
1

DESIGN AND IMPLEMENTATION OF A P2P CONTRACTING OVERLAY

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

REMZİ ÇELEBİ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

JUNE 2009

Approval of the thesis:

DESIGN AND IMPLEMENTATION OF A P2P CONTRACTING OVERLAY

submitted by REMZİ ÇELEBİ in partial fulfillment of the requirements for the degree of
Master of Science in Computer Engineering Department, Middle East Technical Uni-
versity by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Müslüm Bozyiğit
Head of Department, Computer Engineering

Prof. Dr. Faruk Polat
Supervisor, Computer Engineering Department, METU

Asst. Prof. Dr. Hürevren Kılıç
Co-supervisor, Computer Department, Atılım University

Examining Committee Members:

Assoc. Prof. Dr. Ahmet Coşar
Computer Engineering, METU

Prof. Dr. Faruk Polat
Computer Engineering, METU

Asst. Prof. Dr. Hürevren Kılıç
Computer Engineering, Atılım University

Asst. Prof. Dr. Tansel Özyer
Computer Engineering, TOBB ETU

Asst. Prof. Dr. Pınar Şenkul
Computer Engineering, METU

Date:

I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: REMZİ ÇELEBİ

Signature :

iii

ABSTRACT

DESIGN AND IMPLEMENTATION OF A P2P CONTRACTING OVERLAY

Çelebi, Remzi

M.S., Department of Computer Engineering

Supervisor : Prof. Dr. Faruk Polat

Co-Supervisor : Asst. Prof. Dr. Hürevren Kılıç

June 2009, 50 pages

Today, with widespread use of Internet in many areas, the common procedures frequently

encountered in business life such as contracting and negotiation need to be automated. The

distributed structure of the Internet and the difficulty of resources dispersed on one center

makes such a system to have a distributed architecture . In this study, for first time, automati-

zation of a contracting form through business processes was proposed and was carried out.

A peer to peer process contracting overlay what we call Peer-Con is developed. The system is

an extension of Java Agent Development Framework (JADE) and uses IEEE Foundation for

Intelligent Physical Agents (FIPA) Agent Communication Language (ACL) standard. Cost

aware flexible representation of process capabilities; description of an operator to decide on

whether given capabilities turnout to an agreement or not and self organization of peer con-

nectivity for better contracting performance are distinguishing features of the system. The

system can easily be adapted to different domains while the core functionality remains the

same. Practical use of Peer-Con is shown by two applications from different domains; Driv-

ing Route Calculation on Web Maps and Digital Signal Processing Module (DSPM) product

planning domain.

iv

Keywords: Business Process Contracting, Peer-to-Peer Systems, Cooperating Agents, Pro-

cess Representation, Multi-agent Systems

v

ÖZ

DENK- UÇ YERPAYLAŞAN SİSTEMLERDE BİR KONTRATLAMA TASARIMI VE
GERÇEKLEŞTİRİMİ

Çelebi, Remzi

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Faruk Polat

Ortak Tez Yöneticisi : Yrd. Doç. Dr. Hürevren Kılıç

Haziran 2009, 50 sayfa

Günümüzde internetin yaygınlaşması ile birçok alanda olduğu gibi sözleşme ve kontratlama

gibi iş hayatında sık karşılaşılan yordamların otomatikleştirilmesinin ihtiyacı doğmuştur.

İnternet ortamının dağınık yapısı ve kaynakların bir merkezde bulunma güçlüğü gibi ne-

denlerden dolayı böyle bir sistem için dağınık bir yapının zorunluluğu ortaya çıkmaktadır.

Bu çalışmada ilk defa iş süreçleri(process) üzerinden otomatikleştirilmiş bir iş akdi biçimi

sunulmuş ve gerçekleştirilmiştir. Önerilen sistem denk uç sistemlerin üzerinde yerpaylaşan

bir yapı olup, Per-Con olarak adlandırılmaktadır. Bahsedilen sistem Java Agent Development

Framework (JADE)’ unun uzantısı olup, IEEE Foundation for Intelligent Physical Agents

(IEEE FIPA) Agent Communication Language (ACL) standardı kullanılarak gerçekleştirildi.

Sistem şu ayrıt edici özellikleri içinde barındırmaktadır; İş süreçlerini ve bunun yetenek-

lerinin fiyatlandırmasını sağlayan bir gösterim şekli ve bunu izleyen iş süreçlerinin beraber

çalıştırılabilmesi için eşler arası anlaşmaya imkan verebileceğini veya verilemeyeceğini be-

lirleyen bir mekanizma ve en son olarak daha iyi bir iş akdi için de dinamik komşuluk

bağlantısını kendi kendine düzenleme. Sistem, çekirdek fonksiyonellik aynı kalınarak başka

etki alanına kolayca adapte edilebilir. Peer-con pratik kullanımı, Digital Signal Process-

vi

ing Module (DSPM) cihazlarının üretim tasarım planında ve optimal rota hesaplamasında

gösterilmiştir.

Anahtar Kelimeler: İş süreci Kontratlama, Denk-Uç Sistemleri, Kooperatif Erkler, İş süreç

gösterimi, Çoklu-Ajan Sistemleri

vii

ACKNOWLEDGMENTS

I want to give my thanks to my thesis advisor, Prof. Dr. Faruk Polat, for his guidance, support

throughout my research. In particularly, I wish to thank my co-advisor Hürevren Kılıç for

not just this work but for all things he helped me with during my university study. He has

been full of ideas, enthusiasm and always motivating and I enjoyed working with him a lot. I

also very much like to thank my family and my friends for their support and encouragement.

Thanks also go to all others who have contributed in this thesis directly or indirectly. Lastly,

I would like to thank Turkish Scientific and Technical Council (TUBITAK) for their financial

support during my graduate study.

viii

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . vi

ACKNOWLEDGMENTS . viii

TABLE OF CONTENTS . ix

LIST OF TABLES . xi

LIST OF FIGURES . xii

CHAPTERS

1 INTRODUCTION . 1

2 BACKGROUND and RELATED WORKS 4

2.1 Background . 4

2.1.1 Peer-to-Peer Systems . 4

2.1.1.1 Gnutella Protocol 6

2.1.2 Multi-agent Systems . 8

2.1.2.1 JADE . 9

2.2 Related Works . 10

2.2.1 Business Process Representation 10

2.2.1.1 BPEL . 12

2.2.1.2 RosettaNet 12

2.2.1.3 ebXML . 13

2.2.1.4 Finite State Automaton 13

2.2.1.5 Workflow Nets 14

2.2.2 Process based Inter-organizational Agreement 14

2.2.3 Matchmaking/Contracting Environment 15

ix

3 The OVERLAY . 17

3.1 System Architecture . 17

3.1.1 Peer Interactions . 19

3.2 Single Peer Implementation . 22

4 OPERATORS AND DESCRIPTIONS USED IN THE OVERLAY 31

4.1 Description of Business Process . 31

4.2 Description of Match Operator . 32

4.3 Illustrative Example of Definitions 33

5 APPLICATIONS . 35

5.1 Driving Route Calculation on Web Maps 35

5.2 Digital Signal Processing Module Product Planning Application . . . 43

6 CONCLUSION . 45

6.1 Future Directions . 46

REFERENCES . 47

x

LIST OF TABLES

TABLES

Table 3.1 An example search cycle instance defined by cfc and rfc messages. 21

Table 5.1 Peer-Con concepts and their interpretations in web mapping context. 36

xi

LIST OF FIGURES

FIGURES

Figure 2.1 Peer-to-Peer Overlay . 6

Figure 3.1 Peer-Con layer and its environment. 18

Figure 3.2 User, originator peer and contracting network interactions. 20

Figure 3.3 An example search-for-contracting cycle with cfc and rfc messages. 21

Figure 3.4 Evaluation and Handling Unit. 23

Figure 3.5 Pseudocode for CFC Handler. 24

Figure 3.6 CFC Message Sample. 25

Figure 3.7 Pseudocode for RFC Handler. 27

Figure 3.8 RFC Message Sample . 28

Figure 3.9 Pseudocode for Neighborhood Organizer and ping/pong examples. 30

Figure 4.1 Example process descriptions and merge operation result. 34

Figure 5.1 Road map of eastern part of Turkey and example hypothetical transporta-

tion costs between cities. 37

Figure 5.2 Peer-Con Process Description tab. 38

Figure 5.3 Another example of hypothetical transportation costs between cities 39

Figure 5.4 Merge of two processes. 40

Figure 5.5 Peer-Con search and query result tab. 41

Figure 5.6 Peer-Con system parameters settings tab. 42

Figure 5.7 Example DSPM processes and their merge 44

xii

CHAPTER 1

INTRODUCTION

In parallel to the development of the Internet, most information-centric industrial automation

systems require inter organizational knowledge sharing and its automated cooperative pro-

cessing to improve business success. Thus, the need of automation of common procedures

in business life such as contracts and negotiations become apparent. To realize such a con-

tracting and further negotiation between software agents, automated mechanism for search

and selection of relevant services and agents is required [42]. It makes such an environment

very challenging due to the distributed nature of Internet and the availability of services and

resources in demand, mostly, on different agents.

