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ABSTRACT 

 

DISTRIBUTED CONTROL SYSTEMS FOR CNC MACHINE TOOLS 

 

Kanburoğlu, Furkan A. 

M.S. Department of Mechanical Engineering 

Supervisor: Asst. Prof. Dr. Melik DÖLEN 

Co-supervisor: Asst. Prof. Dr. Buğra KOKU 

 

June 2009, 136 Pages 

―Numerically Controlled‖ (NC) machine tools, which are automatically operated by 

encoded (digital) commands, are capable of machining components with quality and 

quantity.  Manufacturing industry heavily depends on these machines. Many 

different control architectures have been adapted in today’s CNC technology.  

Centralized control system is quite popular in industry due to its ease of 

implementation. If the number of controlled axes on a CNC machine tool (>3), 

increases so does the computational burden on the central processors. Hence, more 

powerful processors are needed.  An alternative architecture, which is not commonly 

used in CNC technology, is the decentralized (distributed) control. In this topology, 

the tasks handled by the distributed controllers that are interconnected to each other 

by a communication network. As the need arises, a new controller can be added 

easily to the network without augmenting the physical configuration. Despite its 
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attractive features, this architecture has not been fully embraced by the CNC 

industry. Synchronization among the axes in the coordinated motion is proven to be 

quite challenging.  

In this thesis, alternative distributed controller architecture was proposed for CNC 

machine tools. It was implemented on a 3-axis CNC milling machine. Open-loop 

control performance was investigated under various conditions. Different 

communication protocols along with different physical communication interfaces 

and a number of controller hardware were devised. An industry-standard network 

(RS-485) was set up by interconnecting these distributed controllers. Different data 

transmission protocols were devised in order to establish appropriate communication 

methods. Also, computer software (a.k.a. graphical user interface), which can 

coordinate the interconnected controllers, interpret NC part programs and generate 

reference position data for each axis, was designed within the scope of this thesis.    

 

Keywords: Distributed Motion Control, Centralized Control, Networked Control 

System, Communication Protocols, CNC Machine Tools. 
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ÖZ 

 

SAYISAL DENETĠMLĠ TAKIM TEZGAHLARI ĠÇĠN DAĞITIK HAREKET 

KONTROL SĠSTEMĠ 

 

Kanburoğlu, Furkan A. 

Yüksek Lisans,  Makina Mühendisliği Bölümü  

Tez Yöneticisi: Yard. Doç. Dr. Melik DÖLEN 

Yardımcı Tez Yöneticisi: Yard. Doç. Dr. Buğra KOKU 

 

Haziran 2009, 136 Sayfa 

Bilgisayar denetimli (CNC) takım tezgahları sayısal olarak kodlanmıĢ komut 

dizinlerini otomatik olarak çalıĢtırıp, yüksek miktar ve kalitede parça iĢleyebilen 

makina sistemleridir.  Bu nedenle, bu tip makinalar üretim endüstrisi için 

vazgeçilmez niteliktedir. Gününüz CNC sistemlerinde çeĢitli kontrol mimarileri 

kullanmaktadır. Bunlardan biri de merkezi kontrol sistemleridir ve endüstriyel 

uygulamalarda kolay tatbik edilebildiklerinden çokca kullanılmaktadır. Hiç Ģüphe 

yok ki CNC takım tezgahlarında denetlenecek  eksen sayısı arttıkça (>3) merkezi 

kontrol sisteminin üzerindeki yük de artmaktadır. Bunun yerine, dağıtık kontrol 

sistemleri, CNC iĢlem merkezlerinde bir alternatif olarak tercih edilebilir. Bu kontrol 

sistemi yapısında iĢlemler dağıtık denetleyicilerle yapılmaktadır.  Bu dağıtık 

denetleyiciler bir iletiĢim ağı ile birbirlerine bağlanarak, tanımlanan bir iletiĢim 
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protokolüyle haberleĢmektedirler. Eğer gerekli görülürse, yeni bir denetleyici bu 

iletiĢim ağına kolayca dahil edilebilir ve bu ekleme sistemin bütününe (baĢka bir 

deyiĢle diğer denetleyicilere) ek bir yük getirmez. Tüm bu olumlu özelliklerine 

karĢın, bu yapı CNC üreticileri tarafından pek tercih edilmemektedir. Bu sistemde, 

koordinasyon içinde hareket ettirilmesi gereken eksenlerin eĢgüdümü çok da kolay 

olmayan bir konudur. 

Bu tez çalıĢmasında, bilgisayar destekli takım tezgahları için alternatif bir dağıtık 

kontrol sistemi önerilmiĢtir. Önerilen bu sistem, 3 eksenli bir freze tezgahına 

uygulanmıĢ, çeĢitli koĢullar altında bu sistemin açık döngü kontrol performansı 

incelenmiĢtir. ÇalıĢma esnasında değiĢik iletiĢim protokolleri ile kontrol donanımları 

geliĢtirilmiĢtir. Ortaya konan kontrol donanımları birbirlerine elektronik ileitĢim 

yöntemleriyle bağlanarak, kontrol ağları oluĢturulmuĢtur. Tez çalıĢması kapsamında, 

farklı protokoller denenerek, en uygun iletiĢim yöntemleri araĢtırılmıĢtır. Ayrıca, 

denetleyiciler  arasında kordinasyonun sağlaması, kullanıcı tarafından girilen parça 

programlarının yorumlanması ve referans konum komutlarının üretilmesi için bir 

bilgisayar yazılımı (bir baĢka adıyla grafik kullanıcı arayüzü) geliĢtirilmiĢtir. Ayrıca, 

bu bilgisayar programını kullanılarak, çeĢitli interpolasyon algoritmaları da 

sınannıĢtır. 

 

Anahtar Kelimeler: Dağıtık Hareket Kontrolü, Merkezi Kontrol, ġebekelenmiĢ 

Kontrol Sistemleri, ĠletiĢim Protokolleri, CNC Takım Tezgahları. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

 

―Numerically Controlled‖ (NC) machine tools, which are automatically operated by 

encoded (digital) commands, are capable of machining components with quality and 

quantity.  Early machine tools were programmed through a program stored on a 

(punched) tape while their operating parameters could not be easily changed via a 

user friendly interface.  Later, part programs were transferred to the machine via a 

serial communication protocol from a mainframe computer.  These machine tools 

with hardwired control systems were eventually evolved in time through the 

advancements in digital electronics.  The introduction of microcomputers can be 

considered as a breakthrough for NC machine tools and has transformed them into 

―Computer Numerically Controlled‖ (CNC) machine tools where a number of 

onboard computers can be incorporated to the system.  As a consequence, the 

manufacturing industry, which heavily depends on this technology for high-quality 

machining, was radically changed.  

Besides superior (tool-position) controls, advancing computer technology has also 

offered many versatile utilities such as program editing, file/data management, and 

on-board diagnostics.  Furthermore, computer-aided design tools enabling 

sophisticated machining simulation are also integrated into the CNC units of 
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contemporary machine tools.  Facilitating NC part program language, these tools 

have eventually evolved to become an indispensible part of manufacturing industry.  

Many different control architectures have been adapted in today’s CNC technology. 

Among these architectures, centralized control system, which is illustrated in Fig. 

1.1, are quite popular in industry due to its ease of implementation.  

 

Central Control 

Computer

Actuator Actuator

Sensor Sensor

DatabaseGUI

 

Figure 1.1 Centralized controller architecture 

 

In such systems, a central processor (usually a DSP) not only generates proper 

position commands for each axis but also performs relevant control computations in 

real-time.  It is obvious that as the number of controlled axis on a CNC machine tool 

increases (>3), the computational burden on the central processor swells 

considerably.  Hence, more powerful processors are then needed to handle the 
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resulting computational load.   Despite the fact that fast processors (with multiple 

cores) are becoming widely available in the market (at reasonable prices), such an 

approach is not economically sound owing to the fact that massive development 

efforts (i.e. PCB and firmware design) are usually involved in the design of the 

overall system as the needs (and performance expectations) of manufacturing 

industry grow on a continuous basis.   

An alternative architecture used in CNC technology is a decentralized (distributed) 

one as shown in Fig. 1.2.  In this topology, the tasks handled by the system are 

distributed among various nodes of the network.  Each node deals with a particular 

operation using a dedicated processor with relatively modest resources.  The nodes 

are connected to each other by a high-speed serial bus such as RS-485, CAN, 

Profibus, Ethernet, etc.  Usually, coordination as well as communication of these 

nodes are performed by a master processor.      

As the need arises, a new node can be added easily to the network without 

augmenting the physical configuration.  Despite its attractive features, this 

architecture has not been fully embraced by the CNC industry owing to the fact that 

the synchronization among the axes in the coordinated motion is proven to be quite 

challenging.  Furthermore, for electronic gearing applications where one or more 

axes is to follow the motion of a master axis accurately, the bus system cannot 

effectively transfer huge amount of (redundant) data needed to be exchanged among 

―electronically‖ coupled axes.    

It is critical to note that the brushless DC motors and their drives are the bread-and-

butter of motion control applications.  Modern motor drive systems do posses the 

ability to control the position of its servomotor accurately provided that appropriate 
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sensors are connected to the drive system.  If a dedicated controller for each motor 

drive system is deployed to handle not only the data trafficking but also the 

synchronization of the axes (via appropriate abstraction), the design of a 

decentralized control system, which meets the expectations of the industry, might 

become economically feasible.   

 

Actuator GUI Database

Processor Processor Processor

Sensor

Processor

Sensor

Processor

Fieldbus

Node #1 Node #2

Node #3 Node #4

Master

Node

 

Figure 1.2 Distributed control architecture 

 

1.2 Objective of Thesis 

 

The motivation of this work is to propose a distributed CNC machine controller 

architecture, where each actuator of the CNC machining center is controlled by 
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relatively small, but identical distributed controllers.  As mentioned earlier, many of 

the commercial CNC units employ powerful microcomputers (but expensive) or 

embedded PCs which are equipped with industry-standard serial communication 

interfaces.  Furthermore, such systems employ a custom-tailored graphical user 

interface incorporating a number of utilities.  Unfortunately, despite their 

performance, their architectures do not provide flexibility for small-scale 

applications where economical solutions are desperately sought.  On the other hand, 

employing modest microcontrollers and a standard PC, one can develop an 

alternative distributed CNC machine controller with considerable graphical user 

interface.  Consequently, the objective of this goal is to apply the developed systems 

on a three-axis machine tool and is to evaluate the performance of the resulting 

system in a number of machining operations.    

1.3 Outline of the Thesis 

 

This outline of this thesis is as follows: In Chapter 1, a brief introduction on CNC 

machine control systems and their expanded use in manufacturing industry are 

presented.  In Chapter 2, a survey of research efforts on distributed control systems 

are given and the properties of networked control systems concepts are elaborated.  

In Chapter 3, a brief summary of the serial communication systems, which lie at the 

heart of a distributed motion control system, is given.  Then, detailed information 

about (prospective) serial-communication interfaces is presented.  Devised 

communication protocols are also discussed and evaluated in that chapter.  In 

Chapter 4, a distributed-control architecture is developed and corresponding 

firmware is discussed in detail.  Chapter 5 deals with the implementation and 

performance evaluation of developed distributed controllers to an old CNC milling 
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machine, which formerly utilizes traditional centralized controller architecture, are 

represented.  In Chapter 6, Graphical User Interface and Machine DLL, a graphical 

user interface, which is subjected to operate distributed control system and DLL file 

that can be considered as device driver of distributed controllers, are presented in 

detail.  In Chapter 7, conclusions on results and further research directions are 

presented.  
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CHAPTER 2 

LITERATURE SURVEY 

2.1 Introduction 

 

A major trend of industrial control systems is to integrate computing, communication 

and control into different levels of machine [1, 5, 9, 12, 13 and 32].  Traditional 

communication architecture, which has been implemented in industry for decades, 

utilizes a centralized controller unit that has the ability to integrate sensors and 

actuators.  Unfortunately, expanding physical setups and expecting enhanced 

functionality oftentimes pushes such systems to their limits [3, 17, 20, 21 and 23]. 

Today, industry requires modularity, decentralization of control, integrated 

diagnostics, quick and easy maintenance and low cost to compel their expanding 

manufacturing capability [22, 29 and 30].  Introduction of network communication 

systems can reduce complex hardware architectures, improve flexibility and 

scalability and raise the idea re-configurability and functionality [6, 10, 17 and 25]. 

Changing communication architecture introduces the time delays which are directly 

related to time required for signal conditioning and information processing [2].  Such 

characteristics of time delays can be constant, bounded or random [35].  Basically, it 

depends on physical attributes of the communication interface, number of nodes 

connected to the network and developed communication protocol [26].  However, 

analyzing of networking delays is a diverse and progressive research area.  
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Most of the Networked Control Systems research has been focused on two areas: 

communication technology and controller design.  Simply put, a message transfer 

protocol guarantees the network quality where a controller responsible for quality of 

performance.         

2.2 Distributed Control Systems 

 

Distributed control systems (DCS) are essentially spatially networked embedded 

nodes that are interconnected by means of wired and/or wireless communication 

infrastructure and protocols interacting with the environment and each other. 

Examples of distributed control systems include industrial automation, building 

automation, office and home automation, intelligent vehicle systems and advanced 

aircraft and spacecraft systems [14, 33 and 34].  Common feature of these 

applications is that  large number of devices interconnected to each other over a 

relatively large area to perform a certain task.  It is obvious that the processing load 

on a centralized control unit is large if all computations are to be handled by this unit. 

Also, a large amount of wiring has to set up to connect all the units to centralized 

processor. 

