

MULTI-OBJECTIVE COMBINATORIAL OPTIMIZATION USING
EVOLUTIONARY ALGORITHMS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

BURCU ÖZSAYIN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

INDUSTRIAL ENGINEERING

AUGUST 2009

Approval of the thesis:

MULTI-OBJECTIVE COMBI�ATORIAL OPTIMIZATIO� USI�G
EVOLUTIO�ARY ALGORITHMS

submitted by BURCU ÖZSAYI� in partial fulfillment of the requirement for the
degree of Master of Science in Industrial Engineering Department, Middle
East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of �atural and Applied Sciences

Prof. Dr. Nur Evin Özdemirel
Head of Department, Industrial Engineering

Prof. Dr. Murat Köksalan
Supervisor, Industrial Engineering Dept., METU

Examining Committee Members

Assoc. Prof. Dr. Yasemin Serin
Industrial Engineering Dept., METU

Prof. Dr. Murat Köksalan
Industrial Engineering Dept., METU

Prof. Dr. Nesim Erkip
Industrial Engineering Dept., Bilkent University

Assist. Prof. Dr. Đsmail Serdar Bakal
Industrial Engineering Dept., METU

Assist. Prof. Dr. Banu Soylu
Industrial Engineering Dept., Erciyes University

 Date: 12.08.2009

 iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also
declare that, as required by these rules and conduct, I have fully cited and
referenced all material and results that are not original to this work.

 �ame, Last name : Burcu ÖZSAYIN

 Signature :

 iv

ABSTRACT

MULTI-OBJECTIVE COMBINATORIAL OPTIMIZATION USING
EVOLUTIONARY ALGORITHMS

Özsayın, Burcu

M.S., Department of Industrial Engineering

Supervisor: Prof. Dr. Murat Köksalan

August 2009, 110 pages

Due to the complexity of multi-objective combinatorial optimization problems

(MOCO), metaheuristics like multi-objective evolutionary algorithms (MOEA)

are gaining importance to obtain a well-converged and well-dispersed Pareto-

optimal frontier approximation. In this study, of the well-known MOCO

problems, single-dimensional multi-objective knapsack problem and multi-

objective assignment problem are taken into consideration. We develop a steady-

state and elitist MOEA in order to approximate the Pareto-optimal frontiers. We

utilize a territory concept in order to provide diversity over the Pareto-optimal

frontiers of various problem instances. The motivation behind the territory

definition is to attach the algorithm the advantage of fast execution by eliminating

the need for an explicit diversity preserving operator. We also develop an

interactive preference incorporation mechanism to converge to the regions that

are of special interest for the decision maker by interacting with him/her during

the optimization process.

Keywords: Multi-objective Evolutionary Algorithms, Multi-objective

Combinatorial Optimization, Preference Incorporation, Interactive Method

 v

ÖZ

EVRĐMSEL ALGORĐTMA ĐLE ÇOK AMAÇLI KOMBĐNATORYEL
OPTĐMĐZASYON

Özsayın, Burcu

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Murat Köksalan

Ağustos 2009, 110 sayfa

Çok amaçlı kombinatoryel problemlerin karmaşıklığından dolayı, iyi yakınsanmış

ve iyi dağılmış bir Pareto-optimal sınır yaklaşımı elde etmek için çok amaçlı

evrimsel algoritmalar gibi üstsezgisel metodlar önem kazanmıştır. Bu çalışmada,

belli başlı çok amaçlı kombinatoryel optimizasyon problemlerinden, tekboyutlu

çok amaçlı sırt çantası problemi ve çok amaçlı atama problemi ele alınmaktadır.

Pareto-optimal sınıra yaklaşmak için elitist ve kararlı durumda bir evrimsel

algoritma geliştirilmektedir. Farklı problemlerin Pareto-optimal sınırları üzerinde

çeşitlilik sağlayabilmek için, bölge kavramı kullanılmaktadır. Bölge

tanımlamasının arkasındaki motivasyon, açık bir çeşitlilik koruma operatörünün

kullanımını ortadan kaldırarak algoritmaya hızlı uygulama avantajını sağlamaktır.

Ayrıca, karar verici için ilgi çekici olan Pareto-optimal sınır bölgelerini

yakınsama amacıyla, karar verici ile optimizasyon aşamasında iletişim

kurulmasını sağlayan tercihe dayalı interaktif bir mekanizma geliştirilmektedir.

Anahtar Kelimeler: Çok Amaçlı Evrimsel Algoritmalar, Çok Amaçlı

Kombinatoryel Optimizasyon, Tercihe Dayalı, Etkileşimli Metod

 vi

To Dad

 vii

ACK�OWLEDGME�TS

I would like to express the deepest appreciation to my supervisor Professor Murat

Köksalan for his guidance, encouragements, and persistent help throughout this

study. I have dedicated myself to this study by the existence of his valuable

presence.

I would like to thank Đbrahim Karahan, whose work helped me to find my way in

this study. He was always ready to help me whenever I needed his support.

I am grateful to my father who is not with me physically but always make me feel

his excellent spirit in my heart. I want to thank my mom for her endless and

unconditional love, and for being so strong to stand behind me all the time.

Moreover, I am grateful to the most important person in my life, my brother

Burak, for being the best brother one can ever have.

In addition, I would like to thank my dear friend Özge Baytürk for being my sister

and for this wonderful friendship she dedicated to my life.

I am also thankful to my friends Aslı Gül Buğdacı, Gülşah Karakaya, and

Diclehan Tezcaner. I have always felt their existence whenever I needed their

ideas and support.

I would like to thank TÜBĐTAK for supporting me financially during this study.

Lastly, I would like to thank Ercan Balkoç for providing me my second wing to

make me fly. My life would not be as meaningful if he was not the second half of

it. His encouragements, patience, and love assisted me to complete this thesis.

 viii

TABLE OF CO�TE�TS

ABSTRACT .. iv

ÖZ ... v

ACKNOWLEDGMENTS .. vii

TABLE OF CONTENTS .. viii

LIST OF TABLES ... xi

LIST OF FIGURES ... xiii

CHAPTERS

1 INTRODUCTION ... 1

2 DEFINITIONS AND LITERATURE REVIEW ... 4

 2.1 DEFINITIONS ... 4

2.1.1 Dominance and Efficiency ... 8

2.1.2 Ideal and Nadir Objective Vectors ... 10

2.1.3 Favorable Weights .. 10

2.1.4 Distance Metrics ... 11

2.1.5 Definitions Related to Evolutionary Algorithms 12

 2.2 LITERATURE REVIEW ... 14

2.2.1 MOEAs that Approximate the Entire Efficient Frontier 14

2.2.2 Preference Incorporation in MOEAs .. 18

2.2.3 Multi-objective Combinatorial Optimization ... 23

3 COMBINATORIAL TERRITORY DEFINING EVOLUTIONARY

ALGORITHM (C-TDEA) ... 27

 3.1 GENERAL OUTLINE OF C-TDEA .. 29

 3.2 C-TDEA FOR MULTI-OBJECTIVE KNAPSACK PROBLEM 30

3.2.1 Initialization of the Regular Population .. 30

3.2.2 Parent Selection ... 32

3.2.3 Crossover and Mutation .. 32

3.2.4 Scaling ... 33

 ix

3.2.5 Repair and Improvement of the Solutions ... 34

3.2.5.1 Repair of the Infeasible Solutions ... 36

3.2.5.2 Improvement of the Solutions – Genetic Local Search 36

3.2.6 Regular and Archive Population Updates ... 37

 3.3 C-TDEA FOR MULTI-OBJECTIVE ASSIGNMENT PROBLEM 40

3.3.1 Initialization of the Regular Population .. 40

3.3.2 Parent Selection ... 42

3.3.3 Crossover and Mutation .. 42

3.3.4 Scaling ... 44

3.3.5 Improvement of the Solutions ... 45

3.3.6 Regular and Archive Population Updates ... 46

 3.4 DETERMINATION OF τ .. 47

 3.5 SIMULATION RUNS AND COMPARISONS ... 48

3.5.1 Performance Metrics ... 52

3.5.2 Multi-objective Knapsack Problem Instances 54

3.5.3 Multi-objective Assignment Problem Instances 63

3.5.4 Discussions .. 71

4 INTERACTIVE COMBINATORIAL TERRITORY DEFINING

EVOLUTIONARY ALGORITHM (IC-TDEA) ... 72

 4.1 GENERAL OUTLINE OF IC-TDEA .. 74

 4.2 IC-TDEA FOR MULTI-OBJECTIVE KNAPSACK PROBLEM 75

 4.3 IC-TDEA FOR THE MULTI-OBJECTIVE ASSIGNMENT PROBLEM .. 79

 4.4 SIMULATION RUNS AND COMPARISONS ... 82

4.4.1 Multi-objective Knapsack Problem ... 84

4.4.2 Multi-objective Assignment Problem ... 90

4.4.3 Discussions .. 96

5 CONCLUSIONS ... 97

REFERENCES ... 99

APPENDICES

A. DETAILED PLOTS OF NSGA-II AND ε-MOEA FOR MULTI-OBJECTIVE

KNAPSACK PROBLEM .. 103

 x

B. DETAILED PLOTS OF NSGA-II AND ε-MOEA FOR MULTI-OBJECTIVE

ASSIGNMENT PROBLEM .. 107

 xi

LIST OF TABLES

TABLES

Table 2.1 Common Weighted Distance Metrics... 12

Table 3.1 Test Parameters for the Multi-objective Knapsack Problem 51

Table 3.2 Test Parameters for the Multi-objective Assignment Problem 51

Table 3.3 Indicator Results for the 2-objective 200-item KP 55

Table 3.4 Test Results for the 2-objective 200-item KP 55

Table 3.5 Indicator Results for the 2-objective 750-item KP 57

Table 3.6 Test Results for the 2-objective 750-item KP 57

Table 3.7 Indicator Results for the 3-objective 200-item KP 59

Table 3.8 Test Results for the 3-objective 200-item KP 59

Table 3.9 Indicator Results for the 3-objective 750-item KP 61

Table 3.10 Test Results for the 3-objective 750-item KP 61

Table 3.11 Indicator Results for the 2-objective N=50 AP 63

Table 3.12 Test Results for the 2-objective N=50 AP .. 64

Table 3.13 Indicator Results for the 2-objective N=100 AP 65

Table 3.14 Test Results for the 2-objective N=100 AP .. 65

Table 3.15 Indicator Results for the 3-objective N=50 AP 67

Table 3.16 Test Results for the 3-objective N=50 AP .. 67

Table 3.17 Indicator Results for the 3-objective N=100 AP 69

Table 3.18 Test Results for the 3-objective N=100 AP .. 69

Table 4.1 Interactive Test Parameters .. 82

Table 4.2 Interactive Test 1 Results for 2-objective 750-item KP 84

Table 4.3 Interactive Test 2 Results for 2-objective 750-item KP 85

Table 4.4 Interactive Test 3 Results for 2-objective 750-item KP 86

Table 4.5 Interactive Test 1 Results for 3-objective 750-item KP 87

Table 4.6 Interactive Test 2 Results for 3-objective 750-item KP 88

Table 4.7 Interactive Test 3 Results for 3-objective 750-item KP 89

Table 4.8 Interactive Test 1 Results for 2-objective N=100 AP........................... 90

 xii

Table 4.9 Interactive Test 2 Results for 2-objective N=100 AP........................... 91

Table 4.10 Interactive Test 3 Results for 2-objective N=100 AP......................... 92

Table 4.11 Interactive Test 1 Results for 3-objective N=100 AP......................... 93

Table 4.12 Interactive Test 2 Results for 3-objective N=100 AP......................... 94

Table 4.13 Interactive Test 3 Results for 3-objective N=100 AP......................... 95

 xiii

LIST OF FIGURES

FIGURES

Figure 2.1 Solution Illustrations ... 9

Figure 2.2 Tchebycheff Favorable Weights ... 11

Figure 3.1 Illustration of Territory in Two-dimensional Space 28

Figure 3.2 Sigmoid and Linear Function Scaling for Maximization Problems 34

Figure 3.3 C-TDEA Repair and Improvement Directions 35

Figure 3.4 Violation of territories when rectilinear distance is used to determine

the closest neighbor of the offspring .. 40

Figure 3.5 Cycle Crossover .. 44

Figure 3.6 Sigmoid and Linear Function Scaling for Minimization Problems 45

Figure 3.7 Illustration of Hypervolume metric ... 53

Figure 3.8 Plots for the 2-objective 200-item KP ... 56

Figure 3.9 Plots for the 2-objective 750-item KP ... 58

Figure 3.10 Plots for the 3-objective 200-item KP ... 60

Figure 3.11 Plots for the 3-objective 750-item KP ... 62

Figure 3.12 Plots for the 2-objective N=50 AP .. 64

Figure 3.13 Plots for the 2-objective N=100 AP .. 66

Figure 3.14 Plots for the 3-objective N=50 AP .. 68

Figure 3.15 Plots for the 3-objective N=100 AP .. 70

Figure 4.1 IC-TDEA Repair and Improvement Procedure for MOKP 78

Figure 4.2 IC-TDEA Improvement Procedure for MOAP 81

Figure 4.3 Interactive Test 1 Plots of 2-objective 750-item KP 85

Figure 4.4 Interactive Test 2 Plots of 2-objective 750-item KP 86

Figure 4.5 Interactive Test 3 Plots of 2-objective 750-item KP 87

Figure 4.6 Interactive Test 1 Plots of 3-objective 750-item KP 88

Figure 4.7 Interactive Test 2 Plots of 3-objective 750-item KP 88

Figure 4.8 Interactive Test 3 Plots of 3-objective 750-item KP 89

 xiv

Figure 4.9 Interactive Test 1 Plots of 2-objective N=100 AP 90

Figure 4.10 Interactive Test 2 Plots of 2-objective N=100 AP 91

Figure 4.11 Interactive Test 3 Plots of 2-objective N=100 AP 92

Figure 4.12 Interactive Test 1 Plots of 3-objective N=100 AP 93

Figure 4.13 Interactive Test 2 Plots of 3-objective N=100 AP 94

Figure 4.14 Interactive Test 3 Plots of 3-objective N=100 AP 95

Figure A.1 Contender Plots for the 2-objective 200-item KP 103

Figure A.2 Contender Plots for the 2-objective 750-item KP 104

Figure A.3 Contender Plots for the 3-objective 200-item KP 105

Figure A.4 Contender Plots for the 3-objective 750-item KP 106

Figure B.1 Contender Plots for the 2-objective N=50 AP 107

Figure B.2 Contender Plots for the 2-objective N=100 AP 108

Figure B.3 Contender Plots for the 3-objective N=50 AP 109

Figure B.4 Contender Plots for the 3-objective N=100 AP 110

 1

CHAPTER 1

I�TRODUCTIO�

Multi-objective optimization problems (MOPs) cover most of the real world

problems in which there exist many objectives that are in most occasions

conflicting. There is not a single optimal solution, but there are many solutions

which are better in some objectives and worse in others. The so called

nondominated solutions show the trade-off between these objectives and compose

the Pareto-optimal frontier. To end up with a single preferred nondominated

solution, many mathematical modeling based approaches have been proposed.

However, if the decision maker (DM) does not provide any preference

information between the objectives, each objective is assumed to be of equal

importance, which results in the equal importance of all solutions on the whole

Pareto-optimal frontier. In such a case, the aim in MOPs is to construct the whole

Pareto-optimal frontier and the decision making process is postponed to post-

optimal stage.

A significant portion of MOPs are multi-objective combinatorial optimization

(MOCO) problems. However, MOCO problems are in general considerably hard

to solve problems. Due to the complexity of even the single objective

combinatorial optimization problems, heuristic methods are becoming more and

more important in this area of multi-objective optimization. When multi-objective

combinatorial optimization (MOCO) problems come on the scene, one more but a

very challenging issue emerges. This issue is the trade-off among the objective

functions and the existence of many Pareto-optimal solutions one of which cannot

be considered superior to another in the absence of any preference information.

Consequently, metaheuristics like multi-objective evolutionary algorithms

(MOEA) are gaining more importance to obtain a well-converged and well-

dispersed Pareto-optimal frontier approximation.

 2

Working with a population of solutions, multi-objective evolutionary algorithms

(MOEAs) have gained a significant interest of operational researchers, especially

in solving multi-objective optimization problems (MOP). Evolutionary algorithms

are population-based metaheuristic optimization algorithms, which apply the

principles of natural evolution to optimization. Moreover, MOEAs are not

problem dependent, having the advantage of being suitable for a very general

class of optimization problems. Therefore, having a population of solutions in

every iteration, EAs are well-suited to approximate the Pareto-optimal frontier.

However, there does not exist many MOEAs designed to solve MOCO problems.

With appropriate adaptations, MOEAs constitute a good compromise on the way

to solve MOCO problems with good approximation properties and acceptable

computational complexity.

In the absence of information on the utility function of the DM, MOP techniques

have two main objectives: Convergence to Pareto frontier and diversity of

solutions over the entire Pareto frontier. These two features provide the DM

with a good representation of the Pareto-optimal solutions, that is, the nature of

the Pareto-optimal frontier. As a third objective, the current research is mainly on

algorithms that concentrate on the region of the Pareto-optimal frontier which is

of special interest to the DM. That is, instead of generating the whole Pareto-

optimal frontier, a specified region on the frontier can be generated.

We propose an elitist MOEA called Combinatorial Territory Defining

Evolutionary Algorithm (C-TDEA) and apply it on two well-known

combinatorial optimization (MOCO) problems: multi-objective knapsack problem

and multi-objective assignment problem. The proposed MOEA is inspired by

Territory Defining Evolutionary Algorithm (TDEA) that has been proposed by

Karahan and Köksalan (2008). Moreover, we propose a preference-based version

of the algorithm that concentrates on the preferred regions of the Pareto-optimal

frontier and even obtains a single best solution for the DM in an interactive

manner.

 3

The thesis begins with presenting some definitions and related literature on

MOEAs, preference incorporation in MOEAs, and MOCO problems in Chapter 2.

In Chapter 3, we introduce the general outline of C-TDEA and give the details of

the algorithm. We test the performance of the proposed algorithm with respect to

two well-known MOEAs on 2-, and 3-objective problems.

In chapter 4, we present the preference incorporated version of C-TDEA, called

Interactive C-TDEA (IC-TDEA). The performance of this preference-based

MOEA is also tested on the same 2- and 3-objective problems.

Finally, we provide some conclusive remarks on the contribution of our work and

provide future research directions in Chapter 5.

 4

CHAPTER 2

DEFI�ITIO�S A�D LITERATURE REVIEW

In this chapter, we provide the definitions that are used throughout this work and

the related literature on multi-objective evolutionary algorithms and multi-

objective combinatorial optimization problems. The definitions of the concepts

related to this study are provided in Section 2.1. The literature review on multi-

objective evolutionary algorithms and preference incorporation, and multi-

objective combinatorial optimization problems are provided in Section 2.2.

2.1 DEFI�ITIO�S

For further details on the introductory definitions below, see Steuer (1986) and

Ehrgott (2000).

Multi-objective optimization is the process of optimizing multiple objective

functions simultaneously. The optimization process may be subject to certain

constraints.

Most multi-objective optimization problems (MOPs) have conflicting objectives.

Therefore, such problems do not have a single solution optimizing all of the

objective functions. The search is for finding the so called nondominated

solutions. A nondominated solution is such a solution that no objective value can

be improved without sacrificing from one or more of the remaining objectives.

