
PARALLEL CLOSET+ ALGORITHM FOR FINDING FREQUENT CLOSED

ITEMSETS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

TAYFUN �EN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

JULY 2009

Approval of the thesis

�PARALLEL CLOSET+ ALGORITHM FOR FINDING FREQUENT

CLOSED ITEMSETS�

submitted by Tayfun �en in partial full�llment of the requirements for the degree
of Master of Science in Computer Engineering by,

Prof. Dr. Canan Özgen
Dean,Graduate School of Natural and Applied Sciences

Prof. Dr. Müslim Bozyi§it
Head of Department,Computer Engineering

Dr. Cevat �ener
Supervisor,Computer Engineering Department, METU

Prof. Dr. �smail Hakk� Toroslu
Co-supervisor,Computer Engineering Department, METU

Examining Committee Members:

Asst. Prof. Dr. Tolga Can
Computer Engineering Department, METU

Dr. Cevat �ener
Computer Engineering Department, METU

Asst. Prof. Dr. P�nar �enkul
Computer Engineering Department, METU

Asst. Prof. Dr. Tu§ba Ta³kaya Temizel
Information Systems Department, METU

Dr. Onur Tolga �ehito§lu
Computer Engineering Department, METU

Date:

I hereby declare that all information in this document has been obtained

and presented in accordance with academic rules and ethical conduct. I

also declare that, as required by these rules and conduct, I have fully

cited and referenced all material and results that are not original to this

work.

Name, Last name : Tayfun �en

Signature :

iii

ABSTRACT

PARALLEL CLOSET+ ALGORITHM FOR FINDING FREQUENT CLOSED

ITEMSETS

�en, Tayfun

M.S., Department of Computer Engineering

Supervisor: Dr. Cevat �ener

Co-Supervisor: Prof. Dr. �smail Hakk� Toroslu

July 2009, 80 pages

Data mining is proving itself to be a very important �eld as the data available is in-

creasing exponentially, thanks to �rst computerization and now internetization. On the

other hand, cluster computing systems made up of commodity hardware are becoming

widespread, along with the multicore processor architectures. This high computing power

is synthesized with data mining to process huge amounts of data and to reach information

and knowledge.

Frequent itemset mining is a special subtopic of data mining because it is an integral

part of many types of data mining tasks. Often this task is a prerequisite for many other

data mining algorithms, most notably algorithms in the association rule mining area. For

this reason, it is studied heavily in the literature.

In this thesis, a parallel implementation of CLOSET+, a frequent closed itemset mining

algorithm, is presented. The CLOSET+ algorithm has been modi�ed to run on multiple

processors simultaneously, in order to obtain results faster. Open MPI and Boost libraries

have been used for the communication between di�erent processes and the program has

been tested on di�erent inputs and parameters. Experimental results show that the al-

gorithm exhibits high speedup and e�ciency for dense data when the support value is

higher than a determined value. Proposed parallel algorithm could prove to be useful for

iv

application areas where fast response is needed for low to medium number of frequent

closed itemsets. A particular application area is the Web where online applications have

similar requirements.

Keywords: Frequent Itemset Mining, Data Mining, Parallel Computing, CLOSET+, FP-

tree

v

ÖZ

KO�UT CLOSET+ ALGOR�TMASI �LE SIK KAPALI NESNE KÜMELER�N�N

BULUNMASI

�en, Tayfun

Yüksek Lisans, Bilgisayar Mühendisli§i Bölümü

Tez Yöneticisi: Dr. Cevat �ener

Ortak Tez Yöneticisi: Prof. Dr. �smail Hakk� Toroslu

Temmuz 2009, 80 sayfa

Verinin, önce bilgisayarla³ma, sonra da internetle³me sayesinde çok yüksek bir h�zda artt�§�

günümüzde veri madencili§i çok önemli bir alan olarak öne ç�kmaktad�r. Öte yandan,

ucuz donan�m kullan�larak kurulan küme hesaplama sistemleri ve çok çekirdekli i³lemciler

yayg�nla³maktad�rlar. Bu yüksek hesaplama gücü veri madencili§i ile birle³tirilerek büyük

miktardaki verinin i³lenmesi ve bilgiye ula³�lmas� amaçlanmaktad�r.

S�k nesne kümeleri madencili§i, birçok veri madencili§i alan�n�n gerekli bir parças�

olmas� nedeniyle önemli bir alt aland�r. S�k nesne kümeleri madencili§i ba³ta ili³kisel

kural madencili§i alan�nda olmak üzere birçok veri madencili§i algoritmas� için gerekli bir

ön i³tir. Bu nedenle, bu alt alan geçmi³te s�kça ara³t�r�lm�³t�r.

Bu tezde, s�k kapal� nesne kümelerinin bulunmas�nda kullan�lan bir algoritma olan

CLOSET+ algoritmas�n�n ko³ut bir sürümü sunulacakt�r. CLOSET+ algoritmas�, bir-

den fazla i³lemcide ko³ut bir ³ekilde çal�³acak ³ekilde de§i³tirilmi³, böylece sonuçlara

daha h�zl� ula³�lmas� amaçlanm�³t�r. Farkl� i³lemlerin ileti³imi için Open MPI ve Boost

kütüphaneleri kullan�lm�³, program farkl� veriler ve de§i³kenler aç�s�ndan incelenmi³tir.

Deneysel sonuçlar program�n yo§un veritabanlar�nda ve belirli bir destek de§erinden yük-

sek durumlarda yüksek bir h�zlanma ve verimlilik ile çal�³t�§�n� göstermektedir. Bu tezde

vi

anlat�lan ko³ut algoritma dü³ük ile orta say�daki kapal� s�k nesne kümelerinin h�zl� bir ³e-

kilde bulunmas�n�n gerekti§i uygulama alanlar�nda faydal� olabilir. Örnek bir alan çevrim-

içi uygulamalar�n benzer gerekliliklere sahip oldu§u Genel A§d�r.

Anahtar Kelimeler: S�k Nesne Kümeleri Madencili§i, Veri Madencili§i, Ko³ut Hesaplama,

CLOSET+, FP-tree

vii

ACKNOWLEDGMENTS

I would like to �rst of all thank my supervisor, Dr. Cevat �ener for his warm encour-

agement and guidance throughout my research work. He was the one who supported me

when I thought of letting go. I also have to thank my co-supervisor, Prof. Dr. �smail

Hakk� Toroslu for his guidance and precious advise regarding techniques and algorithms I

was to choose.

I would like to express my most heartfelt gratitude to my family, who put up with all

my complaints and rants about everything under the sun in these three years of higher

education. Mum, dad and my two sisters - this would not have happened without you.

Finally, I'm indebted to Imai-san (domo arigato gozaimasu), Semih, Gladys, Tuba,

Ay³enur, Olduz, Zeki, Melih, Tamer, Tufan, Metin, Alptekin & Joanna and many others,

who have each touched my life in way or another. My life has been more interesting thanks

to you.

I have been partially funded by the Turkish Scienti�c and Technical Council (TÜB�TAK)

B�DEB 2210 National Graduate Scholarship Programme. Thanks goes to many educa-

tional programmes I have had chance to attend to provided by TÜB�TAK and Computer

Engineering Department (CENG) at the Middle East Technical University (METU). All

the tests were run on the grid computing infrastructure provided by CENG and TÜB�TAK.

Parts of the work in this thesis has been published in the proceedings of the BA�ARIM'09

conference on high performance computing.

As a side note, this thesis has been typeset using LATEX, edited using the great Vim

editor and graphics generated using gnuplot software all running on Debian GNU/Linux

distribution. Thanks to the Open Source community for these excellent products!

The whole source code for the project described in this thesis can be found at the

Google Code SVN repository at: http://code.google.com/p/parcloset/ .

viii

O'na, aileme ve hor görülmü³ ülkeme. . .

ix

Contents

ABSTRACT . iv

ÖZ . vi

ACKNOWLEDGMENTS . viii

DEDICATON . ix

TABLE OF CONTENTS . x

LIST OF FIGURES . xii

LIST OF TABLES . xiii

LIST OF ABBREVIATIONS . xiv

CHAPTER

1 INTRODUCTION 1

1.1 Reason and Rationale . 1

1.2 Approach . 4

1.3 Scope of the Document . 6

2 OVERVIEW OF DATA MINING 7

2.1 Knowledge Discovery in Databases . 8

2.2 Data Mining . 10

2.3 Association Rule Mining . 11

2.3.1 Apriori Algorithm . 14

2.4 Frequent Itemset Mining . 15

2.4.1 Serial FIM Algorithms . 16

2.4.2 Parallel FIM Algorithms . 19

2.5 Current Problems and Research Directions 21

x

3 OVERVIEW OF PARALLEL PROGRAMMING 23

3.1 Automatic Parallelization and Parallel Languages 25

3.2 Threads . 26

3.3 OpenMP . 28

3.4 MPI . 31

4 IMPLEMENTATION 34

4.1 CLOSET+ Algorithm . 34

4.1.1 Building the FP-tree . 34

4.1.2 Mining the FP-tree . 36

4.2 Solution Framework . 40

4.2.1 Programming Language . 40

4.2.2 Libraries . 41

4.2.3 Message Passing . 43

4.2.4 Debugging . 44

4.3 Parallel Implementation . 48

4.3.1 Parallel Algorithm Steps . 49

4.3.2 Implementation Details . 53

5 EXPERIMENTAL RESULTS 57

5.1 Computing Environment and Datasets 57

5.2 Results . 59

6 CONCLUSION 70

Bibliography . 73

xi

List of Figures

FIGURES

Figure 2.1 Apriori Algorithm Pseudocode . 16

Figure 3.1 Execution model in OpenMP . 29

Figure 3.2 Hello World in OpenMP . 29

Figure 3.3 Hello World in MPI . 32

Figure 4.1 Building of FP-tree as each transaction is processed 37

Figure 4.2 FP-tree with side links . 38

Figure 4.3 Projected FP-tree for item p:3 . 39

Figure 4.4 MPI Programming Comparison . 42

Figure 4.5 Running an Open MPI program through a debugger 46

Figure 4.6 Code segment used for attaching to an Open MPI program 46

Figure 4.7 Debugging an Open MPI program using the MPMD strategy 47

Figure 4.8 Debugging an mpich program . 48

Figure 4.9 Parallel algorithm steps . 49

Figure 4.10 Merging of the local item counts . 51

Figure 4.11 Merging of two FP-trees . 52

Figure 4.12 Merging of two result trees . 55

Figure 4.13 An excerpt from main.cpp . 56

Figure 5.1 Relationship between support and frequent closed itemsets 60

Figure 5.2 Execution times using the Quest dataset 65

Figure 5.3 Execution times using the Retail dataset 67

Figure 5.4 MPI library overhead . 69

xii

List of Tables

TABLES

Table 2.1 A Simple Store Database . 12

Table 3.1 Processes vs. Threads . 27

Table 3.2 Do-it-yourself Threads vs. OpenMP 30

Table 3.3 OpenMP vs. MPI . 33

Table 4.1 An Example Database . 35

Table 4.2 Pruned and Ordered Database . 36

Table 5.1 Properties of the two datasets . 59

Table 5.2 Speedup and e�ciency comparison (support value 90%, Quest dataset) 61

xiii

LIST OF ABBREVIATIONS

API Application Programming Inter-
face

CERN European Organization for Nu-
clear Research

CPU Central Processing Unit

ddd Data Display Debugger

FIM Frequent Itemset Mining

gdb The GNU Debugger

IP Internet Protocol

KDD Knowledge Discovery in Databases

LHC Large Hadron Collider

MB Megabyte

MPI Message Passing Interface

MPMD Multiple ProgramMultiple Data

OpenMP Open Multiprocessing

OS Operating System

PB Petabyte

PC Personal Computer

PVM Parallel Virtual Machine

SMP Symmetric Multiprocessing

SPMD Single Program Multiple Data

TCP Transmission Control Protocol

UYBHM National High Performance Com-
puting Center (Ulusal Yüksek Ba³ar�ml�
Hesaplama Merkezi)

vim Vi IMproved, the text editor

xiv

Chapter 1

INTRODUCTION

In this chapter conducted research work will be discussed brie�y. The reason and ratio-

nale behind data mining and why parallel computing dimension has been added will be

discussed as the �rst topics. In the following section, the approach taken in our research

will be explored. Some of the design decisions that had to be taken will be given brie�y,

their details left to the following chapters. Introduction chapter will be concluded with

an overview and organization plan for the rest of this document.

1.1 Reason and Rationale

We are in what is called The Information Age. The full impact and our position in this

Digital Revolution is not clear but it has proven to o�er new challenges and opportunities.

Information overload is one of those challenges. With the widespread use of computers

and the Internet for anything and everything worth using, excess amount of data has

been generated, often causing the individual to be confused. Data made accessible has

risen unexpectedly fast in the last century and it has proven to be extremely di�cult for

the individual to process and extract meaningful information and leverage his knowledge

in any �eld. In one speci�c example, the Large Hadron Collider at CERN is expected

to generate data of size about 700 MB per second or 15 PB per year [4]. Humans are

found that they cannot keep up with this new kind of world where data is abundant and

information pollution is all too widespread.

Knowledge Discovery in Databases (KDD) is thought to be the answer to information

pollution. KDD represents the techniques and procedures in getting to knowledge from

raw data. The three basic steps in KDD are [34]:

1

1. Data is preprocessed to be normalized, noises removed and formatted so

that it can be mined easily and on target.

2. Data mining step is executed to extract patterns and thus transform the

data to information.

3. The last step in KDD is the interpretation and evaluation of the results.

Thus, knowledge is formed.

In this thesis we are concerned with the data mining step in KDD. This step is the most

technically challenging step that needs to be done in KDD. As such, most of the research

work has focused itself on data mining techniques. Nevertheless, data preprocessing and

interpretation of mined patterns are also vital steps which impact the correctness of the

�ndings.

Data mining is the process and techniques for extracting patterns from data. Data

mining techniques can process huge amounts of data and extract patterns that have speci�c

desired properties. Humans are known to mine data intuitively and manually, albeit

using less amount of data and at a much lower speed when compared to computers.

Data mining uses the ever increasing processing power ubiquitous in today's computers

to present data in an understandable way for humans. Extracting patterns from data has

enabled companies and individuals to access information they need from a vast pool of

resources. This has enabled advanced and more precise predictions, forecasting, situation

analysis and decision support systems. It has enabled advanced research in many areas

of science such as bioinformatics, genetics, physics and �nance to name a few. Many

of the technological advances we marvel at today use data mining techniques to extract

information and arrive at the results.

After the computerization of many of the work �ows in almost all industrial sectors,

convergence to the Internet is becoming the norm. The boundaries between local desktop

services and those that are provided remotely are becoming blurred. Many of the routine

works normally done locally are being transferred to the so-called �cloud� [47], computa-

tions are done remotely and results sent for the local viewing to the user. Users don't know

where their data is sent to, where the computations are done and most of the time, they

don't care. So called �internetization� is gaining momentum as more and more people are

connecting to the Internet for the �rst time, or by using mobile devices they are staying on-

line for extended periods of time. Portable and always connected devices, much improved

Internet infrastructure and initiatives such as One Laptop Per Child (OLPC) are helping

2

this convergence towards the Internet. As more and more people become online for longer

periods of time, di�erent services have proliferated catering to the newer needs of people.

The success of Web 2.0 with collaborative web sites such as �ickr, youtube, twitter and

many social networking web sites such as facebook and myspace can be tracked down to

this phenomena [67].

What e�ect does �internetization� have on data mining? As more and more people

spend more and more of their time online, data generated on the Internet increases rapidly.

One direct result can be seen in the number of websites search engines like Google crawl

and index. Although there is no single authority keeping track of the number of web

pages, it is anticipated that growth has been extraordinary. Netcraft March 2009 survey

[11] estimates that about 225 million web pages exist today. The huge increase in data

�rst thanks to �computerization� and now to �internetization� accelerated the need for

faster and more accurate data mining techniques.

Grid computing environment is given as the solution for the high computational power

requirements in data mining. Grid computing can simply be described as using many

computers, which can be heterogeneous and geographically dispersed, to attack and solve

problems concurrently. The huge computational power grid computing provides can be

tracked down to its use of many computing elements simultaneously. This increases the

rate at which data can be stored, read and processed.

To facilitate the computational power provided by grid computing environments, sev-

eral methods have been proposed. Developments in this area include easy and seamless

shared memory thread management using compiler directives [31], distributed memory

message passing libraries [41], implicitly parallel languages [35], or even whole operating

systems providing resource sharing capabilities to programs without forcing any extra

work on behalf of the programmer [22].

We see that data and information �out there� is getting bigger all the time, while people

want faster access to relevant information. This provides the motives for faster data mining

algorithms. As multicore CPUs, terabyte scale hard disks and better all-round computers

become commodity and distributed computer systems become cheaper, newer methods

addressing data mining on the parallel scale becomes indispensable in achieving even

more e�cient implementations. Parallel programming practices have become widespread

in many areas of science where performance is vital. Data mining is no exception and

parallel programming o�ers new speed gains and e�ciency in this �eld. In the next

section we delve into more details of the work with the approach taken.

3

1.2 Approach

In this thesis, a new parallel version of a data mining algorithm called CLOSET+ [77] is

described. CLOSET+ is a successful algorithm for �nding frequent itemsets in databases.

This fast algorithm has been revised to make use of more than one processor e�ciently.

The algorithm presented in this thesis is the �rst parallel CLOSET+ implementation

to the best of our knowledge. The new parallel algorithm has been implemented using

message passing techniques and it is able to run on shared-nothing architectures. During

performance tests it is found that for dense datasets and for a range of support values,

this new parallel algorithm performs quite e�ciently.