Distributed control systems offer an alternative solution.  In literature, these systems 

are also referred as Networked Control Systems (NCS) where different modules are 

able to communicate each other [54].  The development of appropriate control 

architectures and associated controller design algorithms for such systems are crucial 

for success since the sensors and actuators are frequently distributed over a large area 

[19, 41].  
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Distributed control systems are commonly utilized in complex engineering systems 

[11, 18 and 24].  Communication networks and sensor networks are considered as the 

essential elements of the main infrastructure.  

G. Wyeth at al. developed a distributed digital controller for PUMA 560 six DOF 

industrial robot arm [17].  In their study, the centralized control system developed 

consists of a controller for each joint of which are networked together via a CAN 

Bus.   A PC provides a user interface for proposed control system.  They utilize a 

DSP for each controller in order to perform desired joint control operations of the 

robot arm.  In fact, the CAN bus eliminates complex wiring and increase 

functionality of the joint controllers.  Note that in modern control systems, tracking 

performance is governed by (state) feedback controller gains as well as sampling 

frequency.  Usually, higher gains combined with high sampling frequency is 

desirable for best command tracking performance.  Hence, distributed controllers can 

be utilized at very high sampling frequencies (20 kHz and up).  Furthermore, 

diagnostics and debugging of controller system become easier.  As far their research 

is concerned, the proposed controller, which is simple, cost effective, and easier to 

implement, exceeds the performance of the original system.  

Similarly, H. A. Thompson et al. demonstrate a distributed aero engine control 

system [33].  System is identified as safety critical.  Hence, they utilize the dual line 

architecture to incorporate more computational power for control and sensing 

operations.  They also obtain such benefits can be summarized as; retrofitting 

capability, improved reliability, and improved diagnostics.    

The main goal of the progressive research and development works are united under 

the name of the intelligent manufacturing systems [23].  A distributed control system 

communicates over a network between its distributed processors.  Actions of the 
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distributed controllers are coordinated properly to achieve desired task(s) with 

maximum speed and accuracy.  Therefore, they interact not only with the 

manufacturing environment but also the control system and its elements (sensors). 

2.3 Networked Control Systems and Time Delays 

 

The solution of modern control problems is to distribute the processing functions 

over networked controllers [4, 17].  Such controllers (called as nodes) of the 

distributed/ networked control system share a common communication channel that 

generally has a bus topology.  The resulting architectures require less wiring than 

traditional ones.  Therefore, hardware cost decreases dramatically despite increasing 

flexibility.  

Control systems can be divided into modular subsystems that connect to main system 

directly.  This modularity results in improved diagnostics and maintenance [15, 33]. 

As presented earlier, distributed systems has become attractive alternative to 

traditional centralized solutions.  However, these systems also bring number vital 

problems that have to be dealt properly.  Otherwise, control system performance will 

dramatically degrade. 

Two main problems can be stated as addressing and timing [39, 49 and 50].  In a 

shared bus network, each data packet has to be augmented by identifiers, headers or 

encoded operands that are indicating destination and/or source of the transferred 

message.  Furthermore, distributed units may have to wait for some amount of time 

before they send out a message.  Actually, main limitation here is both physical 

communication interface and communication protocol being utilized.  Based on the 

communication protocol, the number of nodes connected to control network may 

also degrade the communication performance.  That is, time delays inherently 
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present in the network could directly influence the overall performance of the 

system.  While designing the controller, elements of the communication system (both 

protocol and physical communication interface) need to be modeled and have to be 

added into the overall system model [6, 31 and 54,]. 

For several decades, modeling and control of networked systems have been studied. 

In general, delays occur during the transmission of information.  Large scale systems 

(such as telecommunication-, manufacturing-, transportation-, and power generation 

systems) can be given as typical examples of time-delay systems [36].  

Frequency domain (classical) and time domain (modern) approaches are used to 

analyze these systems [53, 55].  The classical approach employs analytical or 

graphical methods to identify of the eigenvalues of the characteristic system. 

Standard graphical methods such as root locus, Bode, and Nyquist plot are applicable 

to find out the corresponding transfer functions.  For a discrete-time with time 

delays, the system stability can also be identified by root locus analysis in the z-

domain.  

Unfortunately, classical approach can be used for mostly simple cases.  For systems 

exhibiting multi-delay, functional case must be utilized.  That is, using the functional 

approach, one can derive the delayed differential equations and characterize the 

systems.  In fact, multiple delays and time varying delays can also be modeled using 

this approach and their stability can be analyzed using Lyapunov’s second method 

[36, 37 and 53].  Note that most of the applications with time delays are considered 

as non deterministic.  Therefore, robust controllers can be implemented on the 

known systems structure to overcome the delay uncertainty [47]. 
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The computation time delay of microprocessor is regarded as another source of 

delay.  It takes time to execute the instructions in the control firmware.  Execution 

time has direct effect on the control performance [33, 48].   

A networked control system employs a number of sensors and actuators in a network 

[38].  Sending commands and receiving data takes time while implementing the 

corresponding procedures.  The transfer time can either be nearly constant or varying 

in a random fashion.  Also, another issue for such systems is whether the nodes are 

event driven or clock driven [43, 44, 46 and 52].  Event driven nodes start their 

activity when an event occurs while the clock driven nodes initiate their activity at 

specified time frames.  As illustrated in Fig. 2.1, there are essentially three kinds of 

time delays in a networked control system:  

1. Communication delay between the sensor and controller,  

2.  computational delay in the controller, 

3.  communication delay between controller and actuator, . 

Time delay, , for the control system includes the sampling of the sensor data, 

calculation of the control signal and sending control signal to the actuator node:   

                                      (2.1) 



13 

 

 

Figure 2.1 Distributed control system with induced delays [16] 

 

 Time delays have different characteristics depending on both hardware and 

software which need to be modeled.  The network delays vary due to networking 

load, network protocol based operations (like invoking master or slave nodes) and 

physical network failures.  Time delay characteristics of control networks installed in 

industrial systems can be classified as stochastic, bounded and constant.   Simplest 

network delay model assumes that delays are constant for all transfers in the 

communication network.  This can be a good model even if the network has varying 

delays.  Assigning the worst-case delay or a mean value delay is oftentimes practiced 

in this analysis [16].  Designation of such constant delay element is important for 

system stability and performance.  

Note that a closed-loop system can be transformed into a time invariant one by 

introduction of buffers as illustrated in Fig. 2.2 [16].  All nodes are considered as 

clocked and synchronized.  If buffers are longer than the maximum time delay in the 

control system, the system equations turns into  

               (2.2) 
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                     (2.3) 

where  is the length in samples of the buffer at the actuator node.  If the buffer at 

the controller node is assumed to have the length  samples, the process output 

available for the controller at a time  becomes 

                     (2.4) 

In that case, control design problem can be reformulated as a standard sampled data 

problem.   The information set is available for the calculation of  is 

                    (2.5) 

An LQG optimal controller can be designed for this control problem [16]: 

                     (2.6) 

 

 

Figure 2.2 Distributed control system with buffers [16] 
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This method handles delays, which are longer than the sampling period.  But 

evaluated control delays by this method become larger than necessary.  It follows 

that it is a suitable method for event-driven systems.  For time driven systems, the 

controller performance dramatically degrades. 

2.4 Synchronization 

 

Most distributed systems encountered in practice are asynchronous. Traditional 

deterministic, fault tolerant clock synchronization algorithms assume bounded 

communication delays [7, 28, 40 and 42].  Thus, they cannot be directly used to 

synchronize clocks in asynchronous systems.  

Synchronization of distributed nodes is a research area itself.  The only purpose of 

the clock synchronization is to set the clocks of system nodes to coherent values. In 

any distributed system, there exists a coordination and communication requirement 

which is particularly important in real-time control applications [8, 16].  Global 

coordination and synchronization must be realized with respect to a common basis of 

time.  However, the only clock that is usually available at each node is local clock of 

micro computers utilized.  This clock oscillates at a nominal frequency and generates 

pulse steams which are subjected to use as increments of the clock counter. 

Synchronization of local clock of the distributed controllers is maintained by timed 

increments of the controllers’ clock counters so they act together like a centralized 

controller.  Note that the synchronization may be implemented by either software or 

hardware [27].   

Sending synchronization signals over communication network can be considered as 

software synchronization.  On the other hand, hardware synchronization is also an 
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appropriate technique to synchronize system nodes.  This method, which requires an 

additional wiring just to distribute a global clock signal, can be regarded as very 

strict method of synchronization.  Theoretically, it is only way to synchronize system 

nodes. 

2.5 Research Opportunities  

 

Distributed control systems are spatially interconnected systems that have sensors, 

actuators and controllers interconnected by communication networks.  The 

introduction of such systems can address the demands of modern industrial and 

commercial systems.  The change of the communication architecture from 

centralized to the networked/distributed one is proven to be challenging as it 

introduces different forms of time delay uncertainty in closed loop system dynamics. 

These time delays directly related to computational time required for physical signal 

coding and communication processing. 

Distributed devices on the network perform control of dedicated operations such as 

controlling actuator(s) or conditioning sensor data.  Therefore, they interact between 

not only the manufacturing environment but also the control system (and its 

corresponding elements like sensors).  Besides the communication delays, there 

exists computational delays that needs to be identified and added up the control 

system model.  Presented distributed control architectures facilitate communication 

networks that are composed of expensive equipments.  Besides, they utilize costly 

and powerful embedded controllers.  



17 

 

The main goal of this research is to look into the (relatively) unexplored aspects of 

the above-mentioned systems and develop a decentralized control architecture that is 

suitable for ―not-so demanding‖ applications.    
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CHAPTER 3 

COMMUNICATION SYSTEMS AND PROTOCOL DEVELOPMENT 

3.1 Introduction 

 

As was presented in previous chapter, communication is one of the main challenges 

in distributed control systems.  Proper selection and implementation of a physical 

communication interface with a convenient communication protocol is essential.  In 

this chapter, serial communication interfaces along with the corresponding protocols 

are presented.  Then, the developed communication protocols are introduced and 

their evaluation is given.    

3.2 Data Transmission 

 

Data transmission takes place between data terminal equipment (DTE) and data 

circuit terminating equipment (DCE) thru various communication interfaces whose 

multi-layer communication protocol specifications are defined with corresponding 

standards.  In data transmission, there exist two different electrical interface circuits: 

single-ended and differential.  The definition of these systems follows. 
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3.2.1 Single Ended Data Transmission 

 

The main characteristic of the single-ended data transmission circuits is that data 

transmission is performed on a single line and that the logical state of the signal is 

interpreted with respect to the ground.  Fig. 3.1 illustrates such a circuit. 

 

 

Figure 3.1 Single ended data transmission [51] 

 

 

A single-ended transmission circuitry requires only a single line hence this 

configuration is very simple, easy to implement and cost effective.  Long distances or 

noisy environment sometimes forces to add up a better cable shielding and additional 

ground lines to system.  This configuration is known to have poor noise immunity. 

Main problem here is ground wires.  They are part of the circuitry and transient 

voltages may lead to signal degradation.  This results in the misinterpretation of the 

signal or false receiver triggering.  Also crosstalk may be observed at higher 

frequencies.  
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3.2.2 Differential Data Transmission 

 

In this configuration, both receiver and transmitter signal lines are necessary for 

differential data transmission.  On one line, the actual signal is transmitted where as 

the second line is used to carry the inverted form of this signal.   The receiver detects 

the voltage difference between two transfer lines and switches the output depending 

on which magnitude of this potential difference.  Fig. 3.2 shows a typical differential 

data transmission circuitry. 

 

 

Figure 3.2 Differential data transfer [51] 

 

  

As illustrated in Fig. 3.3, a twisted cable pair is exclusively used in these interfaces 

because such cable configurations offer noise-immunity benefits over flat- or ribbon 

cables.  If twisted pair is used, both of the wires are affected by noise sources 

equally.  The noise produces a common mode signal, which is called each other, 

when the difference signal is taken by the receiver [57].  Also, the correct line 

termination avoids any unwanted fluctuations and allows the transmission of data at 
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higher rates.  With different interface voltages, signal transmission rates can reach up 

to 10Gbps. 

 

 

Figure 3.3 Cable configurations [57] 

 

Although balanced interface circuitry consists of a generator with differential 

outputs, balanced transfer lines increases cost of such interfaces.  However, 

developing this complex interface circuitry with CMOS fabrication process 

overcomes this difficulty.  Hence, data transceiver chips are widely available in the 

market at affordable prices.  

3.3 Data Transmission Topologies 

 

In telecommunication technology, there exists data transfer topologies that can be 

used when one tries to connect such interfaces among each other.  The detailed 

descriptions of the topologies follow. 
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3.3.1 Point-to-Point (Simplex) 

 

As shown in Fig. 3.4, point-to-point data transmission topology can be implemented 

with one transmitter and one receiver per line.  In this topology (which is commonly 

referred to as unidirectional data transmission), data can be transmitted in only one 

direction.  

 

Figure 3.4 Point-to-point connection [81] 

 

3.3.2 Multi-drop (Distributed, Simplex) 

 

As shown in Fig. 3.5,  the multi-drop data transfer topology is obtained when one 

transmitter and more than one receiver are used.  Since this topology inherits the 

characteristics of point-to-point data transmission, data can be transferred along one 

direction. 

 

Figure 3.5 Multi-drop connection [81] 
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3.3.3 Multipoint (Multiplex) 

 

As illustrated in Fig. 3.6, this augmented topology enables the bidirectional data 

transmission.  Here, there exists a transmitter-receiver pair per line. This pair is 

called as transceiver. 

 

Figure 3.6 Multi-point connection [81] 
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3.4 Physical Communication Interfaces 

 

In this section, various communication standards used over the afore-mentioned 

topologies will be evaluated.  