In the thesis, the idea of matchmaking and contracting based on business processes is ex-

ploited. We define a process matchmaking as the agreement of a two contractors on basis

process match found which satisfies a peer’s process goal(s) in a collaborative way. In our

context, process contracting is defined as finding a team of agents, where their cooperative

joint process execution is realizable in order to satisfy a peer’s goal. The basic difference

between process matchmaking and process contracting is the consideration of (or utility) and

handling of many-to-one engagements.

A typical matchmaking/contracting scenario can be considered as following steps; 1) pub-

lishing provider capabilities 2) requesting desired capabilities 3) finding appropriate match/-

matches.

Peer-to-Peer (P2P) systems have potential to enhance the performance and reliability of inter-

actions especially among individuals (or small scale enterprises). P2P architectures seems to

be good candidate for the realization of decentralized information processing at process de-

scription sharing and consequently at automated process contracting[20]. However, there are

1

some challenges to build a P2P setups for process contracting like realistic process representa-

tion, automated identification of inter-organizational agreements through process elaboration

and establishment of efficient peer connectivity management for better cooperative contract-

ing.

Thus, establishment of such process matchmaking/contracting environments over decentral-

ized interconnected computing environments should enable i) Local publication (or adver-

tisement) of industrial (design, production, marketing etc.) capabilities in the form of process

descriptions ii) Cheap contracting and automated capability exchange among industrial enti-

ties without support of any single facilitator.

We proposed and implemented a P2P process contracting system called Peer-Con, realized

on overlay level P2P concepts and on agent-oriented development framework JADE. Due

to its flexible and generic process description, it can be used for cooperative industrial de-

sign, production and marketing planning purposes among locally trusted organizations hav-

ing frequently changing needs and capabilities. Peer-Con is developed to satisfy challenges

mentioned above. Process description using a simple graph-based representation with edge

consideration; provision to merge of multiple process descriptions; development of a protocol

that allows a peer to contract with a team of other peers (i.e. multi-peer contracting) and self-

organization of peer neighborhood topology via feedback from previous contract results are

four basic distinguished features of the proposal. Besides from these, inherent P2P features

like fault-tolerance and load-balancing provide an efficient and robust peer contracting.

Practical use of Peer-Con infrastructure is shown by two different applications: driving route

calculation on web maps and the establishment of an industrial process contracting envi-

ronment for Digital Signal Processing Module (DSPM) product planning. The problem of

driving route calculation is simply to find out cheap contracts among peers for calculating

least cost driving routes. The other problem is to find out cheap planning contracts among

peers which represent producers. Process descriptions are representing the technological ca-

pabilities of producers together with their implementation costs. In [44], it has been pointed

out that development of explicit process ontologies is one of the potentially viable approaches

to provide a unified view for process networks. For our purpose, Peer-Con is also supported

by a problem specific state-ontology and a random initial peer neighborhood settings. In our

implementation, we developed a Contract-Net like [16] custom protocol by which potential

2

peer contracting space is searched efficiently.

In Peer-Con, we developed a custom peer interaction protocol facilitating robust decentralized

contracting still by using the same primitives based on Gnutella 0.4 protocol that supports

the unstructured topology of P2P setup. Ping, pong, query and query-hit are basic Gnutella

messages interpreted into the basic syntax of standard IEEE FIPA-Agent Control Language

(ACL) supported by JADE [8].

In Chapter 2, we give some background knowledge about peer-to-peer systems, multi-agent

System and its relation to current work and related works on this study. In Chapter 4, formal

definitions for the process representation and cost calculation operations are given. Peer-Con

architecture and details of the peer interaction protocol has been outlined in Chapter 3. The

case studies in Chapter 5 defines the use of Peer-Con for driving route calculation on web

maps and process contracting for efficient DSPM (Digital Signal Processing Module) product

planning. Chapter 6 contains conclusion and future research directions.

3

CHAPTER 2

BACKGROUND and RELATED WORKS

2.1 Background

Peer-con is both a peer-to-peer system and a multi-agent system. In this section, we give some

background knowledge about these two systems and discuss how and why we facilitate our

design and development using these two concepts.

2.1.1 Peer-to-Peer Systems

P2P systems consist of a group of distributed peers or computers that can communicate, col-

laborate and share resources between the other peers directly on an equal basis. In other

words, all of the peers in the network have rights to initiate a query or connection, and they

can respond to requests. This is in contrast to a client/server system in which a central server

provides services to many of clients and there is no interaction between clients. However,

peer-to-peer architecture proposes that each peer (a node in the P2P system) is both server

and client (called servent). Any peer may both provide services to other peers and consume

services from other peers. In client-server model, the network is highly dependent on the

single server and if there is any failure at server, it causes the whole system to get down.

P2P systems have emerged as a promising way to share files (Napster, Gnutella, and FreeNet),

computing resource (SETI@home). There exist some P2P systems based on distributed hash-

ing algorithms where given an object , the algorithms guarantee to locate a peer that has that

object such as CAN [10], Chord [14], and Pastry [1].

Functionally, P2P technology comes in three different forms, namely: pure-P2P, where each

4

participant has equal role; hybrid-P2P, where some of the nodes act as a central server and

provide search facilities; and server based-P2P, where a dedicated server indexes control in-

formation but the data flow is between participants [37].

Pure P2P: The best known examples are Gnutella and FreeNet. Both of them have a pure

distributed architecture, where there is no centralized database. All the peers in the systems

establish a connection with others through request propagation.

Hybrid P2P: Hybrid P2P has recently emerged, for example, FastTrack. FastTrack has some

supernodes, which are used for indexing the contents of part of the system and play a major

role in the organization of the systems. A peer can become a supernode only if it has adequate

resources, e.g., bandwidth and computing power.

Server Based P2P: The best example is Napster. Napster uses a centralized database to index

the files each peer has in the system. To look for a file, a peer first sends a request to the

database, and then gets a list of other peers who may have the files.

A peer in P2P system interacts with other peers through “neighbours” thus it avoids central

control and the single point of failure. This interaction is defined through the algorithms

that specify the roles of the participants and topology. Any shared participant’ data can be

stored/accessed by other participants, if needed, with or without knowing its origin.

The information resources, peers and connection links between them, in the P2P system could

be quite dynamic where any peer or resource may appear and disappear at any time. If a

participant fails or disappears, other participants can take over rebuilding the system.

Peer nodes in the network have specific functionalities although the physical capabilities may

differ from one node to another. The general functionalities of a peer node in P2P Network

can be described as; the ability to search the resources and serve the resources to participant

use of specific protocol to provide communication and resources sharing.

Peer-to-Peer Networks are virtual networks and they overlay on the internet infrastructure. A

peer could be a participant of P2P Network even it is located far from the other peers of the

system as shown in Figure 2.1.

Morever, Peer-to-Peer (P2P) systems with their decentralized nature seems to be a good can-

didate for the establishment of locally trusted, cooperative and adaptive architectures for in-

5

dustrial information systems [25][18][17]. In practice, most of the state of art P2P-based in-

teraction systems are focused on cooperative content sharing realized by efficient symmetric

lightweight protocols [31][22][19][40][7][28]. Peer-to-Peer (P2P) system with their its ad-

vantages, user autonomy, ease and speed of growth, has potential to enhance the performance

and reliability of interactions individuals especially among small-medium scale enterprises

(SMEs). They have also potential for the realization of decentralized information processing

at not only simple query-based content sharing but also at process description sharing and

consequently at automated process contracting[20].

Figure 2.1: Peer-to-Peer Overlay

Gnutella is a popular pure P2P protocol and used by most of P2P applications. It is open-

source protocol for distributed search and has fully decentralized architecture. We developed

a custom peer interaction protocol facilitating robust decentralized contracting still by using

Gnutella Protocol.

2.1.1.1 Gnutella Protocol

The Gnutella protocol consists of a set of message types representing the ways in which ser-

vents communicate over the network and a set of rules governing the inter-servent exchange

of messages [28].

6

In Gnutella protocol, there are mainly four message types; Ping, Pong, Query, QueryHit, and

one additional message type, Push. A ping message is used to actively discover hosts on

the network. A servent receiving a Ping descriptor is expected to respond with one or more

Pong descriptors. A pong is the response to a Ping message and it carries the same ID with

the corresponding Ping message. It contains the address of a connected Gnutella servent and

total size and number of shared files of this servent. The Query message is used for searching

the distributed networks and holds the queried file name as string and the minimum down-

load speed. If any peer that has already taken Query message has the file queried, the peer

is expected to respond with QueryHit message. QueryHit is the response to a Query. This

descriptor provides the recipient with enough information to acquire the data matching the

corresponding Query [14]. Push is additional message type that is a mechanism for down-

loading from the firewalled servent.

