction techniques are applied to the output data of the scenarios 

and feature sets are generated. Feature sets are examined by using various statistical 

methods. The performance of selected multiple classifier systems are evaluated for 

all feature sets and experimental results are presented. 

 

Keywords: Multiple Classifier Systems, Feature Extraction, Pattern Recognition 
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ÖZ 

JENERİK BİR FÜZE İKAZ SİSTEMİ İÇİN ÇOKLU 

SINIFLANDIRICI SİSTEMLERİ 

Başıbüyük, Kubilay 

Yüksek Lisans, Elektrik Elektronik Mühendisligi Bölümü 

Tez Yöneticisi: Prof. Dr. Mustafa Kuzuoğlu 

Haziran 2009, 111 sayfa 

Bu tez kapsamında hava platformları için kullanılabilecek jenerik bir füze ikaz 

sistemi algoritması önerilmektedir. 

 

Algoritmayı geliştirmek için sentetik benzetim senaryoları hazırlanmıştır. Sentetik 

senaryolar hazırlanırken gerçek hayatta karşılaşılabilecek senaryoları en iyi şekilde 

temsil edebilme yeteneğine sahip bir veri kümesinin hazırlanmasına gayret edilmiş 

ve bu amaçla kullanılmak üzere bir yöntem önerilmiştir. Senaryolar jenerik füze 

ikaz simülatörü tarafından işlendikten sonra, senaryo içindeki takip edilmiş nesne 

verilerini içeren çıktılar oluşturulmuştur. 

 

Çeşitli öznitelik çıkarım yöntemleri senaryo çıktı verilerine uygulanmış ve öznitelik 

kümeleri oluşturulmuştur. Bu öznitelik kümeleri, çeşitli istatistiksel yöntemler 

kullanılarak incelenmiştir. Çoklu sınıflandırıcı sistemlerinin performansları, 

oluşturulan tüm öznitelik kümeleri için değerlendirilmiş ve deneysel çalışmaların 

sonuçları özet bir şekilde sunulmuştur. 

 

Anahtar Kelimeler: Çoklu Sınıflandırıcı Sistemleri, Örüntü Tanıma, Öznitelik 

Çıkarma 



vi 

 

 

 

 

 

 

 

 

 

To My Parents, 

My Brother 

and 

Tuna 

 



vii 

 

ACKNOWLEDGEMENTS 

I would like to express my deepest gratitude to my supervisor Prof. Dr. Mustafa 

Kuzuoğlu for his encouragements, guidance, advice, criticism and insight 

throughout the research. 

 

I would like to thank ASELSAN Inc. for facilities provided for the completion of 

this thesis and TUBITAK-BIDEB for the financial support they provided during my 

graduate study. 

 

I would like to forward my appreciation to all my friends and colleagues who 

contributed to my thesis with their continuous encouragement and friendships.  

 

I am very grateful to Tuna for her love, patience and understanding. 

 

Finally and mostly, I would like to thank to my parents and my brother, Çağatay. 

Without their love and support I would not have been able to complete this work. 



viii 

 

TABLE OF CONTENTS 

ABSTRACT............................................................................................................. iv 

ÖZ.............................................................................................................................. v 

ACKNOWLEDGEMENTS................................................................................... vii 

TABLE OF CONTENTS......................................................................................viii 

LIST OF TABLES .................................................................................................. xi 

LIST OF FIGURES ............................................................................................... xii 

LIST OF ABBREVIATIONS ............................................................................... xv 

CHAPTERS 

1 - INTRODUCTION .............................................................................................. 1 

1.1 Problem Definition............................................................................................... 1 

1.2 Methodology ........................................................................................................ 2 

1.3 Organization of the Thesis ................................................................................... 5 

2 - DATA SET GENERATION .............................................................................. 6 

2.1 General Information ............................................................................................. 6 

2.2 The Process of Creating Scenarios....................................................................... 7 

2.2.1 Scenario Parameters .............................................................................. 7 

2.2.2 Processing Steps of a Scenario.............................................................. 9 

2.2.3 Output Data ......................................................................................... 12 

2.3 Content of the Created Scenarios....................................................................... 13 

2.3.1 Scenario Generation Methodology ..................................................... 14 

2.3.2 Distribution of Scenario Parameters ................................................... 15 

2.3.3 Quantitative Information about Scenarios .......................................... 17 



ix 

3 - FEATURE EXTRACTION ............................................................................. 18 

3.1 General Information ........................................................................................... 18 

3.2 Definitions.......................................................................................................... 19 

3.3 Feature Extraction Methods ............................................................................... 21 

3.3.1 Modeling - Linear Fit .......................................................................... 21 

3.3.2 Modeling - Fourier Transform ............................................................ 25 

4 - ANALYSIS OF THE FEATURE SETS ......................................................... 32 

4.1 Introduction ........................................................................................................ 32 

4.2 Notation.............................................................................................................. 33 

4.3 Basic Statistical Parameters ............................................................................... 35 

4.4 Histograms ......................................................................................................... 38 

4.5 Correlation Analysis........................................................................................... 38 

4.6 Self Organizing Maps ........................................................................................ 39 

4.6.1 Brief Information about Self Organizing Maps .................................. 39 

4.6.2 Analysis............................................................................................... 40 

5 - CLASSIFICATION.......................................................................................... 44 

5.1 Introduction ........................................................................................................ 44 

5.2 Multiple Classifier Systems ............................................................................... 44 

5.3 Design criteria of MCS Systems ........................................................................ 46 

5.3.1 Diversity generation ............................................................................ 47 

5.3.1.1 Bagging ............................................................................................ 47 

5.3.1.2 Boosting ........................................................................................... 48 

5.3.1.3 Using Different Feature Subsets ...................................................... 50 

5.3.2 Combination rules ............................................................................... 50 

5.3.2.1 Majority Voting................................................................................ 51 

5.3.2.2 Weighted Majority Voting ............................................................... 52 

5.3.2.3 Borda Count Method........................................................................ 52 

5.3.2.4 Other Algebraic Combination Rules................................................ 53 

5.3.2.5 Behavior Knowledge Space ............................................................. 54 

5.3.2.6 Stacked Generalization..................................................................... 55 

5.3.3 Topology ............................................................................................. 56 



x 

6 - EXPERIMENTAL RESULTS ........................................................................ 58 

6.1 Methodology ...................................................................................................... 58 

6.1.1 Feature-based evaluation..................................................................... 58 

6.1.2 Scenario-based evaluation................................................................... 59 

6.2 Base Classifiers .................................................................................................. 61 

6.2.1 Decision Trees..................................................................................... 61 

6.3 Bagging .............................................................................................................. 65 

6.3.1 Bagging Result - 1............................................................................... 65 

6.3.2 Bagging Result - 2............................................................................... 68 

6.4 AdaBoost............................................................................................................ 70 

6.4.1 AdaBoost Result - 1 ............................................................................ 70 

6.4.2 AdaBoost Result - 2 ............................................................................ 72 

6.4.3 AdaBoost Result - 3 ............................................................................ 74 

6.5 Comparison of AdaBoost and Bagging ............................................................. 82 

6.6 Feature Grouping ............................................................................................... 84 

6.6.1 Feature Grouping Result - 1................................................................ 85 

6.6.2 Feature Grouping Result - 2................................................................ 86 

7 - CONCLUSION AND FUTURE WORK........................................................ 88 

REFERENCES....................................................................................................... 89 

APPENDICES ........................................................................................................ 92 



xi 

 

LIST OF TABLES

Table 2-1: Scenario parameters.................................................................................. 9 

Table 2-2: Sample output data of the GMW simulator software ............................. 13 

Table 2-3: Limit of the parameter values................................................................. 14 

Table 3-1: Time series in a scenario ........................................................................ 20 

Table 3-2: Features extracted from the linear fit...................................................... 22 

Table 3-3: Features extracted from the Fourier transform....................................... 28 

Table 4-1: Summary of features extracted by using Fourier Transform.................. 33 

Table 4-2: Summary of features extracted by using Linear Fitting ......................... 34 

Table 5-1: AdaBoost Algorithm .............................................................................. 49 

Table 5-2: BKS Example ......................................................................................... 55 

Table 5-3: Example training set setup...................................................................... 56 

Table A-1: Scenario Parameters .............................................................................. 93 

Table B-1: Mean and Standard Deviation of T-Scenarios (Features Extracted By 

Using Fourier Transform) ................................................................................... 99 

Table B-2: Mean and Standard Deviation of F-Scenarios (Features Extracted By 

Using Fourier Transform) ................................................................................. 100 

Table B-3: Mean and Standard Deviation of T-Scenarios (Features Extracted By 

Using Linear Fitting) ......................................................................................... 101 

Table B-4: Mean and Standard Deviation of F-Scenarios (Features Extracted By 

Using Linear Fitting) ......................................................................................... 102 



xii 

 

LIST OF FIGURES

Figure 1-1: Overview of methodology....................................................................... 4 

Figure 2-1: Scenario Setup......................................................................................... 8 

Figure 2-2: The workflow of the GMW simulator software for one time step........ 12 

Figure 2-3: Distribution of scenario parameters ...................................................... 16 

Figure 3-1: Line fitting example .............................................................................. 25 

Figure 3-2: Cosine basis functions for k=1, 2, 3 ...................................................... 27 

Figure 3-3: Sine basis functions for k=1, 2, 3 .......................................................... 27 

Figure 3-4: Windowing of track 110181 between 68-88 frames ............................. 30 

Figure 3-5: Windowing of track 110181 between 69-89 frames ............................. 30 

Figure 3-6: Evolution of Fourier coefficients a0, a1, a2 ............................................ 31 

Figure 3-7: Evolution of Fourier coefficients b1, b2 ............................................... 31 

Figure 4-1: Error bar chart for FT features .............................................................. 36 

Figure 4-2: Error bar chart for LF features .............................................................. 37 

Figure 4-3: Error bar chart for FT features (Normalized)........................................ 37 

Figure 4-4: Error bar chart for LF features (Normalized)........................................ 38 

Figure 4-5: Distance matrices for both feature sets ................................................. 41 

Figure 4-6: Distance matrices for both feature sets (3-D View).............................. 42 

Figure 4-7: Data on self organizing map - Voting Procedure.................................. 42 

Figure 4-8: Hit Histograms for features extracted by using Fourier transform ....... 43 

Figure 4-9: Hit Histograms for features extracted by using linear fitting................ 43 

Figure 5-1: Bagging Method.................................................................................... 48 

Figure 6-1: Example scenario based evaluation....................................................... 61 

Figure 6-2: Binary decision tree example ................................................................ 62 

Figure 6-3: Iterations versus Error / (FT-Set Bagging, Base Learner: Stumps) ...... 66 

Figure 6-4: Iterations versus Error / (LF-Set Bagging, Base Learner: Stumps) ...... 67 

Figure 6-5: LF-Set FT-Set Comparison / (Bagging, Base Learner: Stumps) .......... 67 

Figure 6-6: Iterations versus Error / (FT-Set Bagging, Base Learner: Decision Tree)

............................................................................................................................. 68 



xiii 

Figure 6-7: Iterations versus Error / (LF-Set Bagging, Base Learner: Decision Tree)

............................................................................................................................. 69 

Figure 6-8: LF-Set FT-Set Comparison / (Bagging, Base Learner: Decision Tree) 69 

Figure 6-9: Iterations versus Error / (FT-Set AdaBoost, Base Learner: Stumps).... 71 

Figure 6-10: Iterations versus Error / (LF-Set AdaBoost, Base Learner: Stumps).. 71 

Figure 6-11: LF-Set FT-Set Comparison / (AdaBoost, Base Learner: Stumps)...... 72 

Figure 6-12: Iterations versus Error / (FT-Set AdaBoost, Base Learner: Decision 

Trees)................................................................................................................... 73 

Figure 6-13: Iterations versus Error / (LF-Set AdaBoost, Base Learner: Decision 

Trees)................................................................................................................... 73 

Figure 6-14: LF-Set FT-Set Comparison / (AdaBoost, Base Learner: Decision Tree)

............................................................................................................................. 74 

Figure 6-15: FT-Set, Probability of Declaration vs. Score Value (All Folds) ......... 76 

Figure 6-16: FT-Set, Reaction Time vs. Score Value (All Folds) ........................... 76 

Figure 6-17: FT-Set, False Alarm vs. Score Value (All Folds) ............................... 77 

Figure 6-18: FT-Set, Probability of Declaration vs. Score Value (Mean Value) .... 77 

Figure 6-19: FT-Set, Reaction Time vs. Score Value (Mean Value)....................... 78 

Figure 6-20: FT-Set, False vs. Score Value (Mean Value)...................................... 78 

Figure 6-21: LF-Set, Probability of Declaration vs. Score Value (All Folds) ......... 79 

Figure 6-22: LF-Set, Reaction Time vs. Score Value (All Folds) ........................... 79 

Figure 6-23: LF-Set, False vs. Score Value (All Folds) .......................................... 80 

Figure 6-24: LF-Set, Probability of Declaration vs. Score Value (Mean Value) .... 80 

