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ABSTRACT 

 

 

DYNAMIC MODELING OF AN EXCAVATOR 

DURING DIGGING AND SIMULATING THE 

MOTION 

 

 

 

Özünlü, Özcan Mutlu 

M.S, Department of Mechanical Engineering 

Supervisor: Prof. Dr. Eres Söylemez 

 

May 2009, 136 pages 

 

The aim of this study is to perform the dynamic force analysis of a 3-degrees-of-

freedom excavator during digging the soil and to simulate the motion on computer 

screen. Standard load calculations are done statically, therefore the effects of 

forces changing with time on the system cannot be observed. The dynamic 

analysis method used in the thesis is Recursive Newton – Euler Method and the 

numerical analysis method for simulation is 4
th
 Order Runge – Kutta Method. 

After this study, the effects of sudden velocity changes; i.e, accelerational 

movements on construction machines, positions of bodies and dynamic forces on 

joints will be appointed and it will be possible to plan and control the motion.  

 

Key Words: Excavator, Dynamic Analysis, Simulation 
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ÖZ 

 

 

BİR EKSKAVATÖRÜN KAZI SIRASINDAKİ 

DİNAMİĞİNİ MODELLEME VE HAREKETİN 

SİMULASYONU 

 

 

 

Özünlü, Özcan Mutlu 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Eres Söylemez 

 

Mayıs 2009, 136 sayfa 

 

Bu çalışmanın amacı 3 serbestlik dereceli bir ekskavatörün toprağı kazısı 

sırasındaki maruz kaldığı dinamik yüklerinin analiz edilmesi ve hareketin 

bilgisayarda simülasyonun gerçekleştirilmesidir. Standart yük hesaplamaları statik 

olarak yapılmaktadır ve bu nedenle zamana bağlı olarak değişen kuvvetlerin 

sistem üzerindeki etkisi görülememektedir. Bu tezde kullanılan dinamik analiz 

yöntemi Yenilemeli Newton – Euler Yöntemi ve simülasyon için yapılacak olan 

sayısal analizdeki yöntem ise 4. dereceden Runge – Kutta Yöntemidir. Bu çalışma 

sonrasında ani hız değişimlerinin (ivmeli hareketlerin) iş makinası üzeride 

yarattığı etkiler, parçaların konumları ve mafsallardaki dinamik yükler 

saptanabilecek ve hareketin planlanması ile kontrolü mümkün olacaktır.. 

 

Anahtar Kelimeler: Ekskavatör, Dinamik Analiz, Simulasyon 
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Â  : Rotation Matrix 

m  : Mass of Link 

g  : Gravity Vector 

F  : Force Vector on Joint 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 
Earth-moving machinery are machines designed to perform excavation, loading, 

transportation, drilling, spreading, compacting or trenching of earth, rock and 

other materials by their equipments or working tools [1].   

 

An excavator is defined as “self-propelled machine on crawlers, wheels or legs, 

having an upper structure capable of a 360° swing with mounted equipment and 

which is primarily designed for excavating with a bucket, without movement of 

the undercarriage during the work cycle” [1]. A typical excavator consists of parts 

such as bucket, arm, boom, hydraulic cylinders, connecting rods, upper chassis, 

lower chassis, cab and travel train. The travel train can be either rubber-tire type 

(Figure 1.1) or crawler type (Figure 1.2).  
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Figure 1.1 - A typical rubber - tire type excavator 

 

 

 

 

Figure 1.2 - A typical crawler type excavator 
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Attachments are the moving parts of excavators.  These are boom, arm, and 

bucket from chassis to end, respectively. Large forces can be obtained by using 

hydraulic oil in the hydraulic cylinders. A pair of hydraulic cylinders rotates the 

boom with respect to the upper chassis. The boom, arm and the bucket are serially 

connected and hydraulic cylinders also control their relative motion. Although 

there are four actuators, the attachment mechanism has 3 degrees of freedom since 

boom cylinders are parallel actuators. This is due to the excessive force 

requirement for boom’s  motion.  

 

The aim of this thesis is to build a mathematical model of dynamics of the 

attachments during digging and to simulate the motion. Since there are 3 degrees 

of freedom, the mechanism can be considered as highly complex which requires a 

recursive method in order to model the dynamic behavior of boom, arm and 

bucket. 

 

While formulating the equations of motion, attachments are considered as “open 

loop robotic system”. Therefore, this thesis mainly concerns about robot dynamics 

and therefore Recursive Newton – Euler Formulation (RNEF) is used.  

 

Since there are 3 main links (boom, arm, bucket), 3x1 vector matrices and 3x3 

coefficient matrices are formed. After applying RNEF; in other words, forward 

and inverse (backward) dynamics, the equations of motions of three main links are 

obtained. The simulation process follows this step. Simulation, which depends on 

a time interval, is the real time solution of dynamic equations. Since equations of 

motions are non-linear, second order differential equations; the simulation is 

performed by numerical analysis. Among different numerical methods, Runge – 

Kutta Method is chosen. Runge – Kutta Method is an iterative method that solves 

differential equations step by step. Therefore, an iteration algorithm is written on 

Visual Basic for Applications (VBA). Thus, by the pre-determined step size, a 

simulation process can be fulfilled within a time interval.  
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In order to run the simulation, resistive force of soil and actuating forces of 

hydraulic cylinders should be known. For these reasons, a soil model is built to 

find out the soil resistance and a test is performed to determine cylinder forces.  

 

After finding out all necessary inputs, all dynamic outputs can be obtained by 

running the simulation. These outputs are dynamic forces on joints; accelerations, 

velocities and positions of bodies. So, thereby, force and motion characteristics of 

an excavator during digging motion are determined and these characteristics can 

be used in order to improve structure, design and control the motions of 

excavators. 
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CHAPTER 2 

 

 

LITERATURE SURVEY 

 

 

 
2.1. Kinematics 

 

Söylemez [2] stated different methods of kinematical analysis and synthesis of 

basic mechanisms, such as; four-bar, slider-crank and inverted slider-crank. An 

excavator attachment mechanism consists of three inverted slider-crank 

mechanisms. Therefore, analyzing every piston-slider mechanism and connecting 

them to each other gives an exact result. By using the input parameters, fixed 

angles and fixed lengths of links, all positions of the bodies can be found out. 

 

İpek [3] has analyzed the kinematics of the loader mechanism of Backhoe – 

Loaders. A loader mechanism (Figure 2.1) has two degrees of freedom and gives 

an idea about analyzing mechanisms, which are more complex than one degree of 

freedom ones. A loader is controlled by two piston-cylinder pairs for lifting the 

loader arm and tilting the bucket. Lifting cylinders connect the loader arm to the 

chassis of the machine and tilting cylinders connect two pairs of lever plate in 

order to adjust the position of the bucket.  
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Figure 2.1 – Loader Mechanism 

 

 

 

As in the case of loader, excavator mechanism can also be analyzed by assigning 

changing parameters as inputs and link positions as outputs.  

 

Koivo [20] establishes a method of kinematic analysis of the excavators in his 

paper. The main purpose of the analysis is to determine the bucket position by 

using input parameters such as joint shaft angles or the lengths of the hydraulic 

cylinders.  

 

2.2. Kinetics 

 

After completing kinematic analysis, force analysis should be done. Depending on 

the needs, engineers can perform either static or dynamic force analyses. In this 

work, dynamic force analysis is taken into account; static force analysis is not 

considered. Then, kinetics of bodies is investigated. Kinetics is defined as the 
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branch of mechanics, which deals with the effects of forces changing the motion 

of bodies [4].  

 

Simulating, controlling and planning of the motion of an excavator can be realized 

after building a mathematical dynamic model of the system. In order to achieve 

this, there are two methods: Lagrange’s Formulation and Newton – Euler 

Formulation [15]. 

 

2.2.1. Lagrange Formulation 

 

Lagrange’s Formulation using Euler – Lagrange’s Equations concludes the 

dynamic model of excavator in terms of all joint variables [5]. The initial step for 

Lagrange’s Formulation is determining the kinetic and potential energies of all 

moving links. After Lagrange’s energy function [16], in order to obtain the 

equations of motion of excavator, Euler – Lagrange Equations are applied. The 

major property of Lagrange’s Formulation is that the resulting differential 

equations describe the motion in terms of the joint variables and the structural 

parameters of the manipulator [5].  

 

2.2.2. Recursive Newton – Euler Formulation (RNEF) 

 

RNEF is an alternative approach to model the robot dynamics. In this method, 

each link in succession is considered as free body and their dynamic behavior is 

determined by using Newton and Euler’s Equations [18]. The most important 

advantage of this method is its computational simplicity. Besides, RNEF helps 

designer to understand the dynamic behavior of each link separately and gives 

information about the propagation of forces and torques through joints [5].  

 

In RNEF, forces, torques, translational and rotational positions, velocities and 

accelerations are determined by an analysis starting from base link and proceeding 
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link by link until the end effector. This process is called forward dynamics [19]. In 

the case of excavators, forward dynamics starts from upper chassis (Figure 2.2), 

continues with boom, arm and ends with bucket. The bucket may be considered as 

the end effector of the excavator. In order to start with forward dynamics, a set of 

initial conditions and applied forces must be known as input. The first three sets 

of these initial conditions are the positions, velocities and accelerations of boom, 

arm and bucket and the remaining sets are the forces applied by hydraulic 

cylinders and resistive force of soil. 

 

 

 

 
Figure 2.2 – Upper Chassis - Starting Point of Forward Dynamics 

 

 

 

Inverse or backward dynamics is required in order to determine the generated 

forces and moments on joints [19]. Inverse dynamics starts from end effector 

(bucket) and ends at the base (upper chassis). By applying forward and inverse 

dynamics in succession, equations of motions of links can be determined.  
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In the previous section, Lagrange’s Formulation is explained briefly. Due to its 

computational complexity compared with RNEF [5], Lagrange’s Formulation is 

not preferred for the analysis in this work. 

 

Vähä and Skibniewski [7] introduce a great view for dynamic model of an 

excavator. In their work, the steps of dynamic modeling of an excavator are 

explained basically. However, the motion is assumed as not only digging but also 

the rotary motion of the upper chassis is also considered. In other words, it is 

taken as 4-degrees-of-freedom excavator. In fact, it is not realistic since an 

excavator cannot dig the soil while the upperstructure swings. By taking this fact 

into account, Koivo el al [8] work on more specified condition of excavator’s 

motion. They consider that an excavator’s upperstructure cannot swing while 

attachments are working on soil. This leads a huge simplification that the analysis 

may be performed just in planar coordinate. Rotation of upperstructure is 

eliminated, i.e. the change of angle about vertical axis is fixed as zero and Denavit 

– Hartenberg Transformations [9] (Rotation matrices) are generated just for the 

motion of boom, arm and bucket. Beside this worth simplification, they have also 

corrected some mistakes on Vähä and Skibniewski’s work. 

 

Ha et al [21] introduces another aspect of dynamics of an excavator. In addition to 

dynamic modeling, control procedures are also explained. Feedback equations, 

Jacobian matrices and control vectors etc. are represented briefly. The future work 

of the thesis is automatic control of excavators and this paper [21] gives basic 

formulation for control systems.  

 

2.3. Simulation 

 

Simulation can be called as “imitation” of a real or a theoretical physical system 

[10]. Computer simulation is executing or imitating a model on a digital 

computer. The required information is the output result given by computer after 
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analyzing the execution. Simulation can be considered as natural activities of 

children [10]. As children understand the life and the world by imitating their 

environment, engineers and scientists also learn the characteristics of a physical 

object by simulating it as if it is real.  

 

For simulation, a mathematical model of the physical object is required [10]. In 

most cases, objects that should be simulated may be too complex. So, generating 

the mathematical model of the physical object may be too difficult for engineers. 

In the case of an excavator, there are three bodies whose mathematical model 

should be constructed and analyzed. This means there should be three equations of 

motions that must be solved. However, these 2nd order non-linear differential 

equations are not so simple that one can solve them analytically; equations are 

solved by using numerical methods [11].  

 

In the thesis, 4th Order Runge – Kutta Method is chosen among different types of 

numerical methods. Söylemez [12] stated that methods to determine the slope, 

which is used to reach the result step by step, are called Runge – Kutta Methods. 

For more accurate and correct results, 5th Order Runge – Kutta Method can be 

used, but for calculation simplicity 4th Order Runge – Kutta Method, which gives 

proper results if step sizes are small enough, is used. 

 

2.4. Soil Modeling 

 

Resistive force of soil is an unknown and it is also an input parameter of 

simulation.  Bernold [14] mentioned in his paper about the works done about soil 

modeling in civil engineering and geotechnical sciences. Due to its simplicity and 

practicability, Zelenin’s Method is chosen for this thesis among different methods 

for modeling the soil. Zelenin prefers a controlled motion of the bucket for 

determining soil resistance and gives necessary equation in his work. In order to 

apply Zelenin’s equation, soil cohesion should be estimated.  
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2.5. Commercial Software for Dynamic Analysis of Mechanical Systems 

 

ADAMS (Automatic Dynamic Analysis of Mechanical Systems) is one of the 

commercial computer programs of MSC Inc. ADAMS lets the analyzer build 

models of mechanical systems and simulate the full-motion of the complex 

behavior of mechanical assemblies. ADAMS also enables the engineer to analyze 

different design variations and select an optimum design [13]. 
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CHAPTER 3 

 

 

METHODS OF ANALYSES 

 

 

 
In order to solve the digging motion and get the results, a mathematical model of 

excavator attachments is built, equations of motions of these attachments are 

found out and the motion is simulated.  There are three main steps for building the 

model: kinematic analysis, dynamic analysis, and numerical analysis for 

simulation. For this purpose a computer program that contains all of these steps 

should be written. 

 

3.1. Kinematic Analysis 

 

 

 

 
Figure 3.1 – Number of Links 
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The degree of freedom of mechanisms is found by using the following equation: 

 

1
( 1)                                                     (3 .1 )λ

=
= ⋅ − − + ∑ j
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F l j f
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N um ber of Joints ( ) 12   3 15

D egree-of-Freedom  of A ll Join ts ( ) 15

D egree-of-Freedom  of S pace ( ) 3

3 (12 15 1) 15 3                                   

λ

=

= + =

=

=
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∑ i
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j R P

f

F                (3 .2)

 

 

From the calculation, it is seen that an excavator attachment mechanism has 3 

degrees-of-freedom. In other words, there should be 3 input parameters in order to 

perform kinematic analysis. Generally, these parameters are lengths of hydraulic 

actuators but in this work, inputs are the angles of bodies with respect to previous 

bodies. Desired outputs of kinematic analysis are the positions of all links. All 

detailed kinematic analysis formulations of an excavator are given in Appendix A. 

 

The program where the analyses are performed is Microsoft Excel. Excel is very 

useful software for parametric analyses. Since all variables are depending on each 

other, in other words, there are plenty of parametric equations; Excel becomes the 

best software choice for kinematic analysis. One of the most useful features of 

Excel is the ability of interaction with AutoCAD. So, with the help of a Visual 

Basic Application code, 2D view of an excavator can be transferred into Excel 

very rapidly.  

 

3.2. Dynamic Analysis 

 

For applying Recursive Newton – Euler Formulation, an algorithm [5] is followed 

(Table 3.1): 
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Table 3.1 – Algorithm for Manipulator Dynamics in RNEF 

 

Forward Dynamics for Calculating the Position, Velocity and Acceleration of 

Link j, j=1,…,N 

1 Initialize the algorithm. Set i=0 

2 
Determine the rotational and translational velocities and accelerations for 

Link j where j=i+1 

3 Compute the velocity and acceleration of the centroid of link j  

4 Calculate the external force and moment exerted on link j 

5 
If j<N, increase i by one, that is, replace i by i+1, and return to step 2. If 

j=N, continue 

Inverse (Backward) Dynamics for Computing the Generalized Torques 

(Equations of Motion) for Link i=N, N-1,…,1 

6 Compute force and torque acting on link i 

7 
Decrease i by one, that is, replace i by i-1, and repeat from step 6 on until 

i=1 

8 Calculate the generalized torque (equations of motion) of joint i for i=1,…,N

 

 

 

 
Figure 3.2 – Sketch Drawing of an Open Chain Robot  
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During the dynamic analysis, the excavator attachment system can be considered 

as an open chain robot (Figure 3.2) although it is a closed loop mechanism. The 

reasons of this consideration can be explained as followings: 

 

• Compared to the weight of the boom, arm and bucket, the weights and the 

inertial effects of pistons, cylinders, connecting parts, hoses, pipes etc. are 

small and can be neglected in the analysis [6].  

 

• The directions of forces exerted by hydraulic cylinders are always axial 

and these directions can be determined just by the kinematical analysis of 

the mechanism [6].  

 

In this work, there are some other simplifications: 

 

• All bodies and joints are considered as rigid 

• No frictions on revolute and cylindrical joints 

• No lateral loads from soil 

• No hydraulic effects (friction, compressibility etc.) 

 

All detailed dynamic analysis formulations of an excavator are given in Appendix 

B. 

 

3.3. Numerical Analysis for Simulation 

 

After completing dynamic modeling, three equations of motions are obtained. 

First one is the equation of motion of boom, second one is the equation of motion 

of arm and last one is the equation of motion of bucket. All equations are second 

order, non-linear, complex differential equations in the following form: 
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2( ) ( ) ( , )                                                         (3 .3 )⋅ + ⋅ =J q q C q q Q q q
 

where , ,q q q  are denoting position, velocity and acceleration parameters of the 

equation, respectively [12]. 

 

Simulation runs if the equations of motions are solved simultaneously with 

respect to time. In order to solve equations simultaneously, 4th Order Runge – 

Kutta Numerical Method, which is a member of a family of single point methods 

[17] is used. Moments on joints are zero. Therefore, by equating moments to zero, 

numerical analysis can be performed.  