The node joins the network by connecting to one Gnutella node, which can be any node on the

network making it generally easy to join in a decentralized fashion. However, the acquisition

of a peer IP address is not defined in the protocol. To find any peer in the P2P network for

first time, some public web sites such as gnutellahosts.com were developed in a centralized

manner. Once it has joined the node discovers other nodes through the first node by issuing

ping and receiving pong descriptors from peers accepting connections [43].

Gnutella nodes typically connect to three nodes and then search by broadcasting their search

request to all connected neighbours. Each neighbour repeats this search request to his/her

neighbours and so on, which is known as flooding the network [43].

In order to prevent the query messages from being passed around the network indefinitely,

Gnutella packets include a time-to-live (TTL) parameter - usually with a default value of 7.

As the message is received by a node the TTL is decremented. If the value for the TTL is

positive, then the message is forwarded to all of the connected nodes except for the node that

it was received from. In addition, each message also contains a unique ID which is used to

prevent messages from being sent to nodes which have already received them.

The range of the search, as dictated by the TTL, is referred to as the search horizon, and

although it is an artificial limit, it is a necessary one. Without it a query would pass throughout

the network until the whole network was processing the query. While in theory, flooding the

network with requests to find as much information as possible is a good idea, the network

7

becomes swamped very quickly.

2.1.2 Multi-agent Systems

Over the past few years, the software agents deployed in today’s computing world, Internet,

has been exponentially increasing. Software agents are good candidates for reducing people’s

efforts especially where tasks become too complex to analyze for humans and they are dy-

namically changeable. In essence, a software agent could be defined as a software assistant

that takes care of specific tasks on behalf of its user with little or no human intervention.

Multiagent Systems have always been thought of as a set of intelligent agents interacting to

coordinate their knowledge, goals, skills and plans jointly to take action or to solve problems.

The Multiagent paradigm can lay over on the P2P architecture, where agents embody the

description of the task environments, the decision-support capabilities, the collective behavior,

and the interaction protocols of each peer [42]. Each agent in multiagent system behaves

according to some coordination protocols. The coordination or cooperation among the agents

of a multiagent system may be achieved in various ways according to the model employed.

The models that has been proposed for cooperation in this direction of the research are such

as the blackboard [26], the contract net [39], and the actor [2] models. In this study, we

employed a ContractNet-like custom protocol by which peer contracting space is searched

efficiently.

Contract Net Interaction Protocol could enable the agents to work together, solving common

goals, to fulfill ones’ needs and desires. Fully automated competitive negotiation between

agents through the use of contracts can be established by the interaction protocol which Con-

tract Net specifies. In essence, an agent distribute its task among a group of agents to find a

partner for its task to be done. Originally perceived by Smith in 1980, it was first applied to

a simulated distributed acoustic sensor network. One of the most promising uses for Contract

Net is to create an electronic marketplace for buying and selling goods. Each agent is assumed

to be self-interested in the protocol, meaning that the final solution maybe be the best for the

agents involved, but not for the group as a whole.

Although both agents and P2P system are currently gaining popularity, there are not more

systems that combine the two [24]. Many MASs are considered to to be P2P systems due to

8

the fact that the agents communicate on an equal basis such as RETSINA [41] and AgentCities

[48].

Internet is heterogeneous place and the agents mostly are incapable of understanding each

other. Autonomous agents cooperate by sending messages and using concepts from a domain

ontology where, in this work, we assume that all agents share the domain ontology and have

common language to communicate between each others.

Usefulness of agent-oriented frameworks for business process development and control has

been discussed in [3]. Agents are assumed to be peers in P2P agent systems [38]. From the

multiagent systems perspective, Peer-Con peers are not competing but cooperating agents.

Peer-Con is implemented on Java Agent Development Framework (JADE) which is for de-

veloping a multi-agent systems in compliance with the Foundation for Intelligent Physical

Agents (FIPA) specifications. FIPA specifications represent a collection of standards which

are intended to promote the interoperation of heterogeneous agents and the services that they

can represent. By means of its peer-to-peer facilitating architecture and its rich message-

handling capabilities, JADE provided us an interoperable and distributed platform.

2.1.2.1 JADE

JADE is a software framework fully implemented in Java. It allows reducing the time-to-

market for developing distributed multi-agent applications by providing a set of ready and

easy-to-use functionalities that comply with the standard FIPA specifications and a set of tools

that supports the debugging and monitoring phases [8]. The architecture of JADE consists of

AMS, DF, and Containers likely FIPA-OS. Each Container in the JADE is a running instance

of its runtime environment in which several agents can reside. The set of active containers

is called a Platform. The Main container, a single special container, is always active in a

platform and all other containers register with it after they become active. The AMS and DF

must reside in Main container and treat a service to several operations as follow ’registration’,

’deletion’, ’modification’, and ’searching’ through the DF.

In JADE, messages adhere strictly to the FIPA ACL (Agent Communication Language) stan-

dard which allows several possibilities for the encoding of the actual content. Agent Com-

munication Language (ACL) is a standard language for agent communications recommended

9

and proposed by FIPA. FIPA ACL is based on the speech-act theory. Speech acts are ex-

pressed by means of standard keywords, also known as ’performatives’ (for example ’ask’,

’request’ or ’tell’). The agent’s message can then include several parameters such as ’sender’

and ’receiver’ of the message, the ’language’ and ’ontology’ (vocabulary) of the embedded

content, and the actual ’content’.

2.2 Related Works

In this section, an overview of the literature on the related works is given. It includes related

studies which have been trying to answer the following questions; i) How to represent business

goals and capabilities in the form of process description? (Representation) ii)How to define

the agreement operation among processes? (Business agreement operator) iii) What can be

an efficient architecture and protocol that can facilitate such interactions? (Environment).

2.2.1 Business Process Representation

Business process is defined as a collection of interrelated tasks, which solve a particular issue.

There have been many proposals to model business processes. It is challenging issue and

many researches have been working on better representation of business processes in terms

of different benefits.

Related to the process representation challenge, there are solutions ranging from stateless

Universal Description, Discovery and Integration (UDDI) [6] and Web Services Description

Language (WSDL) [13]; annotated Finite State Automaton (FSA) enabling to identify and

differentiate communication partners and state transitions [49]; Petri-Net based Workflow

Nets [46] ; Open Workflow Nets (oWFN) [33] to one-input transition system model allowing

incomplete (or partially-defined) process descriptions [11].

Web Services are self-contained, modular business process applications that are based on the

industry standard technologies of WSDL (to describe), UDDI (to advertise and syndicate),

and SOAP (to communicate) where information is represented in a stateless raw string format.

Web services does not support full potential interaction of processes because of its underling

static binding of services. In [49], they state this as follows; “While stateless services are not

10

sufficient for implementing business processes, static binding of services does not use the full

potential of loosely coupled systems also known as service oriented architectures.“

A business process should specify the potential execution order of operations from a collection

of Web services, the data shared between these Web services, which partners are involved and

how they are involved in the business process, joint exception handling for collections of

Web services, and other issues involving how multiple services and organizations participate.

There are some frameworks enabling collaboration among partners based on their business

processes execution.

RosettaNet[15] targeted IT supply chain and developed XML-based standard electronic com-

merce interfaces to align the processes between IT supply chain partners on a global basis.

There does not exist any pre-negotiated and uniquely named frame contracts published by

RosettaNet which is not sufficient for business processes [49]. ebXML framework business

enables partners to express their business capabilities (including their business processes) us-

ing trading partner profiles (CPPs) without providing any means to match these. It faces the

same problem with RosettaNet.

One solution is Finite State Automaton (FSA). Finite state automaton constitute a suitable

starting point to model business processes for the purpose of matchmaking [27]. Its exten-

sion by annotations (i.e. annotated FSA) is uesd to identify and differentiate communication

partners enabling state transitions [49].

Other alternative is to use Petri-Nets as handled in Workflow Nets (WFNet) and Open Work-

flow Nets (oWFN) proposals [46][33]. oWFN is an unrestricted and enriched version of

WF-Net by communication places supporting asynchronous interaction. On the other hand,

a restriction on oWFN is the acyclicity assumption over Petri-Net representation. In [50],

soundness and equivalence of Petri-Nets and annotated Finite State Automata has been shown

in the context of Service Oriented Architectures(SOA).

The authors of [11] have proposed another business process representation based on “one-

input transition system“ model. A distinguishing property of this approach is to allow in-

complete (or partially-defined) process descriptions (i.e. some states are allowed to be un-

reachable). Also, cyclic state transitions are not needed to be treated in a special way since

reachability to goal state is the only concern to decide on existence of a match instance among

11

processes.

In the following subsections, brief information about representations and technologies for

alternative business process models such as BPEL, RosettaNet, ebXML, FSA and Workflow-

Nets are provided.