Figure 6-25: LF-Set, Reaction Time vs. Score Value (Mean Value)....................... 81 

Figure 6-26: LF-Set, False Alarm vs. Score Value (Mean Value)........................... 81 

Figure 6-27: Comparison of Bagging and Boosting / Base Learner: Stumps.......... 83 

Figure 6-28: Comparison of Bagging and Boosting / Base Learner: Decision Tree83 

Figure 6-29: Feature Grouping Setup ...................................................................... 84 

Figure 6-30: FT-Set Feature Grouping / Base Learner: Stumps.............................. 85 

Figure 6-31: LF-Set Feature Grouping / Base Learner: Stumps.............................. 86 

Figure 6-32: FT-Set Feature Grouping / Base Learner: Decision Tree ................... 87 

Figure 6-33: LF-Set Feature Grouping / Base Learner: Decision Tree ................... 87 

Figure C-1: Histograms of Features Extracted by Using Fourier Transform ........ 104 



xiv 

 

Figure C-2: Histograms of Features Extracted by Using Linear Fit ...................... 106 

Figure D- 1: Correlation Matrix for T-Scenarios of FT-Set .…………………….110 

Figure D- 2: Correlation Matrix for F-Scenarios of FT-Set................................... 110 

Figure D- 3: Correlation Matrix for T-Scenarios of LF-Set .................................. 111 

Figure D- 4: Correlation Matrix for F-Scenarios of LF-Set................................... 111 

  



xv 

 

 

LIST OF ABBREVIATIONS 

GMW : Generic Missile Warner 

LF : Linear Fit 

FA : False Alarm 

FT : Fourier Transform 

MCS : Multiple Classifier System 

MPOD : Mean Probability of Declaration 

MRT : Mean Reaction Time 

MW : Missile Warner 

ROC : Receiver Operating Characteristics 

TNFA : Total Number of False Alarms 



1 

 

CHAPTER 1 
 
 

INTRODUCTION 
 
 
 

1.1 Problem Definition 

Missile Warner (MW) can be defined as a system capable of detecting and 

declaring the missile threats against the platform on which it is installed. MW 

systems play a vital role in helping the survivability of the platforms in hostile 

environments. If early warning about the threat may be reported to a counter 

measure system by the MW, appropriate countermeasure methods can be applied 

and the probability of survival of the platform can be increased dramatically. The 

decision making algorithm is one of the key components of the system to increase 

the effectiveness of the MW. The main contribution of this thesis is the construction 

of a decision making algorithm based on multiple classifier systems for the use of a 

Generic Missile Warner (GMW) for airborne platforms. 

Contemporary MW systems mainly operate in infrared and ultraviolet spectrum and 

they can be considered as electro-optical systems. The infrared spectrum has the 

disadvantage of having a highly dense background clutter whereas in the ultraviolet 

spectrum the background is very low compared to the infrared spectrum. Within the 

context of this thesis, it is assumed that the MW system makes use of the ultraviolet 

spectrum. 

The MW should detect the radiation emitted from the threat, track the source of the 

radiation and classify the tracked entity by applying a decision making algorithm. 

Although the background clutter in the ultraviolet domain is relatively low, threats 

are not the only signals which are detected by the MW. In the band of the 
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frequencies occupied by the ultraviolet spectrum, many other sources which emit 

radiation exist, like fires, city lights and industrial facilities. These sources will be 

named as false alarms throughout the thesis and the main focus of this thesis is on 

proposing a feature extraction and classification system to discriminate the false 

alarms and threats. 

Designing a classification system for a GMW involves the joint optimization of 

three performance measures; namely probability of declaration, reaction time and 

number of false alarms. Probability of declaration indicates how successfully the 

GMW declares the threats. Reaction time is defined as the interval beginning from 

the detection of source to the declaration of the object as a threat. False alarms can 

be defined as the non-threatening sources which the GMW classifies as threats. 

It is worth to mention that, these measures are not equally important. Probability of 

declaration is the most vital performance measure. This measure should not be 

sacrificed for low false alarm rates or smaller reaction times. The second most 

important measure is the reaction time, which is desired to be as low as possible. 

False alarm is the measure that has the least significance among all. However false 

alarm rate should be kept at minimum in order to increase the reliability of the 

system. 

In the following section the methodology for creating and testing a GMW algorithm 

is explained. 

1.2 Methodology 

In order to develop an algorithm for a Generic Missile Warner (GMW) system, 

firstly a data set should be created. The data set is composed of entities called 

scenarios.  

A scenario can be defined as a setup consisting of a threat or a false alarm source, 

an atmosphere model and a platform carrying the GMW. In each scenario we have 

only one signal source that can be detected by the GMW which is labeled as a false 

alarm or a threat. In the threat scenarios, the signal source moves by simulating the 
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kinematic model of the missile and in the false alarm scenarios the signal source is 

stationary. The intensity characteristics of the signal source is time varying for both 

false alarm scenarios and threat scenarios. The details of the scenario generation 

process are explained in Section 2.1.  The scenarios are simulated by using the 

simulation environment of ASELSAN Inc.  

After scenario generation step, feature extraction methods are applied to the output 

data of the scenario simulator. In this thesis, two feature extraction methods are 

used, namely linear model fitting and Fourier Transform. The feature extraction 

process is repeated for each generated scenario output and a second data set 

consisting of feature sets are generated.  

By using the features extracted, the performance of the Multiple Classifier Systems 

including feature grouping, bagging and boosting are examined. Two performance 

evaluation methods are used. Firstly, feature-based evaluation is used and secondly 

a scenario-based evaluation is used. The scenario-based evaluation is only applied 

for boosting. 

The general overview of the methodology is depicted in Figure 1-1. 



4 

 

 

Figure 1-1: Overview of methodology 
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1.3 Organization of the Thesis 

The thesis is organized as follows: 

In Chapter 2, scenario generation methodology is explained, basic information 

about the GMW simulator is provided and a method for creating multiple scenarios 

is proposed. 

In Chapter 3, feature extraction methods are explained and a method for extracting 

information from the GMW simulator’s output is proposed. The feature extraction 

methods used within the content of this thesis are linear fit and Fourier transform. 

In Chapter 4, statistical properties of the data sets are examined. Self organizing 

maps are used to visualize the data sets. 

In Chapter 5, theoretical background about Multiple Classifier Systems (MCS) is 

provided. The design criteria for MCS are explained and various existing MCS 

methods are examined. 

In Chapter 6, experimental results are provided for selected MCS methods 

including bagging, boosting and feature grouping. 

In Chapter 7, a summary about the thesis and its results are given and possible 

future works are suggested. 

In Appendix – A, scenario parameters are listed. 

In Appendix – B, mean and standard deviation values for the data sets are given. 

In Appendix – C, histogram plots regarding the feature sets can be found. 

In Appendix – D, correlation matrices of the feature sets are given. 
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CHAPTER 2 
 
 

DATA SET GENERATION 
 
 
 

2.1 General Information 

In many classification problems, the characteristic of the data is one of the most 

important aspects that should be considered when designing the pattern recognition 

system. The data set plays the leading role in determining the feature extraction and 

classification methods. The system designer should collect adequate data to 

represent the characteristics of the environment and choose the best methods of 

feature extraction and classification to maximize the overall system performance. 

For a GMW (Generic Missile Warner), collecting real world data is essential for 

both designing and evaluating the accuracy of the system. However, due to the fact 

that this task involves missile firings in a controlled environment and excessive 

hours of false alarm recordings, generation of real world data is difficult and 

expensive. 

In this study, synthetic data are created for training and test purposes of the GMW 

algorithm. The simulation environment of ASELSAN Inc. is utilized in order to 

generate the data set that will be used throughout the study. 

The sections given below briefly discuss the process of creating scenarios, the 

content of the scenarios and the analysis of the created data. 
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2.2 The Process of Creating Scenarios 

The scenarios are created using GMW simulator software. GMW software takes the 

scenario parameters which are defined in Section 2.2.1 as inputs and outputs the 

features of the object for the given scenario.  

Since the main concern of this work is not on modeling of GMW systems, only 

basic information about the simulator is provided.  

The GMW simulator software is mainly composed of three parts:  

1. A camera model which maps the scenario information into digital objects 

2. Kinematic models for the moving objects  

3. Atmosphere modeling  

The output of the GMW software is a list of features belonging to the objects 

detected and tracked by the GMW on the platform. Details of the output data are 

given in Section 2.2.3. 

2.2.1 Scenario Parameters 

The classification problem investigated in this thesis involves deciding between two 

alternative classes, which will be called as “threats”, and “false-alarms”. Threat 

scenarios will be abbreviated as “t-scenarios” and false alarm scenarios will be 

abbreviated as “f-scenarios”. 

“Threat” scenarios are mainly missile engagement scenarios in which the platform 

carrying the GMW encounters an incoming missile.  

“False alarm” scenarios are the scenarios, which the system should not classify the 

sources which are detected as a threat.  
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For the purpose of covering a wide range of the real world engagement scenarios, 

the simulations are performed in a parameterized way. These parameters allow 

simulations to be fit on a grid of sampled possible real world scenarios.  

A suitably-defined rectangular coordinate system is used in defining all t and f 

scenarios. In Figure 2-1 a generic scenario setup is presented. The parameters of the 

scenario are indicated on the figure. 

 

Figure 2-1: Scenario Setup 

As it can be seen from the figure, the platform is located at the reference point of 

the x-y plane with an altitude of z. The variables seen on the figure with the 

addition of atmospheric parameters and the source specific parameters are 

considered as the main parameters that define a scenario. Firing angle is 

automatically calculated by using altitude and distance from origin parameters. 

The parameters of the t-scenarios and f-scenarios are divided into three main 

categories, namely aircraft, threat and atmosphere specific parameters. In Table 2-1 

the complete set of the scenario parameters are listed. 
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Table 2-1: Scenario parameters 

AIRCRAFT (FOR ALL SCENARIOS) 

Parameter Name Definition Units 

Altitude Altitude of the platform m 

Velocity Velocity of the platform m / s 

Heading Angle Heading of the platform degrees 

Climb Angle Climb angle of the platform degrees 

MISSILE (FOR T-SCENARIOS ONLY) 

Parameter Name Definition Units 

Missile Type Type of the missile (I-II-III) - 

Position of the missile on 

the x-y plane 

Position of the missile relative to platform m 

Firing Angle
1
 Firing angle of the missile  degrees 

FALSE ALARM (FOR F-SCENARIOS ONLY) 

Parameter Name Definition Units 

FA Source Type Type of the FA (I-II-III) - 

Position of the FA source 

on the x-y plane 

Position of the FA source relative to the platform m 

ATMOSPHERE (FOR ALL SCENARIOS) 

Parameter Name Definition Units 

Atmospheric Attenuation Parameter characterizing the atmospheric loss km
-1 

 

2.2.2 Processing Steps of a Scenario 

A scenario starts with an initial condition for the missile or the false alarm source 

and the platform. In all scenarios, the platform starts at the origin of the x-y plane of 

the coordinate system with a scenario specific altitude and the missile is aimed at 

                                                 
1 This is not a user defined parameter,  it is calculated automatically for a scenario 
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the platform. The position and type of the missile or the false alarm is determined 

by the scenario parameters. 

A platform can be defined as a moving body with an initial speed, heading angle 

and climb angle. The kinematic model of the platform is very simple. The platform 

moves with a constant velocity and moves in a linear fashion in the direction of the 

climb and heading angles.  

The missiles are characterized by their radiation emission levels over time and their 

kinematics. The GMW simulator software can simulate these behaviors of the 

missile models. For this study, three different kinds of generic missiles are used, 

each of which has a unique kinematic and emission model.  

The false alarm sources are characterized by their radiation emission levels over 

time. Since these entities are stationary, no kinematic model is used.  

The atmosphere is modeled to reflect the absorption characteristics of the 

environment. The radiation emitted from the missile propagates through the 

atmosphere and considerably attenuates before it reaches the platform. In order to 

simplify the scenario generation process, atmospheric attenuation is modeled with a 

single parameter (Table 2-1). Larger values of the atmospheric attenuation 

coefficient indicate strong attenuation of the signal. This parameter must be non-

negative. 

The irradiance coming from the missile or the false alarm source is detected by the 

camera model. The camera model tracks the source of the incoming irradiation and 

outputs the values mentioned in Table 2-2. The camera model is assumed to provide 

a full spherical coverage for the platform.  

The GMW simulator works in discrete-time with fixed time steps. At each time step 

the following operations are performed: 

1. Calculate the position of the platform by taking into account the position 

of the platform in the previous time step. 
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2. Calculate the position of the missile by taking into account the kinematic 

model of the missile and the position of the missile in the previous time 

step. 

3. Calculate the irradiance level of the missile by using the radiation 

emission profile of the missile. 

4. Irradiance emitted by the missile is propagated through the atmosphere 

to find the irradiance at the platform location.  

5. Construct the object seen by the camera model based on the irradiance 

level incident on the platform 

6.  Calculate the output data of the camera model. 

These steps are repeated until the scenario ends and an output data set consisting of 

the tracked properties of the object is formed. The workflow of the GMW simulator 

software for one time step is depicted in Figure 2-2. 



