
DESIGN AND IMPLEMENTATION OF AN
OPEN SECURITY ARCHITECTURE

FOR A SOFTWARE-BASED SECURITY MODULE

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

KAAN KAYNAR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

MAY 2009

DESIGN AND IMPLEMENTATION OF AN
OPEN SECURITY ARCHITECTURE

FOR A SOFTWARE-BASED SECURITY MODULE

submitted by KAAN KAYNAR in partial fulfillment of the requirements for the
degree of Master of Science in Computer Engineering Department, Middle East
Technical University by,

Prof. Dr. Canan Özgen __________________
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Müslim Bozyiğit __________________
Head of Department, Computer Engineering

Dr. Atilla Özgit __________________
Supervisor, Computer Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Payidar Genç __________________
Computer Engineering Dept., METU

Dr. Atilla Özgit __________________
Computer Engineering Dept., METU

Assoc. Prof. Dr. Cem Bozşahin __________________
Computer Engineering Dept., METU

Dr. Onur Tolga Şehitoğlu __________________
Computer Engineering Dept., METU

MSc. Mert Özarar __________________
Computer Engineering Dept., METU

 Date: ________________

 iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also
declare that, as required by these rules and conduct, I have fully cited and
referenced all material and results that are not original to this work.

 Name, Last name : Kaan Kaynar

 Signature :

 iv

ABSTRACT

DESIGN AND IMPLEMENTATION OF AN

OPEN SECURITY ARCHITECTURE

FOR A SOFTWARE-BASED SECURITY MODULE

Kaynar, Kaan

M.S., Department of Computer Engineering

Supervisor : Dr. Attila Özgit

May 2009, 165 pages

Main purpose of this thesis work is to design a comprehensive and open security

architecture whose desired parts could be realized on a general-purpose embedded

computer without any special cryptography hardware. The architecture provides

security mechanisms that implement known cryptography techniques, operations

of some famous network security protocols and appropriate system security

methods. Consequently, a server machine may offload a substantial part of its

security processing tasks to an embedded computer realizing the architecture. The

mechanisms provided can be accessed by a server machine using a client-side API

and via a secure protocol which provides message integrity and peer

authentication. To demonstrate the practicability of the security architecture, a set

of its security mechanisms was realized on an embedded PC/104-plus computer. A

server machine was connected to and requested mechanisms from the embedded

computer over the Ethernet network interface. Four types of performance

parameters were measured. They are; number of executions of a symmetric

encryption method by the embedded computer per second, number of executions

of a public-key signing method by the embedded computer per second, footprint

 v

of the implementation on the embedded computer memory, and the embedded

computer CPU power utilized by the implementation. Apart from various security

mechanisms and the secure protocol via which they can be accessed, the

architecture defines a reliable software-based method for protection and storage of

secret information belonging to clients.

Keywords: Security Architecture, Open Architecture, Security Module, Software-

based

 vi

ÖZ

YAZILIM TEMELLİ GÜVENLİK MODÜLÜ İÇİN

AÇIK BİR GÜVENLİK MİMARİSİ

TASARIMI VE UYGULAMASI

Kaynar, Kaan

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Dr. Attila Özgit

Mayıs 2009, 165 sayfa

Bu tez çalışmasının temel amacı, kapsamlı ve arzu edilen kısımları hiçbir özel

kriptoğrafi donanımı bulunmayan genel amaçlı bir gömülü bilgisayar üzerinde

gerçeklenebilecek açık bir güvenlik mimarisi tasarlamaktır. Mimari, bilinen

kriptoğrafi tekniklerini, bazı tanınmış ağ güvenlik protokollerinin operasyonlarını

ve uygun sistem güvenliği metotlarını yerine getiren güvenlik mekanizmalarını

sağlar. Dolayısıyla, bir sunucu makina güvenlik işlem görevlerinin önemli bir

kısmını, bu mimariyi gerçekleyen bir gömülü bilgisayara yükleyebilir. Sağlanan

mekanizmalara, bir sunucu makina tarafından, alıcı tarafındaki Uygulama

Programlama Arayüzünü kullanarak ve mesaj bütünlüğü ve kaynak doğrulaması

sağlayan bir güvenli protokol vasıtasıyla erişilebilir. Güvenlik mimarisinin

uygulanabilirliğini göstermek için, güvenlik mekanizmalarının bir bölümü bir

gömülü PC/104-plus bilgisayarı üzerinde gerçeklenmiştir. Bir sunucu makinası,

Ethernet ağ arayüzü üzerinden gömülü bilgisayara bağlanmış ve ondan

mekanizmalar talep etmiştir. Dört çeşit performans parametresi ölçülmüştür.

Bunlar; bir simetrik şifreleme metodunun gömülü bilgisayar tarafından bir saniye

başına icra edilme sayısı, bir açık-anahtar imzalama metodunun gömülü bilgisayar

 vii

tarafından bir saniye başına icra edilme sayısı, uygulamanın gömülü bilgisayarın

hafızasında kapladığı alan, ve uygulama tarafından kullanılan gömülü bilgisayarın

Merkezi İşlem Ünitesi gücüdür. Çeşitli güvenlik mekanizmaları ve bunlara erişme

vasıtası olan güvenli protokol haricinde, mimari, alıcılara ait gizli bilgilerin

korunması ve depolanması için, güvenilir yazılım temelli bir yöntem

tanımlamaktadır.

Anahtar Kelimeler: Güvenlik Mimarisi, Açık Mimari, Güvenlik Modülü, Yazılım

Temelli

 viii

TABLE OF CONTENTS

ABSTRACT ..iv

ÖZ ...vi

TABLE OF CONTENTS...viii

LIST OF TABLES...xiv

LIST OF FIGURES ...xvi

LIST OF ABBREVIATIONS ..xix

CHAPTERS

1. INTRODUCTION...1

2. LITERATURE SURVEY..3

2.1. Commercial Security Modules and Security Architectures...................... 3

2.1.1. IBM Common Cryptographic Architecture (CCA)3

2.1.2. IBM PCI Cryptographic Coprocessor (IBM 4758).....................5

2.1.3. IBM PCI-X Cryptographic Coprocessor (IBM 4764).................6

2.1.4. nCipher Security World Key Management Architecture7

2.1.5. nCipher Secure Execution Engine ...8

2.1.6. nCipher miniHSM...9

2.1.7. nCipher netHSM ...10

2.1.8. netHSM Technical Architecture ..11

2.1.9. SafeNet Security Modules - Luna PCI13

2.1.10. SafeNet Security Modules - Luna SA14

2.2. Advantech PCM-3370F-M0A1E PC/104-plus CPU Board 14

3. PROPOSED SECURITY ARCHITECTURE ..17

3.1. Basic Offloader Mechanisms .. 24

3.1.1. Symmetric_Encryption_Decryption Basic Offloader

 Mechanism..24

3.1.2. Asymmetric_Encryption_Decryption Basic Offloader

 Mechanism..25

 ix

3.1.3. Session_Key_Calculation Basic Offloader Mechanism............26

3.1.4. Message_Authentication_Code_Operations Basic Offloader

 Mechanism..27

3.1.5. Message_Digest_Operations Basic Offloader Mechanism28

3.1.6. Digital_Signature_Calculation Basic Offloader Mechanism30

3.2. Administrational Offloader Mechanisms .. 31

3.2.1. Cryptographic_Keys_Parameters_Generation Administrational

 Offloader Mechanism..31

3.2.2. Time_Time_Window_Adjustment Administrational Offloader

 Mechanism..32

3.2.3. Cryptographic_Keys_Parameters_Entry_Erasure_Backup

 Administrational Offloader Mechanism...................................33

3.2.4. User_Role_Management Administrational Offloader

 Mechanism..34

3.2.5. Module_Code_Status_Receiving_Loading Administrational

 Offloader Mechanism..34

3.3. Cryptographic Keys, Parameters, Public-Key Certificates and CRLs

 Storage ... 35

3.4. SSLv3 Protocol Offloader Mechanisms.. 39

3.4.1. SSL_Record_Preparation SSLv3 Offloader Mechanism39

3.4.2. SSL_Record_Verification SSLv3 Offloader Mechanism40

3.4.3. Random_Value_Generation SSLv3 Offloader Mechanism40

3.4.4. Server_Certificate_Retrieval SSLv3 Offloader Mechanism41

3.4.5. SSL_Certificate_Verification SSLv3 Offloader Mechanism42

3.4.6. Server_Key_Exchange_Preparation SSLv3 Offloader

 Mechanism..42

3.4.7. Server_Key_Exchange_Verification SSLv3 Offloader

 Mechanism..43

3.4.8. Client_Certificate_Retrieval SSLv3 Offloader Mechanism......44

3.4.9. Client_Key_Exchange_Preparation SSLv3 Offloader

 Mechanism..45

 x

3.4.10. Client_Key_Exchange_Verification SSLv3 Offloader

 Mechanism..46

3.4.11. Certificate_Verify_Preparation SSLv3 Offloader

 Mechanism..48

3.4.12. Certificate_Verify_Verification SSLv3 Offloader

 Mechanism..48

3.4.13. Finished_Preparation SSLv3 Offloader Mechanism...............49

3.4.14. Finished_Verification SSLv3 Offloader Mechanism..............49

3.4.15. Pre-master_Secret_Computation SSLv3 Offloader

 Mechanism..50

3.4.16. Master_Secret_And_Keys_Computation SSLv3 Offloader

 Mechanism..51

3.5. SET Protocol Offloader Mechanisms ... 51

3.5.1. Nonce_Generation SET Offloader Mechanism........................52

3.5.2. Initiate_Response_Preparation SET Offloader Mechanism......52

3.5.3. Initiate_Response_Verification SET Offloader Mechanism53

3.5.4. Purchase_Request_Preparation SET Offloader Mechanism54

3.5.5. Purchase_Request_Verification SET Offloader Mechanism55

3.5.6. Purchase_Response_Preparation SET Offloader Mechanism...55

3.5.7. Purchase_Response_Verification SET Offloader Mechanism..56

3.5.8. Authorization_Request_Preparation SET Offloader

 Mechanism..57

3.5.9. Authorization_Request_Verification SET Offloader

 Mechanism..58

3.5.10. Authorization_Response_Preparation SET Offloader

 Mechanism..59

3.5.11. Authorization_Response_Verification SET Offloader

 Mechanism..60

3.5.12. Capture_Request_Preparation SET Offloader Mechanism60

3.5.13. Capture_Request_Verification SET Offloader Mechanism61

3.5.14. Capture_Response_Preparation SET Offloader Mechanism...62

 xi

3.5.15. Capture_Response_Verification SET Offloader Mechanism..63

3.6. Kerberos Protocol Version 5 Offloader Mechanisms 64

3.6.1. Nonce_Generation Kerberos Offloader Mechanism.................64

3.6.2. TGT_Preparation Kerberos Offloader Mechanism...................64

3.6.3. TGT_Response_Verification Kerberos Offloader Mechanism .65

3.6.4. SGT_Authenticator_Preparation Kerberos Offloader

 Mechanism..66

3.6.5. TGT_Verification Kerberos Offloader Mechanism..................67

3.6.6. SGT_Preparation Kerberos Offloader Mechanism...................67

3.6.7. SGT_Response_Verification Kerberos Offloader Mechanism .68

3.6.8. Service_Authenticator_Preparation Kerberos Offloader

 Mechanism..69

3.6.9. SGT_Verification Kerberos Offloader Mechanism69

3.6.10. Service_Response_Preparation Kerberos Offloader

 Mechanism..70

3.6.11. Service_Response_Verification Kerberos Offloader

 Mechanism..71

3.7. X.509 Certification Operations Offloader Mechanisms 71

3.7.1. Certificate_Sign_Request_Preparation X.509 Offloader

 Mechanism..72

3.7.2. Certificate_Sign_Request_Verification X.509 Offloader

 Mechanism..72

3.7.3. Certificate_Preparation X.509 Offloader Mechanism73

3.7.4. Certificate_Revocation_List_Preparation X.509 Offloader

 Mechanism..74

3.7.5. Certificate_CRL_Retrieval X.509 Offloader Mechanism.........74

3.7.6. Certificate_CRL_Verification X.509 Offloader Mechanism75

3.8. System Security Offloader Mechanisms... 76

3.8.1. User_Password_Records_Storing System Security Offloader

 Mechanism..78

 xii

3.8.2. Entered_Password_Verification System Security Offloader

 Mechanism..79

3.8.3. Access_Rights_Entries_Storing System Security Offloader

 Mechanism..79

3.8.4. Attempted_Access_Verification System Security Offloader

 Mechanism..81

3.8.5. Access_Rights_Entries_Retrieval System Security Offloader

 Mechanism..81

3.9. Offloader Mechanism Access Controller .. 82

3.10. Communication Infrastructure... 84

4. REFERENCE IMPLEMENTATION ..87

4.1. Reference Algorithms for Basic Offloader Mechanisms........................ 88

4.1.1. Symmetric_Encryption_Decryption Basic Offloader

 Mechanism..88

4.1.2. Asymmetric_Encryption_Decryption Basic Offloader

 Mechanism..90

4.1.3. Session_Key_Calculation Basic Offloader Mechanism............92

4.1.4. Message_Authentication_Code_Operations Basic Offloader

 Mechanism..94

4.1.5. Message_Digest_Operations Basic Offloader Mechanism97

4.1.6. Digital_Signature_Calculation Basic Offloader Mechanism ..102

4.2. Offloader Mechanism Access Controller Server Program 104

4.3. Communication Infrastructure - SSL Library 107

4.4. Embedded Linux OS ... 108

4.5. Embedded Computer ... 111

4.6. Implementation Issues About Client-side API Functions..................... 112

4.7. Performance Tests ... 114

5. SUMMARY CONCLUSION ..129

REFERENCES ...136

APPENDICES

A. COMMUNICATIONS PROTOCOL MESSAGE FORMATS................140

 xiii

B. RESULTS OF PERFORMANCE MEASUREMENTS...........................156

 xiv

LIST OF TABLES

TABLES
Table 1 Performance Measurements Results - Disk Space Usage126

Table 2 Symmetric_Encryption_Decryption Offloader Mechanism Execution

 Request Message ..141

Table 3 Symmetric_Encryption_Decryption Offloader Mechanism Execution

 Response Message..142

Table 4 Asymmetric_Encryption_Decryption Offloader Mechanism Execution

 Request Message ..143

Table 5 Asymmetric_Encryption_Decryption Offloader Mechanism Execution

 Response Message..144

Table 6 Session_Key_Calculation Offloader Mechanism Execution Request

 Message ...145

Table 7 Session_Key_Calculation Offloader Mechanism Execution Response

 Message ...146

Table 8 Message_Authentication_Code_Operations Offloader Mechanism

 Execution Request Message..147

Table 9 Message_Authentication_Code_Operations Offloader Mechanism

 Execution Response Message ...148

Table 10 Message_Digest_Operations Offloader Mechanism Execution Request

 Message..149

Table 11 Message_Digest_Operations Offloader Mechanism Execution Response

 Message..150

Table 12 Digital_Signature_Calculation Offloader Mechanism Execution

 Request Message ..150

Table 13 Digital_Signature_Calculation Offloader Mechanism Execution

 Response Message..150

 xv

Table 14 Cryptographic_Keys_Parameters_Creation Offloader Mechanism

 Execution Request Message..151

Table 15 Cryptographic_Keys_Parameters_Creation Offloader Mechanism

 Execution Response Message ...151

Table 16 Time_Time_Window_Adjustment Offloader Mechanism Execution

 Request Message ..151

Table 17 Time_Time_Window_Adjustment Offloader Mechanism Execution

 Response Message..152

Table 18 Key_Entry_Erasure_Backup Offloader Mechanism Execution Request

 Message..153

Table 19 Key_Entry_Erasure_Backup Offloader Mechanism Execution

 Response Message..154

Table 20 User_Role_Administration Offloader Mechanism Execution Request

 Message..154

Table 21 User_Role_Administration Offloader Mechanism Execution Response

 Message..154

Table 22 Module_Code_Status_Receiving_Loading Offloader Mechanism

 Execution Request Message..155

Table 23 Module_Code_Status_Receiving_Loading Offloader Mechanism

 Execution Response Message ...155

Table 24 Performance Measurements Results - Symmetric Encryption, 100-bytes

 of Input Data ...163

Table 25 Performance Measurements Results - Signing, 100-bytes of Input

 Data..163

Table 26 Performance Measurements Results - Memory Space Usage164

Table 27 Performance Measurements Results - CPU Power Consumption165

 xvi

LIST OF FIGURES

FIGURES

Figure 1 Advantech PCM-3370F PC/104-plus CPU Module15

Figure 2 Typical Application Context ...18

Figure 3 Security Services Needed by Host Systems and Host Security Servers ..20

Figure 4 Security Services Needed by a Security Module....................................22

Figure 5 Access to Offloader Mechanisms via the Communications Protocol......23

Figure 6 Secret Keys and Parameters Storage Format..36

Figure 7 Overall Security Architecture (Initial) ...38

Figure 8 Peer Authentication, Message Exchange and Access Control85

Figure 9 Overall Security Architecture ..86

Figure 10 Performance Measurements Results - DES Symmetric Encryption, 100-

 bytes of Input Data ..119

Figure 11 Performance Measurements Results - AES Symmetric Encryption, 100-

 bytes of Input Data ..120

Figure 12 Performance Measurements Results - RSA 1024-bit Signing, 100-bytes

 of Input Data ...120

Figure 13 Performance Measurements Results - RSA 2048-bit Signing, 100-bytes

 of Input Data ...121

Figure 14 Performance Measurements Results - Physical Memory Space Usage by

 the OS ...121

Figure 15 Performance Measurements Results - Physical Memory Space Usage by

 the Application Software ...122

Figure 16 Performance Measurements Results - Physical Memory Space Usage

 Sum...122

Figure 17 Performance Measurements Results - Virtual Memory Space Usage by

 the OS ...123

 xvii

Figure 18 Performance Measurements Results - Virtual Memory Space Usage by

 the Application Software ...123

Figure 19 Performance Measurements Results - Virtual Memory Space Usage

 Sum...124

Figure 20 Performance Measurements Results - CPU Power Consumption by the

 OS ...124

Figure 21 Performance Measurements Results - CPU Power Consumption by the

 Application Software ...125

Figure 22 Performance Measurements Results - CPU Power Consumption

 Sum...125

Figure 23 Performance Measurements Results - DES Symmetric Encryption, 20-

 bytes of Input Data ..157

Figure 24 Performance Measurements Results - AES Symmetric Encryption, 20-

 bytes of Input Data ..157

Figure 25 Performance Measurements Results - DES Symmetric Encryption, 200-

 bytes of Input Data ..158

Figure 26 Performance Measurements Results - AES Symmetric Encryption, 200-

 bytes of Input Data ..158

Figure 27 Performance Measurements Results - DES Symmetric Encryption, 500-

 bytes of Input Data ..159

Figure 28 Performance Measurements Results - AES Symmetric Encryption, 500-

 bytes of Input Data ..159

Figure 29 Performance Measurements Results - DES Symmetric Encryption,

 1000-bytes of Input Data ...160

Figure 30 Performance Measurements Results - AES Symmetric Encryption,

 1000-bytes of Input Data ...160

Figure 31 Performance Measurements Results - RSA 1024-bit Signing, 20-bytes

 of Input Data ...161

Figure 32 Performance Measurements Results - RSA 2048-bit Signing, 20-bytes of

 Input Data..161

 xviii

Figure 33 Performance Measurements Results - RSA 1024-bit Signing, 50-bytes of

 Input Data..162

Figure 34 Performance Measurements Results - RSA 2048-bit Signing, 200-bytes

 of Input Data ...162

 xix

LIST OF ABBREVIATIONS

ACL Access Control List

AES Advanced Encryption Standard

AGP Accelerated Graphics Port

AH Authentication Header

AIX Advanced Interactive Executive

ANSI American National Standards Institute

API Application Programming Interface

ARC4 Alleged RC4

AS Authentication Server

AT Advanced Technology

ATA Advanced Technology Attachment

ATAPI Advanced Technology Attachment Packet Interface

ATX Advanced Technology eXtended

BIOS Basic Input/Output System

BSP Board Support Package

CA Certification Authority

CAST Carlisle Adams Stafford Tavares

CBC Cipher Block Chaining

CCA Common Cryptographic Architecture

CFB Cipher Feedback

CFC Compact Flash Card

CFI Common Flash Interface

CMAC Cipher-based Message Authentication Code

CML2 Configuration Menu Language 2

CPU Central Processing Unit

 xx

CRAMFS Compressed ROM File System

CREN Corporation for Research & Educational Networking

CRL Certificate Revocation List

CSR Certificate Signing Request

DAA Data Authentication Algorithm

DAC Data Authentication Code

DBMS Database Management System

DER Distinguished Encoding Rules

DES Data Encryption Standard

DH Diffie-Hellman

DHCP Dynamic Host Configuration Protocol

DIN German Institute for Standardization

DMA Direct Memory Access

DSA Digital Signature Algorithm

DSS Digital Signature Standard

e-Commerce Electronic Commerce

e-mail Electronic Mail

EBX Embedded Board eXpandable

ECB Electronic Codebook

ECC Elliptic Curve Cryptography

ECDSA Elliptic Curve Digital Signature Algorithm

EIDE Enhanced Integrated Drive Electronics

EMV Europay MasterCard VISA

ESP Encapsulating Security Payload

ETRI Electronics and Telecommunications Research Institute

EXT3 Third Extended Filesystem

 xxi

FAQ Frequently Asked Questions

FIPS PUB Federal Information Processing Standards Publications

GB GigaByte

GCC GNU Compiler Collection

GNU GNU’s Not Unix

GUI Graphical User Interface

HMAC keyed-Hash Message Authentication Code

HP UX Hewlett Packard UniX

HSM Hardware Security Module

HTTP Hypertext Transfer Protocol

I/O Input/Output

ICV Integrity Check Value

ID Identifier

IDE Integrated Drive Electronics

IDEA International Data Encryption Algorithm

IETF Internet Engineering Task Force

IP Internet Protocol

IPSec IP Security

IRQ Interrupt Request

ISA Industry Standard Architecture

ISAKMP Internet Security Association and Key Management Protocol

ISO International Organization for Standardization

IV Initialization Vector

JCA Java Cryptography Architecture

JCE Java Cryptography Extension

JFFS Journaling Flash Filesystem

 xxii

JFS Journaled File System

KB KiloByte

KO Not OK

LAN Local Area Network

LCD Liquid Crystal Display

LPT Line Print Terminal

MAC Message Authentication Code

MB MegaByte

MD5 Message-Digest algorithm 5

MIME Multipurpose Internet Mail Extensions

MIT Massachusetts Institute of Technology

NFS Network File System

NIST National Institute of Standards and Technology

OEM Original Equipment Manufacturer

OFB Output Feedback

OI Order Information

OIMD Order Information Message Digest

OS Operating System

PCBC Propagating Cipher Block Chaining

PCI Peripherial Component Interface

PCI-X PCI eXtended

PED PIN Entry Device

PEM Privacy Enhanced Mail

PI Payment Information

PIMD Payment Information Message Digest

 xxiii

PIN Personal Identification Number

PKCS Public-key Cryptography Standards

PKDS Public-key Distribution Scheme

PKI Public-key Infrastructure

POSIX Portable Operating System Interface

QPD Qplus Package Descriptor

RAM Random Access Memory

RC4 Rivest Cipher 4

RFC Request for Comments

RIPEMD-160 RACE Integrity Primitives Evaluation Message Digest

RoHS Restriction of Hazardous Substances Directive

ROM Read Only Memory

ROMFS ROM File System

RPM RedHat Package Manager

RS232 Recommended Standard 232

RSA Rivest Shamir Adleman

S/MIME Secure/Multipurpose Internet Mail Extension

SA Security Association

SAFE Signatures and Authentication for Everyone

SBC Single Board Computer

SDRAM Synchronous Dynamic Random Access Memory

SEE Secure Execution Engine

SET Secure Electronic Transaction

SGT Service-granting Ticket

SHA-1 Secure Hash Algorithm

SM Security Module

SMK Storage Master Key

 xxiv

SMTP Simple Mail Transfer Protocol

SODIMM Small Outline Dual In-line Memory Module

SPD Security Policy Database

SPI Security Parameters Index

SSL Secure Sockets Layer

TCP Transmission Control Protocol

TDES Triple DES

TFTP Trivial File Transfer Protocol

TGS Ticket-granting Server

TGT Ticket-granting Ticket

TLS Transport Layer Security

U Rack Unit

UDX User Defined Extensions

USB Universal Serial Bus

USC-ISI University of Southern California Information Sciences

Institute

VGA Video Graphics Array

WAN Wide Area Network

WEP Wired Equivalent Privacy

XOR Exclusive OR

ZKA German Customs Investigation Bureau

 1

CHAPTER 1

INTRODUCTION

As the connectivity to the Internet has become a requirement for most

organizations, securing their workstations and servers and data they transmit over

the Internet becomes a necessity. Usually dedicated security servers are used in a

local network of an organization to perform some widely adopted cryptography

and security operations and protocols to counter against various types of attacks.

These dedicated servers generally require high processing power and other

resources to perform many CPU-demanding security-related operations as fast as

possible and return the results to the requesting workstations and servers without

much delay. Therefore, dedicated security servers usually need access to a separate

security module and use cryptography and security mechanisms provided by that

module. Besides securely performing cryptography and security operations for

dedicated server machines to increase their performance, security modules store

and protect keys and other secret data used in these operations on behalf of their

owners.

In this thesis work a comprehensive security architecture, which includes various

cryptography and security mechanisms responding to the needs of different

application areas, and at the same time which provides secure storage for various

kinds of secret keys, parameters and data belonging to users of the local network,

is designed. Desired parts of the designed security architecture could be realized to

build a security module according to the needs of a specific application area.

Some existing commercial security modules and security architectures, based on

which they were built, are examined in Chapter 2 “Literature Survey” of this

document. As can be seen in that chapter, a few open commercial security

 2

architectures exist. The security architecture in this work is designed to be as

extensive as possible and yet is open.

The security architecture designed in this work is described in detail in Chapter 3

“Proposed Security Architecture” of this document. It is completely a software

architecture without involving any hardware requirements.

To prove the practicability of the designed security architecture, some of the

security mechanisms the architecture provides were realized on a PC/104-plus

embedded computer to build a security module and critical performance

parameters of the built security module were measured. Reference algorithms for

the implemented security mechanisms, the methods used for evaluating the

performance of the built security module and the results of performance

evaluations are explained in detail in Chapter 4 “Reference Implementation” of

this document.

Finally, in Chapter 5 “Summary Conclusion”, the writer’s comments on some

strong and weak points of the designed security architecture, further improvements

that could and should be done, and on whether the aim of this thesis work is

reached are given.

 3

CHAPTER 2

LITERATURE SURVEY

2.1. Commercial Security Modules and Security Architectures

This section gives detailed information about some famous commercial security

modules and security architectures on which they are based. This information is

useful in comparing the features of the security architecture designed with those of

commercial ones, and also in comparing the results of performance tests, done on

the built software-based security module, with the values of certain performance

parameters given for some commercial security modules.

