

DISTRIBUTED CONTROL SYSTEM FOR CNC MACHINE TOOLS

THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

FURKAN A. KANBUROĞLU

IN PARTIAL FULFILMENTS OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

MECHANICAL ENGINEERING

JUNE 2009

Approval of the thesis:

DISTRIBUTED CONTROL SYSTEM FOR CNC MACHINE TOOLS

submitted by FURKAN A. KANBUROĞLU in partial fulfillment of the

requirements for the degree of Master of Science in Mechanical Engineering,

Middle East Technical University by,

Prof Dr. Canan ÖZGEN __________________

Dean, Graduate School of Natural and Applied Sciences

 Prof Dr. Suha ORAL __________________

Head of Department, Mechanical Engineering

Asst. Prof. Dr. Melik DÖLEN __________________

Supervisor, Mechanical Engineering Dept., METU

 Asst. Prof. Dr. A. Buğra KOKU __________________

Co-Supervisor, Mechanical Engineering Dept., METU

 Examining Committee Members:

 Prof. Dr. S. Engin KILIÇ __________________

Mechanical Engineering Dept., METU

 Asst. Prof. Dr. Melik DÖLEN __________________

Mechanical Engineering Dept., METU

Asst. Prof. Dr. Buğra KOKU __________________

Mechanical Engineering Dept., METU

 Asst. Prof. Dr. Ġlhan KONUKSEVEN __________________

Mechanical Engineering Dept., METU

Assoc. Prof. Dr. Veysel GAZĠ _________________

Ectrical and Electronics Engineering Dept., TOBB ETU

 Date: 11.05.2009

iii

PLAGIARISM

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

 Name, Last Name: Furkan A. KANBUROĞLU

 Signature:

iv

ABSTRACT

DISTRIBUTED CONTROL SYSTEMS FOR CNC MACHINE TOOLS

Kanburoğlu, Furkan A.

M.S. Department of Mechanical Engineering

Supervisor: Asst. Prof. Dr. Melik DÖLEN

Co-supervisor: Asst. Prof. Dr. Buğra KOKU

June 2009, 136 Pages

―Numerically Controlled‖ (NC) machine tools, which are automatically operated by

encoded (digital) commands, are capable of machining components with quality and

quantity. Manufacturing industry heavily depends on these machines. Many

different control architectures have been adapted in today’s CNC technology.

Centralized control system is quite popular in industry due to its ease of

implementation. If the number of controlled axes on a CNC machine tool (>3),

increases so does the computational burden on the central processors. Hence, more

powerful processors are needed. An alternative architecture, which is not commonly

used in CNC technology, is the decentralized (distributed) control. In this topology,

the tasks handled by the distributed controllers that are interconnected to each other

by a communication network. As the need arises, a new controller can be added

easily to the network without augmenting the physical configuration. Despite its

v

attractive features, this architecture has not been fully embraced by the CNC

industry. Synchronization among the axes in the coordinated motion is proven to be

quite challenging.

In this thesis, alternative distributed controller architecture was proposed for CNC

machine tools. It was implemented on a 3-axis CNC milling machine. Open-loop

control performance was investigated under various conditions. Different

communication protocols along with different physical communication interfaces

and a number of controller hardware were devised. An industry-standard network

(RS-485) was set up by interconnecting these distributed controllers. Different data

transmission protocols were devised in order to establish appropriate communication

methods. Also, computer software (a.k.a. graphical user interface), which can

coordinate the interconnected controllers, interpret NC part programs and generate

reference position data for each axis, was designed within the scope of this thesis.

Keywords: Distributed Motion Control, Centralized Control, Networked Control

System, Communication Protocols, CNC Machine Tools.

vi

ÖZ

SAYISAL DENETĠMLĠ TAKIM TEZGAHLARI ĠÇĠN DAĞITIK HAREKET

KONTROL SĠSTEMĠ

Kanburoğlu, Furkan A.

Yüksek Lisans, Makina Mühendisliği Bölümü

Tez Yöneticisi: Yard. Doç. Dr. Melik DÖLEN

Yardımcı Tez Yöneticisi: Yard. Doç. Dr. Buğra KOKU

Haziran 2009, 136 Sayfa

Bilgisayar denetimli (CNC) takım tezgahları sayısal olarak kodlanmıĢ komut

dizinlerini otomatik olarak çalıĢtırıp, yüksek miktar ve kalitede parça iĢleyebilen

makina sistemleridir. Bu nedenle, bu tip makinalar üretim endüstrisi için

vazgeçilmez niteliktedir. Gününüz CNC sistemlerinde çeĢitli kontrol mimarileri

kullanmaktadır. Bunlardan biri de merkezi kontrol sistemleridir ve endüstriyel

uygulamalarda kolay tatbik edilebildiklerinden çokca kullanılmaktadır. Hiç Ģüphe

yok ki CNC takım tezgahlarında denetlenecek eksen sayısı arttıkça (>3) merkezi

kontrol sisteminin üzerindeki yük de artmaktadır. Bunun yerine, dağıtık kontrol

sistemleri, CNC iĢlem merkezlerinde bir alternatif olarak tercih edilebilir. Bu kontrol

sistemi yapısında iĢlemler dağıtık denetleyicilerle yapılmaktadır. Bu dağıtık

denetleyiciler bir iletiĢim ağı ile birbirlerine bağlanarak, tanımlanan bir iletiĢim

vii

protokolüyle haberleĢmektedirler. Eğer gerekli görülürse, yeni bir denetleyici bu

iletiĢim ağına kolayca dahil edilebilir ve bu ekleme sistemin bütününe (baĢka bir

deyiĢle diğer denetleyicilere) ek bir yük getirmez. Tüm bu olumlu özelliklerine

karĢın, bu yapı CNC üreticileri tarafından pek tercih edilmemektedir. Bu sistemde,

koordinasyon içinde hareket ettirilmesi gereken eksenlerin eĢgüdümü çok da kolay

olmayan bir konudur.

Bu tez çalıĢmasında, bilgisayar destekli takım tezgahları için alternatif bir dağıtık

kontrol sistemi önerilmiĢtir. Önerilen bu sistem, 3 eksenli bir freze tezgahına

uygulanmıĢ, çeĢitli koĢullar altında bu sistemin açık döngü kontrol performansı

incelenmiĢtir. ÇalıĢma esnasında değiĢik iletiĢim protokolleri ile kontrol donanımları

geliĢtirilmiĢtir. Ortaya konan kontrol donanımları birbirlerine elektronik ileitĢim

yöntemleriyle bağlanarak, kontrol ağları oluĢturulmuĢtur. Tez çalıĢması kapsamında,

farklı protokoller denenerek, en uygun iletiĢim yöntemleri araĢtırılmıĢtır. Ayrıca,

denetleyiciler arasında kordinasyonun sağlaması, kullanıcı tarafından girilen parça

programlarının yorumlanması ve referans konum komutlarının üretilmesi için bir

bilgisayar yazılımı (bir baĢka adıyla grafik kullanıcı arayüzü) geliĢtirilmiĢtir. Ayrıca,

bu bilgisayar programını kullanılarak, çeĢitli interpolasyon algoritmaları da

sınannıĢtır.

Anahtar Kelimeler: Dağıtık Hareket Kontrolü, Merkezi Kontrol, ġebekelenmiĢ

Kontrol Sistemleri, ĠletiĢim Protokolleri, CNC Takım Tezgahları.

viii

 Dedicated to a brand new life.

ix

ACKNOWLEDGEMENTS

I express sincere appreciation to Asst. Prof. Dr. Melik Dölen and Asst. Prof. Dr.

Buğra Koku for their perfect guidance, endless encouragement, trust and support

throughout this thesis.

I wish to thank to my friends Onur YARKINOĞLU, Ergin KILIÇ, my colleagues

Bilal BAYRAM, Çağrı ĠLÇE, Tacettin ÖZTÜRK, Ufuk ÖZGEN for their support,

friendship and moral assistance.

I am most grateful to my beloved life partner Tuğba MENZĠR for her extraordinary,

never ending support, tolerance and understanding. Also, I offer sincere thanks to my

family for their endless support and encouragement.

Finally, I want to thank SPARC GROUP for financial and technical support for this

thesis.

x

TABLE OF CONTENTS

PLAGIARISM .. iii

ABSTRACT .. iv

ÖZ ……. ... vi

ACKNOWLEDGEMENTS .. ix

TABLE OF CONTENTS ... x

LIST OF FIGURES .. xiii

LIST OF TABLES ... xv

LIST OF SYMBOLS .. xvi

CHAPTER 1 INTRODUCTION ... 1

 1.1 Introduction ... 1

 1.2 Objective of Thesis ... 4

 1.3 Outline of the Thesis ... 5

CHAPTER 2 LITERATURE SURVEY .. 7

 2.1 Introduction ... 7

 2.2 Distributed Control Systems ... 8

 2.3 Networked Control Systems and Time Delays ... 10

 2.4 Synchronization .. 15

 2.5 Research Opportunities ... 16

CHAPTER 3 COMMUNICATION SYSTEMS AND PROTOCOL

DEVELOPMENT .. 18

 3.1 Introduction ... 18

 3.2 Data Transmission .. 18

 3.2.1 Single Ended Data Transmission ... 19

 3.2.2 Differential Data Transmission .. 20

 3.3 Data Transmission Topologies ... 21

 3.3.1 Point-to-Point (Simplex) .. 22

 3.3.2 Multi-drop (Distributed, Simplex) ... 22

 3.3.3 Multipoint (Multiplex) ... 23

 3.4 Physical Communication Interfaces ... 24

 3.4.1 EIA – 232 ... 24

xi

 3.4.2 EIA – 422 ... 26

 3.4.3 EIA – 485 ... 26

 3.4.4 CAN .. 26

 3.5 Communication Protocols ... 27

 3.5.1 TCP/IP .. 27

 3.5.2 MODBUS ... 28

 3.5.3 MACRO ... 29

 3.5.4 SERCOS ... 30

 3.6 Developed Communication Protocols .. 32

 3.6.1 Bidirectional Protocol ... 32

 3.6.2 Unidirectional Protocol .. 35

 3.6.3 Unidirectional Protocol with Communication Between Slaves 38

 3.7 Distributed Controller Scheme ... 39

 3.7.1 Method A .. 39

 3.7.2 Method B .. 41

 3.7.3 Method C .. 43

 3.8 Summary ... 45

CHAPTER 4 CONTROL SYSTEM HARDWARE ARCHITECTURE 46

 4.1 Introduction ... 46

 4.2 Hardware Architecture .. 47

 4.3 Firmware ... 56

 4.4 Summary ... 57

CHAPTER 5 CNC MACHINE TOOL AND APPLICATION 58

 5.1 Introduction ... 58

 5.2 General Structure of the CNC Milling Machine ... 58

 5.3 STARMILL-ATC Control System ... 61

 5.4 Application of Developed Control System ... 65

 5.5 Performance Study .. 67

 5.6 Summary ... 83

CHAPTER 6 GRAPHICAL USER INTERFACE AND ITS FEATURES 84

 6.1 Introduction ... 84

 6.2 FMILL Software Program of SPARCMILL ... 86

 6.3 Machine .dll .. 88

 6.4 NC Command Interpreter.. 90

xii

 6.5 Reference-Pulse Interpolator... 90

 6.5.1 Rapid Motion .. 92

 6.5.2 Linear Motion ... 93

 6.5.3 Circular Motion .. 95

 6.6 Verification of the Interpolator ... 97

 6.7 Summary ... 99

CHAPTER 7 CONCLUSION AND FUTURE WORK .. 100

 7.1 Conclusion .. 100

 7.2 Future Work .. 101

APPENDIX – A Developed Hardware Architectures ... 104

 A.1. First Architecture .. 104

 A.2. Second Architecture .. 109

 A.3. Third Architecture ... 113

APPENDIX – B Firmware of dsPIC30F4011 .. 117

APPENDIX – C Firmware of PIC16F88 .. 122

APPENDIX – D Machine DLL .. 124

REFERENCES ... 130

xiii

LIST OF FIGURES

Figure 1.1 Centralized controller architecture ... 2

Figure 1.2 Distributed control architecture .. 4

Figure 2.1 Distributed control system with induced delays [16] 13

Figure 2.2 Distributed control system with buffers [16] .. 14

Figure 3.1 Single ended data transmission [51] ... 19

Figure 3.2 Differential data transfer [51] ... 20

Figure 3.3 Cable configurations [57] ... 21

Figure 3.4 Point-to-point connection [81] .. 22

Figure 3.5 Multi-drop connection [81]... 22

Figure 3.6 Multi-point connection [81] .. 23

Figure 3.7 An EIA-232 stream [56] ... 25

Figure 3.8 General Modbus frame [45] ... 29

Figure 3.9 MACRO ring network [83] .. 30

Figure 3.10 SERCOS interface [84] .. 31

Figure 3.11 Bidirectional protocol data array .. 32

Figure 3.12 Physical configuration of bidirectional protocol 33

Figure 3.13 Evaluation of the bidirectional protocol ... 34

Figure 3.14 Physical configuration for unidirectional protocol 35

Figure 3.15 Evaluation of the unidirectional protocol ... 37

Figure 3.16 Evaluation of software synchronization delay .. 38

Figure 3.17 Physical configuration of unidirectional protocol with communication

between slaves .. 39

Figure 3.18 Remaining computational time ... 41

Figure 4.1 Hardware block diagram... 49

Figure 4.2 Controller PCB ... 50

Figure 4.3 Communication interface ... 51

Figure 4.4 Main controller .. 52

Figure 4.5 Peripheral connections .. 53

Figure 4.6 Signal frequency versus latency ... 54

Figure 4.7 Command signal (2MHz) ... 55

Figure 4.8 Command signal (100kHz) ... 56

Figure 4.9 General description of firmware ... 57

Figure 5.1 Denford' s STARMILL ATC .. 60

Figure 5.2 Feed drive mechanism of STARMILL-ATC ... 61

Figure 5.3 STARMILL-ATC motor drive system ... 62

Figure 5.4 Control cards of STARMILL ... 63

Figure 5.5 A Snapshot from the STARMILL user utility software 64

Figure 5.6 Developed control system .. 65

Figure 5.7 Developed control network .. 66

xiv

Figure 5.8 Experimental setup for the first and second experiments 68

Figure 5.9 Trajectory used in the first experiment. .. 68

Figure 5.10 Positioning errors observed in experiment II. .. 70

Figure 5.11 Sculptured workpiece, experiment III .. 71

Figure 5.12 Dial gage used in experiment III .. 73

Figure 5.13 Relative error from reference point .. 74

Figure 5.14 Johnson gauge sets used in the experiment .. 75

Figure 5.15 Surface plot, circular section .. 76

Figure 5.16 Surface plot, rectangular section... 76

Figure 5.17 Measurement taken on the workpiece .. 77

Figure 5.18 Tracking performance of the circular path ... 78

Figure 5.19 Evaluation of the circular path .. 78

Figure 5.20 Tracking performance of the rectangular path.. 79

Figure 5.21 Workpiece definition in the CAD environment...................................... 80

Figure 5.22 Badly deformed workpiece ... 81

Figure 6.1 Graphical user interface of the FANUC CNC control unit [85] 85

Figure 6.2 FMILL graphical user interface .. 87

Figure 6.3 Block diagram representation of the GUI ... 88

Figure 6.4 Rapid move ... 93

Figure 6.5 Linear move .. 94

Figure 6.6 Circular move ... 96

Figure 6.7 Command generation error ... 98

Figure 6.8 Generated tool path ... 99

Figure A.1 First architecture .. 105

Figure A.2 DCS over RS232 network, first architecture ... 106

Figure A. 3 Photo of the first architecture.. 107

Figure A.4 First architecture, hardware PCB ... 108

Figure A.5 Second architecture .. 110

Figure A.6 DCS over RS232 network, second architecture 111

Figure A.7 Second architecture, hardware PCB .. 112

Figure A.8 Third architecture ... 114

Figure A.9 DCS over RS232 network, third architecture .. 115

Figure A.10 Third architecture, hardware PCB ... 115

Figure A.11 Application of the third architecture .. 116

xv

LIST OF TABLES

Table 3.1 EIA-232 baud rate versus cable length [51]... 24

Table 3.2 Basic elements of Modbus messages [45] ... 29

Table 3.3 Communication syntax .. 36

Table 3.4 Pseudo code for Method A .. 40

Table 3.5 Pseudo code for Method B ... 43

Table 3.6 Pseudo code for Method C ... 44

Table 5.1 STARMILL ATC specifications .. 59

Table 5.2 Program listing of the trajectory in experiment I. 69

Table 5.3 Cutting tool parameters .. 72

Table 5.4 Machining parameters .. 72

Table 6.1 Interpreted NC commands ... 92

xvi

LIST OF SYMBOLS

 Time Delay (µsec)

 Communication delay between sensor and actuator (µsec)

 Computational delay in the controller (µsec)

 Communication delay between controller and actuator (µsec)

 Feed speed (µsec)

 Number of teeth (-)

 Feed rate (m/min)

 Power demand in the cutting operation (kW)

 Depth of cut (mm)

 Width of cut (mm)

 Cutting force per mm
2

(N/mm
2
)

 Machine efficiency (-)

 Average chip thickness (mm)

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

―Numerically Controlled‖ (NC) machine tools, which are automatically operated by

encoded (digital) commands, are capable of machining components with quality and

quantity. Early machine tools were programmed through a program stored on a

(punched) tape while their operating parameters could not be easily changed via a

user friendly interface. Later, part programs were transferred to the machine via a

serial communication protocol from a mainframe computer. These machine tools

with hardwired control systems were eventually evolved in time through the

advancements in digital electronics. The introduction of microcomputers can be

considered as a breakthrough for NC machine tools and has transformed them into

―Computer Numerically Controlled‖ (CNC) machine tools where a number of

onboard computers can be incorporated to the system. As a consequence, the

manufacturing industry, which heavily depends on this technology for high-quality

machining, was radically changed.