12 

 

 

Figure 2-2: The workflow of the GMW simulator software for one time step 

2.2.3 Output Data 

An entity detected by the GMW simulator is called an object. Detection time for a 

scenario is determined by the camera model of the GMW, the atmospheric 

attenuation and the emission level of the missile. If an object is detected by the 

GMW, it is tracked and temporal characteristics of the object are presented as the 

output, until the object is out of sight or the scenario is finished. The output data 

generated by the GMW simulator has three main components: 

1. Position: The angular position of the object with respect to the body of the 

platform in terms of azimuth and elevation. 

2. Area: The number of pixels illuminated on the digital image of the object 
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3. Digital level: The average digital level of the object that is projected on the 

GMW. 

Owing to the fact that the GMW simulator samples the scenario at defined time-

steps, the output data is a list of the above-mentioned components. To put it in 

another way, the GMW simulator outputs the temporal data of the tracked object, 

which are angular position, area and digital level of the object. In Table 2-2 the 

output data of the GMW simulator software is listed. 

Table 2-2: Sample output data of the GMW simulator software 

Frame 

Number 
Azimuth Elevation Area 

Digital 

Level 

1 142.49 4 46 88 

2 142.49 4 51 90 

3 142.48 3.2 56 88 

4 142.48 3.2 57 98 

5 142.48 3.2 66 104 

6 143.25 3.19 81 96 

7 142.48 3.2 105 96 

8 142.48 3.2 142 82 

9 143.25 3.19 194 91 

10 143.25 3.19 312 82 

 

The feature extraction process will be carried out on these data. The temporal 

correlation of the fields Azimuth, Elevation, Area and Digital Level will be 

exploited to get the information needed to classify the tracks. The details of the 

feature extraction process are presented in Section 3.3 

2.3 Content of the Created Scenarios 

In this section, a method to generate multiple scenarios is proposed. Scenarios are 

generated by using the combinations of the parameters described in Section 2.2.1. 

The scenario generation methodology is explained in Section 2.3.1.  
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2.3.1 Scenario Generation Methodology 

As mentioned before, a scenario is composed of the parameters listed in Table 2-1. 

Technically speaking, any combination of these parameters will result in a scenario. 

However, the parameters must have values between specific ranges in order to 

claim that the scenarios are realistic. To exemplify this, consider a scenario having 

an atmospheric attenuation value equal to one hundred. This would be unreal 

because such an extinction coefficient cannot occur in real life.  

For a better simulation of reality, the parameter values should be chosen within 

realistic limits and scenarios should cover a wide range of real world cases. In order 

to achieve this goal the following methodology is applied when creating scenarios: 

1. Sample each parameter from a uniform distribution. The parameter type 

determines the limits of the distribution.  The parameter values and their 

limits are listed below (Table 2-3): 

Table 2-3: Limit of the parameter values 

 Minimum Value Maximum Value Units 

Altitude 200 1000 m 

Velocity 0 80 m / s 

Heading Angle -180 180 degrees 

Climb Angle -20 20 degrees 

Position of the missile/false alarm 

on the x-axis 
-3000 3000 m 

Position of the missile/false alarm 

on the y-axis 
-3000 3000 m 

Atmospheric Attenuation 0.7 1.5 km
-1
 

 

2. Run the scenario for each missile type and false alarm source type. Since the 

simulation studies are carried out on three types of missiles and three types 

of false alarms, each physical scenario setup is executed six times. 
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3. Repeat this step until the desired number of scenarios are created. 

If we consider the parameter space as a whole, this method allows us to sample 

from the parameter space uniformly within the given limits owing to the fact that 

the individual parameters are assumed to be independent of each other.  

With the aim of preventing unrealistic scenarios, firing angle is limited between 10 

and 45 degrees. The firing angle (θf) is calculated by using parameters z (altitude), 

mx (position of the missile on the x-axis) and my (the position of the missile on the y-

axis) (Equation 2-1): 

 )arctan(
22

yx

f

mm

z

+
=θ  (2-1) 

 

2.3.2 Distribution of Scenario Parameters 

Since the parameters of the scenarios are sampled randomly, it is worth examining 

their statistical behavior. The histograms of the parameters altitude, velocity, 

heading angle, climb angle and atmospheric attenuation are shown in Figure 2-3. 

The missile positions are shown as a scatter plot on the x-y plane. Although firing 

angle is not a scenario parameter, it is also shown in because it summarizes the 

geometrical structure of the scenario. 

The altitude parameter does not show a uniform behavior. This stems from the fact 

that the firing angle is limited between 10 and 45 degrees. By imposing a constraint 

on the firing angle, the altitude and the position of the missile on the x-y plane 

become dependent parameters. This dependency shows itself not only in the 

distribution of the altitude but also in the scatter plot indicating the position. The 

neighborhood of the origin of the scatter plot indicating the position is not crowded. 
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Figure 2-3: Distribution of scenario parameters 
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2.3.3 Quantitative Information about Scenarios 

In this work a total of two hundred physical scenario setups are created using GMW 

simulator. Each scenario setup is used with three types of threats and three types of 

false alarms. By this way, a data set of six hundred threats and six hundred false 

alarms is produced.  

For each element of the data set there exists an output data set whose format is 

given in Section 2.2.3.  

The detailed list of the scenario setups can be found in Appendix - A. 
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CHAPTER 3 
 
 

FEATURE EXTRACTION 
 
 
 

3.1 General Information 

The main aim of a pattern recognition system is to assign labels to the samples 

described by a set of features. In order to achieve this task, the system should have 

at least two essential capabilities: 

1. Feature Extraction 

2. Classification 

Feature extraction is the process of producing valuable information from data for 

the use of the classifier. Generally, designing the feature extraction part of a pattern 

recognition system requires the accumulation of knowledge about the domain [1]. 

Alternatively, there exist various methods to extract features from the data set by 

using statistical tools without using any explicit knowledge about the domain of the 

problem [2].  

In this thesis, the challenge is to correctly classify a threat oncoming to a platform 

and to keep the false alarm rate at a minimum level. For the feature extraction part 

of this problem a modeling approach is utilized. The output data mentioned in 

Section 2.2.3 is processed to reflect the time characteristic of the data. The 

modeling approach includes the use of linear data fit and the Fourier transform. 
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3.2 Definitions 

Before going into the details of the feature extraction process, some definitions are 

given. The problem we are dealing with might be considered as a classification 

problem represented by a time series. A scenario is defined as a number of 

consecutive observations. In our case we have two kinds of scenarios, namely T and 

F. T represents threat scenarios, and F represents false-alarm scenarios. 
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Each observation at specific time instant in a T or F scenario is a k-dimensional 

vector: 

 [ ]tkttt xxxT ...21=  (3-3) 

 [ ]tkttt xxxF ...21=  Nt ≤≤1                          (3-4) 

If each observation within a scenario is represented by a row vector, we get a matrix 

of size N x k, where N is the duration of the scenario and k is the number of time 

series. In other words, we can represent each T-scenario or F-scenario by k distinct 

time-series. In our case there exists four time series for a scenario. We can express a 

scenario in the following format: 
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It must be noticed that each scenario may have a different duration, however all 

scenarios contain the same time-series, namely azimuth, elevation, area and digital 

level. The duration of a scenario is mainly determined by the total observation time 

during which the object is tracked by the camera model. 

Each of these time series gives information about a particular characteristic of the 

object tracked by the simulator. For convenience these characteristics are listed in 

Table 3-1.  

Table 3-1: Time series in a scenario 

Parameter Definition 

Azimuth Position of the object in azimuth 

Elevation Position of the object in elevation 

Area Area of the object 

Digital level Integer number between 0 and 255 
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3.3 Feature Extraction Methods 

In this section methods that will be used in the process of feature extraction are 

discussed. 

Most of the proposed time-series classification methods in the literature depend on 

high level representations, which include Fourier Transforms, Wavelet Transforms, 

Piecewise Linear Representations, Regression Tree Representations, and Symbolic 

Representations [3].  

Two methods of feature extraction will be examined within this thesis.  

The first method mainly depends on parameterization of the behavior of the time 

series by using the linear data fit approach. The other method makes use of the 

Fourier transform as a feature extraction approach. 

3.3.1 Modeling - Linear Fit 

For a GMW, it is essential to make the decisions for the threat and false alarm 

classes quickly and correctly. Also, the system must have the capability of dynamic 

decision making so that new information about the object could be used in the 

classification process. 

In a dynamic classification process, the information about the objects will be 

coming one after the other at a rate depending on the sampling rate of the GMW. 

Taking into account the fact that the information of the tracker in a single frame 

could not be used solely, a windowing approach should be applied to the data and 

this window should be moved with each frame.  

Assume that we have a window of size W. To start the feature extraction process, a 

simple linear polynomial fit is applied to each time series within this window. For 

the sake of simplicity “azimuth, elevation, area and digital level” are abbreviated as 

az, el, ar and dl respectively in the equations below. 
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 fitazfitazfitaz btatf ___ )( +=  (3-7) 

 fitelfitelfitel btatf ___ )( +=  (3-8) 

 fitarfitarfitar btatf ___ )( +=  (3-9) 

 fitdlfitdlfitdl btatf ___ )( +=  (3-10) 

The following features are extracted for each function by using the fit parameters 

and statistical values about the fitting process [4]. 

Table 3-2: Features extracted from the linear fit 

Number Feature Definition Equation 

1 a 1
st
 coefficient of the line 3-17 

2 b 2
nd
 coefficient of the line 3-18 

3 se(a) Standard error for “a”  3-20 

4 se(b) Standard error for “b”  3-21 

5 f(t) Fit value of the line at time t
2
 3-7..3-10

3
 

6 rmse Root mean square error of the fit 3-23 

7 r
2 

Square of multiple correlation coefficient 3-22 

Since there are four different time series, the linear fit operation will be applied to 

each of them and a total of twenty eight features will be extracted from a time 

window W.  

 

                                                 
2 “t” indicates the time at the end of the sliding window. 
3 For each time series the corresponding equation is used. 



23 

 

In order to give the mathematical definitions of the features, assume that we have a 

set of N data points in the two-dimensional plane, {yi, ti}. We are trying to fit a line 

to these data points in the least square sense: 

 battbaf +=),,(  (3-11) 

In order to calculate a and b,  we define the following parameters: 
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Then the parameters a and b can be calculated as [5]: 

 
tt

ty

S

S
a =  (3-17) 

 tayb −=  (3-18) 

In order to calculate the standard errors for parameters a and b, we will use the 

following definition: 
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Using 3-14, 3-15, 3-16 and 3-19 [5], the standard error for a and b is calculated as : 
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The multiple correlation coefficient and root mean square error is calculated as 

follows [5]: 
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A sliding window approach will be used to extract the linear fit coefficients. With 

each newly coming frame the window W is shifted to include the new information 

and exclude the oldest one. Throughout this thesis, W is chosen to be 20. The 

feature extraction process terminates when the end of the time series is reached. The 

methodology is explained in detail in Section 3.3.2. 

The logic behind using the parameters of a line fit is to represent the changing 

behavior of the time series. For example the first feature in Table 3-2 gives 

information about the general trend of the time series, a negative slope indicating a 

decrease in the values of the time series and a positive slope indicating an increase. 
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As another example, consider the standard errors of the first two parameters. These 

values give information about how reliable the first two features are. 

In Figure 3-1 an example related to the line fitting procedure is presented. Notice 

that the time series corresponding to the digital level is presented in the figure and 

the extracted features for the current window are also shown. 
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Figure 3-1: Line fitting example 

3.3.2 Modeling - Fourier Transform 

Fourier transform can be used to generate a suitable approximation of a time series 

as a weighted sum of some basis functions. The basis functions of the Fourier 

transform are cosine and sine functions.  
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Assume that the time series that we are dealing with consists of W discrete data 

points. Then the discrete time Fourier transform for this data can be defined as 

below: 

 ∑
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The coefficients ak and bk can be found by using the orthogonality principle. 

Basically, the orthogonality principle is used to take the inner product of the basis 

vectors with the data and normalizing the result in order to find the corresponding 

coefficients. The Fourier coefficients are found as:  
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The basis functions for the Fourier transform are shown in  

Figure 3-2 and Figure 3-3 for the frequencies corresponding to k=1, 2 and 3. When 

we are working in discrete-time, these functions will be samples taken at the 

defined time steps. 
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Figure 3-2: Cosine basis functions for k=1, 2, 3 
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Figure 3-3: Sine basis functions for k=1, 2, 3 
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If we use a window of length W, we can find W coefficients for this window length. 

The Fourier coefficients found for this window can be used to construct a feature 

vector for this time series. Forming an augmented feature vector which consists of 

Fourier coefficients will result in a vector having the form: 

 [ ]nn bababav ...1100=  (3-29) 

The Fourier coefficients can be visualized as an indicator of the frequency content 

of the data. The representation containing the first 3 basis functions will be used to 

construct the feature vectors for the data set. Since b0 is zero for all time series, our 

feature vector for a window of length W will be: 

 [ ]22110 babaav =  (3-30) 

A sliding window approach will be used to extract the Fourier coefficients of the 

data. With each newly coming frame, this window will be shifted to include the new 

information and exclude the oldest one.   

