

WEB BASED GEOGRAPHICAL INFORMATION SYSTEMS
FOR

MIDDLE EAST TECHNICAL UNIVERSITY CAMPUS

A THESIS SUBMITTED TO THE
GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

GÖKÇE TÜRKMENDAĞ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

GEODETIC AND GEOGRAPHICAL INFORMATION TECHNOLOGIES

MAY 2009

Approval of the thesis:

WEB BASED GEOGRAPHICAL INFORMATION SYSTEMS FOR METU CAMPUS

submitted by GÖKÇE TÜRKMENDAĞ in partial fulfillment of the requirements for the degree
of Master of Science of Geodetic and Geographical Information Technologies
Department, Middle East Technical University by,

Prof. Dr. Canan Özgen _____________________
Dean, Graduate School of Natural and Applied Sciences

Assoc. Prof. Dr. Mahmut Onur Karslıoğlu _____________________
Head of Department, Geodetic and Geographical
Information Technologies

Assoc. Prof. Dr. Nurünnisa Usul
Supervisor, Civil Engineering Dept., METU _____________________

Examining Committee Members:

Assoc. Prof. Dr. ġebnem H. Düzgün _____________________
Mining Engineering Dept., METU

Assoc. Prof. Dr. Nurünnisa Usul _____________________
Civil Engineering Dept., METU

Prof. Dr. Volkan Atalay _____________________
Computer Engineering Dept., METU

Prof. Dr. Tanju Mehmetoğlu _____________________
Petroleum and Natural Gas Engineering Dept., METU

Assoc. Prof. Dr. Ġrem Dikmen Toker _____________________
Civil Engineering Dept., METU

Date: 01 / 06 / 2009

 iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare that,
as required by these rules and conduct, I have fully cited and referenced all material
and results that are not original to this work.

Name, Last name : Gökçe Türkmendağ

 Signature :

 iv

ABSTRACT

WEB BASED GEOGRAPHICAL INFORMATION SYSTEMS FOR

MIDDLE EAST TECHNICAL UNIVERSITY CAMPUS

Türkmendağ, Gökçe

M.S., Department of Geodetic and Geographic Information Technologies

Supervisor : Assoc. Prof. Dr. Nurünnisa Usul

May 2009, 102 pages

Middle East Technical University (METU) campus has such an extensive area that

reaching the necessary information which affects campus life, such as the locations

of the buildings, classrooms, computer labs, and etc. may be very difficult for

anyone who does not know the campus well, and even for a student, personnel or a

graduate who had a long time in the campus. An interactive campus map and a

database structure related to this map which can be accessed by multiple types of

users on the Internet can display this information with its geographical locations, and

will reduce the "difficulty for reaching information" widely.

For this purpose, data of METU were collected from various sources, edited,

organized, and inserted into data tables. An interactive campus map displaying the

locations of the physical structures and facilities in the campus was created in

Scalable Vector Grapics (SVG) standard, and published on the Internet. By

JavaScript functions, the map can be browsed with map navigation tools, including

zoom in, zoom out, move and information buttons, and layers control. There is a

search section on the user interface, which allows users make queries to find

building and classroom names, and list the buildings and facilities according to their

usage and category types. Data are stored in PostgreSQL database, transmitted

 v

through PHP scripts, and can be edited by authorized users through the specialized

web interfaces. Lastly, web-based implementation of the application is entirely

based on open-source standards.

Keywords : Web, GIS, SVG, METU, Open Source

 vi

ÖZ

ORTA DOĞU TEKNĠK ÜNĠVERSĠTESĠ KAMPUSU ĠÇĠN

WEB TABANLI COĞRAFĠ BĠLGĠ SĠSTEMLERĠ

Türkmendağ, Gökçe

Yüksek Lisans, Jeodezi ve Coğrafi Bilgi Teknolojileri Bölümü

Tez Yöneticisi : Doç. Dr. Nurünnisa Usul

Mayıs 2009, 102 sayfa

Orta Doğu Teknik Üniversitesi (ODTÜ) yerleĢkesi çok geniĢ bir alana sahiptir. Bu

kadar büyük bir alanda yerleĢkeyi pek tanımayan birinin, hatta yerleĢkede uzun

zaman geçirmiĢ bir öğrenci, personel ya da mezunun binaların yerleri, derslikler,

bilgisayar laboratuvarları, v.b. gibi yerleĢke yaĢamını etkileyen pek çok bilgiye

hızlıca ulaĢması oldukça zor olabilir. Internet ortamında yayınlanan interaktif bir

harita ve bu haritaya bağlı bir veri tabanı yapısıyla bu tip bilgiler coğrafi konumlarıyla

beraber birden fazla kullanıcı tipine sunulabilir ve “bilgiye ulaĢma zorluğu” büyük

ölçüde hafifletilebilir.

Bu amaçla, ODTÜ kampusune ait veriler çeĢitli kaynaklardan toplanarak düzeltildi,

organize edildi ve veri tablolarına taĢındı. Yapıların ve hizmetlerin yerlerini gösteren

interaktif bir kampus haritası Scalable Vector Grapics (SVG) formatında hazırlandı

ve Internet‟te yayınlandı. Haritayı, JavaScript fonksiyonları ile hazırlanan araçlarla

büyütmek, küçültmek, hareket ettirmek, bilgi almak ve katmanları kontrol etmek

mümkündür. Kullanıcı arayüzündeki arama bölümü ile bina ve sınıf isimleri

sorgulanabilir, ayrıca binalar ve sundukları olanaklar, kullanım amaçlarına göre

gruplandırılarak listelenebilir. Veriler PostgreSQL veritabanında tutulmakta, PHP

 vii

betikleri ile taĢınmakta ve yetkili kullanıcılar tarafından değiĢtirilebilmektedir. Sonuç

olarak, uygulamanın web tarafı tamamen açık kaynaklı standartlarla hazırlanmıĢtır.

Anahtar Kelimeler : Web, CBS, SVG, ODTÜ, Açık Kaynak

 viii

To My Mother

 ix

ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to my supervisor Dr. Nurünnisa Usul

for her remarkable patience, guidance, suggestions and evaluation during the

preparation of this thesis.

I am grateful to my friend Sevgi Korkmaz for her assistance and support.

I want to thank my colleagues Cihan Yıldırım Yücel for giving me the initial idea of

this study and her further suggestions, and Yasemin Saatçioğlu Oran for helping me

with the graphical design.

Cengiz Acartürk and Özge Alaçam are gratefully acknowledged for their supports

and assistance about the eye tracking study.

Data support of Naim Cem Güllüoğlu is also remembered.

Lastly, I would like to thank my mother for her support, assistance and

encouragement throughout my study.

 x

TABLE OF CONTENTS

ABSTRACT ... iv

ÖZ ... vi

ACKNOWLEDGEMENTS .. ix

TABLE OF CONTENTS .. x

LIST OF TABLES ... xii

LIST OF FIGURES .. xiii

CHAPTERS ... 1

1. INTRODUCTION .. 1

1.1. Definition of the Problem .. 1

1.2. Statement of the Problem ... 2

1.3. Objective of the Study .. 3

1.4. Methodology .. 4

2. WEB-BASED GIS APPLICATIONS .. 5

2.1. Internet GIS Technologies .. 5

2.1.1. Client-side .. 6

2.1.2. Server-side .. 8

2.1.3. Client-server architecture ... 9

2.2. Choosing the Best Architecture for Web Mapping10

2.3. Web-based Mapping at Other Universities11

3. DESIGNING THE SYSTEM ...16

3.1. Markup Languages ...16

3.2. Overview of XML ...17

3.3. Overview of Scalable Vector Graphics (SVG)18

3.4. Web-based mapping with SVG ...20

3.5. Study Area ..21

3.6. Map Layers ...27

 xi

3.7. Data Sources ..27

3.8. Dealing with SVG documents ..29

3.9. Organization of the Data ...33

4. SYSTEM DEVELOPEMENT ...40

4.1. Development of the Client-side ...41

4.1.1. SVG Canvas ...43

4.1.2. Main map ..44

4.1.3. Map Navigation Tools ...45

4.1.4. Layer Control ..49

4.3. Map Querying ...52

4.4. Summary of the System Design ..53

5. RESULTS ..55

5.1. User Interface ...55

5.2. Editing Interfaces ..61

5.3. Usability Study ..63

5.3.1 User Questionnaires ..64

5.3.2. Eye Tracking Methodology ..65

5.3.3. Analysis of the Test Results ..68

5.4. Conclusion ..73

5.5. Discussion ...76

5.6. Recommendation ..78

REFERENCES ...81

APPENDICES ..85

A. E-R DIAGRAM OF THE DATABASE IN UML REPRESENTATION85

B. USER QUESTIONNAIRE ..86

C. JAVASCRIPT FUNCTIONS ...87

D. PHP CODES ...93

 xii

LIST OF TABLES

Table 2.1 List of the universities examined ...12

Table 2.2 Some capabilities of the studied campus maps13

Table 3.1 Categories of campus buildings ..24

Table 3.2 Main map layers ..28

Table 3.3 Data sources of the buildings ..29

Table 3.4 Sample view from building_path..35

Table 3.5 Sample view from parking_path ..35

Table 3.6 Sample view from building ..36

Table 3.7 Sample view from building_units ...36

Table 3.8 Sample view from transportation ...39

Table 3.9 Sample view from transportation_info ...39

Table 5.1 Task rates (s), percentage of success, and mean user ranking70

Table 5.2 Task completion durations of independent variables71

Table 5.3 Time to first fixation values (s) of each AOI ...72

Table 5.4 Fixation counts of each AOI ..73

Table 5.5 Numbers of the campus entities ..76

Table 5.6 Some numbers from the studied universities ...77

 xiii

LIST OF FIGURES

Figure 2.1 A typical approach for client-server architecture10

Figure 2.2 Campus map of Ege University ..14

Figure 2.3 SVG Map of Dresden Technical University ..15

Figure 2.4 Campus map of University of Georgia..15

Figure 3.1 Formatting a text portion in an HTML document17

Figure 3.2 SVG source code of simple graphical objects ..19

Figure 3.3 SVG map delivery ..20

Figure 3.4 Location of METU in Ankara [Google] ..22

Figure 3.5 Satellite image of METU ..23

Figure 3.6 Student populations per semester from 1988 to 200825

Figure 3.7 Buildings of Civil Engineering Department ...26

Figure 3.8 METU Technopolis [METUTech, 2009] ..26

Figure 3.9 Drawing a SVG shape with path element ...30

Figure 3.10 Original object definition of a road ..30

Figure 3.11 Simplified object definition of a road ...31

Figure 3.12 Style definition ...31

Figure 3.13 SVG symbol and pattern ..32

Figure 3.14 Layer definitions with grouping ...33

Figure 3.15 Table-based mapping with SVG ...34

Figure 3.16 Shape tables ..34

Figure 3.17 Relations of the tables that create the building layer38

Figure 4.1 System Architecture ...40

Figure 4.2 Representation of the main page ...42

Figure 4.3 Document structure of the SVG file ..43

Figure 4.4 Initial coordinate system of a SVG viewport ...44

Figure 4.5 Manipulation of the transform attribute ...45

Figure 4.6 Transformation of the map elements ..45

Figure 4.7 Main map with the toolbox ...46

Figure 4.8 Zoom in and zoom out functions ..47

Figure 4.9 Toolbox ..48

 xiv

Figure 4.10 Layer Control ...49

Figure 4.11 A whole layer which shows all the academic buildings in the campus ..50

Figure 4.12 Search results of a single object ..51

Figure 4.13 Searching with a phrase...52

Figure 4.14 Listing by usage types ...53

Figure 4.15 Flowchart of the implementation ..54

Figure 5.1 User interface of the application ...55

Figure 5.2 The map magnified with zoom level of 8 ..56

Figure 5.3 Information window for transportation points ..57

Figure 5.4 Info window for buildings ..58

Figure 5.5 Info window for parking lots ..58

Figure 5.6 Activation of the buttons ...59

Figure 5.7 Results of the phrase “civ” ...60

Figure 5.8 Location of the building “Civil Engineering K1”60

Figure 5.9 Parking space editing interface ..61

Figure 5.10 Buildings editing interface ..62

Figure 5.11 Transportation points editing interface ...63

Figure 5.12 User Questionnaire with the percentage agreement results65

Figure 5.13 HCI Laboratory of METU Computer Center [ODTÜ, 2009]66

Figure 5.14 Adequate number of evaluators for usability testing [Nielsen, 2000]67

Figure 5.15 Areas of Interest ..69

Figure 5.16 Mean task completion times in seconds ...70

Figure 5.17 Mean fixation durations of AOI‟s in seconds ...71

Figure 5.18 Percentage mouse click counts of the map tools72

Figure 5.19 Comparison of display qualities of vector and raster images75

 1

CHAPTER 1

INTRODUCTION

1.1. Definition of the Problem

Universities are the most important sources of knowledge and technology. For that

reason, it is expected that any kind of information that a university provides can be

reached easily and quickly. Internet is a very efficient environment for distrubuting its

resources if a university has its own information system, which may contain library

information services, e-journals, e-thesis, lecture notes, campus phonebook, and so

on. By the help of such a system, the university can give better services to larger

populations.

Some universities with very large areas may need additional information systems,

since it can be hard to find some specific points or destinations when walking

around the campus. Middle East Technical University (METU) is one of them, which

is almost like a city with its both population of over 30000 people and total area of

4500 hectares. In such an extensive area, reaching the necessary information about

the places of some facilities, buildings and other physical structures may be very

difficult for anyone who does not know the campus well, for instance a freshman

who has just been admitted to the METU, and even for a personnel or a graduate

who has spent a long time in the campus.

There are several user groups which visit the campus for different purposes. The

main group is composed of students, faculty, and administrative staff, who have a

right to use most of the buildings and facilities that METU provide. Academic and

administrative buildings, rooms of the staff, health services, library, computer

laboratories, wireless network areas, and classrooms are some of them, and

sometimes their places must be found in a very short time.

 2

METU Technopolis staff also visit the campus quite often. Besides, there is a large

number of people using the campus for other purposes and with different

frequencies. Every year, a lot of examinations of some organizations take place,

whose applicants are specially interested in finding their exam places. Also,

participants of some activities in Cultural and Conventional Center, graduates,

families of the students, and all other kind of visitors come to the campus

occasionally.

Food and drinking places, banks, ATM machines, transportation points such as bus

and minibus stops, mailing services, exhibition and concert halls, shops, tailors,

stationaries, hairdressers, markets and parking spaces are the other important

facilities that affect the campus life, and can be used by everyone visiting the

campus.

All those entities are spread on that extensive area within hundreds of buildings,

which make their locations difficult to be found, especially in urgent situations. For

example, a student may miss an examination or a class if s/he cannot find the

classroom on time, or a visitor cannot park her/his car if s/he does not know the

visitors‟ parking space. There is a variety of needs with different importance levels.

But the main idea is, everyone wants to know how to reach their destinations without

losing time when looking for them.

In addition to looking for specific features or facilities, people may be curious about

the services or buildings which they do not know, or want to get some information

about some structures that they are interested in. A prospective student may need

to browse the campus without visiting it physically, or someone may want to learn

what kind of shops that the shopping center has.

1.2. Statement of the Problem

Maps have always been great instruments when looking for a destination target,

especially when someone is lost. It is an easy solution to distribute hard copy maps

or publish static maps on the Internet, which show the buildings, roads and other

features. However, this solution may not be enough as they cannot carry detailed

information, and the users may not know where to look in them to find their target.

For example, a student may want to find the place of a classroom without knowing

 3

the name of the building in which it is located. Even if s/he knows the name of the

building, still it can be difficult to find the location of the building on the map.

Besides, a map should be as simple as possible. If all entities of an area or detailed

information about the features are shown on the same map, it will result a

complicated view.

An interactive map which does not only show the physical structures of the campus,

but also contains detailed informatıon about these entities and some services that

the university provides can make campus life easier, since the necessary

information will be delivered easily. Geographical Information Systems (GIS)

provides a great opportunity to create intelligent maps that serve both spatial and

attribute data about the geographical structures referenced to their physical

locations. The answers of the basic “where“ or “what“ questions can be reached

quickly by making queries with search strings or it is possible to browse the map

with turning on the layers that are being interested. Scale, visual properties and

position of the map can be altered with some map tools.

If the map is published on the Internet, a large number of audience can take the

advantage of using this service. Rapid development of information technologies has

been directly affecting the development of GIS. Nowadays, with the expansion of

Internet based technologies, GIS can be combined with world wide web, and share

geographical information with general public from a centralized location with

improved visualization and usability capabilities, and high performance results. By

the help of the web-based GIS, it is possible to access geographical data from

anywhere in the world with only a simple web browser and an Internet connection,

without need for learning and purchasing expensive GIS softwares which are usually

very complex and difficult to use.

1.3. Objective of the Study

The objective of this study is to create an interactive map of METU campus that

displays the locations of the physical structures and facilities in the campus, such as

roads, buildings, parking lots, eating and shopping places, banks, and etc. The map

should be published on the Internet to reach multiple communities at any levels of

computing experience, everywhere in the world. It must be detailed, fast, user

 4

friendly and easy to use. The users will make queries through the search interface to

find the locations of their targets easily. They will also be able to browse the map

with several navigation tools, and get information about the features that they are

interested in.

It is important that such a system should be updated frequently, since new

structures will be built and services can be changed. Some authorized users can

access the database and make these alterations with their METU user accounts.

For that reason, the system should be hosted with METU servers.

