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ABSTRACT

LEARNING COOPERATION IN HUNTER-PREY PROBLEM VIA STATE
ABSTRACTION

İşçen, Atıl

M.S., Department of Computer Engineering

Supervisor : Prof. Dr. Faruk Polat

June 2009, 41 pages

Hunter-Prey or Prey-Pursuit problem is a common toy domain for Reinforcement Learning,

but the size of the state space is exponential in the parameters such as size of the grid or

number of agents. As the size of the state space makes the flat Q-learning impossible to use for

different scenarios, this thesis presents an approach to make the size of the state space constant

by producing agents that use previously learned knowledge to perform on bigger scenarios

containing more agents. Inspired from HRL methods, the method is composed of a parallel

subtasks schema dividing the task into choices of simpler subtasks, a state representation

technique convenient for this schema and its extension for bigger grids. Experiment results

show that proposed method successfully provides agents that perform near to hand-coded

agents by using constant sized state space independent fromparameters of the domain.

Keywords: Reinforcement Learning, Hunter-Prey Problem, State Abstraction, Hierarchical

Reinforcement Learning
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ÖZ

AV AVCI PROBLEMİNDE DURUM SOYUTLAMA YOLUYLA İŞBİRLİĞİ ÖĞRENME

İşçen, Atıl

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Faruk Polat

Haziran 2009, 41 sayfa

Avcı-av problemi PekiştirmelïOğrenme yöntemi için sıkça kullanılan bir deney alanıdır, an-

cak durum uzayı hacminin büyüklüğü ajan sayısına ve ortam büyüklüğüne üstel bağlı olarak

değişmektedir. Durum uzayının bu büyüklüğü standart Q-öğrenme algoritmasının kullanımını

imkansız kıldığından, bu tez daha önce öğrenilmiş bilgiyi kullanıp daha büyük deney ortam-

larında çalışabilen ajanlar üreterek, durum uzayı büyüklüğünün sabit tutmayı sağlayan bir

yöntem tanıtmaktadır. Bu metot, Hiyerarşik TakviyeliÖğrenme yöntemlerinden esinlenerek

görevi daha basit alt görev seçimlerine bölen paralel alt görev mekanizmasından, bu yönteme

yönelik bir durum gösterim tekniğinden ve bunun daha büyük alanlar için genişleti-minden

oluşmaktadır. Deneysel sonuçlar önerilen yöntemin alanın parametrelerinden bağım-sız, sabit

büyüklükte bir durum uzayı kullanarak, el ile yazılmışalgoritma kullanan ajanlara yakın,

başarılı sonuçlar elde ettiğini göstermektedir.

Anahtar Kelimeler: PekiştirmelïOğrenme, Durum Soyutlama, Avcı-av problemi, Hiyerarşik

Takviyeli Öğrenme
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CHAPTER 1

INTRODUCTION

Reinforcement Learning is a subfield of Artificial Intelligence where an agent tries to adopt

to the environment by learning from its experiences. Inspired from psychological theories of

human learning, it differs from supervised learning methods by the absence of correct actions

to be learned, instead of it, it uses reinforcement signals that the environment provides to the

agent to find correct policy.

The limitation of the RL is the size of the state space which makes it currently applicable to

only toy problems instead of complex ones. Hunter-Prey problem (also known as Prey-Pursuit

domain) is a good example to this limitation. The studies on this domain work on small sized

grids having few agents because of the size of the state spacewhich increases exponentially

according to the grid size and number of agents.

To overcome this limitation, there are many studies on Hierarchical Reinforcement Learning

which divides the problem into smaller subtasks to make the problem suitable to abstraction

methods. These methods use sequential subtasks such as picking up a passenger and putting

down for a taxi problem. On the other hand, some problems containing different choices for

the agent, are composed of parallel subtasks instead of sequential ones. Hunter-Prey problem

with multiple preys has such a problem structure by forcing the hunter agents to choose one

of the preys to capture.

This thesis uses mentioned parallel subtasks structure of the Hunter Prey domain to remove

the dependency of the size of the state space to the size of thegrid and to the number of the

agents. The method proposed is a three step approach to be able to work on more complex

versions of the problem: Changing state representation, mapping to bigger state spaces and

using parallel subtasks.

1



This thesis is composed of six chapters. This chapter introduces the study, the second chapter

gives necessary background information on the domain and the third chapter describes the

problem in details. The fourth chapter explains the methodsproposed and the fifth chapter

contains the experiments and their results. The last part contains discussion about conclusions

and future works.

2



CHAPTER 2

BACKGROUND

2.1 Reinforcement Learning

Reinforcement Learning (RL) is a machine learning method where the agent learns by in-

teraction with its surrounding environment. Its difference from supervised learning methods

is that the agent does not learn from given training set containing correct actions. RL is a

goal directed learning method, which means that the designer of the problem does not define

correct behavior or actions for the agent, he defines goals ofthe agents by designing rein-

forcement signals. The agent gets reinforcement signals from the environment according to

its actions’ consequences and it autonomously finds a policyto maximize these signals.

Figure 2.1 shows the interaction of the agent and the environment in a RL framework. On a

discrete time problem, at each step, this interaction is composed of three signals representing

the state, action and reward at time t. If we need to define it indetails, the basic concepts in

RL are as follows:

Environment

Agent

action a
t

state s reward r
tt

Figure 2.1: Reinforcement Learning Framework
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st ∈ S is the signal used to define current situation of the environment at timet, andS is the

set of all possible states. This state signal can be consisted of one or more parameters

according to the state space used.

at ∈ A represents the action taken by the agent at time t, after perceiving the statest. A is the

action space containing all the possible actions.

rt+1 ∈ R is the reward sent by the environment at timet+1 in response toat, the action taken

by the agent at timet.

π(s, a) is the policy used by the agent. It maps the states to the actions by defining the

probability to choose actiona at states. The optimal policy that the agent tries to learn

is the policy that maps the states to actions such that expected cumulative reward is

maximized.

V π(st) , Qπ(st, a) are the value functions.V π(s) represents the total reward that the agent

expects starting from the statest and follows the policyπ. Qπ(s, a) is the same concept

associated with state, action pairs (expected value of choosing actiona at states and

then following the policyπ.).

If we define the value function formally:

V π(s) = Eπ{rt+1 + γrt+2 + γ
2rt+3 + ...} = Eπ















∞
∑

k=0

γkrt+k+1|st = s















(2.1)

whereγ is discount factor which determines the effect of the future rewards on the value

estimation andEπ is expected value that the agent follows policyπ. When the task is episodic,

the agent starts each episode at one of the start states (sstart), executes actions until one of the

terminal states (sterminal) then a new episode starts. In this case, this sum goes until end of

the episode instead of∞.

To define optimal policies, we defineπ ≥ π
′

if and only if V π(s) ≥ V π
′

(s) for all s ∈ S. This

means that the policyπ is better than or equal to the policyπ
′

if and only if the value function

of following policy π returns better results for each state of the environment. Inother words,

the optimal policyπ∗ is the policy which is better than or equal to all other policies. Using

same method, the optimal state value functionV ∗(s) is defined as

V ∗(s) = max
π

V π(s) (2.2)
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A: The agent

G: Goal state

Possible actions

 at each state

Problem Definition

G

A

−1

−2

−3 −2

−1

0−2

−3

−2

Figure 2.2: 3x3 gridworld as a RL domain

for all s ∈ S, and the optimal state-action value functionQ∗ is defined as

Q∗(s, a) = max
π

Qπ(s, a) (2.3)

To clarify these concepts, we can consider the classic gridworld problem where an agent tries

to go to the goal square located at the top right corner of the 3∗ 3 grid (Figure 2.2). The agent

is a robot that moves on the grid, the environment is the grid.The statest is defined as the

position of the agent at timet , the actionat is the action that the agent chooses from possible

actions (north,east,south,west) and the reward is 0 when the agent passes to the goal state and

-1 elsewhere. Figure 2.2 shows the task, optimal state valuefunction, the optimal state-action

value function and the optimal policy for the task. Looking at state values, you can see that

the goal state is valued as 0 and it decreases gradiently withthe states distance to the goal

state. For state-action values actions that lead to the goalstate are valued as 0 and the other

actions are valued according to the state they lead to.