2.1.1. IBM Common Cryptographic Architecture (CCA)

IBM CCA provides a comprehensive, integrated family of services that use major

capabilities of IBM Coprocessors. Release 2.x supports IBM Coprocessor models

002 and 023 on Windows NT, Windows 2000, and AIX. CCA provides the usual

DES and RSA functions for data confidentiality and data integrity support. In

addition, CCA features extensive support for distributed key management and

many functions of special interest to the finance industry. CCA software has been

independently reviewed and certified by the German ZKA industry organization

for use in specific finance systems. [5]

CCA is capable of cryptographic-quality random number generation utilizing the

Coprocessor hardware to seed a FIPS PUB 140-1 compliant random number

generator. Keys are securely held in one of two ways:

o A modest number of (75 to 150 Coprocessor-generated) RSA private keys

can be retained within the secure Coprocessor,

 4

o An unlimited number of private keys and DES keys can be held external to

the Coprocessor encrypted (wrapped) by the triple DES master key. [5]

The master key can be randomly generated within the Coprocessor, or can be

inserted by two or more trusted individuals. With CCA control vector technology,

extensive control of key usage in distributed cryptographic systems can be

enabled. Cloning of a master key enables back-up or redundant Coprocessors to

process encrypted local keys with the same master key. [5]

CCA provides SET services that support e-Commerce applications in merchant

and acquirer credit card transaction processing. With Release 2.x, encrypted PIN

block support is added consistent with the latest addition to the SET standards.

PIN generation and verification services support several popular algorithms

including customer-selected PIN options. A variety of PIN block formats are

processed with support for secure re-encryption and re-formatting of PIN blocks.

[5]

Digital signature generation and validation using RSA supports several different

hash formatting methods including ISO-9796 and PKDS #1 standards. SHA-1 and

MD5 hash algorithms are supported. Large blocks are hashed using the hardware

SHA-1 hashing engine within the Coprocessors. The modular exponentiation

hardware engine supports RSA keys up to 2048 bits in length. [5]

DES data encryption supports CBC and ANSI X9.23 last block padding rules.

Triple-DES support comes in Release 2.x. Derived key support is available for

dynamically creating DES keys from a key generating key in support of protocols

such as used with EMV smart cards. MAC generation is supported using the DES

algorithm and rules defined in the ANSI X9.9-1 and the ANSI X9.19 algorithms

for single and double length keys. [5]

 5

Through use of the UDX (User Defined Extensions) toolkit available under custom

contract, customers or software vendors can implement their own applications for

the Coprocessors or can extend CCA to support many other operations needed by

their applications. IBM will issue each of them a unique identifier and certify their

code-signing keys so that they can sign their own custom Coprocessor software.

Developers can develop their software using conventional IBM or Microsoft C-

language compilers and use the toolkit-provided debugging programs. Then, the

software can be loaded to the Coprocessor. [5] [6]

The API for the CCA Release 2.x differs in certain details from the API for the

Release 1.31. Application programs designed to work with CCA Release 1.31 may

require modifications to run with Release 2.x. [5] Detailed information about CCA

is given in the CCA Basic Services Reference and Guide for the IBM 4758 PCI

and IBM 4764 PCI-X Cryptographic Coprocessors. [9]

2.1.2. IBM PCI Cryptographic Coprocessor (IBM 4758)

The FIPS PUB 140-1 “Security Requirements for Cryptographic Modules” is the

benchmark standard by which cryptographic implementations are evaluated. The

IBM 4758 Model 002 is certified at level 4, the highest certification. The Model

023, which uses a different method of detecting physical penetration attacks, is

certified at level 3. The evaluations cover the processing subsystem and its

specialized cryptographic hardware, code loading, tamper detection and response

mechanisms, and cryptographic algorithms: DES, triple-DES, RSA, DSS, and

SHA-1. IBM 4758 Models 002 and 023 operate both on a 3.3-volt and 5-volt PCI

bus and have batteries to power its tamper-sensing electronics when no system

power is supplied. [6]

IBM supplies support program codes for two cryptographic APIs, PKCS #11 and

IBM CCA API. PKCS #11, Cryptographic Token Interface Standard or Cryptoki,

support program code provides access to the Coprocessor from AIX, Windows NT

 6

and Windows 2000 platforms to perform MD2, MD5, SHA-1, RSA, DSS, DES,

and triple-DES capabilities according to industry-standard API. Programs such as

the Netscape security server can exploit security-afforded RSA private keys and

offloading of host system processing through the use of one or more Coprocessors.

IBM CCA API standard capabilities include PIN processing, Secure Electronic

Transaction services, data encryption and hashing techniques, and RSA-based

public-key cryptography. CCA and its API implementation can be extended

through custom programming. [6]

Using PKI-based outbound authentication capabilities of the Coprocessor's control

program, it can be securely administered even from remote locations. Auditors can

inspect the Coprocessor's digitally signed status response to confirm that the

Coprocessor remains untampered and running uniquely identified software. [6]

Models 002 and 023 support upto 175 1024-bit RSA private key operations per

second. The Coprocessor also supports high-throughput bulk DES processing.

DES encryption throughput of 15.3 MBytes/second has been measured on fast host

systems. [6]

2.1.3. IBM PCI-X Cryptographic Coprocessor (IBM 4764)

IBM 4764 PCI-X Cryptographic Coprocessor provides a high-security, high-

throughput cryptographic subsystem. The tamper-responding hardware is designed

to qualify at the highest level under the stringent FIPS 140-2 standard. Specialized

hardware performs DES, TDES, modular-exponentiation (for RSA, DSA) and

SHA-1 cryptographic functions, relieving main processor from these tasks. The

coprocessor design protects cryptographic keys and sensitive functions. [7]

IBM 4764 Coprocessor board has a PCI-X 1.0 and PCI 2.2 local bus compatible

interface. The board holds a secured subsystem module, batteries for backup

power, serial interface and 10/100 Ethernet. The securely encapsulated subsystem

 7

contains an IBM PowerPC 405GPR, RAM, flash, and battery-powered memory,

cryptographic-quality random number generator, specialized cryptographic

hardware and full-duplex DMA communications. [7]

Secure code loading enables control program and application program loading and

refreshes. IBM offers a Linux-based subsystem control program and an application

program, which implements IBM Common Cryptographic Architecture (CCA). [7]

The Coprocessor is supported in IBM System z mainframes under z/OS, OS/390,

Linux, in IBM System i servers, and in IBM System x servers running either 32-bit

SUSE Linux Enterprise Server 9 or 32-bit Windows Server 2003 Standard Edition,

to provide cryptographic services using the CCA cryptographic API. It is also

supported in IBM System p servers running under the AIX operating system to

provide cryptographic services using both the CCA cryptographic API and the

PKCS #11 cryptographic API. [7]

2.1.4. nCipher Security World Key Management Architecture

Hardware security modules provide physical security of keys but do not

completely address the issue of how keys are created, stored, managed and

destroyed. This process of controlling key lifecycles is known as key management

and requires software that interfaces between a security module and the external

world. nCipher's Security World technology fills this need. [8]

Security World offers clear benefits to security architects and system managers in

many respects. First of all, the approach places the emphasis on secure

management of keys including secure creation, backup and recovery of keys. Keys

are stored as encrypted and protected files outside the physical confines of a

security module (in a smart card or hard disk). Hence, there is virtually unlimited

key storage space available, and loss of a SM does not necessarily mean loss of the

keys. When a key is transported outside a SM, the key data itself is encrypted

 8

using strong (triple-DES) encryption, its Access Control List (ACL) is appended to

the encrypted key data, and then confidentiality and integrity of the key data and

its ACL are protected by one more encryption, and authentication (MAC). A key

object prepared and stored in this way is known as a "key blob". This structure

ensures that when keys are not physically protected within a module (when being

created and managed), they are instead logically protected. [8]

Each key has its own ACL, which lists operations that can be performed on the

key, and subjects that are entitled to request those operations. Access can be

further controlled by requiring secret sharing which enables a key’s fragments to

be stored separately on tokens (smart cards or hard disks) so that 'k of n' key

fragments are required in order to reconstitute the key. This ensures keys have a

higher level of protection. [8]

nCipher's security modules provide a true hardware random number generator.

This is used to create a truly random and externally unknowable module (root)

key. Several nCipher security modules can be added to a network to be used

together to provide consistent security management by configuring each module to

use the same module key. Security World can be used in conjunction with the

nCipher Secure Execution Engine technology to develop advanced custom security

infrastructures. [8]

2.1.5. nCipher Secure Execution Engine

nCipher Secure Execution Engine (SEE) expands security beyond key

management to include a secure environment in which only trusted, authenticated

application code can run. By enabling secure execution of application code, which

can act as a “Trusted Agent”, data can be secured and access controlled. Trusted

agents allow security architects to delegate authority to application codes, that they

trust to act on their behalf, in server environments that are outside of their direct

 9

control. Trusted agents (signed and authenticated) operate on nCipher SMs that

have FIPS 140-1 validated hardware protection. [10]

In a large-scale system such as an automated trading network, trusted human

operators cannot oversee every critical security instruction issued on the system.

This creates a situation where the right to use cryptographic keys must be

delegated to trusted applications, without requiring any human intervention.

Fundamental problem common to many existing SMs is that although a security

module provides secure storage for keys and the root key of the module, in most

security architectures there is no way defined for the module to know the security-

critical application with which it is communicating. SEE addresses this problem by

transferring security-sensitive applications, previously running on a host server,

into the secure confines of a SM. [10]

2.1.6. nCipher miniHSM

miniHSM is a FIPS 140-2 (a widely recognized security benchmark for

cryptographic modules) level 3 validated platform for OEMs that require a

hardware security module for performing cryptographic operations or protecting

critical information. It is a secure, simple solution to provide data encryption,

digital signing and strong authentication, and creates an opportunity for developers

to leverage nCipher's unique application security and key management technology.

[11]

miniHSM supports a wide range of cryptographic algorithms, including all

common symmetric-key, asymmetric-key, hash and MAC algorithms (triple-DES,

AES, RSA, DSA, DH, MD5, SHA-1, HMAC etc..) as well as more special

algorithms such as Elliptic Curve Cryptography. SSL/TLS master key derivation

and PKCS #8 key wrapping is also supported. Incorporating a true random number

generator, miniHSM offers secure cryptographic key creation, and a built-in real-

time clock enables a trustworthy time source for time-stamping and Digital Rights

 10

Management applications. The clock is protected by a strong physical and logical

security boundary. [11]

miniHSM optionally provides support for nCipher’s suite of developer toolkits

including CodeSafe and Secure Execution Engine for executing high assurance,

trusted, custom applications within the device’s security boundary and hence

ensuring that confidential key material can only be used by those applications.

miniHSM supports a standard smartcard interface that utilizes nCipher's Security

World key management system. This provides a flexible approach to key

management, backup and recovery. [11]

The module has two serial ports and a single 8 bit parallel port for communication

and supports Windows, Linux and Solaris host operating systems. [11]

2.1.7. nCipher netHSM

A highly secure, network-attached hardware security module that provides a

shareable cryptographic resource for multiple servers. Applications that require

access to hardware-protected cryptographic keys, from PKI and authentication

systems to Web services and SSL, can share access to a netHSM over secured

connections. netHSM provides a cost-effective deployment alternative to dedicated

security modules. All cryptographic functions are performed within a FIPS 140-2

level 3 validated security boundary. [12]

In line with all of nCipher’s SMs, netHSM is fully compliant with nCipher’s

Security World key management framework. This enables keys to be managed and

shared across different types of installed nCipher’s SMs. Access control lists and

smartcard-based operator authentication allow individual keys or groups of keys to

be logically separated and specific usage rules enforced. netHSM can be

configured for dual control and split responsibility ensuring that there is no single

 11

point of compromise. Also through use of strong authentication of remote servers,

use of an individual key can be restricted to a specific remote server or servers.

[12]

netHSM is a 1U, standard rack-mounted unit, offering high performance (can

perform upto 2000 signing operations per second) with a low impact on valuable

rack space. It has two 10/100 Ethernet ports and a RS232 mini-DIN serial

connection. It supports AIX, HP UX, Linux, Solaris and Windows operating

systems. The product is certified by SAFE (Signatures and Authentication for

Everyone) as having met their digital identity standard. [12]

AES, RC4, CAST, DES and triple-DES symmetric ciphers, RSA, DSA, El Gamal

public-key ciphers, DH key exchange mechanism, MD2, MD5, SHA-1, SHA-2,

RIPEMD-160 hash functions, and HMAC authentication function are supported by

the module. Elliptic Curve Cryptography support is optional. [12]

2.1.8. netHSM Technical Architecture

netHSM architecture provides a layered approach to security. It is possible to

identify four discrete security boundaries in a typical netHSM deployment:

o FIPS boundary: core security boundary for all cryptographic operations,

o Platform boundary: remaining system components and physical chassis of

netHSM appliance,

o Transport boundary: network connections linking remote servers to

netHSM,

o Client boundary: security features relating to netHSM but hosted on remote

servers.

[13]

The innermost security zone is the FIPS security boundary. All requests for

cryptographic processing by remote servers along with sensitive internal netHSM

 12

control activities are handled within the FIPS security boundary. All plaintext key

data and their associated access control lists are only exposed within this

boundary. netHSM can optionally contain a Secure Execution Engine that can

execute signed custom software. SEE’s associated data and control logic execute

within the FIPS boundary. FIPS boundary is physically protected from tampering

by embedding the circuitry in hardened epoxy resin, a process known as potting.

Techniques used to control access to the keys is at least equally important as

physical protection of keys. In netHSM, every key is bound to an individual access

control list to deliver fine-grained control over the keys. [13]

netHSM chassis marks the Platform security boundary. This boundary protects the

embedded Intel microprocessor, its operating system and the user interface.

netHSM keeps Security World data within the platform security boundary

allowing control and audit via netHSM’s secure user interface. The boundary is

physically protected with tamper-evident seals, and cryptographically protected

during upgrades using digital signature techniques. [13]

To prevent eavesdropping, it is vital to secure communication between netHSM

and ‘client’ machines (remote servers). It is also important that netHSM and client

machines are mutually authenticated to prevent unauthorized use of keys. A

security protocol known as Impath is used to provide secure, encrypted

communication of all data over network. [13]

netHSM security architecture supports different strengths of authentication, each

appropriate for a different use. Options include: ability to connect a server as a

‘soft’ client with no hardware present, use of a discrete hardware token (nToken)

to provide strong protection of a secret associated with the Impath connection, and

use of smart cards to authorize key usage. Only clients that have been previously

enrolled can connect to netHSM. The nature of the Impath connection setup

protocol means that all traffic using that connection can only be read or generated

by the party, which undertook the key exchange process. Identification of the party

 13

is done by that party signing the messages with a particular key. netHSM also

maintains a unique key pair for signing its Impath session setup messages, hence a

remote server can be confident that it is communicating with a particular netHSM

when setting up a connection. [13]

2.1.9. SafeNet Security Modules - Luna PCI

Luna PCI is a family of PCI card hardware security modules designed to protect

cryptographic keys and accelerate sensitive cryptographic operations across a wide

range of security applications. Luna PCI offers dedicated hardware-secured key

management (generation, storage and backup) to ensure integrity and protection of

sensitive keys throughout their lifecycle. All digital signing and verification

operations are performed within the SM to increase performance and maintain

security. Luna PCI SMs provide accelerated encryption in a range of models and

configurations, thus offering a wide selection of security, performance and

operational capabilities. [14]

Low-end Luna PCI models provide over 1200 asymmetric 1024-bit RSA

operations per second, while high-end Luna PCI models offer a blazing 7000

asymmetric 1024-bit RSA operations per second. Luna PCI is validated at both

FIPS 140-2 level 2 and level 3 operations depending on configuration and model

selected. It offers strong two-factor authentication for FIPS level 3 using well-

known Luna PED (PIN Entry Device) which is an integrated handheld

authentication console, that does not rely on commercial keyboards or displays for

administrator PIN code entry, thus creating a true trusted path authentication. The

modules are packaged inside a specially designed enclosure to meet stringent

requirements for tamper and intrusion resistance. [14]

Luna PCI supports PKCS #11, Microsoft CryptoAPI and Java JCE/JCA

cryptographic APIs to simplify development and speed application deployment. It

supports a broad range of cryptographic algorithms including RSA (up to 4096-bit

 14

key), SHA-256/512, AES, TDES and many more. The modules offer Plug and

Play support for Windows platforms. [14]

2.1.10. SafeNet Security Modules - Luna SA

Luna SA is a flexible, Ethernet-attached hardware SM offering powerful

cryptographic acceleration, hardware-based key management, and multiple

configuration profiles for applications where security and performance are a

priority. It features a tamper-resistant rackmount chassis, secure remote

management, and scalable and upgradeable configuration options. It is available in

either a FIPS validated, or RoHS compliant version. Designed to ensure integrity

and security of cryptographic keys for PKI root key protection applications,

genuine hardware key generation for smartcard issuance applications, blazing

cryptographic processing for digital signing applications, or SSL acceleration for

web servers, Luna SA has the features to deliver security and performance. [15]

Luna SA is a high assurance SM, i.e. keys are always in hardware. It features two

built-in Ethernet ports for drop-in deployment onto networks. The SM offers over

1200 1024-bit RSA decrypt operations per second for the most demanding

applications. Luna SA features secure remote administration to simplify

management, and FIPS 140-2 level 3 validated models offer true two-factor,

trusted path, multi-person authentication of SM administrative users. Luna SA

offloads computationally intensive SSL connection setups from web servers when

configured for SSL acceleration. The module has already been fully integrated

with popular certificate authorities, including Microsoft Certificate Services,

Entrust Authority, VeriSign, and others. [15]

2.2. Advantech PCM-3370F-M0A1E PC/104-plus CPU Board

This section gives specifications of the Advantech PC/104-plus CPU board used in

building the software-based security module in the implementation phase. This

 15

embedded single board computer is manufactured by Advantech Corporation, and

distributed by Lima Endüstriyel Bilgisayarlar A.Ş. in Turkey. A picture of the

board is given in figure 1 with its connectors labeled [33].

Figure 1 Advantech PCM-3370F PC/104-plus CPU Module

Regarding general specifications, the SBC has:

o Onboard Ultra Low Voltage Intel Celeron 650 MHz fanless CPU,

o VIA® VT8606/TwiserT and VT82C686B system chipset,

o AWARD® 256 KB Flash BIOS,

o Support for Advanced Power Management,

o A SODIMM socket supporting up to 512 MB SDRAM system memory,

o CompactFlash® Card (CFC) Type I socket,

o 1.6 sec interval watchdog timer which can be set up by software and

generate system reset or IRQ11,

o 104-pin PC/104 and 120-pin PC/104-plus expansion connectors. [33]

Regarding I/O specifications, the SBC has:

o An enhanced IDE connector for hard disk or CD-ROM connections,

 16

o An LPT parallel port,

o An RS-232/422/485 serial port and an RS-232 serial port,

o A keyboard connector and a mouse connector,

o Two USB 1.1 compliant ports,

o Realtek® RTL8139D 10/100 Mbps Ethernet with RJ-45 interface. [33]

Regarding display capability, the SBC has:

o Four AGP VGA/LCD controller providing up to 1024 x 768 resolution.

[33]

The board’s dimensions are PC/104 standard dimensions, 96 x 115 mm. The board

operates between temperatures 0 and 60°C. +5V or +12V AT/ATX power supply

is required to drive the board, maximum power required is 15 Watts. [33]

A VGA cable, an Ethernet RJ-45 conversion cable, an IDE cable, ATX and AT

power cables and various other cables, excluding the USB cable, come free of

charge in the board’s package. [33] A 256 MB SDRAM memory, a 1 GB Type I

CompactFlash® Card and a compatible power supply were procured separately.

 17

CHAPTER 3

PROPOSED SECURITY ARCHITECTURE

The aim of this thesis work, which mainly involves design work rather than

implementation, can be defined as: to design an extensive, modular and extendable

(i.e. open) security architecture, whose desired parts could be realized even on a

software-based security module and should be realized on a network-attachable

security module. The parts of this aim and why each is included are elaborated in

the following paragraphs.

The description of the security architecture designed in this work begins with the

depiction of its application context. Five major elements define the typical

application context of the architecture: host systems, remote systems, host security

servers, the security module and administrator users, as shown in figure 2 below.

Host systems are workstations or conventional servers of the local network and run

host system software and server programs. Remote systems are elements of other

networks and run client programs that communicate with host server programs.

Host security servers are elements of the local network and run server programs

that perform cryptography and security-related operations and protocols needed by

host systems. These dedicated security servers may offload a part of their security-

related operations to the network-attached security module (SM), which provides

various cryptography and security mechanisms and securely stores secret

data/information required by these mechanisms and belonging to host and remote

users. The SM applies access control restrictions so that only a few administrator

host users have the right to load or remove the secret data to/from the SM, and also

modify the SM internal data. Various kinds of security mechanisms provided by

and secret data stored in the SM together corresponds to just a realization of the

designed security architecture.

 18

Figure 2 Typical Application Context

Mostly, security modules are coprocessor add-in cards that are plugged to one of

the electrical bus sockets of a server machine and accessed only by this machine.

Alternatively, they can be embedded single board computers (SBCs) that can be

attached to the local network as a network device, like the one in figure 2. While

an add-in card can exchange large amounts of data with the server machine

directly at a time, an SBC can be accessed by any server machine in the local

network. Hence, a network-attachable SBC can store secret keys and other data for

all servers and users of the local network. [1] [4] Also, they are low cost and

increasingly becoming more common.

The security architecture designed in this work should be realizable for a network-

attachable SBC as the hardware platform.

 19

Security modules are almost always hardware-based, but a software-based

implementation is also possible. Hardware-based security modules have special

cryptography hardware that accelerates certain cryptography operations, and hence

they offer performance benefits over software-based implementations. In addition,

a higher level of security can be achieved using hardware-based SMs, because

keys and other secret data are protected against unauthorized modification and

removal from the module by both hardware and software means. Software-based

security modules are general-purpose computers with limited processing

capabilities. In addition, they are more vulnerable to viruses and system failures.

[2] Hardware-based security modules are costly, especially in case a security

module is needed for every local network of an organization.

The security architecture designed in this work could be realizable for a hardware-

based security module and even for a software-based security module.

Dedicated security servers on a local network of an organization may need a

different combination of security mechanisms than the dedicated servers on

another local network. First of all, this requires the software of the security module

to be configurable according to the needs of the dedicated servers on any local

network of the organization. Hence, the security architecture should be designed as

modular enabling any desired combination of its security mechanisms to be

realized on a security module according to the needs of the dedicated servers.

Secondly, it is required that the security module software is capable of providing

most of the existing and new cryptography and security mechanisms of proven

reliability. This implies both an extensive and extendable security architecture to

be designed with the ability to integrate new security mechanisms and remove

obsolete ones to/from the architecture easily. Combining modularity and

extendibility, the security architecture designed in this thesis work will be an open

architecture enabling other developers to improve and realize parts of the

architecture they wish according to their security considerations.

 20

Then, the point is to decide which security mechanisms could be included in and

which kinds of secret data could be handled by the security architecture designed.

This decision is made by determining which security services could be needed by

host systems and host security servers to enhance the security of data transfers

with remote systems (i.e. network security services [3]) and to enhance the

security of data processing of themselves (i.e. system security services [3]). The

security services considered are shown in ovals in figure 3 below.

Figure 3 Security Services Needed by Host Systems and Host Security Servers

Four important network security services needed by any host system or security

server to protect data during transfer to a remote system are confidentiality,

authentication, integrity and non-repudiation. The most common network security

mechanism to provide confidentiality is masking the data using encryption, either

 21

symmetric or asymmetric [3]. The most commonly used network security

mechanism to provide data/message authentication and integrity is the Message

authentication code (MAC) [3]. The most common network security mechanism to

provide non-repudiation service is the digital signature.

Two of the important services, related to system security, needed by any host

system or security server to protect its own data processing are access control

(including identification of a remote system trying to access to a host system) and

protection of secret information belonging to a host system or host users. System

password schemes and files, access control and capability lists are major system

security mechanisms to provide access control service [3]. For protection of secret

information, security mechanisms that protect the integrity and privacy of stored

secret data are required.

The network security mechanisms (i.e. common cryptography techniques) and

system security mechanisms mentioned above are included in the designed

security architecture as basic offloader mechanisms and system security offloader

mechanisms, respectively. The security architecture designed does not only include

network and system security mechanisms, but also other security mechanisms that

implement certain operations of three renowned network security protocols and

certain X.509 certification operations. Three network security protocols considered

within the scope of this work are: SSL transport layer security protocol, SET

security protocol which protects credit card transactions over the Internet [16], and

Kerberos network authentication protocol. Finally, administrational offloader

mechanisms are included in the security architecture that aim to perform security

module administration tasks and can only be requested by a few administrator

users (whose number should be more than 1). All of the security mechanisms

included as part of the security architecture are referred to as offloader

mechanisms, because host security servers may offload a substantial part of their

security processing tasks to a security module realizing the designed security

architecture.

 22

Like host systems and host security servers, a security module, on which parts of

the security architecture will be realized, needs similar network and system

security services to ensure secure data exchange with connected host security

servers and to ensure secure data processing of itself, respectively. Figure 4 shows

these security services in ovals.

Figure 4 Security Services Needed by a Security Module

First of all, a security module needs access control system security service. A host

system/user initiating a connection to the SM via a host security server should be

authenticated (identified) by the SM, and vice versa the security module should be

authenticated by the host user. Then, certain access rights on SM resources (i.e.

offloader mechanisms and stored secret data) should be delivered to the host user

by the SM. Secondly, the SM should store and protect data, either secret or not,

belonging to itself. Therefore, the security architecture designed should reserve a

place for the storage of SM internal data apart from the one for the storage of

security-related data belonging to host and remote users.

As network security services, integrity and authenticity of the messages exchanged

between a host security server and the SM should always be guaranteed by both

 23

the SM and host security server. Also, confidentiality of the messages exchanged

should be ensured by both the SM and host security server in cases where the

messages concern exchange of secret data, like keys. Non-repudiation network

security service is considered not to be definitely required by a SM, since it may

seriously slow down the speed of communication between the SM and a host

security server. Therefore, the security architecture should provide necessary

security mechanisms and/or protocols that meet the SM’s own security needs.

To provide access by host security servers to the offloader mechanisms provided

by the security architecture, an easy-to-process communications protocol and

associated client-side API functions are designed. To request an offloader

mechanism, a host security server can prepare and transmit the related offloader

mechanism execution request message to the SM, that is in fact a communications

protocol message, by calling the related function provided by the client-side API.

Final output of the executed offloader mechanism is returned by the SM to the

requesting host security server in the related offloader mechanism execution

response message that is also a communications protocol message. The host

security server can receive this message and interpret the result of the executed

offloader mechanism using the related function provided by the client-side API.

Figure 5 illustrates access to offloader mechanisms.

Figure 5 Access to Offloader Mechanisms via the Communications Protocol

 24

The sections below describe various offloader mechanisms designed as part of the

security architecture. Apart from them, the offloader mechanism access controller

server program, which manages and controls accesses to the offloader mechanisms

and connections to the security module by host security servers, is explained. Next,

the communication infrastructure, which ensures authenticity and integrity (and in

some cases confidentiality) of the messages exchanged between the SM and a host

security server and which provides verification of each other’s identities during

connection to the SM, is described.

3.1. Basic Offloader Mechanisms

3.1.1. Symmetric_Encryption_Decryption Basic Offloader Mechanism

A host security server may have plaintext data encrypted on behalf of a host

system/user by requesting the execution of this offloader mechanism from the

security module that realizes the designed security architecture. After that, the host

security server will send the resulting ciphertext data returned by the security

module to the remote system/user with which the host user is communicating. In

addition, a host security server may have ciphertext data (received before from a

remote user) decrypted on behalf of a host user by requesting the execution of this

mechanism from the SM. Then, the host security server will get the plaintext data

returned by the SM and send it to the host user.