1.4. Methodology

In order to build that system, graphical data of METU were obtained from previous

studies, then edited and processed by GIS tools. Non-graphic data were collected

from various sources in METU, processed, and referenced to their graphical

locations. Map graphics were also stored in data tables after being converted to

Scalable Vector Graphics (SVG) format, which is an Extensible Markup Language

(XML) standard to create two-dimensional graphics. A user friendly web page was

prepared, which displays the main map, map navigation tools, layer controls and

search capabilities, and published on the Internet. Additional user interfaces were

created for authorized users to edit the map data.

The system was easily integrated with METU systems since SVG is an XML

specification, and a map server was not needed. Data are stored in PostgreSQL

database, and data transmission is provided by PHP. Hence, web-based

implementation of this study is completely an open-source system.

 5

CHAPTER 2

WEB-BASED GIS APPLICATIONS

2.1. Internet GIS Technologies

Since the importance and advantages of web-based Geographical Information

Systems have been widely understood, there has been a remarkable growth in use

of these systems with the latest advances in Internet technologies. Internet is a

considerable data source and it makes GIS data distributed through a common

interface in a centralized location and accessed all over the world by anyone who

has just an Internet connection and a simple web browser, without need for

purchasing and installing any complex and expensive GIS software. Therefore,

sharing, manipulating, collecting and updating the geographic information became

easier.

In desktop GIS, user interface, data storage and processing elements are normally

present on a single machine, but these elements are spread across several

machines in web-based GIS. That is the main difference between web-based GIS

and desktop GIS [Green and Bossomaier, 2002]. On the other hand, web-based

GIS has many common functionalities with desktop GIS such as zooming, panning,

viewing full content, measuring distances, buffering and querying. Geographic data

can be edited easily if the system architecture is suitable.

Xerox PARC Map Viewer was the first web-based map-building program [Green and

Bossomaier, 2002], and developed in June 1993 by Steve Putz at Xerox

Corporation's Palo Alto Research Center as an experiment in interactive web

mapping. Map Viewer was able to accept requests from the users, create new maps

and HTML documents from the geographic databases according to these demands,

and publish them on the Internet [Putz, 1994]. After that innovation, the extent of

 6

maps and geographic data served on the Internet started to increase [Su, et al.,

2000].

Web-based GIS are used in various areas nowadays. Local governments,

environmental and educational institutions, resource managements, businesses and

land information systems are some examples of the application areas that use these

systems [Aydın, 2006, Aydınoğlu and Yomralıoğlu, 2002]. Also, there are many

software companies that are responsible for production, development, installation,

support and marketing of some software products used for publishing maps on the

Internet.

After the developement of both Internet and GIS technologies, several different

techniques have been improved and different programming languages are used to

implement web-based mapping applications. The most common approaches for

web-based GIS techniques are the client-side and server-side strategies. Client is

defined as the software component that can invoke an operation from the server

[OGC Inc., 2006] and can be accepted as the web browser of the user‟s computer

which displays the map interface. When browsing and querying the map, the client

sends requests to the server-side, where data storage and all of the processing

functions take place.

Each side can be categorized as “thin” or “fat (thick)”, in terms of the workload and

the number of the softwares installed to perform the task. “Thin” refers to the

minimal number of softwares while “fat” refers to relatively higher number of

softwares [Abel, et al., 1998].

2.1.1. Client-side

Thin-clients rely on other components which manage data and process the system

functions. No additional softwares are needed to be installed other than a simple

web browser, such as Internet Explorer, Netscape, Safari or Mozilla Firefox. They

send requests to these components, which can either be a map server or a web

application server, in order to view the map content on their web browser, in a

usually GIF or JPEG image file format.

 7

Some client-side scripting languages can improve interactivity of the static maps on

both thin and thick-client. Scripts are executable list of commands created by

scripting languages for controlling software applications. JavaScript, which is now

specified as ECMAScript, is the scripting language designed for web applications in

order to improve user interface. JavaScript code is embedded in HTML files and it

provides powerful user interfaces and efficient interactions within these documents.

If more interactivity capabilities on the client-side are desired, thick-client strategy

can be considered. Some GIS capabilities can be downloaded and processed

locally on user‟s computer. Therefore, the server is not forced to do most of the work

[Foote and Kirvan, 1998]. Since data are previously downloaded on the local

computer, there will be no need to send requests to the server repeatedly. On the

other hand, user computer should be powerful with a fast network connection and

more sophisticated hardware configuration in order to download and process large

amounts of data which may cause Internet traffic problems and increase download

time.

Applets, plug-ins and ActiveX are some components of the thick-client side. These

programs are usually forced to be installed on the user‟s computer in order to

display the map and provide interactivity.

An Applet is a software component designed to run in another application. Java

applets, Flash movies and Windows Media Player applets are some examples of

these components. An applet comes with the data coming from the server, runs in

the memory of the web browser, and it is unloaded when its related web page is

closed [Kotzinos and Prastacos, 2001]. Therefore, the applets must be downloaded

again and again every time that web site is accessed. Also, it may be time

consuming to download an applet, depending on its file size. Java Applet is the

application program coded in Java programming language and used to provide

interactivity for the web documents. They have platform independency, which is the

most advantageous property among the other client-side components.

A plug-in (or add-on, add-in) is a software module for a specific file type and

interacts with the web browser to process a related function. Plug-ins are built for

specific platforms and should be installed locally in advance. These programs

remain permanent in the local computer and not to be installed again like the Java

 8

Applets. Flash, QuickTime, Adobe SVG Viewer and Microsoft Silverlight are some

plug-ins that are used for some presentation formats and video display.

An ActiveX control, which is similar to the plug-ins, is a component object model

(COM) developed by Microsoft in order to extend browser capabilities. Many

Windows applications use ActiveX controls when building their feature sets so that

their functionality can be embedded by other applications. However, ActiveX

controls can only run in Windows platforms [Mozilla, 2009].

2.1.2. Server-side

Server-side contains the web server, application server, web feature services, and

database server.

Web server, which is also known as HTTP server, processes the requests coming

from the client and delivers the results as some web documents or appropriate

messages back to the remote client. Server-side scripting languages (PHP, Perl,

ASP, etc.) help the HTTP server to create dynamic web pages.

Database servers host database services within computers or programs. They store

both spatial and non-spatial data, and provide data access through some querying

languages, such as Structural Query Language (SQL), XQuery and XPath.

Web Feature Services (WFS) allow data access and manipulation on the

geographical features and elements across the web. The features can be created,

updated, deleted and queried with these services. Map servers create maps by

retrieving the spatial data dynamically, usually by vector to raster conversion, and

deliver them in bitmap file formats, which can be viewed on any web browser of the

user‟s computer. ESRI ArcIMS, MapInfo‟s MapXtreme, Intergraph GeoMedia Web

Map, and an open source product Mapserver are some examples for the feature

servers. They differ in input and output file formats, in the way of publishing the

maps, spatial analyzing capabilities, server platforms, and client-server balance.

An application server is a system software that provides business logic within a

distributed network for use by other applications. It hosts services for the

 9

transmission processes and can be accepted as a middleware that manages the

connections among the server-side components and the client-side.

Since most processing tasks are handled on this side, the client machine needs

minimum requirements for the communication with the server. However, the server

may be overloaded when many requests are received simultaneously, which may

cause high network traffic. Hence, the server must be very powerful to overcome

this workload and prevent time delays during processing.

2.1.3. Client-server architecture

Client-server architecture gives the relationship and distinction between the client

and the server sides. Both sides can be accepted as two distinct components that

work together for a common goal and called as “tier” [Shea, 2001]. “Two-tier

architecture” is a common approach for client-server architectures and consists of

“presentation tier” and “data tier”. Presentation tier refers to the client-side where the

user interface and final results can be displayed. Information is stored in a file

system or a DBMS (Database Management System), and retrieved by “data tier”. In

this model, the client makes an HTTP request to the web server with a web browser

across the Internet. Then the web server retrieves the information, processes the

request and sends it back to the client in order to be viewed in the web browser.

Two-tier architecture may be insufficient for modelling more complex systems like

web-based GIS applications. In such cases, computational functions and data can

be located in another software agent, “Logic tier”, which acts as a middleware when

executing the application. It coordinates the application by making logical decisions

and calculations, and processes data with communicating with the data tier in two

directions [Ramirez, 2000]. In web-based GIS, map servers can be accepted as the

logic tier. When the client makes a request for a map, the web server sends a

request to the map server, and the map server generates a map in a bitmap image

file format like JPG, PNG or GIF. After receiving the image file from the map server,

web server delivers it to the client as a response [Figure 2.1]. This model is called

“Multi-tier architecture”.

 10

Figure 2.1 A typical approach for client-server architecture

2.2. Choosing the Best Architecture for Web Mapping

When choosing the best system architecture for web-based mapping systems,

several factors should be considered, including available bandwidth, hardware and

software cost, graphic quality, interactivity, client-server balance, weight of the data

and file sizes.

Client-server balance is about the ratio of processes that each side undertakes and

should be manipulated before designing the system. A thin client needs a heavy

server while a thick client can handle many tasks without heavy network load during

the interaction with the server.

Map servers generate maps according to the requests coming from the client,

generally in bitmap image file format. The map data should be updated every time a

request is done by the client, even if it is a simple zooming or panning command,

and this may be done for multiple users simultaneously. That requires heavy

network connections and sophisticated hardware configurations on the server-side.

Besides, map server softwares are usually very expensive except the open-source

ones such as MapServer. Thus, using a map server generally increases the cost of

implementation. However, the client-side only needs a standard-minimal hardware

 11

configuration with a fast network connection since most of the process occurs on the

server-side.

Another approach is implementing most of the mapping functions on the client side.

That will need a fat-client, which means a relatively stronger client computer and a

standard HTTP server. All the map data will be downloaded in the client computer

where the map interactions and data rendering functions take place. Hence, this

approach is not suitable for large data sets.

Graphical quality also depends on the system architecture by means of output

image format. The map image can be in either raster or vector file format. Since the

size of the raster images are defined in pixels and each pixel stores the information

of the graphic, they usually have large file sizes, even for a small image. Also, they

lose image quality when they are rescaled to larger sizes and have degradation due

to pixelation. On the other hand, vector image files have low file sizes and can be

rescaled to very high values without losing their visual quality. It is possible to create

graphical objects such as lines, polygons, circles or paths, and all the attributes and

properties of these objects can be accessed within the document and linked to

database tables, which enhances interactivity.

Choosing the most proper programming language is another important issue before

constructing a web-based GIS system. An open-source server-side scripting

language which is relatively easy to be developed and has a fast access to various

database systems can be a good choice.

2.3. Web-based Mapping at Other Universities

For this study, web-based mapping applications of seventeen universities are

studied, five of which are Turkish universities. There are also ten from USA, one

from Canada, and one from Germany [Table 2.1]. These universities usually use

GIS for planning, designing and construction purposes. Navigation through the

campus becomes easier for universities especially with large areas, and getting

detailed information about the buildings and services is possible with this

technology. The larger the area and the population of a university campus, the more

it needs an interactive campus map.

 12

Table 2.1 List of the universities examined

Turkish Universities :

 Anadolu University
 http://harita.anadolu.edu.tr/

 Ege University [Figure 2.2]
 http://egeweb.ege.edu.tr/harita/

 Hacettepe University
 http://hun.edu.tr/harita/

 Ġstanbul Technical University
 http://www.karto.itu.edu.tr/kampus/index.html

 Pamukkale University
 http://www.pau.edu.tr/Pau30/harita/harita.html

Canadian University :

 University of Calgary
 http://ucmaps.ucalgary.ca/website/CampusWeb/viewer.htm

German University :

 Dresden Technical University [Figure 2.3]
 http://navigator.tu-dresden.de/navigator/leitsystem.xsql?neu=map
 http://www.carto.net/papers/svg/campus_dresden/

USA Universities :

 Emory University
 http://emap.fmd.emory.edu/website/campus/index.htm

 Marshall University **
 http://map.marshall.edu/

 Massachusetts Institute of Technology
 http://whereis.mit.edu/map-jpg

 Northern Illinois University
 http://www.webmap.niu.edu/framesetup.asp

 University of Arizona
 http://iiewww.ccit.arizona.edu/uamap/map.asp

 University of California, Riverside
 http://www.campusmap.ucr.edu/campusMap.php

 University of Georgia [Figure 2.4]
 http://maps.uga.edu/website/htmlviewer/hyperlink/viewer.htm

 University of Missouri-Columbia
 http://accessibilitymap.missouri.edu/

 University of Oregon
 http://map.uoregon.edu/

 University of Utah
 http://www.map.utah.edu/index.jsp

**Last accessed in September 2008
Others are last accessed in March 2009

Most of the maps contain search options by building name, building ID or

department name. Some of them show the names of the buildings with combo

boxes, either grouping or directly listing them all. Generally, zoom (in/out/full extent),

pan, identify, measure buttons are used. Some maps have different selection

options and buffering capabilities, and most of them have legends [Table 2.2].

 13

Table 2.2 Some capabilities of the studied campus maps

 P
h

o
to

In
fo

L
is

t
o

f

b
u

il
d

in
g

s

S
e
a

rc
h

L
a
y
e
r

c
o

n
tr

o
l

A
e
ri

a
l

p
h

o
to

F
in

d
 p

a
th

M
e
a
s
u

re

d
is

ta
n

c
e

B
u

ff
e
r

Z
o

o
m

s
p

e
c
ia

l

M
e
a
s
u

re

a
re

a

Anadolu University x x

Dresden Technical
University

x x x x x

Ege University x x x x x x

Emory University x x x x x x

Hacettepe University x

Ġstanbul Technical
University

 x

Massachusetts Institute
of Technology

x x x x x

Northern Illinois
University

 x x x x x

Pamukkale University x

University of Arizona x x x x x

University of Calgary x x x x x x x x

University of California,
Riverside

 x x

University of Georgia x x x x x x x

University of Missouri-
Columbia

 x x

University of Oregon x x x

University of Utah x x x x x x

Common layers shown on these maps are buildings, roads, computer labs, gates,

parking spaces, ramps, memorials, recycling bins, elevators, handicapped parking

and restrooms, food services, healthcare, landmarks, wireless Internet access,

transportation (bus routes, bus stops), telephones, aerial imagery, and ATM‟s.

Campus maps of University of Arizona and University of Missouri-Columbia have

detailed information about accessibility facilities. The layers include elevators,

handicapped parking, accessible entrances, accessible with accessible restrooms,

accessible without accessible restrooms, ground floor accessible with accessible

restrooms, ground floor accessible without accessible restrooms, not wheelchair

accessible, accessible entrances, automatic doors, accessible parking, elevators,

chair lifts, and ramps.

 14

The maps are generally published by ESRI Internet Map Server products [Figure

2.4], supported by ASP, .NET, and Flash. In addition, Ege University uses Google

Maps with efficient search options [Figure 2.2], and Dresden Technical University

has an alternative campus map created by SVG [Figure 2.3].

Figure 2.2 Campus map of Ege University

 15

Figure 2.3 SVG Map of Dresden Technical University

Figure 2.4 Campus map of University of Georgia

 16

CHAPTER 3

DESIGNING THE SYSTEM

Before designing the system, it was decided to host the full system in METU

Computer Center servers. METU Campus hardware and software infrastructure

consists of IBM, HP and SUN servers with operating systems Unix AIX, Linux, HP-

UX and Solaris [METU Computer Center, 2008]. Maintenance of these servers is

supported by Technical Support Group of METU Computer Center. Constructing a

map server in these systems can increase software cost and give extra

responsibilities to this group for installing the software and maintenance of the

server. In order to avoid that, an XML based, open-source system that is compatible

with the hardware and software infrastructure of the campus can be implemented.

Scalable Vector Graphics, which is XML based, can be a good choice for publishing

maps on the Internet. It is possible to create interactive maps linked to large

datasets stored in any database system. Map interactivity and communications

between the map and the database can be provided by JavaScript and PHP

scripting languages.

3.1. Markup Languages

A markup language is a set of annotations inserted in a text document to indicate

how it will be structured and formatted. It is a collection of information about the

apperance of the text file when it is printed and presented. What markups are

allowed and how they will be interpreted should be specified by the markup

language. HTML (HyperText Markup Language) is the most well-known markup

language and used for encoding the web documents to be published through the

HTTP. XML, which will be explained in the next section, is another example for

markup languages and widely used nowadays.

 17

Formatting is specified by some markup instructions inserted in certain places in the

text, which are called “elements”. Elements are represented with “tags” by enclosing

their names with angle-brackets “< >”. They identify and characterize the text portion

between the starting and closing tags.

Tags can either be pre-defined or user-defined. HTML uses a set of familiar

elements to format text portions, such as bold, italic, font or paragraph. For example,

the text between “This is bold!” is marked up with tag, and it is

displayed in bold letters when published.

Some elements have one or more “attributes” to describe their additional properties.

These attributes are defined in the related tags by matching their names with their

properties. For example, color, font type and size of a text portion in an HTML

document can be formatted by changing the color, face and size attributes of the

font element that tags that text [Figure 3.1].

HTML source :

This text is

bigger, its font type is Comic Sans MS, and the color is

grey!

Output :

This text is bigger, its font type is Comic Sans MS, and the color is grey!

Figure 3.1 Formatting a text portion in an HTML document

3.2. Overview of XML

EXtensible Markup Language (XML) is a markup language like HTML, and it is a

World Wide Web Consortium (W3C) specification for web documents containing

structured information. XML is called “extensive”, because it is self-descriptive.