 5

We can formulate a multi-objective optimization problem (MOP) as follows:

"Maximize" z = f(x) (2.1)

subject to x∈X (2.2)

where,

x = (x1, …, xN)T decision variable vector

X⊆RRRR
� feasible decision space

z = (z1, z2, …, zM) = f(x) = (f1(x), …, fM(x))T objective function vector

Z = f(X) feasible objective space

Feasible decision space may be restricted by the following types of constraints:

h(x) = 0 equality type constraints

g(x) ≥0 inequality type constraints

A multi-objective combinatorial optimization (MOCO) problem is an integer

programming problem that is given by the following feasible set:

"Maximize" z = f(x) = Cx (2.3)

subject to Ax ≥ b (2.4)

x ∈ Z� (2.5)

where,

x = (x1, …, xN)T decision variable vector

X⊆Z� feasible decision space

z = (z1, z2, …, zM) = f(x) = (f1(x), …, fM(x))T objective function vector

Z = f(X) feasible objective space

 6

C matrix of objective function coefficients

A matrix of constraint coefficients

b matrix of constraint left-hand-sides

The entries of the matrices C, A, and b are generally integer numbers. The

feasible decision space of a combinatorial optimization problem is assumed to be

a finite set. MOCO problems are not linear optimization problems, and there exist

unsupported efficient solutions which bring MOCO problems additional difficulty

over multi-objective linear optimization problems. MOCO problems are in

general NP-complete and #P-complete, and intractable; which correspond to the

difficulty of finding a solution, difficulty due to large number of solutions, and

the absence of efficient means of solving the problem, respectively. In fact, the

existence of unsupported efficient solutions is the main reason of the

computational complexity of MOCO problems, and the computational complexity

grows very fast with the problem size (Ehrgott and Gandibleux, 2004).

Multi-objective knapsack problem (MOKP) is a binary programming problem that

is characterized with maximization type objectives. The MOKP is NP-hard

(Ehrgott, 2000) and the formulation is as follows:

 jx

bxatosubject

xczMaximize

xczMaximize

j

i

jj

j

j

M

jM

j

jj

,..,1};1,0{

.

.

.

1

1

1

1
1

=∈

≤

=

=

∑

∑

∑

=

=

=

 (2.6)

 7

In MOKP, a decision must be made on which items to put into a capacitated

knapsack, out of available items. If item j is put into the knapsack, then the

corresponding decision variable xj takes the value 1; otherwise it takes the value

0. Item j has a weight of aj, and the total item weights that are put into the

knapsack should not exceed the knapsack capacity b. Moreover, each item j is

attached objective coefficient m

jc for each objective m, where each of the M

objectives is to be maximized.

Multi-objective assignment problem (MOAP) can be formulated as a binary

programming problem that is characterized with minimization type objectives.

Out of people and jobs, a decision must be made on which person to assign to

which job. The formulation is as follows:

}1,0{

,..,1;1

,..,1;1

.

.

.

1

1

1 1

1 1

1

∈

==

==

∑

∑

∑∑

∑∑

=

=

= =

= =

ij

j

ij

i

ij

i

j

ij

M

ij

i

j

ijij

x

 ix

 jxtosubject

xcMinimize

xcMinimize

 (2.7)

where the decision variable xij takes the value 1 if person i is assigned to job j, and

it takes the value 0 otherwise. Each person can be assigned to only one job, and

each job can be assigned to only a single person. These two restrictions are

handled by adding two corresponding constraints into the MOAP model. If job j

is assigned to person i, this causes the corresponding cost m

ijc for each objective

 8

m. The aim is to minimize the associated total costs for each of the M objectives.

The MOAP is NP-complete, #P-complete, and intractable (Ehrgott, 2000).

2.1.1 Dominance and Efficiency

Without loss of generality, the following definitions assume that the objectives

are of maximization type.

Definition 2.1. Let z1, z2 ∈ Z be two objective vectors. z1 is said to dominate z2 if

21
ii zz ≥

for all i and 21
jj zz > for at least one j.

Definition 2.2. Let z ∈ Z be an objective vector. If there is no z'

∈ Z that

dominates z, then z is said to be nondominated. If there exists at least one such z'

∈ Z that dominates z, then z is said to be dominated. The set of all nondominated

solutions is called the nondominated set.

Definition 2.3. Let x∈X be a decision vector. Then, x is said to be efficient if

there is no x'∈ X such that f(x') dominates f(x). If f(x) is dominated, then x is

inefficient.

Definition 2.4. Let z1, z2 ∈ Z be two objective vectors. Then, z1 strictly

dominates z2 if 21
ii zz > for all i.

Definition 2.5 Let z ∈ Z be an objective vector. Then, z is said to be weakly

nondominated if these is no z'

∈ Z such that ii zz >'

for all i. Nondominated set is

a subset of the weakly nondominated set that may also contain dominated

solutions.

 9

Definition 2.6. Let z'∈ Z be an objective vector. Then, z' is said to be convex

dominated if there exist objective vectors z1, z2, …, zk

∈ Z and weights µ1, µ
2,

…, µ
k ≥ 0 such that 1µ

1

i =∑ =

k

i
 and ∑ =

k

i 1
µi zi ≥ z'.

Definition 2.7. Let z'∈ Z be an objective vector. Then, z' is said to be

unsupported nondominated if it is convex dominated but nondominated. If the

decision maker has a linear utility function, then the most preferred solution of the

decision maker cannot be an unsupported nondominated solution, since these

solutions cannot be obtained by maximizing a weighted-sum of objective

functions.

Supported nondominated, unsupported nondominated, dominated, and weakly

nondominated but dominated solutions are illustrated in Figure 2.1.

Figure 2.1 Solution Illustrations

 10

2.1.2 Ideal and �adir Objective Vectors

Definition 2.8. The ideal objective vector of a MOP is the vector of objective

values z* = []TMi zzzz ,...,,...,, ***
2

*
1 , the i

th element of which corresponds to the

optimal value of the ith objective function. Ideal objective vector is constructed by

optimizing each of the M objectives individually over the feasible region.

Definition 2.9. The nadir objective vector of a MOP is the vector of objective

values zn = []Tn

M

n

i

nn zzzz ,...,,...,, 21 , the ith element of which corresponds to the worst

value of the ith objective function among all nondominated solutions.

Definition 2.10. For a MOP with M maximization-type objectives, a payoff table

is an M×M matrix formed by using the decision vectors obtained while

calculating the ideal objective vector. In the table, i
th row corresponds to the

feasible objective vector at which the ith objective function takes its optimal value.

The nadir point can be estimated by using a payoff table. The smallest value in

the jth column gives an estimate for the jth element of the nadir objective vector.

However, there is no guarantee that this estimate is close to the correct nadir

objective vector.

2.1.3 Favorable Weights

Definition 2.11. Favorable weights },...,,{
221

s

M

sss λλλλ = of a solution s

correspond to the weights that minimize the weighted Tchebycheff distance of the

solution to the ideal objective vector f*. Favorable weights of a solution are

computed as follows (See Steuer 1986, p. 425):

 11

=∃≠

=

=≠

−−

=

−

=∑

**

*

*

1

1 **

0

1

,...,2,1
11

jjii

ii

jj

M

j
jjii

i

ffthatsuchjbutffif

ffif

Mjallforffif
ffff

λ (2.8)

where if is the ith objective value and *
if is the ith element of the ideal objective

vector. Tchebycheff favorable weights are illustrated in Figure 2.2.

Figure 2.2 Tchebycheff Favorable Weights

2.1.4 Distance Metrics

Lq-metric is a function that defines the distance between two vectors x, y ∈ RRRR�.

The Lq-distance between vectors x and y is formulated as follows:

q

i

q

iiq
yxyx

/1

1

−=− ∑

=

 (2.9)

 12

If a weight vector w = [w1, …, wN] is provided, then the weighted Lq-distance

between vectors x and y is calculated as follows:

q

i

q

iiiqw
yxwyx

/1

1
,

)(

−=− ∑

=

 (2.10)

Common weighted distance metrics are provided in Table 2.1.

Table 2.1 Common Weighted Distance Metrics

Name Metric Formula

Rectilinear 1L ∑ =
−

i iii yxw
1

Euclidean 2L [] 2/1
2

1
)(∑ =

−

i iii yxw

Tchebycheff ∞L ()iiii yxw −max

2.1.5 Definitions Related to Evolutionary Algorithms

For further details on the definitions below, see Deb (2001).

In an evolutionary algorithm, the solutions, the so called chromosomes, are

assigned a goodness measure to evaluate that solution. This measure, which is

defined in terms of the objective functions and the constraints, is called the fitness

of that solution.

The main part of evolutionary algorithms consists of the genetic operators. The

selection operator chooses the good parent solutions that mate to produce

offspring solutions with the aim of duplicating the good solutions and eliminating

the bad solutions. The most common selection operator, tournament selection

operator creates tournaments between solutions and the best solution is chosen as

parent.

 13

Another genetic operator is the crossover operator, which mates the selected

parent solutions, that is, exchanges some portion of the chromosomes between the

two parents and creates new chromosomes, called offspring solutions.

The mutation operator changes some part on the chromosome of the offspring

with the expectation of creating a better solution by performing a local search

around the initial solution. Mutation operator also serves to provide diversity over

the Pareto-optimal frontier.

Although it is possible to find multiple solutions during the early generations, it

becomes extremely difficult to keep this diverse set of solutions throughout the

evolutionary run. In an MOEA, to maintain the multiplicity of solutions till the

final generation, an explicit diversity-preserving operator is needed. The operator

may use different methods, but the aim is to provide a diverse set of solutions

over the Pareto-optimal frontier.

In order to keep the previously found good solutions in the population and make

use of them in the genetic operations, an elite-preserving operator can be used.

This operator favors the good solutions, the so called elites, of a population by

giving them the opportunity to survive among the subsequent generations. An

evolutionary algorithm is said to be elitist if it utilizes an elite-preserving

operator. In elitist MOEAs, a good solution obtained is never lost until a better

solution is found.

In some evolutionary algorithms, an offspring is evaluated as soon as it is created.

That is, after every offspring is created, that offspring is used to update the whole

population. Such algorithms are called steady-state MOEAs.

Although the initial population of an MOEA can be constructed by randomly

generated solutions, some non-random solutions can be put into the initial

population that are thought to be good solutions for the considered problem. This

 14

process is called seeding, and the placed non-random solutions are called seed

solutions.

2.2 LITERATURE REVIEW

Working with a population of solutions, multi-objective evolutionary algorithms

(MOEAs) constitute an important research area in multi-objective optimization.

MOEAs provide fast convergence to Pareto-optimal frontier by evolving multiple

solutions simultaneously. They also provide incorporation of various convergence

and diversity operators, and even preference incorporation schemes. Deb (2001)

and Coello et al. (2006) cover many aspects related to multi-objective

evolutionary algorithms that are useful sources for the researchers.

Although most of the proposed algorithms in the MOEA literature focus on

generating the entire Pareto-optimal frontier, there are many recent studies that

aim to incorporate the preferences of the decision maker into the search process.

Coello (2000), Chetković and Parmee (2002), and Rachmawati and Srinivasan

(2006) classify the preference incorporation techniques used in MOEAs and

explain the importance of preference incorporation.

The literature review section of this study is divided into three parts. First, the

MOEAs approximating the entire efficient frontier without eliciting any

preference information will be covered. Then, the preference incorporation

techniques in the literature will be reviewed. Finally, we deal with multi-objective

combinatorial optimization literature.

2.2.1 MOEAs that Approximate the Entire Efficient Frontier

Deb et al. (2002) have suggested the ondominated Sorting Genetic Algorithm 2

(SGA-II). NSGA-II is an elitist algorithm that uses the idea of nondominated

sorting. The solutions in the population are classified into nondomination levels

 15

and each level is assigned its corresponding rank. The algorithm keeps an

offspring population and a parent population. These two populations are

combined after each generation and the population of the next generation is

chosen among the members of the combined population. The selection is

performed by considering the ranks of the solutions in the combined population

such that, the solutions from the best ranked levels are selected. If the

predetermined population size is hit such that all solutions from a particular rank

cannot be accepted into the new population, the selection is made based on the

crowding measure of the solutions at that particular rank. In order to provide

diversity, sharing function method is used within each front, which makes the less

crowded regions to have a higher probability for selection by degrading the

fitness values of the solutions in the crowded regions.

Zitzler, Laumanns and Thiele (2002) have proposed an elitist multi-objective

evolutionary algorithm, the Strength Pareto Evolutionary Algorithm 2 (SPEA2),

an improved version of the previous algorithm SPEA. SPEA2 maintains two

coevolving populations, and copies the nondominated solutions of the regular

population into the archive population. Each individual is assigned a strength

which gives the number of individuals it dominates. The raw fitness of a solution

becomes the sum of the strengths of the solutions that dominate it. By this way,

SPEA2 prevents two solutions in the regular population to have the same raw

fitness value if one of them dominates the other. In SPEA2, kth nearest neighbor

method is used as the density estimation technique. This density measure is added

to the raw fitness value to obtain the fitness of a solution. Consequently, the

solutions at the same raw fitness level can be discriminated according to their

density value. SPEA2 is proposed with a constant archive size that does not vary

throughout the genetic process. This is achieved by filling the remaining slots of

the archive with the best dominated individuals if the number of nondominated

individuals is less than the archive size. On the other hand, if the number of

nondominated individuals is more than the archive size, an archive truncation

procedure comes on the stage that utilizes the k-th nearest neighbor method.

 16

The Indicator-based Evolutionary Algorithm (IBEA) is proposed by Zitzler and

Künzli (2004) who have realized that most MOEAs use a property of the Pareto

optimal set implicitly without taking other properties into consideration. This

property may be to maximize the hypervolume dominated by the resulting Pareto-

optimal frontier approximation, or to obtain an approximation that requires the

minimal improvement to dominate the real Pareto-optimal frontier. The authors

have proposed the usage of a binary performance measure, called an indicator,

which can be obtained for any type of preference information. Once the indicator

type is determined, it is used to calculate the fitness of each individual. In addition

to the advantage of using any preference information about the realization of the

Pareto frontier, IBEA does not also require any diversity preserving operator. The

authors have proposed two binary quality indicators, additive ε-indicatior (Iε+) and

hypervolume indicator (IHD). The algorithm suggests the design of more flexible

MOEA techniques that respond to different types of preference information

obtained from the DM.

In the study of Deb et al. (2005), the ε-domination concept has been utilized and a

new steady-state algorithm called “ε-Domination Based Multi-objective

Evolutionary Algorithm (ε-MOEA)” has been developed. The algorithm evolves

two populations simultaneously, the EA population and the archive population.

The archive population consists of the ε-nondominated solutions of the EA

population. According to the ε-dominance concept, two solutions with a

difference less than εi in the i-th objective are not nondominated to each other

anymore. In ε-MOEA, the objective space is divided into hyper-boxes that are

formed beginning from the minimum possible value of each objective. The

archive selection procedure prevents two solutions to be in the same hyper-box.

Consequently, the ε-dominance concept facilitates the reduction of the cardinality

of the archive population, and provides the desired resolution for each of the

objectives by obtaining a good diversity with a small computational time.

However, there are two drawbacks associated with ε-MOEA. The first one is the

absence of extreme solutions on the Pareto frontier which occurs due to the fact

 17

that the extreme solutions usually become ε-dominated. The second drawback is

related to the composition of the hyper-boxes. Instead of forming a hyper-box

around each existing solution, the algorithm forms pre-specified hyper-boxes

starting from the minimum possible value of each objective. This contradicts with

the claim of the authors such that, it becomes possible for two solutions in

neighboring hyper-boxes to be within εi in objective i. However, these drawbacks

do not prevent ε-MOEA to be a sufficiently good compromise between

convergence, diversity and computational efficiency.

Favorable Weight Based Evolutionary Algorithm (FWEA) of Soylu and Köksalan

(2006) assigns its own weights to each of the individuals with respect to a

weighted Tchebycheff distance function and these weights, called the favorable

weights of the individual, are used to calculate its fitness score. According to the

favorable weights mechanism, each individual contributes to convergence along

its own favored direction so that it gains advantage over the other individuals.

Moreover, the fitness values are assigned such that the underrepresented portions

of the frontier are favored. After ranking the population according to their

nondomination levels, the fitness values are adjusted such that, the fitness of any

individual in a better frontier is at least an ε amount better than any individual in a

worse frontier. Moreover, nearest neighbor information is incorporated into

fitness calculation in order to maintain diversity. FWEA is a steady-state EA

where only two offspring are generated in every generation and they replace two

members of the population if the replacement rules are satisfied.

Territory Defining Evolutionary Algorithm (TDEA) which has been proposed by

Karahan and Köksalan (2008) is a steady-state and elitist MOEA that has two

coevolving populations, the regular population and the archive population. The

archive population consists of the nondominated solutions of the regular

population. The ε-domination concept used in ε-MOEA to update the archive

population is replaced by the territory concept which is defined as the hyper-box

enclosed by the territory size τ in all objective values of the solution. An offspring

 18

is rejected to enter the archive if it violates the territory of an existing archive

member that is nondominated with respect to the offspring. TDEA does not use a

fitness function. The existence of territory defining property eliminates the need

for an explicit diversity preserving operator resulting in high computational

efficiency while providing diversity and convergence. The size of the territory

provides a limit on the final cardinality of the archive population. Consequently,

the final population size and the computational time increase as τ decreases.

2.2.2 Preference Incorporation in MOEAs

One of the first efforts to concentrate on a desired portion of the efficient frontier

using MOEAs has been the attempt to solve goal programming problems. Deb

(1999), realizing the difficulties associated to the classical goal programming

procedure, has proposed a technique to solve such problems using an MOEA. He

has suggested translating each goal to an objective that minimizes the deviation

from the target. The modified goal programming problem is then solved using

Nondominated Sorting Genetic Algorithm (NSGA). The multiple Pareto-optimal

solutions found by NSGA correspond to different weights which are evaluated

simultaneously. Consequently, the result is not a single solution corresponding to

a certain weight vector as in the case of classical goal programming, but it is a

region on the Pareto-optimal frontier dominated by the goal, where the distances

from the goal is minimized for differing weight vectors.

Branke et al. (2001) has introduced an algorithm utilizing the trade-offs between

objectives, in order to concentrate on the preferred region of the Pareto-optimal

frontier. According to the introduced algorithm called Guided MOEA (G-MOEA),

the decision maker provides linear trade-offs between objectives instead of goals

or weights. Then, the obtained linear utility functions with slopes as the maximum

and minimum trade-off values are used to obtain a modified domination criterion.

Following this new guided dominance scheme, nondominated sorting of the

population is performed. Guided nondomination orients the population to the

 19

desired part of the Pareto-optimal frontier since the whole Pareto-optimal frontier

is no more nondominated according to the new nondomination scheme. In G-

MOEA, diversity along the desired region of the frontier is provided by a

modified fitness sharing approach.

Another study on preference incorporation has been performed by Chetković and

Parmee (2002) in which fuzzy logic has been used to characterize the relative

importance of objectives for the decision maker. Binary preference relations

obtained from the decision maker are translated into qualitative values that can be

used as the weights of the objectives. This transformation process is where the

fuzzy preference relations come on the stage. From the binary preferences

obtained, fuzzy preference matrices are formed from which objective weights can

be obtained. Once the weights of the objectives are determined, the authors

suggest different methods to reach the desired solutions on the Pareto-optimal

frontier. First method is the “weighted sum-based optimization method” in which

objectives are aggregated into a single objective function using the weights

obtained. Moreover, a new domination criterion is introduced called “weighted

domination”. Using this new definition of nondomination, a weighted Pareto-

optimal frontier is obtained which is a subset of the original Pareto-optimal

frontier that is of interest for the decision maker.

Another study on fuzzy preference relations has been performed by Jin and

Sendhoff (2002). Interval-based weights are incorporated into MOEA using a

proposed approach called “evolutionary dynamic weighted aggregation”. Two

different methods are proposed: Random weighted aggregation (RWA) and

dynamic weighted aggregation (DWA). The weights are varied within the interval

obtained using fuzzy preference relations.

Biased crowding distance introduced by Branke and Deb (2004) is based on the

idea of biased sharing approach (Deb, 2001, pp 379-382). The approach is

integrated in NSGA-II where nondominated sorting is used to ensure convergence

 20

and crowding distance measure is used to provide diversity. However, the

approach modifies the crowding distance measure by using the most probable

linearly weighted utility function obtained from the decision maker. For the

regions of the Pareto-optimal frontier which are approximately parallel to the

projected utility function, the crowding distance becomes high, while the

crowding distance becomes smaller for the regions that have a sharper slope with

the projected utility function. Consequently, the solutions with high crowding

distances cause the algorithm to focus on the region where the utility function is

tangent to the frontier.