In the execution of this mechanism, the input data (plaintext or ciphertext data)

may be encrypted or decrypted using the host user’s symmetric encryption key and

initialization vector (IV) already stored in the security module storage, according

to various encryption/decryption options provided by the input communications

protocol offloader mechanism execution request message. The fields of all

offloader mechanism execution request messages for basic and administrational

offloader mechanisms are given in detail in the tables in Appendix A. Final status

of the executed mechanism along with the resulting encrypted or decrypted data (if

 25

an error has not occurred during execution) are returned via a communications

protocol offloader mechanism execution response message. The fields of all

offloader mechanism execution response messages for basic and administrational

offloader mechanisms are also given in detail in the tables in Appendix A.

As a requisite to include this basic offloader mechanism, the security architecture

designed should provide the well-known DES, TDES, Blowfish, RC5, CAST-128,

RC2, RC4, AES and IDEA symmetric encryption methods for each mode of

operation (only for block encryption methods), namely ECB, CBC, CFB, OFB and

PCBC.

3.1.2. Asymmetric_Encryption_Decryption Basic Offloader Mechanism

A host security server may have plaintext data (usually a secret key or a hash

value) asymmetrically encrypted or signed or both signed and encrypted on behalf

of a host user by requesting the execution of this offloader mechanism from the

security module. Then, the host security server will send the resulting encrypted,

signed, or signed and encrypted data returned by the SM to the remote user with

who the host user is involved in a secure data exchange. Additionally, a host

security server may have encrypted data (received before from a remote user)

asymmetrically decrypted, signed data verified, or signed and encrypted data

asymmetrically decrypted and verified by requesting the execution of this

mechanism from the SM. As a result, the host security server will obtain the

original plaintext data.

In the execution of this mechanism, the input data may be:

1. asymmetrically encrypted using the remote user’s public encryption key

(certificate) stored in the SM, or

2. signed using the host user’s private signing key stored in the SM, or

3. signed and then asymmetrically encrypted using both the private signing

key of the host user and public encryption key (certificate) of the remote

 26

user stored in the module, or

4. asymmetrically decrypted using the host user’s private encryption key

stored in the module, or

5. verified using the remote user’s public signing key (certificate) stored in

the SM, or

6. asymmetrically decrypted and then verified using both the private

encryption key of the host user and public signing key (certificate) of the

remote user stored in the module,

according to various encryption and signing parameters provided by the input

offloader mechanism execution request message. Final status of the executed

mechanism along with the resulting encrypted, signed, signed and encrypted,

decrypted, verified, or decrypted and verified output data (if an error has not

occurred during the execution) are returned via a mechanism execution response

message.

As a requisite to include this offloader mechanism, the security architecture

designed should provide the RSA, ECC and ElGamal public-key methods.

3.1.3. Session_Key_Calculation Basic Offloader Mechanism

A host security server may have a session (symmetric) key computed on behalf of

a host user, who wants to set up a secure data exchange session with a remote user,

by requesting the execution of this offloader mechanism from the security module.

Afterwards, the SM will securely store the computed session key on behalf of the

host user.

In the execution of the mechanism, a symmetric session key is computed using:

o the host user’s private key exchange key stored in the SM,

o the remote user’s public key exchange key (certificate) stored in the SM,

and

o the global key exchange parameters of the host user stored in the SM,

 27

according to the options provided via the input mechanism execution request

message. Then, the computed session key is securely stored in the SM storage as

its integrity and privacy protected, as: its SHA-1 hash code appended and then

triple-DES encrypted with the storage master key and IV of the SM. Final status of

the session key calculation operation is returned via a mechanism execution

response message.

As a requisite to include this offloader mechanism, the security architecture

designed should provide the Diffie-Hellman and ECC public-key key exchange

methods.

3.1.4. Message_Authentication_Code_Operations Basic Offloader Mechanism

A host security server may have plaintext data authenticated (using a MAC) and

optionally encrypted on behalf of a host user by requesting the execution of this

offloader mechanism from the SM. After that, the host security server will send the

authenticated and optionally encrypted data returned by the SM to the remote user

with whom the host user is communicating. In addition, a host security server may

have authenticated and optionally encrypted data (received before from a remote

user) optionally decrypted and then verified on behalf of a host user by requesting

the execution of this mechanism from the SM. Consequently, the host security

server will obtain the original data verified by the SM as coming from the claimed

remote user.

In the execution of the mechanism, the input data may be:

1. authenticated by appending it a MAC computed using the host user’s MAC

secret key already stored in the module, or

2. authenticated as in the previous step and then encrypted using the host

user’s symmetric encryption key and IV already stored in the module, or

3. first encrypted using the host user’s stored symmetric encryption key and

IV, and then authenticated by appending it a MAC computed using the host

 28

user’s stored MAC secret key, or

4. verified by verifying the MAC at the end of it using the host user’s MAC

secret key stored in the module, or

5. first decrypted using the host user’s stored symmetric encryption key and

IV, and then verified by verifying the MAC at the end of the decrypted data

using the host user’s stored MAC secret key, or

6. first verified by verifying the MAC at the end of it using the host user’s

stored MAC secret key, and then decrypted using the host user’s symmetric

encryption key and IV stored in the module,

according to various MAC and symmetric encryption options provided by the

input protocol mechanism execution request message. Final status of the operation

along with the authenticated and optionally encrypted, or optionally decrypted and

verified (original) data are returned via a mechanism execution response message.

The designed security architecture should include renowned HMAC, Fast HMAC,

CMAC and DAA message authentication methods, and MD5, SHA-1, RIPEMD-

160 and Whirlpool hash methods, as a requisite to include this basic offloader

mechanism.

3.1.5. Message_Digest_Operations Basic Offloader Mechanism

A host security server may have plaintext data authenticated or signed (using its

hash code) and optionally encrypted on behalf a host user by requesting the

execution of this offloader mechanism from the SM. After that, the host security

server will send the authenticated or signed and optionally encrypted data returned

by the SM to the remote user with whom the host user is communicating. Also, a

host security server may have authenticated or signed (using hash code) and

optionally encrypted data (received previously from a remote user) optionally

decrypted and verified on behalf of a host user by requesting the execution of this

offloader mechanism from the SM. Consequently, the host security server will

 29

obtain the original data verified by the SM as coming from the claimed remote

user.

In the execution of this mechanism, the input data may be:

1. authenticated by appending its symmetrically encrypted (using the host

user’s symmetric encryption key and IV stored in the SM) message digest,

or

2. authenticated and encrypted by first appending its message digest and then

encrypting the input data and its message digest using the host user’s

symmetric encryption key and IV stored in the SM, or

3. signed by appending its asymmetrically encrypted (using the host user’s

private signing key stored in the module) message digest, or

4. signed as in the previous step and then encrypted using the host user’s

symmetric encryption key and IV stored in the module, or

5. authenticated by appending it a message digest calculated using the input

data and the hash secret value shared by the host user and remote user and

stored in the SM, or

6. authenticated as in the previous step and then encrypted using the host

user’s symmetric encryption key and IV stored in the SM, or

7. verified by first decrypting the encrypted message digest at its end using

the host user’s stored symmetric encryption key and IV and then verifying

the recovered message digest, or

8. decrypted using the host user’s stored symmetric encryption key and IV,

and then verified by verifying the message digest at its end, or

9. verified by first asymmetrically decrypting the signed message digest at its

end using the public signing key (certificate) of the remote user stored in

the SM and then verifying the recovered message digest, or

10. decrypted using the host user’s stored symmetric encryption key and IV,

and then verified as in the previous step, or

11. verified by verifying the message digest at its end using the stored hash

secret value shared by the host user and remote user, or

 30

12. decrypted using the host user’s stored symmetric encryption key and IV,

and then verified as in the previous step,

according to various hash, symmetric encryption and public-key encryption

parameters provided by the input protocol mechanism execution request message.

Final status of the executed mechanism together with the authenticated or signed

and optionally encrypted, or optionally decrypted and verified (original) output

data are returned via a protocol mechanism execution response message.

3.1.6. Digital_Signature_Calculation Basic Offloader Mechanism

A host security server may have plaintext data signed, especially using the DSA or

ECDSA method, on behalf of a host user by requesting the execution of this

offloader mechanism from the security module. Later, the host security server will

send the signed data returned by the SM to the remote user with who the host user

is involved in a digitally signed data exchange. In addition, a host security server

may have signed data (received previously from a remote user) verified on behalf

of a host user by requesting the execution of this mechanism from the SM. Hence,

the host security server will get the original data verified by the SM as having sent

by the claimed remote user.

In the execution of this offloader mechanism, the input data may be:

1. signed using the host user’s private signing key and global signing

parameters stored in the module, or

2. verified by verifying the signature at its end using the public signing key

(certificate) of the remote user and global signing parameters of the host

user stored in the module,

according to the parameters supplied by the input protocol mechanism execution

request message. Final status of the signing/verification operation along with the

signed or verified data is returned via a mechanism execution response message.

 31

The designed security architecture should include the DSA and ECDSA public-

key signing methods as a requisite to include this offloader mechanism.

3.2. Administrational Offloader Mechanisms

To execute an administrational offloader mechanism, it is required that more than

one administrator users have been authenticated by and connected to the security

module. This is a precaution against a possibility that the SSL private key of one

administrator user corresponding to her SSL public-key (identity) certificate,

which is used in connecting to the security module to enable the SM identify the

connecting host user, can be stolen by an attacker.

Before starting to execute an administrational offloader mechanism, the security

module should pass to “maintenance” state from “operational” state by completing

the processing of all current offloader mechanism execution requests and not

accepting any new offloader mechanism execution requests or connection requests

to the module. After the execution of an administrational offloader mechanism is

finished, the SM should return to “operational” state and restart to accept new

mechanism execution and connection requests.

3.2.1. Cryptographic_Keys_Parameters_Generation Administrational

 Offloader Mechanism

An administrator user of the security module may remotely, on a host system or

security server connected to the SM, have cryptographic keys and parameters

generated on behalf of a host user by requesting the execution of this offloader

mechanism from the SM. Consequently, the SM will store the generated keys and

parameters securely in its storage, and later these will be used in performing the

offloader mechanisms to be requested.

 32

In the execution of this mechanism:

1. global public-key parameters may be generated, and then a private and a

public key may be computed from these parameters, or

2. a symmetric encryption key and an initialization vector may be generated,

or

3. a MAC key may be generated,

for a specific host user of the SM and according to the key generation parameters

provided by the input mechanism execution request message. Generated global

public-key parameters and computed private and public keys, or generated

symmetric encryption key and IV, or generated MAC key are/is securely stored in

the SM associated with the identifier of the host user. Final status of the keys and

parameters generation process is returned in a mechanism execution response

message.

The security architecture designed should provide the key (and global parameters)

generation methods for RSA, DH, ECC, ElGamal, DSA, ECDSA, DES, TDES,

AES, RC2, RC5, RC4, IDEA, Blowfish, CAST-128, HMAC, Fast HMAC, CMAC

and DAA cryptography methods, as a requisite to include this offloader

mechanism.

3.2.2. Time_Time_Window_Adjustment Administrational Offloader

 Mechanism

An administrator user of the security module may remotely, using a host system or

security server, adjust time information and/or modify time window value (denotes

a time interval against which certain input data to the SM will be checked for their

timeliness) of the SM by requesting the execution of this mechanism from the SM.

As a result, timestamp values generated by the SM to be included in certain output

data will be more accurate, and verification of the timestamp values found in

certain input data by the SM will be more reliable.

 33

In the execution of the mechanism, the time or time window value internal data of

the SM or both of them may be updated using the corresponding values provided

in the input protocol mechanism execution request message. Final status of the

executed mechanism is returned in a mechanism execution response message.

3.2.3. Cryptographic_Keys_Parameters_Entry_Erasure_Backup

 Administrational Offloader Mechanism

An administrator user of the security module may remotely, on a connected host

system or security server, perform cryptographic keys, parameters, public-key

certificates and CRLs entry to, erasure and backup from the SM by requesting the

execution of this mechanism from the SM. Thus, cryptographic keys and

parameters the SM will need to use in executing the offloader mechanisms to be

requested will be available, or they could be securely transferred to the host system

or security server and backed up in another storage device. Also, cryptographic

keys and parameters that are not needed any more will be discarded from the

valuable module storage space.

In the execution of this mechanism, cryptographic keys, parameters, public-key

certificates (for various host and remote users) and certificate revocation lists may

be securely entered into the SM, erased from the SM, or backed up to the host

system or security server the administrator user is using, according to various

parameters provided via the input mechanism execution request message. Each

secret key and parameter is transferred to the SM or backed up to the host

system/security server as its confidentiality protected: its SHA-1 hash code

appended and then encrypted using triple-DES with the storage master key and IV

of the module, that is, in the format for storing secret keys and parameters in the

SM. Refer to “Cryptographic Keys, Parameters and Public-Key Certificates

Storage” section in this chapter for details. Final status of the executed mechanism

together with the number of keys and parameters successfully processed by the

 34

SM, until an error occurred or all of them were finished without any error, are

returned via an offloader mechanism execution response message.

3.2.4. User_Role_Management Administrational Offloader Mechanism

An administrator user of the security module may remotely perform SM user role

management by requesting the execution of this mechanism from the SM. By this

way, non-administrator user access to the offloader mechanisms that require

administrator user rights to execute will be prevented.

In the execution of this mechanism, the security module’s user-role list entries,

which are simple (user, role) pairs, may be modified, added to or deleted from the

list according to the parameters provided by the input mechanism execution

request message. Final status of the user role management operation along with the

number of (user, role) entries successfully processed, until an error occurred or all

of them were finished without any error, are returned via a mechanism execution

response message. Currently, two roles are defined: “User” and “Administrator”.

As a requisite to include this offloader mechanism, security module user-role list,

which is SM internal data, should be securely stored as part of the designed

security architecture as its integrity protected: its triple-DES encrypted (using the

storage master key and IV of the SM) SHA-1 hash code appended.

3.2.5. Module_Code_Status_Receiving_Loading Administrational Offloader

 Mechanism

An administrator user of the security module may remotely demand digitally

signed code status of the SM or update the firmware of the SM via loading

digitally signed code to the SM by requesting the execution of this offloader

mechanism. Thus, the module’s firmware could be checked for any illegitimate

modification, or a new firmware with patches, that eliminate vulnerabilities or

 35

include extensions to the proposed offloader mechanisms, could be loaded to the

module.

In the execution of this mechanism:

1. stored digitally signed code status, i.e. current firmware code pieces plus

their signatures (possibly RSA-SHA-1), of the module may be returned, or

2. digitally signed code, i.e. new firmware code pieces plus their signatures,

may be verified by the module and loaded to the module,

according to the parameters supplied by the input mechanism execution request

message. Final status of the performed operation, and if the operation type is “Get

Code Status” the digitally signed code status of the module are returned in a

mechanism execution response message. If the operation type is “Load Signed

Code” and new digitally signed firmware is verified by the module successfully,

the module should restart to run this code afterwards. Hence, all current

connections from host security servers to the module will be lost.

The module firmware should be signed in code pieces, because most hash

algorithms that can be used in signing the firmware generally do not accept input

data with size bigger than a limit. Each code piece should be signed by at least two

administrator users successively as a precaution against a probable theft of private

signing key of one administrator user.

3.3. Cryptographic Keys, Parameters, Public-Key Certificates and CRLs

 Storage

Symmetric encryption keys (including session keys), initialization vectors used in

all modes of symmetric encryption except ECB, private and public keys, public-

key certificates, certificate revocation lists, MAC secret keys (like HMAC or DAA

key), hash secret values used for providing message authentication using hash

codes but without encryption [16], and global public-key parameters (like DH or

DSA global parameters) are all stored securely in the storage of the SM, as part of

 36

the designed security architecture. Each of them is stored along with the

information about its nature (e.g. AES-192-skey denotes a 192-bit AES symmetric

key, RSA-1024-priv denotes a 1024-bit RSA private key, etc..), its usage

(encryption, signing, SSL-key exchange, SSL-authentication, etc..) and its owner’s

identifier. Symmetric encryption keys, initialization vectors, MAC secret keys and

hash secret values are also stored along with the identifier of the remote user with

who the owner (host user) of the key or parameter shares the key or parameter.

CRLs are also stored along with their publication date.

To protect the integrity and confidentiality of the symmetric encryption keys,

initialization vectors, private keys, MAC secret keys and hash secret values, each

of them is stored as: its SHA-1 hash code appended and then encrypted using

triple-DES in CBC mode with the storage master key and IV of the module, as

illustrated in figure 6 below. Public keys and global public-key parameters are

stored as their TDES-encrypted (with the storage master key and IV of the

module) SHA-1 hash codes appended, for integrity protection only. Public-key

certificates, CRLs and the storage master key and IV of the security module are

stored in the clear.

Figure 6 Secret Keys and Parameters Storage Format

Overall security architecture, after the inclusion of the basic and administrational

offloader mechanisms, base cryptography methods they require, and cryptographic

 37

keys, parameters, public-key certificates and CRLs they use, becomes as shown in

figure 7:

 38

Figure 7 Overall Security Architecture (Initial)

 39

3.4. SSLv3 Protocol Offloader Mechanisms

SSLv3 offloader mechanisms aim to reduce SSL protocol processing load on a

host security server, usually an SSL server, connected to a security module which

realizes the security architecture designed, by helping the host security server in

preparing the contents of its outgoing and in recovering the contents of its

incoming SSL Record protocol and SSL Handshake protocol messages. SSL

Record protocol is used to exchange encrypted and authenticated SSL payloads

between an SSL server and a client [16]. SSL Handshake protocol is used to setup

an SSL connection between an SSL server and a client [16].

3.4.1. SSL_Record_Preparation SSLv3 Offloader Mechanism

A host security server (an SSL server/client) may have the payload of an SSL

Record protocol message prepared on behalf of a host user/system by requesting

the execution of this offloader mechanism from the security module. Then, the

host security server will add necessary SSL Record header to the SSL Record

payload prepared and returned by the SM, and send the resulting SSL Record

protocol message to the remote user/system who is an SSL client/server.

In the execution of this mechanism, an SSL Record protocol message payload is

prepared from the input application-level data using:

o the SSL MAC secret key of the host user stored in the SM as associated

with the identifier of the specific SSL session between the host user and

remote user,

o the SSL symmetric encryption key and IV of the host user stored in the SM

as associated with the identifier of the specific SSL session between the

host user and remote user,

according to various parameters provided by the input mechanism execution

request message. Final status of the SSL Record protocol payload preparation

 40

operation, and if the operation is successful the prepared payload, are returned via

a mechanism execution response message.

The security architecture designed should provide the SSLv3 MAC method and

ZIP de/compression method, as a requisite to include this offloader mechanism.

3.4.2. SSL_Record_Verification SSLv3 Offloader Mechanism

A host security server (an SSL server/client) may have the payload of an SSL

Record protocol message (received before from a remote user who is an SSL

client/server) optionally decrypted and then verified on behalf of a host user by

requesting the execution of this offloader mechanism from the SM. After that, the

host security server will obtain the original application-level data verified and

returned by the SM, and send it to the host user.

In the execution of the mechanism, the input SSL Record protocol message

payload is optionally decrypted using the SSL symmetric encryption key and IV of

the host user stored in the SM, and then it is verified using the SSL MAC secret

key of the host user stored in the SM, according to various parameters provided by

the mechanism execution request message. Final status of the executed

mechanism, and if the execution is completed successfully the recovered

application-level data are returned via a mechanism execution response message.

3.4.3. Random_Value_Generation SSLv3 Offloader Mechanism

A host security server (an SSL server/client) may have an SSL pseudo-random

value generated on behalf of a host user by requesting the execution of this

offfoader mechanism from the SM. Then, the host security server will include the

generated pseudo-random value in a “client hello” or “server hello” message to be

sent to a remote user, who is an SSL client/server, during an SSL handshake.

 41

In the execution of this offloader mechanism, a 28 byte [16] SSL pseudo-random

value is generated by a cryptographically secure pseudo-random number

generation method specified in the input mechanism execution request message.

Final status of the operation along with the generated pseudo-random value, if the

operation is successful, is returned via a mechanism execution response message.

The security architecture designed should provide DES used in OFB mode, ANSI

X9.17 and Blum Blum Shub pseudo-random number generation methods, as a

requisite to include this offloader mechanism.

3.4.4. Server_Certificate_Retrieval SSLv3 Offloader Mechanism

A host security server (an SSL server) may have SSL public-key certificate of a

host system (usually a web server) retrieved from the SM by requesting the

execution of this offloader mechanism from the SM. After that, the host security

server will include the SSL public-key certificate returned by the SM in a “server

certificate” message to be sent to a remote user, who is an SSL client, during an

SSL handshake.

In the execution of the mechanism, the SSL public-key certificate of the host

system is retrieved from the module storage according to the “SSL key exchange

method” specified in the input mechanism execution request message:

o if the SSL key exchange method is RSA, the SSL RSA public key

exchange key certificate of the host system is retrieved if it exists,

otherwise the SSL RSA public signing key certificate of the host system is

retrieved from the module storage,

o if the SSL key exchange method is fixed Diffie-Hellman, the SSL Diffie-

Hellman public key exchange key certificate of the host system is retrieved

from the module storage,

o if the SSL key exchange method is ephemeral Diffie-Hellman, the SSL

RSA or DSA public signing key certificate of the host system is retrieved

 42

from the module storage, according to the “Signing Method” parameter in

the mechanism execution request message.

Other SSL public-key certificates, stored in the module, are added to the retrieved

SSL public-key certificate of the host system to construct a public-key certificate

chain starting from a root-level certification authority. Final status of the executed

mechanism, and if the execution is completed successfully the constructed SSL

public-key certificate chain for the host system are returned via a protocol

mechanism execution response message.

3.4.5. SSL_Certificate_Verification SSLv3 Offloader Mechanism

A host security server (an SSL client/server) may have an SSL public-key

certificate, which was received in a “server certificate” or “client certificate”

message from a remote user (an SSL server/client) during an SSL handshake,

verified on behalf of a host user by requesting the execution of this offloader

mechanism from the SM. After that, the host security server will gain access to the

SSL public-key certificate of the remote user verified by and stored in the SM.

In the execution of this mechanism, each SSL public-key certificate contained in

the input SSL public-key certificate chain for the remote user is verified and then

stored in the module. Final status of the executed mechanism is returned via a

mechanism execution response message.

3.4.6. Server_Key_Exchange_Preparation SSLv3 Offloader Mechanism

A host security server (an SSL server) may have SSL server key exchange data

prepared on behalf of a host system by requesting the execution of this offloader

mechanism from the SM. Later, the host security server will send the server key

exchange data prepared and returned by the SM in a “server key exchange”

message to a remote user, who is an SSL client, during an SSL handshake.

 43

In the execution of this mechanism, SSL server key exchange data is prepared

according to the “SSL key exchange method” specified in the input mechanism

execution request message:

o if the SSL key exchange method is RSA,

− a temporary RSA public key and private key for SSL key exchange are

generated and stored in the module on behalf of the host system as

associated with the identifier of the specific SSL session between the

host system and remote user,

− then server key exchange data is prepared using the generated

temporary RSA public key and the SSL RSA private signing key of the

host system already stored in the module,

o if the SSL key exchange method is anonymous DH, server key exchange

data is prepared using the SSL Diffie-Hellman public key exchange key

and global key exchange parameters of the host system stored in the

module,

o if the key exchange method is ephemeral DH, server key exchange data is

prepared using the SSL Diffie-Hellman public key exchange key and

global key exchange parameters of the host system and the SSL RSA or

DSA private signing key of the host system stored in the module.

Final status of the executed mechanism along with the prepared server key

exchange data, if the execution is finished successfully, is returned via a protocol

mechanism execution response message.

3.4.7. Server_Key_Exchange_Verification SSLv3 Offloader Mechanism

A host security server (an SSL client) may have SSL server key exchange data,

which was received in a “server key exchange” message from a remote system (an

SSL server) during an SSL handshake, verified on behalf of a host user by

requesting the execution of this offloader mechanism from the SM. After that, the

host security server will gain access to the SSL key exchange parameters of the

remote system verified by and stored in the SM.

 44

In the execution of the mechanism, the input SSL server key exchange data is

verified according to the “SSL key exchange method” specified in the input

mechanism execution request message:

o if the SSL key exchange method is RSA,

− the input server key exchange data is verified using the SSL RSA

public signing key (certificate) of the remote system (SSL server)

already stored in the SM,

− then temporary SSL RSA public key exchange key of the remote

system contained in the verified key exchange data is securely stored

in the SM,

o if the SSL key exchange method is anonymous Diffie-Hellman, SSL DH

public key exchange key and global key exchange parameters of the remote

system, which are contained in the input server key exchange data, are

securely stored in the SM,

o if the SSL key exchange method is ephemeral DH,

− the input server key exchange data is verified using the SSL RSA or

DSA public signing key (certificate) of the remote system,

− then SSL DH public key exchange key and global key exchange

parameters of the remote system contained in the verified key

exchange data are securely stored in the SM.

Final status of the verification operation is returned via a protocol mechanism

execution response message.

3.4.8. Client_Certificate_Retrieval SSLv3 Offloader Mechanism

A host security server (an SSL client) may have SSL public-key certificate of a

host user retrieved from the SM by requesting the execution of this offloader

mechanism from the SM. Afterwards, the host security server will include the SSL

public-key certificate, returned by the SM, in a “client certificate” message to be

sent to a remote system, which is an SSL server, during an SSL handshake.

 45

In the execution of this offloader mechanism, the SSL public-key certificate of the

host user is retrieved from the module storage according to the “SSL key exchange

method” specified by the input mechanism execution request message:

o if SSL key exchange method is RSA or ephemeral DH, the SSL RSA or

DSA public signing key certificate of the host user is retrieved from the

SM storage according to the “Signing Method” parameter of the

mechanism execution request message,

o if SSL key exchange method is fixed Diffie-Hellman, the SSL DH public

key exchange key certificate of the host user is retrieved from the module

storage.

After that, other SSL public-key certificates, stored in the module, are added to the

retrieved SSL public-key certificate of the host user to construct a public-key

certificate chain starting from a root level certification authority. Final status of the

operation together with the constructed SSL public-key certificate chain for the

host user, if the operation is completed successfully, are returned via a mechanism

execution response message.

3.4.9. Client_Key_Exchange_Preparation SSLv3 Offloader Mechanism

A host security server (an SSL client) may have SSL client key exchange data

prepared on behalf of a host user by requesting the execution of this offloader

mechanism from the SM. After that, the host security server will send the client

key exchange data prepared and returned by the SM in a “client key exchange”

message to a remote system, which is an SSL server, during an SSL handshake.

In the execution of the mechanism, SSL client key exchange data is prepared

according to the “SSL key exchange method” specified in the input mechanism

execution request message:

o if the SSL key exchange method is RSA, client key exchange data is

prepared using the SSL pre-master secret of the host user (already

generated by and stored in the module) and the SSL RSA public key

 46

exchange key (certificate) of the remote system stored in the module, or if

such a certificate does not exist, using the SSL RSA temporary public key

exchange key of the remote system stored in the module,

o if the SSL key exchange method is anonymous DH or is ephemeral DH but

client authentication was not required by the remote system (SSL server)

for this SSL handshake (determined by the “Certificate Sent” parameter of

the input mechanism execution request message), client key exchange data

is prepared using the SSL DH public key exchange key and global key

exchange parameters of the host user stored in the module,

o if the SSL key exchange method is ephemeral DH and if the remote system

required client authentication for this SSL handshake, client key exchange

data is prepared using the SSL DH public key exchange key and global key

exchange parameters of the host user and the SSL RSA or DSA private

signing key of the host user stored in the module.

Final status of the client key exchange data preparation operation, along with the

prepared client key exchange data, if the operation is completed successfully, is

returned via a mechanism execution response message.

As part of the designed security architecture, each SSL pre-master secret should be

stored in the SM as both its integrity and confidentiality protected: its SHA-1 hash

code appended and then encrypted using triple-DES with the storage master key

and IV of the SM. Also, each SSL pre-master secret should be stored as associated

with the identifiers of the host and remote users (SSL server and client) who share

the pre-master secret, and with the identifier of the SSL session between them.