2.1.1 Temporal Difference Learning

For a RL problem, Bellman [1] had shown that if the environment state transition probabili-

ties and the reward functions were available to the agent, itcould easily calculateV ∗ by using

dynamic programming methods. On the other hand, considering most of the RL problems,

this information is not available to the agent, the agent tries to estimateQ∗ without knowledge

of the environment model. Monte Carlo methods have this ability to estimateQ∗ without re-

quiring the knowledge of the environment model, but they arenot suitable as a step by step

method. Temporal Difference (TD) methods [15] provides the ability to learnQ∗ by combin-

ing Dynamic Programming methods which need complete knowledge of the environment and

Monte Carlo methods which can learn the optimal state valuesbut not step by step, only after

5



the final outcome. By combining these methods TD algorithms estimate the value function

and update its estimation after each timestep according to its error on previous timestep. One

of the popular TD algorithms, Q-learning [21] uses the formula 2.4 to update value of state

action pair at timet.

Q(st, at)← (1− α)Q(st, at) + α
[

rt+1 + γmax
a

Q(st−1, at−1)
]

(2.4)

According to this formula, Q-learning agent updates its estimation ofQ(st, at) so that it be-

comes closer to the new estimationrt+1+ γmax
a

Q(st−1, at−1). Theα ∈ [0, 1] parameter is the

learning rate signifying the amount of the update applied tothe old value estimation. If it is

1, the agent instantly replaces the old estimation with the new one.

Algorithm 1 : Algorithm for -
Initialize Q(s, a);

foreach episodedo
Initialize s;

foreach stepdo
choose actiona ∈ A using policy derived fromQ;

do actiona and obtain:s
′

∈ S ,r ∈ R;

Q(s, a)← Q(s, a) + α[r(s, a) + γmax
a
′

Q(s
′

, a
′

) −Q(s, a)];

s← s
′

;

end

end

.

Using the methods explained above, estimation of the optimal state values is updated at each

step according to the states and rewards that the agent encounters. On the other hand, this

update from experience mechanism brings out the exploration-exploitation dilemma of the

RL agent. The quality of the estimation of the agent increases with the amount of exploration,

but the agent has to choose best actions to maximize its reward. A common example given

on this subject isk one armed bandit problem presented by Thompson W.R. [20]. The agent

has to choose one ofk-arms of a slot machine (bandit). The agent gets reward according to

a probability distribution of the chosen arm and the goal of the agent is to maximize total

6



reward. To maximize the reward it gets, the agent has to choose between exploration (trying

other arms) and exploitation (choosing according to the current estimation of the expected

rewards). This problem can be represented as a single state RL problem withk actions. The

agent gets the rewardrt according to its actionat−1. The simplest method in exploration-

exploitation dilemma is theǫ-greedy selection [21]. The agent chooses random action with ǫ

probability or choose a best profit action with 1− ǫ probability.

2.1.2 Hierarchical Reinforcement Learning

Hierarchical Reinforcement Learning (HRL) signifies RL algorithms that use a task structure

instead of learning a flat policy. They are applied on RL problems with repeated subtasks to

reuse previously learned knowledge. They aim to both reducethe size of the state space and

shorten the learning time. HRL is based on temporally extended actions which are formally

defined as Semi Markov Decision Processes (SMDP). In HRL, theagent learns the problem

using a task schema defined by the author, but the definition ofthese tasks has three different

approaches. Sutton and Precup [16] proposed the option method which defines the subtasks

as fixed policies described by the author. Parr and Russell [12] proposed The Hierarchy

of Abstract Machines (HAM) which defines permitted actions for each task like a partial

policy. Third method is MAXQ proposed by Dietterich [4], it represents tasks as policies

by defining terminal states and reward functions for each of them. Algorithm 2 gives more

detailed information on this method.

Taxi domain is a good example to clarify the HRL methods. The domain is composed of pas-

sengers spawning from fixed points and a taxi carrying the passengers. Figure 2.3 illustrates a

commonly used example on 5∗ 5 grid with four spawning points: Red, Greed, Blue and Yel-

low. The taxi must go to the passengers location, pick up the passenger, go to the destination

and put down the passenger. The agent’s state variables are the source of the passenger, its

destination, its own location and whether the passenger is in the taxi. The primitive actions are

north, east, west, south, pick up and put down. Looking at thedomain structure, one can easily

divide the task into two subtasks: “pick up” and “put down” the passenger. Pick up passanger

is composed of navigating to the source and pick up action, put down subtask is composed of

7



Algorithm 2 : Algorithm for MAXQ Q-
function MAXQ-Q(states,subtaskp)

while p is not terminateddo

a← π(s) ; /* Take action a according to the policy π */

if a is primitive then
Reward← r

else

Reward←MAXQ −Q(s, a) ; /* Invoke subroutine a */

TotalReward← TotalReward +Reward

if a is primitive then
V (a, s)← (1− α)V (a, s) + αr

else

C(p, s, a)← (1− α)C(p, s, a) + αmaxa′ [V (a
′

, s
′

) + C(p, s
′

, a
′

)]

end

return TotalReward

navigating to the destination and put down action. When dividing the task into these subtasks,

we use temporal abstraction, because finishing these subtasks take more than one steps. In

addition, we can use state abstraction, because some of the state variables are irrelevant to the

subtasks like the destination position for the subtask “pick up the passenger”. Moreover we

can use subtask sharing between these two tasks which repeatedly require navigating to one

of the four points (Red,Green,Blue,Yellow). We can reuse the learned navigation knowledge

by sharing this task which will surely shorten learning time. Figure 2.3 shows the complete

task decomposition tree for this task, root is the overall task and the leaf nodes are primitive

actions.

By dividing the task into subtasks, an important question arises on the optimality of these

methods: “Are these methods converge to the optimal policies like flat learning algorithms?”.

Two types of optimality criteria are considered for these methods: Hierarchical optimality and

recursive optimality. When the agent learns the task such that all the subtasks have optimal

policies, it is called recursively optimal. In this case, although all the subtasks are optimal,

that does not guarantee overall optimality. On the other hand, Hierarchical Optimality means

that following policy and its sub-policies will lead to the optimal actions for each state. Most

of the HRL research provides recursive optimality, becausetheir main concern is speeding

8



R G

BY

Root

Get Put

Pick Up Navigate (t) Put Down

North South East West

Figure 2.3: Taxi Domain and MAXQ task decomposition

up learning and using abstractions. Ghavamzadeh et al. [7] proposed a method for achieving

Hierarchical Optimality in the MAXQ framework by adding expected reward outside the

current subtask.

Two rooms maze problem is a simple and clear illustration of these two optimality types.