3.4.1 EIA – 232 

 

EIA-232 (Recommended Standard 232) is the most elementary serial communication 

protocol that is adapted by the Electronic Industries Association.  The latest version 

RS-232 C released at the end of 1960s.  The signal of the EIA-232 has two logic 

levels: high logic (+5V to +15V) and low logic (-5V to -15V).  High logic level is 

identified by negative voltage levels where low level is defined by positive voltage 

levels.  According to EIA-232 standards, maximum cable length must  have a 

maximum capacitance of 2500 pF.  In order to limit any reflections that occurred in 

rise and fall instances of the signal, maximum slope (gradient) of the signal is limited 

to 30V/µs [51].  Note that this allowable gradient also depends on data transfer rate. 

High frequency signals do deteriorate significantly if transferred long distances. 

Table 3.1 illustrates the cable length baud rate correlation. 

Table 3.1 EIA-232 baud rate versus cable length [51] 

 

Baud rate Max cable length [m] 

19200 15 

9600 150 

4800 30 

2400 900 
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EIA-232 standard is essentially asynchronous serial communication method where 

data bit stream is not sent over a strict time frame.  Fig. 3.7 illustrates a stream of 

serial data being transferred via EIA-232.  Note that the original data stream has to 

be augmented with start-, stop-, and error detection bits to guarantee the transmission 

of data properly.  Each data character starts with an attention bit which is also known 

as start bit.  Data bits directly follow this start bit.  A bit value of 1 (TRUE) causes 

negative voltage levels whereas a bit value of 0 (FALSE) represented as a space.  For 

error detection purposes, one may include a (even or odd) parity bit.  Finally, the 

transferred data stream is terminated by a stop bit.  

 

 

Figure 3.7 An EIA-232 stream [56] 
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3.4.2 EIA – 422 

 

Unlike EIA-232, EIA-422 (formerly known as RS 422) allows multi-drop connection 

of a driver to (a maximum of) ten receivers.  Its data transfer rates can be expanded 

up to 35Mbits/s with a (maximum) cable length of 1200m.  As stated previously, 

higher data transfer rates generally require the reduction of the cable length.  

3.4.3 EIA – 485 

 

EIA-485 (RS 485) is the most widely used communication interface for many 

industrial data acquisition- and communication systems.  TAI/EIA-485 standard 

defines the communication half-duplex and differential. 32 nodes are theoretically 

possible.  According to this standard, the driver must deliver a minimum output 

voltage of 1.5V.  Common voltage levels may vary between -7V and 12V.  Note that 

this communication method has high noise tolerance.    

3.4.4 CAN 

 

Controlled Area Network (CAN) was introduced by Bosch Co. in 1980 for 

automotive applications.  It was to replace the knotty signal cable wiring and reduce 

them to two – wire bus.  In fact, CAN is applicable for appliances that require large 

number of small messages in a short period.  Unlike other address-based 

communication protocols, CAN is message-based system and is especially useful 

when system-wide data consistency is required.  
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In CAN, every node on the bus reads the identifier then decides whether or not to 

read the rest of the message.  When a node wants to transmit a message, it has to 

compare its relative priority to that of the network message.  If it is less than or equal 

to the importance, it has to wait until the bus is clear.   ISO 11898 (the CAN 

standard) describes the differential and half-duplex data transmission.  In this 

standard, the maximum cable length is 40 m and a maximum of 30 nodes is allowed 

on the bus.  Notice that signal transmission rates can reach up to 1Mbps. A single 

shielded or unshielded twisted pair cable with 120Ω is also utilized in CAN [33].  

3.5 Communication Protocols 

 

A communication protocol is said to be the set of standard rules for data 

representation, signaling, authentication, and error detection required to send 

information over a communications channel.  Communication protocols for digital 

computer network communication have features intended to ensure reliable 

interchange of data over an imperfect communication channel.  Communication 

protocol basically follows certain rules so that the system works properly. Next, 

popular communication protocols are elaborated. 

3.5.1 TCP/IP 

 

Transmission Control Protocol/Internet Protocol (TCP/IP) is also known as Internet 

Protocol Suit even though its development began in the 1960s.  TCP/ IP was 

originally considered for UNIX operating system.  It was designed to make network 

robust and automatically recover from the failure of any device on the network. 
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Moreover, it allows the construction of very large networks that require little central 

management.  

TCP operates at the transport layer, the middle layer in the seven layer OSI (open 

systems interconnection) reference model.  This layer is responsible for maintaining 

reliable end-to-end communications across the network.  IP, in contrast, is a network 

layer protocol, which is the layer just below the transport layer.  

On the other hand, the IP protocol deals only with packets (i.e., the most fundamental 

unit of TCP/IP data transmission), TCP enables two hosts to establish a connection 

and exchange streams of data. TCP guarantees delivery of data and also guarantees 

that packets will be delivered in the same order in which they were sent [82].  

3.5.2 MODBUS 

 

Modbus is a master–slave serial communications protocol proposed by Modicon.  It 

was first released in 1979.  Most Modbus devices utilize EIA-485 physical 

communication interface.  But the format of the Modbus messages is independent 

from the type of physical interface used.  Each Modbus message has four basic 

elements which presented in the Table 3.2 

 

 

 

 

http://www.linfo.org/transport_layer.html
http://www.linfo.org/network_layer.html
http://www.linfo.org/network_layer.html
http://www.linfo.org/network_layer.html
http://www.linfo.org/packet.html
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Table 3.2 Basic elements of Modbus messages [45] 

Field Description 

Device Address Address of receiver 

Function Code Code defining message type 

Data Data block 

Error Check Test for communication errors 

 

Since Modbus is a master – slave protocol, there is no way for a field device (a slave 

node) to transmit any kind of data if it is not requested by master node.  Fig. 3.8 

represents a general Modbus message frame. 

 

 

Figure 3.8 General Modbus frame [45] 

 

3.5.3 MACRO 

 

Macro is a distributed machine control communication standard.  It stands for motion 

and control ring optical and is primarily designed for multiple masters and slaves. 

Communication is always initiated by master by sending out data packet with 

appropriate address (Fig. 3.9).  Next node receives the data stream and checks the 
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address whether the address data is the same as its own local address.  Then, the node 

takes data from the packet and releases the packet through the ring.  If the local 

address is different, the node just passes the data without reading.  Finally data is 

returned to the master. [83] 

  

Figure 3.9 MACRO ring network [83] 

 

  

3.5.4 SERCOS 

 

The SERCOS standing for serial real-time communication system which is a digital 

motion control bus.   It is an open controller-to-intelligent digital device interface 

that is designed for high-speed serial communication of standardized closed-loop 

(real-time) data over a (noise-immune) fiber optic ring (SERCOS I & II) or Industrial 

Ethernet cable (SERCOS III).  A generic SERCOS interface is illustrated in Fig. 

3.10. 
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Figure 3.10 SERCOS interface [84] 

 

 

In fact, the SERCOS interface reduces connectivity problems in control systems.  It 

exchanges data between controller and (motor) drives and synchronizes actuators for 

precise coordinated moves.  Using this interface enables coordinated operation of 

controllers  built by different manufacturers.  Hence, extensive reliability of the 

SECROS interface enables flexible, modular and fully distributed controller design.  
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3.6 Developed Communication Protocols  

 

Utilizing EIA-232, full-duplex EIA-422 and EIA-485 communication interfaces 

several communication protocols can be developed.  First bidirectional approaches 

are to be applied on the control network.  Then unidirectional protocols will follow. 

3.6.1 Bidirectional Protocol 

 

Communication layer of the software handles the communication network.  It 

produces the interpolated commands for each axis into two byte data and starts the 

communication stream.  Note that this stream can be regarded as both message- and 

address based since the transaction is triggered by data transmission while each 

controller (node) in the network fetches the data in the proper position (address) of 

the transferred array.  

Data array consists of 13 bytes as shown in Fig. 3.11. It can handle a very limited 

number of distributed units that are interconnected to each other via EIA-232 

communication interface.  

 

 

Figure 3.11 Bidirectional protocol data array 
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When the stream is received, all controllers receive 13 bytes.  According to the info 

byte (the first byte of the stream), controller decides on the operating mode.  

Relevant (position) command parameters are addressed in the byte array.  Note that 

the entire tool path of a machine tool is defined by an NC part program.  The tool 

trajectory is processed and is divided into small line segments that are defined by 

positional increments assuming that the velocity along a particular segment 

(―feedrate‖) is constant. Physical configuration of the protocol is illustrated in the 

Fig.3.12. 

 

MASTER

D

SLAVE #1

R

SLAVE #2

R

SLAVE #3

R

“

 

Figure 3.12 Physical configuration of bidirectional protocol 

 

As stated earlier, this communication is bidirectional.   Hence, the slave nodes cannot 

reply to any kind of message.  This is a serious drawback of motion control 

applications as the user interface needs the status information on slave nodes (axis 

controllers).  Furthermore, increasing the number of units will also swell the 

network’s load.  In other words, the quality of system (QoS) will decrease as number 

of slave nodes is increased.  Experimental results and limitations of the 
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communication protocol is demonstrated in the Fig. 3.13.  Notice that the desired 

bandwidth of the position control system is 100 Hz within the scope of this study.   

In that case, the control algorithm has to be executed in 10ms.   According to this 

assessment, increased network load dramatically degrades quality of performance 

(QoP).   

 

Figure 3.13 Evaluation of the bidirectional protocol 

 

The main advantage of this protocol is that it is extremely simple to implement.  

Only one data stream is sufficient for execution.  Address definitions are fixed so that 

there is no need for additional indicators to address such controllers.  On the other 
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hand, increased number of distributed controllers will also increase the number of 

bytes in the data stream.  Hence, quality of performance (QoP) will degrade with 

increased number of controllers. Furthermore, it is not flexible as each controller has 

different firmware to extract relevant part from the transmitted data.  

3.6.2 Unidirectional Protocol 

 

Unidirectional communication protocol enables the communication between master 

and slave devices where their physical communication interface is described in Fig. 

3.14.  

MASTER

D

SLAVE #1 SLAVE #2 SLAVE #15

R

D
R

D
R

D
R

 

Figure 3.14 Physical configuration for unidirectional protocol 

 

Utilizing the full-duplex EIA-485 communication, distributed devices can reply to 

some requests that are transmitted by master node.  By definition, this protocol is 

limited to 15 distributed controller units.  Each unit facilitates identical firmware 

with user selectable unit address.  This is a strictly-defined (address-based) 

communication protocol which utilizes its own syntax as tabulated in Table 3.3. 

Usage of such communication language makes distributed units more flexible.  
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Table 3.3 Communication syntax 

Command Explanation 

UID + ―0‖ Set unit for data transfer 

UID + UID 

Set unit as master & prepare for data 

transfer 

―j‖ + UID Start jogging 

―s‖ + UID Unit stop 

―h‖ + UID Unit go home position 

―r‖ + ―r‖ Reset System 

 

Protocol simply uses two bytes of data that is briefly explained in Table 3.3. 

Utilization of the buffer, which needs to be filled with reference position commands 

periodically, degrades system’s performance.  Accordingly, various communication 

speeds were tested to determine the required time for filling buffer up. Fig. 3.15 

illustrates the results.   While the system is executing predefined commands in the 

buffer, the number of nodes in the system does not affect the performance.  Host only 

transfers a signal when a synchronization request is pending.  This constitutes only 3 

bytes of data.  Assuming that the controller’s sampling period is 100 Hz, the effect of 

software synchronization is described in Fig. 3.16.  Notice that it is a robust protocol 

as the slave nodes can only speak with master node. Therefore, the protocol can be 

classified as master-slave protocol.  
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Figure 3.15 Evaluation of the unidirectional protocol 

 

With respect to the advantages, it is a simple (yet flexible) communication protocol 

that utilizes master-slave communication.  Slave devices can reply transmitted 

inquiries by master node.  Increased number of distributed nodes does not affect 

either QoS or QoP.  Furthermore, each controller (slave node) has identical firmware.  

On the other hand, a limited number of devices (up to fifteen) can be utilized in this 

protocol. Slave nodes cannot transmit any data unless it is requested by master node. 

Additionally, slave devices cannot communicate each other. 
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Figure 3.16 Evaluation of software synchronization delay 

 

3.6.3 Unidirectional Protocol with Communication Between Slaves 

 

In this thesis, the devised controller has a reconfigurable communication interface. 

Using the jumpers on controllers, EIA-485 communication interface can be 

configured as half- or full duplex.  Setting communication interface to half-duplex 

enables communication between slaves.  This enhancement brings the idea of multi-

master communication.  This diagram of this arrangement is given in the Fig. 3.17. 

As stated earlier, this protocol has its own problems like data collision during 

transmission since data transfer line is same for both receive and transfer.  
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Figure 3.17 Physical configuration of unidirectional protocol with communication 

between slaves 

 

3.7 Distributed Controller Scheme 

 

During thesis work, various controller implementations have been considered.  In 

order to determine the best distributed controller design, three controller models 

(communication interfaces, protocols) have been developed and implemented.  This 

section summarizes the development efforts. 

3.7.1 Method A 

 

Method A can be considered as brute method for networked control as every single 

instruction cycle of reference commands are sent to each distributed controllers by 

utilizing a common fieldbus (EIA-232).  It is obvious that the proposed method 

requires only one directional communication.  Hence, the slave nodes are to listen to 

only the message being transmitted by the host.  Reference position of the each 

controller is interpolated and embedded into the transferred message.  Unfortunately, 
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the developed communication protocol rejects the message transaction initiated by 

slave nodes.  Furthermore, this method can be applicable when only a limited 

number of devices in the distributed control network is utilized.   There is no need for 

additional synchronization between slave nodes.   Reference position commands, 

which are generated by the host PC, can serve as software synchronization signal too. 

