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ABSTRACT 

 

 

MULTI-OBJECTIVE COMBINATORIAL OPTIMIZATION USING 
EVOLUTIONARY ALGORITHMS 

 

 

Özsayın, Burcu 

M.S., Department of Industrial Engineering 

Supervisor: Prof. Dr. Murat Köksalan 

 

August 2009, 110 pages 

 

 

Due to the complexity of multi-objective combinatorial optimization problems 

(MOCO), metaheuristics like multi-objective evolutionary algorithms (MOEA) 

are gaining importance to obtain a well-converged and well-dispersed Pareto-

optimal frontier approximation. In this study, of the well-known MOCO 

problems, single-dimensional multi-objective knapsack problem and multi-

objective assignment problem are taken into consideration. We develop a steady-

state and elitist MOEA in order to approximate the Pareto-optimal frontiers. We 

utilize a territory concept in order to provide diversity over the Pareto-optimal 

frontiers of various problem instances. The motivation behind the territory 

definition is to attach the algorithm the advantage of fast execution by eliminating 

the need for an explicit diversity preserving operator. We also develop an 

interactive preference incorporation mechanism to converge to the regions that 

are of special interest for the decision maker by interacting with him/her during 

the optimization process. 

 

Keywords: Multi-objective Evolutionary Algorithms, Multi-objective 

Combinatorial Optimization, Preference Incorporation, Interactive Method 
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ÖZ 

 

 

EVRĐMSEL ALGORĐTMA ĐLE ÇOK AMAÇLI KOMBĐNATORYEL 
OPTĐMĐZASYON 

 

 

Özsayın, Burcu 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Murat Köksalan 

 

Ağustos 2009, 110 sayfa 

 

 

Çok amaçlı kombinatoryel problemlerin karmaşıklığından dolayı, iyi yakınsanmış 

ve iyi dağılmış bir Pareto-optimal sınır yaklaşımı elde etmek için çok amaçlı 

evrimsel algoritmalar gibi üstsezgisel metodlar önem kazanmıştır. Bu çalışmada, 

belli başlı çok amaçlı kombinatoryel optimizasyon problemlerinden, tekboyutlu 

çok amaçlı sırt çantası problemi ve çok amaçlı atama problemi ele alınmaktadır. 

Pareto-optimal sınıra yaklaşmak için elitist ve kararlı durumda bir evrimsel 

algoritma geliştirilmektedir. Farklı problemlerin Pareto-optimal sınırları üzerinde 

çeşitlilik sağlayabilmek için, bölge kavramı kullanılmaktadır. Bölge 

tanımlamasının arkasındaki motivasyon, açık bir çeşitlilik koruma operatörünün 

kullanımını ortadan kaldırarak algoritmaya hızlı uygulama avantajını sağlamaktır. 

Ayrıca, karar verici için ilgi çekici olan Pareto-optimal sınır bölgelerini 

yakınsama amacıyla, karar verici ile optimizasyon aşamasında iletişim 

kurulmasını sağlayan tercihe dayalı interaktif bir mekanizma geliştirilmektedir. 

 

Anahtar Kelimeler: Çok Amaçlı Evrimsel Algoritmalar, Çok Amaçlı 

Kombinatoryel Optimizasyon, Tercihe Dayalı, Etkileşimli Metod 
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CHAPTER 1 
 

I�TRODUCTIO� 

 
 
 

Multi-objective optimization problems (MOPs) cover most of the real world 

problems in which there exist many objectives that are in most occasions 

conflicting. There is not a single optimal solution, but there are many solutions 

which are better in some objectives and worse in others. The so called 

nondominated solutions show the trade-off between these objectives and compose 

the Pareto-optimal frontier. To end up with a single preferred nondominated 

solution, many mathematical modeling based approaches have been proposed. 

However, if the decision maker (DM) does not provide any preference 

information between the objectives, each objective is assumed to be of equal 

importance, which results in the equal importance of all solutions on the whole 

Pareto-optimal frontier. In such a case, the aim in MOPs is to construct the whole 

Pareto-optimal frontier and the decision making process is postponed to post-

optimal stage. 

 

A significant portion of MOPs are multi-objective combinatorial optimization 

(MOCO) problems. However, MOCO problems are in general considerably hard 

to solve problems. Due to the complexity of even the single objective 

combinatorial optimization problems, heuristic methods are becoming more and 

more important in this area of multi-objective optimization. When multi-objective 

combinatorial optimization (MOCO) problems come on the scene, one more but a 

very challenging issue emerges. This issue is the trade-off among the objective 

functions and the existence of many Pareto-optimal solutions one of which cannot 

be considered superior to another in the absence of any preference information. 

Consequently, metaheuristics like multi-objective evolutionary algorithms 

(MOEA) are gaining more importance to obtain a well-converged and well-

dispersed Pareto-optimal frontier approximation. 
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Working with a population of solutions, multi-objective evolutionary algorithms 

(MOEAs) have gained a significant interest of operational researchers, especially 

in solving multi-objective optimization problems (MOP). Evolutionary algorithms 

are population-based metaheuristic optimization algorithms, which apply the 

principles of natural evolution to optimization. Moreover, MOEAs are not 

problem dependent, having the advantage of being suitable for a very general 

class of optimization problems. Therefore, having a population of solutions in 

every iteration, EAs are well-suited to approximate the Pareto-optimal frontier. 

However, there does not exist many MOEAs designed to solve MOCO problems. 

With appropriate adaptations, MOEAs constitute a good compromise on the way 

to solve MOCO problems with good approximation properties and acceptable 

computational complexity.  

 

In the absence of information on the utility function of the DM, MOP techniques 

have two main objectives: Convergence to Pareto frontier and diversity of 

solutions over the entire Pareto frontier. These two features provide the DM 

with a good representation of the Pareto-optimal solutions, that is, the nature of 

the Pareto-optimal frontier. As a third objective, the current research is mainly on 

algorithms that concentrate on the region of the Pareto-optimal frontier which is 

of special interest to the DM. That is, instead of generating the whole Pareto-

optimal frontier, a specified region on the frontier can be generated. 

 

We propose an elitist MOEA called Combinatorial Territory Defining 

Evolutionary Algorithm (C-TDEA) and apply it on two well-known 

combinatorial optimization (MOCO) problems: multi-objective knapsack problem 

and multi-objective assignment problem. The proposed MOEA is inspired by 

Territory Defining Evolutionary Algorithm (TDEA) that has been proposed by 

Karahan and Köksalan (2008). Moreover, we propose a preference-based version 

of the algorithm that concentrates on the preferred regions of the Pareto-optimal 

frontier and even obtains a single best solution for the DM in an interactive 

manner. 
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The thesis begins with presenting some definitions and related literature on 

MOEAs, preference incorporation in MOEAs, and MOCO problems in Chapter 2.  

 

In Chapter 3, we introduce the general outline of C-TDEA and give the details of 

the algorithm. We test the performance of the proposed algorithm with respect to 

two well-known MOEAs on 2-, and 3-objective problems.  

 

In chapter 4, we present the preference incorporated version of C-TDEA, called 

Interactive C-TDEA (IC-TDEA). The performance of this preference-based 

MOEA is also tested on the same 2- and 3-objective problems.  

 

Finally, we provide some conclusive remarks on the contribution of our work and 

provide future research directions in Chapter 5.  
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CHAPTER 2 
 
 

DEFI�ITIO�S A�D LITERATURE REVIEW 

 
 
 
In this chapter, we provide the definitions that are used throughout this work and 

the related literature on multi-objective evolutionary algorithms and multi-

objective combinatorial optimization problems. The definitions of the concepts 

related to this study are provided in Section 2.1. The literature review on multi-

objective evolutionary algorithms and preference incorporation, and multi-

objective combinatorial optimization problems are provided in Section 2.2.  

 

 

2.1 DEFI�ITIO�S 

 

For further details on the introductory definitions below, see Steuer (1986) and 

Ehrgott (2000). 

 

Multi-objective optimization is the process of optimizing multiple objective 

functions simultaneously. The optimization process may be subject to certain 

constraints.  

 

Most multi-objective optimization problems (MOPs) have conflicting objectives. 

Therefore, such problems do not have a single solution optimizing all of the 

objective functions. The search is for finding the so called nondominated 

solutions. A nondominated solution is such a solution that no objective value can 

be improved without sacrificing from one or more of the remaining objectives.  
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We can formulate a multi-objective optimization problem (MOP) as follows: 

 

"Maximize"    z  =  f(x)                                               (2.1) 

subject to      x∈X                                                   (2.2) 

 

where, 

x = (x1, …, xN)T                 decision variable vector 

X⊆RRRR
�                  feasible decision space 

z = (z1, z2, …, zM) = f(x) = (f1(x), …, fM(x))T        objective function vector 

Z = f(X)                      feasible objective space 

 

Feasible decision space may be restricted by the following types of constraints: 

h(x) = 0  equality type constraints 

g(x) ≥0  inequality type constraints 

 

A multi-objective combinatorial optimization (MOCO) problem is an integer 

programming problem that is given by the following feasible set: 

 

"Maximize" z  =  f(x)  = Cx                                             (2.3) 

subject to      Ax ≥ b                                                         (2.4) 

x ∈  Z�                                                         (2.5) 

 

where, 

x = (x1, …, xN)T                 decision variable vector 

X⊆Z�                  feasible decision space 

z = (z1, z2, …, zM) = f(x) = (f1(x), …, fM(x))T        objective function vector 

Z = f(X)                      feasible objective space 
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C  matrix of objective function coefficients 

A  matrix of constraint coefficients 

b  matrix of constraint left-hand-sides 

 

The entries of the matrices C, A, and b are generally integer numbers. The 

feasible decision space of a combinatorial optimization problem is assumed to be 

a finite set. MOCO problems are not linear optimization problems, and there exist 

unsupported efficient solutions which bring MOCO problems additional difficulty 

over multi-objective linear optimization problems. MOCO problems are in 

general NP-complete and #P-complete, and intractable; which correspond to the 

difficulty of finding a solution, difficulty due to large number of solutions, and 

the absence of efficient means of solving the problem, respectively.  In fact, the 

existence of unsupported efficient solutions is the main reason of the 

computational complexity of MOCO problems, and the computational complexity 

grows very fast with the problem size (Ehrgott and Gandibleux, 2004). 

 

Multi-objective knapsack problem (MOKP) is a binary programming problem that 

is characterized with maximization type objectives. The MOKP is NP-hard 

(Ehrgott, 2000) and the formulation is as follows:  

 

 jx

bxatosubject

xczMaximize

xczMaximize

j

 

i

jj

 

j

j

M

jM

 

j

jj
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.

.

1

1

1

1
1
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≤

=

=

∑
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=

=

                                     (2.6) 
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In MOKP, a decision must be made on which items to put into a capacitated 

knapsack, out of   available items. If item j is put into the knapsack, then the 

corresponding decision variable xj takes the value 1; otherwise it takes the value 

0. Item j has a weight of aj, and the total item weights that are put into the 

knapsack should not exceed the knapsack capacity b. Moreover, each item j is 

attached objective coefficient m

jc  for each objective m, where each of the M 

objectives is to be maximized. 

 

Multi-objective assignment problem (MOAP) can be formulated as a binary 

programming problem that is characterized with minimization type objectives. 

Out of   people and   jobs, a decision must be made on which person to assign to 

which job. The formulation is as follows:  

 

}1,0{

,..,1;1

,..,1;1

.

.

.

1

1

1 1

1 1

1

∈

==

==

∑

∑
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= =

ij

 

j

ij

 

i

ij

 

i

 

j

ij

M

ij

 

i

 

j

ijij

x

 ix

 jxtosubject

xcMinimize

xcMinimize

                                   (2.7) 

 

where the decision variable xij takes the value 1 if person i is assigned to job j, and 

it takes the value 0 otherwise. Each person can be assigned to only one job, and 

each job can be assigned to only a single person. These two restrictions are 

handled by adding two corresponding constraints into the MOAP model. If job j 

is assigned to person i, this causes the corresponding cost m

ijc  for each objective 
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m. The aim is to minimize the associated total costs for each of the M objectives. 

The MOAP is NP-complete, #P-complete, and intractable (Ehrgott, 2000).  

 

2.1.1 Dominance and Efficiency 

 

Without loss of generality, the following definitions assume that the objectives 

are of maximization type. 

 

Definition 2.1. Let z1, z2 ∈  Z be two objective vectors. z1 is said to dominate z2 if 

21
ii zz ≥

 

for all i and 21
jj zz > for at least one j.   

 

Definition 2.2. Let z ∈  Z be an objective vector. If there is no z'

 

∈  Z that 

dominates z, then z is said to be nondominated. If there exists at least one such z'

 

∈  Z that dominates z, then z is said to be dominated. The set of all nondominated 

solutions is called the nondominated set. 

 

Definition 2.3. Let x∈X be a decision vector. Then, x is said to be efficient if 

there is no x'∈  X such that f(x') dominates f(x). If f(x) is dominated, then x is 

inefficient. 

 

Definition 2.4. Let z1, z2 ∈  Z be two objective vectors. Then, z1 strictly 

dominates z2 if 21
ii zz > for all i. 

 

Definition 2.5 Let z ∈  Z be an objective vector. Then, z is said to be weakly 

nondominated if these is no z'

 

∈  Z such that ii zz >'

 

for all i. Nondominated set is 

a subset of the weakly nondominated set that may also contain dominated 

solutions. 

 



  

 9

Definition 2.6. Let z'∈  Z be an objective vector. Then, z' is said to be convex 

dominated if there exist objective vectors z1, z2, …, zk

 

∈  Z and weights µ1, µ 
2, 

…, µ 
k ≥ 0 such that 1µ

1

i =∑ =

k

i
 and   ∑ =

k

i 1
µi zi ≥ z'. 

 

Definition 2.7. Let z'∈  Z be an objective vector. Then, z' is said to be 

unsupported nondominated if it is convex dominated but nondominated. If the 

decision maker has a linear utility function, then the most preferred solution of the 

decision maker cannot be an unsupported nondominated solution, since these 

solutions cannot be obtained by maximizing a weighted-sum of objective 

functions. 

 

Supported nondominated, unsupported nondominated, dominated, and weakly 

nondominated but dominated solutions are illustrated in Figure 2.1. 

 

 

 

 
Figure 2.1 Solution Illustrations 
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2.1.2 Ideal and �adir Objective Vectors  

 

Definition 2.8. The ideal objective vector of a MOP is the vector of objective 

values z* = [ ]TMi zzzz ,...,,...,, ***
2

*
1 , the i

th element of which corresponds to the 

optimal value of the ith objective function. Ideal objective vector is constructed by 

optimizing each of the M objectives individually over the feasible region. 

 

Definition 2.9. The nadir objective vector of a MOP is the vector of objective 

values zn = [ ]Tn

M

n

i

nn zzzz ,...,,...,, 21 , the ith element of which corresponds to the worst 

value of the ith objective function among all nondominated solutions.  

 

Definition 2.10. For a MOP with M maximization-type objectives, a payoff table 

is an M×M matrix formed by using the decision vectors obtained while 

calculating the ideal objective vector. In the table, i
th row corresponds to the 

feasible objective vector at which the ith objective function takes its optimal value. 

The nadir point can be estimated by using a payoff table. The smallest value in 

the jth column gives an estimate for the jth element of the nadir objective vector. 

However, there is no guarantee that this estimate is close to the correct nadir 

objective vector.   

 

2.1.3 Favorable Weights  

 

Definition 2.11. Favorable weights },...,,{
221

s

M

sss λλλλ =  of a solution s 

correspond to the weights that minimize the weighted Tchebycheff distance of the 

solution to the ideal objective vector f*. Favorable weights of a solution are 

computed as follows (See Steuer 1986, p. 425): 
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where if  is the ith objective value and *
if is the ith element of the ideal objective 

vector. Tchebycheff favorable weights are illustrated in Figure 2.2. 

 

 
 

Figure 2.2 Tchebycheff Favorable Weights 

 

2.1.4 Distance Metrics  

 

Lq-metric is a function that defines the distance between two vectors x, y ∈  RRRR�. 