CLOSET+ algorithm has been modi�ed to include constructs that enable e�cient

parallel computations. The division of the job and also the relevant data, merging of

intermediate results, creating new work packages according to the intermediate results

and distributing this workload to computing elements and merging the �nal results are

some of the problems addressed. The main CLOSET+ algorithm has been employed at

each computing node for generating local computation results. More detailed descriptions

of the algorithm is left for the following chapters.

The algorithm has been has been developed on a PC running Debian GNU/Linux

operating system, using the C++ language. The reason C++ language has been chosen is

many fold. The language has low-level features like manual memory operations and this

brings �exibility for the programmer. The language has very fast execution which is what

the whole aim of the research is. All the big MPI library implementations are written in

C language, which can easily be integrated to C++ code. Having a widely praised and

portable compiler such as GCC is also one of the merits of using C++. The reason for

choosing C++ over C is because C++ provides more high level features. Object oriented

programming support from C++ has enabled easier custom data structures. Tree and

graph like structures designed and coded during implementation would have been quite

complex and ugly, had C been chosen.

Combining object oriented programming methodologies of C++ with those of C API

function calls from an MPI library would have been ugly and unmaintainable. To follow

the object oriented programming guidelines, a C++ MPI library from Boost libraries has

been used. Thanks to Boost libraries, MPI calls have been made using object oriented

coding conventions.

One shortcoming of current MPI implementations with respect to object oriented

4

programming methodologies is that there is no way to send custom data types through

MPI calls directly. The method of sending a custom data type is using MPI_Pack and

MPI_Unpack functions to package whole data structure and unpack it at the receiver's

end. This is often a tedious task that is prone to errors. To have a simpler method for

sending custom data types, and following our object oriented programming guidelines as

described earlier, another Boost library has been used. Boost serialization library o�ers

easier way to serialize any data type, no matter how complex it is. The library also o�ers

ready made implementations for many C++ constructs such as �string�, �hash_map� and

�vector� data types. Boost serialization library plays nicely with the MPI library from the

same suite of libraries. Thus, one can directly send many complex data types like vectors,

maps etc. from one node to another without having to worry about packing and unpack-

ing operations. Sending custom data types also becomes very easy. Simply by extending

your custom class so that it implements an interface, you can send objects easily.

Boost MPI library can use many C language MPI implementations on the background.

For the implementation discussed in this thesis, Open MPI has been used. Open MPI is

one of the popular and advanced MPI distributions. It is formed by merging of a couple of

existing MPI projects and have borrowed ideas from many others. Flexible con�guration

options Open MPI o�ers has been a key factor in choosing this library. It is also installed

by default in the grid computing environments we had access to.

Debugging of parallel programs is a tough topic at its best and it deserves a book of

its own. For the project in this thesis, ddd (Data Display Debugger) has been used. The

ddd is a graphical debugger which uses the gdb (gnu debugger) on the background. The

most advantageous feature of ddd is its ability to display graph structures with ease. One

can click on pointers to follow them and see memory locations mapped to the objects. All

the regular debugger operations such as breakpointing, stepping, displaying variables etc.

are available in a graphical user interface as well as a command line area which is directly

tied to the gdb.

To complete the toolkit, vim has been used as the text editor of choice. Various plugins

also complemented vim functionality, for example ctags utility has been used to jump from

one source �le to another one where the function under the cursor is de�ned. More details

of the con�guration is left to the following chapters.

A small work of data preprocessing has been done in the implementation, mainly

of pragmatic reasons. In reading data sets, two di�erent formats have been taken into

consideration. The �rst format is a simple format which has each transaction on a line of

5

its own, and each items in the transactions given on this line. The second form of data

is the one output by Quest IBM synthetic dataset generator. This dataset has di�erent

characteristics and our project has been implemented so that this format can be recognized

as well. More information on data formats is be left to the following chapters.

Performance tests on the implementation show considerable speedups for certain data

at a range of support levels. To be more speci�c, the algorithm and implementation works

best with dense data sets and with medium or higher support levels. At these levels,

speed up becomes as high as 85%. With sparse data sets, the speed up value drops,

this phenomena is also seen with lower support values. With lower support values, single

processor execution �rst becomes on par with the multiprocessor execution and later it

becomes faster than the multiprocessor run.

The results show that for speci�c data sets this algorithm provides promising perfor-

mance. This is important for many applications, such as web sites where users expect

quick and correct responses. In such applications, the whole set of frequent itemsets gen-

erated using lower support values are not needed. In applications where fast results are

desired, the algorithm discussed in this paper may be a suitable answer.

1.3 Scope of the Document

The rest of the thesis is organized as follows. Two basic subjects are data mining and

parallel programming which are the building blocks for our research. They are presented

in the next two chapters, respectively. In the data mining chapter, a top to bottom

approach is taken. Topics start from the more general subject of knowledge discovery

to the more speci�c area of frequent itemset mining. Also discussed in this chapter is

a general view of the data mining �eld, current problems and research directions. In

the following chapter, parallel programming methods is discussed including MPI, which

has been used in our project. Chapter 4 presents the implementation, including the

algorithm, solution framework and implementation details. Step by step explanation of the

parallel algorithm is also presented in this chapter, aiming to easier express the algorithm

employed. The following chapter, chapter 5, includes experimental results with various

graphics and explanations regarding them. The �nal chapter in this document presents

the concluding remarks.

6

Chapter 2

OVERVIEW OF DATA MINING

In this chapter, previous research on knowledge discovery and data mining will be pre-

sented. This overview starts with an introduction to the more general concept of Knowl-

edge Discovery in Databases. Some notable uses of Knowledge Discovery in Databases are

explored along with the future trends. The value added services like �ickr interestingness,

amazon suggestions and google �u trends will be articulated upon.

The section following KDD is about the more specialized topic of data mining. Data

mining is often considered as an indispensable step in knowledge discovery. History of data

mining research is provided and so it is hoped that the reader will be able to appreciate

the developments in this relatively young research area. Recent data mining algorithms

are explored and future trends elaborated upon. Several areas of data mining including

classi�cation, regression and prediction, clustering and the topic of research for this thesis,

association rule mining are explored.

Serial and parallel frequent itemset mining algorithms will also be presented in this

chapter. A brief overview of how data mining is done in parallel is presented for each

algorithm. For many of the serial algorithms, their parallel counterparts, if existent, are

discussed in the following section.

The chapter ends with a discussion of current problems associated with data mining

and how these problems are addressed. Some solutions that have been proposed are

discussed brie�y.

This chapter, along with the next one describing parallel programming practices, sets

the stage for the more detailed data mining content describing the performed research.

7

2.1 Knowledge Discovery in Databases

Knowledge Discovery in Databases is a term that has been coined in 1989 with the pre-

cursor workshop that would later become KDD conference series [63]. KDD and data

mining terms are relatively new, but their applications had been developed much more

earlier than the inception of these de�nitions. KDD is generally de�ned as the process of

extracting implicit information and knowledge from data [34]. KDD helps humans make

sense of huge amounts of data by mining patterns. Formally, KDD encompasses data

preprocessing, data mining and results interpretation steps but the term �data mining�

itself has been used synonymously with KDD by many practitioners in the �eld. In this

thesis, the original meaning of KDD will be preserved, although no clear distinction will

be made between these two terms.

As discussed in Section 1.1 in the Introduction Chapter, KDD grew out of necessity.

The huge increase in the amount of data accumulated with the help of computerization

created the need for newer methods which can extract information and knowledge. These

methods were expected to mine huge data and extract information in a reasonable time.

With the higher computer penetration and the Internet itself, the data need to be mined

has increased dramatically. Performance expectations from data mining has also risen, in

many data mining implementations designed for the web, the results are expected to be

returned in seconds.

Before diving into data mining algorithms in the coming sections, it will be bene�cial

to assess some of the KDD applications and try to understand the big picture. Out of

many important data mining implementations it is hard to choose a representative set.

Some of the more novel, popular and in�uential applications have been google �u trends,

amazon.com suggestions and �ickr interestingness. In the remainder of this section each

application will be analyzed.

Google �u trends is a recent project led by the Google Foundation [7]. In this project,

Google engineers worked with the US Centers for Disease Control and Prevention to set

up an early alert system for �u outbreaks. Search keywords submitted by people to the

search engine is used in this project to �nd correlations with �u activity. Google search

engine usage is mined and the used keywords, originating IP location, and other related

data is used in �nding the �u activity in di�erent states. The simple idea behind this

project is that during �u seasons people search for more �u related topics. By making use

of this knowledge, the Google team were able to predict �u outbreaks two weeks before

8

Centers for Disease Control and Prevention which used conventional methods like clinical

data and physician visits. The �ndings of this project has been published as an article in

the Nature magazine [37].

Many of the earlier KDD applications had focused itself on market basket analysis. In

this type of work, retail data is analyzed and patterns about shopping habits of customers

are found. A very popular example is �nding which items are bought together, like beer

and baby diapers, and using this information to have these items in nearby shelves in the

supermarket. In an internet based shopping center, the shelves become web pages, but

the basic idea does not change. This is what is implemented by amazon.com suggestions.

When you visit an item's web page on amazon system and add it to your cart, you are

presented with similar items. These suggested items are what other customers who have

had similar cart as yours have bought as well. Thus, virtual shelves are being connected

so as to make it easier to buy related items. It is anticipated that this kind of innovative

approach results in a considerable sales increase [66].

As the last KDD example, we will be looking at interestingness feature of �ickr website.

Flickr.com is one of the most popular image sharing sites on the Internet, it is claimed

that �ickr.com hosts 3 billion images as of November 2008 [1]. Flickr owns the most of

its popularity to its successful community building features build on top of easy image

management interface. Flickr has made interacting with other people's photos very easy,

through the use of tagging, commenting, adding a photo to favorites, photography groups

where similar minded people get together and many other features. A big part of �ickr's

success is attributed to its novel and accurate data mining methods and the value added

services built on top of data mining. When �ickr search is used, wide array of informa-

tion like number of views and the people viewing the photo, number of favourites and

individuals who added the photo to their favorites, di�erent tags, comments about the

photo, photo licences, social link from the current user to user in question etc. are all used

and the most relevant photos are shown to the user. Interestingness [6] is another feature

�ickr has that deserves a mention on its own. Through the use of complex algorithms and

computations, the most interesting photos are shown on a web page to the user. This list

is updated continuously and it changes according to an internal algorithm. The details of

the KDD algorithm employed by �ickr is not disclosed in detail, such as it would be in

an academic paper, but the method is nonetheless �led for patent at the US Patent and

Trademark O�ce and one can view its description [10].

The previous cases chosen to exemplify KDD are by no means complete representations

9

of the diverse types of tasks that KDD has been employed to. The list is chosen to give

an idea of some of the di�erent usages of KDD. In fact, KDD can be employed anywhere

where there are huge amounts of data. Information can be extracted and knowledge

formed, creating the basis for value added services. In the next sections, more details of

data mining algorithms are provided.

2.2 Data Mining

Data mining is the actual step in which patterns in data are found. This step is generally

performed after some initial preprocessing of raw data. The data is modi�ed, cleaned and

normalized to make it suitable and easy to run mining algorithms on.

Data mining is an intensely multidisciplinary �eld [34, 45]. It enlists help from �elds

such as arti�cial intelligence, statistics, machine learning, pattern recognition, database

systems, expert systems, parallel programming, high performance computing, information

retrieval and signal processing among others. Due to the nature of the information ex-

tracted and the knowledge to be formed, data mining also makes use of diverse application

areas such as �nance, medicine, genetics, retail and many other industries where a domain

expert brings wisdom into interpreting the results, making the transition from information

to knowledge.

Data mining algorithms are usually divided into two, depending on the aim of the task.

These two types of algorithms are �predictive� and �descriptive� algorithms. The names

are self-explanatory; the predictive algorithms try to predict the future coarse of events,

what will happen and how the behaviour will be. The descriptive algorithms on the other

hand try to describe the situation, to summarize certain parts of data. There is a thin

and blurry line between predictive and descriptive algorithms; in many cases a descriptive

algorithm provides a way to compute predictions and vice versa. For example, association

rule mining is generally classi�ed as a descriptive algorithm but it can nonetheless be used

to predict which items a user is most likely to buy, given his current basket. As such, this

kind of clear distinction is not emphasized in this thesis.

Data mining tasks can further be divided into many categories. The major data mining

categories are classi�cation, clustering, regression and association rule mining.

Classi�cation is the task of assigning objects to predetermined classes, according to

many attributes they possess. For example, the task of assigning a category such as

�gambling�, �chat-messaging�, �news-entertainment� etc. to a web page is a type of classi-

10

�cation. Another well known example is deciding which mail falls into �spam� type and

which ones are legitimate and normal [39]. A number of di�erent techniques are used

in classi�cation, including the more popular decision trees, Bayesian classi�ers, neural

networks and nearest neighbour techniques.

Clustering is very similar to classi�cation with the di�erence being that there are

no predetermined classes in clustering. Objects that are similar according to a metric (a

distance measure) are grouped together and clusters are formed. Clustering is useful when

the number of classes and their substance are not known beforehand. This technique can

be used in many areas where �nding similar objects is desired. It can be used for �nding

people similar to you in social network analysis, �nding similar items in the retail sector

and for image segmentation, among others.

Regression techniques are used for modeling data. It is used in a variety of �elds where

predicting unknown values is the aim. Regression makes use of many statistical methods

in building the best model. The most common uses for regression is for time-series data,

sequential data where time and order is important. A popular example of its usage is in

the �nancial sector; predicting the loan behaviour, credit score or credit limits of a person

can all be solved using regression.

Association rule mining is the main research topic of this thesis, and so deserves a

section on its own. In the next section, it is described in detail.

2.3 Association Rule Mining

Association rule mining and its subproblem, frequent itemset mining, is one of the most

popular and well researched areas in data mining. It is used for �nding relationships

(or association rules, patterns) between di�erent variables in the data. Association rule

mining is largely made popular by Agrawal et al. in their seminal paper [18]. The notion

of association rules was existent even before this paper (one of the earliest examples: [56]),

although its application to market basket data was a novel idea. The Apriori algorithm

for mining association rules [19] would become the dominant algorithm from its inception

to early 2000s. The context and de�nition of association rule mining, as given by Agrawal

et al. will now be given.

Thanks to the introduction of the bar code technology and computerization, businesses

found themselves with huge amounts of transaction data. This data is generally made up

of items bought together by customers and is called market basket data. Some of the

11

terms which will be used throughout this document will be de�ned now.

Let I be the set of items that are available for sale. An itemset A = {i1, · · · , ik} is a

set of items de�ned over the whole item set I, and is called a k-itemset if it has k number

of items.

A transaction is a single sale information and it consists of a transaction ID (TID)

and all the items that are included in the sale. When a retail database is referred to, a list

of transactions must be understood. An example database which can be obtained from a

simple store is presented in Table 2.1.

Table 2.1: A Simple Store Database

TID Basket contents

001 milk, butter

002 bread, butter

003 milk, butter, honey

004 bread, honey

005 milk, honey

After the acquisition of huge amounts of sale data, the next step was -naturally-

the processing of it. With the processing step, organizations aimed to uncover hidden

information from their database. Utilizing this information helped organizations in many

areas, including better marketing strategies, inventory plans, item suggestions and shelf

organization plans [66, 18].

Association rules provide information about relationships between di�erent variables in

data. They are sometimes described as if-then type of rules. This can better be understood

with an example: {milk, butter ⇒ honey} is a typical association rule discovered from a

database such as the one shown in Table 2.1. What this rule means is that customers who

buy milk and butter together also buy honey. In a rule such as A⇒ B, the left hand side,

A, is called the antecedent and the right hand side, B, is called the consequent. A and B

in the rule are itemsets containing items existing in the database, and their intersection

is the empty set.

12

This simple rule leads us to the following questions: How are the rules determined, and

is there a granularity showing how con�dent we are about a rule? Indeed, these issues are

valid and addressed in research. In order to �lter out uninteresting associations, rules that

have too few examples, several metrics have been proposed. The two important measures

that are central to association rule mining are support and con�dence.

De�nition 2.1

Support value of an itemset A, denoted as sup(A), is the proportion of the transac-
tions which include all the items in the set A. Formally, this is represented as:

sup(A) =
Number of transactions containing itemset A

Total number of transactions

This metric shows how frequent an itemset occurs in the database.

Support value is used to prune the search space mining algorithms will be run on.

It is used with a minimum support value, also called support threshold, and items with

support values lower than the set minimum are pruned. These items, by the de�nition

of support, are not frequently observed in the database, and thus not taken into consid-

eration. Itemsets satisfying the minimum support value are said to be frequent. As an

example, a support value of 40% for an itemset such as A = {milk, butter} simply means

that two out of �ve transactions in the database contain these two items. From the retail

point of view, it means two out of �ve sales included these items together.

After de�ning support, we can now move on to the con�dence metric.

De�nition 2.2

Con�dence value of a rule such as A⇒ B is de�ned as:

conf(A⇒ B) =
sup(A ∪B)

sup(A)

Here the support value of the union of itemsets A and B is divided with the support
value of only the itemset A. This gives us how likely it is that items in B exist given
that items in A exist in a transaction.

Con�dence metric is a little more controversial than the support metric. According to

Fayyad, Piatetsky-Shapiro et al. [34], con�dence is simply another metric among many

others for discovering interesting patterns. Con�dence is controversial because after using

support metric to �nd frequent itemsets, one can use many available metrics such as lift,

13

conviction etc. in �nding interesting association rules. Still, con�dence is the original

metric used by Agrawal et al. [18, 19] and it is one of the most widely known. It is also

considered successful with certain types of data, and easier to understand. In this thesis,

other metrics will not be described, only con�dence will be explored. For more information

and survey about di�erent interestingness metrics, please refer to [72].