Besides superior (tool-position) controls, advancing computer technology has also

offered many versatile utilities such as program editing, file/data management, and

on-board diagnostics. Furthermore, computer-aided design tools enabling

sophisticated machining simulation are also integrated into the CNC units of

2

contemporary machine tools. Facilitating NC part program language, these tools

have eventually evolved to become an indispensible part of manufacturing industry.

Many different control architectures have been adapted in today’s CNC technology.

Among these architectures, centralized control system, which is illustrated in Fig.

1.1, are quite popular in industry due to its ease of implementation.

Central Control

Computer

Actuator Actuator

Sensor Sensor

DatabaseGUI

Figure 1.1 Centralized controller architecture

In such systems, a central processor (usually a DSP) not only generates proper

position commands for each axis but also performs relevant control computations in

real-time. It is obvious that as the number of controlled axis on a CNC machine tool

increases (>3), the computational burden on the central processor swells

considerably. Hence, more powerful processors are then needed to handle the

3

resulting computational load. Despite the fact that fast processors (with multiple

cores) are becoming widely available in the market (at reasonable prices), such an

approach is not economically sound owing to the fact that massive development

efforts (i.e. PCB and firmware design) are usually involved in the design of the

overall system as the needs (and performance expectations) of manufacturing

industry grow on a continuous basis.

An alternative architecture used in CNC technology is a decentralized (distributed)

one as shown in Fig. 1.2. In this topology, the tasks handled by the system are

distributed among various nodes of the network. Each node deals with a particular

operation using a dedicated processor with relatively modest resources. The nodes

are connected to each other by a high-speed serial bus such as RS-485, CAN,

Profibus, Ethernet, etc. Usually, coordination as well as communication of these

nodes are performed by a master processor.

As the need arises, a new node can be added easily to the network without

augmenting the physical configuration. Despite its attractive features, this

architecture has not been fully embraced by the CNC industry owing to the fact that

the synchronization among the axes in the coordinated motion is proven to be quite

challenging. Furthermore, for electronic gearing applications where one or more

axes is to follow the motion of a master axis accurately, the bus system cannot

effectively transfer huge amount of (redundant) data needed to be exchanged among

―electronically‖ coupled axes.

It is critical to note that the brushless DC motors and their drives are the bread-and-

butter of motion control applications. Modern motor drive systems do posses the

ability to control the position of its servomotor accurately provided that appropriate

4

sensors are connected to the drive system. If a dedicated controller for each motor

drive system is deployed to handle not only the data trafficking but also the

synchronization of the axes (via appropriate abstraction), the design of a

decentralized control system, which meets the expectations of the industry, might

become economically feasible.

Actuator GUI Database

Processor Processor Processor

Sensor

Processor

Sensor

Processor

Fieldbus

Node #1 Node #2

Node #3 Node #4

Master

Node

Figure 1.2 Distributed control architecture

1.2 Objective of Thesis

The motivation of this work is to propose a distributed CNC machine controller

architecture, where each actuator of the CNC machining center is controlled by

5

relatively small, but identical distributed controllers. As mentioned earlier, many of

the commercial CNC units employ powerful microcomputers (but expensive) or

embedded PCs which are equipped with industry-standard serial communication

interfaces. Furthermore, such systems employ a custom-tailored graphical user

interface incorporating a number of utilities. Unfortunately, despite their

performance, their architectures do not provide flexibility for small-scale

applications where economical solutions are desperately sought. On the other hand,

employing modest microcontrollers and a standard PC, one can develop an

alternative distributed CNC machine controller with considerable graphical user

interface. Consequently, the objective of this goal is to apply the developed systems

on a three-axis machine tool and is to evaluate the performance of the resulting

system in a number of machining operations.

1.3 Outline of the Thesis

This outline of this thesis is as follows: In Chapter 1, a brief introduction on CNC

machine control systems and their expanded use in manufacturing industry are

presented. In Chapter 2, a survey of research efforts on distributed control systems

are given and the properties of networked control systems concepts are elaborated.

In Chapter 3, a brief summary of the serial communication systems, which lie at the

heart of a distributed motion control system, is given. Then, detailed information

about (prospective) serial-communication interfaces is presented. Devised

communication protocols are also discussed and evaluated in that chapter. In

Chapter 4, a distributed-control architecture is developed and corresponding

firmware is discussed in detail. Chapter 5 deals with the implementation and

performance evaluation of developed distributed controllers to an old CNC milling

6

machine, which formerly utilizes traditional centralized controller architecture, are

represented. In Chapter 6, Graphical User Interface and Machine DLL, a graphical

user interface, which is subjected to operate distributed control system and DLL file

that can be considered as device driver of distributed controllers, are presented in

detail. In Chapter 7, conclusions on results and further research directions are

presented.

7

CHAPTER 2

LITERATURE SURVEY

2.1 Introduction

A major trend of industrial control systems is to integrate computing, communication

and control into different levels of machine [1, 5, 9, 12, 13 and 32]. Traditional

communication architecture, which has been implemented in industry for decades,

utilizes a centralized controller unit that has the ability to integrate sensors and

actuators. Unfortunately, expanding physical setups and expecting enhanced

functionality oftentimes pushes such systems to their limits [3, 17, 20, 21 and 23].

Today, industry requires modularity, decentralization of control, integrated

diagnostics, quick and easy maintenance and low cost to compel their expanding

manufacturing capability [22, 29 and 30]. Introduction of network communication

systems can reduce complex hardware architectures, improve flexibility and

scalability and raise the idea re-configurability and functionality [6, 10, 17 and 25].

Changing communication architecture introduces the time delays which are directly

related to time required for signal conditioning and information processing [2]. Such

characteristics of time delays can be constant, bounded or random [35]. Basically, it

depends on physical attributes of the communication interface, number of nodes

connected to the network and developed communication protocol [26]. However,

analyzing of networking delays is a diverse and progressive research area.

8

Most of the Networked Control Systems research has been focused on two areas:

communication technology and controller design. Simply put, a message transfer

protocol guarantees the network quality where a controller responsible for quality of

performance.

2.2 Distributed Control Systems

Distributed control systems (DCS) are essentially spatially networked embedded

nodes that are interconnected by means of wired and/or wireless communication

infrastructure and protocols interacting with the environment and each other.

Examples of distributed control systems include industrial automation, building

automation, office and home automation, intelligent vehicle systems and advanced

aircraft and spacecraft systems [14, 33 and 34]. Common feature of these

applications is that large number of devices interconnected to each other over a

relatively large area to perform a certain task. It is obvious that the processing load

on a centralized control unit is large if all computations are to be handled by this unit.

Also, a large amount of wiring has to set up to connect all the units to centralized

processor.

Distributed control systems offer an alternative solution. In literature, these systems

are also referred as Networked Control Systems (NCS) where different modules are

able to communicate each other [54]. The development of appropriate control

architectures and associated controller design algorithms for such systems are crucial

for success since the sensors and actuators are frequently distributed over a large area

[19, 41].

9

Distributed control systems are commonly utilized in complex engineering systems

[11, 18 and 24]. Communication networks and sensor networks are considered as the

essential elements of the main infrastructure.

G. Wyeth at al. developed a distributed digital controller for PUMA 560 six DOF

industrial robot arm [17]. In their study, the centralized control system developed

consists of a controller for each joint of which are networked together via a CAN

Bus. A PC provides a user interface for proposed control system. They utilize a

DSP for each controller in order to perform desired joint control operations of the

robot arm. In fact, the CAN bus eliminates complex wiring and increase

functionality of the joint controllers. Note that in modern control systems, tracking

performance is governed by (state) feedback controller gains as well as sampling

frequency. Usually, higher gains combined with high sampling frequency is

desirable for best command tracking performance. Hence, distributed controllers can

be utilized at very high sampling frequencies (20 kHz and up). Furthermore,

diagnostics and debugging of controller system become easier. As far their research

is concerned, the proposed controller, which is simple, cost effective, and easier to

implement, exceeds the performance of the original system.

Similarly, H. A. Thompson et al. demonstrate a distributed aero engine control

system [33]. System is identified as safety critical. Hence, they utilize the dual line

architecture to incorporate more computational power for control and sensing

operations. They also obtain such benefits can be summarized as; retrofitting

capability, improved reliability, and improved diagnostics.

The main goal of the progressive research and development works are united under

the name of the intelligent manufacturing systems [23]. A distributed control system

communicates over a network between its distributed processors. Actions of the

10

distributed controllers are coordinated properly to achieve desired task(s) with

maximum speed and accuracy. Therefore, they interact not only with the

manufacturing environment but also the control system and its elements (sensors).

2.3 Networked Control Systems and Time Delays

The solution of modern control problems is to distribute the processing functions

over networked controllers [4, 17]. Such controllers (called as nodes) of the

distributed/ networked control system share a common communication channel that

generally has a bus topology. The resulting architectures require less wiring than

traditional ones. Therefore, hardware cost decreases dramatically despite increasing

flexibility.

Control systems can be divided into modular subsystems that connect to main system

directly. This modularity results in improved diagnostics and maintenance [15, 33].

As presented earlier, distributed systems has become attractive alternative to

traditional centralized solutions. However, these systems also bring number vital

problems that have to be dealt properly. Otherwise, control system performance will

dramatically degrade.

Two main problems can be stated as addressing and timing [39, 49 and 50]. In a

shared bus network, each data packet has to be augmented by identifiers, headers or

encoded operands that are indicating destination and/or source of the transferred

message. Furthermore, distributed units may have to wait for some amount of time

before they send out a message. Actually, main limitation here is both physical

communication interface and communication protocol being utilized. Based on the

communication protocol, the number of nodes connected to control network may

also degrade the communication performance. That is, time delays inherently

11

present in the network could directly influence the overall performance of the

system. While designing the controller, elements of the communication system (both

protocol and physical communication interface) need to be modeled and have to be

added into the overall system model [6, 31 and 54,].

For several decades, modeling and control of networked systems have been studied.

In general, delays occur during the transmission of information. Large scale systems

(such as telecommunication-, manufacturing-, transportation-, and power generation

systems) can be given as typical examples of time-delay systems [36].

Frequency domain (classical) and time domain (modern) approaches are used to

analyze these systems [53, 55]. The classical approach employs analytical or

graphical methods to identify of the eigenvalues of the characteristic system.

Standard graphical methods such as root locus, Bode, and Nyquist plot are applicable

to find out the corresponding transfer functions. For a discrete-time with time

delays, the system stability can also be identified by root locus analysis in the z-

domain.

Unfortunately, classical approach can be used for mostly simple cases. For systems

exhibiting multi-delay, functional case must be utilized. That is, using the functional

approach, one can derive the delayed differential equations and characterize the

systems. In fact, multiple delays and time varying delays can also be modeled using

this approach and their stability can be analyzed using Lyapunov’s second method

[36, 37 and 53]. Note that most of the applications with time delays are considered

as non deterministic. Therefore, robust controllers can be implemented on the

known systems structure to overcome the delay uncertainty [47].

12

The computation time delay of microprocessor is regarded as another source of

delay. It takes time to execute the instructions in the control firmware. Execution

time has direct effect on the control performance [33, 48].

A networked control system employs a number of sensors and actuators in a network

[38]. Sending commands and receiving data takes time while implementing the

corresponding procedures. The transfer time can either be nearly constant or varying

in a random fashion. Also, another issue for such systems is whether the nodes are

event driven or clock driven [43, 44, 46 and 52]. Event driven nodes start their

activity when an event occurs while the clock driven nodes initiate their activity at

specified time frames. As illustrated in Fig. 2.1, there are essentially three kinds of

time delays in a networked control system:

1. Communication delay between the sensor and controller,

2. computational delay in the controller,

3. communication delay between controller and actuator, .

Time delay, , for the control system includes the sampling of the sensor data,

calculation of the control signal and sending control signal to the actuator node:

 (2.1)

13

Figure 2.1 Distributed control system with induced delays [16]

 Time delays have different characteristics depending on both hardware and

software which need to be modeled. The network delays vary due to networking

load, network protocol based operations (like invoking master or slave nodes) and

physical network failures. Time delay characteristics of control networks installed in

industrial systems can be classified as stochastic, bounded and constant. Simplest

network delay model assumes that delays are constant for all transfers in the

communication network. This can be a good model even if the network has varying

delays. Assigning the worst-case delay or a mean value delay is oftentimes practiced

in this analysis [16]. Designation of such constant delay element is important for

system stability and performance.

Note that a closed-loop system can be transformed into a time invariant one by

introduction of buffers as illustrated in Fig. 2.2 [16]. All nodes are considered as

clocked and synchronized. If buffers are longer than the maximum time delay in the

control system, the system equations turns into

 (2.2)

14

 (2.3)

where is the length in samples of the buffer at the actuator node. If the buffer at

the controller node is assumed to have the length samples, the process output

available for the controller at a time becomes

 (2.4)

In that case, control design problem can be reformulated as a standard sampled data

problem. The information set is available for the calculation of is

 (2.5)

An LQG optimal controller can be designed for this control problem [16]:

 (2.6)

Figure 2.2 Distributed control system with buffers [16]

15

This method handles delays, which are longer than the sampling period. But

evaluated control delays by this method become larger than necessary. It follows

that it is a suitable method for event-driven systems. For time driven systems, the

controller performance dramatically degrades.

2.4 Synchronization

Most distributed systems encountered in practice are asynchronous. Traditional

deterministic, fault tolerant clock synchronization algorithms assume bounded

communication delays [7, 28, 40 and 42]. Thus, they cannot be directly used to

synchronize clocks in asynchronous systems.

Synchronization of distributed nodes is a research area itself. The only purpose of

the clock synchronization is to set the clocks of system nodes to coherent values. In

any distributed system, there exists a coordination and communication requirement

which is particularly important in real-time control applications [8, 16]. Global

coordination and synchronization must be realized with respect to a common basis of

time. However, the only clock that is usually available at each node is local clock of

micro computers utilized. This clock oscillates at a nominal frequency and generates

pulse steams which are subjected to use as increments of the clock counter.

Synchronization of local clock of the distributed controllers is maintained by timed

increments of the controllers’ clock counters so they act together like a centralized

controller. Note that the synchronization may be implemented by either software or

hardware [27].

Sending synchronization signals over communication network can be considered as

software synchronization. On the other hand, hardware synchronization is also an

16

appropriate technique to synchronize system nodes. This method, which requires an

additional wiring just to distribute a global clock signal, can be regarded as very

strict method of synchronization. Theoretically, it is only way to synchronize system

nodes.

2.5 Research Opportunities

Distributed control systems are spatially interconnected systems that have sensors,

actuators and controllers interconnected by communication networks. The

introduction of such systems can address the demands of modern industrial and

commercial systems. The change of the communication architecture from

centralized to the networked/distributed one is proven to be challenging as it

introduces different forms of time delay uncertainty in closed loop system dynamics.

These time delays directly related to computational time required for physical signal

coding and communication processing.