3.4.10. Client_Key_Exchange_Verification SSLv3 Offloader Mechanism

A host security server (an SSL server) may have SSL client key exchange data,

which was received in a “client key exchange” message from a remote user (an

SSL client) during an SSL handshake, decrypted/verified on behalf of a host

system by requesting the execution of this offloader mechanism from the SM.

 47

Afterwards, the host security server will gain access to the SSL key exchange

parameters of the remote user recovered/verified and stored by the SM.

In the execution of the mechanism, the input SSL client key exchange data is

verified according to the “SSL key exchange method” specified in the input

mechanism execution request message:

o if the SSL key exchange method is RSA,

− the input client key exchange data is decrypted using the SSL RSA

private key exchange key of the host system stored in the module, or if

such a key does not exist using the SSL RSA private temporary key

exchange key of the host system stored in the module, to recover the

SSL pre-master secret,

− The recovered SSL pre-master secret is securely stored in the module

as associated with the identifier of the specific SSL session between

the host system and remote user,

o if the SSL key exchange method is anonymous DH or is ephemeral DH but

client authentication was not required by the host system (SSL server) for

this SSL handshake (determined by the “Certificate Received” field of the

mechanism execution request message), SSL DH public key exchange key

and global key exchange parameters of the remote user, contained in the

input client key exchange data, are securely stored in the module,

o if the SSL key exchange method is ephemeral DH and the host system

required client authentication for this SSL handshake,

− the input client key exchange data is verified using the SSL RSA or

DSA public signing key (certificate) of the remote user stored in the

module,

− then SSL DH public key exchange key and global key exchange

parameters of the remote user, contained in the verified key exchange

data, are securely stored in the module.

Final status of the key exchange data verification operation is returned via a

protocol mechanism execution response message.

 48

3.4.11. Certificate_Verify_Preparation SSLv3 Offloader Mechanism

A host security server (an SSL client) may have the contents of a “certificate

verify” SSL message prepared on behalf of a host user by requesting the execution

of this mechanism from the SM. After that, the host security server will send the

“certificate verify” message to a remote system, which is an SSL server, during an

SSL handshake.

In the execution of the mechanism, “certificate verify” SSL message contents is

prepared using the SSL master secret of the host user already computed by and

stored in the SM, the SSL RSA or DSA private signing key of the host user stored

in the SM, and using various parameters provided by the input protocol

mechanism execution request message. Final status of the executed mechanism

along with the prepared “certificate verify” message contents, if the execution is

successfully finished, are returned via a mechanism execution response message.

As part of the security architecture designed, each SSL master secret should be

stored in the SM as both its integrity and confidentiality protected: its SHA-1 hash

code appended and then encrypted using triple-DES with the SMK and IV of the

module. Also, each SSL master secret should be stored as associated with the

identifiers of the host and remote users (SSL server and client) who share the

master secret, and with the identifier of the SSL session between them.

3.4.12. Certificate_Verify_Verification SSLv3 Offloader Mechanism

A host security server (an SSL server) may have the contents of a “certificate

verify” SSL message, which was received from a remote user (an SSL client)

during an SSL handshake, verified on behalf of a host system by requesting the

execution of this offloader mechanism from the security module.

 49

In the execution of this mechanism, the input “certificate verify” message contents

is verified using the SSL RSA or DSA public signing key (certificate) of the

remote user stored in the SM, the SSL master secret of the host system previously

computed by and stored in the SM, and using various parameters provided by the

input mechanism execution request message. Final status of the verification

operation is returned via a protocol mechanism execution response message.

3.4.13. Finished_Preparation SSLv3 Offloader Mechanism

A host security server (an SSL client/server) may have the contents of an SSL

“finished” message prepared on behalf of a host user by requesting the execution

of this mechanism from the security module. Then, the host security server will

send the “finished” message to a remote user (an SSL server/client) during an SSL

handshake.

In the execution of this mechanism, “finished” SSL message contents is prepared

using the SSL master secret of the host user already computed by and stored in the

SM, and using the parameters provided by the input protocol mechanism execution

request message. Final status of the executed mechanism, along with the prepared

“finished” SSL message contents, if the execution is finished successfully, are

returned via a mechanism execution response message.

3.4.14. Finished_Verification SSLv3 Offloader Mechanism

A host security server (an SSL client/server) may have the contents of an SSL

“finished” message, which was received from a remote user (an SSL server/client)

during an SSL handshake, verified on behalf of a host user by requesting the

execution of this mechanism from the SM. If the verification is successful, the host

security server, hence the host user, will make sure that the ongoing SSL

handshake will be completed successfully.

 50

In the execution of this mechanism, the input “finished” SSL message contents is

verified using the SSL master secret of the host user already computed by and

stored in the SM, and the parameters provided by the input protocol mechanism

execution request message. Final status of the verification operation is returned via

a mechanism execution response message.

3.4.15. Pre-master_Secret_Computation SSLv3 Offloader Mechanism

A host security server (an SSL client/server) may have an SSL pre-master secret

computed on behalf of a host user during an SSL handshake by requesting the

execution of this mechanism from the security module. Later, the host security

server will access to the pre-master secret computed by and securely stored in the

SM to compute the SSL master secret and session keys.

In the execution of this mechanism, SSL pre-master secret is computed according

to the “SSL key exchange method” specified in the input protocol mechanism

execution request message:

o if the SSL key exchange method is RSA, a pseudo-random 48-byte [16]

SSL pre-master secret is generated using the cryptographically secure

pseudo-random number generation method specified in the mechanism

execution request message,

o if the SSL key exchange method is anonymous DH, fixed DH or ephemeral

DH, the SSL pre-master secret is computed using the SSL DH private key

exchange key and global key exchange parameters of the host user stored

in the SM and the stored SSL DH public key exchange key (certificate) of

the remote user (an SSL server/client) with who the host user is performing

the SSL handshake.

After that, the computed/generated SSL pre-master secret is securely stored in the

SM as associated with the identifier of the specific SSL session being established

between the host and remote users. Final status of the SSL pre-master secret

computation operation is returned via a mechanism execution response message.

 51

3.4.16. Master_Secret_And_Keys_Computation SSLv3 Offloader Mechanism

A host security server (an SSL client/server) may have an SSL master secret, SSL

symmetric encryption keys and initialization vectors and SSL MAC secret keys for

an SSL session computed on behalf of a host user by requesting the execution of

this mechanism from the SM. After that, the host security server will gain access

to the SSL session encryption and MAC keys computed by and securely stored in

the SM to prepare/verify SSL Record protocol messages.

In the execution of this mechanism:

o first of all, a 48-byte [16] SSL master secret is computed using the SSL

pre-master secret of the host user already computed by and stored in the

SM, and securely stored in the SM on behalf of the host user,

o then, two SSL MAC secret keys for each of the host user and remote user

(an SSL server/client with who the host user is performing the SSL

handshake), two SSL symmetric encryption keys and IVs for each of the

host user and remote user are computed using the SSL master secret

computed in the previous step; and then they are securely stored in the SM,

making use of various parameters provided by the input mechanism execution

request message. Final status of the SSL master secret and session keys

computation operation is returned via a mechanism execution response message.

3.5. SET Protocol Offloader Mechanisms

SET offloader mechanisms aim to lessen the SET protocol processing load on a

host security server connected to a security module which realizes the designed

security architecture, by helping in the preparation/verification of the contents of

various outgoing/incoming SET protocol messages for certain SET transactions.

The SET transactions considered in designing these offloader mechanisms are:

“Purchase Request”, “Payment Authorization” and “Payment Capture”.

 52

3.5.1. Nonce_Generation SET Offloader Mechanism

A host security server may have a SET nonce value generated on behalf of a host

user, who is a customer in a SET “Purchase Request” transaction, by requesting

the execution of this mechanism from the security module. After that, the host

security server will include the nonce value generated by the SM in an “Initiate

Request” SET message to be sent to a remote system which is the merchant in this

SET transaction.

In the execution of this mechanism, a 20-byte [23] SET pseudo-random nonce

value is generated using the cryptographically secure pseudo-random number

generation method specified in the input communications protocol mechanism

execution request message. Final status of the operation along with the generated

nonce value, if the operation is successful, is returned via a protocol mechanism

execution response message.

3.5.2. Initiate_Response_Preparation SET Offloader Mechanism

A host security server may have the contents of an “Initiate Response” SET

message prepared on behalf of a host system, which is a merchant in a SET

“Purchase Request” transaction, by requesting the execution of this mechanism

from the security module. After that, the host security server will send the “Initiate

Response” message to a remote user who is the customer in this SET transaction.

In the execution of this mechanism, the contents of a “Initiate Response” SET

message is prepared using:

o the SET private signing key of the host system stored in the module,

o the SET public signing key certificate of the host system stored in the

module, and a number of other stored SET public-key certificates needed

to construct a public signing key certificate chain for the host system

starting from a root-level certification authority,

 53

o the SET public key exchange key certificate of the payment gateway (in

this SET transaction) stored in the module, and a number of other stored

SET public-key certificates needed to construct a public key exchange key

certificate chain for the payment gateway starting from a root-level CA,

according to the parameters provided via the input protocol mechanism execution

request message. Final status of the executed mechanism together with the

prepared “Initiate Response” SET message contents, if the execution is completed

successfully, are returned via a protocol mechanism execution response message.

3.5.3. Initiate_Response_Verification SET Offloader Mechanism

A host security server may have the contents of an “Initiate Response” SET

message, that was received from a remote system which is a merchant in a SET

“Purchase Request” transaction, verified on behalf of a host user (the customer in

this SET transaction) by requesting the execution of this mechanism from the SM.

After that, the host security server, hence the host user, will get the transaction ID

verified by the SM, and will gain access to the SET public key exchange key

certificate of the payment gateway (in this SET transaction) verified by and stored

in the SM.

In the execution of the mechanism:

o each SET public-key certificate in the SET public signing key certificate

chain for the remote system, which is contained in the input “Initiate

Response” SET message contents, is stored in the module after it is

verified,

o each SET public-key certificate in the SET public key exchange key

certificate chain for the payment gateway, which is contained in the input

“Initiate Response” SET message contents, is stored in the module after it

is verified,

o the input “Initiate Response” SET message contents is verified using the

SET public signing key (certificate) of the remote system verified and

 54

stored in the module in the first step,

using the parameters provided by the input mechanism execution request message.

Final status of the executed mechanism, and if the execution is finished

successfully the verified response block contained in the input “Initiate Response”

SET message contents, are returned via a protocol mechanism execution response

message.

3.5.4. Purchase_Request_Preparation SET Offloader Mechanism

A host security server may have the contents of a “Purchase Request” SET

message prepared on behalf of a host user, who is a customer in a SET “Purchase

Request” transaction, by requesting the execution of this mechanism from the

security module. Afterwards, the host security server will send the “Purchase

Request” message to a remote system that is the merchant in this SET transaction.

In the execution of the mechanism, the contents of a “Purchase Request” SET

message is prepared using:

o the SET private signing key of the host user stored in the module,

o the SET public key exchange key (certificate) of the payment gateway (in

this SET transaction) stored in the module,

o the SET public signing key certificate of the host user stored in the module,

and a number of other stored SET public-key certificates needed to

construct a public signing key certificate chain for the host user starting

from a root-level CA,

and using the parameters supplied by the input mechanism execution request

message. Final status of the executed mechanism along with the prepared

“Purchase Request” SET message contents, if the execution is completed

successfully, are returned via a mechanism execution response message.

 55

3.5.5. Purchase_Request_Verification SET Offloader Mechanism

A host security server may have the contents of a “Purchase Request” SET

message, that was received from a remote user who is a customer in a SET

“Purchase Request” transaction, verified on behalf of a host system (the merchant

in this SET transaction) by requesting the execution of this offloader mechanism

from the SM. After that, the host security server, hence the host system, will get

the order information of the remote user verified and returned by the SM.

In the execution of the mechanism:

o each SET public-key certificate, contained in the input SET public signing

key certificate chain for the remote user, is stored in the module after it is

verified,

o the input “Purchase Request” SET message contents (only the order-related

information) is verified using the SET public signing key (certificate) of

the remote user verified and stored in the module in the previous step,

using the parameters provided by the input mechanism execution request message.

Final status of the “Purchase Request” SET message contents verification

operation, and if the operation is successfully finished the order information

verified as coming from the remote user, are returned in a protocol mechanism

execution response message.

3.5.6. Purchase_Response_Preparation SET Offloader Mechanism

A host security server may have the contents of a “Purchase Response” SET

message prepared on behalf of a host system, which is a merchant in a SET

“Purchase Request” transaction, by requesting the execution of this offloader

mechanism from the SM. After that, the host security server will send the

“Purchase Response” message to a remote user who is the customer in this SET

transaction.

 56

In the execution of this offloader mechanism, the contents of a “Purchase

Response” SET message is prepared using:

o the SET private signing key of the host system stored in the SM,

o the SET public signing key certificate of the host system stored in the SM,

and a number of other stored SET public-key certificates needed to

construct a public signing key certificate chain for the host system starting

from a root-level CA,

and using the parameters provided via the input mechanism execution request

message. Final status of the executed mechanism, and if the execution is

successfully finished the prepared “Purchase Response” SET message contents,

are returned via a mechanism execution response message.

3.5.7. Purchase_Response_Verification SET Offloader Mechanism

A host security server may have the contents of a “Purchase Response” SET

message, that was received from a remote system which is merchant in a SET

“Purchase Request” transaction, verified on behalf of a host user (the customer in

this SET transaction) by requesting the execution of this mechanism from the SM.

Thus, the host security server, and the host user, will get the response block,

concerning her purchase request that was verified and returned by the SM.

In the execution of this offloader mechanism:

o each SET public-key certificate in the SET public signing key certificate

chain for the remote system, which is contained in the input “Purchase

Response” SET message contents, is stored in the SM after it is verified,

o the input “Purchase Response” SET message contents is verified using the

SET public signing key (certificate) of the remote system which was

verified and stored in the module in the previous step,

using the parameters provided by the input mechanism execution request message.

Final status of the verification operation, and if the operation is completed

 57

successfully the response block verified as coming from the remote system, are

returned via a protocol mechanism execution response message.

3.5.8. Authorization_Request_Preparation SET Offloader Mechanism

A host security server may have the contents of an “Authorization Request” SET

message prepared on behalf of a host system, which is a merchant in a SET

“Payment Authorization” transaction, by requesting the execution of this offloader

mechanism from the SM. Later, the host security server will send the

“Authorization Request” message to a remote system that is the payment gateway

in this SET transaction.

In the execution of this mechanism, the contents of an “Authorization Request”

SET message is prepared using:

o the SET private signing key of the host system stored in the SM,

o the SET public key exchange key (certificate) of the remote system stored

in the SM,

o the SET public signing key certificate of the customer (in this SET

transaction) stored in the SM, and other stored SET public-key certificates

needed to construct a public signing key certificate chain for the customer

starting from a root-level CA,

o the SET public signing key certificate of the host system stored in the SM,

and other stored SET public-key certificates needed to construct a public

signing key certificate chain for the host system starting from a root-level

CA,

o the SET public key exchange key certificate of the host system stored in

the SM, and other stored SET public-key certificates needed to construct a

public key exchange key certificate chain for the host system starting from

a root-level CA,

and making use of the parameters provided by the input mechanism execution

request message. Final status of the executed mechanism, and the prepared

 58

“Authorization Request” SET message contents, if the execution is finished

successfully, are returned via a protocol mechanism execution response message.

3.5.9. Authorization_Request_Verification SET Offloader Mechanism

A host security server may have the contents of an “Authorization Request” SET

message, that was received from a remote system which is a merchant in a SET

“Payment Authorization” transaction, verified on behalf of a host system (the

payment gateway in this transaction) by requesting the execution of this offloader

mechanism from the SM. Afterwards, the host security server, hence the host

system, will get the payment information made by the customer of this transaction

and the authorization block concerning her purchase, both of which are verified

and returned by the SM.

In the execution of this mechanism:

o each SET public-key certificate in the SET public signing key certificate

chain for the customer, which is contained in the input “Authorization

Request” SET message contents, is stored in the module after it is verified,

o each SET public-key certificate in the SET public signing key certificate

chain for the remote system, which is contained in the input “Authorization

Request” SET message contents, is stored in the module after it is verified,

o each SET public-key certificate in the SET public key exchange key

certificate chain for the remote system, which is contained in the input

“Authorization Request” SET message contents, is stored in the module

after it is verified,

o the input “Authorization Request” SET message contents is verified using:

− the SET private key exchange key of the host system stored in the SM,

− the SET public signing key (certificate) of the customer verified and

stored in the first step,

− the SET public signing key (certificate) of the remote system verified

and stored in the second step,

 59

making use of the parameters provided by the input mechanism execution request

message. Final status of the verification operation along with the verified payment

information and authorization block, if the operation is successfully completed, is

returned via a protocol mechanism execution response message.

3.5.10. Authorization_Response_Preparation SET Offloader Mechanism

A host security server may have the contents of an “Authorization Response” SET

message prepared on behalf of a host system, which is a payment gateway in a

SET “Payment Authorization” transaction, by requesting the execution of this

mechanism from the security module. Later, the host security server will send the

“Authorization Response” message to a remote system that is the merchant in this

SET transaction.

In the execution of the mechanism, the contents of an “Authorization Response”

SET message is prepared using:

o the SET private signing key of the host system stored in the module,

o the SET public key exchange key (certificate) of the remote system stored

in the module,

o the SET public signing key certificate of the host system stored in the

module, and other stored SET public-key certificates needed to construct a

public signing key certificate chain for the host system starting from a root-

level CA,

and making use of the parameters provided by the input mechanism execution

request message. Final status of the executed mechanism, and if the execution is

completed successfully the prepared “Authorization Response” SET message

contents, are returned via a protocol mechanism execution response message.

 60

3.5.11. Authorization_Response_Verification SET Offloader Mechanism

A host security server may have the contents of an “Authorization Response” SET

message, that was received from a remote system which is a payment gateway in a

SET “Payment Authorization” transaction, verified on behalf of a host system (the

merchant in this transaction) by requesting the execution of this mechanism from

the security module. After that, the host security server, hence the host system, will

obtain the authorization block and the capture token concerning the purchase made

in this transaction, both of which are verified and returned by the SM.

In the execution of this mechanism:

o each SET public-key certificate in the SET public signing key certificate

chain for the remote system, which is contained in the input “Authorization

Response” SET message contents, is stored in the SM after it is verified,

o the input “Authorization Response” SET message contents is verified using

the SET private key exchange key of the host system stored in the SM and

the SET public signing key (certificate) of the remote system verified and

stored in the previous step,

making use of the parameters supplied by the input mechanism execution request

message. Final status of the verification operation, and if the operation is

successfully completed the authorization block and capture token, verified as

coming from the remote system, are returned via a mechanism execution response

message.

3.5.12. Capture_Request_Preparation SET Offloader Mechanism

A host security server may have the contents of a “Capture Request” SET message

prepared on behalf of a host system, which is a merchant in a SET “Payment

Capture” transaction, by requesting the execution of this offloader mechanism

from the SM. After that, the host security server will send the “Capture Request”

 61

message to a remote system, which is the payment gateway in this transaction, to

request its payment concerning the purchase made in this transaction.

In the execution of this offloader mechanism, the contents of a “Capture Request”

SET message is prepared using:

o the SET private signing key of the host system stored in the SM,

o the SET public key exchange key (certificate) of the remote system stored

in the SM,

o the SET public signing key certificate of the host system stored in the SM,

and other stored SET public-key certificates needed to construct a public

signing key certificate chain for the host system starting from a root-level

CA,

o the SET public key exchange key certificate of the host system stored in

the SM, and other SET public-key certificates needed to construct a public

key exchange key certificate chain for the host system starting from a root-

level certification authority,

and using various parameters provided via the input mechanism execution request

message. Final status of the executed mechanism, and if the execution is

completed successfully the prepared “Capture Request” SET message contents, are

returned via a protocol mechanism execution response message.

3.5.13. Capture_Request_Verification SET Offloader Mechanism

A host security server may have the contents of a “Capture Request” SET

message, that was received from a remote system which is a merchant in a SET

“Payment Capture” transaction, verified on behalf of a host system (the payment

gateway in this SET transaction) by requesting the execution of this offloader

mechanism from the SM. After that, the host security server will get the capture

request block and the capture token, which was previously prepared by the host

system and returned as is by the remote system, verified and returned by the SM.

 62

In the execution of this mechanism,

o each SET public-key certificate in the SET public signing key certificate

chain for the remote system, which is contained in the input “Capture

Request” SET message contents, is stored in the SM after it is verified,

o each SET public-key certificate in the SET public key exchange key

certificate chain for the remote system, which is contained in the input

“Capture Request” SET message contents, is stored in the SM after it is

verified,

o the input “Capture Request” SET message contents is verified using

− the SET private key exchange key of the host system stored in the

module,

− the SET public signing key (certificate) of the remote system verified

and stored in the first step,

using the parameters provided by the input mechanism execution request message.

Final status of the verification operation, and if the operation is successfully

completed the verified capture request block and capture token are returned via a

mechanism execution response message.

3.5.14. Capture_Response_Preparation SET Offloader Mechanism

A host security server may have the contents of a “Capture Response” SET

message prepared on behalf of a host system, which is a payment gateway in a

SET “Payment Capture” transaction, by requesting the execution of this offloader

mechanism from the SM. Later, the host security server will send the “Capture

Response” message to a remote system that is the merchant in this transaction.

In the execution of this mechanism, the contents of a “Capture Response” SET

message is prepared using:

o the SET private signing key of the host system stored in the module,

o the SET public key exchange key (certificate) of the remote system stored

in the module,

 63

o the SET public signing key certificate of the host system stored in the

module, and other stored SET public-key certificates needed to construct a

public signing key certificate chain for the host system starting from a root-

level CA,

and using the parameters supplied by the input mechanism execution request

message. Final status of the executed mechanism along with the prepared “Capture

Response” SET message contents, if the execution is finished successfully, are

returned via a mechanism execution response message.

3.5.15. Capture_Response_Verification SET Offloader Mechanism

A host security server may have the contents of a “Capture Response” SET

message, that was received from a remote system which is a payment gateway in a

SET “Payment Capture” transaction, verified on behalf of a host system (the

merchant in this SET transaction) by requesting the execution of this offloader

mechanism from the SM. Afterwards, the host security server, hence the host

system, will get and store the capture response block verified and returned by the

SM.

In the execution of this offloader mechanism:

o each SET public-key certificate in the SET public signing key certificate

chain for the remote system, which is contained in the input “Capture

Response” SET message contents, is stored in the module after it is

verified,

o the input “Capture Response” SET message contents is verified using the

SET private key exchange key of the host system stored in the module, and

the SET public signing key (certificate) of the remote system which was

verified and stored in the module in the previous step,

making use of the parameters supplied by the input protocol mechanism execution

request message. Final status of the verification operation, and if the operation is

successfully completed the verified capture response block and its signature,

 64

contained in the verified “Capture Response” SET message contents, are returned

via a protocol mechanism execution response message.

3.6. Kerberos Protocol Version 5 Offloader Mechanisms

The offloader mechanisms described in this section implements certain Kerberos

network authentication protocol operations, each of which is performed by one of

the four parties defined by the protocol: client, authentication server (AS), ticket-

granting server (TGS), and server [16].

3.6.1. Nonce_Generation Kerberos Offloader Mechanism

A host security server may have a Kerberos nonce value securely generated on

behalf of a host user, who is a client in a Kerberos “Authentication Service”

exchange or “Ticket-granting Service” exchange, by requesting the execution of

this mechanism from the SM. After that, the host security server will send the

nonce value returned by the SM to a remote system, which is the AS/TGS in this

Kerberos exchange, to request a ticket-granting ticket/service-granting ticket.

In the execution of this mechanism, a pseudo-random Kerberos nonce value is

generated using the cryptographically secure pseudo-random number generation

method specified in the input protocol mechanism execution request message.

Generated nonce value is returned along with the final status of the operation via a

mechanism execution response message.

3.6.2. TGT_Preparation Kerberos Offloader Mechanism

A host security server, which is an authentication server in a Kerberos

“Authentication Service” exchange, may have a ticket-granting ticket (TGT) and

the associated encrypted response data prepared by requesting the execution of this

offloader mechanism from the SM. After that, the host security server will send the

 65

TGT and encrypted response data returned by the SM to a remote user who is the

client in this Kerberos exchange.

In the execution of this mechanism,

o a Kerberos ticket-granting ticket is prepared using the Kerberos symmetric

encryption key of the host security server, which is stored in the module

and shared with the TGS requested to be accessed by the remote user, and

o the associated encrypted response data is prepared using the remote user's

Kerberos client password contained in the Kerberos client passwords file

stored in the module as associated with the identifier of the host security

server,

and using various parameters provided by the input protocol mechanism execution

request message. Final status of the executed mechanism, and if the execution is

successfully completed the prepared TGT and encrypted response data, are

returned via a protocol mechanism execution response message.

The security architecture designed should provide the Kerberos client password-to-

key transformation method, as a requisite to include this offloader mechanism. The

security architecture designed should provide secure storage for Kerberos client

passwords files belonging to Kerberos authentication servers, i.e. each such file

should be stored in the SM as both its integrity and confidentiality protected: its

SHA-1 hash code appended and then encrypted using triple-DES with the storage

master key and IV of the SM.

3.6.3. TGT_Response_Verification Kerberos Offloader Mechanism

A host security server may have encrypted TGT response data, which was received

from a remote system which is an AS in a Kerberos “Authentication Service”

exchange, decrypted and verified on behalf of a host user, who is the client in this

Kerberos exchange, by requesting the execution of this offloader mechanism from

the SM. After a successful verification, the host security server hence the host user

 66

will gain access to a Kerberos session key, stored by the SM that will be used in a

subsequent “Ticket-granting Service” exchange with a TGS.

In the execution of this mechanism, the input encrypted TGT response data is

decrypted and verified using the host user’s Kerberos client password stored in the

module and the parameters supplied by the input protocol mechanism execution

request message. If the operation is successfully completed, the Kerberos session

(symmetric) key, which is contained in the verified TGT response data and will be

shared by the host user and the TGS requested to be accessed by the host user, is

securely stored in the module on behalf of the host user. Final status of the

executed mechanism is returned via a protocol mechanism execution response

message.

As part of the designed security architecture, each single Kerberos client password

is stored securely as both its integrity and confidentiality protected: its SHA-1 hash

code appended and then encrypted using triple-DES with the storage master key

and IV of the security module.

3.6.4. SGT_Authenticator_Preparation Kerberos Offloader Mechanism

A host security server may have a Kerberos authenticator value prepared on behalf

of a host user, who is a client in a Kerberos “Ticket-granting Service” exchange,

by requesting the execution of this mechanism from the SM. After that, the host

security server will send the authenticator returned by the SM to a remote system,

which is the TGS in this Kerberos exchange, to request a service-granting ticket.

In the execution of this mechanism, an authenticator block for requesting a SGT is

prepared using the Kerberos session key, already stored in the module and shared

by the host user and remote system, and the parameters provided by the input

mechanism execution request message. Final status of the executed mechanism

 67

along with the prepared authenticator block, if the execution is finished

successfully, are returned via a protocol mechanism execution response message.

3.6.5. TGT_Verification Kerberos Offloader Mechanism

A host security server, which is a ticket-granting server in a Kerberos “Ticket-

granting Service” exchange, may have a ticket-granting ticket and the associated

authenticator block, that were received from a remote user who is the client in this

Kerberos exchange, verified by requesting the execution of this mechanism from

the security module. After a successful verification, the host security server will

gain access to a Kerberos session key, stored by the SM that will be used for the

subsequent message to be sent to the remote user in this exchange.