There is no predefined tags like HTML has, users can create and define their own

elements. Another issue that XML differs from HTML is that, it is designed to store

and transport the data, not for displaying them.

 18

Being a text-based format does not only require small file sizes, but also provides

platform independency. Most systems store data in different formats and

environments. Data exchange among these incompatible architectures and

upgrading to new systems are very difficult. However, XML provides flexibility to

connect various environments, databases and web services since it can be read by

different applications. Therefore, XML can be defined as “a software and hardware

independent tool for carrying information” [w3schools, 2009].

Studying the developement of XML based technologies shows us that XML seems

to have a strong place in future application developements. Today, there are some

other popular markup languages which are derived from XML and used for different

applications, such as Scalable Vector Graphics (SVG), OGC recommended

Geography Markup Language (GML), Keyhole Markup Language (KML) of Google,

and Rich Site Summary (RSS) for web syndication. In this study, SVG is used to

create vector based maps, and its structure and some properties are explained in

the following sections.

3.3. Overview of Scalable Vector Graphics (SVG)

Scalable Vector Graphics (SVG) is an XML based standard for describing stylable

two-dimensional vector graphics developed by the World Wide Web Consortium

(W3C), which is a non-profit international consortium established for developing web

standards and guidelines.

Many corporations participated in the developement of SVG, including Adobe

Systems Inc, Corel Corporation, Microsoft Corporation, Autodesk Inc, Macromedia,

Apple, Sun Microsystems, and IBM. SVG has been a W3C recommendation since

2001, and SVG 1.1 is the current specification that forms the core of the

developement of the new one, SVG 1.2 [W3C, 2003].

Scalable means that the quality of the image is independent with the scale and

remains the same in different display resolutions [Clarke, 2005]. Having this

property, size and scale of SVG objects can be modified without losing the image

quality, unlike the bitmap GIF and JPEG formats. These objects do not have

degradation due to compression and not limited by fixed pizel sizes. They preserve

clarity and sharpness when magnified by the local users [Behr, et al., 2006].

 19

SVG supports three types of graphic objects: vector graphic shapes (paths

consisting of straight lines and curves, polylines, rectangles, circles, polygons,

ellipses, etc.), raster images (GIF, JPG, PNG), and text. Simple objects can be

created with a few lines of text [Figure 3.2]. It is also possible to create more

sophisticated graphical features that can be composited into rendered objects,

styled with Cascading Style Sheets, grouped, transformed, animated, and displayed

with clipping paths, alpha masks, transparency, and filter effects.

Figure 3.2 SVG source code of simple graphical objects

SVG documents can be viewed in any web browser provided that a plug-in, an SVG

viewing program, is installed to the client side. Most commonly used one is Adobe

SVG Viewer, and can be downloaded freely from Adobe‟s web site [Adobe, 2009].

Today, most of the popular web browsers except Internet Explorer have built-in

SVG support. Also, many mobile phones have begun to support SVG format.

A wide variety of applications can be provided with SVG technology. SVG can be

used for carrying different types of information such as statistical and technical

diagrams, graphs, and maps.

 20

3.4. Web-based mapping with SVG

Today, most mapping systems include displaying raster images which are created

and delivered by servers according to the requests of the clients. These GIF or JPG

bitmap formats are in lack of display quality when they are scaled to larger

resolutions, and occupy larger file sizes that cause heavy network connections and

long download durations. On the other hand, being a vector graphic standard,

Scalable Vector Graphics is very suitable for Internet mapping applications since it

provides excellent graphics which compound to form high quality maps scalable to

any resolution with smooth apperance and reduced file sizes.

Interactivity is an important issue for Internet mapping applications. In traditional

systems [Figure 2.1], maps are re-rendered after the requests of the users with map

navigation tools, such as zooming, panning and layer control [Seff, 2002]. However,

SVG maps can be controlled on the client side, once downloaded and viewed on the

web browser, without sending requests to the server for a new map image again

and again [Figure 3.3]. Map features are defined by each graphical object in the

SVG document, and they can be linked to database tables which store the map‟s

both spatial and non-spatial data. The interactions between these objects in the

SVG document are achieved by some scripting languages. Most map controls such

as zooming, panning, controlling the layers, getting info and thematic mapping can

be implemented with JavaScript. These interactions can be improved by assigning

some event handlers to the map features, in some events when the mouse is

clicked over or its arrow is moved onto an element.

Figure 3.3 SVG map delivery

 21

Sharing data and knowledge through the Internet is very useful for developement of

many technologies, especially GIS. Since SVG is open-source and text based, map

features and their attributes can be read and shared with the other GIS developers.

It is possible to view and download the source code of the SVG documents by right-

clicking the mouse over the graphics by choosing “View SVG Source Code” option.

After downloading the source code, the map elements can be modified and

published locally.

Using open source systems also reduces implementation costs. When SVG is used,

a web and database server can be sufficient to distribute geographic data. There will

be no need for setting up a GIS application server that requires very expensive

softwares.

Being an XML based format provides several advantages to SVG. Combination with

other technologies and communication with other platforms is possible [Behr, et al.,

2006]. SVG documents can easily be styled with Cascading Style Sheets (CSS) and

Extensible Stylesheet Language (XSL) to modify the appearance of the map.

Animations and multimedia presentations can be prepared with Synchronized

Multimedia Integration Language (SMIL). SVG text is selectable and searchable,

and available to be indexed by search engines [Seff, 2002]. Also, SVG can be used

as the output file format of GML, which is developed by Open GIS Consortium for

storage and transport of geographical information. GML enhances interoperability

and share of spatial data coming from different platforms [Chen, et al., 2004].

SVG does not offer full capabilities of GIS functions but it is an efficient and

inexpensive way for representing spatial information on the Internet. In order to

create SVG maps some extensions for two leading GIS softwares have been

developed by external sources, SVGMapper for ArcView and Map2SVG for

MapInfo. Also, shapefiles can be converted to SVG files with the exporting tool of

ArcGIS software.

3.5. Study Area

Middle East Technical University (METU) is a Turkish state university, and its

campus is located in the south-west of Ankara, on EskiĢehir Highway, and 7 kms

from the city center [Figure 3.4]. It has a total area of 4500 hectares [METU General

 22

Secretariat, 2008], including the campus area of about 200 hectares, and extends to

the south, near GölbaĢı Village. METU land also covers Yalıncak Village and Lake

Eymir, which is near GölbaĢı, with an area of 120 hectares, and 20 kms from the city

center. All the faculties and departments are in the main campus except Graduate

School of Marine Sciences that is located in Erdemli-Mersin and Northern Cyprus

Campus, and they are out of concern in this study.

Figure 3.4 Location of METU in Ankara [Google]

METU was founded in 1956, with School of Architecture and City Planning, at a

temporary location near the Parliement Building, having 40 students and four

instructors. Construction of the campus in its present location began in 1962, and

the classes started at the new campus in October 1963 [METU, 2009].

In 1958, it is considered to afforest 75% of METU land in order to prevent existing

erosion and provide a green area in Ankara. Since 1960, nearly 10 million trees

have been planted by the effort of METU staff, students, and other volunteers like

 23

some military and diplomatic groups. METU forest is the largest human-made forest

ecosystem of Turkey, maybe even in the world. This ecosystem shelters many types

of trees, over 140 species of birds and wild animals. In 1995, it is announced as “1st

Degree Natural Site Area” by Ministry of Culture and Tourism [METU General

Secretariat, 2008], and re-forestation programme of METU was rewarded by “Aga

Khan Award for Architecture” in 1993-1995 term [Aga Khan, 2009].

The construction of new buildings and afforestation have never stopped since

1960‟s, accordingly the student population and campus area have been increasing.

The first academic buildings were built on the center of the campus, in an an elliptic

area from north to south, as seen in Figure 3.5.

Figure 3.5 Satellite image of METU

 24

Most of the sports facilities, shopping center, Cultural and Conventional Center,

health center, banks, post office, dormitories and residential buildings are located on

the east side of that ellipse. METU Technopolis, ODTÜ-KENT, a new Sports Center

and some academical buildings are some examples of the new ones that have been

built on the western part, going far away from the campus center. There are also

METU Primary and High Schools, and some technical buildings such as workshops,

greenhouses, and printing house on the north-west of the campus.

Today, METU campus has 304.228 square meters of floor space as of date [METU,

2009]. This study covers 295 of campus buildings, with different usage types [Table

3.1].

Table 3.1 Categories of campus buildings

Usage Type Number of Buildings

Academic 63

Administrative 8

Bank and ATM 10

Cultural 5

Dormitory 22

Education 8

Food and Drink 10

Health 2

METU Technopolis 16

Research 6

Residential 62

Shopping 5

Social 12

Sports 27

Technical 39

TOTAL 295

METU has five faculties (Faculties of Architecture, Arts and Sciences, Economic and

Administrative Sciences, Education, and Engineering) with 47 undergraduate

programs, and five graduate schools (Graduate Schools of Applied Mathematics,

 25

Informatics, Marine Sciences, Natural and Applied Sciences, and Social Sciences)

with 97 masters and 55 doctorate programs [METU, 2009]. Every year

approximately 8000 new students are registered to different departments of Middle

East Techical University, and the campus has a student population of around 20000

each semester. In Figure 3.6, change in the population of registered students in fall

and spring semesters of last 20 years are shown as a bar chart.

0

5000

10000

15000

20000

25000

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

year

p
o

p
u

la
ti

o
n

fall

spring

Figure 3.6 Student populations per semester from 1988 to 2008

In the campus, some departments have more than one building, and also, some

buildings contain more than one department. For example, Department of Civil

Engineering has seven buildings [Figure 3.7] while Faculty of Architecture Building

has three departments, which are Departments of Architecture, City and Regional

Planning, and Industrial Design. Also, students generally take classes from different

departments, hence visit several buildings.

 26

Figure 3.7 Buildings of Civil Engineering Department

By the end of 2000, after the completion of METU Twins and Halıcı Software, METU

became the owner of the first science and research park of Turkey, METU

Technopolis. In addition to these buildings, Silver Blocks, Silicone Blocks [Figure

3.8], Gallium Blocks and SATGeb buildings were constructed. According to the

statistical results of 2007 viewed on the official web page of METUTech, it

occuppies 110 hectares of METU land with 87.000 m2 of indoor floor area and hosts

220 companies and 3730 employees. Activity areas of METUTech companies are

mainly Information Technologies, telecommunication, electronics and defence

industry. There are also other technology areas such as biotechnology, aerospace,

environment, nanotechnology, and advanced materials [METUTech, 2009].

Figure 3.8 METU Technopolis [METUTech, 2009]

 27

Further information about the campus will be given in the next sections, with the

explanation of the data types and map layers.

3.6. Map Layers

The campus map was designed to present nine main layers, which are buildings,

campus area with forest, satellite image, roads, transportation points, campus gates,

wireless zones, disabled facilities, and parking lots.

The building layer carries the campus buildings and it is seperated into new

sublayers according to their usage types. These sublayers are academic,

administrative, cultural, social, education, health, METU Technopolis, research,

residential, shopping and technical buildings, eating places, sports facilities,

dormitories, banks and ATM's. Buildings that have similar categories are combined

to minimize the number of layers for a simpler view. These sublayers are “Cultural

and Social Buildings“, “METU Technopolis and Research Buildings“, and “Health,

Shopping, Food and Drink”. Some buildings have more than one unit which have

different categories. For these buildings, usage type of the dominant one is chosen.

Tennis courts, football, basketball and volleyball fields are assumed as buildings and

joined with the other sports facilies such as gymnasiums and swimming pools to

create sporting areas sublayer.

For this research, campus area and road layers have only display purposes and

have no attributes. Campus area is the base map, and it also shows forestry areas

which have denser tree population and filled with a tree pattern. Road layer carries

some graphical details such as traffic circles and refuges.

The main layers, their descriptions and corresponding object types of SVG are listed

in Table 3.2.

3.7. Data Sources

There were three different data types for METU campus; a satellite image,

shapefiles, and attribute data.

 28

Table 3.2 Main map layers

Layer Description Object type

Buildings

 Academic buildings

 Administrative buildings

 Health, shopping, food and drink

 Cultural and social buildings

 Residential buildings and
dormitories

 Technical buildings

 Technopolis and Research

 Education buildings

 Banks, ATM‟s and Post Office

Building name; usage type;
list of departments, units,
companies, offices and shops;
classrooms, amphitheaters,
seminar rooms, laboratories;
computer laboratories, pay
phones, kiosks, cüzdanmatik
machines; picture of the
building

Polygon

Campus area Terrain and forestry area with
no attribute

Polygon

Satellite image Satellite image of the campus in
“jpg” file format

Raster

Roads Campus roads with no attribute Polygon

Parking lots User types (stickers), disabled
parking space

Polygon

Transportation points EGO bus, METU rings, minibus
and taxi stops, schedules and
destinations

Point

Campus gates Name and description of the
campus gates

Point and text

Sports facilities Swimming pools, tennis courts,
gymnasiums, football,
basketball and volleyball fields

Polygon

Wireless zones Center of the wireless network
areas

Circle

Disabled Buildings that contain facilitaties
for disabled people (Ramps,
lavatories, parking spaces,
elevators)

Polygon

All the layers were built on the same spatial reference of the satellite image which

was obtained from General Command of Mapping in May 2007, in ERDAS

IMAGINE format, with projected coordinate system of Transverse Mercator, and

based on WGS 84. Spatial data of most buildings were obtained from Güllüoğlu

(2005), which were in shapefile format having Transverse Mercator Projection ED

50 for Turkey. All the roads, lately constructed buildings and the other features were

added to these data by digitizing them from the satellite image, in shapefile format

again.

 29

Some of the attribute data were obtained from different administrative and academic

units through the help of General Secretariat of METU, who asked them with an

official document, and some of them were gathered from their web sites. Some of

the existing and missing information were verified and collected, and pictures were

taken by visiting most of the buildings [Table 3.3].

Table 3.3 Data sources of the buildings

Building Type Data Source

Library Directorate of Library and Documentation

Guesthouses and housings Office of Social Facilities

Dormitories Office of Dormitories

Sports facilities Office of Sports

Pay phones Office of Telephones

Cultural and Conventional Center Cultural and Conventional Center Administration

Academic and administrative buildings METU web site
Personal visit
Department secretaries

Classrooms METU Web Site
Personal visit

Religious facilities Office of Domestic Services

Parking lots Office of Domestic Services

Transportation points Office of Domestic Services
Office of Transportation

Wireless zones, kiosks, cüzdanmatik Computer Center

Kindergarten Office of Kindergarten

Shopping Center Personal visit

Disabled facilities METU Disablity Support Coordination Unit

3.8. Dealing with SVG documents

After the satellite image was digitized by using ArcGIS 9.0, the shapefiles were

converted to SVG documents with export function of ArcGIS. This function creates

the graphical objects in path element of SVG, which are defined in <path> tags.

Path is the general element of SVG which provides drawing of the outline of various

graphical objects and common basic shapes like rectangles, circles and polygons,

and it can be filled or stroked with several style definitions.

 30

Attribute “d” of the path element defines the outlines of the shapes with a list of

commands containing some letters and numbers. The letters give instructions for

drawing shapes with some given points whose screen coordinates are represented

by numbers. The most commonly used instructions are M (moveto), L (lineto), and Z

(closepath). The code in Figure 3.9 draws a path with a line from point (75,0) to

point (0,125), another line from the previous point to (150,125), and closes the

shape which results as the triangle in the same figure.

Source code Result

<svg width=”100%” height=”100%”

 version=”1.1”

 xmlns=”http://www.w3.org/2000/svg”>

<path d=”M75 0 L0 125 L150 125 Z”

 fill=”pink” stroke=”black"

 stroke-width="1" />

</svg>

Figure 3.9 Drawing a SVG shape with path element

Styles of the objects are also defined with several attributes in path element of each

object. Attributes “fill” and “stroke” decide background and outline colors of the

graphic. Another commonly used attribute is “stroke-width”, and it assigns the width

of the line outlining the figure [Figure 3.9]. There are other stroke attributes that

come with the SVG document that has been exported from ArcGIS and give

additional styling properties to the lines, such as stroke-miterlimit, stroke-linecap,

and stroke-linejoin, which modify the junction and closing properties of the paths

[Figure 3.10].

<path clip-path="url(#SVG_CP_1)" fill="none" stroke="#FF0000"

stroke-width="1.00808" stroke-miterlimit="10" stroke-

linecap="round"

stroke-linejoin="round" d="

M214.72048,342.30993L233.00989,340.58182L233.44192,349.79841

L233.87395,357.86292L215.72856,359.30302L215.72856,357.57491

L215.44054,354.83873L214.86449,346.19818L214.72048,342.30993"/>

Figure 3.10 Original object definition of a road

 31

All of the path elements in the initial SVG document characterize their fill and stroke

attributes in their tags. Common definitions repeat themselves within the document

for the similar objects. For example, all the road objects have the same color and

width properties. Since SVG is a plain text file format, excessive amount of text

increases the file size. The simpler is the code, the smaller size the file has.

Therefore, the source code must be simplified as much as possible by deleting

unused definitions and eliminating duplicated attributes by generalizing them with a

single attribute, class attribute, which is related to the style definition in the same

document [Figure 3.11].