The Lq-distance between vectors x and y is formulated as follows: 

 
q

 

i

q

iiq
yxyx

/1

1








−=− ∑

=

                                        (2.9) 
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If a weight vector w = [w1, …, wN] is provided, then the weighted Lq-distance 

between vectors x and y is calculated as follows: 

 

q
 

i

q

iiiqw
yxwyx

/1

1
,

)( 







−=− ∑

=

                                 (2.10) 

 

Common weighted distance metrics are provided in Table 2.1. 

 

Table 2.1 Common Weighted Distance Metrics 
 

Name Metric Formula 

Rectilinear 1L  ∑ =
−

 

i iii yxw
1

 

Euclidean 2L  [ ] 2/1
2

1
)(∑ =

−
 

i iii yxw  

Tchebycheff ∞L  ( )iiii yxw −max  
 

 

2.1.5 Definitions Related to Evolutionary Algorithms  

 

For further details on the definitions below, see Deb (2001). 

 

In an evolutionary algorithm, the solutions, the so called chromosomes, are 

assigned a goodness measure to evaluate that solution. This measure, which is 

defined in terms of the objective functions and the constraints, is called the fitness 

of that solution. 

 

The main part of evolutionary algorithms consists of the genetic operators. The 

selection operator chooses the good parent solutions that mate to produce 

offspring solutions with the aim of duplicating the good solutions and eliminating 

the bad solutions. The most common selection operator, tournament selection 

operator creates tournaments between solutions and the best solution is chosen as 

parent. 
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Another genetic operator is the crossover operator, which mates the selected 

parent solutions, that is, exchanges some portion of the chromosomes between the 

two parents and creates new chromosomes, called offspring solutions. 

 

The mutation operator changes some part on the chromosome of the offspring 

with the expectation of creating a better solution by performing a local search 

around the initial solution. Mutation operator also serves to provide diversity over 

the Pareto-optimal frontier.  

 

Although it is possible to find multiple solutions during the early generations, it 

becomes extremely difficult to keep this diverse set of solutions throughout the 

evolutionary run. In an MOEA, to maintain the multiplicity of solutions till the 

final generation, an explicit diversity-preserving operator is needed. The operator 

may use different methods, but the aim is to provide a diverse set of solutions 

over the Pareto-optimal frontier. 

 

In order to keep the previously found good solutions in the population and make 

use of them in the genetic operations, an elite-preserving operator can be used. 

This operator favors the good solutions, the so called elites, of a population by 

giving them the opportunity to survive among the subsequent generations. An 

evolutionary algorithm is said to be elitist if it utilizes an elite-preserving 

operator. In elitist MOEAs, a good solution obtained is never lost until a better 

solution is found. 

 

In some evolutionary algorithms, an offspring is evaluated as soon as it is created. 

That is, after every offspring is created, that offspring is used to update the whole 

population. Such algorithms are called steady-state MOEAs. 

 

Although the initial population of an MOEA can be constructed by randomly 

generated solutions, some non-random solutions can be put into the initial 

population that are thought to be good solutions for the considered problem. This 
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process is called seeding, and the placed non-random solutions are called seed 

solutions. 

 

2.2 LITERATURE REVIEW  

 

Working with a population of solutions, multi-objective evolutionary algorithms 

(MOEAs) constitute an important research area in multi-objective optimization. 

MOEAs provide fast convergence to Pareto-optimal frontier by evolving multiple 

solutions simultaneously. They also provide incorporation of various convergence 

and diversity operators, and even preference incorporation schemes. Deb (2001) 

and Coello et al. (2006) cover many aspects related to multi-objective 

evolutionary algorithms that are useful sources for the researchers. 

 

Although most of the proposed algorithms in the MOEA literature focus on 

generating the entire Pareto-optimal frontier, there are many recent studies that 

aim to incorporate the preferences of the decision maker into the search process. 

Coello (2000), Chetković and Parmee (2002), and Rachmawati and Srinivasan 

(2006) classify the preference incorporation techniques used in MOEAs and 

explain the importance of preference incorporation. 

 

The literature review section of this study is divided into three parts. First, the 

MOEAs approximating the entire efficient frontier without eliciting any 

preference information will be covered. Then, the preference incorporation 

techniques in the literature will be reviewed. Finally, we deal with multi-objective 

combinatorial optimization literature. 

 

2.2.1 MOEAs that Approximate the Entire Efficient Frontier 

 

Deb et al. (2002) have suggested the  ondominated Sorting Genetic Algorithm 2 

( SGA-II). NSGA-II is an elitist algorithm that uses the idea of nondominated 

sorting. The solutions in the population are classified into nondomination levels 
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and each level is assigned its corresponding rank. The algorithm keeps an 

offspring population and a parent population. These two populations are 

combined after each generation and the population of the next generation is 

chosen among the members of the combined population. The selection is 

performed by considering the ranks of the solutions in the combined population 

such that, the solutions from the best ranked levels are selected. If the 

predetermined population size is hit such that all solutions from a particular rank 

cannot be accepted into the new population, the selection is made based on the 

crowding measure of the solutions at that particular rank. In order to provide 

diversity, sharing function method is used within each front, which makes the less 

crowded regions to have a higher probability for selection by degrading the 

fitness values of the solutions in the crowded regions. 

 

Zitzler, Laumanns and Thiele (2002) have proposed an elitist multi-objective 

evolutionary algorithm, the Strength Pareto Evolutionary Algorithm 2 (SPEA2), 

an improved version of the previous algorithm SPEA. SPEA2 maintains two 

coevolving populations, and copies the nondominated solutions of the regular 

population into the archive population. Each individual is assigned a strength 

which gives the number of individuals it dominates. The raw fitness of a solution 

becomes the sum of the strengths of the solutions that dominate it. By this way, 

SPEA2 prevents two solutions in the regular population to have the same raw 

fitness value if one of them dominates the other. In SPEA2, kth nearest neighbor 

method is used as the density estimation technique. This density measure is added 

to the raw fitness value to obtain the fitness of a solution. Consequently, the 

solutions at the same raw fitness level can be discriminated according to their 

density value. SPEA2 is proposed with a constant archive size that does not vary 

throughout the genetic process. This is achieved by filling the remaining slots of 

the archive with the best dominated individuals if the number of nondominated 

individuals is less than the archive size. On the other hand, if the number of 

nondominated individuals is more than the archive size, an archive truncation 

procedure comes on the stage that utilizes the k-th nearest neighbor method. 



  

 16

The Indicator-based Evolutionary Algorithm (IBEA) is proposed by Zitzler and 

Künzli (2004) who have realized that most MOEAs use a property of the Pareto 

optimal set implicitly without taking other properties into consideration. This 

property may be to maximize the hypervolume dominated by the resulting Pareto-

optimal frontier approximation, or to obtain an approximation that requires the 

minimal improvement to dominate the real Pareto-optimal frontier. The authors 

have proposed the usage of a binary performance measure, called an indicator, 

which can be obtained for any type of preference information. Once the indicator 

type is determined, it is used to calculate the fitness of each individual. In addition 

to the advantage of using any preference information about the realization of the 

Pareto frontier, IBEA does not also require any diversity preserving operator. The 

authors have proposed two binary quality indicators, additive ε-indicatior (Iε+) and 

hypervolume indicator (IHD). The algorithm suggests the design of more flexible 

MOEA techniques that respond to different types of preference information 

obtained from the DM.  

 

In the study of Deb et al. (2005), the ε-domination concept has been utilized and a 

new steady-state algorithm called “ε-Domination Based Multi-objective 

Evolutionary Algorithm (ε-MOEA)” has been developed. The algorithm evolves 

two populations simultaneously, the EA population and the archive population. 

The archive population consists of the ε-nondominated solutions of the EA 

population. According to the ε-dominance concept, two solutions with a 

difference less than εi in the i-th objective are not nondominated to each other 

anymore. In ε-MOEA, the objective space is divided into hyper-boxes that are 

formed beginning from the minimum possible value of each objective. The 

archive selection procedure prevents two solutions to be in the same hyper-box. 

Consequently, the ε-dominance concept facilitates the reduction of the cardinality 

of the archive population, and provides the desired resolution for each of the 

objectives by obtaining a good diversity with a small computational time. 

However, there are two drawbacks associated with ε-MOEA. The first one is the 

absence of extreme solutions on the Pareto frontier which occurs due to the fact 
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that the extreme solutions usually become ε-dominated. The second drawback is 

related to the composition of the hyper-boxes. Instead of forming a hyper-box 

around each existing solution, the algorithm forms pre-specified hyper-boxes 

starting from the minimum possible value of each objective. This contradicts with 

the claim of the authors such that, it becomes possible for two solutions in 

neighboring hyper-boxes to be within εi in objective i. However, these drawbacks 

do not prevent ε-MOEA to be a sufficiently good compromise between 

convergence, diversity and computational efficiency. 

 

Favorable Weight Based Evolutionary Algorithm (FWEA) of Soylu and Köksalan 

(2006) assigns its own weights to each of the individuals with respect to a 

weighted Tchebycheff distance function and these weights, called the favorable 

weights of the individual, are used to calculate its fitness score. According to the 

favorable weights mechanism, each individual contributes to convergence along 

its own favored direction so that it gains advantage over the other individuals. 

Moreover, the fitness values are assigned such that the underrepresented portions 

of the frontier are favored. After ranking the population according to their 

nondomination levels, the fitness values are adjusted such that, the fitness of any 

individual in a better frontier is at least an ε amount better than any individual in a 

worse frontier. Moreover, nearest neighbor information is incorporated into 

fitness calculation in order to maintain diversity. FWEA is a steady-state EA 

where only two offspring are generated in every generation and they replace two 

members of the population if the replacement rules are satisfied. 

 

Territory Defining Evolutionary Algorithm (TDEA) which has been proposed by 

Karahan and Köksalan (2008) is a steady-state and elitist MOEA that has two 

coevolving populations, the regular population and the archive population. The 

archive population consists of the nondominated solutions of the regular 

population. The ε-domination concept used in ε-MOEA to update the archive 

population is replaced by the territory concept which is defined as the hyper-box 

enclosed by the territory size τ in all objective values of the solution. An offspring 
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is rejected to enter the archive if it violates the territory of an existing archive 

member that is nondominated with respect to the offspring. TDEA does not use a 

fitness function. The existence of territory defining property eliminates the need 

for an explicit diversity preserving operator resulting in high computational 

efficiency while providing diversity and convergence. The size of the territory 

provides a limit on the final cardinality of the archive population. Consequently, 

the final population size and the computational time increase as τ decreases. 

 

2.2.2 Preference Incorporation in MOEAs 

 

One of the first efforts to concentrate on a desired portion of the efficient frontier 

using MOEAs has been the attempt to solve goal programming problems. Deb 

(1999), realizing the difficulties associated to the classical goal programming 

procedure, has proposed a technique to solve such problems using an MOEA. He 

has suggested translating each goal to an objective that minimizes the deviation 

from the target. The modified goal programming problem is then solved using 

Nondominated Sorting Genetic Algorithm (NSGA). The multiple Pareto-optimal 

solutions found by NSGA correspond to different weights which are evaluated 

simultaneously. Consequently, the result is not a single solution corresponding to 

a certain weight vector as in the case of classical goal programming, but it is a 

region on the Pareto-optimal frontier dominated by the goal, where the distances 

from the goal is minimized for differing weight vectors. 

 

Branke et al. (2001) has introduced an algorithm utilizing the trade-offs between 

objectives, in order to concentrate on the preferred region of the Pareto-optimal 

frontier. According to the introduced algorithm called Guided MOEA (G-MOEA), 

the decision maker provides linear trade-offs between objectives instead of goals 

or weights. Then, the obtained linear utility functions with slopes as the maximum 

and minimum trade-off values are used to obtain a modified domination criterion. 

Following this new guided dominance scheme, nondominated sorting of the 

population is performed. Guided nondomination orients the population to the 
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desired part of the Pareto-optimal frontier since the whole Pareto-optimal frontier 

is no more nondominated according to the new nondomination scheme. In G-

MOEA, diversity along the desired region of the frontier is provided by a 

modified fitness sharing approach.  

 

Another study on preference incorporation has been performed by Chetković and 

Parmee (2002) in which fuzzy logic has been used to characterize the relative 

importance of objectives for the decision maker. Binary preference relations 

obtained from the decision maker are translated into qualitative values that can be 

used as the weights of the objectives. This transformation process is where the 

fuzzy preference relations come on the stage. From the binary preferences 

obtained, fuzzy preference matrices are formed from which objective weights can 

be obtained. Once the weights of the objectives are determined, the authors 

suggest different methods to reach the desired solutions on the Pareto-optimal 

frontier. First method is the “weighted sum-based optimization method” in which 

objectives are aggregated into a single objective function using the weights 

obtained. Moreover, a new domination criterion is introduced called “weighted 

domination”. Using this new definition of nondomination, a weighted Pareto-

optimal frontier is obtained which is a subset of the original Pareto-optimal 

frontier that is of interest for the decision maker.  

 

Another study on fuzzy preference relations has been performed by Jin and 

Sendhoff (2002). Interval-based weights are incorporated into MOEA using a 

proposed approach called “evolutionary dynamic weighted aggregation”. Two 

different methods are proposed: Random weighted aggregation (RWA) and 

dynamic weighted aggregation (DWA). The weights are varied within the interval 

obtained using fuzzy preference relations. 

 

Biased crowding distance introduced by Branke and Deb (2004) is based on the 

idea of biased sharing approach (Deb, 2001, pp 379-382). The approach is 

integrated in NSGA-II where nondominated sorting is used to ensure convergence 
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and crowding distance measure is used to provide diversity. However, the 

approach modifies the crowding distance measure by using the most probable 

linearly weighted utility function obtained from the decision maker. For the 

regions of the Pareto-optimal frontier which are approximately parallel to the 

projected utility function, the crowding distance becomes high, while the 

crowding distance becomes smaller for the regions that have a sharper slope with 

the projected utility function. Consequently, the solutions with high crowding 

distances cause the algorithm to focus on the region where the utility function is 

tangent to the frontier.  

 

Reference Point Based Evolutionary Multi-objective Optimization approach has 

been proposed by Deb and Sundar (2006). The approach uses the concept of 

reference point methodology and without utilizing weight vector information, 

focuses on the region on the Pareto-optimal frontier that is close to the reference 

point. The result is a set of solutions corresponding to differing weight vectors to 

facilitate the understanding of the decision maker about the problem situation. By 

providing more than one reference points, the method can result in finding points 

in multiple regions of the Pareto-optimal frontier. The authors have developed 

reference-point-based NSGA-II (R-NSGA-II) by incorporating their approach 

into NSGA-II. The proposed algorithm differs in its crowding distance calculation 

in that, the crowding distance of a solution is determined according to its 

Euclidean distance to the reference point. The algorithm can focus on multiple 

regions of the Pareto frontier, and can obtain multiple solutions on each of these 

regions. 

 

A study similar to that of Deb and Sundar (2006) has been proposed by Deb and 

Kumar (2007), which uses the reference direction approach instead of reference 

points. The approach is incorporated into an evolutionary algorithm method, 

reference direction based  SGA-II (RD- SGA-II). The algorithm chooses a set of 

points in the reference direction provided by the DM. For each of the points 

selected, the individual in the population having the minimum value of 
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achievement scalarizing function is determined. Then, this set of population 

members form the first nondominated front and the process goes on this way until 

all population members are assigned to their corresponding rank of 

nondomination. Reference direction procedure performs preference incorporation 

while sorting the population into nondomination classes. The procedure results in 

a region of the Pareto-optimal frontier where the reference direction is projected 

on. The reference direction method can also be extended to deal with multiple 

reference directions.  

 

Phelps and Köksalan (2003) have proposed their own evolutionary metaheuristic 

that incorporate the preferences of the decision maker into the search process with 

the aim of solving combinatorial optimization problems. The Interactive 

Evalutionary Metaheuristic (IEM) proposed by the authors aims to end up with 

the preferred solution of the decision maker by interactively guiding the search 

effort. The partial preference information obtained from the decision maker in 

terms of binary preference relations between individuals are directly used in 

fitness calculations through finding the middlemost feasible weights. In each 

iteration of IEM, the estimated utility function is updated according to the 

preference information obtained from the decision maker and the individual 

having the best estimated utility value is considered as an incumbent. The 

incumbent is also updated in each iteration, until the decision maker is satisfied 

with the current incumbent. IEM aims to end up with a single solution of interest 

for the decision maker by interactively exploring the feasible space.  