As in the support case, a minimum con�dence value, also called con�dence thresh-

old, is used to prune those rules having less con�dence value than the minimum. A high

con�dence value shows a high correlation between the antecedent and the consequent.

Generally, association rules having high con�dence values are desired because the high

correlation value between items translates into higher probability of these items bought

together. Recent research however, shows that patterns with high con�dence values gen-

erally constitute common knowledge and are thus uninteresting. There exists research fo-

cusing on e�ectiveness of di�erent metrics of interestingness, refer to previously cited work

[72] for more information. As an example, association rule {milk, butter} ⇒ {honey}

with a con�dence value of 50% shows that half of all sales that include both milk and

butter also include honey.

Although examples and de�nitions have all been tailored for the retail sector, associa-

tion rule mining is not limited to market basket analysis. In fact, it can be used to �nd asso-

ciations in any kind of database and between a wide range of variables. Census data could

be used to �nd demographic information (rules of the sort {age > 18, gender = male} ⇒

{earns > 10k}), �nancial data could be used to decide whether credit can be given to a

customer, or medical data can be used to design decision support systems helping medical

doctors in making informed diagnosis.

2.3.1 Apriori Algorithm

As mentioned earlier, Agrawal et al. [18, 19] paved the way for new research in association

rule mining, especially in the context of market basket analysis. They introduced the

Apriori algorithm for association rule mining. This algorithm has had high in�uence on

the data mining community and it will be bene�cial if an introduction is made here.

Like most of the association rule mining algorithms developed later, Apriori is com-

posed of two phases. In the �rst phase frequent itemsets are found through repeated passes

on the database. In the second phase these frequent itemsets are used in generating asso-

ciation rules. More details on Apriori algorithm steps are given next.

The �rst step in the Apriori algorithm is �nding frequent 1-itemsets. The database

14

is scanned and a count list for each item is populated. This list is pruned according to

the minimum support value so that only frequent items are left. The next step is the join

step where a candidate list is generated from the previous frequent itemset list. Frequent

itemset list is joined with itself, that is itemsets are grown by taking other itemsets into

consideration. The candidate itemsets have one more item than the frequent itemsets that

they are generated from. In the next step database is scanned again to �nd the support

counts of each candidate itemsets. Again, these are pruned according to the minimum

support value, and the �nal list is taken as the next frequent itemset. We start the

cycle again by joining this frequent itemset list with itself to generate the next candidate

itemset. The cycle stops when the new candidate list is empty. After the cycle has been

broken we are left with frequent itemsets. Finding association rules from frequent itemsets

is a straightforward job, where subsets of the frequent itemsets are taken and con�dence

values are checked with the minimum con�dence value. Rules satisfying this threshold

value constitute the results.

Apriori algorithm is said to be a bottom-up, breadth �rst search algorithm because

of the way frequent itemsets are generated. Algorithm name is a reference to a priori

knowledge used by the algorithm: Any subset of a frequent itemset must itself be frequent.

This principle, also called anti-monotonicity or downward-closure property, is vital to the

Apriori algorithm because it prunes the search space dramatically, thus enabling a big

speedup.

Although widely known and implemented, Apriori algorithm su�ers from many ine�-

ciencies, and this has culminated in huge research into �nding better algorithms. In the

next section di�erent frequent itemset mining algorithms will be brie�y discussed.

This algorithm is presented as pseudocode in Figure 2.1 for clarity.

2.4 Frequent Itemset Mining

The astute reader would have noticed that �nding frequent itemsets is especially important

in association rule mining. This is due to the fact that �nding frequent itemsets takes

considerably more time than generating association rules from this data. Note how trivial

it is to simply divide frequent itemsets as antecedent and consequent and compute the

con�dence values. As such, substantial research on association rule mining has focused

itself on frequent itemset mining only.

Survey type of publications provide great information in summary format about ad-

15

L1 ← ∅

I ← all the items occurring in all the transactions

scan database and �nd counts for all items i ∈ I

for item i ∈ I do

if count(i) ≥ minsup then

L1 ← L1 ∪ {i}

end if

end for

k ← 2

Ck ← join(Lk−1)

while Ck 6= ∅ do

scan database and �nd counts for all itemsets c ∈ Ck

for candidate itemset c in Ck do

if count(c) ≥ minsup then

Lk ← Lk ∪ {c}

end if

end for

k ← k + 1

Ck ← join(Lk−1)

end while

take the subsets of found frequent itemsets to generate rules

Figure 2.1: Apriori Algorithm Pseudocode

vances in a �eld. In writing this section I have made use of several survey papers and

the introduction sections of many papers where a short history is almost always provided.

Please refer to [44], [28] and [38] for three really well written survey papers summarizing

many of the important developments.

2.4.1 Serial FIM Algorithms

Apriori algorithm had dominated the association rule mining scene from its inception in

the early 1990s up to the early 2000s. During this time, many of the newly developed

algorithms, including parallel ones, were derived from the Apriori algorithm [57, 58, 65, 74,

16

64, 27]. After this period, newer data structures and methods started to be investigated.

Apriori had several inherent ine�ciencies: it would need to pass through the database

a lot of times, and it generated a large number of candidate itemsets that would prove to

be time consuming while checking the support values. One reaction to this problem was

the FP-growth algorithm [46], which boasted not using a candidate generation method.

FP-growth algorithm came with a novel data structure called frequent-pattern tree

(FP-tree) which would prove to be in�uential in the coming years. FP-tree is basically a

pre�x tree with some modi�cations. It uses pre�x paths, which are tree nodes shared by

di�erent leaves so that the database is condensed. It is claimed that for dense databases

where most transactions have shared items, FP-tree can compress the database on the

orders of thousands of magnitude. Compression of this scale enables suitable databases to

be wholly read into the memory, saving in I/O work needed. FP-growth algorithm makes

use of FP-tree not only for database compression but also for �nding frequent itemsets as

well. A pattern growth approach, as opposed to candidate generation approach, is used in

�nding patterns. FP-growth algorithm has been extended or modi�ed extensively in the

literature [49, 33, 40, 60]. By now, extended tree structures had become widely used in

database representation.

Up until now, all the algorithms we have looked at used the horizontal data format. In

this most widely used format, the database is represented as transactions which are sets

of items. This format can be seen in Table 2.1 depicted earlier. There is however, another

data format that has been used by some of the algorithms. This is called the vertical

data format. In this data format, each item has corresponding transaction IDs in a set.

Thus, one can easily �nd all the transactions an item is existent in, without scanning the

database. An advantage of vertical data format is this easiness of �nding the support

counts, simply counting the number of transaction IDs is enough.

An important algorithm making use of vertical data format is Eclat, proposed along

with several other algorithms by Zaki [80]. Eclat makes use of the easy support counting

vertical data format provides. It uses intersection operations to �nd support values of

itemsets containing more than one item. By taking intersections between di�erent trans-

action ID sets belonging to di�erent itemsets, one can �nd the transactions containing

both itemsets. Finding support values is then a trivial counting problem. Eclat generates

candidate itemsets through this intersection method and the algorithm stops when the

candidate set is empty.

In 1999, Pasquier et al. proposed a new format for representing frequent itemsets [59],

17

which is called the frequent closed itemsets. Previously, the whole set of frequent itemsets

were generated along with the each subset. For example, the frequent itemsets result may

have included both the rule {milk, butter : 10%}, which represents a 10% support value

for milk and butter together, and the rule {milk : 10%}, which represents the item �milk�

with the same 10% support value. Notice that the superset and the subset both have

the same support and the subset is redundant as it can be generated from the superset.

An important property to remember here is that a support value of an itemset can never

increase as newer items are added. If {i1} is a 1-itemset with a support value of x%, than

an itemset which has one or more items added, {i1, i2, · · · } can only have support value

of x% or lower, but never a higher support value. Frequent closed itemsets only include

subsets if and only if the support value is higher than the superset. If the support value is

the same (and it cannot be lower for a subset), than the subset is not included in the result

as it can be generated from the superset and the support value can be copied exactly.

Closed itemsets became the center of attention and the default result format for many

algorithms because of their ability to compress the results. One very popular example

given by Han et al. [45] is described now. Take a database with two transactions of the

form:

[{i1, i1, · · · , i100}, {i1, i2, · · · , i50}]

In this database, when the minimum support value is taken as one, number of frequent

itemsets generated is an overwhelming 2100 − 1 (all the subsets of the whole items set

minus the empty set). Number of frequent closed itemsets on the other hand, is a mere

2, {i1, i2, · · · , i50} with support value of 2 and {i1, i2, · · · , i100} with a support value of

1. One can easily see that frequent itemsets generation can be a huge burden because

of the sheer number of itemsets while frequent closed itemsets can easily compress the

result set. The compression provided by closed itemsets is not the only reason for its

adoption. Previously, frequent maximal itemset was also proposed [25] for compressed

representation. Closed itemsets have the important property that they provide a lossless,

complete compression. One can easily generate all of the 2100 − 1 frequent itemsets from

the two frequent closed itemsets if a need arises.

Many of the algorithms developed later used closed itemsets as the result format [61, 77,

81, 50], including the CLOSET+ algorithm, which is the algorithm used for parallelization

in this thesis. CLOSET+ algorithm built upon many of the previous advancements made

in the frequent itemset mining �eld. It makes use of the FP-tree structure to condense

18

the database and several methods previously developed to prune the search space. Many

novel methods have also been proposed with this algorithm, including a newer method in

pruning the search space and an FP-tree like structure called result tree which is used for

checking closedness. The parallel algorithm described in this thesis makes heavy use of

CLOSET+, and the mining part of the algorithm is executed on each process. For this

reason, detailed information about the CLOSET+ algorithm is left to Section 4.1, with

the parallel algorithm following in the same chapter. The section illustrating the parallel

algorithm include examples similar to the ones used in describing the sequential algorithm,

so as to make a comparison easier. In the next section, parallel data mining algorithms

are elaborated upon.

2.4.2 Parallel FIM Algorithms

Just a year after the publication of the Apriori algorithm [19], a parallel association rule

mining algorithm called PDM was published [58], itself based on a revised Apriori algo-

rithm called DHP [57]. A year later, in 1996, Agrawal et al. published a research [17]

detailing three parallelized versions of the Apriori algorithm. As was the case with serial

algorithms, most of the parallel association rule mining algorithms developed up to early

2000s were also based on the Apriori algorithm.

In [17], Agrawal et al. present parallel versions of the Apriori algorithm. The new

parallel algorithms described in the paper have Single Program Multiple Data (SPMD)

form where the same algorithm (program or process) is employed by di�erent processes

and results are shared. In the newly presented algorithms, Apriori is the basic algorithm

employed by di�erent processes. Di�erent data is sent or received by each process and the

results are merged.

SPMD is claimed to be most used technique in designing parallel algorithms [32]. It is

also used widely in parallel data mining. A presentation of di�erent parallelization forms

in the speci�c area of knowledge discovery can be seen in Talia's paper �Parallelism in

Knowledge Discovery Techniques� [71].

Zaki et al. proposed another set of parallel algorithms in [79]. They made use of both

vertical data format and maximal frequent itemsets. The parallel algorithms are similar

to the Eclat algorithm discussed in the previous section, where vertical data format had

been used for faster support counting. Data clustering is used so that the communication

overhead is minimum between processes, which is one of the major causes of performance

penalty in parallel algorithms. In addition, e�cient lattice traversal methods had been de-

19

veloped for faster mining of patterns. Zaki et al. provide parallel algorithms for generating

both maximal frequent itemsets and all frequent itemsets.

Han et al. proposed newer parallel algorithms [43] based on the Apriori and aimed

to eliminate some of the ine�ciencies existent. In [78], Zaïane et al. present MLFPT, a

parallel frequent itemset mining algorithm based on the FP-growth algorithm described

in the previous section. A more recent paper published in 2004 [48], describe the imple-

mentation of a similar parallel algorithm based on FP-growth that is implemented using

a Message Passing Interface library.

FP-tree based parallelization approaches has become a hot topic partly because of the

many advantages FP-trees bring. There has been a number of recent research focusing

on better division of these trees and enabling fair loads for distributed architectures. As

will be described in Chapter 3, most of the parallelization research has focused on multi-

core shared memory architectures partly due to their wide use. Some of the more recent

research include [51, 29].

Parallel frequent closed itemset mining is a relatively new subject. A recent paper

published in 2007 [53] claims to be �the �rst frequent closed itemset mining parallel algo-

rithm proposed so far�. This status of being relatively less researched made frequent closed

itemset mining a good research area to work on. Coupled with the fact that closed itemset

mining brings many advantages to data mining, it can be predicted that closed frequent

itemset mining will be more researched in the near future, including parallel versions.

It seems bene�cial to talk about the previous parallel frequent closed itemset mining

algorithm in more detail here. The exact algorithm that has been parallelized in [53] is

called DCI_CLOSED which makes use of vertical bitmaps for data representation and

not tree structures as we have used for CLOSET+. The research as described in the

aforementioned paper also emphasizes cache friendliness and SIMD extensions for the

parallelization. By cache friendliness, it is meant that data is stored as vertical bitmaps and

as a result these are small in size which means they can hopefully �t into the CPU cache.

Another advantage of vertical bitmaps is that they reside in consecutive memory locations

and this reduces cache misses. SIMD extensions on the other hand refer to newer CPU

instruction sets which can be utilized for bitmap operations. In particular, DCI_CLOSED

utilizes operations on bitmaps heavily, for example as intersection or inclusion operations.

These operations are said to be much more e�cient when native CPU instructions are

used, one example of which is POPCNT instruction which can count the number of bits

set in a 64 bit word. Job division is described in the paper to be tested with both static and

20

dynamic division and the tests have been run on SMP architectures using up to 8 dual core

CPUs with only one core utilized, ie. 8 threads have been utilized. Reported test results

provide good speedups for various support values and data sets. Although it has not been

elaborated upon, OpenMP is thought to have been used for thread communication for

this algorithm implementation.

2.5 Current Problems and Research Directions

Data mining community faces numerous challenges. An abundance of research into the

still popular areas are addressing many of the problems. For some of the problems, the

problem content has changed over time, for others, the basic questions remain the same.

Performance considerations have been the most prevalent problem in data mining.

This problem is compounded by the fact that data mining has many applications where

the data to be �mined� is huge and the computations required are too much. Performance

expectations have also increased over time and this has resulted in newer methods increas-

ing data mining e�ciency. Lowering processor and memory usage have become an aim

for newer algorithms. Concurrency is also becoming important as a way in creating more

responsive data mining applications. As multicore processors and distributed computing

becomes more widespread, there is a pressure on newer data mining algorithms to use this

huge computing power.

Another important issue in data mining is the more recent notion of interestingness.

It is believed that association rule mining discovers too many patterns, including many

of which constitute common knowledge, or information that is too evident and known at

large. This is generally undesirable. Newer research in interestingness aims to discover

information that is most likely to be useful and relevant [72, 36]. Interestingness is a

delicate subject because it is hard to �nd objective measures �tting a situation. On the

other hand, it might be hard to de�ne what constitutes interesting, and this de�nition

might be di�erent for each user or each state of a con�guration.

In association rule mining �eld, there have been newer research areas formed thanks to

previous research. Maximal and closed itemset mining were both proposed to increase the

e�ciency of data mining, and they have themselves become topics of newer research. After

the acceptance of merits of maximal or closed itemset presentations, newer algorithms were

developed to further advance their mining. This is one example where a rede�nition of a

problem makes path for other research.

21

A recent research area is incremental mining (see [30] for an example). Incremental

mining is a specialized data mining topic tailored for fast changing data. In some appli-

cation areas, especially on the Internet, data gets updated very fast where minor changes

occur frequently. As such, a need for faster model generation and easier update with the

addition of new data has emerged. Incremental mining aims to create and update models

with less work as new data comes in.

Privacy is another topic which is hot in data mining. With the rising popularity

of social networking websites like myspace, facebook and others, mining data without

compromising users' privacy has become even more important. A number of research

addresses privacy preserving data mining techniques [20, 16, 76, 75]. Creating models and

extracting patterns without the use of a user's individual data has been the aim of these

methods.

Sometimes, newer application areas direct research. A nice example of this can be

seen in colossal pattern mining [83] area. Colossal patterns are de�ned as large patterns

where there are huge number of frequent patterns existing. These patterns could be found

in specialized scienti�c research areas such as bioinformatics. There seems to be no silver

bullet for solving each type of data mining task. Specialized algorithms tailored for data

found in a speci�c �eld are developed with newer research. This concludes future directions

section of this chapter.

22

Chapter 3

OVERVIEW OF PARALLEL

PROGRAMMING

Parallel programming refers to numerous programming methods aiming to take advantage

of parallel computing resources provided by computers. Parallel programming is based on

the simple idea that having more than one program execution simultaneously for the same

problem yields faster results.

Parallel programming is not a new concept as it has been used in various areas for many

years, most notably in high performance computing. Despite this, parallel programming

methods have seen a surge of interest in the recent years. This popularity is largely

attributed to the rise of multi-core CPU technology and the popularity of cheaper cluster

computing environments made totally of commodity hardware (desktop PCs).

Moore's Law (�rst introduced in [54], revised later) is de�ned as the observation and

prediction that number of transistors (or components, as used in the original paper) in an

integrated circuit doubles approximately every two years. This has resulted in exponen-

tial growth in computer performance. Traditionally, processor speed-ups in line with the

Moore's Law had been mostly due to frequency gains by packing more and more transis-

tors. While the Moore's Law is still valid, processor development has taken a new spin

in the last few years. The old technique of increasing CPU frequency has recently been

challenged because of various issues such as physical constraints (including the problem

of packing up smaller microelectronics and heat dissipation problems), increased power

consumption and the problem that memory lags behind processing power and becomes

the bottleneck (the memory wall problem). The new trend in increasing processor perfor-

mance is using the multi-core processor model wherein several processing cores are utilized

in a single processor. Multi-core CPU model is claimed to address many de�ciencies ex-

23

istent in the old model, and thus it is becoming widely used. Consumer processors now

include quad-core CPUs with 4 processing units, while 8 core CPUs are becoming cheaper.