2.2.1.1 BPEL

Business Process Execution Language For Web Services (BPEL4WS or BPEL, for short)

allows specifying business processes and how they relate to Web services [21]. This includes

specifying how a business process makes use of Web services to achieve its goal, as well as

specifying Web services that are provided by a business process. Business processes specified

in BPEL are fully executable and portable between BPEL-conformant environments. A BPEL

business process interoperates with the Web services of its partners, whether or not these

Web services are implemented based on BPEL. Finally, BPEL supports the specification of

business protocols between partners and views on complex internal business processes.

2.2.1.2 RosettaNet

The RosettaNet framework enables supply chain business partners to execute interoperable

electronic business (e-business) processes by developing and maintaining PIP implementation

guidelines. RosettaNet distributes PIPs to the trading partners, who use these guidelines as a

road map to develop their own software applications. PIPs include all business logic, message

flow, and message contents to enable alignment of two processes. In order to do electronic

business within the RosettaNet framework, there are a number of steps the partners have to

go through. First, the supply chain partners come together and analyze their common inter-

company business scenarios (i.e., public processes), that is, how they interact to do business

with each other, which documents they exchange and in what sequence. These inter-company

processes are in fact, the “as-is“ scenarios of their way of doing business with each other.

Then they re-engineer these processes to define the electronic processes to be implemented

within the scope of the RosettaNet Framework.

12

2.2.1.3 ebXML

ebXML is a set of specifications that together enable a modular electronic business frame-

work. The vision of ebXML is to enable a global electronic marketplace where enterprises

of any size and in any geographical location can meet and conduct business with each other

through the exchange of XML-based messages[36].

An ebXML Registry provides a set of services that manage the repository and enable the shar-

ing of information between Trading Partners. Note that business Processes, CPPs, business

document desciptions and core components are published and retrieved via ebXML Registry

Services. A trading partner may discover other trading partners by searching for the CPPs

in the registry. The ebXML Messaging Service is used as the transport mechanism for all

communication into and out of the Registry.

2.2.1.4 Finite State Automaton

A finite-state automaton is a device having a finite number of states and can be in one of

its states. It can switch to another state which is called a transition in certain conditions .

When the automaton starts working, it can be in one of its initial states. There is also another

important subset of states of the automaton: the final states. If the automaton is in a final

state when it stops working, it is said to accept its input. The input is a sequence of symbols.

The interpretation of the symbols depends on the application; they usually represent events,

or can be interpreted as “the event that a particular data became available”. The symbols must

come from a finite set of symbols, called the alphabet . If a particular symbol in a particular

state triggers a transition from that state to another one, that transition is labeled with that

symbol. The labels of transitions can contain one particular symbol that is not in the alphabet.

A transition is labeled with E (not present in the alphabet) if it can be traversed with no input

symbol.

It is convenient to present automata as directed graphs. The vertices denote states. They are

portrayed as small circles. The transitions form the edges - arcs with arrows pointing from

the source state (the state where the transition originates) to the target state. They are labeled

with symbols. Unless it is clear from the context, the initial states have short arrows that point

to them from “nowhere”. The final states are represented as two concentric circles.

13

2.2.1.5 Workflow Nets

Workflows are case-based, i.e., every piece of work is executed for a specific case. Examples

of cases are a mortgage, an insurance claim, a tax declaration, an order, or a request for infor-

mation. Cases are often generated by an external customer. However, it is also possible that

a case is generated by another department within the same organization (internal customer).

The goal of workflow management is to handle cases as efficient and effective as possible. A

workflow process is designed to handle similar cases. Cases are handled by executing tasks

in a specific order. The workflow process definition specifies which tasks need to be executed

and in what order. Alternative terms for workflow process definition are: ’procedure’, ’flow

diagram’ and ’routing definition’.

Following quotes from the author of [46] indicates that the workflow can be modeled by Petri

nets.

“ In the workflow process definition, building blocks such as the AND-split, AND-join, OR-

split and OR-join are used to model sequential, conditional, parallel and iterative routing.”

”Clearly, a Petri net can be used to specify the routing of cases. Tasks are modeled by transi-

tions and causal dependencies are modeled by places. In fact, a place corresponds to a condi-

tion which can be used as pre- and/or post-conditions for tasks. An AND-split corresponds to

a transition with two or more output places, and an AND-join corresponds to a transition with

two or more input places. OR-splits/OR-joins correspond to places with multiple outgoing/

ingoing arcs.”

2.2.2 Process based Inter-organizational Agreement

Automated contracting systems require a mechanism for identification of inter-organizational

agreements through process elaboration. To decide on whether given capabilities (or pro-

cesses) turnout to a business agreement or not, one needs to describe a generic agreement

operator that considers peer capabilities together with their execution costs.

Related to the identification of process based inter-organizational agreement challenge, in

[49], non-emptiness of the intersection of languages defined by annotated FSAs representing

individual processes has been defined for the existence check of process level agreements.

14

In their study, matchmaking is defined in terms of being able to be backup of a process.

The approach seems to be restrictive, since companies usually look for a partner firm having

different services rather than doing the same business.

In [11], agreement operation is defined formally as a state-level merge of two processes fol-

lowed by a reachability test for the goals. It is understood that via “one-input transition sys-

tem” representation and merge/synthesis operator descriptions supported by domain specific

ontology, it is possible to describe a core process matchmaking mechanism. Also, centralized

matchmaking among multiple processes can be achieved in polynomial-time. On the other

hand, concurrent merge of more than two processes and costing of transitions are two missing

properties that are required for establishment of a proper contracting system.

Other matchmaking approaches are based on semantic information [9], [34]. In [42], a lan-

guage describing the functional aspects as well as the messages and their parameters based

on a domain specific ontology is introduced. DAML-S [5] uses workflow aspects as well as

the functional semantic description of the service within the matchmaking. The web service

offering language (WSOL) [45] provides additional semantic meta information to increase

precision of the service discovery and the classes of services are modeled by specifying func-

tional constraints, QoS, simple access rights, price, and other constraints in addition to a

WSDL description.

The main draw back of semantic annotation is the necessity of a common ontology used for

annotating and querying services. Unfortunately, no such ontology currently is in place[49].

Note that, different from matchmaking environment developed in [11], a process contracting

environment is defined in [12]. We have to define the difference between process matchmak-

ing and contracting in our context. In process matchmaking, costs of peer capabilities are

not considered and an interaction result between two processes is either match or no-match.

However, in process contracting, capabilities have associated cost values and many-toone en-

gagement of peers for cooperative joint business process execution is possible.

2.2.3 Matchmaking/Contracting Environment

The proposed architecture in [49] is a centralized client-server approach realized through

a matchmaking engine [7]. In fact, to the best of our knowledge there is only the work

15

of [11] used for business process matchmaking implemented based on P2P protocols and

architecture. A decentralized process matchmaking environment based on P2P architecture

and Gnutella protocol is proposed in their work. The processes are modeled as one-input

transition systems augmented by goal state descriptions. A polynomial-time algorithm for

handling matchmaking of peer process encounters is developed.

The question of whether there is any single environment model being more efficient in terms

of process matchmaking performance among different unstructured and decentralized digital

environments (e.g. P2P, small-world, grid etc.) is investigated in the study of [10]. By the

end of this macroscopic investigation, they conclude that there is no domination of one model

over another.

16

CHAPTER 3

The OVERLAY

General system descriptions including architecture, technologies used, peer behavior and in-

teraction protocol are explained in the following subsections.

3.1 System Architecture

The Peer-Con is realized on an agent-based development environment JADE which consti-

tutes a middleware for our P2P setup. The system has four layers (see Figure 3.1). Physical

layer contains the internet and wireless environments. The virtual machine layer supports

different scales of Java-based solutions ranging from standard and enterprise editions of Java-

2 to its micro edition supporting Connected Limited Device Configuration (CLDC) for low

power and memory, mobile devices and Personal Java. The third layer is JADE on which we

create the peers. Containers are basic logical units of residence of this layer. They provided

us platform independent distributed peer deployment and execution. In a typical JADE instal-

lation, there is a main container holding a specialized agent called Directory Facilitator (DF).

In the implementation, the DF agent is directly used as the BootStrapServer of the P2P setup.

The top layer, Peer-Con is an overlay on JADE. This layer supports two basic peer capabil-

ities: i) Process representation and operator (merge and cost calculation) ii) Peer interaction

protocol. The process representation and the merge operator are implemented in Java. We

used basic syntax of standard IEEE FIPA-ACL in protocol implementation.

17

Figure 3.1: Peer-Con layer and its environment.