<path class="road" d="

M214.72048,342.30993L233.00989,340.58182L233.44192,349.79841

L233.87395,357.86292L215.72856,359.30302L215.72856,357.57491

L215.44054,354.83873L214.86449,346.19818L214.72048,342.30993"/>

Figure 3.11 Simplified object definition of a road

Since all the similar objects have common style definitions, a simple change in the

related class will effect all the display properties of the objects at the same time. In

Figure 3.12, there are two different classes, roads and academic buildings. The path

element in Figure 3.11 has a class of “road”, which is linked to “.road” class in the

style definition. Any change in “.road” class will effect all of the elements that have a

class value of “road”.

<style type="text/css">

 <![CDATA[

.road {

stroke:#e8e800; fill:#cccccc

stroke-width:0.47994; stroke-miterlimit:10;

stroke-linecap:round; stroke-linejoin:round;

}

 .academic {

stroke:#6E6E6E; fill:#ffcc99

stroke-width:0.3; stroke-miterlimit:10;

 stroke-linecap:round; stroke-linejoin:round;

}

]]>

</style>

Figure 3.12 Style definition

 32

Points are not supported as an object type by SVG, but they can be represented as

small discs, squares or bitmap images. If specific template objects or images will be

used repeatedly, symbol elements can be rendered, and duplicated definitions are

avoided.

In order to show the areas that have dense tree population, a pre-defined pattern is

used, which is the SVG element for filling or an object with other graphical objects or

symbols. At first, a tree symbol was created by drawing some paths, then a pattern

was defined with using this symbol. Lastly, forestry area was filled with that pattern

[Figure 3.13].

Source code

//Symbol

<symbol id="tree" overflow="visible"

style="fill:green;stroke:green;stroke-width:2">

<path d="M0 -15 l0 30"/>

<path d="M0 -15 q0 3.5 5 3.5"/>

<path d="M0 -15 q0 3.5 -5 3.5"/>

<path d="M0 -9 q0 6 8 6"/>

<path d="M0 -9 q0 6 -8 6"/>

<path d="M0 0 q0 7 10 7"/>

<path d="M0 0 q0 7 -10 7"/>

</symbol>

//Pattern

<pattern id="pattern1" patternUnits="userSpaceOnUse" width="10"

height="10">

<use xlink:href="#tree"

transform="translate(3,3) rotate(10) scale(0.3)" />

</pattern>

//Rectangle filled with the pattern

<rect x="10" y="20" fill="url(#pattern1)" width="100"

height="100" stroke-width="1" />

Tree symbol Tree pattern

Figure 3.13 SVG symbol and pattern

 33

Graphics that are related with each other can be organized with a grouping element

in order to express the layers. All groups consist of several paths or other elements

collected to form the same layer, between <g> and </g> tags. They must be given

an identifier to be controlled, and a name for the layer. In Figure 3.14, “building” and

“road” layers are created by combining similar objects.

<g id=”building”>

 <path id=”1” d="M 0 0 L10 20Z” />

 <path id=”2” d="M 1 3 L15 30Z” />

</g>

<g id=”road”>

 <path id=”1” d="M 5 8 L20 40Z” />

 <path id=”2” d="M 10 20 L30 60Z” />

</g>

Figure 3.14 Layer definitions with grouping

3.9. Organization of the Data

SVG data can be organized with two different approaches. They can either be

carried as a whole content in a static SVG document, or graphical objects can be

processed individually after storing their attributes with their unique identifiers in data

tables, isolated from the document.

The choice depends on the variety of attributes, and the number of features. If the

graphical objects do not have any information other than their shape attributes, a

database related system may not be necessary. On the other hand, for more

complex structures, separating the attributes from the SVG document provides

efficient data update, simplifies the source code, and hence reduces the file size.

Figure 3.15 shows how the attributes of the path elements are stored in the columns

of a table.

 34

Source code

<g>

 <path name=”MM Building” id=”1” fill=”red” d=”M 0 1 L 2 3 L 4 5 Z”/>

 <path name=”Computer Center” id=”2” fill=”blue” d=”M 6 7 L 8 9 Z”/>

 <path name=”Library” id=”3” fill=”green” d=”M 2 4 L 6 7 10 8 Z”/>

</g>

Attribute table

id name Color Path

1 MM Building Red M 0 1 L 2 3 L 4 5 Z

2 Computer Center Blue M 6 7 L 8 9 8 7 5 Z

3 Library Green M 2 4 L 6 7 10 8 Z

Figure 3.15 Table-based mapping with SVG

In this study, both shape and attribute data are stored in the database, because

some layers have large sets of attributes which can be updated frequently. When

the map is downloaded initially, only the graphical and identifier data are delivered

from the database. These attributes draw, style and identify the map features, and

create the basic map with a small file size that can be downloaded quickly. Further

information is retrieved only when it is required.

Geodata are stored as geometry attributes in shape tables, which are specialized

according to their feature types [Figure 3.16]. These are :

Figure 3.16 Shape tables

 35

 BUILDING_PATH (id, path) : identifier and path attributes of campus

buildings [Table 3.4]

Table 3.4 Sample view from building_path

id Path

1 M248.27506,538.30648L251.87533,538.88252L250.00319...

2 M255.47561,534.99427L255.3316,534.99427L252.88341,...

3 M287.59008,513.82492L287.59008,513.39289L288.45414...

 ROAD_PATH (id, path) : identifier and path attributes of campus roads

 REFUGE_PATH (id, path) : identifier and path attributes of road details

such as refuges, traffic circles, etc.

 FORESTRY_PATH (id, path) : identifier and path attributes of forestry

area

 BASE_PATH (id, path) : identifier and path attributes of base area

 PARKING_PATH (id, path, academic, administrative, student, free,

disabled) identifier and path attributes of parking lots, logical values of

user types [Table 3.5]

Table 3.5 Sample view from parking_path

These tables have similar table structures with two columns; one of them is the

identifier, and the other one stores the content that will be inserted in the “d” attribute

of the path tag. Tables parking_path, which has additional columns, and also

building_path can be connected with the attribute tables, while road_path,

refuge_path, forestry_path and base_path have only display purposes and no

relationships with the others.

id Path acad adm stud free disab

1 M215.29653,321.28458L213.7124,321.28458L213.7124,... 0 0 0 1 0

2 M188.9425,318.83642L194.27091,307.31569L197.72718... 0 0 0 1 0

3 M188.65448,271.88942L189.66256,271.16937L188.5104... 1 1 0 0 0

 36

Information about the map features are presented in either Turkish or English,

depending on the choice of the user. Therefore, non-spatial data are stored in two

languages, in separate columns of the same table of corresponding entity types.

Building layer is created with the combination of several attribute tables and

building_path shape table. They are joined with a common foreign key, which

references the primary key of building table :

 BUILDING (bid, name, name_tr, type_id, description, description_tr, url) :

identifier, name, identity number of the usage type, brief description about

the building, and url adress [Table 3.6]

Table 3.6 Sample view from building

Bid Name name_tr type_id description desc_tr url

152 Tennis Courts Buffet Tenis kortları Büfe 7 Tel:2101972 Tel:2101972

341 Mechanical Workshop Atölye 15 Paint Boya

38 Food Engineering Gıda Mühendisliği 1 http://fde.metu.edu

 CLASSROOM (bid, name) : identifier of the building, list of the classroom

and amphitheater codes

 TYPES (type_id, type, type_tr) : identity number and name of the usage

types in both English and Turkish

 BUILDING_UNITS (entity_no, bid, name, name_tr, type_id) : index number,

identifier of the building, name of any entity in a building (academic and

administrative units, offices, rooms, facilities, eating places, shops, offices,

companies, etc.), identity number of the usage type [Table 3.7]

Table 3.7 Sample view from building_units

entity_no bid Nme name_tr type_id

17 90 MM Canteen MM Kantini 7

18 90 Department of Engineering
Sciences

Mühendislik Bilimleri Bölümü 1

19 90 Graduate School of Social
Sciences

Sosyal Bilimler Enstitüsü 1

 37

 BUILDING_FACILITIES (bid, type_id) : identifier of the building, identity

number of the telecommunication or disabled facility type

 PARKING_BUILDING (pid, bid) : identifier of the building, identifier of the

parking lot which references parking_path table

For a better view of search results, classroom table was not normalized, and the

classroom codes were listed together in the same cell for each building.

The usage types are stored in the types table in both Turkish and English. The

“type_id” columns of building and building_units tables reference this table, and

make it possible to create new sublayers of building by categorizing them according

to their usage types. Table of building_units matches the identifiers of the buildings

with the names and usage types of anything that are located in them.

Some disabled and telecommunication facilities of the buildings are organized

together in table of building_facilities, which assigns type numbers of the facilities to

their corresponding buildings. These types are entrance ramp, lift and handicapped

restroom for the disabled, and kiosk, cüzdanmatik, pay phone and computer

laboratory for the telecommunication facilities.

The table of parking_path stores both spatial and non-spatial data of the parking lots

[Table 3.5]. User types of the parking lots are determined by the color of the sticker

that is taken from Office of Domestic Services of METU, and they can either be

academic (red), administrative (green), student (yellow), or others. The table also

gives information about the existence of any handicapped parking space. A parking

lot can be shared by more than one building, and a building may have more than

one parking lot. Therefore, table of parking_building was created to match the

parking lots with the nearest buildings to them.

These tables will be joined with each other when a phrase is searched to find the

location of a building or a classroom, or detailed information about a building is

requested. By referencing the table of types, buildings and their entities can be

categorized, and facilities will be listed. Their table structures and relationships can

be seen in Figure 3.17.

 38

Figure 3.17 Relations of the tables that create the building layer

Transportation, wireless network points, and campus gates are represented by

symbols which are rendered from bitmap images, and viewport coordinates of these

symbols are stored in separate tables:

 TRANSPORTATION (tid, x, y) : identifier of the transportation point, x and y

coordinates of the symbol [Table 3.8]

 TRANSPORTATION_INFO (entity_no, tid, description, description_tr,

type_id) : index number and identifier of the transportation point, description

about the transportation vehicle such as schedules and destinations, type

number of the transportation type (EGO bus, campus ring, taxi, minibus)

[Table 3.9]

 WIRELESS (wid, x, y) : identifier of the wireless network point, x and y

coordinates of the symbol

 CAMPUS_GATES (name, x, y, description) : unique name of the gate as the

identifier, x and y coordinates of the symbol, description about the location of

the gate

 39

Table 3.8 Sample view from transportation

tid x y

1 316 320

2 321 363

3 322 410

4 321 406

6 323 405

8 322 459

9 301 499

10 289 469

Table 3.9 Sample view from transportation_info

entity_no tid type_id description Description_tr

17 1 19 Tunus 10:40 11:40 Tunus 10:40 11:40

18 1 19 Kızılay 9:30 10:30 11:30 Kızılay 9:30 10:30 11:30

19 2 21 Ayrancı-weekdays until 18:00 Ayrancı-haftaiçi 18:00'a kadar

 40

CHAPTER 4

SYSTEM DEVELOPEMENT

The system architecture was built on a multi-tier system as illustrated in Figure 4.1.

The client is the presentation tier and considered as a thick client since most of the

map browsing processes take place on that side, and consists of web browser, SVG

plug-in, SVG documents and JavaScript functions.

Figure 4.1 System Architecture

Data transmission between the client and the database is provided by the

application tier, which is the Apache web server with PHP: Hypertext Preprocessor

support. Unlike the traditional web based GIS systems, a map server does not exist.

Map data are stored in data-tier, which is the PostgreSQL database, and delivered

by PHP scripts to produce the map.

After the initial map is rendered by PHP scripts and displayed on the web browser,

map navigation tools and layer control can be used without any server access.

Graphical data are completely installed to the client, and all map browsing functions

performed locally, preserving the graphical quality. However, searching operations

and getting detailed information about the features require contact with the web

 41

server. Search operations result with a double-sized new drawn map on which the

searched feature is centered and highlighted. On the other hand, getting information

functions keep the main map in the parent document, opens a new window that

makes requests from the server, and displays the attribute data.

The system elements are explained in detail in the following sections.

4.1. Development of the Client-side

When dealing with web-based applications, the maps are displayed on the web

browser of the local computer, which can be accepted as the client side. According

to the report of Market Share (2009), Microsoft Internet Explorer (66,10%), Mozilla

Firefox (22,48%) and Safari (8,21%) are the most widely used browsers all over the

world. In order to view SVG documents with Internet Explorer, an SVG compatible

plug-in has to be installed at once. On the other hand, latest versions of Firefox and

Safari have SVG support and they do not need any plug-in to be installed to display

SVG content. Adobe SVG Viewer (ASV) is the most full-featured SVG plug-in [SVG

Wiki, 2009], and was installed to the local machines that were used for testing of the

implementation with Internet Explorer.

All of the operations are viewed from the main page which has a PHP file format.

This web document consists of search section and the layer control. It also displays

the map content as an SVG document which is located in another PHP file and

embedded in the main page.

Figure 4.2 represents the main page, „index.php‟, divided into three sections.

Querying section and layer control are located on the right side of the web page. On

the left part, the map and its navigation tools are displayed as if they are in the same

document. However, map data are created and controlled in the child document,

named as „embed.php‟. All map browsing processes except the layer control take

place in „embed.php‟ without any interactions with the server and the parent page.

On the other hand, parent page controls the child with searching options and layer

control. There are also some information files which are opened as pop-up windows,

activated by the info button of the map tools in the SVG document.

 42

Figure 4.2 Representation of the main page

Although the child document has “.php” file extension, the output is an SVG

document whose structure is summarized in Figure 4.3. There are two different SVG

fragments which are nested. The map is located in the child SVG content, named as

“map”. After the style, symbols, patterns and JavaScript functions have been

defined, map is drawn with groups containing path, image and text elements of

SVG.

Interactivity capabilities were customized by JavaScript functions, which were

originally created for this application. These functions comprise map browsing tools,

info button, layer control, and mouse events, and controlled by the buttons in the

toolbox, placed in the parent SVG content.

Order of the objects in SVG documents is very important, because the objects

defined in the bottom of the document overlay the upper ones if they are located in

the same areas. Therefore, the toolbox is created at the bottom of the document.

 43

Figure 4.3 Document structure of the SVG file

4.1.1. SVG Canvas

SVG content is rendered in an infinite space, which is called “SVG canvas”. By

specifying width and height of the canvas in the outermost SVG definition tag, SVG

canvas can be delimited with a finite region, “SVG viewport”, in unit of pixels.

Viewport is the initial user coordinate system, and its origin matches the top-left

corner of the SVG canvas [W3C, 2003] [Figure 4.4]. Within the viewport, many new

fragments can be defined with different coordinate systems, and it can be controlled

by “transform” attribute. It is possible to use a transformation matrix in the transform

attribute to keep the original map coordinate system. Transform attribute has also

translate, rotate, skew and scale properties. Translate and scale are the most

frequently used ones for controlling the map display. Scale states a scale factor

which is multiplied by the original size of the document in both x and y dimensions,

 44

and translate creates a new coordinate system by assigning the new coordinates of

the origin.

Figure 4.4 Initial coordinate system of a SVG viewport

In this study, the original SVG document which was exported from ArcGIS has a

width of 594.73701 pixels and a height of 842.25827 pixels initially, but the viewport

is adjusted to 650 and 600 pixels respectively. The canvas is divided into two main

fragments, main map and the toolbox.

4.1.2. Main map

The main map shows eighteen layers which are formed by the group element and

controlled by the map tools with JavaScript functions. Each group is a collection of

similar graphical objects created by the path, symbol, image and text elements of

SVG. The groups are also combined and re-grouped as a “main group” in order to

be browsed by the map tools as a single group, preventing that an object will be

processed individually when the map is zoomed or moved.

Showing the whole document as the initial map would not be a good display

because of the small and composite appearance of the map features in the original

SVG document [Figure 4.6.a]. Therefore, a scale factor was defined as 1.5 in both

dimensions. Also, the map was translated by (-100,-150), in x and y directions

respectively, to centerize the main map. As a result, a new coordinate system was

defined with an origin of (100,150) [Figures 4.5 and 4.6.b].

 45

<g id="maingroup" onmousedown="if (click==false) clicked(evt); else click=false;"

onmousemove="move_object(evt)" onmouseup="click=false"

transform="translate(-100,-150) scale(1.5,1.5)">

Figure 4.5 Manipulation of the transform attribute

a. Original SVG document b. Rescaled and translated SVG

document

transform="translate(0,0) scale(1,1)"
origin(0,0)

transform="translate(-100,-150) scale(1.5,1.5)"
origin(-100,-150)

Figure 4.6 Transformation of the map elements

4.1.3. Map Navigation Tools

Map browsing capabilities contain zoom in, zoom out, zoom to full view and move

buttons. These buttons are displayed over the main map as another layer in the

same SVG document. Zoom buttons run by controlling the transform attributes,

scale and translate, while the move buttons only control the translate property of the

main map group. There is also an info button in the toolbox that gives detailed

information of an object when it is clicked on [Figure 4.7].

 46

Figure 4.7 Main map with the toolbox

Zoom in changes the previous scale by multiplying with 1.25, which means that the

map is enlarged by 25%. Reversely, zoom out rescales the map with a factor of 0.8,

and reduces the size by 25%. After changing the dimensions, the origin is still

matched to the original coordinate of the canvas, and the center of the map slides to

right and down directions. In order to avoid that dislocation, the map content is also

translated according to the formula in the related JavaScript function [Figure 4.8].

Zoom to full view restores the map by re-assigning the transform and scale values to

their original ones.