 

All detailed numerical analysis formulations of digging motion are given in 

Appendix C. 

 

3.4. Computer Programs 

 

As mentioned before, in order to build a dynamic model of an excavator, a 

computer program should be written. In this thesis, by using Excel, Excavator 

Dynamics Software (EDS) is established (Appendix D). However, there are 

different commercial computer programs, which are being used by several 

companies for performing dynamic analysis. MSC. ADAMS (Figure 3.3 and 

Figure 3.4) is one of these programs. For verifying EDS and measuring the 

compatibility between two computer programs, the same model is built in 

ADAMS and the simulation runs with the same conditions. 
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Figure 3.3 – ADAMS Front View of the Model  

 

 

 

 
Figure 3.4 – ADAMS Isometric View of the Model  
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CHAPTER 4 

 

 

DETERMINATION OF INPUT PARAMETERS 

 

 

 
4.1. Theory of Cylinder Forces 

 

Hydraulic cylinders are the actuators of excavator attachments. Therefore, all 

input forces are going to be exerted from these cylinders. In a 20-tons-excavator, 

there are 4 hydraulic cylinders; two of them are placed to move the boom, one of 

them is placed to move the arm and the remaining one is placed to move the 

bucket.  

 

Cylinder – piston systems exert force linearly in the direction of axis of rod [6]. 

This force depends on four main parameters: 

 

• Pressure on the cylinder side 

• Pressure on the rod side 

• Rod Diameter (Figure 4.1) 

• Cylinder diameter (Figure 4.1) 

 

 

 
 

 
Figure 4.1 – Elements of a Hydraulic Actuator 
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When hydraulic cylinder is extending, it is under compressive load and hydraulic 

oil fills cylinder section of the hydraulic actuator. On the other hand, when 

hydraulic cylinder is retracting, it is under tensile load and hydraulic oil fills the 

rod section of the actuator. 

 

Analytical determination of the hydraulic pressure during the motion requires the 

modeling of the hydraulic drive system as a whole. In this work, experimental 

determination is preferred.  

 

In order to determine the cylinder forces, a test is performed. During this test, 

pressures of cylinder chambers are measured simultaneously. So, exerted force on 

cylinders can be calculated. These results are the inputs in order to simulate the 

digging motion.  

 

4.2. Theory of Resistive Force of Soil 

 

During digging motion (Figure 4.2), the resistive force, which is applied by soil, 

on the edge of the bucket can be determined by the Zelenin’s Equation [14]: 

 

( ) ( ) ( )( )1.351.3510 cos cos                                                    (4.1)φ φΦ = ⋅ ⋅ ⋅ −Φ −rF C R
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Figure 4.2 – Zelenin’s Digging Notation 

 

 

 

4.3. Digging Scenario 

 

Bucket digs the soil by using either bucket cylinder or arm cylinder. Among 

infinitely many possibilities, in order to standardize the calculations, just one 

digging scenario is considered in this work. According to this scenario, boom and 

arm are standing immobile and bucket is going to turn about its joint axis. By this 

way, the formula derived by Zelenin is applicable. In this formula, there is one 

unknown: C, soil cohesion. Since pointing a specific cohesion is not a mechanical 

engineering concern, in this work, appropriate possible soil cohesion is going to 

be found out by an iterative process. Only bucket cylinder will be extracted to dig 

the soil. Bucket has a 1448 mm sweep radius and 108.9o (its half, 54.45o) sweep 

angle as shown in Figure 4.3. Besides the magnitude, resistance direction is 

considered as parallel to the bucket tip (Figure 4.4). The scenario begins with the 

excavator’s position shown in Figure 4.5. Bucket is going to pass the stage shown 

in Figure 4.6 and process continues till the bucket gets out from soil (Figure 4.7) 
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Figure 4.3 - Bucket’s Positions 

 

 

 

 
Figure 4.4 - Direction of Resistance of Soil
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Figure 4.5 - Start Position 
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Figure 4.6 - Middle Position 
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Figure 4.7 - End Position
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4.4. Test for Determining Cylinder Forces 

 

Hydraulic cylinders are operated by using pressurized hydraulic oil, which comes 

form oil tank through pipes and hoses with the help of pumps. According to 

resistance on the rod side of the actuator, pressure is going to change in order to 

move piston against resistance. For determining cylinder forces, first of all, 

pressures inside the actuator chambers are determined by testing. Then, forces are 

calculated and subtracted from each other for finding out resultant force exerted 

by hydraulic actuator.  

 

For performing the test, the following apparatus are needed: 

 

• Pressure measuring device (Hydrotechnik) 

• Sensors 

• Adaptors 

• Cables 

 

Adaptors are pieces, which are attached to hydraulic pipes on excavator. Sensors 

converting hydraulic pressures to electrical signals are connected to adaptors. 

Finally, Hydrotechnik, which monitors electrical signals as hydraulic pressures, is 

connected to sensors by cables (Figure 4.8 and Figure 4.9). 
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Figure 4.8 – Adaptors and Sensors 

 

 

 

 
Figure 4.9 – Cables and Hydrotechnik 
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There are 6 pressure input parameters: two of them are on boom actuator (cylinder 

and rod chambers), two of them are on arm actuator (cylinder and rod chambers), 

two of them are on bucket actuator (cylinder and rod chambers) (Figure 4.10). For 

a perfect data accusation, there should be 6 adaptors, 6 sensors, 6 hydraulic cables 

and a Hydrotechnik with 6 input channels. However, due to lack of materials 

(only 3 sensors) and Hydrotechnik’s property deficiency (4 input channels) test 

data cannot be collected in one time. To beat this handicap, test is performed 

several times with the same conditions. For example, firstly, sensors are 

connected to adapters, which are attached to boom actuator’s inputs and data are 

collected. Secondly, sensors are connected to adapters, which are attached to arm 

actuator’s inputs, and data are collected. Finally, the same procedure is done for 

bucket actuator. Every test is repeated several times in order to collect accurate 

data.   

 

 

 

 
Figure 4.10 – Actuator Chambers 
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Test starts in determined position (Figure 4.11) for Zelenin’s Formula and bucket 

digs the soil. At the same time pressure is measured from both chambers of boom 

actuator. After taking several data, same position is assured for collecting data 

from arm and bucket cylinders and several data are collected for them.  

 

 

 

 
Figure 4.11 – Initial Position in Testing 

 

 

 

4.5. Test for Determining Force on One of the Links 

 

The aim of performing pressure test is to obtain forces in hydraulic cylinders and 

using this data in simulation as inputs. However, in order to verify the simulation, 

one output should also be tested and compared with the output obtained by the 

computer simulation. Among different options, strain measurements of connecting 

rods are selected for verifying the simulation. Therefore 4 strain gauges are used 

to measure force on connecting rods. Two of them are used for one rod (Figure 

4.12) and two of them are used for its parallel rod (Figure 4.13). 
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Figure 4.12 – Strain Gauges on The Right – Hand Side Rod 

 

 

 

 
Figure 4.13 - Strain Gauges on The Left – Hand Side Rod 
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Before the digging test, the verification of strain gauges should be completed. In 

order to do this, a loadcell test is performed for a selected position and results are 

compared with the theoretical calculations. If loadcell test results and theoretical 

calculations are compatible with each other, then it can be assumed that strain 

gauges are collecting data correctly. In Appendix E, the detailed procedure and 

results of load cell test is explained. To conclude, verification of strain gauges is 

completed and gauges are usable for digging test.  

 

For performing the strain gauge test during digging the following apparatus are 

needed: 

 

• Strain Gauges and Terminals 

• Data Accusation System (ESAM Hardware) 

• Computer (ESAM Software) 

• Cables 

 

Strain gauges are connected to terminals, terminals are connected to ESAM 

Hardware through cables and ESAM is connected to computer (Figure 4.14 and 

Figure 4.15). 

 

 

 

 
Figure 4.14 – Strain Gauges and Cables 
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Figure 4.15 – ESAM and Computer 

 

 

 

As in case of pressure testing, excavator should be in its standard initial position. 

After that several data are collected by repeating the same digging motion. 
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CHAPTER 5 

 

 

CASE STUDY 

 

 

 
5.1. Test Results 

 

5.1.1. Pressure Test Results 

 

After eliminating improper data, pressure results are shown below: 
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Figure 5.1 – Pressure Results of Boom Cylinder 
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Arm Cylinder - Time vs Pressure
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Figure 5.2 – Pressure Results of Arm Cylinder 

 

 

 

Bucket Cylinder - Time vs Pressure
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Figure 5.3 – Pressure Results of Arm Cylinder 
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By using following equations net forces on cylinders can be calculated 

 

( )= ⋅ −RodSide RodSide Cylinder RodF P A A            (5.1) 

= ⋅CylinderSide CylinderSide CylinderF P A             (5.2) 

= −Boom Boom Boom
Net RodSide CylinderSideF F F            (5.3) 

= −Arm Arm Arm
Net CylinderSide RodSideF F F            (5.4) 

= −Bucket Bucket Bucket
Net RodSide CylinderSideF F F           (5.5) 
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Figure 5.4 – Net Force of Boom Cylinder 

 



 35

Arm Cylinder - Time vs Force
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Figure 5.5 – Net Force of Arm Cylinder 
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Figure 5.6 – Net Force of Bucket Cylinder 
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5.1.2. Strain Test Results 

 

After eliminating improper data, strain results are shown below: 

 

 

 

 
Figure 5.7 – Strains on Connecting Rods 

 

 

 

 

The gauge connected to Channel 4 (Ch 4) gave the most coherent results in the 

loadcell test. Among the digging test outputs, the second data of gauge Ch4 (Data 

2 – Ch 4) gave the most compatible result with the simulation results. Therefore, 

gauge shown by color white is taken into account during evaluation of the digging 

test. Digging motion takes almost 6 seconds. Between 6th and 7th seconds, the 

actuator stops and bucket starts to vibrate. Due to these vibrations, strain results 

are shown as oscillating in the graph. The conversion of strain data into force 

value is derived as following: 

 

link cross-section                                                                                            (5.6)ε= ⋅ ⋅F A E  
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5.2. Iterations for Cohesion Factor of Soil 

 

By using pressure data obtained from digging test, simulation is run in Excavator 

Dynamics Software (EDS). As mentioned before, digging motion takes almost 6 

seconds and in every 0.01 second, one datum is collected. Therefore 600 data are 

used during simulation. There should be a VBA program, which enters test results 

and Zelenin Soil Model results into input boxes in EDS simultaneously. For using 

Zelenin’s Formula, soil cohesion factor should be known. It can be estimated by 

iterations.  
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Figure 5.8 – Initial Position of Attachments for Simulation 

 

 

 

( ) ( ) ( )( )1.351.3510 1448 cos 54.45 cos 54.45                                     (5.7)Φ = ⋅ ⋅ ⋅ −Φ −rF C  
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• Iteration 1 - Cohesion factor C=10000 Pa 
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Figure 5.9 – Final Position of Attachments for C=10000 Pa 
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Figure 5.10 – Test and Simulation Compatibility for C=10000 Pa 
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• Iteration 2 - Cohesion factor C=15000 Pa 
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Figure 5.11 – Final Position of Attachments for C=15000 Pa 
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Figure 5.12 – Test and Simulation Compatibility for C=15000 Pa 
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• Iteration 3 - Cohesion factor C=20000 Pa 
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Figure 5.13 – Final Position of Attachments for C=20000 Pa 
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Figure 5.14 – Test and Simulation Compatibility for C=20000 Pa 
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• Iteration 3 - Cohesion factor C=17000 Pa 
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Figure 5.15 – Final Position of Attachments for C=17000 Pa 
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Figure 5.16 – Test and Simulation Compatibility for C=17000 Pa 
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5.3. Results 

 

Samples, which are shown by using cohesions 17000 Pa and 20000 Pa, are the 

most appropriate results. Sample done by using 17000 Pa cohesion factor gives an 

excellent simulation result. On the other hand, sample done by using 20000 Pa 

cohesion factor gives much better force verification result than other sample. 

However, its simulation result is not as good as the sample done by using 17000 

Pa cohesion factor. Therefore, it can be concluded that, the cohesion factor which 

can be applied to this problem is in anywhere between 17000 Pa and 20000 Pa. 

So, both results can be accepted and analyses are performed for both results. 

When a simulation runs in a dynamic analysis program, different outputs can be 

obtained. These are reaction forces on joints; accelerations, velocities and 

displacements of bodies.  

 

Yellow lines on joint reaction forces tables indicate the forces on joints when 

excavator is in “bucket breakout” position.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 43

5.3.1. Reaction Forces on Joints 
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Figure 5.17 – Time vs. Force Chart of the Joint between Boom and Chassis  
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Figure 5.18 – Time vs. Force Chart of the Joint between Arm and Boom  
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Time vs. Force 
Bucket - Arm Joint

0

100000

200000

300000

400000

500000

600000

0 1 2 3 4 5 6

Time (s)

Fo
rc

e 
(N

) C=17000 Pa
C=20000 Pa

Bucket Breakout

 
Figure 5.19 – Time vs. Force Chart of the Joint between Bucket and Arm 
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5.3.2. Accelerations of Bodies 

 

 

 

Time vs. Angular Acceleration

-0,6

-0,5

-0,4

-0,3

-0,2

-0,1

0

0,1

0,2

0 1 2 3 4 5 6

Time (s)

An
gu

la
r A

cc
el

er
at

io
n 

(ra
d/

s^
2)

C=17000 Pa - Acc. Of Boom C=17000 Pa - Acc. Of Arm C=17000 Pa - Acc. Of Bucket
 

Figure 5.20 – Accelerations of Bodies (cohesion factor = 17000 Pa) 
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Figure 5.21 – Accelerations of Bodies (cohesion factor = 20000 Pa) 
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5.3.3. Velocities of Bodies 

 

 

 

Time vs. Angular Velocity
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Figure 5.22 – Velocities of Bodies (cohesion factor = 17000 Pa) 
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Figure 5.23 – Velocities of Bodies (cohesion factor = 20000 Pa) 
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5.3.4. Positions of Bodies 

 

 

 

Time vs. Position

-100

-80

-60

-40

-20

0

20

40

0 1 2 3 4 5 6

Time (s)

Po
si

tio
n 

(d
eg

)

C=17000 Pa - Pos. Of Boom C=17000 Pa - Pos. Of Arm C=17000 Pa - Pos. Of Bucket
 

Figure 5.24 – Positions of Bodies (cohesion factor = 17000 Pa) 
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Figure 5.25 – Positions of Bodies (cohesion factor = 20000 Pa) 
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5.4. Comparison with a Commercial Software 

 

After completing the analysis in EDS, the simulation is performed in a 

commercial dynamics program. By this way, the compatibility of EDS and the 

commercial program can be tested and a comparison can be done. For this 

purpose, MSC ADAMS is chosen as commercial program. 

 

5.4.1. Simulation Conditions in ADAMS 

 

As in case of EDS, ADAMS should use test results as input parameters. Thus, test 

results should be converted into proper equations and written to ADAMS as 

equations. The equation of soil reaction is known; however, input forces of 

cylinders are disorganized data. In order to obtain these equations, the “Add 

Trendline” option of Excel is used.  
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Figure 5.26 - Original Data and Trendline Compatibility for Boom Cylinders 

 

 

 

 

 

 

 

 

 

 

 

 

 



 50

( ) 6 5 4
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Figure 5.27 - Original Data and Trendline Compatibility for Arm Cylinder 
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( ) 6 5 4

3 2
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Figure 5.28 - Original Data and Trendline Compatibility for Arm Cylinder 

 

 

 

Input parameters used in EDS and ADAMS are almost equal. In addition to that, 

start positions and mass properties are also same.  

 

5.4.2. Results 

 

Simulation is performed for 20000 Pa cohesion factor, results are tabulated and 

compared with results obtained from EDS. 
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Time vs. Force
Boom - Chassis Joint
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Figure 5.29 – Comparison of Results (Boom – Chassis Joint) 
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Figure 5.30 – Comparison of Results (Arm – Boom Joint) 
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Time vs. Force
Bucket - Arm Joint

0
100000
200000
300000
400000
500000
600000
700000

0 1 2 3 4 5 6

Time (s)

Fo
rc

e 
(N

)

ADAMS - C=20000 Pa EDS - C=20000 Pa
 

Figure 5.31 – Comparison of Results (Bucket – Arm Joint) 

 

 

 

There are differences between ADAMS and EDS results. Especially, there is a 

peak on ADAMS results when bucket is in middle position as shown in Figure 

5.32. 

 

 

 

 
Figure 5.32 - Bucket’s Middle Position on ADAMS 
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In order to overcome this problem, different cohesion factors are experimented on 

ADAMS. The results are tabulated on Figure 5.33 and Figure 5.34 
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Figure 5.33 - Time vs. Force by Using Different Cohesion Factors on Boom and 

Chassis Joint (Step Size=0,01) 
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Figure 5.34 - Time vs. Force by Using Different Cohesion Factors on Boom and 

Chassis Joint (Step Size=0,002) 
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From the graphs, it is understood that ADAMS gives results with peaks. In order 

to understand why these peaks are formed, the algorithm of ADAMS should be 

investigated. 
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CHAPTER 6 

 

 

DISCUSSION AND CONCLUSIONS 

 

 

 
In this work, a mathematical model of an excavator is built and a dynamic 

analysis is performed during digging motion. In order to achieve this process a 

computer program is written that contains kinematic analysis of mechanisms, 

dynamic analysis of bodies and numerical analysis for simulation of the model.  

 

The first step of building a mathematical model is kinematic analysis. Excavators 

are complex mechanisms with 3 degrees of freedom. Therefore, with three input 

parameters, all variables of mechanisms are formulated. Secondly, dynamic 

analysis is performed by using Recursive Newton – Euler Formulation. So, for 

three bodies, three equations of motions are written. Finally, simulation is run by 

solving equations of motions. Since these are 2nd order, non-linear, differential 

equations, a numerical method is used. For this purpose, 4th Order Runge – Kutta 

Method is chosen.  