Reference Point Based Evolutionary Multi-objective Optimization approach has

been proposed by Deb and Sundar (2006). The approach uses the concept of

reference point methodology and without utilizing weight vector information,

focuses on the region on the Pareto-optimal frontier that is close to the reference

point. The result is a set of solutions corresponding to differing weight vectors to

facilitate the understanding of the decision maker about the problem situation. By

providing more than one reference points, the method can result in finding points

in multiple regions of the Pareto-optimal frontier. The authors have developed

reference-point-based NSGA-II (R-NSGA-II) by incorporating their approach

into NSGA-II. The proposed algorithm differs in its crowding distance calculation

in that, the crowding distance of a solution is determined according to its

Euclidean distance to the reference point. The algorithm can focus on multiple

regions of the Pareto frontier, and can obtain multiple solutions on each of these

regions.

A study similar to that of Deb and Sundar (2006) has been proposed by Deb and

Kumar (2007), which uses the reference direction approach instead of reference

points. The approach is incorporated into an evolutionary algorithm method,

reference direction based SGA-II (RD- SGA-II). The algorithm chooses a set of

points in the reference direction provided by the DM. For each of the points

selected, the individual in the population having the minimum value of

 21

achievement scalarizing function is determined. Then, this set of population

members form the first nondominated front and the process goes on this way until

all population members are assigned to their corresponding rank of

nondomination. Reference direction procedure performs preference incorporation

while sorting the population into nondomination classes. The procedure results in

a region of the Pareto-optimal frontier where the reference direction is projected

on. The reference direction method can also be extended to deal with multiple

reference directions.

Phelps and Köksalan (2003) have proposed their own evolutionary metaheuristic

that incorporate the preferences of the decision maker into the search process with

the aim of solving combinatorial optimization problems. The Interactive

Evalutionary Metaheuristic (IEM) proposed by the authors aims to end up with

the preferred solution of the decision maker by interactively guiding the search

effort. The partial preference information obtained from the decision maker in

terms of binary preference relations between individuals are directly used in

fitness calculations through finding the middlemost feasible weights. In each

iteration of IEM, the estimated utility function is updated according to the

preference information obtained from the decision maker and the individual

having the best estimated utility value is considered as an incumbent. The

incumbent is also updated in each iteration, until the decision maker is satisfied

with the current incumbent. IEM aims to end up with a single solution of interest

for the decision maker by interactively exploring the feasible space.

Another metaheuristic developed by Köksalan and Phelps (2007), called

evolutionary metaheuristic for approximating preference-nondominated solutions

(EMAPS), gets partial preference information from the decision maker, not to end

up with a single efficient solution, but to concentrate the search effort onto a

region of the Pareto-optimal frontier. The algorithm is based on partial preference

information case where the decision maker provides some restricted amount of

information in qualitative terms a priori and this imprecise information is used to

 22

concentrate the search effort to the desired regions of the Pareto-optimal frontier.

The qualitative preference information is translated into constraints to restrict the

weight space. The fitness value of an individual is assigned by taking into

consideration the weight vector within the restricted weight space that gives the

highest advantage to that individual and whether that individual has a potential to

approximate the underrepresented portions of the preference-nondominated

solution set of the decision maker.

Karahan and Köksalan (2008) have implemented a preference incorporation

mechanism into TDEA. According to this mechanism, the size of the territories

are altered such that, smaller territory sizes are determined for the preferred

regions of the decision maker in order to obtain more solutions in these regions.

The mechanism is used in two proposed versions of TDEA, the a priori version

called Preferred-Region TDEA (prTDEA) and the interactive version called

Interactive TDEA (iTDEA). In prTDEA, the decision maker specifies his/her

preference regions a priori in terms of weight sets, where multiple regions are

allowed. If an offspring is in a preferred region, it is evaluated using the territory

size associated to that region. prTDEA obtains a better approximation of the

preferred regions compared to TDEA. Karahan (2008) has also presented an

interactive version of the algorithm, named as iTDEA. In this interactive version,

the preferred region of the decision maker is approximated step by step during the

optimization stage as information is obtained from the decision maker. For this

purpose, interaction stages are determined at prespecified generations and a more

focused and smaller preference region is estimated at each of these interaction

stages. Preference incorporation results in better details in the regions of interest

with higher computational efficiency.

 23

2.2.3 Multi-objective Combinatorial Optimization

This section consists of an overview of multi-objective combinatorial

optimization literature. We recommend the book written by Ehrgott (2000, pp

153-211) for further details on MOCO problems and the solution methods.

Moreover, a comprehensive bibliography is provided by Ehrgott and Gandibleux

(2000) on various MOCO problems.

Combinatorial optimization problems, having a finite number of feasible

solutions, are special cases of integer programming problems. A MOCO problem

is characterized by a specific set of constraints that give the problem its structure.

Both the feasible objective space and the feasible decision space consist of a finite

set of points for a MOCO problem (Ehrgott and Gandibleux, 2000). As Ehrgott

(2000) mentions, MOCO problems do not have convex solution spaces and

therefore there usually exist unsupported efficient solutions. In a MOCO problem,

there are usually much more unsupported efficient solutions than supported ones

and they highly contribute to the computational complexity of MOCO problems

(Ehrgott and Gandibleux, 2000).

MOCO problems are generally NP-complete, #P-complete and intractable. That

is, it becomes impossible to propose an efficient method to determine all of the

Pareto-optimal solutions since the number of these solutions may be exponential

in problem size (Ehrgott and Gandibleux, 2000).

The solution methods for MOCO problems are classified into two by Ehrgott and

Gandibleux (2000): Exact methods and approximation methods. Exact Methods

are weighted sum scalarization method, where all supported efficient solutions

can be obtained; compromise solution method; where the Pareto-optimal frontier

can be found theoretically by minimizing the distance to an ideal point; goal

programming; ranking method, which is developed to solve two-objective

problems for which the efficient frontier can be generated by finding the K-best

 24

solutions between the ideal point and nadir point with respect to one of the

objectives; and the methods adapted from single objective combinatorial

optimization, like Branch-and-Bound and the Hungarian method for the single-

objective assignment problem.. In the literature, 2-phase method is very popular

and is addressed in several papers. In this method, the optimization process is

divided into two phases. In the first phase, the supported efficient solutions are

obtained, which can be easily found by weighted-sum scalarization of the

objectives. In the second phase, the information obtained from the supported

efficient solutions is used to find the unsupported efficient solutions. Przbylski

et.al. (2007) have applied the two-phase method to solve bi-objective assignment

problem, while Visée et.al. (1998) have applied the same method to bi-objective

knapsack problem. In the second phase of the algorithm, Visée et.al. (1998) use

Branch and Bound method to obtain the unsupported efficient solutios.

The approximation methods to solve MOCO problems are discussed in detail in a

review paper by Ehrgott and Gandibleux (2004). Since MOCO problems are very

hard to solve exactly, approximation methods are highly popular in MOCO

literature. The heuristics that are developed to solve the single objective

combinatorial optimization problems can generally be utilized to generate

heuristics for their multiobjective counterparts. The authors divide the heuristic

methods into two classes: the local search methods and the population based

methods. They also overstrike that, different MOCO problems need problem-

specific adaptations of the metaheuristics and the performance of the algorithm is

highly affected from these adaptations.

Both single objective and multi-objective knapsack problems are NP-hard, while

it is not yet known whether the problem is #P-complete or intractable (Ehrgott,

2000). The number of supported solutions grows linearly with the problem size

while the number of unsupported solutions grows exponentially (Ehrgott and

Gandibleux, 2000). There exist a heuristic approach to solve the knapsack

problem, called the greedy method, that uses the weight ratios m

jc / ja . For the

 25

single objective knapsack problem, the weight ratios are sorted in a non-

increasing order, and the items are put into the knapsack in this order as long as

the total weight of the items does not exceed the capacity of the knapsack. In

order to solve the two-objective knapsack problem, the Branch and Bound

method can be used (Ehrgott and Gandibleux, 2000).

When we come to MOAP, finding all efficient solutions of the problem is NP-

complete, #P-complete, and intractable (Ehrgott, 2000). Ehrgott (2000) mentions

that, athough it may take an exponential time, all Pareto-optimal solutions of two-

objective assignment problem can be obtained by using “two-phase method”. In

fact, the literature on MOAP is generally restricted to the two-objective case.

Since the constraint matrix of assignment problem is totally unimodular, the

single-objective problem can be solved as a linear programming problem. The

single-objective assignment problem can be solved by using the Hungarian

method. However, Ehrgott (2000) mentions that, in multi-objective case, total

unimodularity of the constraint matrix only serves to find the supported solutions.

Ehrgott and Gandibleux (2004) discuss the solution of MOCO problems by using

MOEAs. They claim that, for the knapsack problem, seeding the initial population

by greedy solutions or supported efficient solutions improves the performance of

the algorithm. Jaszkiewicz (2002) has proposed a genetic local search approach to

solve MOKP. The local search is provided by introducing a revised greedy

heuristic that takes a weighted aggregation of objectives into the sorting process.

Chu and Beasley (1998) have developed a genetic algorithm for the multi-

dimensional knapsack problem. Both of these papers are good resources to see the

representation of the knapsack problem in evolutionary algorithms.

Although there are many proposed MOEAs in the literature, we come across to a

few MOEAs that are specially developed to solve MOCO problems. Moreover,

such algorithms are generally designed to solve a specific MOCO problem. In this

study, our aim is to fill this gap in the literature, and develop a general MOEA to

 26

applicable to MOCO problems. While the general outline of our algorithm is

applicable to any MOCO problem, special modifications are required to solve a

specific MOCO problem. In order to demonstrate the required modifications, we

deal with MOKP and MOAP, and show the detailed versions of the algorithm for

these two problems. While the MOEA literature has started to address preference-

based algorithms, there are a few algorithms that incorporate the preferences of

the DM interactively. Our study also contributes to this part of the literature, since

we propose a preference-based version of our algorithm that elicits preference

information from the DM in an interactive manner. The interactive algorithm

converges to the desired portion of the Pareto-optimal frontier, and is able to end

up with a single solution to present to the DM.

 27

CHAPTER 3

COMBI�ATORIAL TERRITORY DEFI�I�G

EVOLUTIO�ARY ALGORITHM (C-TDEA)

In this chapter, we present Combinatorial Territory Defining Evolutionary

Algorithm (C-TDEA) that is developed to solve multi-objective combinatorial

optimization problems. The algorithm is a modified version of Territory Defining

Evolutionary Algorithm (TDEA) that has been proposed by Karahan and

Köksalan (2008) as a steady-state and elitist multi-objective evolutionary

algorithm. While TDEA is proposed to solve continuous and unconstrained

optimization problems, we propose a modified algorithm to solve combinatorial

optimization problems. TDEA has the aim of approximating the Pareto-optimal

frontier while maintaining a good diversity of solutions over the frontier

approximation. There are also preference incorporated versions of TDEA,

preference region TDEA (pr-TDEA) and interactive TDEA (i-TDEA) (Karahan,

2008) where i-TDEA is addressed in Chapter 4. TDEA can maintain a uniform

diversity in the final population by defining a territory around each individual

solution which is not allowed to be violated by any other solution. In TDEA, there

exist two coevolving populations: The regular population (P) and the archive

population (A). While the regular population consists of both dominated and

nondominated solutions, the archive population keeps the individuals, which are

nondominated with respect to the regular population on hand and well-dispersed.

That is, while the solutions in the archive population are nondominated with

respect to each other, they also do not violate the territories of each other.

Consequently, the archive population update procedure not only deals with the

nondomination issue, but also the territory violation is checked. The territory

defining property of TDEA therefore results in a diverse set of individuals in the

archive population and provides computational advantage to the programmer.

 28

Karahan and Köksalan (2008) define the territory of a solution Xp as follows:

“The region within a distance τ of Xp in each objective among the regions that

neither dominate nor is dominated by Xp”. Defining a territory around an archive

population member represents a forbidden region around that archive member

which cannot be occupied by any other solution that competes for acceptance into

the archive population. The territory of a solution is demonstrated in Figure 3.1.

Figure 3.1 Illustration of Territory in Two-dimensional Space

The organization of this chapter is as follows: We present the general outline of

C-TDEA in Section 3.1, where the general outline of the original TDEA is

preserved as a skeleton. In C-TDEA, territory definition is mainly inherited from

the original TDEA. However, since combinatorial optimization problems are

substantially different from continuous optimization problems, most of the

operators are modified and new operators are included into the algorithm. The

general outline of C-TDEA is applicable to any MOCO problem. However,

special modifications are required to solve a specific MOCO problem by using

the proposed algorithm. In our study, we address multi-objective knapsack and

assignment problems in order to illustrate the required modifications. We explain

the steps of the algorithm for the multi-objective knapsack problem in detail in

Section 3.2. Similarly, we explain the steps of the algorithm for the multi-

Xp

 29

objective assignment problem in detail in Section 3.3. We explain the

determination of the territory size τ in Section 3.4. Finally, we present the

experimental results and comparisons in Section 3.5.

3.1 GE�ERAL OUTLI�E OF C-TDEA

Below is the general outline of C-TDEA that is applicable to any MOCO

problem:

1. Initialization: Set the initial population size , the territory size τ, and the

maximum number of generations to iterate the algorithm T, such that the

final population size is acceptable for the DM. Set the iteration counter

t = 0.

2. Initialization of the Regular Population: Obtain individuals to fill the

initial regular population P(0) by creating seed solutions, and -

 random individuals.

3. Initialization of the Archive Population: Initialize the archive population

with the copies of the solutions in P(0) that are nondominated with respect

to the solutions in P(0).

4. Parent Selection: Set t ← t +1. Choose one parent from the regular

population, and one parent from the archive population

5. Recombination: Recombine the parents to create the offspring.

6. Mutation: Apply mutation to the offspring.

7. Repair and Improvement of the Offspring: If the offspring is infeasible,

then repair the offspring such that it becomes feasible. Then, improve the

offspring if there is place for improvement.

8. Acceptance into the Regular Population: Check whether the offspring

satisfies the acceptance condition for the regular population. If it is

accepted, insert it into P(t). Otherwise, go to step 10.

 30

9. Acceptance into the Archive Population: If the offspring is accepted into

P(t), check whether it satisfies the acceptance condition for the archive

population. If it is accepted, insert it into A(t).

10. Stopping Condition: Stop if the pre-specified iteration limit T is hit (t=T),

and report the archive population to the DM. Otherwise, go to step 4.

3.2 C-TDEA FOR MULTI-OBJECTIVE K�APSACK PROBLEM

3.2.1 Initialization of the Regular Population

In the original version of TDEA, the initial regular population P(0) is randomly

created until the regular population size is reached and no seeding is utilized.

In C-TDEA, for an M-objective knapsack problem, ∑
−=

=

=

1

1

Mm

m m

M
 high-quality

solutions are seeded into the initial population. should be set carefully for

large number of objectives since increases with the number of objectives. We

set the formulation of for small number of objectives and utilize this

formulation with such problems. Therefore, the value of does not constitute

any problem in this study. The remaining − solutions are still randomly

generated such that, each item is put into the knapsack with probability 0.5. The

solutions are represented by binary chromosomes where each gene of the

chromosome corresponds to an item. The value in a gene is 1 if the corresponding

item is put into the knapsack; and the value in that gene is 0 if the item is not put

into the knapsack. However, a randomly filled solution may violate the knapsack

capacity and become infeasible. Consequently, all of the solutions in P(0) are

checked for feasibility and the infeasible solutions are repaired by removing items

from the knapsack. Moreover, each of the initial population members are checked

for improvement such that, items are placed into the solutions which have

available space until the knapsack capacity does not allow any more items to be

 31

put into the knapsack. These greedy algorithm based repair-improvement

procedures are discussed in Section 3.2.5.

The remaining slots of the initial population P(0) is filled with the high-quality

seed solutions. M of these seed solutions are the approximately optimal

solutions of the single objective knapsack problems when we consider each of the

M objectives separately. That is, for a 2-objective knapsack problem, these two

solutions are the approximations of the two extreme points of the Pareto-optimal

frontier. These M seed solutions are obtained heuristically by using the greedy

algorithm on each of the single objective knapsack problems. That is, for the seed

solution which aims to approximate the efficient solution with the best value of

objective i, the items are sorted in the non-increasing order of their contribution to

objective i per unit capacity; cij / aj where j corresponds to the items. Afterwards,

the knapsack is filled in order of decreasing ratios as long as the knapsack

capacity is not violated. Then, the objectives are grouped in sets of 2 considering

every possible combination, and

2

M
seed solutions are obtained, for each case

giving each objective equal Tchebyceff weights. This procedure continues until

these combination sets cover each possible combination of objectives from size 2

to M-1. This seeding procedure is given below for a combination set of size l:

1. Set iteration counter k = 0, and z10 = z20=…= zl0=0.

2. For each item j that is not in the current knapsack and that does not violate

the knapsack capacity, calculate:

j

tj

j

lj

lk

j

j

k

j

j

k
a

c

a

c
z

a

c
z

a

c
zMin =

+++ ,...,,
2

2

1

1

If there is no such item, go to step 4.

 32

3. Set k←k+1. Find
r

tr

j

tj

j a

c

a

c
Max =

. Insert item r into the current knapsack.

Set
r

lr

kllk

r

r
kk

a

c
zz

a

c
zz +=+= −−)1(

1
)1(11 ,..., . If there is place in the current

knapsack, go to Step 2.

4. Stop the item acceptance procedure and insert the solution into P(0).

Consequently, repeating the above procedure for l = 2,…, M-1, the initial

population is heuristically seeded with ∑
−=

=

=

1

1

Mm

m m

M
 solutions.

3.2.2 Parent Selection

The parent selection procedure of C-TDEA is similar to that of original TDEA.

The parent from the regular population is selected by binary tournament selection.

Two solutions are randomly picked from the regular population and they are

tested for dominance. If one dominates the other, dominating solution is

determined as the first parent. If the solutions are nondominated to each other,

one of them is selected randomly as the first parent.

Since we cannot consider any dominance relation within the archive population

consisting of relatively nondominated solutions, the second parent is selected

from the archive randomly.

3.2.3 Crossover and Mutation

The crossover operator used is the Uniform crossover operator. In each

generation, two offspring are generated by a single crossover. For each gene,

child 1 inherits from parent 1 with probability 0.5 and inherits from parent 2 with

 33

again probability 0.5. If child 1 inherits a gene from parent 1, then child 2 inherits

that gene from parent 2 and vice versa.

On the other hand, the mutation operator used is single bit flip mutation operator.

If we determine the mutation probability as pm, a randomly selected gene of the

child is flipped with probability pm.

3.2.4 Scaling

The original TDEA uses the sigmoid function scaling (Soylu and Köksalan,

2006). In sigmoid scaling, all objective values are scaled in [0, 1] interval. The

important point is that, while the objective values between the ideal and nadir

point are linearly scaled, objective values beyond the nadir point are scaled by

using a sigmoid function. The aim is to scale the nondominated range into a

higher portion of the [0, 1] range. However, this sigmoid function scaling is

formulated for minimization problems. Instead of using that sigmoid function by

converting the maximization type objectives of the knapsack problem into

minimization type objectives, a new sigmoid scaling function has been proposed

for maximization type problems. Below is the formula of this sigmoid scaling

function:

−
−

−
+

≤−=
=

otherwiseff
ff

ffife

f
nadir

inadirideal

nadir
nadir

nadir

ii

f

f

i

i

ii

i

i

)(*
1

1
ˆ

/

ψ
ψ

ψ λ

 (3.1)

In this formula, fi stands for the ith objective value of the solution to be scaled, and

ψfi stands for the scaled value of the objective if the objective value is smaller

than the nadir point value fi
nadir. In this formula, there exists a parameter λ which

controls the slope of the sigmoid function. The value of this parameter is

determined by trial-and-error such that, the nadir point is scaled to 0.1. If the

 34

above formulation is analyzed, it can also be seen that the ideal point is scaled to

the value 1 in any case. Consequently, the value of λ determines the scaled range

of the efficient range, and this range is approximated to 0.9 in all of the studies

discussed in this report by appropriately setting λ. The shape of this sigmoid

function is illustrated in Figure 3.2.