The Fourier coefficients will be calculated for each temporal data listed in Table 

2-2. Since we have 4 primary temporal data, namely azimuth, elevation, digital 

level and area, the feature extraction process will yield a vector of dimension 20. 

The features for one temporal data are shown in Table 3-3. 

Table 3-3: Features extracted from the Fourier transform  

Number Feature Definition Equation 

1 a0 The coefficient a0 (DC component) 3-26 

2 a1 The coefficient a1 3-25 

3 b1 The coefficient b1 3-28 

4 a2 The coefficient a2 3-25 

5 b2 The coefficient b2 3-28 

 



29 

 

In order to get a better understanding of the feature extraction methods, it is worth 

listing the operation steps of the feature extraction algorithm: 

1. Wait for the data to accumulate in a W frame-length window. In this work W 

is chosen to be 20. 

2. Apply Fourier transformation for each temporal data within this window and 

construct the following vector: 

 [ ]dlarelaz vvvvv =  (3-31) 

where 

 [ ]azazazazazaz babaav 22110=  (3-32) 

 [ ]elelelelelel babaav 22110=  (3-33) 

 [ ]arararararar babaav 22110=  (3-34) 

 [ ]dldldldldldl babaav 22110=  (3-35) 

3. Shift the sliding window by 1 and repeat the step 2 until the end of the data 

is reached. 

In the figures below (Figure 3-4 and Figure 3-5) the process mentioned above is 

visualized for a t-scenario. The feature extraction method is applied to digital level 

field of the temporal data. Two consecutive windows are used. First window is 

between frames 68-88 and the second window is between frames 69-89. The 

reconstructed waveform by using cosine and sine basis functions with k = 0, 1 and 2 

is also shown in the figures.  
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Figure 3-4: Windowing of track 110181 between 68-88 frames  
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Figure 3-5: Windowing of track 110181 between 69-89 frames 
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For this track the evolution of the Fourier coefficients is shown in Fig. 2-8 and Fig. 

2-9. In the graphs each point on the x-axis represents a sliding window and the lines 

correspond to Fourier coefficients. 

  
Figure 3-6: Evolution of Fourier coefficients a0, a1, a2 

  
Figure 3-7: Evolution of Fourier coefficients b1, b2 
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CHAPTER 4 
 
 

ANALYSIS OF THE FEATURE SETS 
 
 
 

4.1 Introduction 

In statistical pattern recognition we treat the feature vectors to be classified as 

random vectors. So it is of great importance to examine and investigate the 

statistical properties of these random vectors.  

We have two different data sets for two different feature extraction methods. The 

first data set is the result of modeling the time series within a predefined window 

size with a line and extracting the parameters mentioned in Table 3-2. The second 

data set is the result of applying the Fourier transformation within a predefined 

window size and extracting the Fourier coefficients. The set consisting of features 

extracted by using the line fit parameters will be abbreviated as LF-Set, and the set 

consisting of features extracted by using Fourier transform will be abbreviated as 

FT-Set. 

Both data sets share the property that the feature extraction operation is applied to 

all of the time series mentioned in Table 2-2. In other words, in each data set we 

have 4 sub-feature sets, extracted from the primary time series azimuth, elevation, 

area and digital level. 

In the following sections; the histograms of the feature sets and basic statistical 

parameters are examined Then, self organizing maps are used to visualize the data 

projected to two-dimensions.  
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4.2 Notation 

The feature sets used in this work are based on extracting information from four 

time series, namely azimuth, elevation, area and digital level. The abbreviations for 

each feature and their meaning are summarized in the tables below. 

Table 4-1: Summary of features extracted by using Fourier Transform 

Features Extracted by Using FourieFeatures Extracted by Using FourieFeatures Extracted by Using FourieFeatures Extracted by Using Fourierrrr Transform Transform Transform Transform    

Feature NumberFeature NumberFeature NumberFeature Number    AbbreviationAbbreviationAbbreviationAbbreviation    SourceSourceSourceSource    DefinitionDefinitionDefinitionDefinition    

1 Az/a0 Azimuth The coefficient a0 of Fourier Transform  

2 Az/a1 Azimuth The coefficient a1 of Fourier Transform 

3 Az/b1 Azimuth The coefficient b1 of Fourier Transform 

4 Az/a2 Azimuth The coefficient a2 of Fourier Transform 

5 Az/b2 Azimuth The coefficient b2 of Fourier Transform 

6 El/a0 Elevation The coefficient a0 of Fourier Transform  

7 El/a1 Elevation The coefficient a1 of Fourier Transform 

8 El/b1 Elevation The coefficient b1 of Fourier Transform 

9 El/a2 Elevation The coefficient a2 of Fourier Transform 

10 El/b2 Elevation The coefficient b2 of Fourier Transform 

11 Ar/a0 Area The coefficient a0 of Fourier Transform  

12 Ar /a1 Area The coefficient a1 of Fourier Transform 

13 Ar/b1 Area The coefficient b1 of Fourier Transform 

14 Ar/a2 Area The coefficient a2 of Fourier Transform 

15 Ar/b2 Area The coefficient b2 of Fourier Transform 

16 Dl/a0 Digital Level The coefficient a0 of Fourier Transform  

17 Dl /a1 Digital Level The coefficient a1 of Fourier Transform 

18 Dl/b1 Digital Level The coefficient b1 of Fourier Transform 

19 Dl/a2 Digital Level The coefficient a2 of Fourier Transform 

20 Dl/b2 Digital Level The coefficient b2 of Fourier Transform 
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Table 4-2: Summary of features extracted by using Linear Fitting 

Features Extracted by Using Fourier TransformFeatures Extracted by Using Fourier TransformFeatures Extracted by Using Fourier TransformFeatures Extracted by Using Fourier Transform    

Feature NumberFeature NumberFeature NumberFeature Number    AbbreviationAbbreviationAbbreviationAbbreviation    SourceSourceSourceSource    DefinitionDefinitionDefinitionDefinition    

1 Az/a Azimuth 1st coefficient of the line 

2 Az/b Azimuth 2nd coefficient of the line 

3 Az/se(a) Azimuth Standard error for “a”  

4 Az/se(b) Azimuth Standard error for “b”  

5 Az/f(t) Azimuth Fit value of the line at time t 

6 Az/rmse Azimuth Root mean square error of the fit 

7 Az/r2 Azimuth Square of multiple correlation coefficient 

8 El/a Elevation 1st coefficient of the line 

9 El/b Elevation 2nd coefficient of the line 

10 El/se(a) Elevation Standard error for “a”  

11 El/se(b) Elevation Standard error for “b”  

12 El/f(t) Elevation Fit value of the line at time t 

13 El/rmse Elevation Root mean square error of the fit 

14 El/r2 Elevation Square of multiple correlation coefficient 

15 Ar/a Area 1st coefficient of the line 

16 Ar/b Area 2nd coefficient of the line 

17 Ar/se(a) Area Standard error for “a”  

18 Ar/se(b) Area Standard error for “b”  

19 Ar/f(t) Area Fit value of the line at time t 

20 Ar/rmse Area Root mean square error of the fit 

21 Ar/r2 Area Square of multiple correlation coefficient 

22 Dl/a Digital Level 1st coefficient of the line 

23 Dl/b Digital Level 2nd coefficient of the line 

24 Dl/se(a) Digital Level Standard error for “a”  

25 Dl/se(b) Digital Level Standard error for “b”  

26 Dl/f(t) Digital Level Fit value of the line at time t 

27 Dl/rmse Digital Level Root mean square error of the fit 

28 Dl/r2 Digital Level Square of multiple correlation coefficient 
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4.3 Basic Statistical Parameters  

The mean and standard deviation can be considered as the most basic statistical 

parameters for a data set. It is essential to examine the behavior of these parameters 

since they will be used as normalization parameters for data set visualization and 

classification. Furthermore, these parameters may give information about the class 

separability. Although in higher dimensions joint-statistics of all features should be 

considered to calculate the class separability, it is worth to investigate the individual 

features. The mean values can be thought as a measure indicating how far away the 

class clusters are from each other and the standard deviations indicate the overlap 

between the class boundaries.  

In Appendix - B, the mean and standard deviation values for t and f-scenarios for 

each feature set are presented. In order to get a visual feeling about the mean and 

standard deviation values, error bar charts are shown in Figure 4-1 and Figure 4-2. 

In Figure 4-3 and Figure 4-4 normalized values for t and f-scenarios are shown. 

Normalization is based on the mean and standard deviation of the t- scenarios. 

Assume that the mean and the standard deviation of the t-scenarios of the first data 

set which consists of the features extracted by using linear fitting are abbreviated as 

µt,lf and σt,lf, respectively. And let the mean and the standard deviation of the t-

scenarios of the second data set which consists of the features extracted by using 

Fourier transform are abbreviated as µt,ft and σt,ft, respectively. Then for a vector x 

the normalization is done in the following way: 

 
ftt

fttft
ft

x
x
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=  (4-1) 
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lftlft
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x
x

,

,,~
σ
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=  (4-2) 

where x~ is the normalized version of the vector x. 

Inspecting Figure 4-3 and Figure 4-4 reveals that for some features the mean and 

the standard deviation values of t and f-scenario classes are not very different from 
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each other. This may stem from the fact that these features are unable to 

discriminate the classes as compared to the others. However before reaching such a 

decision, some feature selection algorithms must be applied and the selected 

features should be tested with appropriate classifiers. The mean and standard 

deviation values can only give an insight about the feature selection process. 
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Figure 4-1: Error bar chart for FT features  
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Figure 4-2: Error bar chart for LF features  
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Figure 4-3: Error bar chart for FT features (Normalized) 
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Figure 4-4: Error bar chart for LF features (Normalized) 

4.4 Histograms 

Histograms can be used to approximate the distribution of a data set. In this part the 

histograms of the individual features are examined. The features are normalized as 

explained in Section 4.3. In each histogram plot the distribution of both t and f-

scenarios are shown. The histogram plots are given in Appendix C. 

4.5 Correlation Analysis 

In this part the correlation between the features of the data set is examined. The 

correlation matrix is used to visualize the pair wise correlations among the features. 

The correlation matrices are calculated for t and f-scenarios of each data set. The 

correlation matrices are given in Appendix D. 
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4.6 Self Organizing Maps 

4.6.1 Brief Information about Self Organizing Maps 

Self Organizing Maps can be used to project higher dimensional data into two 

dimensions. A self organizing map consists of neurons on a two dimensional grid. 

Each neuron on the grid is associated with a k-dimensional prototype. Here k 

represents the number of features for a data set and each entry of the prototype 

vector is named as a weight. The neurons are connected to each other by a 

neighborhood relationship. Training phase of a self organizing map can be 

summarized as follows [21]: 

1. The prototype vectors associated with each neuron are randomly initialized.  

2. An input pattern from the data set is fed to the network. Let’s assume that 

the input pattern is x. 

 [ ]kxxxx ,...,, 21=  (4-3) 

3. The nearest prototype vector (in terms of Euclidian distance) is found: 

 }{min i
i

c wxwx −=−  (4-4) 

where wc indicates the nearest prototype vector in the map. 

4. The weights of the nearest prototype and its neighbors are increased. A 

proper neighborhood function can be defined as: 

 ))(/exp()( 22

0 trrhth cici σ−−=  (4-5) 

where r denotes the coordinate of the prototype vectors on the two dimensional 

grid, h0 is a constant and σ(t) is the variance. σ(t) should be chosen as a 
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decreasing function of time so that at each iteration of the algorithm the 

neighbourhood relations are confined to a smaller area. 

5.  The update equation for the weights is defined as: 

 [ ])()()()()1( twxthttwtw iciii −+=+ α  (4-6) 

where α(t) is a decreasing function of time and represents the learning rate. 

After the training process the neurons that have similar weights become clustered in 

the two dimensional grid. This property enables one to visualize higher dimensional 

data in two dimensions. 

4.6.2 Analysis 

The analyses are carried out by using self organizing map toolbox [22]. For each 

feature set, self organizing maps of 30x15 neurons are trained. Before the training, 

no feature selection algorithm is applied and all of the features from each data set 

are used.  

In the figures below, distance matrices which can be used to visualize the distance 

between neighboring neurons are shown. Each value on the map is the median 

distance of the neuron to each of its neighboring neurons. High values in Figure 4-5 

indicate the possible cluster borders and uniform low areas can be thought as 

clusters. We can see more than two clusters in each d-matrix in Figure 4-5 which 

are mainly due to three types of false alarms and three types of threats used in the 

scenario generation process. However in the scope of this thesis the main aim is to 

discriminate between two classes; namely, false alarms and threats and the work is 

concentrated on analyzing these two classes. 

Another way to visualize the data set on the self organizing map is achieved by 

using a simple voting procedure. First best matching units for each neuron in the 

map are calculated by using the complete data set, and then the label of the class 

which has more hits on a specific neuron is assigned. The best matching unit stands 
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for the nearest prototype in the self organizing map to a vector in a data set in terms 

of Euclidian distance. The resulting distribution is depicted in Figure 4-7 where T 

stands for threats and F stands for false alarm label. Here it can be seen that 

although the boundaries between classes are not smooth, t and f-scenarios are 

clustered and can be visually discriminated from each other. 