Distributed devices on the network perform control of dedicated operations such as

controlling actuator(s) or conditioning sensor data. Therefore, they interact between

not only the manufacturing environment but also the control system (and its

corresponding elements like sensors). Besides the communication delays, there

exists computational delays that needs to be identified and added up the control

system model. Presented distributed control architectures facilitate communication

networks that are composed of expensive equipments. Besides, they utilize costly

and powerful embedded controllers.

17

The main goal of this research is to look into the (relatively) unexplored aspects of

the above-mentioned systems and develop a decentralized control architecture that is

suitable for ―not-so demanding‖ applications.

18

CHAPTER 3

COMMUNICATION SYSTEMS AND PROTOCOL DEVELOPMENT

3.1 Introduction

As was presented in previous chapter, communication is one of the main challenges

in distributed control systems. Proper selection and implementation of a physical

communication interface with a convenient communication protocol is essential. In

this chapter, serial communication interfaces along with the corresponding protocols

are presented. Then, the developed communication protocols are introduced and

their evaluation is given.

3.2 Data Transmission

Data transmission takes place between data terminal equipment (DTE) and data

circuit terminating equipment (DCE) thru various communication interfaces whose

multi-layer communication protocol specifications are defined with corresponding

standards. In data transmission, there exist two different electrical interface circuits:

single-ended and differential. The definition of these systems follows.

19

3.2.1 Single Ended Data Transmission

The main characteristic of the single-ended data transmission circuits is that data

transmission is performed on a single line and that the logical state of the signal is

interpreted with respect to the ground. Fig. 3.1 illustrates such a circuit.

Figure 3.1 Single ended data transmission [51]

A single-ended transmission circuitry requires only a single line hence this

configuration is very simple, easy to implement and cost effective. Long distances or

noisy environment sometimes forces to add up a better cable shielding and additional

ground lines to system. This configuration is known to have poor noise immunity.

Main problem here is ground wires. They are part of the circuitry and transient

voltages may lead to signal degradation. This results in the misinterpretation of the

signal or false receiver triggering. Also crosstalk may be observed at higher

frequencies.

20

3.2.2 Differential Data Transmission

In this configuration, both receiver and transmitter signal lines are necessary for

differential data transmission. On one line, the actual signal is transmitted where as

the second line is used to carry the inverted form of this signal. The receiver detects

the voltage difference between two transfer lines and switches the output depending

on which magnitude of this potential difference. Fig. 3.2 shows a typical differential

data transmission circuitry.

Figure 3.2 Differential data transfer [51]

As illustrated in Fig. 3.3, a twisted cable pair is exclusively used in these interfaces

because such cable configurations offer noise-immunity benefits over flat- or ribbon

cables. If twisted pair is used, both of the wires are affected by noise sources

equally. The noise produces a common mode signal, which is called each other,

when the difference signal is taken by the receiver [57]. Also, the correct line

termination avoids any unwanted fluctuations and allows the transmission of data at

21

higher rates. With different interface voltages, signal transmission rates can reach up

to 10Gbps.

Figure 3.3 Cable configurations [57]

Although balanced interface circuitry consists of a generator with differential

outputs, balanced transfer lines increases cost of such interfaces. However,

developing this complex interface circuitry with CMOS fabrication process

overcomes this difficulty. Hence, data transceiver chips are widely available in the

market at affordable prices.

3.3 Data Transmission Topologies

In telecommunication technology, there exists data transfer topologies that can be

used when one tries to connect such interfaces among each other. The detailed

descriptions of the topologies follow.

22

3.3.1 Point-to-Point (Simplex)

As shown in Fig. 3.4, point-to-point data transmission topology can be implemented

with one transmitter and one receiver per line. In this topology (which is commonly

referred to as unidirectional data transmission), data can be transmitted in only one

direction.

Figure 3.4 Point-to-point connection [81]

3.3.2 Multi-drop (Distributed, Simplex)

As shown in Fig. 3.5, the multi-drop data transfer topology is obtained when one

transmitter and more than one receiver are used. Since this topology inherits the

characteristics of point-to-point data transmission, data can be transferred along one

direction.

Figure 3.5 Multi-drop connection [81]

23

3.3.3 Multipoint (Multiplex)

As illustrated in Fig. 3.6, this augmented topology enables the bidirectional data

transmission. Here, there exists a transmitter-receiver pair per line. This pair is

called as transceiver.

Figure 3.6 Multi-point connection [81]

24

3.4 Physical Communication Interfaces

In this section, various communication standards used over the afore-mentioned

topologies will be evaluated.

3.4.1 EIA – 232

EIA-232 (Recommended Standard 232) is the most elementary serial communication

protocol that is adapted by the Electronic Industries Association. The latest version

RS-232 C released at the end of 1960s. The signal of the EIA-232 has two logic

levels: high logic (+5V to +15V) and low logic (-5V to -15V). High logic level is

identified by negative voltage levels where low level is defined by positive voltage

levels. According to EIA-232 standards, maximum cable length must have a

maximum capacitance of 2500 pF. In order to limit any reflections that occurred in

rise and fall instances of the signal, maximum slope (gradient) of the signal is limited

to 30V/µs [51]. Note that this allowable gradient also depends on data transfer rate.

High frequency signals do deteriorate significantly if transferred long distances.

Table 3.1 illustrates the cable length baud rate correlation.

Table 3.1 EIA-232 baud rate versus cable length [51]

Baud rate Max cable length [m]

19200 15

9600 150

4800 30

2400 900

25

EIA-232 standard is essentially asynchronous serial communication method where

data bit stream is not sent over a strict time frame. Fig. 3.7 illustrates a stream of

serial data being transferred via EIA-232. Note that the original data stream has to

be augmented with start-, stop-, and error detection bits to guarantee the transmission

of data properly. Each data character starts with an attention bit which is also known

as start bit. Data bits directly follow this start bit. A bit value of 1 (TRUE) causes

negative voltage levels whereas a bit value of 0 (FALSE) represented as a space. For

error detection purposes, one may include a (even or odd) parity bit. Finally, the

transferred data stream is terminated by a stop bit.

Figure 3.7 An EIA-232 stream [56]

26

3.4.2 EIA – 422

Unlike EIA-232, EIA-422 (formerly known as RS 422) allows multi-drop connection

of a driver to (a maximum of) ten receivers. Its data transfer rates can be expanded

up to 35Mbits/s with a (maximum) cable length of 1200m. As stated previously,

higher data transfer rates generally require the reduction of the cable length.

3.4.3 EIA – 485

EIA-485 (RS 485) is the most widely used communication interface for many

industrial data acquisition- and communication systems. TAI/EIA-485 standard

defines the communication half-duplex and differential. 32 nodes are theoretically

possible. According to this standard, the driver must deliver a minimum output

voltage of 1.5V. Common voltage levels may vary between -7V and 12V. Note that

this communication method has high noise tolerance.

3.4.4 CAN

Controlled Area Network (CAN) was introduced by Bosch Co. in 1980 for

automotive applications. It was to replace the knotty signal cable wiring and reduce

them to two – wire bus. In fact, CAN is applicable for appliances that require large

number of small messages in a short period. Unlike other address-based

communication protocols, CAN is message-based system and is especially useful

when system-wide data consistency is required.

27

In CAN, every node on the bus reads the identifier then decides whether or not to

read the rest of the message. When a node wants to transmit a message, it has to

compare its relative priority to that of the network message. If it is less than or equal

to the importance, it has to wait until the bus is clear. ISO 11898 (the CAN

standard) describes the differential and half-duplex data transmission. In this

standard, the maximum cable length is 40 m and a maximum of 30 nodes is allowed

on the bus. Notice that signal transmission rates can reach up to 1Mbps. A single

shielded or unshielded twisted pair cable with 120Ω is also utilized in CAN [33].

3.5 Communication Protocols

A communication protocol is said to be the set of standard rules for data

representation, signaling, authentication, and error detection required to send

information over a communications channel. Communication protocols for digital

computer network communication have features intended to ensure reliable

interchange of data over an imperfect communication channel. Communication

protocol basically follows certain rules so that the system works properly. Next,

popular communication protocols are elaborated.

3.5.1 TCP/IP

Transmission Control Protocol/Internet Protocol (TCP/IP) is also known as Internet

Protocol Suit even though its development began in the 1960s. TCP/ IP was

originally considered for UNIX operating system. It was designed to make network

robust and automatically recover from the failure of any device on the network.

28

Moreover, it allows the construction of very large networks that require little central

management.

TCP operates at the transport layer, the middle layer in the seven layer OSI (open

systems interconnection) reference model. This layer is responsible for maintaining

reliable end-to-end communications across the network. IP, in contrast, is a network

layer protocol, which is the layer just below the transport layer.

On the other hand, the IP protocol deals only with packets (i.e., the most fundamental

unit of TCP/IP data transmission), TCP enables two hosts to establish a connection

and exchange streams of data. TCP guarantees delivery of data and also guarantees

that packets will be delivered in the same order in which they were sent [82].

3.5.2 MODBUS

Modbus is a master–slave serial communications protocol proposed by Modicon. It

was first released in 1979. Most Modbus devices utilize EIA-485 physical

communication interface. But the format of the Modbus messages is independent

from the type of physical interface used. Each Modbus message has four basic

elements which presented in the Table 3.2

http://www.linfo.org/transport_layer.html
http://www.linfo.org/network_layer.html
http://www.linfo.org/network_layer.html
http://www.linfo.org/network_layer.html
http://www.linfo.org/packet.html

29

Table 3.2 Basic elements of Modbus messages [45]

Field Description

Device Address Address of receiver

Function Code Code defining message type

Data Data block

Error Check Test for communication errors

Since Modbus is a master – slave protocol, there is no way for a field device (a slave

node) to transmit any kind of data if it is not requested by master node. Fig. 3.8

represents a general Modbus message frame.

Figure 3.8 General Modbus frame [45]

3.5.3 MACRO

Macro is a distributed machine control communication standard. It stands for motion

and control ring optical and is primarily designed for multiple masters and slaves.

Communication is always initiated by master by sending out data packet with

appropriate address (Fig. 3.9). Next node receives the data stream and checks the

30

address whether the address data is the same as its own local address. Then, the node

takes data from the packet and releases the packet through the ring. If the local

address is different, the node just passes the data without reading. Finally data is

returned to the master. [83]

Figure 3.9 MACRO ring network [83]

3.5.4 SERCOS

The SERCOS standing for serial real-time communication system which is a digital

motion control bus. It is an open controller-to-intelligent digital device interface

that is designed for high-speed serial communication of standardized closed-loop

(real-time) data over a (noise-immune) fiber optic ring (SERCOS I & II) or Industrial

Ethernet cable (SERCOS III). A generic SERCOS interface is illustrated in Fig.

3.10.

31

Figure 3.10 SERCOS interface [84]

In fact, the SERCOS interface reduces connectivity problems in control systems. It

exchanges data between controller and (motor) drives and synchronizes actuators for

precise coordinated moves. Using this interface enables coordinated operation of

controllers built by different manufacturers. Hence, extensive reliability of the

SECROS interface enables flexible, modular and fully distributed controller design.

32

3.6 Developed Communication Protocols

Utilizing EIA-232, full-duplex EIA-422 and EIA-485 communication interfaces

several communication protocols can be developed. First bidirectional approaches

are to be applied on the control network. Then unidirectional protocols will follow.

3.6.1 Bidirectional Protocol

Communication layer of the software handles the communication network. It

produces the interpolated commands for each axis into two byte data and starts the

communication stream. Note that this stream can be regarded as both message- and

address based since the transaction is triggered by data transmission while each

controller (node) in the network fetches the data in the proper position (address) of

the transferred array.

Data array consists of 13 bytes as shown in Fig. 3.11. It can handle a very limited

number of distributed units that are interconnected to each other via EIA-232

communication interface.

Figure 3.11 Bidirectional protocol data array

33

When the stream is received, all controllers receive 13 bytes. According to the info

byte (the first byte of the stream), controller decides on the operating mode.

Relevant (position) command parameters are addressed in the byte array. Note that

the entire tool path of a machine tool is defined by an NC part program. The tool

trajectory is processed and is divided into small line segments that are defined by

positional increments assuming that the velocity along a particular segment

(―feedrate‖) is constant. Physical configuration of the protocol is illustrated in the

Fig.3.12.

MASTER

D

SLAVE #1

R

SLAVE #2

R

SLAVE #3

R

“

Figure 3.12 Physical configuration of bidirectional protocol

As stated earlier, this communication is bidirectional. Hence, the slave nodes cannot

reply to any kind of message. This is a serious drawback of motion control

applications as the user interface needs the status information on slave nodes (axis

controllers). Furthermore, increasing the number of units will also swell the

network’s load. In other words, the quality of system (QoS) will decrease as number

of slave nodes is increased. Experimental results and limitations of the

34

communication protocol is demonstrated in the Fig. 3.13. Notice that the desired

bandwidth of the position control system is 100 Hz within the scope of this study.

In that case, the control algorithm has to be executed in 10ms. According to this

assessment, increased network load dramatically degrades quality of performance

(QoP).

Figure 3.13 Evaluation of the bidirectional protocol

The main advantage of this protocol is that it is extremely simple to implement.

Only one data stream is sufficient for execution. Address definitions are fixed so that

there is no need for additional indicators to address such controllers. On the other

35

hand, increased number of distributed controllers will also increase the number of

bytes in the data stream. Hence, quality of performance (QoP) will degrade with

increased number of controllers. Furthermore, it is not flexible as each controller has

different firmware to extract relevant part from the transmitted data.

3.6.2 Unidirectional Protocol

Unidirectional communication protocol enables the communication between master

and slave devices where their physical communication interface is described in Fig.

3.14.

MASTER

D

SLAVE #1 SLAVE #2 SLAVE #15

R

D
R

D
R

D
R

Figure 3.14 Physical configuration for unidirectional protocol

Utilizing the full-duplex EIA-485 communication, distributed devices can reply to

some requests that are transmitted by master node. By definition, this protocol is

limited to 15 distributed controller units. Each unit facilitates identical firmware

with user selectable unit address. This is a strictly-defined (address-based)

communication protocol which utilizes its own syntax as tabulated in Table 3.3.

Usage of such communication language makes distributed units more flexible.

36

Table 3.3 Communication syntax

Command Explanation

UID + ―0‖ Set unit for data transfer

UID + UID

Set unit as master & prepare for data

transfer

―j‖ + UID Start jogging

―s‖ + UID Unit stop

―h‖ + UID Unit go home position

―r‖ + ―r‖ Reset System

Protocol simply uses two bytes of data that is briefly explained in Table 3.3.

Utilization of the buffer, which needs to be filled with reference position commands

periodically, degrades system’s performance. Accordingly, various communication

speeds were tested to determine the required time for filling buffer up. Fig. 3.15

illustrates the results. While the system is executing predefined commands in the

buffer, the number of nodes in the system does not affect the performance. Host only

transfers a signal when a synchronization request is pending. This constitutes only 3

bytes of data. Assuming that the controller’s sampling period is 100 Hz, the effect of

software synchronization is described in Fig. 3.16. Notice that it is a robust protocol

as the slave nodes can only speak with master node. Therefore, the protocol can be

classified as master-slave protocol.

37

Figure 3.15 Evaluation of the unidirectional protocol

With respect to the advantages, it is a simple (yet flexible) communication protocol

that utilizes master-slave communication. Slave devices can reply transmitted

inquiries by master node. Increased number of distributed nodes does not affect

either QoS or QoP. Furthermore, each controller (slave node) has identical firmware.

On the other hand, a limited number of devices (up to fifteen) can be utilized in this

protocol. Slave nodes cannot transmit any data unless it is requested by master node.

Additionally, slave devices cannot communicate each other.

38

Figure 3.16 Evaluation of software synchronization delay

3.6.3 Unidirectional Protocol with Communication Between Slaves

In this thesis, the devised controller has a reconfigurable communication interface.

Using the jumpers on controllers, EIA-485 communication interface can be

configured as half- or full duplex. Setting communication interface to half-duplex

enables communication between slaves. This enhancement brings the idea of multi-

master communication. This diagram of this arrangement is given in the Fig. 3.17.

As stated earlier, this protocol has its own problems like data collision during

transmission since data transfer line is same for both receive and transfer.