Figure 3.2 Sigmoid and Linear Function Scaling for Maximization Problems

3.2.5 Repair and Improvement of the Solutions

Repair and improvement are two procedures that are used on both the initial

population and the offspring. The discussion from now on is performed on the

offspring; however the initial population members are also subject to these two

procedures in the same manner as the offspring.

The common property of these two procedures is that, a modified greedy

algorithm is utilized in the direction of the Tchebycheff favorable weights of the

solution. These directions can be seen in Figure 3.3. The motivation behind using

favorable weights issue is the fact that each solution on the Pareto-optimal

frontier has a unique weight set which makes its weighted Thebycheff distance to

)(ˆ xf

nadir
f̂

nadirf idealf)(xf

1

 35

the ideal point minimum compared to all other feasible solutions. Therefore, by

emptying and filling the knapsack of a solution with the aim of minimizing its

Tchebycheff distance to the ideal point in the direction of its favorable weights,

we can keep the original direction of the individual in which it contributes to the

convergence. Our aim is not only to converge to the Pareto-optimal frontier, but

also make each solution to converge to the region on the frontier that is

represented by the Tchebycheff favorable weights of that solution. Therefore,

once we determine the repair and improvement directions of a solution with

respect to its favorable weights, we try to keep the repaired and/or improved

solution as close as possible to this direction of the original solution.

Figure 3.3 C-TDEA Repair and Improvement Directions

Before carrying out repair and improvement procedures, the weighed

Tchebycheff distance of the initial point z to the ideal point z* is calculated as

follows where iλ is the favorable weight of the solution z with respect to

objective i:

}{)()(**
iii

Mi
kkk zzMaxzz −=−

∈
λλ (3.2)

where iz is the scaled value of zi.

 36

In the following subsections, we will show how this distance changes after

removal of an item from the knapsack or addition of an item to the knapsack.

3.2.5.1 Repair of the Infeasible Solutions

If an offspring or an initial population member is infeasible, then the following

procedure is carried out:

1. Calculate the favorable weights, λi’s, of the solution.

2. Calculate Tchebycheff distance after moving out item j from the

knapsack for each item j which is in the current knapsack:

}{)((*
ijiii

Mi
j czzMaxd −−=

∈
λ (3.3)

3. Calculate dj / aj for each item j which is in the current knapsack, where aj

is the constraint coefficient of item j.

4. Find Minj { dj / aj } = dk / ak

5. Discard item xk from the knapsack.

6. If the new solution is infeasible, turn back to Step 1 and repeat the same

procedure using the favorable weights of the new solution until a feasible

solution is obtained. Otherwise, finish the repair procedure.

3.2.5.2 Improvement of the Solutions – Genetic Local Search

If an initial population member or an offspring is feasible or becomes feasible

after the repair procedure, it is evaluated for improvement. The procedure is as

follows:

 37

1. Calculate the favorable weights, λis, of the solution.

2. For each item j which is not in the current knapsack and addition of which

does not violate the knapsack capacity, calculate Tchebycheff distance

after placing item j into the knapsack:

}{)((*
ijiii

Mi
j czzMaxd +−=

∈
λ (3.4)

3. Calculate (1-dj) / aj for each item j which is not in the current knapsack

and addition of which does not violate the knapsack capacity, where aj is

the constraint coefficient of item j.

4. Find Maxj { (1-dj) / aj } = (1-dk) / ak

5. Place item xk into the knapsack.

6. If there is place for improvement of the new solution, turn back to Step 1

and repeat the same procedure using the favorable weights of the new

solution until there is no place for improvement. Otherwise, finish the

improvement procedure.

While calculating the Tchebycheff distance dj, both of the objective values are

scaled, where the scaled ideal objective value, *
iz , is equal to 1. Therefore, the

value of dj is between 0 and 1. In step 3 of the above improvement procedure, we

subtract dj from 1 and calculate (1-dj) / aj, since we need the item with the

smallest dj and aj values in Step 4 of the procedure.

3.2.6 Regular and Archive Population Updates

C-TDEA inherits the regular population update procedure from the original

version of TDEA. After the offspring is repaired if necessary and improved if

possible, it is evaluated for acceptance into the regular population. The offspring

is tested against each regular population member for dominance. If the offspring

is dominated by at least one regular population member, then the offspring is

 38

rejected. On the other hand, if the offspring is not dominated by any of the

population members, then one of the solutions that is dominated by the offspring

is removed from the regular population if any. If no such dominated solutions

exist, then an individual is removed randomly and the offspring is inserted into

the regular population.

The important issue at this point is that, regular population acceptance is a

prerequisite of evaluation for archive acceptance. If the solution is not accepted

into the regular population, it is not even evaluated for acceptance into the archive

and it is directly rejected. On the other hand, if the offspring is accepted into the

regular population, the archive update procedure starts.

Although the general outline of the archive acceptance procedure is similar to the

original TDEA, some modifications are performed in this step. Below is the

outline of the archive acceptance procedure:

Stage 1:

Test the offspring against each individual of the archive population. Mark the

individuals that are dominated by the offspring. If the offspring is dominated

by at least one archive member, it is rejected. If the offspring is not rejected,

go to Stage 2.

Stage 2:

1. Remove all of the marked individuals from the archive population.

2. Accept and insert the offspring into the archive if the archive is empty

before the insertion, stop. Continue otherwise.

3. Calculate the Tchebyceff distance of the offspring to each individual of

the archive.

4. Find the closest individual si* to the offspring in terms of Tchebycheff

distance: δ.

5. Accept and insert the offspring into archive if δ ≥ τ. Otherwise, reject the

offspring.

 39

The modification in archive acceptance procedure is at the third step of Stage 2

where the nearest neighbor of the offspring is found by using Tchebycheff

distance metric. In the original version of TDEA, rectilinear distance is used to

find the nearest neighbor of the offspring, and then the Tchebycheff distance of

the offspring to that point is compared to the territory size τ. However, the

utilization of rectilinear distance to obtain the closest solution of the offspring

may result in violation of the claim that there exists only one solution in each

hyper-box defined by the territories of the existing solutions.

This violation can be proven by a counter-example in which, although there exists

a solution violating the territory of the offspring, by using rectilinear distance, a

solution that does not violate its territory is found to be its closest solution. The

counter-example is illustrated in Figure 3.4. In the figure, c is the offspring

solution and the solutions s1 and s2 are two existing solutions that are evaluated

to be the closest solution to the offspring. The rectilinear distance between

offspring c and the solutions s1 and s2 are 7 and 8 units respectively. Assuming

that there does not exist any other solution that is closer to the offspring than

these two solutions, the closest solution to the offspring becomes s1 if we

consider rectilinear distance. On the other hand, the Tchebycheff distance

between c and s1 is 5 units. If τ is determined to be 4.5 units as in the figure, the

territory of s1 is found to be preserved, and the offspring is accepted into the

archive population. However, having a Tchebycheff distance of 4 units to the

offspring, the territory of s2 is violated by the offspring. Therefore, the use of

rectilinear distance to determine the closest neighbor may fail to evaluate a

solution the territory of which is violated by the offspring, if the solution has a

relatively high rectilinear distance to the offspring.

Figure 3.4 illustrates the motivation behind the modification that has been

performed in archive acceptance procedure.

 40

Figure 3.4 Violation of territories when rectilinear distance is used to determine the

closest neighbor of the offspring

3.3 C-TDEA FOR MULTI-OBJECTIVE ASSIG�ME�T PROBLEM

3.3.1 Initialization of the Regular Population

As in the case of multi-objective knapsack problem, ∑
−=

=

=

1

1

Mm

m m

M
 high-quality

solutions are seeded into the initial population for multi-objective assignment

problem. The remaining − solutions are randomly generated. The solutions

are represented by integer-valued chromosomes where each gene of the

chromosome corresponds to a person, while the value kept in that gene

corresponds to the job assigned to that person. For instance, the gene (2 3 1)

represents the case where person 1 is assigned to job 2, person 2 is assigned to job

3, and person 3 is assigned to job 1. In contrast to the knapsack problem, a

randomly created solution is not allowed to be infeasible in the assignment

problem case. That is, the random assignment of jobs to the people starts from the

 41

first gene, that is, the first person, and goes on until all people are assigned their

corresponding jobs. However, a previously assigned job is not allowed to be re-

assigned to another person during this iterative process. Consequently, the

constraints of the assignment problem, each person assigned to a single job and

each job assigned to a single person, are provided by the collaboration of the

chromosome representation scheme and the random generation process. Since,

there is no need for a feasibility check procedure, each member of the initial

population is directly checked for improvement such that, each person tries to

change his assigned job with the people that come after that person in the

chromosome representation. This improvement procedure is discussed in Section

3.3.5.

Due to the fact that the single objective assignment problem can be solved as a

linear programming problem in polynomial time, the seed solutions are not

determined heuristically, but they are found optimally by mathematical modeling.

Again, M of the seed solutions are the optimal solutions of the single objective

assignment problems when we consider each of the M objectives separately. The

procedure of obtaining a combination set of objectives that cover each possible

combination of objectives from size 2 to M-1 is performed in the same manner as

the knapsack problem. By giving equal Tchebyceff weights to each of the

objectives in the combination, the following linear programming model is solved

for a combination of size 2:

 42

 (3.5)

Solving the above model repeatedly for combination sizes of l = 2,…, M-1, the

initial population is heuristically seeded with ∑
−=

=

=

1

1

Mm

m m

M
 solutions.

3.3.2 Parent Selection

The parent selection procedure is similar to that of C-TDEA for the knapsack

problem. The parent from the regular population is selected by binary tournament

selection, while the second parent is selected from the archive randomly.

3.3.3 Crossover and Mutation

The crossover operator used is the Cycle crossover (CX) operator (Larranaga

et.al., 1999). In each generation, two offspring are generated by a single

crossover. The working principle of the operator lies on the fact that, each gene

position of the offspring is inherited from one of the parents. That is, each person

in the offspring is assigned to the same job of parent 1 or parent 2.

njxtosubject

Minimize

n

i

ij ,..,1;1
1

==∑
=

ε

}1,0{

,..,1;1

1 1

2*
2

1 1

1*
1

1

∈

≤−

≤−

==

∑∑

∑∑

∑

= =

= =

=

ij

n

i

n

j

ijij

n

i

n

j

ijij

n

j

ij

x

xcf

xcf

nix

ε

ε

 43

At the beginning, a gene position g is selected randomly as the cycle initialization

position. One of the offspring inherits that gene value from the first parent, and

the second offspring inherits the gene value from the second parent. For the first

offspring, the gene value inherited from the first parent cannot be inherited from

the second parent once more, consequently, according to the working principle of

the operator, the position on the second parent whose value is inherited from the

first parent is found, and that gene position is again inherited from the first parent.

This cycle continues until the beginning gene value is hit. Then, a new cycle is

started from a position which is not yet assigned, and these cycles continue until

all genes of the offspring are assigned their corresponding inherited values. At

each cycle, the parents from which the genes are inherited are exchanged between

the two offspring.

Figure 3.5 illustrates this crossover process on a single offspring for an

assignment problem of size eight. In the example, the first cycle starts at the first

gene of Parent 1, which is selected randomly, and the offspring inherits that gene

position from Parent 1. The cycle continues by searching the value inherited (1) in

Parent 2. The gene value occurs at the third gene position of Parent 2. Since this

gene position cannot be inherited from Parent 2, the crossover operator inherits

the third gene position of the offspring from Parent 1. When we search for this

inherited value (3) in Parent 2, we come back to the first gene location, and the

first cycle terminates. Then, the second cycle starts from a randomly selected

gene position that is not currently assigned. But this time, the inheritance process

works for Parent 2. These cycles continue in the same manner until the offspring

in Figure 3.5 is obtained.

The mutation operator used is exchange mutation (EM) operator. If we determine

the mutation probability as pm, two randomly selected genes exchange their

values with probability pm.

 44

1st Cycle 3rd Cycle

Parent 1 1 2 3 4 5 6 7 8

Parent 2 3 8 1 7 5 4 2 6

2nd Cycle

Offspring 1 8 3 7 5 4 2 6

Cycle11 Cycle21 Cycle12 Cycle24 Cycle31 Cycle23 Cycle25 Cycle22

Figure 3.5 Cycle Crossover

3.3.4 Scaling

Since the objectives of the multi-objective assignment problem is of minimization

type, sigmoid function scaling used in the original TDEA, which has been

formulated for minimization problems, is used (Soylu and Köksalan, 2008).

Below is this sigmoid scaling function:

≥

−

+

=
= −

otherwisef
f

ffif

ef

inadir

nadir

nadir

iiff

i

i

i
i

*

2*5.0

1

1

ˆ

ψ

ψ
λ (3.6)

In the formula, if and nadir

if are the values of the objective value of the solution

to be scaled, and the nadir point, respectively that are shifted to scale the ideal

point to the value of 0 in any problem. ψfi stands for the scaled value of the

objective if the objective value is greater than the nadir point value, fi
nadir. The

value of the parameter λ that controls the slope of the sigmoid function is

 45

determined by trial-and-error such that, the nadir point is scaled to take the value

of 0.9. The shape of this sigmoid function is illustrated in Figure 3.6.

Figure 3.6 Sigmoid and Linear Function Scaling for Minimization Problems

The sigmoid function scaling procedure for minimization problems is as follows:

1. Shift the objective value and nadir point to set the ideal point to 0 as

follows: *
iii fff −= and *

i

nadir

i

nadir

i fff −= .

2. Determine the value of the parameter λ by trial-and-error such that the

nadir point is scaled to approximately 0.9.

3. Find the scaled objective value if̂ using the above sigmoid scaling

function.

3.3.5 Improvement of the Solutions

Improvement procedure is performed on both the initial population and the

offspring. We will discuss the procedure on the offspring; however the initial

population members are also subject to the same improvement procedure.

)(ˆ xf

nadir
f̂

nadirf)(xf

1

 46

The procedure is as follows:

1. Set first iteration counter n =1. Start with the nth gene corresponding to the

first person.

2. Set second iteration counter m = n+1.

3. Exchange the jobs of person m with the job of person n. If the newly

obtained solution dominates the initial solution, keep the jobs exchanged

and go to Step 4. Otherwise, undo the exchange, set m←m+1, and repeat

this step. If m=M+1, go to Step 4.

4. Set n←n +1 and go back to Step 2. If n = M, stop.

According to this procedure, at most
2

)1(−⋅
 comparisons are made. In the

initial generations, the comparison number to obtain an improved solution is

comparatively smaller. Because the solutions are far away from the Pareto-

optimal frontier, and the comparisons are more promising to end up with an

exchange. However, since the solutions converge to the Pareto-optimal frontier as

the generations proceed, it becomes harder to find an exchange location to

improve a solution. Consequently, this improvement procedure is held until a

predetermined small number of generations that is determined by preliminary

runs.

3.3.6 Regular and Archive Population Updates

The regular population update procedure explained for the knapsack problem is

used for the assignment problem as well. After the offspring is improved if

possible, it is evaluated for acceptance into the regular population.

Again, the regular population acceptance constitutes the prerequisite for archive

acceptance procedure. The archive acceptance procedure is as follows:

 47

Stage 1:

Test the offspring against each individual of the archive population. Mark the

individuals that are dominated by the offspring. If the offspring is dominated

by at least one archive member, it is rejected. If the offspring is not rejected,

go to Stage 2.

Stage 2:

1. Remove all of the marked individuals from the archive population.

2. Accept and insert the offspring into the archive if the archive is empty

before the insertion, stop. Continue otherwise.

3. Calculate the Tchebyceff distance of the offspring to each individual of

the archive.

4. Find the closest individual si* to the offspring in terms of Tchebycheff

distance: δ.

5. Accept and insert the offspring into archive if δ ≥ τ. Otherwise, reject the

offspring.

3.4 DETERMI�ATIO� OF τ

Territory size τ determines a hypervolume around each archive member that is

forbidden to be occupied by any other solutions within the archive. It is known

that the total nondominated hypervolume is limited (Karahan and Köksalan,

2008). Consequently, territory size has a significant effect on the maximum

number of solutions that can enter the archive population and the final archive

population size. Reducing τ is expected to increase the final population size.

Moreover, a single τ value may result in different final population sizes in

different problems since the size of nondominated hypervolume may change from

problem to problem with respect to the shape of the efficient frontier.

Consequently, the τ values for each problem instance are obtained by trial-and-

error in order to obtain approximately the desired number of solutions in the final

population as in the case of original TDEA.

 48

3.5 SIMULATIO� RU�S A�D COMPARISO�S

We test the performance of C-TDEA on randomly generated 2- and 3-objective

problem instances of multi-objective knapsack and multi-objective assignment

problems. We also compare the performance of the algorithm against two well-

known MOEAs, NSGA-II and ε-MOEA. In order to perform the analyses in a

more fair condition, the seeded versions of NSGA-II and ε-MOEA are also

considered, in which the seeding mechanism of C-TDEA is utilized.

For the single-dimensional multi-objective knapsack problem, we use binary

representation of the chromosomes. We randomly generate 200-item and 750-

item problem instances for both 2- and 3-objective cases. The objective

coefficients and the knapsack coefficients are randomly generated from a discrete

uniform distribution between the values 20 and 100. The objective coefficients for

each objective and the knapsack coefficients are assumed to be independently

distributed. For each problem instance, the knapsack capacity is set to half the

total weight of all items in order to make the problem harder. Since each item is

put into the knapsack with probability 0.5 in the initialization stage, the knapsack

capacity is efficiently utilized by decreasing the number of repair and

improvements operations. This initialization probability can be revised according

to the ratio of the knapsack capacity to the total item weight such that the repair-

improvement operators can be used more efficiently.

For the multi-objective assignment problem, the chromosomes are represented as

integer numbers that take values between 1 and the problem size. We randomly

generate 50×50 and 100×100 problem instances for each of 2- and 3-objective

assignment problem cases. The objective coefficients are generated randomly and

independently from a discrete uniform distribution between the values 20 and

100.

 49

For both multi-objective knapsack and multi-objective assignment problems, the

crossover operators are used with 1.0 probability of crossover, while the mutation

operators are used with 0.90 mutation probability.

The initial population sizes are determined with respect to the number of

objectives and the size of the problem. For the multi-objective knapsack problem,

the problem size is determined by the knapsack size, while the number of person-

job combinations set the problem size of the multi-objective assignment problem.

For the multi-objective knapsack problem, in order to determine the population

size corresponding to a certain knapsack size, the suggestions in Zitzler and

Thiele (1999) are used. The population sizes that are used in the knapsack

problem are also utilized for the assignment problem instances correspondingly.

The ideal points of the problems are obtained by Cplex solver on Gams 22.3.

Moreover, the whole Pareto-optimal frontiers are obtained for 2-objective test

problems on Gams 22.3 by using ε -constraint method. The formulation is given

for a 2-objective knapsack instance as follows:

}1,0{

.

*0001.0

2

21

∈

≥

≤

+

∑

∑

∑∑

j

j

jj

j

jj

j

jj

j

jj

x

xc

bxa

tos

xcxcMax

ε

 (3.7)

The above model has been solved on Gams 22.3 by increasing the ε value within

the range of the nadir and ideal points of the ε-constrained objective in order to

ensure that the whole Pareto-optimal frontier is generated. However, in order to

decrease the computational effort, the ε value is increased to [1+(value of the ε -

constrained objective in the last obtained efficient solution)] in each iteration.

 50

Although the whole Pareto-optimal frontiers have not been generated for 3-

objective test problems, ε-constraint method have been applied to those problems

by dividing the Pareto-optimal frontier to 100×100 grids and search these grids.

That is, the ε value corresponding to objective m is not updated by increments of

1, but it is updated as ε = 100/)(m

 adir

m

Ideal ff − in each iteration. The formulation

of ε-constrained method for the 3-objective knapsack problem is given as follows:

}1,0{

.

