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ABSTRACT
INDUCTION AND CONTROL OF LARGE-SCALE GENE REGULATORY NETWORKSTan, MehmetPh.D., Department of Computer EngineeringSupervisor: Prof. Dr. Faruk PolatCo-Supervisor: Prof. Dr. Reda AlhajjJune 2009, 99 pagesGene regulatory networks model the interations within the ell and thus it is essential tounderstand their struture and to develop some ontrol mehanisms that ould e�etively dealwith them. This dissertation takles these two aspets. To handle the �rst problem, a newonstraint-based modeling algorithm is proposed that an both inrease the quality of the out-put and derease the omputational requirements for learning the struture of gene regulatorynetworks by integrating multiple biologial data types and applying a speial method for densenodes in the network. Constraint-based struture learning algorithms generally perform wellon sparse graphs and it is true that sparsity is not unommon. However, some domains likegene regulatory networks are haraterized by the possibility of having some dense regions inthe underlying graph and the proposed algorithm is apable of dealing with this issue. Thealgorithm is based on a well-known struture learning algorithm alled the PC algorithm, andextends it in multiple aspets. One a network exists, we ould address the seond problem,namely ontrol of the regulatory network for various appliations where the urse of dimen-sionality is the main issue. It is possible that hundreds of genes may regulate one biologialativity in an organism and this implies a huge state spae even in the ase of Boolean models.The thesis proposes e�etive methods to �nd ontrol poliies for large-sale networks. Themodeling and ontrol algorithms proposed in this dissertation have been evaluated on bothsyntheti and real data sets. The test results demonstrate the e�ieny and e�etiveness ofthe proposed approahes.Keywords: gene regulatory networks, indution, ontrol
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ÖZ
BÜYÜK-ÖLÇEKL� GEN DÜZENLEY�C� A�LARIN MODELLENMES� VE KONTROLÜTan, MehmetDoktora, Bilgisayar Mühendisli§i BölümüTez Yönetiisi: Prof. Dr. Faruk PolatOrtak Tez Yönetiisi: Prof. Dr. Reda AlhajjHaziran 2009, 99 sayfaGen düzenleyii a§lar hüre içindeki etkile³imleri modelledi§inden, yap�lar�n� anlamak ve on-lar� verimli bir ³ekilde kontrol edebilen mekanizmalar geli³tirmek çok önemlidir. Bu tez, buiki yönü ele almaktad�r. �lk problemde, gen düzenleyii a§lar�n yap�s�n� ö§renmek için, ç�kt�kalitesini art�r�rken berimsel gereksinimleri azaltan, birden fazla biyolojik veri tipini birliktekullanan ve yo§un dü§ümler için özel bir yöntem uygulayan yeni bir k�s�t-tabanl� modellemealgoritmas� önerilmektedir. K�s�t-tabanl� yap� ö§renme algoritmalar�, seyrek çizgeler için iyiperformans gösterirler ve seyreklik de nadir görülen bir durum de§ildir. Bununla beraber,gen düzenleyii a§lar gibi baz� alanlarda, yo§un bölgeler içeren çizgelere rastlanabilir ve öner-ilen algoritma bu durumla ba³a ç�kabilir. Algoritma, iyi bilinen bir yap� ö§renme algoritmas�olan PC algoritmas� tabanl�d�r ve onu birden fazla yönde geli³tirmektedir. Elimizde bir a§oldu§unda ise, ikini problem kar³�m�za ç�kaakt�r; gen düzenleyii a§lar�n, çe³itli uygulamalariçin, temel mesele ölçeklenebilirlik olmak üzere kontrolü. Bir organizmada yüzlere genin tekbir biyolojik aktiviteyi düzenlemede rol almas� mümkündür ve Boolean modellerde bile bu,muazzam büyüklükte bir durum uzay�na kar³�l�k gelir. Bu tez, büyük-ölçekli a§lara kontrolplanlar� bulmak için verimli yöntemler önermektedir. Bu tezde önerilen modelleme ve kon-trol algoritmalar� hem sentetik hem de gerçek veri kümelerinde test edilmi³tir. Test sonuçlar�,önerilen yakla³�mlar�n etkin ve verimli olduklar�n� göstermektedir.Anahtar Kelimeler: gen düzenleyii a§lar, modelleme, kontrol
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CHAPTER 1INTRODUCTION
1.1 Problem De�nition and MotivationProtein synthesis is one of the most essential funtions taking plae within a ell. A largenumber of di�erent proteins are produed and onsumed inside the ells of living organisms.This is aomplished by the help of the protein enoders in the ell: the genes. Number ofgenes varies between organisms; thought to be between 20000 and 25000 in humans.Gene expression is the name given to the proess of deoding a gene into a protein, and geneexpression level an be de�ned as the amount of protein produed from a ertain gene at a giventime. Sine the amount of a protein in the ell may hange the dynamis of the ell, proteinshave to be produed in an organized manner. This organization is performed by the genesthemselves; some proteins alled transription fators bind to some speial regions on genesand initiate or aelerate gene expression. Also there are some protein-protein interations inthe ell that e�et gene expression. All these interations onstitute a omplex network thatis alled a Gene Regulatory Network (GRN).There are two important questions about gene expression regulation in the ell:1. How an we dedue the relationships between genes in the ell? (i.e., whih gene regulateswhih other gene(s)?)2. Can we devise an intervention (or ontrol) strategy to modify the behavior of this meh-anism by means of some external ations?Determining the relationships between genes is an important issue for biology and mediine.A GRN model provides the researhers the opportunity to understand the insights of ellularproesses and even to simulate these proesses. Drug disovery researh an also bene�t froma GRN model in determining new drug targets or the best one for a disease. In addition tothe experiments performed in vivo and in vitro, the relationships between the genes in a livingell are being determined by in silio studies reently. This is due to reent inrease in boththe quality and quantity of the available biologial data with the help of new tehnologies suhas miroarrays. But, as expeted, this also has some hallenges involved, sine biologial datahave some amount of noise, missing values and a small sample size.1



Devising ontrol strategies for GRNs that will e�et the evolution of the network is impor-tant to avoid undesirable gene ativity pro�les. A ontrol or intervention strategy for a GRNan be de�ned as a way to interat with the network in terms of some ations in order to reahsome pre-de�ned objetive(s). These interventions (or ations) are usually de�ned in terms of(in)ativation of ertain types of genes or proteins; the objetive is to reah (or avoid) a set ofstate(s) (or gene ativity pro�les) [17, 65, 66℄. There are so many di�erent examples for thistype of intervention strategy in biology and mediine; the most well-known ones are some ofthe methods that are used to treat ertain types of aner. For instane, Ge�tinib is a drugused in the treatment of a type of lung aner and inhibits (inativates) the epidermal growthfator reeptor (EGFR) tyrosine kinase enzyme, whih stops unontrolled ell proliferation ofmalignant ells. Without this inativation of EGFR, the ells may ontinue to divide beyondnormal limits. This and other targeted therapies that (in)ativate ertain types of moleulesin malignant ells have reently had a signi�ant impat on the treatment of some types ofaner [31℄.Based on the above questions, there are two problems investigated in this thesis. The �rstan be stated as follows : devise a salable modeling algorithm that, given a set of biologialdata, will derive a partially direted or undireted graph that represents the dependenies(or relationships) between the genes. The methods or algorithms proposed in this ontextwill be disussed under the title �Gene Regulatory Network Modeling�. To state the seondproblem, a few other onepts have to be de�ned �rst. For a given dynami (temporal) modelof a GRN, suppose we want to avoid the model reahing some of the states (or gene ativitypro�les); this is alled the objetive of the ontrol problem. Objetive is mapped to a ontrolproblem in terms of a reward funtion. This is usually de�ned in terms of some of the genesin the network [17, 65, 66℄, suh as: avoid gene ACE2 being expressed. We all the gene(s) interms of whih the objetive is de�ned, the reward gene(s) and the gene(s) that are intervenedby external ations, the ontrol gene(s). Eah applied ation has a ertain ost; for exampleGe�tinib has a ertain prie in the market. Now the seond problem an be stated as follows:given a GRN, an objetive, reward gene(s) and ontrol gene(s), devise a poliy (or strategy)to intervene the GRN as e�etive as possible to reah the objetive. The algorithms proposedin this ontext will be disussed under the title �Gene Regulatory Network Control�.For both of these problems, the fous is on salability in addition to the quality of theoutput of the proposed algorithms. Salability is one of the most important issues in GRNmodeling and ontrol as the number of genes in a genome is muh larger than the number ofvariables that urrent modeling and ontrol algorithms an handle.
2



1.2 Overview of the Proposed ApproahesThis setion brie�y disusses the methods proposed in this dissertation. This overview of theontributions is divided into modeling and ontrol setions whose details exist in Chapters 3and 4, respetively.1.2.1 Gene Regulatory Network ModelingGaussian Graphial Modeling is a method reently used in GRN modeling. Based on themultivariate normality assumption, this lass of methods show promising performane on GRNmodeling. The �PC algorithm� is one of the suessful algorithms that an be used in thisontext. It an be used to derive a graphial model of the genes in a given data set by usingstatistial onditional independene tests. The graphial model output by the PC algorithm isa (partially) direted graph where the nodes are genes and there exists an edge between gene
gi and gj if there is a diret relationship between gi and gj . We an also say that there is anindiret relationship (or dependeny) between the genes if there is a path between them in theresulting graph.The power of onditional independene tests depends on the sample size and the numberof elements in the onditioning set whih we will name hereafter as order following the namingin the PC algorithm literature. So as the order inreases, the power (probability of makingthe right deision) of these tests dereases, in the usual ase of a limited sample size. As thenumber of genes in gene expression data far exeeds the number of samples, the order in thePC algorithm an inrease to a very large value. In addition to derease in power, this alsoauses the algorithm to onsume too muh omputational resoure sine there is an exponentialnumber of subsets to be tested as onditioning sets.There are two methods proposed in this dissertation to overome the problems assoiatedwith using the PC algorithm (or other onstraint-based struture learning algorithms) in GRNmodeling. The �rst method is a proedure to integrate multiple types of biologial data throughonditional independene tests. This way, the method aims at making better deisions inthe tests by using the evidene oming from more than one soure. The idea here is toadapt the signi�ane level in the tests toward more easily aepting (or rejeting) the nullhypothesis aording to the evidene oming from the other soure. Two di�erent soures ofinformation used are the gene expression data and transription fator binding loation data(ChIP-hip) (see Chapter 2).There are various struture learning algorithms that perform well for sparse graphs. Theseare the graphs where the expeted number of onnetions for the nodes is small. While GRNsare also thought to be sparse, there also exist some dense nodes (genes). These nodes onstitutea problem for struture learning algorithms due to (again) the exponential number of ondi-3



tioning sets in the onditional independene tests of the PC algorithm. For this, we proposeda seond method to identify the possible dense genes before exeuting the modeling algorithmand treat those nodes di�erently from others during modeling. This di�erent proedure basi-ally identi�es the onnetions (or dependenies) by applying a greedy algorithm for the densenodes instead of the original exponential one.1.2.2 Gene Regulatory Network ControlThe two frameworks within whih ontrol problems have been investigated are Markov DeisionProblems (MDPs) and Fatored Markov Deision Problems (FMDPs). Both have di�erentadvantages whih may be the reason that they are both widely investigated and used in themahine learning ommunity. While MDPs are easier to implement and understand, FMDPsan be used for some of the problems whih are pratially very hard to attempt with MDPs.The method proposed in this work for salability in MDPs onsiders the observation thatthe e�ets of all genes in a given data set for the ontrol problem are not equal. Let V be theset of genes in a given data set and assume the ontrol problem is de�ned as in Setion 1.1.Given ontrol and reward genes, gc and gr, respetively, we argue that some genes in the set
V \ {gc, gr} have a negligible e�et on the solution of the problem. To estimate those genes, asore is assigned to eah of the genes in V \ {gc, gr}; the smaller the sore the more negligiblethat gene is. The proposed sore is based on the In�uene onept disussed in [78℄. Thereis one important property of this redution proedure that the irrelevant genes are eliminatedfrom the given data even before deriving a model from the data. So, onsider the steps of theproedure as: �derive a model from the given data, formulate the ontrol problem as an MDP,solve the ontrol problem�; this method is useful for the salability of the employed proedureas a whole.A GRN is naturally fatorized, i.e., eah gene orresponds to a fator in the model. Butto the best of our knowledge, the GRN ontrol problem has not been formalized in an FMDPframework before. In this work, we de�ned the problem as an FMDP for the �rst time. In anFMDP, the transition probabilities of the network are modeled using fatored representations;by a dynami Bayesian network for instane. And this usually saves both spae and time. Butfor some of the problems, FMDPs also require exponential resoures. So a redution methodfor FMDPs may also have a signi�ant e�et on the requirements. Based on this argument, adeomposition method that an output good approximate solutions is proposed for FMDPs.Given an FMDP, this method simply deomposes the dynami Bayesian network assoiatedwith the transition probabilities into a number of networks without hanging the relationshipsbetween reward and ontrol genes. This way, by simplifying the problem but preserving the�power� of the ontrol gene, the FMDP solver an fous only on important parts of the problemand this saves signi�ant omputational resoures.4



1.3 Organization of the ThesisThe rest of this dissertation �rst overs the basi bakground required to understand the pro-posed methods. Then the methods are thoroughly desribed and their power is demonstratedby a number of experiments. The rest of this setion brie�y overviews the ontent of theremaining hapters.The next hapter disusses some preliminary onepts required to understand the proposedmethods. In addition to some biologial bakground for interations of genes in the ell,miroarray tehnology and existing data types, Chapter 2 also inludes basis of graphialmodeling of GRNs, the modeling algorithms used (the PC algorithm and Probabilisti Booleannetworks) and Markov deision problems.Chapter 3 inludes the proposed methods for GRN modeling. First, the method for densenodes is introdued; the greedy proedure applied for these nodes and estimating them fromprior knowledge is disussed. Then using prior knowledge in onditional independene testsby adapting the signi�ane level in these tests is introdued. The related work in this �eld isdisussed and the gap overed by these methods is expliitly stated in the last two setions ofChapter 3, respetively.Chapter 4 gives the details of the redution algorithms proposed for ontrol. It is dividedinto two main setions where the �rst one disusses the method for the MDP framework andthe seond one is about the method proposed for FMDPs. Related work on GRN ontrol isalso inluded in the hapter. The ontributions of the hapter are expliitly stated in the lastsetion.Experimental results are reported and disussed in Chapter 5. Naturally, the results formodeling and ontrol are given in two separate setions and those setions are also dividedinto subsetions for eah experiment. Results for both syntheti and real data sets are givenin this hapter.Finally, Chapter 6 inludes the summary of the thesis and the future researh diretionsthat are planned to be investigated to extend the work disussed.1.4 PubliationsThe ontributions desribed in this dissertation have been validated by the experimental studydetailed in Chapter 5. Further, di�erent parts of this dissertation have been published inreputable onferenes and high quality journals overed by Siene Citation Index with highimpat fator. Here is a partial list of the already published papers.
• M. Tan, R. Alhajj and F. Polat, �Automated Large-Sale Control of Gene RegulatoryNetworks,� IEEE Transations on Systems, Man, and Cybernetis-B, (forthoming).5