Another trend adding to the interest in parallel programming has been the use of com-

modity hardware in constructing cluster environments. Institutes and organizations are

increasingly deploying high performance computing systems by making use of cheap com-

modity hardware. This has enabled growing deployment of computing clusters, especially

at institutions which could not a�ord custom high-end servers and also broadened their

use at those which could. At the peak of this trend seems to be Google, where thousands

of computers are used in a wide range of jobs. It is claimed that computer clusters com-

posed of commodity hardware �achieves superior performance at a fraction of the cost of

a system built from fewer, but more expensive, high-end servers� [23].

How did the multi-core CPU development and the growing use of cluster computers

helped parallel programming? To take advantage of the multi-core processor technology

and shared nothing cluster architectures to enable faster running programs, one needs

to make use of parallel programming methodologies. Several methods exist in achieving

parallel programming, each with varying success and properties. Some of the more popu-

lar methods include parallel languages, automatic code generation techniques, implicitly

parallel executing operating systems, POSIX Threads, message passing libraries and APIs

for �exible thread management using compiler directives.

Before moving on to discuss parallel programming methods, de�nition of two important

terms useful in the measurement of parallel programming will now be given.

De�nition 3.1

Speedup of a parallel program presents how much faster it is than the corresponding
serial version. It is de�ned by the following formula:

S =
Execution time of the serial version

Execution time of the parallel version

Speedup is useful for determining how fast the new implementation is, but it is also

used to �nd e�ciency, which also takes the number of processors into account. E�ciency

measures how well the processors added for computations are used.

24

De�nition 3.2

E�ciency is used in measuring the utilization of added computational power by using
the speedup and the number of processors added. More speci�cally, it divides speedup
by the number of processors used. It is de�ned by the following formula:

E =
Speedup shown by the program

Number of processors

3.1 Automatic Parallelization and Parallel Languages

In this section, programming language and operating system facet of parallelization will

be discussed. Parallel languages, a much longed but little achieved subject, is the �rst

topic of discussion. Distributed operating systems, which share some of the misfortunes of

parallel languages, is the following topic. This section will hopefully convey why automatic

parallelization has not gained a wide audience.

Several implicitly parallel programming languages have been published in the litera-

ture [35, 55]. Implicitly parallel programming languages promise the advantages of parallel

programming in the looks of conventional sequential programming. They make use of com-

pilers or interpreters to automatically ensure parallel execution. The �implicit� keyword

in the language de�nition o�ers easy parallelism without the need for any extra work on

behalf of the programmer. Parallelism aware compiler or interpreter analyzes the source

code to generate parallel running machine code automatically. These languages do not

provide the �exibility often needed in parallel programming. Programmers using these

languages have little control in the parallel execution of their code, thus explicit paral-

lelizing constructs are in general not needed. This is also considered as an advantage of

these languages, but coupled with non optimal code generation provided by the compil-

er/interpreter, it has limited the popularity of these languages.

Similar issues are existent in cluster operating systems providing resource sharing

capabilities to programs [52]. MOSIX is one such system [22] which is widely used. It

is an operating system for managing cluster computing resources. MOSIX originally had

derivations from several di�erent Unix distributions, but it was later ported for Linux as

well. Many features have been added to the existent operating system kernels for cluster

management needs. The software layer added by MOSIX addressed resource allocation and

sharing problems associated with the cluster environment. Load balancing, load sharing,

25

process migration, kernel communication and remote execution are some of the capabilities

added or �ne tuned. The advantage of MOSIX comes mainly because of its ability to

automatically run, migrate and load balance processes dynamically with no supervision

required by the programmer. The developed program does not have to use any external

libraries and it does not need special compiler/interpreters. Execution is controlled by the

operating system, a program can be executed on a remote node and migrated according to

the load. To the program, the OS interface is the same, similar to any SMP system. This

simple view is named with a self explaining term: single system image [62]. Like parallel

languages, distributed operating systems also limit the control programmer has. As a

result of the growing usage and maturity of other parallel programming methods providing

additional control (mainly OpenMP and MPI), popularity of distributed operating systems

have declined in the last few years.

There is a reason for the apparent failure of widespread acceptance of automatic par-

allelization methods. Although automatic parallelization methods keep up to the promise

of easy automated parallelization, it su�ers in the e�ciency and performance areas, which

are the basic reasons for using parallel programming in the �rst place. This performance

penalty is caused by the inherent di�culty in analyzing and parallelizing source code.

How will the code execution behave, which loops will be taken for how many times, which

variables will be shared at which times and what will be the size of the data resident in

these variables? These are all valid problems that need to be taken into consideration

while parallelizing programs, and they are hard to predict. Until better compilers and

operating systems are designed which can better predict an execution of a program, the

solution is to use the programmer's intelligence in parallel programming.

3.2 Threads

Threads are de�ned as the concurrent executions of di�erent tasks of a given program,

and they are one of the most widely used methods in parallel programming. They are

related with the �process� notion, but they o�er �exibility and e�ciency compared with

processes. Process and thread implementations may di�er from an operating system to

another or even within programming languages, but in this thesis both terms will be used

with their typical properties.

There are several important di�erences between processes and threads. These di�er-

ences can be summarized in Table 3.1. One important distinction between a process and

26

a thread is that a process has its own address space while a thread shares it with other

threads from the same process. This results in easy access of variables by threads while

processes have to go through the tedious and slow interprocess communication mecha-

nisms provided by the OS. Thanks to the sharing of the address space and state, threads

are usually associated with less overhead, and thus are more e�cient than processes. Nev-

ertheless, there is a trade-o�. Sharing the address space introduces new types of bugs

through deadlocks, race conditions and other interesting behaviour when concurrent ac-

cess to the same data is desired. Using semaphore-like constructs, one can ensure the

proper concurrent access of variables by threads. Processes have their own address space

and are thus protected from these errors.

Table 3.1: Processes vs. Threads

Processes Threads

Processes are independent units of execu-

tion

Threads are tied to a process

Processes have their own address space and

state information

Threads share the same address space and

state within the parent process

Processes interact through interprocess

communication (IPC) methods provided by

the OS (harder to do, with security consid-

erations)

Threads can use more �exible methods,

such as seamlessly reading memory loca-

tions since the address space is shared

Switching between processes is costly Switching between threads is relatively

cheaper

Threads are the most used method for achieving concurrent execution. They are

generally provided in a variety of programming languages so that programs can work on

di�erent tasks at once, and still be able to run e�ciently. One popular usage of threads

is in the user interface design. For example, several di�erent user interface elements (eg.

windows or tabs) can be controlled by di�erent threads as it is mainly done in Java.

Threads in user interface programming provides increased responsiveness and it avoids

the hang-up or freezing of a window while another one is busy.

27

A disadvantage of the threads model is that it is not portable. There are various

APIs for di�erent platforms if one wants to use threads in parallel programming. The

most popular ones are POSIX threads (pthreads) for *nix operating systems and WinAPI

threads for Microsoft Windows operating systems. Furthermore, it can be a challenging

task if one does all thread management by himself, without using any libraries or tools

tailored for this speci�c job. It could be complicated to devise how and when new threads

will be created, when they will be deleted or slept and how the jobs will be distributed.

There have been various libraries put forward with the intend of automating these jobs. In

the next section, OpenMP will be introduced which tries to address some of the problems.

3.3 OpenMP

OpenMP is a speci�cation, a set of terms and their de�nitions, which enables parallel

programming in shared memory environments. It has implementations supporting C/C++

and Fortran, working on many architectures such as Unix and clones (Linux) and Microsoft

operating systems. OpenMP does not �t the de�nition of library, parallel programming

is achieved by using compiler directives (or pragma de�nitions, as it is also widely used).

OpenMP uses multithreading for running tasks concurrently. It uses the general con-

cept of multithreading where a master thread forks other threads which all run concur-

rently. If the tasks are �nished, a join operation is conducted so that all the threads

merge and only the master thread remains, like in the beginning. If more parallel tasks

are forthcoming, a new set of threads could be forked again and this execution cycle could

continue.

The cycle of creating new threads, merging and starting all over again can be best seen

in Figure 3.1 (image taken from [13]). In the image, the top part shows a serial execution

of various tasks, and the bottom part shows how it can be executed in parallel. We have

to note here that parallel tasks 1 to 3 seen in the image all contain independent subtasks

as shown. Had there been a dependency, parallel execution of the subtasks would not

have been carried out. In this case, where tasks are dependent, serial execution must be

preferred.

As described earlier, OpenMP uses preprocessor directives to achieve parallel exe-

cution. Also called pragma de�nitions, these directives are ignored by the compiler if

OpenMP extensions are not installed and the compiler does not support it. Thus, serial

versions of the program can be easily built, without any modi�cations (there are some

28

Figure 3.1: Execution model in OpenMP

caveats involved when more complex operations need to be done, and so serial versions

need modi�cations, but advanced OpenMP is left to the reader).

A �hello world� program using OpenMP can be found in Figure 3.2. As can be seen,

OpenMP pragma directives start with �#pragma omp�. This simple example may give

rise to the following question: How do we specify the number of threads we want? This

and many other con�guration parameters can be set using environment variables; thread

number is speci�ed by setting �OMP_NUM_THREADS� variable. This �exibility of

setting numerous con�guration options by environment variables is given as an advantage

of OpenMP.

#inc lude "omp . h"

int main (int argc , char∗ argv [])

{

#pragma omp p a r a l l e l

p r i n t f ("Hel lo , world . \ n") ;

return 0 ;

}

Figure 3.2: Hello World in OpenMP

29

It should be noted that while multiprogramming is easy and �exible with OpenMP,

avoiding race conditions and deadlocks is left to the programmer. If tasks have dependence

on each other, synchronization constructs such as barriers, critical sections and others can

be used to avoid erroneous execution. Private variables can also be used within OpenMP

to avoid races between threads accessing non-local variables and global data.

Table 3.2: Do-it-yourself Threads vs. OpenMP

DIY Threads OpenMP

Threads need di�erent libraries OpenMP is implemented using compiler di-

rectives

Threads are not as portable, di�erent li-

braries exist between di�erent platforms (eg.

Unix and Windows) and there are di�erent

libraries even in the same platform

OpenMP is portable, implementations con-

form to the standard

Parallelism has to be speci�ed explicitly,

high workload on the programmer

OpenMP takes care of most of the decom-

position of work and data

Serial and parallel versions have many dif-

ferences

Serial and parallel versions can be gener-

ated in general without any modi�cations

(except for some advanced constructs where

limited modi�cations are needed)

OpenMP is a widely popular solution to parallel programming. It provides various

advantages over custom threading implementations. Scalability, simplicity and �exibility

concerns are addressed to some extent. In the shared memory architectures, OpenMP

promises satisfactory performance, and the latest speci�cation OpenMP 3.0 released on

May 2008 is expected to improve some of the shortcomings (eg. tasks are added to

OpenMP) as more and more of the compiler producers embrace it.

OpenMP is basically a multithreading solution saving the programmer the hassle of

maintaining threads and parallelizing a work. In Table 3.2 di�erences between a custom

multithreaded implementation and OpenMP is summarized. OpenMP provides �exibility,

scalability and simplicity on shared memory systems. In the next section we will be looking

30

at message passing techniques, which provide parallelism in shared nothing architectures.

By using OpenMP and MPI in a hybrid application, one can parallelize a program to run

on multicore distributed clusters.

3.4 MPI

MPI is a speci�cation describing an API for communication between di�erent computers

(and hence the name message passing interface). It has been used widely in the high per-

formance computing community, starting much before multicore processors were common,

to program distributed memory architectures. MPI has proven itself to be the de facto

standard for many applications using distributed memory, but it can be used for shared

memory programming as well. It uses the general concept of message passing, of which

one of the earlier examples had been PVM (Parallel Virtual Machine) [70]. PVM also

happens to be one of the main motivations for a message passing standard.

MPI works with processes, as opposed to threads, and thus it directly inherits process

properties. Refer to the earlier comparison in Table 3.1 for more information. MPI

provides an API for communication between di�erent program processes working on a

problem. Normally each core is assigned a single process for maximum performance. MPI

enables detailed con�guration and more processes can be assigned at the cost of processor

performance. If more than one process is assigned to a processor core, it is said to be

oversubscribed and processes share the CPU time.

What happens when MPI is used in a shared memory environment? If a program

can run in distributed memory architectures, then there should be no problem running in

shared memory architectures as well. Even so, having a multithreaded approach would

increase the performance of the application because threads are more suitable in shared

memory systems. MPI standard does not require implementations to be multithreaded

and di�erent implementations have taken di�erent approaches. Multithreading is not

supported at large by implementations. Still, there is some room for improvements in

process handling when shared memory architectures are used, such as direct memory

copying. This is used by the Open MPI implementation.

Similar to the example source code given in the OpenMP section, MPI equivalent is

presented in Figure 3.3. From the �hello world� example, it can be seen that MPI is used

by calling library functions, as opposed to compiler pragma directives used in OpenMP.

Although both source codes are given in C, MPI can be used with C++ and Fortran too,

31

as it is the case with OpenMP.

#include <s td i o . h>

#include <mpi . h>

int main (int argc , char ∗argv []) {

int myrank , s i z e ;

MPI_Init(&argc , &argv) ;

MPI_Comm_rank(MPI_COMM_WORLD, &myrank) ;

MPI_Comm_size(MPI_COMM_WORLD, &s i z e) ;

p r i n t f (" Proces so r %d o f %d says : He l lo World ! \ n" ,

myrank , s i z e) ;

MPI_Finalize () ;

return 0 ;

}

Figure 3.3: Hello World in MPI

MPI provides many functions for communication between processes. These include

point-to-point communication constructs where two processes are connected or collective

operations including more than two processes. MPI also provides ways to group processes

according to any way programmer likes. Furthermore, virtual topologies can be chosen

so that MPI can simplify and increase the e�ciency of communication between processes.

There are also many variations in communication functions according to the communica-

tion format. It can be synchronous where the functions block until the message is safely

shared between the parties, or it can be asynchronous where processes continue their work

and check later whether the operation has completed successfully. Collective communi-

cation also has many forms including synchronization constructs (eg. barriers), scatter,

gather and reduction operations. These provide low level �exibility to the programmer,

he is free to choose the best strategy to use.

32

MPI naturally supports the SPMD form of parallelism by spawning multiple copies

of the same program and enabling communication in between them. Nevertheless, MPI

implementations also allow di�erent programs to be spawned as well, with communication

between them intact. Thus, MPMD (Multiple Program Multiple Data) form can also be

implemented easily.

You can see a comparison of OpenMP and MPI in Table 3.3. The most obvious dif-

ference to take into consideration is that OpenMP works on shared memory architectures

while MPI works in both [24].

Table 3.3: OpenMP vs. MPI

OpenMP MPI

OpenMP is implemented using compiler di-

rectives

MPI uses library function calls

OpenMP uses the thread model MPI uses the process model

OpenMP is suited for shared memory pro-

gramming

MPI is best suited for distributed memory

programming, but shared memory program-

ming can also be used

OpenMP has simple parallelization of loops

and other tasks, demands less work on pro-

grammer's side

MPI has more �exibility and low level con-

�guration options. There's more work for

the programmer to do

Serial versions in OpenMP is often trivial Serial version without the MPI overhead

needs �ifdef� directives that clutter the code

or an MPI stub library containing dummy

code

Among the hottest topics in MPI development community include �fault tolerance�.

This is important in grid computing systems where the computing elements making up the

architecture could be physically distant and system wise heterogeneous. Fault tolerance

is resuming operation as a whole if a failure occurs in some part of the system. There is

continued development in this area in many MPI implementations.

33

Chapter 4

IMPLEMENTATION

In this chapter, implementation information for the performed research is presented. The

research is focused on the parallel implementation of a fast frequent itemset mining al-

gorithm called CLOSET+ [77]. Accordingly, the �rst section is about the CLOSET+

algorithm in its serial form, as described in the original research paper by Wang et al.

After this, the solution framework will be presented to better understand the implemen-

tation and the design decisions taken. Modi�cations enabling parallel execution will be

presented afterwards, concluding this chapter.

4.1 CLOSET+ Algorithm

CLOSET+ algorithm is a fast algorithm using the widely popular FP-tree (Frequent

Pattern tree) structure. It is composed of two phases. In the �rst phase, a compact

representation of the database using FP-tree structure is built. After this phase, second

phase commences where the FP-tree is mined and frequent patterns are found. CLOSET+

makes use of several novel techniques for pruning the search space and thus increasing the

mining speed. More information about the FP-tree structure and building it in the �rst

phase will be described in the next section while the second phase, covering actual mining

will be described in the following.

4.1.1 Building the FP-tree

FP-tree structure was �rst proposed with the FP-growth algorithm [46] published by Han

et al. It became a widely used format for representing the database to be mined thanks

to its high compression ratio. Compression is vital to any mining algorithm because

performance can be greatly enhanced if the whole database can be compressed to �t into

34

memory and thus no time is wasted on the costly I/O operations from the disk. FP-tree is

an extension of pre�x tree structure, where a node in a tree can represent an item existing

in more than one database transaction.

FP-tree structure may be best explained by an example. The following example is

taken directly from the CLOSET+ paper [77] to facilitate the use of the original paper as

reference, should the reader need it. This example will also be useful in the coming sections,

since it will be used directly with the parallel version to enable an easy comparison.

Assume the database contents are as in Table 4.1. The �rst thing to do is �nding the

support counts of each item and pruning those items having less than minimum support.