 

Another metaheuristic developed by Köksalan and Phelps (2007), called 

evolutionary metaheuristic for approximating preference-nondominated solutions 

(EMAPS), gets partial preference information from the decision maker, not to end 

up with a single efficient solution, but to concentrate the search effort onto a 

region of the Pareto-optimal frontier. The algorithm is based on partial preference 

information case where the decision maker provides some restricted amount of 

information in qualitative terms a priori and this imprecise information is used to 
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concentrate the search effort to the desired regions of the Pareto-optimal frontier. 

The qualitative preference information is translated into constraints to restrict the 

weight space. The fitness value of an individual is assigned by taking into 

consideration the weight vector within the restricted weight space that gives the 

highest advantage to that individual and whether that individual has a potential to 

approximate the underrepresented portions of the preference-nondominated 

solution set of the decision maker. 

 

Karahan and Köksalan (2008) have implemented a preference incorporation 

mechanism into TDEA. According to this mechanism, the size of the territories 

are altered such that, smaller territory sizes are determined for the preferred 

regions of the decision maker in order to obtain more solutions in these regions. 

The mechanism is used in two proposed versions of TDEA, the a priori version 

called Preferred-Region TDEA (prTDEA) and the interactive version called 

Interactive TDEA (iTDEA). In prTDEA, the decision maker specifies his/her 

preference regions a priori in terms of weight sets, where multiple regions are 

allowed. If an offspring is in a preferred region, it is evaluated using the territory 

size associated to that region. prTDEA obtains a better approximation of the 

preferred regions compared to TDEA. Karahan (2008) has also presented an 

interactive version of the algorithm, named as iTDEA. In this interactive version, 

the preferred region of the decision maker is approximated step by step during the 

optimization stage as information is obtained from the decision maker. For this 

purpose, interaction stages are determined at prespecified generations and a more 

focused and smaller preference region is estimated at each of these interaction 

stages. Preference incorporation results in better details in the regions of interest 

with higher computational efficiency. 
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2.2.3 Multi-objective Combinatorial Optimization 

 

This section consists of an overview of multi-objective combinatorial 

optimization literature. We recommend the book written by Ehrgott (2000, pp 

153-211) for further details on MOCO problems and the solution methods. 

Moreover, a comprehensive bibliography is provided by Ehrgott and Gandibleux 

(2000) on various MOCO problems. 

 

Combinatorial optimization problems, having a finite number of feasible 

solutions, are special cases of integer programming problems. A MOCO problem 

is characterized by a specific set of constraints that give the problem its structure. 

Both the feasible objective space and the feasible decision space consist of a finite 

set of points for a MOCO problem (Ehrgott and Gandibleux, 2000). As Ehrgott 

(2000) mentions, MOCO problems do not have convex solution spaces and 

therefore there usually exist unsupported efficient solutions. In a MOCO problem, 

there are usually much more unsupported efficient solutions than supported ones 

and they highly contribute to the computational complexity of MOCO problems 

(Ehrgott and Gandibleux, 2000). 

 

MOCO problems are generally NP-complete, #P-complete and intractable. That 

is, it becomes impossible to propose an efficient method to determine all of the 

Pareto-optimal solutions since the number of these solutions may be exponential 

in problem size (Ehrgott and Gandibleux, 2000). 

 

The solution methods for MOCO problems are classified into two by Ehrgott and 

Gandibleux (2000): Exact methods and approximation methods. Exact Methods 

are weighted sum scalarization method, where all supported efficient solutions 

can be obtained; compromise solution method; where the Pareto-optimal frontier 

can be found theoretically by minimizing the distance to an ideal point; goal 

programming; ranking method, which is developed to solve two-objective 

problems for which the efficient frontier can be generated by finding the K-best 
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solutions between the ideal point and nadir point with respect to one of the 

objectives; and the methods adapted from single objective combinatorial 

optimization, like Branch-and-Bound and the Hungarian method for the single-

objective assignment problem.. In the literature, 2-phase method is very popular 

and is addressed in several papers. In this method, the optimization process is 

divided into two phases. In the first phase, the supported efficient solutions are 

obtained, which can be easily found by weighted-sum scalarization of the 

objectives. In the second phase, the information obtained from the supported 

efficient solutions is used to find the unsupported efficient solutions. Przbylski 

et.al. (2007) have applied the two-phase method to solve bi-objective assignment 

problem, while Visée et.al. (1998) have applied the same method to bi-objective 

knapsack problem. In the second phase of the algorithm, Visée et.al. (1998) use 

Branch and Bound method to obtain the unsupported efficient solutios. 

 

The approximation methods to solve MOCO problems are discussed in detail in a 

review paper by Ehrgott and Gandibleux (2004). Since MOCO problems are very 

hard to solve exactly, approximation methods are highly popular in MOCO 

literature. The heuristics that are developed to solve the single objective 

combinatorial optimization problems can generally be utilized to generate 

heuristics for their multiobjective counterparts. The authors divide the heuristic 

methods into two classes: the local search methods and the population based 

methods. They also overstrike that, different MOCO problems need problem-

specific adaptations of the metaheuristics and the performance of the algorithm is 

highly affected from these adaptations. 

 

Both single objective and multi-objective knapsack problems are NP-hard, while 

it is not yet known whether the problem is #P-complete or intractable (Ehrgott, 

2000). The number of supported solutions grows linearly with the problem size 

while the number of unsupported solutions grows exponentially (Ehrgott and 

Gandibleux, 2000). There exist a heuristic approach to solve the knapsack 

problem, called the greedy method, that uses the weight ratios m

jc / ja . For the 
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single objective knapsack problem, the weight ratios are sorted in a non-

increasing order, and the items are put into the knapsack in this order as long as 

the total weight of the items does not exceed the capacity of the knapsack. In 

order to solve the two-objective knapsack problem, the Branch and Bound 

method can be used (Ehrgott and Gandibleux, 2000). 

 

When we come to MOAP, finding all efficient solutions of the problem is NP-

complete, #P-complete, and intractable (Ehrgott, 2000). Ehrgott (2000) mentions  

that, athough it may take an exponential time, all Pareto-optimal solutions of two-

objective assignment problem can be obtained by using “two-phase method”. In 

fact, the literature on MOAP is generally restricted to the two-objective case. 

Since the constraint matrix of assignment problem is totally unimodular, the 

single-objective problem can be solved as a linear programming problem. The 

single-objective assignment problem can be solved by using the Hungarian 

method. However, Ehrgott (2000) mentions that, in multi-objective case, total 

unimodularity of the constraint matrix only serves to find the supported solutions. 

 

Ehrgott and Gandibleux (2004) discuss the solution of MOCO problems by using 

MOEAs. They claim that, for the knapsack problem, seeding the initial population 

by greedy solutions or supported efficient solutions improves the performance of 

the algorithm. Jaszkiewicz (2002) has proposed a genetic local search approach to 

solve MOKP. The local search is provided by introducing a revised greedy 

heuristic that takes a weighted aggregation of objectives into the sorting process. 

Chu and Beasley (1998) have developed a genetic algorithm for the multi-

dimensional knapsack problem. Both of these papers are good resources to see the 

representation of the knapsack problem in evolutionary algorithms. 

 

Although there are many proposed MOEAs in the literature, we come across to a 

few MOEAs that are specially developed to solve MOCO problems. Moreover, 

such algorithms are generally designed to solve a specific MOCO problem. In this 

study, our aim is to fill this gap in the literature, and develop a general MOEA to 
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applicable to MOCO problems. While the general outline of our algorithm is 

applicable to any MOCO problem, special modifications are required to solve a 

specific MOCO problem. In order to demonstrate the required modifications, we 

deal with MOKP and MOAP, and show the detailed versions of the algorithm for 

these two problems. While the MOEA literature has started to address preference-

based algorithms, there are a few algorithms that incorporate the preferences of 

the DM interactively. Our study also contributes to this part of the literature, since 

we propose a preference-based version of our algorithm that elicits preference 

information from the DM in an interactive manner. The interactive algorithm 

converges to the desired portion of the Pareto-optimal frontier, and is able to end 

up with a single solution to present to the DM. 
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CHAPTER 3 
 
 

COMBI�ATORIAL TERRITORY DEFI�I�G 

EVOLUTIO�ARY ALGORITHM (C-TDEA) 

 
 
 

In this chapter, we present Combinatorial Territory Defining Evolutionary 

Algorithm (C-TDEA) that is developed to solve multi-objective combinatorial 

optimization problems. The algorithm is a modified version of Territory Defining 

Evolutionary Algorithm (TDEA) that has been proposed by Karahan and 

Köksalan (2008) as a steady-state and elitist multi-objective evolutionary 

algorithm. While TDEA is proposed to solve continuous and unconstrained 

optimization problems, we propose a modified algorithm to solve combinatorial 

optimization problems. TDEA has the aim of approximating the Pareto-optimal 

frontier while maintaining a good diversity of solutions over the frontier 

approximation. There are also preference incorporated versions of TDEA, 

preference region TDEA (pr-TDEA) and interactive TDEA (i-TDEA) (Karahan, 

2008) where i-TDEA is addressed in Chapter 4. TDEA can maintain a uniform 

diversity in the final population by defining a territory around each individual 

solution which is not allowed to be violated by any other solution. In TDEA, there 

exist two coevolving populations: The regular population (P) and the archive 

population (A). While the regular population consists of both dominated and 

nondominated solutions, the archive population keeps the individuals, which are 

nondominated with respect to the regular population on hand and well-dispersed. 

That is, while the solutions in the archive population are nondominated with 

respect to each other, they also do not violate the territories of each other. 

Consequently, the archive population update procedure not only deals with the 

nondomination issue, but also the territory violation is checked. The territory 

defining property of TDEA therefore results in a diverse set of individuals in the 

archive population and provides computational advantage to the programmer. 
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Karahan and Köksalan (2008) define the territory of a solution Xp as follows: 

“The region within a distance τ of Xp in each objective among the regions that 

neither dominate nor is dominated by Xp”. Defining a territory around an archive 

population member represents a forbidden region around that archive member 

which cannot be occupied by any other solution that competes for acceptance into 

the archive population. The territory of a solution is demonstrated in Figure 3.1. 

 

 

 
Figure 3.1 Illustration of Territory in Two-dimensional Space  

 

The organization of this chapter is as follows: We present the general outline of 

C-TDEA in Section 3.1, where the general outline of the original TDEA is 

preserved as a skeleton. In C-TDEA, territory definition is mainly inherited from 

the original TDEA. However, since combinatorial optimization problems are 

substantially different from continuous optimization problems, most of the 

operators are modified and new operators are included into the algorithm. The 

general outline of C-TDEA is applicable to any MOCO problem. However, 

special modifications are required to solve a specific MOCO problem by using 

the proposed algorithm. In our study, we address multi-objective knapsack and 

assignment problems in order to illustrate the required modifications. We explain 

the steps of the algorithm for the multi-objective knapsack problem in detail in 

Section 3.2. Similarly, we explain the steps of the algorithm for the multi-

Xp 
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objective assignment problem in detail in Section 3.3. We explain the 

determination of the territory size τ in Section 3.4. Finally, we present the 

experimental results and comparisons in Section 3.5. 

 

3.1 GE�ERAL OUTLI�E OF C-TDEA 

 

Below is the general outline of C-TDEA that is applicable to any MOCO 

problem: 

 

1. Initialization: Set the initial population size  , the territory size τ, and the 

maximum number of generations to iterate the algorithm T, such that the 

final population size is acceptable for the DM. Set the iteration counter      

t = 0. 

2. Initialization of the Regular Population: Obtain   individuals to fill the 

initial regular population P(0) by creating   seed solutions, and  -

 random individuals. 

3. Initialization of the Archive Population: Initialize the archive population 

with the copies of the solutions in P(0) that are nondominated with respect 

to the solutions in P(0). 

4. Parent Selection: Set t ← t +1. Choose one parent from the regular 

population, and one parent from the archive population  

5. Recombination: Recombine the parents to create the offspring. 

6. Mutation: Apply mutation to the offspring. 

7. Repair and Improvement of the Offspring: If the offspring is infeasible, 

then repair the offspring such that it becomes feasible. Then, improve the 

offspring if there is place for improvement. 

8. Acceptance into the Regular Population: Check whether the offspring 

satisfies the acceptance condition for the regular population. If it is 

accepted, insert it into P(t). Otherwise, go to step 10. 



  

 30

9. Acceptance into the Archive Population: If the offspring is accepted into 

P(t), check whether it satisfies the acceptance condition for the archive 

population. If it is accepted, insert it into A(t). 

10. Stopping Condition: Stop if the pre-specified iteration limit T is hit (t=T), 

and report the archive population to the DM. Otherwise, go to step 4. 

 

3.2 C-TDEA FOR MULTI-OBJECTIVE K�APSACK PROBLEM 

 

3.2.1 Initialization of the Regular Population 

 

In the original version of TDEA, the initial regular population P(0) is randomly 

created until the regular population size   is reached and no seeding is utilized. 

In C-TDEA, for an M-objective knapsack problem, ∑
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solutions are seeded into the initial population.   should be set carefully for 

large number of objectives since   increases with the number of objectives. We 

set the formulation of  for small number of objectives and utilize this 

formulation with such problems. Therefore, the value of  does not constitute 

any problem in this study. The remaining   − solutions are still randomly 

generated such that, each item is put into the knapsack with probability 0.5. The 

solutions are represented by binary chromosomes where each gene of the 

chromosome corresponds to an item. The value in a gene is 1 if the corresponding 

item is put into the knapsack; and the value in that gene is 0 if the item is not put 

into the knapsack. However, a randomly filled solution may violate the knapsack 

capacity and become infeasible. Consequently, all of the solutions in P(0) are 

checked for feasibility and the infeasible solutions are repaired by removing items 

from the knapsack. Moreover, each of the initial population members are checked 

for improvement such that, items are placed into the solutions which have 

available space until the knapsack capacity does not allow any more items to be 
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put into the knapsack. These greedy algorithm based repair-improvement 

procedures are discussed in Section 3.2.5. 

 

The remaining   slots of the initial population P(0) is filled with the high-quality 

seed solutions. M of these  seed solutions are the approximately optimal 

solutions of the single objective knapsack problems when we consider each of the 

M objectives separately. That is, for a 2-objective knapsack problem, these two 

solutions are the approximations of the two extreme points of the Pareto-optimal 

frontier. These M seed solutions are obtained heuristically by using the greedy 

algorithm on each of the single objective knapsack problems. That is, for the seed 

solution which aims to approximate the efficient solution with the best value of 

objective i, the items are sorted in the non-increasing order of their contribution to 

objective i per unit capacity; cij / aj where j corresponds to the items. Afterwards, 

the knapsack is filled in order of decreasing ratios as long as the knapsack 

capacity is not violated. Then, the objectives are grouped in sets of 2 considering 

every possible combination, and 








2

M
seed solutions are obtained, for each case 

giving each objective equal Tchebyceff weights. This procedure continues until 

these combination sets cover each possible combination of objectives from size 2 

to M-1. This seeding procedure is given below for a combination set of size l: 

 

1. Set iteration counter k = 0, and z10 = z20=…= zl0=0.  

2. For each item j that is not in the current knapsack and that does not violate 

the knapsack capacity, calculate:  
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If there is no such item, go to step 4. 
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3. Set k←k+1. Find 
r

tr
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)1(11 ,..., . If there is place in the current 

knapsack, go to Step 2. 

4. Stop the item acceptance procedure and insert the solution into P(0). 

 

Consequently, repeating the above procedure for l = 2,…, M-1, the initial 

population is heuristically seeded with ∑
−=
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M
  solutions. 

 

3.2.2 Parent Selection 

 

The parent selection procedure of C-TDEA is similar to that of original TDEA. 

The parent from the regular population is selected by binary tournament selection. 

Two solutions are randomly picked from the regular population and they are 

tested for dominance. If one dominates the other, dominating solution is 

determined as the first parent. If the solutions are nondominated to each other, 

one of them is selected randomly as the first parent. 