In the execution of this mechanism,

o the input TGT is decrypted and verified using the Kerberos symmetric

encryption key of the host security server, stored in the module and shared

with the AS in this Kerberos exchange,

o the Kerberos session (symmetric) key, which is contained in the verified

TGT and will be shared by the host security server and remote user, is

securely stored in the module on behalf of the host security server,

o the input authenticator block is decrypted and verified using the Kerberos

session key obtained in the previous step,

making use of the parameters provided by the mechanism execution request

message. Final status of the TGT verification operation is returned via a protocol

mechanism execution response message.

3.6.6. SGT_Preparation Kerberos Offloader Mechanism

A host security server, which is a ticket-granting server in a Kerberos “Ticket-

granting Service” exchange, may have a service-granting ticket and the associated

encrypted response data prepared by requesting the execution of this offloader

 68

mechanism from the SM. After that, the host security server will send the SGT and

encrypted response data returned by the SM to a remote user who is the client in

this Kerberos exchange.

In the execution of this offloader mechanism,

o a Kerberos SGT is prepared using the Kerberos symmetric encryption key

of the host security server, stored in the module and shared with the server

which is requested to be accessed by the remote user,

o the associated encrypted response data is prepared using the Kerberos

session key, already stored in the SM and shared by the host security server

and remote user,

making use of various parameters provided by the input protocol mechanism

execution request message. Final status of the SGT preparation operation, and if

the operation is completed successfully the prepared SGT and encrypted response

data are returned in a protocol mechanism execution response message.

3.6.7. SGT_Response_Verification Kerberos Offloader Mechanism

A host security server may have encrypted SGT response data, that was received

from a remote system which is a TGS in a Kerberos “Ticket-granting Service”

exchange, decrypted and verified on behalf of a host user, who is the client in this

Kerberos exchange, by requesting the execution of this mechanism from the SM.

Afterwards, the host security server, hence the host user, will gain access to a

Kerberos session key, stored by the SM, that will be used in a subsequent Kerberos

“Client/server Authentication” exchange.

In the execution of the mechanism, the input encrypted SGT response data is

decrypted and verified using the Kerberos session key, stored in the module and

shared by the host user and remote system, and using the parameters provided by

the input protocol mechanism execution request message. If the verification is

successful, the Kerberos session (symmetric) key, which is contained in the

 69

verified SGT response data and will be shared by the host user and the server

requested to be accessed by the host user, is securely stored in the SM on behalf of

the host user. Final status of the executed mechanism is returned via a protocol

mechanism execution response message.

3.6.8. Service_Authenticator_Preparation Kerberos Offloader Mechanism

A host security server may have a Kerberos authenticator value prepared on behalf

of a host user, who is a client in a Kerberos “Client/server Authentication”

exchange, by requesting the execution of this offloader mechanism from the SM.

After that, the host security server will send the authenticator value prepared and

returned by the SM to a remote system, which is the server in this Kerberos

exchange, to request service from the remote system.

In the execution of this mechanism, an authenticator block for requesting service is

prepared using the Kerberos session key, already stored in the module and shared

by the host user and remote system, according to the parameters provided by the

input mechanism execution request message. Final status of the authenticator

preparation operation along with the prepared authenticator block, if the operation

is finished successfully, are returned via a protocol mechanism execution response

message.

3.6.9. SGT_Verification Kerberos Offloader Mechanism

A host security server may have a service-granting ticket and the associated

authenticator block, that were received from a remote user who is a client in a

Kerberos “Client/server Authentication” exchange, verified on behalf of a host

system (the server in this Kerberos exchange) by requesting the execution of this

offloader mechanism from the security module. After a successful verification, the

host security server hence the host system will gain access to a Kerberos session

key, stored by the SM that will be used for the subsequent message to be sent to

 70

the remote user in this Kerberos exchange. Also, the host security server hence the

host system will gain access to a Kerberos subkey, stored by the SM, that will be

used in later communication between the host system and remote user after

Kerberos exchanges finish.

In the execution of this mechanism,

o the input service-granting ticket is decrypted and verified using the

Kerberos symmetric encryption key of the host system stored in the module

and shared with the TGS in this Kerberos exchange,

o the Kerberos session (symmetric) key, which is contained in the verified

SGT and will be shared by the host system and remote user, is securely

stored in the module on behalf of the host system,

o the input authenticator block is decrypted and verified using the Kerberos

session key obtained in the previous step, and

o the Kerberos subkey (symmetric), which is contained in the verified

authenticator block and will be shared by the host system and remote user,

is securely stored in the module on behalf of the host system,

using the parameters supplied by the input protocol mechanism execution request

message. Final status of the operation together with the sequence number obtained

from the verified authenticator block, if the operation is completed successfully,

are returned in a mechanism execution response message.

3.6.10. Service_Response_Preparation Kerberos Offloader Mechanism

A host security server may have encrypted service response data prepared on

behalf of a host system, which is a server in a Kerberos “Client/server

Authentication” exchange, by requesting the execution of this mechanism from the

SM. After that, the host security server will send the service response data

prepared and returned by the SM to a remote user who is the client in this

Kerberos exchange.

 71

In the execution of this mechanism, encrypted service response data is prepared

using the Kerberos session key, stored in the SM and shared by the host system

and remote user, and the parameters provided by the input protocol mechanism

execution request message. Final status of the operation and the prepared service

response data, if the operation is successfully finished, are returned in a protocol

mechanism execution response message.

3.6.11. Service_Response_Verification Kerberos Offloader Mechanism

A host security server may have encrypted service response data, that was received

from a remote system which is a server in a Kerberos “Client/server

Authentication” exchange, verified on behalf of a host user, who is the client in

this Kerberos exchange, by requesting the execution of this mechanism from the

SM. After that, the host security server, hence the host user, will gain access to a

Kerberos subkey, stored by the SM that will be used in later communication

between the host user and remote system after Kerberos exchanges finish.

In the execution of the mechanism, the input encrypted service response data is

decrypted and verified using the Kerberos session key, already stored in the SM

and shared by the host user and remote system, and using the parameters provided

by the input mechanism execution request message. If the verification is

successful, the Kerberos subkey (symmetric), which is contained in the verified

service response data and will be shared by the host user and remote system, is

securely stored in the module on behalf of the host user. Final status of the

executed mechanism together with the sequence number contained in the verified

service response data are returned in a mechanism execution response message.

3.7. X.509 Certification Operations Offloader Mechanisms

The offloader mechanisms described in this section aim to lessen X.509

certification operations processing burden on a host security server, usually a

 72

certification authority, connected to a security module which realizes the designed

security architecture. The certification operations offloaded by the security module

from the host security servers include X.509 certificate sign request (CSR)

creation, X.509 CSR verification, X.509 v3 public-key certificate creation, X.509

certificate revocation list creation, and X.509 v3 public-key certificate and X.509

CRL verification.

3.7.1. Certificate_Sign_Request_Preparation X.509 Offloader Mechanism

A host security server may have an X.509 certificate sign request prepared on

behalf of a host user, who is an X.509 public-key certificate requester, by

requesting the execution of this offloader mechanism from the SM. After that, the

host security server will send the CSR prepared and returned by the SM to a

remote system that is the certification authority.

In the execution of the mechanism, an X.509 CSR block is constructed using the

public key of the host user already stored in the module (and maybe her stored

global public-key parameters if her public key is a DSA, DH public key etc..), and

the corresponding private key of the host user stored in the module, according to

various parameters provided via the input protocol mechanism execution request

message. Final status of the CSR preparation operation and the prepared X.509

CSR block if the operation is successfully completed, are returned via a protocol

mechanism execution response message.

3.7.2. Certificate_Sign_Request_Verification X.509 Offloader Mechanism

A host security server, which is a certification authority, may have an X.509

certificate sign request that was received from a remote user who is the certificate

requester, verified by requesting the execution of this offloader mechanism from

the SM. After that, the host security server will get the CSR block, whose

 73

signature was verified by the SM, and become ready for a subsequent X.509 v3

public-key certificate generation operation.

In the execution of this offloader mechanism, the input X.509 CSR block is

verified using the public key of the remote user contained in it and using the

parameters provided by the input mechanism execution request message. Final

status of the verification operation along with the verified X.509 CSR block if the

operation is finished without any error, are returned via a protocol mechanism

execution response message.

3.7.3. Certificate_Preparation X.509 Offloader Mechanism

A host security server, which is a certification authority, may have an X.509 v3

public-key certificate prepared by requesting the execution of this mechanism

from the SM. Afterwards, the host security server will send the public-key

certificate prepared and returned by the SM to a remote user, who is the certificate

requester, in response to her CSR.

In the execution of the mechanism,

o an X.509 v3 public-key certificate for the remote user is prepared using the

private certificate-signing key of the host security server stored in the

module,

o the prepared X.509 v3 public-key certificate is stored in the module,

o a number of other X.509 public-key certificates, already stored in the

module, are added to the prepared X.509 public-key certificate to construct

an X.509 public-key certificate chain for the remote user starting from a

root-level CA, and

o an X.509 certificate revocation list, stored in the module and previously

published by the host security server, may be added to the constructed

public-key certificate chain,

making use of the parameters provided by the input protocol mechanism execution

 74

request message. Final status of the operation, and if the operation is successfully

finished the constructed X.509 public-key certificate chain (may contain an X.509

CRL) are returned via a protocol mechanism execution response message.

3.7.4. Certificate_Revocation_List_Preparation X.509 Offloader Mechanism

A host security server, which is a certification authority, may have an X.509 CRL

prepared by requesting the execution of this offloader mechanism from the SM.

After that, the host security server may at any time access the X.509 CRL prepared

by and stored in the SM, and send it to communicating parties to inform them

about the public-key certificates revoked by the host security server.

In the execution of this mechanism, an X.509 CRL is prepared using the private

CRL-signing key of the host security server stored in the SM and the stored X.509

public-key certificates that were revoked, and making use of various parameters

provided by the input mechanism execution request message. The prepared X.509

CRL is stored in the SM. Final status of the operation, and if the operation is

finished without any error the prepared X.509 CRL are returned via a mechanism

execution response message.

3.7.5. Certificate_CRL_Retrieval X.509 Offloader Mechanism

A host security server may have an X.509 public-key certificate of a

communicating party and/or an X.509 CRL, published by a certification authority,

retrieved from the SM storage on behalf of a host user by requesting the execution

of this offloader mechanism from the SM. After that, the host security server may

send the public-key certificate and/or the CRL returned by the SM to a remote user

who is requesting them.

In the execution of this offloader mechanism,

o the X.509 public-key certificate of the communicating party, identified in

 75

the input mechanism execution request message, is retrieved from the

module storage,

o a number of other X.509 public-key certificates, stored in the module, are

added to the retrieved certificate to construct a public-key certificate chain

for the communicating party starting from a root-level CA,

and/or

o the stored X.509 CRL published (at a certain date) by the certification

authority, identified in the input mechanism execution request message, is

retrieved from the module storage.

Final status of the public-key certificate and/or CRL retrieval operation along with

the constructed X.509 public-key certificate chain and/or the retrieved X.509 CRL,

if the operation is successfully finished, are returned via a mechanism execution

response message.

3.7.6. Certificate_CRL_Verification X.509 Offloader Mechanism

A host security server may have an X.509 public-key certificate chain and/or an

X.509 CRL, which were received from a remote system (a CA) in response to a

certificate sign request or from a remote user in response to a certificate/CRL

request message, verified on behalf of a host user by requesting the execution of

this offloader mechanism from the SM. After that, the host security server, hence

the host user, will gain access to the public-key certificate and/or the CRL verified

by and stored in the SM.

In the execution of this mechanism,

o each X.509 public-key certificate contained in the input X.509 public-key

certificate chain is stored in the module after it is verified,

o the input X.509 CRL is verified using the stored public CRL-signing key

(certificate) of the certification authority which published the CRL, and the

verified CRL is stored in the module,

making use of the parameters provided by the input mechanism execution request

 76

message. Final status of the verification operation is returned via a mechanism

execution response message.

3.8. System Security Offloader Mechanisms

Regarding system security, system user passwords data and the two related

operations: verifying an entered user password, and storing/deleting user password

records, are assessed as the most appropriate data and operations for storing and

implementing as part of the designed security architecture. In addition, system

access control list or capability list data and the three related operations: verifying

the legitimacy of an attempted access by a system user to a system resource,

storing access rights entries, and getting stored access rights entries concerning

given system users and resources, are also assessed as suitable data and operations

for storing and implementing as part of the security architecture designed.

First of all, host system user passwords (e.g., user login passwords for an OS or a

DBMS) does not constitute a large volume of data, that would otherwise easily use

up the limited storage space of a security module which is an embedded SBC

realizing the designed security architecture. Usually, there is only one (or two)

password for each user of a host system. More importantly, system user passwords

are in fact secret data, i.e. reveal of a user’s password makes the password useless

and the operations depending on this password vulnerable. These together make

host system user passwords file/data an ideal choice for securely storing in the SM

storage, as part of the designed security architecture.

Moreover, the two system security operations, mentioned above, which process

system user passwords data, do not have high processing power requirements, that

would otherwise severely slow down executions of other offloader mechanisms in

the SM. To verify an entered user password, it is only needed to locate the

password record, belonging to a given user, in the host system user passwords file,

and to compare this record with the entered user password. Storing system user

 77

password records operation refers to creating new password records for or

modifying or deleting existing password records of a number of given host system

users. A password checking procedure may be performed before the creation or

modification of each password, however this may not require high processing

power if the procedure depends on a previously created and stored data model

(proactive password checking techniques, refer to [3]).

Secondly, host system access control list or capability list data also does not

require a large storage space. An access rights entry is needed to be stored for each

access relation, which indicates that a system user has certain access rights on a

system object [3], defined in the system. However, access control list or capability

list data does not represent secret data, i.e. reveal of an access rights entry of the

list does not make the revealed entry or the entire list useless nor does it make the

operation of verification of an attempted access to a system object vulnerable.

However, access control list or capability list represents critical data for a host

system’s security, hence their integrity should be protected. These together make

them suitable to securely store in the SM storage.

Moreover, the three system security-related operations, mentioned above, which

make use of either access control list or capability list data, require little

processing power to execute. To verify an attempted access by a host system user

to a host system object, it is only needed to locate the access rights entry,

concerning the given host system user and object, in the access control or

capability list, and to determine if the attempted type of access is among the access

rights included in the located access rights entry. Storing an access rights entry in

an access control or a capability list indicates creating, modifying or deleting the

access rights entry, concerning a given system user and object, in/from the list.

Getting an access rights entry from an access control or a capability list is an

operation very similar to the verification of an attempted access to a system object,

only it does not involve the step of determining whether an attempted type of

access is allowable.

 78

3.8.1. User_Password_Records_Storing System Security Offloader

 Mechanism

A host security server may have candidate system user passwords checked by and

then stored in the security module, or may have existing system user password

records deleted from the SM, on behalf of a host system (usually an OS or a

DBMS) by requesting the execution of this offloader mechanism from the SM.

Afterwards, the host security server, hence the host system, will gain access to the

system user password records stored by the SM on behalf of the host system, when

required for verification of an entered user password.

In the execution of this offloader mechanism,

o each input host system user password to be created or modified is checked

using a proactive password checking procedure,

o each input host system user password, which has successfully passed the

password checking procedure, is stored as associated with the identifier of

the host system user, who owns this password, in a password record in the

host system user passwords file which is stored in the SM as associated

with the identifier of the host system and name of its system software,

o each host system user password record specified to be deleted is deleted

from the host system user passwords file stored in the SM,

using the parameters provided by the input protocol mechanism execution request

message. Final status of the operation along with the number of successfully

checked and stored or deleted host system user passwords, until an error occurred

or all of them are finished without any error, are returned via a mechanism

execution response message.

As part of the security architecture designed, a proactive password checking

procedure, which may well be based on both a rule enforcement system and a

Markov model, should be included as a requisite to include this offloader

mechanism. Also, as part of the designed security architecture, each host system

 79

user passwords file should be stored securely as both its integrity and

confidentiality protected: SHA-1 message digest of the file is appended at the end

of the file, and then the file plus its message digest is encrypted using triple-DES

with the storage master key and IV of the module.

3.8.2. Entered_Password_Verification System Security Offloader

 Mechanism

A host security server may have an entered user identifier and user password

verified on behalf of a host system by requesting the execution of this offloader

mechanism from the SM. It is required that the SM has already securely stored the

system user passwords file belonging to the host system.

In the execution of this offloader mechanism, the input user password is verified

using the password record (if such a record exists) associated with the user, whose

identifier is provided in the input mechanism execution request message, and

contained in the host system user passwords file stored in the SM as associated

with the identifier of the host system and name of its system software. Final status

of the verification operation is returned via a mechanism execution response

message.

3.8.3. Access_Rights_Entries_Storing System Security Offloader Mechanism

A host security server may have several access rights entries stored in the security

module or deleted from the SM on behalf of a host system (usually an OS or a

DBMS) by requesting the execution of this mechanism from the SM. After that,

the host security server, hence the host system, will gain access to the access rights

entries securely stored by the SM on behalf of the host system, when required for

verification of an attempted access to a host system object.

 80

In the execution of this mechanism,

o each input host system access rights to be created or modified is stored as

associated with the identifier of the host system user, who will own the

rights, in an access rights entry in the

• host system access control list stored in the SM as associated with the

identifier of the host system, name of its system software and the

identifier of the host system object on which these access rights will be

applied,

or

each input host system access rights to be created or modified is stored as

associated with the identifier of the host system object, on which these

rights will be applied, in an access rights entry in the

• host system capability list stored in the SM as associated with the

identifier of the host system, name of its system software and the

identifier of the host system user who will own these access rights,

depending on which data structure is preferred by the host system for

storing its access rights entries,

o each host system access rights entry specified to be deleted is deleted from

• the host system access control list or

• the host system capability list

stored in the SM, depending on which one is preferred by the host system

for storing its access rights entries,

using the parameters supplied by the input mechanism execution request message.

Final status of the operation along with the number of successfully stored or

deleted host system access rights entries, until an error occurred or all of them are

finished without any error, are returned via a mechanism execution response

message.

As part of the security architecture designed, each host system access control list

and capability list data should be stored securely as its integrity protected: its

 81

TDES-encrypted (with the storage master key and IV of the module) SHA-1

message digest appended at its end.

3.8.4. Attempted_Access_Verification System Security Offloader Mechanism

A host security server may have an attempted access by a system user to a system

object verified, as to whether it is legitimate, on behalf of a host system by

requesting the execution of this offloader mechanism from the SM. It is required

that the SM has already stored the access control list or capability list data

belonging to the host system.

In the execution of the mechanism, the input attempted type of access is verified

using the access rights entry associated with the identifier of the host system

user/object, which is provided in the input mechanism execution request message,

and contained in the host system access control/capability list stored in the SM as

associated with the identifier of the host system object/user, which is also provided

in the mechanism execution request message. Final status of the verification

operation is returned via a protocol mechanism execution response message.

3.8.5. Access_Rights_Entries_Retrieval System Security Offloader

 Mechanism

A host security server may have

o the access rights of a system user on a system object, or

o the access rights of a system user on all system objects, or

o the access rights of all system users on a system object,

retrieved from the security module, on behalf of a host system, by requesting the

execution of this mechanism from the SM. It is required that the SM has already

stored the access control list or capability list data belonging to the host system.

 82

In the execution of this offloader mechanism,

o the access rights entry associated with the identifier of the host system

user/object, which is provided in the input mechanism execution request

message, and contained in the host system access control/capability list

stored in the module as associated with the identifier of the host system

object/user, which is also provided in the mechanism execution request

message,

or

o the access rights entries associated with the identifier of the host system

user and contained in all host system access control lists which are stored

in the module as associated with the identifier of the host system; or all

access rights entries in the host system capability list which is stored in the

module as associated with the identifier of the host system user,

or

o the access rights entries associated with the identifier of the host system

object and contained in all host system capability lists which are stored in

the module as associated with the identifier of the host system; or all access

rights entries in the host system access control list which is stored in the

module as associated with the identifier of the host system object,

is/are retrieved from the SM storage using the parameters provided by the input

protocol mechanism execution request message. Final status of the executed

mechanism, and if the execution is finished successfully the retrieved access rights

entry(ies) are returned via a protocol mechanism execution response message.

3.9. Offloader Mechanism Access Controller

Offloader mechanism access controller is a server program located on top of the

communication infrastructure that resides at the bottommost level of the designed

security architecture. Its main functions are: to process connection requests from

host security servers to the security module (which realizes the designed security

architecture), and to direct offloader mechanism execution requests from

 83

connected host security servers to the related offloader mechanisms for their

processing.

When the offloader mechanism access controller receives connection requests

from host security servers on behalf of host users, it controls access to the security

module by host users. Only host users, who were registered before and have the

required SSL public-key certificate (identity certificate) signed by a trusted

certification authority, are allowed to connect to the security module. The

offloader mechanism access controller also handles disconnection requests of host

security servers from the SM to cleanly shutdown their connections.

The retrieval and initial processing of a protocol offloader mechanism execution

request message, sent by a host security server to the SM, are performed by the

offloader mechanism access controller. Most importantly, this initial processing

involves determining whether the host user/system, on behalf of who the host

security server requests execution of the offloader mechanism, is allowed to access

this offloader mechanism. Only administrator host users may access/request the

administrational offloader mechanisms. According to the outcome of this initial

processing, the offloader mechanism access controller may transfer the contents of

a valid (initially) request message and the control of processing of the request to

the responsible offloader mechanism. After the responsible offloader mechanism

processes the request, the mechanism returns its output (can also be an error code)

to the offloader mechanism access controller for construction of an offloader

mechanism execution response message that will be returned to the requesting host

security server.

The offloader mechanism access controller server program should be capable of

effectively handling many offloader mechanism execution and connection requests

from a number of clients (host security servers on behalf of host users)

simultaneously. To have this capability, the server program should be multi-

threaded and allocate dedicated processing threads to serve each client connection,

 84

and the program will have a separate main program thread to handle connection

requests to the security module.

3.10. Communication Infrastructure

The communication between the security module (realizing the designed security

architecture) and a host security server will be via the TCP/IP transport and

network-level protocols combination, which will establish a proven and reliable

communication infrastructure for accessing and exchanging data packets with the

network-attached security module. To secure this communication, the SSLv3

protocol, which provides transport-level security over TCP/IP [16], is considered

appropriate.

Both the security module and the host security server/host user, which wants to

connect to it, should send their SSL public-key certificates, signed by a trusted CA,

to each other (instead of only the security module sends) during the SSL

handshake performed for connecting to the SM. Hence, peer authentication will

be achieved by both the security module and the host security server/host user.

This means that a man-in-the-middle attack (as in the case of SSL handshake using

anonymous Diffie-Hellman where no certificates sent [16]) will, theoretically, not

be possible. SSL RSA key exchange (but with a mandatory SSL client certificate

sending) may well be used to do the SSL handshake for performance reasons (refer

to chapter 4 Reference Implementation).

Since, the authentication and integrity of the messages exchanged are the primary

concerns regarding the security of communication between the SM and a host

security server, and the confidentiality of the messages exchanged is not that

critical in many cases, message exchanges between the SM and a host security

server may be realized only with the authentication option of the SSLv3 protocol

for performance reasons. However, in cases where the requested offloader

mechanism involves the transfer of cryptographic keys, parameters or other secret

 85

data to/from the security module (like the “Entered_Password_Verification” and

“User_Password_Records_Storing” system security offloader mechanisms),

message exchanges between the SM and the host security server should be realized

with both the authentication and encryption options of the SSLv3 protocol to also

protect the confidentiality of the transferred secret keys, parameters and data.

Figure 8 below illustrates peer authentication, message exchange between the SM

and a host security server/host user, and access control to the security module and

offloader mechanisms.

Figure 8 Peer Authentication, Message Exchange and Access Control

After the inclusion of all offloader mechanisms, base cryptography methods and

other auxiliary functions they require, cryptographic keys and parameters they use,

and the offloader mechanism access controller server program and communication

 86

infrastructure elements, the overall security architecture becomes as shown in

figure 9 below.

Figure 9 Overall Security Architecture

 87

CHAPTER 4

REFERENCE IMPLEMENTATION

The aim of implementation phase is to demonstrate the practicability of the

designed security architecture and its associated concise communications protocol

(even) on a software-based security module. Hence, a software-based security

module was built within the scope of the implementation, in which all operations

are performed by the software running on the general-purpose PC/104-plus

embedded computer (SBC) without any special cryptography hardware. To

achieve the aim, some conventional performance parameters of the built security

module were measured.

The built security module implements only the basic offloader mechanisms,

defined by the security architecture designed, with their following options:

o “Symmetric_Encryption_Decryption” basic offloader mechanism using

DES and AES encryption methods for ECB, CBC (with PKCS padding),

CFB and OFB (with unit of transmission value fixed as 8) modes,

o “Asymmetric_Encryption_Decryption” basic offloader mechanism,

including all of its six operations, using only RSA method (with PKCS #1

v1.5 padding) for both public-key encryption and signing,

o “Session_Key_Calculation” basic offloader mechanism using only Diffie-

Hellman key exchange method,

o “Message_Authentication_Code_Operations” basic offloader mechanism,

including all of its six operations, using only HMAC method which can

make use of one of MD5, SHA-1 and RIPEMD-160 hash algorithms,

o “Message_Digest_Operations” basic offloader mechanism, including all of

its twelve operations, using MD5, SHA-1 and RIPEMD-160 hash

algorithms,

 88

o “Digital_Signature_Calculation” basic offloader mechanism using only

DSA digital signature method.

4.1. Reference Algorithms for Basic Offloader Mechanisms

The reference algorithms to implement the basic offloader mechanisms were

coded in “C” language, and built linking with the standard “C” language

development library (the GNU “C” library glibc) for the chosen OS, namely

Linux, and with the SSL library chosen for the implementation, namely OpenSSL.

Then, the implemented algorithms were tested to verify that they are working

correctly in accordance with the requirements defined by the designed security

architecture.

Implemented basic offloader mechanisms were built as a ‘dynamic’ library to be

able to upgrade the mechanisms without the necessity to rebuild (and deploy) the

offloader mechanism access controller server program, which is linked with the

implemented mechanisms.

4.1.1. Symmetric_Encryption_Decryption Basic Offloader Mechanism

The algorithm steps for implementing this offloader mechanism are:

i. first of all, the symmetric encryption key and initialization vector of the

host user (on behalf of who the host security server requests execution of

this mechanism) are located in the security module storage using the

identifiers of the host user and remote user, and using the encryption

method, the method’s key length, block length and number of rounds

parameters all of which are supplied in the input mechanism execution

request message contents,

� if no such symmetric encryption key can be located, “Encrypt/Decrypt

Error” status code is returned as output,

� if the input encryption mode is not ECB and no such initialization

 89

vector can be located, “Encrypt/Decrypt Error” status code is returned

as output,

ii. the located symmetric encryption key and IV of the host user are first

decrypted using triple-DES in CBC mode with the storage master key and

IV of the module, and then their integrity are verified using their SHA-1

hash codes,

� if an error occurs during the decryption or integrity verification of the

symmetric encryption key or IV, “Encrypt/Decrypt Error” status code

is returned as output,

iii. then, according to the requested operation type (encryption or decryption),

the input data is encrypted or decrypted using the input encryption method

and encryption mode and with the symmetric encryption key and IV of the

host user,

� if the input encryption mode is ECB and the length of the input data is

not equal to the block length of the input encryption method,

“Encrypt/Decrypt Error” status code is returned,

� if the input encryption mode is CBC and the length of the input data to

be decrypted is not equal to a multiple of the block length of the input

encryption method, “Encrypt/Decrypt Error” status code is returned,

� if the input encryption mode is CBC, the input data to be encrypted is

padded using PKCS padding,

� if the input encryption mode is CBC, after the decryption of the input

data, the PKCS padding of the decrypted data is verified and the

padding bytes are removed if the verification is successful. Otherwise,

“Encrypt/Decrypt Error” status code is returned,

iv. finally, the encrypted or decrypted data is returned as the output of the

mechanism along with the “OK” status code.