*0001.0*0001.0

33

22

321

∈

≥

≥

≤

++

∑

∑

∑

∑∑∑

j

j

jj

j

jj

j

jj

j

jj

j

jj

j

jj

x

xc

xc

bxa

tos

xcxcxcMax

ε

ε
 (3.8)

For all of the problem instances, the value of the scaling parameters λm

corresponding to objective m is set by trial-and-error in order to scale the

corresponding nadir point to 0.1 for the knapsack problem, and to 0.9 for the

assignment problem.

We run the algorithm 10 times for each problem instance by providing different

seeds to the random number generator. Determination of the number of function

evaluations and the mutation rate of 0.9 has been inspired by the settings of

Köksalan and Karahan (2008). Here, the number of function evaluations refers to

the total number of offspring evaluated throughout the simulation run. For TDEA

and ε-MOEA which do not have constant population sizes, we perform

preliminary runs to set the parameter values to obtain the same final population

size as that of NSGA-II.

 51

The parameter settings for the knapsack problem can be seen in Table 3.1, while

the parameter settings for the assignment problem are provided in Table 3.2.

Table 3.1 Test Parameters for the Multi-objective Knapsack Problem

Table 3.2 Test Parameters for the Multi-objective Assignment Problem

The algorithm is implemented in C++ programming language. The NSGA-II and

ε-MOEA codes are taken from the website of Kanpur Genetic Algorithms

Laboratory (http://www.iitk.ac.in/kangal/codes.shtml). We build the codes with

Microsoft Visual C++ 2008 Express Edition. All computational tests are made on

an Intel Core 2 Duo 2.0 GHz, 2 GB RAM computer running Microsoft Windows

Vista.

 52

3.5.1 Performance Metrics

We compare the performances of the algorithms by using two performance

metrics. The first metric is the Hypervolume metric (Zitzler and Thiele, 1998),

which gives the volume of the total objective space dominated by the final

population P with respect to a reference point W. Hypervolume metric serves to

measure both the convergence and diversity of the final population P. A larger

value of the metric is desirable.

Hypervolume indicator can be formulated as follows:

W

i

P

i

VeHypervolum
1=

= U (3.9)

where iV is the volume of the objective space dominated by solution i ∈P with

respect to the reference point W. The metric is illustrated in Figure 3.7, where the

cross-hatched region corresponds to the hypervolume dominated by the final

population P with respect to the reference point W where both objectives are to be

maximized.

For both multi-objective knapsack and assignment problems, we use the nadir

point as the reference point. Therefore, the extreme points of the Pareto-optimal

frontier do not contribute to the Hypervolume metric. Moreover, if an obtained

solution is worse than the reference point in any of the objectives, the contribution

of that point to the Hypervolume measure is 0.

 53

Figure 3.7 Illustration of Hypervolume metric

The second performance metric is the Additive I-Epsilon metric (Zitzler and

Kunzli, 2004), which gives the minimum distance by which the final population P

needs to be improved in each objective such that the Pareto-optimal frontier is

weakly dominated. The metric can be formulated for a minimization-type

problem as follows:

∈∀≤−∈∃∈∀=+ MiforxfxfPxSxMinSPI ii *)()(:*),(ε
εε (3.10)

where S is the Pareto-optimal set. A smaller value of this metric is desirable.

We calculate the performance of the algorithm for each problem in terms of

Hypervolume (H) and Additive I-Epsilon metric (+
εI). We assume that the sample

means of the metrics are normally distributed By Central Limit Theorem. After

 54

calculating the sample means, Hx and +
εI

x , and sample standard deviations, Hs

and +
εI

s , of these metrics, we test the following hypothesis at 95% significance

level (Karahan, 2008):

C

pm

T

pm

C

pm

T

pm

H

H

µµ

µµ

≠

=

:

:

1

0
 (3.11)

where pm is the performance metric utilized. This hypothesis checks whether the

difference between the metric values of C-TDEA and the contender algorithms is

statistically significant for both metrics. At the end of the simulation runs, we

present the estimated difference between the metric means of TDEA and the

contender algorithm, the p-value corresponding to the statistical test, and the

winner of the hypothesis test. The metric results of the Pareto-optimal frontiers

are also provided.

3.5.2 Multi-objective Knapsack Problem Instances

The figures provided in this section show the final archive populations for C-

TDEA and ε-MOEA, and the nondominated solutions of the final population for

NSGA-II. The entire final populations of ε-MOEA and NSGA-II including the

dominated solutions are provided in Appendix A.

2-objective 200-item Knapsack Problem

Figure 3.8 shows that, while C-TDEA successfully converges to and provides

diversity over the Pareto-optimal frontier, NSGA-II and ε-MOEA fail to

converge. Indicator values in Table 3.3 also show that C-TDEA has much better

convergence and diversity than both of the algorithms in terms of the metric

values. The hypervolume metric value for both NSGA-II and ε-MOEA are 0,

since all solutions in the final populations of both of the algorithms are dominated

 55

by the reference point. This situation is valid for all multi-objective knapsack

problem instances handled in this study. At 95% significance level, C-TDEA is

statistically better than NSGA-II and ε-MOEA in both metrics. The seeded

versions of NSGA-II, SGA-II (s), and ε-MOEA, ε-MOEA (s), are also

considered. However, from both metric values and statistical results in Tables 3.3

and 3.4; and the final populations obtained in Figure 3.8, we see that seeding has

very little effect on the performances of the algorithms, and does not provide the

algorithms to converge to the Pareto-optimal frontier. The two algorithms can

only maintain the seed solutions as the nondominated solutions of their final

populations. Moreover, C-TDEA still outperforms the seeded algorithms. On the

other hand, the repair-improvement mechanisms of C-TDEA provide the

algorithm fine convergence and diversity properties, but in expense of increased

computational times compared to NSGA-II and ε-MOEA.

Table 3.3 Indicator Results for the 2-objective 200-item KP

Algorithm

I-Epsilon Hypervolume

Duration (min) +
εI

x +
εI

s

Hx Pareto

H

H

x

x
Hs

C-TDEA 42.7 4.3 0.7740 0.9685 0.0022 0.6892
NSGA-II 2194.2 73.1 0.0000 0.0000 - 0.2790

NSGA-II (s) 1201.0 - 0.0712 0.0891 - 0.2535
ε-MOEA 1668.8 40.5 0.0000 0.0000 - 0.2192

ε-MOEA (s) 1201.0 - 0.0712 0.0891 - 0.1935
Pareto Front 0.0 - 0.7992 1.0000 - -

Table 3.4 Test Results for the 2-objective 200-item KP

C

pm

T

pmH µµ =:0 vs. C

pm

T

pmH µµ ≠:1

Contender

I-Epsilon Hypervolume

+∆
εI

 P-Value Winner
H∆ P-Value Winner

NSGA-II -2151.5 0.0000 C-TDEA 0.7740 - C-TDEA
NSGA-II (s) -1158.3 - C-TDEA 0.7028 - C-TDEA

ε-MOEA -1626.1 0.0000 C-TDEA 0.7740 - C-TDEA
ε-MOEA (s) -1158.3 - C-TDEA 0.7028 - C-TDEA

 56

7000 7200 7400 7600 7800 8000 8200 8400 8600 8800 9000
7000

7200

7400

7600

7800

8000

8200

8400

8600

8800

9000

Pareto-optimal Frontier

f1

f2

7000 7200 7400 7600 7800 8000 8200 8400 8600 8800 9000

7000

7200

7400

7600

7800

8000

8200

8400

8600

8800

9000

C-TDEA

f1

f2

5500 6000 6500 7000 7500 8000 8500 9000
5500

6000

6500

7000

7500

8000

8500

9000

f1

f2

NSGA-II (without seed)

7000 7200 7400 7600 7800 8000 8200 8400 8600 8800 9000

7000

7200

7400

7600

7800

8000

8200

8400

8600

8800

9000

f1

f2

NSGA-II (with seed)

5500 6000 6500 7000 7500 8000 8500 9000
5500

6000

6500

7000

7500

8000

8500

9000

f1

f2

Epsilon-MOEA (without seed)

7000 7200 7400 7600 7800 8000 8200 8400 8600 8800 9000

7000

7200

7400

7600

7800

8000

8200

8400

8600

8800

9000

f1

f2

Epsilon-MOEA (with seed)

Figure 3.8 Plots for the 2-objective 200-item KP

2-objective 750-item Knapsack Problem

In terms of indicator values, we obtain similar results compared to 200-item

knapsack problem (Table 3.5). NSGA-II and ε-MOEA again fail to converge to

the Pareto-optimal frontier. All solutions obtained by the contender algorithms are

dominated by the nadir point, resulting in a hypervolume metric value of 0 for

 57

both algorithms. We can see in Table 3.6 that, the other two algorithms are

outperformed by C-TDEA in terms of both metrics. As we can see in Figure 3.9,

the final populations that are presented to the DM show similar behavior to 200-

item problem. The seeded versions of the contender algorithms can only present

the seed solutions as the final nondominated solutions (Figure 3.9) and they are

again outperformed by C-TDEA in terms of both metrics (Table 3.6).

Table 3.5 Indicator Results for the 2-objective 750-item KP

Algorithm

I-Epsilon Hypervolume

Duration (min) +
εI

x +
εI

s

Hx Pareto

H

H

x

x
Hs

C-TDEA 196.4 12.4 0.7727 0.9371 0.0014 6.9823
NSGA-II 8525.3 518.0 0.0000 0.0000 - 1.2865

NSGA-II (s) 3652.0 - 0.0082 0.0099 - 1.1911
ε-MOEA 7393.0 476.7 0.0000 0.0000 - 0.2868

ε-MOEA (s) 3652.0 - 0.0082 0.0099 - 0.2899
Pareto Front 0.0 - 0.8246 1.0000 - -

Table 3.6 Test Results for the 2-objective 750-item KP

C

pm

T

pmH µµ =:0 vs. C

pm

T

pmH µµ ≠:1

Contender

I-Epsilon Hypervolume

+∆
εI

 P-Value Winner
H∆ P-Value Winner

NSGA-II -8328.9 0.0000 C-TDEA 0.7727 - C-TDEA
NSGA-II (s) -3455.6 - C-TDEA 0.7645 - C-TDEA

ε-MOEA -7196.6 0.0000 C-TDEA 0.7727 - C-TDEA
ε-MOEA (s) -3455.6 - C-TDEA 0.7645 - C-TDEA

 58

2.7 2.8 2.9 3 3.1 3.2 3.3

x 10
4

2.7

2.8

2.9

3

3.1

3.2

3.3
x 10

4 Pareto-optimal Frontier

f1

f2

2.7 2.8 2.9 3 3.1 3.2 3.3

x 10
4

2.7

2.8

2.9

3

3.1

3.2

3.3
x 10

4 C-TDEA

f1

f2

2.2 2.4 2.6 2.8 3 3.2

x 10
4

2.2

2.4

2.6

2.8

3

3.2

x 10
4

f1

f2

NSGA-II (without seed)

2.7 2.8 2.9 3 3.1 3.2 3.3

x 10
4

2.7

2.8

2.9

3

3.1

3.2

3.3
x 10

4

f1

f2

NSGA-II (with seed)

2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3

x 10
4

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3
x 10

4

f1

f2

Epsilon-MOEA (without seed)

2.7 2.8 2.9 3 3.1 3.2 3.3

x 10
4

2.7

2.8

2.9

3

3.1

3.2

3.3
x 10

4

f1

f2

Epsilon-MOEA (with seed)

Figure 3.9 Plots for the 2-objective 750-item KP

3-objective 200-item Knapsack Problem

According to the performance metric values and the test results provided in Table

3.7 and 3.8 respectively, C-TDEA outperforms NSGA-II and ε-MOEA, and also

their seeded versions in terms of both performance metrics. In Figure 3.10, it is

seen that C-TDEA maintains convergence and diversity, while it loses solutions

 59

towards the three edges of the Pareto-optimal frontier. On the other hand, NSGA-

II and ε-MOEA cannot even provide convergence to the Pareto-optimal frontier,

and they again end up with a hypervolume metric value of 0. The seeded versions

of the algorithms are also outperformed by C-TDEA in terms of both metrics, by

being able to maintain only the 6 seed solutions in their final nondominated sets.

Table 3.7 Indicator Results for the 3-objective 200-item KP

Algorithm

I-Epsilon Hypervolume

Duration(min) +
εI

x +
εI

s
Hx

Pareto

H

H

x

x
Hs

C-TDEA 148.2 3.3 0.5244 0.8465 0.0040 1.5807
NSGA-II 1987.3 11.5 0.0000 0.0000 - 0.4482

NSGA-II (s) 604.0 - 0.2581 0.4166 - 0.4004
ε-MOEA 1487.6 57.9 0.0000 0.0000 - 0.3401

ε-MOEA (s) 604.0 - 0.2581 0.4166 - 0.3305
Pareto Front 0.0 - 0.6195 1.0000 - -

Table 3.8 Test Results for the 3-objective 200-item KP

C

pm

T

pmH µµ =:0 vs. C

pm

T

pmH µµ ≠:1

Contender

I-Epsilon Hypervolume

+∆
εI

 P-Value Winner
H∆ P-Value Winner

NSGA-II -1839.1 0.0000 C-TDEA 0.5244 0.0000 C-TDEA
NSGA-II (s) -455.8 - C-TDEA 0.2663 - C-TDEA

ε-MOEA -1339.4 0.0000 C-TDEA 0.5244 0.0000 C-TDEA
ε-MOEA (s) -455.8 - C-TDEA 0.2663 - C-TDEA

 60

7000
7500

8000
8500

9000

7000
7500

8000
8500

9000

7000

7200

7400

7600

7800

8000

8200

8400

8600

f1

Pareto-optimal Frontier (Approximation)

f2

f3

7000
7500

8000
8500

9000

7000
7500

8000
8500

9000

7000

7200

7400

7600

7800

8000

8200

8400

8600

f1

C-TDEA

f2

f3

7000
7500

8000
8500

9000

7000
7500

8000
8500

9000

6600

6800

7000

7200

7400

7600

7800

8000

8200

8400

8600

f1

NSGA-II (without seed)

f2

f3

7000

7500

8000

8500

9000

7000

7500

8000

8500

9000

7000

7200

7400

7600

7800

8000

8200

8400

8600

f1

NSGA-II (with seed)

f2

f3

7000
7500

8000
8500

9000

7000

7500
8000

8500

9000

6600

6800

7000

7200

7400

7600

7800

8000

8200

8400

8600

f1

Epsilon-MOEA (without seed)

f2

f3

7000

7500

8000

8500

9000

7000

7500

8000

8500

9000

7000

7200

7400

7600

7800

8000

8200

8400

8600

f1

Epsilon-MOEA (with seed)

f2

f3

Figure 3.10 Plots for the 3-objective 200-item KP

3-objective 750-item Knapsack Problem

In this 3-objective knapsack problem instance, although C-TDEA outperforms

both NSGA-II and ε-MOEA in terms of both performance metrics (see Table 3.9

and Table 3.10), it loses to provide diversity over the Pareto-optimal frontier.

Figure 3.11 shows that, while the middle-most section of the frontier is well-

 61

converged, the 3 sides corresponding to the respective 2-objective Pareto-optimal

frontiers are lost by C-TDEA during the simulation run. The two contenders of C-

TDEA cannot even converge to the Pareto-optimal frontier. The seeded NSGA-II

and ε-MOEA can only present the 6 seed solutions, and they are again

outperformed by C-TDEA in terms of both performance metrics.

Table 3.9 Indicator Results for the 3-objective 750-item KP

Algorithm

I-Epsilon Hypervolume

Duration (min) +
εI

x +
εI

s
Hx

Pareto

H

H

x

x
Hs

C-TDEA 549.6 22.3 0.5135 0.7984 0.0114 16.0037
NSGA-II 8803.3 126.5 0.0000 0.0000 - 1.5595

NSGA-II (s) 2325.0 - 0.2969 0.4616 - 1.5453
ε-MOEA 7552.6 197.0 0.0000 0.0000 - 0.4951

ε-MOEA (s) 2325.0 - 0.2969 0.4616 0.4576
Pareto Front 0.0 - 0.6432 1.0000 - -

Table 3.10 Test Results for the 3-objective 750-item KP

C

pm

T

pmH µµ =:0 vs. C

pm

T

pmH µµ ≠:1

Contender

I-Epsilon Hypervolume

+∆
εI

 P-Value Winner
H∆ P-Value Winner

NSGA-II -8253.7 0.0000 C-TDEA 0.5135 - C-TDEA
NSGA-II (s) -1775.4 - C-TDEA 0.2166 - C-TDEA

ε-MOEA -7003.0 0.0000 C-TDEA 0.5135 - C-TDEA
ε-MOEA (s) -1775.4 - C-TDEA 0.2166 - C-TDEA

 62

2.6
2.8

3
3.2

x 10
4

2.6
2.8

3
3.2

x 10
4

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

x 10
4

f1

Pareto-optimal Frontier (Approximation)

f2

f3

2.6
2.8

3
3.2 x 10

4

2.6
2.8

3
3.2

x 10
4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

x 10
4

f1

C-TDEA

f2

f3

2.6
2.8

3
3.2 x 10

4

2.6
2.8

3
3.2

x 10
4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

x 10
4

f1

NSGA-II (without seed)

f2

f3

2.6
2.8

3
3.2 x 10

4

2.6
2.8

3
3.2

x 10
4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

x 10
4

f1

NSGA-II (with seed)

f2

f3

2.6
2.8

3
3.2 x 10

4

2.6
2.8

3
3.2

x 10
4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

x 10
4

f1

Epsilon-MOEA (without seed)

f2

f3

2.6
2.8

3
3.2 x 10

4

2.6
2.8

3
3.2

x 10
4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

x 10
4

f1

Epsilon-MOEA (with seed)

f2

f3

Figure 3.11 Plots for the 3-objective 750-item KP

 63

3.5.3 Multi-objective Assignment Problem Instances

The figures provided in this section show the final archive populations for C-

TDEA and ε-MOEA, and the nondominated solutions of the final population for

NSGA-II. The entire final populations of ε-MOEA and NSGA-II including the

dominated solutions are provided in Appendix B.

2-objective �=50 Assignment Problem

While C-TDEA successfully converges to the Pareto-optimal frontier, NSGA-II

and ε-MOEA fail to converge as seen in Figure 3.12. Indicator values in Table

3.11 also show that C-TDEA has much better convergence and diversity than

both of the algorithms in terms of the metric values. At 95% significance level, C-

TDEA is statistically better than NSGA-II and ε-MOEA in both metrics. The

seeded versions of NSGA-II and ε-MOEA are also considered as in the case of

knapsack problem. In Figure 3.12, we see that seeding improves the performance

of the contender algorithms to converge to the Pareto-optimal frontier, in contrast

to the case for the MOKP. However, C-TDEA still outperforms the seeded

versions of the algorithms, as seen in Table 3.12. On the other hand, the territory

definition and the repair-improvement mechanisms of C-TDEA provide the

algorithm both convergence and diversity, but in expense of increased

computational times compared to NSGA-II and ε-MOEA.