 

After building mathematical model of an excavator, inputs for simulation are 

determined. Three actuator forces are determined by a controlled test. Soil 

reaction’s magnitude and direction, which are the remaining inputs, are 

determined by Zelenin’s Equation.  
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In order to verify the simulation, another test is performed. In this test, strain 

gauges are glued on one of the links and forces are measured during digging 

motion. Also a loadcell test is done to verify the strain gauges. 

 

For simulation, there is one unknown remaining, C, cohesion factor of soil. For 

fixing proper cohesion factor values, several iterations are made. After 

simulations, final position of bucket and force on the link on which strain gauges 

are glued are observed and compared with the desired conditions.  

 

After fixing cohesion factor value and running simulation, all results of motion 

phenomena can be observed. Forces on joints, accelerations, velocities and 

position changes of bodies are plotted.  

 

Dynamic analysis means, analyzing a moving object with respect to time. 

Therefore, analyzing an object dynamically gives an idea about its motion and 

affecting forces with changing time. First advantage of knowing force and motion 

characteristics of an object is that engineers can predict dynamic forces, which are 

formed due to accelerated motion, before the motion. So, if required, 

enhancements can be done on the body and stresses on the structure may be 

decreased. Second advantage of dynamic analysis is that motion planning of a 

mechanism can be done. Designing a manipulator’s path in a time interval can be 

achieved by knowing its acceleration and velocity. Finally a computer aided 

control system for mechanical systems can be established. A computer controlled 

excavator can perform much more accurate operations than a manually controlled 

one. In recent years, a trend in this direction is seen in the literature [22] 

 

The work and Excavator Dynamics Software (EDS) can be improved by doing 

following additions and changes: combining with a hydraulic model, adding 

frictions, adding inertial effects of connecting rods, cylinder – pistons, hoses and 

pipes etc. and working with an accurate soil model.  
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EDS is an Excel based program. That means, the construction machines company 

that will use EDS is not going to pay extra fee other than Office programs.  

Besides, EDS is a flexible program that users can do any change in their model. 

EDS is an expert in modeling digging motion, since 3-D effects are not considered 

in its background. Therefore, results will be out of noise coming from 3 

dimensional effects. However, because of its flexibility, another user can develop 

EDS for 3-D applications very simply. All codes, equations, matrices etc. are 

exhibited in the EDS. In other words, it is an open source code. The flexibility of 

Excel provides improvements on codes. In addition to that, users can see all 

processes simultaneously. On the other hand, one can export a solid model from a 

3-D modeling program into ADAMS, so there will not be any extra effort in order 

to obtain mass and mass moments of inertia information. Visual aesthetic of 

models in ADAMS are much more beautiful than models in EDS.  

 

If simulation time or step size increases then error accumulation grows and 

simulation may not give proper results at the end. An accurate result also depends 

on the method used in numerical analysis. Different numerical analysis methods 

used in EDS and ADAMS may cause different result.  

 

This work does not include a strength analysis of parts. Therefore, there is no need 

to work on a hard soil and the data acquisition test is performed in a random 

environment for collecting real data.  
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APPENDIX A 

 

 

KINEMATIC ANALYSIS OF EXCAVATOR 

ATTACHMENTS WORKING IN TWO DIMENSIONS 
 

 

 

A detailed formulation of kinematic analysis of excavators is explained in this 

appendix. 
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A.1. Chassis and Boom 
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A.2. Arm 

 

 

 

 
Figure A.4 – Constant and Variables Lengths of Arm 
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Figure A.5 – Input and Constant Angles of Arm 
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Figure A.6 – Variable Angles of Arm 
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Figure A.7 – Variable Angles of Arm Connecting Rods and Bucket (Detailed) 
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A.3. Bucket 

 

 

 

 
Figure A.8 – Constant and Variables Lengths of Bucket 
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Figure A.9 – Input and Constant Angles of Bucket 

 

 

 

 
Figure A.10 – Variable Angles of Bucket 
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Figure A.11 – Soil Resistance Direction 
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APPENDIX B 

 

 

EQUATIONS OF EXCAVATOR DYNAMICS 

 

 

 
A detailed formulation of dynamic modeling of excavators is explained in this 

appendix. 

 
B.1.  Multi-body Dynamics and Newton-Euler Formulation 

 

B.1.1. Rotation Matrices 
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B.1.2. Inputs 
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B.1.3. Forward Dynamics 

 

B.1.3.1. Positions, Rotational and Translational Velocities, 

Rotational and Translational Accelerations of Links 

 

Table B.1 – Positions, Rotational and Translational Velocities, Rotational and 

Translational Accelerations of Links 
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B.1.3.1.1. Chassis (i=0) 

 

Table B.2 – Initial Conditions: Positions, Rotational and Translational Velocities, 

Rotational and Translational Accelerations of Chassis 
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⎢ ⎥⎣ ⎦

1 0
01 1 01

0
ˆ 0

0
Aϖ ϖ

⎡ ⎤
⎢ ⎥= ⋅ = ⎢ ⎥
⎢ ⎥⎣ ⎦

 

Tr
an

sl
at

io
na

l 

V
el

oc
ity

 

01

0
0
0

p
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 1 1 0
01 01 1 01

0
ˆ 0

0
v p A v

⎡ ⎤
⎢ ⎥= = ⋅ = ⎢ ⎥
⎢ ⎥⎣ ⎦

 

A
ng

ul
ar

 

A
cc

el
er

at
io

n 

01

0
0
0

ϖ
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

1 1 0
01 01 1 01

0
ˆ 0

0
Aα ϖ α

⎡ ⎤
⎢ ⎥= = ⋅ = ⎢ ⎥
⎢ ⎥⎣ ⎦

 

Tr
an

sl
at

io
na

l 

A
cc

el
er

at
io

n 

01

0
0
0

p
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 1 1 0
01 01 1 01

0
ˆ 0

0
a p A a

⎡ ⎤
⎢ ⎥= = ⋅ = ⎢ ⎥
⎢ ⎥⎣ ⎦
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Table B.3 – Positions, Rotational and Translational Velocities, Rotational and Translational Accelerations of Boom  

 

Po
si

tio
n 

01

2

02 01 2

0
0
0

2 cos( )
2 sin( )

0

p

L
p p L

θ
θ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

⋅⎡ ⎤
⎢ ⎥= + ⋅⎢ ⎥
⎢ ⎥⎣ ⎦

 2 0
02 2 02

2
ˆ 0

0

L
p A p

⎡ ⎤
⎢ ⎥= ⋅ = ⎢ ⎥
⎢ ⎥⎣ ⎦

 
2

02 2

2 cos( )
2 sin( )

0

L
p L

θ
θ

⋅⎡ ⎤
⎢ ⎥= ⋅⎢ ⎥
⎢ ⎥⎣ ⎦

 

A
ng

ul
ar

 V
el

oc
ity

 

1
01

0
0
0

ϖ
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

2 1 1
01 2 01

2 2 2
02 01 2

2

0
ˆ 0

0

0
0

Aϖ ϖ

ϖ ϖ θ
θ

⎡ ⎤
⎢ ⎥= ⋅ = ⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥= + = ⎢ ⎥
⎢ ⎥⎣ ⎦

 
10 2

02 2 02

2

0
ˆ 0Aϖ ϖ

θ

−
⎡ ⎤
⎢ ⎥⎡ ⎤= ⋅ =⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

 

B
.1.3.1.2. B

oom
 (i=1) 
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Table B.3 (cont’d) – Positions, Rotational and Translational Velocities, Rotational and Translational Accelerations of Boom 

 
Tr

an
sl

at
io

na
l V

el
oc

ity
 

1
01

0
0
0

p
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

2 1 1
01 2 01

2 0
2 2 02 01

2 2 2 2 2
02 02 01 02 2 2

0
ˆ 0

0

2
ˆ ( ) 0

0

0
2
0

v A p

L
p A p p

v p v p Lϖ θ

∗

∗

⎡ ⎤
⎢ ⎥= ⋅ = ⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥= ⋅ − = ⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥= = + × = ⋅⎢ ⎥
⎢ ⎥⎣ ⎦

 

2 2
10 2

02 2 02 2 2

2 sin( )
ˆ 2 cos( )

0

L
p A p L

θ θ
θ θ

−
⎡ ⎤− ⋅ ⋅
⎢ ⎥⎡ ⎤= ⋅ = ⋅ ⋅⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦

 

A
ng

ul
ar

 

A
cc

el
er

at
io

n 

1
01

0
0
0

ϖ
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

2 1 1
01 2 01

2 2 2 2 2 2
02 02 01 2 01 2

2

0
ˆ 0

0

0
0

Aα α

α ϖ α θ ϖ θ
θ

⎡ ⎤
⎢ ⎥= ⋅ = ⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥= = + + × = ⎢ ⎥
⎢ ⎥⎣ ⎦

 10 2
02 2 02

2

0
ˆ 0Aϖ ϖ

θ

−
⎡ ⎤
⎢ ⎥⎡ ⎤= ⋅ =⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦
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Table B.3 (cont’d) – Positions, Rotational and Translational Velocities, Rotational and Translational Accelerations of Boom 

 
Tr

an
sl

at
io

na
l 

A
cc

el
er

at
io

n 

1
01

0
0
0

p
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

2 1 1
01 2 01

2 2 2 2 2 2 2 2
02 02 01 02 2 02 02 2

2
2

2

0
0
0

( )

2 ( )
      2

0

a A a

a p a p p

L
L

α ϖ ϖ

θ
θ

∗ ∗

⎡ ⎤
⎢ ⎥= ⋅ = ⎢ ⎥
⎢ ⎥⎣ ⎦

= = + × + × ×

⎡ ⎤− ⋅
⎢ ⎥= ⋅⎢ ⎥
⎢ ⎥⎣ ⎦

 

2
2 2

2 2

2
1 2 20 2

02 2 02
2 2

cos( ) ( )
2

sin( )

sin( ) ( )ˆ 2
cos( )

0

L

p A p L

θ θ

θ θ

θ θ

θ θ

−

⎡ ⎤⎡ ⎤⋅
− ⋅⎢ ⎥⎢ ⎥

+ ⋅⎢ ⎥⎢ ⎥⎣ ⎦
⎢ ⎥

⎡ ⎤⋅⎢ ⎥⎡ ⎤= ⋅ = − ⋅ ⎢ ⎥⎢ ⎥⎣ ⎦ − ⋅⎢ ⎥⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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Table B.4 – Positions, Rotational and Translational Velocities, Rotational and Translational Accelerations of Arm 

 
Po

si
tio

n 

2

02 2

2 3

03 02 2 3

2 cos( )
2 sin( )

0

3 cos( )
3 sin( )

0

L
p L

L
p p L

θ
θ

θ θ
θ θ

⋅⎡ ⎤
⎢ ⎥= ⋅⎢ ⎥
⎢ ⎥⎣ ⎦

⋅ +⎡ ⎤
⎢ ⎥= + ⋅ +⎢ ⎥
⎢ ⎥⎣ ⎦

 3
3 0

03 3 03 3

2 cos( ) 3
ˆ 2 sin( )

0

L L
p A p L

θ
θ

⋅ +⎡ ⎤
⎢ ⎥= ⋅ = − ⋅⎢ ⎥
⎢ ⎥⎣ ⎦

2 2 3

03 2 2 3

2 cos( ) 3 cos( )
2 sin( ) 3 sin( )

0

L L
p L L

θ θ θ
θ θ θ

⋅ + ⋅ +⎡ ⎤
⎢ ⎥= ⋅ + ⋅ +⎢ ⎥
⎢ ⎥⎣ ⎦

A
ng

ul
ar

 V
el

oc
ity

 

2
02

2

0
0ϖ
θ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

3 2 2
02 3 02

2

3 3 3
03 02 3

2 3

0
ˆ 0

0
0

Aϖ ϖ
θ

ϖ ϖ θ
θ θ

⎡ ⎤
⎢ ⎥= ⋅ = ⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥= + = ⎢ ⎥
⎢ ⎥+⎣ ⎦

 10 3
03 3 03

2 3

0
ˆ 0Aϖ ϖ

θ θ

−
⎡ ⎤
⎢ ⎥⎡ ⎤= ⋅ =⎣ ⎦ ⎢ ⎥
⎢ ⎥+⎣ ⎦

 

 

 

 

 

 

B
.1.3.1.3. A

rm
 (i=2)
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Table B.4 (cont’d) – Positions, Rotational and Translational Velocities, Rotational and Translational Accelerations of Arm 

 
Tr

an
sl

at
io

na
l V

el
oc

ity
 

2
02 2

0
2
0

p L θ
⎡ ⎤
⎢ ⎥= ⋅⎢ ⎥
⎢ ⎥⎣ ⎦

 

3 2
3 2 2

02 3 02 3 2

3 0
3 3 03 02

3 3 3 3 3
03 03 02 03 3

3 2

3 2 2 3

2 sin( )
ˆ 2 cos( )

0

3
ˆ ( ) 0

0

2 sin( )
     2 cos( ) 3 ( )

0

L
v A p L

L
p A p p

v p v p

L
L L

θ θ
θ θ

ϖ

θ θ
θ θ θ θ

∗

∗

⎡ ⎤⋅ ⋅
⎢ ⎥= ⋅ = ⋅ ⋅⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥= ⋅ − = ⎢ ⎥
⎢ ⎥⎣ ⎦

= = + ×

⎡ ⎤⋅ ⋅
⎢ ⎥= ⋅ ⋅ + ⋅ +⎢ ⎥
⎢ ⎥⎣ ⎦

 
10 3

03 3 03

2 2 2 3 2 3

2 2 2 3 2 3

ˆ

2 sin( ) 3 sin( ) ( )
     2 cos( ) 3 cos( ) ( )

0

p A p

L L
L L

θ θ θ θ θ θ
θ θ θ θ θ θ

−
⎡ ⎤= ⋅⎣ ⎦

⎡ ⎤− ⋅ ⋅ − ⋅ + ⋅ +
⎢ ⎥= ⋅ ⋅ + ⋅ + ⋅ +⎢ ⎥
⎢ ⎥⎣ ⎦
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Table B.4 (Cont’d) – Positions, Rotational and Translational Velocities, Rotational and Translational Accelerations of Arm 

 
A

ng
ul

ar
 A

cc
el

er
at

io
n 

2
02

2

0
0ϖ
θ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

3 2 2
02 3 02

2

3 3 3 3 3 3
03 03 02 3 03 3

2 3

0
ˆ 0

0
      0

Aα α
θ

α ϖ α θ ϖ θ

θ θ

⎡ ⎤
⎢ ⎥= ⋅ = ⎢ ⎥
⎢ ⎥⎣ ⎦

= = + + ×

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥+⎣ ⎦

 10 3
03 3 03

2 3

0
ˆ 0Aϖ ϖ

θ θ

−
⎡ ⎤
⎢ ⎥⎡ ⎤= ⋅ =⎣ ⎦ ⎢ ⎥
⎢ ⎥+⎣ ⎦

 

Tr
an

sl
at

io
na

l A
cc

el
er

at
io

n 

2
2

2
02 2

2 ( )
2
0

L
p L

θ
θ

⎡ ⎤− ⋅
⎢ ⎥= ⋅⎢ ⎥
⎢ ⎥⎣ ⎦

 

3 2 2
02 3 02

2
3 2 3 2

2
3 2 3 2

3 3 3 3 3 3 3 3
03 03 02 03 3 03 03 3

2 2
3 2 3 2 2 3

ˆ

2 (sin( ) cos( ) ( ) )
      2 (cos( ) sin( ) ( ) )

0

( )

2 (sin( ) cos( ) ( ) ) 3 ( )
     2 (cos(

a A a

L
L

a p a p p

L L
L

θ θ θ θ
θ θ θ θ

α ϖ ϖ

θ θ θ θ θ θ
θ

∗ ∗

= ⋅

⎡ ⎤⋅ ⋅ − ⋅
⎢ ⎥= ⋅ ⋅ + ⋅⎢ ⎥
⎢ ⎥⎣ ⎦

= = + × + × ×

⋅ ⋅ − ⋅ − ⋅ +
= ⋅ 2

3 2 3 2 2 3) sin( ) ( ) ) 3 ( )
0

Lθ θ θ θ θ
⎡ ⎤
⎢ ⎥⋅ + ⋅ + ⋅ +⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

10 3
03 3 03

2
2 2 2 2

2 3 2 3

2
2 3 2 3

2
2 2 2 2

2 3 2 3

2 3 2

ˆ

2 (sin( ) cos( ) ( ) )

3 (sin( ) ( )

cos( ) ( ) )

2 (cos( ) sin( ) ( ) )

     3 (cos( ) ( )

sin( ) (

p A p

L

L

L

L

θ θ θ θ

θ θ θ θ

θ θ θ θ

θ θ θ θ

θ θ θ θ

θ θ θ

−
⎡ ⎤= ⋅⎣ ⎦

⎛ ⎞− ⋅ ⋅ + ⋅
⎜ ⎟
− ⋅ + ⋅ +⎜ ⎟
⎜ ⎟⎜ ⎟+ + ⋅ +⎝ ⎠

⋅ ⋅ − ⋅

= + ⋅ + ⋅ +

− + ⋅ + 2
3 ) )

0

θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎛ ⎞⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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Table B.5 – Positions, Rotational and Translational Velocities, Rotational and Translational Accelerations of Bucket 

 

Po
si

tio
n 

2 2 3

03 2 2 3

2 3 3

04 03 2 3 4

2 cos( ) 3 cos( )
2 sin( ) 3 sin( )

0

4 cos( )
4 sin( )