The implementations of DES and AES symmetric encryption methods for ECB,

CBC, CFB and OFB modes of operation are provided by the chosen SSL library,

OpenSSL. The PKCS padding for CBC mode was implemented separately.

 90

4.1.2. Asymmetric_Encryption_Decryption Basic Offloader Mechanism

The steps of the algorithm for implementing this offloader mechanism are:

i. if the requested operation type involves signing (e.g. “Sign and Encrypt”),

the private signature key of the host user is located in the security module

storage using the identifier of the host user, the public-key signing method

and this method’s key size all of which are provided in the input

mechanism execution request message contents,

� if no such private key can be located, “Sign/Verify Error” status code

is returned as output,

ii. if the requested operation type involves encryption (e.g. “Encrypt”), the

public encryption key certificate of the remote user is located in the SM

storage using the identifier of the remote user, the public-key encryption

method and this method’s key size all of which are provided in the input

mechanism execution request message contents,

� if no such public-key certificate can be located, “Encrypt/Decrypt

Error” status code is returned as output,

iii. if the requested operation type involves decryption (e.g. “Decrypt and

Verify”), the private encryption key of the host user is located in the SM

storage using the input identifier of the host user, public-key encryption

method and this method’s key size,

� if no such private key can be found, “Encrypt/Decrypt Error” status

code is returned,

iv. if the requested operation type involves verification (e.g. “Verify”), the

public signature key certificate of the remote user is located in the SM

storage using the input identifier of the remote user, public-key signing

method and this method’s key size,

� if no such public-key certificate can be found, “Sign/Verify Error”

status code is returned as output,

v. if the requested operation type involves signing or decryption, the located

private signature or encryption key of the host user is first decrypted using

 91

triple-DES in CBC mode with the storage master key and IV of the

module, and then its integrity is verified using its SHA-1 hash code,

� if an error occurs during the decryption or integrity verification of the

private key, “Sign/Verify Error” status code is returned as output if the

private key is a signature key, “Encrypt/Decrypt Error” status code is

returned if the private key is an encryption key,

vi. afterwards, if the operation type involves signing, the input data is

asymmetrically encrypted (signed) using the input public-key signing

method and with the private signature key of the host user,

� if the input public-key signing method is RSA, the input data to be

signed is padded using PKCS#1 v1.5 padding. Therefore, if the length

of the input data (in bytes) is bigger than the size of the private

signature key of the host user minus 12, “Sign/Verify Error” status

code is returned,

vii. if the operation type involves encryption, the input data (possibly after

signed in the previous step) is asymmetrically encrypted using the input

public-key encryption method and with the public encryption key of the

remote user contained in her located public encryption key certificate,

� if the input public-key encryption method is RSA, the input data to be

encrypted is padded using PKCS #1 v1.5 padding. Therefore, if the

length of the input data is bigger than the size of the public encryption

key of the remote user minus 12, “Encrypt/Decrypt Error” status code

is returned,

viii. if the input operation type involves decryption, the input data is

asymmetrically decrypted using the input public-key encryption method

and with the private encryption key of the host user,

� if the input public-key encryption method is RSA and the length of the

input data is not equal to the size of the private encryption key of the

host user, “Encrypt/Decrypt Error” status code is returned,

� if the input public-key encryption method is RSA, during the

decryption of the input data, its PKCS #1 v1.5 padding is verified and

 92

the padding bytes are removed if the verification is successful.

Otherwise, “Encrypt/Decrypt Error” status code is returned,

ix. if the input operation type involves verification, the input data (possibly

after decrypted in the previous step) is asymmetrically decrypted using the

input public-key signing method and with the public signature key of the

remote user contained in her located public signature key certificate,

� if the input public-key signing method is RSA and the length of the

input data is not equal to the size of the public signature key of the

remote user, “Sign/Verify Error” status code is returned,

� if the input public-key signing method is RSA, during the verification

of the input data, its PKCS #1 v1.5 padding is verified and the padding

bytes are removed if this verification is successful. Otherwise,

“Sign/Verify Error” status code is returned,

x. finally, the encrypted, signed, signed and encrypted, decrypted, verified, or

decrypted and verified data is returned as output of this mechanism along

with the “OK” status code,

The implementation of the RSA public-key method using PKCS #1 v1.5 padding

is provided by the OpenSSL library.

4.1.3. Session_Key_Calculation Basic Offloader Mechanism

The steps of the reference algorithm to implement this offloader mechanism are:

i. firstly, the private key exchange key of the host user is located in the

security module storage using the identifier of the host user, the public-key

key exchange method and this method’s key size all of which are provided

in the input mechanism execution request message contents,

� if such a private key cannot be located, “Key Exchange Error” status

code is returned as output,

ii. the located private key exchange key of the host user is first decrypted

using triple-DES in CBC mode with the storage master key and IV of the

 93

module, and then its integrity is verified using its SHA-1 hash code,

� if an error occurs during the decryption or integrity verification of the

private key, “Key Exchange Error” status code is returned as output,

iii. the global key exchange parameters of the host user are located in the

security module storage using the input identifier of the host user, input

public-key key exchange method and this method’s key size,

� if these parameters cannot be located in the SM storage, “Key

Exchange Error” status code is returned as output,

iv. the public key exchange key certificate of the remote user is located in the

SM storage using the input identifier of the remote user, input public-key

key exchange method and this method’s key size,

� if such a public-key certificate cannot be located in the module, “Key

Exchange Error” status code is returned as output,

v. afterwards, a session (symmetric) key is computed using the input public-

key key exchange method and with the private key exchange key and

global key exchange parameters of the host user and the public key

exchange key of the remote user contained in her located certificate,

according to the input encryption method key length which refers to the

desired length of the session key,

� if the private key exchange key of the host user and the public key

exchange key of the remote user were not generated using the same

(host user’s) global key exchange parameters, “Key Exchange Error”

status code is returned as output,

� if the input public-key key exchange method is Diffie-Hellman and the

input encryption method key length is bigger than the input public-key

key exchange method (Diffie-Hellman) key size (which determines the

maximum length for the session key to be computed), “Key Exchange

Error” status code is returned as output,

vi. lastly, the computed session key is stored in the SM as its SHA-1 hash code

appended and then encrypted using triple-DES in CBC mode with the

storage master key and IV of the module; and as associated with the

 94

identifiers of the host and remote users, input encryption method,

encryption method key length, block length and number of rounds

parameters. “OK” status code is returned as output.

The implementation of the Diffie-Hellman public-key key exchange method is

provided by the OpenSSL library.

4.1.4. Message_Authentication_Code_Operations Basic Offloader Mechanism

The steps of the reference algorithm to implement this offloader mechanism are:

i. the MAC secret key of the host user is located in the security module

storage using the identifiers of the host user and remote user, the MAC

method and the MAC method key size all of which are provided in the

input mechanism execution request message contents,

� if such a MAC secret key cannot be located in the module,

“Authenticate/Verify Error” status code is returned as output,

ii. if the requested operation type involves encryption or decryption (e.g.

“Authenticate and Encrypt”), the symmetric encryption key and IV of the

host user are located in the SM storage using the input identifiers of the

host user and remote user, the encryption method, this method’s key

length, block length and number of rounds parameters all of which are

provided in the input mechanism execution request message contents,

� if such a symmetric encryption key cannot be located in the module,

“Encrypt/Decrypt Error” status code is returned as output,

� if the input encryption mode is not ECB and no such initialization

vector can be located, “Encrypt/Decrypt Error” status code is returned,

iii. the located MAC secret key, symmetric encryption key and IV of the host

user are first decrypted using triple-DES in CBC mode with the storage

master key and IV of the SM, and then their integrity are verified using

their SHA-1 hash codes,

� if an error occurs during the decryption or integrity verification of the

 95

MAC secret key, “Authenticate/Verify Error” status code is returned;

if an error occurs during the decryption or integrity verification of the

symmetric encryption key or IV, “Encrypt/Decrypt Error” status code

is returned,

iv. afterwards, if the requested operation type is “Authenticate” or

“Authenticate and Encrypt”, the input data is authenticated by appending it

a message authentication code computed using the input MAC method and

hash method and with the MAC secret key of the host user,

v. if the requested operation type is “Authenticate and Encrypt”, the input

data, after authenticated in the previous step, is symmetrically encrypted

using the input encryption method and encryption mode and with the

symmetric encryption key and IV of the host user,

� if the input encryption mode is ECB and the length of the input data

(after authentication) is not equal to the block length of the input

encryption method, “Encrypt/Decrypt Error” status code is returned,

� if the input encryption mode is CBC, the input data (after

authentication) is padded using PKCS padding before encryption,

vi. if the requested operation type is “Encrypt and Authenticate”, the input

data is first symmetrically encrypted using the input encryption method and

encryption mode and with the symmetric encryption key and IV of the host

user, and then the encrypted input data is authenticated by appending it a

MAC computed using the input MAC method and hash method and with

the MAC secret key of the host user,

� if the input encryption mode is ECB and the length of the input data to

be encrypted is not equal to the block length of the input encryption

method, “Encrypt/Decrypt Error” status code is returned as output,

� if the input encryption mode is CBC, the input data is padded using

PKCS padding before encryption,

vii. if the requested operation type is “Verify” or “Verify and Decrypt”, the

input data is verified by verifying the message authentication code at its

 96

end using the input MAC method and hash method and with the MAC

secret key of the host user,

� if the input MAC method is HMAC, there must exist a MAC at the end

of the input data with length equal to the output length of the input

hash method, otherwise “Authenticate/Verify Error” status code is

returned,

� if the verification of the MAC of the input data is successful, the MAC

is thrown off from the input data,

viii. if the requested operation type is “Verify and Decrypt”, the input data, after

verified in the previous step, is symmetrically decrypted using the input

encryption method and encryption mode and with the symmetric

encryption key and IV of the host user,

� if the input encryption mode is ECB and the length of the input data

(after verification) is not equal to the block length of the input

encryption method, “Encrypt/Decrypt Error” status code is returned,

� if the input encryption mode is CBC and the length of the input data

(after verification) is not equal to a multiple of the block length of the

input encryption method, “Encrypt/Decrypt Error” status code is

returned,

� if the input encryption mode is CBC, after the decryption of the input

data, its PKCS padding is verified and the padding bytes are removed

if this verification is successful. Otherwise, “Encrypt/Decrypt Error”

status code is returned,

ix. if the requested operation type is “Decrypt and Verify”, the input data is

first symmetrically decrypted using the input encryption method and

encryption mode and with the symmetric encryption key and IV of the host

user, and then the decrypted input data is verified by verifying the MAC at

its end using the input MAC method and hash method and with the MAC

secret key of the host user,

� if the input encryption mode is ECB and the length of the input data is

not equal to the block length of the input encryption method,

 97

“Encrypt/Decrypt Error” status code is returned as output,

� if the input encryption mode is CBC and the length of the input data is

not equal to a multiple of the block length of the input encryption

method, “Encrypt/Decrypt Error” status code is returned,

� if the input encryption mode is CBC, after the decryption of the input

data, its PKCS padding is verified and the padding bytes are removed

if this verification is successful. Otherwise, “Encrypt/Decrypt Error”

status code is returned,

� if the input MAC method is HMAC, there must exist a MAC at the end

of the decrypted input data with length equal to the output length of the

input hash method, otherwise “Authenticate/Verify Error” status code

is returned,

� if the verification of the MAC of the decrypted input data is successful,

the MAC is thrown off from the decrypted input data,

x. finally, the authenticated, authenticated and encrypted, encrypted and

authenticated, verified, decrypted and verified, or verified and decrypted

data is returned as output of this offloader mechanism along with the “OK”

status code,

The implementations of the HMAC message authentication method and MD5,

SHA-1, RIPEMD-160 hash methods are provided by the OpenSSL library.

4.1.5. Message_Digest_Operations Basic Offloader Mechanism

The steps of the reference algorithm to implement this offloader mechanism are:

i. if the requested operation type involves encryption or decryption (e.g.

“Authenticate and Encrypt”) or is “Authenticate” or “Verify”, the

symmetric encryption key and IV of the host user are located in the SM

storage using the identifiers of the host user and remote user, the

encryption method, this method’s key length, block length and number of

rounds parameters all of which are provided in the input mechanism

 98

execution request message contents,

� if such a symmetric key cannot be located, “Encrypt/Decrypt Error”

status code is returned as output,

� if the input encryption mode is not ECB and no such IV can be located,

“Encrypt/Decrypt Error” status code is returned as output,

ii. if the requested operation type involves signing operation (e.g. “Sign”), the

private signing key of the host user is located in the SM storage using the

input identifier of the host user, the public-key signing method and this

method’s key size both of which are provided in the input mechanism

execution request message contents,

� if such a private key cannot be located in the SM storage, “Sign/Verify

Signed Data Error” status code is returned as output,

iii. if the requested operation type involves verification of signed data (e.g.

“Verify Signed Data”), the public signing key certificate of the remote user

is located in the SM storage using the input identifier of the remote user,

public-key signing method and this method’s key size,

� if no such public-key certificate can be located in the module storage,

“Sign/Verify Signed Data Error” status code is returned,

iv. if the requested operation type involves authentication or verification using

hash secret value (e.g. “Authenticate with Secret Value”), the hash secret

value of the host user is located in the SM storage using the input

identifiers of the host user and remote user,

� if no such hash secret value can be located in the module storage,

“Authenticate/Verify Error” status code is returned,

v. then, the located symmetric encryption key and IV, private signing key and

hash secret value of the host user are first decrypted using triple-DES in

CBC mode with the storage master key and IV of the module, and then

their integrity are verified using their SHA-1 hash codes,

� if an error occurs during the decryption or integrity verification of the

symmetric encryption key or IV, “Encrypt/Decrypt Error” status code

is returned; if an error occurs during the decryption or integrity

 99

verification of the private signing key, “Sign/Verify Signed Data

Error” status code is returned; if an error occurs during the decryption

or integrity verification of the hash secret value, “Authenticate/Verify

Error” status code is returned,

vi. afterwards, if the requested operation type is “Authenticate”, “Authenticate

and Encrypt”, “Sign” or “Sign and Encrypt”, the message digest of the

input data is computed using the input hash method, and appended to the

input data,

vii. if the requested operation type is “Authenticate with Secret Value” or

“Authenticate with Secret Value and Encrypt”, the message digest of the

input data and hash secret value of the host user combined is computed

using the input hash method, and appended to the input data,

viii. if the requested operation type is “Sign” or “Sign and Encrypt”, the

message digest of the input data, computed and appended to the input data

in step vi., is asymmetrically encrypted (signed) using the input public-key

signing method and with the private signing key of the host user,

� if the input public-key signing method is RSA, the message digest is

padded using PKCS #1 v1.5 padding during signing. Therefore, if the

length (in bytes) of the message digest is bigger than the size of the

private signing key of the host user minus 12, “Sign/Verify Signed

Data Error” status code is returned as output,

ix. if the requested operation type is “Authenticate”, the message digest of the

input data, computed and appended to the input data in step vi., is

symmetrically encrypted using the input encryption method and encryption

mode with the symmetric encryption key and IV of the host user,

� if the input encryption mode is ECB and the length of the message

digest is not equal to the block length of the input encryption method,

“Authenticate/Verify Error” status code is returned as output,

� if the input encryption mode is CBC, the message digest is padded

using PKCS padding before encryption,

x. if the requested operation type is “Authenticate and Encrypt”, “Sign and

 100

Encrypt” or “Authenticate with Secret Value and Encrypt”, the input data

and the message digest, computed and appended to the input data in

previous steps (and maybe signed), is symmetrically encrypted using the

input encryption method and encryption mode with the symmetric

encryption key and IV of the host user,

� if the input encryption mode is ECB and the length of the input data

along with the message digest is not equal to the block length of the

input encryption method, “Encrypt/Decrypt Error” status code is

returned,

� if the input encryption mode is CBC, the input data along with the

message digest is padded using PKCS padding before encryption,

xi. if the requested operation type is “Verify”, the encrypted message digest at

the end of the input data is symmetrically decrypted using the input

encryption method and encryption mode and with the symmetric

encryption key and IV of the host user,

� if the input encryption mode is ECB, there must exist an encrypted

message digest at the end of the input data with length equal to the

block length of the input encryption method, otherwise

“Authenticate/Verify Error” status code is returned as output,

� if the input encryption mode is CBC, there must exist an encrypted

message digest at the end of the input data with length equal to the

output length of the input hash method complemented to a multiple of

the block length of the input encryption method, otherwise

“Authenticate/Verify Error” status code is returned,

� if the input encryption mode is CFB or OFB, there must exist an

encrypted message digest at the end of the input data with length equal

to the output length of the input hash method, otherwise

“Authenticate/Verify Error” status code is returned,

� if the input encryption mode is CBC, after the decryption of the

encrypted message digest, its PKCS padding is verified and the

padding bytes are removed if this verification is successful. Otherwise,

 101

“Authenticate/Verify Error” status code is returned,

xii. if the requested operation type is “Decrypt and Verify”, “Decrypt and

Verify Signed Data” or “Decrypt and Verify with Secret Value”, the input

data is symmetrically decrypted using the input encryption method and

encryption mode and with the symmetric encryption key and IV of the host

user,

� if the input encryption mode is ECB and the length of the input data is

not equal to the block length of the input encryption method,

“Encrypt/Decrypt Error” status code is returned,

� if the input encryption mode is CBC and the length of the input data is

not equal to a multiple of the block length of the input encryption

method, “Encrypt/Decrypt Error” status code is returned,

� if the input encryption mode is CBC, after the decryption of the input

data, its PKCS padding is verified and the padding bytes are removed

if this verification is successful. Otherwise, “Encrypt/Decrypt Error”

status code is returned,

xiii. if the requested operation type is “Verify Signed Data” or “Decrypt and

Verify Signed Data”, the signed message digest at the end of the input data

(possibly decrypted in the previous step) is first asymmetrically decrypted

using the input public-key signing method and with the public signing key

of the remote user contained in her located certificate,

� if the input public-key signing method is RSA, there must exist a

signed message digest at the end of the input data with length equal to

the size of the public signing key of the remote user, otherwise

“Sign/Verify Signed Data Error” status code is returned,

� if the input public-key signing method is RSA, during asymmetric

decryption of the signed message digest, its PKCS#1 v1.5 padding is

verified and the padding bytes are removed if this verification is

successful. Otherwise, “Sign/Verify Signed Data Error” is returned,

xiv. if the requested operation type is “Verify”, “Decrypt and Verify”, “Verify

Signed Data” or “Decrypt and Verify Signed Data”, the message digest

 102

(possibly recovered in step xi. or step xiii.) at the end of the input data

(possibly decrypted in step xii.) is verified using the input hash method,

� if the requested operation type is “Verify”, “Verify Signed Data” or

“Decrypt and Verify Signed Data”, and if the length of the message

digest, as recovered in step xi. or step xiii., is not equal to the output

length of the input hash method, “Authenticate/Verify Error” status

code is returned,

� if the requested operation type is “Decrypt and Verify”, there must

exist a message digest at the end of the input data (decrypted in step

xii.) with length equal to the output length of the input hash method,

otherwise “Authenticate/Verify Error” status code is returned,

� if the verification of the message digest is successful, the message

digest is thrown off from the input data,

xv. if the requested operation type is “Verify with Secret Value” or “Decrypt

and Verify with Secret Value”, the message digest at the end of the input

data (possibly decrypted in step xii.) is verified using the input hash

method and the hash secret value of the host user,

� there must exist a message digest at the end of the input data with

length equal to the output length of the input hash method, otherwise

“Authenticate/Verify Error” status code is returned,

� if the verification of the message digest is successful, the message

digest is thrown off from the input data,

xvi. finally, the authenticated, authenticated and encrypted, signed, signed and

encrypted, verified, or decrypted and verified data is returned as the output

of this offloader mechanism along with the “OK” status code.

4.1.6. Digital_Signature_Calculation Basic Offloader Mechanism

The steps of the reference algorithm to implement this offloader mechanism are:

i. if the requested operation type is “Sign”, the private signing key of the host

user is located in the security module storage using the identifier of the host

 103

user, public-key signing method and this method’s key size all of which are

provided in the input mechanism execution request message contents,

� if such a private key cannot be located in the SM storage, “Sign/Verify

Error” status code is returned as output,

ii. if the requested operation type is “Verify”, the public signing key

certificate of the remote user is located in the SM storage using the input

identifier of the remote user, public-key signing method and this method’s

key size,

� if such a public-key certificate cannot be located in the module storage,

“Sign/Verify Error” status code is returned as output,

iii. the global signing parameters of the host user are located in the SM storage

using the input identifier of the host user, public-key signing method and

this method’s key size,

� if the input public-key signing method is DSA and these parameters

cannot be located, “Sign/Verify Error” status code is returned,

iv. the located private signing key of the host user is first decrypted using

triple-DES in CBC mode with the storage master key and IV of the

module, and then its integrity is verified using its SHA-1 hash code,

� if an error occurs during the decryption or integrity verification of the

private signing key, “Sign/Verify Error” status code is returned,

v. afterwards, if the requested operation type is “Sign”, the input data is

signed using the input public-key signing method and with the private

signing key and global signing parameters of the host user to obtain the

signature of the input data, which is then appended to the input data,

� if the input public-key signing method is DSA and the private signing

key of the host user was not generated using her global signing

parameters, “Sign/Verify Error” status code is returned as output,

vi. if the requested operation type is “Verify”, the signature at the end of the

input data is verified using the input public-key signing method and with

the public signing key of the remote user contained in her located

certificate and with global signing parameters of the host user,

 104

� if the input public-key signing method is DSA and the public signing

key of the remote user was not generated using the global signing

parameters of the host user, “Sign/Verify Error” status code is

returned,

� if the input public-key signing method is DSA, there must exist a

signature at the end of the input data with 48 bytes length (required by

DSA),

� if the verification of the signature is successful, it is thrown off from

the input data,

vii. finally, the signed or verified data is returned as the output of this offloader

mechanism along with the “OK” status code,

The implementation of the DSA public-key digital signature method is provided

by the OpenSSL library.

4.2. Offloader Mechanism Access Controller Server Program

The offloader mechanism access controller server program was also coded in “C”

language and built linking with the GNU “C” library glibc, and the OpenSSL

library. The server program was, in addition, linked with the basic offloader

mechanisms dynamic library. The program is multi-threaded and consists of a

main program thread and dedicated threads for each host security server/host user

connection. The program uses the pthreads library, included in the glibc library, to

have the multi-threading functionality.

The main program thread

i. locates the storage master key and IV of the security module in the module

storage and reads them to memory,

ii. initializes the SSL context by

o setting the context cipher list to “NULL-SHA” for performing SSL

RSA key exchange with host security servers when connecting to the

 105

SM, and for protecting the integrity of the messages exchanged

between the SM and connected host security servers with SHA-1

hash method,

o loading the security module’s SSL public-key certificate into the

context to enable host security servers to identify the SM (peer

authentication) when connecting to the SM,

iii. waits for and accepts a TCP/IP connection from a host security server,

iv. tries to set up an SSL connection (“SSL_connect”) with the TCP/IP-

connected host security server,

� if the SSL public-key certificate of the host user (on behalf of who the

host security server will request offloader mechanism executions)

cannot be obtained by the SM during the SSL handshake to identify the

host user (peer authentication), the main program thread disconnects

the host security server from the module and resumes its execution

from step iii.,

� if the SSL public-key certificate of the host user, obtained during the

SSL handshake, is not signed by a trusted (accepted as trusted by the

security module) CA, the main program thread disconnects the host

security server from the SM and resumes its execution from step iii.,

v. extracts the user information of the host user from her SSL public-key

certificate, and searches in the user-role list of the module whether the host

user is a registered module user (access control to the security module),

� before the stored user-role list is searched, the integrity of the list is

verified by first decrypting the encrypted SHA-1 hash code at its end

using triple-DES in CBC mode with the storage master key and IV of

the SM, and then verifying the recovered hash code using the SHA-1

hash code of the list. If an error occurs during the integrity verification

of the user-role list, the main program thread finishes execution of the

server program,

� if the host user is not a registered module user, the main program

thread disconnects the host security server from the module and

 106

resumes its execution from step iii.,

vi. allocates and starts to run a dedicated thread for processing offloader

mechanism execution requests from the host security server/host user; and

passes to the dedicated thread user information of the host user,

vii. decides whether the quota of connections (it is determined as 64 after

performance tests) to the security module is filled up,

� if the quota of connections is filled up, the main program thread waits

to deallocate dedicated threads which have already finished their

execution,

viii. returns to step iii.

A dedicated thread

i. waits for and receives (blocking “SSL_read”) an offloader mechanism

execution request message from the SSL-connected host security server,

� if there is an error occurred during the “SSL_read” or the host security

server closed its SSL connection to the SM, the dedicated thread

disconnects the host security server from the SM and then finishes its

execution,

ii. decides which offloader mechanism is requested by the host security server

from the “Operation Type” field of the received mechanism execution

request message; and determines whether the host user is allowed to

request this offloader mechanism using her user information (access

control to offloader mechanisms),

� if the host user is not allowed to request this offloader mechanism,

“Access Control Error” status code is returned and the execution of the

dedicated thread resumes from step i.,

iii. calls the requested offloader mechanism passing the contents of the

mechanism execution request message and user information of the host

user as parameters (passing of the user information to the offloader

mechanism enables the mechanism to verify that the host user supplied her

identifier and noone else’s in the mechanism execution request message),

 107

iv. gets the output parameters returned by the executed offloader mechanism,

prepares an offloader mechanism execution response message from these

parameters, and sends (blocking “SSL_write”) this response message back

to the host security server,

� if there is an error occurred during the “SSL_write” or the host security

server closed its SSL connection to the SM, the dedicated thread

disconnects the host security server from the SM and then finishes its

execution,

v. returns to step i.

4.3. Communication Infrastructure - SSL Library

The OpenSSL 0.9.7d library is used to provide the implementation of the SSLv3

protocol. Also, the OpenSSL library provides base cryptography methods and

other auxiliary functions (e.g. PEM-formatted private key file read) required by

offloader mechanisms. Moreover, the tools and functions provided by the

OpenSSL library were used to generate all sample symmetric encryption keys,

IVs, private keys, public-key certificates, MAC secret keys, global public-key

parameters, hash secret values, storage master key and IV of the SM, SSL public-

key certificates etc.., needed for the implementation.

SSL RSA key exchange was used during the SSL handshake to connect a host

security server to the security module. The reason for this is that SSL RSA key

exchange does not involve time-consuming Diffie-Hellman session key

computation contrary to SSL fixed DH and ephemeral DH key exchange schemes.

During the SSL handshake, the security module sends its SSL (RSA) public-key

certificate, which contains its identity information and signed by a trusted CA, to

the host security server to enable the server to identify the SM; and also requests

from the host security server the SSL (RSA) public-key certificate of the host user,

containing her user information and signed by a trusted CA, to identify the host

 108

user. By this way, both the host security server/host user and the security module

verify each other’s identity.

For authentication and integrity-protection of the messages exchanged between the

security module and a host security server, SSLv3 MAC method was used with

SHA-1 hash method (with 160-bit output length [16]). The messages exchanged

are always authenticated and integrity-protected.