18

3.1.1 Peer Interactions

Peers are implemented as cooperative agents that may reside in containers of different dis-

tributed machines. Each peer is owned by and interacts with one user and one or more peers

constituting its immediate neighbors, respectively. Communication is achieved via four basic

message types: ping, pong, cfc (call for contracting) and rfc (response for contracting). Ping

and pong messages are used for network connectivity awareness of peer; cfc and rfc are devel-

oped to realize low cost process contracting among peers. The main responsibility of a peer

owner is to assign a process description (P) to its peer (called originator). Besides from P, the

owner (or user) feeds two other inputs to his/her peer: i) An acceptable upper limit for process

contracting cost (u) ii) Time-To-Live (TTL) value showing the upper limit for the number of

hops that P2P system will be searched for contracting, see Figure 3.2. Simply, TTL defines

the radius of search for contracting. Goal of the originator peer is to find out one or more

peers residing in the search radius TTL that can jointly execute process P with total cost less

than u. Other peers (called cooperating peers) handle incoming requests in a cooperative way.

Any peer in the system may play the role of originator or cooperating peer at any time.

After the broadcast of the originator peer including P, u and TTL values to the cooperating

peers in its neighborhood, they handle the received query in forward mode. In this mode, on

each hop to the next peer, the current TTL value of the process description is decremented by

1. Also the set L holding the peer IDs along the path is expanded by the ID of current peer.

Initially, the set L only includes the originator peer itself. Once the total cost less than u value

is attained, the cooperating peers in forward mode turns into backward mode during which

the set L is pruned into minimal set Lmin ⊆ L with total process cost being less than u, coop-

eratively. In order to avoid from long waiting for responses, the originator peer disregards the

rfcs received later than a constant timeout period (v). Among those received timeout-filtered

rfcs, the originator peer selects the rfc with minimum-cost merged description and returns it

to its owner. Note that in forward mode, once TTL value becomes zero the the process de-

scription simply is not passed any further among peer and becomes obsolete. In Figure 3.3, an

example cfc sequence followed by an rfc sequence generated along a search cycle is depicted.

Formally, a sequence generated along a search cycle is defined by (c f c)n(r f c)n where TT L

≥ n ≥ 0. C f c and r f c sequences describe the forward and backward modes of the search

cycle, respectively. An instance n = 0 means the originator peer already finds an acceptable

19

Figure 3.2: User, originator peer and contracting network interactions.

solution below the cost u. In forward mode, on each hop to the next peer, the current TT L

value is decremented by 1 and the set L holding the peer IDs along the path is expanded by

the ID of current peer. In backward mode, L is pruned into minimal set L . L min with total

process cost being less than u. Our aim for pruning is to reduce peer neighborhood that results

in lower traffic load on the system. After taking user inputs, the originator peer broadcasts

the user input to every peer in its neighborhood as c f c request represented by 〈Π, u,TT L, L〉.

Initially L=Psel f . The c f c requests are processed by other peers in the system and one or

more r f c results are returned back to the originator peer. Like c f c, an r f c is constituted by

three components: i) A merged process description (Π)∗ ii) Cost of the description (C(Π∗))

iii) The IDs of peers contributing to the description (L). An r f c is represented by triplet

〈(Π)∗,C((Π)∗), L〉. Table 3.1 holds an example instance of search cycle defined by c f c and

r f c messages. Type of the user generated message in the first row is assumed to be c f c with

L value initialized to O. By the end of search cycle, user receives a contracting peers set P1,

P3 whose total cost of execution C(Π1..3) is less than or equal to 5.0. Note that the fifth row

20

Figure 3.3: An example search-for-contracting cycle with cfc and rfc messages.

of the table has a c f c entry implying the continuation of the search for further cycles. As a

consequence of multiple search cycles due to the same cfc, the originator peer may receive

more than one rfc results. In the example, multiple rfcs are not considered. On the other

hand, depending on TTL value, the search time can be too long. In order to avoid from long

waiting for responses, the originator peer disregards the rfcs received later than a constant

timeout period (v). Among those timeout-filtered rfcs, the originator peer selects the rfc with

minimum-cost merged description (i.e. (Πmin)∗) and returns it to its owner.

Table 3.1: An example search cycle instance defined by cfc and rfc messages.

An important problem with our search cycle mechanism is the possibility of message explo-

sion due to redundant message looping. A message instance may bounce back to peer itself

if it is not under control. Note that, looping is not a problem with rfc type of messages since

peers memorize and decide on using their message return path. For a cfc message, loops are

identified by checking whether the peer itself is in the current contracting set L or not. Loop

21

identification results in dropping the received cfc message. Other two message types used

in communication are ping and pong. These messages provide network awareness and are

initiated by peer itself. Ping message is used to check aliveness of peer’s current neighbors. It

can also discover new peers in the contracting network outside its neighborhood. The extent

of discovery is specified by a system parameter neighbor count upper limit (e), see Figure

3.2. Each new ping message ID is added to a look-up table. Pong message is response of a

ping message and it contains the information about aliveness of the sender peer. Loops that

may occur during ping pong messaging are identified by using message ID look-up table. The

identified loops are eliminated by simply killing the message.

3.2 Single Peer Implementation

Evaluation and Handling Unit is the core functional unit of peer. It contains three basic com-

ponents: i) CFC Handler ii) RFC Handler and iii) Neighborhood Organizer (see Figure 3.4).

CFC Handler either receives cfc instance from a neighbor peer or from its owner. Merge

of process descriptions (see Definition-3), process cost calculation (i.e. shortest path calcu-

lation), rfc result preparation, cfc update and send operations, recording of cfc info, loop

elimination and TTL and cost upper limit u checks are basic functions of CFC Handler.

Peer neighborhood info is used to send updated cfcs to neighbors. Pseudocode for CFC

Handler is given in Figure 3.5. In Figure 3.6, an example of cfc message implementation

using IEEE FIPA-ACL syntax is is shown.

22

Figure 3.4: Evaluation and Handling Unit.

23

Figure 3.5: Pseudocode for CFC Handler.

24

Figure 3.6: CFC Message Sample.

25

The cfc message, in our context, is used to initiate the process contracting operation. Sender

of the Call For Proposal (CFP) message looks for a contract for its process description. The

content part of the message is written in standard fipa-sl language. The content includes the

query for checking possible contracts among peers. The ontology attribute is used to decide

on the related state-domain of the process. Goal of the RFC Handler is to decide on whether

the peer itself is a member of minimum cost process executing team along the search cycle or

not. This is done by checking the cost of including and excluding the peer process. Team list

membership check, extraction of transition system description from the merged description,

rfc update and send operations, process originator check and cost calculation, cost upper limit

u checks, and rfc collection and user display are basic functions of RFC Handler. Pseudocode

for RFC Handler is given in Figure 3.7.

The next example shows rfc message implementation using the IEEE FIPA-ACL syntax. A

sample of rfc message is depicted in Figure 3.8.

26

Figure 3.7: Pseudocode for RFC Handler.

27

Figure 3.8: RFC Message Sample

28

The rfc message is the answer for cfc message. The content part of the rfc message holds

the contracting team set, the merged process description and its cost. The ontology attribute

shows the process’ state domain.

Neighborhood Organizer is responsible from generating ping, pong messages, tracking re-

sponse timeout, finding minimum cost rfc in the collected rfc set and managing peer local

connectivity. Neighbor addresses are kept in a local look-up table. There are three events that

trigger neighbor look-up table update: i) Pong message receipt ii) Formation of a new con-

tracting team and iii) Non-replied successive ping messages. Once a pong message is received

and its sender is not a neighbor peer and also current Neighbor Count Upper Limit (e) is not

reached, sender peer ID is added to the table. We made a simple assumption that members of

new contracting team are also good candidates for later contracting. Therefore, once a new

contracting team is formed, they are combined with the current neighbor set. The combina-

tion is done based on New/Old Connection ratio (r). r = 0 means current neighbor population

is kept as it is. However, r = 1 means current neighbor population is totaly replaced by the

new one. The third event happens when three successive ping messages are sent to a neighbor

peer but they are not replied by any pong message. In such cases, the peer is removed from

the look-up table. Pseudocode for Neighborhood Organizer is given below.

The example messages depicted in Figure 3.9 are ping pong message implementations in

IEEE FIPA-ACL syntax.

Ping message is used to be aware of peer neighborhood structure. It contains a built-in sender

and receiver part showing the current and destination peer id’s. The ping message is replied

with a message hold in the reply-with part of the Query-Ref performative. The user-defined

attribute X-originator shows the original source of the ping message. The user-defined at-

tribute X-ttl holds the value of time-to-live in hop unit.

Pong message is the answer for the ping message. It is used to inform the message originator

about aliveness of the pinged peer. Pong message also holds the original ping id. The dif-

ference between receiver and x-receiver attributes is the former describes the neighbor peer

which will receive the current pong message and the latter is the target (or final) receiver of

the message.

29

Figure 3.9: Pseudocode for Neighborhood Organizer and ping/pong examples.