• M. Tan, F. Polat and R. Alhajj, �Large-Sale Approximate Intervention Strategies forProbabilisti Boolean Networks as Models of Gene Regulation,� Proeedings of IEEESymposium on Bioinformatis and Bioengineering, Ot. 2008.
• M. Tan, M. Alshalalfa, F. Polat and R. Alhajj, �Combining Multiple Types of BiologialData in Constraint-Based Learning of Gene Regulatory Networks,� Proeedings of IEEESymposium on Computational Intelligene in Bioinformatis and Computational Biology,Sep. 2008.
• M. Tan, F. Polat and R. Alhajj, �Feature Redution for Gene Regulatory Network Con-trol,� Proeedings of IEEE Symposium on Bioinformatis and Bioengineering, Ot. 2007.
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CHAPTER 2PRELIMINARIES
This dissertation investigates and proposes novel approahes for gene regulatory network mod-eling and ontrol. The proposed approahes integrate onepts and tehniques from di�erentareas, inluding moleular biology, graphial modeling, onditionally dependent and indepen-dent variables, Bayesian networks, probabilisti Boolean networks and Markov Deision Prob-lems. All these are overed in this hapter in a step to turn the dissertation into a self ontaineddoument.To over the aforementioned topis, this hapter is organized as follows. Setion 2.1 oversthe biologial bakground, inluding the basi moleular omponents of a ell, the miroarraytehnology and existing biologial data types. Charateristis of the graph modeling tehniquesare disussed in Setion 2.2. MDPs are presented in Setion 2.3. Setion 2.4 disusses how theGRN modeling and ontrol approahes proposed in this thesis bene�t from these onepts andtehniques.2.1 Biologial BakgroundThis setion brie�y overs the basis of biology as required to understand the ontext of thisthesis. It gives an overview of the ell and its struture. We dig a bit deeper to understand themoleules (protein, DNA, RNA) in the ell and how they ontrol the ell funtions. Then, weintrodue the biology of genes, transription, and gene expression. The miroarray tehnologymight be onsidered as a major onstituent of the advane in gene expression data analysis.DNA miroarray tehnology has attrated tremendous interest in both the sienti� ommunityand the industry. The data generated by miroarray based experiments has been used fordisease lassi�ation and lass predition.2.1.1 Genes, Proteins and Their Interations in the CellGiving rise to o�springs is essential for all living organisms. Eah o�spring inherits the prop-erties of its parent ell or organism. This passing of traits is alled heredity and genes are7



the basi units in a living ell/organism that are responsible for heredity. A gene is enodedin nulei aids in most of the living organisms. This nulei aid is alled deoxyribonuleiaid (DNA). The other important nulei aid in the ell is alled ribonulei aid (RNA).DNA is omposed of the long hain of four di�erent bases: adenine (A), ytosine (C),guanine (G) and thymine (T) where these bases together with a sugar moleule and a phosphategroup are alled nuleotides. These nuleotides are the same in all living organisms but theirsequenes and amount are di�erent in eah organism. DNA exists as a double helix struturein a ell, where the nuleotides pair up; A pairs with T and G pairs with C.RNA is the other important nulei aid in the ell. Instead of a double strand in DNA,it is omposed of a single strand of nuleotides where T is replaed by Urail (U). There existdi�erent types of RNA in a ell; eah of these perform a di�erent funtion. Messenger RNA(mRNA) is the most important one whih �arries� the geneti information from DNA to theribosome, the organelle in the ell that produes proteins. The other types of RNA also playimportant roles in protein synthesis proess and gene regulation, and these are transfer RNA(tRNA), MiroRNA (miRNA), small nulear RNA (snRNA) and ribosomal RNA (riRNA).DNA has all the neessary information for the funtioning of a ell, i.e., it inludes all thegenes of an organism. Genes orrespond to small segments on DNA where eah gene enodesa protein essential for the ell. In addition to this, DNA has long sequenes of non-odingregions as well, orresponding to no known funtion.Proteins are one of the most important maromoleules and partiipate in every kind ofativity in the ell. The basi unit that forms a protein is an amino aid. All proteins areomposed of 20 di�erent types of amino aids. A gene enodes a protein by determining whihof these amino aids will be used for the prodution of a protein. In addition to the amino aidsequene, 3D struture of a protein is also important in determining its funtion in the ell.Proteins an be lassi�ed into two groups based on their funtion; strutural and regulatory.Strutural proteins, as the name implies, have roles in forming the shape of a living organismand regulatory proteins inlude enzymes and transription fators (TFs) that atalyze thereations and bind to DNA to ontrol protein synthesis, respetively.The entral dogma of moleular biology states that the information transfer in a ell ismainly divided into three stages; repliation, transription and translation. Repliation is thestage where DNA dupliates itself for a new o�spring of the ell. Transription is the proess of�opying� the information on DNA to a mRNA. Then, after transription is ompleted, mRNAis translated into a protein by the help of ribosome and some enzymes.The property of proteins that makes them essential for the ell is their ability to bind toother moleules. For example they an bind to other proteins forming omplex proteins or theyan bind to spei� regions on DNA alled promoters to ontrol gene expression. A gene is saidto be expressed if it is transribed into mRNA. TFs are the proteins that bind to promoters8



and regulate gene expression. A TF an either be monomeri or be the result of binding ofmore than one protein. The interation between a TF and the promoter region of a gene onDNA an be named as a gene-protein interation. All these protein-protein and gene-proteininterations onstitute a large network of interations and the gene expression is ontrolled bythis network. This network is usually referred to as a gene regulatory network (GRN) and anbe represented as a graph (See setion 2.2) where the nodes are genes/TFs and the edges arethe relationships between them.2.1.2 Miroarray TehnologyMiroarray is the name of the tehnology that gave researhers the opportunity to determinethe expression levels of large numbers of genes in parallel. The data produed by a miroarrayexperiment provides the ability to see a large proportion of the genes in the genome of anorganism. This setion disusses the omplementary DNA (DNA) miroarray experimentswhih is the most widely performed one [96℄.Hybridization is the proess of binding of two omplementary single stranded nulei aids.DNA an be produed from mRNA by a proess alled reverse transription with the help ofthe enzyme, reverse transriptase. This DNA is alled DNA and it an hybridize to mRNA.These two onepts form the basis for the DNA Miroarray experiments. The steps of a DNAmiroarray experiment are given in Figure 2.1 and an be enumerated as follows:1. Target DNA preparation2. Slide preparation3. Printing of DNA on hips4. DNA preparation and labeling5. Hybridization6. SanningMiroarray hips are onstruted by ommerial ompanies by polymerase hain reation(PCR) methodology. PCR produes single stranded DNAs to spot on a glass slide. So eah spotontains numerous idential opies of a gene from the organism used. The genes orrespondingto eah spot are reorded. Then by reverse transription, the DNAs of interest are produed.DNA miroarray experiments are usually performed to ompare two types of onditions oftwo di�erent ells where one represent the experimental onditions and other represent thereferene onditions. As shown in Figure 2.1, these an be aner and normal ells. DNAs forboth onditions should be labeled by inorporating �uoreseently labeled nuleotides duringreverse transription. Usually they are labeled with either a red or a green dye, where eah9



Figure 2.1: Steps of a miroarray experiment (adapted from [94℄)olor labels either experimental or referene onditions. Then both types of DNA are puton the same slide for hybridization with the DNA on the miroarray hip. This hybridizationproess generally lasts for one night and after this, in addition to hybridized DNA, there willalso be some amount un-hybridized DNA on the hip of experimental or referene onditions.So the hips are washed in this step to remove any remaining unbound DNAs. Two imagesare then produed from the hip by sanning, where one image is for one olor and the otheris for the other olor. A merged image is also produed from the two images. This image isfurther proessed by image proessing tehniques to produe readings for the green and redlabels. The ratio of red to green or vie versa outputs the relative expression level of the genesin the experimental onditions.2.1.3 Existing Biologial Data TypesIn this setion, we review a set of data types that are widely used by the bioinformatisommunity. This set also inludes the biologial data types analyzed in this thesis.
10



Gene Expression DataGene expression data Dexp, obtained usually from miroarray experiments, is an m×n matrixof expression values. Dexp
ij entry of this matrix orresponds to the expression value of gene

i under ondition j. There are two types of expression data widely used; time series andlassi�ation (or sometimes referred to as stati) data.Time series data, as the name implies, has the hange of expression values of genes overtime. So the miroarray experiment is designed to get the measurements of expression overa number of time steps. This type of data is extensively studied and also introdues somehallenges in both experimental design and analysis [4℄.Stati or lassi�ation data is the snapshot of the expression levels of genes in di�erentsamples. These di�erent samples are usually used to ompare two or more di�erent types ofells; aner versus normal tissue samples for instane. Unlike the ase in time series data,these are assumed to be independent and identially distributed.Transription Fator Binding DataThis type of data is obtained by a tehnique alled genome-wide loation analysis [70℄. Thismethod is a ombination of modi�ed hromatin immunopreipitation(ChIP) and DNA mi-roarray analysis. ChIP method used here provides the ability to detet the binding site ofany protein in vivo [63℄.TF binding data Dtf , at the end, is in the form of a m× n matrix where m is the numberof genes in the experiment and n is the number of TFs. Dtf
ij entry of the data is a p-valueindiating the level of on�dene that TF j binds to the promoter region of gene i; the smallerthe p-value, the larger the probability of binding [53℄. This type of data is one of most e�etivein determining the assoiations between genes in an organism [6, 34, 53, 105℄.Protein-protein Interation DataAs mentioned before, after synthesis, proteins an form omplexes with other proteins for fun-tioning. Protein-protein interation (PPI) data inlude physial interations between proteinsin an organism. A physial interation here refers to the experimentally veri�ed binding oftwo amino aid hains. Suh data sets are useful for working on the spei� proteins as wellas whole genome interations [39, 74, 84℄. PPI data is usually in the form of a 0-1 matrix Dppof interations, where eah entry Dpp

ij determines whether proteins i and j are experimentallydetermined to be interating.
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2.1.4 Pre-proessing Gene Expression DataGene expression data may need some pre-proessing before mining meaningful knowledge. The�rst reason for this is the lak of standardization in the experiments. This not only introduesdi�erenes in readings in the same onditions but also brings some noise to the data. The seondreason is that data have many null entries; i.e., for a given gene some expression values maynot be available. Normalization is the pre-proessing method that helps remove the noise andmake the expression values omparable for di�erent experiments. Pre-proessing methods alsoexist for imputing missing values in gene expression data by hanging the original distributionof data as little as possible. It has also been shown that pre-proessing the data has ertaine�ets on gene network inferene [56℄. Sine some methods work on disrete data rather thanontinuous, disretization of gene expression data an also be listed among the pre-proessingsteps.NormalizationSeveral methods have been proposed for normalization of gene expression data [69, 100℄. The�rst one is based on the onept of house-keeping genes. These genes are assumed to be alwaysative at a ertain level of expression. So the expression level of these genes is used as areferene for normalization. The expression levels of other genes are divided by the expressionlevel of the house-keeping gene in this type of normalization.The seond one is alled total intensity based normalization. This method is based on theassumptions that the mRNA amount for eah sample ompared is equal and the same numberof labeled moleules hybridizes to the arrays for the samples, where the intensity here refersto the readings of green or red labeled spots on the slide after proessing the �nal image ofmiroarray hip. A normalization fator is alulated as the ratio of the sum of red to greenintensities and eah intensity value is multiplied by this fator suh that the mean ratio ofintensities beome 1.Missing value imputationMost of the data mining algorithms require omplete data. For this reason, several missingvalue imputation methods have been proposed for gene expression data [88℄. Of several meth-ods, the method based on the k-nearest neighbor (KNN) algorithm is the most widely used.The KNN algorithm simply hooses the k other genes that are most similar to the gene thathas a missing value. Then a weighted average of these k genes are imputed as the value of thegene. The similarity metri used here is very important where Eulidean distane is proposedin [88℄.
12



DisretizationDisretization is one of the issues in gene expression data proessing that still su�ers fromgeneral onsensus. There are numerous algorithms proposed for disretizing data [57℄. Thesimplest one divides the interval between minimum and maximum values of a given attributeinto a given number of setions (bins). Eah bin is then assigned a di�erent disrete number.Eah expression level is mapped to the orresponding disrete number. The quantization level(number of disrete bins) beomes important in almost all of the disretization methods, where2 or 3 is ommon for gene expression data orresponding to {ON,OFF} and {under-expression,baseline, over-expression}, respetively [29, 101℄.2.2 Graphial ModelingA graph G is de�ned as a pair (V,E), where V is a set of nodes and E is a list of (ordered orunordered) pairs (i, j) to represent that nodes i and j are onneted in G. We will use Eij todenote the edge between i and j. This onnetion may have many interpretations dependingon the domain. For example, for GRNs onsidered in this work, the nodes are the genesand the existene of Eij denotes that the expression level of gene i is in some way relatedto the expression level of gene j. Graph G an be undireted, whih impliitly means that
Eij ∈ G ⇒ Eji ∈ G, i.e., diretion is not important. On the other hand, a Direted AyliGraph (DAG) is a graph where the edges are direted and the graph does not ontain anyyles. It is also possible for a graph to have both undireted and direted edges; suh a graphis usually alled a Partially Direted Ayli Graph (PDAG), whih also does not inlude anyyles. In a graph G, two nodes i and j are alled adjaent if Eij ∈ E or Eji ∈ E.A DAG G and a probability distribution P are said to be faithful to eah other if Gdenotes all and only the onditional independene relationships in P in the form of what isalled d-separations. To better understand the de�nition of d-separation, it is neessary to �rstintrodue the onditional independene relationship and some graph related onepts.Two variables i and j are said to be onditionally independent with respet to a probabilitydistribution given a set of variables S if and only if:

P (i, j|S) = P (i|S)P (j|S) (2.1)In this work, we use Ind(i, j|S) to denote the independene relationship expressed in Eq (2.1).A path P in a DAG G is a set of nodes {i1, i2, i3, ..., in}, suh that starting at node i1 wean reah node in by following the sequene of edges Eikik+1
(k = 1 to n). In a DAG G, node iis alled a ollider in a path if there are two nonadjaent nodes j and k suh that Eji ∈ E and

Eki ∈ E. In this ase, the triplet (j, i, k) is alled v-struture (see Figure 2.2). An undiretedpath U is said to be bloked by a set of nodes W if any of the following two onditions hold13
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kj

Figure 2.2: (j, i, k) v-struture
∀i ∈ U :

• i is a ollider, and neither i nor its desendants are in W
• i is a non-ollider, and it is in W .Two nodes i and j are said to be d-separated by a set of nodes S if and only if every undiretedpath between i and j is bloked by S.It is possible to have more than one DAG generating the same probability distribution

P [14℄; this de�nes an equivalene lass among DAGs with respet to P . The skeleton ofa DAG is the undireted graph obtained by replaing direted edges with undireted ones.Two DAGs are equivalent if and only if they have the same skeleton and the same set of v-strutures [91℄. It is possible to represent suh an equivalene lass with a PDAG. A PDAGthat ompletely represents an equivalene lass of DAGs is alled Complete Partially DiretedAyli Graph (CPDAG). The aim of most of the struture learning algorithms is to �nd suha CPDAG representing the equivalene lass of DAGs faithful to the underlying probabilitydistribution P .A Bayesian Network (BN) is a tuple (G,P ), where G = (V,E) is a DAG and P is a jointprobability distribution on V . Both G and P satisfy the Markov ondition in a BN; all thevariables are independent of their non-desendants given their parents. A BN is said to befaithful if all and only onditional independene relationships are the ones that are entailed byMarkov ondition.Struture learning algorithms for BNs refer to a set of algorithms that try to �nd theDAG omponent of the BN given some data sampled from a probability distribution. Thesealgorithms basially fall into two ategories. The �rst ategory is the searh-and-sore basedalgorithms, whih searh the spae of DAGs (or CPDAGs) for the graph that maximizes a sorefuntion. The other lass of algorithms is known as onstraint-based algorithms [82℄; the latteralgorithms start with a fully onneted graph and searh for onditional independenies in theprobability distribution, generally by means of statistial onditional independene tests.In this thesis, we assume that the data are from a multivariate normal distribution. Thisassumption has been widely used reently in GRN modeling, e.g., [11, 42, 75, 95℄, where thename GGM is given to this modeling framework. Under this assumption, vanishing partial or-relations imply onditional independene [52℄. Sample partial orrelations an be alulated14



from the given data with various methods, inluding regression, inversion of ovariane (or-relation) matrix or reursion. Here, we use the method and mathematial notation of Kalishet al. [43℄.To test onditional independene, Fisher's z-transformation is applied to a partial orrela-tion. This transformation an be expressed as follows:
Z(i, j|S) =