39

MASTER

D

SLAVE #1 SLAVE #2 SLAVE #15

R

D
R

D
R

D
R

Figure 3.17 Physical configuration of unidirectional protocol with communication

between slaves

3.7 Distributed Controller Scheme

During thesis work, various controller implementations have been considered. In

order to determine the best distributed controller design, three controller models

(communication interfaces, protocols) have been developed and implemented. This

section summarizes the development efforts.

3.7.1 Method A

Method A can be considered as brute method for networked control as every single

instruction cycle of reference commands are sent to each distributed controllers by

utilizing a common fieldbus (EIA-232). It is obvious that the proposed method

requires only one directional communication. Hence, the slave nodes are to listen to

only the message being transmitted by the host. Reference position of the each

controller is interpolated and embedded into the transferred message. Unfortunately,

40

the developed communication protocol rejects the message transaction initiated by

slave nodes. Furthermore, this method can be applicable when only a limited

number of devices in the distributed control network is utilized. There is no need for

additional synchronization between slave nodes. Reference position commands,

which are generated by the host PC, can serve as software synchronization signal too.

A real-time operating system should be facilitated on the PC because of the timing

purposes. A pseudo code implementing the code is given as follows:

Table 3.4 Pseudo code for Method A

Void main () {

 // initialization and get unit ID

 ID = InitializeController();

 While(TRUE) {

 If(serial_is_data_in()){

 // read transferred message and encode it

 Data = Read_serial_data(ID);

 // execute transferred message

 Execute(Data);

 }

 }

}

It can be perceived that in Method A, position data is first created as small line

segments. Hence, smaller segments increase precision of the incremental motion

while increasing the network load. Note that EIA-232 supports data transmission

rates up to 115kbps while utilizing 15 nodes. As it is illustrated in Fig. 3.18,

increasing sampling frequency of the control system dramatically shortens the

remaining execution time for the controller algorithm. Hence, this situation pushes

the limits and finally system cannot reproduce any kind of reaction.

41

Figure 3.18 Remaining computational time

3.7.2 Method B

Method B is developed as alternative controller architecture for distributed position

control. It has communication layer, interpolation layer, and position control layer.

Unlike other method, it incorporates several microcomputers, which are dedicated to

handle each layer. A data bus connects all the microcomputers to each other via SPI

communication interface. PC software hosts distributed communication network.

Communication network is based on the EIA-232 physical interface.

Main goal of the Method B, whose pseudo code is given in Table 3.5, is to reduce the

communication needs and does an optimization between computation time and

communication performance. Notice that all displacements, which are performed by

42

actuators, can be modeled as small line and arc segments. Unlike Method A, which

uses only small line segments, the Method B incorporates constant coefficient

difference equations (CCDE) of prescribed motions. Machine tool movements,

which are generally described by Eqn. (3.1) and Eqn. (3.2) (for circular patterns) and

by Eqn. (3.3) and Eqn. (3.4) (for the linear patterns), do incorporate constant

parameters (A, B, …, G) of which are then transferred by PC host as command

signals.

 (3.1)

 (3.2)

 (3.3)

 (3.4)

In conclusion, the PC software (master node) does the interpretation of the position

commands (i.e. computing the coefficients of the CCDEs) while the controllers

(slave nodes) directly handle the interpolation. Notice that the slave nodes can listen

to the message of the master but they are able to reply inquiries of the master as well.

43

Table 3.5 Pseudo code for Method B

#INT_SERIAL

Void Inquiry() {

 If(host_inquiries_position()) {

 Send_serial_data(Position0);

 }

}

Void main () {

 // initialization and get unit ID

 ID = InitializeController();

 While(TRUE) {

 If(serial_is_data_in()){

 // read transferred message and encode it

 Data = Read_serial_data(ID);

 // use previous position data and interpolate

 Position1 = Interpolate(Position0,Data);

 // execute transferred message

 Execute(Position1);

 // now data history is replaced

 Position0 = Position1;

 }

 }

}

3.7.3 Method C

Method C inherits the best features of the prior techniques. That is, just like Method

A, it employs small line segments. A common EIA-485 field bus is facilitated as

network which is controlled by a host PC. Normally, PCs do not include EIA-485

serial communication interface. Therefore, a PCI based serial communication card

can be incorporated.

In this technique, the host fills the buffers of the controllers at the beginning and

selects controller as master. Controllers are coordinated by software

synchronization. When start signal is received, each controller begins to empty their

buffer. Each data, which takes up particular space in the buffer, has a time index.

44

This time index is monitored by both the host and slave nodes. Hence, the host does

not require the generation of additional inquiries. The pseudo code for Method C is

given in Table 3.6.

Table 3.6 Pseudo code for Method C

Void main () {

 // initialization and get unit ID

 ID = InitializeController();

 k = 0; // reset time index

 While(TRUE) {

 If(serial_is_data_in()){

 // read transferred message and encode it

 Data = Read_serial_data(ID);

 [Select, Master] = Implement_Protocol(Data);

 Switch(Select){

 Case 1: Fill_Buffer(Select);

 Case 2: Jog(Select);

 Case 3: Go_Home_Position();

 Case 4: Execute(Select);

 //increase time index

 ++k;

 If(MASTER) Send_serial_data(OK());

 }

 }

 }

}

Main contribution of the Method C is that number of units can only be limited by

capacity of communication network. Note that filling buffer again and again disrupts

the continuing machining process. Thus, employing cyclic buffer may improve the

performance of the system. Related benefits are presented in the Figs. 3.15 and 3.16.

45

3.8 Summary

Digital communication interfaces and popular communication protocols were

presented in this chapter. Developed hardware architectures were discussed and

developed communication protocols were presented. As far as industrial applications

are concerned, communication interfaces must have high noise immunity. Single-

ended data transmission interface should not be used. According to application,

there may lots of data to need to be transferred. Also there may exist n-many nodes

to perform operation. A proper communication protocol which uses transmission

interface efficient is essential. Besides proper synchronization of distributed

controllers is also a necessity.

Utilization of bidirectional protocol with EIA-485 interface seems to be an adequate

solution of those problems. Also, EIA-485 today can offer up to 10Mbps

communication speed. Hence, software synchronization and disruption of the buffer

initialization do not affect control system performance. Dumping relevant data

elements into buffer offers simple communication structure.

46

CHAPTER 4

CONTROL SYSTEM HARDWARE ARCHITECTURE

4.1 Introduction

As described in Chapter 2, centralized control systems generally utilizes one (or

more) powerful microcomputer(s) performing all desired operations such as

command generation, book keeping, multi-axis (real-time) motion control, etc.

Functional use of this architecture is strictly defined and the corresponding hardware

does not tolerate to any timing errors.

Main aim of this study is to develop (practical) distributed controller which takes

advantage of high-speed serial communication network. During this study, a

communication network is created and identical controller units are distributed

through that communication network.

In this thesis, several distributed controller architectures are devised. A distributed

controller employing EIA-232 interface is presented in the Appendix A. Since the

EIA-232, which has low noise immunity, has low data transmission speed, the

resulting controller topology is not suitable for demanding applications. Hence, a

novel controller, which utilizes (half / full duplex configurable) EIA-485 interface, is

developed. The attributes of this controller follow.

47

4.2 Hardware Architecture

First of all, the developed (control system) hardware has to be working in

conjunction with a host PC or an IPC (Industrial PC). The PC running a high-level

software controls the communication network and performs the relevant interpolation

functions. Note that in today’s technology, the CAM (Computer Aided

Manufacturing) modules can easily generate NC part programs. Instead of

converting CAD data to NC part programs, the CAM programs may directly generate

proper position commands for distributed controllers. Hence, the sole purpose of the

distributed controller is to implement advanced motion control algorithms in a

synchronized fashion.

The developed controller is equipped with double CPUs, which are Microchip’s

PIC16F88 and dsPIC30F4011. The dsPIC30F4011, which contains a RISC CPU,

has a wide range of peripheral interfaces. This 16-bit digital signal controller is

specifically designed for motor control and industrial applications. Some of the

relevant features of this chip are as follows:

 30 MIPS operation speed,

 2048 bytes of SRAM,

 9 channels of 10-bit (1 Msps) Analog-to-Digital (A/D) converter

 2 UART modules with FIFO buffers,

 1 CAN module (CAN 2.0B compliant),

 3-wire Serial Peripheral Interface (SPI) modules (supports four frame

modes),

48

 2-wire Inter-Integrated Circuit (I²C) bus (supports multi-master/slave mode

and 7/10 bit addressing),

 PWM output channels,

 quadrature encoder interface with 16-bit up/down position counter,

 16-bit compare output functions.

The PIC16F88 is a powerful CMOS flash based 8-bit micro controller. It features

the followings:

 8 MHz internal oscillator,

 256 bytes of EEPROM data memory,

 a capture/compare/PWM, an Addressable USART,

 a synchronous serial port that can be configured as either 3-wire Serial

Peripheral Interface (SPI) or the 2-wire Inter-Integrated Circuit (I²C) bus,

 7 channels of 10-bit Analog-to-Digital (A/D) converter

 2 Comparators that make it ideal for advantage analog / integrated level

applications in automotive, industrial, appliances and consumer applications.

Functional block diagram of the designed hardware is given in the Fig. 4.1. In this

system, dsPIC30F4011 has an important role in the developed distributed control

system. First, it functions as a communication interface. Its 2KB of SRAM are used

as a reference command buffer. As presented in previous chapter, using prescribed

protocol, the reference commands sent by the host PC are stored in the SRAM of the

chip for later execution.

49

Communicaiton

Bus
R

o
ta

ry

E
n

c
o

d
e

r

B
L

D
C

 M
o

to
r

D
ri
v
e

r

A
n

a
lo

g

S
e

n
s
o

r
D

ig
ita

l I/O

EIA – 485 Interface

dsPIC30F4011

USART

Q
E

I
P

W
M

A
/D

I/O

PIC16F88

I/O

P
W

M

L
o

g
ic

 L
e

v
e

l

C
o

n
v
e

rt
e

r

S
te

p
p

e
r

/
D

C

M
o

to
r

D
ri
v
e

r

SPI

SPI

Figure 4.1 Hardware block diagram

It is critical to note that using dsPIC30F4011’s quadrature encoder interface, one can

perform closed-loop control of electrical motors (AC, DC servomotors). Designed

controller has brush-type DC, brushless DC and stepper motor interface. Utilizing

analog to digital (A/D) converters, analog sensor interfacing can be implemented.

50

One of the UARTs of dsPIC30F4011 is connected to EIA-485 transceivers. Two of

MAX485 EIA-485 transceivers utilized in order to interact with controllers and full-

duplex communication network. This enhancement makes the controller a part of the

multi-point communication network. The PCB of the developed controller is given

in Fig. 4.2 while Figs. 4.3, 4.4 and 4.5 illustrate its circuit schematics.

Figure 4.2 Controller PCB

The controller can work with either half or full duplex communication networks.

Using the J1 jumper on the PCB, one can switch between the communication modes.

51

dsPIC30F4011 and PIC16F88 use SPI communication interface to communicate

each other where dsPIC30F4011 masters the SPI communication.

Figure 4.3 Communication interface

52

Figure 4.4 Main controller

53

.

Figure 4.5 Peripheral connections

Please note that PIC16F88 is dedicated to perform command signal generation for

stepper motor drivers. This 8-bit microcontroller relieves considerable processing

load on the dsPIC30F4011. Here, CD40109BE (buffer) is interfaced with the

54

PIC16F88. For proper connection between controller and motor driver that operate

on different logic signals (CMOS, TTL). It contains low-to-high voltage level

shifting circuits featuring individual three state output capability. Signal level

conversion is widely used in interfacing circuits.

Several experiments were conducted on CD40109BE (CMOS quad low-to-high

voltage level shifter IC) during the design phase. Duration of the conversion process

has a direct effect on the control system performance. In order to identify

performance of the CD40109BE, different frequencies of clock signals are applied

and response of the CD40109BE is observed. Fig. 4.6 summarizes the results.

Figure 4.6 Signal frequency versus latency

55

As presented in Fig. 4.6, the controller performance diminishes with the increasing

frequency. Actually, during the testing of the CD4019BE’s limits are pushed and it

is expected to handle pulse trains at 2 MHz - a signal which will never be generated

by controller itself. As can be seen in Figs 4.7 and 4.8, a command TTL signal

(which is presented as light trace on the scope screen) is applied to CD40109 and it is

expected to shift this signal to the CMOS (10V) level. Shifted signal is represented

as a dark trace on the figures. As can be clearly seen in Fig. 4.7, 2MHz of clock

signal is well beyond the operating zone of the CD40109BE’s limits. In order to

address dynamic response of the chip, the clock frequency reduced to 100 KHz. As it

is presented in Fig. 4.8, CD40109BE can properly shift those signals to the 10V

level. Thus, 100 kHz is also considered as command signal limit for this hardware

configuration.

Figure 4.7 Command signal (2MHz)

56

Figure 4.8 Command signal (100kHz)

4.3 Firmware

Firmware for both dsPIC30F4011 and PIC16F88 MCU’s developed on the CCS C

IDE [80] which is presented in the APPENDIX B section. Also functional block

diagrams are given in the Fig. 4.9. As discussed in Chapter 3, the program starts out

with the reception of one byte whose element strictly defined in communication

protocol. According to this byte pair, a device sets itself to perform requested

operations.

57

Start

Get Unit ID

{ID}

If USART

receives data

If(r1 = ID)

&

(buffer flag = 0)

Read received data

{r1, r2}

Reset buffer, reset

buffer flag

Fill Buffer & raise

buffer flag

If(r1 = h) & (r2 = ID) Go home position

If(r1 = j)&(r2 = ID) Perform Jogging

Send reference

commad to motor

interface via SPI

bus

If(r1 = hostID)

&

(buffer flag = 1)

no

yes

yes

no

yes

yes

yes

no

no

RETURN

Figure 4.9 General description of firmware

4.4 Summary

Motion controller hardware, which has hierarchical structure utilizing double

microprocessors, is proposed. The number of devices that can be connected to the

same bus is limited only by maximum bus capacitance. Developed hardware and

communication network support up to fifteen controllers. Firmware can be modified

to accommodate all the peripheral sources of the microcontroller units depending on

the control task at hand.

58

CHAPTER 5

CNC MACHINE TOOL AND APPLICATION

5.1 Introduction

The distributed control system, which is developed within the scope of this thesis, is

implemented on a desktop CNC milling machine. This machine is one of the

DENFORD’s old milling machines (Model: STARMILL-ATC). As shown in Fig.

5.1, the STARMILL-ATC is a three–axis milling machine utilizing an automatic tool

changer system. Since some of its components (including, control cards and

automatic tool changer) was out-of-order, the original electronic control unit of this

machine had to be completely changed within the scope of this thesis.

Unfortunately, its technical documentation is not available electronically. The

details about this machine follow.

5.2 General Structure of the CNC Milling Machine

As mentioned earlier, the STARMILL is a desktop CNC machine (Fig. 5.1) and is

basically used for educational purposes. Three axes of the machine are actuated by

stepper motors, while the automatic tool changer is driven by a pneumatic piston and

the tool magazine includes another stepper motor to index the tools. Likewise, the

spindle facilitates a DC motor with field windings. Table 5.1 tabulates the technical

specifications of the machine.

59

Table 5.1 STARMILL ATC specifications

Machine Size 600 (L) 550 (W) 900 (H) [mm]

Machine Weight 100 kg

Table Size 350 130 [mm]

Travel X-Axis 150 [mm]

Travel Y-Axis 100 [mm]

Travel Z-Axis 100 [mm]

Max. Spindle Speed 2000 [rpm]

Max. Feed Rate 1.2 [m/min]

Mains Supply Requirements Single Phase

Spindle Motor Power 0.16 [kW]

Axis Motor Type Stepper

Input Voltage 240 VAC

Output Current 7A

Frequency 50Hz

With respect to the mechanical drive system, all axes consist of same motors as well

as motor drivers. A timing belt based transmission system, which is illustrated in

Fig. 5.2, reduces the angular speed of the motor and transmits the generated torque to

the ball screw shaft whose pitch length (h) is 5 mm.

First timing belt pulley has 30 teeth (z1 = 30) while the second timing pulley has 12

teeth (z2 = 12). In full-step mode, the stepper motor generates 200 steps per

revolution (= 1/200 [turns]). Using this information, the basic length unit (BLU)

of the machine can be calculated as

60

 (5.1)

Hence, the motion resolution for all axes is 10 microns. Next section focuses on the

machine’s control system.