 

Since we cannot consider any dominance relation within the archive population 

consisting of relatively nondominated solutions, the second parent is selected 

from the archive randomly. 

 

3.2.3 Crossover and Mutation 

 

The crossover operator used is the Uniform crossover operator. In each 

generation, two offspring are generated by a single crossover. For each gene, 

child 1 inherits from parent 1 with probability 0.5 and inherits from parent 2 with 
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again probability 0.5. If child 1 inherits a gene from parent 1, then child 2 inherits 

that gene from parent 2 and vice versa.  

 

On the other hand, the mutation operator used is single bit flip mutation operator. 

If we determine the mutation probability as pm, a randomly selected gene of the 

child is flipped with probability pm. 

 

3.2.4 Scaling 

 

The original TDEA uses the sigmoid function scaling (Soylu and Köksalan, 

2006). In sigmoid scaling, all objective values are scaled in [0, 1] interval. The 

important point is that, while the objective values between the ideal and nadir 

point are linearly scaled, objective values beyond the nadir point are scaled by 

using a sigmoid function. The aim is to scale the nondominated range into a 

higher portion of the [0, 1] range. However, this sigmoid function scaling is 

formulated for minimization problems. Instead of using that sigmoid function by 

converting the maximization type objectives of the knapsack problem into 

minimization type objectives, a new sigmoid scaling function has been proposed 

for maximization type problems. Below is the formula of this sigmoid scaling 

function: 
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In this formula, fi stands for the ith objective value of the solution to be scaled, and 

ψfi stands for the scaled value of the objective if the objective value is smaller 

than the nadir point value fi 
nadir. In this formula, there exists a parameter λ which 

controls the slope of the sigmoid function. The value of this parameter is 

determined by trial-and-error such that, the nadir point is scaled to 0.1. If the 
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above formulation is analyzed, it can also be seen that the ideal point is scaled to 

the value 1 in any case. Consequently, the value of λ determines the scaled range 

of the efficient range, and this range is approximated to 0.9 in all of the studies 

discussed in this report by appropriately setting λ. The shape of this sigmoid 

function is illustrated in Figure 3.2. 

  
 
               
 

  
 

              

                

                

                

                

                

                

                

                

                

                

                

Figure 3.2 Sigmoid and Linear Function Scaling for Maximization Problems 
 

 

3.2.5 Repair and Improvement of the Solutions 

 

Repair and improvement are two procedures that are used on both the initial 

population and the offspring. The discussion from now on is performed on the 

offspring; however the initial population members are also subject to these two 

procedures in the same manner as the offspring. 

 

The common property of these two procedures is that, a modified greedy 

algorithm is utilized in the direction of the Tchebycheff favorable weights of the 

solution. These directions can be seen in Figure 3.3. The motivation behind using 

favorable weights issue is the fact that each solution on the Pareto-optimal 

frontier has a unique weight set which makes its weighted Thebycheff distance to 
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the ideal point minimum compared to all other feasible solutions. Therefore, by 

emptying and filling the knapsack of a solution with the aim of minimizing its 

Tchebycheff distance to the ideal point in the direction of its favorable weights, 

we can keep the original direction of the individual in which it contributes to the 

convergence. Our aim is not only to converge to the Pareto-optimal frontier, but 

also make each solution to converge to the region on the frontier that is 

represented by the Tchebycheff favorable weights of that solution. Therefore, 

once we determine the repair and improvement directions of a solution with 

respect to its favorable weights, we try to keep the repaired and/or improved 

solution as close as possible to this direction of the original solution. 

 

 
 

Figure 3.3 C-TDEA Repair and Improvement Directions 

 

Before carrying out repair and improvement procedures, the weighed 

Tchebycheff distance of the initial point z to the ideal point z* is calculated as 

follows where iλ  is the favorable weight of the solution z with respect to 

objective i: 
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where iz  is the scaled value of zi. 
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In the following subsections, we will show how this distance changes after 

removal of an item from the knapsack or addition of an item to the knapsack. 

 

3.2.5.1 Repair of the Infeasible Solutions 

 

If an offspring or an initial population member is infeasible, then the following 

procedure is carried out: 

 

1. Calculate the favorable weights, λi’s, of the solution. 

2. Calculate Tchebycheff distance after moving out item j from the 

knapsack for each item j which is in the current knapsack:  
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λ                                    (3.3) 

   

3. Calculate dj / aj for each item j which is in the current knapsack, where aj 

is the constraint coefficient of item j. 

4. Find    Minj { dj  / aj } = dk  / ak 

5. Discard item xk from the knapsack. 

6. If the new solution is infeasible, turn back to Step 1 and repeat the same 

procedure using the favorable weights of the new solution until a feasible 

solution is obtained. Otherwise, finish the repair procedure. 

 

3.2.5.2 Improvement of the Solutions – Genetic Local Search 

 

If an initial population member or an offspring is feasible or becomes feasible 

after the repair procedure, it is evaluated for improvement. The procedure is as 

follows: 
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1. Calculate the favorable weights, λis, of the solution. 

2. For each item j which is not in the current knapsack and addition of which 

does not violate the knapsack capacity, calculate Tchebycheff distance 

after placing item j into the knapsack: 
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j czzMaxd +−=

∈
λ                                    (3.4) 

 

3. Calculate (1-dj) / aj for each item j which is not in the current knapsack 

and addition of which does not violate the knapsack capacity, where aj is 

the constraint coefficient of item j.   

4. Find    Maxj { (1-dj) / aj } = (1-dk) / ak 

5. Place item xk into the knapsack. 

6. If there is place for improvement of the new solution, turn back to Step 1 

and repeat the same procedure using the favorable weights of the new 

solution until there is no place for improvement. Otherwise, finish the 

improvement procedure.  

 

While calculating the Tchebycheff distance dj, both of the objective values are 

scaled, where the scaled ideal objective value, *
iz , is equal to 1. Therefore, the 

value of dj is between 0 and 1. In step 3 of the above improvement procedure, we 

subtract dj from 1 and calculate (1-dj) / aj, since we need the item with the 

smallest dj and aj values in Step 4 of the procedure. 

 

3.2.6 Regular and Archive Population Updates 

 

C-TDEA inherits the regular population update procedure from the original 

version of TDEA. After the offspring is repaired if necessary and improved if 

possible, it is evaluated for acceptance into the regular population. The offspring 

is tested against each regular population member for dominance. If the offspring 

is dominated by at least one regular population member, then the offspring is 
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rejected. On the other hand, if the offspring is not dominated by any of the 

population members, then one of the solutions that is dominated by the offspring 

is removed from the regular population if any. If no such dominated solutions 

exist, then an individual is removed randomly and the offspring is inserted into 

the regular population. 

 

The important issue at this point is that, regular population acceptance is a 

prerequisite of evaluation for archive acceptance.  If the solution is not accepted 

into the regular population, it is not even evaluated for acceptance into the archive 

and it is directly rejected. On the other hand, if the offspring is accepted into the 

regular population, the archive update procedure starts. 

 

Although the general outline of the archive acceptance procedure is similar to the 

original TDEA, some modifications are performed in this step. Below is the 

outline of the archive acceptance procedure: 

 

Stage 1:  

Test the offspring against each individual of the archive population. Mark the 

individuals that are dominated by the offspring. If the offspring is dominated 

by at least one archive member, it is rejected. If the offspring is not rejected, 

go to Stage 2. 
 

Stage 2:  

1. Remove all of the marked individuals from the archive population. 

2. Accept and insert the offspring into the archive if the archive is empty 

before the insertion, stop. Continue otherwise. 

3. Calculate the Tchebyceff distance of the offspring to each individual of 

the archive. 

4. Find the closest individual si* to the offspring in terms of Tchebycheff 

distance: δ. 

5. Accept and insert the offspring into archive if δ ≥ τ. Otherwise, reject the 

offspring. 
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The modification in archive acceptance procedure is at the third step of Stage 2 

where the nearest neighbor of the offspring is found by using Tchebycheff 

distance metric. In the original version of TDEA, rectilinear distance is used to 

find the nearest neighbor of the offspring, and then the Tchebycheff distance of 

the offspring to that point is compared to the territory size τ. However, the 

utilization of rectilinear distance to obtain the closest solution of the offspring 

may result in violation of the claim that there exists only one solution in each 

hyper-box defined by the territories of the existing solutions.  

 

This violation can be proven by a counter-example in which, although there exists 

a solution violating the territory of the offspring, by using rectilinear distance, a 

solution that does not violate its territory is found to be its closest solution. The 

counter-example is illustrated in Figure 3.4. In the figure, c is the offspring 

solution and the solutions s1 and s2 are two existing solutions that are evaluated 

to be the closest solution to the offspring. The rectilinear distance between 

offspring c and the solutions s1 and s2 are 7 and 8 units respectively. Assuming 

that there does not exist any other solution that is closer to the offspring than 

these two solutions, the closest solution to the offspring becomes s1 if we 

consider rectilinear distance. On the other hand, the Tchebycheff distance 

between c and s1 is 5 units. If τ is determined to be 4.5 units as in the figure, the 

territory of s1 is found to be preserved, and the offspring is accepted into the 

archive population. However, having a Tchebycheff distance of 4 units to the 

offspring, the territory of s2 is violated by the offspring. Therefore, the use of 

rectilinear distance to determine the closest neighbor may fail to evaluate a 

solution the territory of which is violated by the offspring, if the solution has a 

relatively high rectilinear distance to the offspring. 

 

Figure 3.4 illustrates the motivation behind the modification that has been 

performed in archive acceptance procedure.  
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Figure 3.4 Violation of territories when rectilinear distance is used to determine the 

closest neighbor of the offspring 
 

 

3.3 C-TDEA FOR MULTI-OBJECTIVE ASSIG�ME�T PROBLEM 

 

3.3.1 Initialization of the Regular Population 

As in the case of multi-objective knapsack problem, ∑
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solutions are seeded into the initial population for multi-objective assignment 

problem. The remaining   − solutions are randomly generated. The solutions 

are represented by integer-valued chromosomes where each gene of the 

chromosome corresponds to a person, while the value kept in that gene 

corresponds to the job assigned to that person. For instance, the gene (2 3 1) 

represents the case where person 1 is assigned to job 2, person 2 is assigned to job 

3, and person 3 is assigned to job 1. In contrast to the knapsack problem, a 

randomly created solution is not allowed to be infeasible in the assignment 

problem case. That is, the random assignment of jobs to the people starts from the 



  

 41

first gene, that is, the first person, and goes on until all people are assigned their 

corresponding jobs. However, a previously assigned job is not allowed to be re-

assigned to another person during this iterative process. Consequently, the 

constraints of the assignment problem, each person assigned to a single job and 

each job assigned to a single person, are provided by the collaboration of the 

chromosome representation scheme and the random generation process. Since, 

there is no need for a feasibility check procedure, each member of the initial 

population is directly checked for improvement such that, each person tries to 

change his assigned job with the people that come after that person in the 

chromosome representation. This improvement procedure is discussed in Section 

3.3.5. 

 

Due to the fact that the single objective assignment problem can be solved as a 

linear programming problem in polynomial time, the seed solutions are not 

determined heuristically, but they are found optimally by mathematical modeling. 

Again, M of the  seed solutions are the optimal solutions of the single objective 

assignment problems when we consider each of the M objectives separately. The 

procedure of obtaining a combination set of objectives that cover each possible 

combination of objectives from size 2 to M-1 is performed in the same manner as 

the knapsack problem. By giving equal Tchebyceff weights to each of the 

objectives in the combination, the following linear programming model is solved 

for a combination of size 2: 
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                                        (3.5) 

 

 

Solving the above model repeatedly for combination sizes of l = 2,…, M-1, the 

initial population is heuristically seeded with ∑
−=

=
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  solutions. 

 

3.3.2 Parent Selection 

 

The parent selection procedure is similar to that of C-TDEA for the knapsack 

problem. The parent from the regular population is selected by binary tournament 

selection, while the second parent is selected from the archive randomly. 

 

3.3.3 Crossover and Mutation 

 

The crossover operator used is the Cycle crossover (CX) operator (Larranaga 

et.al., 1999). In each generation, two offspring are generated by a single 

crossover. The working principle of the operator lies on the fact that, each gene 

position of the offspring is inherited from one of the parents. That is, each person 

in the offspring is assigned to the same job of parent 1 or parent 2. 
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At the beginning, a gene position g is selected randomly as the cycle initialization 

position. One of the offspring inherits that gene value from the first parent, and 

the second offspring inherits the gene value from the second parent. For the first 

offspring, the gene value inherited from the first parent cannot be inherited from 

the second parent once more, consequently, according to the working principle of 

the operator, the position on the second parent whose value is inherited from the 

first parent is found, and that gene position is again inherited from the first parent. 

This cycle continues until the beginning gene value is hit. Then, a new cycle is 

started from a position which is not yet assigned, and these cycles continue until 

all genes of the offspring are assigned their corresponding inherited values. At 

each cycle, the parents from which the genes are inherited are exchanged between 

the two offspring. 

 

Figure 3.5 illustrates this crossover process on a single offspring for an 

assignment problem of size eight. In the example, the first cycle starts at the first 

gene of Parent 1, which is selected randomly, and the offspring inherits that gene 

position from Parent 1. The cycle continues by searching the value inherited (1) in 

Parent 2. The gene value occurs at the third gene position of Parent 2. Since this 

gene position cannot be inherited from Parent 2, the crossover operator inherits 

the third gene position of the offspring from Parent 1. When we search for this 

inherited value (3) in Parent 2, we come back to the first gene location, and the 

first cycle terminates. Then, the second cycle starts from a randomly selected 

gene position that is not currently assigned. But this time, the inheritance process 

works for Parent 2. These cycles continue in the same manner until the offspring 

in Figure 3.5 is obtained.  

 

The mutation operator used is exchange mutation (EM) operator. If we determine 

the mutation probability as pm, two randomly selected genes exchange their 

values with probability pm. 
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1st Cycle 3rd Cycle

Parent 1 1 2 3 4 5 6 7 8

Parent 2 3 8 1 7 5 4 2 6

2nd Cycle

Offspring 1 8 3 7 5 4 2 6

Cycle11 Cycle21 Cycle12 Cycle24 Cycle31 Cycle23 Cycle25 Cycle22

 

 
Figure 3.5 Cycle Crossover 

 

 

3.3.4 Scaling 

 

Since the objectives of the multi-objective assignment problem is of minimization 

type, sigmoid function scaling used in the original TDEA, which has been 

formulated for minimization problems, is used (Soylu and Köksalan, 2008). 

Below is this sigmoid scaling function: 

 













≥
















−

+

=
= −

otherwisef
f

ffif

ef

inadir

nadir

nadir

iiff

i

i

i
i

*

2*5.0

1

1

ˆ

ψ

ψ
λ                (3.6) 

 

In the formula, if and nadir

if are the values of the objective value of the solution 

to be scaled, and the nadir point, respectively that are shifted to scale the ideal 

point to the value of 0 in any problem.  ψfi stands for the scaled value of the 

objective if the objective value is greater than the nadir point value, fi 
nadir. The 

value of the parameter λ that controls the slope of the sigmoid function is 
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determined by trial-and-error such that, the nadir point is scaled to take the value 

of 0.9. The shape of this sigmoid function is illustrated in Figure 3.6. 

 

    

 

        

 

  
 

            

              

              

              

              

              

              

              

              

              

              

              

Figure 3.6 Sigmoid and Linear Function Scaling for Minimization Problems 
 

 

The sigmoid function scaling procedure for minimization problems is as follows:  

1. Shift the objective value and nadir point to set the ideal point to 0 as 

follows: *
iii fff −=  and  *

i

nadir

i

nadir

i fff −= . 

2. Determine the value of the parameter λ by trial-and-error such that the 

nadir point is scaled to approximately 0.9.  

3. Find the scaled objective value if̂  using the above sigmoid scaling 

function. 

 

3.3.5 Improvement of the Solutions 

 

Improvement procedure is performed on both the initial population and the 

offspring. We will discuss the procedure on the offspring; however the initial 

population members are also subject to the same improvement procedure. 
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The procedure is as follows: 

 

1. Set first iteration counter n =1. Start with the nth gene corresponding to the 

first person. 