The grid is composed of left and right rooms, and there are twogates between them. The

agent starts at the left room, and the goal state is at the right top square. Figure 2.4 shows

the subpolicy for passing from the left room to the right room. Policy shown on the figure

is recursively optimal, the agent exits from the left room inminimum number of steps, on

the other hand marked row causes problems for overall optimality. Considering that the agent

will go to the top-right square after the execution of the sub-policy, to exit from south gate

increases the number of steps required to reach the goal state. Hierarchically optimal policy

will differ from recursive optimal one with these marked squares.

In addition to the optimality criteria, there are various HRL methods differing according to

their reward mechanism. Instead of discounted reward system explained above, Ghavamzadeh

et al. [8] worked on average reward HRL methods and represented a successful Hierarchically

Optimal Average Reward Reinforcement Learning Method [7].They also extended their work

to continuous time problems in addition to discrete time problems[6].

9



G

Figure 2.4: Optimality Problem in Two Rooms Maze Domain

2.1.3 Transfer Knowledge on RL

Psychological theories that humans and animals benefit fromtransfer learning inspired re-

search on Transfer on Reinforcement Learning. Transfer on RL is the notion of using pre-

viously learned knowledge on a task (the source), to speed uplearning on another task (the

target). Given two tasks which possibly have different state or action spaces, the designer finds

a mapping between two tasks’ value function to use weights learned during training on the

source task [10]. For example, consider the keepaway game onrobocup soccer where some

agents try to hold possession of the ball and the others try toget the ball. While learning 4 vs

3 keepaway game, the agent can use its previous knowledge on 3vs 2 keepaway version of the

game if we can find a mapping between state representations ofthese two different problems,

[19]. On the other hand, giving this mapping manually requires the knowledge on these two

domains which is not always available. To make our agent ableto discover a good mapping,

Taylor et al. [18] directed the research on Transfer RL towards autonomous discovery of the

mapping between different tasks.

2.2 Multi-Agent Reinforcement Learning

Multi Agent Systems (MAS) is a subfield of AI that works on complex systems composed

of multiple interacting agents. The agents are autonomous,they can share a common goal

to cooperate like ant colonies or they can care about their own interests like in stock market

economy. As most of the problems’ requires a multi agent system representation, the research

on MAS attracted much attention in recent years. Despite theresearch on MAS is not concen-

trated only on learning, we will analyze learning (specifically RL) perspective of the domain.

10



Further information on the topic can be found in survey of Stone and Veloso on MAS and

Learning [14].

When we consider Reinforcement Learing perspective, the difference between MAS and sin-

gle agent system is more than number of the agents. Even one additional agent increases the

problems complexity dramatically, because the dynamics ofthe environment changes with

the other agents actions. For single agent domains, we explained optimal policies and the

algorithms converging to the optimal policies, but when multiple agents are involved in the

problem, the optimal policy is not only dependent on the learning agent, but also on other

agents’ choices. In addition to learning the propoerties ofthe domain, the agent has to adopt

to other agents behaviors, learn to cooperate with or compete against them. Moreover when

other agents policies are dynamic (i.e. learning agents) the level of difficulty increases.

Multi-Agent RL algorithms can be classified according to theproblems settings. As an ex-

ample one important setting is the agents controlling mechanism. The controlling mechanism

can be centralized. As this type of problems can be treated assingle agent problems by using

single decision mechanism controlling multiple agents (taking multiple actions instead of one

action), ongoing research is concentrated on decentralized problems which forces the agents

to give decisions by themselves [3]. In addition, the agentsability to share their knowledge,

their vision or their ability to communicate (and cost of thecommunication) creates com-

pletely different problem structures, but the commonly used problem setting is where the

agents are independent and they have limited or no communication with other agents.

For these Multi-Agent domains, to develop RL algorithms applicable to cooperative/competitive

tasks, at first, the researchers like M.L.Littman [9] and M.Tan [17] worked on producing

multi-agent RL algorithms by expanding standard selfish RL algorithms. With the research

on hierarchical reinforcement learning decomposing the task into subtasks, layered learning

methods with cooperative subtasks or schemas are developedto improve the agents ability to

cooperate with others. For example, Stone [13] applied layered learning to robocup soccer

and Erus and Polat [5] developed layered learning for hunterprey problem. As a generalized

Multi-Agent HRL method Makar et al. [11] extended MAXQ framework to multi agent case

to develop Hierarchical Multi Agent Reinforcement Learning algorithm.
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CHAPTER 3

PROBLEM DESCRIPTION

3.1 Multi-Agent Learning

Current research on Multi-Agent Learning is about learningcooperative or competitive be-

havior of agents against each other. The environment provides complex tasks to the agents

and the agents try to learn required cooperative or competitive behavior. As explained in pre-

vious chapter, the complex part of the problem is that the ”correct action” corresponding to a

state is not always same, it changes according to other agents actions. To provide the variety

of choices to the learning agents, used testbed must containa significant number of agents

and a significantly big environment for different scenarios. On the other hand, while using

the standard state representations, the agent can quickly have a huge state space by increas-

ing the number of agents and the size of the environment. In addition to these problems, as

the number of agents increase, complexity of the environment, and difficulty of cooperation

increase.

To overcome these problems, the ongoing research is focusedon state abstraction and tem-

poral abstraction on multi agent learning algorithms. One solution is dividing the task into

subtasks and applying abstractions according to these subtasks. For the domains easily sepa-

rable to subtasks, the Hierarchical Reinforcement Learning methods are applied and became

successfull on reducing learning time and state space. These methods are successfully applied

on problems like Taxi domain which is divided to subtasks such as picking up and dropping

down. These subtasks need to be done one after the other causing a division of the domain into

sequential subtasks. On the other hand, on some multi-agentdomains, the agent has multiple

choices leading to different goal states. For example it must choose the agent to cooperate
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with or to compete against. In this case, if a task has more than one ways to finish correctly,

the standard HRL methods do not consider these choices as subtasks. For the multi-agent

case, the structure of the problem makes these choices more important, because they do not

only change optimality of the solution, they also change theability to learn cooperation of

the agents. One agent choosing wrong or different way will prevent the agents to reach to the

goal state and they will slow down the learning process. Hunter-Prey domain presented in

following section is a good example to such problems, when the problem contains numerous

hunters and preys.

3.2 Hunter Prey Domain and Variants

Hunter-Prey or Prey-Pursuit Problem is one of the commonly used toy domains for Multi-

Agent Systems, because it is suitable to many different approaches and it is capable of illus-

trating many different scenarios. In addition to non learning multi-agent studies, it is widely

used in machine learning, because it addresses different aspects of Multi-Agent Learning with

the ability of simulating cooperative or competitive problems with different settings. After it

is first introduced by Benda et al. [2], it is used as a multi-agent learning testbed by Tan [17]

to test cooperative and individual agents.

The domain is generally composed of a grid and some hunters that try to capture one or

more preys by moving in four directions (Figure 3.1), but itsvarious parameters can produce

completely different scenarios. For example, the famous gridworld problemcan be accepted

as a special case of hunter-prey domain where there is only one hunter and the prey is fixed.

We will now examine the domain, its parameters and the scenario used in this work.
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3.2.1 Different Domain Parameters

The Grid is the main part of the Pursuit Domain that obstaclesand agents stand on. As it

is the body of the simulation, its properties can significantly change the environment. First

and the most important parameter of the grid is whether it is toroidal or not. When the grid

is toroidal, the agents move like on an infinite plane. This setting is essential if you want

to simulate scenarios where the preys can not be squeezed at the corners or captured by a

simple chase. Another important setting is the size of the grid, because as the grid gets

bigger, the hunters spend more time on exploring instead of squeezing the prey. Moreover,

although bigger grids provide more interesting and difficult challenges, they are not preferred

because of the resulting size of the state space. Grid shape is also important, for example using

hexagonal grids completely changes the problem, because the number of neighbor squares and

corresponding actions increase.