1

2
log

(

1 + ρ̂i,j|S

1 − ρ̂i,j|S

) (2.2)where ρ̂i,j|S denotes the sample partial orrelation of i and j onditional on set S. Then, givena signi�ane level α, the null-hypothesis H0(i, j|S) : ρi,j|S = 0 is rejeted against the twosided alternative hypothesis H1(i, j|S) : ρi,j|S 6= 0 if,
√

n− |S| − 3|Z(i, j|S)| > Φ−1(1 − α/2) (2.3)where Φ is the umulative distribution funtion of normal distribution with mean 0 and vari-ane 1, i.e., N(0, 1).2.2.1 The PC AlgorithmOne of the most well-known onstraint-based struture learning algorithms is the PC algo-rithm [82℄. The algorithm is omposed of two parts; the �rst part onstruts the skeletonof the graph, and the seond part orients the undireted edges in the skeleton. Given inAlgorithm 1 is the proess whih is usually referred to as the �rst part of PC algorithm.The proposed methods in this thesis modify the �rst part of the PC algorithm. The edgeorientation part does not need any modi�ations in order to be applied to the results presentedhere. If we assume a faithful distribution to a DAG G and a perfet knowledge of onditionalindependene relationships, the PC algorithm orretly infers the skeleton of the underlyingDAG G [82℄. The worst-ase omplexity of the PC algorithm is O(pordm), where ordm is themaximum value of ord (see Algorithm 1) and p is the number of variables. Moreover, giventhe above assumptions, if we denote the maximum number of neighbors of a node in G by q,
ordm ∈ {q − 1, q}; and the algorithm is known to sale well for sparse graphs [43℄.2.2.2 Probabilisti Boolean NetworksPBNs are probabilisti extensions of Boolean Networks (BoNs), whih were �rst introdued byKau�mann [46℄. We will brie�y disuss here basi onepts about BoNs and PBNs; the readeris referred to [46, 78, 79℄ for further details.A BoN G(V, F ) is de�ned as a set of nodes V = (x1, x2, ..., xn) and a set of Booleanfuntions F = (f1, f2, ..., fn). Every node in V has a k-ary (k ≤ n) Boolean funtion fi thatdetermines its value. Without loss of generality, fi an be onsidered as n-ary with some15



Algorithm 1 PC algorithm (�rst part)Input: Data D, Set of nodes V , Conditional independene test IndOutput: Skeleton of the graph G, Separator information Sep1: Set G to the fully onneted undireted graph of V2: ord = 03: repeat4: repeat5: Choose new adjaent ordered pair of nodes i, j with i having at least ord neighbors6: repeat7: Choose new set S of nodes adjaent to i, where |S| = ord8: if Ind(i, j|S) then9: Delete edge i, j from G10: Sep(i, j) = S11: end if12: until (edge i, j is deleted) or (all di�erent sets S of length ord have been tested foredge i, j)13: until all pairs of adjaent nodes have been tested14: ord = ord + 115: until number of neighbors for eah node in G is less than ord16: return G,Sep
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t + 1

x1
x2 x3

x3
x2x1Figure 2.3: Wiring diagram of a BoN.(x1(t+1) = f1(x1(t), x2(t));x2(t+1) = f2(x1(t));x3(t+

1) = f3(x1(t), x3(t))).�titious (unneessary) variables. A variable xi is �titious for f if,
f(x1, ..., xi−1, 0, xi+1, ..., xn) = f(x1, ..., xi−1, 1, xi+1, ..., xn) (2.4)A variable that is not �titious is alled essential. Wiring diagrams are useful in representinga BoN [3℄. Figure 2.3 shows an example wiring diagram.As an be seen, the dynamis of a BoN is ompletely deterministi. The only probabilistiaspet of a BoN is the seletion of the initial starting state. If we represent the initial state ofthe network with a joint probability distribution D(x) where x ∈ {0, 1}n, it an be shown thatthe dynamis an be modeled by the equation below that resembles a Markov hain;

Dt+1 = ψDt (2.5)where ψ is a mapping of the form ψ : {0, 1}2n

→ {0, 1}2n.A BoN represents gene expression by using only two levels: ON and OFF. The expressionlevel for a gene gi at time step t + 1 is related to the expression level of ki other genes attime t by a Boolean funtion, f (i)(gi1 , ..., gik
), where genes gi1 to gik

are alled parents of
gi. So, a BoN is de�ned by a set of genes V = (g1, ..., gn) and a set of Boolean funtions
F = (f (1), ..., f (n)). On the other hand, PBNs assign a set of funtions to eah gene insteadof a single funtion. At eah time step, a funtion from that set is hosen to determine thenext-step value for a gene. Formally, a PBN is de�ned by a set of genes V = (g1, ..., gn) and aset F = (F1, ..., Fn), where eah Fi is a set of funtions for gi, Fi = {f

(i)
j }j=1,...,li. Eah f (i)

jis one of the possible funtions to determine the next state of gi, and li is the number of suhfuntions. The probability of hoosing f (i)
j in Fi to predit the next state of gi is denoted c(i)j .Given binary quantized gene expression data, deriving a PBN model requires �nding F and

c
(i)
j for all i and j. To do this, a measure of how well a funtion predits the value of a geneis needed. Coe�ient Of Determination (COD) [23℄ is one suh measure. COD ompares thepredition performane of a funtion with the best onstant estimator in the absene of otherinformation. Assume that we are given the parents Pi of gi and a funtion f (i)

j (Pi) to predit17



gi. The COD θi
j of f (i)

j is de�ned as follows:
θi

j =
εi − ε(gi, f

(i)
j (Pi))

εi
(2.6)where εi is the error of the best onstant estimate of gi and ε(gi, f

(i)
j (Pi)) is a probabilistierror measure [79℄. Given θi

j values, it is straightforward to de�ne c(i)j [79℄:
c
(i)
j =

θi
j

∑li
m=1 θ

i
m

(2.7)Best-Fit extension paradigmFor a given set of parent genes Pi, f (i)
j an be derived using various methods. In our work, weuse best-�t extension paradigm of Lähdesmäki et al. [51℄.Lähdesmäki et al. [51℄ try to derive a model for the gene regulatory networks by usingBoolean networks. They study on two di�erent aspets of the problem, that are alled theonsisteny problem and the best-�t extension problem. The onsisteny problem (or Extensionproblem) is onerned with deriving a onsistent funtion that is a Boolean funtion f froma lass of funtions C that perfetly separate the given true and false examples in the givendata. A partially de�ned Boolean funtion pdBf(T, F ) is de�ned by two sets, T and F thatdenote the true and false examples in the given data, respetively. If, for a Boolean funtion

f , we de�ne the true and false examples as T (f) = {x ∈ {0, 1}n : f(x) = 1} and F (f) =

{x ∈ {0, 1}n : f(x) = 0} then formally, onsisteny problem is simply de�ned as whether thereexists a onsistent extension f for pdBf(T, F ) suh that T ⊆ T (f) and F ⊆ F (f). The otherproblem that is investigated by the authors is the best-�t extension problem. If we assume weare given, in addition to a pdBf(T, F ), a set of weights w(x) for all examples x ∈ T ∪ F thenthe best-�t extension problem is to �nd a Boolean funtion f that minimizes the error whihis given as,
ε(f) = w(T ∩ F (f)) + w(F ∩ T (f)) (2.8)where the weight of a set is de�ned as the sum of the weights of individual elements of the set.For a network of n-nodes, the algorithms for solving the onsisteny problem for n-variableand k-variable funtions are given where 0 ≤ k ≤ n. The algorithms rely on the fat that tosolve the onsisteny problem, T and F must be disjoint. The algorithm for n-variable and

k-variable funtions simply �lls an initially empty truth-table aording to the given data. Aninonsisteny an be deteted while �lling, whih means that there does not exist a solution forthe onsisteny problem. The same algorithm an be applied also for the k-variable funtionsby exeuting the algorithm for all k-element subsets of variables. Then eah undeterminedentry in the table is �lled arbitrarily with 0 or 1.The solution for the best-�t extension problem is also similar. The same problem wasinitially shown to be polynomial time solvable using another method by Shmulevih et. al. [80℄.18



The idea here is to de�ne two 2n dimensional vetors c(0) and c(1), where eah element in thevetors indexes a possible variable assignment to n variables for negative and positive examples,respetively. So the ith element orresponds to the weight of the ith variable assignment (forexample for n=3, the variable assignment {1, 1, 1} orresponds to the 7th index). Then thesolution is shown to be simply the funtion f that has the truth-table fi = argmaxjc
(j)
i , wherefi denotes the output value for the ith indexed variable assignment for input variables of f .Then the authors give an algorithm to �nd all funtions that have error less than a threshold.The results are given on the ell-yle data of Spellman et al. [81℄ where the funtions fora number of genes are identi�ed having error less than 5 for a unit weight assigned to eahvariable assignment.In this work, we use publily available Matlab implementation of Best-Fit Extension inPBN-Toolbox1.2.3 Markov Deision ProblemsA MDP is formally de�ned as a quadruple (S,A, T,R), where S is the set of states, A is the setof ations, T is the transition probability funtion suh that T (s, a, s′) denotes the probabilityof the next state being s′ given the urrent state s and ation a, and R is the reward funtionthat represents the objetive of the ontrol proess. Any MDP is assoiated with a performaneriterion. The performane riterion we adapt is the in�nite horizon total disounted rewardriterion. So the objetive is to maximize the total disounted reward: ∑

t β
tRt(s, a), where

Rt(s, a) is the immediate reward of performing ation a in state s at time t and β ∈ (0, 1) isthe disount fator. In this work, we assume that Rt and β are independent of t; so we omitsubsript t after this point.Solution to an MDP is alled a poliy, π; it is a mapping from states in S to ations in A.Every π de�nes a value funtion V π from S to real numbers. V π(s) is the total disountedfuture reward of hoosing an ation a aording to π in state s, and following π thereafter. V πan be found iteratively using the following equation:
V π

k+1(s) = R(s, π(s)) + β
∑

s′

T (s, π(s), s′)V π
k (s′) (2.9)where iteratively applying Eqn 2.9 is alled poliy evaluation.Optimal poliy π∗ is the best poliy in terms of the given performane riterion. In ourase, it is the poliy that ahieves maximum possible in�nite horizon disounted future reward.Value funtion orresponding to π∗ is the optimal value funtion, V ∗, whih an also be found1available at: �Probabilisti Boolean Networks, http://personal.systemsbiology.net/ilya/PBN/PBN.htm,aessed 1-June-2009� 19



iteratively using the following Bellman update:
∀s ∈ S V ∗

k+1(s) = maxa[R(s, a) + β
∑

s′

T (s, a, s′)V ∗
k (s′)] (2.10)Given all omponents of an MDP, Eqn 2.10 onverges to the unique V ∗ as k → ∞. From

V ∗, π∗ an be found as:
π∗(s) = argmaxa[R(s, a) + β

∑

s′

T (s, a, s′)V ∗(s′)] (2.11)With arbitrary initialization of V0, the algorithm that uses Eqn 2.10 to �nd V ∗ is alledvalue iteration [5℄. One simple stopping riterion for value iteration is:
||Vk+1 − Vk|| ≤

ǫ(1 − β)

2β
(2.12)where ||X || = max{|x| : x ∈ X} denotes maximum norm. Eqn 2.12 ensures Vk+1 is within ǫ/2of V ∗ for any state [68℄.Another well-known algorithm for solving an MDP is the poliy iteration algorithm [68℄.Instead of starting with arbitrary V , poliy iteration starts with an arbitrary poliy π, and�nds V π using Eqn 2.9. Then for all states s, it searhes for an ation a that satis�es thefollowing equation:

V π(s) < R(s, a) + β
∑

s′

T (s, π(s), s′)V π(s′) (2.13)If found, it updates π(s)=a, and repeats the poliy evaluation and update steps until onver-gene riterion is met.There are several other proposed methods for solving MDPs. We refer the reader to thebooks [5, 68℄ for further details.2.3.1 Fatored MDPsA FMDP is a representation language for MDPs to exploit the struture of the ontrol problem.The FMDP framework was �rst proposed by Boutilier et al. [8℄. In most problems, T an berepresented in terms of a set of state variables, where in our ase these variables orrespond togenes.As representing T for a MDP requires exponential spae in the number of variables, FMDPproposes to represent T for eah spei� ation in the form of a dynami Bayesian network(DBN) [21℄. A DBN is omposed of variables G = (g1, g2, ..., gn, g
′
1, g

′
2, ...g

′
n), where the vari-ables with a prime denote the random variables at the next time step. So, a DBN representsthe relationships between random variables in the urrent and next time steps. We denote the20



set of primed variables by X ′ and non-primed by X , where G = X ∪ X ′. Eah variable g′ihas a set of parents Pi, where the value of g′i depends only on Pi. In this work, we assumethat Pi ⊂ X , and the variables in X do not have any parents, i.e., there are no synhronousdependenies between variables, all dependenies are between the variables at time step t andthe variables at time step t + 1. This is a ommon assumption for modeling GRNs using aDBN.A DBN assoiates to eah g′i and its parents Pi a onditional probability distribution (CPD).A disrete CPD is usually represented as a table. But some spae an be gained if CPDs arerepresented by deision trees in ase they have the same values for di�erent instantiations ofthe parents [9℄.In addition to CPDs, the struture in V and π an also be exploited to represent them bydeision trees. The idea here is that V and/or π may depend only on some of the variablesinstead of all of them. So, they may be represented by a deision tree as well. Both value treesand poliy trees have internal nodes labeled with the variables themselves and edges labeledwith the values (instantiations) of the variables. Leaf nodes of a value tree have values ofthe states orresponding to all states that have the same instantiations of the variables in thepath from the root to the leaf. The same way, leaf nodes of a poliy tree have the ationsorresponding to the states that have the same instantiations of the variables in the path fromthe root to the leaf. The reader is referred to [9℄ for details.Solving FMDP requires modifying these value and poliy trees at eah iteration. Deision-Theoreti Regression [9℄ is one of the methods to modify deision tree representations of valueand poliy trees; eah iteration results in a new value or poliy tree that is loser to thedeision tree representation for V ∗. Strutured value and poliy iteration are two algorithmsthat use deision-theoreti regression to solve FMDPs [9℄. E�ient methods to solve FMDPsby linear programming are desribed in [32℄. Finally, we use the publily available FMDPsolver, SPUDD2 (�Stohasti Planning using Deision Diagrams�) [37℄. Instead of using deisiontrees, SPUDD uses algebrai deision diagrams (ADD) [72℄. SPUDD pakage also inludes anapproximate FMDP solver, APRICODD (�Approximate Poliy Constrution using DeisionDiagrams�) [83℄.There are two approximation methods in APRICODD that depend on pruning the valuetree. The �rst one is on keeping the value tree below a �xed size, whih is good for solvingFMDPs with limited omputational resoures. The seond one uses ADDs in whih the simi-larly valued leaves of an ADD are merged and suh leaves are labeled with a range of values.This results in a smaller sized ADD alled ranged value ADDs. Merging these values dependon a given error bound suh that only the values that are within that error bound are merged.2available at: �Welome to SPUDD, http://www.omputing.dundee.a.uk/staff/jessehoey/spudd/, a-essed 1-June-2009� 21



At the end, the midpoints of the resulted ranged value ADDs are returned as the value of theorresponding states. APRICODD also inludes variable reordering shemes that an havesigni�ant e�ets on the resulting ADD size. Further details about SPUDD and APRICODDan be found in [38℄.In terms of GRNs, given PBN model derived from some kind of biologial data, ations,and the objetive de�ned in terms of the reward genes, the PBN ontrol problem an be solvedby the following steps:1. Convert PBN to DBN2. For eah ation a ∈ A, onstrutDBNa that represents probability distribution T (s, a, s′)for all s, s′3. Given reward funtion R and disount fator β, de�ne FMDP M4. Solve M using SPUDD2.4 SummaryHaving de�ned the onepts, linking the subjets overed in this hapter with the work donein this thesis would be helpful to better understand the rest of this doument.One of the two problems onsidered in this work is the salability in modeling GRNs. Twomodi�ations for PC algorithm are proposed for salability and quality of the derived networks.To evaluate these modi�ations, two of the disussed data types in Setion 2.1.3 were used;gene expression and TF binding loation data. Using the last one, protein-protein interationdata, is left as a future work. The methods in Setion 2.1.4 are used to pre-proess expressiondata when neessary.The seond problem investigated is the salability in ontrol of GRNs. We used MDP andFMDPs as the framework for solving the ontrol problem where PBNs are exploited as themodel for ontrol as a disrete model is neessary to evaluate the ontrol algorithms.
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CHAPTER 3CONSTRAINT-BASED MODELING OFGENE REGULATORY NETWORKS
The regulatory mehanisms for gene expression in a ell is very important as they ontrol theativities related to protein synthesis whih is one of the most essential funtions for livingorganisms. Depending on the evolutionary level of the organism, this regulatory mehanisman get highly omplex. The interation of the large number of genes (promoters) and proteinsonstitute this whole mehanism. An example of suh mehanisms whih is a omponent ofthe whole GRN of Caenorhabditis elegans is given in Figure 3.1. The network in Figure 3.1 isomposed of the genes involved in the development and funtion of C. elegans digestive trat;the reader is referred to [22℄ for details on the onstrution of this network.