2. Set second iteration counter m = n+1.  

3. Exchange the jobs of person m with the job of person n. If the newly 

obtained solution dominates the initial solution, keep the jobs exchanged 

and go to Step 4. Otherwise, undo the exchange, set m←m+1, and repeat 

this step. If m=M+1, go to Step 4. 

4. Set n←n +1 and go back to Step 2. If n = M, stop. 

 

According to this procedure, at most 
2

)1( −⋅   
 comparisons are made. In the 

initial generations, the comparison number to obtain an improved solution is 

comparatively smaller. Because the solutions are far away from the Pareto-

optimal frontier, and the comparisons are more promising to end up with an 

exchange. However, since the solutions converge to the Pareto-optimal frontier as 

the generations proceed, it becomes harder to find an exchange location to 

improve a solution. Consequently, this improvement procedure is held until a 

predetermined small number of generations that is determined by preliminary 

runs.  

 

3.3.6 Regular and Archive Population Updates 

 

The regular population update procedure explained for the knapsack problem is 

used for the assignment problem as well. After the offspring is improved if 

possible, it is evaluated for acceptance into the regular population.  

 

Again, the regular population acceptance constitutes the prerequisite for archive 

acceptance procedure. The archive acceptance procedure is as follows: 
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Stage 1:  

Test the offspring against each individual of the archive population. Mark the 

individuals that are dominated by the offspring. If the offspring is dominated 

by at least one archive member, it is rejected. If the offspring is not rejected, 

go to Stage 2. 

 

Stage 2:  

1. Remove all of the marked individuals from the archive population. 

2. Accept and insert the offspring into the archive if the archive is empty 

before the insertion, stop. Continue otherwise. 

3. Calculate the Tchebyceff distance of the offspring to each individual of 

the archive. 

4. Find the closest individual si* to the offspring in terms of Tchebycheff 

distance: δ.  

5. Accept and insert the offspring into archive if δ ≥ τ. Otherwise, reject the 

offspring. 

 

3.4 DETERMI�ATIO� OF τ 

 

Territory size τ determines a hypervolume around each archive member that is 

forbidden to be occupied by any other solutions within the archive. It is known 

that the total nondominated hypervolume is limited (Karahan and Köksalan, 

2008). Consequently, territory size has a significant effect on the maximum 

number of solutions that can enter the archive population and the final archive 

population size. Reducing τ is expected to increase the final population size. 

Moreover, a single τ value may result in different final population sizes in 

different problems since the size of nondominated hypervolume may change from 

problem to problem with respect to the shape of the efficient frontier. 

Consequently, the τ values for each problem instance are obtained by trial-and-

error in order to obtain approximately the desired number of solutions in the final 

population as in the case of original TDEA. 
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3.5 SIMULATIO� RU�S A�D COMPARISO�S 

 

We test the performance of C-TDEA on randomly generated 2- and 3-objective 

problem instances of multi-objective knapsack and multi-objective assignment 

problems. We also compare the performance of the algorithm against two well-

known MOEAs, NSGA-II and ε-MOEA. In order to perform the analyses in a 

more fair condition, the seeded versions of NSGA-II and ε-MOEA are also 

considered, in which the seeding mechanism of C-TDEA is utilized. 

 

For the single-dimensional multi-objective knapsack problem, we use binary 

representation of the chromosomes. We randomly generate 200-item and 750-

item problem instances for both 2- and 3-objective cases. The objective 

coefficients and the knapsack coefficients are randomly generated from a discrete 

uniform distribution between the values 20 and 100. The objective coefficients for 

each objective and the knapsack coefficients are assumed to be independently 

distributed.  For each problem instance, the knapsack capacity is set to half the 

total weight of all items in order to make the problem harder. Since each item is 

put into the knapsack with probability 0.5 in the initialization stage, the knapsack 

capacity is efficiently utilized by decreasing the number of repair and 

improvements operations. This initialization probability can be revised according 

to the ratio of the knapsack capacity to the total item weight such that the repair-

improvement operators can be used more efficiently. 

 

For the multi-objective assignment problem, the chromosomes are represented as 

integer numbers that take values between 1 and the problem size. We randomly 

generate 50×50 and 100×100 problem instances for each of 2- and 3-objective 

assignment problem cases. The objective coefficients are generated randomly and 

independently from a discrete uniform distribution between the values 20 and 

100. 
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For both multi-objective knapsack and multi-objective assignment problems, the 

crossover operators are used with 1.0 probability of crossover, while the mutation 

operators are used with 0.90 mutation probability. 

 

The initial population sizes are determined with respect to the number of 

objectives and the size of the problem. For the multi-objective knapsack problem, 

the problem size is determined by the knapsack size, while the number of person-

job combinations set the problem size of the multi-objective assignment problem. 

For the multi-objective knapsack problem, in order to determine the population 

size corresponding to a certain knapsack size, the suggestions in Zitzler and 

Thiele (1999) are used. The population sizes that are used in the knapsack 

problem are also utilized for the assignment problem instances correspondingly. 

 

The ideal points of the problems are obtained by Cplex solver on Gams 22.3. 

Moreover, the whole Pareto-optimal frontiers are obtained for 2-objective test 

problems on Gams 22.3 by using ε -constraint method. The formulation is given 

for a 2-objective knapsack instance as follows: 
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                                  (3.7) 

 

The above model has been solved on Gams 22.3 by increasing the ε value within 

the range of the nadir and ideal points of the ε-constrained objective in order to 

ensure that the whole Pareto-optimal frontier is generated. However, in order to 

decrease the computational effort, the ε value is increased to [1+(value of the ε -

constrained objective in the last obtained efficient solution)]  in each iteration. 
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Although the whole Pareto-optimal frontiers have not been generated for 3-

objective test problems, ε-constraint method have been applied to those problems 

by dividing the Pareto-optimal frontier to 100×100 grids and search these grids. 

That is, the ε value corresponding to objective m is not updated by increments of 

1, but it is updated as ε =  100/)( m

 adir

m

Ideal ff −  in each iteration. The formulation 

of ε-constrained method for the 3-objective knapsack problem is given as follows: 
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               (3.8) 

 

 

For all of the problem instances, the value of the scaling parameters λm 

corresponding to objective m is set by trial-and-error in order to scale the 

corresponding nadir point to 0.1 for the knapsack problem, and to 0.9 for the 

assignment problem. 

 

We run the algorithm 10 times for each problem instance by providing different 

seeds to the random number generator. Determination of the number of function 

evaluations and the mutation rate of 0.9 has been inspired by the settings of 

Köksalan and Karahan (2008). Here, the number of function evaluations refers to 

the total number of offspring evaluated throughout the simulation run. For TDEA 

and ε-MOEA which do not have constant population sizes, we perform 

preliminary runs to set the parameter values to obtain the same final population 

size as that of NSGA-II.  
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The parameter settings for the knapsack problem can be seen in Table 3.1, while 

the parameter settings for the assignment problem are provided in Table 3.2. 

 

 

Table 3.1 Test Parameters for the Multi-objective Knapsack Problem 
 

 
 

 

 

Table 3.2 Test Parameters for the Multi-objective Assignment Problem 
 

 

 

The  algorithm is implemented in C++ programming language. The NSGA-II and 

ε-MOEA codes are taken from the website of Kanpur Genetic Algorithms 

Laboratory (http://www.iitk.ac.in/kangal/codes.shtml). We build the codes with 

Microsoft Visual C++ 2008 Express Edition. All computational tests are made on 

an Intel Core 2 Duo 2.0 GHz, 2 GB RAM computer running Microsoft Windows 

Vista. 
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3.5.1 Performance Metrics 

 

We compare the performances of the algorithms by using two performance 

metrics. The first metric is the Hypervolume metric (Zitzler and Thiele, 1998), 

which gives the volume of the total objective space dominated by the final 

population P with respect to a reference point W. Hypervolume metric serves to 

measure both the convergence and diversity of the final population P. A larger 

value of the metric is desirable. 

 

Hypervolume indicator can be formulated as follows: 

 

W

i

P

i

VeHypervolum
1=

= U                                                 (3.9) 

 

where iV  is the volume of the objective space dominated by solution i ∈P with 

respect to the reference point W. The metric is illustrated in Figure 3.7, where the 

cross-hatched region corresponds to the hypervolume dominated by the final 

population P with respect to the reference point W where both objectives are to be 

maximized. 

 

For both multi-objective knapsack and assignment problems, we use the nadir 

point as the reference point. Therefore, the extreme points of the Pareto-optimal 

frontier do not contribute to the Hypervolume metric. Moreover, if an obtained 

solution is worse than the reference point in any of the objectives, the contribution 

of that point to the Hypervolume measure is 0. 
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Figure 3.7 Illustration of Hypervolume metric 
 

 

 

The second performance metric is the Additive I-Epsilon metric (Zitzler and 

Kunzli, 2004), which gives the minimum distance by which the final population P 

needs to be improved in each objective such that the Pareto-optimal frontier is 

weakly dominated. The metric can be formulated for a minimization-type 

problem as follows: 
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εε   (3.10) 

 

where S is the Pareto-optimal set. A smaller value of this metric is desirable. 

 

We calculate the performance of the algorithm for each problem in terms of 

Hypervolume (H) and Additive I-Epsilon metric ( +
εI ). We assume that the sample 

means of the metrics are normally distributed By Central Limit Theorem. After 
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calculating the sample means, Hx  and +
εI

x , and sample standard deviations, Hs  

and +
εI

s , of these metrics, we test the following hypothesis at 95% significance 

level (Karahan, 2008): 

 

C

pm

T

pm

C
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T

pm

H

H

µµ

µµ

≠

=

:

:

1

0
                                                   (3.11) 

 
where pm is the performance metric utilized. This hypothesis checks whether the 

difference between the metric values of C-TDEA and the contender algorithms is 

statistically significant for both metrics. At the end of the simulation runs, we 

present the estimated difference between the metric means of TDEA and the 

contender algorithm, the p-value corresponding to the statistical test, and the 

winner of the hypothesis test. The metric results of the Pareto-optimal frontiers 

are also provided. 

 

3.5.2 Multi-objective Knapsack Problem Instances 

 

The figures provided in this section show the final archive populations for C-

TDEA and ε-MOEA, and the nondominated solutions of the final population for 

NSGA-II. The entire final populations of ε-MOEA and NSGA-II including the 

dominated solutions are provided in Appendix A. 

 

2-objective 200-item Knapsack Problem 

 

Figure 3.8 shows that, while C-TDEA successfully converges to and provides 

diversity over the Pareto-optimal frontier, NSGA-II and ε-MOEA fail to 

converge. Indicator values in Table 3.3 also show that C-TDEA has much better 

convergence and diversity than both of the algorithms in terms of the metric 

values. The hypervolume metric value for both NSGA-II and ε-MOEA are 0, 

since all solutions in the final populations of both of the algorithms are dominated 
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by the reference point. This situation is valid for all multi-objective knapsack 

problem instances handled in this study. At 95% significance level, C-TDEA is 

statistically better than NSGA-II and ε-MOEA in both metrics. The seeded 

versions of NSGA-II,  SGA-II (s), and ε-MOEA, ε-MOEA (s), are also 

considered. However, from both metric values and statistical results in Tables 3.3 

and 3.4; and the final populations obtained in Figure 3.8, we see that seeding has 

very little effect on the performances of the algorithms, and does not provide the 

algorithms to converge to the Pareto-optimal frontier. The two algorithms can 

only maintain the seed solutions as the nondominated solutions of their final 

populations. Moreover, C-TDEA still outperforms the seeded algorithms. On the 

other hand, the repair-improvement mechanisms of C-TDEA provide the 

algorithm fine convergence and diversity properties, but in expense of increased 

computational times compared to NSGA-II and ε-MOEA.  

 

 
Table 3.3 Indicator Results for the 2-objective 200-item KP 

 

Algorithm 

I-Epsilon  Hypervolume 

Duration (min) +
εI

x  +
εI

s  
 

Hx  Pareto

H

H

x

x  
Hs  

C-TDEA 42.7 4.3  0.7740 0.9685 0.0022 0.6892 
NSGA-II 2194.2 73.1  0.0000 0.0000 - 0.2790 

NSGA-II (s) 1201.0 -  0.0712 0.0891 - 0.2535 
ε-MOEA 1668.8 40.5  0.0000 0.0000 - 0.2192 

ε-MOEA (s) 1201.0 -  0.0712 0.0891 - 0.1935 
Pareto Front 0.0 -  0.7992 1.0000 - - 

 

 
Table 3.4 Test Results for the 2-objective 200-item KP 

 
C

pm

T

pmH µµ =:0  vs. C

pm

T

pmH µµ ≠:1  

Contender 

I-Epsilon  Hypervolume 

+∆
εI

 P-Value Winner  
H∆  P-Value Winner 

NSGA-II -2151.5 0.0000 C-TDEA  0.7740 - C-TDEA 
NSGA-II (s) -1158.3 - C-TDEA  0.7028 - C-TDEA 

ε-MOEA -1626.1 0.0000 C-TDEA  0.7740 - C-TDEA 
ε-MOEA (s) -1158.3 - C-TDEA  0.7028 - C-TDEA 
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Figure 3.8 Plots for the 2-objective 200-item KP 
 

 

2-objective 750-item Knapsack Problem 

 

In terms of indicator values, we obtain similar results compared to 200-item 

knapsack problem (Table 3.5). NSGA-II and ε-MOEA again fail to converge to 

the Pareto-optimal frontier. All solutions obtained by the contender algorithms are 

dominated by the nadir point, resulting in a hypervolume metric value of 0 for 
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both algorithms. We can see in Table 3.6 that, the other two algorithms are 

outperformed by C-TDEA in terms of both metrics. As we can see in Figure 3.9, 

the final populations that are presented to the DM show similar behavior to 200-

item problem. The seeded versions of the contender algorithms can only present 

the seed solutions as the final nondominated solutions (Figure 3.9) and they are 

again outperformed by C-TDEA in terms of both metrics (Table 3.6). 

 

 
Table 3.5 Indicator Results for the 2-objective 750-item KP 

 

Algorithm 

I-Epsilon   Hypervolume 

Duration (min) +
εI

x  +
εI

s  
 

Hx  Pareto

H

H

x

x  
Hs  

C-TDEA 196.4 12.4  0.7727 0.9371 0.0014 6.9823 
NSGA-II 8525.3 518.0  0.0000 0.0000 - 1.2865 

NSGA-II (s) 3652.0 -  0.0082 0.0099 - 1.1911 
ε-MOEA 7393.0 476.7  0.0000 0.0000 - 0.2868 

ε-MOEA (s) 3652.0 -  0.0082 0.0099 - 0.2899 
Pareto Front 0.0 -  0.8246 1.0000 - - 

 

 

Table 3.6 Test Results for the 2-objective 750-item KP 
 

C

pm

T

pmH µµ =:0  vs. C

pm

T

pmH µµ ≠:1  

Contender 

I-Epsilon  Hypervolume 

+∆
εI

 P-Value Winner  
H∆  P-Value Winner 

NSGA-II -8328.9 0.0000 C-TDEA  0.7727 - C-TDEA 
NSGA-II (s) -3455.6 - C-TDEA  0.7645 - C-TDEA 

ε-MOEA -7196.6 0.0000 C-TDEA  0.7727 - C-TDEA 
ε-MOEA (s) -3455.6 - C-TDEA  0.7645 - C-TDEA 
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Figure 3.9 Plots for the 2-objective 750-item KP 
 

 
3-objective 200-item Knapsack Problem 

 

According to the performance metric values and the test results provided in Table 

3.7 and 3.8 respectively, C-TDEA outperforms NSGA-II and ε-MOEA, and also 

their seeded versions in terms of both performance metrics. In Figure 3.10, it is 

seen that C-TDEA maintains convergence and diversity, while it loses solutions 
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towards the three edges of the Pareto-optimal frontier. On the other hand, NSGA-

II and ε-MOEA cannot even provide convergence to the Pareto-optimal frontier, 

and they again end up with a hypervolume metric value of 0. The seeded versions 

of the algorithms are also outperformed by C-TDEA in terms of both metrics, by 

being able to maintain only the 6 seed solutions in their final nondominated sets. 