The walls are the obstacles on the grid. For their placement on the grid, there are two main

possibilities. First, there can be walls which are randomlypositioned at the start of each

episode. As they are not fixed, the learning agents state representation must include the posi-

tions of the walls. In this case, the problem will get harder,because in addition to the capturing

behavior, the agents will be forced to learn navigation on a grid with obstacles. Second, we

can use fixed walls to analyze the ability of the agent to learnnavigation on a static specific

environment. For example, four rooms maze problem is an example to these type of domains.

Although the walls are not included in state representation, the agents learn behaviors such as

navigation to different rooms.

Considering different hunter and prey versions, they can have many different parameters such

as their vision range, moving speeds, etc. As an example, thelearning agents vision range is a

key parameter of the simulation because it determines whether the domain is fully or partially

observable. One classical setting of the agents is having four hunters aiming to surround

one random moving prey. This setting is designed to work on learning cooperative behav-

ior. Another commonly used setting is constructed on hunters that try to capture all of the

preys on minimum timestep possible. This type of studies test another aspect of cooperation,

partitioning the goals to the agents.
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3.2.2 Chosen Domain Configuration

As explained in previous section, prey pursuit domain can simulate many different scenarios,

but this study prefers specific parameters so that the problem requires strict cooperation of the

agents. Unlike other RL studies that prefer small grids with3 or 4 agents, I aimed to use more

agents and grids that are big enough for the number of agents used.

The shape of the grid is chosen toroidal and it does not contain any walls, because the aim of

this domain is to test the cooperation of the hunters, the walls are not required for these tests,

moreover they will provide selfish hunters the ability to capture the preys without cooperation.

Algorithm 3 : Algorithm for Hand-Coded Preys

foreach square sdo
dangers =MAX

foreach hunter h in visiondo

if distance(s,h) < dangers then
dangers ← distance(s,h)

end

end

foreach direction dir do
valuedir ← dangers1 + dangers2 for s1,s2 squares in directiondir

end

action ← argmax
dir

(valuedir)

return action

The selected hunters are individual learners that are not able to communicate, they do not

share any information and their goal is to capture one of the preys. A prey is captured when

one of its neighboring positions is occupied by a hunter agent. The preys are intelligent, they

follow a hand-coded policy instead of a random one. If possible, they try to avoid hunters

through a designed nearly optimal hand coded policy. Using this algorithm, at each step,

each prey agent determines the direction with safest squares which are furthest to all hunters.

Figure 3.2 illustrates an example to this decision process which is given in Algorithm 3. The
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Figure 3.2: Hand-Coded Prey Escape Algorithm

highlighted squares in the figure are the possible escape directions of the prey and the numbers

seen are the minimum distance of the hunters. However, the grid is toroidal and the prey that

use this algorithm will be invulnerable against hunters. Toavoid this, the prey agents have

an handicap over hunters: their vision is limited, they can not perceive squares with four or

more distance. With these settings the individual hunters can not capture a prey on their own

without cooperation with other hunters, but they will be able to via using strategies such as

squeezing the prey symmetrically.

One interesting point with these intelligent preys is that they are also difficult to capture when

they are chased by a single hunter to make it escape towards another hunter, because their

moves are unpredictable when they see only one hunter. For example, if the prey perceives

only one hunter placed at 2 squares away in one direction, this hunter will have equal distance

to other three directions. This will result in three equallyweighted escape directions, making

the prey’s future position unpredictable for other hunterswanting to cross the prey’s path.

This topic is further explained in next chapter where hand coded hunters are explained in

details.

In addition, as we said earlier the simulation must contain more than one preys to add another

dimension to the cooperation of the hunters: They must choose same prey to be able to capture

one. In addition to choosing the target prey, we can add a new challenge for the learning agents

by adding more hunters to the simulation which forces them tomake a decision on who to

cooperate with. To sum up, we will have a multi-hunter and multi-prey domain, in which
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hunters must cooperate and focus on a specific prey to captureit.

3.2.3 Classic State Representations and Size of The State Space

We saw that although it has many different variations, the aim of the version of the pursuit

domain chosen in this study is to develop cooperative learning hunters against preys. To ef-

fectively test cooperation level of the agents, we need to provide our agents many different

choices by using significant number of hunters and preys. As you will see in following sec-

tions, to build this perfect test environment, state space is the most important problem for a

flat Q-learning, because we need to include many details about all the other agents for ability

of the learning agent to classify current state of the simulation.

While working on a fixed gridworld, the most obvious and the easiest state representation is

storing global positions of the agents as illustrated in Figure 3.3. This state representation is

mostly used on settings with fixed walls, so that states of theagents can contain information

about the environment. For example, if third square is occupied by a wall, instead of enlarging

the state space by representing this wall in agents state, the agent will learn that its state

variable representing its global position does not change while trying to go to the third square.

The walls are not represented but the agent has ability to learn the environment by looking at

the combination of its state and action and next state.

While this global position is suitable for single-agent cases or small grid sizes, it causes

problems for toroidal or partially observable environments. When we consider a toroidal

world without walls, shifting all the agents one square to the same direction results in exactly

same situation for the agent, but the state representation gives a completely different state.

Figure 3.4 includes an example case to this problem. Of course this is not a barrier for the

learning process but it slows it down by representing same situation withheight × width

different states.

One alternative state representation to overcome this problem is representing other objects

using their relative positions to the agent instead of global positions. Figure 3.4 shows an

example to this method. Using such a representation provides the ability to represent the

objects easily, but the size of the state space increases polynomially with possible objects. If

there isx possible objects for a square (i.e. empty, hunter, prey, wall) andy squares that the
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Figure 3.4: Two equivalent map states on a toroidal grid

agent sees (i.e. 11∗ 11 = 121 for an agent with vision limit 5), we havexy number of states

to store (5121 in this case). This state representations size is proportional with the vision of

the agent which avoids using big grid sizes.

As the domain used do not contain any walls, considering thatthe agents will be interested

only with other agents, not any other objects, we can represent each one of agents using

integers representing their relative coordinates according to the learning agent. Figure 3.5

shows the states for the previous example. Using this representation, size of the state space

is not proportional with the number of squares that the agentsees, it is proportional with the

number of agents on the simulation (n). The size of the state space used is nowyn−1 instead

of xy (for an agent perceiving up to five distance squares, insteadof 3121 the size changes to

Figure 3.5: Relative Positions State Representation for Prey-Pursuit Domain
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Figure 3.6: 45 Degree Partitioned Polar State Representation

121n−1).

To decrease further size of the state space, instead of usingintegers for each of the other

agents, we can use another commonly used coordination system: polar coordinates. By using

polar coordinates, for each agent, we use one variable for the angle and one variable for its

distance to the learning agent as seen in Figure 3.6. This representation has the ability to be

used as a basic function approximation, because if we reducethe number of partitions, we

automatically make the agent approximate close areas. For example, if the area around the

agent is divided into 4 90-degree slices, the first state variable will be same for two agents

standing on upper left part of the agent.

Table 3.1: Size of The State Space for Three Methods

Size of the state space Standard Relative Positions 45-Degree Polar

11x11 Grid with 3 agents 311 114 (8 ∗ 10)2

25x25 Grid with 3 agents 325 254 (8 ∗ 24)2

11x11 Grid with 7 agents 311 1112 (8 ∗ 10)6

25x25 Grid with 7 agents 325 2512 (8 ∗ 24)6

Table 3.1 shows the size of the state spaces for discussed representation alternatives. By using

different methods, there is a significant decrease in numbers butstill all the methods used have

state space exponentially related to the number of agents orsize of the grid. Even for 2 hunters

and 5 preys, these state representation are not applicable due to their sizes.