30

CHAPTER 4

OPERATORS AND DESCRIPTIONS USED IN THE OVERLAY

In the following, the process and merge operator descriptions that constitute the basis for

the system are presented. The formal definition of business process which a peer uses to

describe its internal capabilities is given. Initially, each peer in the system is assigned a

process description representing the organization’s possibly integrated capabilities together

with their costing. It could be understood that a peer can achieve its goals without the need of

any peer cooperation if the minimum execution cost of its process, calculated as the shortest

path of the given graph from the starting node to any one of the final nodes, is smaller than

∞. If a peer could not capable to satisfy its goal(s), it searches through the network for a

cooperating peer set. The cooperating set can contract for a peer’s process to be executed

partially or completely. If a peer has a process that could contribute the originator peer’s

process description, it means that this peer can be in the cooperating peer set for the originator

peer. The test whether any given two processes turnout to an agreement or not is checked by

merging two processes followed by a reachability test for goals states.

4.1 Description of Business Process

Definition 1: A process is a triplet 〈G, I, F〉 where G is an arc labeled multidigraph defined

as a 6-tuple G=(ΣE , V, E, s, t, w) where V is a set of nodes representing process states, E

is a multiset of arcs representing alternative interstate transitions, ΣE is the domain that arcs

take value, in our case it is R+, s: E −→ V is the mapping that defines the source state of

a transition, t: E −→ V is the mapping that defines the target state of a transition and w: E

−→ ΣE is the function defining the cost of state transitions. I ∈ V is a distinguished node

representing starting state of the process and F ⊆ V - ∅ is the set describing the nonempty final

31

states set of the process.

The nodes represent a state (or a stage) of the process at which for example some part of

the production is realized or even outsourced by the organization. Possible switches that are

allowed among production stages are defined by the binary relation E together with its costing

defined by the function w. The step from which, say production, starts is defined by a single

distinguished state s. Note that in practice, this state can be a dummy initial state without any

cost and assumed to be common to all peers in the system. Similarly, one or more final states

showing the end of a production sequence is represented by the set F.

4.2 Description of Match Operator

Following a formal description of process, the first task of an organization is nothing but to

calculate the minimal cost of the whole process by considering the switching costs. Mathe-

matically, it is nothing but to calculate the shortest path of the given graph from the starting

node to any one of the final nodes. Clearly, for a given graph G, we may have more than one

minimum cost path reaching any of the final states. In fact, shortest path finding problem is

known to be a single peer solvable simple problem that can be solved in polynomial-time [23]

and does not require any peer cooperation. On the other hand, what makes more than one peer

setup to be a realistic is the inherent decentralized, dynamically changing, partially observ-

able and possibly untrusted nature of the digital environment. We have to point out that the

proposed system performs well especially when efficient off-line planning is not possible due

to frequent changes in process descriptions. In the industrial process contracting context, it

corresponds to frequent changes in usable technology and emergence of alternative outsourc-

ing possibilities for different task in design, production, marketing etc. Another important

factor that makes our process representation a realistic one is the permission to incomplete

process descriptions. For example, when none of the final stages of production is reachable

(i.e. the total process cost is∞ and self production is not possible), a company can still find a

partner(s) from the system to realize its production.

Definition 2: Two processes P and Q are called capability dis joint iff PG(E) ∩ QG(E) = ∅.

Definition 3: Merge of a given two capability disjoint processes P and Q defines a new pro-

cess T=Merge(P, Q) such that TG = PG ∪ QG defines node level union of given arc labeled

multidigraphs PG and QG; TG(ΣE) = R+; TG(s) and TG(t) mappings are defined by union of

32

corresponding source and target node description mappings PG(s), QG(s) and PG(t), QG(t), re-

spectively; similarly the edge cost function TG(w) is defined by corresponding edge functions

PG(w) and QG(w); TI = PI and TF = PF .

According to Definition-3, Merge(P, Q) ,Merge(Q, P). In practice, this asymmetry can be in-

terpreted as: in Merge(P, Q) owner peer of process P which is looking for cooperating peer(s)

for its say production planning is the main source of the demand and the role of the peer being

owner of process Q defining another production plan is the potential supplier of such demand.

In Merge(Q, P), however, the demander/supplier roles of the peers are just opposite. In the

same definition, graph nodes are defined from the same domain but the edges are guaranteed

to be from different domains by the capability disjoint processes assumption. The semantics

of this is: the costs of switching among production stages or outsourcing are defined by peers

and related capabilities are owned by them. Furthermore, possible contracting between the

demander and supplier peers with associated capability disjoint processes say P and Q occurs

only if the shortest path cost for P is greater than the shortest path cost for Merge(P, Q).

4.3 Illustrative Example of Definitions

In Figure 4.1, circles depict process states (xi ∈ X) and arrows represent the capabilities and

their costs. For example, label v1S :2.5 represents the capability v1S of peer whose process

description is constituted by system S and execution cost of the capability is 2.5. The tick

circles and dashed circles show the initial and end states, respectively. Goal of the peer is to

reach one of its goal states from its starting state. In Figure 4.1-a, we have S=(GS , IS , FS)

and GS = (ΣE , VS , ES , sS , tS , tS) where VS = {x1, x2, x3}, ES = {v1S , v2S }, sS = {((v1S)→ x1),

((v2S)→ x3)}, tS = {((v1S)→ x1), (v2S)→ x1)}, wS = {(v1S → 2.5), (v2S → 0.5)}, IS = {x1},

and FS = {x3}. Similarly in In Figure 4.1-b, we have Q=(GQ, IQ, FQ) and GQ = (ΣE , VQ, EQ,

sQ, tQ, tQ) where VQ = {x1, x2, x3, x4} ES = {v1Q, v2Q, v3Q, v4Q} sQ = {((v1Q) → x1), ((v2Q)

→ x2), ((v3Q)→ x3), ((v4Q)→ x1)} tQ = {((v1Q)→ x4), ((v2Q)→ x3), ((v3Q)→ x4), ((v4Q)→

x2)}, wQ = {((v1Q)→ 1.5), ((v2Q)→ 4.0), ((v3Q)→ 3.3), ((v4Q)→ 1.4)}, IQ ={x3}, FS = {x1,

x2}. The costs of the processes in Figure 4.1 (a) and (b) are ∞ since none of their goal states

are reachable. However, the process of merged systems in Figure 4.1 (c) has the shortest path

is {v4Q, v2Q} with 1.4 + 4.0 = 5.4.

33

Figure 4.1: Example process descriptions and merge operation result.

34

CHAPTER 5

APPLICATIONS

5.1 Driving Route Calculation on Web Maps

Most of today’ s business problems include significant spatial components supported by Ge-

ographical Information System (GIS) solutions and the role of GIS in business intelligence

is gaining more importance [1]. Specifically, when we consider enterprise resource planning

and supply chain management requirements of factories and manufacturing systems, applica-

tions like vehicle tracking and dispatch, route analysis, warehouse operations and routing and

scheduling facilitated by GIS allow decision-makers to perform at higher level of efficiency.

Maps are core components of GIS tools [30] and provide different type of spatial informa-

tion to the above GIS-based business processes. Among many other alternative definitions

in literature, according to International Cartographic Association (ICA) Working Group on

Cartographic Definitions, “Map is a holistic representation and intellectual abstraction of geo-

graphic reality intended to be communicated for a purpose or purposes, transforming relevant

geographical data into an end-product which is visual, digital or tactile. “ [4]. Web mapping

on the other hand, is the process of development and delivery of maps on World Wide Web.

The use of web as a medium enabled new opportunities like real-time maps, cheaper update

of data and software, sharing of geographic information and distributed data sources. Dif-

ferent from early static web maps, today’ s interactive and dynamic web maps support better

functionality and usability. For example, a special type of web maps, called mobile maps,

can both be visualized and interacted via mobile computing devices, like PDA, mobile phone,

GPS etc. [47]. There are many alternative commercially available web mapping services

including MapQuest, MapsOnUs, MapBlast, Yahoo Maps, Map.com, Lycos Maps, Expedia

Maps etc. They mainly use client-server technologies like web server, spatial databases, CGI,

35

web application servers and Web Mapping Servers (WMS) on server side and web browsers,

Document Object Model (DOM) support, Scalable Vector Graphics (SVG) support, Java sup-

port and web browser plugins on client side. Among the services, MapQuest service is the

most widely used one providing a centralized route calculating module for extracting cross-

ing information on a map. In this section, our aim is to show the use of Peer-Con in realizing

driving route calculation on web maps supporting GIS-based logistics operations. Routing in

logistics context is the operation which aims at minimizing all kind of costs of travel includ-

ing time, distance, effort, money or combinations of them involved in transportation of goods

(or people) from one location to another [32]. Different from centralized, client-server solu-

tion offered by MapQuest driving route service [35], our decentralized P2P routing solution

has a fault-tolerated architecture and user definable costing for better distributed route cost

calculation. Note that the efficiency of our approach emerges especially when local map in-

formation of peers is frequently changing and is updated dynamically by users through spatial

exploration at runtime.

Table 5.1: Peer-Con concepts and their interpretations in web mapping context.