A real-time operating system should be facilitated on the PC because of the timing 

purposes.  A pseudo code implementing the code is given as follows: 

 

Table 3.4 Pseudo code for Method A 

 

Void main () { 

   // initialization and get unit ID 

   ID = InitializeController();  

   While(TRUE) { 

      If(serial_is_data_in()){ 

         // read transferred message and encode it 

         Data = Read_serial_data(ID);  

 // execute transferred message 

         Execute(Data);  

      } 

   } 

} 

 

   

It can be perceived that in Method A, position data is first created as small line 

segments.  Hence, smaller segments increase precision of the incremental motion 

while increasing the network load.  Note that EIA-232 supports data transmission 

rates up to 115kbps while utilizing 15 nodes.  As it is illustrated in Fig. 3.18, 

increasing sampling frequency of the control system dramatically shortens the 

remaining execution time for the controller algorithm.  Hence, this situation pushes 

the limits and finally system cannot reproduce any kind of reaction.    



41 

 

 

Figure 3.18 Remaining computational time 

 

3.7.2 Method B 

 

Method B is developed as alternative controller architecture for distributed position 

control.  It has communication layer, interpolation layer, and position control layer. 

Unlike other method, it incorporates several microcomputers, which are dedicated to 

handle each layer.  A data bus connects all the microcomputers to each other via SPI 

communication interface.  PC software hosts distributed communication network. 

Communication network is based on the EIA-232 physical interface.  

Main goal of the Method B, whose pseudo code is given in Table 3.5, is to reduce the 

communication needs and does an optimization between computation time and 

communication performance.  Notice that all displacements, which are performed by 
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actuators, can be modeled as small line and arc segments.  Unlike Method A, which 

uses only small line segments, the Method B incorporates constant coefficient 

difference equations (CCDE) of prescribed motions.  Machine tool movements, 

which are generally described by Eqn. (3.1) and Eqn. (3.2) (for circular patterns) and 

by Eqn. (3.3) and Eqn. (3.4) (for the linear patterns), do incorporate constant 

parameters (A, B, …, G) of which are then transferred by PC host as command 

signals.  

                 (3.1) 

                 (3.2) 

                                       (3.3) 

                   (3.4) 

In conclusion, the PC software (master node) does the interpretation of the position 

commands (i.e. computing the coefficients of the CCDEs) while the controllers 

(slave nodes) directly handle the interpolation.   Notice that the slave nodes can listen 

to the message of the master but they are able to reply inquiries of the master as well.  
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Table 3.5 Pseudo code for Method B 

#INT_SERIAL 

Void Inquiry() { 

   If(host_inquiries_position()) { 

      Send_serial_data(Position0); 

   } 

} 

Void main () { 

   // initialization and get unit ID 

   ID = InitializeController();     

   While(TRUE) { 

      If(serial_is_data_in()){ 

         // read transferred message and encode it 

         Data = Read_serial_data(ID);  

         // use previous position data and interpolate                              

         Position1 = Interpolate(Position0,Data); 

 // execute transferred message 

         Execute(Position1);  

         // now data history is replaced 

         Position0 = Position1; 

      } 

   } 

} 

 

3.7.3 Method C 

 

Method C inherits the best features of the prior techniques.  That is, just like Method 

A, it employs small line segments.  A common EIA-485 field bus is facilitated as 

network which is controlled by a host PC.  Normally, PCs do not include EIA-485 

serial communication interface.  Therefore, a PCI based serial communication card 

can be incorporated.  

In this technique, the host fills the buffers of the controllers at the beginning and 

selects controller as master.  Controllers are coordinated by software 

synchronization.  When start signal is received, each controller begins to empty their 

buffer.  Each data, which takes up particular space in the buffer, has a time index. 
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This time index is monitored by both the host and slave nodes.  Hence, the host does 

not require the generation of additional inquiries.  The pseudo code for Method C is 

given in Table 3.6.   

Table 3.6 Pseudo code for Method C 

Void main () { 

  // initialization and get unit ID 

   ID = InitializeController();      

   k = 0;   // reset time index 

   While(TRUE) { 

      If(serial_is_data_in()){ 

         // read transferred message and encode it 

         Data = Read_serial_data(ID);  

         [Select, Master] = Implement_Protocol(Data); 

         Switch(Select){ 

            Case 1: Fill_Buffer(Select); 

            Case 2: Jog(Select); 

            Case 3: Go_Home_Position(); 

            Case 4: Execute(Select); 

                    //increase time index 

                    ++k; 

                    If(MASTER) Send_serial_data(OK());       

         } 

      } 

   } 

} 

 

Main contribution of the Method C is that number of units can only be limited by 

capacity of communication network.  Note that filling buffer again and again disrupts 

the continuing machining process.  Thus, employing cyclic buffer may improve the 

performance of the system.  Related benefits are presented in the Figs. 3.15 and 3.16.  
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3.8 Summary 

 

Digital communication interfaces and popular communication protocols were 

presented in this chapter.   Developed hardware architectures were discussed and 

developed communication protocols were presented.  As far as industrial applications 

are concerned, communication interfaces must have high noise immunity.  Single-

ended data transmission interface should not be used.  According to application, 

there may lots of data to need to be transferred.   Also there may exist n-many nodes 

to perform operation.  A proper communication protocol which uses transmission 

interface efficient is essential.  Besides proper synchronization of distributed 

controllers is also a necessity.  

Utilization of bidirectional protocol with EIA-485 interface seems to be an adequate 

solution of those problems.  Also, EIA-485 today can offer up to 10Mbps 

communication speed.  Hence, software synchronization and disruption of the buffer 

initialization do not affect control system performance.  Dumping relevant data 

elements into buffer offers simple communication structure.  
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CHAPTER 4 

CONTROL SYSTEM HARDWARE ARCHITECTURE 

4.1 Introduction 

 

As described in Chapter 2, centralized control systems generally utilizes one (or 

more) powerful microcomputer(s) performing all desired operations such as 

command generation, book keeping, multi-axis (real-time) motion control, etc. 

Functional use of this architecture is strictly defined and the corresponding hardware 

does not tolerate to any timing errors. 

Main aim of this study is to develop (practical) distributed controller which takes 

advantage of high-speed serial communication network.  During this study, a 

communication network is created and identical controller units are distributed 

through that communication network.  

In this thesis, several distributed controller architectures are devised.  A distributed 

controller employing EIA-232 interface is presented in the Appendix A.  Since the 

EIA-232, which has low noise immunity, has low data transmission speed, the 

resulting controller topology is not suitable for demanding applications.  Hence, a 

novel controller, which utilizes (half / full duplex configurable) EIA-485 interface, is 

developed.   The attributes of this controller follow. 
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4.2 Hardware Architecture 

 

First of all, the developed (control system) hardware has to be working in 

conjunction with a host PC or an IPC (Industrial PC). The PC running a high-level 

software controls the communication network and performs the relevant interpolation 

functions.  Note that in today’s technology, the CAM (Computer Aided 

Manufacturing) modules can easily generate NC part programs.  Instead of 

converting CAD data to NC part programs, the CAM programs may directly generate 

proper position commands for distributed controllers. Hence, the sole purpose of the 

distributed controller is to implement advanced motion control algorithms in a 

synchronized fashion.  

The developed controller is equipped with double CPUs, which are Microchip’s 

PIC16F88 and dsPIC30F4011.  The dsPIC30F4011, which contains a RISC CPU, 

has a wide range of peripheral interfaces.  This 16-bit digital signal controller is 

specifically designed for motor control and industrial applications. Some of the 

relevant features of this chip are as follows:  

 30 MIPS operation speed,  

 2048 bytes of SRAM,  

 9 channels of 10-bit (1 Msps) Analog-to-Digital (A/D) converter 

  2 UART modules with FIFO buffers,  

 1 CAN module (CAN 2.0B compliant),  

 3-wire Serial Peripheral Interface (SPI) modules (supports four frame 

modes),  
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 2-wire Inter-Integrated Circuit (I²C) bus (supports multi-master/slave mode 

and 7/10 bit addressing),  

 PWM output channels,  

 quadrature encoder interface with 16-bit up/down position counter,  

 16-bit compare output functions. 

The PIC16F88 is a powerful CMOS flash based 8-bit micro controller.  It features 

the followings: 

 8 MHz internal oscillator,  

 256 bytes of EEPROM data memory,  

 a capture/compare/PWM, an Addressable USART,  

 a synchronous serial port that can be configured as either 3-wire Serial 

Peripheral Interface (SPI) or the 2-wire Inter-Integrated Circuit (I²C) bus,  

 7 channels of 10-bit Analog-to-Digital (A/D) converter  

 2 Comparators that make it ideal for advantage analog / integrated level 

applications in automotive, industrial, appliances and consumer applications.  

Functional block diagram of the designed hardware is given in the Fig. 4.1.  In this 

system, dsPIC30F4011 has an important role in the developed distributed control 

system.  First, it functions as a communication interface.  Its 2KB of SRAM are used 

as a reference command buffer.  As presented in previous chapter, using prescribed 

protocol, the reference commands sent by the host PC are stored in the SRAM of the 

chip for later execution.  
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Figure 4.1 Hardware block diagram 

 

It is critical to note that using dsPIC30F4011’s quadrature encoder interface, one can 

perform closed-loop control of electrical motors (AC, DC servomotors).  Designed 

controller has brush-type DC, brushless DC and stepper motor interface.  Utilizing 

analog to digital (A/D) converters, analog sensor interfacing can be implemented.  
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One of the UARTs of dsPIC30F4011 is connected to EIA-485 transceivers.  Two of 

MAX485 EIA-485 transceivers utilized in order to interact with controllers and full-

duplex communication network.  This enhancement makes the controller a part of the 

multi-point communication network.  The PCB of the developed controller is given 

in Fig. 4.2 while Figs. 4.3, 4.4 and 4.5 illustrate its circuit schematics. 

 

 

Figure 4.2 Controller PCB 

 

The controller can work with either half or full duplex communication networks. 

Using the J1 jumper on the PCB, one can switch between the communication modes.  
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dsPIC30F4011 and PIC16F88 use SPI communication interface to communicate 

each other where dsPIC30F4011 masters the SPI communication.  

 

 

Figure 4.3 Communication interface 
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Figure 4.4 Main controller 
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.

 

Figure 4.5 Peripheral connections 

 

Please note that PIC16F88 is dedicated to perform command signal generation for 

stepper motor drivers.  This 8-bit microcontroller relieves considerable processing 

load on the dsPIC30F4011.  Here, CD40109BE (buffer) is interfaced with the 
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PIC16F88.  For proper connection between controller and motor driver that operate 

on different logic signals (CMOS, TTL).  It contains low-to-high voltage level 

shifting circuits featuring individual three state output capability.  Signal level 

conversion is widely used in interfacing circuits.  

Several experiments were conducted on CD40109BE (CMOS quad low-to-high 

voltage level shifter IC) during the design phase.  Duration of the conversion process 

has a direct effect on the control system performance.  In order to identify 

performance of the CD40109BE, different frequencies of clock signals are applied 

and response of the CD40109BE is observed.  Fig. 4.6 summarizes the results. 

  

Figure 4.6 Signal frequency versus latency 
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As presented in Fig. 4.6, the controller performance diminishes with the increasing 

frequency.  Actually, during the testing of the CD4019BE’s limits are pushed and it 

is expected to handle pulse trains at 2 MHz - a signal which will never be generated 

by controller itself.  As can be seen in Figs 4.7 and 4.8, a command TTL signal 

(which is presented as light trace on the scope screen) is applied to CD40109 and it is 

expected to shift this signal to the CMOS (10V) level.  Shifted signal is represented 

as a dark trace on the figures.  As can be clearly seen in Fig. 4.7, 2MHz of clock 

signal is well beyond the operating zone of the CD40109BE’s limits. In order to 

address dynamic response of the chip, the clock frequency reduced to 100 KHz. As it 

is presented in Fig. 4.8, CD40109BE can properly shift those signals to the 10V 

level. Thus, 100 kHz is also considered as command signal limit for this hardware 

configuration. 

 

 

Figure 4.7 Command signal (2MHz) 
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Figure 4.8 Command signal (100kHz) 

 

4.3 Firmware 

 

Firmware for both dsPIC30F4011 and PIC16F88 MCU’s developed on the CCS C 

IDE [80] which is presented in the APPENDIX B section.  Also functional block 

diagrams are given in the Fig. 4.9.  As discussed in Chapter 3, the program starts out 

with the reception of one byte whose element strictly defined in communication 

protocol.  According to this byte pair, a device sets itself to perform requested 

operations.  
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Figure 4.9 General description of firmware 

 

4.4 Summary 

 

Motion controller hardware, which has hierarchical structure utilizing double 

microprocessors, is proposed.  The number of devices that can be connected to the 

same bus is limited only by maximum bus capacitance.  Developed hardware and 

communication network support up to fifteen controllers.  Firmware can be modified 

to accommodate all the peripheral sources of the microcontroller units depending on 

the control task at hand. 
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CHAPTER 5 

CNC MACHINE TOOL AND APPLICATION 

5.1 Introduction 

 

The distributed control system, which is developed within the scope of this thesis, is 

implemented on a desktop CNC milling machine.   This machine is one of the 

DENFORD’s old milling machines (Model: STARMILL-ATC).  As shown in Fig. 

5.1, the STARMILL-ATC is a three–axis milling machine utilizing an automatic tool 

changer system.  Since some of its components (including, control cards and 

automatic tool changer) was out-of-order, the original electronic control unit of this 

machine had to be completely changed within the scope of this thesis.  