 

 
Table 3.7 Indicator Results for the 3-objective 200-item KP 

 

Algorithm 

I-Epsilon   Hypervolume 

Duration(min) +
εI

x  +
εI

s  
Hx  

 
Pareto

H

H

x

x  
Hs  

C-TDEA 148.2 3.3 0.5244  0.8465 0.0040 1.5807 
NSGA-II 1987.3 11.5 0.0000  0.0000 - 0.4482 

NSGA-II (s) 604.0 - 0.2581  0.4166 - 0.4004 
ε-MOEA 1487.6 57.9 0.0000  0.0000 - 0.3401 

ε-MOEA (s) 604.0 - 0.2581  0.4166 - 0.3305 
Pareto Front 0.0 - 0.6195  1.0000 - - 

 

 

Table 3.8 Test Results for the 3-objective 200-item KP 
 

C

pm

T

pmH µµ =:0  vs. C

pm

T

pmH µµ ≠:1  

Contender 

I-Epsilon  Hypervolume 

+∆
εI

 P-Value Winner  
H∆  P-Value Winner 

NSGA-II -1839.1 0.0000 C-TDEA  0.5244 0.0000 C-TDEA 
NSGA-II (s) -455.8 - C-TDEA  0.2663 - C-TDEA 

ε-MOEA -1339.4 0.0000 C-TDEA  0.5244 0.0000 C-TDEA 
ε-MOEA (s) -455.8 - C-TDEA  0.2663 - C-TDEA 
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Figure 3.10 Plots for the 3-objective 200-item KP 
 

 

3-objective 750-item Knapsack Problem 

 

In this 3-objective knapsack problem instance, although C-TDEA outperforms 

both NSGA-II and ε-MOEA in terms of both performance metrics (see Table 3.9 

and Table 3.10), it loses to provide diversity over the Pareto-optimal frontier. 

Figure 3.11 shows that, while the middle-most section of the frontier is well-
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converged, the 3 sides corresponding to the respective 2-objective Pareto-optimal 

frontiers are lost by C-TDEA during the simulation run. The two contenders of C-

TDEA cannot even converge to the Pareto-optimal frontier. The seeded NSGA-II 

and ε-MOEA can only present the 6 seed solutions, and they are again 

outperformed by C-TDEA in terms of both performance metrics. 

 
 
 
 

Table 3.9 Indicator Results for the 3-objective 750-item KP 
 

Algorithm 

I-Epsilon   Hypervolume 

Duration (min) +
εI

x  +
εI

s  
Hx  

 
Pareto

H

H

x

x  
Hs  

C-TDEA 549.6 22.3 0.5135  0.7984 0.0114 16.0037 
NSGA-II 8803.3 126.5 0.0000  0.0000 - 1.5595 

NSGA-II (s) 2325.0 - 0.2969  0.4616 - 1.5453 
ε-MOEA 7552.6 197.0 0.0000  0.0000 - 0.4951 

ε-MOEA (s) 2325.0 - 0.2969  0.4616  0.4576 
Pareto Front 0.0 - 0.6432  1.0000 - - 

 

 

 

Table 3.10 Test Results for the 3-objective 750-item KP 
 

C

pm

T

pmH µµ =:0  vs. C

pm

T

pmH µµ ≠:1  

Contender 

I-Epsilon  Hypervolume 

+∆
εI

 P-Value Winner  
H∆  P-Value Winner 

NSGA-II -8253.7 0.0000 C-TDEA  0.5135 - C-TDEA 
NSGA-II (s) -1775.4 - C-TDEA  0.2166 - C-TDEA 

ε-MOEA -7003.0 0.0000 C-TDEA  0.5135 - C-TDEA 
ε-MOEA (s) -1775.4 - C-TDEA  0.2166 - C-TDEA 
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Figure 3.11 Plots for the 3-objective 750-item KP 
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3.5.3 Multi-objective Assignment Problem Instances 

 

The figures provided in this section show the final archive populations for C-

TDEA and ε-MOEA, and the nondominated solutions of the final population for 

NSGA-II. The entire final populations of ε-MOEA and NSGA-II including the 

dominated solutions are provided in Appendix B. 

 

2-objective �=50 Assignment Problem 

 
While C-TDEA successfully converges to the Pareto-optimal frontier, NSGA-II 

and ε-MOEA fail to converge as seen in Figure 3.12. Indicator values in Table 

3.11 also show that C-TDEA has much better convergence and diversity than 

both of the algorithms in terms of the metric values. At 95% significance level, C-

TDEA is statistically better than NSGA-II and ε-MOEA in both metrics. The 

seeded versions of NSGA-II and ε-MOEA are also considered as in the case of 

knapsack problem. In Figure 3.12, we see that seeding improves the performance 

of the contender algorithms to converge to the Pareto-optimal frontier, in contrast 

to the case for the MOKP. However, C-TDEA still outperforms the seeded 

versions of the algorithms, as seen in Table 3.12. On the other hand, the territory 

definition and the repair-improvement mechanisms of C-TDEA provide the 

algorithm both convergence and diversity, but in expense of increased 

computational times compared to NSGA-II and ε-MOEA.  

 
 

Table 3.11 Indicator Results for the 2-objective N=50 AP 
 

Algorithm 

I-Epsilon   Hypervolume 

Duration (min) +
εI

x  +
εI

s  
 

Hx  Pareto

H

H

x

x  
Hs  

C-TDEA 31.6 3.6  0.8992 0.9841 0.0023 0.8631 
NSGA-II 1221.3 27.5  0.0800 0.0876 0.0131 0.2387 

NSGA-II (s) 562.2 2.8  0.5685 0.3313 0.0038 0.2067 
ε-MOEA 841.0 11.8  0.2715 0.2971 0.0214 0.1786 

ε-MOEA (s) 731.4 5.7  0.4812 0.5735 0.0077 0.1242 
Pareto Front 0.0 -  0.9137 1.0000 - - 
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Table 3.12 Test Results for the 2-objective N=50 AP 
 

C

pm

T

pmH µµ =:0  vs. C

pm

T

pmH µµ ≠:1  

Contender 

I-Epsilon  Hypervolume 

+∆
εI

 P-Value Winner  
H∆  P-Value Winner 

NSGA-II -1189.7 0.0000 C-TDEA  0.8192 0.0000 C-TDEA 
NSGA-II (s) -530.6 0.0000 C-TDEA  0.3307 0.0000 C-TDEA 

ε-MOEA -809.4 0.0000 C-TDEA  0.6276 0.0000 C-TDEA 
ε-MOEA (s) -699.8 0.0000 C-TDEA  0.4180 0.0000 C-TDEA 
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Figure 3.12 Plots for the 2-objective N=50 AP 
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2-objective �=100 Assignment Problem 

 

Both NSGA-II and ε-MOEA fail to converge to the Pareto-optimal frontier of this 

2-objective assignment problem (see Table 3.13). We can see in Table 3.14 that, 

the other two algorithms are outperformed by C-TDEA in terms of both metrics. 

Although the seeded NSGA-II and ε-MOEA perform better than their original 

versions, they are still outperformed by C-TDEA in terms of both performance 

metrics. The final populations obtained by each of the algorithms are provided 

over the Pareto-optimal frontier in Figure 3.13.  

 
 

 
 

Table 3.13 Indicator Results for the 2-objective N=100 AP 
 

Algorithm 

I-Epsilon   Hypervolume 

Duration (min) +
εI

x  +
εI

s  
 

Hx  Pareto

H

H

x

x  
Hs  

C-TDEA 105.2 3.4  0.8995 0.9665 0.0014 5.2318 
NSGA-II 3001.7 7.0  0.0081 0.0087 0.0029 0.8003 

NSGA-II (s) 1811.6 3.6  0.3762 0.4042 0.0016 0.5366 
ε-MOEA 2181.0 9.9  0.1564 0.1681 0.0071 0.4116 

ε-MOEA (s) 2094.2 5.2  0.3488 0.3748 0.0056 0.3657 
Pareto Front 0.0000 -  0.9307 1.0000 - - 

 

 

 

Table 3.14 Test Results for the 2-objective N=100 AP 
 

C

pm

T

pmH µµ =:0  vs. C

pm

T

pmH µµ ≠:1  

Contender 

I-Epsilon  Hypervolume 

+∆
εI

 P-Value Winner  
H∆  P-Value Winner 

NSGA-II -2896.5 0.0000 C-TDEA  0.8914 0.0000 C-TDEA 
NSGA-II (s) -1706.4 0.0000 C-TDEA  0.5233 0.0000 C-TDEA 

ε-MOEA -2075.8 0.0000 C-TDEA  0.7431 0.0000 C-TDEA 
ε-MOEA (s) -1989.0 0.0000 C-TDEA  0.5507 0.0000 C-TDEA 
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Figure 3.13 Plots for the 2-objective N=100 AP 
 
 
 
 
3-objective �=50 Assignment Problem 
 
According to the performance metric values and the test results provided in Table 

3.15 and 3.16 respectively, C-TDEA outperforms the other two contender 

algorithms in terms of both performance metrics. In Figure 3.14, it is seen that C-

TDEA maintains convergence and diversity over the Pareto-optimal frontier. On 
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the other hand, NSGA-II and ε-MOEA can only converge to the middle part of 

the Pareto-optimal frontier. The seeded versions of the contender algorithms 

provide better diversity over the Pareto-optimal frontier, and they converge better 

by the assistance of the seed solutions. However, C-TDEA again outperforms the 

seeded algorithms in terms of both performance metrics (Table 3.16). 

 
 
 

Table 3.15 Indicator Results for the 3-objective N=50 AP 
 

Algorithm 

I-Epsilon   Hypervolume 

Duration (min) +
εI

x  +
εI

s  
 

Hx  Pareto

H

H

x

x  
Hs  

C-TDEA 144.8 10.6  0.6873 0.8797 0.0025 2.5817 
NSGA-II 1225.3 29.2  0.0320 0.0410 0.0003 0.3048 

NSGA-II (s) 499.0 24.9  0.4561 0.5838 0.0003 0.2764 
ε-MOEA 980.5 26.4  0.1086 0.1390 0.0064 0.2404 

ε-MOEA (s) 606.7 25.8  0.4281 0.5479 0.0007 0.2287 
Pareto Front 0.0000 -  0.7813 1.0000 - - 

 

 

 

Table 3.16 Test Results for the 3-objective N=50 AP 
 

C

pm

T

pmH µµ =:0  vs. C

pm

T

pmH µµ ≠:1  

Contender 

I-Epsilon  Hypervolume 

+∆
εI

 P-Value Winner  
H∆  P-Value Winner 

NSGA-II -1080.5 0.0000 C-TDEA  0.6553 0.0000 C-TDEA 
NSGA-II (s) -354.2 0.0000 C-TDEA  0.2312 0.0000 C-TDEA 

ε-MOEA -835.7 0.0000 C-TDEA  0.5787 0.0000 C-TDEA 
ε-MOEA (s) -461.9 0.0000 C-TDEA  0.2592 0.0000 C-TDEA 
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Figure 3.14 Plots for the 3-objective N=50 AP 
 

 

 

3-objective �=100 Assignment Problem 

 

In this problem instance, C-TDEA outperforms both NSGA-II and ε-MOEA in 

terms of both performance metrics (see Table 3.17 and Table 3.18). The 

algorithm provides diversity over the Pareto-optimal frontier as seen in Figure 
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3.15. The two contenders of C-TDEA can only converge to the middle portion of 

the Pareto-optimal frontier. C-TDEA also outperforms the seeded versions of the 

contenders. However, it should be mentioned that the performances of the 

contenders have substantially increased by the inclusion of the seed solutions. 

 

 

 

Table 3.17 Indicator Results for the 3-objective N=100 AP 
 

Algorithm 

I-Epsilon   Hypervolume 

Duration (min) +
εI

x  +
εI

s  
 

Hx  Pareto

H

H

x

x  
Hs  

C-TDEA 399.2 13.9  0.6951 0.8364 0.0024 16.3724 
NSGA-II 2924.4 20.3  0.0203 0.0244 0.0005 0.9492 

NSGA-II (s) 1549.9 12.7  0.3795 0.4566 0.0004 0.6204 
ε-MOEA 2483.2 16.8  0.0555 0.0668 0.0022 0.7562 

ε-MOEA (s) 1916.8 15.2  0.3198 0.3848 0.0006 0.6017 
Pareto Front 0.0000 -  0.8311 1.0000 - - 

 

 

 

Table 3.18 Test Results for the 3-objective N=100 AP 
 

C

pm

T

pmH µµ =:0  vs. C

pm

T

pmH µµ ≠:1  

Contender 

I-Epsilon  Hypervolume 

+∆
εI

 P-Value Winner  
H∆  P-Value Winner 

NSGA-II -2525.2 0.0000 C-TDEA  0.6748 0.0000 C-TDEA 
NSGA-II (s) -1150.7 0.0000 C-TDEA  0.3156 0.0000 C-TDEA 

ε-MOEA -2084.0 0.0000 C-TDEA  0.6396 0.0000 C-TDEA 
ε-MOEA (s) -1517.6 0.0000 C-TDEA  0.3753 0.0000 C-TDEA 
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Figure 3.15 Plots for the 3-objective N=100 AP 
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3.5.4 Discussions 

 

In this section, we show that C-TDEA can converge to and provide diversity on 

the Pareto-optimal frontiers of all of the test problems. C-TDEA outperforms both 

NSGA-II and ε-MOEA in terms of both Hypervolume metric and I-Epsilon 

metric in each of the 8 test problems. Even the seeded contender algorithms 

cannot come close to the performance of C-TDEA. However, the advantage 

obtained by territory definition is eliminated substantially in C-TDEA. That is, 

although territory definition provides fast execution, the repair and improvement 

procedures used in C-TDEA blankets this advantage. Therefore, less time 

requiring repair and improvement procedures can be developed to overcome this 

problem. 
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CHAPTER 4 
 
 
I�TERACTIVE COMBI�ATORIAL TERRITORY DEFI�I�G 

EVOLUTIO�ARY ALGORITHM (IC-TDEA) 

 
 
 

Multi-objective evolutionary algorithms end up with a population of solutions as 

an approximation of the Pareto-optimal frontier. However, in most cases the DM 

is interested in obtaining a single solution, or a very small set of solutions to 

select from. Rachmawati and Srinivasan (2006) have illustrated preferences as 

“the basis of tie-breaking between solutions in the Pareto optimal set”. Therefore, 

we now focus on the issue of preference incorporation to present a preference-

based multi-objective evolutionary algorithm. 

 

In this chapter, we present Interactive Combinatorial Territory Defining 

Evolutionary Algorithm (IC-TDEA) that is developed to end up with the 

preferred solutions of the DM in an interactive manner. The algorithm is a 

modified version of Interactive Territory Defining Evolutionary Algorithm 

(iTDEA) that has been proposed by Karahan (2008). 

 

Influenced by the advantages of preference incorporation into MOEAs, Karahan 

(2008) has also presented the interactive version of TDEA, named as iTDEA. In 

this interactive version, the preferred region of the DM is approximated step by 

step during the optimization stage as information is obtained from the DM. For 

this purpose, interaction stages are determined at prespecified generations, and a 

more focused and smaller preference region is estimated at each of these 

interaction stages. The first focus region is determined as the whole Pareto 

frontier and it is assigned the highest τ value. The corresponding τ value of the 

final focus region (the smallest τ value) is also prespecified. The subsequent 

regions are estimated during the optimization process and a newer region is 
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smaller and has a smaller τ value than the previous ones. The offspring is in a 

preferred region if its favorable weights are covered by the weight sets of that 

preferred region and it is evaluated using the τ associated to that region. 