Hit histograms are another way to visualize the data set on the self organizing maps. 

They indicate how the best matching units of a data set are distributed over the self 

organizing map. The size of the shapes is directly proportional to the number of 

data hit on a neuron. The hit histograms are shown in  

Figure 4-8 and Figure 4-9. Examination of the hit histograms reveals that although 

the patterns from t and f-scenarios seem to be grouped together, there exist some 

ambiguous regions for each class. The patterns in these ambiguous regions are 

generally hard to classify and cannot be easily distinguished from each other. 

 

Figure 4-5: Distance matrices for both feature sets 
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Figure 4-6: Distance matrices for both feature sets (3-D View) 

 

Figure 4-7: Data on self organizing map – Voting Procedure 
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Figure 4-8: Hit Histograms for features extracted by using Fourier transform 

 

Figure 4-9: Hit Histograms for features extracted by using linear fitting 



44 

 

CHAPTER 5 
 
 

CLASSIFICATION 
 
 
 

5.1 Introduction 

If we look at the problem of developing a GMW algorithm from the pattern 

recognition viewpoint, building a successful classifier for the decision making 

algorithm is very important to increase the probability of declaration, to achieve 

faster reaction times and to obtain lower false alarm rates. An approach developed 

in the recent years in the pattern recognition domain is to combine the decisions of 

multiple classifiers instead of using only one classifier. By means of such an 

approach, better and more reliable classifiers can be built. 

In this section classification methods that use multiple classifiers will be examined 

and the design criteria for multiple classifier systems are explained. 

 

5.2 Multiple Classifier Systems 

The main motivation behind using multiple classifiers instead of a single one is the 

intuitive idea that the opinions of multiple decision makers will yield a more 

reliable conclusion than the opinion of a single decision maker.  

Traditional pattern recognition approaches aim to select the best classifier for a 

problem by comparing their error rates via validation data. However, in real world 

validation data may be collected in limited amounts preventing it to reflect the true 

characteristics of the data. In the worst case, this may result in constructing an 
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unsuccessful classifier for a problem. Using multiple classifiers avoids this risk by 

combining different classifiers’ decisions. 

MCS (Multiple Classifier Systems) are reported to be more successful in terms of 

classification performance than the individual members of the set [7]. The necessary 

conditions for the MCS to become more efficient than the individual members of 

the ensemble can be stated as follows: 1- The classifiers should achieve a 

classification rate better than the random guess, in other words they must have a 

probability of error less than 1/2.  2 – The classifiers should be diverse.  

Diversity implies that the individual classifiers should perform differently on the 

same data set. The increased diversity among the members of the classifier 

ensemble leads to a reduction of the final classification error of the ensemble [6].  

Hansen & Salamon (1990) [8] proved that if the classifiers in an ensemble are 

independent and their error rates are equal, then the error rate of the ensemble 

decreases with the increasing number of classifiers. Assume that an ensemble is 

composed of classifiers, each of which can correctly classify a pattern with a 

probability of 1-p and the errors they make are independent. Then the probability 

for a pattern to be misclassified k times by N classifiers is: 

 kNk pp
k

N
P −−








= )1(1  (5-1) 

Now, assume that we want to combine the decision of the individual classifiers by 

using the majority voting rule. (The details of the majority voting rule are explained 

in 5.3.2.1.) Than the probability that this pattern is misclassified becomes: 

 ∑
>

−−







=

N

Nk

kNk pp
k

N
P

2/
2 )1(  (5-2) 

It can be shown that the above equation is a monotonically decreasing function of 

N, provided that p is smaller than 0.5 and N is odd. Hansen & Salamon also propose 

a model for random error rates; however they report that this model predicts a far 
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superior performance to what they experimentally observe, owing to the fact that 

classifiers are not independent. 

Another important aspect in creating a MCS is the combination function of the 

classifier decisions. Although in the literature it is claimed that the role of the 

combination function is not as important as the diversity itself, Kuncheva [9] has 

shown its importance in the performance of MCSs. 

5.3 Design criteria of MCS Systems 

The discussion in the previous section points out the main factors that affect the 

design of a MCS. These factors determine the general structure of the MCS and its 

decision fusion mechanism.  

To be more precise, the issues that are needed to be considered when constructing 

the architecture of a MCS, can be listed as follows: 

1. Diversity: The classifiers should be as diverse as possible. The training 

phases, features used, the parameters of the classifiers or the classifiers 

themselves should be adopted to achieve the desired diversity among the 

ensemble. The individual classifiers must have an error rate better than the 

random guess. 

2. Combination Rule: The decision of the individual classifiers should be 

fused in a suitable way to minimize the probability of error. 

3. Topology: Determines how the operations and the interactions of the 

classifiers occur within the ensemble. Topologies that are generally used are 

serial, parallel and hybrid topologies.  
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5.3.1 Diversity generation 

Diversity among the members of the ensemble can be achieved by using various 

methods. Most famous methods to achieve diversity are bagging, boosting and 

using different feature subsets. 

5.3.1.1 Bagging 

Bagging is the acronym for “bootstrap aggregation”. Bootstrap sampling is a 

method for approximating the distribution underlying a data set [11]. In the method 

of bagging, diversity among the members of the ensemble is achieved by a certain 

manipulation of the training samples. 

The main idea behind bagging is to generate a subset of a training set by bootstrap 

sampling. The generated subset has the same size as the original set, however it 

contains replicated patterns in it. Breiman [10] proved that if the sample size for a 

training set is sufficiently large (i.e. as the training set size approaches infinity) 

probability of an instance to be replicated is about 0.632. The proof can be sketched 

as follows: 

Assume that we have a set of size N, then the probability for a pattern to be 

replicated as the sample size goes to infinity becomes: 

 632.0
1

1
1

11lim ≅−=



















−−=

∞→ eN
P

N

N
 (5-3) 

This suggests that about 63.2 percent of the training set is contained in the re-

sampled set created by using bagging. 

Subsequently these subsets are used to train individual classifiers and the decisions 

of the individual classifiers are combined by using a simple scheme such as 

majority voting or simple averaging. In order to get a better understanding of the 

operation, bagging method is illustrated in Figure 5-1. 
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Figure 5-1: Bagging Method 

5.3.1.2 Boosting 

This algorithm achieves the diversity among the members of the ensemble by 

changing the sampling distribution adaptively and it also proposes a combination 

method.  

The concept of boosting was proposed by Schapire in 1990 [12]. In this work, it 

was proven that any classifier with an error rate better than random guess can be 

used to build a better classifier. In other words, any weak leaner can be boosted into 

a strong learner.  

Later in 1997 Schapire and Freund [13] introduced the AdaBoost algorithm. This 

algorithm is similar to the bagging in approach, because successive classifiers are 

trained by sampling the training data. However, the major superiority of the 

algorithm is that the distribution from which the samples are drawn is iteratively 

updated to give more importance to the misclassified samples. In this way, 

successive classifiers are trained to compensate the errors of the previous ones. At 

the end of the training phase, weighted majority voting scheme is applied as a 
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combination rule for the classifiers. The weight for each classifier is determined by 

the error observed on the training sets.   

The boosting algorithm proposed by Schapire and Freund is summarized in Table 

5-1: 

 

Table 5-1: AdaBoost Algorithm 

Definitions: 

1. Consider a training set, E. Assume that there are n training instances 

denoted by x with their class labels denoted by y. 

},{ ii yxE = , i = 1,…,n 

2. Assume that the number of the classifiers in the ensemble is kmax  and each 

classifier is denoted by Sk 

3. Let the sampling distribution for the kth classifier be Wk 

)}(),....,1({ nWWW kkk = , k = 1,…, kmax 

4. The error for the kth classifier is Hk. 

Algorithm: 

W1 = 1/n (Initialize to uniform distribution) 

FOR (k = 1:kmax)  

1. Sample E by using Wk and create Ek  

2. Train Sk  by using Ek  and   calculate Hk. 

3. Calculate 

 ( )[ ]kk HHk −= 1ln21)(α                                                                        (5-4) 

4. Update the distribution: 
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                            (5-5) 

END 
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5.3.1.3 Using Different Feature Subsets 

Choosing different feature subsets may help the classifiers among the ensemble to 

achieve diversity. The subsets may be generated either by randomly picking some 

combination of the features from a larger feature set or by using different feature 

extraction techniques. The classifiers may be trained on these different subsets so 

that the ensemble may achieve a good performance.   

Random subspace method [14] is one of the most popular ensemble generations 

methods that aim to achieve classifier diversity by training classifiers on randomly 

selected feature subspaces.  

In [15] Cherkauer proposes a method in this direction in the context of image 

processing. For this purpose he introduces an ensemble of neural networks trained 

on different feature subsets. The input feature subsets are not selected randomly; 

however the domain knowledge of the designer is applied in creating subsets. By 

using different image processing techniques, different feature subsets are formed 

and the neural networks are trained by using these data. The performance of the 

method is claimed to be as high as the performance of a human expert. 

5.3.2 Combination rules 

In the previous section, methods for generating diverse classifiers are discussed. 

Although some methods, like AdaBoost, suggest a systematic algorithm to generate 

both diverse classifiers and a combination rule for their decisions, the ensemble 

decision mechanism must be handled properly for the successful performance of the 

multiple classifier systems.  

Xu et al, [16] provides a general framework to group similar output combination 

methods based on the information supplied by the classifiers. According to their 

taxonomy, there exist 3 kinds of output information: 

1. Abstract Level: A classifier only outputs a unique label 
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2. Rank Level: A classifier ranks the label of the candidate classes  

3. Output Level: A classifier outputs confidence values for classes. 

In addition to the output information, combination rules can also be categorized as 

trainable or non-trainable rules. Trainable rules require the parameters of the 

combination method to be estimated by using training data. For example, these 

parameters can be the weights of the classifiers for a weighted voting scheme. 

Furthermore, the output of the classifiers can also be treated as random vectors and 

provide input for a meta-classifier whose job is to output the decision of the 

ensemble. Non-trainable rules do not require training data, their operation is static 

rather than dynamic, and these rules do not have parameters that are needed to be 

adjusted. Majority voting is the most common example of non-trainable rules. 

The output information, structure of the voting rule (trainable vs. non-trainable) and 

diversity generation method affect the design of combination rules. In the following 

sections, the combination methods that are mainly used are examined. 

5.3.2.1 Majority Voting 

This method assumes that we have an ensemble of classifiers each of which outputs 

the information in abstract level. Final decision is made by counting the votes of 

each classifier. The class that achieves the highest vote among all is considered as 

the winner. The idea can be formulated mathematically as below: 

Assume that we have N classifiers and M classes, denoted by C and J respectively 

and the pattern to be classified is denoted by x. The label of the pattern x is assigned 

by the operator L as L(x). 

C = {C1, …, CN}  

J = { J1, …, JM } 

Let On,m denote the decision of the n
th classifier for the mth class: 
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Then, the class label is determined according to the formula below: 

 ∑
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maxarg)(  (5-7) 

5.3.2.2 Weighted Majority Voting 

Weighted Majority voting is an extension of the procedure mentioned above. In this 

case the output of each classifier is multiplied by a factor and the resulting decision 

values are summed. By using similar definitions mentioned in Section 5.3.2.1 and 

assuming that the weight of each classifier is Wn, then the weighted majority voting 

rule can be formulated as: 

 ∑
=≤≤

=
N

n

mnn
Mm

OWxL
1

,
1

maxarg)(  (5-8) 

Weighted majority voting is used in the AdaBoost algorithm. The weights of the 

classifiers in AdaBoost are calculated in the training phase of the algorithm being 

inversely proportional to the error they make on the training set. In fact, this can be 

considered as the most intuitive way of assigning weights to an ensemble of 

classifiers and can be applied to any other ensemble generation algorithm. 

5.3.2.3 Borda Count Method 

Borda Count method is an example of rank-level based combination methods. This 

method can be used to order the classes with ranks indicating the strength of the 

decision of the classifier. 
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Assume that we have N classifiers and M classes. The rank assigned by the 

classifier n to class m is indicated by Rn,m. Then the Borda Count label assignment 

procedure can be formulated as: 

 ∑
=≤≤

=
N

n

mn
Mm

RxL
1

,
1

maxarg)(  (5-9) 

5.3.2.4 Other Algebraic Combination Rules 

There are other algebraic combination rules that can be used for decision 

combination purposes. They are listed below: 

1. Maximum rule: Assuming that the classifiers provide continuous output 

levels, the decision of the classifier which yields the highest output score is 

considered as the final decision. The idea behind this rule is to trust the most 

confident classifier. However it is sensitive to badly trained classifiers. 

Assume that we have N classifiers, then label of the input pattern x 

becomes: 

 )(maxarg)(
1

xCxL n
Nn≤≤

=  (5-10) 

2. Minimum rule: In this case, depending on how Cn(x) is defined, the decision 

of the classifier which outputs the minimum score is chosen. 