Unfortunately, its technical documentation is not available electronically.  The 

details about this machine follow.  

5.2 General Structure of the CNC Milling Machine 

 

As mentioned earlier, the STARMILL is a desktop CNC machine (Fig. 5.1) and is 

basically used for educational purposes.  Three axes of the machine are actuated by 

stepper motors, while the automatic tool changer is driven by a pneumatic piston and 

the tool magazine includes another stepper motor to index the tools.  Likewise, the 

spindle facilitates a DC motor with field windings.  Table 5.1 tabulates the technical 

specifications of the machine. 
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Table 5.1 STARMILL ATC specifications 

Machine Size 600 (L)  550 (W)  900 (H) [mm] 

Machine Weight 100 kg 

Table Size 350  130 [mm] 

Travel X-Axis 150 [mm] 

Travel Y-Axis 100 [mm] 

Travel Z-Axis 100 [mm] 

Max. Spindle Speed 2000 [rpm] 

Max. Feed Rate 1.2 [m/min] 

Mains Supply Requirements Single Phase 

Spindle Motor Power 0.16 [kW] 

Axis Motor Type Stepper 

Input Voltage 240 VAC 

Output Current 7A 

Frequency 50Hz 

 

With respect to the mechanical drive system, all axes consist of same motors as well 

as motor drivers.  A timing belt based transmission system, which is illustrated in 

Fig. 5.2, reduces the angular speed of the motor and transmits the generated torque to 

the ball screw shaft whose pitch length (h) is 5 mm.  

First timing belt pulley has 30 teeth (z1 = 30) while the second timing pulley has 12 

teeth (z2 = 12). In full-step mode, the stepper motor generates 200 steps per 

revolution (  = 1/200 [turns]).  Using this information, the basic length unit (BLU) 

of the machine can be calculated as  
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               (5.1) 

Hence, the motion resolution for all axes is 10 microns.  Next section focuses on the 

machine’s control system. 

    

 

Figure 5.1 Denford' s STARMILL ATC 
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Figure 5.2 Feed drive mechanism of STARMILL-ATC 

5.3 STARMILL-ATC Control System 

 

As mentioned earlier, STARMILL-ATC employs stepper motors to drive the 

fundamental axes.  Stepper motors’ operating principles are inherently different from 

the DC motors which can rotate continuously as long as a constant potential 

difference is applied to its terminals.   On the other hand, stepper motors divide a full 

turn into a number of small steps.  Like switched reluctance motors; when the power 

control circuitry (i.e. the stepper motor driver) energizes motor windings in a proper 

order, the rotor rotates by a prescribed amount.  The STARMILL utilizes the Parker-

Hannifin (Model: SD2) stepper motor drivers as illustrated in Fig. 5.3.   This motor 

driver, which makes good use of L298/L297 stepper motor driver ICs, can deliver a 

continuous (cumulative) current of 2A.   
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Figure 5.3 STARMILL-ATC motor drive system 

 

Note that in the original machine, Siemens PC 612 F B1300-F405, which is a simple 

motion control card, is used to control not only the motor drivers to create 

coordinated axis motion but also all peripheral units of the machine tool.  This card 

along with its parallel port interface is shown in Fig. 5.4.  Since it is an obsolete 

product, its user manual is not available in any form (printed or electronical). 
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Figure 5.4 Control cards of STARMILL. 

 

It is critical to note that the system is coupled to a PC which employs an MS-DOS 

based user interface/utility program.   As illustrated in Fig. 5.5, it has a text (editor) 

window where NC part programs are loaded, saved, and edited.   The software, 

which is mostly used for NC code verification, works in conjunction with the control 

cards.  Unfortunately, the utility software is not supported by the DENFORD 

Company and a current (Windows operating system) version does not exist.   
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Figure 5.5 A Snapshot from the STARMILL user utility software 

 

Notice that most of the information on the control system is collected from the 

DENFORD’s support forums and technical support department.  Hard-copy 

documents like motor driver manuals, cabling diagrams etc. could not be included to 

this thesis due to space restrictions.  The following section concentrates on the 

application of the distributed motion control system to this ―decommissioned‖ CNC 

machine tool.  
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5.4 Application of Developed Control System 

 

Designed distributed controller, which is described in Chapter 4, is applied to the 

machine tool.   The graphical user interface, which is defined in the next chapter, is 

closely coupled to this control system to operate the machine seamlessly.   Unlike the 

original control system, the host PC and the controllers devised (Fig.5.6) in this 

thesis are connected to each other over EIA-485 fieldbus as illustrated in Fig. 5.7.  

 

 

Figure 5.6 Developed control system 
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It is critical to notice that a standard PC does not have any EIA-485 communication 

interface.  Hence, a PCI based communication card that supports two EIA-485 

devices (two or four wired), is installed to the host PC.  

 

 

Figure 5.7 Developed control network 
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5.5 Performance Study 

 

Developed controller performance needs to be studied.  Since the STARMILL-ATC 

is not equipped with any position sensors, only the open-loop performance of the 

machine can be evaluated.   

Note that the CNC machine tool with a BLU of 0.01 [mm] does not meet the 

machining requirements of the industrial applications.   However, the 

implementation is to highlight some of the key attributes for the  developed control 

system.  Hence, large-scale application of this new system can be indirectly 

determined.    

First, the rapid positioning capability (Experiment I) is observed.  Note that in rapid 

positioning mode, it is not expected to sculpture surfaces but quick and accurate 

positioning of the cutting tool is required.  Depending on the acceleration and 

deceleration rates of the axes in motion, high inertial forces may occur.   As a 

consequence, the stepper motors may skip a number of steps.   Therefore, a proper 

acceleration and deceleration of axial movement are vital to maintain the proper 

operation of machine tool in this mode.  

In this experiment, a comparator (dial gage) is employed to test rapid positioning 

error of the table as illustrated in Fig. 5.8.  An arbitrary trajectory is defined as shown 

in Fig. 5.9.  Likewise, Table 5.2 lists the NC program generating this trajectory. 

After the execution of this program, the table is expected to return to the starting 

point.  In all conducted experiments, no significant deviation on the dial gage is 

observed when the table goes back to its original location.   
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Figure 5.8 Experimental setup for the first and second experiments 

 

 

Start position

a

b

c
d

Figure 5.9 Trajectory used in the first experiment.  
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Table 5.2 Program listing of the trajectory in experiment I. 

 

O001 

N010 G21 G40 G91 

N020 G0 X70 Y20 

N030 X-70 Y-20 

N040 M5 

 

 

 

Second, sculpturing performance on an Aluminum (6061- T6) workpiece is studied. 

There exist several parameters that influence the forces acting on the cutter as well as 

the workpiece.  The cutting forces (a.k.a. disturbance), are known to have adverse 

effects on the control system’s performance.  During these experiments (Experiment 

II), a constant depth of cut (0.5 mm) is maintained along X axis for a given feed-rate. 

The dial gage deviations are then recorded for various travel spans.  The results are 

presented in Fig. 5.10.    
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Figure 5.10 Positioning errors observed in experiment II.  

 

Note that the cutting forces developed on a CNC machine tool causes deviation from 

the desired course.  To compensate for the resulting positioning error, measurement 

devices are exclusively utilized in CNC technology to feed position information to 

the (closed-loop) control system.  However, for an open-loop control system used in 

this study, any deviation from the desired trajectory accumulates in time and is left 

uncompensated.  As consequence, the errors shown in Fig. 5.10 (1…3 BLU) are 

observed.  It is critical to note that the vibration of the comparator stand along with 

the (workpiece) clamping errors do contribute to these errors as well.  
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As a third experiment, the machining performance of the system (in the XY plane) is 

investigated.  An aluminum block (6061-T6) is to be sculptured.   Note that this 

ductile material is of low strength and can be easily machined on a low-power 

machine tool.  Fig. 5.11 illustrates the resulting workpiece.  

 

 

Figure 5.11 Sculptured workpiece, experiment III 

A solid carbide tool, whose parameters are summarized in the Table 5.3, is utilized in 

this experiment.  Using the available spindle power (160 W), the maximum feed-rate 

in full (or partial) immersion cut for the selected depth of cut (ae) and width of cut 

(ap) can be calculated.  That is, the feed speed can be computed as 

min
..

mm
fZnv znf

              

 (5.3) 

Power demand in the cutting operation is 
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Employing a comparator with a resolution of 1 micron, the deviation from the 

desired geometry can be examined.  First, a grid is drawn on the surface of the 

workpiece as shown in Fig. 5.12.  Then, a reference point is selected where the 

comparator is reset.  The measurements are taken at each point on the grid.  

 

 

Figure 5.12 Dial gage used in experiment III 

 

Deviation from reference point is presented in the Fig. 5.13.  The biggest relative 

error is 0.126 mm while  the standard deviation of the measurements are 

calculated as 0.0520 [mm].  
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Figure 5.13 Relative error from reference point 

 

Notice that absolute measurements on the surface can be attained by resetting the 

comparator with the utilization of Johnson gage blocks as demonstrated in Fig. 5.14. 

Once the reference height is set, the measurements can be taken on the grid.   

Using collected data, surface plots for circular- and rectangular sections on the 

workpiece are obtained as shown in Figs. 5.15 and 5.16. 
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Figure 5.14 Johnson gauge sets used in the experiment 
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Figure 5.15 Surface plot, circular section 

 

 

Figure 5.16 Surface plot, rectangular section 
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According to given plots, the average height of the circular path is 16.5965 [mm] 

while the average height for the rectangular section is 15.5719 [mm].  As an 

interpretation, some waviness along the X direction is observed owing to the fact that 

during the machining operation, the Z axis motor is at rest.  Therefore, height 

differences for each pass might not be attributed to the Z axis motor.  It is probably 

related to the geometrical errors associated with the clamping device (vise).  Fig.5.8 

illustrates the vise, which is used for machining operations.  

Using a digital compass (with a resolution of 10 microns), certain dimensions of the 

part is measured as illustrated in Fig. 5.17.  As can be seen from Fig. 5.18, some 

deviations from the nominal dimensions are observed.  Maximum error occurred in 

3
rd

 data point which is 0.12 [mm] average is 0.035 [mm].  Note that at the beginning 

positioning commands for that circular path may include errors because of 

converting floating point numbers to integer ones.  Fig. 5.19 contains a graphical 

representation of evaluation of the circular trajectory 
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Figure 5.17 Measurement taken on the workpiece  
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Figure 5.18 Tracking Performance of the Circular Path 

 

 

Figure 5.19 Evaluation of the circular path 
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Rectangular part of the workpiece is measured by the digital compass.  Results are 

presented in the Fig. 5.20.  Measurement error increases at the inclined part of the 

rectangular section.  It is obvious that a digital compass is not proper tool to measure 

inclined surface.  

 

Figure 5.20 Tracking performance of the rectangular path 

 

The object of the last experiment is to investigate 3D interpolation capability of the 

system.  Actually, parameters of the performance investigation are related to not only 

the controllers but also the other components (motors, motor drivers, machine 

components, etc.).  During the experiments, calculated cutting parameters are used. 

Workpiece is given in the Fig. 5.21.  Note that the selected workpiece has diverse 

attributes that allow the investigation of coordinated motion for all motors.    It has a 

truncated pyramid in the middle and circular patterns at four sides of the workpiece.  
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Figure 5.21 Workpiece definition in the CAD environment 

 

Notice that STARMILL – ATC itself was designed for 2½ axes operations that only 

two of their axes (X and Y) move simultaneously at any one time.  Motor and driver 

selection are made according to this criteria.  On the other hand, the developed 

control system is suitable for n-axes coordinated motion.  Therefore, the controller 

pushes to the limit of machine tool.  Sculpturing performance is investigated with the 

previously calculated machining parameters.  Also, higher feed rates and cutting 

depths are avoided to stay within the set operating parameters.  
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While sculpturing the truncated pyramid, axial speeds of X, Y and Z are constant. 

During the performance evaluation, rapid change in the speed of the Z - axis 

introduces large amount of the positioning error.  Hence, in the absence of the 

position sensors, the corresponding errors accumulate. As a consequence, the 

workpiece is clearly deformed as presented in Fig. 5.22. 

 

 

Figure 5.22 Badly deformed workpiece 

 

In Chapter 6, the verification of the command generation is presented.  Illustrated 

deformation, which is mainly observed in Z direction, is caused by rapid change in 

the axial speed of that motor.  Hence, the motor driver cannot deliver the required 

current to drive the motor properly.  
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The workpiece is finalized by clamping the corresponding planes to XY plane. 

Performing 2D circular interpolation in the XY plane yields the desired geometry as 

shown in Fig. 5.23. 

 

 

Figure 5.23 Final workpiece 
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5.6 Summary 

 

Utilizing developed hardware, several experiments on the machine tool were 

conducted.  Open-loop performance is observed during those experiments.  A low 

strength (ductile) material for the workpiece is selected to reduce cutting forces / 

power.  The machining performance of the resulting CNC machine was found 

promising for machining operations in the XY plane.  According to experimental 

results, CNC milling machine, which was controlled by the devised hardware, had a 

machining accuracy of 0.05 [mm].  As presented, the vibrations of the machine tool 

had an adverse effect on the cutting performance when the cutting parameters (depth 

of cut, feed-rate, spindle speed, etc.) were not selected properly.  As it was presented, 

Z-Axis has lack of positioning performance.  It seems to be properly selected by 

machine designers.  During the experimental study it was concluded that rapid 

changing direction and speed cannot be tracked by motor driver.   Hence large 

amount of positioning error accumulates.  More powerful motor driver selection is 

essential for adequate operation of motors.     
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CHAPTER 6 

GRAPHICAL USER INTERFACE AND ITS FEATURES 

6.1 Introduction 

 

Graphical user interface (GUI), enables users to control and operate the CNC 

Machine Tool fully.   As opposed to text based interfaces, GUIs offer graphical 

icons, visual indicators to fully represent the information and actions available for the 

user.  All of the program controls performed through direct manipulation of the 

graphical elements.  