Otherwise, it is evaluated using the τ value of the remaining region. Since a 

preferred region is specified by its weight set, Karahan (2008) has demonstrated a 

procedure to obtain these weight sets and also to determine the values of the 

corresponding τ values. IC-TDEA utilizes the same weight set and τ calculations 

that Karahan (2008) has proposed in iTDEA. The weight set of the next 

preference region is obtained by constructing an interval around the favorable 

weights of the best solution of the DM obtained at the interaction stage. This best 

solution is selected by the DM from a representative set of solutions from the 

previous focus region such that, this representative set is composed of the farthest 

ε-nondominated solutions obtained by a filtering procedure. In fact, the only 

difference of iTDEA from TDEA is in the archive acceptance procedure such 

that, before checking for territory violation, the favorable weights of the offspring 

are calculated and the corresponding preference region of the offspring is found to 

obtain the τ value of territory violation check. After determining the regions that 

contain the favorable weights of the offspring, the offspring is evaluated with 

respect to the smallest of the corresponding τ values. In iTDEA, the determination 

of the interaction stages should be attached enough importance for the correct 

functioning of the algorithm in order to provide convergence to the Pareto-

optimal frontier. This interactive preference incorporation scheme results in better 

details in the regions of interest with higher computational efficiency. 

 

This chapter is organized as follows: We present the general outline of IC-TDEA 

that is common for all MOCO problems in Section 4.1. We explain the 

modifications of the algorithm for the knapsack problem in detail in Section 4.2. 

Similarly, we explain the modifications of the algorithm for the assignment 

problem in detail in Section 4.3. Finally, we present the experimental results and 

comparisons in Section 4.4. 
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4.1 GE�ERAL OUTLI�E OF IC-TDEA 

 

Below is the general outline of the algorithm that is applicable to any MOCO 

problem: 

 

1. Initialization: Set the initial regular population size  , the starting 

territory size τ0, the final territory size τH for the final preference region, 

the maximum number of generations to iterate the algorithm T, such that 

the final population size is acceptable for the DM.  Set the number of 

interactions H according to the availability of the DM. Set the iteration 

counter t = 0 and interaction counter h=1. Set the first preference region 

R0 as the whole Pareto-optimal frontier. Set the initial reference point 

ff Re
0  as the ideal point *f . Set the interaction generations G1, …, GH  

2. Initialization of the Regular Population: Obtain   individuals to fill the 

initial regular population P(0) by creating   seed solutions, and  -

 random individuals. 

3. Initialization of the Archive Population: Initialize the archive population 

with the copies of the solutions in P(0) that are nondominated with respect 

to the solutions in P(0). 

4. Parent Selection: Set t ← t +1. Choose one parent from the regular 

population, and one parent from the archive population.  

5. Recombination: Recombine the parents to create the offspring. 

6. Mutation: Apply mutation to the offspring. 

7. Repair and Improvement of the Offspring: If the offspring is infeasible, 

then repair the offspring such that it becomes feasible. Then, improve the 

offspring if there is place for improvement. 

8. Acceptance into the Regular Population: Check whether the offspring 

satisfies the acceptance condition for the regular population. If it is 

accepted, insert it into P(t). Otherwise, go to step 10. 
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9. Acceptance into the Archive Population: If the offspring is accepted into 

P(t), check whether it satisfies the acceptance condition for the archive 

population. If it is accepted, insert it into A(t). 

10. Interaction: If t = Gh, stop for interaction with the DM. Present a filtered 

and well-dispersed sample of solutions to the DM. Set the solution 

preferred by the DM as the reference point f

hf Re . Determine the new 

preferred region Rh around f

hf Re  and set the corresponding territory size 

τh. Set h← h+1. Otherwise, go to Step 11. 

11. Stopping Condition: Stop if the pre-specified iteration limit T is hit (t=T), 

and report the archive population, or a well-dispersed small set of 

solutions from the archive population to the DM. Otherwise, go to step 4. 

 

In the interaction stage, the DM may choose more than one solutions. This 

situation can be handled by the algorithm after some revisions to deal with 

multiple reference points. However, we deal with the single reference point case 

in this study. 

 

4.2 IC-TDEA FOR MULTI-OBJECTIVE K�APSACK PROBLEM 

 

In IC-TDEA, the repair-improvement procedure is revised for the offspring to 

serve for convergence to the desired region on the Pareto-optimal frontier. The 

procedure is the same as C-TDEA for the initial population members. The revised 

repair-improvement procedure for an offspring between interaction stages Gh and 

Gh+1 is as follows: 

 

1. Check whether the offspring is dominated by the reference point f

hf Re . If 

the offspring is dominated by f

hf Re , go to Step 2. Otherwise, go to Step 3. 

2. Check whether the offspring is within the last preferred region Rh. If the 

offspring is within Rh, then go to Step 3. Otherwise go to Step 4. 
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3. If the offspring is infeasible, repair the offspring in the direction of the 

ideal point *f . If there is place for further improvement, improve the 

offspring in the direction of *f . 

4. If the offspring is infeasible, repair the offspring in the direction of the 

ideal point f

hf Re . If there is place for further improvement, improve the 

offspring in the direction of f

hf Re . 

 

The repair-improvement in the direction of the ideal point *f  is the original 

repair-improvement procedure used in C-TDEA. However, in order to guide a 

solution in the direction of a dominating point except the ideal point, a 

modification in the original procedure is required. In the original repair-

improvement procedure, instead of the favorable weights of the solutions, the so 

called “reference weights” are utilized (Equation 4.1). The formulation of the 

reference weights is a modified version of the favorable weight formulation, 

where the function values of the reference point are used instead of the function 

values of the ideal point. 
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Therefore, if an offspring is infeasible and it is dominated by the reference point 

f

hf Re  but it is not in the last preferred region Rh, the following repair procedure is 

carried out: 
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1. Calculate the reference weights, REF

iλ s, of the solution. 

2. Calculate Tchebycheff distance after moving out item j from the knapsack 

for each item j which is in the current knapsack:  

 

}{ )(( *
ijii

REF

i
Mi

j czzMaxd −−=
∈

λ                                    (4.2) 

 

3. Calculate dj / aj for each item j which is in the current knapsack, where aj 

is the constraint coefficient of item j. 

4. Find    Minj { dj / aj } = dk / ak 

5. Discard item xk from the knapsack. 

6. If the new solution is infeasible, turn back to Step 1 and repeat the same 

procedure using the favorable weights of the new solution until a feasible 

solution is obtained. Otherwise, finish the repair procedure. 

 

On the other hand, if an offspring is feasible or it becomes feasible after the repair 

procedure, it is evaluated for the improvement procedure. If the offspring is 

dominated by the reference point f

hf Re but it is not in the last preferred region Rh, 

the following procedure is utilized: 

 

1. Calculate the reference weights, REF

iλ s, of the solution. 

2. For each item j which is not in the current knapsack and addition of which 

does not violate the knapsack capacity, calculate Tchebycheff distance 

after placing item j into the knapsack: 

 

}{ )(( *
ijii

REF

i
Mi

j czzMaxd +−=
∈

λ                                    (4.3) 

 

3. Calculate (1-dj) / aj for each item j which is not in the current knapsack 

and addition of which does not violate the knapsack capacity, where aj is 

the constraint coefficient of item j.   
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4. Find    Maxj { (1-dj) / aj } = (1-dk) / ak 

5. Place item xk into the Knapsack. 

 

If there is place for improvement of the new solution, turn back to Step 1 and 

repeat the same procedure using the favorable weights of the new solution until 

there is no place for improvement. Otherwise, finish the improvement procedure. 

The procedure is illustrated in Figure 4.1. Region 1 to the southwest of 

f

hf Re corresponds to the objective space that is dominated by the reference 

point f

hf Re , while Region 2 corresponds to the last preferred region Rh that is 

constructed around f

hf Re .  

 

 

 
Figure 4.1 IC-TDEA Repair and Improvement Procedure for MOKP 

  

 

Although the aim is to converge to the region that is preferred by the DM, we 

should still continue to search the whole Pareto-optimal frontier for other 

solutions that may be interesting for the DM. The reason is that, the DM does not 

know his utility function beforehand, and any region on the Pareto-optimal 

frontier that is not searched yet may be of interest for the DM. Consequently, the 

solutions that are not dominated by the reference point are used to serve for 

exploration over the whole Pareto-optimal frontier, and they are subject to the 
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ideal point based repair-improvement procedure. On the other hand, the solutions 

that are dominated by the reference point have the potential to be repaired and 

improved in the direction of the reference point. However, the solutions that are 

in the last preferred region serve to convergence to the preferred region by using 

their own favorable weights that are covered by the weight range of this preferred 

region. Since the solutions that are dominated by the reference point f

hf Re but are 

not in the last preferred region Rh cannot guarantee the convergence to the 

preferred region by directing them to the ideal point, those solutions are repaired 

and improved in the direction of the reference point f

hf Re . 

 

4.3 IC-TDEA FOR THE MULTI-OBJECTIVE ASSIG�ME�T PROBLEM 

 

As in the case of the knapsack problem, the offspring improvement procedure of 

the assignment problem is also revised in order to focus on the desired region on 

the Pareto optimal frontier. The procedure is the same as in C-TDEA for the 

initial population members. The revised improvement procedure for an offspring 

between interaction stages Gh and Gh+1 is as follows: 

 

1. Check whether the offspring is dominated by the reference point f

hf Re . If 

the offspring is dominated by f

hf Re , go to Step 2. Otherwise, go to Step 3. 

2. Check whether the offspring is within the last preferred region Rh. If the 

offspring is within Rh, then go to Step 4. Otherwise go to Step 5. 

3. Check for improvement of the offspring based on domination criterion. 

4. Check for improvement of the offspring based on domination criterion 

without allowing the offspring to get out of Rh. 

5. Check for improvement of the offspring in the direction of f

hf Re  until it is 

covered by Rh. Then continue to check for improvement of the offspring 

based on domination criterion without allowing the offspring to get out of 

Rh. 
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The improvement based on domination criterion is the original improvement 

procedure used in C-TDEA. That is, the jobs are exchanged among the people if 

and only if the revised solution dominates the original solution. However, in order 

to guide the solution to the preferred region, original improvement procedure 

should be revised. For this aim, we propose a new criterion, which is the 

Euclidean distance to the reference point f

hf Re . In the original improvement 

procedure, instead of taking the job exchange criterion as domination, we check 

whether the revised solution has a smaller Euclidean distance to f

hf Re or not. 

Therefore, the jobs are exchanged if and only if the new solution is closer to 

f

hf Re in terms of Euclidean distance. 

 

The procedure is illustrated in Figure 4.2. The solutions that are subject to 

domination based improvement are illustrated as being directed to the ideal point. 

On the other hand, for the solutions that are improved by using the Euclidean 

distance to the reference point criterion, the improvement is shown to be directed 

to the reference point f

hf Re . The motivation behind this improvement scheme is 

similar to the knapsack problem, which has been discussed in Section 4.2. 

 

If an offspring is dominated by the reference point f

hf Re but it is not in the last 

preferred region Rh, the following improvement procedure is carried out: 

 

1. Set first iteration counter n =1. Start at gene n that corresponds to the first 

person. 

2. Set second iteration counter m = n+1. If the solution is not within the last 

preferred region Rh, then go to Step 3, otherwise go to Step 4. 

3. Exchange the jobs of person m with the job of person n. If the newly 

obtained solution has a smaller Euclidean distance to f

hf Re than the initial 

solution, keep the jobs exchanged and go to Step 5. Otherwise, undo the 

exchange, set m←m+1, and repeat this step. If m=M+1, go to Step 5. 
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4. Exchange the jobs of person m with the job of person n. If the newly 

obtained solution dominates the initial solution and it is within the last 

preferred region Rh, keep the jobs exchanged and go to Step 5. Otherwise, 

undo the exchange, set m←m+1, and repeat this step. If m=M+1, go to 

Step 5. 

5. Set n←n +1 and go back to Step 2. If n = M, stop. 

 

 

 
 

Figure 4.2 IC-TDEA Improvement Procedure for MOAP 
 

 

For the same reason as in the case of C-TDEA, this improvement procedure is 

held until a predetermined small number of generations that is determined by 

preliminary runs.  

 

 

 

 

 

 

Region 1 

Region 2 
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4.4 SIMULATIO� RU�S A�D COMPARISO�S 

 

The computational experiments are performed on 2- and 3-objective 750-item 

single-dimensional knapsack problem instances; and 2- and 3-objective 100×100 

assignment problem instances. We assume that the DM’s preferences can be 

represented by a Tchebycheff utility function of the following form (Karahan, 

2008): 

 

[ ]iii
MiZz

ffwMaxMinU −=
=∈

*

,...,1
                                        (4.4) 

 

where if  is the value of the i
th objective, *

if is the i
th element of the ideal 

objective vector, and iw  is the weight of the i
th objective. For each of the 4 

problem instances, we choose three different utility functions to test the capability 

of the algorithm to converge to the different regions of the Pareto-optimal 

frontiers. Moreover, we test the performance of the algorithm with 4 and 6 

interactions (Karahan, 2008), in order to see the effect of the number of 

interactions to focus on the desired region. The simulation runs are replicated 10 

times. The parameters used in the simulation runs are provided in Table 4.1. 

 

Table 4.1 Interactive Test Parameters 
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In each interaction stage, 2M solutions are filtered from the archive population, 

where M is the number of objectives, and presented to the DM to set the new 

reference point. However, in the first interaction, 4M solutions are presented since 

this is the first time preference information is elicited from the DM and it has a 

very significant effect to direct the search process to the correct region of the 

Pareto-optimal frontier. In the end of the simulation run, we present the best 

utility solution among the filtered 2M solutions from the final archive population, 

and the solution having the best utility among all archive members without any 

filtering. 

 

In order to test the performance of the algorithm, we calculate the deviation of 

utility of the obtained solution from that of the true optimal solution: 

 

Absolute Deviation *UU −=                                          (4.5) 

 

We also calculate the percent deviation to scale the obtained deviation value as 

follows: 

Relative Deviation 
*

*

UU

UU
w −

−
=                                         (4.6) 

 

where U  is the utility value of the solution obtained by the algorithm, *U  is the 

utility value of the true optimal solution, and wU is the utility value of the worst 

solution out of all nondominated solutions that are known. This performance 

metric is taken from Karahan (2008). 
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4.4.1 Multi-objective Knapsack Problem 

 

2-objective 750-item Knapsack Problem 

 

Test 1: In the first test, the best solution is obtained at the middle of the Pareto-

optimal frontier by attaching equal weights to each of the objectives. Table 4.2 

shows the results found for the cases where the final population is filtered or 

unfiltered before presenting the population to the DM.  

 
 

Table 4.2 Interactive Test 1 Results for 2-objective 750-item KP 
 

Solution Inter. Mean 
Std. 
Dev. 

Opt. Worst 
Abs.  
Dev. 

Rel.  
Dev. 

Duration 
 (min) 

Unfilter 4 669.2 5.996 631.00 2580.0 38.15 1.9574% 7.4882 
Filter 4 671.3 6.084 631.00 2580.0 40.25 2.0652% 7.4882 

Unfilter 6 666.4 5.116 631.00 2580.0 35.35 1.8138% 7.6622 
Filter 6 666.4 5.116 631.00 2580.0 35.35 1.8138% 7.6622 

 

 

In Figure 4.3, we observe that better convergence to the desired regions can be 

obtained by increasing the number of interactions. Moreover, the final preferred 

region gets narrower when more interactions are performed with the DM. Figure 

4.3 shows that IC-TDEA successfully converges to the desired portion of the 

Pareto-optimal frontier. Although the deviation from the optimal solution 

increases when the final population is filtered for the 4-interaction case, this 

disadvantage of filtering is eliminated with the increasing number of interactions. 

For the 6-interaction case, the filtering process applied to the final population is 

able to obtain the same solution as the unfiltered case. Since filtering is important 

to decrease the decision making effort of the DM, this process may become 

advantageous by increasing the number of interactions with the DM. 
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Figure 4.3 Interactive Test 1 Plots of 2-objective 750-item KP 
 

 

 

Test 2: In this test, the DM favors Objective 1 much more than Objective 2. This 

test is utilized to test the performance of IC-TDEA is case of such a bias to deal 

with on the Pareto-optimal frontier. Table 4.3 shows that, the performance of the 

algorithm is similar to that in Test 1. While the filtered and unfiltered results are 

similar to each other, 6-interaction case performs much better than 4-interaction 

case. The results of the runs are presented in Figure 4.4. 

 
 
 

Table 4.3 Interactive Test 2 Results for 2-objective 750-item KP 
 

Solution Inter. Mean 
Std. 
Dev. 