19



CHAPTER 4

PROPOSED METHODS

In previous section, we explained the properties of the problem we have, the domain that we

will use and possible problems to encounter. In this section, we will present the method to

obtain cooperative agents on big-sized hunter prey domain with multiple preys and hunters.

As training the agents directly in the described domain is impossible, this chapter starts with

a small pursuit problem containing one prey and reaches in three steps to the goal of multiple

agents. First a goal oriented state representation is represented, then this representation is

extended for big grids, finally a layered approach is introduced to have successfull hunters

against multiple preys. Although the general idea of our approach is not specific to a single

domain, first two techniques are developed to make the HunterPrey domain and size of the

state space suitable for the third method used.

4.1 Prey-Oriented State Representation

For reinforcement learning, correctly representing the state is as important as the learning part.

We analyzed different state representations for Hunter-Prey domain and their advantages, but

we need a new one that is applicable to bigger problems. The previous methods have one thing

in common, they are self-oriented which means that the agentperceives the area around itself

and the coordinates of other objects are relative to the agent. Here, we propose a prey-oriented

state representation which does not represent position of the prey, but represent the hunters

around this prey. Figure 4.1 shows an example for this representation. This representation

changes the problem structure for the hunters because they must always choose a prey to

focus on, but this does not cause any problem because the hunter’s goal is to capture one of

the preys.
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Figure 4.1: Prey Oriented State Representation

The most important benefit of this method is the distributionof the squares represented in the

state, they are homogeneously distributed around the target. This benefit plays an important

role when the hunters squeeze the prey from two opposite sides. If we look at the case in

Figure 4.1, the learning hunter has to coordinate and see theother hunter which is at the other

side of the target prey. For this case, assuming that prey’s vision isx, the hunters vision range

must be at least 2x+5. As the map size increases, for the agents to see each other from longer

distance, this number increases. For this case, the two state variables indicating the other

agents position varies between−(2x+5) and+(2x+5), and the agent unnecessarily considers

the squares that are on the left side of it where nothing important happens at this timestep. On

the other hand, when using prey oriented state representation, an interest limiti < (2x + 5) is

chosen. This variable indicates how far from the targeted prey the agent will be interested in,

and the state variables vary between−i and+i. For example, if we consider the case expressed

in Figure 4.1, to cover the area that the other hunter stands the state variables interval must be

[−8, 8] but new state variables must be in interval [−5, 5]. The number of possible values of

each state variable change from 17 to 11 which means a significant decrease of the state space

from 172∗n to 112∗n with n representing the number of agents.

Another advantage of this method is its capability to limiting maximum values of state vari-

ables using this interest limit and making the size of the state space independent from the

agents vision. For greater grid sizes, this is very important because the agent can have full

vision of the grid while size of the state space remains same.
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In addition to its benefits explained above, this prey oriented state representation is required

for the second part where it is extended for greater grid sizes. Moreover the notion of focusing

on a target prey introduced in this section will play an essential role in the third part of this

method where the environment will contain multiple preys instead of one.

4.2 Expanding State Space with Mapping

In previous section, it is shown that using a prey oriented state representation reduces the

number of possible states, however its benefits are more thanthat. The learning agents can

now decide according to the surrounding squares of target prey but the state space still gets

very big when interest limit used increases. To sum up, our agent is capable of learning when

it considers a small area around the prey, but problems arisewhen this area is enlarged. Now,

instead of learning on bigger interest rates, this section proposes using the knowledge learned

on smaller interest rates.

Considering the problem structure, when the hunters are more distant from the prey, their

exact positions are not as important as when they are one or two square away from the target.

In this case, knowledge of approximate positions can be enough to decide on the action. As an

example, lets consider the case where the prey is far from theagent with relative coordinates 4

North, 12 East. Instead of exact positions, if the agent getsan approximate coordinate for this

prey such as somewhere between 4,10 and 4,16, its strategy and chosen action will probably
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be the same. This approximation can be used to create a mapping between two state spaces

with lower interest limits and higher interest limits to provide agents ability to move on bigger

grids by using mapped state space which is smaller than the required one.

Constructing the perfect mapping is not easy, but one simplemethod is using virtual rings

constructed around the prey. The set of squares that have same distance to the prey (according

to 8-neighborhood) are called a ring. Figure 4.2 illustrates the different rings around a prey.

To map two state spaces, lets choose 11× 11 map and 21× 21 map as an example. We

must map a field composed of five rings to a field composed of ten rings. For inner rings, the

correct positions are important, because shifting an agentone square can change all the agents

actions, because of this, first three rings are mapped to themselves, in other words, there is no

change for these squares. For outer rings fourth, fifth and sixth rings are mapped to forth ring,

and the outer ones are mapped to the fifth ring.

Figure 4.3 shows how the area is partitioned according to this mapping. For example, an agent

which has relative coordinates 6 South, 8 East (+6,+8) will assume its state as+4,+5. Indeed

for all the cases where the coordinates are between+4,+7 and+6,+10 the agent will use this

state. This is like assuming all these squares as one state representing somewhere between

+4,+7 and+6,+10.

On the other hand, this method changes the structure of the domain, because when an agent

located in one of these squares decides to move closer to the prey, it will move to the closer
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square, but its state may not change if it still remains on same partition. This nondeterminism

can cause a confusion for a learning agent but considering that the grid is empty it will not

cause a problem here, because as explained earlier, the agents will use this mapping after

completion of learning process on smaller grid. So, if the agent wants to get closer, it will

get closer, and if its state does not change, it will apply same action until it exits its current

approximation area causing a change in the state. It can be explained as the agent moves

1/3 of the difference between two states but the state representation ignores this fraction by

flooring the number to an integer.

4.3 Hierarchical Reinforcement Learning

After ability to work on bigger grids, third method will allow the agents to work with multiple

preys without increasing size of the state space. The problem is same but it includes more

preys and the hunters’ goal is to capture one of the preys (notall of them). Looking at the

structure of the domain presented in previous chapter, it isexplained that to capture one of the

preys, two hunters must choose to attack on same prey as theirstrict cooperation is required

to capture the prey. For a domain with multiple preys, from the agents perspective, the task of

capturing one of the preys is completely independent of other preys. So, instead of disrupting

the agent by adding other preys into its state representation, we can divide the problem into

subproblems of capturing each of the preys and reuse capturing knowledge as we saw in

Hierarchical Reinforcement Learning methods.

As in HRL methods, ability to reuse the knowledge of a repeating task can be used to speed up

learning, but these methods are used with sequential subtasks which must be done in order.