Figure 3.1: Protein-DNA interation network of C. elegans (Taken from [22℄). Blue diamonds,irles and triangles represent promoters, interators and interators whose promoters are alsoused as DNA baits in the experiment, respetively.23



The issue that we want to emphasize here is the omplexity of the network in Figure 3.1;the number of genes and the number of onnetions. Learning a network of this size andomplexity is hard for urrent struture learning algorithms. There are methods that an beused to learn sparse graphs with a large number of nodes (see [43℄ for example), but someserious di�ulties, both in terms of the quality and omputational requirements, arise in aseof nodes with large number of onnetions. For instane, there are interators in Figure 3.1binding 27 promoters whih is a large number for struture learning algorithms for graphs ofthis size. Therefore, new salable methods for learning GRNs from biologial data are needed.The amount of biologial data available for researh is exponentially inreasing. However,GRN modeling still su�ers from the problem of small sample size ompared to large number ofgenes. This problem is sometimes referred to as the �p larger than n� problem, where p refersto number of genes and n refers to number of samples [11℄. The solution investigated for thisproblem in this thesis is to inorporate multiple types of biologial data. We will name theinformation inferred from one type of data as the prior knowledge; there are no onstraints onwhih one will be the prior knowledge though. This prior knowledge will be used to �adapt�the modeling algorithm to infer better networks.In the ontext of GRN modeling, the prior knowledge an be formulated as a matrix Bof probabilities suh that eah entry Bij gives the probability of existene of edge Eij [6, 93℄.This information might be obtained from various types of data and an be used with expressiondata to obtain a better GRN.Two methods for inorporating B in the PC algorithm by adapting the onditional inde-pendene test to the given prior knowledge B are desribed in the following setions. The�rst method is a simple but e�etive proedure to use the prior information on the onditionalindependene tests in the PC algorithm. This way, the test �adapts� itself to the given priorknowledge. This method is desribed in Setion 3.2.Although the adaptation proedure is suessful in inorporating prior knowledge into thePC algorithm, it may also lead to some problems regarding maximum order in the PC algo-rithm. It is well-known that with inreasing order, the power of a onditional independenetest dereases given small sample size. To be able to solve this problem, the seond method isproposed in Setion 3.1 for the type of graphs that we all Partially Dense (PD) graphs. A PDgraph is a graph where some nodes have signi�antly larger number of onnetions than oth-ers. The method interprets the same type of information as above with a di�erent perspetive.The nodes that have a large number of onnetions are identi�ed from prior knowledge andthese nodes are treated di�erently. Details of this method are presented in Setion 3.1. Therelated work is overed in Setion 3.3. Finally, Setion 3.4 highlights the shortomings of theapproahes desribed in the literature and summarizes how they are overed by the proposedapproahes. 24



3.1 PC algorithm for PD graphsThe number of onditional independene tests required by the PC algorithm, in the worst-ase,is bounded by p2(p−1)q−1/(q−1)! [82℄. So, the algorithm an easily beome non-appliable forhigh values of q and p. Our experiments depited that if we know the dense nodes in the graphin advane, then a variant of the PC algorithm an show a good performane, even for PDgraphs, both in terms of omputational requirements and the quality of the resulting graph.Algorithm 2 PCPD algorithm (�rst part)Input: Data D, Set of nodes V , Conditional independene test Ind, Set of dense nodes DNOutput: Skeleton of the graph G, Separator information Sep1: ⊲ Stage 12: Set G to the fully onneted undireted graph of V3: ord = 04: repeat5: repeat6: Choose new adjaent ordered pair of nodes i, j with i having at least ord neighbors and
i /∈ DN7: repeat8: Choose new set S of nodes adjaent to i where |S| = ord9: if Ind(i, j|S) then10: Delete edge i, j from G11: Sep(i, j) = S12: end if13: until (edge i, j is deleted) or (all di�erent sets S of length ord have been tested for edge
i, j)14: until all pairs of adjaent nodes have been tested15: ord = ord + 116: until number of neighbors for eah node in G is less than ord17: ⊲ Stage 218: for all i in DN do19: Choose new j suh that i is adjaent to j in G20: [S, vanished] = gss(D, i, j, G)21: if vanished then22: Delete edge i, j from G23: Sep(i, j) = S24: end if25: end for26: return G, Sep 25



To be able to orretly infer d-separations, for an edge Eij , onditioning set S in thealgorithm should be hosen as a subset from neighbors of either i or j. The PC algorithm doesthis by hoosing ordered pairs (i, j) during exeution. If the number of neighbors for a node ishigh (i.e., q is high) then the algorithm tries exponentially inreasing number of onditioningsets S with inreasing order. This terribly slows down the algorithm response in the existeneof a dense node. Also, with inreasing order, (with limited sample size) the probability of errorin statistial tests for onditional independene inreases [82℄. So, a possibly inorret graph(with limited sample size) is derived in a long time.One method that has been proposed in various studies to avoid the above problem is tolimit the maximum value of order [20, 58, 95℄. Sine the nodes in a GRN are generally sparse,this method may give good results. But, if q is large even for a small number of nodes, we maystill fae the same type of problems desribed above. Another possible approximate solutionmethod is to use unordered pairs in the algorithm and hoose S from the neighbors of thenode that has less number of neighbors. But this also su�ers from the same problems if theunderlying graph has more than one node with large number of neighbors.As a result, we propose a new method for �nding the skeleton of the underlying model withsome dense nodes. This method depends on the prior knowledge about these dense nodes and agreedy searh proedure for the separators of the edges of dense nodes. The proposed method,whih we all PC algorithm for Partially-Dense graphs (PCPD), is given in Algorithm 2.As shown in Algorithm 2, PCPD has two stages. The �rst stage is similar to the PCalgorithm exept that we do not hoose edge Eij to test in Line 6 if we know that i is a densenode. This avoids enumerating exponential number of subsets of neighbors of i.By skipping some of the tests performed, at the end of Stage 1, some false positive edgesmay exist in G; these are the edges that have at least one dense node in one end. But thenumber of suh edges are not expeted to be large beause we hek edge Eji even thoughwe do not hek edge Eij . For suh edges for whih the algorithm ould not �nd a separatorfrom the subsets of neighbors of j, the greedy separator searh proedure is exeuted. Thisproedure is desribed in the next setion.3.1.1 Greedy separator searhGreedy separator searh (gss) is a searh proedure to �nd a onditioning set S that makesthe two nodes i and j onditionally independent given S. To desribe the algorithm we willall the left-hand side of Equation 2.3 as L(i, j|S). In eah iteration, gss adds variable v tothe urrent onditioning set S where v = argminv∈V L(i, j|S ∪ {v}). This way it searhes for
S that satis�es Equation 2.3 for the given i, j pair. It is therefore a greedy proedure, it is notguaranteed to �nd the separator, but our experiments show that the proedure is suessful in�nding most of the onditional independene relationships. This proedure is very similar to26



a proedure reently proposed by Brown et al [10℄, where a greedy polynomial version of theMMPC algorithm [89℄ is disussed. The proedure is given in Algorithm 3.Algorithm 3 Greedy Separator Searh (gss)Input: Data D, Node i , Node j, Adjaeny Matrix G,Output: Separator set S for i, j (if any), A boolean value indiating onditional independene
vanished1: Let N be the set of neighbors of i exept j in G and L(i, j|S) =

p

n − |S| − 3|Z(i, j|S)|2: S = {}3: zCur = L(i, j|S)4: vanished = FALSE5: repeat6: Choose k suh that k = argmink∈NL(i, j|S ∪ {k}) and L(i, j|S ∪ {k}) < zCur7: if There is suh a k then8: zCur = L(i, j|S ∪ {k})9: N = N \ {k}10: S = S ∪ {k}11: if zCur ≤ cutoff for a given signi�ane level α then12: vanished = TRUE13: end if14: end if15: until (vanished = TRUE) or (N = {}) or (there is no suh k)16: return S, vanished

3.1.2 Estimating dense nodesThe prior knowledge on dense nodes an be obtained from various soures suh as the regulatorynetwork databases, like [59℄. But, if we have the prior knowledge matrix B desribed above,dense nodes an also be estimated by using B.Given prior knowledge in the form of a matrix B, dense nodes an be estimated from B byassuming that i and j are onneted if Bij is greater than a threshold T . Then, the followingsimple proedure an be used to estimate dense nodes; if the number of onnetions of a node
i is greater than a �xed value F (whih is spei�ed in the experiments based on some initialtests), then onsider node i as dense. For instane assume T = 0.8 and the ith row of B has kentries that are larger than 0.8. If k > F then node i is onsidered as a dense node, otherwiseit is a regular node. Given B, the proedure desribed here is exeuted to estimate the set ofnodes that are dense, and then this set is used as the set of dense nodes in the algorithms that27



require this information.3.2 Prior knowledge in onditional independene testsIn real life, when we have a prior knowledge that we think is true with high probability, ourdeisions are a�eted by that prior knowledge. For example, if we believe that a proposition Pis true, then when we observe not(P ), we �rst think that it happened by hane, i.e., we needto have more evidene to be onvined that P is atually false. This is alled bias in statistialterms.We an map the above argument to onditional independene tests (assuming our biasabout P has atually a high probability of being orret). There an be several suh mappings,whih we use here to modify the value of the signi�ane level α in Eq (2.3) depending onour prior knowledge. So, we inrease the value of α (i.e., it is more probable to rejet thenull-hypothesis) if Bij > 0.5, where Bij > 0.5 implies that we have a prior belief that the edge
Eij exists in the graph, and the degree of this belief depends on the value of Bij . Similarly,we derease the value of α if Bij < 0.5, whih means we have a prior belief to some degreeregarding the absene of the edge Eij , depending on the value of Bij .Given the prior knowledge B, α is basially updated as α = α0 ∗ (1 + β(Bij − 0.5)), where
β ≥ 0 is a fator that denotes our �trust� on prior knowledge, and α0 is the initial value of α.When β = 0, the prior knowledge has no e�et on the deision, and when β → ∞, the outputompletely represents the prior knowledge. But, it is obviously meaningless for α to be greaterthan 1 or less than 0, so the atual update of α is performed as in Equation 3.1.

α =



















0 if α0 ∗ (1 + β(Bij − 0.5)) < 0

1 if α0 ∗ (1 + β(Bij − 0.5)) > 1

α0 ∗ (1 + β(Bij − 0.5)) otherwise (3.1)Dynamially updating the signi�ane level for eah test provides a method to take twodi�erent information soures into aount while onstruting the skeleton of the underlyinggraph by using the PC algorithm. As an be seen in the update equation (Eq. 3.1), Bij = 0.5means no prior knowledge about the existene of the edge Eij . That is surely an advantagefor GRN modeling, sine prior knowledge might not be available for all edges.We name the proposed algorithm as PCPr, where the extension indiates that the algorithmuses the given prior knowledge in the onditional independene tests as desribed above. Thesigni�ane of this extension is evident by the supporting test results reported in Chapter 5.
28



3.3 Related WorkVarious methods have been proposed in the literature for modeling GRNs. Generally themethods apply well-known onepts in mahine learning inluding Bayesian networks [6, 29,61, 86℄, (probabilisti) Boolean networks [3, 51, 78, 67℄, neural networks [92, 98℄, Markovhains [48℄, di�erential equations [13, 19℄, s-systems [87℄ and hybrid systems [47℄.Bayesian networks are used in various studies for gene regulatory network indution. Sinethe expression data has a high rate of missing values, BNs are good andidates for modelingbeause of the BNs' ability to handle missing data. But salability is an issue that derivingBNs without some restritions is NP-hard [15℄. But the gene regulation is suitable for thisrestrition sine biologial studies show that a gene is regulated by a number of genes thatis generally not larger than 5. In addition to this, the probabilisti nature of gene regulationmakes BNs a remarkable framework for modeling. Besides the studies that are just appliationsof the BN learning to gene expression data, there are also some studies where other biologialinformation are also used in deriving the model [6, 35, 86℄.A method is suggested in [6℄ to ombine the gene expression data and transription fa-tor binding loation data to derive a dynami Bayesian network that better represents theregulation. Loation data is used as the struture prior and expression data is used as thelikelihood. Loation data is reported as a p-value whih is inversely related to an edge beingpresent in the struture. They de�ne p-value orresponding to edge Ei in terms of a randomvariable Pi ∈ [0, 1] that is distributed as Pλ(Pi = p|Ei ∈ S) = λe−λp/(1 − e−λp), where λ isthe parameter of exponential distribution. So, if P (Ei ∈ S) = β, then after marginalizing over
λ and assuming λ ∈ [λL, λH ], the value of P an be omputed as:

P (Ei ∈ S|Pi = p) =

1
λH−λL

∫ λH

λL

λe−λpβ
λe−λpβ+(1−e−λ)(1−β)

(3.2)Sine the integral above an not be solved analytially, they solved it for �xed values of pand stored the result for later usage. Then the prior for a struture S is given as:
logP (S) =