Figure 5.1 Denford' s STARMILL ATC

61

Stepper

Motor

First

Pulley

Second

Pulley

Ball

Screw

Nut

Figure 5.2 Feed drive mechanism of STARMILL-ATC

5.3 STARMILL-ATC Control System

As mentioned earlier, STARMILL-ATC employs stepper motors to drive the

fundamental axes. Stepper motors’ operating principles are inherently different from

the DC motors which can rotate continuously as long as a constant potential

difference is applied to its terminals. On the other hand, stepper motors divide a full

turn into a number of small steps. Like switched reluctance motors; when the power

control circuitry (i.e. the stepper motor driver) energizes motor windings in a proper

order, the rotor rotates by a prescribed amount. The STARMILL utilizes the Parker-

Hannifin (Model: SD2) stepper motor drivers as illustrated in Fig. 5.3. This motor

driver, which makes good use of L298/L297 stepper motor driver ICs, can deliver a

continuous (cumulative) current of 2A.

62

Figure 5.3 STARMILL-ATC motor drive system

Note that in the original machine, Siemens PC 612 F B1300-F405, which is a simple

motion control card, is used to control not only the motor drivers to create

coordinated axis motion but also all peripheral units of the machine tool. This card

along with its parallel port interface is shown in Fig. 5.4. Since it is an obsolete

product, its user manual is not available in any form (printed or electronical).

63

Figure 5.4 Control cards of STARMILL.

It is critical to note that the system is coupled to a PC which employs an MS-DOS

based user interface/utility program. As illustrated in Fig. 5.5, it has a text (editor)

window where NC part programs are loaded, saved, and edited. The software,

which is mostly used for NC code verification, works in conjunction with the control

cards. Unfortunately, the utility software is not supported by the DENFORD

Company and a current (Windows operating system) version does not exist.

64

Figure 5.5 A Snapshot from the STARMILL user utility software

Notice that most of the information on the control system is collected from the

DENFORD’s support forums and technical support department. Hard-copy

documents like motor driver manuals, cabling diagrams etc. could not be included to

this thesis due to space restrictions. The following section concentrates on the

application of the distributed motion control system to this ―decommissioned‖ CNC

machine tool.

65

5.4 Application of Developed Control System

Designed distributed controller, which is described in Chapter 4, is applied to the

machine tool. The graphical user interface, which is defined in the next chapter, is

closely coupled to this control system to operate the machine seamlessly. Unlike the

original control system, the host PC and the controllers devised (Fig.5.6) in this

thesis are connected to each other over EIA-485 fieldbus as illustrated in Fig. 5.7.

Figure 5.6 Developed control system

66

It is critical to notice that a standard PC does not have any EIA-485 communication

interface. Hence, a PCI based communication card that supports two EIA-485

devices (two or four wired), is installed to the host PC.

Figure 5.7 Developed control network

67

5.5 Performance Study

Developed controller performance needs to be studied. Since the STARMILL-ATC

is not equipped with any position sensors, only the open-loop performance of the

machine can be evaluated.

Note that the CNC machine tool with a BLU of 0.01 [mm] does not meet the

machining requirements of the industrial applications. However, the

implementation is to highlight some of the key attributes for the developed control

system. Hence, large-scale application of this new system can be indirectly

determined.

First, the rapid positioning capability (Experiment I) is observed. Note that in rapid

positioning mode, it is not expected to sculpture surfaces but quick and accurate

positioning of the cutting tool is required. Depending on the acceleration and

deceleration rates of the axes in motion, high inertial forces may occur. As a

consequence, the stepper motors may skip a number of steps. Therefore, a proper

acceleration and deceleration of axial movement are vital to maintain the proper

operation of machine tool in this mode.

In this experiment, a comparator (dial gage) is employed to test rapid positioning

error of the table as illustrated in Fig. 5.8. An arbitrary trajectory is defined as shown

in Fig. 5.9. Likewise, Table 5.2 lists the NC program generating this trajectory.

After the execution of this program, the table is expected to return to the starting

point. In all conducted experiments, no significant deviation on the dial gage is

observed when the table goes back to its original location.

68

Figure 5.8 Experimental setup for the first and second experiments

Start position

a

b

c
d

Figure 5.9 Trajectory used in the first experiment.

69

Table 5.2 Program listing of the trajectory in experiment I.

O001

N010 G21 G40 G91

N020 G0 X70 Y20

N030 X-70 Y-20

N040 M5

Second, sculpturing performance on an Aluminum (6061- T6) workpiece is studied.

There exist several parameters that influence the forces acting on the cutter as well as

the workpiece. The cutting forces (a.k.a. disturbance), are known to have adverse

effects on the control system’s performance. During these experiments (Experiment

II), a constant depth of cut (0.5 mm) is maintained along X axis for a given feed-rate.

The dial gage deviations are then recorded for various travel spans. The results are

presented in Fig. 5.10.

70

Figure 5.10 Positioning errors observed in experiment II.

Note that the cutting forces developed on a CNC machine tool causes deviation from

the desired course. To compensate for the resulting positioning error, measurement

devices are exclusively utilized in CNC technology to feed position information to

the (closed-loop) control system. However, for an open-loop control system used in

this study, any deviation from the desired trajectory accumulates in time and is left

uncompensated. As consequence, the errors shown in Fig. 5.10 (1…3 BLU) are

observed. It is critical to note that the vibration of the comparator stand along with

the (workpiece) clamping errors do contribute to these errors as well.

71

As a third experiment, the machining performance of the system (in the XY plane) is

investigated. An aluminum block (6061-T6) is to be sculptured. Note that this

ductile material is of low strength and can be easily machined on a low-power

machine tool. Fig. 5.11 illustrates the resulting workpiece.

Figure 5.11 Sculptured workpiece, experiment III

A solid carbide tool, whose parameters are summarized in the Table 5.3, is utilized in

this experiment. Using the available spindle power (160 W), the maximum feed-rate

in full (or partial) immersion cut for the selected depth of cut (ae) and width of cut

(ap) can be calculated. That is, the feed speed can be computed as

min
..

mm
fZnv znf

 (5.3)

Power demand in the cutting operation is

73

Employing a comparator with a resolution of 1 micron, the deviation from the

desired geometry can be examined. First, a grid is drawn on the surface of the

workpiece as shown in Fig. 5.12. Then, a reference point is selected where the

comparator is reset. The measurements are taken at each point on the grid.

Figure 5.12 Dial gage used in experiment III

Deviation from reference point is presented in the Fig. 5.13. The biggest relative

error is 0.126 mm while the standard deviation of the measurements are

calculated as 0.0520 [mm].

74

Figure 5.13 Relative error from reference point

Notice that absolute measurements on the surface can be attained by resetting the

comparator with the utilization of Johnson gage blocks as demonstrated in Fig. 5.14.

Once the reference height is set, the measurements can be taken on the grid.

Using collected data, surface plots for circular- and rectangular sections on the

workpiece are obtained as shown in Figs. 5.15 and 5.16.

75

Figure 5.14 Johnson gauge sets used in the experiment

76

Figure 5.15 Surface plot, circular section

Figure 5.16 Surface plot, rectangular section

77

According to given plots, the average height of the circular path is 16.5965 [mm]

while the average height for the rectangular section is 15.5719 [mm]. As an

interpretation, some waviness along the X direction is observed owing to the fact that

during the machining operation, the Z axis motor is at rest. Therefore, height

differences for each pass might not be attributed to the Z axis motor. It is probably

related to the geometrical errors associated with the clamping device (vise). Fig.5.8

illustrates the vise, which is used for machining operations.

Using a digital compass (with a resolution of 10 microns), certain dimensions of the

part is measured as illustrated in Fig. 5.17. As can be seen from Fig. 5.18, some

deviations from the nominal dimensions are observed. Maximum error occurred in

3
rd

 data point which is 0.12 [mm] average is 0.035 [mm]. Note that at the beginning

positioning commands for that circular path may include errors because of

converting floating point numbers to integer ones. Fig. 5.19 contains a graphical

representation of evaluation of the circular trajectory

D
1

D
12

D
3

D
2

W
1

W
2

W
3

W
8

W
9

Figure 5.17 Measurement taken on the workpiece

78

Figure 5.18 Tracking Performance of the Circular Path

Figure 5.19 Evaluation of the circular path

79

Rectangular part of the workpiece is measured by the digital compass. Results are

presented in the Fig. 5.20. Measurement error increases at the inclined part of the

rectangular section. It is obvious that a digital compass is not proper tool to measure

inclined surface.

Figure 5.20 Tracking performance of the rectangular path

The object of the last experiment is to investigate 3D interpolation capability of the

system. Actually, parameters of the performance investigation are related to not only

the controllers but also the other components (motors, motor drivers, machine

components, etc.). During the experiments, calculated cutting parameters are used.

Workpiece is given in the Fig. 5.21. Note that the selected workpiece has diverse

attributes that allow the investigation of coordinated motion for all motors. It has a

truncated pyramid in the middle and circular patterns at four sides of the workpiece.

80

Figure 5.21 Workpiece definition in the CAD environment

Notice that STARMILL – ATC itself was designed for 2½ axes operations that only

two of their axes (X and Y) move simultaneously at any one time. Motor and driver

selection are made according to this criteria. On the other hand, the developed

control system is suitable for n-axes coordinated motion. Therefore, the controller

pushes to the limit of machine tool. Sculpturing performance is investigated with the

previously calculated machining parameters. Also, higher feed rates and cutting

depths are avoided to stay within the set operating parameters.

81

While sculpturing the truncated pyramid, axial speeds of X, Y and Z are constant.

During the performance evaluation, rapid change in the speed of the Z - axis

introduces large amount of the positioning error. Hence, in the absence of the

position sensors, the corresponding errors accumulate. As a consequence, the

workpiece is clearly deformed as presented in Fig. 5.22.

Figure 5.22 Badly deformed workpiece

In Chapter 6, the verification of the command generation is presented. Illustrated

deformation, which is mainly observed in Z direction, is caused by rapid change in

the axial speed of that motor. Hence, the motor driver cannot deliver the required

current to drive the motor properly.

82

The workpiece is finalized by clamping the corresponding planes to XY plane.

Performing 2D circular interpolation in the XY plane yields the desired geometry as

shown in Fig. 5.23.

Figure 5.23 Final workpiece

83

5.6 Summary

Utilizing developed hardware, several experiments on the machine tool were

conducted. Open-loop performance is observed during those experiments. A low

strength (ductile) material for the workpiece is selected to reduce cutting forces /

power. The machining performance of the resulting CNC machine was found

promising for machining operations in the XY plane. According to experimental

results, CNC milling machine, which was controlled by the devised hardware, had a

machining accuracy of 0.05 [mm]. As presented, the vibrations of the machine tool

had an adverse effect on the cutting performance when the cutting parameters (depth

of cut, feed-rate, spindle speed, etc.) were not selected properly. As it was presented,

Z-Axis has lack of positioning performance. It seems to be properly selected by

machine designers. During the experimental study it was concluded that rapid

changing direction and speed cannot be tracked by motor driver. Hence large

amount of positioning error accumulates. More powerful motor driver selection is

essential for adequate operation of motors.

84

CHAPTER 6

GRAPHICAL USER INTERFACE AND ITS FEATURES

6.1 Introduction

Graphical user interface (GUI), enables users to control and operate the CNC

Machine Tool fully. As opposed to text based interfaces, GUIs offer graphical

icons, visual indicators to fully represent the information and actions available for the

user. All of the program controls performed through direct manipulation of the

graphical elements.

Designing visual elements, combination and representation of them are the most

important points of the GUI design. Popular CNC controllers have their distinctive

GUIs. One of the popular CNC machine controller manufacturer, Fanuc, employs a

diverse GUI for its products which is presented in the Fig. 6.1

For short, a GUI encapsulates visual gadgets and controller objects. A good user

interface design is directly driven by the users not by the system components. Most

of the CNC machine controllers utilize visualization of tool path in operation, a text

editor, numerical position of the cutting tool and simulation of the NC part program.

85

Figure 6.1 Graphical user interface of the FANUC CNC control unit [85]

Behind the GUI, there exist many control classes which are dedicated to perform

machine control and operation, communication, interpretation of the part programs

interaction with CAM modules of the CAD programs etc. Basically development of

an advanced GUI is out of this thesis’s scope. Developed simple GUI represents

development of a simple GUI process as machine control software and includes

usage of the machine dll.

GUI can be identified as:

- GRAPHIC WINDOW for 2D representation of the tool on XY, YZ and ZX

planes

86

- ACTUAL POSITION WINDOW for numerically display of feed rate, spindle

speed, and actual position of the cutting tool

- STATUS WINDOW for presentation of the NC part program operands

- EDITOR WINDOW for loading, saving and editing NC part programs

- PREWIEW MODE for simulation of NC part program in order to prevent

improper NC part program execution.

6.2 FMILL Software Program of SPARCMILL

FMILL program is developed for proper operation of developed distributed

controllers. Unfortunately it cannot be adapted any CAM program but, utilization

NC part program editor, one can compose and execute an NC part program. GUI is

presented in the Fig. 6.2.

It is a simple CNC machine interface that can provide basic operator demands.

Additional indicators are also added to the program. Actual position window gives

relevant absolute position according to the previously set home position. Scrolls

which are allocated in the actual position window give the cutting tool position in

machine coordinate systems and user can interpret the imminence to the limit

switches. Spindle speed and feed rate indicator windows are placed to indicate the

present spindle speed and feed rate.

87

Figure 6.2 FMILL graphical user interface

In status window current working plane, tool compensation mode and motion mode

are displayed. When a tool path simulation is needed pressing preview button will

provide tool path trajectory on the graphic window. Executed can be started by

pressing the execute button. A block diagram representation of the GUI is illustrated

in the Fig. 6.3.

88

NC Code

Interpreter

Visual Controls Interpolator

Communication

Controller
Machine Controller

GUI

Figure 6.3 Block diagram representation of the GUI

6.3 Machine .dll

DLL stands for dynamic-link library. Main idea is that loading the subroutines into

an application program at runtime rather than linking in the compile time with

placing them separate locations in the hard drive. Therefore only a minimum

amount of work is done by the compiler.

A machine DLL is developed for software utilizations of the distributed controllers.

Mainly it includes some directives and handles communication protocol.

 Constructor:

SPARCMILL_DCS can be included any file with the serial port name and

initialized communication speed.

89

 PrepareData:

PrepareData returns a byte array that includes encoded reference position

commands. Input arguments are delta displacement by means of millimeters

that data type is double and feed rate, desired velocity of the given

displacement in the previous argument by means of meter per minute that

data type is double.

 AddtoQueue:

addtoqueue is utilized for constructing a byte array for each axis

according to given incremental displacements. Input arguments are

incremental displacements by means of millimeters for each axis, dx, dy, and

dz. Also tangential desired speed by means of meters per minute is an

argument too. All the arguments for these functions are double.

 SendData:

SendData is subjected to send 1500 of bytes of constructed data array. Its

arguments are ID of the destination distributed control unit by means of

bytes, ID of the master distributed control unit by means of bytes and byte

array which includes encoded reference position commands data.

 Execute:

This function uses global variables that are constructed by addtoqueue

function. Also it controls the communication protocol as well as the software

synchronization.

 Jog:

Jog function employs unit ID and feed rate by means of bytes as arguments.

Basically, this function invokes the jog operation in the controller firmware

which described in the previous chapters.

90

 JogStop:

This function stops the jog. It raises the jogstop interrupt in the controller

firmware. It should be used after jog function is executed. It returns nothing.

This control class does not include additional machine control classes. Hence one

who tries to develop software for those distributed controller, should develop an

interpolation class.

6.4 NC Command Interpreter

Namely, command line interpreters is a kind of computer program that reads lines of

text entered by user and interprets them in the predefined context. NC command

interpreter, which can interpret standard NC commands, is developed during this

thesis work. By using the editor window, the user can load or write an NC part

program. Basic motion commands, which can be utilized by the interpreter, are

summarized in the Table 6.1. In the FMILL software program, a user control is

dedicated to interpret NC part program. NC command that can be interpreted by the

FMILL is presented in the Table 6.1.

6.5 Reference-Pulse Interpolator

The interpolation for CNC machine control systems is defined as, construction of

data points between given path formation and given two point definitions in two

dimensional space. As far as parameters of interpolation are defined in the NC part

program, interpreted command parameters are interpolated by interpolation

subroutines.