Assume that the minimum support value is two. When we sort the support list, it becomes

f_list = (f : 4, c : 4, a : 3, b : 3, m : 3, p : 3). Notice that the list is called f_list

and that d, g, i and n has been pruned. Items having less than the minimum support

value are not frequent and they are pruned. Remember the downward-closure property

from the Apriori Algorithm section, it is straight forward that every frequent itemset must

itself contain frequent items only and because of this rule, infrequent items can safely be

discarded.

Table 4.1: An Example Database

TID Basket contents

001 a, c, f, m, p

002 a, c, d, f, m, p

003 a, b, c, f, g, m

004 b, f, i

005 b, c, n, p

The next step in building the FP-tree is sorting the database according to the f_list,

while discarding infrequent items. In Table 4.2 this can be seen.

The �nal step in building FP-trees is inserting each sorted transaction to the tree one

by one. In particular, each transaction starts at the root of the tree. The �rst item is

searched in the children of the root, if it is found, that node's count is incremented. If the

item is not one of the children of the root node, then a node with that item and count of

35

Table 4.2: Pruned and Ordered Database

TID Pruned & ordered items

001 f, c, a, m, p

002 f, c, a, m, p

003 f, c, a, b, m

004 f, b

005 c, b, p

1 is added as a child. The second item will start from this newly inserted or incremented

node and the operations will be similar. This will go on until all items included in the

transaction have been �nished, in which case next transaction will start at the root of the

tree, just like in the beginning.

In Figure 4.1 one can see the shape of the tree after each processing of the transactions.

The numbers below the trees show the ID of the last transaction that has been processed

and inserted. For example, the �rst tree represents the shape of the tree after the �rst

transaction has been processed. As can be seen from the �gure, new nodes are inserted

with a count of 1 while existing nodes' counts are incremented. When all the transactions

have been processed, whole of the database has been compressed and represented in a

tree, this is the �fth tree in Figure 4.1.

As the shared items in transactions in a database increases, items belonging to more

transactions are represented by the same nodes in the tree, and this increases the compres-

sion rate. This compression is not clearly evident in our simple example described above.

Databases where many items are included in most of the transactions are called dense

databases. It is claimed that FP-tree structures can compress databases in the order of

hundreds or thousands of magnitudes for dense datasets [77].

4.1.2 Mining the FP-tree

After the construction of the FP-tree, the database will not be read again. All the mining

work will be done by processing the FP-tree. CLOSET+ mines the trees by projecting

each node to newer FP-trees and employing three pruning techniques called �item merging�,

�sub-itemset pruning� and �item skipping�.

36

Figure 4.1: Building of FP-tree as each transaction is processed

Item merging technique prunes the search space by merging two itemsets if they are

always found together. In other words, if itemset Y contains all the items existing in every

transaction containing the itemset X, then X ∪ Y is taken as a frequent closed itemset.

There is also no need to search for closed itemsets containing X and a subset of Y as they

will be represented by X ∪ Y .

Sub-itemset pruning technique on the other hand does not mine unpromising trees if

they are descending from itemsets which are proper subsets of already found itemsets with

the same support value. This technique asserts that if itemset Y is a proper subset of an

already found frequent closed itemset X with the same support value, then Y and all the

itemsets descending from Y in the tree do not need to be taken into consideration as they

will be represented by the frequent closed itemset X.

In addition to these methods, a newer method similar to the two pruning techniques

described is the item skipping technique which lowers the number of recursive tree pro-

jections. By the use of this method, if an item has the same support value in a projected

tree, it can be pruned from the parent tree. That is, the same item does not have to be

mined in the parent of the currently projected tree. This technique also speeds up mining

because it eliminates the redundant work.

All three of the methods aim to prune the search space the algorithm has to work on,

and thus to increase its e�ciency. In the remainder of this section other aspects of the

algorithm will be analyzed.

37

In the original research, two methods for mining the trees are presented, according to

the nature of the dataset. For dense datasets, a bottom-up physical tree projection is pro-

posed while for sparse datasets a top-down pseudo tree projection is proposed. However,

no metrics are presented for determining which method is the best for a given database.

Determining if the database at hand is dense or sparse and whether it is more e�cient to

use a top-down or a bottom-up projection is completely left to the reader. Since FP-trees

are better suited for dense datasets, and since both methods are similar to each other in

spirit, only the bottom-up physical projection method will be discussed in this section.

The one structure missing in the FP-tree examples presented in the previous section

is the links between the nodes and the header table providing a simple index. FP-trees

incorporated links between nodes to enable easier traversal between nodes having the same

item and thus increased mining speed. The header table on the other hand allowed for

the access of the nodes in a bottom up manner as needed. These additions which had not

been included in Figure 4.1 can be seen in Figure 4.2.

Figure 4.2: FP-tree with side links

In the actual mining of the FP-tree structures, projected trees are constructed in a

bottom up manner using the header table. These projected trees are then either projected

themselves or frequent itemsets are added to the result tree by the use of the techniques

discussed in this section. A simple example mining step will be now presented.

38

In the �rst step, a projected tree for the bottommost item in the header vector will be

constructed. For this example projection, conditional database for item p:3 is generated

from the global FP-tree. Conditional database of an item is composed of transactions

which include that item. In Figure 4.2 it can be seen that transactions including item

p are both {fcam : 2} and {cb : 1}. Conditional databases include the support values

for these transactions, these support values also apply to each item existing in the trans-

action. Projected FP-trees are constructed in the same way as the global FP-trees are

constructed. Conditional database is processed to �nd the support values of items in the

transactions, f_list is constructed, transactions are pruned and sorted according to the

f_list and inserted to the new tree. In Figure 4.3 projected tree for item p:3 can be seen.

Figure 4.3: Projected FP-tree for item p:3

After constructing the projected FP-tree, mining starts with a similar bottom-up ap-

proach. The bottommost item, which is m, is added to the pre�x itemset and a new

conditional database is generated. The new pre�x is pm:2 and the only transaction in the

database is {cfa : 2}. By using the item merging technique, pre�x and the conditional

database is merged and {pmcfa : 2} is inserted to the result tree as the �rst frequent

itemset.

Going one node up, item a is the next item to be added to the pre�x. Here, another

pruning technique comes to the stage as the pre�x {pa : 2} is a proper subset of the �rst

frequent itemset found. Sub-itemset pruning is used here and the mining can continue

with upper nodes. The next item, f also shares a similar fate as the new pre�x {pf : 2}

39

is also a proper subset and it is also pruned.

We move to the last item which is found in the top node, item c. Pre�x for this node

becomes {pc : 3}, thanks to the higher support value of the item. The conditional database

for this node is empty as there are no nodes in the higher levels, and so the pre�x can

be inserted to the result tree directly. Itemset {pc : 3} becomes another frequent itemset

found.

After all the projections are mined for a node, upper nodes in the global FP-tree are

mined. The same bottom-up traversal is used and tree projections for m, b, a, c and f are

created in that order. Tree projections and the mining steps are similar to the �rst step

described above, and will not be described here.

As candidate frequent closed itemsets are found, how are they checked to be really

closed? This is done through a two level hash index pointing to nodes in an FP-tree like

structure. A modi�ed FP-tree structure is used in compressing the results, much the same

way as compression achieved for the database. The nodes in this result tree are referenced

by a hash index and this provides a way for checking if there exists a subset or a superset of

the newly found itemset with the same support value. Thanks to the result tree structure,

and related two level hash index, only closed frequent itemsets are stored.

Please refer to the original article [77] for a through discussion of the CLOSET+

algorithm.

4.2 Solution Framework

In this section, important design issues are elaborated upon regarding the programming

framework chosen for the project. Some of the important questions center around the

choice of MPI and its implementation, programming language, auxiliary libraries that

were used and how debugging was done. These make up the rest of this section, it is

hoped that each question is addressed satisfactorily.

4.2.1 Programming Language

During the decades of research into high performance computing, the two languages that

have come to dominate this area are C (and C++, if one thinks of it mostly as a superset

of C) and Fortran. As a result, these two languages have the most support when it comes

to diverse parallel programming methods. On the other hand, high level dynamic lan-

guages such as Python and Ruby are receiving growing acceptance and the programming

40

enjoyment they bring with newer methodologies is apparent.

CLOSET+ and our parallel modi�cation uses trees and graph structures which would

highly bene�t from the objected oriented approach high level programming languages pro-

vide. For the implementation of our algorithm, many MPI libraries for di�erent languages

were investigated. There exists two di�erent methods for supporting MPI-like message

passing in di�erent programming languages. In the �rst method, a native library imple-

ments part of the message passing API interface with slight modi�cations in the function

names and sometimes inner workings. For the second method, a wrapper library is devel-

oped that uses an MPI library under the hood. Both of these methods had been checked

for di�erent libraries and it was found that there is some loss of �exibility with all these

libraries. Some features de�ned in the MPI standard has not been implemented or not

supported completely in these languages.

To take advantage of the object oriented programming methodology, C++ was chosen

as the programming language. It has extensions to C for object oriented programming and

MPI libraries written in C can be used for low level work by simply calling them from the

C++ program. To have a consistent interface and clean programming style, Boost libraries

were chosen to interface MPI. Boost provided object oriented programming interface to

the MPI library. More information about this library will be given in the next section

where auxiliary libraries are discussed.

4.2.2 Libraries

Several high level open source libraries were used in our project for di�erent purposes.

This enabled the reuse of proven source code developed and tested by many people in the

open source community.

The �rst library used in the project is the tclap library [14] which facilitated the easier

parsing of command line options and pretty printing of the help contents. As our project

focused on measuring speeds of di�erent executions, many command line arguments were

needed. In addition, because there were di�erent types of data that could be processed,

data type was also parsed from the arguments. This resulted in a rather long program

execution command, which was easily programmed using tclap.

The second and the most important library used in the project is the Boost libraries

[3]. Boost libraries are peer reviewed set of more than 80 libraries aimed to complement

the missing parts of the Standard Template Library in C++. It has high quality libraries

designed for many tasks, and some of the libraries have been accepted for incorpora-

41

tion into the C++ standard. Boost also has an MPI interface designed to enable object

oriented usage of the MPI interface. Many function calls become object methods using

encapsulation and an easier interface is o�ered for the many MPI functions. In Figure 4.4,

a comparison is given where both raw MPI and Boost library version is shown for the

functionally equivalent code segment.

// C S t y l e MPI Function Ca l l s

MPI_Init(&argc , &argv) ;

MPI_Comm_rank(MPI_COMM_WORLD, &rank) ;

i f (rank == 0)

. . .

// C++ S t y l e MPI Programming Using Boost L i b r a r i e s

mpi : : environment env (argc , argv) ;

mpi : : communicator world ;

i f (world . rank () == 0)

. . .

Figure 4.4: MPI Programming Comparison

Boost MPI library does not only provide C++ style MPI interface, it also provides

methods for easy transfer of complex data types. One disadvantage of MPI has been the

complexity involved when a variable of type other than the primitive data types (integer,

character, �oat etc.) is needed to be shared between the processes. This task involves

MPI_Pack and MPI_Unpack methods and the custom serialization of variables. It is

extremely tedious and error prone for the programmer to write this code by hand. Sending

even simple string variables is not a trivial task in C++, while sending more complex data

types such as trees and graphs can be extremely di�cult.

In our algorithm, there is a need to send and receive graph-like structures with added

constructs such as header tables linking to nodes in the graph or multi level hash indexes.

Sending these structures correctly is an extremely complex job when one thinks about the

edges, information contained in nodes such as variables and the links helper structures

contain. Links should be followed and newer structures should be serialized as found, but

42

there is also the need to keep track of the pointers so as to not send the same structure

more than once should it be linked from more than one place.

This complexity is the topic of a recent paper published in April 2008 by Tansey et al.

[73]. The said paper compares di�erent methods providing relief for the programmer who

wants to send non-primitive data. Among various methods analyzed, Boost libraries are

found to one of the best solutions to this problem. Tansey et al. also describe a tool they

have developed which generates automatic serialization code, but as of January 2009, this

tool has not been made available to the public.

By using both the Serialization and the MPI libraries provided by Boost, one can

easily send non-primitive structures through MPI. The programmer does not have to deal

with the low level intricacies of serialization and deserialization, pointer tracking and other

complicated tasks. Most of the STL provided containers such as maps, vectors, lists and

standard library provided string data type can be sent and received automatically. Custom

data types such as graphs can be sent and received by making small additions to the class

code. By implementing a simple serialization interface on a class, objects belonging to

that class can be communicated between di�erent processes.

Underlying MPI library used by the Boost MPI interface is an important topic as

it is central to the communication between di�erent computing nodes. For this reason,

message passing deserves a section of its own and it is presented next.

4.2.3 Message Passing

A serial algorithm is generally parallelized with the hope of making it faster and more

e�cient. As described in the parallel programming methods chapter, MPI has been the

de facto standard for applications using distributed memory. MPI gives the programmer

ability to programme distributed memory architectures whereas OpenMP provides support

for shared memory architectures. Coupled with the fact that MPI can also be used for

shared memory programming, this �exibility gives MPI an edge over OpenMP. With the

modern MPI implementations copying memory directly from one process to another in

multi-core architectures, the choice of using MPI becomes natural.

After the selection of MPI, the exact implementation to be used appears as the next

issue. The two major implementations of MPI are Open MPI [12] and mpich, which are

both supported at the major grid centers in Turkey. Both the cluster at the Computer

Engineering Department (CENG) and the National HPC Center (UYBHM) have these

two libraries installed. After an analysis, it was found that both of these libraries are

43

exceptionally well and similar in spirit. Nevertheless, Open MPI was chosen because of its

commitment to a better implementation, its �exibility and low level con�guration options.

Open MPI is an MPI library representing the merger of several MPI libraries. It was

envisaged that by taking the better parts of each library and bringing the good ideas and

technology from di�erent implementations, the best MPI implementation could be devel-

oped. Open MPI provides many low level con�guration options such as using di�erent

network interconnectivity options, memory checking support, direct memory copying on

shared memory architectures, optimizations for many options including when running on

homogeneous machines etc. One interesting feature of Open MPI is that it can use dif-

ferent network connectivity options by itself, whereas for mpich di�erent implementations

are needed to connect on di�erent networks. For example, mpich library working over

In�niBand is called mvapich.

Open MPI uses TCP for setting up di�erent processes and management of non-user

level MPI work. For shared memory architectures, the default user level data transfer

method is direct copying of memory from one process to another. This relieves the pro-

cesses of communication overhead and increases the connectivity speed. It should be noted

that this will still be inherently slower than OpenMP, where threads are able to directly

access the memory locations. Processes in MPI have their own address space and thus

they are more �exible than OpenMP threads but this incurs some performance penalty.

On the other hand, MPI processes have less danger of race conditions and locking of vari-

ables (via mutexes in threads) because they do not share their memory address space with

other processes.

4.2.4 Debugging

Debugging is an important issue in parallel programming, as it is also the case in se-

rial programming. Debugging even serial programs can be at times tricky, while parallel

programming brings new types of bugs and complexity on the table. With the paral-

lel execution, race conditions and deadlocks can occur, causing erratic behaviour or the

freezing of the programs. Number of interleavings for a given MPI program can be huge,

and it can be impossible for the human brain to think about each of these schedules. For

example, an MPI program with 5 processes each making 5 MPI calls has an overwhelming

number of execution options (much more than 10 Billion!). Assuming that there are no

synchronization calls, that each MPI call is independent of each other, the exact number

44

becomes:
25!

(5!)5

The sheer hugeness of the number of interleavings for a parallel program calls for good

tools to aid in debugging. During the course of the project STLFilt [2], vim [8], valgrind

[68], gdb [69] and ddd [82] has been used for debugging [5]. STLFilt �lters C++ STL

Template errors and shows them in a way programmer can better understand. The vim is

an all round great text editor, but with its quick�x feature it can speed up the notorious

edit-compile-debug cycles static compiled languages impose. Valgrind on the other hand

is a suite of tools very useful for pro�ling and �nding memory leaks. Using valgrind with

Open MPI requires Open MPI libraries to be compiled with memory checking options set,

see the Open MPI user guide for more detailed information.

The main tools used for debugging are the gnu project debugger gdb and its front-end

graphical user interface, ddd. To be able to use these debuggers, one must compile the

program source code giving the -g �ag to the compiler so that the debugging information

is included. Another important detail is the optimizations issue. To experience a smooth

debugging session, optimizations must be turned o�. Flags beginning with -O, such as

-O3 must be removed from compiler options. This is needed to ensure that the source

code and the executable is consistent with each other. If optimizations are turned on, the

compiler may choose to remove variables, change the way loops work and alter the code in

other ways, which can confuse the debugger and cause irregular behaviour or even worse,

a segmentation fault.

Gdb and ddd are two popular programs used widely for serial program debugging,

but they can also be used for parallel debugging. There exists debuggers which have

been developed for parallel use speci�cally, such as the popular TotalView, but they are

commercial software and cost a lot of money in terms of software licences. Commercial

debugger TotalView is not installed on the CENG HPC Cluster, but it is on the UYBHM

cluster site. Natively parallel debuggers are actually not needed as serial debuggers can

be used for parallel debugging just as well.

There exists three methods for debugging parallel programs using Open MPI. In the

�rst method, mpirun command runs the debugger which in turn starts the application.

Subsequently, a window is opened for each process. If gdb is preferred to be used, it should

be started with a terminal emulation program, such as xterm, since gdb does not have a

window of its own. If a graphical front-end like ddd is preferred, it can be run directly. In

45

Figure 4.5, one can see how both debuggers can be used.

$ mpirun −np 2 xterm −e gdb . /myProg

$ mpirun −np 2 ddd . /myProg

Figure 4.5: Running an Open MPI program through a debugger

After starting the debuggers, one can use standard debugging commands, insert break-

points, run the program, inspect variables and so on.