∑

Ej∈S logP (Ej ∈ S|Pj = p)+
∑

Ek /∈S logP (Ek /∈ S|Pk = p)
(3.3)When this prior is used, the error is signi�antly redued. Also the results on data ofSpellman et al. [81℄ is given and shows some interesting relationships between genes that annot be derived without priors.Tamada et al. [86℄, desribe a way to ombine gene expression data and evolutionary in-formation to derive ontinuous Bayesian networks from data. The evolutionary information isgiven as gene pairs set HAB for two organisms A and B, whih are derived using BLAST [41℄.BLAST gives gene pairs that seem to be related in two di�erent organisms, where suh genesare alled orthologous genes. So the idea is to use this information so that if genes a, b and29



c, d are in HAB, where a, c is from organism A and b, d is from organism B, and if there is aregulatory relationship between a and c in A, then it is highly probable that there is a regula-tory relationship between b and d in B. They give a sore based on this idea whih is, (GeneNetwork Sore)
GNS(GA, GB) = logP (XA|GA)P (XB|GB)

P (HAB|GA, GB)P (GA)P (GB)
(3.4)where XA(XB) is the miroarray expression data of organism A(B). They start with networks

GA and GB that is found using traditional Bayesian network searh algorithms and use theseas their initial networks. Then they ontinue with a greedy hill-limbing algorithm that ineah step adds or removes an edge from one of the networks so as to inrease GNS(GA, GB).By using only the expression data, in [61℄, the authors derive a BN from time series expres-sion data of Spellman et al. [81℄. They express the transription rate of a gene as;
g(H : β, γ) = β

γH

1 + γH
(3.5)where H is onentration of the ative regulatory protein, β is the maximum transription ratethat the gene an ahieve and γ is the ratio of assoiation and disassoiation onstants of theregulators to the promoter regions.From expression data, the transription rates are derived based on a known regulationdiagram G (whih is a Bayesian network) and the parameters h, θ that maximize the likelihood:

l(h, θ : G,E) = logP (E, h|θ,G) (3.6)where h are the values of the unobserved regulator ativity levels at di�erent times and θ is thevetor of other parameters (γ, β, etc.) are alulated. Then the authors desribe a struturalEM algorithm [28℄ that iteratively derives a regulation diagram whih uses a Bayesian networksoring funtion as;
score(G : E) = maxh,θ(h, θ : G,E) −

Nparam

2
log(T ) (3.7)where Nparam is the number of parameters in the model and T is the number of time points.The algorithm an add regulators to genes and also add new regulators that are not in theregulator set H .In [29℄, disovering the interations between genes from expression data by using BNsare investigated. Multinomial (disrete) and linear Gaussian (ontinuous) Bayesian networksare derived using sparse andidate algorithm. To understand whether the algorithm derivesreasonable networks, two kinds of features whih are the Markov property and order property(the partial order of nodes in the network) are de�ned. A on�dene value is de�ned basedon an algorithm that heks in what perentage the above features are observed in m newnetworks derived from the perturbed data. 30



Boolean networks are one of the widely studied methods for modeling gene regulatorynetworks. Sine BoNs are simple to understand and polynomial time deduible for a boundedindegree from data, they reeived muh attention in this ontext. Also it was proved that ifindegree of eah node is bounded by a onstant, then only O(logn) input output pairs areneessary and su�ient to derive the orret BoN [3℄. But sine they only work with binarydata, while modeling, information loss seems unavoidable. In gene network modeling, the valueof a node being 1 means that the gene is expressed and being 0 means the gene is not expressed.In a reent study [67℄, the authors desribe a way to onstrut PBNs based on the fat thatif we are sampling the data from steady state, to hek validity of a designed network we have tohek whether the steady state mass lies in the observed sample states. They give an algorithmthat �rst selets k attrator sets randomly, then they pik a preditor set for eah gene againrandomly and then hek for ompatibility with the attrator set by using the fat that anattrator introdues a yle. Then other entries of the truth table of genes and preditors are�lled randomly and heked for a yle; if a yle is found random, �lling is performed again.This algorithm generates a BoN. A PBN is generated from multiple runs of this algorithm andassignment of a probability of swith of BoNs and a probability of perturbation. An appliationof this algorithm to gene expression data is given at the end. They generated 10000 PBNs andhose the one that minimizes the mean-squared error between data frequeny of attrators andestimated steady-state distribution of eah attrator based on the size of the tree orrespondingto an attrator. The results are given as a histogram that shows how lose the distribution ofattrator states in data and the time spent in attrator states after running the designed PBNfor a long time.The paper by Weaver et al. [92℄ is one of the �rst attempts to derive the regulatory networksfrom expression data. The authors use an approah that they all weight matries whih isin fat a neural network. They assume the regulatory behavior of genes an be modeled bya number of linear funtions whose input values are expression levels of other genes in theprevious time step. First they desribe the details of the model and how to produe expressiondata from the model. Given a weight matrix Z and the input u(t) of expression levels, thenext state of the system is given as:
u(t+ 1) = mg(Zu(t)) (3.8)where g is a normalization funtion that maps the expression levels to (0-1) interval and m isthe maximum expression levels of genes. A reverse engineering approah is then given basedon the data produed arti�ially using the above equations and randomly produing Z and

m. The reverse engineering algorithm inludes solving algebrai equations that omes fromsolving u(t) from u(t+1) based on the assumption that the matrix Z will be mostly omposedof zeros. The results are suessful in the sense that the reverse engineering approah derivesthe original network even in the presene of noise. But the authors give no results on real31



expression data.Reurrent Neural Networks are used to model gene regulatory networks in [98℄. Eah geneis represented as a node and eah edge gives the weight of in�uene of a gene on another.Instead of bakpropagation the authors use Partile Swarm Optimization (PSO) for parameterlearning. PSO is a searh method similar in some sense to geneti algorithms (GAs). It isbased on a number of partiles (solutions) that are walking on the searh spae. The partilesare aelerated towards the diretion whih is a ombination of the diretion of the previousbest solution of the partile itself and the global best solution of all partiles. The quality ofthe solution like in GAs is alulated by using a �tness funtion. Results are given on both anarti�ial data set and a real data set. Beause of the amount of data the results are better onthe arti�ial data set. Although some meaningful relationships are aptured on the real one,it is not a suitable method for larger networks.The work in [48℄ proposes a method to onstrut Markov Chains (MCs) to simulate thebehavior of biologial gene regulation. They selet 10 genes from the set of 587 gene dataset. For eah of the 10 genes they selet 3 genes from the data by using highest oe�ient ofdetermination value for a target gene. The MC transition probabilities are derived empiriallyfrom the data in the form of:
P (gt+1

l ) = P (a|gt
i , g

t
j , g

t
k) (3.9)where a = {0,−1, 1} and i, j, k are the 3 genes mentioned above, and l is the target gene.They perform a simulation of this MC whih also inludes a probability of perturbation thathanges the expression value of a gene randomly. After the simulations, the authors show thatthe states of the MC in the simulation very muh resemble the biologial data.In addition to the above mentioned methods, di�erential equations [13, 19℄, s-systems [87℄and hybrids of the above methods [47℄ are also used in modeling. Di�erential equations typiallymodel regulation as a set of rate equations of the form dxi/dt = f(x) where xi is the gene weare trying to model and f is the funtion that will be searhed and x is a set of variables that isthought to be e�eting the expression level of xi. S-systems are a type of power-law formalismthat an be desribed by a set of non-linear di�erential equations. But it has a problem thatit requires the estimation of a large number of parameters.Hybrid methods are the ones that use a mixture of the above methods. Inferring a regulatorynetwork model by using GAs and neural networks is desribed in [47℄. The IDs of the genes areonsidered as the hromosomes of the GA and a single layer neural network is trained for the�tness funtion of the GA. The root mean square error of the trained neural network is used asthe �tness funtion for GA. The best hromosome is hosen as the regulators of gene j. Then

j is inreased and the algorithm �nds the regulators for all output genes. Finally, the neuralnetwork of the best hromosome for all output genes is used as the preditor for the next timestep. The results are given for 3 di�erent settings. The �rst one is a randomly generated data32



from a known network; the seond is the rate of spinal ord data; and the third is ell yledata of Spellman et al. [81℄.Besides these, a graphial modeling paradigm, whih is generally named as Gaussian Graph-ial Modeling (GGM) [52℄, has reeived onsiderable attention [11, 20, 42, 58, 71, 75, 95, 97℄.In this paradigm, it is assumed that the data onstitute a random sample from a multivariatenormal distribution. Generally, the fous here is to ompute (or approximate) the ovari-ane matrix in the existene of small number of data samples ompared to the large numberof genes. The solutions proposed inlude approximately omputing the ovariane matrixby shrinkage estimators [75℄ or deomposition [42℄ and low-order onditional independenegraphs [11, 20, 58, 95℄. Graph deomposition tehniques were also previously integrated withGGM and PC algorithm [97℄. Reently, an information theoreti approah was proposed forusing low order partial orrelations as a measure of onditional independene [71℄. Also im-portane of onditional orrelation has reently been studied in reverse engineering regulatorynetworks [103℄.Due to the small sample sizes of biologial data, methods of ombining multiple typesof biologial data have reently been developed [12, 54, 55, 105℄. These studies generallypropose to ombine gene expression, TF binding loation and TF binding motif data. All theresults show that ombining multiple data types lead for better identi�ation of better geneassoiations/lusters/networks ompared to using a single data type. These studies onstitutesupporting evidene for the motivation of the algorithms proposed in this hapter as well.3.4 The Gap Covered by the Proposed MethodsThe algorithms that are disussed above to derive a GRN (and struture learning algorithmsin general) su�er from one or more of the following; salability, small sample sizes and denselyonneted nodes. Constraint-based learning algorithms sale well in general, whih makes thema strong andidate to apply for GRNs. Although there are some previous work to deal withsmall sample sizes, to the best of our knowledge, this is the �rst study that tries to handlenodes with large number of onnetions in a struture learning ontext. The PC algorithm isknown to work well for sparse graphs. But the algorithm may fail to learn a good graph wheneither the sample size is small or the underlying graph has some dense nodes. Unfortunately,biologial data and GRNs have both of these properties.To overome the above problems and derive GRNs from biologial data by using the PCalgorithm, we propose two modi�ations to the PC algorithm. For the �rst modi�ation, weargue that integrating multiple available biologial data types in learning a GRN should behelpful. We integrated TF binding loation (ChIP-hip) and miroarray gene expression datathrough statistial independene tests of the PC algorithm. As depited in the results, this33



greatly improves the performane in learning. In addition to the PC algorithm, this methodan also be used in other onstraint-based struture learning algorithms as well. Also, otherthan TF binding loation data, any biologial data that an be onverted into probabilities ofedges being present, an be used as the prior knowledge. For instane, by using TF bindingmotif data in the form of position weight matries one an ompute the probability of existaneof a binding region for a given TF on a gene's promoter regions [50℄.The seond modi�ation is related to the nodes that have a large number of onnetions. Asthese onstitute a problem for most of the learning algorithms, we propose a method to proessthem di�erently from the normal nodes in a graph. This method improves the performane bypreventing the order in the PC algorithm to inrease to large numbers that an ause errors,as a large order dereases the power of statistial independene tests. By identifying densenodes from prior information obtained from another type of biologial data, the new algorithmnamed PCPDPr, outputs a better network than the PC algorithm and has the potential to beimproved further.
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CHAPTER 4LARGE-SCALE GENE REGULATORYNETWORK CONTROL
Controlling GRNs is an important and hard problem. As it is the ase in all ontrol problems,urse of dimensionality is the main issue in real appliations. It is possible that hundreds ofgenes may regulate one biologial ativity in an organism; for instane a set of approximately800 genes were previously estimated to be ell-yle related in budding yeast, Saharomyeserevisiae [81℄. As the state spae for a GRN will be exponentially large in the number ofgenes, number of states for the ell-yle model of yeast inluding these genes will be enormous.Although it may be possible to maintain (learn, keep, et.) suh a model, it is not possiblefor most of the urrent ontrol algorithms to solve a ontrol problem of this size. This is alsoevident in the literature that only models of small portions of the genome of a living organismould be used in ontrol appliations. Following the disussion in the previous hapter, aslarger models beome available, salable ontrol algorithms will be neessary for the analysisof these networks for interventions.This hapter inludes the desription of two methods that are aimed at the salability forontrol in GRNs. Given a PBN model, the methods in this hapter try to redue the model to a�simpler� PBN model so that the ontrol problem is easier to solve. However, this simpli�ation,obviously, makes sense if the solution of the redued problem is a good approximate solution tothe original problem. To ahieve this, �rst, in Setion 4.1, we desribe the method that an benamed as a feature redution method whih tries to identify and eliminate the genes that areirrelevant for the ontrol problem. This way, the model (and so the state spae) gets smallerand beomes easier to solve by MDP solvers. But instead of eliminating a gene ompletelyfrom the model, some onnetions of this gene in the model an be removed as well to reah asimpler model, and the resulting model may be solved more e�iently by a FMDP solver. Theseond method whih is desribed in Setion 4.2 is built on this idea; simplifying the model byeliminating edges, instead of genes, in the model. In addition to the proposed methods, thishapter also inludes in Setion 4.3 the previous work done in the domain of GRN ontrol. Welose this hapter by expliitly stating the ontributions of this hapter and the gap overedby these algorithms. 35



4.1 Salable Control by Feature RedutionFeature redution is the proess of �nding and exluding from further onsideration, featuresthat are expeted to have reasonably negligible or minimal e�et on the output quality. Ingeneral, feature redution or feature seletion is performed to improve the performane of somepreditors [33℄. The features in the ase of gene expression data are the genes, the samples,or both. Here, we onsider feature redution as dereasing the number of genes. What weonsider as output is the value funtion found by solving the MDP. This is reasonable asthe value funtion represents the reward (or ost) assoiated with a given state by applyingthe ontrol poliy. In real life, this an give an indiation of the ost of treatment (poliy).The speed-up gained by reduing the state spae of the MDP is onsidered as performaneimprovement.
Figure 4.1: Finding ontrol poliy for the given dataIn the GRN ontrol domain, we observed that some of the genes an be ignored in theproess of �nding a ontrol poliy for a given data. So, it is essential to estimate the redundanyin the data before starting the modeling and MDP solving parts. This way, we an e�etivelydeal with GRNs that have larger number of genes by applying redution to obtain a smallerset of genes instead. This is depited in Figure 4.1, where path (a) is the ordinary path ofsolving the ontrol problem and path (b) is the redution based method proposed to solve theproblem. Funtion F that labels the last link along path (b) in Figure 4.1 maps poliy π′ foundfor MDP M ′ to poliy π of the larger MDP M . Assume the Model on path (a) has two states

si and sj whih only di�er in the value of one gene, say the third gene. For example, for thebinary ase let these states be si = 1001010 and sj = 1001110, for a network of seven genes.If, in the feature redution step of path (b), we deide that the third gene is irrelevant, then
si and sj will be aggregated in Model′, forming a state sn = 100110. To get poliy π, aftersolving M ′, we have to remap the ation de�ned for sn in π′ to si and sj . Sine we know thatthe third gene is redundant, si and sj are in fat equivalent states. Therefore, F simply gets
π′ and produes π by setting π(si) = π(sj) = π′(sn), for all si, sj and sn.The proposed solution is based on the assumption that the objetive is de�ned in terms ofthe expression values of some genes, namely the genes that we want to ontrol. We require36



that the reward funtion is de�ned in the form R(s, a, s′) and depends only on the ation andnext state. This does not need to be the ase in real life, but it also does not overly restrit theproblem beause the objetive is generally de�ned in terms of desirable or undesirable states.Finally, model minimization an also be performed after building the model. However, if wethink of the proess as �nding a poliy for some given data, then feature (or gene) redutionbefore modeling saves time in the modeling stage beause model building is a time-onsumingtask as well.4.1.1 Seleting the genes to removeThe seletion of the gene to remove is based on the following observation: Sine the objetiveis de�ned in terms of reward and ontrol genes, all other genes are andidates for removal.From the set of andidate genes, a subset will be seleted based on their estimated relevanefor deriving a ontrol poliy.