Opt. Worst 
Abs.  
Dev. 

Rel.  
Dev. 

Duration 
 (min) 

Unfilter 4 481.6 2.278 437.6 4128.0 44.04 1.1934% 7.7825 
Filter 4 482.9 3.621 437.6 4128.0 45.28 1.2270% 7.7825 

Unfilter 6 477.4 5.356 437.6 4128.0 39.84 1.0796% 7.8313 
Filter 6 478.3 6.267 437.6 4128.0 40.68 1.1023% 7.8313 
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Figure 4.4 Interactive Test 2 Plots of 2-objective 750-item KP 
 

 

 

 

Test 3: In this test, in contrast to Test 2, the DM favors Objective 2. Table 4.4 

shows the deviations from the optimal point, and we see that the algorithm is able 

to converge to the region of the optimal point as in the case of previous two tests. 

Surprisingly, the algorithm works better in 4-interaction case. That is, the 

remaining interactions fail to guide the algorithm to the right direction within the 

narrower preferred regions. The final populations of the 4- and 6-interaction cases 

are presented in Figure 4.5. 

 
 
 

Table 4.4 Interactive Test 3 Results for 2-objective 750-item KP 
 

Solution Inter. Mean 
Std. 
Dev. 

Opt. Worst 
Abs.  
Dev. 

Rel.  
Dev. 

Duration 
 (min) 

Unfilter 4 601.2 3.586 559.3 3262.0 41.90 1.5503% 8.3947 
Filter 4 604.8 4.133 559.3 3262.0 45.50 1.6835% 8.3947 

Unfilter 6 608.7 3.867 559.3 3262.0 49.40 1.8278% 8.0714 
Filter 6 611.3 4.101 559.3 3262.0 52.00 1.9240% 8.0714 
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Figure 4.5 Interactive Test 3 Plots of 2-objective 750-item KP 
 

 

 

3-objective 750-item Knapsack Problem 

 

Test 1: In 3-objective test problem runs, we see that the differences between 4- 

and 6-interaction cases; and the filtered and unfiltered cases are more obvious. As 

seen in Table 4.5, standard deviations of the filtered cases are higher than the 

unfiltered cases. Moreover, the standard deviation gets smaller as we increase the 

number of interactions from 4 to 6. Although the algorithm converges to the 

middle of the Pareto-optimal frontier, where all objectives are approximately 

equally weighted, the performance of the algorithms worsens as we increase the 

number of objectives. We can follow the preferred regions in Figure 4.6 for both 

4- and 6-interaction cases. 

 
 
 

Table 4.5 Interactive Test 1 Results for 3-objective 750-item KP 
 

Sol. Int. Mean 
Std. 
Dev. 

Opt. Worst 
Abs.  
Dev. 

Rel.  
Dev. 

Duration 
 (min) 

Unfilt. 4 656.70 6.561 605.22 1856.58 51.48 4.1139% 17.7138 
Filt. 4 687.10 6.975 605.22 1856.58 81.84 6.5401% 17.7138 

Unfilt. 6 640.20 5.455 605.22 1856.58 34.98 2.7954% 17.8944 
Filt. 6 648.12 5.983 605.22 1856.58 42.90 3.4283% 17.8944 
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Figure 4.6 Interactive Test 1 Plots of 3-objective 750-item KP 
 
 

Test 2: In this test, Objective 1 is favored more than the remaining two 

objectives. We can see in Table 4.6 that, the performance of the algorithm is not 

much affected by this bias, since the performance metric results are similar to 

Test 1. The plot of the final population is presented in Figure 4.7.  

 

Table 4.6 Interactive Test 2 Results for 3-objective 750-item KP 
 

Sol. Inter. Mean 
Std. 
Dev. 

Opt. Worst 
Abs.  
Dev. 

Rel.  
Dev. 

Duration 
 (min) 

Unfilt. 4 556.4 6.432 432.2 3810.1 124.20 3.6768% 16.8509 
Filt. 4 556.5 6.520 432.2 3810.1 124.30 3.6798% 16.8509 

Unfilt. 6 515.6 5.651 432.2 3810.1 83.40 2.4690% 17.6166 
Filt. 6 518.3 5.412 432.2 3810.1 86.10 2.5489% 17.6166 
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Figure 4.7 Interactive Test 2 Plots of 3-objective 750-item KP 
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Test 3: In this test, the bias is for the third objective, which has been finely 

captured by IC-TDEA, as seen in Figure 4.8. Table 4.7 shows that, the algorithm 

shows its best 3-objective knapsack performance in this test. The final population 

plots are provided in Figure 4.8, where the obtained solutions have converged to 

the region of higher Objective 3 values. 

 

 

Table 4.7 Interactive Test 3 Results for 3-objective 750-item KP 
 

Sol. Int. Mean 
Std. 
Dev. 

Opt. Worst 
Abs.  
Dev. 

Rel.  
Dev. 

Duration 
 (min) 

Unfilt. 4 636.0 6.712 581.50 2813.0 54.50 2.4423% 16.9614 
Filt. 4 650.5 6.928 581.50 2813.0 69.00 3.0921% 16.9614 

Unfilt. 6 633.0 5.816 581.50 2813.0 494.46 2.3079% 17.9326 
Filt. 6 639.9 6.025 581.50 2813.0 58.40 2.6171% 17.9326 
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Figure 4.8 Interactive Test 3 Plots of 3-objective 750-item KP 
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4.4.2 Multi-objective Assignment Problem 

 

2-objective 100×100 Assignment Problem 

 

Test 1: In the first 2-objective assignment problem test, the best solution is 

obtained at the middle of the Pareto-optimal frontier. Table 4.8 shows the results 

found for the cases where the final population is filtered or unfiltered. In Figure 

4.9, we observe that, limiting the improvement procedure to a prespecified 

number of generations hinders the final population to finely converge to the 

Pareto optimal frontier. However, IC-TDEA is still successful in converging to 

the desired portion of the Pareto-optimal frontier. The final preferred region gets 

narrower as the number of interactions is increased.  

 
 
 

Table 4.8 Interactive Test 1 Results for 2-objective N=100 AP 
 

Sol. Inter. Mean 
Std. 
Dev. 

Opt. Worst 
Abs.  
Dev. 

Rel.  
Dev. 

Duration 
 (min) 

Unfilt. 4 441.5 5.316 241.0 1889.5 200.50 12.1626% 6.5889 
Filt. 4 445.5 6.478 241.0 1889.5 204.50 12.4052% 6.5889 

Unfilt. 6 431.5 5.102 241.0 1889.5 190.50 11.5560% 6.6862 
Filt. 6 436.5 5.411 241.0 1889.5 195.50 11.8593% 6.6862 
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Figure 4.9 Interactive Test 1 Plots of 2-objective N=100 AP 
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Test 2: In this test, the DM favors the first objective. The performance of the 

algorithm is similar to that in Test 1 (see Table 4.9). 6-interaction case performs 

much better than 4-interactions case, encouraging more interactions with the DM. 

The results of the runs are presented in Figure 4.10. 

 

 

 

Table 4.9 Interactive Test 2 Results for 2-objective N=100 AP 
 

Sol. Int. Mean 
Std. 
Dev. 

Opt. Worst 
Abs.  
Dev. 

Rel.  
Dev. 

Duration 
 (min) 

Unfilt. 4 322.4 6.001 188.4 3023.2 134.00 4.7270% 6.3848 
Filt. 4 330.4 6.220 188.4 3023.2 142.00 5.0092% 6.3848 

Unfilt. 6 308.4 5.885 188.4 3023.2 120.00 4.2331% 6.5046 
Filt. 6 310.5 5.999 188.4 3023.2 122.10 4.3072% 6.5046 
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Figure 4.10 Interactive Test 2 Plots of 2-objective N=100 AP 
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Test 3: This time, the DM’s preference is in favor of Objective 2. In Table 4.10, 

the performance metric results show that the algorithm is able to converge to the 

region of the optimal point. The final populations of the 4- and 6-interaction cases 

are presented in Figure 4.11. 

 

 

 

Table 4.10 Interactive Test 3 Results for 2-objective N=100 AP 
 

Sol. Int. Mean 
Std. 
Dev. 

Opt. Worst 
Abs.  
Dev. 

Rel.  
Dev. 

Duration 
 (min) 

Unfilt. 4 422.8 5.682 216.9 2331.7 205.90 9.7361% 6.6737 
Filt. 4 424.6 5.825 216.9 2331.7 207.70 9.8213% 6.6737 

Unfilt. 6 399.6 4.921 216.9 2331.7 182.70 8.6391% 6.5720 
Filt. 6 405.8 5.127 216.9 2331.7 188.90 8.9323% 6.5720 
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Figure 4.11 Interactive Test 3 Plots of 2-objective N=100 AP 
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3-objective 100×100 Assignment Problem 

 

Test 1: As seen in Table 4.11, the performance of the algorithms gets worse as 

we increase the number of objectives. However, the algorithm is still able to 

converge to the middle of the Pareto-optimal frontier, the preferred region of this 

test. We can see the final preferred region in Figure 4.12 for both 4- and 6-

interaction cases. 

 
 

 
 

Table 4.11 Interactive Test 1 Results for 3-objective N=100 AP 
 

Sol Int Mean 
Std. 
Dev. 

Opt. Worst 
Abs.  
Dev. 

Rel.  
Dev. 

Durat. 
 (min) 

Unfilt 4 640.20 10.101 332.31 1428.57 307.89 28.0855% 10.7785 
Filt 4 648.12 11.226 332.31 1428.57 315.81 28.8079% 10.7785 

Unfilt 6 552.59 9.873 332.31 1428.57 220.28 20.0938% 10.9896 
Filt 6 552.10 10.118 332.31 1428.57 219.78 20.0482% 10.9896 
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Figure 4.12 Interactive Test 1 Plots of 3-objective N=100 AP 
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Test 2: In this test, Objective 1 is favored more than the other two objectives. We 

can see in Table 4.12 that, the performance of the algorithm is much better 

compared to the performance metric results of Test 1. That is, the bias introduced 

in favor of an objective has improved the performance of the algorithm. The plot 

of the final population is presented in Figure 4.13.  

 

 

 

Table 4.12 Interactive Test 2 Results for 3-objective N=100 AP 
 

Sol Int Mean 
Std. 
Dev. 

Opt. Worst 
Abs.  
Dev. 

Rel.  
Dev. 

Durat. 
 (min) 

Unfilt 4 348.60 7.506 230.30 3030.30 118.30 4.2250% 10.4281 
Filt 4 358.90 7.861 230.30 3030.30 128.60 4.5929% 10.4281 

Unfilt 6 340.85 6.855 230.30 3030.30 110.55 3.9482% 10.3104 
Filt 6 349.30 7.004 230.30 3030.30 119.00 4.2500% 10.3104 
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Figure 4.13 Interactive Test 2 Plots of 3-objective N=100 AP 
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Test 3: In this test, the bias is for the third objective as seen in Figure 4.14. Table 

4.13 shows the deviation results from the optimal point of this test. The algorithm 

is able to converge to the preferred region of the DM. The final population plot is 

provided in Figure 4.14, where the obtained solutions have converged to the 

region of lower Objective 3 values. In this test, 4-interaction case performs better 

than 6-interaction case which shows that the population is not guided well during 

the last two interaction stages. 

 

 

Table 4.13 Interactive Test 3 Results for 3-objective N=100 AP 
 

Sol Int Mean 
Std. 
Dev. 

Opt. Worst 
Abs.  
Dev. 

Rel.  
Dev. 

Dur. 
 (min) 

Unfilt. 4 541.50 9.992 308.00 2159.50 233.50 12.6114% 10.5350 
Filt. 4 549.90 11.864 308.00 2159.50 241.90 13.0651% 10.5350 

Unfilt. 6 543.80 7.975 308.00 2159.50 235.80 12.7356% 10.0921 
Filt. 6 551.40 8.112 308.00 2159.50 243.40 13.1461% 10.0921 
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Figure 4.14 Interactive Test 3 Plots of 3-objective N=100 AP 
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4.4.3 Discussions 

 

IC-TDEA can converge to the final preference region of the DM in an interactive 

manner. We show this on various 2- and 3-objective test problems and by using 

different utility functions for the DM. The algorithm can converge to the region of 

interest in all of the test problems. As we increase the number of interactions with 

the DM, we can obtain a more realistic final preference region approximation. 

Since the filtering procedure is seen to mislead the process, the filtering method 

can be revised, which has also been suggested by Karahan (2008). 
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CHAPTER 5 
 
 

CO�CLUSIO�S 

 
 
 
In this study, we propose a multi-objective evolutionary algorithm (MOEA), the 

Combinatorial Territory Defining Evolutionary Algorithm (C-TDEA) to solve 

multi-objective combinatorial optimization (MOCO) problems. We handle the 

single-dimensional multi-objective knapsack problem (MOKP) and multi-

objective assignment problem (MOAP). We introduce a new repair-improvement 

procedure that serves both convergence and diversity at the same time. 

 

We test the performance of C-TDEA against well-known MOEAs in the literature 

on 2-, and 3-objective randomly generated problem instances of MOKP and 

MOAP. We discuss how the territory defining property of Karahan and Köksalan 

(2008) facilitates the solution of MOCO problems by providing fast execution. 

Moreover, the repair and improvement mechanisms, and the other modifications 

in the original algorithm are realized to help in providing convergence and 

preserving diversity for the selected MOCO problems. We observe that C-TDEA 

performs well on Hypervolume and I-Epsilon performance metrics in all 

problems. In all of the problems, it outperforms other algorithms in both metrics. 

 

We also propose a preference incorporation mechanism that focuses on the 

regions that are of special interest for the decision maker. We propose an 

interactive version of C-TDEA called Interactive Combinatorial Territory 

Defining Evolutionary Algorithm (IC-TDEA). Assuming that the decision maker 

does not have any idea on his preferred region at the beginning of the search, IC-

TDEA guides the search by eliciting information from the decision maker in an 

interactive manner and moves the population towards the regions of interest. In 

computational tests, we observe that the interactive version of the algorithm is 

able to converge to the regions that are preferred by the decision maker.  
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There is a limited number of multi-objective evolutionary algorithms available in 

the literature that deal with combinatorial optimization problems. This study aims 

to contribute to fill this gap in the MCDM literature. The algorithm obtains 

diversity in the final population. The territory defining property and the repair-

improvement procedure serves for diversity and these properties are also utilized 

to incorporate the preferences of the decision maker into the search process. 

 

Although the repair-improvement procedures serve to diversity substantially, they 

cast shadow on the fast execution advantage of the territory defining property. For 

instance, the improvement mechanism used in the assignment problem is time 

consuming and we have to limit the algorithm to make improvements in only a 

few initial populations. In a future research, the repair-improvement procedures 

need to be revised to converge to the Pareto-optimal frontier within shorter 

computational time. 

 

We test the algorithms for only multi-objective knapsack and assignment 

problems. In order to show the generality of the algorithm, it needs to be tested on 

other MOCO problems as a future research direction. 

 

In this study, we test the performance of the algorithms on only 2- and 3-objective 

test problems. It remains as a future research to test the algorithms on problems 

with higher number of objectives in order to better assess on the performance of 

our algorithms. 
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APPE�DIX A 
 

DETAILED PLOTS OF �SGA-II A�D ε-MOEA FOR MULTI-

OBJECTIVE K�APSACK PROBLEM 
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Figure A.1 Contender Plots for the 2-objective 200-item KP  
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Figure A.2 Contender Plots for the 2-objective 750-item KP 
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Figure A.3 Contender Plots for the 3-objective 200-item KP 
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Figure A.4 Contender Plots for the 3-objective 750-item KP 
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APPE�DIX B 
 

DETAILED PLOTS OF �SGA-II A�D ε-MOEA FOR MULTI-

OBJECTIVE ASSIG�ME�T PROBLEM 
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Figure B.1 Contender Plots for the 2-objective N=50 AP 
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Figure B.2 Contender Plots for the 2-objective N=100 AP 
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Figure B.3 Contender Plots for the 3-objective N=50 AP 
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Figure B.4 Contender Plots for the 3-objective N=100 AP 

 