 47

function zoom(evt) {

//trans[0]=original x coordinate of the origin

//trans[1]=original y coordinate of the origin

//trans0=new x coordinate of the origin

//trans1= new y coordinate of the origin

//scale_val=scale factor

//650=>width of the viewport

//600=>height of the viewport

//Zoom in :

trans0=parseFloat(trans[0])-scale0*parseFloat((scale_val-1)*605/2);

trans1=parseFloat(trans[1])-scale1*parseFloat((scale_val-1)*610/2);

//Zoom out

trans0=1/scale_val*parseFloat(trans[0])+parseFloat(scale_val*(scale_val-1)*605/2);

trans1=1/scale_val*parseFloat(trans[1])+parseFloat(scale_val*(scale_val-1)*610/2);---

}

Figure 4.8 Zoom in and zoom out functions

There are two different pan options. The users can either scroll the map with down-

clicking the mouse or click the arrows on the edges of the map to move in four

different directions. The main idea is still the same, both move options change the

origin of the present coordinate system. Dragging changes the origin according to

the user‟s mouse movements while moving with clicking the arrows changes it with

adding a pre-defined value, which is 75 pixels.

The identifier number of the object elements which are encapsulated with object

defintions are extracted with JavaScript functions. When the info button is active and

the mouse is clicked over an object, a pop-up window is opened and these identifier

numbers are passed to these windows by PHP “GET” method. Only building,

transportation points and parking lot layers have information windows, and their

window content differs for each object type. In the new window, id number is linked

to the database and all of the attributes of the object are gathered. The most

detailed one is the building window, which shows the results by joining several

tables, and also a picture of the building if it has one, after checking it from the

related table, “building”.

 48

In addition to object ID‟s, names of the buildings are also retriewed from the

database and defined by “name” attribute. Another JavaScript function is written for

showing the building names at the top of the map, when the pointer of the mouse is

moved over the objects. If only the name of the building is required, it will be shown

instantly, and there will be no need to open an info window and wait for the results

gathered from the database.

All those buttons are bitmap images and defined in <image> tags with their file

paths, sizes, names and coordinates of their locations on the canvas. Each button is

encapsulated with <a> linking tag and they are all linked to their main group,

“toolbox” [Figure 4.9]. All of them have only display purposes, except “id” attribute of

the <a> tag. It is the most critical one among them, because it is the one which

identifies the active button to the JavaScript map navigation function. This function

defines its events for map navigation according to the “id” that is passed from the

“toolbox” group.

<g id="toolbox">

....

 <image name="Zoom Out" xlink:href="zoomout.gif" x="0" y="0"

width="52" height="45" />

....

</g>

id : Ġdentifier

transform, x, y : relative coordinates

width="52" height="45" : size of the image

name="Zoom Out" : label of the button describing its function

xlink:href="zoomout.gif" : file path of the image

Figure 4.9 Toolbox

 49

4.1.4. Layer Control

There are eighteen layers in the application, and they are controlled from the main

page with checkboxes and a JavaScript function [Figure 4.10]. All layers have a

visibility attribute in their container group tags, which can be “visible” or “hidden”.

The function changes the visibility attributes according to the conditions of their

checkboxes. When the box is checked or unchecked, the visibility attribute changes

as visible or invisible, and the layer is displayed or removed respectively.

Figure 4.10 Layer Control

Most of the layers are checked in the default document, and some of the layers are

locked, so they cannot be made invisible by the users. However, the locked layers

must be listed among the others since legend is combined with layer control to save

space on the web page.

 50

4.2. Serving SVG files with PHP

While scripting with PHP, SVG elements are dynamically created from the data

stored in the tables. As mentioned before, “d” attributes of path elements are the

instructions of drawing the graphical shapes. These attributes are stored in path

tables in the database to be gathered and drawn by the outputs of some PHP

scripts. These scripts extract path and attribute data from the database, draw

graphical objects, and create layers by containing them in group element. Each

group is created with a specified code segment, and has a different style, which is

linked to CSS definitions [Figure 3.4] within the same document. Building layer is

nested by creating sublayers according to their categories. In addition to path

elements, identifier numbers and names of the buildings are also retrieved from the

attribute tables for these objects.

A short PHP code can draw an entire layer by retrieving the paths from the

database. The output of the script in Figure 4.11 creates a layer for all the

academical buildings in a code of more than 400 lines and 50000 characters.

<g id="academic" onmouseover="onmouseover(evt)"

onmouseout="onmouseout(evt)">

<?

$sql="SELECT * FROM building_path,building_info

 WHERE category='Academic'

 AND building_info.bid=building_path.bid";

$result=@pg_query($baglanti,$sql);

while($row=pg_fetch_array($result)) {

 echo "<path class=\"academic\" d=\"";

 echo $row["path"];

 echo "\" name=\"";

 echo $row["name"];

 echo "\" id=\"";

 echo $row["bid"];

 echo "\" />";

}

?>

</g>

academic : Name of the layer
Academic : Usage of the building defined in the database
academic : Style class of the academic buildings

Figure 4.11 A whole layer which shows all the academic buildings in the campus

 51

Figure 4.12 shows PHP search string of Department of Civil Engineering K3

Building, its result in SVG object definition, and vectorial image output that is

displayed on the SVG viewer. Attribute “d” draws the outline of the polygon, “fill”

defines the filling color of the shape, “id” is the identity number of the object, and

“name” gives the name of the building which is displayed at the top of the map when

the mouse pointer comes over the object. Searched object is zoomed and centered

on the SVG viewport after being created by manipulating the transform attribute of

the main content. Additional attributes can be listed on the pop-up window opened

by mouse clicking on the object. In this window, PHP scripts request the attribute

data of the object by sending its identity number to the database.

PHP Script :

$sql=”SELECT * FROM building_path,building_info

 WHERE building_path.bid=12

 AND building_info.bid=building_path.bid”;

$result=@pg_query($baglanti, $sql);

while($row=pg_fetch_array($result)) {

echo “<path fill=\”red\” d=\””;

echo $row[“path”];

echo “\” name=\””;

echo $row[“name”];

echo “\” id=\””;

echo $row[“bid”];

echo “\” />”;

}

SVG object definition :

<path fill=”red”

d=”M315.96025,480.27077L317.68839,479.98275L316.5363,471.05418

L321.14465,470.47814L323.01679,484.87906L318.40844,485.4551

L317.97641,482.14289L316.24828,482.4309L316.24828,482.86293

L313.36805,483.15095L312.93602,480.27077

L315.96025,479.83874L315.96025,480.27077z”

name=”Department of Civil Engineering K3 Block”

id=”12” />

Result :

Figure 4.12 Search results of a single object

 52

4.3. Map Querying

Classrooms, names of the buildings, facilities, and all other units or rooms including

laboratories, cafeterias or administrative offices can be searched by the text box on

the main page. The tables “building”, “building_units”, “building_facilities”, “types”

and “classroom” are joined with the search query. Also, there is a list box which lists

the name of the buildings according to their usage types.

AJAX functions and PHP work together to gather search results in a synchronized

way. When entering a letter or a word in the text box, a result list box becomes

visible and lists the results containing those letters. Every change in the text box

modifies the results simultaneously without any connection with the server and the

database, and as a result, there will be no time delays [Figure 4.13].

Figure 4.13 Searching with a phrase

Buildings and facilities can also be listed according to their usage types by the same

way. Altering the selected option changes the results instantly [Figure 4.14].

 53

Figure 4.14 Listing by usage types

Object identity numbers are also carried in the value attributes of the option tags.

When a result on the list box is clicked on, id number is passed from the embed tag

to “embed.php”. In the embed tag, coordinates of the starting point of the polygons

are queried from the path table. Finally, identity number, and (x,y) coordinates are

sent to the SVG document by the GET method of PHP. That is the only moment that

the map is reloaded. Now the map is rescaled by multiplying with 3, all the layers

are downloaded again, and the searched building is centered and painted with red

color in order to be recognized by the user.

4.4. Summary of the System Design

Figure 4.15 summarizes the implementation of the study in a flowchart. At first, data

were collected from different sources in different formats. Spatial data were edited

and digitized by GIS tools, converted from shapefile to SVG format, and transfered

to the database. Attribute data were also organized and stored in data tables

separately. Both spatial and attribute data were delivered from the database by

PHP scripts, which also draw the vector graphics to create the map, and provide

search capabilities. JavaScript functions were used to form the map navigation

tools, and user interface was prepared with graphic and web page editing softwares.

After all of these modules were put together, the web document was finally

published on the Internet.

 54

Attribute

Data

DATA

COLLECTING
DIGITIZING

Satellite

Imagery

Shapefiles

FINAL MAP

(Shapefile)

FINAL MAP

(svg)

CREATE THE

DATABASE

Export to SVG

Data input

Data input with PHP

WEB

DESIGN

Web

Document
Adobe Photoshop

Homesite

Data retrieval

with PHP

CREATE MAP

NAVIGATION

TOOLS

Coding with JavaScript

Interactive

Map
Publish on the

Internet

Figure 4.15 Flowchart of the implementation

 55

CHAPTER 5

RESULTS

5.1. User Interface

The map is avaliable at www.gis.metu.edu.tr in both English and Turkish languages,

and hosted by Linux servers with Apache, PHP 5.0 and PostgreSQL database

server located in METU Computer Center [Figure 5.1]. A web browser with an SVG

plug-in is sufficient for viewing the map from the Internet. Recently, most of the web

browsers have an SVG support in their latest versions, and a plug-in is not needed

to be installed.

Figure 5.1 User interface of the application

http://www.gis.metu.edu.tr/

 56

As explained in the previous chapters, the application has four sections; main map,

map navigation tools, layer control and search section.

The main map is a vector image in SVG format, and controlled by the map tools

which come within the same SVG document [Figure 5.2]. Once the main page is

accessed, all spatial data, identity and name attributes of the buildings are

downloaded to the user‟s web browser with a size of about 800 KB in a few

seconds, depending on the network bandwidth. While navigating the map with the

map tools, no time delays and round trips to the web server occur, since all these

functions operate locally.

Figure 5.2 The map magnified with zoom level of 8

On the top side of the map, there is a hidden text area, which becomes visible when

the pointer of the mouse is moved over an object. This area guides the users by

showing the functions of the map tools, names of the buildings, or usage types of

the other map features, and disappears back if the pointer is moved out [Figure 5.2].

 57

Zoom level is set up to two levels for zooming out, but limitless for zooming in.

Therefore, the map can be enlarged many times to show any detail that user wants

to see. No matter how large the map is, image quality does not change, since the

graphics are in vector format [Figure 5.2]. Zoom to full view button resets the map to

its original extent.

Info button opens a pop-up window with information about the object, on which the

mouse is clicked. There are three different pop-up windows for three different

feature types; transportation points, buildings, and parking spaces.

Transportation points window shows the types of the transportation vehicles, and

gives a detailed description about the destinations and schedules of them [Figure

5.3].

Figure 5.3 Information window for transportation points

Building window lists the building name, usage of the building, name of the units,

facilities for disabled people (lift, ramp, handicapped restroom and parking space),

and all other entities that the building contains, such as laboratories, rooms,

classrooms, eating places, and so on [Figure 5.4]. It also shows a picture of the

building.

 58

Figure 5.4 Info window for buildings

Lastly, the parking space window gives information about the sticker colors and user

types that can park there, the name of the nearest building, and whether it contains

a disabled parking space or not [Figure 5.5].

Figure 5.5 Info window for parking lots

 59

Move and info buttons change each other‟s activity status when they are clicked on.

As default, only info button is active. When the move button is clicked on, info button

becomes inactive, and vice versa. Otherwise, pop-up windows will be opened when

dragging the map. Active button is distinguished with its colorless new appearance

[Figure 5.6].

Move button is active

Info button is active

,

Figure 5.6 Activation of the buttons

As mentioned in Chapter 4, the map can also be moved by clicking on the arrows on

the four edges of the map [Figure 4.7]. Unlike the move tool, info button is not

deactivated when these arrows are used to move the map.

Results of both search options come in the same list box [Figures 4.13 and 4.14]. As

an example, a user wants to find “Civil Engineering Building K1” [Figure 5.7]. It is not

needed to write the full name of the building. The letters written in the search box

changes the results in the listbox simultaneously, and phrase “civ” is enough to

achieve the name of the building. Then the user has to click on that name to view

the location of that building on the map.

 60

Figure 5.7 Results of the phrase “civ”

After clicking on that result, the map is magnified, graphic of the building is pointed

by an arrow, highligted with a different color, and centered on the map to display the

result more remarkably [Figure 5.8].

Figure 5.8 Location of the building “Civil Engineering K1”

 61

There are eighteen layers, eleven of which are the building sublayers categorized as

their usage types [Figure 4.10]. Once the map is loaded, some of the layers are

invisible in order to avoid a complicated view. These layers are transportation points,

facilities for disabled, and wireless zones. Layer control is a local process as well. If

further layers are desired to be seen, they can be switched on from the layer control

section, or switched-off by unchecking again, without dealing with the web server.

Forest and campus roads layers are locked, so they cannot be turned off. Search

results are also displayed on a separate layer, and can be removed.

5.2. Editing Interfaces

The map can be edited by some authorized users from various departments and

units of METU, logging in the system by METU user accounts, and each assigned

for different features. Editing interfaces are opened in new pop-up windows for

buildings, transportation points and parking spaces, having the same content of the

information windows, and they have additional elements such as text boxes and

buttons to change the content.

Administrator of the parking lots can only update the types of the users, which can

be administrative and academic staff, student, or handicapped. The other users can

only use free parking lots [Figure 5.9].

Figure 5.9 Parking space editing interface

 62

Editing interface of the buildings contains many entry fields. Figure 5.10 shows data

update of Faculty of Economic and Administrative Sciences Building B. Its name,

description, usage, classrooms and disabled facilities can easily be updated from

this interface. Also, entities and departments can be deleted or new ones can be

added with their usage types.

Figure 5.10 Buildings editing interface

Types of the vehicles used for transportation in METU campus, their schedules and

destinations can be edited and deleted by transportation points editing interface

[Figure 5.11].

 63

Figure 5.11 Transportation points editing interface

5.3. Usability Study

The purpose of usability testing is to determine the satisfaction and efficiency levels

of the application to improve its usability.

Satisfaction is related with the impressions of the users about the interface, and can

be quantified by applying questionnaires. Efficiency is a performance measure, and

computed with the time to complete a task [Duchowski, 2007].

It is aimed to test performance of the map and search tools, diagnose the usability

problems on the interface, and figure out :

 Which tools are used more likely?

 Is it difficult to use them?

 Are they located in right places?

 Do the users need guidance and usage tips to use them?

 Is there any progress for using the map tools during the test?

 64

5.3.1 User Questionnaires

After the application was implemented, a questionnaire form [Appendix B] about the

user interface was published on the Internet, and its URL address was sent to the

members of some GIS related mailing lists. The members were requested to

examine and test the web page, fill the form, and also add their comments and

suggestions.

In the form, Likert scale was used for rating the answers. Percentage of agreement

was calculated by summing strongly agree and agree percentages. The questions,

format of the scale, results in frequencies, and percentages of agreement can be

viewed from Figure 5.12.

According to the results, map graphics, user interface and map content did not

satisfy the participants entirely. On the other hand, map tools were easily

understood and used.

The users were also requested to write down some comments. Some of the

incoming feedbacks are :

 The colors should be sharper instead of pastel ones.

 There should be a “check/uncheck all” option on the layer control.

 The buildings should be hidden as default, and added by the users.

 Zoom functions should also be controlled by the mouse scroll.

 Raster image can be used as the base map.

After the evaluations, some changes were applied to the map according to the

suggestions of the users.

 65

Questions
Strongly
disagree

Disagree
(%)

Neither ag.
Nor disag.

Agree

Strongly
Agree

%
agree

METU needs an application
like this.

2 1 2 10 2 90,20

Map content is sufficient 4 6 21 11 4 40,38

I didn‟t find it difficult to learn
how the map works

1 3 3 15 1 86,79

 I didn‟t find it difficult to understand the function of this button :

1 1 4 49 1 96,36

1 1 4 49 1 96,36

2 4 9 9 2 72,73

2 1 3 8 2 89,09

2 2 1 6 2 90,91

1 1 2 50 1 96,30

 I didn‟t find it difficult to use this button :

2 3 3 8 2 84,91

1 4 3 8 1 84,91

1 1 11 5 1 75,47

2 2 7 6 2 78,85

1 3 2 6 1 88,24

1 1 4 8 1 88,24

I liked the map graphics 4 5 15 15 4 55,56

I liked the user interface 4 5 13 18 4 59,26

I didn‟t have difficulty to use the
search options

2 5 4 15 2 79,63

Figure 5.12 User Questionnaire with the percentage agreement results

5.3.2. Eye Tracking Methodology

The usability of the web interface was tested by eye tracking methodology, which is

the study of measuring and evaluation of the eye movements to examine the visual

 66

attention of the people. According to Montello (2002), tracking the eye movements

of the users is one of the most emprical approaches to map psychology. Eye tracker

is the main instrumental device of these studies and capable of recording eye

movements and positions.

The tests were performed in Human Computer Interaction laboratory of METU

Computer Center [Figure 5.13]. The laboratory is divided into two parts with a one-

way mirror. One of them is the test room having microphones, amplifiers, cameras,

and a computer with an eye tracker device and screen recording capabilities. The

other one is the operator room, where the participants and screen of the test

computer are observed. The test room is soundproof and the participants cannot

see inside the operator room from the mirror.

Figure 5.13 HCI Laboratory of METU Computer Center [ODTÜ, 2009]

Fixation, which is moment that the eyes are focused and stabilized on a particular

area or point, is the main metric of eye tracking studies. Visual attention can be

quantified by the numbers of fixations within a region arbitrarily defined on the

interface [Duchowski, 2007], which are called Aeras of Interest (AOI).