0

L L
p L L

L
p p L

θ θ θ
θ θ θ

θ θ θ
θ θ θ

⋅ + ⋅ +⎡ ⎤
⎢ ⎥= ⋅ + ⋅ +⎢ ⎥
⎢ ⎥⎣ ⎦

⋅ + +⎡ ⎤
⎢ ⎥= + ⋅ + +⎢ ⎥
⎢ ⎥⎣ ⎦

4 0
04 4 04

3 4 4

3 4 4

ˆ

2 cos( ) 3 cos( ) 4
     2 sin( ) 3 sin( )

0

p A p

L L L
L L

θ θ θ
θ θ θ

= ⋅

⋅ + + ⋅ +⎡ ⎤
⎢ ⎥= − ⋅ + − ⋅⎢ ⎥
⎢ ⎥⎣ ⎦

 2 2 3 2 3 4

04 2 2 3 2 3 4

2 cos( ) 3 cos( ) 4 cos( )
2 sin( ) 3 sin( ) 4 sin( )

0

L L L
p L L L

θ θ θ θ θ θ
θ θ θ θ θ θ

⋅ + ⋅ + + ⋅ + +⎡ ⎤
⎢ ⎥= ⋅ + ⋅ + + ⋅ + +⎢ ⎥
⎢ ⎥⎣ ⎦

A
ng

ul
ar

 V
el

oc
ity

 

3
03

2 3

0
0ϖ

θ θ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥+⎣ ⎦

 

4 3 3
03 4 03

2 3

4 4 4
04 03 4

2 3 4

0
ˆ 0

0
0

Aϖ ϖ
θ θ

ϖ ϖ θ
θ θ θ

⎡ ⎤
⎢ ⎥= ⋅ = ⎢ ⎥
⎢ ⎥+⎣ ⎦

⎡ ⎤
⎢ ⎥= + = ⎢ ⎥
⎢ ⎥+ +⎣ ⎦

 
10 4

04 4 04

2 3 4

0
ˆ 0Aϖ ϖ

θ θ θ

−
⎡ ⎤
⎢ ⎥⎡ ⎤= ⋅ =⎣ ⎦ ⎢ ⎥
⎢ ⎥+ +⎣ ⎦

 

 

 

 

 

 

 

B
.1.3.1.4. B

ucket (i=3)
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Table B.5 (cont’d)– Positions, Rotational and Translational Velocities, Rotational and Translational Accelerations of Bucket 

 
Tr

an
sl

at
io

na
l V

el
oc

ity
 

3 2
3

03 3 2 2 3

2 sin( )
2 cos( ) 3 ( )

0

L
p L L

θ θ
θ θ θ θ

⎡ ⎤⋅ ⋅
⎢ ⎥= ⋅ ⋅ + ⋅ +⎢ ⎥
⎢ ⎥⎣ ⎦

4 3 3
03 4 03

3 4 2 4 2 3

3 4 2 4 2 3

4 0
4 4 04 03

4 4 4 4 4
04 04 03 04 4

3 4 2

ˆ

2 sin( ) 3 sin( ) ( )
     2 cos( ) 3 cos( ) ( )

0

4
ˆ ( ) 0

0

2 sin( ) 3 sin(

      

v A p

L L
L L

L
p A p p

v p v p

L L

θ θ θ θ θ θ
θ θ θ θ θ θ

ϖ

θ θ θ

∗

∗

= ⋅

⎡ ⎤⋅ + ⋅ + ⋅ ⋅ +
⎢ ⎥= ⋅ + ⋅ + ⋅ ⋅ +⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥= ⋅ − = ⎢ ⎥
⎢ ⎥⎣ ⎦

= = + ×

⋅ + ⋅ + ⋅

=

4 2 3

3 4 2 4 2 3

2 3 4

) ( )

2 cos( ) 3 cos( ) ( )

4 ( )
0

L L

L

θ θ θ

θ θ θ θ θ θ

θ θ θ

⎡ ⎤⋅ +
⎢ ⎥
⎛ ⎞⋅ + ⋅ + ⋅ ⋅ +⎢ ⎥
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎜ ⎟+ ⋅ + +⎝ ⎠⎢ ⎥
⎢ ⎥
⎣ ⎦

 

10 4
04 4 04

2 2 2 3 2 3

2 3 4 2 3 4

2 2 2 3 2 3

2 3 4 2 3 4

ˆ

2 sin( ) 3 sin( ) ( )

4 sin( ) ( )

2 cos( ) 3 cos( ) ( )
     

4 cos( ) ( )
0

p A p

L L

L

L L

L

θ θ θ θ θ θ

θ θ θ θ θ θ

θ θ θ θ θ θ

θ θ θ θ θ θ

−
⎡ ⎤= ⋅⎣ ⎦

⎡⎛ ⎞− ⋅ ⋅ − ⋅ + ⋅ +
⎢⎜ ⎟
⎢⎜ ⎟⎜ ⎟− ⋅ + + ⋅ + +⎢⎝ ⎠
⎢
⎛ ⎞⋅ ⋅ + ⋅ + ⋅ +⎢
⎜ ⎟⎢= ⎜ ⎟⎢ ⎜ ⎟⋅ + + ⋅ + +⎝ ⎠⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

A
ng

ul
ar

 

A
cc

el
er

at
io

n 

3
03

2 3

0
0ϖ

θ θ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥+⎣ ⎦

 

4 3 3
03 4 03

2 3

4 4 4 4 4 4
04 04 03 4 04 4

2 3 4

0
ˆ 0

0
      0

Aα α
θ θ

α ϖ α θ ϖ θ

θ θ θ

⎡ ⎤
⎢ ⎥= ⋅ = ⎢ ⎥
⎢ ⎥+⎣ ⎦

= = + + ×

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥+ +⎣ ⎦

 
10 4

04 4 04

2 3 4

0
ˆ 0Aϖ ϖ

θ θ θ

−
⎡ ⎤
⎢ ⎥⎡ ⎤= ⋅ =⎣ ⎦ ⎢ ⎥
⎢ ⎥+ +⎣ ⎦
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Table B.5 (cont’d)– Positions, Rotational and Translational Velocities, Rotational and Translational Accelerations of Bucket 

 
Tr

an
sl

at
io

na
l A

cc
el

er
at

io
n 

3 2

2
3 2

2
2 3

3 2

3 2
03 3 2

2 3

2 (sin( )

cos( ) ( ) )

3 ( )

2 (cos( )

sin( ) ( ) )

3 ( )

0

L

L

L

p

L

θ θ

θ θ

θ θ

θ θ

θ θ

θ θ

⎡ ⎤⎡ ⎤⋅ ⋅
⎢ ⎥⎢ ⎥
− ⋅⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥− ⋅ +⎢ ⎥⎣ ⎦
⎢ ⎥⎡ ⎤⋅ ⋅⎢ ⎥⎢ ⎥⎢ ⎥= + ⋅⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥+ ⋅ +⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

4 3 3
03 4 03

2
3 4 2 3 4 2

2
4 2 3 4 2 3

2
3 4 2 3 4 2

2
4 2 3 4 2 3

ˆ

2 (sin( ) cos( ) ( ) )

3 (cos( ) ( ) sin( ) ( ))

2 (cos( ) sin( ) ( ) )
       

3 (sin( ) ( ) cos( ) ( ))

a A a

L

L

L

L

θ θ θ θ θ θ

θ θ θ θ θ θ

θ θ θ θ θ θ

θ θ θ θ θ θ

= ⋅

⎛ ⎞⋅ + ⋅ − + ⋅
⎜ ⎟
⎜ ⎟⎜ ⎟− ⋅ ⋅ + − ⋅ +⎝ ⎠
⎛ ⋅ + ⋅ + + ⋅
⎜= ⎜
+ ⋅ ⋅ + + ⋅ +⎝

4 4 4 4 4 4 4 4
04 04 03 04 4 04 04 4

2
3 4 2 3 4 2

2
4 2 3 4 2 3

2
2 3 4

0

( )

2 (sin( ) cos( ) ( ) )

3 (cos( ) ( ) sin( ) ( ))

4 ( )

     

a p a p p

L

L

L

α ϖ ϖ

θ θ θ θ θ θ

θ θ θ θ θ θ

θ θ θ

∗ ∗

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎞⎢ ⎥
⎟⎢ ⎥
⎟⎢ ⎥⎜ ⎟
⎠⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= = + × + × ×

⎛ ⎞⋅ + ⋅ − + ⋅
⎜ ⎟
⎜ ⎟
− ⋅ ⋅ + − ⋅ +⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟− ⋅ + +⎝ ⎠

=

2
3 4 2 3 4 2

2
4 2 3 4 2 3

2 3 4

2 (cos( ) sin( ) ( ) )

3 (sin( ) ( ) cos( ) ( ))

4 ( )

0

L

L

L

θ θ θ θ θ θ

θ θ θ θ θ θ

θ θ θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎛ ⎞⋅ + ⋅ + + ⋅⎢ ⎥
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥+ ⋅ ⋅ + + ⋅ +⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎜ ⎟+ ⋅ + +⎝ ⎠⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

10 4
04 4 04

2
2 2 2 2

2 3 2 3

2
2 3 2 3

2 3 4 2 3 4

2
2 3 4 2 3 4

ˆ

2 (sin( ) cos( ) ( ) )

3 (sin( ) ( )

cos( ) ( ) )

4 (sin( ) ( )

cos( ) ( ) )

2 (c

     

p A p

L

L

L

L

θ θ θ θ

θ θ θ θ

θ θ θ θ

θ θ θ θ θ θ

θ θ θ θ θ θ

−
⎡ ⎤= ⋅⎣ ⎦

⎛ ⎞− ⋅ ⋅ + ⋅
⎜ ⎟
− ⋅ + ⋅ +⎜ ⎟
⎜ ⎟+ + ⋅ +⎜ ⎟
⎜ ⎟− ⋅ + + ⋅ + +
⎜ ⎟
⎜ ⎟+ + + ⋅ + +⎝ ⎠

⋅

=

2
2 2 2 2

2 3 2 3

2
2 3 2 3

2 3 4 2 3 4

2
2 3 4 2 3 4

os( ) sin( ) ( ) )

3 (cos( ) ( )

sin( ) ( ) )

4 (cos( ) ( )

sin( ) ( ) )

0

L

L

θ θ θ θ

θ θ θ θ

θ θ θ θ

θ θ θ θ θ θ

θ θ θ θ θ θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎛ ⎞⋅ − ⋅
⎢ ⎥⎜ ⎟
+ ⋅ + ⋅ +⎢⎜ ⎟

⎢⎜ ⎟− + ⋅ +⎢⎜ ⎟
⎢⎜ ⎟+ ⋅ + + ⋅ + +⎢⎜ ⎟
⎜ ⎟⎢ − + + ⋅ + +⎝ ⎠⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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B.1.3.2. Velocities and Accelerations of Center of Gravities of 

Links 

 

Table B.6 – Velocities and Accelerations of Center of Gravities of Links 

 

1 0
( 1) 1 0( 1) 0( 1)

1 1
0( 1) 0( 1) 0( 1) 0( 1) ( 1)

10 1
0 1 0( 1)

Velocity Relations, i=0,...,N-1
( )i

i G i i G i

i i i i i
i G i G i i i G

i
iG i i G

p A p p

v p v p

v A p

ϖ

+ ∗
+ + + +

+ + ∗
+ + + + +

− +
+ +

= ⋅ −

= = + ×

⎡ ⎤= ⋅⎣ ⎦

 

1 1 1 1 1 1 1
0( 1) 0( 1) 0( 1) 0( 1) ( 1) 0( 1) 0( 1)

10 1
0 1 0( 1)

Linear Acceleration Relations, i=0,...,N-1

(i i i i i i i i
i G i G i i i G i i

i
iG i i G

a p a p

a A p

α ϖ ϖ+ + + + + ∗ + + +
+ + + + + + +

− +
+ +

= = + × + × ×

⎡ ⎤= ⋅⎣ ⎦
 

 

B.1.3.2.1. Chassis (i=0) 

 

Table B.7 – Velocities and Accelerations of Center of Gravities of Chassis 

 

Po
si

tio
n 

01

0
0
0

Gp
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 
 

V
el

oc
ity

 1 0
1 1 01 01

1 1 1 1 1
01 01 01 01 1

0
ˆ ( ) 0

0

0
0
0

G G

G G G

p A p p

v p v pϖ

∗

∗

⎡ ⎤
⎢ ⎥= ⋅ − = ⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥= = + × = ⎢ ⎥
⎢ ⎥⎣ ⎦

 10 1
01 01 1 01

0
ˆ 0

0
G G Gv p A v

−
⎡ ⎤
⎢ ⎥⎡ ⎤= = ⋅ =⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

A
cc

el
er

at
io

n 1 1
01 01

1 1 1 1 1 1
01 01 1 01 01 1

0
       ( ) 0

0

G G

G G

a p

a p pα ϖ ϖ∗ ∗

=

⎡ ⎤
⎢ ⎥= + × + × × = ⎢ ⎥
⎢ ⎥⎣ ⎦

10 1
01 01 1 01

0
ˆ 0

0
G G Ga p A a

−
⎡ ⎤
⎢ ⎥⎡ ⎤= = ⋅ =⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦
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Table B.8 – Velocities and Accelerations of Center of Gravities of Boom 

 

Po
si

tio
n 2 1

02 01 2 1

2 cos( )
2 sin( )

0
G

Lg
p p Lg

θ λ
θ λ

⋅ +⎡ ⎤
⎢ ⎥= + ⋅ +⎢ ⎥
⎢ ⎥⎣ ⎦

 
2 1

02 2 1

2 cos( )
2 sin( )

0
G

Lg
p Lg

θ λ
θ λ

⋅ +⎡ ⎤
⎢ ⎥= ⋅ +⎢ ⎥
⎢ ⎥⎣ ⎦

 

V
el

oc
ity

 

1
2 0

2 2 02 02 1

2 1
2 2 2 2 2

02 02 02 02 2 2 1

2 cos( ) 2
ˆ ( ) 2 sin( )

0

2 sin( )
2 cos( )
0

G G

G G G

Lg L
p A p p Lg

Lg
v p v p Lg

λ
λ

θ λ
ϖ θ λ

∗

∗

⋅ −⎡ ⎤
⎢ ⎥= ⋅ − = ⋅⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤− ⋅ ⋅
⎢ ⎥= = + × = ⋅ ⋅⎢ ⎥
⎢ ⎥⎣ ⎦

 2 1 2
10 2

02 02 2 02 2 1 2

2 sin( )
ˆ 2 cos( )

0
G G G

Lg
v p A v Lg

θ λ θ
θ λ θ

−
⎡ ⎤− ⋅ + ⋅
⎢ ⎥⎡ ⎤= = ⋅ = ⋅ + ⋅⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦

A
cc

el
er

at
io

n 

2 2 2 2 2 2 2 2
02 02 02 02 2 02 02 2

2
1 2 1 2

2
1 2 1 2

( )

2 (sin( ) cos( ) ( ) )
        2 (cos( ) sin( ) ( ) )

0

G G G Ga p a p p

Lg
Lg

α ϖ ϖ

λ θ λ θ
λ θ λ θ

∗ ∗= = + × + × ×

⎡ ⎤− ⋅ ⋅ + ⋅
⎢ ⎥= ⋅ ⋅ − ⋅⎢ ⎥
⎢ ⎥⎣ ⎦

10 2
02 02 2 02

2
2 1 2 2 1 2

2
2 1 2 2 1 2

ˆ

2 (sin( ) cos( ) ( ) )
     2 (cos( ) sin( ) ( ) )

0

G G Ga p A a

Lg
Lg

θ λ θ θ λ θ
θ λ θ θ λ θ

−
⎡ ⎤= = ⋅⎣ ⎦

⎡ ⎤− ⋅ + ⋅ + + ⋅
⎢ ⎥= ⋅ + ⋅ − + ⋅⎢ ⎥
⎢ ⎥⎣ ⎦
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Table B.9 – Velocities and Accelerations of Center of Gravities of Arm 

 
Po

si
tio

n 2 3 2

03 02 2 3 2

3 cos( )
3 sin( )

0
G

Lg
p p Lg

θ θ λ
θ θ λ

⋅ + +⎡ ⎤
⎢ ⎥= + ⋅ + +⎢ ⎥
⎢ ⎥⎣ ⎦

 
2 2 3 2

03 2 2 3 2

2 cos( ) 3 cos( )
2 sin( ) 3 sin( )

0
G

L Lg
p L Lg

θ θ θ λ
θ θ θ λ

⋅ + ⋅ + +⎡ ⎤
⎢ ⎥= ⋅ + ⋅ + +⎢ ⎥
⎢ ⎥⎣ ⎦

 

V
el

oc
ity

 

2
3 0

3 3 03 03 2

3 3 3 3 3
03 03 03 03 3

2 2 3 3 2

2 2 3 3 2

3 cos( ) 3
ˆ ( ) 3 sin( )

0

3 sin( ) ( ) 2 sin( )
        3 cos( ) ( ) 2 cos( )

0

G G

G G G

Lg L
p A p p Lg

v p v p

Lg L
Lg L

λ
λ

ϖ

λ θ θ θ θ
λ θ θ θ θ

∗

∗

⋅ −⎡ ⎤
⎢ ⎥= ⋅ − = ⋅⎢ ⎥
⎢ ⎥⎣ ⎦

= = + ×

⎡ ⎤− ⋅ ⋅ + + ⋅ ⋅
⎢ ⎥= ⋅ ⋅ + + ⋅ ⋅⎢ ⎥
⎢ ⎥⎣ ⎦

 

10 3
03 03 3 03

2 3 2 2 3 2 2

2 3 2 2 3 2 2

ˆ

3 sin( ) ( ) 2 sin( )
       3 cos( ) ( ) 2 cos( )

0

G G Gv p A v

Lg L
Lg L

θ θ λ θ θ θ θ
θ θ λ θ θ θ θ

−
⎡ ⎤= = ⋅⎣ ⎦

⎡ ⎤− ⋅ + + ⋅ + − ⋅ ⋅
⎢ ⎥= ⋅ + + ⋅ + + ⋅ ⋅⎢ ⎥
⎢ ⎥⎣ ⎦
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Table B.9 (cont’d) – Velocities and Accelerations of Center of Gravities of Arm 