(a) (b)Figure 4.2: Aggregation of stohastially bisimilar states s1 and s2
Reall that genes to be removed should have the lowest e�et on the value funtion. Asexplained above, removing a gene, say g from onsideration is equivalent to aggregating thestates that di�er only in the value of g. Assume that s′, s1, s2 and s′′ are related in the MDPas shown in Figure 4.2(a). Both s1 and s2 have to be stohastially bisimilar [30℄ in order tobe aggregated so that the resulting MDP has the same solution as the original MDP.De�nition 1. [30℄ Any two states si and sj in an MDP are said to be stohastially bisimilarif the following two onditions hold:I. ∀a R(si, a) = R(sj , a)II. ∀a, s′ T (si, a, s

′) = T (sj, a, s
′) •Stohasti bisimilarity for the states of an MDP is an equivalene relation (see Theorem 4in [30℄ for more details). Two stohastially bisimilar states have the same value in the solution37



for an MDP. Under this equivalene relation, stohastially bisimilar states are said to beequivalent in an MDP; by using this information, the MDP an be redued to another MDPwith a smaller state spae.Theorem 1. [30℄ Two stohastially bisimilar states in an MDP are equivalent and an beaggregated. •Proof. Follows from Theorem 7 in [30℄.The aggregation proedure of the two stohastially bisimilar states s1 and s2 from Fig-ure 4.2(a) leads to the new state sag shown in Figure 4.2(b); it has the same reward funtion as
s1 and s2, i.e., ∀a, s′ R(sag, a, s

′) = R(s1, a, s
′) = R(s2, a, s

′), and the transition probabilitiesare as shown in the �gure1.Consider states si and sj that only di�er in the value of g inM (see Figure 4.1). Aordingto Theorem 1, if the states si and sj are stohastially bisimilar and there is in M ′ a state sagas the aggregation of si and sj, then M ′ is the minimized version of M , and hene has thesame solution as M . This may be interpreted as follows, we an �nd the ontrol poliy fasterby loating and removing from the data every gene g for whih ases I and II in De�nition 1hold for the states that only di�er in the value of g.For ase I, we will use the assumption in the de�nition of R(s, a, s′) that it does not dependon the urrent state s. Assume we have one reward gene gr that we want to ontrol. Thereward funtion R(s, a) by de�nition satis�es:
R(s, a) =

∑

s′

T (s, a, s′)R(s, a, s′) (4.1)and by using our assumption on the reward funtion, it an be rewritten as:
R(s, a) =

∑

i∈Val(gr)

∑

s′∈Sgr=i

T (s, a, s′)R(s, a, s′) (4.2)where Val(gr) denote the disrete values that gr an take, and Sgr=i denote the set of allstates that satisfy gr = i. Notie that R(s, a, s′) is onstant for all s′ (where gr = i) and agiven ation a (reall the assumption about R(s, a, s′)). This means that ase I in De�nition 1holds for two di�erent states si and sj if,
∀i

∑

s′∈Sgr=i

T (si, a, s
′) =

∑

s′∈Sgr=i

T (sj, a, s
′) (4.3)Eq (4.3) may be interpreted as follows: being in state si or state sj makes no di�ereneabout the value of gr in s′. If si and sj di�er only in the value of a gene, say g, thenEq (4.3) holds if the probability of gr taking value i in s′ is independent of the value of g,1Note that Givan et al. [30℄ all sag a blok (set of states) rather than a new state, but there is oneptuallyno di�erene for our ase. 38



i.e., Pr(gr(t + 1) = k|g(t)) = Pr(gr(t + 1) = k), where g(t) denotes the value of g at timestep t. In other words, ase I holds if g has no in�uene on the next state value of gr. Usingsimilar argument, for ase II to hold for states si and sj that di�er only in the value of g, gene
g should have a low e�et on determining the next state of any gene. So, we have to heksimilar onditions for ases I and II. If we approximate the in�uene of a gene on a set of genesas the average in�uene, both the in�uene of g on gr and the average in�uene of g on allother genes are important.In�uene SoreGiven two genes gi and gj , the in�uene of gi on gj an be estimated by heking to whatdegree the equation Pr(gj(t + 1) = k|gi(t)) = Pr(gj(t + 1) = k) is satis�ed. We de�ne thefollowing funtion to estimate the in�uene of gi on gj:

Inf(gi, gj) =
∑

k∈Val(gj)

|Pr(gj(t+ 1) = k|gi(t)) − Pr(gj(t+ 1) = k)| (4.4)and we de�ne the average in�uene of g on a set of genes G as:
AvgInf(g,G) =

1

|G|

∑

gG∈G

Inf(g, gG) (4.5)where |G| is the number of genes in G. The ounts for the di�erent values of pairs (gi, gj) inthe data onstitute su�ient statistis for Inf(gi, gj).Note that the funtion Inf(gi, gj) that gives the in�uene of gene gi on gj is similar innature to the in�uene onept introdued by Shmulevih et al. [78℄. But, Shmulevih etal. [78℄ ompute this value based on the model (Probabilisti Boolean Network), while weompute the value of Inf(gi, gj) diretly from the data without building a model.To selet a subset from the genes in the data, we assign to eah gene what we all In�ueneSore (IS), whih is based on two sub-sores inspired for the ases in De�nition 1. The sub-sore for ase I is:
SI(g) = Inf(g, gr) (4.6)where gr is the reward gene. The sub-sore for ase II is:

SII(g) = AvgInf(g,G) (4.7)where G inludes all genes in the data exept g. As a result,
IS(g) = SI(g) + SII(g) (4.8)Combining all the already introdued onepts, the �nal redution method that we all FRGC(Feature Redution for GRN Control) is given in Algorithm 4.39



Algorithm 4 FRGCInput: m× n disrete gene expression data (D) and threshold ThOutput: (m− k) × n redued gene expression data (D′)
number_of_genes× number_of_samples = size(D)

Genes = {1, . . . , number_of_genes}
IrrelevantGenes = {}for all g ∈ Genes doCompute IS(g)if IS(g) < Th then

IrrelevantGenes = g ∪ IrrelevantGenesend ifend for
D′ = Remove IrrelevantGenes from Dreturn D′FRGC identi�es and removes some of the lowest sored gene(s). One point to onsider inthe proess is the number of lowest sored genes to remove. We use a threshold sore Th asthe stopping riteria of the removal; Th obviously depends on the analyzed expression data.In this thesis, we rely on domain expert to speify the value of Th.Deiding on a value for the threshold is a subjetive proess whih depends on several issues,like the usage of the results, the degree of auray, simpliity of the poliy, omputationalresoures and the objetive. A large (small) threshold implies less (more) aurate results andrequires less (more) omputational resoures. The expeted omplexity of the resulting poliyan also be important beause eliminating some of the genes would generally produe a simplerpoliy whih is more attrative as the appliability is onerned. The need to take immediateation for time ritial ases may tolerate lower auray for simpler poliy. All these fatorsare good indiators to guide the hoie of a threshold value. The proess is subjetive; it is likea multi-objetive optimization issue beause most of the fators and objetives desribed abovedo on�it. So, it is the duty of the domain expert to deide on whih fators or objetivesshould be onsidered more important to the spei� problem being investigated and hene setthe threshold value aordingly. For instane, a lower threshold value is preferred if sensitivityis the issue, while a higher threshold value is expeted if simpliity is the major onern; mostof the ases it is somewhere in between. Finally, while deiding on the threshold value it ispossible to employ simple proedures suh as investigating the sum of IS sores for all genesand eliminating the genes with smallest sores up to a ertain perentage of the sum; however,a deision on the perentage is neessary and this is again subjetive. The problem an be alsoonsidered as determining the number of minimum sored genes to eliminate; this depends on40



the set of genes being investigated by the experimenter. Keeping all these issues in mind andknowing how subjetive the proess is, �nding a method that minimizes as muh as possiblethe involvement of the domain expert in a way to automatially determine the threshold valueis a hallenging task; one put in ation suh a method will add muh to the value of theredution approah proposed in this work, turning it into a more adaptable proess.As desribed in the experiments setion, errors are omputed as the perentage di�erenebetween the resulting value funtion and the approximate value funtion. How muh error istolerable highly depends on the problem spei�ation. For instane, if the reward funtion isde�ned as the �nanial ost of a treatment, then the tolerable error bound an be large om-pared to the ase when the reward funtion is de�ned in terms of life expetany or probabilityof survival. For instane, a 10% error would be aeptable as �nanial ost is onerned, i.e.,it may be tolerable for some ases. But if the survival of a patient is the onern then 10%error should not be aeptable unless it is the best available alternative. Therefore, deidingwhether an error bound is tolerable or not is problem dependent.4.2 Salable Control by Edge Elimination from FatoredRepresentationsControl problems an also be solved by using fatored representations (see Setion 2.3.1). InGRN domain, this fatorization naturally ours as eah gene orresponds to a fator. In thissetion, we desribe the appliation of FMDP framework to GRN ontrol problem and proposea method to redue the GRN model to a simpler one so that the solution an be found easier.The genes/nodes in a fatored model that have no e�et on the reward gene(s) do not existin the solution of the ontrol problem [9℄. This situation gives rise to the following questions;What about the genes that have small or negligible e�et on the reward genes? Can theonnetions of these genes be eliminated from onsideration in solving the ontrol problem?This setion disusses the methods proposed based on this idea.Although fatored representations help in solving some of the problems, they still su�erfrom the urse of dimensionality in the worst ase [9℄. Fortunately, in most of these ases wean still reah a reasonable approximate solution by pruning and/or approximating the valuetree.Most of the approximate methods prune the onstruted trees during the proess of solvingFMDP. Another possibility in �nding an approximate result is to prune the transition modelbefore solving the problem. In this setion, we elaborate on suh a method, but before thatwe introdue the onept of edge in�uene.
41



4.2.1 Edge In�ueneWe start by introduing the basi onepts required to understand edge in�uene as in De�-nition 2. For a PBN, given gene gi and its parent genes Pi, Shmulevih et al. [78℄, formalizedIn�uene to measure the e�et of a parent on gi. In�uene of gi on gj is the probability thatthe next state value of gj will hange when we hange the value of gi at the urrent time step.To formally de�ne the in�uene of gi on gj , denoted Ii(gj), �rst we have to de�ne the in�ueneof a gene with respet to a boolean funtion f , whih is the probability that the output of fwill hange if we hange gi. Assume that f is de�ned on the set of input genes P = (g1, ..., gk).The in�uene Ij(f) of gj on f is de�ned as;
Ij(f) = Pr{f(g1, ..gj−1, 0, gj+1, .., gk) ⊕ f(g1, ..gj−1, 1, gj+1, .., gk)} (4.9)where ⊕ stands for exlusive OR. Equation 4.9 depits the probability that f will output adi�erent value if gj is toggled while the other input variables are kept unhanged. Also notethat Ij(f) = 0 if gj /∈ P .Given V, F and c(i)j of a PBN, Ii(gj) is de�ned as follows [78℄:

Ii(gj) =

lj
∑

k=1

Ii(f
(j)
k )c

(j)
k (4.10)whih is the weighted sum of all in�uenes of gi on the set of funtions Fj . Refer to [79℄ forfurther details of in�uene onept.Given a PBN, in�uene of a gene gi on gene gj, Ii(gj), an be interpreted as a measure ofthe strength of the link between the two genes. But, Ii(gj) will be zero if gi is not among theparents of gj. However, this does not mean gi has no in�uene on gj . This beomes more learif we onsider the PBN in Figure 4.3(a) and its �unrolled� version for g3 in Figure 4.3(b). Asdepited in the �unrolled� PBN, onsidering the future e�ets of eah gene, it is obvious thateah gene has more to in�uene than only its hildren. If there is a path from gi to gj in theunrolled PBN, then gi at time step t has in�uene on the value of gj at time step t+ k, where

k is the length of the shortest path between gi and gj in the unrolled PBN.Given a node gi as the root, an unrolled PBN is onstruted (as a tree) by expanding eahnode g at level t with the parents of g at level t − 1 in the given PBN. Nodes are expandedunless the unique path from the leaf node to gi inludes a yle. For instane, leaf node g3 isnot expanded in Figure 4.3(b) beause the path from leaf g3 to the root inludes g3 twie. Alsonotie that there an be links like g1 → g1 as g1 has itself as the parent in the PBN, and g1'sat the leaves are not expanded beause the two paths g1 → g2 → g3 and g1 → g2 → g4 → g3inlude g1.Reall that eah Ii(gj) orresponds to the e�et of the value of gi at time step t on the valueof gj at time step t+ 1, and assume gk is one of the parents of gi. When we unroll the PBNone time step, we will observe the path gk → gi → gj. We know that, based on Markovian42
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(4.11)Figure 4.3(b) shows Ii(gj) values as labels on the edges; I2(g3) = 0.5, I3(g4) = 0.25, et.From those, we an easily ompute I(∗)

i (gj) values. To ompute I(∗)
1 (g3) for instane, weonsider the two simple paths from g1 to g3 in the unrolled PBN, whih are p1 = g1 → g2 → g3and p2 = g1 → g2 → g4 → g3. For the �rst path I(p1)

1 (g3) = 0.2 ∗ 0.5 = 0.1, and for the seondpath, I(p2)
1 (g3) = 0.2 ∗ 0.4 ∗ 0.1 = 0.008. So, I(∗)

1 (g3) = I
(p1)
1 (g3) + I

(p2)
1 (g3) = 0.1080. Theother I(∗)(g3) values an be omputed similarly based on Equation 4.11 and they are givenin Figure 4.3().De�nition 2 (Edge In�uene). Given three genes gi, gj and gk, Edge In�uene (EI) of theedge between gi and gj on gk is de�ned as: EIi,j(gk) = Ii(gj)I

(∗)
j (gk).