91

A reference-pulse interpolator [58, 59] is developed for interpolating high level

motion commands which are interpreted by the NC command interpreter. As it is

cited in third chapter synchronization is a vital point for contouring the given

trajectory in NC part program and distributed controllers are not internally connected

each other to synchronize themselves [61]. Therefore, reference pulse interpolator

not only generates position commands but also guaranties the reference commands

for a specified time interval and arranges them for all axes. In other words

interpolator determines number of BLUs for each axis at predefined time interval.

92

Table 6.1 Interpreted NC commands

G0 Rapid Motion

G1 Linear Motion

G2 CW Circular Motion

G3 CCW Circular Motion

G17 X-Y Plane selection

G18 Y-Z Plane Selection

G19 Z-X Plane Selection

G20 Programming in inches

G21 Programming in mm

G40 Tool radius compensation off

G41 Tool radius compensation left

G42 Tool radius compensation right

G90 Absolute programming

G91 Incremental programming

GR Execute subroutine

6.5.1 Rapid Motion

This motion mode, generally, uses the maximum axial speed and employs for

positioning of the cutting tool. It is not recommended for cutting operations. When

the command is invoked, controlled actuator moves its maximum axial speed to the

specified displacement as it is presented in the Fig. 6.4.

93

Figure 6.4 Rapid move

Hence there is no need to precise synchronization. Therefore each axis is

commanded to complete the given linear displacement in the NC part program with

its maximum available speed.

6.5.2 Linear Motion

This motion mode is facilitated to command rectilinear line movements which are

illustrated in the Fig. 6.5 in general. Linear interpolation basically used for cutting

operations. It can keep the linear path as close as possible. Unlike the rapid motion,

resultant speed of axes is given as a linear motion parameter and called as linear

motion feed rate. Hence, precise synchronization of each axis is obligatory. In order

to synchronize axes, interpolator generates relevant numbers by means of BLU.

94

Figure 6.5 Linear move

The linear path which is given in Fig. 6.5, needs to be passed trough in minutes

where feed is defined in the NC part program by means of [m/ min]:

 (6.1)

If predefined time interval defined as T, number of reference commands can be

calculated as

 (6.2)

This number will be executed in the predefined time interval and after each execution

is completed a new set of numbers are created with considering the given resultant

feed rate.

95

Finally linear interpolation equation turns into

 (6.3)

 (6.4)

Following section discusses circular interpolation and its features.

6.5.3 Circular Motion

In this motion mode, controller generates a circular path which is defined in NC part

program as illustrated in the Fig.6.6. First, given trajectory is realized and then

trajectory is divided into linear segments with start and ending points.

Additionally, circular motion is more complicated than a rectilinear one. Using

brute computational techniques, it takes a relatively long time to calculate since

calculation involves trig functions (like sine and cosine). Hence, lookup tables or

approximation functions can be employed instead of brute computation algorithms.

Circular path definitions are not the only non-linear path definitions. In order to

sculpture such complex surfaces, interpolation algorithms have been evolved.

Parametric curves [70, 72, 77], NURBS [63, 75] are the most common techniques.

Relation between the length of a circular path in Fig. 6.6 and central (sweep) angle

has a following relation [70]:

 (6.5)

96

.

Figure 6.6 Circular move

where t is defined as central angle and is the radius. Assuming the center of the

circular arc is located in the origin, the circular path can be described as

 (6.6)

 (6.7)

Using the parametric equation of the circle, next point to be interpolated is

represented as

 (6.8)

If angle is divided into n many ’s

 (6.9)

 (6.10)

97

Then Eqn. (6.6) yields into:

 (6.11)

 (6.12)

As a result of Eqn. (6.7), instead of higher order polynomials, circular interpolation

algorithm boils down to first order polynomials which only include addition,

subtraction and multiplication. Using previous command history, computational

time can be decreased.

6.6 Verification of the Interpolator

As mentioned in the previous chapter, the interpolation is carried out by the FMILL

software. Controller performance is discussed in the previous chapters. For

controller software, it is expected to generate relevant points by employing

interpolation algorithms. Proper generation of reference motion commands is not the

only challenge. Reference commands are first generated as floating point numbers.

Note that the path has to be expressed in term of machine BLUs which in turn leads

to integer representation of the tool path. Reference commands, which are smaller

than BLU, will not be executed and interpreted as zero. But, their summation,

which may be larger than a BLU, will lead to a positioning error. In order to identify

such systematic errors, a complementary function must be written. It can produce a

csv file that includes encoded commands. Then, these commands are to be

interpreted by distributed controllers. Decoding of such commands, gives positional

increments. Integrating incremental command eventually yields the tool path. Note

that the generated data array is to be compared with theoretical data. Fig. 6.7 shows

98

the difference between generated reference commands and the theoretical one for this

tool path illustrated in Fig 6.8.

Figure 6.7 Command generation error

99

Figure 6.8 Generated tool path

6.7 Summary

As presented in the previous sections, computer software is developed for distributed

control system designed in this work. Also applicable machine dynamic link library

(DLL) is developed and its source code is listed in the Appendix D. CNC machine

can be used more efficiently with better user interfaces. Many of the advanced

operation attributes, which are beyond the scope of the thesis, can be added.

100

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

Purpose of this thesis was the development and implementation of distributed control

system for CNC machine tools. Different structures have been implemented that are

elaborated in Chapter 4 and Appendix A.

Due to their networked architecture, the implementation of distributed control

systems exhibits both computational- and communication delays and these delays

can decrease the performance of the control system. Modeling of such networking

and computational delays is sometimes necessary. Basically, computational delays

can easily be modeled and tested. Networking speed of control system is selected by

taking into account such delays.

Distributed control systems for motion control applications have also a

synchronization problem. Depending on the application, the synchronization is

essential. Especially, multi-axis movements do require synchronized implementation.

If networking delays are modeled, one can synchronize the control system by

properly manipulating the command generated. In that case, control system turns

into a real-time control system. This problem can be identified by sending out

repeated data patterns in the communication network. Command generation

strategies for real-time systems are also studied in this work.

101

Control system network topology presented in Chapter 4. Master node of this

control system can be considered as PC and the corresponding control software.

Unfortunately, a real-time control system cannot be driven by a PC directly.

Interrupts must be invoked by the slave nodes. Requesting or giving feedback

information is needed. Therefore, amount of data, which need to be transferred

along the communication network, will be increased. This situation might be solved

by using faster communication interfaces.

Developed distributed control system which includes hardware, firmware and

software was implemented on an open-loop controlled (3-axis) CNC machining

center. Machining performance under various conditions was investigated.

Different physical communication architectures and communication protocols were

developed and presented in the previous sections. Different workpiece definitions

were sculptured. Overall performance of the control system was found promising.

Furthermore a developed graphical user interface forced the limits of the distributed

controllers. First 2D interpolation ability was tested. Then distributed controllers

were forced to exhibit their 3D interpolation skills.

To sum up; flexible, modular, economic, retrofitable, distributed CNC control unit is

developed and implemented. Results are obtained for an open-loop control system.

7.2 Future Work

A promising distributed hardware allowing the use of many peripheral units

(brushless DC, analog sensors, optical position encoders, etc.) were developed within

the scope of this thesis. Furthermore, a communication protocol, which is an

essential part of this hardware was devised. Only open loop performance of the

system was studied utilizing stepper motors without any position sensors. Since the

102

developed controller card do possess a powerful digital signal controller (16-bit DSP

engine, integrated quadrature encoder interface, 10 MSample/s A/D converter, motor

controller interface, etc.) closed-loop performance of the controllers could be

investigated by simply connecting advanced motor drivers (servo-motor drivers,

closed-loop stepper motors drivers) to this system without any augmentation on the

system. A new communication protocol, which encapsulates large number of CNC

machine features, can be developed as well. The devised hardware stores all the

commands (issued by the host PC) in a buffer inside the digital signal controller

(2kWords ~ 1800 position commands per axis). When the information in the buffer

is exhausted, the host PC needs to fill this buffer again with new reference positions.

Hence, a slight interruption in the machining process is inevitable in this scheme due

to the transfer of this data from the host PC. To overcome this problem, one can

incorporate a cyclic buffer to perform machining operation without any interruption.

This is especially important for high-speed machining where slight interruption in the

process might lead to undesirable effects on the surface of the workpiece.

The control system was implemented on a (3-axis) CNC machining center which was

designed for 2½D interpolation
1
. Despite the fact that the Z-axis of this machine is

properly selected to carry all the loads associated with this axis, the Z-axis motor

driver, which can deliver only 2 A of continuous current, would not be able to drive

this motor adequately. As a consequence, the Z – axis cannot follow the issued

commands. Therefore, a powerful motor driver (like Parker-Hannifin SD5) can be

utilized to rectify this situation. Note that in this thesis, the acceleration and

1
 In such an interpolation scheme, the interpolation is performed in the XY plane while Z axis is

stationary

103

deceleration profile of all axes are controlled by the motor-driver itself in a

hardwired fashion
2
. Thus, it is advisable to regulate these profiles inside the position

control loop.

Since the spindle motor is of low power (160 W), the spindle motor can be swapped

with a more powerful so that one can machine high-strength metals that definitely

draw more power (> 500W). Otherwise, relevant cutting parameters (e.g. feed-rate,

radial- and axial depth of cut) have to be restricted which in turn seriously hinders

the cutting potential of the CNC machine tool.

Finally, the ATC of the machine was not fixed within the scope of this work due to

time restrictions imposed. As a future work, it is recommended that the pneumatic

tool holder actuator be replaced with a linear electric motor (i.e. an electric motor

coupled to a lead-screw shaft). Hence, the resulting machine will not require any

external compressed air sources.

Even though, the designed graphical user interface does have adequate control

feature to operate the machine, it can be definitely enhanced by including new

features including 3D machining simulation, advanced NC-code parser (with

―Intellisense‖ capability), improved manual data input (MDI) features, tool

radius/length offset compensation, tool database management, etc. Furthermore,

since the technological trend in CNC technology is towards the use of touch-screen

LCD, one can develop a GUI which can support such devices.

2
 A capacitor (C25) on the PCB of the driver (PH-SD2) must be replaced with an adequate one.

Usually, smaller capacitances leads to increased acceleration/deceleration profiles.

104

APPENDIX – A

Developed Hardware Architectures

During this thesis work several distributed control architectures had been tried so far.

Each of the control system was added into an RS232 based point-to-point multi drop

communication network.

A.1. First Architecture

First architecture can be regarded as a preliminary work to understand distributed

control systems and is the first attempt to realize the concept in a small scale. It was

a complete control system with own motor driver which was influenced by [17]. It is

not functionally distributed by means of control components [1]. But a hierarchical

architecture [18, 25] was used in order to reduce the complexity (Fig. A.1). It is a

networked control system [48] that constitutes multi drop RS232 communication

interface [51] (Fig. A.2).

105

Figure A.1 First architecture

A program on a PC, which can be considered as the host of the network, interprets

and pre-processes NC part programs. This software has an ability to generate data

streams which include reference position commands and can be accepted as another

node on the control system. When data is sent over the communication network,

each controller reads the whole data. It is a message based protocol which was

influenced by CAN [35, 41, and 52]. When the stream was read, each of the

identical controllers do the followings:

 interprets pre-processed NC commands,

 interpolates the reference commands,

 generates clock signals for its stepper motor driver.

106

Figure A.2 DCS over RS232 network, first architecture

Command generator, interpolator, can be classified as reference-pulse interpolator

which was influenced by [64, 69]. Each of the points was generated by means of

BLU of the controlled system and sent through the actuator interfaces.

107

Main advantage of this architecture is its compact structure which includes controller

and motor driver (Figs. A.3 and A.4).

Figure A. 3 Photo of the first architecture

Hardware of the control system, which is illustrated in the Fig. A.4, can be divided

into two parts: controller and actuator interface. It has one microprocessor and one

RS232 interface on the controller side. Also L297-L298 pair that accepts clock

signals up to 2 kHz to drive stepper motors.

108

Figure A.4 First architecture, hardware PCB

109

This networked control system has a breakpoint (unsafe). All the controllers are

needed to be synchronized by a synchronization engine [42]. In order to synchronize

distributed controllers which are identical, they run same algorithms with the same

data structure. An experiment was conducted during this thesis which was related to

synchronization without any interconnection or interruption. Using the same

function block with the internal timers of PIC microcontrollers, execution time was

calculated and a tiny deviation, which could be eliminated, was observed.

After all, using only hierarchy in the firmware introduces huge calculation delays [2].

These delays can be compensated by faster hardware solutions or by parallel

programming of such micro-controllers. Instead of using complex software,

functionally distributed control architecture (with fast and capable micro-controllers)

can reduce the computational time.

A.2. Second Architecture

Second architecture can be considered as a milestone of this work. It is based on the

functionally distributed control architecture [1]. Based on the idea, two additional

micro controllers added up on the controller hardware. Three of the micro controllers

are connected to each other internally via serial peripheral interface (SPI)

communication interface. One of the micro processors is responsible for internal

communication which is also the communication interface. 16-bit micro controllers

are used instead of 8-bit micro controllers in this architecture. One of the important

advantages of new micro controllers is that they constitute different peripheral

110

interfaces like three UART interfaces, encoder interface. A hierarchical architecture

is used as a tradeoff for complexity (Fig. A.5).

Figure A.5 Second architecture

Like the first architecture, a computer program with an NC code interpreter masters

the communication network and starts the communication stream on the RS232

network (Fig. A.6). When the stream is received from the communication layer,

using the internal communication network, reference commands are passed between

communication- and the interpolation layer. Then, the interpolated reference

commands are passed to motion control layer. This layer is also responsible for

measurement of axis position. Interpolation and motion control are connected to

each other over a hierarchy. Motion controller and interpolator are handled by one

micro computer. Device command generator layer takes the relevant instruction in

111

order to generate driver signals which activate the motor within the motor driver’s

capability.

Figure A.6 DCS over RS232 network, second architecture

Interpolator can be categorized as a reference-pulse interpolator. It uses line

segments, no matter how complex trajectory is. Such an algorithm is easy to

implement. But it takes more of the instruction time of the motion controllers. Also,

this computational load arises a vital point about this type of controller which

disrupts the synchronization of the whole system. Synchronization is necessary to

112

tracing a two or three dimensional path with the given feed rate as a parameter.

Here the problem is directly related to axial position displacements within a distinct

time period. Main contribution of the second controller is its functionally distributed

architecture (Fig. A.7).

Figure A.7 Second architecture, hardware PCB

Unfortunately, this architecture does not have any synchronization interface.

Duration of any interpolation instruction may not be identical. Therefore, there

113

exists a tradeoff between adding up an instruction synchronization engine and

sending out interpolated reference commands (driven communication host).

The first option introduces an additional complexity to inter-communication

protocol. Therefore, interpolating the reference commands using NC command

interpreter with computer software needs only additional interpolator sub program

(in the computer software). Also, rearranging the byte stream makes a new

architecture possible.

A.3. Third Architecture

Third architecture, whose block diagram is represented in the Fig. A.8, can be

classified as functionally distributed hierarchical distributed control system. This

control system behaves like a PC driven real-time control network. It has two micro

processors: one for communication and measurement, the other for command

generation for the motor driver. It has very strict hierarchical networking between

functional modules. They are connected to each other with parallel connection of

five general purpose I/O pins. Additionally, computer software hosts the

communication. It can interpret NC commands using its NC command interpreter

algorithm. Then it can interpolate the interpreted NC commands using reference-

pulse interpolation algorithm and controls the communication network between the

distributed controllers. First, each line segment is created on the PC then the relevant

informant is put onto the network.

114

Figure A.8 Third architecture

A software program on the PC can also be considered as a host of the communication

network. It has NC part program interpretation, reference command interpolation

which is a reference-pulse interpolator and communication module. At this point,

the software has object oriented structure. When data stream is released through the

communication network, it inherits the properties of the message based and address

based communication protocols. Line segments transferred as two byte data.

Addition information is visualized in the Figs. A.9, A.10 and A.11. For further

information on communication protocol, reader is encouraged to refer to Chapter 3.

115

Figure A.9 DCS over RS232 network, third architecture

Figure A.10 Third architecture, hardware PCB

116

Figure A.11 Application of the third architecture

117

APPENDIX – B

Firmware of dsPIC30F4011

The dsPIC30F4011 is 16-bit digital signal controller which was designed for motor

control and industrial applications. It is diversified as high-performance RISC CPU,

which has wide range of peripheral interfaces.

dsPIC30F4011 is used for communication interface. Generally, it incorporates the

PIC16F88 for command generation and responsible for protocol implementation.