For example taxi domain has two subtasks: “pick the passenger” and “put the passenger”,

and they must be done one after the other. In our case these sub-duties must not be done in

sequential order, the agent must choose one of the subtasks.Consider two room maze problem

used by Dietterich [4] to explain recursive optimality (Figure 4.4). The agent starts at the left

room and the goal is at the right top square. Hierarchical Schema used is composed by two

tasks: exiting left room and reaching to the goal. Although exiting the left room is defined

as a single task, it has two terminal states and two successfull ends. Here in our problem, we

divide such a task into two subtasks: exiting from top and bottom. From these two choices,

the agent must choose one according to its benefits.
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This decision of choosing a subtask is related with two notions: the expected duration of

the subtask and the value of the subtask for overall task. Forthe two room maze example,

these notions are the distance to each exit square and the exit squares distance to the goal

state. When the values of the subtasks are same for the entiretask (in the Hunter-Prey case

capturing one of the preys ends the episode with a positive reward to all of the hunters), this

choice is only dependent to the response of the question ’What will be my position according

to its local goal state if I choose one of these subtasks?’. Proving that this decision flow leads

to the optimality is not difficult. With the assumption that the agent has the optimal policy and

its discounted value table for the subproblems, the agent has a value for each state-action pair

of the domain. From the definition of the RL algorithms, the value of the state-action pairs

leading to the goal state will have maximum value, and the values of the state-action pairs

leading to these states will be them ∗ γ. If the agent isn step away from the goal, this value

will be multiplied byγn. When the agent has multiple choices, it now has a very important

information on each of the choices: how many steps they are away from the goal. Despite the

possible error, we still get an important information on thesituation, current states value for

each of the subtask choices.

One important advantage of using this subtask system is its convenience for reducing state
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space via state abstractions. If the subgoals are independent, and they only need part of the

information, the agent uses an automatic state abstractionas it does not need these information

on subtasks state representation. Two rooms maze problem provides a good example to this

abstraction, when the state representation includes positions of the passages between two

rooms. Instead of one policy containing all the passages as state variables, the agent will

choose between policies each one using only one of the passage points.

Second, it is explained that in HRL methods, the subtasks have terminal states and continue

until the states that you define. Here, the agent does not haveto stick to its first choice until the

end of the subtask, instead, at each step it has the ability tochange its selection via estimating

each subtasks value according to the relative current state. This means that while working

on a subtask, at intermediate steps if the agent gets a more favorable choice (because of

indeterminism or external effects such as other agents) it will definitely switch to this subtask.

Moreover if the agent is successful on the subtask independently, the success on its choice is

guaranteed.

The Hunter-Prey domain is very suitable for this method, andit changes completely structure

and difficulty of the problem. Considering a simulation with two hunters and five preys, the
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hunters aim is to capture one of the preys as quickly as possible. To use a flat Q-learning for

this problem, one have to include the other hunter and all thefive preys in state representation.

This does not only result in a huge state space, also learningtime and converged policy is far

from optimal policy because of the unnecessary informationgiven to the agent at each step.

If state abstraction is used to consider position of only oneof the preys, the agent has to

give a decision on which prey to concentrate, which requiresinformation on all the agents

positions. Instead of this, the method explained above divides the problem into sub-problems

of capturing each one of the preys as illustrated in Figure 4.5. By using learned knowledge on

two hunters and one prey scenario, the agents will have the information about approximately

how many steps are required to catch a prey, which gives the ability to determine which prey is

easier to capture. Moreover, this method guarantees that two hunters will attack to same prey,

because the learned knowledge on 2 vs 1 scenario is symmetrical for two hunters (because

they get same reward) and state value for each prey will be same for two hunters.
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CHAPTER 5

EXPERIMENTS AND RESULTS

In this chapter, Hunter-Prey simulation experiments are conducted to test the methods pro-

posed in previous chapter. The general domain settings chosen are described in Chapter 3.

The task is accepted as episodic, and each episode starts with randomly positioned agents

and lasts maximum 120 steps or until the hunters captures oneof the preys. As learning

algorithm, all the learning agents use Q-learning withǫ-greedy exploration with parameters

α = 0.5 andγ = 0.9. Although different values for these parameters may change learning

speed and convergence, they do not affect the results that this work is interested in.

The experiments are separated into three parts. First part uses a small grid to test the state

representation method proposed and analyzes the tests to obtain the policy required for later

stages. The second part shows the results of the mapping proposed to use this policy for

bigger grid sizes. Third part presents results of subtasks approach to extend same policy to

multiple preys pursuit scenario.

5.1 State Representation

As explained in previous chapter, Prey-Oriented State Representations aim is reducing size of

the state space. Hence, for the agents having full vision, itis meaningless to compare the state

representations effects on the learning performance. The learning results willnot change,

because in both representations each different state of the environment will be represented by

unique states, they will only be shifted according to the preys position. On the other hand, if

agents have smaller vision, things may change. To show the consequences of these different

state representations, I used two different experiment setups.
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Figure 5.1: Agents with Same Size of State Space on a 15x15 Grid

First experiment aims to show the effects of the new state representation in required state space

size. We test the agents ability to learn on partially observable domain using different state

spaces with same size. The test environment is composed of a 15x15 grid, one hand coded

prey and two hunters restricted to represent 121 of 225 squares in their state representation.

The classic hunters use 121 squares around itself, the second type of hunters use the 121

squares around the prey instead.

Table 5.1: Hunters with 11∗ 11 state space on 15∗ 15 grid

Average Capture % Av. Steps for Successful Episodes

Standard State Representation 117.9 2% N/A
Prey Centered State Representation 93.2 32.2% 37.2

Figure 5.1 shows learning graphs of two types of hunters and reveals that classic hunters are

not able to decrease their average episode time. On the otherhand newly designed hunters

learn to capture and decrease their average to 95 steps. Thisdifference between two agents

are consequence of the distribution of the squares effecting the hunters states, when they are
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distributed around the prey, the state space with same size allows the agent to perceive two

hunters placed at opposite sides of the prey.

At first, this result of 93 steps may seem vary bad for two hunters on a 15× 15 grid, but to

compare these results with the agents having full vision (which require 10-20 steps to catch),

one should definitely consider that this agent can only see 54% of the grid which avoids

perceiving either the other hunter or the prey in most of the cases. Table 5.1 shows that this

loss of information causes the agents to capture the prey with 32% percentage, but in full

vision case, this ratio is 100%. Considering only the episodes that the hunters have success,

this average time reduces to 37 steps which is not a bad resultfor the conditions discussed.

Besides, the aim of this state representation is not reducing the steps that learning converges

to, it is the ability to capture the prey using smaller state space.

Second experiment is about testing learning capabilities of the learning agent when it has full

vision on small grids. This experiment is required to verifylearning agents performance on

the designed domain and to obtain learned policy needed for the second and third parts of this

work. The environment is composed of a 11× 11 taurus grid, two learning hunters with 5 cell

vision range (covers the grid) and one hand coded prey with 3 vision (covers 7 rows and 7

columns).

This experiment compares four types of learning agents. Thefirst one is the standard Q-

learning agent which balances exploitation and exploration by usingǫ-greedy action selection.

As explained earlier, obtaining a better policy in this stepis important, because this policy will

be used in different scenarios to test success of the method proposed. To improve the resultant

policy, second agent tested prefers exploration over exploitation. This exploring agent uses

full random action selection until episode number 25000, then it linearly decreasesǫ to 0,

finally it always chooses to exploit after 50000th episode.

There are also another alternatives to look for a better policy. Although these agents can

observe all the environment, and the other agents’ actions at each step, these actions are not

explicit in state representation. Because of this, taking same action at the same state can lead

to many different states according to the actions taken by the prey and the other hunter. This

effect can be reduced by altering Q-table with joint actions of hunters instead of actions of

the only learning agent. This type of Q-table will store values for every combination of the

hunters actions, and each agenti will find the joint actionA = (a0, a1, ..., an) giving maximum
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Figure 5.3: Hunters Trying to Capture the Prey by Chasing

value forQ[s][A] and will take the actionai ∈ A (they assume that each teammate will choose

appropriate action for the joint actionA). Third and Fourth agents used in the experiment are

joint action versions of the first two types of agents.