EI an also be omputed on a set of genes, denoted EIS: EISi,j(S) =
∑

gk∈S EIi,j(gk), whihis simply the sum of in�uenes of an edge on all genes in the given set.43



Considering nodes with same label as di�erent nodes, the unrolled PBN orresponds to atree. By onsidering them as the same node and aggregating them, we �nd a graph; then, pathsearh in a tree turns into path searh in a graph. Computing all paths between two nodes ina graph is a hard problem. It is NP-omplete as it inludes the solution of the longest pathproblem whih is known to be NP-omplete [45℄. Also, the size of the unrolled PBN tree angrow exponentially large depending on the struture of PBN and the number of genes. So, itis better to ompute approximate values for EI. One possible method is to prune the unrolledPBN tree. Also notie that the unrolled PBN tree for a given gene only inludes relevant genesand edges. All nodes in a tree have an in�uene on the given gene, so the parts of the PBNthat are not related to the solution of the ontrol problem are not expanded and the EI valuesfor those edges are not omputed.Approximate omputation of EILimiting the size of the unrolled PBN up to a ertain level an give good results. But a bettermethod is to prune the unrolled PBN if I(∗)
i (gj) is less than a ertain threshold T . As Ii(gj)is atually a probability value, I(p)

i (gj) for any i, j and p monotonially dereases with eahnew level in the unrolled PBN. So, when we onsider that the edge in�uene values below Tare not signi�ant then we may stop expanding a node i further down in ase EIi,j(gk) ≤ T ,where gk is the root.After this approximation, we are ready to onstrut an approximate algorithm for om-puting EI values for a given gene gj whih will be the root of the unrolled PBN tree. Theomplete proess is given in Algorithm 5. It is a reursive algorithm that atually does a lim-ited depth �rst traversal of the unrolled PBN tree (in the reverse diretion of the ars shownin Figure 4.3(b)), and does not expand node i for su�iently small values of I(∗)
i (gj).4.2.2 Edge elimination for approximate solutions of FMDPsAording to De�nition 2, the EI value is a measure of how a ertain gene is e�eted by thehanges in values of other genes. In FMDP, the solution inludes genes that have some e�eton the reward genes. So, genes that have no e�et on the reward genes at any time in thefuture an be eliminated from FMDP. However, based on the study desribed in this setion,we realized that instead of eliminating a gene ompletely (as done in Setion 4.1), removingsome of the unimportant edges from a DBN in FMDP may produe better results.Given the set of reward genes Γ of FMDP, EISi,j(Γ) denotes how eah relevant edge in theFMDP in�uenes the set of reward genes. This in�uene an be very low suh that some ofthese edges an be negleted from the model. This means that edges with low EIS values anbe eliminated from onsideration. So, given a threshold δ, the edges with the smallest EISvalues whose total EIS do not exeed δ are removed. As a �nal step, redueFMDP performs44



Algorithm 5 computeEI(g, p, I(p)
g (gt), T, gt, pbn,EI)Input: gene g, path p = gt, pi1 , .., pik

, path in�uene I
(p)
g (gt), target gene gt, PBN pbn, initial valuesof EIOutput: ∀gi, gj reahable from gt, EI(gi,gj)(gt)if g ∈ p then

EIg,pik
(gt) = EIg,pik

(gt) + Ig(pik
) ∗ I

(p)
pik

(gt)elseif EIg,pik
(gt) > T thenfor every pg ∈ parents(g) in pbn do

EI = computeEI(pg, {p, g}, Ig(pik
) ∗ I

(p)
pik

(gt), T, gt, pbn,EI)end forend ifend ifreturn EIa maximum-likelihood learning of the parameters of the DBN using data sampled from theoriginal model.Algorithm 6 redueFMDP(EIS(Γ), δ,M,D)Input: EIS(Γ),δ,FMDP M ,DOutput: FMDP M̂

M̂ = MLet S be the sorted set of edges Ei,j where EISi,j(Γ) 6= 0Take the �rst k edges,Sk, from S suh that P

Ei,j∈Sk
EISi,j(Γ) < δfor all Ei,j ∈ Sk doRemove edge Ei,j from DBNs for all ations in M̂Learn maximum likelihood parameters of new DBN from data Dend forreturn M̂The proess in Algorithm 6 redues a given FMDP M , to another possibly sparser FMDP

M̂ by applying the proedure desribed above. Let π∗ and π̂∗ denote the optimal poliiesfor M and M̂ , respetively; π̂∗ will depend on fewer number of variables than π∗ beause ofthe absent edges. This means that value trees or poliy trees may require less omputationalresoures to store and modify.
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4.2.3 Estimating δOne of the drawbaks of redueFMDP is that it assumes δ as given by an expert. Moreover, itrequires that we sample from the model and use it for maximum likelihood learning of modelparameters of the redued model. In this setion we propose a method to estimate a reasonablevalue for δ, denoted δest, and use δest to redue an FMDP without sampling from it.To estimate δ we assume that the objetive for the FMDP is de�ned as a propositionallogi lause in terms of some of the genes in the model. Given the set of genes V and a set
Γ of reward genes where Γ ⊂ V , let us denote the objetive funtion as the logial formula,
Φ(Γ). So, we say that a gene ativity pro�le s satis�es our objetive if Φ(Γ) = 1 for the valuesof Γ in s. Usually, there an be more than one ways of ahieving an objetive. For instane if
Φ({A,B}) = A ∨ B for genes A and B then we an try to ahieve either A = 1 or B = 1 orboth.Disjuntive normal form (DNF) is a standardization of logial formulae. It represents theformula as a disjuntions of onjuntions of literals. Every logial formula an be onvertedinto DNF. This means that we an represent any Φ(Γ) as;

Φ(Γ) = C1 ∨ C2 ∨ C3 ∨ ...Ck (4.12)where eah Ci is a onjuntion of literals that we will all the omponents of the objetive.Hereafter, we will denote the DNF of Φ(Γ) as ΦN (Γ), where N stands for normalization. Eahof these Ci's atually orrespond to di�erent ways of ahieving our objetive. Finally, let usdenote the set of genes that exist in the formula Ci as γi.Assume we are given a ontrol problem omposed of the PBN model P of a GRN, ationset A, and the objetive Φ(Γ). By using the ations in A we will try to ahieve the objetive,
ΦN (Γ) = C1 ∨ C2 ∨ ...Ck. Also remember that eah ation orresponds to the interventionof one of the genes in the model. We say that Ci is ahievable if a given ation a for gene gmay satisfy Ci. In other words, if there is a path between g and all genes in γi in the unrolled
P then we have a hane to ahieve Ci. Otherwise, if there is at least one gene in γi that isnot reahable from g in the unrolled P then ation a is not useful to satisfy Ci. This de�nesa mapping that we all the ahievable set of objetives, C, from A to a subset of Ci's, where
Ci ∈ C i� Ci is ahievable by some ation a ∈ A. We will denote the projetion of the objetivefuntion to ahievable set of objetives as ΦN

C (Γ), where ΦN
C (Γ) =

∨

Ci∈C Ci.Sine there an be more than one ways of satisfying an objetive, simplifying the problemby deomposing the objetive into omponents may help an FMDP solver to �nd a reasonableapproximate solution easily. For this, we say that two omponents Ci and Cj are separated if
∀gi ∈ γi and ∀gj ∈ γj , there is no path between gi and gj in the GRN model represented as anundireted graph obtained by onverting eah edge in the original model (P ) to an undiretededge. If all Ci ∈ C are separated from eah other we say that C is maximally separated.46



Based on the mentioned ideas, we onstruted an algorithm to determine a reasonable valuefor δ. The algorithm CT (for hoose threshold) is given in Algorithm 7. CT tries to �nd theminimum δ that ahieves maximum separation of omponents (deompose the objetive) whilepreserving ahievable objetives.Algorithm 7 CT (EIS(Γ),M,Φ(Γ))Input: EIS(Γ),FMDP M , Objetive Φ(Γ)Output: δestCompute ΦN (Γ) = C1 ∨ C2 ∨ ...Ck

C = ahievable set of objetives of MCompute δmax = maximum δ that preserves CCompute δsep = minimum δ that maximally separates C

δest = min(δsep, δmax)return δestComputing δsep and δmax in CT should be straight-forward; sort EIS(Γ) values and elim-inate edges in asending order starting from the minimum, until the onstraints are violated.
δmax is omputed by eliminating edges as long as ahievable set of objetives is preserved and
δsep is omputed until C is maximally separated. To be able to make as few modi�ations aspossible to the original model (so that the solution is a good approximate poliy), in the �nalstep, minimum of δsep and δmax is hosen as δest.Given δest by CT , the redution proedure is given in Algorithm 8. Note that Algo-rithm 8 does not require sampling from the original model and also all edges less than δest areeliminated; di�erent from redueFMDP2. The last step of redueFMDP2 updates the rewardfuntion R in M̂ . De�ning a reward funtion for a given objetive is a relatively subjetiveproedure. To the best of our knowledge, there is no well-de�ned proedure to map a givenobjetive to a reward funtion and �nding suh a mapping is out of the sope of this thesis.In this thesis, we assume the objetive Φ(Γ) is given, and it is mapped to a reward funtion Rthat represents the objetive and the ost of ations as �good� as possible. So, if we representthis mapping as F where F : Φ(Γ) → R, then by using the same proedure F we an alsomap ΦN

C (Γ) to a new reward funtion; this orresponds to the last step of redueFMDP2. Forinstane, given Φ({A,B}) = A∨B, a possible reward funtion an be onstruted by assigninga reward of 10 to the states where Φ({A,B}) is satis�ed and 0 to all other states. So the rewardfuntion returns 0 for A = 0, B = 0 and 10 otherwise. Now assume ΦN
C ({A,B}) = A whih2This di�erene is not important as δ in redueFMDP an be mapped to the usage in redueFMDP2 byhoosing δ as the maximum EIS of the eliminated edges47



means that the ahievable set of objetives is {A}. The reward funtion for ΦN
C onstrutedby the same proedure above assigns 0 to states where A = 0 and 10 for A = 1.Algorithm 8 redueFMDP2 (EIS(Γ), δest,M)Input: EIS(Γ),δest by CT ,FMDP MOutput: FMDP M̂

M̂ = Mfor all Ei,j ∈ S doif EISi,j(Γ) < δest thenRemove edge Ei,j from DBNs for all ations in M̂Marginalize out gi from the CPTs of gj for all ationsend ifend forUpdate reward funtion R of M̂ based on Creturn M̂4.3 Related WorkGenerally, ontrol in GRNs is studied on Markovian models [79, 17, 18, 64, 66℄. In [79℄, PBNsare investigated in terms of perturbations and interventions. Random gene perturbationsin PBNs are introdued. The transition probabilities in the existene of perturbations arederived. Then intervention that is foribly hanging value of a gene is introdued to PBNs.Aording to a goal (for example reahing the state 111) they try to selet the best gene tointervene in terms of the in�uene onept that is introdued in [78℄ and �rst passage timesin Markov Chain theory. Finally they investigate the sensitivity of stationary distributions togene perturbations.One of the �rst studies of formulating the problem of ontrol in GRNs in an MDP frameworkis by Datta et al. [17℄. PBNs are used as the model and an MDP is formulated and solvedby dynami programming in a general setting. A real world example is given at the endbased on gene expression data that onstitute a 10-gene network whose objetive is to down-regulate one of the genes. Although the derivations are given for a PBN, the network used inthe example is ternary (so is not a PBN) and derived using the methods in [48℄. But sinetransition probabilities are important for dynami programming, ternary valued variables makeno di�erene other than inreasing the searh spae from 2n to 3n.In an extension of the study desribed above, the authors give the results of dynamiprogramming solution of the ase in whih the state of the PBN is not known, but a �lue� aboutit an be observed in the form of a number of measurable outputs [18℄. Results are given on a48



7-gene network in whih the ontrol objetive is to ensure that a gene (namely WNT5A) is notup-regulated. Diretly ontrolling the gene (by an inhibitory protein) gives better results thanontrolling through another gene that in�uenes WNT5A. Expeted osts are dereased andthe probability of being in the desired state is inreased with ontrol ompared to unontrolledase.The work desribed in [64℄ onentrates on �nding an optimal poliy using dynami pro-gramming for a PBN that is onstruted using the method of [104℄.They �rst derive transitionprobabilities T (s, s′) and T (s, a, s′) and use this to solve a �nite-horizon ontrol problem whihminimizes a ost funtion. The ation is set as toggling a gene's value. Seleting the ontrolgene is performed using the in�uene metri of [78℄. They �nally give the results of an appli-ation to melanoma data where the objetive is again to have WNT5A gene not up-regulatedand show that the ost is dereased with ontrol.The in�nite-horizon of the problem whose �nite-horizon solution was given in [64℄, is studiedin [66℄. The authors use PBNs derived by the method of [67℄ and transition probabilities forPBNs derived in [64℄. They give the solutions for both disounted osts and average ost perstage. Results are given on a melanoma appliation whih inludes a 7-gene network that has128 states. Value iteration and poliy iteration results are given aording to total ost withontrol and without ontrol, and aording to time spent in desirable and undesirable statesduring the appliation of the urrent poliy.The problem is also investigated by dividing the �nite-horizon into episodes of ontrol andmonitoring that is generally done in treatment of diseases [1℄. Again the model is assumed tobe given, and dynami programming solutions to four di�erent types of problems are studied,whih are �nite-ontrol, �nite-ontrol �nite-monitoring, �nite ontrol in�nite-monitoring andin�nite ontrol. For a GRN, three kinds of models an be available; M as GRN model, L asstate ost model, andK as state-ation ost model. All or some of these models an be availableto us in solving problems of optimal ation sequenes based on our biologial knowledge of thedomain. In this study, solutions depending on the availability of these models and ways ofombination of these models are also disussed inluding a multi-objetive solution.As opposed to what has been suggested in [17℄, state osts and state-ation osts are infat non-additive beause they denote di�erent kinds of values. Based on this fat, a multi-objetive solution is suggested in [2℄. The solution is general for any number of objetives, butspei�ally the solution for state and state-ation osts is given.An approximate solution by reinforement learning (Q-learning) based on the assumptionof a model simulator is given in [25℄. The results are promising for salability but the authorsreport the results only for a 10-gene network to be able to ompare to the optimal solutions.As all biologial data inurs some type of noise, the models derived from suh data may beerroneous. Pal et al. [65℄ investigate the e�et of the appliation of a ontrol poliy on a gene49



network whose transition probabilities are di�erent from the one for whih the poliy is found.Finally, in real life some onstraints may exist in the appliation for a treatment to a patient.For instane, a given ation may be applied only up to a ertain number of times. Deriving aontrol poliy in the existene of suh onstraints has been investigated by Faryabi et. al [26℄.4.4 The Gap Covered by the Proposed MethodsAs already mentioned earlier in this hapter, the main issue in ontrol problems is theurse of dimensionality. In real problems, suh as the GRN ontrol domain, it is hard to reaha solution by applying the available tehniques, espeially with MDP representations. Allthe proposed methods for �nding an intervention strategy in GRN ontrol is based on MDPrepresentations that are hardly salable. Beause of this, all the appliations in the �eld arerestrited to small networks that have no more than 7 or 8 genes at best. Although thesemethods are promising and important for handling the ontrol problem in general, algorithmsthat an work for larger networks are needed as a GRN an inlude genes in the order ofthousands.My expetation is that the reader has absorbed the di�erent novel aspets of the two typesof algorithms proposed in this hapter to �ll this gap. The �rst algorithm onentrates onMDP representations, in whih a feature (or gene) redution method is devised for reduingthe given model to another, where the latter have a signi�antly smaller state spae than theformer. This type of redution provides near-optimal solutions to the otherwise unsolvableGRN ontrol problems. This redution is also di�erent from the existing MDP redution (orminimization) tehniques already desribed in the literature (see [30℄ for instane) in the sensethat it is applied before modeling to fous on the omponents of the network that is essentialfor ontrol.The seond proposed method works well for FMDP representations. There are two ontri-butions here; �rst, it is the �rst appliation of FMDP representations to GRN ontrol domain,seond, a new redution algorithm for a given FMDP representation is proposed for near-optimal solutions to ontrol problems. This algorithm is very promising to reah the objetiveof solving genome-wide ontrol problems.Although FMDP formalism is more appropriate for domains that are easily fatorized likeGRN ontrol, MDP representations are still investigated due to their ease of implementationand interpretation. This makes both of the methods proposed in this hapter appliable forthe studies in this �eld. This beomes more onvining by the experimental results reportedin the next hapter.
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CHAPTER 5EXPERIMENTAL RESULTS
This hapter inludes the results of the experiments performed to demonstrate the appliabilityof the proposed algorithms. Both syntheti and real data sets are used in the experiments.Naturally following from the presentation of the algorithms, the results are also given in twoparts; the �rst part of the results overs the modeling and the seond part of the results isdediated to the ontrol of GRNs. Eah setion inludes the desription of the data sets, resultsand disussion.5.1 Implementation and Exeution EnvironmentsThe algorithms are mostly implemented in Matlab1 (unless otherwise stated). No spei�toolbox dominates the implementation but some funtions from the statistis toolbox are used.Other than that, for tasks like graph onstrution/drawing and data pre-proessing, somefeatures of R2 and Python3 are used.Most of the experiments are performed on a omputer with Intel Core2 2.4 GHz CPU and3GB of RAM running Linux. For some of the time onsuming empirial experiments, an HPCluster4 is also used. But none of the algorithms here require more than an ordinary desktopomputer.5.2 Constraint-based Modeling of Gene Regulatory Net-works5.2.1 Data setsIn addition to the data onstruted from syntheti networks, there are four real data sets usedfor the experiments in this setion. These are widely investigated data sets in the litetature.1The Mathworks - MATLAB and Simulink for Tehnial Computing, http://www.mathworks.om, aessed1-June-20092The R Projet for Statistial Computing, http://www.r-projet.org, aessed 1-June-20093Python Programming Language, http://www.python.org, aessed 1-June-20094High Performane Computing, http://hp.eng.metu.edu.tr, aessed 1-June-200951