Table 3.11 Indicator Results for the 2-objective N=50 AP

Algorithm

I-Epsilon Hypervolume

Duration (min) +
εI

x +
εI

s

Hx Pareto

H

H

x

x
Hs

C-TDEA 31.6 3.6 0.8992 0.9841 0.0023 0.8631
NSGA-II 1221.3 27.5 0.0800 0.0876 0.0131 0.2387

NSGA-II (s) 562.2 2.8 0.5685 0.3313 0.0038 0.2067
ε-MOEA 841.0 11.8 0.2715 0.2971 0.0214 0.1786

ε-MOEA (s) 731.4 5.7 0.4812 0.5735 0.0077 0.1242
Pareto Front 0.0 - 0.9137 1.0000 - -

 64

Table 3.12 Test Results for the 2-objective N=50 AP

C

pm

T

pmH µµ =:0 vs. C

pm

T

pmH µµ ≠:1

Contender

I-Epsilon Hypervolume

+∆
εI

 P-Value Winner
H∆ P-Value Winner

NSGA-II -1189.7 0.0000 C-TDEA 0.8192 0.0000 C-TDEA
NSGA-II (s) -530.6 0.0000 C-TDEA 0.3307 0.0000 C-TDEA

ε-MOEA -809.4 0.0000 C-TDEA 0.6276 0.0000 C-TDEA
ε-MOEA (s) -699.8 0.0000 C-TDEA 0.4180 0.0000 C-TDEA

1000 1500 2000 2500 3000 3500
1000

1500

2000

2500

3000

3500

Pareto-optimal Frontier

f1

f2

1000 1500 2000 2500 3000 3500

500

1000

1500

2000

2500

3000

3500

C-TDEA

f1

f2

1000 1500 2000 2500 3000 3500
1000

1500

2000

2500

3000

3500

NSGA-II (without seed)

f1

f2

1000 1500 2000 2500 3000 3500

1000

1500

2000

2500

3000

3500

NSGA-II (with seed)

f1

f2

1000 1500 2000 2500 3000 3500
1000

1500

2000

2500

3000

3500

Epsilon-MOEA (without seed)

f1

f2

1000 1500 2000 2500 3000 3500

1000

1500

2000

2500

3000

3500

Epsilon-MOEA (with seed)

f1

f2

Figure 3.12 Plots for the 2-objective N=50 AP

 65

2-objective �=100 Assignment Problem

Both NSGA-II and ε-MOEA fail to converge to the Pareto-optimal frontier of this

2-objective assignment problem (see Table 3.13). We can see in Table 3.14 that,

the other two algorithms are outperformed by C-TDEA in terms of both metrics.

Although the seeded NSGA-II and ε-MOEA perform better than their original

versions, they are still outperformed by C-TDEA in terms of both performance

metrics. The final populations obtained by each of the algorithms are provided

over the Pareto-optimal frontier in Figure 3.13.

Table 3.13 Indicator Results for the 2-objective N=100 AP

Algorithm

I-Epsilon Hypervolume

Duration (min) +
εI

x +
εI

s

Hx Pareto

H

H

x

x
Hs

C-TDEA 105.2 3.4 0.8995 0.9665 0.0014 5.2318
NSGA-II 3001.7 7.0 0.0081 0.0087 0.0029 0.8003

NSGA-II (s) 1811.6 3.6 0.3762 0.4042 0.0016 0.5366
ε-MOEA 2181.0 9.9 0.1564 0.1681 0.0071 0.4116

ε-MOEA (s) 2094.2 5.2 0.3488 0.3748 0.0056 0.3657
Pareto Front 0.0000 - 0.9307 1.0000 - -

Table 3.14 Test Results for the 2-objective N=100 AP

C

pm

T

pmH µµ =:0 vs. C

pm

T

pmH µµ ≠:1

Contender

I-Epsilon Hypervolume

+∆
εI

 P-Value Winner
H∆ P-Value Winner

NSGA-II -2896.5 0.0000 C-TDEA 0.8914 0.0000 C-TDEA
NSGA-II (s) -1706.4 0.0000 C-TDEA 0.5233 0.0000 C-TDEA

ε-MOEA -2075.8 0.0000 C-TDEA 0.7431 0.0000 C-TDEA
ε-MOEA (s) -1989.0 0.0000 C-TDEA 0.5507 0.0000 C-TDEA

 66

2000 2500 3000 3500 4000 4500 5000 5500 6000
2000

2500

3000

3500

4000

4500

5000

5500

6000

Pareto-optimal Frontier

f1

f2

2000 2500 3000 3500 4000 4500 5000 5500 6000

2000

2500

3000

3500

4000

4500

5000

5500

6000

C-TDEA

f1

f2

2000 2500 3000 3500 4000 4500 5000 5500 6000
2000

2500

3000

3500

4000

4500

5000

5500

6000

NSGA-II (without seed)

f1

f2

2000 2500 3000 3500 4000 4500 5000 5500 6000

2000

2500

3000

3500

4000

4500

5000

5500

6000

NSGA-II (with seed)

f1

f2

2000 2500 3000 3500 4000 4500 5000 5500 6000
2000

2500

3000

3500

4000

4500

5000

5500

6000

Epsilon-MOEA (without seed)

f1

f2

2000 2500 3000 3500 4000 4500 5000 5500 6000

2000

2500

3000

3500

4000

4500

5000

5500

6000

Epsilon-MOEA (with seed)

f1

f2

Figure 3.13 Plots for the 2-objective N=100 AP

3-objective �=50 Assignment Problem

According to the performance metric values and the test results provided in Table

3.15 and 3.16 respectively, C-TDEA outperforms the other two contender

algorithms in terms of both performance metrics. In Figure 3.14, it is seen that C-

TDEA maintains convergence and diversity over the Pareto-optimal frontier. On

 67

the other hand, NSGA-II and ε-MOEA can only converge to the middle part of

the Pareto-optimal frontier. The seeded versions of the contender algorithms

provide better diversity over the Pareto-optimal frontier, and they converge better

by the assistance of the seed solutions. However, C-TDEA again outperforms the

seeded algorithms in terms of both performance metrics (Table 3.16).

Table 3.15 Indicator Results for the 3-objective N=50 AP

Algorithm

I-Epsilon Hypervolume

Duration (min) +
εI

x +
εI

s

Hx Pareto

H

H

x

x
Hs

C-TDEA 144.8 10.6 0.6873 0.8797 0.0025 2.5817
NSGA-II 1225.3 29.2 0.0320 0.0410 0.0003 0.3048

NSGA-II (s) 499.0 24.9 0.4561 0.5838 0.0003 0.2764
ε-MOEA 980.5 26.4 0.1086 0.1390 0.0064 0.2404

ε-MOEA (s) 606.7 25.8 0.4281 0.5479 0.0007 0.2287
Pareto Front 0.0000 - 0.7813 1.0000 - -

Table 3.16 Test Results for the 3-objective N=50 AP

C

pm

T

pmH µµ =:0 vs. C

pm

T

pmH µµ ≠:1

Contender

I-Epsilon Hypervolume

+∆
εI

 P-Value Winner
H∆ P-Value Winner

NSGA-II -1080.5 0.0000 C-TDEA 0.6553 0.0000 C-TDEA
NSGA-II (s) -354.2 0.0000 C-TDEA 0.2312 0.0000 C-TDEA

ε-MOEA -835.7 0.0000 C-TDEA 0.5787 0.0000 C-TDEA
ε-MOEA (s) -461.9 0.0000 C-TDEA 0.2592 0.0000 C-TDEA

 68

1000

1500

2000
2500

3000

3500

1000

1500

2000

2500

3000

3500

1000

1500

2000

2500

3000

3500

f1

Pareto-optimal frontier (Approximation)

f2

f3

1000

1500

2000
2500

3000

3500

1000

1500

2000

2500

3000

3500

1000

1500

2000

2500

3000

3500

f1

C-TDEA

f2

f3

1000

1500

2000

2500

3000

3500

1000

1500
2000

2500
3000

3500

1000

1500

2000

2500

3000

3500

f1

NSGA-II (without seed)

f2

f3

1000

1500

2000

2500

3000

3500

1000

1500
2000

2500
3000

3500

1000

1500

2000

2500

3000

3500

f1

NSGA-II (with seed)

f2

f3

1000

1500

2000

2500

3000

3500

1000

1500
2000

2500
3000

3500

1000

1500

2000

2500

3000

3500

f1

Epsilon-MOEA (without seed)

f2

f3

1000

1500

2000

2500

3000

3500

1000

1500
2000

2500
3000

3500

1000

1500

2000

2500

3000

3500

f1

Epsilon-MOEA (with seed)

f2

f3

Figure 3.14 Plots for the 3-objective N=50 AP

3-objective �=100 Assignment Problem

In this problem instance, C-TDEA outperforms both NSGA-II and ε-MOEA in

terms of both performance metrics (see Table 3.17 and Table 3.18). The

algorithm provides diversity over the Pareto-optimal frontier as seen in Figure

 69

3.15. The two contenders of C-TDEA can only converge to the middle portion of

the Pareto-optimal frontier. C-TDEA also outperforms the seeded versions of the

contenders. However, it should be mentioned that the performances of the

contenders have substantially increased by the inclusion of the seed solutions.

Table 3.17 Indicator Results for the 3-objective N=100 AP

Algorithm

I-Epsilon Hypervolume

Duration (min) +
εI

x +
εI

s

Hx Pareto

H

H

x

x
Hs

C-TDEA 399.2 13.9 0.6951 0.8364 0.0024 16.3724
NSGA-II 2924.4 20.3 0.0203 0.0244 0.0005 0.9492

NSGA-II (s) 1549.9 12.7 0.3795 0.4566 0.0004 0.6204
ε-MOEA 2483.2 16.8 0.0555 0.0668 0.0022 0.7562

ε-MOEA (s) 1916.8 15.2 0.3198 0.3848 0.0006 0.6017
Pareto Front 0.0000 - 0.8311 1.0000 - -

Table 3.18 Test Results for the 3-objective N=100 AP

C

pm

T

pmH µµ =:0 vs. C

pm

T

pmH µµ ≠:1

Contender

I-Epsilon Hypervolume

+∆
εI

 P-Value Winner
H∆ P-Value Winner

NSGA-II -2525.2 0.0000 C-TDEA 0.6748 0.0000 C-TDEA
NSGA-II (s) -1150.7 0.0000 C-TDEA 0.3156 0.0000 C-TDEA

ε-MOEA -2084.0 0.0000 C-TDEA 0.6396 0.0000 C-TDEA
ε-MOEA (s) -1517.6 0.0000 C-TDEA 0.3753 0.0000 C-TDEA

 70

2000
3000

4000

5000
6000

7000

2000

3000

4000
5000

6000

7000

2000

3000

4000

5000

6000

7000

f1

Pareto-optimal Frontier (Approximation)

f2

f3

2000
3000

4000

5000
6000

7000

2000

3000

4000
5000

6000

7000

2000

3000

4000

5000

6000

7000

f1

C-TDEA

f2

f3

2000

3000
4000

5000
6000

7000

2000
3000

4000
5000

6000
7000

2000

3000

4000

5000

6000

7000

f1

NSGA-II (without seed)

f2

f3

2000

3000
4000

5000
6000

7000

2000
3000

4000
5000

6000
7000

2000

3000

4000

5000

6000

7000

f1

NSGA-II (with seed)

f2

f3

2000

3000
4000

5000
6000

7000

2000
3000

4000
5000

6000
7000

2000

3000

4000

5000

6000

7000

f1

Epsilon-MOEA (without seed)

f2

f3

2000

3000
4000

5000
6000

7000

2000
3000

4000
5000

6000
7000

2000

3000

4000

5000

6000

7000

f1

Epsilon-MOEA (with seed)

f2

f3

Figure 3.15 Plots for the 3-objective N=100 AP

 71

3.5.4 Discussions

In this section, we show that C-TDEA can converge to and provide diversity on

the Pareto-optimal frontiers of all of the test problems. C-TDEA outperforms both

NSGA-II and ε-MOEA in terms of both Hypervolume metric and I-Epsilon

metric in each of the 8 test problems. Even the seeded contender algorithms

cannot come close to the performance of C-TDEA. However, the advantage

obtained by territory definition is eliminated substantially in C-TDEA. That is,

although territory definition provides fast execution, the repair and improvement

procedures used in C-TDEA blankets this advantage. Therefore, less time

requiring repair and improvement procedures can be developed to overcome this

problem.

 72

CHAPTER 4

I�TERACTIVE COMBI�ATORIAL TERRITORY DEFI�I�G

EVOLUTIO�ARY ALGORITHM (IC-TDEA)

Multi-objective evolutionary algorithms end up with a population of solutions as

an approximation of the Pareto-optimal frontier. However, in most cases the DM

is interested in obtaining a single solution, or a very small set of solutions to

select from. Rachmawati and Srinivasan (2006) have illustrated preferences as

“the basis of tie-breaking between solutions in the Pareto optimal set”. Therefore,

we now focus on the issue of preference incorporation to present a preference-

based multi-objective evolutionary algorithm.

In this chapter, we present Interactive Combinatorial Territory Defining

Evolutionary Algorithm (IC-TDEA) that is developed to end up with the

preferred solutions of the DM in an interactive manner. The algorithm is a

modified version of Interactive Territory Defining Evolutionary Algorithm

(iTDEA) that has been proposed by Karahan (2008).

Influenced by the advantages of preference incorporation into MOEAs, Karahan

(2008) has also presented the interactive version of TDEA, named as iTDEA. In

this interactive version, the preferred region of the DM is approximated step by

step during the optimization stage as information is obtained from the DM. For

this purpose, interaction stages are determined at prespecified generations, and a

more focused and smaller preference region is estimated at each of these

interaction stages. The first focus region is determined as the whole Pareto

frontier and it is assigned the highest τ value. The corresponding τ value of the

final focus region (the smallest τ value) is also prespecified. The subsequent

regions are estimated during the optimization process and a newer region is

 73

smaller and has a smaller τ value than the previous ones. The offspring is in a

preferred region if its favorable weights are covered by the weight sets of that

preferred region and it is evaluated using the τ associated to that region.

Otherwise, it is evaluated using the τ value of the remaining region. Since a

preferred region is specified by its weight set, Karahan (2008) has demonstrated a

procedure to obtain these weight sets and also to determine the values of the

corresponding τ values. IC-TDEA utilizes the same weight set and τ calculations

that Karahan (2008) has proposed in iTDEA. The weight set of the next

preference region is obtained by constructing an interval around the favorable

weights of the best solution of the DM obtained at the interaction stage. This best

solution is selected by the DM from a representative set of solutions from the

previous focus region such that, this representative set is composed of the farthest

ε-nondominated solutions obtained by a filtering procedure. In fact, the only

difference of iTDEA from TDEA is in the archive acceptance procedure such

that, before checking for territory violation, the favorable weights of the offspring

are calculated and the corresponding preference region of the offspring is found to

obtain the τ value of territory violation check. After determining the regions that

contain the favorable weights of the offspring, the offspring is evaluated with

respect to the smallest of the corresponding τ values. In iTDEA, the determination

of the interaction stages should be attached enough importance for the correct

functioning of the algorithm in order to provide convergence to the Pareto-

optimal frontier. This interactive preference incorporation scheme results in better

details in the regions of interest with higher computational efficiency.

This chapter is organized as follows: We present the general outline of IC-TDEA

that is common for all MOCO problems in Section 4.1. We explain the

modifications of the algorithm for the knapsack problem in detail in Section 4.2.

Similarly, we explain the modifications of the algorithm for the assignment

problem in detail in Section 4.3. Finally, we present the experimental results and

comparisons in Section 4.4.

 74

4.1 GE�ERAL OUTLI�E OF IC-TDEA

Below is the general outline of the algorithm that is applicable to any MOCO

problem:

1. Initialization: Set the initial regular population size , the starting

territory size τ0, the final territory size τH for the final preference region,

the maximum number of generations to iterate the algorithm T, such that

the final population size is acceptable for the DM. Set the number of

interactions H according to the availability of the DM. Set the iteration

counter t = 0 and interaction counter h=1. Set the first preference region

R0 as the whole Pareto-optimal frontier. Set the initial reference point

ff Re
0 as the ideal point *f . Set the interaction generations G1, …, GH

2. Initialization of the Regular Population: Obtain individuals to fill the

initial regular population P(0) by creating seed solutions, and -

 random individuals.

3. Initialization of the Archive Population: Initialize the archive population

with the copies of the solutions in P(0) that are nondominated with respect

to the solutions in P(0).

4. Parent Selection: Set t ← t +1. Choose one parent from the regular

population, and one parent from the archive population.

5. Recombination: Recombine the parents to create the offspring.

6. Mutation: Apply mutation to the offspring.

7. Repair and Improvement of the Offspring: If the offspring is infeasible,

then repair the offspring such that it becomes feasible. Then, improve the

offspring if there is place for improvement.

8. Acceptance into the Regular Population: Check whether the offspring

satisfies the acceptance condition for the regular population. If it is

accepted, insert it into P(t). Otherwise, go to step 10.

 75

9. Acceptance into the Archive Population: If the offspring is accepted into

P(t), check whether it satisfies the acceptance condition for the archive

population. If it is accepted, insert it into A(t).

10. Interaction: If t = Gh, stop for interaction with the DM. Present a filtered

and well-dispersed sample of solutions to the DM. Set the solution

preferred by the DM as the reference point f

hf Re . Determine the new

preferred region Rh around f

hf Re and set the corresponding territory size

τh. Set h← h+1. Otherwise, go to Step 11.

11. Stopping Condition: Stop if the pre-specified iteration limit T is hit (t=T),

and report the archive population, or a well-dispersed small set of

solutions from the archive population to the DM. Otherwise, go to step 4.

In the interaction stage, the DM may choose more than one solutions. This

situation can be handled by the algorithm after some revisions to deal with

multiple reference points. However, we deal with the single reference point case

in this study.

4.2 IC-TDEA FOR MULTI-OBJECTIVE K�APSACK PROBLEM

In IC-TDEA, the repair-improvement procedure is revised for the offspring to

serve for convergence to the desired region on the Pareto-optimal frontier. The

procedure is the same as C-TDEA for the initial population members. The revised

repair-improvement procedure for an offspring between interaction stages Gh and

Gh+1 is as follows:

1. Check whether the offspring is dominated by the reference point f

hf Re . If

the offspring is dominated by f

hf Re , go to Step 2. Otherwise, go to Step 3.

2. Check whether the offspring is within the last preferred region Rh. If the

offspring is within Rh, then go to Step 3. Otherwise go to Step 4.

 76

3. If the offspring is infeasible, repair the offspring in the direction of the

ideal point *f . If there is place for further improvement, improve the

offspring in the direction of *f .

4. If the offspring is infeasible, repair the offspring in the direction of the

ideal point f

hf Re . If there is place for further improvement, improve the

offspring in the direction of f

hf Re .

The repair-improvement in the direction of the ideal point *f is the original

repair-improvement procedure used in C-TDEA. However, in order to guide a

solution in the direction of a dominating point except the ideal point, a

modification in the original procedure is required. In the original repair-

improvement procedure, instead of the favorable weights of the solutions, the so

called “reference weights” are utilized (Equation 4.1). The formulation of the

reference weights is a modified version of the favorable weight formulation,

where the function values of the reference point are used instead of the function

values of the ideal point.

=∃≠

=

=≠

−−

=

−

=∑

REF

jj

REF

ii

REF

ii

jj

M

j
j

REF

j

REF

i

REF

i

ffthatsuchjbutffif

ffif

Mjallforffif
fffif

0

1

,...,2,1
11 *

1

1

λ (4.1)

Therefore, if an offspring is infeasible and it is dominated by the reference point

f

hf Re but it is not in the last preferred region Rh, the following repair procedure is

carried out:

 77

1. Calculate the reference weights, REF

iλ s, of the solution.

2. Calculate Tchebycheff distance after moving out item j from the knapsack

for each item j which is in the current knapsack:

}{)((*
ijii

REF

i
Mi

j czzMaxd −−=
∈

λ (4.2)

3. Calculate dj / aj for each item j which is in the current knapsack, where aj

is the constraint coefficient of item j.

4. Find Minj { dj / aj } = dk / ak

5. Discard item xk from the knapsack.

6. If the new solution is infeasible, turn back to Step 1 and repeat the same

procedure using the favorable weights of the new solution until a feasible

solution is obtained. Otherwise, finish the repair procedure.

On the other hand, if an offspring is feasible or it becomes feasible after the repair

procedure, it is evaluated for the improvement procedure. If the offspring is

dominated by the reference point f

hf Re but it is not in the last preferred region Rh,

the following procedure is utilized:

1. Calculate the reference weights, REF

iλ s, of the solution.