 67

There are additional metrics, such as observation and fixation length, time to first

fixation, mouse click count. Observation length is the duration that a user looks at an

AOI, starting from a fixation within the AOI, and ended with another fixation outside

the AOI, while fixation length is the mean duration of all fixations within an AOI

[Tobii, 2008]. High frequencies and long durations of fixations expose the difficulty of

the searching tasks [Rayner, 1998].

The strategy for usability testing of the study is to define AOI‟s on the user interface,

assign some tasks corresponding to objects within these AOI‟s, recruit a group of

participants with a minimum number of 5 [Nielsen, 2000] [Figure 5.14] to accomplish

the tasks, and analyze the eye movements of the evaluators that fall in those areas

after the testing process.

Figure 5.14 Adequate number of evaluators for usability testing [Nielsen, 2000]

12 participants were recruited for the test, which were composed of students,

graduates, administrative and academic staff of METU, and had never seen the

tested web page before. Four of them were students of Geodetic and Geographical

Information Technologies (GGIT), and there were four female users. They were

asked to complete eight tasks, and also rate each one by ease of use by using 5

point Likert scale :

1. There is a dark blue star on the right bottom side of the map. Try to read the

text near the star.

2. Find the classroom named as TDB-2.

 68

3. View the nearest wireless netwok points to the shopping center.

4. Where can you park your car near the Department of Metallurgical and

Materials Engineering building with a student (yellow) sticker?

5. What else is there in the building of the dry cleaner?

6. Which vehicles can you embark in front of the Department of Biological

Sciences?

7. View the names of the classrooms of Department of Food Engineering.

8. List the eating places in the campus.

The question of the Likert scale was “What is the difficulty level of this task?”, and

the format was 1: very difficult, 2: difficult, 3: normal, 4: easy, and 5: very easy. After

the test, they also filled the same questionnaire form mentioned in the previous

section.

While trying to accomplish the tasks, eye movements of the participants were

recorded by a 50 Hz non-intrusive eye tracker. Task completion rates and usage of

the map tools were also captured by the computer.

5.3.3. Analysis of the Test Results

Eye tracking metrics were calculated by the eye tracker software, which is also the

test design, evaluation and visualization tool of the eye tracking device. Each

session can be replayed, saved as video or image files, and results of the tests can

be statistically analyzed and exported to Excel, SPSS and Matlab.

There are several strategies to accomplish each task. In order to evaluate which

tools are easier and used more often, seven AOI‟s are defined on the user interface

[Figure 5.15] :

 map : Main map

 toolbox : Toolbox (zoom in, zoom out, full view, get information, move)

 nav : Navigation arrows (go to east, west, north and south)

 s_building : Search by phrase

 s_type : List by type

 layer_control : Layer control

 all : Entire user interface

 69

Figure 5.15 Areas of Interest

Observation length of the users in seconds and task completion success rate for

each task are listed in Table 5.1. Eye movements of some participants could not be

recorded during the task due to a calibration error of the device. Data of these tasks

were not used for the statistical analysis even if they were completed successfully,

but included in the user rankings and percentage of success values. The

uncompleted task sessions and outliers were also excluded from the analysis data.

In order to determine the outliers, the suspected values were calculated with the

mean and standard deviation of the individual task data. If the value differed from

the mean by bigger than 2.5 times of the standard deviation, it was discarded.

There is a peak on the completion time of Task 4, which was ranked as the most

difficult one [Figure 5.16]. The most possible solution of the task is to find the

building with one of the search options first, activate the information button on the

toolbox, then click on the parking lots near them. The building was found easily, but

the users did not expect that the parking lots could have an information window.

Furthermore, the arrow that shows the results is so big that it overlays a small region

of the target. However, in the next tasks, they recognized the information window of

 70

the buildings and transportation points easily. After Task 4, completion rates of the

remaining tasks decrease rapidly, and user ranks of ease increase, which shows

that the users learned how to use the map after a challenging task.

Table 5.1 Task rates (s), percentage of success, and mean user ranking

 Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8

User 1 124,16 46,88 83,92 Fail
(1)

 59,47 41,40 28,92 25,06

User 2 49,60 15,31 47,46 172,50 16,40 51,99 29,83 140,02

User 3 58,03 92,89 67,17 Fail
(1)

 45,13 46,13 17,08 36,74

User 4 95,71 386,98 81,20 490,01 148,84 51,00 57,06 20,26

User 5 71,80 19,41 50,89 158,92 50,62 39,21 20,91 7,49

User 6 67,00 64,63 41,67 Fail
(1)

 44,24 90,44 33,06 Err
(2)

User 7 73,25 38,27 37,76 185,54 43,85 53,99 26,77 17,57

User 8 51,71 49,09 67,02 161,75 163,31 81,45 24,68 15,59

User 9 49,50 33,56 139,74 193,13 34,77 57,82 54,91 54,61

User 10 42,42 37,04 22,69 95,94 35,33 Fail
(1)

 28,00 34,26

User 11 68,08 35,52 53,32 142,59 29,43 33,96 38,35 44,30

User 12 69,81 51,41 177,38 Fail
(1)

 212,48 55,19 32,11 14,85

Mean 63,35 44,00 62,98 158,62 61,03 54,78 32,64 27,07

S.D. 15,09 21,43 31,45 32,41 48,43 17,16 12,23 14,93

Success(%) 100 100 100 66,67 100 91,67 100 100

Rank of ease 4,25 4,18 4,50 2,33 3,83 4,50 4,50 4,67

(1) : Uncompleted tasks
(2) : Unrecorded task due to a technical error
6 values (6,25 %) were outlied

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8

0,00

40 ,0 0

80 ,0 0

12 0,00

16 0,00

T
as

k
C

o
m

p
le

ti
o

n
 T

im
e

(s
)

63,35

44,00

62,98

158,62

61,03
54,78

32,64
27,07

Figure 5.16 Mean task completion times in seconds

 71

Task completion rates of GGIT students, who mostly have more experience with

maps, were compared with the other users. The results of female and male

participants were also compared. However, no significant difference was recognized

between all the user sets after applying 2-tailed t-test for equality of means at 95%

of confidence interval [Table 5.2].

Table 5.2 Task completion durations of independent variables

Variable Mean Standard Deviation N p

Male 59,37 45,33 57
0,802

Female 56,90 33,40 27

GGIT student 64,88 45,14 29
0,317

Other Users 55,25 39,77 55

Figure 5.17 shows avarage fixation durations of each AOI according to the tasks.

Long fixation times expose the difficulty of the focused item. Decreasing number of

the durations shows that the users had less difficulty to use the tools during the last

tasks.

0

5

10

15

20

25

30

35

40

45

50

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8

s_building

s_type

layer_control

nav

toolbox

Figure 5.17 Mean fixation durations of AOI’s in seconds

Except the first one, all tasks can be accomplished by common strategies. AOI‟s of

s_building, s_type, layer_control, toolbox and nav are the main tools for finding the

 72

target locations. In Figure 5.18, the mean mouse click counts of these AOI‟s are

displayed in a pie chart.

s_building

8%

s_type

9%

layer_control

34%

nav

35%

toolbox

14%

Figure 5.18 Percentage mouse click counts of the map tools

The AOI‟s s_building and s_type have similar characteristics, but it is more

reasonable to use s_type as a category filter, and s_building for known phrases, for

instance, building names or classroom codes. On the other hand, layer control is not

an efficient tool for filtering the text results, its function is to filter map graphics only.

However, looking at the mouse click counts of the map tools, layer control was the

most commonly used one among the map tools, although the search boxes would

inevitably used in almost all the tasks. In fact, the map offers a large set of data

available for searching by using these elements. The reason of this situation can be

understood from Tables 5.3 and 5.4, which display mean time values to first fixation

and mean number of fixations, respectively. Low first fixation times and high fixation

numbers indicate high attraction, and search boxes have higher time to first fixation

values and lower fixation numbers than the others. Since they were recognized late

and slightly, they were used seldom comparing with the others.

Table 5.3 Time to first fixation values (s) of each AOI

 T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 Mean

s_building 28,97 20,18 39,78 36,19 12,77 12,18 13,85 11,78 21,96

s_type 25,24 14,28 19,72 26,53 14,44 16,14 8,81 8,70 16,73

layer_control 1,65 7,85 2,88 7,41 10,06 5,96 6,27 7,20 6,16

nav 28,85 38,61 49,61 102,53 25,71 26,62 30,87 . 43,26

toolbox 8,48 8,99 13,43 25,40 15,16 37,51 14,56 10,54 16,76

 73

Table 5.4 Fixation counts of each AOI

 T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 Mean

s_building 4,92 8,58 5,83 16,75 5,92 4,64 3,75 6,09 7,06

s_type 2,83 9,42 7,33 15,88 10,42 7,09 3,83 10,91 8,46

layer_control 19,25 19,17 41,83 105,88 32,25 39,82 15,92 30,00 38,01

nav 4,08 0,83 0,83 3,13 0,75 0,64 0,50 0,00 1,35

toolbox 21,08 5,67 6,83 45,75 6,08 6,36 6,17 3,91 12,73

After the evaluation of the tests, it was estimated that some minor changes on the

user interface would increase the effectiveness of the application. A short tutorial

with some usage tips was prepared to inform the users about the content of the map

and capabilities of the tools. Search areas were made more remarkable with an

attractive color.

For the best results, usability tests must be repeated, if in future the interface is

changed in an extreme level.

5.4. Conclusion

Scalable Vector Graphics (SVG) offers an alternative way for displaying spatial data

on the world wide web. It is an open standard, does not need a map server, and

compatible to run in many servers and database systems.

When the map is accessed from the Internet, all graphical data are downloaded to

the client side in advance. In addition to the spatial data, limited size of non-spatial

data are delivered from the database in order to reduce the start up time. These are

the names of the buildings and identifiers of the entities. Unless a query is made

with the search section, there will be no interaction with the web server. Therefore,

all map browsing operations occur locally without creating a network load. This is

the most significant advantage of using an SVG based system instead of a map

server, which usually responds to all kinds of demands coming from the client side.

The map images are re-rendered by the map server even if the map is zoomed,

moved, or the layers are switched.

Except the desktop side, which requires some GIS softwares to create the

geographical data, cost of establishing such a system is very low. First of all, no

additional software, database systems, and application servers are needed. Since

 74

SVG is an XML derivation, its applications can be performed and stored in many

systems, integrated with other web standards, and coded by various programming

and scripting languages such as PHP, Java, and ASP. For that reason, it is

relatively simple to set up and maintain to use SVG for GIS projects. In this study,

the implementation was developed by using entirely open source products and

standards, without any modification to the server side.

Source code of the client-side can easily be obtained from the “View Source” tool of

the web browser that displays the map. This code includes all map features in SVG

format, with their identifier and name attributes, style sheets, and JavaScript

functions that control the map browsing operations. The web page can also be

downloaded to a local computer directly. Therefore, SVG data of METU map, and all

map navigation scripts developed by JavaScript are shared and can be used by

everyone.

Raster images have large file sizes and they lack interactivity. Also, enlarging them

results in degradation, or a significant increase in file size if the quality is wanted to

be preserved. However, SVG promises dynamic and more sophisticated graphics

which can be rescaled to unlimited values in low file sizes, without losing their

display qualities, because of having vector image format. Additionally, they can be

labeled, animated, and linked to other objects. Figure 5.19 compares double sized

view of raster and vector format of the same image. Vector image keeps its

sharpness while the raster one have pixel deterioration.

Shape properties of the SVG objects can easily be customized by changing their

class definitions in the style sheet. Every class is assigned to a layer, and any

change of a class definition directly affects the apperance of a layer simultaneously.

For instance, color of all the academic buildings will change at the same time if a

new background color is assigned in the class definition of the academic building

layer. Therefore, display properties of the map can also be modified dynamically.

 75

Vector image Raster image

Figure 5.19 Comparison of display qualities of vector and raster images

JavaScript functions provide high level of interactivity to SVG documents by

enhancing the dynamic capabilities of SVG objects. However, using such client side

scripting languages usually causes cross-browser problems. This means that, a

JavaScript function that works on a specific browser may not run properly on other

browsers. Different versions of the same browsers can also react differently.

Therefore, the implementation was tested on most commonly used browsers and

their versions, and some modifications had to be made to terminate the errors after

the test. Currently, the application is compatible with Internet Explorer 6 and 7,

Mozilla Firefox 3+, and Safari 3+ on both Windows and Linux platforms.

Another problem about the web browsers is forcing the users to install a SVG plug-

in to view the map in advance. Fortunately, latest versions of many browsers have

their built-in SVG support today, and display the SVG documents without any

requirements.

SVG data can easily be updated since they are stored in the database. Each object

can be modified individually, without accessing the source code of the SVG

document. Preparing some specified user interfaces will make data editing easier.

Therefore, SVG is suitable for the systems that require frequent data updates.

 76

Before applying SVG to GIS, total number of map features must be considered.

Large number of entities increases the file size and time delays, since whole

document is downloaded on the client side. Organization of the graphical attributes

will be rather difficult. On the other hand, variety and size of non-spatial data do not

affect the system reversely. In this study, METU map has 488 entities in overall

[Table 5.3], making a file size of about 800 KB. These numbers appear reasonable

to implement this method.

SVG cannot afford all functionalities of GIS, but it is an open-source, flexible,

dynamic and inexpensive way for publishing geographical information on the world

wide web. Since the objective of this study is to show the locations of the structures

and facilities of METU campus with an interactive map published on the Internet,

this architecture seems to meet the requirements.

Table 5.5 Numbers of the campus entities

Entity Number

base area 13

building 295

forest 9

parking lot 76

road 15

road details 3

transportation points 26

wireless network points 52

Total 489

5.5. Discussion

In table 5.6, campus areas, building counts and student population of METU and the

studied universities are compared. Some of them cover large parks and recreation

areas within their campus areas, especially the ones from the USA. On the other

hand, METU campus has a compact structure, and seems to have a relatively small

campus area although it has more buildings and an extensive land overall.

 77

The universities that have large areas and a lot of buildings usually use map

application servers to publish their campus map on the Internet. Some of these

maps have extra functionalities which METU campus does not have, such as

different selection options for zooming, measuring distances and areas, and finding

the shortest path. However, these systems are relatively slow, since almost every

operation of a map tool requires the map image be re-rendered by the server, which

creates time delays and makes them relatively slow.

Table 5.6 Some numbers from the studied universities

University
Campus Area

(hectares)
Number of
buildings

Student
Population

Middle East Technical University 200 298 20000

Ege University [Ölgen, et. al, 2004] 345 600 30000

Emory University [Emory University, 2009] 281 248 12700

University of Missouri [Mizzou, 2009] 555 161 30000

University of Oregon [UO, 2009] 119 60 20376

University of Utah [U of U, 2008] 607 225 30450

Having 345 hectares of campus area with 520 buildings and the student population

of about 30000 [Ölgen, et. al, 2004], Ege University campus has similar properties

with METU. It also has the most functional campus map among the Turkish

universities that were studied for this research with its search options, fancy

information windows and path finding capabilities. However, only 90 of the buildings

are displayed on the map, and information about the facilities is limited.

Tree view menus are mostly preferred by the universities with many layer elements

or sets of buildings, such as Emory, Ege and Missouri Universities, in order to list

them. These menus may result a confusing view and expand the page when several

branches are opened at the same time. On the other hand, METU map has two

combo boxes which group the building and facility types, and list the members of

each group at once on the same area, where the results of searching by phrase are

also displayed. Sharing a limited area for all result sets saves place on the user

interface and avoids page scrolling.

 78

If a web site of a university is prepared in more than one language, its campus map

should also has a multilanguage support, especially if the university is an

international one. All of the universities that were studied for this research present

the maps only in their mother languages.

Some universities published their campus maps in Shockwave Flash (SWF) format,

which supports vector graphic format as well as SVG. Being a multimedia platform

and a strong graphic editor, Flash offers intelligent graphics with better appearance,

and rich animations. It is also possible to create animations in SVG documents by

using SMIL language, but its browser incompability problems have not been solved

yet. Flash movies can be more interactive by connecting them to database systems

and map application servers with proper extensions and scripting languages, but not

as flexible as SVG applications.

Despite its qualifications, excluding the University of Oregon, the inspected

universities have not used the full capabilities of Flash in their campus maps.

Although the maps have strong visual appearances, data content and map

functionalities are relatively poor. Probably, they do not need a campus map since

they have smaller area and fewer buildings, such as Pamukkale University. In

addition, Hacettepe University and Ġstanbul Technical University have multiple

campus areas, and their buildings and student populations are spread on different

campus locations. Therefore, if there is no difficulty in finding a target in the campus,

a sophisticated map with a search interface may not be needed.

In conclusion, area of the campus, number of the buildings, and variety of the

facilities are important criteria before choosing the scope and methodology for web

mapping applications. Since METU campus is one of the biggest ones among all the

universities in the world, map content and capabilities must be also very rich.

5.6. Recommendation

It will be more purposeful if the system is accessible in outdoor areas, without

depending on the personal computers and mobile telephones. Displaying the

interactive campus map from several kiosks located on the most crowded regions in

the campus will help the users find their current and target locations easily.

Therefore, efficiency and usage of the system will be increased.