 
A

cc
el

er
at

io
n 

3 3 3 3 3 3 3 3
03 03 03 03 3 03 03 3

2
2 2 3 2 2 3

2
3 2 3 2

2
2 2 3 2 2 3

( )

3 sin( ) ( ) cos( ) ( )

2 (sin( ) cos( ) ( ) )

3 cos( ) ( ) sin( ) ( )
        

2 (cos(

G G G Ga p a p p

Lg

L

Lg

L

α ϖ ϖ

λ θ θ λ θ θ

θ θ θ θ

λ θ θ λ θ θ

θ

∗ ∗= = + × + × ×

⎛ ⎞⎡ ⎤− ⋅ ⋅ + + ⋅ +⎣ ⎦⎜ ⎟
⎜ ⎟+ ⋅ ⋅ − ⋅⎝ ⎠

⎡ ⎤⋅ ⋅ + − ⋅ +⎣ ⎦=
+ ⋅ 2

3 2 3 2) sin( ) ( ) )
0

θ θ θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎛ ⎞
⎢ ⎜ ⎟ ⎥
⎜ ⎟⎢ ⎥⋅ + ⋅⎝ ⎠⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

10 3
03 03 3 03

2
2 3 2 2 3 2 3 2 2 3

2
2 2 2 2

2
2 3 2 2 3 2 3 2 2 3

ˆ

3 sin( ) ( ) cos( ) ( )

2 (sin( ) cos( ) ( ) )

3 cos( ) ( ) sin( ) ( )
      

2 (

G G Ga p A a

Lg

L

Lg

L

θ θ λ θ θ θ θ λ θ θ

θ θ θ θ

θ θ λ θ θ θ θ λ θ θ

−
⎡ ⎤= = ⋅⎣ ⎦

⎛ ⎞⎡ ⎤− ⋅ + + ⋅ + + + + ⋅ +⎣ ⎦⎜ ⎟
⎜ ⎟
⎜ ⎟− ⋅ ⋅ + ⋅⎝ ⎠

⎡ ⎤⋅ + + ⋅ + − + + ⋅ +⎣ ⎦
=

− ⋅ 2
2 2 2 2cos( ) sin( ) ( ) )

0
θ θ θ θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎜ ⎟⎢ ⎥− ⋅ + ⋅⎝ ⎠⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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Table B.10 – Velocities and Accelerations of Center of Gravities of Bucket 

 

Po
si

tio
n 2 3 4 2

04 03 2 3 4 2

4 cos( )
4 sin( )

0
G

Lg
p p Lg

θ θ θ λ
θ θ θ λ

⋅ + + +⎡ ⎤
⎢ ⎥= + ⋅ + + +⎢ ⎥
⎢ ⎥⎣ ⎦

 
2 2 3 2 3 4 3

04 2 2 3 2 3 4 3

2 cos( ) 3 cos( ) 4 cos( )
2 sin( ) 3 sin( ) 4 sin( )

0
G

L L Lg
p L L Lg

θ θ θ θ θ θ λ
θ θ θ θ θ θ λ

⋅ + ⋅ + + ⋅ + + +⎡ ⎤
⎢ ⎥= ⋅ + ⋅ + + ⋅ + + +⎢ ⎥
⎢ ⎥⎣ ⎦

V
el

oc
ity

 

3
4 0

4 4 04 04 3

4 4 4 4 4
04 04 04 04 4

3 2 3 4

3 4 2 4 2 3

3 2 3 4

4 cos( ) 4
ˆ ( ) 4 sin( )

0

4 sin( ) ( )

2 sin( ) 3 sin( ) ( )

4 cos( ) ( )
        

2 cos

G G

G G G

Lg L
p A p p Lg

v p v p

Lg

L L

Lg

L

λ
λ

ϖ

λ θ θ θ

θ θ θ θ θ θ

λ θ θ θ

∗

∗

⋅ −⎡ ⎤
⎢ ⎥= ⋅ − = ⋅⎢ ⎥
⎢ ⎥⎣ ⎦

= = + ×

⎛ ⎞− ⋅ ⋅ + +
⎜ ⎟⎜ ⎟+ ⋅ + ⋅ + ⋅ ⋅ +⎝ ⎠

⋅ ⋅ + +
=

+ ⋅ 3 4 2 4 2 3( ) 3 cos( ) ( )
0

Lθ θ θ θ θ θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎛ ⎞⎢ ⎥
⎜ ⎟⎢ ⎥⎜ ⎟+ ⋅ + ⋅ ⋅ +⎝ ⎠⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

10 4
04 04 4 04

2 3 4 3 2 3 4

2 2 2 3 2 3

2 3 4 3 2 3 4

2 2 2 3 2 3

ˆ

4 sin( ) ( )

2 sin( ) 3 sin( ) ( )

4 sin( ) ( )
       

2 sin( ) 3 sin( ) ( )

G G Gv p A v

Lg

L L

Lg

L L

θ θ θ λ θ θ θ

θ θ θ θ θ θ

θ θ θ λ θ θ θ

θ θ θ θ θ θ

−
⎡ ⎤= = ⋅⎣ ⎦

⎛ ⎞− ⋅ + + + ⋅ + +
⎜ ⎟
⎜ ⎟⎜ ⎟− ⋅ ⋅ − ⋅ + ⋅ +⎝ ⎠
⎛ ⎞⋅ + + + ⋅ + +
⎜ ⎟= ⎜⎜+ ⋅ ⋅ + ⋅ + ⋅ +⎝ ⎠

0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎟⎢ ⎥⎟
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
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Table B.10 (cont’d) – Velocities and Accelerations of Center of Gravities of Bucket 

 
A

cc
el

er
at

io
n 

( )
( )
( )

4 4 4 4 4 4 4 4
04 04 04 04 4 04 04 4

2
3 2 3 4 3 2 3 4

2
4 2 3 4 2 3

2
3 4 2 3 4 2

( )

4 sin( ) ( ) cos( ) ( )

3 sin( ) ( ) cos( ) ( )

2 sin( ) cos( ) ( )

        

G G G Ga p a p p

Lg

L

L

L

α ϖ ϖ

λ θ θ θ λ θ θ θ

θ θ θ θ θ θ

θ θ θ θ θ θ

∗ ∗= = + × + × ×

⎛ ⎞− ⋅ ⋅ + + + ⋅ + +
⎜ ⎟
⎜ ⎟+ ⋅ ⋅ + − ⋅ +
⎜ ⎟
⎜ ⎟+ ⋅ + ⋅ − + ⋅⎝ ⎠

=

( )
( )
( )

2
3 2 3 4 3 2 3 4

2
4 2 3 4 2 3

2
3 4 2 3 4 2

4 cos( ) ( ) sin( ) ( )

3 cos( ) ( ) sin( ) ( )

2 cos( ) sin( ) ( )

0

g

L

L

λ θ θ θ λ θ θ θ

θ θ θ θ θ θ

θ θ θ θ θ θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎛ ⎞⋅ ⋅ + + − ⋅ + +⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟+ ⋅ ⋅ + + ⋅ +⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟+ ⋅ + ⋅ + + ⋅⎢ ⎥⎝ ⎠
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

( )

( )

10 4
04 04 4 04

2
2 3 4 2 2 3 4 2 3 4 2 2 3 4

2
2 3 2 3 2 3 2 3

2
2 2 2 2

ˆ

4 sin( ) ( ) cos( ) ( )

3 sin( ) ( ) cos( ) ( )

2 (sin( ) cos( ) ( ) )

      

G G Ga p A a

Lg

L

L

θ θ θ λ θ θ θ θ θ θ λ θ θ θ

θ θ θ θ θ θ θ θ

θ θ θ θ

−
⎡ ⎤= = ⋅⎣ ⎦

⎛ ⎞− ⋅ + + + ⋅ + + + + + + ⋅ + +
⎜ ⎟
⎜ ⎟
⎜ ⎟− ⋅ + ⋅ + + + ⋅ +
⎜ ⎟
⎜
⎜− ⋅ ⋅ + ⋅⎝ ⎠

=

( )

( )

2
2 3 4 2 2 3 4 2 3 4 2 2 3 4

2
2 3 2 3 2 3 2 3

2
2 2 2 2

4 cos( ) ( ) sin( ) ( )

3 cos( ) ( ) sin( ) ( )

2 (cos( ) sin( ) ( ) )

0

Lg

L

L

θ θ θ λ θ θ θ θ θ θ λ θ θ θ

θ θ θ θ θ θ θ θ

θ θ θ θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎟
⎢ ⎥⎟
⎢
⎢ ⎛ ⎞⋅ + + + ⋅ + + − + + + ⋅ + +⎢ ⎜ ⎟⎢ ⎜ ⎟⎢ ⎜ ⎟⋅ + ⋅ + − + ⋅ +⎢ ⎜ ⎟⎢ ⎜ ⎟⎢ ⎜ ⎟⋅ ⋅ − ⋅⎢ ⎝ ⎠⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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B.1.3.3. External Forces and Moments on Links 

 

Table B.11 – External Forces and Moments on Links 

 

0( 1)

1 1 0
0 1 1 0( 1) 0( 1)

11 0 1 1
0 1 0

Force Relations, i=1,...,N-1

0
9.81
0

( )

i

i i
i i i G i

i i i
i

g

F m A p g

F A F

+

+ +
+ + + +

−+ + +
+

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤= ⋅ ⋅ +⎣ ⎦

⎡ ⎤= ⋅⎣ ⎦

 

11 0 0
0( 1) 1 0( 1) 1

1 1 1
0( 1) 0( 1) 0( 1)

1 1 1
0( 1) 0( 1) 0( 1)

1 1 1 1 1
0 0( 1) 0( 1) 0( 1)

11 0
0

Moment Relations, i=1,...,N-1

ˆ ˆˆ ˆi
i i i i

i i i
i i i

i c i i
i i i

i i i c i i
i i i

i
i

I A I A

H I

M I

M M H

M A

ϖ

α

ϖ

−
+

+ + + +

+ + +
+ + +

+ + +
+ + +

+ + + + +
+ + +

−+

⎡ ⎤= ⋅ ⋅ ⎣ ⎦

= ⋅

= ⋅

= + ×

⎡ ⎤= ⎣ ⎦
1 1

0
i iM+ +⋅

 

B.1.3.3.1. Inputs  
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02 2

2

0 0
ˆ 0 0
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x

y

z

I
I I

I

⎡ ⎤
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⎢ ⎥⎣ ⎦

  
3

03 3

3

0 0
ˆ 0 0

0 0

x

y

z

I
I I

I

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

  
4

04 4

4

0 0
ˆ 0 0

0 0

x

y

z

I
I I

I

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
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Table B.12 - External Forces and Moments on Boom 

 

Fo
rc

e 

2 2 0
0 2 2 02 02

2
2 1 2 1 2 2 2

2
2 1 2 1 2 2 2

ˆ ( )

( 2 (sin( ) cos( ) ( ) ) sin( ))
     ( 2 (cos( ) sin( ) ( ) ) cos( ))

0

GF m A p g

m Lg g
m Lg g

λ θ λ θ θ
λ θ λ θ θ

⎡ ⎤= ⋅ ⋅ +⎣ ⎦

⎡ ⎤− ⋅ ⋅ ⋅ + ⋅ − ⋅
⎢ ⎥= ⋅ ⋅ ⋅ − ⋅ + ⋅⎢ ⎥
⎢ ⎥⎣ ⎦

 
12 0 2 2

0 2 0

2
2 1 2 2 1 2 2

2
2 1 2 2 1 2 2 2

ˆ

2 (sin( ) cos( ) ( ) )

    2 (cos( ) sin( ) ( ) )

0

F A F

m Lg

m Lg g

λ θ θ λ θ θ

λ θ θ λ θ θ

−
⎡ ⎤= ⋅⎣ ⎦

⎡ ⎤⎡ ⎤− ⋅ ⋅ + ⋅ + + ⋅⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤= ⋅ ⋅ + ⋅ − + ⋅ +⎣ ⎦⎢ ⎥
⎢ ⎥
⎣ ⎦

M
om

en
t 

12 0 0
02 2 02 2

2 2
2 2 2 2 2 2 2 2 2 2

2 2
2 2 2 2 2 2 2 2 2 2

2

ˆ ˆˆ ˆ ( )

cos( ) sin( ) cos( ) sin( ) sin( ) cos( ) 0
    cos( ) sin( ) sin( ) cos( ) sin( ) sin( ) 0

0 0

R

x y x y

x y x y

z

I A I A

I I I I
I I I I

I

θ θ θ θ θ θ
θ θ θ θ θ θ

−
⎡ ⎤= ⋅ ⋅ ⎣ ⎦

⎡ ⎤⋅ + ⋅ − ⋅ ⋅ + ⋅ ⋅
⎢ ⎥= − ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅⎢ ⎥
⎢ ⎥⎣ ⎦

 

2 2 2
02 02 02

2 2

2 2 2
02 02 02

2 2

2 2 2 2 2
0 02 02 02

2 2

ˆ

0
       0

ˆ

0
        0

0
       0

z

c

z

c

z

H I

I

M I

I

M M H

I

ϖ

θ

α

θ

ϖ

θ

= ⋅

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⋅⎣ ⎦

= ⋅

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⋅⎣ ⎦

= + ×

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⋅⎣ ⎦

 
12 0 2 2

0 2 0

2 2

0
ˆ 0

z

M A M
I θ

−
⎡ ⎤
⎢ ⎥⎡ ⎤= ⋅ =⎣ ⎦ ⎢ ⎥
⎢ ⎥⋅⎣ ⎦
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Table B.13 - External Forces and Moments on Arm 

 

Fo
rc

e 

3 3 0
0 3 3 03 03

2
2 2 3 2 2 3

3
2

3 2 3 2 3 2 3

2
2 2 3 2 2 3

3

3

ˆ ( )

3 (sin( ) ( ) cos( ) ( ) )

2 (sin( ) cos( ) ( ) ) sin( )

3 (cos( ) ( ) sin( ) ( ) )
      

2 (cos( )

GF m A p g

Lg
m

L g

Lg
m

L

λ θ θ λ θ θ

θ θ θ θ θ θ

λ θ θ λ θ θ

θ

⎡ ⎤= ⋅ ⋅ +⎣ ⎦

⎡ ⎤⋅ ⋅ + + ⋅ +
⎢ ⎥− ⋅
⎢ ⎥− ⋅ ⋅ − ⋅ − ⋅ +⎣ ⎦

⋅ ⋅ + − ⋅ +
= ⋅

+ ⋅ ⋅ 2
2 3 2 3 2 3sin( ) ( ) ) cos( )

0
gθ θ θ θ θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥+ ⋅ + ⋅ +⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

13 0 3 3
0 3 0

2 3 2 2 3

2
3 2 3 2 2 3

2
2 2 2 2

2 3 2 2 3

2
2 3 2 2 3

3

ˆ

3 (sin( ) ( )

cos( ) ( ) )

2 (sin( ) cos( ) ( ) )

3 (cos( ) ( )

sin( ) ( ) )
     

2 (cos(

F A F

Lg

m

L

Lg

m
L

θ θ λ θ θ

θ θ λ θ θ

θ θ θ θ

θ θ λ θ θ

θ θ λ θ θ

−
⎡ ⎤= ⋅⎣ ⎦

⎡ ⎤⋅ + + ⋅ +
⎢ ⎥
⎢ ⎥− ⋅ + + + ⋅ +
⎢ ⎥
⎢ ⎥+ ⋅ ⋅ + ⋅⎢ ⎥⎣ ⎦

⋅ + + ⋅ +

− + + ⋅ +
= ⋅

+ ⋅ 2
2 2 2 2

3

) sin( ) ( ) )

0
g

θ θ θ θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⋅ − ⋅⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥+⎣ ⎦⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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Table B.13 (cont’d) - External Forces and Moments on Arm 

 
M

om
en

t 
13 0 0

03 3 03 3

2 2
3 2 3 3 2 3 3 2 3 2 3 3 2 3 2 3

2 2
3 2 3 2 3 3 2 3 2 3 3 2 3 3 2 3

ˆ ˆˆ ˆ

cos( ) sin( ) cos( ) sin( ) sin( ) cos( ) 0
    cos( ) sin( ) sin( ) cos( ) sin( ) sin( ) 0

x y x y

x y x y

I A I A

I I I I
I I I I

θ θ θ θ θ θ θ θ θ θ θ θ
θ θ θ θ θ θ θ θ θ θ θ θ

−
⎡ ⎤= ⋅ ⋅ ⎣ ⎦

⋅ + + ⋅ + − ⋅ + ⋅ + + ⋅ + ⋅ +
= − ⋅ + ⋅ + + ⋅ + ⋅ + ⋅ + + ⋅ +

30 0 zI

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

3 3 3
03 03 03

3 2 3

3 3 3
03 03 03

3 2 3

3 3 3 3 3
0 03 03 03

3 2 3

ˆ

0
       0

( )

ˆ

0
        0

( )

0
       0

( )

z

c

z

c

z

H I

I

M I

I

M M H

I

ϖ

θ θ

α

θ θ

ϖ

θ θ

= ⋅

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⋅ +⎣ ⎦

= ⋅

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⋅ +⎣ ⎦

= + ×

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⋅ +⎣ ⎦

 

13 0 3 3
0 3 0

3 2 3

ˆ

0
     0

( )z

M A M

I θ θ

−
⎡ ⎤= ⋅⎣ ⎦

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⋅ +⎣ ⎦
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Table B.14 - External Forces and Moments on Bucket 

 

Fo
rc

e 

4 4 0
0 4 4 04 04

2
3 2 3 4 3 2 3 4

2
4 4 2 3 4 2 3

2
3 4 2 3 4 2 4 2 3 4

ˆ ( )