For encryption of the messages exchanged, the strongest symmetric encryption

method allowed by SSLv3, triple-DES with 168-bit key length [16], would be

used, but the basic offloader mechanisms implemented do not involve exchange of

secret keys or data between the SM and a host security server hence do not require

encrypted message exchange.

4.4. Embedded Linux OS

Qplus embedded Linux development toolkit was used to build an embedded Linux

OS that will run on the embedded SBC of the built security module. Both the

kernel and root filesystem of the built embedded Linux OS include only the

definitely needed features and libraries not to use up a large part of the storage

space of the embedded computer. Also, only the required kernel modules and

programs are configured to load and run at the startup of the OS to ensure that the

running OS has a small memory footprint on the embedded computer.

Some important features included in the built Linux kernel (version 2.4.17) are

mentioned below along with the reasons why they were included:

o since the main server program (offloader mechanism access controller) will

communicate with host security servers via TCP/IP protocol, built kernel

included the TCP/IP networking protocols and Unix domain sockets

implementation,

 109

o since the embedded computer has a Realtek®RTL8139D 10/100 Mbps PCI

Ethernet controller as its networking device, built Linux kernel included

network device support, Ethernet support and the driver for this Ethernet

controller,

o since cryptographic keys, parameters and other security-related data

belonging to host and remote users, and the security module internal data

(including its signed firmware) will be stored in the storage device of the

embedded computer, which is a Type I CompactFlash® Card working over

EIDE interface, built Linux kernel included ATA/(E)IDE/ATAPI low cost

mass storage units support and EIDE disk/cdrom/floppy support,

o since administrator users of the security module may transfer cryptographic

keys, parameters and other security-related data to/from the SM manually

via USB storage devices (e.g. flash disks), built Linux kernel included

support for hot-pluggable devices, USB support, Memory Technology

Device support (for flash chips and solid state devices), and Common Flash

Interface support (for detection of flash chips),

o loadable kernel module support is enabled in the built kernel to be able to

dynamically load kernel modules at runtime when they are actually needed,

o since the embedded SBC is a PC/104-plus CPU board having both PCI and

ISA buses, support for PCI and ISA bus hardware, and Plug and Play

support (for configuring ISA devices via software) are included,

o support for terminal devices (display and keyboard) is included together

with VGA text console support, to enable administrator users of the SM to

add, remove, modify kernel modules, programs or other files to/from the

OS manually from the console in text mode.

Some important software libraries and other features included in the built root

filesystem, which was formatted as an ext3 filesystem, are mentioned below:

o GNU “C” library, glibc 2.3.3, is included whose various libraries are used

by the OpenSSL library, main server program and basic offloader

mechanisms,

 110

o Basic “/etc” files and initialization scripts are included to enable

configuring the network interface and programs that will run at the startup

of the OS after the kernel is loaded,

o Busybox software package is included which contains a small version of

the bash shell “ash”, and various useful command-line utilities like

“insmod” for dynamically loading kernel modules, “chown” for adjusting

ownership of folders and files, “ifconfig” for configuring the network

interface, “rm”, “cp”, “vi”, “syslogd”, “mount”, “rsync”, “ping”, etc..

o Tinylogin software package is included which contains command-line

utilities “adduser”, “addgroup”, “deluser”, “delgroup” for adding and

deleting users and groups, a small login program “login”, a utility for

changing user passwords “passwd”, “su”, etc..

o Procps software package is included which contains “ps”, “top”, “kill” and

other command-line tools for listing, killing and adjusting priorities of

running processes. The “ps” tool was also used in performance testing of

the built security module,

o Lilo bootloader is included for loading the Linux OS when the security

module is booted,

o Support for ISO 9660 CD-ROM filesystem is included which will enable

copying of files in a CD to the security module.

The implemented main server program and basic offloader mechanisms, generated

sample cryptographic keys, parameters and public-key certificates, and the

OpenSSL library were all copied onto the root filesystem after it was customized.

Then, an initialization script was created in the “/etc/rc.d/init.d” directory of the

root filesystem to run the main server program as a system daemon at the startup

of the OS after the kernel is loaded. Finally, the built kernel image and root

filesystem were transferred to the embedded SBC using the Etherboot protocol,

which makes use of the DHCP and TFTP protocols [31], via the Ethernet.

 111

4.5. Embedded Computer

The embedded SBC chosen for the implementation is the PCM-3370F PC/104-

plus CPU board manufactured by Advantech Corporation. Refer to the related

section in the “Literature Survey” chapter for its detailed specifications. Some

important features of the SBC that led the writer to choose it are mentioned below.

First of all, PC/104 has been the most commonly used embedded board standard

for years, and PC/104 boards have small size (96 x 115 mm) considering their low

cost. Also, most PC/104 boards are made with standard desktop and laptop

chipsets, hence they work fine under Linux especially without the need to write

device drivers. [32]

Since the embedded computer is a PC/104-plus board, it has a PCI bus, in addition

to the old ISA bus, that supports faster data transfers to/from peripheral devices

and new easy-to-configure peripheral devices. [32]

More importantly, the embedded board has a 10/100 Mbps PCI Ethernet

controller, which implies more or less speedy communication and robust data

transfers under TCP/IP between the network-attached security module and host

security servers. Also, the embedded board does not have any special hardware for

accelerating certain cryptography operations, therefore it conforms to the aim of

building a software-based security module.

The SBC has a sufficiently powerful Celeron processor to perform complex

cryptography operations (like RSA) fast. In addition, a 256 MB SDRAM memory

was purchased and plugged on the board. They together are adequate for both

running the Linux kernel smoothly and handling many connection and offloader

mechanism execution requests from a number of clients simultaneously.

 112

A 1 GB Type I CFC was purchased and plugged on the embedded board, that

provides storage with sufficient size for storing cryptographic keys, parameters

and other security-related data of a number of host and remote users. Assuming a

user has cryptographic keys, parameters and other security-related data, which

have on average the size of 64 1024-bit public keys; those of more than 100.000

users can be stored on the CFC.

Moreover, the SBC has two USB ports which enable an administrator host user to

transfer cryptographic keys, parameters and other security-related data, programs

or other files to/from the security module manually via USB flash disks.

4.6. Implementation Issues About Client-side API Functions

All client-side API functions were developed for Linux OS, which requires host

security servers to use Linux OS to call these functions. They were coded in “C”

language and built linking with glibc (version 2.3.3) library and OpenSSL (version

0.9.7d) library, which requires host security servers to have both of these libraries

with the same or higher versions installed.

Client-side API functions were built as a ‘dynamic’ library to enable many client

programs of a host security server share a single instance of the client-side API

functions library and to be able to upgrade client-side API functions without the

need to rebuild the client programs linked with the client-side API functions

library.

Two client-side API functions were created for each basic offloader mechanism:

one is “Send_the name of the basic offloader mechanism” and the other is

“Get_the name of the basic offloader mechanism”. Apart from these, two

important client-side API functions “Connect_to_SM” and “Disconnect_from_

SM” were created.

 113

“Connect_to_SM” client-side API function can be called by a client program to

connect to a security module with two input parameters:

− local directory path for the host user’s SSL public-key certificate (which

will be sent to the SM during the SSL handshake),

− IP address of the security module to be connected to.

“Disconnect_from_SM” client-side API function can be called by a client program

to cleanly disconnect from a security module with an input parameter which points

to the SSL connection data structure returned by the “Connect_to_SM” client-side

API function called before by the client program to connect to this security

module.

A “Send_the name of the basic offloader mechanism” client-side API function can

be called by a client program to prepare and send (“SSL_write”) to the security

module the offloader mechanism execution request message to request execution

of the related basic offloader mechanism. Input parameters to this client-side API

function are the same as the fields of the offloader mechanism execution request

message sent to the SM by calling this function. The “SSL_write” call in this

function is non-blocking, preventing the client program from waiting idly for the

security module to finish its processing and accept the “SSL_write”.

A “Get_the name of the basic offloader mechanism” client-side API function can

be called by a client program to get (“SSL_read”) and process the offloader

mechanism execution response message returned by the security module as a result

of executing the related basic offloader mechanism. Output parameters of this

client-side API function are the same as the fields of the offloader mechanism

execution response message received from the SM by calling this function. The

“SSL_read” call in this function is also non-blocking, which prevents the client

program from waiting idly for the security module to finish its processing of the

requested basic offloader mechanism and send the response message.

 114

4.7. Performance Tests

Conventionally, four parameters are considered more important than others in

evaluating the performance of security modules. First one is the number of

executions of a symmetric encryption method, usually DES and maybe AES, by

the security module per second. Second one is similar but concerns the number of

executions of a public-key signing method, usually RSA, by the security module

per second. Third parameter is the amount of memory space used by the software

of the security module at runtime. Similarly, last parameter is the percentage of

CPU power consumed by the SM software at runtime. A less important

performance parameter concerns the amount of disk space used up by the SM

software that should be small enough for the SM software to run directly from the

local disk of the module.

Both the security architecture and the accompanying communications protocol are

designed considering these performance parameters. Simple, easy-to-process, yet

sufficiently inclusive communications protocol helps increase number of

executions of any offloader mechanism, including the ones for symmetric

encryption and public-key signing, by the security module per second. It also

contributes to reducing the general memory space usage and CPU power

consumption of the security module, and to fast serving of the requests.

Different methods were used for measuring the mentioned four performance

parameters. To estimate the number of executions of DES and AES symmetric

encryption operations by the security module per second, a client program was

designed which:

i. records the current time after first achieving connection to the SM,

ii. requests execution of the “Symmetric_Encryption_Decryption” basic

offloader mechanism from the SM by calling the “Send_Symmetric_

Encryption_Decryption” client-side API function with the input encryption

method parameter set to DES or AES, encryption mode parameter set to

 115

CBC, encryption method key length parameter set to 192 for AES, and

each time with varying lengths of input data to be encrypted: 20, 100, 200,

500, 1000-bytes,

� if the security module is busy and cannot handle the mechanism

execution request, the program requests execution of the mechanism

again,

iii. tries to get the result of the requested basic offloader mechanism by calling

the “Get_Symmetric_Encryption_Decryption” client-side API function,

� if the security module is busy with processing of the requested

mechanism and cannot return the result, the program tries to get the

result again,

� if the returned result indicates that an error occurred during the

execution of the offloader mechanism, the client program terminates,

iv. the number of successfully completed “Symmetric_Encryption_

Decryption” basic offloader mechanism executions is increased by one,

v. takes the current time and subtracts it from the recorded starting time to

determine if 10 seconds have just passed since the starting time of

observation,

� if 10 seconds have not yet passed since the starting time, the execution

of the program resumes from step ii.,

vi. calculates the number of executions of the “Symmetric_Encryption_

Decryption” basic offloader mechanism per second approximately by

dividing the total number of successfully completed mechanism executions

by 10,

vii. finally, disconnects from the security module.

To estimate the number of executions of RSA public-key signing operation by the

security module per second, the same client program described above was used

with minor modifications. The execution of the “Asymmetric_Encryption_

Decryption” basic offloader mechanism is requested from the SM by calling the

“Send_Asymmetric_Encryption_ Decryption” client-side API function with the

 116

input public-key signing method parameter set to RSA, public-key signing method

key length parameter set to 1024 or 2048, and each time with varying lengths of

input data to be signed: 20, 50, 100-bytes for 1024-bit key, and 20, 100, 200-bytes

for 2048-bit key. Also, the result of the executed offloader mechanism is obtained

by calling the “Get_Asymmetric_Encryption_ Decryption” client-side API

function.

For each of these two performance parameters, the measurements were performed

each time with an increasing number of simultaneous client connections to the

security module pushing the limits of the SM. Each connected client runs the same

client program above.

The observation time is determined as 10 seconds (instead of 1) to enable more

accurate measurements by making the difference between the actual observation

time (e.g. 10.05 sec.) and observation time (10 sec.) negligible.

To measure both the amount of memory space used and the percentage of CPU

power consumed by the module software (Linux OS and application software),

two programs, which run at the client side, and a program, which run at the

module side, were developed. The cryptography operation, which uses the most

amount of memory space and consumes the most percentage of CPU power, is

after some experiments, decided to be public-key signing and then encryption with

RSA.

The structure of the first client-side program looks like the structure of the client

program used for estimating the first two performance parameters. This program

repeatedly requests execution of the “Asymmetric_Encryption_Decryption” basic

offloader mechanism from the SM by calling the “Send_Asymmetric_Encryption_

Decryption” client-side API function with the input operation type parameter set to

“Sign and Encrypt”, public-key signing method and public-key encryption method

parameters set to RSA, public-key signing method key length set to 1024, public-

 117

key encryption method key length set to 2048, and with a 100-byte length input

data to be signed and then encrypted. Also, the observation time is determined as 5

seconds, because this is long enough for the program, running at the module side,

to measure memory usage and CPU power utilization values of the module

software sufficient number of times.

The other client-side program is executed in parallel with the client-side program

described above and:

i. connects to the program running at the module side via TCP/IP,

ii. reads (blocking read) physical and virtual memory space usage amounts

and CPU power utilization percents of the OS and application software

(main server program) of the security module separately, which are

measured and sent by the module-side program,

� if the module-side program has closed the connection, the program

disconnects from the SM and finishes its execution,

iii. updates maximum values of physical and virtual memory space usage

amounts and CPU power utilization percents of the OS and application

software separately, if the read amounts/percents are greater than

maximum values.

The program running at the module side is executed in parallel with the main

server program and:

i. waits for and accepts TCP/IP connection from the above reader client-side

program,

ii. gathers physical (non-swapped) and virtual memory space usage amounts

and CPU power utilization percentages information of the running OS and

application software separately by using the ‘ps’ utility provided by the

embedded Linux,

iii. transmits them (blocking write) to the reader client-side program via the

TCP/IP connection,

iv. determines if all dedicated threads, created by the main server program for

 118

each connected client, have finished their executions,

� if a dedicated thread still continues its execution, the execution of the

program resumes from step ii.,

v. disconnects from the reader client-side program and finishes its execution.

To determine if all dedicated threads, created by the main server program for each

connected client, have finished their executions, Linux shared memory

implementation is used. When a dedicated thread starts its execution, it sets its part

in the shared memory created by the module-side program described above. When

a dedicated thread finishes its execution, it unsets its part in the shared memory.

The module-side program scans all parts of the shared memory in step iv. above, if

it finds a part that is set, it decides that a dedicated thread still continues its

execution.

Also for these two performance parameters, the measurements were performed

each time with an increasing number of simultaneous client connections to the

security module pushing its limits. Each connected client runs the same client

program, which is the first client-side program.

For all performance parameters, to ensure reliability of measurements, each

measurement was run three times and the resulting values from three runs were

averaged.

As the last performance parameter, the amounts of disk space used up by the Linux

kernel and root filesystem deployed to the SM were observed from the Qplus

toolkit.

In the figures below, the results of measurements for each performance parameter,

for 100-bytes of input data, are shown. Same results are also listed in tables in

Appendix B. The figures showing the measurements results for other lengths (20,

50, 200, 500, 1000-bytes) of input data for the first two performance parameters

 119

are given in Appendix B. Table 1, below the figures, lists disk space usage

amounts for the kernel and root filesystem of the built SM.

Figure 10 Performance Measurements Results - DES Symmetric Encryption, 100-

bytes of Input Data

 120

Figure 11 Performance Measurements Results - AES Symmetric Encryption, 100-

bytes of Input Data

Figure 12 Performance Measurements Results - RSA 1024-bit Signing, 100-bytes

 of Input Data

 121

Figure 13 Performance Measurements Results - RSA 2048-bit Signing, 100-bytes

of Input Data

Figure 14 Performance Measurements Results - Physical Memory Space Usage by

 the OS

 122

Figure 15 Performance Measurements Results - Physical Memory Space Usage by

 the Application Software

Figure 16 Performance Measurements Results - Physical Memory Space Usage

 Sum

 123

Figure 17 Performance Measurements Results - Virtual Memory Space Usage by

 the OS

Figure 18 Performance Measurements Results - Virtual Memory Space Usage by

 the Application Software

 124

Figure 19 Performance Measurements Results - Virtual Memory Space Usage

 Sum

Figure 20 Performance Measurements Results - CPU Power Consumption by the

 OS

 125

Figure 21 Performance Measurements Results - CPU Power Consumption by the

 Application Software

Figure 22 Performance Measurements Results - CPU Power Consumption Sum

 126

Table 1 Performance Measurements Results - Disk Space Usage

Kernel Root

Filesystem
Sum Amount of disk space used by

the Linux kernel and root
filesystem, and their sum 634.2 KB 10.8 MB 11.4 MB

As expected and can be seen in figures 10, 11, 12 and 13 above, as the number of

client connections to the security module is increased, both the number of

executions of DES and AES symmetric encryption operations by the SM per

second and that of RSA (either 1024 or 2048-bit key) public-key signing operation

by the SM per second increase. This is probably because a CPU-intensive part of

the offloader mechanism executed in one dedicated thread can be performed

concurrently with a memory-intensive part of the offloader mechanism executed in

another dedicated thread. When the number of client connections to the SM is

increased beyond a certain approximate threshold, 128 (for RSA-2048 this

threshold is 32), values of all these performance parameters start to decrease,

probably because a large part of the available processing power of the SM is used

for management (scheduling, switching, etc..) of many dedicated threads.

Therefore, it can be said that maximum number of executions of

o DES symmetric encryption operation by the SM per second is 273.5,

o AES-192 symmetric encryption operation by the SM per second is 269.4,

o RSA-1024 public-key signing operation by the SM per second is 74.6,

o RSA-2048 public-key signing operation by the SM per second is 14.5.

As expected and can be seen in figures 15 and 21 above, as the number of client

connections to the security module is increased, both the amount of memory space

usage and percentage of CPU power consumption by the application software

increase. When the number of client connections is increased beyond a certain

threshold, 64, total physical memory space usage amount and CPU power

consumption percentage by the OS and application software together approaches

256 MB and 100 percent respectively, which could be hazardous for continuous

 127

proper operation of the SM. Therefore, 64 is determined as the maximum

allowable number of simultaneous client connections to the security module.

Also, as expected and can be seen in figures in Appendix B, as the length of the

input data is increased, both the number of executions of DES and AES symmetric

encryption operations by the SM per second and that of RSA (either 1024 or 2048-

bit key) public-key signing operation by the SM per second decrease. However,

these decreases are small: for example with 128 simultaneous client connections,

the SM executes approximately 274 DES operations and 271 AES operations per

second for 20-bytes of input data (see figures 23 and 24) and executes

approximately 268 DES operations and 264 AES operations per second for 1000-

bytes of input data (see figures 29 and 30). Maximum decrease amounts are

between 6 and 7. For RSA signing operations, these decrease amounts are very

small, even smaller than 1. These suggest that increasing of the length of input

data to an operation (either symmetric encryption or public-key signing) to be

executed does not greatly increase SM CPU power consumption of the operation.

Since PKCS#1 v1.5 padding is used with RSA public-key signing operation, the

length of input data cannot be greater than 116 bytes for 1024-bit RSA signing key

and cannot be greater than 244 bytes for 2048-bit RSA signing key (refer to

section 4.1.2. Asymmetric_Encryption_Decryption Basic Offloader Mechanism).

For DES and AES symmetric encryption operations, if the length of the input data

is increased above 1350 bytes, number of executions of these operations by the

SM per second increases abnormally beyond 2500 operations. This is probably

caused by the limited (embedded) processing capability of the SM, and not

observed in the desktop computer using the same application source code and

software libraries.

The results of the performance tests seem satisfactory for a security module that is

software-based and network-attached instead of a hardware-based coprocessor

add-in card. The security module built in this thesis work can perform upto 75

 128

1024-bit RSA signing operations per second only by relying on its 650 MHz Intel

Celeron processor. For example, a famous hardware-based coprocessor SM, IBM

PCI Cryptographic Coprocessor 4758, supports upto 175 1024-bit RSA private key

operations per second [6]. From two famous hardware-based but network-attached

SMs, nCipher netHSM performs upto 2000 RSA signing operations per second

[12], and SafeNet Luna SA performs over 1200 1024-bit RSA decrypt operations

per second [15]. Also, a renowned hardware-based coprocessor SM, SafeNet Luna

PCI, supports over 1200 1024-bit RSA operations per second in its low-end

models [14]. Though it is not cited in the literature any information about the types

of CPUs and chipsets used in these commercial security modules, they are

probably advanced and powerful microprocessors. If the security module built in

this work would have one of the recently available powerful CPUs, which has a

higher clock frequency (say around 2 GHz) and front-side bus speed and is a quad-

core microprocessor with a multiprocessing capability, for example Intel Xeon

“Clovertown” series, maximum number of RSA signing operations per second

may increase upto 12 times its current value (i.e. near 900) linearly though still

without having any cryptographic accelerator hardware.

 129

CHAPTER 5

SUMMARY CONCLUSION

The aim of this thesis work as elaborated in the “Proposed Security Architecture”

chapter: to design an extensive, modular and extendable (i.e. open) security

architecture whose desired parts could be realized even on a software-based

security module, is reached as more or less proven by the results of the

performance tests done on the built security module.

The most powerful aspect of the designed architecture, that mainly enables the

architecture to be feasible to realize on a software-based security module, is its

easy-to-process communications protocol, which provides access to the offloader

mechanisms, yet covering as many options for these mechanisms as possible.

Another powerful aspect of the architecture, which also enables the architecture to

have the mentioned feasibility, is its software-only protection method which

provides high security, integrity and confidentiality for stored cryptographic keys,

parameters and other secret data even if the security module (realizing the

designed architecture) does not have any hardware-based protection or tamper-

response mechanism for stored data.

The trust relationship between the security module and a host security server,

which wants to connect to it, i.e. each of them identifying that it is connecting with

the right party (peer authentication), is ensured by SSL certificate exchange hence

depends on the SSL protocol. A man-in-the-middle attack is theoretically not

possible during connecting to the SM, because SSL RSA key exchange is used and

the SSL server (SM) requires the client (host security server) to send its SSL

certificate during the SSL handshake. However, breaking or circumventing of the

SSL protocol, which can be defined as the “root of trust” here, and its certificate-

 130

based authentication mechanism may give an attacker administrator user access to

the SM. This may be the weakest link of the designed security architecture.

The types of attacks on the SSL protocol cited in the literature can be examined in

two groups: man-in-the-middle attacks and cryptographic attacks. Man-in-the-

middle attacks in the literature are usually about attacking client machines by

impersonating legitimate server sites which use SSL (like banking or e-commerce

sites). However, the opposite of this is also possible, i.e. a client (a host security

server/user in this work) can attack an SSL-capable server (the SM) by

impersonating a legitimate client.

As an example, an attacker can easily create a self-signed SSL certificate, which

looks plausible for the client being spoofed, and send it to the server (SM) for

identification by the SM [34]. To mitigate this attack, the SM should not accept

self-signed identity certificates from clients. This option is enabled by default in

SSLv3.

Or, an attacker may have obtained an SSL certificate (belonging to anyone) signed

by a CA accepted as trusted by the SM and the private key corresponding to this

certificate, and send it to the SM for identification [34]. To protect against this, the

SM should check if the common name field (plus other required fields) of the

received client certificate matches the name of a registered host user. The SM built

in this work performs this, which is termed in the work as access control to the

SM.

Alternatively, an attacker may somehow physically access to the SM, load her own

trusted root CA certificate to the SM, and later remotely connect to the SM by

sending its identity certificate which is signed by this (virtual) root CA and whose

common name field matches the name of any registered host user [34]. To protect

against this attack, physical/manual access to the SM should be restricted to only

administrator users and the OS of the SM should provide a login mechanism from

 131

terminal for administrator users. It should be noted that neither of the three attacks

mentioned above stem from a deficiency in the SSL protocol, rather they stem

from not properly implemented or configured applications using the SSL protocol.

A famous and recently identified man-in-the-middle attack on applications using

SSL is MD5 chosen-prefix attack, which exploits a weakness in the MD5 hash

function that allows construction of different messages with the same MD5 hash,

i.e. “MD5 collision”. An attacker may request and get a legitimate certificate from

a trusted CA that uses MD5 function to generate signature of the certificates. Then,

the attacker creates a second forged certificate for a virtual intermediate CA,

whose MD5 hash hence the signature is the same as that of the legitimate

certificate. Lastly, the attacker uses this forged certificate to issue a forged identity

certificate for any host user and presents this identity certificate to the SM together

with the intermediate CA certificate for identification by the SM. The SM will

verify the signatures of both of these forged certificates and give the attacker

access to the SM. Here, the vulnerability is not in the SSL protocol, but in the

Public Key Infrastructure. An effective countermeasure is to stop using MD5 for

the creation of certificates altogether. [35]

The cryptographic attacks on SSL, cited in the literature, are usually timing-based

attacks related to vulnerabilities in cryptographic method implementations of the

OpenSSL library. The first attack takes advantage of the padding used in CBC

mode block encryption in an SSL conversation. The versions of OpenSSL before

0.9.6i finishes processing of a data block early when it detects an error in the

padding and this creates a measurable time difference that can be used to extract

the plaintext from an encrypted block. OpenSSL team fixes this attack by verifying

other aspects of the received data block even if its padding is wrong. [36] In this

work OpenSSL version 0.9.7d was used in the implementation phase, so this attack

is not possible. Even if this attack would be possible, the attacker could not view

the keys or passwords sent to the SM, because they are sent in the format in which

they are stored in the SM, i.e. in authenticated and encrypted form.

 132

A second attack takes advantage of the PKCS padding used in RSA encryption of

the SSL pre-master secret. Older OpenSSL implementations reveal information

(either an error message or an early finish time difference) about whether the pre-

master secret is decrypted to a valid PKCS header, and this may enable an attacker

to guess the SSL RSA private key of the SSL server (the SM) and hence obtain

session keys for all subsequent SSL sessions between the SM and host users. A

similar attack builds on the information (time difference or error message)

revealed by an SSL server when validating the SSL version number contained in

the first two bytes of an SSL payload. This may enable an attacker to guess the

session keys for the SSL session. The OpenSSL team published patches for these

two vulnerabilities in version 0.9.6j. [36] Hence, these attacks are not possible for

the implementation in this work.

Another timing-based attack exploits slight differences in the time that it takes to

decrypt the data/pre-master secret with the SSL server's RSA private decryption

key, when the value of the data is varied. This attack works best in a local network,

but is possible over any good network; it takes an attacker around a million queries

to extract the SSL RSA private key of the server (SM). The most robust solution to

this problem is "RSA blinding": the server multiplies the data by a random number

before RSA decryption and reverses this after decryption, so any timing variations

for the decryption operation will depend on this random number unknown to the

attacker. RSA blinding is enabled by default in versions of OpenSSL starting from

0.9.7b. [36] Therefore, this attack is not possible for the SM built in this work,

which uses OpenSSL 0.9.7d.

As can be deduced from all these discussions and other sources in the literature,

the SSLv3 protocol is theoretically very secure and more secure than most of the

similar protocols providing application or transport layer security. However, there

may exist vulnerabilities in practice of its implementation, but the most commonly

used SSL implementation, OpenSSL, continuously improves its code to remove

the vulnerabilities. Rather than using/trusting the SSLv3 protocol, a new protocol

 133

may be designed from scratch that enables remote authenticated access and secure

data transfer to the SM by host security servers/users. However, this could be a

duplication of most of the efforts made in designing the SSL protocol and it cannot

be guaranteed that the new protocol will not have any vulnerabilities for a long

period of time.