 79

After the implementation has been used for a while, further needs can grow up. At

that time, it will be possible to migrate to bigger systems, such as Web Feature

Services (WFS) with Geography Markup Language (GML) encoding. A proprietary

traditional system consisting of a map application server can also be constructed by

using the raw data of METU, which are ready in shapefile format. In addition, 3D

modelling of the campus can be integrated to the system, which will improve the

visual interpretation of the application.

By the help of the data input and editing interface, current data can be collected and

used for the future projects. However, usage of the system will be ineffective if data

update is not a continous process. The worst possibility is to serve inaccurate

information to the users. In order to avoid that, proper staff from the academic and

administrative units must be assigned, encouraged and controlled to use this

system.

Since the academic life started in the current campus of METU in 1963 [METU,

2009], construction and renovation of the buildings have never stopped. Also, there

has been a continuous change in land use, and infrastructure of the campus, such

as network, electricity and telephone cabling, heating, plumbing, lighting, ventilating

and sewerage systems, water and gas lines. Several technical units are responsible

for planning, controlling, construction and maintainance of them.

Geographical Information Systems give a great opportunity to integration of facility

management operations of the university. Current geographical data of all utilities

can be inserted to the system by some GIS softwares, and updated easily. Any

single entry or a modification can be tracked from the Internet with specified

interfaces instantly, and spatial data will be distributed from a centralized source.

Having such a system will provide better observations about the requirements and

deficiencies of the campus, more accurate decisions for future planning, hence

better service for the university. The management and the administrative units will

be able to access the spatial data everywhere, make improved spatial and statistical

analysis, and receive reports and printouts easily.

If there is a malfunction on the underground network distribution, for instance, a

leakage in one of the water pipes, or a power cut because of a corrupted electricty

 80

cable, location of the problem can not be inspected easily from the ground.

Integrating the infrastructure network into a centralized information system will

provide the means to reach the sources of the problems, minimize the risk of digging

the wrong areas or damaging other distribution lines accidentally, hence saves time

and unnecessary expenses.

Since the locations of the assets can be viewed on the map, inventory will be

tracked more accurately. Needs estimation can easily be performed, and redundant

equipment will not be purchased. It will be possible to keep every modification or

displacement process of the equipments in the database, and access the inventory

history.

When an additional component is to be installed or a renovation be performed, size

and amount of the equipment needed can be determined with the area calculation

and distance measuring tools of GIS softwares. This helps in making better cost

analysis and equipment estimation during the procurement process.

In order to carry out a facility management system properly, the technical and

administration units have to work in a coordination, follow up the activities of each

other before making decisions and plans, and GIS techniques would be very helpful

for them in every step.

 81

REFERENCES

Abel, D. J., Taylor, K., Ackland, R., Hungerford, S., 1998, "An Exploration of GIS

Architectures for Internet Environments", Comput., Environ., and Urban Systems,

Vol. 22, No. 1, pp. 7-23

Adobe, “Adobe SVG Viewer Download Area”,

http://www.adobe.com/svg/viewer/install/, last accessed on March 3, 2009

Aga Khan Developement Network, “Aga Khan Award for Architecture - Awards

1993-1995”, available at http://www.akdn.org/akaa_award6_awards.asp, last

accessed on March 12, 2009

Aydın, Y. E., 2006, "Web Based Multi Participant Spatial Data Entry in Crime

Mapping”, M.Sc. Thesis, Geodetic and Geographical Information Technologies,

Middle East Technical University, Ankara

Aydınoğlu, A. Ç., Yomralıoğlu, T., 2002, "Web Based Campus Information System",

International Symposium on GIS, September 23-26, Istanbul

Behr, F.J., Hui, L., Hang, C., Weldeslasie, F., Zhuoer, C., 2006, "PHPMyWMS - an

Open Source based, SVG oriented Framework for extended Web Map Services",

Geospatial Information Technology, Proceedings of SPIE, Vol. 6421

Chen, Y., Gong, J., Jia, W., Zhang, Q., 2004, "XML-Based Spatial Data

Interoperability on the Internet", ISPRS Congress, Istanbul 2004, Proceedings of

Commission IV

Clarke, P., 2005, "Dynamic web-mapping using Scalable Vector Graphics (SVG)",

2005 ESRI International User Conference Proceedings

Duchowski, A. T., 2007, “Eye Tracking Methodology”, 2nd Edition, Springer, London

 82

Emory University, http://www.emory.edu, last accessed on May 10, 2009

Foote, K. E., Kirvan, A. P., 1998, “WebGIS”, NCGIA Core Curriculum in Geographic

Information Science, available at

http://www.ncgia.ucsb.edu/giscc/units/u133/u133.html, last accessed on April 18,

2009

Google, “Ankara - Google Maps”, http://maps.google.com/, last accessed on April 5,

2009

Green, D., Bossomaier, T., 2002, "Online GIS and Spatial Metadata", Taylor &

Francis, London, New York

Güllüoğlu N. ,C., 2005, “Evaulating Public Transportation Alternatives in the METU

Campus With the Aid of GIS”, M.Sc. Thesis, Geodetic and Geographical Information

Technologies, Middle East Technical University, Ankara

Hacettepe University, “General Information”,

http://hun.edu.tr/gorsel/yer.php?awk=2&dum=1, last accessed on May 10, 2009

Kotzinos, D., Prastacos, P., 2001, “GAEA, a Java-based Map Applet”, Systems

Analysis Modelling and Simulation, 41 (4), pp. 593-606

Market Share, “Browser Market Share”,

http://marketshare.hitslink.com/browser-market-share.aspx?qprid=0, last accessed

on May 10, 2009

METU, 2009, Middle East Technical University General Catalog 2007-2009, Ankara

METU Computer Center, “Campus Hardware Infrastructure”,

http://www.cc.metu.edu.tr/index_eng.php?go=tsg&sub=server, last accessed on

November 12, 2008

METU General Secretariat, “Office of Forestation and Landscape Planning”,

http://www.acdm.metu.edu.tr/, last accessed on November 1, 2008

 83

METUTech, http://www.metutech.metu.edu.tr/, last accessed in March 2, 2009

Montello, D. R., 2002, "Cognitive Map-Design Research in the Twentieth Century:

Theoretical and Empirical Approaches", Cartography and Geographic Information

Science, 29, pp. 283-304

Mozilla, “ActiveX”, available at http://support.mozilla.com/en-US/kb/Activex, last

accessed on May 09, 2009

Mizzou, “About University of Missouri”, http://www.missouri.edu/about/, last

accessed on May 10, 2009

Nielsen, J., 2000, “Why You Only Need to Test with 5 Users”, available at

http://www.useit.com/alertbox/20000319.html, last accessed on May 14, 2009

ODTÜ, Bilgi ĠĢlem Dairesi BaĢkanlığı, “ĠBE BroĢürü”, available at

http://www.bidb.odtu.edu.tr/index.php?go=usg&sub=ibe, last accessed on May 9,

2009

OGC Inc., 2006, “OpenGIS Web Map Service (WMS) Implementation Specification,

Version: 1.3.0”, availlable at http://www.opengeospatial.org/standards/wms, last

accessed on December 14, 2009

Ölgen, M. K., Ġnceoğlu, M. M., Cinsdikici, M., Ġkiz, M., 2004, “Ege Üniversitesi

Kampüs Coğrafi Bilgi Sistemi”, 3rd GIS Days in Turkey, Ġstanbul

Putz, S., 1994, “Interactive Information Services Using World-Wide Web Hypertext”,

Computer Networks and ISDN Systems, In Proceedings of the First International

Conference on World Wide Web , Geneva

Ramirez, A. O., 2000, “Three-Tier Architecture”, available at

http://www.linuxjournal.com/article/3508, last accessed on March 6, 2009

Rayner, K., 1998, "Eye Movements in Reading and Information Processing : 20

Years of Research", Psychological Bulletin, Vol. 124, No. 3, 372-422

 84

Seff, G., 2002, “Scalable Vector Graphics and Geographic Information Systems”,

Directions Magazine, available at

http://www.directionsmag.com/article.php?article_id=198&trv=1, last accessed on

March 11, 2009

Shea, G. Y. K., 2001, “A Web-Based Approach to the Integration of Diverse Data

Sources for GIS”, M.Sc. Thesis, Surveying and Spatial Information Systems,

University of New South Wales, Sydney

Su, Y., Slottow, J., Mozes, A., 2000, “Distributing proprietary geographic data on the

world wide web - UCLA GIS Database and Map Server”, Computers & Geosciences

26, p:741-749

SVG Wiki, “Viewer Implementations”, http://wiki.svg.org/Viewer_Implementations,

last accessed on February 1, 2009

Tobii, 2008, "Tobii Studio 1.2 User Manual", available at http://www.tobii.com, last

accessed on May 8, 2009

U of U, 2008, “University of Utah Campus Master Plan”, available at

http://www.facilities.utah.edu/static-

content/facilitiesmanagement/files/pdf/2008_UofU_CMP_1_Introduction.pdf, last

accessed on May 10, 2009

UO, “About the University of Oregon”, http://www.uoregon.edu/about/, last accessed

on May 10, 2009

W3C, 2003, “Scalable Vector Graphics (SVG) 1.1 Specification”, available at

http://www.w3.org/TR/SVG11/, last accessed on May 5, 2009

W3schools, “Introduction to XML”, available at

http://www.w3schools.com/xml/xml_whatis.asp, last accessed on March 10, 2009

 85

APPENDIX A

E-R DIAGRAM OF THE DATABASE IN UML REPRESENTATION

 86

APPENDIX B

USER QUESTIONNAIRE

 87

APPENDIX C

JAVASCRIPT FUNCTIONS

function hide(element_name) {

svgobj =document.embeds['svg_map'].getSVGDocument().getElementById(element_name);
svgobj.setAttributeNS(null,'visibility', 'hidden');

}

function hilite_elem(checkbox, element_name){

svgobj =document.embeds['svg_map'].getSVGDocument().getElementById(element_name);

if (!checkbox.checked){
 svgobj.setAttributeNS(null,'style', 'display:none;fill-rule:evenodd');
 }
else {
 svgobj.setAttributeNS(null,'visibility', 'visible');
 svgobj.setAttributeNS(null,'style', 'display:inline;fill-rule:evenodd'); }

}

function switchpage(select) {

var index;

for(index=0; index<select.options.length; index++)
 if(select.options[index].selected) {
 if(select.options[index].value!="")
 window.location.href=select.options[index].value;
 break;
 }
}

function layerAc() {

obj=document.getElementById("layers");
text1=document.getElementById("on");
text2=document.getElementById("off");
durum=obj.style.display;

if(durum=="none") {
 obj.style.display="block";
 text1.style.display="none";
 text2.style.display="block";
 }

 88

if(durum=="block") {
 obj.style.display="none";
 text2.style.display="none";
 text1.style.display="block";
 }
}

var click = false, object ="";
 var x_obj = 0, y_obj = 0, x_trans = 0, y_trans = 0;
 var pan=false;
 var info=true;

 function zoom(evt) {

 //We find the active button for map navigation, and define its events :
 var type =evt.target.parentNode.getAttribute("id");
 var box=document.getElementById("map").getAttribute("viewBox").split(" ");
 var toolbox=document.getElementById("toolbox");
 var main=document.getElementById("map");
 //define the initial pan and scale values
 var scale_val=1;
 var pan_val=75;
 var pan_scale=50;

 //clicking the pan value disables the pan button
 /*
 if(pan==true)
 info=false;
 */

 //this is the object defined by group <g> named as "all"
 var ponpon=document.getElementById("all");

 //We split scale and translate values from transform definition
 trans = ponpon.getAttributeNS(null , "transform");
 ind=trans.indexOf("scale");

 //find the scale value
 scale=trans.substring(ind,trans.length-1);
 scale=scale.substring(6,scale.length);
 //scale is an array showing scale of x and scale of y of group <g> named as "all"
 var scale = scale.split(",");
 scale[1]=scale[1].replace(")","");

 //find the translate value
 trans = trans.substring(0,ind);
 trans = trans.substring(10,trans.length - 2);
 //translate is an array showing initial x and y coordinates of group <g> named as "all"
 var trans = trans.split(",");
 trans[0]=trans[0].replace("e(","");

 var select1=document.getElementById("pan_selected");
 var select2=document.getElementById("info_selected");

 switch (type) {

 //trans[0]=original x coordinate of the origin
 //trans[1]=original y coordinate of the origin
 //trans0=new x coordinate of the origin
 //trans1= new y coordinate of the origin
 //scale_val=scale factor
 //650=>width of the viewport
 //600=>height of the viewport

 89

 case "zoomin" :
 //alert(scale[0]);
 scale_val=1.25;
 select1.setAttributeNS(null,"visibility","hidden");
 select2.setAttributeNS(null,"visibility","hidden");
 scale0=scale[0]*scale_val;
 scale1=scale[1]*scale_val;
 trans0=parseFloat(trans[0])-parseFloat((scale_val-1)*650/2);
 trans1=parseFloat(trans[1])-parseFloat((scale_val-1)*600/2);
 ponpon.setAttributeNS(null,"transform","translate("+trans0 + "," + trans1 +")
scale("+scale[0]*scale_val+","+scale[1]*scale_val+")");
 break;

 case "zoomout" :
 scale_val=0.8;
 select1.setAttributeNS(null,"visibility","hidden");
 select2.setAttributeNS(null,"visibility","hidden");
 trans0=parseFloat(trans[0])+parseFloat((1/scale_val-1)*650/2);
 trans1=parseFloat(trans[1])+parseFloat((1/scale_val-1)*600/2);
 ponpon.setAttributeNS(null,"transform","translate("+trans0 + "," + trans1 +")
scale("+scale[0]*scale_val+","+scale[1]*scale_val+")");
 break;

 case "fullextent" :
 select1.setAttributeNS(null,"visibility","hidden");
 select2.setAttributeNS(null,"visibility","hidden");
 ponpon.setAttributeNS(null,"transform","translate(-100,-150)
scale(1.5,1.5)");
 break;

 case "pan":
 //SVGDocument = LoadEvent.target.ownerDocument
 //top.document.embeds[0].body.style.cursor='move';
 select2.setAttributeNS(null,"visibility","hidden");
 select1.setAttributeNS(null,"visibility","visible");

 pan=true;
 info=false;
 break;

 case "info":
 info=true;
 select1.setAttributeNS(null,"visibility","hidden");
 select2.setAttributeNS(null,"visibility","visible");
 break;

 case "northarrow":
 //alert(main.filename);
 //window.focus();
 //self.print();
 //toolbox.setAttributeNS(null,"visibility","hidden");
 //main.print();
 //toolbox.setAttributeNS(null,"visibility","visible");
 //setTimeout("window.print();",5000);
 break;

 case "south":
 trans0=parseFloat(trans[0]);
 trans1=parseFloat(trans[1])-pan_val;
 ponpon.setAttributeNS(null,"transform","translate("+trans0 + "," + trans1 +")
scale("+scale[0]*scale_val+","+scale[1]*scale_val+")");
 break;

 case "east":
 trans0=parseFloat(trans[0])+pan_val;

 90

 trans1=parseFloat(trans[1]);
 ponpon.setAttributeNS(null,"transform","translate("+trans0 + "," + trans1 +")
scale("+scale[0]*scale_val+","+scale[1]*scale_val+")");
 break;

 case "west":

 trans0=parseFloat(trans[0])-pan_val;
 trans1=parseFloat(trans[1]);
 ponpon.setAttributeNS(null,"transform","translate("+trans0 + "," + trans1 +")
scale("+scale[0]*scale_val+","+scale[1]*scale_val+")");
 break;

 case "north":
 trans0=parseFloat(trans[0]);
 trans1=parseFloat(trans[1])+pan_val;
 ponpon.setAttributeNS(null,"transform","translate("+trans0 + "," + trans1 +")
scale("+scale[0]*scale_val+","+scale[1]*scale_val+")");
 break;

 return pan;
 return info;
 }

 }

function onmouseover(evt) {

 //Mozilla sorunu icin sadece binalari aliyoruz,yoksa hepsi yanip sonuyor

 if(evt.target.parentNode.getAttribute("id")=="academic") {
 var elem = evt.target;
 elem.setAttributeNS(null,"fill-opacity",0.5);
 }

 node=evt.target.ownerDocument.getElementById("buildingName");
 recto=evt.target.ownerDocument.getElementById("infocan");

 new_x=evt.clientX;
 new_y=evt.clientY;

b_name=evt.target.getAttributeNS(null,"name");
 node.firstChild.nodeValue=b_name;
 if(b_name!="")
 recto.setAttributeNS(null,'visibility', 'visible');

 }

 function onmouseout(evt) {
 var elem = evt.target;
 elem.setAttributeNS(null,"fill-opacity",1);
 node=evt.target.ownerDocument.getElementById("buildingName");
 recto=elem.ownerDocument.getElementById("infocan");
 node.firstChild.data=null;
 recto.setAttributeNS(null,'visibility', 'hidden');

 }

 91

function clicked(evt)
{

 if(pan==true) {
 click = true;

 object = evt.target.parentNode.parentNode;
 //alert(object.getAttributeNS(null , "id"));
 trans = evt.target.parentNode.parentNode.getAttributeNS(null , "transform");
 ind=trans.indexOf("scale");

 scale=trans.substring(ind,trans.length-1);
 scale=scale.substring(6,scale.length);
 scale = scale.split(",");
 scale[1]=scale[1].replace(")","");

 trans = trans.substring(0,ind);
 trans = trans.substring(10,trans.length - 2);
 //alert(trans);
 trans = trans.split(",");
 trans[0]=trans[0].replace("e(","");
 x_trans = trans[0] - 0;
 y_trans = trans[1] - 0;
 x_obj = evt.screenX - 0;
 y_obj = evt.screenY - 0;