Designing visual elements, combination and representation of them are the most 

important points of the GUI design.  Popular CNC controllers have their distinctive 

GUIs.   One of the popular CNC machine controller manufacturer, Fanuc, employs a 

diverse GUI for its products which is presented in the Fig. 6.1 

For short, a GUI encapsulates visual gadgets and controller objects.  A good user 

interface design is directly driven by the users not by the system components.  Most 

of the CNC machine controllers utilize visualization of tool path in operation, a text 

editor, numerical position of the cutting tool and simulation of the NC part program. 
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Figure 6.1 Graphical user interface of the FANUC CNC control unit [85] 

 

Behind the GUI, there exist many control classes which are dedicated to perform 

machine control and operation, communication, interpretation of the part programs 

interaction with CAM modules of the CAD programs etc.  Basically development of 

an advanced GUI is out of this thesis’s scope.  Developed simple GUI represents 

development of a simple GUI process as machine control software and includes 

usage of the machine dll. 

GUI can be identified as: 

-  GRAPHIC WINDOW for 2D representation of the tool on XY, YZ and ZX 

planes 
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- ACTUAL POSITION WINDOW for numerically display of feed rate, spindle 

speed, and actual position of the cutting tool 

- STATUS WINDOW for presentation of the NC part program operands 

- EDITOR WINDOW for loading, saving and editing NC part programs 

- PREWIEW MODE for simulation of NC part program in order to prevent 

improper NC part program execution. 

6.2 FMILL Software Program of SPARCMILL 

 

FMILL program is developed for proper operation of developed distributed 

controllers.  Unfortunately it cannot be adapted any CAM program but, utilization 

NC part program editor, one can compose and execute an NC part program.  GUI is 

presented in the Fig. 6.2. 

It is a simple CNC machine interface that can provide basic operator demands. 

Additional indicators are also added to the program.  Actual position window gives 

relevant absolute position according to the previously set home position.   Scrolls 

which are allocated in the actual position window give the cutting tool position in 

machine coordinate systems and user can interpret the imminence to the limit 

switches.  Spindle speed and feed rate indicator windows are placed to indicate the 

present spindle speed and feed rate. 
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Figure 6.2 FMILL graphical user interface 

 

In status window current working plane, tool compensation mode and motion mode 

are displayed.  When a tool path simulation is needed pressing preview button will 

provide tool path trajectory on the graphic window.  Executed can be started by 

pressing the execute button.  A block diagram representation of the GUI is illustrated 

in the Fig. 6.3. 
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Figure 6.3 Block diagram representation of the GUI 

 

6.3 Machine .dll 

 

DLL stands for dynamic-link library.  Main idea is that loading the subroutines into 

an application program at runtime rather than linking in the compile time with 

placing them separate locations in the hard drive.   Therefore only a minimum 

amount of work is done by the compiler.  

A machine DLL is developed for software utilizations of the distributed controllers. 

Mainly it includes some directives and handles communication protocol. 

 Constructor: 

SPARCMILL_DCS can be included any file with the serial port name and 

initialized communication speed. 
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 PrepareData: 

PrepareData returns a byte array that includes encoded reference position 

commands.  Input arguments are delta displacement by means of millimeters 

that data type is double and feed rate, desired velocity of the given 

displacement in the previous argument by means of meter per minute that 

data type is double. 

 AddtoQueue: 

addtoqueue is utilized for constructing a byte array for each axis 

according to given incremental displacements.  Input arguments are 

incremental displacements by means of millimeters for each axis, dx, dy, and 

dz.  Also tangential desired speed by means of meters per minute is an 

argument too.  All the arguments for these functions are double. 

 SendData: 

SendData is subjected to send 1500 of bytes of constructed data array.  Its 

arguments are ID of the destination distributed control unit by means of 

bytes, ID of the master distributed control unit by means of bytes and byte 

array which includes encoded reference position commands data. 

 Execute: 

This function uses global variables that are constructed by addtoqueue 

function.  Also it controls the communication protocol as well as the software 

synchronization. 

 Jog: 

Jog function employs unit ID and feed rate by means of bytes as arguments. 

Basically, this function invokes the jog operation in the controller firmware 

which described in the previous chapters. 
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 JogStop: 

This function stops the jog.  It raises the jogstop interrupt in the controller 

firmware.  It should be used after jog function is executed.  It returns nothing. 

This control class does not include additional machine control classes.  Hence one 

who tries to develop software for those distributed controller, should develop an 

interpolation class.       

6.4 NC Command Interpreter 

 

Namely, command line interpreters is a kind of computer program that reads lines of 

text entered by user and interprets them in the predefined context.  NC command 

interpreter, which can interpret standard NC commands, is developed during this 

thesis work.  By using the editor window, the user can load or write an NC part 

program.  Basic motion commands, which can be utilized by the interpreter, are 

summarized in the Table 6.1.  In the FMILL software program, a user control is 

dedicated to interpret NC part program. NC command that can be interpreted by the 

FMILL is presented in the Table 6.1. 

6.5 Reference-Pulse Interpolator 

 

The interpolation for CNC machine control systems is defined as, construction of 

data points between given path formation and given two point definitions in two 

dimensional space.  As far as parameters of interpolation are defined in the NC part 

program, interpreted command parameters are interpolated by interpolation 

subroutines.  
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A reference-pulse interpolator [58, 59] is developed for interpolating high level 

motion commands which are interpreted by the NC command interpreter.  As it is 

cited in third chapter synchronization is a vital point for contouring the given 

trajectory in NC part program and distributed controllers are not internally connected 

each other to synchronize themselves [61].  Therefore, reference pulse interpolator 

not only generates position commands but also guaranties the reference commands 

for a specified time interval and arranges them for all axes.  In other words 

interpolator determines number of BLUs for each axis at predefined time interval. 
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Table 6.1 Interpreted NC commands 

 

G0 Rapid Motion 

G1 Linear Motion 

G2 CW Circular Motion 

G3 CCW Circular Motion 

G17 X-Y Plane selection 

G18 Y-Z Plane Selection 

G19 Z-X Plane Selection 

G20 Programming in inches 

G21 Programming in mm 

G40 Tool radius compensation off 

G41 Tool radius compensation left 

G42 Tool radius compensation right 

G90 Absolute programming 

G91 Incremental programming 

GR Execute subroutine 

 

 

6.5.1 Rapid Motion 

 

This motion mode, generally, uses the maximum axial speed and employs for 

positioning of the cutting tool.  It is not recommended for cutting operations.  When 

the command is invoked, controlled actuator moves its maximum axial speed to the 

specified displacement as it is presented in the Fig. 6.4. 
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Figure 6.4 Rapid move 

  

Hence there is no need to precise synchronization.  Therefore each axis is 

commanded to complete the given linear displacement in the NC part program with 

its maximum available speed. 

6.5.2 Linear Motion 

 

This motion mode is facilitated to command rectilinear line movements which are 

illustrated in the Fig. 6.5 in general. Linear interpolation basically used for cutting 

operations.  It can keep the linear path as close as possible.  Unlike the rapid motion, 

resultant speed of axes is given as a linear motion parameter and called as linear 

motion feed rate.  Hence, precise synchronization of each axis is obligatory.  In order 

to synchronize axes, interpolator generates relevant numbers by means of BLU.  
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Figure 6.5 Linear move 

 

The linear path which is given in Fig. 6.5, needs to be passed trough in   minutes 

where feed is defined in the NC part program by means of [m/ min]:  

                    (6.1) 

If predefined time interval defined as T, number of reference commands can be 

calculated as 

                     (6.2) 

This number will be executed in the predefined time interval and after each execution 

is completed a new set of numbers are created with considering the given resultant 

feed rate.    
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Finally linear interpolation equation turns into  

                   (6.3) 

                   (6.4) 

Following section discusses circular interpolation and its features. 

6.5.3 Circular Motion 

 

In this motion mode, controller generates a circular path which is defined in NC part 

program as illustrated in the Fig.6.6.  First, given trajectory is realized and then 

trajectory is divided into linear segments with start and ending points.  

Additionally, circular motion is more complicated than a rectilinear one.   Using 

brute computational techniques, it takes a relatively long time to calculate since 

calculation involves trig functions (like sine and cosine).  Hence, lookup tables or 

approximation functions can be employed instead of brute computation algorithms.  

Circular path definitions are not the only non-linear path definitions.  In order to 

sculpture such complex surfaces, interpolation algorithms have been evolved. 

Parametric curves [70, 72, 77], NURBS [63, 75] are the most common techniques.  

Relation between the length of a circular path in Fig. 6.6 and central (sweep) angle 

has a following relation [70]: 

                                        (6.5) 
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.  

Figure 6.6 Circular move 

 

where t is defined as central angle and  is the radius. Assuming the center of the 

circular arc is located in the origin, the circular path can be described as  

                              (6.6) 

                              (6.7) 

Using the parametric equation of the circle, next point to be interpolated is 

represented as   

                          (6.8) 

If  angle is divided into n many ’s  

                    (6.9) 

                                         (6.10) 
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Then Eqn. (6.6) yields into:  

               (6.11) 

               (6.12) 

As a result of Eqn. (6.7), instead of higher order polynomials, circular interpolation 

algorithm boils down to first order polynomials which only include addition, 

subtraction and multiplication.  Using previous command history, computational 

time can be decreased. 

6.6 Verification of the Interpolator 

 

As mentioned in the previous chapter, the interpolation is carried out by the FMILL 

software.  Controller performance is discussed in the previous chapters.   For 

controller software, it is expected to generate relevant points by employing 

interpolation algorithms.  Proper generation of reference motion commands is not the 

only challenge.  Reference commands are first generated as floating point numbers. 

Note that the path has to be expressed in term of machine BLUs which in turn leads 

to integer representation of the tool path.  Reference commands, which are smaller 

than BLU, will not be executed and interpreted as zero.   But, their summation, 

which may be larger than a BLU, will lead to a positioning error.  In order to identify 

such systematic errors, a complementary function must be written.  It can produce a 

csv file that includes encoded commands.  Then, these commands are to be 

interpreted by distributed controllers.  Decoding of such commands, gives positional 

increments.  Integrating incremental command eventually yields the tool path.  Note 

that the generated data array is to be compared with theoretical data.  Fig. 6.7 shows 
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the difference between generated reference commands and the theoretical one for this 

tool path illustrated in Fig 6.8. 

 

 

Figure 6.7 Command generation error 
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Figure 6.8 Generated tool path 

 

6.7 Summary 

As presented in the previous sections, computer software is developed for distributed 

control system designed in this work.   Also applicable machine dynamic link library 

(DLL) is developed and its source code is listed in the Appendix D.  CNC machine 

can be used more efficiently with better user interfaces.  Many of the advanced 

operation attributes, which are beyond the scope of the thesis, can be added.  
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 

7.1 Conclusion 

 

Purpose of this thesis was the development and implementation of distributed control 

system for CNC machine tools.  Different structures have been implemented that are 

elaborated in Chapter 4 and Appendix A.  

Due to their networked architecture, the implementation of distributed control 

systems exhibits both computational- and communication delays and these delays 

can decrease the performance of the control system.  Modeling of such networking 

and computational delays is sometimes necessary.  Basically, computational delays 

can easily be modeled and tested.  Networking speed of control system is selected by 

taking into account such delays.  

Distributed control systems for motion control applications have also a 

synchronization problem.  Depending on the application, the synchronization is 

essential. Especially, multi-axis movements do require synchronized implementation. 

If networking delays are modeled, one can synchronize the control system by 

properly manipulating the command generated.  In that case, control system turns 

into a real-time control system.  This problem can be identified by sending out 

repeated data patterns in the communication network.  Command generation 

strategies for real-time systems are also studied in this work.  
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Control system network topology presented in Chapter 4.  Master node of this 

control system can be considered as PC and the corresponding control software. 

Unfortunately, a real-time control system cannot be driven by a PC directly. 

Interrupts must be invoked by the slave nodes.  Requesting or giving feedback 

information is needed.  Therefore, amount of data, which need to be transferred 

along the communication network, will be increased.  This situation might be solved 

by using faster communication interfaces.     

Developed distributed control system which includes hardware, firmware and 

software was implemented on an open-loop controlled (3-axis) CNC machining 

center.  Machining performance under various conditions was investigated.  

Different physical communication architectures and communication protocols were 

developed and presented in the previous sections.  Different workpiece definitions 

were sculptured.  Overall performance of the control system was found promising.  

Furthermore a developed graphical user interface forced the limits of the distributed 

controllers.  First 2D interpolation ability was tested.  Then distributed controllers 

were forced to exhibit their 3D interpolation skills. 

To sum up; flexible,  modular, economic, retrofitable, distributed CNC control unit is 

developed and implemented.  Results are obtained for an open-loop control system.     

7.2 Future Work  

 

A promising distributed hardware allowing the use of many peripheral units 

(brushless DC, analog sensors, optical position encoders, etc.) were developed within 

the scope of this thesis.  Furthermore, a communication protocol, which is an 

essential part of this hardware was devised.  Only open loop performance of the 

system was studied utilizing stepper motors without any position sensors.   Since the 
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developed controller card do possess a powerful digital signal controller (16-bit DSP 

engine, integrated quadrature encoder interface, 10 MSample/s A/D converter, motor 

controller interface, etc.) closed-loop performance of the controllers could be 

investigated by simply connecting  advanced motor drivers (servo-motor drivers, 

closed-loop stepper motors drivers) to this system without any augmentation on  the 

system.   A new communication protocol, which encapsulates large number of CNC 

machine features, can be developed as well.  The devised hardware stores all the 

commands (issued by the host PC) in a buffer inside the digital signal controller 

(2kWords ~ 1800 position commands per axis).  When the information in the buffer 

is exhausted, the host PC needs to fill this buffer again with new reference positions. 