4 (sin( ) ( ) cos( ) ( ) )

3 (sin( ) ( ) cos( ) ( ) )

2 (sin( ) cos( ) ( ) ) sin( )

      

GF m A p g

Lg

m L

L g

λ θ θ θ λ θ θ θ

θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ

⎡ ⎤= ⋅ ⋅ +⎣ ⎦

⎡ ⋅ ⋅ + + + ⋅ + +
⎢
⎢− ⋅ − ⋅ ⋅ + − ⋅ +
⎢
⎢− ⋅ + ⋅ − + ⋅ − ⋅ + +⎢⎣

=

2
3 2 3 4 3 2 3 4

2
4 4 2 3 4 2 3

2
3 4 2 3 4 2 4 2 3 4

4 (cos( ) ( ) sin( ) ( ) )

3 (cos( ) ( ) sin( ) ( ) )

2 (cos( ) sin( ) ( ) ) cos( )

0

Lg

m L

L g

λ θ θ θ λ θ θ θ

θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ

⎡ ⎤⎤
⎢ ⎥⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎥⎢ ⎦
⎢

⎡ ⎤⋅ ⋅ + + − ⋅ + +⎢
⎢ ⎥⎢
⎢ ⎥⎢ ⋅ ⋅ ⋅ + + ⋅ +
⎢ ⎥⎢
⎢ ⎥⎢ + ⋅ + ⋅ + + ⋅ + ⋅ + +⎢ ⎥⎣ ⎦⎢

⎢
⎢
⎢
⎢
⎢
⎢⎣ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

14 0 4 4
0 4 0

2 3 4 3 2 3 4

2
2 3 4 3 2 3 4

4 2 3 2 3

2
2 3 2 3

2
2 2 2 2

ˆ

4 (sin( ) ( )

cos( ) ( ) )

3 (sin( ) ( )

cos( ) ( ) )

2 (sin( ) cos( ) ( ) )

    

F A F

Lg

m L

L

θ θ θ λ θ θ θ

θ θ θ λ θ θ θ

θ θ θ θ

θ θ θ θ

θ θ θ θ

−
⎡ ⎤= ⋅⎣ ⎦

⎡ ⎤⋅ + + + ⋅ + +
⎢ ⎥
⎢ ⎥+ + + + ⋅ + +
⎢ ⎥
⎢ ⎥− ⋅ + ⋅ + ⋅ +⎢ ⎥
⎢
+ + ⋅ +⎢
⎢
⎢+ ⋅ ⋅ + ⋅⎣ ⎦

=

2 3 4 3 2 3 4

2
2 3 4 3 2 3 4

4 2 3 2 3

2
2 3 2 3

2
2 2 2 2 4

4 (cos( ) ( )

sin( ) ( ) )

3 (cos( ) ( )

sin( ) ( ) )

2 (cos( ) sin( ) ( ) )

0

Lg

m L

L g

θ θ θ λ θ θ θ

θ θ θ λ θ θ θ

θ θ θ θ

θ θ θ θ

θ θ θ θ

⎡
⎢
⎢
⎢
⎢
⎢
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢
⎢ ⎡ ⎤⋅ + + + ⋅ + +

⎢ ⎥
⎢ ⎥− + + + ⋅ + +
⎢ ⎥
⎢ ⎥⋅ + ⋅ + ⋅ +⎢ ⎥
⎢ ⎥
− + ⋅ +⎢ ⎥
⎢ ⎥
⎢ ⎥+ ⋅ ⋅ − ⋅ +⎣ ⎦

⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎦

 

 

 

 

 

B
.1.3.3.4. B

ucket (i=3)



 

94

Table B.14 (cont’d) - External Forces and Moments on Bucket 

 
M

om
en

t 

14 0 0
04 4 04 4

2 2
4 2 3 4 4 2 3 4 4 2 3 4 2 3 4 4 2 3 4 2 3 4

4 2 3 4 2 3 4 4 2 3 4 2 3 4

ˆ ˆˆ ˆ

cos( ) sin( ) cos( ) sin( ) sin( ) cos( ) 0
     cos( ) sin( ) sin( ) cos( )

x y x y

x y x

I A I A

I I I I
I I I

θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ
θ θ θ θ θ θ θ θ θ θ θ θ

−
⎡ ⎤= ⋅ ⋅ ⎣ ⎦

⋅ + + + ⋅ + + − ⋅ + + ⋅ + + + ⋅ + + ⋅ + +
= − ⋅ + + ⋅ + + + ⋅ + + ⋅ + + 2 2

4 2 3 4 4 2 3 4

4

sin( ) sin( ) 0
0 0

y

z

I
I

θ θ θ θ θ θ
⎡ ⎤
⎢ ⎥⋅ + + + ⋅ + +⎢ ⎥
⎢ ⎥⎣ ⎦

4 4 4
04 04 04

4 2 3 4

4 4 4
04 04 04

4 2 3 4

4 4 4 4 4
0 04 04 04

4 2 3 4

ˆ

0
       0

( )

ˆ

0
        0

( )

0
       0

( )

z

c

z

c

z

H I

I

M I

I

M M H

I

ϖ

θ θ θ

α

θ θ θ

ϖ

θ θ θ

= ⋅

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⋅ + +⎣ ⎦

= ⋅

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⋅ + +⎣ ⎦

= + ×

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⋅ + +⎣ ⎦

 

14 0 4 4
0 4 0

4 2 3 4

ˆ

0
     0

( )z

M A M

I θ θ θ

−
⎡ ⎤= ⋅⎣ ⎦

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⋅ + +⎣ ⎦



 95

B.1.3.4. Actuating Forces and Points on Cylinders, Connecting 

Rods, Boom, Arm and Bucket 

 

 
Figure B.1 – Forces on Bucket Cylinder and Connecting Rods 

 

0JK PK LKF F F+ + =  

 

Let us evaluate the vector sum on x3-y3 coordinate system: 

2 4 3

2 4 3

cos( ) cos( ) cos( ) 0

sin( ) sin( ) sin( ) 0

JK LK PK

JK LK PK

F F F

F F F

φ φ φ

φ φ φ

− ⋅ − ⋅ − ⋅ =

− ⋅ − ⋅ − ⋅ =
 

 

Since force created by bucket cylinder is known it is assumed as input. Therefore, 

2 2 4

3 3 4

2 2 3

4 4 3

sin( ) cos( ) tan( )( )                                                            (B.1)
sin( ) cos( ) tan( )

sin( ) cos( ) tan( )( )                    
sin( ) cos( ) tan( )

φ φ φ
φ φ φ

φ φ φ
φ φ φ

− ⋅
= ⋅

− + ⋅

− ⋅
= ⋅

− + ⋅

PK JK

LK JK

F F

F F                                          (B.2)
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All actuating forces and positions: 

 

2 3 3

(4,1) 2 3 3

2 3 4

(3,1) 2 3 4

cos( )
sin( )                                               (B.3)

0

cos( )
sin( )                                    

0

θ θ φ
θ θ φ

θ θ φ
θ θ φ

⋅ + +⎡ ⎤
⎢ ⎥= = ⋅ + +⎢ ⎥
⎢ ⎥⎣ ⎦

⋅ + +⎡ ⎤
⎢ ⎥= = ⋅ + +⎢ ⎥
⎢ ⎥⎣ ⎦

PK

a PK PK

LK

a LK LK

F
F F F

F
F F F

2 3 2

(3,2) 2 3 2

2 5

(3,3) (2,1) 2 5

           (B.4)

cos( )
sin( )                                               (B.5)

0

cos( )
sin( )             

0

θ θ φ
θ θ φ

θ φ π
θ φ π

⋅ + +⎡ ⎤
⎢ ⎥= = ⋅ + +⎢ ⎥
⎢ ⎥⎣ ⎦

⋅ + +⎡ ⎤
⎢ ⎥= − = = ⋅ + +⎢ ⎥
⎢ ⎥⎣ ⎦

JK

a JK JK

IF

a a IF IF

F
F F F

F
F F F F

2 6

(2,2) 2 6

                    (B.6)

cos( )
sin( )                                                     (B.7)

0

θ φ
θ φ

⋅ +⎡ ⎤
⎢ ⎥= = ⋅ +⎢ ⎥
⎢ ⎥⎣ ⎦

EB

a EB EB

F
F F F
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2 2 3 2 3 4 8

0(4,1) 0 2 2 3 2 3 4 8

2 2 3 5

0(3,1) 0 2 2 3 5

2 cos( ) 3 cos( ) cos( )
2 sin( ) 3 sin( ) sin( )      (B.8)

0

2 cos( ) cos( )
2 sin( ) sin( )

0

θ θ θ θ θ θ β
θ θ θ θ θ θ β

θ θ θ β
θ θ θ β

⋅ + ⋅ + + ⋅ + + +⎡ ⎤
⎢ ⎥= = ⋅ + ⋅ + + ⋅ + + +⎢ ⎥
⎢ ⎥⎣ ⎦

⋅ + ⋅ + +⎡
⎢= = ⋅ + ⋅ + +⎢
⎣

P

L

L L Ldp
p p L L Ldp

L Lcl
p p L Lcl

2 2 3 5 6

0(3,1) 0 2 2 3 5 6

0(3,3) 0

                                           (B.9)

2 cos( ) cos( )
2 sin( ) sin( )                                  (B.10)

0

2 cos

θ θ θ β β
θ θ θ β β

⎤
⎥
⎥

⎢ ⎥⎦

⋅ + ⋅ + + +⎡ ⎤
⎢ ⎥= = ⋅ + ⋅ + + +⎢ ⎥
⎢ ⎥⎣ ⎦

⋅
= =

J

F

L Lcj
p p L Lcj

L
p p

2 2 3 5 6 7

2 2 3 5 6 7

2 2

0(2,1) 0 2 2

( ) cos( )
2 sin( ) sin( )                         (B.11)

0

cos( )
sin( )                                             

0

θ θ θ β β β
θ θ θ β β β

θ β
θ β

+ ⋅ + + + +⎡ ⎤
⎢ ⎥⋅ + ⋅ + + + +⎢ ⎥
⎢ ⎥⎣ ⎦

⋅ +⎡ ⎤
⎢ ⎥= = ⋅ +⎢ ⎥
⎢ ⎥⎣ ⎦

I

Lcf
L Lcj

Lai
p p Lai

2 2 3

0(2,2) 0 2 2 3

                         (B.12)

cos( )
sin( )                                                            (B.13)

0

θ β β
θ β β

⋅ + +⎡ ⎤
⎢ ⎥= = ⋅ + +⎢ ⎥
⎢ ⎥⎣ ⎦

B

Lab
p p Lab  
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B.1.4. Backward Dynamics 

 

B.1.4.1. Force, Torque Relations of Links 

 

Table B.15 – Force, Torque Relations of Links 

 

1 1 1 1 1
,( 1) ( 1),( 2) 0 ( 1, )

10 1
,( 1) ( 1) ,( 1)

Force Relations, i=N-1,...,1
i i i i i

i i i i a i k
k

i
i i i i i

F F F F

F A F

+ + + + +
+ + + +

− +
+ + +

= − +

⎡ ⎤= ⋅⎣ ⎦

∑  

1 1 1 1 1 1 1 1 1 1 1
,( 1) ,( 1) 0(( 1), ) 0 (( 1), ) 0( 1) 0 0 0

10 1
,( 1) 1 ,( 1)

Torque Relations, i=N-1,...,1

( ( ) ) ( )i i i i i i i i i i i
i i i i i k i a i k i G i

k

i
i i i i i

M M p p F p p F M

M A M

+ + + + + + + + + + +
+ + + + +

− +
+ + +

= − − − × + − × +

⎡ ⎤= ⋅⎣ ⎦

∑
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B.1.4.1.1. Bucket (i=3) 

 

 

 

 
Figure B.2 – Forces on Bucket 

 

 

 
4 4 4 4 4

34 0 45

4 4 4 4 4 4 4 4
34 45 04 03 45 0 03

4 4 4 4
04 03 0

                                                                                     (B.14)

( ) ( )

           ( )

= − + +

= − − − × − − ×

+ − × +

PK

P PK

G

F F F F

M M p p F p p F

p p F 4 4
0                                                                    (B.15)M
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B.1.4.1.2. Arm 

 

 

 
Figure B.3 – Forces on Arm 

 

 
3 3 3 3 3 3 3

23 0 34

3 3 3 3 3 3 3 3 3 3 3
23 34 03 02 34 0 02 0 02

                                                                        (B.16)

( ) ( ) ( )

           (

= − + + + +

= − − − × − − × − − ×

−

LK JK FI

L LK J JK

F F F F F F

M M p p F p p F p p F

3 3 3 3 3 3 3 3 3
0 02 03 02 0 0) ( )                                            (B.17)− × + − × +F FI Gp p F p p F M
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Figure B.4 – Forces on Boom 

 

 
2 2 2 2 2 2

12 0 23

2 2
12 2

                                                                                                                                                        (B.18)= − + − +

= −

IF BEF F F F F

M M 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3 02 01 23 0 01 0 01 02 01 0 0( ) ( ) ( ) ( )                                  (B.19)− − × + − × − − × + − × +I IF B EB Gp p F p p F p p F p p F M
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2 3 4 45 2 3 4 1 2 3 4 8 2 3 3

34 45 2 3 4 45 2 3 4 1 2 3 4 8 2 3 3

4 cos( ) cos( ) cos( ) cos( )
4 sin( ) sin( ) sin( ) sin( )

0 0 0 0

θ θ θ θ θ θ φ θ θ θ β θ θ φ
θ θ θ θ θ θ φ θ θ θ β θ θ φ

⋅ + + ⋅ + + + ⋅ + + + ⋅ + +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − − ⋅ + + × ⋅ + + + − ⋅ + + + × ⋅ + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

PK

PK

L F Ldp F
M M L F Ldp F

2
2 3 4 3 2 3 4 2 3 4 3 2 3 4
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θ β θ φ θ β β θ φ θ λ
θ β θ φ θ β β θ φ θ λ

⋅ + ⋅ + ⋅ + + ⋅ + ⋅ +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢+ ⋅ + × ⋅ + − ⋅ + + × ⋅ + + ⋅ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣

IF EB

IF EB

Lai F Lab F Lg
Lai F Lab F Lg

2
2 1 2 2 1 2 2

2
2 1 2 2 1 2 2 2

2 2

2 (sin( ) cos( ) ( ) ) 0
2 (cos( ) sin( ) ( ) ) 0     (B.22)

0

λ θ θ λ θ θ

λ θ θ λ θ θ
θ

⎡ ⎤⎡ ⎤− ⋅ ⋅ + ⋅ + + ⋅⎣ ⎦⎤ ⎡ ⎤⎢ ⎥
⎥ ⎢ ⎥⎢ ⎥⎡ ⎤× ⋅ ⋅ + ⋅ − + ⋅ − +⎣ ⎦⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⋅⎢ ⎥⎦ ⎣ ⎦
⎣ ⎦

z

m Lg

m Lg g
I
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2 2 2 2 2

2 2 4 3 3 3 4

4 3 4 3

4 3 4 3 3 3 2

3 3 2 4

1 2

2 3

3 4

2 2 2 3 3

3 2 co s( ) 3 2 co s( )

4 2 co s( ) 3 2 co s( )

3 2 co s( ) 4 3 co s(

z zI L g m L m L m I L g m L m

L m L L m L

L g m L L g m L

L g m L L g m L

M

M

M

θ θ

θ θ λ θ λ

θ λ

⎡ ⎤+ ⋅ + ⋅ + ⋅ + ⋅ + ⋅
⎢ ⎥
⎢ ⎥+ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅
⎢ ⎥
⎢ ⎥+ ⋅ ⋅ ⋅ + + + ⋅ ⋅ ⋅ +
⎢ ⎥
⎢ ⎥+ ⋅ ⋅ ⋅ + + ⋅ ⋅ ⋅⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥ =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

2
4 4

4 3 4 3

4 4 3

4 3

4 3 2 2
3 3 4

4 3 4 3

4 4

3 3 2

4

2 4 co s ( )

3 4 co s( )
)

3 2 co s ( )
3 3

4 2 co s ( )
4 3 co s(

3 2 co s( )

z

z

I L g m

L m L g

L m L g

L m L
I L g m L m

L g m L
L g m L

L g m L

θ θ λ

θ λ
θ λ

θ

θ θ λ
θ λ

θ λ

⎡ ⎤
⎢ ⎥ ⎡ ⎤+ ⋅
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+ ⋅ ⋅ ⋅ + +
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+ ⋅ ⋅ ⋅ +⎣ ⎦⎢ ⎥+⎣ ⎦

⋅ ⋅ ⋅⎡ ⎤
⎢ ⎥ + ⋅ + ⋅
⎢ ⎥+ ⋅ ⋅ ⋅ + +
⎢ ⎥ + ⋅ ⋅ ⋅ +
⎢ ⎥+ ⋅ ⋅ ⋅ +⎣ ⎦

2

2
4 4

2 3

4 4 33

2 3 4

2
4 3 4 3 4 4 3 4 4

4

3 4 co s( ))

4 2 co s( ) 4 3 co s( ) 4

z

z

I L g m

L m L g

L g m L L g m L I L g m

θ

θ θ
θ λ

θ θ θ

θ θ λ θ λ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤+ ⋅⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⋅ +⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥+ ⋅ ⋅ ⋅ +⎣ ⎦⎣ ⎦ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ + +⎣ ⎦⎢ ⎥

⎢ ⎥⋅ ⋅ ⋅ + + ⋅ ⋅ ⋅ + + ⋅
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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4 2 3

4 2 3 2

4 2 3 4 3 3 2 3 2 2 2 1

4 2 3

4 2 3 4 3 3 2 3 2

4

3 cos( )

2 cos( ) 2 cos( )

4 cos( ) 3 cos( ) 2 cos( )

3 cos( )