 )(minarg)(
1

xCxL n
Nn≤≤

=  (5-11) 

3. Median rule: The median value of the classifiers’ output score is found and 

the corresponding label is assigned to the input pattern. 

 )()(
1

xCmedianxL n
Nn≤≤

=  (5-12) 
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4. Product Rule: The output score values of the classifiers are multiplied. The 

result is used to classify the input pattern. 

 ∏
=≤≤

=
N

n

n
Mm

xCxL
11

)(maxarg)(  (5-13) 

The final decision obtained by the product rule is highly affected by the least 

confident classifiers. In the worst case, this may lead to false decisions if a 

badly trained classifier exists in the ensemble. [17] 

5. Sum rule: This rule is similar to the majority voting rule. The main 

difference is that the output levels of the ensemble members are considered. 

The sum of the continuous outputs is used to reach the final decision. 

 ∑
=≤≤

=
N

n

mn
Mm

RxL
1

,
1

maxarg)(  (5-14) 

Kittler et al. [17] have reported that the sum rule outperforms the rules such 

as maximum, minimum, median, majority voting and product rule under 

most restrictive assumptions. This has also been found to be most robust 

method among all.  

5.3.2.5 Behavior Knowledge Space 

The approach of Behavior Knowledge Space for combining multiple classifiers is 

proposed by Huang and Suen [18]. In this method there exists two steps: 1- Finding 

all possible combinations of the classifiers’ decisions. 2- Taking into account the 

real labels of the classes in the training data, assign a decision for each combination 

of the classifiers’ decision. In order to exemplify the idea, assume that we have 3 

classifiers C = {C1, C2, C3} and 2 classes J = {J1, J2}. In Table 5-2 below all 

possible combinations of the classifiers are listed and next to them the number of 

classes that belong to these combinations are listed. 
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Table 5-2: BKS Example 

Assignment of Classifiers True Class 

C1 C2 C3 J1 J2 

J1 J1 J1 23 84 

J1 J1 J2 71 37 

J1 J2 J1 22 49 

J1 J2 J2 45 69 

J2 J1 J1 13 26 

J2 J1 J2 48 10 

J2 J2 J1 73 21 

J2 J2 J2 67 45 

  

For example we have an input pattern x that is classified by the ensemble as {J1, J2, 

J1}. If we look at the Table 5-2 it is seen that in the training set this combination 

belongs to class J1 for 22 times and belongs to class J2 for 49 times. So the final 

decision of the ensemble for this pattern becomes J2. 

It should be noted BKS method tries to estimate the posterior class probabilities for 

each combination. If we have M classifiers and N classes we need to estimate NM 

posterior probabilities which may be formidably large. This may ultimately lead to 

serious problems if the number of training samples is low compared to the number 

of posterior probabilities to be estimated [19]. 

5.3.2.6 Stacked Generalization 

Stacked generalization method aims to combine the decisions of individual 

classifiers by the help of a high-level classifier. The high-level classifier uses the 

outputs of the ensemble as its feature space and predicts the label of the input 

pattern [20]. 
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The training phase of the Stacked Generalization method for a 2-level architecture 

can be explained as follows: 

Assume that we have 3 level-0 classifiers C0
 = {C1

0
, C2

0
, C3

0
} and 1 level-1 

classifier C1
. Our training set is Z with 4 disjoint subsets Z1, Z2, Z3, and Z4.   

Train each classifier using one of the disjoint sets. An example training set 

combination is shown in the following table: 

Table 5-3: Example training set setup 

Training Set for  C1
0 

Training Set for  C2
0 

Training Set for  C3
0 

Z1 Z2 Z3 

Z2 Z3 Z4 

Z3 Z4 Z1 

 

Level-1 classifier is trained on the data set obtained by using the vectors formed 

from the outputs of the level-0 classifiers and the correct class labels. The input 

patterns to the level-0 classifiers are chosen from the unused disjoint set during the 

training.  

The major drawback of this approach is the fact that it requires a large amount of 

training data. Furthermore the output space of the low level classifiers may not be 

appropriate to be used as an input feature space.  

5.3.3 Topology 

Topology determines the way how the classifiers are trained and how the data is 

processed within the ensemble. Commonly used topologies are [23]: 

1. Serial: In this topology the classifiers are applied one after another 

producing a reduced set of possible classes for each pattern. By this way a 

difficult classification problem is gradually reduced to a simpler one. 
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2. Parallel: Each classifier in the ensemble operates in parallel. The input 

pattern to the ensemble is evaluated by each classifier and their decisions are 

combined to reach a final decision.  

3. Hybrid: This structure tries to exploit the fact that some classifiers perform 

better on particular patterns. A classifier selection rule is applied to input 

patterns and best classifier for the input pattern is used. 

4. Conditional: If the input pattern fed to the ensemble cannot be easily 

classified or appears to be ambiguous for the first classifier, then a 

secondary classifier is applied to resolve the conflict. By this way, a more 

complex classifier is used for difficult patterns and computational efficiency 

can be achieved. This structure becomes complicated if the number of 

classifiers is more than two. 
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CHAPTER 6 
 

EXPERIMENTAL RESULTS 
 
 
 

6.1 Methodology 

In this chapter, experimental results for selected multiple classifier systems are 

presented. The performance of the classifier ensembles are evaluated for both of the 

feature sets presented in Section 3.3. The set consisting of features extracted by 

using the line fit parameters will be abbreviated as LF-Set, and the set consisting of 

features extracted by using Fourier transform will be abbreviated as FT-Set.  

In order to evaluate the classification performance the approaches given below are 

followed. 

6.1.1 Feature-based evaluation 

In this evaluation method, all features extracted from the scenarios are pooled into a 

single data set. The features are labeled by the type of the scenario class that they 

are coming from, namely t-scenarios or f-scenarios.  

The performances of the classifiers are evaluated on this data set by using the K-

Fold Cross Validation procedure. In this method the data set is divided into K 

subsets of size N/K, where N is the size of the data set. Then one of the subsets is 

used as a test data set and the remaining K-1 subsets are merged to form the training 

set. This process is repeated for each of the K subsets and the classification 

accuracies are averaged.  
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6.1.2 Scenario-based evaluation  

As mentioned in Section 3.3.1 and 3.3.2, the features are extracted from the 

scenarios by using a sliding window approach. So each scenario can be visualized 

as a series of feature vectors.  

In order to get a better understanding about this method, the training and testing 

steps should be examined separately. 

Training: Firstly, scenarios that will be used in the training phase are selected. 

Then the features extracted from these scenarios are used as the training set for the 

classifier. The rest of the scenarios are used as test cases.  

Testing: For each scenario in the testing set, the feature vectors are evaluated by the 

classifier. By this way the series of feature vectors of a scenario is converted to a 

series of score values given by the classifier. The score value indicates the 

confidence level of the classifier for an input pattern.  

At this point, the score values are compared with a threshold and a decision about 

each feature vector of a scenario is made. To be more precise, the feature vectors of 

a scenario are replaced with score values first, and then, with labels of t-scenario 

and f-scenario.  

The main aim of the scenario-based evaluation method is to label the whole 

scenario, not only the features of the scenario, as threat or false alarm by using a 

simple decision rule. According to this decision rule, a scenario is considered as 

threat if P consecutive feature vectors for a scenario are labeled as t-class, 

otherwise the scenario is labeled as false alarm.  

After a scenario is labeled by the classifier, the following measures are extracted: 

• If the scenario is a t-scenario and the classifier has labeled it correctly the 

reaction time for this scenario is calculated as the number of frames from 

the beginning of the scenario to the frame before which P consecutive 

frames are labeled as threats. 
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• If the scenario is a t-scenario and the classifier has labeled the scenario as an 

f-scenario, then the scenario is considered as a non-declared scenario. 

• If the scenario is an f-scenario and the classifier has labeled the scenario as a 

t-scenario, then the scenario is considered as a false alarm. 

When the measures mentioned above are found for all the scenarios in the testing 

set, the following measures are calculated: 

Mean Probability of Declaration (MPOD): 

MPOD = (Total Number of Scenarios – Non-Declared Scenarios) / Total Number 

of Scenarios 

Mean Reaction Time (MRT): 

MRT = Mean Value for Reaction Time4 

Total Number of False Alarms (TNFA): 

TNFA = Total Number of False Alarm Scenarios 

The scenario based evaluation is depicted in Figure 6-1. The y-axis represents the 

output of the classifier and x-axis represents the number of the feature vector in the 

scenario. For each feature vector, the confidence output of the classifier is 

calculated and plotted. The vertical red line is the score threshold which is -4.5 in 

this case. If the score values are below this threshold for three consecutive frames, 

alarm is declared. The vertical red line indicates the number of the feature vector 

where the alarm is declared. 

                                                 
4 Only declared scenarios are used 
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Figure 6-1: Example scenario based evaluation 

6.2 Base Classifiers 

Each classifier used in a MCS is called a base classifier. In this thesis, decision trees 

and stumps will be used as base classifiers. 

6.2.1 Decision Trees 

Decision trees can be used to classify patterns by asking a series of questions. In a 

typical tree structure, the starting node where the first question about a pattern is 

asked is called the root node. The root node is connected to other nodes by 

branches. The terminal nodes from where no further branches appear are called leaf 

nodes. At leaf nodes no more decisions are made and the label of the pattern is 

assigned. In Figure 6-2, a typical binary decision tree is shown.  
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Figure 6-2: Binary decision tree example 

Decision trees can be used as base learners for building multiple classifier systems 

due to their unstable nature [26]. Instability means that small variations in the 

training data might result in a very different tree structure. The instability can be 

used to achieve the desired diversity among the members of the ensemble. 

The core ideas behind building a decision tree can be summarized as follows [1]: 

1. Number of splits 

Each split in a tree corresponds to a decision and divides the training data for 

that node into two parts. By applying consecutive splits to the training data, the 

tree is constructed and threshold values for each node are found. The maximum 

number of splits can be limited to increase the speed of the training phase of the 

classifier. The results of applying this idea to a multiple classifier system can be 

found in Section 6.4 under the heading Boosting Results – 3. 
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2. Measuring the node impurity and selecting the best feature for a node 

This part may be considered as the most important part of tree growing. The 

main aim is to determine the appropriate feature and threshold value for a node. 

Several impurity measures are proposed in the literature like entropy impurity, 

variance impurity, gini impurity and misclassification impurity. By using one of 

these measures, the best feature and the threshold value for a node is 

determined.  

3. Stopping the split of the tree 

The tree building process may be stopped by using one of the following criteria 

[26].  

The splitting process can be stopped 

• when the error in the validation set starts to increase, 

• when the impurity gain in the child nodes is below a certain threshold, 

• when the number of patterns to train a node is below a certain threshold, 

• when the complexity of tree is above a certain measure, 

• when further splitting is not beneficial. 

4. Pruning the tree 

Instead of applying stopping criteria, the tree may first be grown to the full size 

and then can be pruned to a smaller size to prevent the horizon effect. The 

horizon effect can be described as the lack of getting the further beneficial tree 

splits if the training process is stopped early. 

5. Assignment of labels to leaf nodes 

The label of each leaf is determined in the training process by the number of 

majority patterns (“t” or “f”) assigned to it.  
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In the experimental work the tree implementation of C4.5 [25] and its slightly 

modified java version J4.8 are used.  

C4.5 algorithm measures impurity by using the entropy concept. After the complete 

tree is built the tree is pruned. Pruning removes the branches with little or no gain. 

The pseudo code for C4.5 is given below: 

Node creation: Search all features in the training data and find the one dmin that 

separates the data with minimum entropy and find the corresponding threshold T. 

The node which has the condition is created  

 Txd <
min

  (6-1)

The training data is split into two by using the condition in (6-1) 

Algorithm: 

Root node is formed.  

Continue until the errors in the leaves are zero 

1. Choose the leaf connected to the parent node that has the biggest error. 

2. Construct a node by using the training data on this leaf.  

3. Replace the leaf in 1 with the node created in 2 

End 

Prune the tree after the operation. 

 

In the following sections related to the numerical results, decision trees and decision 

stumps are used as base classifiers. A decision stump can be described as a tree 

having only one split. In other words, there exists only a root node and two leaf 

nodes for a decision stump. 
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The output of a decision tree can be given as a confidence level. In Section 5.3.2, 

this is referred as output level information. The confidence level is calculated by 

using the error of the classifier on a leaf. When the decision tree is used in a MCS, 

the corresponding confidence level is multiplied by the weight of the decision tree 

assigned by the MCS. The weight assigning process for AdaBoost is explained in 

Section 5.3.1.2. 

6.3 Bagging 

Bagging method described in Section 5.3.1.1 is used in the experiments. The 

features are normalized with respect to the t-scenarios as explained in Section 4.3.  

Bagging is reported to be more effective when used with unstable classifiers. The 

term unstable here refers to the fact that small changes in the training data lead to 

significant changes at the output of the classifier [24]. Decision trees are used as the 

base learner in experiments since they exhibit an unstable behavior. To demonstrate 

the effect of the unstable learner, bagging results for stumps, which are not unstable 

learners, are also analyzed. 4-Fold Cross Validation is used as training and testing 

procedure.  