 }
 var gok=evt.target.parentNode.getAttribute("id");
 if(info==true)

 var data=evt.target.getAttributeNS(null,"id");

 if(data) {
 if(gok=='transportation') {
 var url="http://www.gis.metu.edu.tr/transport.php?data="+data;
 x=300;
 y=150;
 }
 else if(gok=='parking') {
 var url="http://www.gis.metu.edu.tr/parking.php?data="+data;
 x=350;
 y=150;
 }
 else {
 var url="http://www.gis.metu.edu.tr/building.php?data="+data;
 x=420;
 y=500;
 }

 mywindow=open(url,"mywindow","status=0,toolbar=0,location=0,menubar=0,scrollbars=yes,wi
dth="+x+", height="+y);

 }

}

 function move_object(evt)
{
if (click)
 {

 92

 xm = evt.screenX - 0
 ym = evt.screenY - 0

 object.setAttributeNS(null,"transform","translate("+(x_trans + xm - x_obj) + "," + (y_trans +
ym - y_obj) +") scale("+scale[0]+","+scale[1]+")")
 }
}

 93

APPENDIX D

PHP CODES

File : embed.php

<?
 header("Content-type: image/svg+xml");
 session_start();
 echo '<?xml version="1.0" ?>';
 echo '<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"
"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">';

include("connect.php");
include("php_functions.php");

?>

<svg width="605" height="610" viewBox="0 0 605 610" enable-background="new 0 0 605 610"
version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">

<svg width="605" height="605" viewBox="0 100 605 605" id="map" version="1.1"
xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">

<symbol id="broadLeave" overflow="visible"
 style="fill:none;stroke:green;stroke-width:2;">
 <path d="M0 15 l0 -10"/>
 <path d="M0 5 a6 6 0 1 1 -3.5 -10
 a6 6 0 1 1 7 0 a6 6 0 1 1 -3.5 10z"/>
</symbol>

<symbol id="coniferous" overflow="visible" style="fill:green;stroke:green;stroke-width:2">

 <path d="M0 -15 l0 30"/>
 <path d="M0 -15 q0 3.5 5 3.5"/>
 <path d="M0 -15 q0 3.5 -5 3.5"/>

 <path d="M0 -9 q0 6 8 6"/>
 <path d="M0 -9 q0 6 -8 6"/>
 <path d="M0 0 q0 7 10 7"/>
 <path d="M0 0 q0 7 -10 7"/>

 </symbol>

<symbol id="bus">
<image xlink:href="mapicons/busstop.gif" width="3" height="4" />
</symbol>

 94

<defs>
<linearGradient id="ok" x1="0%" y1="0%" x2="0%" y2="100%">
<stop offset="0%" style="stop-color:rgb(0,255,255);
stop-opacity:1"/>
<stop offset="100%" style="stop-color:rgb(51,102,153);
stop-opacity:1"/>
</linearGradient>
</defs>

<symbol id="search">
<g transform="scale(0.4,0.3)">
<path
 id="path2540"
 d="M 6.1875 44.5 L 6.1875 56.6875 L 1.09375 56.6875 L 9.59375 67.75 L 18.09375 56.6875 L
12.96875 56.6875 L 12.96875 44.5z"
 style="fill:url(#ok);fill-opacity:1;stroke:#0c58a0;stroke-width:1;stroke-opacity:1" />

</g>

</symbol>

<symbol id="disabled">
<image xlink:href="mapicons/disabled.gif" width="3" height="3" />
</symbol>

<pattern id="pat01" patternUnits="userSpaceOnUse" width="10" height="20">
 <use xlink:href="#broadLeave" transform="translate(5,5) scale(0.2) rotate(20)"/>
</pattern>

<pattern id="pat02" patternUnits="userSpaceOnUse" width="12" height="16">
 <use xlink:href="#coniferous" transform="translate(3,3) scale(0.1)
rotate(10)"/>
 </pattern>

<style type="text/css">
 <![CDATA[

 .road {stroke:#e8e800;stroke-width:0.47994;stroke-miterlimit:10;stroke-linecap:round;
 stroke-linejoin:round;fill:none}
 .roads {stroke:#e8e800;stroke-width:0;fill:#ffffcc}
 .park {stroke:#e8e800;stroke-width:0.1;stroke-miterlimit:10;stroke-linecap:round;
 stroke-linejoin:round;fill:#ffffcc}
 .forrest {stroke:#e8e800;stroke-width:0;fill:url(#pat02)}
 .bank {stroke:#6E6E6E;stroke-width:0.3;stroke-miterlimit:10;stroke-linecap:round;
 stroke-linejoin:round;fill:#cc66cc}
 .building {stroke:#6E6E6E;stroke-width:0.3;stroke-miterlimit:10;stroke-linecap:round;
 stroke-linejoin:round;fill:#8BBBEA}
 .academic {stroke:#6E6E6E;stroke-width:0.3;stroke-miterlimit:10;stroke-linecap:round;
 stroke-linejoin:round;fill:#ffcc99}
 .residential {stroke:#6E6E6E;stroke-width:0.3;stroke-miterlimit:10;stroke-linecap:round;
 stroke-linejoin:round;fill:#B8E5F2}
 .sports {stroke:#6E6E6E;stroke-width:0.3;stroke-miterlimit:10;stroke-linecap:round;
 stroke-linejoin:round;fill:#99CC66}
 .administrative
 {stroke:#6E6E6E;stroke-width:0.3;stroke-miterlimit:10;stroke-linecap:round;
 stroke-linejoin:round;fill:#ffcccc}
 .food
 {stroke:#6E6E6E;stroke-width:0.3;stroke-miterlimit:10;stroke-linecap:round;
 stroke-linejoin:round;fill:#ccccff}
 .education
 {stroke:#6E6E6E;stroke-width:0.3;stroke-miterlimit:10;stroke-linecap:round;
 stroke-linejoin:round;fill:#D7D783}
 .cultural

 95

 {stroke:#6E6E6E;stroke-width:0.3;stroke-miterlimit:10;stroke-linecap:round;
 stroke-linejoin:round;fill:#D79191}
 .technical {stroke:#6E6E6E;stroke-width:0.3;stroke-miterlimit:10;stroke-linecap:round;
 stroke-linejoin:round;fill:#cccccc}

 .area { fill:green}
 .wireless {fill:#FF9933; fill-rule:evenodd; stroke:black; stroke-width:0.2; stroke-miterlimit:10;
 stroke-linecap:round; stroke-linejoin:round
 }
]]>
 </style>
<script type="text/javascript" xlink:href="maptools.js" />

 <g id="all" onmousedown="if (click==false) clicked(evt); else click=false;"
onmousemove="move_object(evt)" onmouseup="click=false"
 transform="
 <?

 if($_GET["x"] && $_GET["y"]) {
 $x=$_GET["x"];
 $y=$_GET["y"];
 $id=$_GET["id"];
 echo "translate($x,$y) scale(3,3)";
 //echo "translate(0,0) scale(1.5,1.5)";
 }
 else
 echo "translate(-100,-150) scale(1.5,1.5)";
 ?>
 ">

<g id="rect">
<rect x="10" y="100" width="550" height="500" style="fill:white" />
</g>

<g id="raster" visibility="hidden">
<rect x="10" y="100" width="550" height="500" style="fill:white" />
<image name="Zoom Out" xlink:href="quickbird.jpg" x="0" y="0" width="595" height="842" />
</g>

<g id="base" visibility="visible">
<?

$sql="select * from base_area";
$result=@pg_query($baglanti, $sql);
while($row=pg_fetch_array($result)) {
echo "<path fill=\"#DDFABF\" d=\"";
echo $row["path"];
echo "\" />";
}

$sql="select * from forest_path";
$result=@pg_query($baglanti, $sql);
while($row=pg_fetch_array($result)) {
echo "<path fill=\"#DDFABF\" d=\"";
echo $row["path"];
echo "\" />";
echo "<path class=\"forrest\" d=\"";
echo $row["path"];
echo "\" />";
}
?>
</g>

 96

<g id="roads">
<?

$sql="select * from roads";
$result=@pg_query($baglanti, $sql);
while($row=pg_fetch_array($result)) {
echo "<path class=\"roads\" d=\"";
echo $row["path"];
echo "\" name=\"Road";
echo "\" id=\"";
echo $row["rid"];
echo "\" />";
}

$sql="select * from refuge_path";
$result=@pg_query($baglanti, $sql);
while($row=pg_fetch_array($result)) {
echo "<path fill=\"#DDFABF\" d=\"";
echo $row["path"];
echo "\" />";
}
?>

</g>

<g id="parking">
<?
$sql="select * from parking_path";
$result=@pg_query($baglanti, $sql);
while($row=pg_fetch_array($result)) {
echo "<path class=\"park\" d=\"";
echo $row["path"];
echo "\" name=\"Parking space";
echo "\" id=\"";
echo $row["pid"];
echo "\" />";
}

?>

</g>
<?
function building($type,$class,$lang) {

 $baglanti=connect();

 $sql="SELECT * FROM building_path,building_info
 WHERE type_id in ($type)
 AND building_info.bid=building_path.bid";
 $result=@pg_query($baglanti, $sql);

 while($row=pg_fetch_array($result)) {

 if($lang=='tr')
 $name=$row["name_tr"];
 else
 $name=$row["name"];

 echo "<path class=\"$class\" d=\"";
 echo $row["path"];
 echo "\" name=\"";
 echo $name;

 97

 echo "\" id=\"";
 echo $row["bid"];
 echo "\" />";
 }
}

?>

<g id="academic" onmouseover="onmouseover(evt)" onmouseout="onmouseout(evt)"
visibility="visible">
<?

//Akademic buildings
building('1','academic','eng');

?>
</g>

<g id="administrative" onmouseover="onmouseover(evt)" onmouseout="onmouseout(evt)">
<?
//Administrative buildings
building('2','administrative',$_GET["lang"]);
?>
</g>

<g id="food" onmouseover="onmouseover(evt)" onmouseout="onmouseout(evt)">
<?
//Food, shopping, health
building('7,8,12','food',$_GET["lang"]);

?>
</g>

<g id="bank" onmouseover="onmouseover(evt)" onmouseout="onmouseout(evt)">
<?
//Bank and ATM
building('3','bank',$_GET["lang"]);
?>
</g>

<g id="sports" onmouseover="onmouseover(evt)" onmouseout="onmouseout(evt)" visibility="visible">
<?
//Sport areas
building('14','sports',$_GET["lang"]);
?>
</g>

<g id="technical" onmouseover="onmouseover(evt)" onmouseout="onmouseout(evt)"
visibility="hidden">
<?
//Technical buildings
building('15','technical',$_GET["lang"]);
?>
</g>

<g id="residential" onmouseover="onmouseover(evt)" onmouseout="onmouseout(evt)"
visibility="visible">
<?
//Housings and Dormitories
building('5,11','residential',$_GET["lang"]);

 98

?>
</g>

<g id="cultural" onmouseover="onmouseover(evt)" onmouseout="onmouseout(evt)">
<?
//Cultural and Social
building('4,13','cultural',$_GET["lang"]);
?>
</g>

<g id="research" onmouseover="onmouseover(evt)" onmouseout="onmouseout(evt)"
visibility="visible">
<?
//METUTech and Research
building('9,10','building',$_GET["lang"]);

?>
</g>

<g id="education" onmouseover="onmouseover(evt)" onmouseout="onmouseout(evt)"
visibility="hidden">
<?

//Education
building('6','education',$_GET["lang"]);

?>
</g>

<g id="disabled" visibility="hidden">

<?

$sql="(select path from building_facilities bf, building_path b
 where bf.bid=b.bid
 and type_id in (26,27,28))
 union
 (select path from parking_path where disabled=1)
 ";
$result=@pg_query($baglanti, $sql);
while($row=pg_fetch_array($result)) {

$coords=center($row["path"]);
$x=$coords[0]-1;
$y=$coords[1]-1;

echo "<use x=\"$x\" y=\"$y\" xlink:href=\"#disabled\" />";

}

?>

</g>

 99

<g id="transportation" onmouseover="onmouseover(evt)" onmouseout="onmouseout(evt)"
visibility="hidden">
<?

$sql="select * from transportation";
$result=@pg_query($baglanti, $sql);
while($row=pg_fetch_array($result)) {
 echo "<use x=\"";
 echo $row["x"]+3;
 echo "\" y=\"";
 echo $row["y"]-3;
 echo "\" xlink:href=\"#bus\"";
 echo " id=\"";
 echo $row["tid"];
 echo "\" name=\"Transportation point";
 echo "\" />";
}

?>

</g>

<g id="searchresult" onmouseover="onmouseover(evt)" onmouseout="onmouseout(evt)">
<?
$sql="SELECT * FROM building_path,building_info
 WHERE building_path.bid=".$_GET["id"]."
 AND building_info.bid=building_path.bid";
//$sql="select bid,path from group where bid=".$_GET["id"]."";
$result=@pg_query($baglanti, $sql);

while($row=pg_fetch_array($result)) {
echo "<path fill=\"#FF3333\" d=\"";
echo $row["path"];
echo "\" name=\"";
echo $row["name"];
echo "\" id=\"";
echo $row["bid"];
echo "\" />";
$path=$row["path"];
}

$coords=center($path);
$x=$coords[2]-4;
$y=$coords[3]-21;

echo "<use x=\"$x\" y=\"$y\" xlink:href=\"#search\" />";

?>

</g>

</g>
 <g id="metin">
<rect x="25" y="130" height="25" width="500" fill="white" visibility="hidden" id="infocan"
fill-opacity="0.5" />
<text x="30" y="147" font-family="arial" font-size="14" font-weight="bold" id="buildingName"
fill="navy"> </text>

 </g>

</svg>

 100

<rect x="12" y="5" width="580" height="596" style="fill:none;stroke:#698BAC;stroke-width:25; fill-
opacity:0" />
<g onclick="zoom(evt)" id="toolbox" onmouseover="onmouseover(evt)"
onmouseout="onmouseout(evt)" visibility="visible">

 <rect x="0" y="10" width="65" height="255"
style="fill:#ffffff;stroke:#cccccc;stroke-width:5;" />

 <image name="Zoom Out" xlink:href="mapicons/zoomout.gif" x="0" y="0"
width="52" height="45" />

 <image name="Zoom In" xlink:href="mapicons/zoomin.gif" x="0" y="0"
width="52" height="45" />

 <image name="Full View" xlink:href="mapicons/fullextent.gif" x="0" y="0"
width="52" height="45" />

 <image name="Move" xlink:href="mapicons/pan.gif" x="0" y="0" width="52"
height="45" />

 <image name="Info" xlink:href="mapicons/info.gif" x="0" y="0" width="52"
height="45" />

 <image name="Go to West" xlink:href="mapicons/west.jpg" x="0" y="0" width="25"
height="566" />

 <image name="Go to North" xlink:href="mapicons/north.jpg" x="0" y="0"
width="606" height="30" />

 <image name="Go to East" xlink:href="mapicons/east.jpg" x="0" y="0" width="25"
height="566" />

 <image name="Go to South" xlink:href="mapicons/south.jpg" x="0" y="0"
width="606" height="30" />

 <image id="North Arrow" xlink:href="mapicons/north.gif" x="0" y="0"
width="42" height="42" opacity="0.8" />

 <image id="Move" xlink:href="mapicons/pan_selected.gif" x="0" y="0"
width="52" height="46" />

 <image id="Info" xlink:href="mapicons/info_selected.gif" x="0" y="0"
width="52" height="45" />

 </g>
</svg>

 101

File : php_functions.php

<?

//x,y coordinatlarini ayiklayan fonksiyon
 function path($path) {
 $coord=explode("L",$path);
 $coord=explode("M",$coord[0]);
 $coord=explode(",",$coord[1]);
 $x=explode(".",$coord[0]);
 $x=$x[0];
 $y=explode(".",$coord[1]);
 $y=$y[0];
 $transx=315-3*$x;
 $transy=400-3*$y;
 $result=array("$transx", "$transy","$x","$y");
 return $result;
 }

//center of the polygon'u bulur

 function center($var) {

 //Delete M
 $var = substr($var, 1);
 //Replace M's with L, if any :
 $var=str_replace("M","L",$var);
 //Delete z
 $var = str_replace("z","",$var);

 //get rid of L
 $var=explode("L",$var);

 for($i=0;$i<count($var);$i++) {
 $erey=explode(",",$var[$i]);
 $x[$i]=$erey[0];
 $y[$i]=$erey[1];
 }

 $x_org=$x;
 $y_org=$y;

 sort($x);
 sort($y);
 $minx=$x[0];
 $miny=$y[0];
 rsort($x);
 rsort($y);
 $maxx=$x[0];
 $maxy=$y[0];

 for($k=0;$k<count($y_org);$k++) {
 if ($y_org[$k]==$miny) {
 $key=$k;
 break;
 }
 }

 $xy=$x_org[$key];

 $avex=($minx+$maxx)/2;

 102

 $avey=($miny+$maxy)/2;

 $result=array("$avex", "$avey","$xy","$miny");
 return $result;

 }

 function seticonv($var) {
 return iconv("UTF-8", "ISO-8859-9", $var);

 }

 function parking($var,$id,$type) {
 include("connect.php");
 if($var=='on')
 $sql="update parking_path set $type=1 where pid=$id";
 else
 $sql="update parking_path set $type=0 where pid=$id";
 pg_query($baglanti,$sql);

}
?>