4 cos( ) 3 cos( )

4 cos(

L m

L m L m

Lg m Lg m Lg m

L m

Lg m Lg m

Lg m

θ θ

θ θ

θ θ θ λ θ θ λ θ λ

θ θ

θ θ θ λ θ θ λ

⋅ ⋅ +⎡ ⎤
⎢ ⎥
⎢ ⎥+ ⋅ ⋅ + ⋅ ⋅
⎢ ⎥
⎢ ⎥+ ⋅ ⋅ + + + + ⋅ ⋅ + + + ⋅ ⋅ +⎣ ⎦

⋅ ⋅ +⎡ ⎤
− ⎢ ⎥

⎢ ⎥+ ⋅ ⋅ + + + + ⋅ ⋅ + +⎣ ⎦

⋅ ⋅

4 8 3

3

3 3

4 8 3

3

2 3 4 3 4 8 3

sin( )

3 sin( )

2 sin( )

sin( )

3 sin( )

) sin( )

Ldp

L

L

Ldp
g

L

Ldp

θ β φ

φ

θ φ

θ β φ

φ

θ θ θ λ θ β φ

⎡ ⎤ ⎡ ⋅ − − + ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥+ ⋅
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥+ ⋅ +⎣ ⎦⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⋅ − − +⎡ ⎤⎢ ⎥ ⎢ ⎥⋅ − ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥+ ⋅⎣ ⎦⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

+ + + ⋅ − − +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦

5 4

3 4

5 4

sin( )

2 sin( )

sin( )

0

PK LK

Lcl

L

F Lcl F

β φ

θ φ

β φ

⎡ ⋅ − + ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥+ ⋅ +⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥⋅ − ⋅ − + ⋅⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎥

 

 

5 6 2 3 5 6 7 5

3 2 5 2 5

5 6 2 3 5 6 7 5

sin( ) sin( )

2 sin( ) 2sin( ) sin( )

sin( ) sin( )

0 0

β β φ θ β β β φ

θ φ φ β φ

β β φ θ β β β φ

⎡ ⋅ − − + ⎤ ⎡ ⋅ − − − − + ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥+ ⋅ + + − ⋅ − +⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− ⋅ − − + ⋅ − ⋅ − − − − +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

JK

Lcj Lcf

L L Lai

Lcj F Lcf

1

4 1

3 4 1

2 3 6

1

45

4 1

1

4 sin( )

3 sin( )

2 sin( )
sin( ) 1

4 sin( )
0 1

3 sin( )

0 1
4 sin( )

φ

θ φ

θ θ φ
β β φ

φ

θ φ

φ

⎡ ⋅ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥+ ⋅ +
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥+ ⋅ + +⎣ ⎦⎢ ⎥⋅ − − +⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⋅⎢ ⎥ ⎢ ⎥⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⋅ − ⋅ − ⋅ −⎢ ⎥⎢ ⎥⎢ ⎥ ⎢⎢ ⎥+ ⋅ +⎣ ⎦⎢ ⎥⎢ ⎥ ⎢⎢ ⎥⎢ ⎥ ⎢⎢ ⎥⎣ ⎦ ⎣ ⎦

⋅⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

IF EB

L

L

L
Lab

L
F F F

L

L

45                 (B.23)⋅
⎥
⎥
⎥

M
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APPENDIX C 

 

 

SIMULATION EQUATIONS 

 
A detailed numerical analysis of excavator’s motion equations is explained in this 

appendix.
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2 2 2 2 2

2 2 4 3 3 3 4

4 2 3 2 4 2 3 2

4 2 3 4 2 3 3 2 3 2

3 2 3 2 2

1 2

2 3

3 4

2 2 2 3 3

3 2 co s( ) 3 2 co s( )

4 2 co s( ) 3 2 co s(

3 2 co s( )

z zI L g m L m L m I L g m L m

L m L L m L

L g m L L g m L

L g m L

M

M

M

θ θ θ θ

θ θ λ θ θ

θ θ λ

⎛ ⎞+ ⋅ + ⋅ + ⋅ + ⋅ + ⋅
⎜ ⎟
⎜ ⎟+ ⋅ ⋅ ⋅ − + ⋅ ⋅ ⋅ −
⎜ ⎟
⎜ ⎟+ ⋅ ⋅ ⋅ − + + ⋅ ⋅ ⋅ − +
⎜ ⎟
⎜ ⎟+ ⋅ ⋅ ⋅ − +⎝ ⎠

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥ =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

2
4 4

4 2 3 4 2 3

2

4 2 3 4 2 3 3

4 2 3 4 2 3 3

4 2 3 2

4 2 3 4 2 3

3 2 3 2 2

4

2 4 co s ( )
)

3 4 co s ( )
4 3 co s( )

3 2 co s( )

4 2 co s ( )

3 2 co s( )

zI L g m

L m L g

L m L g
L g m L

L m L

L g m L

L g m L

θ θ λ
λ

θ θ λ
θ θ λ

θ θ

θ θ λ

θ θ λ

⎛ ⎞
⎜ ⎟ ⎛ ⎞+ ⋅
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟+ ⋅ ⋅ ⋅ − +
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟+ ⋅ ⋅ ⋅ − +⎝ ⎠⎜ ⎟+ ⋅ ⋅ ⋅ − +⎝ ⎠

⋅ ⋅ ⋅ −⎛ ⎞
⎜
⎜ + ⋅ ⋅ ⋅ − +
⎜
⎜ + ⋅ ⋅ ⋅ − +⎝

2 2 2
3 3 4 4 4

4 2 3 4 2 3 34 2 3 4 2 3 3

2
4 2 3 4 2 3 4 2 3 4 2 3 3 4 4

3 3 4

3 4 co s ( )4 3 co s( )

4 2 co s( ) 4 3 co s( ) 4

z z

z

I L g m L m I L g m

L m L gL g m L

L g m L L g m L I L g m

θ θ λθ θ λ

θ θ λ θ θ λ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢
⎢
⎢
⎢

⎟ ⎛ ⎞ ⎛ ⎞+ ⋅ + ⋅ + ⋅⎢
⎜ ⎟⎟ ⎜ ⎟⎢

⎜ ⎟⎜ ⎟⎟⎢ + ⋅ ⋅ ⋅ − ++ ⋅ ⋅ ⋅ − + ⎝ ⎠⎝ ⎠⎟⎢ ⎠
⎢
⎢
⎢ ⋅ ⋅ ⋅ − + ⋅ ⋅ ⋅ − + + ⋅
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣ ⎦

2

2 3

2 3 4

θ

θ

θ

⎥
⎥

⎡ ⎤⎥
⎢ ⎥⎥
⎢ ⎥⎥
⎢ ⎥⋅⎥
⎢ ⎥⎥
⎢ ⎥⎥
⎢ ⎥⎥ ⎣ ⎦⎥

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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4 2 3 2 3 2 3 2 2

4 2 3 4 2 3

4 2 3 4 2 3 4 2 3 2

3 2 3 2 2 4 2 3 4 2 3 3

3 2 s in ( ) 2 3 s in ( )
2 4 s in ( )

4 2 s in ( ) 3 2 s in ( )
3

3 2 s in ( ) 4 3 s in ( )

θ θ θ θ λ
θ θ λ

θ θ λ θ θ

θ θ λ θ θ λ

⋅ ⋅ ⋅ − − ⋅ ⋅ ⋅ − +⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ − ⋅ ⋅ ⋅ − +
⎜ ⎟ ⎜ ⎟+ ⋅ ⋅ ⋅ − + − ⋅ ⋅ ⋅ −
⎜ ⎟ ⎜ ⎟ − ⋅
⎜ ⎟ ⎜ ⎟+ ⋅ ⋅ ⋅ − + + ⋅ ⋅ ⋅ − +⎝ ⎠ ⎝ ⎠

+

L m L L m L g
L m L g

L g m L L m L
L m

L g m L L g m L
4 2 3 4 2 3 3

4 2 3 2

4 2 3 4 2 3 4 2 3 4 2 3 3 4 2 3 4 2 3 3

3 2 3 2 2

4 2 3 4 2 3 4

4 s in ( )

3 2 s in ( )

4 2 s in ( ) 4 3 s in ( ) 3 4 s in ( )

3 2 s in ( )

4 2 s in ( ) 4 3

θ θ λ

θ θ

θ θ λ θ θ λ θ θ λ

θ θ λ

θ θ λ

⎛ ⎞
⎜ ⎟
⎜ ⎟⋅ ⋅ − +⎝ ⎠

⋅ ⋅ ⋅ −⎛ ⎞
⎜ ⎟
⎜ ⎟+ ⋅ ⋅ ⋅ − + ⋅ ⋅ ⋅ − + − ⋅ ⋅ ⋅ − +
⎜ ⎟
⎜ ⎟+ ⋅ ⋅ ⋅ − +⎝ ⎠

⋅ ⋅ ⋅ − + ⋅ ⋅

L g

L m L

L g m L L g m L L m L g

L g m L

L g m L L g m L

2
2

2
2 3

2
2 3 4

2 3 4 2 3 3

( )

( )

( )

s in ( ) 0

θ

θ

θ

θ θ λ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⋅⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎢ ⎥⋅ − +
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 

( )

4 23 4 2 3 2

4 234 3 3 23 2 2 2 1

4 23 4 234 3 3 23 2

4 234 3

3 cos( ) 2 cos( ) 2 cos( )

4 cos( ) 3 cos( ) 2 cos( )

3 cos( ) 4 cos( ) 3 cos( )

4 cos( )

L m L m L m

Lg m Lg m Lg m

L m Lg m Lg m

Lg m

θ θ θ

θ λ θ λ θ λ

θ θ λ θ λ

θ λ

⎡ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎜ ⎟⎢ ⎥+ ⋅ ⋅ + + ⋅ ⋅ + + ⋅ ⋅ +⎝ ⎠⎢ ⎥
⎢ ⎥
⎢ ⎥− ⋅ ⋅ + ⋅ ⋅ + + ⋅ ⋅ +⎢
⎢
⎢ ⋅ ⋅ +⎢
⎢
⎢⎣ ⎦

234 23 8 3

3

5 4
23 2 3

234 23 8 3

3

234 23 8 3

sin( )

3 sin( )
sin( )

2 sin( )

sin( )

3 sin( )

sin( )

PK

Ldp

L
Lcl

L

Ldp
g F

L

Ldp

θ θ β φ

φ
β φ

θ θ φ

θ θ β φ

φ

θ θ β φ

⎡ ⋅ − + − + ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟+ ⋅
⎢ ⎥⎜ ⎟ ⋅ − +⎜ ⎟⎢ ⎥+ ⋅ − +⎝ ⎠⎢ ⎥ +⎢ ⎥
⎢ ⎥⋅ − + − +⎛ ⎞⎢ ⎥⎜ ⎟⋅ − ⋅ −⎢ ⎥⎥ ⎜ ⎟+ ⋅⎝ ⎠⎢ ⎥⎥
⎢ ⎥⎥
⎢ ⎥⎥

⋅ − + − +⎢ ⎥⎥
⎢ ⎥⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

23 2 4

5 4

2 sin( )

sin( )

0

LK

L

Lcl F

θ θ φ

β φ

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎜ ⎟⎢ ⎥⋅ − +⎝ ⎠⎢ ⎥
⎢ ⎥
⎢ ⎥⋅ − + ⋅⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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5 6 2 23 2 5 6 7 5

23 2 2 5 2 5

5 6 2 23 2 5 6 7 5

sin( ) sin( )

2 sin( ) 2sin( ) sin( )

sin( ) sin( )

0 0

β β φ θ θ β β β φ

θ θ φ φ β φ

β β φ θ θ β β β φ

⎡ ⋅ − − + ⎤ ⎡ ⋅ − + − − − + ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥ ⎢⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢+ ⋅ − + + − ⋅ − +⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢− ⋅ − − + ⋅ − ⋅ − + − − − +⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣

JK

Lcj Lcf

L L Lai

Lcj F Lcf

1

234 23 1

234 2 1

2 3 6

1

234 23 1

1

4 sin( )

3 sin( )

2 sin( )
sin( )

4 sin( )
0

3 sin( )

0
4 sin( )

φ

θ θ φ

θ θ φ
β β φ

φ

θ θ φ

φ

⎡ ⎤⋅⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟+ ⋅ − +
⎢ ⎥⎜ ⎟
⎜ ⎟⎢ ⎥+ ⋅ − +⎥ ⎝ ⎠⎢ ⎥⎥ ⋅ − − +⎡ ⎤ ⎢ ⎥⎥ ⎢ ⎥ ⎢ ⎥⎥ ⋅⎢ ⎥ ⎛ ⎞⎢ ⎥⎥ ⎢ ⎥ ⎜ ⎟⋅ − ⋅ − ⎢ ⎥⎥ ⎜ ⎟⎢ ⎥ + ⋅ − +⎝ ⎠⎢ ⎥⎥ ⎢ ⎥ ⎢ ⎥⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎥

⋅⎢⎥
⎢⎥⎦
⎢
⎢
⎢⎣ ⎦

IF EB

L

L

L
Lab

L
F F

L

L

45 45

1

1               (C.1)

1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⋅ − ⋅
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎥
⎥
⎥
⎥
⎥

F M
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C.2. Solving Modified Equations of Motion by Using Numerical Method 

 

C.2.1. Arranging Equations of Motion 

 

General view of modified equations of motion: 
2

2 2

2
2 23 234 23 2 23 234 23

2
234 234

2 23 234 2 23 234

2 23 234 2 23 234

2

( )

0 ( , , ) ( , , ) ( )

( )

      ( , , ) ( , , )

      ( , , ) ( , , )

      ( ,

θ θ

θ θ θ θ θ θ θ θ

θ θ

θ θ θ θ θ θ

θ θ θ θ θ θ

θ θ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= ⋅ + ⋅
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

− ⋅ − ⋅

− ⋅ − ⋅

−

PK

LK JK

A B

C g D F

E F F F

G 23 234 2 23 234

2 23 234 45 2 23 234 45

, ) ( , , )

      ( , , ) ( , , )                                                   (C .2)

θ θ θ θ

θ θ θ θ θ θ

⋅ − ⋅

− ⋅ − ⋅

IF EBF H F

J F K M

 

 

where   

23 2 3

234 2 3 4

23 2 3

234 2 3 4

θ θ θ

θ θ θ θ

θ θ θ

θ θ θ θ

= +

= + +

= +

= + +

 

 
2 2 2 2 2

2 2 4 3 3 3 4

4 23 2 4 23 2

4 234 2 3 3 23 2 2

3 23 2 2 4 234

2 2 2 3 3

3 2 cos( ) 3 2 cos( )

4 2 cos( ) 3 2 cos( )

3 2 cos( ) 4 3 cos(

z zI Lg m L m L m I Lg m L m

L m L L m L

Lg m L Lg m L

Lg m L Lg m L

A

θ θ θ θ

θ θ λ θ θ λ

θ θ λ θ θ

⎛ ⎞+ ⋅ + ⋅ + ⋅ + ⋅ + ⋅
⎜ ⎟
⎜ ⎟+ ⋅ ⋅ ⋅ − + ⋅ ⋅ ⋅ −
⎜ ⎟
⎜ ⎟+ ⋅ ⋅ ⋅ − + + ⋅ ⋅ ⋅ − +
⎜ ⎟
⎜ ⎟+ ⋅ ⋅ ⋅ − + + ⋅ ⋅ ⋅ −⎝ ⎠

=

2
4 4

4 234 2 3

4 234 23 3

23 3

4 23 2 2 2
3 3 4

4 234 2 3

3 23 2 2

4

2 4 cos( )

3 4 cos( )
)

3 2 cos( )
3 3

4 2 cos( )

3 2 cos( )

z

z

I Lg m

L m Lg

L m Lg

L m L
I Lg m L m

Lg m L

Lg m L

θ θ λ

θ θ λ
λ

θ θ

θ θ λ

θ θ λ

⎛ ⎞
⎜ ⎟ ⎛ ⎞+ ⋅
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟+ ⋅ ⋅ ⋅ − +
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟+ ⋅ ⋅ ⋅ − +⎝ ⎠⎜ ⎟+⎝ ⎠

⋅ ⋅ ⋅ −⎛ ⎞
⎜ ⎟ + ⋅ + ⋅
⎜ ⎟+ ⋅ ⋅ ⋅ − +
⎜ ⎟ +⎜ ⎟+ ⋅ ⋅ ⋅ − +⎝ ⎠

2
4 4

4 234 23 34 234 23 3

2
4 234 2 3 4 234 23 3 4 4

4

3 4 cos( )4 3 cos( )

4 2 cos( ) 4 3 cos( ) 4

z

z

I Lg m

L m LgLg m L

Lg m L Lg m L I Lg m

θ θ λθ θ λ

θ θ λ θ θ λ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎛ ⎞ ⎛ ⎞+ ⋅⎢ ⎥
⎜ ⎟ ⎜ ⎟⎢ ⎥

⎜ ⎟⎜ ⎟⎢ ⎥+ ⋅ ⋅ ⋅ − +⋅ ⋅ ⋅ − + ⎝ ⎠⎝ ⎠
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⋅ ⋅ ⋅ − + ⋅ ⋅ ⋅ − + + ⋅
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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4 23 2 3 23 2 2

4 234 2 3

4 234 2 3 4 23 2

3 23 2 2 4 234 23 3

3 2 sin( ) 2 3 sin( )
2 4 sin( )

4 2 sin( ) 3 2 sin( )
3

3 2 sin( ) 4 3 sin( )

L m L L m Lg
L m Lg

Lg m L L m L
L

Lg m L Lg m L

B

θ θ θ θ λ
θ θ λ

θ θ λ θ θ

θ θ λ θ θ λ

⋅ ⋅ ⋅ − − ⋅ ⋅ ⋅ − +⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ − ⋅ ⋅ ⋅ − +
⎜ ⎟ ⎜ ⎟+ ⋅ ⋅ ⋅ − + − ⋅ ⋅ ⋅ −
⎜ ⎟ ⎜ ⎟ − ⋅
⎜ ⎟ ⎜ ⎟+ ⋅ ⋅ ⋅ − + + ⋅ ⋅ ⋅ − +⎝ ⎠ ⎝ ⎠