In addition to learning ones, we needed a hand-coded agent tocompare our results. For

the hand coded agent, there are two different possibilities. First one is coordinating the agents

outside preys vision, and getting in a position that they will definitely capture the prey in three

or four steps. This algorithm requires positioning symmetrically around the prey at the points

seen in Figure 5.2 and squeezing the prey cooperatively. Second one is chasing by one of the

hunters and hoping that prey moves towards the other agent which stands outside its vision

range. Figure 5.3 shows an example to this situation. The hunters has 33% chance to get a

capture position, but if they do not succeed, they loose their positioning advantage by getting

positioned on same side of the prey, which is far from the positioning that the agents need.

Instead of the agents that try this possibility, I used the type of hand coded agents to compare

learning agents with deterministic, always capturing hunters. To implement first algorithm,
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Figure 5.4: Performances of Agents on a 11x11 Grid

the agent finds the shortest path to the symmetric square of other agent and it moves towards

this position, and after they get symmetrical in quickest way, they move to the squares seen in

5.2 and catch the prey certainly.

As you can see in Figure 5.4 theǫ-greedy learning agents can learn to hunt the prey on

11 × 11 grid. They converge to an average of 25 steps to capture theprey. On the other

hand, considering that the grid is very small, 25 steps is nota good result. The exhaustively

exploring agents get a better result by reducing their average to 13 steps. Here, as expected,

the best result is achieved by exploring agents with joint actions. These agents compete

with hand-coded agents, they got an amazing result with an average of 8.5 steps. The most

important point of this result is that the agents now have a policy and q-table for the small

sized hunter prey problem. We will see its importance clearly when we will use this policy to

create learned agents for bigger grid sizes.

To verify these agents performances on a bigger grid, same experience is repeated for 13× 13

grid. Figure 5.5 shows that the scores of the agents are normally increased one or two steps,

but this increase is the expected effect of the grid size, which also effects the hand-coded

agent.
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Figure 5.5: Performances of Agents on a 13x13 Grid

5.2 Bigger Map

This section tests and analyzes the results of the method proposed to use small map knowledge

on bigger maps. The first experiment is made on 25x25 grid, using agents with full vision of

the environment. There are four agents. First one is the agent using pre-loaded state values

learned on 11x11 grid tests. The second agent uses same method with 13x13 knowledge. The

mapping used for these agents is same as the one explained in Chapter 4. To use 11x11 grid

knowledge, first three rings map to themselves, following three rings map to the fourth ring

and outer ones map to the fifth ring. For the 13x13 knowledge the state variables range from

−6 to 6 instead of−5 to 5 which means one extra ring that can be assigned for the most distant

squares.

The main effect of this method is reducing the size of the state space required to use a learn-

ing agent on 25x25 grid. On the other hand, we would like to compare these results with flat

q-learning covering all the grid, but the size of the state space (254) requires a 26 times larger

memory to allocate, which prevents us from experimenting flat q-learning agents. Instead, to

compare with the learning ones, the results of the hand-coded agents are taken into consid-

eration. The Figure 5.6 shows satisfying results in which extended agents score near to the
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Figure 5.6: Performance of the agents on 25x25 grid

hand coded agent. As the agents loose precision because of the mapping explained, the two

or three steps difference between them and hand-coded agents is acceptable.

During the development stage, it is explained that these mappings are not designed to use with

learning agents, that they are designed to use previously learned knowledge on smaller maps.

They can not be used to reduce size of the state space for first-time learning agents. Despite

this statement, to compare learning times, I used same learning agents with an empty q-table

and its exploration versions. Figure 5.6 shows that these agents are able to capture the prey

but the results are not close to others. They score nearly 30 steps, while the agents that are

trained on smaller maps score near 20 steps. The main cause ofthis difference is the learning

algorithm’s unsuccess at handling confusion caused by partitioning the state space which was

mentioned in Section 4.2.

These results validates that the agents trained in previoussection can perform successfully on

bigger grids via a basic mapping between state representations. The mapping functions used

are logical but probably not optimal, these results can be further improved by testing different

mapping functions or combining multiple learning datasetsautonomously.
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5.3 Multi Prey

This part of our work tests parallel subtasks mechanism described in Section 4.3 and it re-

quires a domain providing the agents with more than one parallel options. Increasing the

number of preys is the evident option for such a setup. All theexperiments are done on

25x25 grid with multiple hand coded preys and two hunter agents using mapping to previ-

ously learned data.

First experiment shows the designed agents performance against five preys. To measure the

effect of the task choosing mechanism, it is compared with agents using same learned knowl-

edge combined with different task selection mechanisms. First task choosing mechanism is

random task selection at each step, second one randomly selects and insists on the decision

until end of the episode. On the other hand, it is shown that the domain and the prey algorithm

chosen requires two agents strict concentration on one of the preys. Because of randomness,

these two types of agents will have trouble on selecting sameprey which will cause unsuc-

cess. To have a more logical comparison, third type of agentsselect together a random prey to

attack. Indeed these agents cheat by communicating but theywill provide a better challenge

against the designed agents.

Table 5.2: Different Agent Types trying to capture 5 preys

Average Steps

Random Select 116.9
Random Select and Insist 95.6
Cooperative Random Select 27.2
One Time Select 23.8
Proposed Agent 23.1

Table 5.2 shows a clear victory of the proposed agents. As expected, the agents that select

individually and randomly have problems on cooperating. Their score is near to the 120 steps

maximum limit, far from the proposed agents. On the other hand communicating random

agents score close, but not as good as the designed agents, because their scenario is same as

having one prey on the simulation, they do not look for more advantageous choices. Another

important result is the difference between the proposed agent which renews its choice ateach
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step, and the agents that choose only at the start of each episode. The difference between

these two agents is very small, but it reflects the designed algorithms ability to change its

decision when it gets more advantageous one. This is an important feature, because although

they are not designed for parallel subtasks, most HRL algorithms continue to the subtasks

until pre-defined terminal states.

Table 5.3: Average Capture Steps for Different Number of Preys

1 Prey 3 Preys 5 Preys 10 Preys

Proposed Agent 26.8 23.5 23.1 20.2
One Time Choosing Agent 27.3 24.3 23.8 20.8
35*35 39.2 35.0 32.7 30.7
Learning 30.2 N/A N/A N/A

In addition, a series of experiments are conducted to analyze the change in average steps

required to capture one prey, according to the number of preys on the simulation. This experi-

ence will signify the ability of our agents to exploit the possibility of a better positioned prey,

when the number of the preys increase. As we see in Table 5.3, the proposed agents are able to

capture one of the preys in less time, when the number of the prey increases. This difference

is caused by the probability of an advantageous position at the start of the episode, it is not

a consequence of the probability to encounter a prey while navigating, because the prey used

are not random, and they can easily escape if the hunters do not squeeze them properly. Even

if there are too many preys according to the grid size, the hunters can not capture another prey

accidentally.

Table 5.4: Size of the State Space for Different Grid Sizes and Number of Preys

Grid Size/ Number of Preys 1 3 5

11x11 14641 214358881 3138428376721
15x15 50625 2562890625 129746337890625
25x25 390625 152587890625 59604644775390625

Another important information about the designed agents, is the possible size of the state
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space related to the number of the preys if the agents were using flat q-learning as the learning

algorithm. Table 5.4 shows us how much progress we made so farby having a successfully

learned agent on a multi-agent domain requiring such a big state space. Previous section

provided the ability to use 14641 states instead of 390625 (vertical progress by increasing the

size of the grid) and this method of choosing subtasks provided the ability to use 14641 instead

of 3138428376721 (horizontal progress by increasing the number of agents). In the end,

combining these two methods, we obtained successfull agents with 14641 states performing

on a domain requiring 59604644775390625 states for a flat Q-learning.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

This thesis discusses the Hunter Prey problem as a Reinforcement learning domain and a

three step approach proposed to reduce the required size of the state space. The agents are

trained for a simpler scenario and learned knowledge is usedas a subtask knowledge in a HRL

method to produce agents performing on more complex tasks.