A more reasonable way to strengthen the weakest link may consider utilizing the

idea of threshold cryptography: to protect information or computation by fault-

tolerantly distributing it among a cluster of cooperating computers [37]. For

example, the SSL handshake, which involves certificate exchange-based

authentication of the peers (the SM and a host user) and is a highly sensitive

operation, can be performed by several cooperating SMs so that an attacker would

need to corrupt authentication mechanisms of a threshold number of SMs to gain

administrator user access. Similarly, the task of SSL authenticating and encrypting

the SSL payloads transferred between the SM and host security servers can also be

divided among several cooperating SMs to improve its security. Fault-tolerant,

secure, efficient protocols will be required to communicate the cooperating SMs

[37]. In the same manner, the pieces of the SSL RSA private key or SSL session

keys of the SM can be distributed among several cooperating SMs to prevent

reveal/reconstruction of these keys to/by an attacker if the attacker has not invaded

a threshold number of cooperating SMs.

Another type of attack to the designed architecture, which does not stem from

relying on the SSL protocol or its certain implementation and may happen in any

PKI-based system, concerns the case if the SSL private key of a host user

corresponding to its SSL certificate, used to connect to the SM, is stolen by an

attacker. This would give the attacker illegitimate host user access to the SM, and

the attacker may access to the cryptographic keys and parameters of the host user

stored in the SM via offloader mechanism execution requests. However,

possibility of this attack is removed for administrational operations to be

performed on the SM. Since administrational offloader mechanisms require at

 134

least two administrator host users have connected to the SM to execute, stealing of

the SSL private key of just one administrator user by an attacker cannot give the

attacker administrator user access to the SM. This can also be considered a certain

practice of threshold cryptography, and by this way the architecture eliminates

single-point-of-failure over an administrator user. Moreover, an attacker must

obtain module code signing private keys of at least two administrator users to load

a new signed firmware to the security module.

Since the security architecture designed is intended to be realized on an embedded

SBC and these computers usually have limited processing capability and memory

space compared to laptops or server machines, the security module can easily be

short of processing power or memory when fulfilling many offloader mechanism

execution and connection requests from a number of clients. Therefore, the SM

should be able to delegate/redirect some of its incoming offloader mechanism

execution and connection requests to other security modules on the same local

network. Also, when the SM cannot find in its storage cryptographic keys and

parameters of a host user required to fulfill her offloader mechanism execution

request, it should be able to probe other security modules on the same local

network for these keys and parameters. Consequently, an important improvement

to the designed security architecture may be the addition of new offloader

mechanisms and related communications protocol messages needed for

communicating several security modules on the same local network.

The security architecture applies role-based authorization of connected host

security servers/users to control their access to offloader mechanisms. Currently,

only two roles are defined: “User” and “Administrator”. As another improvement

to the architecture, these roles could be extended to include others such as “SET

Merchant”, “SET Payment Gateway”, “Kerberos Authentication Server”, etc.. By

this way, for instance a host user who is a SET merchant could not access the

offloader mechanisms intended to be requested by SET payment gateways. In the

current state of the architecture, although such an access is possible for this host

 135

user, who is the SET merchant, she cannot access a cryptographic key or

parameter of any SET payment gateway stored in the module and hence cannot

execute these offloader mechanisms without errors. The communications protocol

by design cannot allow a host security server/user, requesting an offloader

mechanism, to access cryptographic keys and parameters of any other host security

server/user stored in the SM.

As stated in previous chapters, an administrator user can also manually login to the

security module and transfer secret keys and parameters or SM internal data files

to the SM via USB storage devices. In this case, authentication of the administrator

user by the SM and secure transfer of the mentioned files to the SM should be

guaranteed by the OS of the built security module. For instance, the OS of the SM

may provide a highly secure login mechanism and may check for the existence of

any unwanted software in the USB storage device plugged to the SM. However,

this issue is completely related with implementation and not in the scope of the

designed security architecture, since the architecture is independent of any OS or

hardware that could be used in implementation.

One of two further works may be addition of new offloader mechanisms and

related data, implementing operations of other network security protocols (like

S/MIME and IPSec), to the designed architecture owing to the fact that the

architecture is extendable. The other work may be providing reference

implementations/algorithms for existing offloader mechanisms other than the

implemented basic offloader mechanisms.

 136

REFERENCES

[1] Hardware Security Module - Wikipedia the free encyclopedia,
http://en.wikipedia.org/w/index.php?title=Hardware_Security_Module&oldid=218
886319, last visited on 12 June 2008

[2] CREN - Hardware Security Modules,
http://www.cren.net/crenca/onepagers/hsm2.html, last visited on 14 July 2008

[3] William Stallings, Network Security Essentials: applications and standards,
Prentice Hall, 2000

[4] Peter Gutmann - University of Auckland New Zealand, An Open-source
Cryptographic Coprocessor, August 2000

[5] IBM PCI Cryptographic Coprocessor - CCA support, http://www-
03.ibm.com/security/cryptocards/pcicc/overcca.shtml, last visited on 6 April 2008

[6] IBM PCI Cryptographic Coprocessor - Product Summary, http://www-
03.ibm.com/security/cryptocards/pcicc/overproduct.shtml, last visited on 6 April
2008

[7] IBM 4764 product and PCIXCC feature overview, http://www-
03.ibm.com/security/cryptocards/pcixcc/overview.shtml, last visited on 7 April
2008

[8] nCIPHER Corporation, nCIPHER SECURITY WORLD WHITE PAPER,
April 2001

[9] IBM Corporation, CCA Basic Services Reference and Guide for the IBM 4758
PCI and IBM 4764 PCI-X Cryptographic Coprocessors, July 2006

[10] nCIPHER Corporation, SECURE EXECUTION ENGINE WHITE PAPER,
April 2001

 137

[11] Cryptographic Hardware Platform - nCipher (miniHSM),
http://www.ncipher.com/cryptographic_hardware/hardware_security_modules/72/
minihsm, last visited on 10 May 2008

[12] Cryptographic Hardware Platform - nCipher (netHSM),
http://www.ncipher.com/cryptographic_hardware/hardware_security_modules/10/
nethsm, last visited on 10 May 2008

[13] nCIPHER Corporation, NCIPHER netHSM TECHNICAL ARCHITECTURE
- WHITE PAPER, August 2006

[14] Luna PCI, http://www.safenet-inc.com/products/pki/lunaPCI.asp, last visited
on 12 May 2008

[15] Luna SA, http://www.safenet-inc.com/products/pki/lunaSA.asp, last visited
on 12 May 2008

[16] William Stallings, Cryptography and network security: principles and
practice, Prentice Hall, 2nd edition 1999

[17] Advanced Encryption Standard - Wikipedia the free encyclopedia,
http://en.wikipedia.org/w/index.php?title=Advanced_Encryption_Standard&oldid
=250648121, last visited on 9 November 2008

[18] C. Neuman - USC-ISI, T. Yu - MIT, S. Hartman - MIT, K. Raeburn - MIT,
The Kerberos Network Authentication Service (V5) - Request for Comments:
4120, Network Working Group - The Internet Society, July 2005

[19] R. Housley - RSA Laboratories, W. Polk - NIST, W. Ford - VeriSign, D. Solo
- Citigroup, Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile - Request for Comments: 3280, Network Working
Group - The Internet Society, April 2002

[20] J. Schaad - Soaring Hawk Consulting, Internet X.509 Public Key
Infrastructure Certificate Request Message Format (CRMF) - Request for
Comments: 4211, Network Working Group - The Internet Society, September
2005

 138

[21] Alan O. Freier - Netscape Communications, Philip Karlton - Netscape
Communications, Paul C. Kocher - Independent Consultant, The SSL Protocol
Version 3.0 - Internet Draft, Transport Layer Security Working Group - Internet
Engineering Task Force (IETF), November 1996

[22] SET Writing Team, SET Secure Electronic Transaction Specification Book 1:
Business Description, MasterCard and VISA, Version 1.0 May 1997

[23] SET Writing Team, SET Secure Electronic Transaction Specification Book 3:
Formal Protocol Definition, MasterCard and VISA, Version 1.0 May 1997

[24] Simplifying Embedded Linux Development with Graphical Tools,
http://linuxdevices.com/articles/AT4574262276.html, last visited on 16 June 2008

[25] Using Linux in Embedded Systems and Smart Devices,
http://www.linuxdevices.com/articles/AT3155773172.html, last visited on 16 June
2008

[26] Embedded Linux Distributions Quick Reference Guide (Part 2),
http://www.linuxdevices.com/articles/AT9952405558.html, last visited on 24 June
2008

[27] Embedded Linux Distributions Quick Reference Guide (Part 3),
http://www.linuxdevices.com/articles/AT4525882120.html, last visited on 24 June
2008

[28] Creating embedded Linux filesystems with graphical tools,
http://linuxdevices.com/articles/AT3617019494.html, last visited on 25 June 2008

[29] Migrating to Linux kernel 2.6 -- Part 1: Customizing a 2.6-based kernel,
http://linuxdevices.com/articles/AT3855888078.html, last visited on 25 June 2008

[30] A developer's review of Qplus - an open source embedded Linux toolkit,
http://www.linuxdevices.com/articles/AT5640843706.html, last visited on 26 June
2008

 139

[31] ETRI (Electronics and Telecommunications Research Institute - Korea),
Qplus-P Target Builder User’s Guide, Version 1.2 December 2002

[32] PC/104 Embedded Systems FAQ, EBX, Linux, Real Time, data acquisition,
http://www.controlled.com/pc104faq/, last visited on 4 April 2008

[33] Advantech Corporation Limited, PCM-3370 Data Sheet, February 2007

[34] Peter Burkholder, SSL Man-in-the-Middle Attacks, SANS Institute InfoSec
Reading Room, Version 2.0 February 2002

[35] MD5 considered harmful today, http://www.win.tue.nl/hashclash/rogue-ca/,
last visited on 21 May 2009

[36] Recent Attacks against OpenSSL likely to be applicable to other SSL
implementations - Netcraft,
http://news.netcraft.com/archives/2003/04/21/recent_attacks_against_openssl_likel
y_to_be_applicable_to_other_ssl_implementations.html, last visited on 22 May
2009

[37] CIS: Threshold Cryptography, http://groups.csail.mit.edu/cis/cis-
threshold.html, last visited on 23 May 2009

 140

APPENDIX A

COMMUNICATIONS PROTOCOL MESSAGE FORMATS

In the tables below, the fields of offloader mechanism execution request and

response messages for basic and administrational offloader mechanisms are given

with their possible values and explanations.

 141

Table 2 Symmetric_Encryption_Decryption Offloader Mechanism Execution

 Request Message

Fields Operation

Type
Encryption
Method

Encryption
Mode

Unit of Transmission

Explanation Encrypt
Decrypt

DES
TDES
BlowFish
RC5
CAST-128
RC2
RC4
AES
IDEA

ECB
CBC (with
PKCS
padding)
CFB
OFB
PCBC

Present if encryption
mode is CFB or OFB.
It is smaller than or
equal to the block
length of the
encryption method
[16].

Fields Key Length Block Length Number of Rounds
Explanation Refers to the key

length of the
encryption
method.

Refers to the
block length of
the encryption
method.

Refers to the number of
rounds of the
encryption method.

Fields IDHost User IDRemote User Input Data
Explanation Identifier of the host

user on behalf of who
the host security
server requests
execution of this
offloader mechanism.

Identifier of the
remote user with
whom the host user is
communicating and
shares its symmetric
key and IV.

Input data to be
encrypted or
decrypted.

 142

Table 3 Symmetric_Encryption_Decryption Offloader Mechanism Execution

 Response Message

Fields Status Output Data
Explanation OK

Internal Error
Encrypt/Decrypt Error

 143

Table 4 Asymmetric_Encryption_Decryption Offloader Mechanism Execution

 Request Message

Fields Operation Type Encryption Method
Explanation Encrypt

Sign
Sign and Encrypt
Decrypt
Verify
Decrypt and Verify

RSA
ECC
ElGamal
Present if the operation type includes
“Encrypt” or “Decrypt”.

Fields Encryption Key Size Signing Method
Explanation Present if the operation type

includes “Encrypt” or “Decrypt”.
Key size of the public-key
encryption method.
For RSA: 512, 1024, 2048, 3072,
4096 bits

RSA
Present if the operation type
includes “Sign” or “Verify”.

Fields Signing Key Size IDHost User
Explanation Present if the operation type

includes “Sign” or
“Verify”.
Key size of the public-key
signing method.

Identifier of the host user on
behalf of who the host security
server requests execution of this
mechanism.
Present if the operation type
includes “Sign” or “Decrypt”.

Fields IDRemote User Input Data
Explanation Identifier of the remote user with

who the host user is
communicating.
Present if the operation type
includes “Encrypt” or “Verify”.

Input data to be
- encrypted,
- signed,
- signed and encrypted,
- decrypted,
- verified, or
- decrypted and verified.

 144

Table 5 Asymmetric_Encryption_Decryption Offloader Mechanism Execution

 Response Message

Fields Status Output Data
Explanation OK

Internal Error
Encrypt/Decrypt Error
Sign/Verify Error

 145

Table 6 Session_Key_Calculation Offloader Mechanism Execution Request

 Message

Fields Operation Type Key Exchange

Method
Key Size

Explanation Key Exchange Diffie-Hellman
ECC

Key size for the chosen key
exchange method.
For DH: 512, 1024, 2048,
4096 bits
For ECC: 128, 160, 224,
256 bits

Fields IDHost User IDRemote User Encryption Method
Explanation Used to locate in the

SM storage the
stored private key
exchange key and
global key exchange
parameters of the
host user.

Used to locate
in the SM
storage the
stored public
key exchange
key certificate
of the remote
user.

Determines the type
(nature) of the session
key to be generated.
DES, TDES, BlowFish,
RC5, CAST-128, RC2,
RC4, AES, IDEA

Fields Key Length Block Length Number of Rounds
Explanation They refer to the key length, block length and number of rounds

parameters of the encryption method, respectively. They all
determine the nature of the session key that will be generated and
stored in the SM.

 146

Table 7 Session_Key_Calculation Offloader Mechanism Execution Response

 Message

Fields Status
Explanation OK

Internal Error
Key Exchange Error

 147

Table 8 Message_Authentication_Code_Operations Offloader Mechanism

 Execution Request Message

Fields Operation Type MAC Method
Explanation Authenticate

Authenticate and Encrypt
Encrypt and Authenticate
Verify
Decrypt and Verify
Verify and Decrypt

HMAC
Fast HMAC
CMAC (using DES)
DAA

Fields MAC Key Size Hash Method
Explanation Key size for the MAC

method.
Hash method is present only if MAC
method is HMAC or Fast HMAC.
MD5, SHA-1, RIPEMD-160,
Whirlpool

Fields Encrypt.
Method

Encrypt.
Mode

Unit of
Transmis.

Key
Length

Block
Length

Number
of Rounds

Explanation They are the same fields as in the first basic offloader
mechanism “Symmetric_Encryption_Decryption”. All of these
six fields are present if “Encrypt” or “Decrypt” is included as
part of the operation type.

Fields IDHost User IDRemote User Input Data
Explanation Identifier of the host

user, that will be used
in locating in the SM
storage her MAC
secret key, symmetric
encryption key and
IV shared with the
remote user.

Identifier of the
remote user, that will
also be used in
locating in the SM
storage the shared
MAC secret key,
symmetric encryption
key and IV.

Input data to be
authenticated
and optionally
encrypted, or
optionally
decrypted and
verified.

 148

Table 9 Message_Authentication_Code_Operations Offloader Mechanism

 Execution Response Message

Fields Status Output Data
Explanation OK

Internal Error
Authenticate/Verify Error
Encrypt/Decrypt Error

 149

Table 10 Message_Digest_Operations Offloader Mechanism Execution Request

 Message

Fields Operation Type Hash Method
Explanation Authenticate

Authenticate and Encrypt
Sign
Sign and Encrypt
Authenticate with Secret Value
Authenticate with Secret Value and Encrypt
Verify
Decrypt and Verify
Verify Signed Data
Decrypt and Verify Signed Data
Verify with Secret Value
Decrypt and Verify with Secret Value

MD5
SHA-1
RIPEMD-160
Whirlpool

Fields Encrypt
Method

Encrypt
Mode

Unit of
Transmis.

Key
Length

Block
Length

Number of
Rounds

Explanation They are the same fields as in the first basic offloader
mechanism “Symmetric_Encryption_Decryption”. All of these
fields are present if “Encrypt” or “Decrypt” is included as part of
the operation type, or if the operation type is “Authenticate” or
“Verify”.

Fields Signing Method Signing Method Key Size
Explanation RSA

Signing Method field refers to the public-key method that will be
used to asymmetrically encrypt (sign) or decrypt (verify) the
message digest of the input data. Key Size field refers to the size
of the private/public key to be used with this method. These
fields are present only if “Sign” or “Verify Signed Data” is
included as part of the operation type.

Fields IDHost User IDRemote User Input
Data

Explanation Present if the operation
type is not “Verify Signed
Data”.
It will be used in locating
(in the SM storage) the
symmetric encryption key
and IV and hash secret
value of the host user
shared with the remote
user. Also, it will be used
in locating the private
signing key of the host
user.

Present if the operation
type is not “Sign”.
It will also be used in
locating (in the SM
storage) the symmetric
encryption key and IV
and hash secret value
shared by the host user
and remote user. Also, it
will be used in locating
the public signing key
certificate of the remote
user.

 150

Table 11 Message_Digest_Operations Offloader Mechanism Execution Response

 Message

Fields Status Output Data
Explanation OK

Internal Error
Authenticate/Verify Error
Sign/Verify Signed Data Error
Encrypt/Decrypt Error

Table 12 Digital_Signature_Calculation Offloader Mechanism Execution

 Request Message

Fields Operation Type Signing Method Key Size
Explanation Sign

Verify

DSA
ECDSA
RSA-SHA-1

DSA:
512 - 1024 (in 64-bit
increments [16])
ECDSA: 128/192/256 bits

Fields IDHost User IDRemote User Input Data
Explanation It will be used in

locating the private
signing key and
global signing
parameters of the
host user in the SM
storage.

Present only if the
operation type is
“Verify”.
It will be used in locating
the public signing key
certificate of the remote
user in the SM storage.

Input data to
be signed or
verified.

Table 13 Digital_Signature_Calculation Offloader Mechanism Execution

 Response Message

Fields Status Output Data
Explanation OK

Internal Error
Sign/Verify Error

 151

Table 14 Cryptographic_Keys_Parameters_Creation Offloader Mechanism

 Execution Request Message

Fields Operation Type Key Generation Method
Explanation Key Generate RSA, ECC, ElGamal, DH, DSA, ECDSA,

DES, TDES, AES, RC2, RC5, IDEA, RC4,
Blowfish, CAST-128, HMAC, Fast HMAC,
CMAC, DAA

Fields Key Size IDOwner
Explanation Key size for the

key generation
method.

Identifier of the host user for who the keys
and parameters will be generated.

Fields Key Usage IDRemote User
Explanation Encryption, Signing, Key

Exchange, Authentication,
Kerberos-SessionKey, SSL-
MessageAuthentication,
etc..

This field is present if a symmetric
encryption key and IV, or a MAC
key will be generated.
Identifier of the remote user with
who the host user will share the
generated key and parameter.

Table 15 Cryptographic_Keys_Parameters_Creation Offloader Mechanism

 Execution Response Message

Fields Status
Explanation OK

KO

Table 16 Time_Time_Window_Adjustment Offloader Mechanism Execution

 Request Message

Fields Operation Type Time Value Time Window Value
Explanation Adjust Time

Adjust Time Window
Adjust Both

Present if the
operation type
is “Adjust
Time” or
“Adjust Both”.

Present if the
operation type is
“Adjust Time
Window” or “Adjust
Both”.

 152

Table 17 Time_Time_Window_Adjustment Offloader Mechanism Execution

 Response Message

Fields Status
Explanation OK

Time Adjust Error
Time Window Adjust Error

 153

Table 18 Key_Entry_Erasure_Backup Offloader Mechanism Execution Request

 Message

Fields Operation Type IDOwner1
Explanation Key Entry

Key Erasure
Key Backup

Identifier of the host or remote user to
who the following key, parameter, public-
key certificate or CRL belongs.

Fields Key/Parameter/Certificate/CRL1
Type

Key/Parameter/Certificate/
CRL1

Explanation RSA-1024-priv
DSA-512-cert
DH-1024-cert
AES-192-skey
DES-ivec
HMAC-mkey
CRL-pub. date
 .
 .
 .

Present only if the operation
type is “Key Entry”.
Secret keys and parameters
are in TDES-encrypted
(with the storage master key
of the SM) form. They were
encrypted after their SHA-1
hash codes appended.

Fields Key/Parameter/
Certificate/CRL1 Usage

IDRemote User1

Explanation Encryption, Signing,
Authentication, Key
exchange, Kerberos-
Subkey, SSL-
KeyExchange, SSL-
Signing, etc..

The field is present for symmetric
encryption keys and IVs, MAC keys,
and hash secret values.
Identifier of the remote user with who
the key or parameter owner (host user)
shares the key or parameter.

Fields IDOwner2 Key/Parameter/Certificate/
CRL2 Type

Key/Parameter/
Certificate/CRL2

Explanation

 154

Table 19 Key_Entry_Erasure_Backup Offloader Mechanism Execution

 Response Message

Fields Status
Explanation OK

Internal Error
Key/Parameter/Certificate/CRL Process Error

Fields Number of Successfully Processed Keys/Parameters/
Certificates/CRLs

Explanation Until an error occurred during processing or all are
processed without an error.

Table 20 User_Role_Administration Offloader Mechanism Execution Request

 Message

Fields Operation Type IDHost User1 Role1
Explanation User-Role Modify

User-Role Add
User-Role Delete

Identifier of
the host user
whose role
will be
managed.

Present if the operation
type is not “User-Role
Delete”.
Currently, two roles are
defined: “User” and
“Administrator”.

Fields IDHost User2 Role2
Explanation

Table 21 User_Role_Administration Offloader Mechanism Execution Response

 Message

Fields Status Number of User-Role Entries

Successfully Processed
Explanation OK

Internal Error
User-Role Entry Process Error

Until an error occurred during
processing or all are processed
without an error.

 155

Table 22 Module_Code_Status_Receiving_Loading Offloader Mechanism

 Execution Request Message

Fields Operation Type Code Piece1 Code Piece Signature1
Explanation Get Code Status

Load Signed Code
Present if
operation type
is “Load Signed
Code”.
Each code piece
has a fixed size
of 100 KB.

RSA-SHA-1 signature
made using the private
code signing keys of at
least two administrator
users successively.
Present if the operation
type is “Load Signed
Code”.

Fields Code Piece2 Code Piece Signature2
Explanation

Table 23 Module_Code_Status_Receiving_Loading Offloader Mechanism

 Execution Response Message

Fields Status Code Piece1 Code Piece Signature1
Explanation OK

Internal Error
Verify Error - (in
loading the new
signed firmware
to the SM)

Present if the
operation type is
“Get Code
Status”.
Each code piece
has a fixed size.

Present if the operation
type is “Get Code
Status”.
Stored signature block
for the code piece.

Fields Code Piece2 Code Piece Signature2
Explanation

 156

APPENDIX B

RESULTS OF PERFORMANCE MEASUREMENTS

In the figures below, the performance measurements results (averages) for the two

performance parameters of the built SM:

1. number of executions of DES and AES-192 symmetric encryption

operations per second,

2. number of executions of RSA (1024 and 2048-bit key) public-key signing

operation per second,

for various lengths (20, 50, 200, 500, 1000-bytes) of input data, other than 100-

bytes (which are shown in the text), are shown. After the figures, performance

measurements results for all of the four performance parameters for 100-bytes of

input data are listed in tables.

 157

Figure 23 Performance Measurements Results - DES Symmetric Encryption, 20-

 bytes of Input Data

Figure 24 Performance Measurements Results - AES Symmetric Encryption, 20-

 bytes of Input Data

 158

Figure 25 Performance Measurements Results - DES Symmetric Encryption, 200-

 bytes of Input Data

Figure 26 Performance Measurements Results - AES Symmetric Encryption, 200-

 bytes of Input Data

 159

Figure 27 Performance Measurements Results - DES Symmetric Encryption, 500-

 bytes of Input Data

Figure 28 Performance Measurements Results - AES Symmetric Encryption, 500-

 bytes of Input Data

 160

Figure 29 Performance Measurements Results - DES Symmetric Encryption,

 1000-bytes of Input Data

Figure 30 Performance Measurements Results - AES Symmetric Encryption,

 1000-bytes of Input Data

 161

Figure 31 Performance Measurements Results - RSA 1024-bit Signing, 20-bytes

 of Input Data

Figure 32 Performance Measurements Results - RSA 2048-bit Signing, 20-bytes

 of Input Data

 162

Figure 33 Performance Measurements Results - RSA 1024-bit Signing, 50-bytes of

 Input Data

Figure 34 Performance Measurements Results - RSA 2048-bit Signing, 200-bytes

 of Input Data

 163

Table 24 Performance Measurements Results - Symmetric Encryption, 100-bytes

of Input Data

Number of simultaneous client connections to the
security module
1 2 4 8 16
13.6 23.5 34.2 37.4 48.6

32 64 96 128

Number of executions
of DES (56-bit key)
symmetric encryption
operation per second

74.2 152.5 233.1 273.5

Number of simultaneous client connections to the
security module
1 2 4 8 16
13.3 23.6 33.9 37.1 47.7

32 64 96 128

Number of executions
of AES (192-bit key)
symmetric encryption
operation per second

73.8 151.3 232.7 269.4

Table 25 Performance Measurements Results - Signing, 100-bytes of Input Data

Number of simultaneous client connections to the
security module
1 2 4 8 16
11.3 21.7 33.6 35.9 39.2

32 64 96 128

Number of executions
of RSA (1024-bit key)
public-key signing
operation per second

45.8 60.7 71.4 74.6

Number of simultaneous client connections to the
security module
1 2 4 8 16
8.9 11.9 13.5 13.9 14.2

32

Number of executions
of RSA (2048-bit key)
public-key signing
operation per second

14.5

 164

Table 26 Performance Measurements Results - Memory Space Usage

Number of simultaneous client connections to the
security module
1 2 4 8 16
(phy.)
1732
(virt.)
3712

(phy.)
1732
(virt.)
3712

(phy.)
1732
(virt.)
3712

(phy.)
1732
(virt.)
3712

(phy.)
1732
(virt.)
3712

32 48 64

Amount of memory
space used, physical
and virtual memories,
(in KiloBytes)
by the OS

(phy.)
1736
(virt.)
3716

(phy.)
1736
(virt.)
3716

(phy.)
1736
(virt.)
3716

1 2 4 8 16
(phy.)
4428
(virt.)
14892

(phy.)
6032
(virt.)
28608

(phy.)
9456
(virt.)
68256

(phy.)
16960
(virt.)
197040

(phy.)
36360
(virt.)
675720

32 48 64
by the application
software

(phy.)
87856
(virt.)
2418896

(phy.)
153400
(virt.)
5231200

(phy.)
247104
(virt.)
9124632

1 2 4 8 16
(phy.)
6160
(virt.)
18604

(phy.)
7764
(virt.)
32320

(phy.)
11188
(virt.)
71968

(phy.)
18692
(virt.)
200752

(phy.)
38092
(virt.)
679432

32 48 64
and their sum

(phy.)
89592
(virt.)
2422612

(phy.)
155136
(virt.)
5234916

(phy.)
248840
(virt.)
9128348

 165

Table 27 Performance Measurements Results - CPU Power Consumption

Number of simultaneous client connections to
the security module
1 2 4 8 16
0.8 0.8 0.8 0.8 0.8

32 48 64

Percentage of CPU power
consumed by the OS

1.2 1.2 1.2

1 2 4 8 16
17.2 35.7 47.3 62.3 76.1

32 48 64
by the application software

81.1 95.3 98.2

1 2 4 8 16
18.0 36.5 48.1 63.1 76.9

32 48 64
and their sum

82.3 96.5 99.4