Peer-Con Terminology Web Mapping
Terminology

Web Mapping Terminology

State Spatial Location
Capability Connection between two locations
State transition function Location connectivity map
Initial state Source location
Goal state(s) Destination location(s)
Capability cost Cost (e.g. distance or transportation) of

connection between two locations
Process Local map with destination location(s)

info One input transition system Local
map

Capability disjoint one input transition
systems

Any two local maps

Goal equivalent processes Two local maps with destination loca-
tion(s) being identical

Merge operation Unification of two local maps
Behavior induced by a capability se-
quence

A route starting from initial location
ending at any location

Cost of a process The minimum cost route starting from
initial location to any of the destination
location

36

At this point, we need to establish analogies between our former business process related

definitions and the concepts of the web mapping domain (see Table 5.1).

Figure 5.1: Road map of eastern part of Turkey and example hypothetical transportation costs
between cities.

Based on Table 5.1, the driving road map of eastern part of Turkey [29] in Figure 5.1 can be

defined in the form of a process definition S=(GS , IS , FS) and GS = (ΣE , VS , ES , sS , tS ,

tS) where VS = {Corum, Kayseri, Malatya, Sivas, Trabzon}, ES = {vS ivas,Corum, vS ivas,Trabzon,

vS ivas,Kayseri, vS ivas,Malatya, vCorum,Trabzon, vCorum,S ivas, vKayseri,S ivas, vKayseri,Corum, vMalatya,S ivas},

sS = {((vS ivas,Corum)→ Sivas), ((vS ivas,Trabzon)→ Sivas), ((vS ivas,Kayseri)→ Sivas), ((vS ivas,Malatya)

→ Sivas), ((vCorum,Trabzon) → Corum), ((vCorum,S ivas) → Corum), ((vKayseri,S ivas) → Kay-

seri), ((vKayseri,Corum)→ Kayseri), ((vMalatya,S ivas)→ Malatya) }, tS = { ((vS ivas,Corum)→ Co-

rum), ((vS ivas,Trabzon) → Trabzon), ((vS ivas,Kayseri) → Kayseri), ((vS ivas,Malatya) → Malatya),

((vCorum,Trabzon)→ Trabzon), ((vCorum,S ivas)→ Sivas), ((vKayseri,S ivas)→ Sivas), ((vKayseri,Corum)

→ Corum), ((vMalatya,S ivas) → Sivas) }, wS = { (vS ivas,Corum → 17), (vS ivas,Trabzon → 30),

(vS ivas,Kayseri→ 10), (vS ivas,Malatya→ 20), (vCorum,Trabzon→ 60), (vCorum,S ivas→ 15), (vKayseri,S ivas

→ 15), (vKayseri,Corum → 40), (vMalatya,S ivas → 25) }, IS = {Kayseri}, and FS = {Ordu}

Note that in Figure 5.1, capability cost values of the system are assumed to be (not the physical

distance but) transportation costs between locations. Therefore, in our example cost of the

route from Kayseri to Ordu (or process (S)) is ∞. In other words, the user has no idea about

the transportation cost of any road reaching to city Ordu.

37

Figure 5.2: Peer-Con Process Description tab.

38

Customized Peer-Con application user interface holds three tabs. Process description tab is

used for entering user local map information. Figure 5.2 shows the entered values for the

example process.

Search tab is used to define source and destination locations, cost upper bound and TTL

values. For example, in Figure 5.5 user enters a query asking for a route starting from Kayseri

to Ordu whose cost is required to be at most 60. Also, the search radius is required to be

2 TTL. Assume there is another peer having process Q defined in Figure 5.3 in the same

network in the range of 2 TTL.

Figure 5.3: Another example of hypothetical transportation costs between cities .

The merge of two process shown in Figure 5.4 constitute a match according to our definition.

The result(s) returned by the system are also displayed on the same tab. The query result

”Cost proposed: 45 path: Kayseri → Sivas → Yozgat → Ordu from: peer1” in the figure

means that there is path from Kayseri to Sivas to Yozgat to Ordu offered by peer1 with cost

45.

The third tab in Figure 5.6 is for system parameter settings. Parameters include peer neigh-

bor upper limit (e), connectivity update ratio (r), timeout value (v) (in seconds) for query

processing and ping frequency (in 1/seconds).

39

Figure 5.4: Merge of two processes.

40

Figure 5.5: Peer-Con search and query result tab.

41

Figure 5.6: Peer-Con system parameters settings tab.

42

5.2 Digital Signal Processing Module Product Planning Application

The usage of DSPM in electronics industry is quite common since it can be an important

component of some higher level products. As a consequence of this, most of the DSPM prod-

uct planning stages are almost standardized for most companies. There are typical, possibly

concurrent stages in DSPM product planning each showing some form of subacquisition for

the whole product. They include design, production or outsourcing of submodules for exam-

ple Printed Circuit Board (PCB) composed of a mainboard and electrical components; DSP

card having a DSP software and PCB; and mechanical components integrated with the DSP

card. While the above stages are common for most organizations, they may have different

production process options depending on their time-varying capabilities. Two example hypo-

thetical process descriptions for our eight-stage DSPM product planning problem are depicted

in Figure 5.7.

The descriptions P and Q are assumed to be owned by two different organizations say D1 and

D2 having standardized DSPM product planning. In the figure, the dashed nodes represent

initial states of the process (i.e. PI=v1) while the bold ones are for final state descriptions (i.e.

PF=v8). The stage transition costs are represented by labeled arcs Ip, Op and Cp showing In-

house, Outsourced and Commercial-Off-The-Shelf(COTS) realizations of the current stages.

The minimum cost of the process P to organization D1 is clearly 16+9=25. Similarly, it is

4+15+8=27 to D2. On the other hand, cooperative execution of the process Merge(P, Q) can

be as low as 4+3+1+5+5=18, as long as mainboard design and production is done by D2

in-house, PCB realization and its software integration (leading to DSP Card availability) are

partly done in-house and partly outsourced by D1 and final realization of the DSP module

is outsourced under the control of D2. Note that a cooperation may not always be formed

among peer organizations especially when they have no common view of stages described

in related ontologies. Finally, in our formal process description, possible node costs are not

taken into consideration. However, this can easily be added to the process model based on

domain semantics.

43

Figure 5.7: Example DSPM processes and their merge

44

CHAPTER 6

CONCLUSION

In this work, we described and implemented a process contracting system, what we call Peer-

Con, based on P2P agent architecture. For this purpose, we developed contract-net like proto-

col supporting cooperative and decentralized nature of the system. Because of its underlying

P2P architecture, Peer-Con facilitates local decision-making and information handling. The

system satisfies three basic functional requirements: i) Cost aware flexible representation of

capabilities ii) Description of an operator to decide on whether given capabilities turnout to an

agreement or not iii) Self organization of peer connectivity for better contracting performance.

Furthermore, it has the following general characteristics:

• There is no overlay level global control over the system.

• Interactions occur in asynchronous way via peer process broadcasting. Peer commu-

nication is restricted to the local neighborhood whose size is defined by Time-To-Live

(TTL) value in hop unit.

• Data needed for problem solving are acquired through peer communications and there

is no central shared repository of data. Peers become more informed about the con-

tracting environment as they communicate with each other.

• Process description exchange occurs in cooperative way. There is no bargaining and/or

negotiation for process information exchange.

Because of its generic process representation and contracting ability, Peer-Con can be cus-

tomized to different problem domains. As an example, we showed that Peer-Con infrastruc-

ture can effectively be used in product planning for digital signal processing module.

45

6.1 Future Directions

In future, Peer-Con could be extended to support competitive and negotiation-based peer in-

teraction features. For this purpose, we will need to develop a negotiation protocol that can

facilitate possible encounters of competitive intelligent peers.

The process of searching for contracts do not have any computational efficiency since each

peer sends messages to all its neighbors, so everything grows exponentially. We think some

intelligence could be provided in the algorithms so that the search is much more efficient e.g.

heuristics depending on past problems, in a way similar to the RTA* algorithm.

One important issue is the privacy of business processes. Our representation for the business

process allows contracting among multiple parties however the privacy of the business process

description is not considered in the study. Although, a privacy mechanism can be provided by

the public-private key mechanism, queried processes are still shared among the peers in the

network by the given TTL range. This issue still remains to be challenging and open.

The common ontology for the states of the different process is needed because of the assump-

tion of that the companies run business in the same domain. Whereas, heterogeneous agents

from different domains can reside in the environment and contracting and negotiation between

them should be possible. To provide such contracting among heterogeneous agents, a state of

the ontology could be mapped to a possible identical state of different ontology by assigning

semantics or using the ontology mapping techniques.

46

REFERENCES

[1] M. Foca A. Ionita and M. Ienculecu-Popovici. Gis in business processes.
www.gisdevelopment.net, June 2009.

[2] G. Agha and C. Hewitt. Concurrent programming using actors. Computer Systems
Series, pages 37–53, 1987.