The results are presented in the following order: 

1. Feature Based Evaluation for Bagging – Base Classifier: Decision Stumps 

2. Feature Based Evaluation for Bagging – Base Classifier: Decision Trees 

6.3.1 Bagging Result – 1 

Stumps are not categorized as unstable classifiers. In fact, since they are decision 

trees with only one split (i.e. with two leaf nodes), training stumps on bootstrap 

replicates is expected to have no effect on the overall performance of the ensemble. 

In Figure 6-3 and Figure 6-4 error curves for FT-Set and LF-Set for each fold can 

be found. In Figure 6-5 the average error curves for both sets are compared. 
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Boosting decision stumps has no significant effect on the performance of the 

ensemble, since their structure cannot be changed by sampling the data with 

replacement. The average error curves indicate that the LF-Set seems to perform 

better than the FT-Set in this experiment. 
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Figure 6-3: Iterations versus Error / (FT-Set Bagging, Base Learner: Stumps) 
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Figure 6-4: Iterations versus Error / (LF-Set Bagging, Base Learner: Stumps) 
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Figure 6-5: LF-Set FT-Set Comparison / (Bagging, Base Learner: Stumps) 
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6.3.2 Bagging Result – 2 

The base classifier used in this experiment is Decision Trees. The decision tree 

implementation of J4.8 is used [25].  

In Figure 6-6, Figure 6-7 and Figure 6-8 the results are presented. Examining the 

figures clearly signifies that by using bagged decision trees we can increase the 

overall performance of the ensemble, which is an anticipated result. The 

comparison of two data sets reveals that LF-Set is superior to the FT-Set.  
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Figure 6-6: Iterations versus Error / (FT-Set Bagging, Base Learner: Decision Tree) 
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Figure 6-7: Iterations versus Error / (LF-Set Bagging, Base Learner: Decision Tree) 
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Figure 6-8: LF-Set FT-Set Comparison / (Bagging, Base Learner: Decision Tree) 
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6.4 AdaBoost 

The AdaBoost algorithm used in this part is given in Table 5-1. Weak classifiers 

used with AdaBoost algorithm are stumps and decision trees. 4-Fold Cross 

Validation is used as testing and training procedure. The features are normalized 

with respect to the t-scenarios as explained in Section 4.3.  

The experimental results are presented in the following order: 

1. Feature Based Evaluation for AdaBoost – Weak Classifier: Stumps    

2. Feature Based Evaluation for AdaBoost – Weak Classifier: Decision Trees 

3. Scenario Based Evaluation for AdaBoost – Weak Classifier: Decision Trees 

6.4.1 AdaBoost Result – 1 

The weak classifier that has been used in the experiments is stumps. 4-fold cross 

validation is used to train and test the data set. In Figure 6-9 and Figure 6-10, the 

error versus boosting iteration curves for all folds are shown. The average values for 

both data sets can be seen in Figure 6-11.  

Examining the results reveals that LF-Set performs better than the FT-Set in terms 

of error performance. Furthermore it is clear that increasing the number of boosting 

iterations improves the error rates for both feature sets. 

It can be seen in Figure 6-11 that the error for LF-Set is 0.065 and FT-Set is 0.087 

with 100 boosting iterations. The error curves seem to be asymptotically bounded 

around approximately 0.06 and 0.08. 
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Figure 6-9: Iterations versus Error / (FT-Set AdaBoost, Base Learner: Stumps) 
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 Figure 6-10: Iterations versus Error / (LF-Set AdaBoost, Base Learner: Stumps) 
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Figure 6-11: LF-Set FT-Set Comparison / (AdaBoost, Base Learner: Stumps) 

6.4.2 AdaBoost Result – 2 

In this part decision trees are used as weak classifier. The decision tree 

implementation is J4.8 [26].  

The error is calculated by using 4-fold cross validation method. The results are 

presented in Figure 6-12, Figure 6-13 and Figure 6-14.  

Boosting decision trees yields an error rate below 2% for FT-Set and below 1% for 

LF-Set. As the boosting iterations increase, the classifiers concentrate more on 

difficult samples and with each newly added classifier, the error rate decreases. 

Boosting above 50 iterations will seem to further increase the performance, 

however the trade off between memory requirements and performance increase 

should be considered before deciding to use more boosting iterations when 

designing a real system. 
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Figure 6-12: Iterations versus Error / (FT-Set AdaBoost, Base Learner: Decision 
Trees) 
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Figure 6-13: Iterations versus Error / (LF-Set AdaBoost, Base Learner: Decision 
Trees) 
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Figure 6-14: LF-Set FT-Set Comparison / (AdaBoost, Base Learner: Decision Tree) 

6.4.3 AdaBoost Result – 3 

In this part the Receiver Operating Characteristics (ROC) of the AdaBoost is 

examined. In order to decrease the computational burden, the AdaBoost algorithm 

is iterated 20 times and the trees are allowed to make 10 maximum splits. 

The AdaBoost algorithm with decision trees is modified to output confidence levels 

instead of class labels so that the effect of applying different score thresholds on the 

performance of the system can be examined. 

The scenario based training and evaluation are explained in 6.1.2. According to this 

methodology, ROCs for probability of declaration, reaction time and number of 

false alarms are obtained for all folds. Then the mean of these folds are presented as 

the final result. 

In Figure 6-15, Figure 6-16 and Figure 6-17 the ROC for FT set can be seen. The 

ROCs are obtained for all folds. In Figure 6-18 Figure 6-19 and Figure 6-20 the 

average values of these curves are presented to summarize the characteristics of FT-
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Set. From the figures it is clearly seen that as the score value increases, the 

probability of declaration increases, warning time decreases and number of false 

alarms increases. The optimization for score threshold can be made by using one of 

the ROC curves in Figure 6-18 Figure 6-19 and Figure 6-20. For example if you 

allow 4 false alarms you will get 99.5 POD and 39.09 frames reaction time on the 

average. It is obvious that if higher POD and lower warning time are desired than a 

relatively small amount of false alarms should be tolerated. 

The results for LF-Set are presented in Figure 6-21, Figure 6-22, Figure 6-23, 

Figure 6-24, Figure 6-25 and Figure 6-26 by using the same order explained for FT-

Set. The same trade-off in the ROC curves are also applicable for LF-Set.  

Comparing the average ROC curves for LF-Set and FT-Set reveals that LF-Set 

performs better than the FT-Set in terms of scenario based evaluation. Because the 

ROC for mean reaction time and false alarm of the LF-Set are below their ROC 

counterparts of the FT-Set, which in turn means that they result in better 

performance for the same score value. Furthermore the ROC for probability of 

declaration of LF-Set starts to decrease at lower score values compared to the other 

one. 



76 

 

-5 0 5
0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02
FT-Set / PoD versus Score Value

Score Values

P
o
D

 

 

Fold 1

Fold 2

Fold 3

Fold 4

 

Figure 6-15: FT-Set, Probability of Declaration vs. Score Value (All Folds) 
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Figure 6-16: FT-Set, Reaction Time vs. Score Value (All Folds) 
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Figure 6-17: FT-Set, False Alarm vs. Score Value (All Folds) 
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Figure 6-18: FT-Set, Probability of Declaration vs. Score Value (Mean Value) 
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Figure 6-19: FT-Set, Reaction Time vs. Score Value (Mean Value) 
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Figure 6-20: FT-Set, False vs. Score Value (Mean Value) 
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Figure 6-21: LF-Set, Probability of Declaration vs. Score Value (All Folds) 
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Figure 6-22: LF-Set, Reaction Time vs. Score Value (All Folds) 
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Figure 6-23: LF-Set, False vs. Score Value (All Folds) 
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Figure 6-24: LF-Set, Probability of Declaration vs. Score Value (Mean Value) 



81 

 

-5 0 5
20

25

30

35

40

45

50

55
LF-Set / (Mean) Reaction Time versus Score Value

Score Values

F
ra

m
e
s

52.79

43.77

36.49

30.32

26.39

24.16
23.45 23.13 23.04 23.00 23

 

Figure 6-25: LF-Set, Reaction Time vs. Score Value (Mean Value) 
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Figure 6-26: LF-Set, False Alarm vs. Score Value (Mean Value) 
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6.5 Comparison of AdaBoost and Bagging 

In this part, the feature-based results of AdaBoost algorithm and Bagging are 

summarized and presented in order to compare the performance of both algorithms. 

The error versus iteration curves of AdaBoost and Bagging with stumps used as 

base learner can be found in Figure 6-27. The following conclusions may be drawn 

from the figure: 

• Bagging stumps does not increase the performance for both sets. The reason 

for this is the fact that the stumps are not unstable classifiers. 

• Boosting stumps for both sets increase the performance of the ensemble. 

• LF-Set performs better than the FT-Set. 

The error versus iterations curves of AdaBoost and Bagging with decision trees 

used as base learner can be found in Figure 6-28. The following conclusions may be 

drawn from the figure: 

• For both sets, increasing the iterations for bagging and boosting decreases 

the error rate. 

• Bagging performs better than boosting at the first iterations; however as the 

iterations increase, boosting concentrates more on difficult patterns and 

outperforms bagging. 

• LF-Set performs better than the FT-Set for each case. 
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Figure 6-27: Comparison of Bagging and Boosting / Base Learner: Stumps 
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Figure 6-28: Comparison of Bagging and Boosting / Base Learner: Decision Tree 
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6.6 Feature Grouping 

The main aim of this section is to investigate the effect of combining the decision of 

classifiers trained on features extracted from each primary time series. The general 

architecture is summarized in Figure 6-29. 

 

Figure 6-29: Feature Grouping Setup 

The features are grouped in a natural manner. The first group consists of features 

coming from Azimuth and Elevation. The second group is composed of features 

coming from Area and the last group is composed of features coming from Digital 
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applied as the combining rule. Results are organized in the following manner: 
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6.6.1 Feature Grouping Result – 1 

The results in Figure 6-30 and Figure 6-31 indicate that the stumps as a base learner 

did not yield good performance. The results for all folds and their average values 

are presented in the figures. 

The output of the ensemble is slightly better than the best classifier with FT-Set and 

worse than the best classifier in LF-Set. This result is mainly due to the lack of 

classifier diversity that cannot be achieved with stumps. The individual classifiers 

should correctly classify different patterns in order the ensemble decision could 

achieve a better performance than the best classifier which, in the case with stumps, 

cannot be observed. 
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Figure 6-30: FT-Set Feature Grouping / Base Learner: Stumps 
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Figure 6-31: LF-Set Feature Grouping / Base Learner: Stumps 

6.6.2 Feature Grouping Result – 2 

Feature grouping seems to be effective when used with decision trees as a base 

learner. In Figure 6-32 and Figure 6-33, the results for both sets can be examined. 

The overall classification error of the system is better than the best individual 

classifier in the set. It shows that the patterns that are misclassified by the best 

classifier are correctly classified by the other two classifiers in the set, which, in 

turn helps the system to output a better performance.  
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Figure 6-32: FT-Set Feature Grouping / Base Learner: Decision Tree 
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Figure 6-33: LF-Set Feature Grouping / Base Learner: Decision Tree 
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CHAPTER 7 
 
 

CONCLUSION AND FUTURE WORK 
 
 
 

In this thesis, a decision making algorithm for a Generic Missile Warner based on 

Multiple Classifier Systems is proposed. For this purpose, simulation data are 

generated. A method for generating a wide range of real life scenarios is proposed. 

Two feature extraction methods, namely Fourier Transform and linear line fit, are 

applied.  

For the classification part, experiments are carried out by using the MCS methods 

bagging, AdaBoost and feature grouping. Decision trees and stumps are used as 

base learners. 4-fold cross validation method is used in evaluating the performance 

of the classifiers. 

Two kinds of evaluation methods are proposed; one is feature based evaluation and 

the other is scenario based evaluation. In the feature based evaluation, AdaBoost 

algorithm with decision trees as base learners performed better than the other 

methods. The scenario based evaluation is carried out for only AdaBoost and 

corresponding ROC curves for probability of declaration, number of false alarms 

and reaction time are calculated and very promising results are achieved. 

In all classification methods, the features extracted by using linear fitting 

outperformed the features extracted by using the Fourier Transform. 