2. For each item j which is not in the current knapsack and addition of which

does not violate the knapsack capacity, calculate Tchebycheff distance

after placing item j into the knapsack:

}{)((*
ijii

REF

i
Mi

j czzMaxd +−=
∈

λ (4.3)

3. Calculate (1-dj) / aj for each item j which is not in the current knapsack

and addition of which does not violate the knapsack capacity, where aj is

the constraint coefficient of item j.

 78

4. Find Maxj { (1-dj) / aj } = (1-dk) / ak

5. Place item xk into the Knapsack.

If there is place for improvement of the new solution, turn back to Step 1 and

repeat the same procedure using the favorable weights of the new solution until

there is no place for improvement. Otherwise, finish the improvement procedure.

The procedure is illustrated in Figure 4.1. Region 1 to the southwest of

f

hf Re corresponds to the objective space that is dominated by the reference

point f

hf Re , while Region 2 corresponds to the last preferred region Rh that is

constructed around f

hf Re .

Figure 4.1 IC-TDEA Repair and Improvement Procedure for MOKP

Although the aim is to converge to the region that is preferred by the DM, we

should still continue to search the whole Pareto-optimal frontier for other

solutions that may be interesting for the DM. The reason is that, the DM does not

know his utility function beforehand, and any region on the Pareto-optimal

frontier that is not searched yet may be of interest for the DM. Consequently, the

solutions that are not dominated by the reference point are used to serve for

exploration over the whole Pareto-optimal frontier, and they are subject to the

 79

ideal point based repair-improvement procedure. On the other hand, the solutions

that are dominated by the reference point have the potential to be repaired and

improved in the direction of the reference point. However, the solutions that are

in the last preferred region serve to convergence to the preferred region by using

their own favorable weights that are covered by the weight range of this preferred

region. Since the solutions that are dominated by the reference point f

hf Re but are

not in the last preferred region Rh cannot guarantee the convergence to the

preferred region by directing them to the ideal point, those solutions are repaired

and improved in the direction of the reference point f

hf Re .

4.3 IC-TDEA FOR THE MULTI-OBJECTIVE ASSIG�ME�T PROBLEM

As in the case of the knapsack problem, the offspring improvement procedure of

the assignment problem is also revised in order to focus on the desired region on

the Pareto optimal frontier. The procedure is the same as in C-TDEA for the

initial population members. The revised improvement procedure for an offspring

between interaction stages Gh and Gh+1 is as follows:

1. Check whether the offspring is dominated by the reference point f

hf Re . If

the offspring is dominated by f

hf Re , go to Step 2. Otherwise, go to Step 3.

2. Check whether the offspring is within the last preferred region Rh. If the

offspring is within Rh, then go to Step 4. Otherwise go to Step 5.

3. Check for improvement of the offspring based on domination criterion.

4. Check for improvement of the offspring based on domination criterion

without allowing the offspring to get out of Rh.

5. Check for improvement of the offspring in the direction of f

hf Re until it is

covered by Rh. Then continue to check for improvement of the offspring

based on domination criterion without allowing the offspring to get out of

Rh.

 80

The improvement based on domination criterion is the original improvement

procedure used in C-TDEA. That is, the jobs are exchanged among the people if

and only if the revised solution dominates the original solution. However, in order

to guide the solution to the preferred region, original improvement procedure

should be revised. For this aim, we propose a new criterion, which is the

Euclidean distance to the reference point f

hf Re . In the original improvement

procedure, instead of taking the job exchange criterion as domination, we check

whether the revised solution has a smaller Euclidean distance to f

hf Re or not.

Therefore, the jobs are exchanged if and only if the new solution is closer to

f

hf Re in terms of Euclidean distance.

The procedure is illustrated in Figure 4.2. The solutions that are subject to

domination based improvement are illustrated as being directed to the ideal point.

On the other hand, for the solutions that are improved by using the Euclidean

distance to the reference point criterion, the improvement is shown to be directed

to the reference point f

hf Re . The motivation behind this improvement scheme is

similar to the knapsack problem, which has been discussed in Section 4.2.

If an offspring is dominated by the reference point f

hf Re but it is not in the last

preferred region Rh, the following improvement procedure is carried out:

1. Set first iteration counter n =1. Start at gene n that corresponds to the first

person.

2. Set second iteration counter m = n+1. If the solution is not within the last

preferred region Rh, then go to Step 3, otherwise go to Step 4.

3. Exchange the jobs of person m with the job of person n. If the newly

obtained solution has a smaller Euclidean distance to f

hf Re than the initial

solution, keep the jobs exchanged and go to Step 5. Otherwise, undo the

exchange, set m←m+1, and repeat this step. If m=M+1, go to Step 5.

 81

4. Exchange the jobs of person m with the job of person n. If the newly

obtained solution dominates the initial solution and it is within the last

preferred region Rh, keep the jobs exchanged and go to Step 5. Otherwise,

undo the exchange, set m←m+1, and repeat this step. If m=M+1, go to

Step 5.

5. Set n←n +1 and go back to Step 2. If n = M, stop.

Figure 4.2 IC-TDEA Improvement Procedure for MOAP

For the same reason as in the case of C-TDEA, this improvement procedure is

held until a predetermined small number of generations that is determined by

preliminary runs.

Region 1

Region 2

 82

4.4 SIMULATIO� RU�S A�D COMPARISO�S

The computational experiments are performed on 2- and 3-objective 750-item

single-dimensional knapsack problem instances; and 2- and 3-objective 100×100

assignment problem instances. We assume that the DM’s preferences can be

represented by a Tchebycheff utility function of the following form (Karahan,

2008):

[]iii
MiZz

ffwMaxMinU −=
=∈

*

,...,1
 (4.4)

where if is the value of the i
th objective, *

if is the i
th element of the ideal

objective vector, and iw is the weight of the i
th objective. For each of the 4

problem instances, we choose three different utility functions to test the capability

of the algorithm to converge to the different regions of the Pareto-optimal

frontiers. Moreover, we test the performance of the algorithm with 4 and 6

interactions (Karahan, 2008), in order to see the effect of the number of

interactions to focus on the desired region. The simulation runs are replicated 10

times. The parameters used in the simulation runs are provided in Table 4.1.

Table 4.1 Interactive Test Parameters

 83

In each interaction stage, 2M solutions are filtered from the archive population,

where M is the number of objectives, and presented to the DM to set the new

reference point. However, in the first interaction, 4M solutions are presented since

this is the first time preference information is elicited from the DM and it has a

very significant effect to direct the search process to the correct region of the

Pareto-optimal frontier. In the end of the simulation run, we present the best

utility solution among the filtered 2M solutions from the final archive population,

and the solution having the best utility among all archive members without any

filtering.

In order to test the performance of the algorithm, we calculate the deviation of

utility of the obtained solution from that of the true optimal solution:

Absolute Deviation *UU −= (4.5)

We also calculate the percent deviation to scale the obtained deviation value as

follows:

Relative Deviation
*

*

UU

UU
w −

−
= (4.6)

where U is the utility value of the solution obtained by the algorithm, *U is the

utility value of the true optimal solution, and wU is the utility value of the worst

solution out of all nondominated solutions that are known. This performance

metric is taken from Karahan (2008).

 84

4.4.1 Multi-objective Knapsack Problem

2-objective 750-item Knapsack Problem

Test 1: In the first test, the best solution is obtained at the middle of the Pareto-

optimal frontier by attaching equal weights to each of the objectives. Table 4.2

shows the results found for the cases where the final population is filtered or

unfiltered before presenting the population to the DM.

Table 4.2 Interactive Test 1 Results for 2-objective 750-item KP

Solution Inter. Mean
Std.
Dev.

Opt. Worst
Abs.
Dev.

Rel.
Dev.

Duration
 (min)

Unfilter 4 669.2 5.996 631.00 2580.0 38.15 1.9574% 7.4882
Filter 4 671.3 6.084 631.00 2580.0 40.25 2.0652% 7.4882

Unfilter 6 666.4 5.116 631.00 2580.0 35.35 1.8138% 7.6622
Filter 6 666.4 5.116 631.00 2580.0 35.35 1.8138% 7.6622

In Figure 4.3, we observe that better convergence to the desired regions can be

obtained by increasing the number of interactions. Moreover, the final preferred

region gets narrower when more interactions are performed with the DM. Figure

4.3 shows that IC-TDEA successfully converges to the desired portion of the

Pareto-optimal frontier. Although the deviation from the optimal solution

increases when the final population is filtered for the 4-interaction case, this

disadvantage of filtering is eliminated with the increasing number of interactions.

For the 6-interaction case, the filtering process applied to the final population is

able to obtain the same solution as the unfiltered case. Since filtering is important

to decrease the decision making effort of the DM, this process may become

advantageous by increasing the number of interactions with the DM.

 85

Figure 4.3 Interactive Test 1 Plots of 2-objective 750-item KP

Test 2: In this test, the DM favors Objective 1 much more than Objective 2. This

test is utilized to test the performance of IC-TDEA is case of such a bias to deal

with on the Pareto-optimal frontier. Table 4.3 shows that, the performance of the

algorithm is similar to that in Test 1. While the filtered and unfiltered results are

similar to each other, 6-interaction case performs much better than 4-interaction

case. The results of the runs are presented in Figure 4.4.

Table 4.3 Interactive Test 2 Results for 2-objective 750-item KP

Solution Inter. Mean
Std.
Dev.

Opt. Worst
Abs.
Dev.

Rel.
Dev.

Duration
 (min)

Unfilter 4 481.6 2.278 437.6 4128.0 44.04 1.1934% 7.7825
Filter 4 482.9 3.621 437.6 4128.0 45.28 1.2270% 7.7825

Unfilter 6 477.4 5.356 437.6 4128.0 39.84 1.0796% 7.8313
Filter 6 478.3 6.267 437.6 4128.0 40.68 1.1023% 7.8313

2.7 2.8 2.9 3 3.1 3.2 3.3

x 10
4

2.7

2.8

2.9

3

3.1

3.2

3.3
x 10

4 Unfiltered with 4 Interactions

Pareto-optimal Frontier

IC-TDEA

2.7 2.8 2.9 3 3.1 3.2 3.3

x 10
4

2.7

2.8

2.9

3

3.1

3.2

3.3
x 10

4 Unfiltered with 6 Interactions

Pareto-optimal Frontier

IC-TDEA

 86

2.7 2.8 2.9 3 3.1 3.2 3.3

x 10
4

2.7

2.8

2.9

3

3.1

3.2

3.3
x 10

4 Unfiltered with 4 Interactions

f1

f2

2.7 2.8 2.9 3 3.1 3.2 3.3

x 10
4

2.7

2.8

2.9

3

3.1

3.2

3.3
x 10

4 Unfiltered with 6 Interactions

f1

f2

Figure 4.4 Interactive Test 2 Plots of 2-objective 750-item KP

Test 3: In this test, in contrast to Test 2, the DM favors Objective 2. Table 4.4

shows the deviations from the optimal point, and we see that the algorithm is able

to converge to the region of the optimal point as in the case of previous two tests.

Surprisingly, the algorithm works better in 4-interaction case. That is, the

remaining interactions fail to guide the algorithm to the right direction within the

narrower preferred regions. The final populations of the 4- and 6-interaction cases

are presented in Figure 4.5.

Table 4.4 Interactive Test 3 Results for 2-objective 750-item KP

Solution Inter. Mean
Std.
Dev.

Opt. Worst
Abs.
Dev.

Rel.
Dev.

Duration
 (min)

Unfilter 4 601.2 3.586 559.3 3262.0 41.90 1.5503% 8.3947
Filter 4 604.8 4.133 559.3 3262.0 45.50 1.6835% 8.3947

Unfilter 6 608.7 3.867 559.3 3262.0 49.40 1.8278% 8.0714
Filter 6 611.3 4.101 559.3 3262.0 52.00 1.9240% 8.0714

 87

2.6 2.7 2.8 2.9 3 3.1 3.2 3.3

x 10
4

2.7

2.8

2.9

3

3.1

3.2

3.3
x 10

4 Unfiltered with 4 Interactions

f1

f2

2.6 2.7 2.8 2.9 3 3.1 3.2 3.3

x 10
4

2.7

2.8

2.9

3

3.1

3.2

3.3
x 10

4 Unfiltered with 6 Interactions

f1

f2

Figure 4.5 Interactive Test 3 Plots of 2-objective 750-item KP

3-objective 750-item Knapsack Problem

Test 1: In 3-objective test problem runs, we see that the differences between 4-

and 6-interaction cases; and the filtered and unfiltered cases are more obvious. As

seen in Table 4.5, standard deviations of the filtered cases are higher than the

unfiltered cases. Moreover, the standard deviation gets smaller as we increase the

number of interactions from 4 to 6. Although the algorithm converges to the

middle of the Pareto-optimal frontier, where all objectives are approximately

equally weighted, the performance of the algorithms worsens as we increase the

number of objectives. We can follow the preferred regions in Figure 4.6 for both

4- and 6-interaction cases.

Table 4.5 Interactive Test 1 Results for 3-objective 750-item KP

Sol. Int. Mean
Std.
Dev.

Opt. Worst
Abs.
Dev.

Rel.
Dev.

Duration
 (min)

Unfilt. 4 656.70 6.561 605.22 1856.58 51.48 4.1139% 17.7138
Filt. 4 687.10 6.975 605.22 1856.58 81.84 6.5401% 17.7138

Unfilt. 6 640.20 5.455 605.22 1856.58 34.98 2.7954% 17.8944
Filt. 6 648.12 5.983 605.22 1856.58 42.90 3.4283% 17.8944

 88

2.6
2.8

3
3.2

3.4 x 10
4

2.6
2.8

3
3.2

3.4
x 10

4

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

x 10
4

f1

Unfiltered with 4 Interactions

f2

f3

2.6
2.8

3
3.2

3.4 x 10
4

2.6
2.8

3
3.2

3.4
x 10

4

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

x 10
4

f1

Unfiltered with 6 Interactions

f2

f3

Figure 4.6 Interactive Test 1 Plots of 3-objective 750-item KP

Test 2: In this test, Objective 1 is favored more than the remaining two

objectives. We can see in Table 4.6 that, the performance of the algorithm is not

much affected by this bias, since the performance metric results are similar to

Test 1. The plot of the final population is presented in Figure 4.7.

Table 4.6 Interactive Test 2 Results for 3-objective 750-item KP

Sol. Inter. Mean
Std.
Dev.

Opt. Worst
Abs.
Dev.

Rel.
Dev.

Duration
 (min)

Unfilt. 4 556.4 6.432 432.2 3810.1 124.20 3.6768% 16.8509
Filt. 4 556.5 6.520 432.2 3810.1 124.30 3.6798% 16.8509

Unfilt. 6 515.6 5.651 432.2 3810.1 83.40 2.4690% 17.6166
Filt. 6 518.3 5.412 432.2 3810.1 86.10 2.5489% 17.6166

2.6
2.8

3
3.2

3.4 x 10
4

2.6
2.8

3
3.2

3.4
x 10

4

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

x 10
4

f1

Unfiltered with 4 Interactions

f2

f3

2.6
2.8

3
3.2

3.4 x 10
4

2.6
2.8

3
3.2

3.4
x 10

4

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

x 10
4

f1

Unfiltered with 6 Interactions

f2

f3

Figure 4.7 Interactive Test 2 Plots of 3-objective 750-item KP

 89

Test 3: In this test, the bias is for the third objective, which has been finely

captured by IC-TDEA, as seen in Figure 4.8. Table 4.7 shows that, the algorithm

shows its best 3-objective knapsack performance in this test. The final population

plots are provided in Figure 4.8, where the obtained solutions have converged to

the region of higher Objective 3 values.

Table 4.7 Interactive Test 3 Results for 3-objective 750-item KP

Sol. Int. Mean
Std.
Dev.

Opt. Worst
Abs.
Dev.

Rel.
Dev.

Duration
 (min)

Unfilt. 4 636.0 6.712 581.50 2813.0 54.50 2.4423% 16.9614
Filt. 4 650.5 6.928 581.50 2813.0 69.00 3.0921% 16.9614

Unfilt. 6 633.0 5.816 581.50 2813.0 494.46 2.3079% 17.9326
Filt. 6 639.9 6.025 581.50 2813.0 58.40 2.6171% 17.9326

2.6
2.8

3
3.2

3.4 x 10
4

2.6
2.8

3
3.2

3.4
x 10

4

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

x 10
4

f1

Unfiltered with 4 Interactions

f2

f3

2.6
2.8

3
3.2

3.4 x 10
4

2.6
2.8

3
3.2

3.4
x 10

4

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

x 10
4

f1

Unfiltered with 6 Interactions

f2

f3

Figure 4.8 Interactive Test 3 Plots of 3-objective 750-item KP

 90

4.4.2 Multi-objective Assignment Problem

2-objective 100×100 Assignment Problem

Test 1: In the first 2-objective assignment problem test, the best solution is

obtained at the middle of the Pareto-optimal frontier. Table 4.8 shows the results

found for the cases where the final population is filtered or unfiltered. In Figure

4.9, we observe that, limiting the improvement procedure to a prespecified

number of generations hinders the final population to finely converge to the

Pareto optimal frontier. However, IC-TDEA is still successful in converging to

the desired portion of the Pareto-optimal frontier. The final preferred region gets

narrower as the number of interactions is increased.

Table 4.8 Interactive Test 1 Results for 2-objective N=100 AP

Sol. Inter. Mean
Std.
Dev.

Opt. Worst
Abs.
Dev.

Rel.
Dev.

Duration
 (min)

Unfilt. 4 441.5 5.316 241.0 1889.5 200.50 12.1626% 6.5889
Filt. 4 445.5 6.478 241.0 1889.5 204.50 12.4052% 6.5889

Unfilt. 6 431.5 5.102 241.0 1889.5 190.50 11.5560% 6.6862
Filt. 6 436.5 5.411 241.0 1889.5 195.50 11.8593% 6.6862

2000 2500 3000 3500 4000 4500 5000 5500 6000
2000

2500

3000

3500

4000

4500

5000

5500

Unfiltered with 4 Interactions

f1

f2

2000 2500 3000 3500 4000 4500 5000 5500 6000

2000

2500

3000

3500

4000

4500

5000

5500

Unfiltered with 6 Interactions

f1

f2

Figure 4.9 Interactive Test 1 Plots of 2-objective N=100 AP

 91

Test 2: In this test, the DM favors the first objective. The performance of the

algorithm is similar to that in Test 1 (see Table 4.9). 6-interaction case performs

much better than 4-interactions case, encouraging more interactions with the DM.

The results of the runs are presented in Figure 4.10.

Table 4.9 Interactive Test 2 Results for 2-objective N=100 AP

Sol. Int. Mean
Std.
Dev.

Opt. Worst
Abs.
Dev.

Rel.
Dev.

Duration
 (min)

Unfilt. 4 322.4 6.001 188.4 3023.2 134.00 4.7270% 6.3848
Filt. 4 330.4 6.220 188.4 3023.2 142.00 5.0092% 6.3848

Unfilt. 6 308.4 5.885 188.4 3023.2 120.00 4.2331% 6.5046
Filt. 6 310.5 5.999 188.4 3023.2 122.10 4.3072% 6.5046

2000 2500 3000 3500 4000 4500 5000 5500 6000
2000

2500

3000

3500

4000

4500

5000

5500

Unfiltered with 4 Interactions

f1

f2

2000 2500 3000 3500 4000 4500 5000 5500 6000

2000

2500

3000

3500

4000

4500

5000

5500

Unfiltered with 6 Interactions

f1

f2

Figure 4.10 Interactive Test 2 Plots of 2-objective N=100 AP

 92

Test 3: This time, the DM’s preference is in favor of Objective 2. In Table 4.10,

the performance metric results show that the algorithm is able to converge to the

region of the optimal point. The final populations of the 4- and 6-interaction cases

are presented in Figure 4.11.

Table 4.10 Interactive Test 3 Results for 2-objective N=100 AP

Sol. Int. Mean
Std.
Dev.

Opt. Worst
Abs.
Dev.

Rel.
Dev.