=

4 234 23 3

4 23 2

4 234 2 3 4 234 23 3 4 234 23 3

3 23 2 2

4 234 2 3 4

4 sin( )

3 2 sin( )

4 2 sin( ) 4 3 sin( ) 3 4 sin( )

3 2 sin( )

4 2 sin( ) 4

m Lg

L m L

Lg m L Lg m L L m Lg

Lg m L

Lg m L Lg m L

θ θ λ

θ θ

θ θ λ θ θ λ θ θ λ

θ θ λ

θ θ λ

⎛ ⎞
⎜ ⎟
⎜ ⎟⋅ ⋅ − +⎝ ⎠

⋅ ⋅ ⋅ −⎛ ⎞
⎜ ⎟
⎜ ⎟+ ⋅ ⋅ ⋅ − + ⋅ ⋅ ⋅ − + − ⋅ ⋅ ⋅ − +
⎜ ⎟
⎜ ⎟+ ⋅ ⋅ ⋅ − +⎝ ⎠

⋅ ⋅ ⋅ − + ⋅ ⋅ 234 23 33 sin( ) 0θ θ λ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⋅ − +
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
4 23 4 2 3 2 4 234 3 3 23 2 2 2 1

4 23 4 234 3 3 23 2

4 234 3

3 cos( ) 2 cos( ) 2 cos( ) 4 cos( ) 3 cos( ) 2 cos( )

3 cos( ) 4 cos( ) 3 cos( )

4 cos( )

L m L m L m Lg m Lg m Lg m

C L m Lg m Lg m

Lg m

θ θ θ θ λ θ λ θ λ

θ θ λ θ λ

θ λ

⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + + ⋅ ⋅ + + ⋅ ⋅ +⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⋅ ⋅ + ⋅ ⋅ + + ⋅ ⋅ +
⎢ ⎥
⎢ ⎥
⎢ ⎥⋅ ⋅ +⎣ ⎦

 

 

234 23 8 3 3 23 2 3

234 23 8 3 3

234 23 8 3

sin( ) 3 sin( ) 2 sin( )

sin( ) 3 sin( )

sin( )

Ldp L L

D Ldp L

Ldp

θ θ β φ φ θ θ φ

θ θ β φ φ

θ θ β φ

⋅ − + − + + ⋅ + ⋅ − +⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⋅ − + − + + ⋅
⎢ ⎥
⎢ ⎥
⎢ ⎥⋅ − + − +⎣ ⎦

 

 

5 4 23 2 4

5 4

sin( ) 2 sin( )

sin( )

0

Lcl L

E Lcl

β φ θ θ φ

β φ

⋅ − + + ⋅ − +⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⋅ − +
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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5 6 2 23 2 2

5 6 2

sin( ) 2 sin( )

sin( )

0

Lcj L

F Lcj

β β φ θ θ φ

β β φ

⋅ − − + + ⋅ − +⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⋅ − − +
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

23 2 5 6 7 5 5 2 5

23 2 5 6 7 5

sin( ) 2sin( ) sin( )

sin( )

0

Lcf L Lai

G Lcf

θ θ β β β φ φ β φ

θ θ β β β φ

⋅ − + − − − + + − ⋅ − +⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⋅ − + − − − +
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

2 3 6sin( )

0

0

Lab

H

β β φ⋅ − − +⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

1 234 23 1 234 2 1

1 234 23 1

1

4 sin( ) 3 sin( ) 2 sin( )

4 sin( ) 3 sin( )

4 sin( )

L L L

J L L

L

φ θ θ φ θ θ φ

φ θ θ φ

φ

⋅ + ⋅ − + + ⋅ − +⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⋅ + ⋅ − +
⎢ ⎥
⎢ ⎥
⎢ ⎥⋅⎣ ⎦

 

 

1

1

1

K

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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There are two matrix equations, which are going to be solved numerically.  

 

Matrix equation 1: 

2 2

23 23

234 234

d
dt
d
dt
d
dt

θ θ

θ θ

θ θ

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 

Matrix equation 2: 

[ ]

2
2 2

1 2
23 2 23 234 2 2 3 234 23

2
23 4 234

2 23 2 34 2 23 234 2 23 23 4

2 23 2

( )

( , , ) ( ( , , ) ( )

( )

               ( , , ) ( , , ) ( , , )

               ( , ,

P K LK

A B

C g D F E F

F

θ θ

θ θ θ θ θ θ θ θ

θ θ

θ θ θ θ θ θ θ θ θ

θ θ θ

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= ⋅ − ⋅
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

+ ⋅ + ⋅ + ⋅

+ 34 2 23 23 4 2 23 234

2 23 234 45 2 2 3 234 45

) ( , , ) ( , , )

               ( , , ) ( , , ) )

JK IF E BF G F H F

J F K M

θ θ θ θ θ θ

θ θ θ θ θ θ

⋅ + ⋅ + ⋅

+ ⋅ + ⋅

 

 

From matrix equation 2, an “f” matrix function should be obtained in order to use 

in 4th Order Runge – Kutta Numerical Method Solving. 

 

[ ]

2
2

1 2
2 23 234 2 23 234 2 23 234 2 23 234 23

2
234

2 23 234 2 23 234

( )

( , , , , , ) ( , , ) ( ( , , ) ( )

( )

                                             ( , , ) ( , , )

                  

θ

θ θ θ θ θ θ θ θ θ θ θ θ θ

θ

θ θ θ θ θ θ

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⋅ − ⋅
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

+ ⋅ + ⋅ PK

f A B

C g D F

2 23 234 2 23 234

2 23 234 2 23 234

2

                           ( , , ) ( , , )

                                             ( , , ) ( , , )

                                             ( ,

θ θ θ θ θ θ

θ θ θ θ θ θ

θ θ

+ ⋅ + ⋅

+ ⋅ + ⋅

+

LK JK

IF EB

E F F F

G F H F

J 23 234 45 2 23 234 45, ) ( , , ) )         (C .3)θ θ θ θ⋅ + ⋅F K M
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C.2.2. Introduction to 4th Order Runge – Kutta Method 

 

For one-degree-of-freedom-mechanisms, Runge – Kutta Method is applied as 

following: 
20 ( ) ( ) ( ) ( )                                              (C .4 )θ θ θ θ θ= Δ ⋅ + Γ ⋅ − Ψ

 

d
dt

θ θ=   so: 

20 ( ) ( ) ( ) ( )d
dt

θ θ θ θ θ= Δ ⋅ + Γ ⋅ −Ψ   

 

Therefore there are two direct and one indirect first order linear differential 

equations: 

1 2

1 2

( ) ( ( ) ( ) ( ))

( , ) ( ) ( ( ) ( ) ( ))                                    (C .5 )

θ θ

θ θ θ θ θ

θ θ θ θ θ θ

−

−

=

= Δ ⋅ −Γ ⋅ + Ψ

= Δ ⋅ −Γ ⋅ + Ψ

d
d t

d
d t

f

 

 

For each step: 

1 1

1 2

                                                                      (C .6 )

                                                                      (C .7 )

θ θ ϕ

θ θ ϕ

+

+

= + ⋅

= + ⋅

i i

i i

h

h
 

 

where 

1 11 12 13 14

2 21 22 23 24

( 2 2 ) 6

( 2 2 ) 6

:  step  size

k k k k

k k k k

h

ϕ

ϕ

= + ⋅ + ⋅ +

= + ⋅ + ⋅ +  
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Where 

 

11

21

12 21

22 11 21

13 22

23 12 22

14 23

24 13 23

( , )

0 .5

( 0 .5 , 0 .5 )

0 .5

( 0 .5 , 0 .5 )

( , )

i

i i

i

i i

i

i i

i

i i

k

k f

k k h

k f k h k h

k k h

k f k h k h

k k h

k f k h k h

θ

θ θ

θ

θ θ

θ

θ θ

θ

θ θ

=

=

= + ⋅ ⋅

= + ⋅ ⋅ + ⋅ ⋅

= + ⋅ ⋅

= + ⋅ ⋅ + ⋅ ⋅

= + ⋅

= + ⋅ + ⋅
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C.2.3. Adaptation of Equations of Motion of a Three-Degree-of-

Freedom-Excavator to 4th Order Runge – Kutta Method 

 
2

2 2

2
2 23 234 23 2 23 234 23

2
234 234

2 23 234 2 23 234 2 23 234

2 23 234 2 23 23

( )

0 ( , , ) ( , , ) ( )

( )

      ( , , ) ( , , ) ( , , )

      ( , , ) ( , ,

P K LK

JK

A B

C g D F E F

F F G

θ θ

θ θ θ θ θ θ θ θ

θ θ

θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= ⋅ + ⋅
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

− ⋅ − ⋅ − ⋅

− ⋅ − 4 2 23 234

2 23 234 45 2 23 234 45

) ( , , )

      ( , , ) ( , , )

IF E BF H F

J F K M

θ θ θ

θ θ θ θ θ θ

⋅ − ⋅

− ⋅ − ⋅

 

 

2 2

23 23

234 234

d
dt
d
d t
d
d t

θ θ

θ θ

θ θ

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

 

 

[ ]

2
2 2

1 2
23 2 23 234 2 23 234 23

2
234 234

2 23 234 2 23 234

2 23 234

( )

( , , ) ( ( , , ) ( )

( )

                  ( , , ) ( , , )

                  ( , , )

PK

d
d t
d A B
dt
d
dt

C g D F

E F

θ θ

θ θ θ θ θ θ θ θ

θ θ

θ θ θ θ θ θ

θ θ θ

−

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= ⋅ − ⋅⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

+ ⋅ + ⋅

+ ⋅ 2 23 234

2 23 234 2 23 234

2 23 234 45 2 23 234 45

( , , )

                  ( , , ) ( , , )

                  ( , , ) ( , , ) )

LK JK

IF EB

F F

G F H F

J F K M

θ θ θ

θ θ θ θ θ θ

θ θ θ θ θ θ

+ ⋅

+ ⋅ + ⋅

+ ⋅ + ⋅
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[ ]

2
2 2 2

1 2
23 23 2 23 234 2 23 234 23

2
234 234 234

2 23 234 2 23 234

( , ) ( )

( , ), ( , , ) ( ( , , ) ( )

( , ) ( )

                           ( , , ) ( , , )

               

PK

f

f A B

f

C g D F

θ θ θ

θ θ θ θ θ θ θ θ θ

θ θ θ

θ θ θ θ θ θ

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= ⋅ − ⋅
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

+ ⋅ + ⋅

2 23 234 2 23 234

2 23 234 2 23 234

2 23 234 45 2 23 234 45

            ( , , ) ( , , )

                           ( , , ) ( , , )

                           ( , , ) ( , , ) )

LK JK

IF E B

E F F F

G F H F

J F K M

θ θ θ θ θ θ

θ θ θ θ θ θ

θ θ θ θ θ θ

+ ⋅ + ⋅

+ ⋅ + ⋅

+ ⋅ + ⋅

 

 

For each step: 

 

1 2 2 21

1 23 23 31

1 234 234 41

1 2 2

1 23 23

1 234

                                                      (C .8)

θ θ ϕ

θ θ ϕ

θ θ ϕ

θ θ

θ θ

θ θ

+

+

+

+

+

+

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + ⋅
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥ =
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

i i

i i

i i

i i

i i

i i

h

22

32

234 42

                                                      (C .9)

ϕ

ϕ

ϕ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+ ⋅
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

h
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where 

 

2 1

2 2

31

3 2

4 1

4 2

1
6

2
6

2
6

1
6

:  s tep  s ize

k

h

ϕ

ϕ

ϕ
ϕ

ϕ

ϕ

ϕ

⎡ ⎤
⎢ ⎥
⎢ ⎥

⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

= = ⋅ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦⎢ ⎥

⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 

 

 

where 

 

211 212 213 214

221 222 223 224

311 312 313 314

321 322 323 324

411 412 413 414

421 422 423 424

k k k k

k k k k

k k k k
k

k k k k

k k k k

k k k k

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
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where 

 

211 2

221 2 2

212 2 221

222 2 211 2 221

213 2 222

223 2 212 2 222

214 2 223

224 2 213 2 223

311 23

32

( , )

0 .5

( 0 .5 , 0 .5 )

0 .5

( 0 .5 , 0 .5 )

( , )

i

i i

i

i i

i

i i

i

i i

i

k

k f

k k h

k f k h k h

k k h

k f k h k h

k k h

k f k h k h

k

k

θ

θ θ

θ

θ θ

θ

θ θ

θ

θ θ

θ

=

=

= + ⋅ ⋅

= + ⋅ ⋅ + ⋅ ⋅

= + ⋅ ⋅

= + ⋅ ⋅ + ⋅ ⋅

= + ⋅

= + ⋅ + ⋅

=

1 23 23

312 23 321

322 23 311 23 321

313 23 322

323 23 312 23 322

314 23 323

324 23 313 23 323

411 234

42

( , )

0 .5

( 0 .5 , 0 .5 )

0 .5

( 0 .5 , 0 .5 )

( , )

i i

i

i i

i

i i

i

i i

i

f

k k h

k f k h k h

k k h

k f k h k h

k k h

k f k h k h

k

k

θ θ

θ

θ θ

θ

θ θ

θ

θ θ

θ

=

= + ⋅ ⋅

= + ⋅ ⋅ + ⋅ ⋅

= + ⋅ ⋅

= + ⋅ ⋅ + ⋅ ⋅

= + ⋅

= + ⋅ + ⋅

=

1 234 234

412 234 421

422 234 411 234 421

413 234 422

423 234 412 234 422

414 234 423

424 234 413 234 423

( , )

0 .5

( 0 .5 , 0 .5 )

0 .5

( 0 .5 , 0 .5 )

( , )

i i

i

i i

i

i i

i

i i

f

k k h

k f k h k h

k k h

k f k h k h

k k h

k f k h k h

θ θ

θ

θ θ

θ

θ θ

θ

θ θ

=

= + ⋅ ⋅

= + ⋅ ⋅ + ⋅ ⋅

= + ⋅ ⋅

= + ⋅ ⋅ + ⋅ ⋅

= + ⋅

= + ⋅ + ⋅
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1 2 2 21

1 3 23 31 1 2

1 4 234 41 1 23

1 2 2

1 3

1 4

0

                                    (C .10)

θ θ ϕ

θ θ ϕ θ
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APPENDIX D 
 

 

EXCAVATOR DYNAMICS SOFTWARE (EDS) 

 

 
D.1. Introduction to EDS 

 

EDS is a computer program, which is composed of Microsoft Excel and Visual 

Basic for Applications. The high availability, cheapness, flexibility and simplicity 

of Office programs encouraged for writing the code for excavator dynamics on 

Excel and VBA. 

 

EDS is the whole summary of all chapters mentioned before. The basics of this 

software are listed below: 

 

• Hydraulic excavator having 3 attachments 

• 2 dimensional motions 

• Newton – Euler Method for dynamic modeling 

• 4th Order Runge – Kutta Method for solving motion equations 

• Determination of cylinder and soil reaction forces by real time testing 

 

Before using EDS, user must have some information about attachments; such as, 

the masses and moments of inertia. User can find masses either by measuring the 

weights of attachments or by using a 3-D modeling program. Similarly, moments 

of inertia can be found either by hand calculating or by using a 3-D modeling 

program. It is proposed that for both determination of masses and moments of 

inertia, a 3-D modeling program is going to give a good approximate result and it 

will be too easy for user.  
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Transferring 2-D view of an excavator to Excel can be done either by hand or by 

using AutoCAD – Excel Transferring Code. 

 

D.2. General View of EDS 

 

D.2.1. Input Area 

 

 
Figure D.1 – Input Area of EDS 

 

Blue colored areas are left for user in order to be filled (Figure D.1).  
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D.2.2. Running Simulation 

 

 
Figure D.2 – Running Simulation 

 

After entering all necessary values and builing the model, simulation can be 

performed (Figure D.2). User should use “Reset” button firstly. In fact, before 

every operation “Reset” button should be used.  

 

User can either use “Run” button or scroll bar in order to run the simulation. The 

difference between “Run” button and scroll bar is that, “Run” button performes 

simulation operation until the given “End Time” value in steps entered on “Step 

Size” cell. However, by using scroll bar, user is not limited until “End Time”. 

Every click on up or down button makes simulation go one step further. With the 

given step size, simulation can go on continuously. Happenings about physical 

system can be investigated for every step.  
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D.2.3. Monitoring Results 

 

D.2.3.1. Simulation Chart 

 

 
Figure D.3 – Simulation Chart 

 

Chart shown in Figure D.3 is the visual object of EDS. The dark blue lines 

indicate boom, purple lines indicate arm, yellow lines indicate bucket, brown and 

light blue lines indicate connection rods and red lines indicate hydraulic cylinders. 

When simulation process starts, the motion of the system can be seen as near as its 

real behavior.  
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D.2.3.2.  Outputs 

 

Users can obtain values of major physical phenomena during simulation which 

can be listed as below: 

 

• All forces created or exerted on every joint 

• Positions of links 

• Velocities of links 

• Accelerations of links 
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APPENDIX E 
 

 

LOADCELL TEST 

 

 
E.1.  Method of the Test 

 

In order to verify the measurement results of strain gauges, a loadcell test is done 

before the digging test. Four strain gauges are attached to the chosen link and 

connected to ESAM. Arm and bucket is in position shown in Figure E.1 

 

 

 

 
Figure E.1 – Position for Loadcell Test 
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Force is exerted on bucket cylinder whereas ESAM records gauge and loadcell 

results. On the other hand, an analytical static force analysis is performed for 

verifying test results.  
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