Hence, a slight interruption in the machining process is inevitable in this scheme due 

to the transfer of this data from the host PC.  To overcome this problem, one can 

incorporate a cyclic buffer to perform machining operation without any interruption. 

This is especially important for high-speed machining where slight interruption in the 

process might lead to undesirable effects on the surface of the workpiece. 

The control system was implemented on a (3-axis) CNC machining center which was 

designed for 2½D interpolation
1
.   Despite the fact that the Z-axis of this machine is 

properly selected to carry all the loads associated with this axis, the Z-axis motor 

driver, which can deliver only 2 A of continuous current, would not be able to drive 

this motor adequately.  As a consequence, the Z – axis cannot follow the issued 

commands.  Therefore, a powerful motor driver (like Parker-Hannifin SD5) can be 

utilized to rectify this situation.  Note that in this thesis, the acceleration and 

                                                 
1
 In such an interpolation scheme, the interpolation is performed in the XY plane while Z axis is 

stationary 
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deceleration profile of all axes are controlled by the motor-driver itself in a 

hardwired fashion
2
.  Thus, it is advisable to regulate these profiles inside the position 

control loop.   

Since the spindle motor is of low power (160 W), the spindle motor can be swapped 

with a more powerful so that one can machine high-strength metals that definitely 

draw more power (> 500W). Otherwise, relevant cutting parameters (e.g. feed-rate, 

radial- and axial depth of cut) have to be restricted which in turn seriously hinders 

the cutting potential of the CNC machine tool. 

Finally, the ATC of the machine was not fixed within the scope of this work due to 

time restrictions imposed.  As a future work, it is recommended that the pneumatic 

tool holder actuator be replaced with a linear electric motor (i.e. an electric motor 

coupled to a lead-screw shaft).  Hence, the resulting machine will not require any 

external compressed air sources. 

Even though, the designed graphical user interface does have adequate control 

feature to operate the machine, it can be definitely enhanced by including new 

features including 3D machining simulation, advanced NC-code parser (with 

―Intellisense‖ capability), improved manual data input (MDI) features, tool 

radius/length offset compensation, tool database management, etc.  Furthermore, 

since the technological trend in CNC technology is towards the use of touch-screen 

LCD, one can develop a GUI which can support such devices.  

 

 

                                                 
2
 A capacitor (C25) on the PCB of the driver (PH-SD2) must be replaced with an adequate one. 

Usually, smaller capacitances leads to increased acceleration/deceleration profiles. 
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APPENDIX – A 

Developed Hardware Architectures 

 

During this thesis work several distributed control architectures had been tried so far. 

Each of the control system was added into an RS232 based point-to-point multi drop 

communication network. 

A.1. First Architecture 

 

First architecture can be regarded as a preliminary work to understand distributed 

control systems and  is the first attempt to realize the concept in a small scale.  It was 

a complete control system with own motor driver which was influenced by [17].  It is 

not functionally distributed by means of control components [1].  But a hierarchical 

architecture [18, 25] was used in order to reduce the complexity (Fig. A.1). It is a 

networked control system [48] that constitutes  multi drop RS232 communication 

interface [51] (Fig. A.2).  
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Figure A.1 First architecture 

 

A program on a PC, which can be considered as the host of the network, interprets 

and pre-processes NC part programs.  This software has an ability to generate data 

streams which include reference position commands and can be accepted as another 

node on the control system.  When data is sent over the communication network, 

each controller reads the whole data.  It is a message based protocol which was 

influenced by CAN [35, 41, and 52].  When the stream was read, each of the 

identical controllers do the followings: 

 interprets pre-processed NC commands,  

 interpolates the reference commands, 

 generates clock signals for its stepper motor driver. 
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Figure A.2 DCS over RS232 network, first architecture 

 

 

Command generator, interpolator, can be classified as reference-pulse interpolator 

which was influenced by [64, 69].  Each of the points was generated by means of 

BLU of the controlled system and sent through the actuator interfaces.   
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Main advantage of this architecture is its compact structure which includes controller 

and motor driver (Figs. A.3 and A.4). 

 

Figure A. 3 Photo of the first architecture 

 

Hardware of the control system, which is illustrated in the Fig. A.4, can be divided 

into two parts: controller and actuator interface. It has one microprocessor and one 

RS232 interface on the controller side. Also L297-L298 pair that accepts clock 

signals up to 2 kHz to drive stepper motors.   
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Figure A.4 First architecture, hardware PCB 
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This networked control system has a breakpoint (unsafe).  All the controllers are 

needed to be synchronized by a synchronization engine [42].  In order to synchronize 

distributed controllers which are identical, they run same algorithms with the same 

data structure.  An experiment was conducted during this thesis which was related to 

synchronization without any interconnection or interruption.  Using the same 

function block with the internal timers of PIC microcontrollers, execution time was 

calculated and a tiny deviation, which could be eliminated, was observed. 

After all, using only hierarchy in the firmware introduces huge calculation delays [2]. 

These delays can be compensated by faster hardware solutions or by parallel 

programming of such micro-controllers. Instead of using complex software, 

functionally distributed control architecture (with fast and capable micro-controllers) 

can reduce the computational time. 

A.2. Second Architecture  

 

Second architecture can be considered as a milestone of this work. It is based on the 

functionally distributed control architecture [1]. Based on the idea, two additional 

micro controllers added up on the controller hardware. Three of the micro controllers 

are connected to each other internally via serial peripheral interface (SPI) 

communication interface.  One of the micro processors is responsible for internal 

communication which is also the communication interface.  16-bit micro controllers 

are used instead of 8-bit micro controllers in this architecture.  One of the important 

advantages of new micro controllers is that they constitute different peripheral 
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interfaces like three UART interfaces, encoder interface. A hierarchical architecture 

is used as a tradeoff for complexity (Fig. A.5).  

 

 

Figure A.5 Second architecture 

 

Like the first architecture, a computer program with an NC code interpreter masters 

the communication network and starts the communication stream on the RS232 

network (Fig. A.6). When the stream is received from the communication layer, 

using the internal communication network, reference commands are passed between 

communication- and the interpolation layer.  Then, the interpolated reference 

commands are passed to motion control layer.  This layer is also responsible for 

measurement of axis position.  Interpolation and motion control are connected to 

each other over a hierarchy.  Motion controller and interpolator are handled by one 

micro computer.  Device command generator layer takes the relevant instruction in 
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order to generate driver signals which activate the motor within the motor driver’s 

capability.  

 

 

Figure A.6 DCS over RS232 network, second architecture 

 

Interpolator can be categorized as a reference-pulse interpolator.  It uses line 

segments, no matter how complex trajectory is.  Such an algorithm is easy to 

implement.  But it takes more of the instruction time of the motion controllers.  Also, 

this computational load arises a vital point about this type of controller which 

disrupts the synchronization of the whole system.  Synchronization is necessary to 
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tracing a two or  three dimensional path with the given feed rate as a parameter.  

Here the problem is directly related to axial position displacements within a distinct 

time period.  Main contribution of the second controller is its functionally distributed 

architecture (Fig. A.7).      

 

Figure A.7 Second architecture, hardware PCB 

 

Unfortunately, this architecture does not have any synchronization interface. 

Duration of any interpolation instruction may not be identical.  Therefore, there 
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exists a tradeoff between adding up an instruction synchronization engine and 

sending out interpolated reference commands (driven communication host).   

The first option introduces an additional complexity to inter-communication 

protocol.  Therefore, interpolating the reference commands using NC command 

interpreter with computer software needs only additional interpolator sub program 

(in the computer software).  Also, rearranging the byte stream makes a new 

architecture possible.   

A.3. Third Architecture  

 

Third architecture, whose block diagram is represented in the Fig. A.8, can be 

classified as functionally distributed hierarchical distributed control system.  This 

control system behaves like a PC driven real-time control network.  It has two micro 

processors: one for communication and measurement, the other for command 

generation for the motor driver.  It has very strict hierarchical networking between 

functional modules.  They are connected to each other with parallel connection of 

five general purpose I/O pins.  Additionally, computer software hosts the 

communication.  It can interpret NC commands using its NC command interpreter 

algorithm.  Then it can interpolate the interpreted NC commands using reference-

pulse interpolation algorithm and controls the communication network between the 

distributed controllers.  First, each line segment is created on the PC then the relevant 

informant is put onto the network.  
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Figure A.8 Third architecture 

 

A software program on the PC can also be considered as a host of the communication 

network.  It has NC part program interpretation, reference command interpolation 

which is a reference-pulse interpolator and communication module.  At this point, 

the software has object oriented structure. When data stream  is released through the 

communication network, it inherits the properties of the message based and address 

based communication protocols. Line segments transferred as two byte data. 

Addition information is visualized in the Figs. A.9, A.10 and A.11.  For further 

information on communication protocol, reader is encouraged to refer to Chapter 3.   
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Figure A.9 DCS over RS232 network, third architecture 

 

 

Figure A.10 Third architecture, hardware PCB 
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Figure A.11 Application of the third architecture 
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APPENDIX – B  

Firmware of dsPIC30F4011 

 

The dsPIC30F4011 is 16-bit digital signal controller which was designed for motor 

control and industrial applications.  It is diversified as high-performance RISC CPU, 

which has wide range of peripheral interfaces.  

dsPIC30F4011 is used for communication interface. Generally, it incorporates the 

PIC16F88 for command generation and responsible for protocol implementation. 

#include <30F4011.h> 

#fuses HS 

#fuses NOWDT,NOPROTECT,NOBROWNOUT 

#use delay(clock=20000000)) 

#use rs232 (uart2, baud = 38400)  

#use fast_io(E) 

#use fast_io(D) 

#bit DE = 0x02D4.2  // DE, RS485 TX Enable output: RD2 

#bit SW1 = 0x02CE.14 // DCS Select #1 input: RC14 

#bit SW2 = 0x02DA.8 // DCS Select #2 input: RE8 

#bit SW3 = 0x02D4.1 // DCS Select #3 input: RD1 

#bit SW4 = 0x02D4.3 // DCS Select #4 input: RD3 

#bit SS = 0x02D4.0   // SS PIN 

#bit LSW = 0x02E0.0  // LSW, limit switch connection: RF0 

#bit RX = 0x02C8.6 

#bit TX = 0x02C8.7   

#bit SPI = 0x02C8.8  

#bit ERR = 0x02CE.13 

unsigned int8 r[1500];  // buffer 

unsigned int8 d; 

unsigned int8 _ID;   // ID 

// myID is used to calculate device ID 

// it uses the SWx PINs and DCS select DIP switch on the PCB 

unsigned int8 myID(){ 

   unsigned int8 ID, dummy; 

   ID = 0; 

   dummy = SW4; 

   ID += (dummy<<3); 

   dummy = SW3; 

   ID += (dummy<<2); 
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   dummy = SW2; 

   ID += (dummy<<1); 

   ID += SW1; 

   ID = 120 + ID; 

   return ID; 

} 

// go is used to send position command to motor interface 

// it uses SPI interface 

void go(unsigned int8 CN){ 

   unsigned int8 dummy;    

   SPI = 0; // idicate SPI transaction has started 

   // put SPI data while emptying the receive buffer    

   dummy = spi_read(CN);    

   while (!spi_data_is_in()){ 

      // since spi data is not received wait for data 

   }    

   dummy = spi_read();  // read SPI data 

   SPI = 1; // idicate SPI transaction has completed 

} 

void main() { 

   unsigned int8 r1, r2; 

   unsigned int16 k; // time index 

   int1 flag = 0; 

   int1 Imaster = 0; 

   // 

   // PIN configurations 

   set_tris_b(0x0000); 

   set_tris_c(0x4000); 

   set_tris_d(10); 

   set_tris_e(0x0100); 

   set_tris_f(17); 

   // 

   // setup SPI 

   // setup as : spi master, data transmitted on H-to-L 

   // sys. clock divided to 16 and set as SCK, slave select disabled 

   setup_spi(SPI_MASTER|SPI_H_TO_L|SPI_CLK_DIV_16|SPI_SS_DISABLED); 

   // 

   //read out unit ID 

   _ID = myID(); 

   // 

   // reset indicator LEDs 

   ERR = 1;    

   RX = 1; 

   TX = 1; 

   SPI = 1; 

   // 

   // reset buffer flag 

   flag = 0; 

   while(1){ 

      if(kbhit()){ 

         // 
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         // if serial data received 

         RX = 0; 

         r1 = getc(); 

         r2 = getc();      

         RX = 1; 

         // 

         // if ID matches and flag = 0  

   // then prepare for data transfer 

         if((r1 == _ID) & (flag == 0)) {          

            // 

            // for r2, if ID matches dedicated as master  

            if(r2 == _ID) Imaster = 1; // now im the master 

            // 

            // else dedicated as servant 

            else Imaster = 0; // now im the servant 

            DE = 1;  // enable TX 

            TX = 0; 

            putc(_ID);  //device answers PC's call for data transfer 

            delay_us(250); // wait for transaction 

            DE = 0;  // disable TX 

            TX = 1; 

            k = 0;   // reset time index  

            RX = 0;   

            // fill device buffer 

            for(k=0;k<1500;++k){                

               r[k] = getc(); 

            } 

            RX = 1;  