[3] S. Ali, B. Soh, and T. Torabi. A novel approach toward integration of rules into busi-
ness processes using an agent-oriented framework. IEEE Transactions on Industrial
Informatics, 2(3):145–154, 2006.

[4] J. H. Andrews. Definitions of the word ’map’. http://www.usm.maine.edu/ maps/es-
says/andrews.htm, June 2009.

[5] A. Ankolekar, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, D. Martin, S. McIl-
raith, S. Narayanan, M. Paolucci, T. Payne, and K. Sycara. DAML-S: Web Service
Description for the Semantic Web. Submitted to the First International Semantic Web
Conference (ISWC01), 2002.

[6] I. Ariba, I. Corporation, and M. Corporation. Universal description, discovery and inte-
gration. http://www.uddi.org/, June 2009.

[7] X. Bai, S. Liu, P. Zhang, and R. Kantola. Icn: Interest-based clustering network. In
International Conference on P2P Computing, August 2004.

[8] F. Bellifemine, G. Caire, A. Poggi, and G. Rimassa. Jade: A white paper. EXP in search
of innovation, 3:6–19, 2003.

[9] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American,
284(5):34–43, 2001.

[10] B. Çakır and H. Kılıç. An investigation about process matchmaking performances of
unstructured and decentralized digital environment topologies. In IEEE International
Conference on Digital Ecosystems and Technologies (IEEE DEST-2007), pages 81–87,
2007.

[11] R. Çelebi, H. Ellezer, C. Baylam, I.Cereci, and H. Kılıç. Process matchmaking on a
p2p environment. In IEEE/WIC/ACM International Workshop on P2P Computing and
Autonomous Agents (IEEE/WIC/ACM P2PAA 2006), pages 463–466, December 2006.

[12] R. Çelebi and H. Kılıç. Peer-con: A process contracting overlay. In IEEE International
Symposium on Industrial Electronics(IEEE INDEL 2008), pages 1808–1813, 2008.

[13] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web services description
language (WSDL) 1.1. W3c note, World Wide Web Consortium, March 2001.

[14] Limewire Community. Gnutella 0.4 protocol specification.
http://www9.limewire.com/developer/gnutella protocol 0.4.pdf, June 2009.

47

[15] RosettaNet Community. Rossettanet home. http://www.rosettanet.org, June 2009.

[16] R. Davis and R.G. Smith. Negotiation as a metaphor for distributed problem solving.
Artiicial Intelligence, 20:63–109, 1 1983.

[17] I. M. Delamer and J. L. M. Lastra. A peer-to-peer discovery protocol for semantic web
services in industrial embedded controllers. In Industrial Electronics Society, 2005.
IECON 2005. 31st Annual Conference of IEEE, pages 2661–2667, November 2005.

[18] D. Drinjakovic and U. Epple. Search methods in p2p-networks of process control sys-
tems. In 2nd IEEE International Conference on Industrial Informatics (INDIN’04),
pages 101–107, 2004.

[19] J. Eberspacher, R. Schollmeier, S. Zöls, and G. Kunzmann. Structured p2p networks in
mobile and fixed environments. In Proceedings of HET-NETs’ 04 International Working
Conference on Performance Modelling and Evaluation of Heterogeneous Networks, July
2004.

[20] E.Ogston and S.Vassiliadis. A peer-to-peer agent auction. In First International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS). 151-159, 2002.

[21] D. Roller F. Leymann. Business processes in a web services world.
http://www.ibm.com/developerworks/library/wsbpelwp/, June 2009.

[22] G.H.L Fletcher, H. A. Sheth, and K. Börner. Unstructured peer-to-peer networks: Topo-
logical properties and search performance. In 3rd Int. Workshop on Agents and Peer-to-
Peer Computing (AP2PC), at the 3rd Int. Joint Conf. on Autonomous Agents and Multi
Agent Systems (AAMAS), pages 14–27, 2004.

[23] M.R. Garey and D.S. Johnson. Computers and Intractability: A guide to the theory of
NP-Completeness. W.H. Freeman Co., 1979.

[24] M. L. Gill. Combining mas and p2p systems: The agent trees multi-agent system (at-
mas). P.hD. thesis in Computing Science, University of Stirling, 2005.

[25] E. Grandgirard, C. Gertosio, and J. M. Seigneur. Trust engines to optimize semi-
automated industrial production planning. In 16th IEEE International Symposium on
Industrial Electronics (2007), pages 1814–1819, 2007.

[26] Barbara Hayes-Roth. A blackboard architecture for control. Artif. Intell., 26(3):251–
321, 1985.

[27] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation. Addison Wesley, 2nd edition, November 2000.

[28] T. Klingberg and R. Manfredi. Gnutella Protocol Development. http://rfc-
gnutella.sourceforge.net/src/rfc-0 6-draft.html, June 2009.

[29] Harita Genel Komutanlığı. Road map of eastern part of turkey. http://www.hgk.mil.tr,
March 2008.

[30] Kraak and Menno-Jan. Why maps matter in giscience. Cartographic Journal, The,
43(1):82–89, March 2006.

48

[31] P. Maheshwari, S. S. Kanhere, and N. Parameswaran. Service-oriented middleware
for peer-to-peer computing. In 2005 3rd IEEE Intemational Conference on Industrial
Informatics (INDIN05), pages 98–103, 2005.

[32] S. Marmar. Gis in logistics and vehicle routing applications. In Proceedings of National
Workshop on Corporate GIS, 1999.

[33] P. Massuthe, W. Reisig, and K. Schmidt. An operating guideline approach to the soa.
Annals of Mathematics, Computing Teleinformatics, 1(3):35–43, 2005.

[34] S. A. Mcilraith, T. C. Son, and H. Zeng. Semantic web services. IEEE Intelligent
Systems, 16:46–53, 2001.

[35] Mick O’Leary. Mapquest and maps on us: top web map services. Online, 21(5):56–58,
1997.

[36] OASIS Open. ebxml - enabling a global electronic market. http://www.ebXML.org/,
June 2009.

[37] R. Schollmeier. A definition of peer-to-peer networking for the classification of peer-to
peer architecture and applications. In In Proceedings of the First International Confer-
ence on Peer-to-Peer Computing (P2P 01), 2001.

[38] O. Shehory. Robustness challenges in peer-to-peer agent systems. In Agents and Peer-
to-Peer Computing, Second Intl.Workshop, AP2PC 2003, pages 13–22. Springer-Verlag
LNAI 2872, 2003.

[39] R. G. Smith. The contract net protocol: High-level communication and control in a
distributed problem solver. IEEE Trans. Comput., 29(12):1104–1113, 1980.

[40] K. Sripanidkulchai, B. Maggs, and H. Zhang. Efficient content location using interest-
based locality in peer-to-peer systems. In Proceedings of INFOCOM, 2003.

[41] K. Sycara, J. Giampapa, B. Langley, and M. Paolucci. The retsina mas, a case study. In
in SELMAS, pages 232–250. Springer-Verlag, 2003.

[42] Katia Sycara, Seth Widoff, Matthias Klusch, and Jianguo Lu. LARKS: Dynamic match-
making among heterogeneous software agents in cyberspace. Autonomous Agents and
Multi-Agent Systems, 5:173–203, 2002.

[43] Ian J. Taylor and Andrew Harrison. From P2P and Grids to Services on the Web: Evolv-
ing Distributed Communities. Springer Publishing Company, Incorporated, 2009.

[44] M. Therani. Ontology development for designing and managing dynamic business pro-
cess networks. IEEE Transactions on Industrial Informatics, 3(2):173–185, 2007.

[45] V. Tosic, K. Patel, and B. Pagurek. Wsol - web service offerings language. In CAiSE
’02/ WES ’02: Revised Papers from the International Workshop on Web Services, E-
Business, and the Semantic Web, pages 57–67, London, UK, 2002. Springer-Verlag.

[46] W.M.P. van der Aalst. Interorganizational workflows: An approach based on message
sequence charts and petri nets. Systems Analysis - Modelling - Simulation, pages 335–
367, 1999.

[47] Wikipedia. Web mapping. http://en.wikipedia.org/wiki/Web mapping, June 2009.

49

[48] Steven Willmott, Matteo Somacher, Ion Constantinescu, Jonathan Dale, Stefan Poslad,
David Bonnefoy, Jerome Picault, and Juan Jim Tan. The agentcities network architec-
ture. In in Proceedings of the first International Workshop on Challenges in Open Agent
Systems, 2002.

[49] A. Wombacher, P. Fankhauser, B. Mahleko, and E. Neuhold. Matchmaking for business
processes based on choreographies. International Journal of Web Services Research,
pages 14–32, 2004.

[50] A. Wombacher and A. Martens. Soundness and Equivalence of Petri Nets and Anno-
tated Finite State Automate: A Comparison in the SOA Context. In IEEE International
Conference on Digital Ecosystems and Technologies (DEST), page 6. IEEE, 2007.

50