#include <30F4011.h>

#fuses HS

#fuses NOWDT,NOPROTECT,NOBROWNOUT

#use delay(clock=20000000))

#use rs232 (uart2, baud = 38400)

#use fast_io(E)

#use fast_io(D)

#bit DE = 0x02D4.2 // DE, RS485 TX Enable output: RD2

#bit SW1 = 0x02CE.14 // DCS Select #1 input: RC14

#bit SW2 = 0x02DA.8 // DCS Select #2 input: RE8

#bit SW3 = 0x02D4.1 // DCS Select #3 input: RD1

#bit SW4 = 0x02D4.3 // DCS Select #4 input: RD3

#bit SS = 0x02D4.0 // SS PIN

#bit LSW = 0x02E0.0 // LSW, limit switch connection: RF0

#bit RX = 0x02C8.6

#bit TX = 0x02C8.7

#bit SPI = 0x02C8.8

#bit ERR = 0x02CE.13

unsigned int8 r[1500]; // buffer

unsigned int8 d;

unsigned int8 _ID; // ID

// myID is used to calculate device ID

// it uses the SWx PINs and DCS select DIP switch on the PCB

unsigned int8 myID(){

 unsigned int8 ID, dummy;

 ID = 0;

 dummy = SW4;

 ID += (dummy<<3);

 dummy = SW3;

 ID += (dummy<<2);

118

 dummy = SW2;

 ID += (dummy<<1);

 ID += SW1;

 ID = 120 + ID;

 return ID;

}

// go is used to send position command to motor interface

// it uses SPI interface

void go(unsigned int8 CN){

 unsigned int8 dummy;

 SPI = 0; // idicate SPI transaction has started

 // put SPI data while emptying the receive buffer

 dummy = spi_read(CN);

 while (!spi_data_is_in()){

 // since spi data is not received wait for data

 }

 dummy = spi_read(); // read SPI data

 SPI = 1; // idicate SPI transaction has completed

}

void main() {

 unsigned int8 r1, r2;

 unsigned int16 k; // time index

 int1 flag = 0;

 int1 Imaster = 0;

 //

 // PIN configurations

 set_tris_b(0x0000);

 set_tris_c(0x4000);

 set_tris_d(10);

 set_tris_e(0x0100);

 set_tris_f(17);

 //

 // setup SPI

 // setup as : spi master, data transmitted on H-to-L

 // sys. clock divided to 16 and set as SCK, slave select disabled

 setup_spi(SPI_MASTER|SPI_H_TO_L|SPI_CLK_DIV_16|SPI_SS_DISABLED);

 //

 //read out unit ID

 _ID = myID();

 //

 // reset indicator LEDs

 ERR = 1;

 RX = 1;

 TX = 1;

 SPI = 1;

 //

 // reset buffer flag

 flag = 0;

 while(1){

 if(kbhit()){

 //

119

 // if serial data received

 RX = 0;

 r1 = getc();

 r2 = getc();

 RX = 1;

 //

 // if ID matches and flag = 0

 // then prepare for data transfer

 if((r1 == _ID) & (flag == 0)) {

 //

 // for r2, if ID matches dedicated as master

 if(r2 == _ID) Imaster = 1; // now im the master

 //

 // else dedicated as servant

 else Imaster = 0; // now im the servant

 DE = 1; // enable TX

 TX = 0;

 putc(_ID); //device answers PC's call for data transfer

 delay_us(250); // wait for transaction

 DE = 0; // disable TX

 TX = 1;

 k = 0; // reset time index

 RX = 0;

 // fill device buffer

 for(k=0;k<1500;++k){

 r[k] = getc();

 }

 RX = 1;

 DE = 1; // enable TX

 TX = 0;

 putc(_ID); // device invokes the PC: transfer completed

 delay_us(250);

 DE = 0;

 TX = 1;

 flag = 1; // raise the buffer flag

 ERR = 0;

 }

 //

 // if r1 = 'h' and ID matches go home position

 else if ((r1 == 0x68) & (r2 == _ID)){ //h

 ERR = 0;

 //

 // go while Limit switch is detected

 while (!LSW) go(208);

 DE = 1; // enable TX

 TX = 0;

 putc(_ID); // device invokes the PC: home position

 delay_us(250);

 DE = 0; // disable TX

 TX = 1;

 ERR = 1;

120

 }

 //

 // if r1 = 'j' and ID matches jog mode is ON

 else if((r1 == 0x6A) & (r2 == _ID)){ // j

 DE = 1; // enable TX

 TX = 0;

 putc(_ID); // device answers the PC's call

 delay_us(250);

 DE = 0;

 TX = 1;

 RX = 0;

 r1 = getc(); // r1 has to be device ID

 r2 = getc(); // get the feedrate data

 RX = 1;

 ERR = 0;

 //

 // while data received just go!

 while(!kbhit()){

 go(r2);

 }

 ERR = 1;

 }

 //

 // software synchronization, if r1 = 120, ID of the PC

 // buffer flag = 1 (buffer is full) execute buffer

 else if((r1 == 120) & (flag == 1)) {

 k = 0;

 for(k=0;k<1500;++k){

 r1 = getc();

 //SS = 0;

 go(r[k]);

 //SS = 1;

 // if device is deciated as master

 if(Imaster) {

 DE = 1; // enable TX

 TX = 0;

 // it invokes the PC for next operation

 putc(_ID);

 delay_us(250);

 DE = 0; // disable TX

 TX = 1;

 }

 // else just wait for master to finish transaction

 else delay_us(250);

 }

 flag = 0; // reset the buffer flag

 ERR = 1;

 }

 }

 //

 // else reset r1 and r2

121

 else {

 r1 = 0;

 r2 = 0;

 }

 }

122

APPENDIX – C

 Firmware of PIC16F88

The PIC16F88 is a powerful CMOS flash based 8-bit micro controller. 16F88 is

dedicated to perform command signal generating that relieves considerable

processing load on the dsPIC30F4011.

#include <16f88.h>

#fuses HS

#fuses NOWDT,NOPROTECT

#use delay(clock=20000000))

#bit DIR = 0x05.4 // DIR PIN connected to RA4

#bit SS = 0x06.5 // Busy

//

// direction command embeded inside the received byte

// calculate and set direction

unsigned int8 clcC(unsigned int8 d1){

 DIR = (d1>>7) & 0x01;

 d1 = d1 & 0x7F;

 return d1;

}

//

// calculate counts which need to be execute in the relevant index

unsigned int16 clcD(unsigned int8 r){

 unsigned int16 D;

 // half of the relevant period has just been calculated

 if (r > 0) D = 5000 / r;

 else D = 0;

 return D;

}

//

// execute received command by SPI

void go(unsigned int8 c){

 unsigned int16 D;

 if (c>0){

 c = clcC(c); // subtract direction information from received

 D = clcD(c); // calculate period of command signal

 //

 // execute!

 while(c>0){

123

 output_high(PIN_B3);

 delay_us(D);

 output_low(PIN_B3);

 delay_us(D);

 --c;

 }

 }

}

void main(){

 unsigned int8 d = 0, c = 0;

 // PIN configurations

 set_tris_a(0x00);

 set_tris_b(0x00);

 //

 // setup SPI

 // setup as : spi slave, data transmitted on H-to-L

 // slave select disabled

 setup_spi(SPI_SLAVE | SPI_H_TO_L | SPI_SS_DISABLED);

 while(1) {

 if(spi_data_is_in()){

 // get data from SPI

 d = spi_read(c); //read data from SPI while writing c

 go(d);

 // set 30F4011, operation completed

 d = spi_read(c); //read data from SPI while writing c

 }

 }

}

124

APPENDIX – D

Machine DLL

using System;

using System.IO.Ports;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace SPARCMILL_DCS_v1

{

 class SPARCMILL_DCS

 {

 SerialPort PORT = new SerialPort();

 Queue<byte> X = new Queue<byte>();

 Queue<byte> Y = new Queue<byte>();

 Queue<byte> Z = new Queue<byte>();

 bool ind = true;

 /// <summary>

 /// Constructor

 /// </summary>

 /// <param name="PortName">Name of the COM port</param>

 /// <param name="BRate">COM Speed</param>

 public SPARCMILL_DCS(string PortName, int BRate)

 {

 PORT.PortName = PortName;

 PORT.BaudRate = BRate;

 PORT.Parity = Parity.None;

 PORT.DataBits = 8;

 PORT.StopBits = StopBits.One;

 PORT.Handshake = Handshake.None;

 }

 #region functions

 /// <summary>

 ///

 /// </summary>

 /// <param name="x1"> displacement by means of mm</param>

 /// <param name="Fx1">feed by means of m/min</param>

 /// <returns></returns>

 public byte[] prepareData(double deltA, double f1)

 {

 if (deltA != 0)

 {

 deltA = deltA * 100; // mm -> cnt conversation

 f1 = Math.Round(Math.Abs(f1 * 1000 / 6));

 if (f1 > 127) f1 = 127;

 // m/min -> cnt/100ms conversation

125

 double k = Math.Abs(deltA / f1);

 double t = Math.Truncate(k);

 k -= t;

 double f0 = k * f1;

 if (deltA < 0)

 {

 f1 += 128;

 f0 += 128;

 }

 byte[] data = new byte[Convert.ToInt32(t + 1)];

 data[0] = Convert.ToByte(f0);

 for (int i = 1; i < t + 1; ++i)

 {

 data[i] = Convert.ToByte(f1);

 }

 return data;

 }

 else

 {

 byte[] b = new byte[1] { 0 };

 return b;

 }

 }

 /// <summary>

 ///

 /// </summary>

 /// <param name="dx"></param>

 /// <param name="dy"></param>

 /// <param name="dz"></param>

 /// <param name="f"></param>

 public void addtoQueue(double dx, double dy, double dz,

double f)

 {

 double fx = 0, fy = 0, fz = 0, r = 0;

 r = Math.Sqrt(Math.Pow(dx, 2) + Math.Pow(dy, 2) +

Math.Pow(dz, 2));

 fx = dx / r * f;

 fy = dy / r * f;

 fz = dz / r * f;

 byte[] datax = prepareData(dx, fx);

 byte[] datay = prepareData(dy, fy);

 byte[] dataz = prepareData(dz, fz);

 if ((datax.Length >= datay.Length) & (datax.Length >=

dataz.Length))

 {

 foreach (byte xk in datax) X.Enqueue(xk);

 foreach (byte yk in datay) Y.Enqueue(yk);

 foreach (byte zk in dataz) Z.Enqueue(zk);

 int dl = datax.Length - datay.Length;

 for (int q = 0; q < dl; ++q) Y.Enqueue(0x00);

126

 dl = datax.Length - dataz.Length;

 for (int q = 0; q < dl; ++q) Z.Enqueue(0x00);

 }

 else if ((datay.Length >= datax.Length) & (datay.Length

>= dataz.Length))

 {

 foreach (byte yk in datay) Y.Enqueue(yk);

 foreach (byte zk in dataz) Z.Enqueue(zk);

 foreach (byte xk in datax) X.Enqueue(xk);

 int dl = datay.Length - dataz.Length;

 for (int q = 0; q < dl; ++q) Z.Enqueue(0x00);

 dl = datay.Length - datax.Length;

 for (int q = 0; q < dl; ++q) X.Enqueue(0x00);

 }

 else if ((dataz.Length >= datax.Length) & (dataz.Length

>= datay.Length))

 {

 foreach (byte zk in dataz) Z.Enqueue(zk);

 foreach (byte xk in datax) X.Enqueue(xk);

 foreach (byte yk in datay) Y.Enqueue(yk);

 int dl = dataz.Length - datax.Length;

 for (int q = 0; q < dl; ++q) X.Enqueue(0x00);

 dl = dataz.Length - datay.Length;

 for (int q = 0; q < dl; ++q) Y.Enqueue(0x00);

 }

 }

 /// <summary>

 ///

 /// </summary>

 /// <param name="ID1">UNIT ID</param>

 /// <param name="ID2">id ID2 == UNIT ID then UNIT is MASTER

else UNIT is SERVANT</param>

 /// <param name="data"> 1500 element data array</param>

 public void sendData(byte ID1, byte ID2, byte[] data)

 {

 byte[] d = new byte[2];

 byte[] dmy = new byte[1];

 d[0] = ID1;

 d[1] = ID2;

 PORT.Open();

 PORT.Write(d, 0, 2); // set DCS UNIT

 PORT.Read(dmy, 0, 1); // get DCS UNIT

 PORT.Write(data, 0, 1500); // put DCS UNIT

 PORT.Read(dmy, 0, 1); // get DCS UNIT, now DCS UNIT

raises its buffer flag

 PORT.Close();

 }

 /// <summary>

127

 /// takes 1500 of byte arrays of wach axis

 /// and executes them

 /// </summary>

 /// <param name="deltaX"> X data array</param>

 /// <param name="deltaY"> Y data array</param>

 /// <param name="deltaZ"> Z data Array</param>

 public void eXecute()//byte[] deltaX, byte[] deltaY, byte[]

deltaZ)

 {

 byte[] d = new byte[2];

 byte[] dmy = new byte[1];

 byte[] datX = new byte[1500];

 byte[] datY = new byte[1500];

 byte[] datZ = new byte[1500];

 int k = 0;

 byte HOST = 120, servantX = 122, servantY = 123,

servantZ = 124;

 int l = X.Count; // get length

 while (X.Count > 1)

 {

 //clear data arrays

 Array.Clear(datX, 0, 1500);

 Array.Clear(datY, 0, 1500);

 Array.Clear(datZ, 0, 1500);

 int lx = X.Count;

 if (l <= 1500)

 {

 for (int i = 0; i < l; ++i)

 {

 datX[i] = X.Dequeue();

 datY[i] = Y.Dequeue();

 datZ[i] = Z.Dequeue();

 }

 }

 else

 {

 for (int i = 0; i < 1500; ++i)

 {

 if (X.Count < 1)

 {

 datX[i] = 0;

 datY[i] = 0;

 datZ[i] = 0;

 }

 else

 {

 datX[i] = X.Dequeue();

 datY[i] = Y.Dequeue();

 datZ[i] = Z.Dequeue();

 }

 }

 }

128

 sendData(servantX, servantX, datX);

 sendData(servantY, 0x00, datY);

 sendData(servantZ, 0x00, datZ);

 d[0] = HOST;

 d[1] = 0x00;

 PORT.Open();

 PORT.Write(d, 0, 2);

 for (k = 0; k < 1500; ++k)

 {

 PORT.Write(dmy, 0, 1);

 uPdateAll(datX[k], datY[k], datZ[k]);

 PORT.Read(dmy, 0, 1);

 }

 PORT.Close();

 }

 }

 /// <summary>

 /// Jog function

 /// </summary>

 /// <param name="ID">unit ID</param>

 /// <param name="cnt">feed</param>

 public void Jog(byte ID, byte cnt)

 {

 byte[] d1 = new byte[2]; // for dummy readings

 byte[] d2 = new byte[1]; // for command indication on

DCS

 if (!PORT.IsOpen) PORT.Open();

 d1[0] = 0x6A; // j

 d1[1] = ID;

 PORT.Write(d1, 0, 2);

 PORT.Read(d2, 0, 1);

 d1[0] = ID;

 d1[1] = cnt;

 PORT.Write(d1, 0, 2);

 PORT.Close();

 }

 /// <summary>

 /// jog stop function

 /// </summary>

 public void JogStop()

 {

 byte[] b = new byte[2];

 if (!PORT.IsOpen) PORT.Open();

 b[0] = 0x73; // s

 b[1] = 0x73; //s

 PORT.Write(b, 0, 2);

129

 PORT.Close();

 }

 #endregion functions

 }

 }

130

REFERENCES

[1] Taira T. and Yamasaki N.; ―Functionally Distributed Control Architecture.‖

―Nippon Kikai Gakkai Robotikusu, Mekatoronikusu Koenkai Koen Ronbunshu‖,

2003

[2] Yook J. K., Tilbury D. M. and Soparkary N. R.; ―A Design Methodology for

Distributed Control Systems to Optimize Performance in the Presence of Time

Delays‖, IEEE, American Control Conference, 2001

[3] Luntz J. and Messner W.; ―A Distributed Control System for Flexible

Materials Handling‖, IEEE Control System Magazine, vol.17, no.1 ,1997

[4] Caspi, P., Mazuet C. and Paligot N. P.; ―About the Design of Distributed

Control Systems: The Quasi-Synchronous Approach‖, ―Lecture Notes in Computer

Science‖, Springer Berlin/Heidelberg, 2001

[5] Robert W., Fletcher M. and Norrie D. H.; ―An Agent-Based Approach to

Reconfiguration of Real-Time Distributed Control Systems‖, IEEE Transactions on

Robotics and Automation, vol.10, no.1, 2002

[6] Chan H. and Ozguner U. ―Closed-loop Control of Systems over a

Communication Network with Queues‖, in Proceeding of the American Control

Conference, vol.2, USA, pp: 811-815, 1994

[7] Koninckx R. and Brussel H.; ―Closed-loop, Fieldbus-based Clock

Synchronisation for Decentralised Control Systems‖ In ―Reconfigurable

Manufacturing Systems and Transformable Factories‖, pp: 213-235, Springer

Berlin/Heidelberg, 2006.