Experiments presented analyzes success of each part of the proposed method. As expected,

prey-oriented state representation reduced the size required for partial observers and prepared

the framework for other parts. Mapping the learned knowledge to bigger state spaces in-

creased the size of the grid that can be used with same state space. Finally, the hierarchical

learning approach used same state space and learned knowledge to produce agents that can

perform on scenarios containing more agents. In conclusion, the state space for this problem

became independent of the domain parameters like size of thegrid or number of agents. This

is an important result because the example given in previouschapter shows that, the agents

can use a q-table with size of 14641 instead of 59604644775390625.

In addition to the decreased size of the state space requiredfor learning, despite it can not

be tested, learning time of the problem is also decreased. Instead of learning a complex task

such as capturing one of the preys in a big environment full ofagents, the agent learns to

capture the only prey in a smaller environment, and this knowledge is optimally reflected to

the overall problem, by using learned policy for each prey asa subtask to be choosen.

Moreover, the third part of the method which uses a layered approach composed of subtasks

that use same policy, is not a method strictly specific to thisdomain. If the problem requires

choices between similar subtasks, the method provides a hierarchically optimal policies when

the optimal policies for each of the subtasks is provided to the agent. This part of the work can
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be analyzed further and be applied to different problems (such as two rooms maze problem)

as an extension to this study.

The aim of this work is extending a small scenario to a multiple-prey scenario, but the task is

capturing one of these multiple preys. On the other hand, theproblem turns into a scenario

where there are multiple preys, and the hunters can capture the easiest prey to capture, but

the task ends here and the other preys are not taken into consideration after first capture.

The hunters learned to capture one of the preys but if the taskrequires to capture all of the

preys, the method used is not sufficient for the problem. For a flat q-learning algorithm, this

problem is not applicable due to the reason explained before, but now the agents are capable of

capturing the preys, they only require to learn which prey tochoose first which transforms the

scenario into a goal sharing problem. This can be a further research topic for the hunter-prey

domain.

In addition to the scenario discussed above, the scenario used can also be extended to forming

groups to cooperate by including more than two hunter agents. The proposed method is

perfect for two hunters, because the policy used to capture one prey is symmetrical. This

means that current configuration of the grid may be represented by different states for each

of the hunters but these different states have same value for these hunters if they use same

or similar policy. On the other hand, when there are more thantwo hunters, the agent must

choose the hunter to cooperate with. The same method of usingthe policy learned on each

couple of preys and hunters can be applied but this can cause problems for the scenarios

requiring to capture all of the preys. Using this algorithm,each hunter will choose one hunter

and one prey such that these three agents form the easiest capturing scenario, but the other

hunter chosen may have better options and may not choose thishunter. The agents must

also consider these factors while deciding whom to cooperate with. Like previous ones, the

solution to this scenario can be an extension to the method proposed.
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1956.

[2] M. Benda, V. Jagannathan, and R. Dodhiawala. On optimal cooperation of knowl-
edge sources - an empirical investigation. Technical Report BCS–G2010–28, Boeing
Advanced Technology Center, Boeing Computing Services, Seattle, Washington, July
1986.

[3] Daniel S. Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The com-
plexity of decentralized control of markov decision processes. InMathematics of Oper-
ations Research, page 2002, 2000.

[4] Thomas G. Dietterich. The maxq method for hierarchical reinforcement learning. In
ICML ’98: Proceedings of the Fifteenth International Conference on Machine Learning,
pages 118–126, San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc.

[5] Guray Erus and Faruk Polat. A layered approach to learning coordination knowledge in
multiagent environments.Applied Intelligence, 27(3):249–267, 2007.

[6] Mohammad Ghavamzadeh and Sridhar Mahadevan. Continuous-time hierarchical re-
inforcement learning. InICML ’01: Proceedings of the Eighteenth International Con-
ference on Machine Learning, pages 186–193, San Francisco, CA, USA, 2001. Morgan
Kaufmann Publishers Inc.

[7] Mohammad Ghavamzadeh and Sridhar Mahadevan. Hierarchically optimal average re-
ward reinforcement learning. InICML ’02: Proceedings of the Nineteenth International
Conference on Machine Learning, pages 195–202, San Francisco, CA, USA, 2002. Mor-
gan Kaufmann Publishers Inc.

[8] Mohammad Ghavamzadeh and Sridhar Mahadevan. Hierarchical average reward rein-
forcement learning.J. Mach. Learn. Res., 8:2629–2669, 2007.

[9] Michael L. Littman. Friend-or-foe q-learning in general-sum games. InICML ’01:
Proceedings of the Eighteenth International Conference onMachine Learning, pages
322–328, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.

[10] Yaxin Liu and Peter Stone. Value-function-based transfer for reinforcement learning
using structure mapping. InProceedings of the Twenty-First National Conference on
Artificial Intelligence, pages 415–20, July 2006.

[11] Rajbala Makar, Sridhar Mahadevan, and Mohammad Ghavamzadeh. Hierarchical
multi-agent reinforcement learning. InAGENTS ’01: Proceedings of the fifth interna-
tional conference on Autonomous agents, pages 246–253, New York, NY, USA, 2001.
ACM.

40



[12] Ronald Parr and Stuart Russell. Reinforcement learning with hierarchies of machines.
In NIPS ’97: Proceedings of the 1997 conference on Advances in neural information
processing systems 10, pages 1043–1049, Cambridge, MA, USA, 1998. MIT Press.

[13] Peter Stone.Layered Learning in Multiagent Systems: A Winning Approachto Robotic
Soccer. MIT Press, 2000.

[14] Peter Stone and Manuela Veloso. Multiagent systems: A survey from a machine learn-
ing perspective.Autonomous Robots, 8(3):345–383, July 2000.

[15] Richard S. Sutton and Andrew G. Barto.Introduction to Reinforcement Learning. MIT
Press, Cambridge, MA, USA, 1998.

[16] Richard S. Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps:
a framework for temporal abstraction in reinforcement learning. Artif. Intell., 112(1-
2):181–211, 1999.

[17] Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents.
In In Proceedings of the Tenth International Conference on Machine Learning, pages
330–337. Morgan Kaufmann, 1993.

[18] Matthew E. Taylor, Gregory Kuhlmann, and Peter Stone. Autonomous transfer for re-
inforcement learning. InIn The Seventh International Joint Conference on Autonomous
Agents and Multiagent Systems, 2008.

[19] Matthew E. Taylor and Peter Stone. Behavior transfer for value-function-based rein-
forcement learning. In Frank Dignum, Virginia Dignum, SvenKoenig, Sarit Kraus,
Munindar P. Singh, and Michael Wooldridge, editors,The Fourth International Joint
Conference on Autonomous Agents and Multiagent Systems, pages 53–59, New York,
NY, July 2005. ACM Press.

[20] W. R. Thompson. On the likelihood that one unknown probability exceeds another in
view of the evidence of two samples.Biometrika, 25:285–294, 1933.

[21] C.J.C.H. Watkins and P. Dayan. Q-learning.Machine learning, 8:279–292, 1992.

41