            DE = 1;  // enable TX  

            TX = 0; 

            putc(_ID);  // device invokes the PC: transfer completed 

            delay_us(250); 

            DE = 0; 

            TX = 1;  

            flag = 1;   // raise the buffer flag 

            ERR = 0; 

         } 

         // 

         // if r1 = 'h' and ID matches go home position 

         else if ((r1 == 0x68) & (r2 == _ID)){   //h 

            ERR = 0;  

            // 

            // go while Limit switch is detected 

            while (!LSW) go(208);  

            DE = 1;  // enable TX 

            TX = 0; 

            putc(_ID);  // device invokes the PC: home position  

            delay_us(250); 

            DE = 0;  // disable TX 

            TX = 1;  

            ERR = 1; 
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         } 

         // 

         // if r1 = 'j' and ID matches jog mode is ON 

         else if((r1 == 0x6A) & (r2 == _ID )){   // j 

            DE = 1;  // enable TX  

            TX = 0; 

            putc(_ID);  // device answers the PC's call 

            delay_us(250); 

            DE = 0; 

            TX = 1; 

            RX = 0; 

            r1 = getc();   // r1 has to be device ID  

            r2 = getc();   // get the feedrate data 

            RX = 1;  

            ERR = 0; 

            // 

            // while data received just go! 

            while(!kbhit()){ 

               go(r2); 

            } 

            ERR = 1; 

         } 

         // 

         // software synchronization, if r1 = 120, ID of the PC  

         // buffer flag = 1 (buffer is full) execute buffer  

         else if((r1 == 120) & (flag == 1)) {   

            k = 0;  

            for(k=0;k<1500;++k){  

               r1 = getc(); 

               //SS = 0; 

               go(r[k]); 

               //SS = 1; 

               // if device is deciated as master 

               if(Imaster) { 

                  DE = 1;  // enable TX 

                  TX = 0; 

                  // it invokes the PC for next operation 

                  putc(_ID); 

                  delay_us(250); 

                  DE = 0;  // disable TX 

                  TX = 1; 

               } 

               // else just wait for master to finish transaction 

               else delay_us(250); 

            }                      

            flag = 0;   // reset the buffer flag 

            ERR = 1; 

         }                         

      } 

      // 

      // else reset r1 and r2  
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      else { 

         r1 = 0; 

         r2 = 0; 

      } 

   } 

 

 

 

 



122 

 

 

APPENDIX – C 

 Firmware of PIC16F88 

 

The PIC16F88 is a powerful CMOS flash based 8-bit micro controller.  16F88 is 

dedicated to perform command signal generating that relieves considerable 

processing load on the dsPIC30F4011. 

#include <16f88.h> 

#fuses HS 

#fuses NOWDT,NOPROTECT 

#use delay(clock=20000000)) 

#bit DIR = 0x05.4   // DIR PIN connected to RA4 

#bit SS = 0x06.5  // Busy 

// 

// direction command embeded inside the received byte 

// calculate and set direction 

unsigned int8 clcC(unsigned int8 d1){ 

   DIR = (d1>>7) & 0x01; 

   d1 = d1 & 0x7F; 

   return d1; 

} 

// 

// calculate counts which need to be execute in the relevant index 

unsigned int16 clcD(unsigned int8 r){ 

   unsigned int16 D; 

   // half of the relevant period has just been calculated 

   if (r > 0) D = 5000 / r;   

   else D = 0;   

   return D; 

} 

// 

// execute received command by SPI 

void go(unsigned int8 c){ 

   unsigned int16 D;    

   if (c>0){ 

      c = clcC(c); // subtract direction information from received  

      D = clcD(c);  // calculate period of command signal 

      // 

      // execute! 

      while(c>0){ 
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         output_high(PIN_B3); 

         delay_us(D); 

         output_low(PIN_B3); 

         delay_us(D); 

         --c; 

      } 

   } 

} 

void main(){ 

   unsigned int8 d = 0, c = 0; 

   // PIN configurations 

   set_tris_a(0x00);   

   set_tris_b(0x00);   

   // 

   // setup SPI 

   // setup as : spi slave, data transmitted on H-to-L 

   // slave select disabled 

   setup_spi(SPI_SLAVE | SPI_H_TO_L | SPI_SS_DISABLED); 

   while(1) { 

      if(spi_data_is_in()){ 

         // get data from SPI 

         d = spi_read(c);  //read data from SPI while writing c 

         go(d); 

         // set 30F4011, operation completed 

         d = spi_read(c);  //read data from SPI while writing c    

      }       

   } 

} 
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APPENDIX – D  

Machine DLL 

 

using System; 

using System.IO.Ports; 

using System.Collections.Generic; 

using System.Linq; 

using System.Text; 

 

namespace SPARCMILL_DCS_v1 

{ 

    class SPARCMILL_DCS 

    { 

        SerialPort PORT = new SerialPort(); 

 

        Queue<byte> X = new Queue<byte>(); 

        Queue<byte> Y = new Queue<byte>(); 

        Queue<byte> Z = new Queue<byte>(); 

        bool ind = true; 

        /// <summary> 

        /// Constructor 

        /// </summary> 

        /// <param name="PortName">Name of the COM port</param> 

        /// <param name="BRate">COM Speed</param> 

        public SPARCMILL_DCS(string PortName, int BRate) 

        { 

            PORT.PortName = PortName; 

            PORT.BaudRate = BRate; 

            PORT.Parity = Parity.None; 

            PORT.DataBits = 8; 

            PORT.StopBits = StopBits.One; 

            PORT.Handshake = Handshake.None; 

        } 

         

        #region functions 

 

        /// <summary> 

        ///  

        /// </summary> 

        /// <param name="x1"> displacement by means of mm</param> 

        /// <param name="Fx1">feed by means of m/min</param> 

        /// <returns></returns> 

        public byte[] prepareData(double deltA, double f1) 

        { 

            if (deltA != 0) 

            { 

                deltA = deltA * 100;  // mm -> cnt conversation 

    

                f1 = Math.Round(Math.Abs(f1 * 1000 / 6));     

                if (f1 > 127) f1 = 127; 

      // m/min -> cnt/100ms conversation 
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                double k = Math.Abs(deltA / f1); 

                double t = Math.Truncate(k); 

                k -= t; 

                double f0 = k * f1; 

 

                if (deltA < 0) 

                { 

                    f1 += 128; 

                    f0 += 128; 

                } 

 

                byte[] data = new byte[Convert.ToInt32(t + 1)]; 

 

                data[0] = Convert.ToByte(f0); 

 

                for (int i = 1; i < t + 1; ++i) 

                { 

                    data[i] = Convert.ToByte(f1); 

                } 

                return data; 

            } 

            else 

            { 

                byte[] b = new byte[1] { 0 }; 

                return b; 

            } 

        } 

 

        /// <summary> 

        ///  

        /// </summary> 

        /// <param name="dx"></param> 

        /// <param name="dy"></param> 

        /// <param name="dz"></param> 

        /// <param name="f"></param> 

        public void addtoQueue(double dx, double dy, double dz, 

double f) 

        { 

            double fx = 0, fy = 0, fz = 0, r = 0; 

 

            r = Math.Sqrt(Math.Pow(dx, 2) + Math.Pow(dy, 2) + 

Math.Pow(dz, 2)); 

 

            fx = dx / r * f; 

            fy = dy / r * f; 

            fz = dz / r * f; 

 

            byte[] datax = prepareData(dx, fx); 

            byte[] datay = prepareData(dy, fy); 

            byte[] dataz = prepareData(dz, fz); 

 

            if ((datax.Length >= datay.Length) & (datax.Length >= 

dataz.Length)) 

            { 

                foreach (byte xk in datax) X.Enqueue(xk); 

                foreach (byte yk in datay) Y.Enqueue(yk); 

                foreach (byte zk in dataz) Z.Enqueue(zk); 

 

                int dl = datax.Length - datay.Length; 

                for (int q = 0; q < dl; ++q) Y.Enqueue(0x00); 
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                dl = datax.Length - dataz.Length; 

                for (int q = 0; q < dl; ++q) Z.Enqueue(0x00); 

 

            } 

            else if ((datay.Length >= datax.Length) & (datay.Length 

>= dataz.Length)) 

            { 

                foreach (byte yk in datay) Y.Enqueue(yk); 

                foreach (byte zk in dataz) Z.Enqueue(zk); 

                foreach (byte xk in datax) X.Enqueue(xk); 

 

                int dl = datay.Length - dataz.Length; 

                for (int q = 0; q < dl; ++q) Z.Enqueue(0x00); 

 

                dl = datay.Length - datax.Length; 

                for (int q = 0; q < dl; ++q) X.Enqueue(0x00); 

 

            } 

            else if ((dataz.Length >= datax.Length) & (dataz.Length 

>= datay.Length)) 

            { 

                foreach (byte zk in dataz) Z.Enqueue(zk); 

                foreach (byte xk in datax) X.Enqueue(xk); 

                foreach (byte yk in datay) Y.Enqueue(yk); 

 

                int dl = dataz.Length - datax.Length; 

                for (int q = 0; q < dl; ++q) X.Enqueue(0x00); 

 

                dl = dataz.Length - datay.Length; 

                for (int q = 0; q < dl; ++q) Y.Enqueue(0x00); 

 

            } 

 

        } 

 

 

        /// <summary> 

        ///  

        /// </summary> 

        /// <param name="ID1">UNIT ID</param> 

        /// <param name="ID2">id ID2 == UNIT ID then UNIT is MASTER 

else UNIT is SERVANT</param> 

        /// <param name="data"> 1500 element data array</param> 

        public void sendData(byte ID1, byte ID2, byte[] data) 

        { 

            byte[] d = new byte[2]; 

            byte[] dmy = new byte[1]; 

 

            d[0] = ID1; 

            d[1] = ID2; 

 

            PORT.Open(); 

            PORT.Write(d, 0, 2);    // set DCS UNIT 

            PORT.Read(dmy, 0, 1);   // get DCS UNIT 

            PORT.Write(data, 0, 1500);  // put DCS UNIT 

            PORT.Read(dmy, 0, 1);   // get DCS UNIT, now DCS UNIT 

raises its buffer flag 

            PORT.Close(); 

        } 

 

        /// <summary> 
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        /// takes 1500 of byte arrays of wach axis 

        /// and executes them 

        /// </summary> 

        /// <param name="deltaX"> X data array</param> 

        /// <param name="deltaY"> Y data array</param> 

        /// <param name="deltaZ"> Z data Array</param> 

        public void eXecute()//byte[] deltaX, byte[] deltaY, byte[] 

deltaZ) 

        { 

            byte[] d = new byte[2]; 

            byte[] dmy = new byte[1]; 

 

            byte[] datX = new byte[1500]; 

            byte[] datY = new byte[1500]; 

            byte[] datZ = new byte[1500]; 

 

            int k = 0; 

            byte HOST = 120, servantX = 122, servantY = 123, 

servantZ = 124; 

 

            int l = X.Count;    // get length 

 

            while (X.Count > 1) 

            { 

                //clear data arrays 

                Array.Clear(datX, 0, 1500); 

                Array.Clear(datY, 0, 1500); 

                Array.Clear(datZ, 0, 1500); 

 

                int lx = X.Count; 

 

                if (l <= 1500) 

                { 

                    for (int i = 0; i < l; ++i) 

                    { 

                        datX[i] = X.Dequeue(); 

                        datY[i] = Y.Dequeue(); 

                        datZ[i] = Z.Dequeue(); 

                    } 

 

                } 

                else 

                { 

                    for (int i = 0; i < 1500; ++i) 

                    { 

                        if (X.Count < 1) 

                        { 

                            datX[i] = 0; 

                            datY[i] = 0; 

                            datZ[i] = 0; 

                        } 

                        else 

                        { 

 

                            datX[i] = X.Dequeue(); 

                            datY[i] = Y.Dequeue(); 

                            datZ[i] = Z.Dequeue(); 

                        } 

                    } 

 

                } 
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                sendData(servantX, servantX, datX); 

                sendData(servantY, 0x00, datY); 

                sendData(servantZ, 0x00, datZ); 

 

                d[0] = HOST; 

                d[1] = 0x00; 

                PORT.Open(); 

                PORT.Write(d, 0, 2); 

 

                for (k = 0; k < 1500; ++k) 

                { 

                    PORT.Write(dmy, 0, 1); 

 

                    uPdateAll(datX[k], datY[k], datZ[k]); 

 

                    PORT.Read(dmy, 0, 1); 

                } 

 

                PORT.Close(); 

            } 

        } 

 

       /// <summary> 

       /// Jog function 

       /// </summary> 

       /// <param name="ID">unit ID</param> 

       /// <param name="cnt">feed</param> 

        public void Jog(byte ID, byte cnt) 

        { 

            byte[] d1 = new byte[2]; // for dummy readings 

            byte[] d2 = new byte[1];   // for command indication on 

DCS 

 

 

            if (!PORT.IsOpen) PORT.Open(); 

 

            d1[0] = 0x6A;   // j 

            d1[1] = ID; 

 

            PORT.Write(d1, 0, 2); 

            PORT.Read(d2, 0, 1); 

 

            d1[0] = ID; 

            d1[1] = cnt; 

 

            PORT.Write(d1, 0, 2); 

 

            PORT.Close(); 

        } 

 

        /// <summary> 

        /// jog stop function 

        /// </summary> 

        public void JogStop() 

        { 

            byte[] b = new byte[2]; 

            if (!PORT.IsOpen) PORT.Open(); 

            b[0] = 0x73;    // s 

            b[1] = 0x73;    //s 

 

            PORT.Write(b, 0, 2); 
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            PORT.Close(); 

        } 

 

        #endregion functions 

         

         

    } 

 

   } 
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