[8] Ferrarini L., Veber C., Schwab C., Tangermann M. and Prayati A.; ―Control

Functions Development for Distributed Automation Systems Using Torero

Approach‖, IFAC, 2005

[9] Peterson L., Austin D. and Chiristensen H.; ―DCA: A Distributed Control

Architecture for Robotics‖, IEEE/ RSJ, vol.11, no.2, 2001

[10] Angelov C. and Sierszecki K.; ―Component-Based Design of Software for

Distributed Embedded Systems‖, International Conference on Software and Systems

Engineering ICSSEA, vol.3, no.1, 2003

131

[11] Cauffriez L., Ciccotelli J., Conrard B. and Bayart M.; ―Design of Intelligent

Distributed Control Systems: A Dependability Point of View‖, Reliability

Engineering and System Safety, pp: 19-32, 2004

[12] Aarsten A., Brugali D. and Menga G.; ―Designing Concurrent and Distributed

Control System‖, ―Communications of the ACM‖, 1996

[13] Williams T.; ―The Development of Reliability in Industrial Control Systems‖,

IEEE MICRO, 0272-1732/84/1200, 1984

[14] Yasuda G.; ―Distributed Autonomous Control of Modular Robot Systems

Using Parallel Programming‖, ―Journal of Materials Processing Technology‖, pp:

357–364, 2003

[15] D’Andrea R. and Dullerud G. E.; ―Distributed Control Design for Spatially

Interconnected Systems‖, IEEE Transactions on Automatic Control, vol.48, no.9,

2003

[16] Nilsson J.; ―Real-Time Control Systems with Delays‖, PhD. Thesis,

Department of Automatic Control, Lund Institute of Technology, 1998

[17] Wyeth G., Kennedy J. and Lillywhite J.; ―Distributed Digital Control of a

Robot Arm‖, in Proceedings of the Australian Conference on Robotics and

Automation: ACRA, pp: 217 – 222, 2000

[18] Zongying S., Wenli X., Xu W. and Peigang J.; ―Distributed Hierarchical

Control System of Humanoid Robot THBIP-1‖, in Proceedings of the 4th World

Congress on Intelligent Control and Automation, vol.2 , pp: 1265-1269, 2002

[19] Schafer T. and Chevalier M.; ―Distributed Motor Control Using the

80C196KB‖, AP-428 Application Note, Intel Corporation, 1993

[20] Brennan R.W. and Norrie D.H.; ―Metrics for Evaluating Distributed

Manufacturing Control Systems‖, ―Computers in Industry‖, pp: 225–235, 2003

[21] Crnosija P., Kuzmanovic B. and Ajdukovic S.; ―Microcomputer

Implementation of Optimal Algorithms for Closed-Loop Control of Hybrid Stepper

Motor Drives‖, IEEE Transactions on Industrial Electronics, vol.47, no.6, pp. 1319-

1325, 2000

[22] Alford C.O. and Sledge R.B.; ―Microprocessor Architecture for Discrete

Manufacturing Control, Part I: History and Problem Definiton‖, IEEE Transactions

on Manufacturing Technology, IEEE Transactions on. 07/1976; 5(2):43- 49

[23] McFarlane D.; ―Modular Distributed Manufacturing Systems and the

Implications for Integrated Control‖, in Proceedings of IEE Colloquium on Choosing

the Right Control Structure, 1998

132

[24] Gerkey B. P., Vaughan R.T., Stoy K., Howard A., Sukhatme G.S. and

Mataric M.J.; ―Most Valuable Player: A Robot Device Server for Distributed

Control‖, IEEE, vol.51, no.2, pp: 1226-1231, 2001

[25] Malezzoni C., Ferrarini L. and Carpanzano E.; ―Object-oriented Models for

Advanced Automation Angineering‖, ―Control Engineering Practice‖, pp: 957-968,

1999

[26] Yook J. K. and Tilbury D. M.; ―Performance Evaluation of Distributed

Control Systems with Reduced Communication‖, in Proceedings of the Allerton

Conference on Communication, Control, and Computing, 2000

[27] Christian F. and Fetzer C.; ―Probabilistic Clock Synchronization‖, in

Proceedings of the Thirteenth Symposium on Reliable Distributed Systems, Oct,

1994

[28] Gaderer G., Loschmidt P. and Sauter T.; ―A Novel Simulator for Clock

Synchronized Distributed Systems‖, Control Fieldbus Systems and Their

Applications, IFAC, 2005

[29] Benitez-Pierez H. and Garcia-Nocetti F.; ―Reconfigurable distributed control

using smart peripheral elements‖, ―Control Engineering Practice‖, pp: 975–988,

2003

[30] Yatkin V. and Hanisch H.M.; ―Verification of Distributed Control Systems in

Intelligent Manufacturing‖, Journal of Intelligent Manufacturing, vol.14, no.1, pp:

123-136, 2003

[31] Kowalewski S., Engell S., Preubig J. and Stursberg O.; ―Verification of Logic

Controllers for Continuous Plants Using Timed Condition/Event-system Models‖

Automatica, vol.6, no.1, pp: 505-518, 1999

[32] Moore P.R.; ―Virtual Engineering: An Integrated Approach to Agile

Manufacturing Machinery Design and Control‖, Mechatronics, vol.13, no.10, pp:

1105–1121, 2003

[33] Thompsona H. A., Benitez-Pereza H., Leea D., Ramos-Hernandeza D.N.,

Fleminga P.J. and Legge C.G.; ―A CANbus-based Safety-critical Distributed

Aeroengine Control Systems Architecture Demonstrator‖, Microprocessors and

Microsystems, vol.9, no.11, pp: 345–355, 1999

[34] Kim H.S., Lee J.M., Park T. and Kwon W. H.; ―Design of Networks for

Distributed Digital Control Systems in Nuclear Power Plants‖, International Topical

Meeting on Nuclear Plant Instrumentation, Controls, and Human-Machine Interface

Technologies, CHINA, 2000

133

[35] Lian F., Moyne J. and Tilbury D.; ―Network Design Consideration for

Distributed Control Systems‖, IEEE Transactions on Control Systems Technology,

vol.10, no.2, pp: 297-307, 2002

[36] Walsh G. C., Ye H. and Bushnell L. G.; ―Stability Analysis of Networked

Control Systems‖, IEEE Transactions on Control Systems Technology, vol.9, no.2,

2002

[37] Yuan X., Melhem R., Gupta R., Mei Y. and Qiao C.; ―Distributed Control

Protocols for Wavelength Reservation and their Performance Evaluation‖, Photonic

Network Communications, vol.5, no.2, pp: 207-218, 1999

[38] LIU D., NING P. and LI R.; ―Establishing Pairwise Keys in Distributed

Sensor Networks‖ ACM Transactions on Information and System Security, pp: 41-

77, 2005

[39] Tan K., Lee T. H. and Soh C. Y.; ―Internet-Based Monitoring of Distributed

Control Systems—An Undergraduate Experiment‖, IEEE Transactions on Education,

vol.15, no.7, 2002

[40] Tsang J. and Beznosov K.; ―A Security Analysis of the Precise Time

Protocol‖, Vol. 4307/2006, in Information and Communications Security, 50-59.

Springer Berlin / Heidelberg, 2006

[41] Hsieh C.,Wan P., and HSU P.; ―CAN-Based Motion Control Design‖, SICE

Annual Conference, pp: 2504-2509, 2003

[43] Kopetz H.; ―A Comparison of CAN and TTP‖, Annual Reviews of Control,

pp: 177-188, 2000

[44] Carvalho F.C., Freitas E. P., Pereira C.E. and Ataide F.H.; ―A Time Triggered

Area Network Platform with Essentially Distributed Clock Synchronization‖,

Information Control Problems in Manufacturing, INCOM-2006

[45] Modbus Application Protocol Specification, ― www.modbus-ida.com ―, Last

Checked: 08.06.2009

[46] Lafortune S.; ―On Decentralized and Distributed Control of Partially

Observed Discrete Event Systems‖, Advances in Control Theory and

ApplicationsLNCIS353, pp.171-184, 2007

[47] J.G. Engelstad; ―Robust Control of Delayed Systems‖, PhD. Thesis,

University of Florida, 2000

[48] Ray, A.; ―Introduction to Networking for Integrated Control Systems‖, IEEE

Control Systems Magazine, 1989 0272-170818910100-0076

134

[49] Lian F.L., Moyne J.R. and Tilbury D.M.; ―Performance Evaluation of Control

Networks for Manufacturing Systems‖, in Proceedings of ASME Dynamic Systems

and Control Division, vol.22, no.2 pp: 179-186.1999

[50] Lian F.L., Moyne J.R. and Tilbury D.M.; ―Performance Evaluation of Control

Networks: Ethernet, ControlNet, and DeviceNet‖, Control Systems Magazine, IEEE,

vol.21, no.1, pp: 66-83, 2001

[51] MAXIM, Application Note 723, ―Selecting and Using RS-232, RS-422, and

RS-485 Serial Data Standards‖, 2000

[52] Riedl M., Diedrich C., Naumann F. and Matzekat I.; ―Event Driven

Applications for Automation Area‖, Information Control Problems in

Manufacturing, INCOM, 2006

[53] LIU F., YAO Y., HE F. and CHEN S.; ―Stability Analysis of Networked

Control Systems with Time-varying Sampling Periods‖, Journal of Control Theory

and Applications, 10.1007/s11768-008-7186-8 ed.: 22-25, 2008

[54] Zhang W., Branicky M.l S. and Phillips S.; ―Stability of Networked Control

Systems‖, IEEE Control Systems Magazine, 0272-1708/01 ed., 2001

[55] Yook J.K., Tilbury D.M. and Soparkar N.R.; ―Trading Computation for

Bandwidth: Reducing Communication in distributed Control Systems Using State

Estimators‖, IEEE Transactions on Control Systems Technology, vol.24, no.2, pp:

503-518, 2002

[56] Rs-422 and RS485 Application Note, www.bb-elec.com, Last Checked:

08.06.2009

[57] RS485/RS422 Circuit Implementation Guide, www.analog.com, Last

Checked: 08.06.2009

[58] Fleisig R.V. and Spence A.D; ―A Constant Feed and Reduced Angular

Acceleration Interpolation Algorithm for Multi-axis Machining‖, Computer-Aided

Design, pp: 1-15, 2001

[59] Yang M.Y. and Hong W.P.; ―A PC–NC Milling Machine with New

Simultaneous 3-axis Control Algorithm‖, International Journal of Machine Tools &

Manufacture, vol.4, no.1, pp: 555–566, 2001

[60] Sanchez-Reyes J.; ―A Simple Technique for NURBS Shape Modification‖,

IEEE Computer Graphics and Applications, vol.14, no.3, pp: 52-59, 1997

[61] Gallinaa P., Scuorb N. and Mosettia G.; ―Delayed-reference Control (DRC)

Applied to Machining Operations‖, International Journal of Machine Tools &

Manufacture, vol.47, no.3, pp: 1386–1392, 2005

http://www.bb-elec.com/
http://www.analog.com/

135

[62] Xinhua J. and Xingwu C.; ―Design on Odd-even Steps Third Order Approach

Interpolation Algorithm for Logarithmic Curve‖, in Proceedings of the 17th World

Congress The International Federation of Automatic Control, vol.5, no.4, pp: 2174-

2179, CHINA, 2008

[63] Lai Y. L., Chen J. H. and Hung J. P.; ―Development of Machinable Ellipses

by NURBS Curves‖, International Journal of Mechanical Systems Science and

Engineering, vol.12, no.6, pp:29-36, 2000

[64] Beaulieu N.C.; ―Extrema of sin x/x function‖, Electronics Letters, 1995

[65] Glavonjic M., Milutinovic D., and Zivanovic S.; ―Functional Simulator of 3-

axis Parallel Kinematic Milling Machine‖, The International Journal of Advanced

Manufacturing Technology, 10.1007/s00170-008-1643-x, 2008

[66] Tang, Y., Landers R. G. and Balakrishnan S.N.; ―Hierarchical Optimal

Force–Position–Contour Control of Machining Processes‖, Control Engineering

Practice, pp: 909–922, 2006

[67] Erkorkmaz K. and Altintas Y.; ―High Speed CNC System Design Part I: Jerk

Limited Trajectory Generation and Quintic Spline Interpolation‖, International

Journal of Machine Tools & Manufacture, vol.14, no.2, pp: 1323–1345, 2001

[68] Erkorkmaz K. and Altintas Y.; "High Speed CNC System Design Part III:

High Speed Tracking and Contouring Control of Feed Drives‖, International Journal

of Machine Tools & Manufacture, vol.15, no.3, pp: 1637–1658, 2001

[69] Omirou S. L. and Barouni A. K.; ―Integration of New Programming

Capabilities into a CNC Milling System‖, Robotics and Computer-Integrated

Manufacturing, vol.24, no.3, pp: 518–527, 2005

[70] Hu, W.; ―Interpolation Algorithm Based on Central Angle Division‖,

International Journal of Machine Tools & Manufacture, vol.18, no.5, pp: 473–478,

2002

[71] Xia Q. and Rao M.; ―Knowledge Architecture and System Design for

Intelligent Operation Support Systems‖, Expert Systems with Applications, pp: 115–

127, 1999

[72] Ivanenko S. A., Makhanov S. and Munlin M.; ―New Numerical Algorithms to

Optimize Cutting Operations of a Five-axis Milling Machine‖, Applied Numerical

Mathematics, pp: 395–413, 2003

[73] Qiu H., Ariura Y. and Ozaki H.; ―Optimum Circular Interpolation for Plane

Curve Contours‖, International Conference on: Systems, Man and Cybernetics, 1995.

Intelligent Systems for the 21st Century, vol.2, CANADA, pp: 1279-1284, 1995

136

[74] Xu X.W.; ―Realization of STEP-NC Enabled Machining‖, Robotics and

Computer-Integrated Manufacturing, pp: 144–153, 2006

[75] Koninckx B. and Van Brussell H.; ―Real-Time NURBS Interpolator for

Distributed Motion Control‖, CIRP Annals - Manufacturing Technology, pp: 315-

318, 2002

[75] Koninckx B. and Van Brussell H.; "Real-Time NURBS Interpolator for

Distributed Motion Control." CIRP Annals - Manufacturing Technology, pp: 315-

318, 2002

[76] Omirou S.L.; "Space Curve Interpolation for CNC Machines." Journal of

Materials Processing Technology, pp: 343–350, 2003

[77] Samad Z. and Tusof A.; "Reference Pulse CNC Interpolator Based on

Eclosing Line for 2D Parametric Curve." Jurnal Teknologi, 67–78.

[78] Koninckx R. and Brussel H. Van.; "Closed-loop, Fieldbus-based Clock

Synchronisation for Decentralised Control Systems." In Reconfigurable

Manufacturing Systems and Transformable Factories, Springer Berlin/Heidelberg,

2006.

[79] Sandvik Tool Catalog, www.sandvik.com, Last Checked: 08.06.2009

[80] CCS IDE, www.ccsinfo.com, Last Checked: 08.06.2009

[81] Serial Communication, www.ti.com, Last Checked: 08.06.2009

[82] TCP/ IP Protocol, www.linfo.org/tcp_ip.html, Last Checked: 08.06.2009

[83] MACRO.ORG, www.macro.org, Last Checked: 08.06.2009

[84] SERCOS, www.sercos.com, Last Checked: 08.06.2009

[85] FANUC LTD., www.gefanuc.com, Last Checked: 08.06.2009

http://www.linfo.org/tcp_ip.html
http://www.macro.org/
http://www.sercos.com/
http://www.gefanuc.com/