The second method in debugging parallel programs is running the programs freely

and attaching to the relevant process ID as needed. To use this method, a global debug

function can be declared printing its process ID and sleeping until an attachment is made

by a debugger. After attaching to a process, one can use debugger methods to break out

of the sleep loop by changing the value of the control constant. This method of attaching

to processes has some advantages compared to the other methods because one can make

use of run time controls and selectively attach to processes as needed. For example, a

conditional statement such as an if can be used to call the debug function when the

process rank is some predetermined value, or if the process is in a predetermined state.

An example function used for debugging by this method is given in Figure 4.6.

void Globals : : debug () {

int i = 0 ;

char hostname [2 5 6] ;

gethostname (hostname , s izeof (hostname)) ;

p r i n t f ("PID %d on %s ready f o r attach \n" , getp id () , hostname) ;

while (0 == i)

s l e e p (5) ;

}

Figure 4.6: Code segment used for attaching to an Open MPI program

46

Globals is a static class whose methods can be called from anywhere in the program

without the need for creating an object. Typically the programmer determines a possible

location of error and calls this function near that place in order to attach to the program

by a debugger. In addition to this, one can call this function at the beginning to attach and

debug a program right from its beginnings. Debugger programs have options for attaching

to running programs by accepting the process ID. After the attachment, the loop control

variable i 's value can be changed via the debugger and conventional debugger commands

could be used.

It should be noted that for the previous methods to work on a remote server, X

forwarding must be supported by the remote server. This has security implications and

thus many system administrators do not enable this feature. Debugging on a remote

cluster has another side e�ect, processors are blocked until the whole debugging session

�nishes, which can take a long time. For these reasons, it is recommended that parallel

application debugging is performed on the local computer.

The last method for debugging does not need X forwarding. This method makes use

of MPMD form of parallelization and it is restrictive on the number of processes that

can be debugged. Open MPI supports the concurrent execution of multiple programs

and provides communication just as it is provided to concurrent execution of a single

program. Using this strategy and keeping in mind that the command line is attached to

the �rst running process, one can debug the �rst process easily. The command for using

this method is given in Figure 4.7.

$ mpirun −np 1 gdb . /myProg : −np 1 . /myProg <arguments>

Figure 4.7: Debugging an Open MPI program using the MPMD strategy

As can be seen, each process uses the same executable, but the �rst one is run using

the debugger. The debugger is in control of the �rst program while the second one is free

in its execution. Like in the previous cases, one can use debugger options in debugging

the �rst process.

This concludes the methods for debugging parallel applications using Open MPI. It now

seems bene�cial to describe how debugging can be done with other MPI libraries such as

mpich. Di�erent MPI libraries have implemented di�erent levels of support for debugging.

47

The method used by mpich (or its In�niBand version, mvapich, for that matter) is easier

and more �exible than what Open MPI provides. In mpich, one can provide -gdb argument

to mpirun and get access to gdb command prompts on all processes. Inputs to each gdb

instance is tunneled by mpich and the debugger outputs are printed on the same screen.

Multiple copies of the same message are discarded from each debugger and thus only one

instance of a message is shown. It is possible to send debugging commands to a subset

of the gdb instances. Similar to the Open MPI method, one can also attach to a running

MPI process using mpirun. In Figure 4.8 one can see the commands for both options.

$ mpirun −gdb −n 10 . /myProg

$ mpirun −gdba <jobid>

Figure 4.8: Debugging an mpich program

Job ID's of running processes can be obtained from the mpich process manager, using

the mpdlistjobs command.

4.3 Parallel Implementation

In this section, the actual implementation of the parallel CLOSET+ algorithm will be

discussed step by step from the beginning to the end. The parallel algorithm, with its

major steps is shown in Figure 4.9. The �rst three steps in the �gure have been investigated

in the literature previously. These steps involve the generation of FP-trees, a very popular

structure in frequent itemset mining research. For one of the earliest research utilizing

FP-trees for a parallel algorithm, please see the paper by Zaïane et al [78]. The remaining

two steps shown in the �gure has not been proposed in the past literature to the best of our

knowledge, and they comprise of the division of FP-trees for mining and the merging of

FP-tree like result trees. This division of mining on FP-trees and the merging of the result

trees is the novel part of our algorithm, where the mining task is borrowed from the serial

CLOSET+ algorithm. A similar research to Zaïane's work using MPI for parallelization

of a di�erent algorithm making use of FP-trees can be found in [48].

48

1. The data is divided at the transaction level. Each process is assigned a

local database.

2. Each process calculates item counts from their local database. Local

item counts are merged from each process to generate global item counts.

Global item counts are distributed to all processes.

3. Local FP-trees are created on each process, again using the local database

and the global counts. Local FP-trees are merged from each process. The

global FP-tree is distributed to each process.

4. Mining task is divided using the header table of the global FP-tree. Each

process mines its share of the global FP-tree using the serial CLOSET+

principles.

5. Local result trees are generated on each process, and these are merged

to create the global result tree.

Figure 4.9: Parallel algorithm steps

4.3.1 Parallel Algorithm Steps

In this section each step is described in detail. More speci�c MPI and implementation

details will be left for the following sections.

In the �rst step, the data is divided at the transaction level. In our implementation,

data is divided so that each process is responsible for the processing of roughly the same

number of transactions. This number is calculated simply by dividing the number of

transactions to the number of processes. Each process then goes through that number of

transactions reserved for itself, this data is called the local database. The last process is

also responsible for the extra transactions if the number of transactions is not an integer

multiple of the number of processes.

Example database division con�gurations will now be described with respect to the

previous database depicted in Table 4.1. This example database has 5 transactions. If it

is to be divided for 2 processes, the �rst process will be responsible for transactions 1 and

2, while the second process will be responsible for the rest of transactions, which is the

transactions with IDs 3, 4 and 5. If the number of processes is 5, each process will get the

same number of transactions to process, namely, a single transaction.

49

It should be noted that this division does not entail a perfectly fair workload, as

transactions may include widely �uctuating number of items. Even so, this simple method

provides a fair enough work division, it is estimated that taking the number of items

and their nature in a transaction into account for load balancing would result in a big

computational overhead. Assuming that each transaction has roughly the same number

of items and that each process roughly gets the same number of unique items in their local

database, it becomes clear that the e�ciency is increased. Trade-o�s of this sort where

extra computation is needed for a perfectly fair workload are encountered frequently for

the algorithm, in almost all cases it is decided that perfectly fair workload is not a wise

decision in terms of performance.

In the second step each process goes through their local database and calculates item

counts. This calculation is performed similar to the serial CLOSET+ algorithm. Local

item counts data found by each process is than merged to generate the global item counts.

Merging of local item counts is a trivial task, an example merging is shown in Figure 4.10.

In the �gure, local counts from two processes are shown merged to global item counts. The

data used for this example is from the earlier database given in Table 4.1. Since we assume

there exists two processes, transactions 1 and 2 are used by the �rst process to generate

the �rst table in Figure 4.10. The second process on the other hand uses the remaining

three transactions and generates the second table shown in the �gure. The �+� sign in

between the �rst two tables denotes the merging operation, which results in the third

table. As seen in the �gure, the merge operation simply adds the local counts together.

Once the item counts for the whole data is found through merging, it is distributed to

each process. In the end, each process has knowledge about the item counts regarding not

only their local data but the whole database.

With the global item counts data at hand, each process can create its FP-tree by

processing the local data. At the beginning of the third step, a pruning operation is

performed on each transaction the process is responsible for. In this pruning task, items

having less support value than the speci�ed minimum is removed from the transaction.

The remaining items in the transaction are than sorted with decreasing support values.

In constructing FP-trees, each sorted and pruned transaction is inserted to the tree. This

FP-tree construction is as it is described in the original article �rst proposing this structure

[46].

After the local FP-trees are constructed at each process, they are merged to create the

FP-tree representing the whole database. The merging operation on the FP-tree structures

50

���� � � � � 	
 � � �

����� � � � � � � � � � �

�

���� � � � � 	
 � � �

����� � � � � � � � � � �

���� � � � � 	
 � � �

����� � � � � � � � � � �

�

Figure 4.10: Merging of the local item counts

is conducted using a method based on its semantics. In merging the trees, a node in one

tree is taken and inserted to the other tree if it is not already present. The count of the

node is also preserved in this case. If the node is already present in the tree, the count

values are simply added. This node insertion and update operation is performed along

with the traversal of the tree in a depth �rst way, from the root to the leaves. Merging of

FP-trees have been implemented in previous research [78].

An example merging of two trees is seen in Figure 4.11. The referenced �gure follows

directly from the previous examples. The �rst two trees in the �gure are generated using

the same database division as described in the previous two steps. Minimum support value

is taken to be 2, and so some of the items having smaller support in the merged table

shown in Figure 4.10 is pruned from the database. These pruned items are not shown in

the local FP-trees. After the merging of local FP-trees, the global FP-tree representing

the whole database is distributed to each process. Local databases are no longer needed,

memory used by the individual transactions and the local FP-tree can be freed since the

global FP-tree will be used during mining in the subsequent steps.

An important detail to note here is the replication of FP-tree in di�erent processes.

The global FP-tree has the needed important parts of the transaction database, where

by important parts we mean data which is going to have an e�ect on the list of frequent

patterns. Only those items that are frequent are taken into consideration and items with

support values less than the minimum are discarded, they are not existent in the FP-

tree. This pruning, along with the compression FP-tree structures provide compact data

51

Figure 4.11: Merging of two FP-trees

representation especially on dense datasets. As a result, replication of FP-trees is not a

vital problem.

In the fourth step, a work division is made and the actual mining task is performed on

each process. The work division is done with the help of the FP-tree and its header table.

Since the global FP-tree is available to all processes, they will all be working on the tree

in Figure 4.2, including the header table and the side link pointers. The work division is

made such that each process is responsible for mining equal number of items in the header

table. During this division, the header table is simply divided into approximately equal

number of rows and given to processes for mining. Bottom-up mining has advantages such

as mining longer, potentially superset itemsets before shorter subsets. This is the reason

continuous blocks from the header table are given to processes. The division is similar

in spirit to the transaction level division in step one, and each process mines the header

table entries in a top to bottom manner. The mining task itself is as it is described in the

CLOSET+ paper [77]. Each process builds result trees, local trees built from the parts of

the FP-tree they are responsible for.

For the last step of the algorithm, another tree merging operation is performed. This

time local result trees from each process is merged to �nd the global result tree, which

is the result tree containing all of the frequent closed itemsets for the whole database.

52

Merging result trees is inherently di�erent from the previous FP-tree merging method

because the semantics of the trees are di�erent. Result trees represent closed frequent

itemsets whereas FP-trees represented the transaction database. For this reason, merging

method is di�erent from how merging is performed with the FP-trees. Result trees are

merged such that if a node is new, that is if it does not exist currently in the tree, it is

inserted as is, with the support value intact. If the node already exists in the tree, than

the support value is taken to be the higher one. This is in line with the closed itemsets

concept.

Continuing with the same example used in the previous steps, Figure 4.12 shows the

merging operation of two result trees. The �rst two result trees are from each processes,

they are merged to form the third tree. Notice that nodes which do not exist in one of

the trees is inserted directly whereas the larger support value is used for nodes existing in

both of the trees. Similar to FP-tree merging, a depth �rst traversal is performed as each

branch is processed.

This concludes all of the steps in the parallel algorithm. Merged result tree obtained

in the last step contains the frequent closed itemsets for the whole database. In the next

sections, more details about the implementation will be given.

4.3.2 Implementation Details

In this section some of the important implementation details will be unveiled. The ques-

tions which will be addressed include the creation of the serial version of the application,

data types that are supported, and the exact MPI methods used for communication.

In the next chapter, program execution test results will be given. One of the executed

tests compares the parallel program with the serial version. By serial version we mean a

program having minimal MPI overhead, with no MPI overhead being the ideal. How was

the serial application created? There are two methods used in the literature for creating

the serial version of an MPI program. In the �rst method the parallel source is linked

against a dummy MPI library that acts similar to the real library but does not do anything.

It returns logical values for function calls, for example, the function call to getting the

number of processes return 1, as you would expect. While returning logical results for

MPI calls, the dummy library does not set up MPI communication layer and other tasks

normally done, and so it does not have the overhead.

The second method in creating a serial version is a classic method. It involves surround-

ing the MPI code around preprocessor conditional directives. This method is selected for

53

the project. An excerpt of source code using this method is given in Figure 4.13.

In Figure 4.13, conditional directive �ifdef� is used to choose either using MPI calls

for getting rank and world size data or not using any MPI calls but setting them with

logical constant values. In generating the serial executable, conditional directives are used

around MPI calls throughout the source code. Once this is done, one can de�ne macros

such as USE_MPI either by environment variables or by using the �-D� �ag given as an

argument to the compiler. By using a Make�le and de�ning rules using di�erent macro

de�nitions, one can easily generate various executable versions catering to di�erent needs.

MPI provides various options for sharing data between processes. In the implementa-

tion of the parallel algorithm multiple options were sometimes possible. For some of these

options, more than one method got implemented when the most e�cient method was not

apparent, for others a decision was chosen. In the case where multiple methods have been

implemented, these can either be chosen through program arguments or through the use

of di�erent executables, generated through preprocessor directives as described previously.

There are three methods used with MPI for sharing data in the implementation. In

the �rst method, all_reduce function is used and this is the easiest method as it takes

care of the merging of data from each process and distributing it. The programmer has

little burden when this method is used. In the second method, both reduce and broadcast

functions are used together, e�ectively the data is �rst reduced at a single process and

then distributed via the broadcast call. This method embodies two calls as opposed to

the single call in the �rst method. In the last method, simple send and recv functions

are used in sending and receiving the data. Due to the complexity of using this method

when a large number of processes are existing, it is only implemented for two process

architectures.

Another implementation detail to note is the di�erent types of data that is supported

for processing. The �rst data format supported in the project is the widely used retail

database format where each line in a �le represents a transaction and items in the trans-

action are separated by space characters. The second type of data supported is the type

IBM Quest Synthetic Data Generator is able to output. This data type is useful as the

data generator can generate made up data featuring various properties. The number of

items to have, average number of items in a transaction, number of transactions are just

some of the properties of data that could be controlled by the IBM data generator. In the

next chapter, program tests conducted on both data types are shown.

54

Figure 4.12: Merging of two result trees

55

int main (int argc , char∗ argv []) {

// To keep t rack o f e l ap s ed time .

clock_t fp_start , sp_start ;

// S ta r t the c l o c k .

fp_start = c lo ck () ;

#ifde f USE_MPI

/∗ Before i n i t i a l i z i n g MPI, s t a r t a b l o c k so t ha t the mpi i s

f i n a l i z e d at the end o f the b l o c k and we can use the end

time p r e c i s e l y . ∗/

{

// I n i t i a l i z e MPI.

boost : : mpi : : environment env (argc , argv) ;

boost : : mpi : : communicator world ;

Globals : : rank = world . rank () , Globals : : s i z e = world . s i z e () ;

#else

Globals : : rank = 0 , Globals : : s i z e = 1 ;

#endif

. . .

Figure 4.13: An excerpt from main.cpp

56

Chapter 5

EXPERIMENTAL RESULTS

This chapter presents various tests conducted with two di�erent datasets showing di�erent

characteristics. Di�erent aspects of parallel programming in MPI have been investigated

and tests performed to verify predictions that had been made.

All the tests have been implemented using automated shell scripts and related graphics

have been generated using the gnuplot application. A short discussion of the results

follows each graphic, while a more encompassing commentary and conclusion is left to the

ending chapter. Information about the computing environment tests were run on and the

properties of the two datasets which were used in the tests are the �rst topics of discussion.

5.1 Computing Environment and Datasets

All the performance tests described in this chapter have been carried out on the cluster of

the High Performance Computing laboratory at the Department of Computer Engineering

of the Middle East Technical University. Hardware properties in each computing element

found in this cluster can be summarized as:

• Processor: 2 x Intel Xeon E5430 Quad Core CPU 2.66 GHz, 12 MB L2 Cache,

1333 MHz FSB

• Memory: 16 GB

• Connectivity: 2 x 3Com 4200G 24 Port Gigabit Ethernet Switch & Voltaire 9240D

24 Port In�niband Switch

In terms of software, the cluster has both Open MPI and mpich/mvapich libraries

installed along with multiple compilers such as gcc (GNU Compiler Collection) and icc

(Intel C++ Compiler). All the necessary programs from the GNU tool chain also exist on

57

the servers, should the programmer need them; and there is also the possibility to compile

and install custom libraries in user's home directory if a need arises. This is how Boost

libraries have been used; newest Boost library was compiled and installed in the user's

home directory. The compiler used is the popular gcc with level 3 optimizations, allowing

the compiler to use inline functions, variable tracking and many other methods taking

advantage of full optimization.

Testing an implementation using various datasets is important in measuring the per-

formance of data mining algorithms because many times a �one size �ts all� approach does

not work. In data mining �eld, successful algorithms generally work well for a speci�c

type of data exhibiting desired properties. For many FP-tree based algorithms, a dense

dataset is the desired data type. One reason for this is the fact that FP-tree structures

provide high compression for dense data. This in turn enables the whole database to

�t into memory while FP-tree also guiding the mining process. For this reason, many

algorithms are �ne tuned for dense datasets.

At this point a more elaborate discussion about dense and sparse datasets would be

bene�cial. There is no standard de�nition of denseness or sparseness that is found in the

literature. Even in prior publications showing research that are speci�cally designed for one

type of data, a clear test determining if a data is dense or sparse is not given. Nevertheless,

it is widely accepted that dense datasets include more items for each transaction while

sparse datasets have less number of items out of a large pool of potential items. In this

respect, it is much more easier, and perhaps more correct, to say that a dataset is more

dense or more sparse than another, rather than a more certain approach cutting clearly

which data is dense and which is sparse.