Duration
 (min)

Unfilt. 4 422.8 5.682 216.9 2331.7 205.90 9.7361% 6.6737
Filt. 4 424.6 5.825 216.9 2331.7 207.70 9.8213% 6.6737

Unfilt. 6 399.6 4.921 216.9 2331.7 182.70 8.6391% 6.5720
Filt. 6 405.8 5.127 216.9 2331.7 188.90 8.9323% 6.5720

2000 2500 3000 3500 4000 4500 5000 5500 6000
2000

2500

3000

3500

4000

4500

5000

5500

Unfiltered with 4 Interactions

f1

f2

2000 2500 3000 3500 4000 4500 5000 5500 6000

2000

2500

3000

3500

4000

4500

5000

5500

Unfiltered with 6 Interactions

f1

f2

Figure 4.11 Interactive Test 3 Plots of 2-objective N=100 AP

 93

3-objective 100×100 Assignment Problem

Test 1: As seen in Table 4.11, the performance of the algorithms gets worse as

we increase the number of objectives. However, the algorithm is still able to

converge to the middle of the Pareto-optimal frontier, the preferred region of this

test. We can see the final preferred region in Figure 4.12 for both 4- and 6-

interaction cases.

Table 4.11 Interactive Test 1 Results for 3-objective N=100 AP

Sol Int Mean
Std.
Dev.

Opt. Worst
Abs.
Dev.

Rel.
Dev.

Durat.
 (min)

Unfilt 4 640.20 10.101 332.31 1428.57 307.89 28.0855% 10.7785
Filt 4 648.12 11.226 332.31 1428.57 315.81 28.8079% 10.7785

Unfilt 6 552.59 9.873 332.31 1428.57 220.28 20.0938% 10.9896
Filt 6 552.10 10.118 332.31 1428.57 219.78 20.0482% 10.9896

2000
3000

4000
5000

6000
7000

2000
3000

4000
5000

6000
7000

2000

3000

4000

5000

6000

7000

f1

Unfiltered with 4 Interactions

f2

f3

2000
3000

4000
5000

6000
7000

2000
3000

4000
5000

6000
7000

2000

3000

4000

5000

6000

7000

f1

Unfiltered with 6 Interactions

f2

f3

Figure 4.12 Interactive Test 1 Plots of 3-objective N=100 AP

 94

Test 2: In this test, Objective 1 is favored more than the other two objectives. We

can see in Table 4.12 that, the performance of the algorithm is much better

compared to the performance metric results of Test 1. That is, the bias introduced

in favor of an objective has improved the performance of the algorithm. The plot

of the final population is presented in Figure 4.13.

Table 4.12 Interactive Test 2 Results for 3-objective N=100 AP

Sol Int Mean
Std.
Dev.

Opt. Worst
Abs.
Dev.

Rel.
Dev.

Durat.
 (min)

Unfilt 4 348.60 7.506 230.30 3030.30 118.30 4.2250% 10.4281
Filt 4 358.90 7.861 230.30 3030.30 128.60 4.5929% 10.4281

Unfilt 6 340.85 6.855 230.30 3030.30 110.55 3.9482% 10.3104
Filt 6 349.30 7.004 230.30 3030.30 119.00 4.2500% 10.3104

2000
3000

4000
5000

6000
7000

2000
3000

4000
5000

6000
7000

2000

3000

4000

5000

6000

7000

f1

Unfiltered with 4 Interactions

f2

f3

2000
3000

4000
5000

6000
7000

2000
3000

4000
5000

6000
7000

2000

3000

4000

5000

6000

7000

f1

Unfiltered with 6 Interactions

f2

f3

Figure 4.13 Interactive Test 2 Plots of 3-objective N=100 AP

 95

Test 3: In this test, the bias is for the third objective as seen in Figure 4.14. Table

4.13 shows the deviation results from the optimal point of this test. The algorithm

is able to converge to the preferred region of the DM. The final population plot is

provided in Figure 4.14, where the obtained solutions have converged to the

region of lower Objective 3 values. In this test, 4-interaction case performs better

than 6-interaction case which shows that the population is not guided well during

the last two interaction stages.

Table 4.13 Interactive Test 3 Results for 3-objective N=100 AP

Sol Int Mean
Std.
Dev.

Opt. Worst
Abs.
Dev.

Rel.
Dev.

Dur.
 (min)

Unfilt. 4 541.50 9.992 308.00 2159.50 233.50 12.6114% 10.5350
Filt. 4 549.90 11.864 308.00 2159.50 241.90 13.0651% 10.5350

Unfilt. 6 543.80 7.975 308.00 2159.50 235.80 12.7356% 10.0921
Filt. 6 551.40 8.112 308.00 2159.50 243.40 13.1461% 10.0921

2000
3000

4000
5000

6000
7000

2000
3000

4000
5000

6000
7000

2000

3000

4000

5000

6000

7000

f1

Unfiltered with 4 Interactions

f2

f3

2000
3000

4000
5000

6000
7000

2000
3000

4000
5000

6000
7000

2000

3000

4000

5000

6000

7000

f1

Unfiltered with 6 Interactions

f2

f3

Figure 4.14 Interactive Test 3 Plots of 3-objective N=100 AP

 96

4.4.3 Discussions

IC-TDEA can converge to the final preference region of the DM in an interactive

manner. We show this on various 2- and 3-objective test problems and by using

different utility functions for the DM. The algorithm can converge to the region of

interest in all of the test problems. As we increase the number of interactions with

the DM, we can obtain a more realistic final preference region approximation.

Since the filtering procedure is seen to mislead the process, the filtering method

can be revised, which has also been suggested by Karahan (2008).

 97

CHAPTER 5

CO�CLUSIO�S

In this study, we propose a multi-objective evolutionary algorithm (MOEA), the

Combinatorial Territory Defining Evolutionary Algorithm (C-TDEA) to solve

multi-objective combinatorial optimization (MOCO) problems. We handle the

single-dimensional multi-objective knapsack problem (MOKP) and multi-

objective assignment problem (MOAP). We introduce a new repair-improvement

procedure that serves both convergence and diversity at the same time.

We test the performance of C-TDEA against well-known MOEAs in the literature

on 2-, and 3-objective randomly generated problem instances of MOKP and

MOAP. We discuss how the territory defining property of Karahan and Köksalan

(2008) facilitates the solution of MOCO problems by providing fast execution.

Moreover, the repair and improvement mechanisms, and the other modifications

in the original algorithm are realized to help in providing convergence and

preserving diversity for the selected MOCO problems. We observe that C-TDEA

performs well on Hypervolume and I-Epsilon performance metrics in all

problems. In all of the problems, it outperforms other algorithms in both metrics.

We also propose a preference incorporation mechanism that focuses on the

regions that are of special interest for the decision maker. We propose an

interactive version of C-TDEA called Interactive Combinatorial Territory

Defining Evolutionary Algorithm (IC-TDEA). Assuming that the decision maker

does not have any idea on his preferred region at the beginning of the search, IC-

TDEA guides the search by eliciting information from the decision maker in an

interactive manner and moves the population towards the regions of interest. In

computational tests, we observe that the interactive version of the algorithm is

able to converge to the regions that are preferred by the decision maker.

 98

There is a limited number of multi-objective evolutionary algorithms available in

the literature that deal with combinatorial optimization problems. This study aims

to contribute to fill this gap in the MCDM literature. The algorithm obtains

diversity in the final population. The territory defining property and the repair-

improvement procedure serves for diversity and these properties are also utilized

to incorporate the preferences of the decision maker into the search process.

Although the repair-improvement procedures serve to diversity substantially, they

cast shadow on the fast execution advantage of the territory defining property. For

instance, the improvement mechanism used in the assignment problem is time

consuming and we have to limit the algorithm to make improvements in only a

few initial populations. In a future research, the repair-improvement procedures

need to be revised to converge to the Pareto-optimal frontier within shorter

computational time.

We test the algorithms for only multi-objective knapsack and assignment

problems. In order to show the generality of the algorithm, it needs to be tested on

other MOCO problems as a future research direction.

In this study, we test the performance of the algorithms on only 2- and 3-objective

test problems. It remains as a future research to test the algorithms on problems

with higher number of objectives in order to better assess on the performance of

our algorithms.

 99

REFERE�CES

Branke, J., Deb, K. 2004. Integrating User Preferences into Evolutionary Multi-

Objective Optimization. Knowledge Incorporation in Evolutionary Computation

461-477.

Branke, J., Kauβler, T., Schmeck, H. 2001. Guidance in Evolutionary Multi-

objective Optimization. Advances in Engineering Software 32 499-507.

Chetković, D., Parmee, I.C. 2002. Preferences and Their Application in

Evolutionary Multi-objective Optimization. IEEE Transactions on Evolutionary

Computation 6 42-57.

Chu, P.C., Beasley J.E. 1998. A Genetic Algorithm for the Multidimensional

Knapsack Problem. Journal of Heuristics 4, 63-86.

Coello Coello, C. A. 2000. Handling Preferences in Evolutionary Multi-objective

Optimization: A Survey. 2000 Congress Evolutionary Comput. 1 30-37.

Coello Coello, C. A., Lamont, G. B., Veldhuizen, D. A. V. 2006. Evolutionary

Algorithms for Solving Multi-Objective Problems. Springer.

Deb, K. 1999. Solving Goal Programming Problems Using Multi-Objective

Genetic Algorithms. In Proceedings of Congress on Evolutionary Computation

77-84.

Deb, K. 2001. Multi-Objective Optimization Using Evolutionary Algorithms.

Wiley, Chichester, UK.

 100

Deb, K., Kumar, A. 2007. Interactive Evolutionary Multi-Objective Optimization

and Decision-Making using Reference Direction Method. In Proceedings of the

Genetic and Evolutionary Computation Conference 781-788.

Deb, K., Mohan, M., Mishra, S. 2005. Evaluating the Є-Domination Based Multi-

Objective Evolutionary Algorithm for a Quick Computation of Pareto-Optimal

Solutions. Evolutionary Computation 13(4), 501-525.

Deb, K., Pratap, A., Agarwal, S., Meyarivan, T. 2002. A Fast and Elitist Multi-

objective Genetic Algorithm: NSGA–II. IEEE Transactions on Evolutionary

Computation 6(2) 182–197.

Deb, K., Sundar, J. 2006. Reference Point Based Multi-Objective Optimization

Using Evolutionary Algorithms. In Proceedings of the Genetic and Evolutionary

Computation Conference 635-642.

Ehrgott, M. 2000. Multicriteria Optimization. Springer Verlag, Berlin.

Ehrgott, M., Gandibleux, X. 2000. A survey and Annotated Bibliography of

Multi-objective Combinatorial Optimization. OR Spektrum 22, 425-460.

Ehrgott, M., Gandibleux, X. 2004. Approximate Solution Methods for Multi-

objective Combinatorial Optimization. Top 12:1, 1-90.

Jaszkiewicz, A. 2002. Genetic Local Search for Multi-Objective Combinatorial

Optimization. European Journal of Operational Research 137, 50-71.

Jin, Y., Sendhoff, B. 2002. Incorporation of Fuzzy Preferences into Evolutionary

Multi-objective Optimization. Proceedings of the 4
th

 Asia-Pacific Conference on

Simulated Evolution and Learning, Vol.1 Singapore 26-30.

 101

Karahan, Đ. 2008. Preference-Based Flexible Multi-objective Evolutionary

Algorithms. M.S. Thesis, Industrial Engineering Department, Middle East

Technical University.

Karahan, Đ., Köksalan, M. 2008. Territory Defining Evolutionary Algorithm and

Preference Incorporation.

Larranaga, P., Kuijpers, C.M.H., Murga, R.H., Inza, I., Dizdarevic, S. 1999.

Genetic Algorithms for Travelling Salesman Problem: A Review of

Representations and Operators. Artifical Intelligence Review 13 129-170.

Phelps, S., Köksalan, M. 2003. An Interactive Evolutionary Metaheuristic for

Multi-objective Combinatorial Optimization. Management Sci. 49 1726-1738.

Köksalan, M., Phelps, S. 2007. An Evolutionary Metaheuristic for Approximating

Preference-Nondominated Solutions. Informs Journal on Computing 19 291-301

Przybylski, A., Gandibleux, X., Ehrgott, M. 2007. Two Phase Algorithms for the

Bi-objective Assignment Problem. European Journal of Operational Research

185, 509-533.

Rachmawati, L., Srinivasan, D. 2006. Preference Incorporation in Multi-objective

Evolutionary Algorithms: A Survey. IEEE Congress on Evolutionary

Computation 962-968

Soylu, B., Köksalan, M. 2006. A Favorable Weight Based Evolutionary

Algorithm for Multiple Criteria Problems. Technical Report, for the coming IEEE

Transaction on Evolutionary Computation.

Steur, R. E. 1986. Multiple Criteria Optimization: Theory, Computation and

Application. John Wiley, New York.

 102

Visée, M., Teghem, J., Pirlot, M., Ulungu, E.L. 1998. Two-phases Method and

Branch and Bound Procedures to Solve the Bi-objective Knapsack Problem.

Journal of Global Optimization 12, 139-155.

Zitzler, E., Künzli, S. 2004. Indicator-Based Selection in Multi-objective Search.

Lecture otes in Computer Science 3242 832-842.

Zitzler, E., Laumanns, M., Thiele, L. 2002. SPEA2: Improving the Strength

Pareto Evolutionary Algorithm. 95-100.

Zitzler, E., Thiele, L. 1998. Multi-objective Optimization Using Evolutionary

Algorithms - A Comparative Case Study. Parallel Problem Solving from ature 5

292–301.

Zitzler, E., Thiele, L. 1999. Multi-objective Evolutionary Algorithms: A

Comparative Case Study and the Strength Pareto Approach. IEEE Transactions

on Evolutionary Computation Vol. 3, �o 4 257-271.

 103

APPE�DIX A

DETAILED PLOTS OF �SGA-II A�D ε-MOEA FOR MULTI-

OBJECTIVE K�APSACK PROBLEM

5000 5500 6000 6500 7000 7500 8000 8500 9000
5000

5500

6000

6500

7000

7500

8000

8500

9000

f1

f2

NSGA-II (without seed)

5000 5500 6000 6500 7000 7500 8000 8500 9000

5000

5500

6000

6500

7000

7500

8000

8500

9000

f1

f2

NSGA-II (with seed)

5000 5500 6000 6500 7000 7500 8000 8500 9000
5000

5500

6000

6500

7000

7500

8000

8500

9000

f1

f2

Epsilon-MOEA (without seed)

5000 5500 6000 6500 7000 7500 8000 8500 9000

5000

5500

6000

6500

7000

7500

8000

8500

9000

f1

f2

Epsilon-MOEA (with seed)

Figure A.1 Contender Plots for the 2-objective 200-item KP

 104

2.2 2.4 2.6 2.8 3 3.2

x 10
4

2.2

2.4

2.6

2.8

3

3.2

x 10
4

f1

f2

NSGA-II (without seed)

2.2 2.4 2.6 2.8 3 3.2

x 10
4

2.2

2.4

2.6

2.8

3

3.2

x 10
4

f1

f2

NSGA-II (with seed)

2 2.2 2.4 2.6 2.8 3 3.2

x 10
4

2

2.2

2.4

2.6

2.8

3

3.2

x 10
4

f1

f2

Epsilon-MOEA (without seed)

2 2.2 2.4 2.6 2.8 3 3.2

x 10
4

2

2.2

2.4

2.6

2.8

3

3.2

x 10
4

f1

f2

Epsilon-MOEA (with seed)

Figure A.2 Contender Plots for the 2-objective 750-item KP

 105

7000
7500

8000
8500

9000

7000
7500

8000
8500

9000

6500

7000

7500

8000

8500

f1

NSGA-II (without seed)

f2

f3

7000
7500

8000
8500

9000

7000
7500

8000
8500

9000

6500

7000

7500

8000

8500

f1

NSGA-II (with seed)

f2

f3

7000
7500

8000
8500

9000

7000

7500
8000

8500

9000

6600

6800

7000

7200

7400

7600

7800

8000

8200

8400

8600

f1

Epsilon-MOEA (without seed)

f2

f3

7000
7500

8000
8500

9000

7000
7500

8000
8500

9000

6500

7000

7500

8000

8500

f1

Epsilon-MOEA (with seed)

f2

f3

Figure A.3 Contender Plots for the 3-objective 200-item KP

 106

2.6
2.8

3
3.2 x 10

4

2.6
2.8

3
3.2

x 10
4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

x 10
4

f1

NSGA-II (without seed)

f2

f3

2.6
2.8

3
3.2 x 10

4

2.6
2.8

3
3.2

x 10
4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

x 10
4

f1

NSGA-II (with seed)

f2

f3

2.6
2.8

3
3.2 x 10

4

2.6
2.8

3
3.2

x 10
4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

x 10
4

f1

Epsilon-MOEA (without seed)

f2

f3

2.6
2.8

3
3.2 x 10

4

2.6
2.8

3
3.2

x 10
4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

x 10
4

f1

Epsilon-MOEA (with seed)

f2

f3

Figure A.4 Contender Plots for the 3-objective 750-item KP

 107

APPE�DIX B

DETAILED PLOTS OF �SGA-II A�D ε-MOEA FOR MULTI-

OBJECTIVE ASSIG�ME�T PROBLEM

1000 1500 2000 2500 3000 3500
1000

1500

2000

2500

3000

3500

NSGA-II (without seed)

f1

f2

1000 1500 2000 2500 3000 3500

1000

1500

2000

2500

3000

3500

NSGA-II (with seed)

f1

f2

1000 1500 2000 2500 3000 3500
1000

1500

2000

2500

3000

3500

Epsilon-MOEA (without seed)

f1

f2

1000 1500 2000 2500 3000 3500

1000

1500

2000

2500

3000

3500

Epsilon-MOEA (with seed)

f1

f2

Figure B.1 Contender Plots for the 2-objective N=50 AP

 108

2000 2500 3000 3500 4000 4500 5000 5500 6000
2000

2500

3000

3500

4000

4500

5000

5500

6000

NSGA-II (without seed)

f1

f2

2000 2500 3000 3500 4000 4500 5000 5500 6000

2000

2500

3000

3500

4000

4500

5000

5500

6000

NSGA-II (with seed)

f1

f2

2000 2500 3000 3500 4000 4500 5000 5500 6000 6500
2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

Epsilon-MOEA (without seed)

f1

f2

2000 2500 3000 3500 4000 4500 5000 5500 6000 6500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

Epsilon-MOEA (with seed)

f1

f2

Figure B.2 Contender Plots for the 2-objective N=100 AP

 109

1000

1500

2000

2500

3000

3500

1000

1500
2000

2500
3000

3500

1000

1500

2000

2500

3000

3500

f1

NSGA-II (without seed)

f2

f3

1000

1500

2000

2500

3000

3500

1000

1500
2000

2500
3000

3500

1000

1500

2000

2500

3000

3500

f1

NSGA-II (with seed)

f2

f3

1000

1500

2000

2500

3000

3500

1000

1500
2000

2500
3000

3500

1000

1500

2000

2500

3000

3500

f1

Epsilon-MOEA (without seed)

f2

f3

1000

1500

2000

2500

3000

3500

1000

1500
2000

2500
3000

3500

1000

1500

2000

2500

3000

3500

f1

Epsilon-MOEA (with seed)

f2

f3

Figure B.3 Contender Plots for the 3-objective N=50 AP

 110

2000

3000
4000

5000
6000

7000

2000
3000

4000
5000

6000
7000

2000

3000

4000

5000

6000

7000

f1

NSGA-II (without seed)

f2

f3

2000

3000
4000

5000
6000

7000

2000
3000

4000
5000

6000
7000

2000

3000

4000

5000

6000

7000

f1

NSGA-II (with seed)

f2

f3

2000

3000
4000

5000
6000

7000

2000
3000

4000
5000

6000
7000

2000

3000

4000

5000

6000

7000

f1

Epsilon-MOEA (without seed)

f2

f3

2000

3000
4000

5000
6000

7000

2000
3000

4000
5000

6000
7000

2000

3000

4000

5000

6000

7000

f1

Epsilon-MOEA (with seed)

f2

f3

Figure B.4 Contender Plots for the 3-objective N=100 AP