As a future work, effect of different base learners to the MCS should be 

investigated and the experimental results should be tested with real data. Also 

different feature extraction methods using statistical approaches should be tested.  
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APPENDIX A  

SCENARIO PARAMETER LIST 
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Table A-1: Scenario Parameters 
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Table A-1: Scenario Parameters (continued) 
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Table A-1: Scenario Parameters (continued) 
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Table A-1: Scenario Parameters (continued) 
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Table A-1: Scenario Parameters (continued) 
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APPENDIX B  

MEAN AND STANDART DEVIATION OF THE DATA SETS 
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Table B-1: Mean and Standard Deviation of T-Scenarios (Features Extracted By 
Using Fourier Transform) 

T-SCENARIOS  (Features Extracted By Using Fourier Transform) 

AZAZAZAZIMUTHIMUTHIMUTHIMUTH    aaaa0 0 0 0 (1)(1)(1)(1)5555    aaaa1 1 1 1 (2)(2)(2)(2)    bbbb1 1 1 1 (3)(3)(3)(3)    aaaa2 2 2 2 (4)(4)(4)(4)    bbbb2 2 2 2 (5)(5)(5)(5)    

MeanMeanMeanMean    -8.9838 0 0.0025 0 0.0015 

StdStdStdStd    102.7505 0.1693 0.2932 0.1042 0.1572 

ELEVATIONELEVATIONELEVATIONELEVATION    aaaa0 0 0 0 (6)(6)(6)(6)    aaaa1 1 1 1 (7)(7)(7)(7)    bbbb1 1 1 1 (8)(8)(8)(8)    aaaa2 2 2 2 (9)(9)(9)(9)    bbbb2 2 2 2 (10)(10)(10)(10)    

MeanMeanMeanMean    -16.5419 0.0151 -0.0749 0.0129 -0.037 

StdStdStdStd    10.0352 0.1789 0.2889 0.1049 0.1541 

AREAAREAAREAAREA    aaaa0 0 0 0 (11)(11)(11)(11)    aaaa1 1 1 1 (12)(12)(12)(12)    bbbb1 1 1 1 (13)(13)(13)(13)    aaaa2 2 2 2 (14)(14)(14)(14)    bbbb2 2 2 2 (15)(15)(15)(15)    

MeanMeanMeanMean    8.7594 1.938 -2.4455 1.2848 -1.4485 

StdStdStdStd    12.3473 9.3414 5.4014 7.876 3.694 

DIGITAL DIGITAL DIGITAL DIGITAL 
LEVELLEVELLEVELLEVEL    

aaaa0 0 0 0 (16)(16)(16)(16)    aaaa1 1 1 1 (17)(17)(17)(17)    bbbb1 1 1 1 (18)(18)(18)(18)    aaaa2 2 2 2 (19)(19)(19)(19)    bbbb2 2 2 2 (20)(20)(20)(20)    

MeanMeanMeanMean    63.7848 0.7071 -1.9865 0.4307 -1.0103 

StdStdStdStd    10.6374 2.6565 4.0287 1.9025 2.3486 

 

 

 

 

 

                                                 
5 (1) Indicates the feature number 
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Table B-2: Mean and Standard Deviation of F-Scenarios (Features Extracted By 
Using Fourier Transform) 

F-SCENARIOS  (Features Extracted By Using Fourier Transform) 

AZIMUTHAZIMUTHAZIMUTHAZIMUTH    aaaa0 0 0 0 (1)(1)(1)(1)6666    aaaa1 1 1 1 (2)(2)(2)(2)    bbbb1 1 1 1 (3)(3)(3)(3)    aaaa2 2 2 2 (4)(4)(4)(4)    bbbb2 2 2 2 (5)(5)(5)(5)    

MeanMeanMeanMean    -10.1180 -0.0051 0.0329 -0.005 0.0157 

StdStdStdStd    104.6367 0.2633 0.5985 0.1679 0.3027 

ELEVATIONELEVATIONELEVATIONELEVATION    aaaa0 0 0 0 (6)(6)(6)(6)    aaaa1 1 1 1 (7)(7)(7)(7)    bbbb1 1 1 1 (8)(8)(8)(8)    aaaa2 2 2 2 (9)(9)(9)(9)    bbbb2 2 2 2 (10)(10)(10)(10)    

MeanMeanMeanMean    -17.8549 0.0001 -0.0052 0.0006 -0.0026 

StdStdStdStd    10.1255 0.1299 0.2353 0.0819 0.123 

AREAAREAAREAAREA    aaaa0 0 0 0 (11)(11)(11)(11)    aaaa1 1 1 1 (12)(12)(12)(12)    bbbb1 1 1 1 (13)(13)(13)(13)    aaaa2 2 2 2 (14)(14)(14)(14)    bbbb2 2 2 2 (15)(15)(15)(15)    

MMMMeaneaneanean    28.4078 -0.0401 0.3639 -0.0531 0.1776 

StdStdStdStd    32.4068 2.5494 4.0462 1.5033 2.1041 

DIGITAL DIGITAL DIGITAL DIGITAL 
LEVELLEVELLEVELLEVEL    

aaaa0 0 0 0 (16)(16)(16)(16)    aaaa1 1 1 1 (17)(17)(17)(17)    bbbb1 1 1 1 (18)(18)(18)(18)    aaaa2 2 2 2 (19)(19)(19)(19)    bbbb2 2 2 2 (20)(20)(20)(20)    

MeanMeanMeanMean    78.2607 -0.0032 0.0127 -0.0053 0.0079 

StdStdStdStd    13.1386 1.876 2.4885 1.402 1.6022 

 

 

 

 

 

 

                                                 
6 (1) Indicates the feature number 
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Table B-3: Mean and Standard Deviation of T-Scenarios (Features Extracted By 
Using Linear Fitting) 

T-SCENARIOS  (Features Extracted By Using Linear Fitting)    

AZIMUTHAZIMUTHAZIMUTHAZIMUTH    aaaa    (1)(1)(1)(1)7777    b (2)b (2)b (2)b (2)    se(a)se(a)se(a)se(a)    (3)(3)(3)(3)    se(b)se(b)se(b)se(b)    (4)(4)(4)(4)    f(t)f(t)f(t)f(t)    (5)(5)(5)(5)    rmse (6)rmse (6)rmse (6)rmse (6)    rrrr2222 (7) (7) (7) (7)    

MeanMeanMeanMean    0.000 -8.940 0.014 0.960 -8.988 0.176 0.519 

StdStdStdStd    0.045 102.760 0.012 1.115 102.790 0.148 0.353 

ELEVATIONELEVATIONELEVATIONELEVATION    aaaa    (8)(8)(8)(8)    b (9)b (9)b (9)b (9)    se(a)se(a)se(a)se(a)    (10)(10)(10)(10)    se(b)se(b)se(b)se(b)    (11)(11)(11)(11)    f(t)f(t)f(t)f(t)    (12)(12)(12)(12)    rmse (13)rmse (13)rmse (13)rmse (13)    rrrr2222 (14) (14) (14) (14)    

MeanMeanMeanMean    0.012 -17.113 0.013 0.817 -16.428 0.155 0.519 

StdStdStdStd    0.046 10.651 0.013 1.062 9.999 0.156 0.357 

AREAAREAAREAAREA    aaaa    (15)(15)(15)(15)    b b b b (16)(16)(16)(16)    se(a)se(a)se(a)se(a)    (17)(17)(17)(17)    se(b)se(b)se(b)se(b)    (18)(18)(18)(18)    f(t)f(t)f(t)f(t)    (19)(19)(19)(19)    rmse (20)rmse (20)rmse (20)rmse (20)    rrrr2222 (21) (21) (21) (21)    

MeanMeanMeanMean    0.511 -41.178 0.184 16.230 13.610 2.264 0.590 

StdStdStdStd    1.652 152.530 1.110 99.460 26.955 13.622 0.337 

DIGITAL DIGITAL DIGITAL DIGITAL 
LEVELLEVELLEVELLEVEL    

aaaa    (22)(22)(22)(22)    b (23)b (23)b (23)b (23)    se(a)se(a)se(a)se(a)    (24)(24)(24)(24)    se(b)se(b)se(b)se(b)    (25)(25)(25)(25)    f(t)f(t)f(t)f(t)    (26)(26)(26)(26)    rmse (27)rmse (27)rmse (27)rmse (27)    rrrr2222 (28) (28) (28) (28)    

MeanMeanMeanMean    0.330 33.196 0.410 24.689 66.924 5.038 0.270 

StdStdStdStd    0.598 48.806 0.169 16.446 14.716 2.079 0.276 

 

 

 

 

 

 

                                                 
7 (1) Indicates the feature number 
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Table B-4: Mean and Standard Deviation of F-Scenarios (Features Extracted By 
Using Linear Fitting) 

F-SCENARIOS  (Features Extracted By Using Linear Fitting)    

AZIMUTHAZIMUTHAZIMUTHAZIMUTH    aaaa    (1)(1)(1)(1)8888    b (2)b (2)b (2)b (2)    se(a)se(a)se(a)se(a)    (3)(3)(3)(3)    se(b)se(b)se(b)se(b)    (4)(4)(4)(4)    f(t)f(t)f(t)f(t)    (5)(5)(5)(5)    rmse (6)rmse (6)rmse (6)rmse (6)    rrrr2222 (7) (7) (7) (7)    

MeanMeanMeanMean    -0.005 -9.885 0.025 1.304 -10.167 0.306 0.520 

StdStdStdStd    0.090 101.970 0.016 1.250 105.140 0.196 0.294 

ELEVATIONELEVATIONELEVATIONELEVATION    aaaa    (8)(8)(8)(8)    b (9)b (9)b (9)b (9)    se(a)se(a)se(a)se(a)    (10)(10)(10)(10)    se(b)se(b)se(b)se(b)    (11)(11)(11)(11)    f(t)f(t)f(t)f(t)    (12)(12)(12)(12)    rmse (13)rmse (13)rmse (13)rmse (13)    rrrr2222    (14)(14)(14)(14)    

MeanMeanMeanMean    0.001 -17.893 0.012 0.606 -17.847 0.146 0.452 

StdStdStdStd    0.034 10.236 0.011 0.714 10.144 0.136 0.313 

AREAAREAAREAAREA    aaaa    (15)(15)(15)(15)    b (16)b (16)b (16)b (16)    se(a)se(a)se(a)se(a)    (17)(17)(17)(17)    se(b)se(b)se(b)se(b)    (18)(18)(18)(18)    f(t)f(t)f(t)f(t)    (19)(19)(19)(19)    rmse (20)rmse (20)rmse (20)rmse (20)    rrrr2222 (21) (21) (21) (21)    

MeanMeanMeanMean    -0.057 33.201 0.174 8.236 27.864 2.137 0.193 

StdStdStdStd    0.564 46.532 0.227 10.486 32.381 2.780 0.248 

DIGITAL DIGITAL DIGITAL DIGITAL 
LEVELLEVELLEVELLEVEL    

aaaa    (22)(22)(22)(22)    b (23)b (23)b (23)b (23)    se(a)se(a)se(a)se(a)    (24)(24)(24)(24)    se(b)se(b)se(b)se(b)    (25)(25)(25)(25)    f(t)f(t)f(t)f(t)    (26)(26)(26)(26)    rmse (27)rmse (27)rmse (27)rmse (27)    rrrr2222 (28) (28) (28) (28)    

MeanMeanMeanMean    -0.002 79.118 0.304 15.240 78.238 3.736 0.112 

StdStdStdStd    0.333 21.502 0.143 10.385 13.776 1.752 0.156 

 

 

 

 

 

 

                                                 
8 (1) Indicates the feature number 
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APPENDIX C  

HISTOGRAM PLOTS OF THE DATA SETS 
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Figure C-1: Histograms of Features Extracted by Using Fourier Transform 
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Figure C-1: Histograms of Features Extracted by Using Fourier Transform 
(continued) 
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Figure C-2: Histograms of Features Extracted by Using Linear Fit  
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Figure C-2: Histograms of Features Extracted by Using Linear Fit (continued) 
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Figure C-2: Histograms of Features Extracted by Using Linear Fit (continued) 
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APPENDIX D  

CORRELATION MATRICES 
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Figure D- 1: Correlation Matrix for T-Scenarios of FT-Set 
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Figure D- 2: Correlation Matrix for F-Scenarios of FT-Set 



111 

 

Az/a    
Az/b    
Az/se(a)
Az/se(b)
Az/f(t) 
Az/rmse 

Az/r
2
  

El/a    
El/b    
El/se(a)
El/se(b)
El/f(t) 
El/rmse 

El/r
2
  

Ar/a    
Ar/b    
Ar/se(a)
Ar/se(b)
Ar/f(t) 
Ar/rmse 

Ar/r
2
  

Dl/a    
Dl/b    
Dl/se(a)
Dl/se(b)
Dl/f(t) 
Dl/rmse 

Dl/r
2
  

LF / T

A
z
/a
  
  

A
z
/b
  
  

A
z
/s
e
(a
)

A
z
/s
e
(b
)

A
z
/f
(t
) 

A
z
/r
m
s
e
 

A
z
/r2
  

E
l/
a
  
  

E
l/
b
  
  

E
l/
s
e
(a
)

E
l/
s
e
(b
)

E
l/
f(
t)
 

E
l/
rm
s
e
 

E
l/
r2
  

A
r/
a
  
  

A
r/
b
  
  

A
r/
s
e
(a
)

A
r/
s
e
(b
)

A
r/
f(
t)
 

A
r/
rm
s
e
 

A
r/
r2
  

D
l/
a
  
  

D
l/
b
  
  

D
l/
s
e
(a
)

D
l/
s
e
(b
)

D
l/
f(
t)
 

D
l/
rm
s
e
 

D
l/
r2
  

 

 

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

 

Figure D- 3: Correlation Matrix for T-Scenarios of LF-Set 
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Figure D- 4: Correlation Matrix for F-Scenarios of LF-Set 