For the testing process of our implementation two datasets were used; a synthetic dense

dataset and a sparse dataset taken from real life data. The aim in using two datasets with

di�erent properties is to see the di�erence in performance gains with respect to di�erent

data. Information about these two datasets is outlined in Table 5.1, enabling an easy

comparison.

The synthetic dense data has been generated using the IBM's Quest Synthetic Data

Generator [9]. This application allows the programmer to control many aspects of the

data. To generate a dense dataset, small number of items were used with high average

transaction size.

The second dataset on the other hand contains real data from a retail store. It has

been downloaded from the dataset repository at the University of Helsinki (FIMI). More

58

Table 5.1: Properties of the two datasets

Dataset Number of Items Number of Transactions File Size

Quest 100 125155 180 MB

Retail 16470 88163 4 MB

information and an analysis on this data can be found in [26].

It should be noted that the performed tests utilized all the cores on each processor

before moving on to the next processor; and all the processors on each computing node

before moving on to the next node. More speci�cally, tests utilizing up to 4 cores have

used only a single processor since the processors are quad core CPUs. Tests utilizing

up to 8 cores run on the same computing node, using both of the processors since each

computing node includes two processors. For executions utilizing more than 8 cores, other

computing nodes are used, utilizing cores in the new computing node in a similar way.

This scheduling mechanism is the default method in Open MPI, and it is called scheduling

by slot. Another important remark is that all the processes in the tests have run on a

dedicated processor core. In other words, oversubscription, where more than one process

is run on a core, is not allowed. As a �nal note, the tests were run up to ten times each

and the run times were averaged to make up for any anomalies an execution may result

in. As a result, all the graphics showing timings use average run times.

5.2 Results

In this section, the actual test results will be presented. First graphics to be investigated

is regarding the number of frequent closed itemsets each data set yields, with respect

to the support value. Graphs presenting the relation between the number of frequent

closed itemsets and the support value can be seen in Figure 5.1, for the both datasets

investigated.

In the above �gure, exponential growth of itemsets is evident with respect to the

support value. As the support value decreases, the growth in the number of frequent closed

itemsets increases very fast. Recall the distinction between closed and non-closed itemsets

as described in the previous chapters; the actual number of frequent itemsets is much more

than the frequent closed itemsets number depicted in the graphics. Nevertheless, number

59

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60

S
up

po
rt

 v
al

ue
 (

%
)

Number of frequent closed itemsets (x 1000)

Quest dataset

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 5 10 15 20 25

S
up

po
rt

 v
al

ue
 (

%
)

Number of frequent closed itemsets (x 1000)

Retail dataset

Figure 5.1: Relationship between support and frequent closed itemsets

of frequent closed itemsets can still be in the order of thousands as evident in the graphics.

For the support value of 40%, Quest dataset provides nearly 60 thousand frequent closed

itemsets. Retail dataset on the other hand, provides about 25 thousand frequent closed

itemset for the support value of 0.0004%.

A dataset property which can be inferred from the �gures is the denseness or sparseness

characteristic of data. In the Quest dataset, number of frequent closed itemsets are very

high even when the support value is as large as 40%. In the Retail dataset however, the

support values need to be less than 0.005% to yield similar number of frequent closed

itemsets. Even then, the number of frequent closed itemsets is much less than what is

found for the Quest dataset.

The next set of graphics to be discussed in this chapter is about the run time com-

parison of the MPI application with respect to di�erent number of processes. Keep in

mind that during the testing of the implementation, each process was allowed to run on a

dedicated processor core. This means that processors are not oversubscribed, and so the

maximum performance is attained.

Next three �gures present execution time with respect to the support value for runs

utilizing di�erent number of processor cores using the Quest dataset.

Figure 5.2(a) is restricted for runs up to 4 cores, so as not to overcrowd the graph.

In the next �gure, Figure 5.2(b), one can see the runs utilizing 4, 8, 12 and 16 cores. A

similar �gure depicting a more detailed view by plotting the executions up to a higher

support value can be seen in Figure 5.2(c).

The �rst striking observation to be noticed from all the �gures is that adding more

processors decreases the execution time highly for a given range of support values, albeit at

60

a slower rate as more processors are added. In the tests, the highest value of e�ciency (as

de�ned in Chapter 3) has been observed for the execution with 2 cores. A comparison of

speedup and e�ciency values for runs utilizing up to 4 cores, using the Quest dataset with

90% support value can be seen in Table 5.2. As can be seen from this �gure, the speedup

values increase as more processor cores are added, whereas the e�ciency values decrease.

The reason for this phenomena is the communication costs induced by maintaining more

processes. As each process executes the parallel CLOSET+ algorithm described in the

previous chapters, they need to communicate partial results and synchronize at determined

points. This communication puts a burden on the processes and the e�ciency is decreased

by this overhead. This is also the case when support values are lowered. The e�ciency

decreases as the support threshold is lowered, precisely because the communication costs

are increased. As support threshold is lowered, larger partial results are generated which

increases the overhead of communication. As a result, e�ciency decreases.

Table 5.2: Speedup and e�ciency comparison (support value 90%, Quest dataset)

1 Core 2 Cores 3 Cores 4 Cores

Speedup 1 1.84 2.48 2.98

E�ciency 1 0.92 0.82 0.74

Similar graphics for the second dataset, the Retail dataset, can be seen in the four

�gures beginning with Figure 5.3(a). In the �rst �gure, execution times for runs utilizing

up to 4 cores can be seen. Since this is a sparse dataset, the support threshold is reduced

to get higher number of itemsets and execution times. A more detailed view of this graph,

depicting execution times for support values lower than 5% can be seen in Figure 5.3(b).

Similar to the previous graphs for the Quest dataset, runs utilizing more than 4 cores can

be seen in Figure 5.3(c) with a more detailed view in Figure 5.3(d).

As evidenced by the �gures, runs utilizing more processors begin to get behind as the

support threshold is lowered. In Figure 5.3(d), it can be seen that the critical support

value where it is still bene�ciary to use more processor cores is 2%. After this point, the

run utilizing 4 cores begins to perform faster than other runs utilizing 8, 12 and 16 cores.

This is in line with our earlier comment regarding the communication overhead when more

61

cores are added or when the support threshold is lowered.

By observing the graphs, one can see where the execution times are heading when more

than 16 cores are to be utilized. As can be seen from the graphs with 1-4 core and 4-16

core executions, timing gains becomes lower as more processing units are added, lowering

e�ciency. The run times get lower for higher support values but as support threshold

is lowered, it begins to get higher than executions with less processing cores. There is a

trade o� between communication costs and computational gains obtained by utilizing more

processing units. The other parameter in this trade o� is the support threshold, which

e�ects the size of the data to be communicated. As in other trade o�s, the optimum value

of the number of processors depends on various factors including the support threshold

and the data type (its denseness or sparseness for example) that is used in the real working

environment.

The parallel CLOSET+ algorithm can be seen to be more e�cient for denser datasets

from the �gures showing execution times. This observation is similar to the serial algo-

rithm. In the serial case, dense datasets enable compressed FP-trees to be much more

smaller enabling a faster processing. FP-trees are basically modi�ed pre�x trees, and they

can be easily seen to become much more smaller in size as the data they represent be-

comes more dense. In the parallel case, there is a similar advantage, but there is also an

advantage in communication costs. This is because of the fact that pre�x tree structures

are communicated between computing nodes as partial results are shared. In MPI appli-

cations, communication overhead is a limiting factor and compressing the communicated

data to make it easier to send and receive could cut this overhead and enable a more

e�cient execution.

Up until now, all the executions utilizing a single core still included the MPI library

linked to the source. These runs still contained MPI calls, and so execution control was left

to MPI to decide. To test the completely serial version of the implementation, compiler

preprocessor conditionals have been used to remove parts of the code including MPI calls,

as described in Section 4.3.2. A comparison of executions of completely serial program

and the other executable containing MPI calls can be seen in three �gures beginning with

Figure 5.4(a). These graphics show execution times of the serial executable and the MPI

version run with a single process. In Figure 5.4(a) and Figure 5.4(b), a comparison of

execution times can be seen for Quest and Retail datasets respectively. A more detailed

view of Figure 5.4(b) can be seen in Figure 5.4(c), showing part of the graph where the

execution uses lower support values.

62

The basic conclusion obtained from the graphs is that the MPI overhead is mostly neg-

ligible for 1 process executions. Even so, in performance critical applications, a stripped

o� versions containing no MPI calls would be bene�cial. The classic method using pre-

processor directives is well known, easy to maintain and suitable for this task.

63

 0

 10

 20

 30

 40

 50

 60

 70

 40 45 50 55 60 65 70 75 80 85 90

T
im

e
(s

ec
)

Support value (%)

1 core
2 cores
3 cores
4 cores

(a) Running on 1-4 cores

 0

 50

 100

 150

 200

 250

 40 45 50 55 60 65 70 75 80 85 90

T
im

e
(s

ec
)

Support value (%)

4 cores
8 cores

12 cores
16 cores

(b) Running on 4, 8, 12 and 16 cores

64

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 45 50 55 60 65 70 75 80 85 90

T
im

e
(s

ec
)

Support value (%)

4 cores
8 cores

12 cores
16 cores

(c) Running on 4, 8, 12 and 16 cores, detailed

Figure 5.2: Execution times using the Quest dataset

65

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 5 10 15 20 25 30

T
im

e
(s

ec
)

Support value (%)

1 core
2 cores
3 cores
4 cores

(a) Running on 1-4 cores

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 1 2 3 4 5

T
im

e
(s

ec
)

Support value (%)

1 core
2 cores
3 cores
4 cores

(b) Running on 1-4 cores, detailed

66

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 5 10 15 20 25 30

T
im

e
(s

ec
)

Support value (%)

4 cores
8 cores

12 cores
16 cores

(c) Running on 4, 8, 12 and 16 cores

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 1 2 3 4 5

T
im

e
(s

ec
)

Support value (%)

4 cores
8 cores

12 cores
16 cores

(d) Running on 4, 8, 12 and 16 cores, detailed

Figure 5.3: Execution times using the Retail dataset

67

 10

 20

 30

 40

 50

 60

 70

 40 45 50 55 60 65 70 75 80 85 90

T
im

e
(s

ec
)

Support value (%)

MPI Reduce 1 core
Serial execution

(a) Using the Quest dataset

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60

T
im

e
(s

ec
)

Support value (%)

MPI Reduce 1 core
Serial execution

(b) Using the Retail dataset

68

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 1 2 3 4 5

T
im

e
(s

ec
)

Support value (%)

MPI Reduce 1 core
Serial execution

(c) Using the Retail dataset, detailed

Figure 5.4: MPI library overhead

69

Chapter 6

CONCLUSION

In this last chapter of the thesis, an interpretation of the results presented in the previous

chapter is given, providing conclusions and discussing possible future work which would

be bene�cial.

Before we begin with our analysis, it seems important to note a word of caution.

Many parameters have an e�ect on the performance test results shown in the previous

chapter, some due to the nature of the data mining �eld itself and some shared by other

programming problems. It is believed that only a small subset of these variables are tested,

and a limited number of methods tried in the research outlined in this thesis. Di�erent

types of data, di�erent MPI implementations and MPI function combinations, underlying

network interconnection infrastructure, data mining application needs and expectations

(for example, what support values are more likely to be used?) are just some of the factors

to keep in mind.

On the other hand, previous research guides us in what should be expected from

a parallel algorithm. Amdahl's Law [21] and Gustafson's Law [42] provide us with a

framework to employ. It is known that parts of the work that cannot be parallelized is

directly added to the execution time, and so the performance gains are almost never linear.

When the processor count is doubled, the time it takes to run do not halve because of the

serial parts. Gustafson's Law paints a rosier picture by observing that as problem sizes

get larger, parallelism opportunities also increase.

Before the tests had been conducted, there were some expectations and predictions on

how the implementation would behave. Particularly, it was expected that the lowering of

the support value or adding more processors to the resources would increase e�ciency. This

idea is based on the common knowledge that parallel programming works best for problems

requiring huge processing power. As the support value is lowered, needed processing power

70

also increases. So, in the usual line of thinking, one could expect that the e�ciency of the

parallel program would increase. After all, needed computations could be done in a fast

parallel way and that would increase the speedup relative to the serial program. Overhead

caused by process maintenance and other MPI work would also be compensated easier.

Unfortunately, to our surprise, this has not always been the case. The important reason

for this is the problem of partial results. As computational requirements increase, so does

the partial results that need to be communicated between parallel processes. This higher

communication needs put more burden to the processes. In the end, e�ciency is hit. As

more processes are added or when the support threshold is lowered, speedup increases get

smaller, and so e�ciency decreases.

This problem of increasing partial results along with the computation required is a gen-

eral problem faced by other algorithms in the literature. A reason for this is the fact that

the best way to increase the computations needed is to increase the data to be processed.

But this method mainly results in larger set of results, or as in the parallel programming

case, larger communication overhead. With an optimal number of processors, gains in

parallel processing would overweight the loss in communication overhead. This optimal

value would depend on data and the �eld of work, the way data is going to be used.

Finding this optimal value and deciding on how to use a parallel programming solution

may become a challenging, but nonetheless required task on its own.

Our solution presented in this thesis, would be best suited for applications where a

fast response is needed for frequent itemsets having medium to high support values. One

application area might be the web where fast responses are needed and interesting frequent

itemsets having high support values are requested. In this case, more computing power

might be added in terms of processors and faster results are obtained. On the other hand,

if a very high number of frequent itemsets are sought after for, by using a low support

threshold value, then the serial version of the algorithm or other alternatives must be

considered.

As described previously, communication costs can become a high burden especially

for more sparse datasets where the data to be shared cannot be compressed as in the

denser datasets. Di�erent remedies for the communication burden can be developed and

tested. Some of the solutions which could be used will now be given as an advise for

future work. A straight forward solution is using a more compact data representation in

terms of programming language constructs. Data type could be stripped to hold only the

barely necessary data and not waste any extra bytes. A natural extension to this could

71

be modifying the data representation structure for further compression. On the other

hand, an existing compression algorithm could also be used independent of the data type

or programming language constructs used. These solutions would make the project more

complex, but it can prove to be useful for a much wanted performance boost.

Another approach for minimizing communication costs is changing the underlying

network interface or using a di�erent MPI implementation. Open MPI is not seen as the

fastest MPI implementation, there have been various complaints about its ine�ciency es-

pecially regarding data communication. It could be interesting to compare how mpich/m-

vapich and other MPI libraries perform with respect to Open MPI. Another variable which

could be tested is the network connectivity methods. In Open MPI, the most advanced

connectivity is used as default and this is In�niBand in our case. Using another connec-

tivity method, such as Gigabit Ethernet could prove to be bene�cial. Experimenting with

other MPI implementation and/or network interconnectivity could provide an insight for

the best environment for the project.

More detailed CPU architecture analysis can also be bene�cial for performance im-

provement. Cache friendliness and newer instruction set extensions could be looked into

for possible uses. These methods have been used in previous research and reported to

provide high improvements when executed correctly.

A di�erent and more challenging area to be researched is the algorithm. It is believed

that the parallel CLOSET+ algorithm discussed in this thesis has potential for develop-

ment. In particular, performance and e�ciency could be increased vastly if duplications of

results in di�erent processes could be eliminated. This would require a more �ne grained

division of the FP-tree representing the database than the item based approach employed

in our algorithm. Second part of our algorithm could still be used to merge result trees.

There would most certainly be an overhead in generating a more �ne grained work di-

vision, it is left to the researcher to decide if the speedup gains resulting from a better

division would compensate this overhead.

It is envisaged by the author that data mining �eld is still a young �eld on its way

to higher prominence. This idea is based on the fact that data available is increasing

exponentially, with the help of computerization and the Internet. On the other hand,

parallel programming is also gaining momentum as clusters and multi-core processors

become common. In this thesis a parallel version of a popular frequent itemset mining

algorithm CLOSET+ has been presented. This research is hoped to be useful for others

studying the exciting �elds of data mining and parallel computing.

72

Bibliography

[1] "3 Billion" post on Flickr blog. http://blog.flickr.net/en/2008/11/03/

3-billion/. Retrieved on March 2009.

[2] An STL Error Message Decryptor for C++. http://www.bdsoft.com/tools/

stlfilt.html. Retrieved on April 2009.

[3] Boost C++ Libraries. http://www.boost.org/. Retrieved on April 2009.

[4] CERN FAQ - LHC The Guide. http://cdsmedia.cern.ch/img/

CERN-Brochure-2008-001-Eng.pdf. Retrieved on March 2009.

[5] Debugging Parallel Programs (in Turkish - Ko³ut Uygulamalarda Hata Ay�klama)

presentation given in the BA�ARIM09 conference. http://www.slideshare.net/

tayfun/hata-ayiklama. Retrieved on April 2009.

[6] Explore interesting content around Flickr. http://www.flickr.com/explore/

interesting/. Retrieved on March 2009.

[7] Google Flu Trends. http://www.google.org/flutrends/. Retrieved on March 2009.

[8] Homepage of the popular text editor. http://www.vim.org/. Retrieved on April

2009.

[9] IBM Quest Synthetic Data Generator. http://www.almaden.ibm.com/cs/

projects/iis/hdb/Projects/data_mining/datasets/syndata.html. Retrieved on

March 2009.

[10] Interestingness ranking of media objects. Patent Application 0060242139. http://

appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=

1&u=%2Fnetahtml%2FPTO%2Fsrchnum.html&r=1&f=G&l=50&s1=%2220060242139%

22.PGNR.&OS=DN/20060242139&RS=DN/20060242139. Retrieved on March 2009.

73

http://blog.flickr.net/en/2008/11/03/3-billion/
http://blog.flickr.net/en/2008/11/03/3-billion/
http://www.bdsoft.com/tools/stlfilt.html
http://www.bdsoft.com/tools/stlfilt.html
http://www.boost.org/
http://cdsmedia.cern.ch/img/CERN-Brochure-2008-001-Eng.pdf
http://cdsmedia.cern.ch/img/CERN-Brochure-2008-001-Eng.pdf
http://www.slideshare.net/tayfun/hata-ayiklama
http://www.slideshare.net/tayfun/hata-ayiklama
http://www.flickr.com/explore/interesting/
http://www.flickr.com/explore/interesting/
http://www.google.org/flutrends/
http://www.vim.org/
http://www.almaden.ibm.com/cs/projects/iis/hdb/Projects/data_mining/datasets/syndata.html
http://www.almaden.ibm.com/cs/projects/iis/hdb/Projects/data_mining/datasets/syndata.html
http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.html&r=1&f=G&l=50&s1=%2220060242139%22.PGNR.&OS=DN/20060242139&RS=DN/20060242139
http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.html&r=1&f=G&l=50&s1=%2220060242139%22.PGNR.&OS=DN/20060242139&RS=DN/20060242139
http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.html&r=1&f=G&l=50&s1=%2220060242139%22.PGNR.&OS=DN/20060242139&RS=DN/20060242139
http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.html&r=1&f=G&l=50&s1=%2220060242139%22.PGNR.&OS=DN/20060242139&RS=DN/20060242139

[11] Netcraft March 2009 Web Server Survey. http://news.netcraft.com/archives/

2009/03/15/march_2009_web_server_survey.html. Retrieved on March 2009.

[12] Open MPI: A High Performance Message Passing Library. http://www.open-mpi.

org/. Retrieved on April 2009.

[13] OpenMP Execution model image taken fromWikipedia, under the terms of GNU Free

Documentation Licence. http://en.wikipedia.org/wiki/File:Fork_join.svg.

Retrieved on April 2009.

[14] Templatized C++ Command Line Parser Library. http://tclap.sourceforge.

net/. Retrieved on March 2009.

[15] Ramesh C. Agarwal, Charu C. Aggarwal, and V. V. V. Prasad. A tree projection

algorithm for generation of frequent item sets. J. Parallel Distrib. Comput., 61(3):350�

371, 2001.

[16] Dakshi Agrawal and Charu C. Aggarwal. On the design and quanti�cation of pri-

vacy preserving data mining algorithms. In PODS '01: Proceedings of the twenti-

eth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems,

pages 247�255, New York, NY, USA, 2001.

[17] R. Agrawal and J.C. Shafer. Parallel mining of association rules. Knowledge and

Data Engineering, IEEE Transactions on, 8(6):962�969, Dec 1996.

[18] Rakesh Agrawal, Tomasz Imieli«ski, and Arun Swami. Mining association rules be-

tween sets of items in large databases. In SIGMOD '93: Proceedings of the 1993 ACM

SIGMOD international conference on Management of data, pages 207�216, New York,

NY, USA, 1993.

[19] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association

rules in large databases. In VLDB '94: Proceedings of the 20th International Confer-

ence on Very Large Data Bases, pages 487�499, San Francisco, CA, USA, 1994.

[20] Rakesh Agrawal and Ramakrishnan Srikant. Privacy-preserving data mining. SIG-

MOD Rec., 29(2):439�450, 2000.

[21] Gene M. Amdahl. Validity of the single processor approach to achieving large scale

computing capabilities. In AFIPS '67 (Spring): Proceedings of the April 18-20, 1967,

spring joint computer conference, pages 483�485, New York, NY, USA, 1967.

74

http://news.netcraft.com/archives/2009/03/15/march_2009_web_server_survey.html
http://news.netcraft.com/archives/2009/03/15/march_2009_web_server_survey.html
http://www.open-mpi.org/
http://www.open-mpi.org/
http://en.wikipedia.org/wiki/File:Fork_join.svg
http://tclap.sourceforge.net/
http://tclap.sourceforge.net/

[22] Amnon Barak and Oren La'adan. The MOSIX multicomputer operating system for

high performance cluster computing. Future Generation Computer Systems, 13(4-

5):361 � 372, 1998. HPCN '97.

[23] L. A. Barroso, J. Dean, and U. Holzle. Web search for a planet: The google cluster

architecture. Micro, IEEE, 23(2):22�28, 2003.

[24] A. Basumallik, S.-J. Min, and R. Eigenmann. Programming Distributed Memory

Sytems Using OpenMP. In Parallel and Distributed Processing Symposium, 2007.

IPDPS 2007. IEEE International, pages 1�8, March 2007.

[25] Roberto J. Bayardo, Jr. E�ciently mining long patterns from databases. SIGMOD

Rec., 27(2):85�93, 1998.

[26] Tom Brijs, Gilbert Swinnen, Koen Vanhoof, and Geert Wets. Using association rules

for product assortment decisions: a case study. In KDD '99: Proceedings of the �fth

ACM SIGKDD international conference on Knowledge discovery and data mining,

pages 254�260, New York, NY, USA, 1999.

[27] Sergey Brin, Rajeev Motwani, Je�rey D. Ullman, and Shalom Tsur. Dynamic itemset

counting and implication rules for market basket data. SIGMOD Rec., 26(2):255�264,

1997.

[28] Aaron Ceglar and John F. Roddick. Association mining. ACM Comput. Surv.,

38(2):5, 2006.

[29] Dehao Chen, Chunrong Lai, Wei Hu, WenGuang Chen, Yimin Zhang, and Weimin

Zheng. Tree partition based parallel frequent pattern mining on shared memory

systems. Parallel and Distributed Processing Symposium, International, 0:363, 2006.

[30] W. Cheung and O.R. Zaiane. Incremental mining of frequent patterns without can-

didate generation or support constraint. In Database Engineering and Applications

Symposium, 2003. Proceedings. Seventh International, pages 111�116, July 2003.

[31] L. Dagum and R. Menon. OpenMP: an industry standard API for shared-memory

programming. Computational Science & Engineering, IEEE, 5(1):46�55, Jan-Mar

1998.

75

[32] Frederica Darema. The spmd model: Past, present and future. In Proceedings of

the 8th European PVM/MPI Users' Group Meeting on Recent Advances in Parallel

Virtual Machine and Message Passing Interface, page 1, London, UK, 2001.

[33] Christie Ezeife and Yue Su. chapter Mining Incremental Association Rules with

Generalized FP-Tree, pages 147�160. 2002.

[34] Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. From Data Mining

to Knowledge Discovery in Databases. AI Magazine, 17(3), 1996.

[35] John T. Feo, David C. Cann, and Rodney R. Oldehoeft. A report on the Sisal

language project. J. Parallel Distrib. Comput., 10(4):349�366, 1990.

[36] Liqiang Geng and Howard J. Hamilton. Interestingness measures for data mining: A

survey. ACM Comput. Surv., 38(3), 2006.

[37] Jeremy Ginsberg, Matthew H. Mohebbi, Rajan S. Patel, Lynnette Brammer, Mark S.

Smolinski, and Larry Brilliant. Detecting in�uenza epidemics using search engine

query data. Nature, 457(7232):1012�1014, Feb 2009.

[38] B. Goethals. Survey on frequent pattern mining, 2003.

[39] Paul Graham. A Plan for Spam. http://www.paulgraham.com/spam.html. Retrieved

on March 2009.

[40] Gösta Grahne and Jianfei Zhu. E�ciently using pre�x-trees in mining frequent item-

sets. In Proceedings of the ICDM Workshop on Frequent Itemset Mining, 2003.

[41] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A high-

performance, portable implementation of the MPI message passing interface standard.

Parallel Computing, 22(6):789 � 828, 1996.

[42] John L. Gustafson. Reevaluating Amdahl's law. Commun. ACM, 31(5):532�533,

1988.

[43] Eui-Hong Han, G. Karypis, and V. Kumar. Scalable parallel data mining for associa-

tion rules. Knowledge and Data Engineering, IEEE Transactions on, 12(3):337�352,

May/Jun 2000.

[44] Jiawei Han, Hong Cheng, Dong Xin, and Xifeng Yan. Frequent pattern mining:

current status and future directions. Data Min. Knowl. Discov., 15(1):55�86, 2007.

76

http://www.paulgraham.com/spam.html

[45] Jiawei Han and Micheline Kamber. Data Mining, Second Edition: Concepts and

Techniques (The Morgan Kaufmann Series in Data Management Systems). Morgan

Kaufmann, January 2006.

[46] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candidate

generation. SIGMOD Rec., 29(2):1�12, 2000.

[47] Brian Hayes. Cloud computing. Commun. ACM, 51(7):9�11, 2008.

[48] Asif Javed and Ashfaq Khokhar. Frequent pattern mining on message passing multi-

processor systems. Distrib. Parallel Databases, 16(3):321�334, 2004.

[49] Wenmin Li, Jiawei Han, and Jian Pei. Cmar: Accurate and e�cient classi�cation

based on multiple class-association rules. In ICDM '01: Proceedings of the 2001

IEEE International Conference on Data Mining, pages 369�376, Washington, DC,

USA, 2001.

[50] Guimei Liu, Hongjun Lu, Je�rey Xu Yu, Wei Wang, and Xiangye Xiao. Afopt: An

e�cient implementation of pattern growth approach. In Proceedings of the ICDM

workshop on frequent itemset mining, 2003.

[51] Li Liu, Eric Li, Yimin Zhang, and Zhizhong Tang. Optimization of frequent itemset

mining on multiple-core processor. In VLDB '07: Proceedings of the 33rd interna-

tional conference on Very large data bases, pages 1275�1285, 2007.

[52] R. Lottiaux, P. Gallard, G. Vallee, C. Morin, and B. Boissinot. OpenMosix, OpenSSI

and Kerrighed: a comparative study. In Cluster Computing and the Grid, 2005.

CCGrid 2005. IEEE International Symposium on, pages 1016�1023 Vol. 2, May 2005.

[53] Claudio Lucchese, Salvatore Orlando, and Ra�aele Perego. Parallel mining of fre-

quent closed patterns: Harnessing modern computer architectures. In ICDM '07:

Proceedings of the 2007 Seventh IEEE International Conference on Data Mining,

pages 242�251, Washington, DC, USA, 2007.

[54] Gordon Moore. Cramming more components onto integrated circuits. Electronics,

38(8), April 1965.

[55] Rishiyur S. Nikhil and Arvind. Implicit parallel programming in pH. Morgan Kauf-

mann Publishers Inc., San Francisco, CA, USA, 2001.

77

[56] Hájek P., Havel I., and Chytil M. The GUHA method of automatic hypotheses

determination. Computing, (1):293�308, 1966.

[57] Jong Soo Park, Ming-Syan Chen, and Philip S. Yu. An e�ective hash-based algorithm

for mining association rules. In SIGMOD '95: Proceedings of the 1995 ACM SIGMOD

international conference on Management of data, pages 175�186, New York, NY,

USA, 1995.

[58] Jong Soo Park, Ming-Syan Chen, and Philip S. Yu. E�cient parallel data mining for

association rules. In CIKM '95: Proceedings of the fourth international conference on

Information and knowledge management, pages 31�36, New York, NY, USA, 1995.

[59] Nicolas Pasquier, Yves Bastide, Ra�k Taouil, and Lot� Lakhal. Discovering frequent

closed itemsets for association rules. In ICDT '99: Proceedings of the 7th International

Conference on Database Theory, pages 398�416, London, UK, 1999.

[60] Jian Pei, Jiawei Han, Hongjun Lu, Shojiro Nishio, Shiwei Tang, and Dongqing Yang.

H-mine: hyper-structure mining of frequent patterns in large databases. In Data

Mining, 2001. ICDM 2001, Proceedings IEEE International Conference on, pages

441�448, 2001.

[61] Jian Pei, Jiawei Han, and Runying Mao. Closet: An e�cient algorithm for mining

frequent closed itemsets. In Proc. 2000 ACM-SIGMOD Int. Workshop Data Mining

and Knowledge Discovery, pages 21�30, 2000.

[62] G.F. P�ster. The varieties of single system image. In Advances in Parallel and

Distributed Systems, 1993, Proceedings of the IEEE Workshop on, pages 59�63, Oct

1993.

[63] Gregory Piatetsky-Shapiro. Knowledge Discovery in Real Databases: A Report on

the IJCAI-89 Workshop. AI Magazine, 11(5):68 � 70, January 1991.

[64] Sunita Sarawagi, Shiby Thomas, and Rakesh Agrawal. Integrating association rule

mining with relational database systems: alternatives and implications. SIGMOD

Rec., 27(2):343�354, 1998.

[65] Ashoka Savasere, Edward Omiecinski, and Shamkant B. Navathe. An e�cient al-

gorithm for mining association rules in large databases. In VLDB '95: Proceedings

78

of the 21th International Conference on Very Large Data Bases, pages 432�444, San

Francisco, CA, USA, 1995.

[66] J. Ben Schafer, Joseph Konstan, and John Riedi. Recommender systems in e-

commerce. In EC '99: Proceedings of the 1st ACM conference on Electronic com-

merce, pages 158�166, New York, NY, USA, 1999.

[67] Toby Segaran. Programming Collective Intelligence: Building Smart Web 2.0 Appli-

cations. O'Reilly Media, Inc., August 2007.

[68] J. Seward, N. Nethercote, J. Weidendorfer, and the Valgrind Development Team. Val-

grind 3.3 - Advanced Debugging and Pro�ling for GNU/Linux applications. Network

Theory Ltd., 2008.

[69] Richard Stallman, Roland Pesch, Stan Shebs, and et al. Debugging with GDB. Free

Software Foundation, 2006.

[70] V. S. Sunderam. PVM: a framework for parallel distributed computing. Concurrency:

Pract. Exper., 2(4):315�339, 1990.

[71] Domenico Talia. Parallelism in knowledge discovery techniques. In PARA '02: Pro-

ceedings of the 6th International Conference on Applied Parallel Computing Advanced

Scienti�c Computing, pages 127�138, London, UK, 2002.

[72] Pang-Ning Tan, Vipin Kumar, and Jaideep Srivastava. Selecting the right interesting-

ness measure for association patterns. In KDD '02: Proceedings of the eighth ACM

SIGKDD international conference on Knowledge discovery and data mining, pages

32�41, New York, NY, USA, 2002.

[73] W. Tansey and E. Tilevich. E�cient automated marshaling of C++ data structures

for MPI applications. In Parallel and Distributed Processing, 2008. IPDPS 2008.

IEEE International Symposium on, pages 1�12, April 2008.

[74] Hannu Toivonen. Sampling large databases for association rules. In VLDB '96:

Proceedings of the 22th International Conference on Very Large Data Bases, pages

134�145, San Francisco, CA, USA, 1996.

[75] Jaideep Vaidya and Chris Clifton. Privacy preserving association rule mining in

vertically partitioned data. In KDD '02: Proceedings of the eighth ACM SIGKDD

79

international conference on Knowledge discovery and data mining, pages 639�644,

New York, NY, USA, 2002.

[76] Vassilios S. Verykios, Elisa Bertino, Igor Nai Fovino, Loredana Parasiliti Provenza,

Yucel Saygin, and Yannis Theodoridis. State-of-the-art in privacy preserving data

mining. SIGMOD Rec., 33(1):50�57, 2004.

[77] Jianyong Wang, Jiawei Han, and Jian Pei. CLOSET+: searching for the best strate-

gies for mining frequent closed itemsets. In KDD '03: Proceedings of the ninth ACM

SIGKDD international conference on Knowledge discovery and data mining, pages

236�245, New York, NY, USA, 2003.

[78] Osmar R. Zaïane, Mohammad El-Hajj, and Paul Lu. Fast parallel association rule

mining without candidacy generation. In ICDM '01: Proceedings of the 2001 IEEE

International Conference on Data Mining, pages 665�668, Washington, DC, USA,

2001.

[79] Mohammed Zaki, Srinivasan Parthasarathy, Mitsunori Ogihara, and Wei Li. Parallel

algorithms for discovery of association rules. Data Mining and Knowledge Discovery,

pages 343�373, December 1997.

[80] Mohammed J. Zaki. Scalable algorithms for association mining. IEEE Trans. on

Knowl. and Data Eng., 12(3):372�390, 2000.

[81] Mohammed J. Zaki and Ching jui Hsiao. CHARM: An e�cient algorithm for closed

itemset mining. In Proc. of the 2002 SIAM international conference on data mining

(SDM'02), pages 457�473, 2002.

[82] Andreas Zeller and Dorothea Lütkehaus. DDD�a free graphical front-end for UNIX

debuggers. SIGPLAN Not., 31(1):22�27, 1996.

[83] Feida Zhu, Xifeng Yan, Jiawei Han, Philip S. Yu, and Hong Cheng. Mining colossal

frequent patterns by core pattern fusion. Data Engineering, International Conference

on, 0:706�715, 2007.

80

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	DEDICATON
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	CHAPTER
	Introduction
	Reason and Rationale
	Approach
	Scope of the Document

	Overview of Data Mining
	Knowledge Discovery in Databases
	Data Mining
	Association Rule Mining
	Apriori Algorithm

	Frequent Itemset Mining
	Serial FIM Algorithms
	Parallel FIM Algorithms

	Current Problems and Research Directions

	Overview of Parallel Programming
	Automatic Parallelization and Parallel Languages
	Threads
	OpenMP
	MPI

	Implementation
	CLOSET+ Algorithm
	Building the FP-tree
	Mining the FP-tree

	Solution Framework
	Programming Language
	Libraries
	Message Passing
	Debugging

	Parallel Implementation
	Parallel Algorithm Steps
	Implementation Details

	Experimental Results
	Computing Environment and Datasets
	Results

	Conclusion
	Bibliography