The list of these data sets are as follows:1. The expression data of Spellman et. al. [81℄: It is time-series gene expression dataomposed of 77 time steps for di�erent phases of the ell yle and inludes 6178 genes.2. The TF binding loation data of Lee et al. [53℄: It has binding data for 106 TFs and 6270genes.3. The TF binding loation data produed by Harbison et al. [34℄: It is omposed of bindingdata for 203 TFs and 6229 genes.4. Protein onentration data from ytometry experiments by Sahs et al. [73℄ for Rafsignalling pathway. It is stati data omposed of 500 samples for eah of the 11 genes.5.2.2 The PCPr algorithmTo evaluate the PCPr algorithm as desribed in Chapter 3, we performed two di�erent typesof experiments. The experiments di�er in the soure of data used; syntheti networks or realbiologial data. In the experiments with syntheti networks, a sparse syntheti network whihresembles biologial networks is onstruted. Then we sample from this network and hek howwell we build the network from the data. We repeated the experiment for syntheti networkswith di�erent number of nodes and di�erent sample sizes. Prior information matrix is builtfrom given network by adding some amount of error (noise).The seond type of experiment is the one that involves real biologial data. This time,prior knowledge is onstruted from one type of data (TF binding data) and the other type ofdata (miroarray data) is used in statistial tests by adapting the signi�ane level aordingto prior knowledge. Results are veri�ed by onstruting a gold standard network from theliterature whenever possible. Methods based on Gene Ontology annotations are used when agold standard network is not available or is hard to onstrut.There are three evaluation measures that we use in the experiments; preision, reall andstrutural hamming distane (SHD). Preision and reall are de�ned in terms of the numberof true positive (TP), false positive (FP) and false negative (FN) edges. Preision is given as;
TP

(TP+FP ) , and reall is TP
(TP+FN) . High preision along with high reall should be the objetivefor an algorithm. SHD is a measure to �nd a distane between two direted graphs where eahoperation of edge removal, edge orientation and edge addition is de�ned to be of distane 1.SHD is the total number of operations applied on one of the graphs to obtain the seond graph.We will use SHD to evaluate direted graphs, preision and reall for undireted graphs. Sinethe skeletons of the graphs (sometimes referred as undireted dependeny graphs [20℄) areonsidered important in the bioinformatis ommunity, we report both undireted and diretedgraph evaluations. 52



Syntheti networks:To onstrut syntheti networks, we used the method desribed in [43℄, whih is publilyavailable in the R-pakage palg. The algorithm in palg onstruts a DAG whose sparseness anbe ontrolled by a parameter. The syntheti graphs used in these experiments are onstrutedbased on the following parameters:
• Number of nodes(p): p ∈ {20, 40, 60, 80, 100}.

• Expeted number of onnetions for eah gene(E[N ]): 3A total of 10 graphs are onstruted for eah p with E[N ] set as spei�ed above. As GRNs arethought to be sparse, we hose E(N) as 3. From eah of these 10 graphs, 5 datasets with size
n are generated, where n ∈ {100, 1000, 5000}. The reported results are the averages of these.The prior information matrix B for the syntheti networks is onstruted from the DAG
G onstruted by the palg. If Gij = 1 (the edge exists in G) then Bij is set to a random realnumber in the range [0.5, 1]. When Gij = 0, we have Bij ∈ [0, 0.5]. After that, a noise term
εij is added, where εij is a random variable distributed as N(0, σ). In the given results, σ isset to 0.1, whih means that the error is approximately in the range [−0.25, 0.25] with 0.99probability.Choosing the value of β depends on the noise level εij of prior knowledge. Given a lownoise level (a low standard deviation σ of εij with mean 0), a high value of β an inrease thequality of the output, but a very high value an also bias the output in suh a way that it onlyrepresents the prior knowledge. So, the value of β must be hosen arefully.
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Figure 5.1 shows the hange in the number of errors with the value of β for di�erent valuesof σ. The urves plotted in Figure 5.1 are onstruted as follows; given a DAG G with pnodes and E[N ] = 3, we onstruted matrix B for a given value of σ and applied the PCPralgorithm to a dataset of size 500. We performed 50 suh runs, produing a new B eah time;the number of errors are averaged over these 50 runs. This proedure is repeated for a set of σvalues. Figure 5.1 shows the results of this proedure for p = 40 and p = 60. If we don't knowthe value of σ (whih is generally the ase), hoosing a high value of β is risky. For instane, if
β is hosen as 35 for p = 60, the number of errors approximately doubles for σ = 0.35 omparedto the ase when β is 0 (see Figure 5.1). So, hoosing a value between 15 and 25 dereases thenumber of errors in ase of small σ (low error) and does not inrease the number of errors toomuh if σ is large. In the experiments onduted using the syntheti datasets, sine we don'tassume any prior knowledge of σ, we experimentally hose the value of β as 20.
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gene. The smaller the p-value, the more on�dent we are about that binding. In this study,miroarray data is the data we used for onditional independene tests; from the TF bindingdata we onstruted the prior information matrix B to set the signi�ane level. In otherwords, binding data will onstitute our prior information on the existene of edges betweengenes and TFs.In the experiments, we used the gene expression data of Spellman et al. [81℄ and the TFbinding data of Lee et al. [53℄. Eah time sample in the expression data of Spellman et al. isused as a feature for a gene; it is used in deriving the onditional independene relationshipsalong with binding data as the prior knowledge in the PC algorithm. Evaluating the resultsis performed as searhing the literature for evidene of the derived interations, so we hadto hoose a subset of genes to demonstrate the performane of the method. The gene sethosen to model is the 25-gene set that was previously used in [6℄; this hoie will also allowfor omparison of the results. The expression data orresponding to this set is extratedfrom Spellman et al. and missing values are imputed in miroarray data using the k-nearestneighbors algorithm (KNNImpute [88℄) with k = 10. No further proessing is performedfor expression data. But, the binding data has to be proessed to derive probability valuesorresponding to the entries in B. Next, we summarize this proess by using the notationdesribed in [6℄.As mentioned before, the TF binding loation data is in the form of p-values, whih anbe interpreted as indiators of edges being present in the graph. To onvert a p-value to aprobability of an edge being present, we follow the method desribed in [6℄. The p-value Pijof edge Eij is assumed previously to be exponentially distributed given that Eij exists in themodel struture G [76℄, and uniformly distributed given that Eij does not exist (follows fromthe de�nition of p-value). This means that P (Pi = p|Ei ∈ G) = λe−λp/(1 − e−λ), where λ isa parameter of exponential distribution, and P (Pi = p|Ei /∈ G) = 1. After this step, applyingBayes rule and integrating over prede�ned minimum and maximum values of λ lead to thefollowing:
Bij = P (Eij ∈ G|Pij = p) =

1
λH−λL

∫ λH

λL

λe−λpϑij

λe−λpϑij+(1−e−λ)(1−ϑij)
dλ

(5.1)In Eq (5.1), G is the struture of the model, Pij is the p-value of Eij , whih indiates theon�dene of the binding of TF i to gene j, λL and λH are the hosen lowest and highestvalues of λ, respetively, and ϑij = P (Eij ∈ G). In the omputations, ϑij = 0.5, λL = 0.1 and
λH = 10, 000 were used as suggested in [6℄. The integral is then solved numerially for eah�xed value of pij [6℄.In the hosen set of 25 genes, 10 exist as TFs in the binding data of Lee et al. So, the p-values are available only for edges onneting these 10 genes to the other genes in the set. Thus,only for these edges Bij values an be omputed from the binding data. After we ompute eah55



Bij for these edges, the other entries in B are �lled with 0.5, indiating no prior knowledge forthose edges. Eah entry in B then, indiates the probability of a TF binding to a ertain gene.The onnetions of genes in a GRN may be a�eted by the urrent phase of the ell yle.To be able to explain these dependenies, we added a phase variable in the same way asdesribed in [6℄. The phase variable is assumed to be onneted to all the other genes andthese onnetions are assumed to be permanent, i.e., they are not tested like the other edgesin onditional independene tests in the algorithm.To be able to evaluate the results, we built what is alled a �gold standard� network, whihinludes the edges that are experimentally veri�ed in the literature. In order to onstrutthe gold standard network, we used the pathwaystudio tool (available at: �Ariadne Genomis:Pathway Studio, http://www.ariadnegenomis.om/produts/pathway-studio, aessed 1-June-2009�). This tool takes a set of genes and builds all the diret interations among thegiven genes based on the ResNet database. To the network derived in this way, we also addedthe interations extrated from the BioGrid database [84℄. We used this network as our �goldstandard� network. The results are given in Table 5.1, where TP, FP and FN, respetively,stand for true positives, false positives and false negatives.Table 5.1: Quality of the derived networks for 25-gene experimentAlgorithm TP FP+FNPC 5 19 + 79 = 98PCPr (β = 20) 16 11 + 68 = 79PCPr (β = 30) 20 11 + 64 = 75PCPr (β = 40) 37 14 + 47 = 61
DBNBA 44 34 + 40 = 74Instead of hoosing a �xed β, this time we give the results orresponding to 3 di�erent valuesof β, namely 20, 30 and 40; these values have been seleted based on some initial tests wherewe realized that the number of false positives inreases after 40. The network derived by PCPrwith β = 40 is also given in Figure 5.3. It is obvious from the results reported in Table 5.1that PCPr always outputs a better network than PC. This shows the e�etiveness of ourproedure in ombining multiple types of biologial data in this study, i.e., miroarray dataand TF binding data. Table 5.1 also inludes the results of Bernard et al. [6℄ for omparison; Wename their algorithm as DBNBA. Although they derive a di�erent type of network, namely adynami bayesian network, we an ompare the results by onverting the graph in their resultsto an undireted graph. Using the latter undireted graph we ompared their output to our56



�gold standard� network5. Preision value of PCPr for β = 40 is 0.72 and the preision for theoutput of DBNBA is 0.56. This shows that the existene of eah edge in the output of PCPris more �reliable�. Reall values for the outputs are very lose, 0.44 and 0.52 for PCPr and
DBNBA, respetively. As a result, PCPr outputs a network with a muh better preision andomparable reall values ompared to DBNBA.Our results also verify the results of Bernard et al. in the sense that the binding data ofLee et al. is more informative in deriving the GRN than the miroarray data of Spellman etal., at least for the hosen set of genes.
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5.2.3 PCPDPr algorithmThe experimental results for the PCPDPr algorithm as desribed in Setion 3.1 are reportedand disussed in this setion. We follow the same evaluation strategy applied to the PCPr5Note that the numbers reported in Table 5.1 are di�erent from the ones reported in [6℄; we mapped theminto the sale used by our model beause of the di�erent evaluation riteria and di�erent �gold standard�networks. 57



algorithm; we also ompare PCPr to PCPDPr.Syntheti Networks:Note that the PCPDPr algorithm is proposed for graphs that have some densely onnetednodes; we all suh graphs partially-dense (PD) graphs. So syntheti PD graphs have to beonstruted for testing PCPDPr.To onstrut syntheti networks that are PD, we used a modi�ed version of the algorithmin palg. We modi�ed the algorithm to be able to produe networks that have dense nodes,i.e., whose expeted number of neighbors is larger from the other nodes. We onstruted PDgraphs this way and used them for testing the proposed algorithms.The syntheti graphs used in the experiments are onstruted based on the following pa-rameters:
• Number of nodes (p): p ∈ {100, 300, 500}.

• Number of dense nodes (dn) : To the best of our knowledge, determination of the numberof dense nodes for a given genome has not been studied before. Number of genes in afuntional ategory in a genome sales by following a power-law [90℄. This power-lawrelationship is given as nc = κ∗ gγ, where nc is the number of genes in ategory c, κ and
γ are the parameters of the relationship. The key omponents in the GRN are usuallythe transription fators, eah of whih regulates several genes and other TFs. As theTFs an regulate other omponents (genes), we set the TFs to be the dense nodes in theGRN. In order to �nd the number of TFs in the GRN, we found the number of genes thatare related to �Transriptional regulation� ategory in both eukaryotes and bateria [90℄.The average is taken beause not all the TFs have the same degree of density. Also, sinethere are ommon TFs between eukaryotes and bateria whih are essential for the basiellular proesses like DNA synthesis and signal transdution, it is more reasonable toinlude both eukaryotes and bateria. So, we set the number of dense nodes by using theabove equation where κ = 0.002 and γ = 1.5. γ is hosen as lose to the mean parametervalue of �Transriptional regulation� ategory for eukaryotes and bateria. κ = 0.002 isderived again by using the values in [90℄. So for instane the number of dense nodes is22 for a network with 500 nodes.

• Expeted number of edges for eah node (E[N ]): 3 for sparse nodes and 30 for densenodes. 30 is hosen by alulating the average number of onnetions for some of thedense genes in di�erent organisms (see Table 5.2).A total of 10 graphs are onstruted for eah p with E[N ] and dn set as spei�ed above. Fromeah of these 10 graphs, 5 datasets with sample size n are generated, where n ∈ {100, 250, 500}.The reported results are the average of these. Notie that the hosen values of n are typialsample sizes for a miroarray experiment. 58



The prior information matrix is onstruted in the same way as in the experiments forPCPr desribed in the previous setion. β is set as 20 and α0 is again set to 0.05.One important di�erene from the previous experiments is that this time, not only theskeleton but the PDAG derived from the seond part of the PC algorithm is evaluated as well.
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Figure 5.4 gives the evaluation results (note that SHD values are normalized to [0, 1]). Itan be easily seen in Figure 5.4 that prior knowledge always improves the result, though e�etsdi�er. Also, the PCPDPr algorithm is always better than PCPr. Notie that as the numberof dense nodes follows a power-law, e�et is more apparent for larger sized networks. Rate ofimprovement in preision and reall for p = 100 is larger than rate of improvement in SHD. Butfor p = 500 for instane, SHD also improves more rapidly. This shows that the improvementin skeleton is re�eted to the edge orientation part as well. So PCPDPr an disover ausalinterations muh better than PC and PCPr. Also another important aspet is the onsistenyof PCPDPr with inreasing sample size. It outputs a better network onsistently when thesample size inreases (see the olumns in Figure 5.4).Figure 5.5 gives the exeution time in seonds for the algorithms, where it is obvious thatPCPDPr outperforms others for all settings, though it is di�ult to reah a onlusion for59
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PCPr and PC. Sine the mistakes done by onditional independene tests an both inreaseor derease the omputational time required by the algorithms, the exeution time dependsgreatly on the used network and data. But the gain by PCPDPr is lear; it always requires lesstime to omplete and sometimes the di�erene is huge. For instane, for p = 500 and n = 500,PCPDPr works 41 times faster than PC.Table 5.2: Some TFs and number of bindings for a) E. Coli, b) B. Subtilis, ) S. CerevisiaeGene BindingsarA 20rp 72purR 16fnr 22rpoE_rseABC 24yfC_purB 26himA 21(a)
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Gene Regulatory Networks:GRNs are generally thought to be sparse. For example, the average number of onnetionsin Esherihia Coli transriptional network is given as 5 in [77℄. But, there are also some TFsthat are found to bind on a large number of genes (either as an ativator or a repressor). Some ofthe TFs that are known to bind to more than 15 genes (by using TF binding data) in Esherihiaoli, Baillus subtilis and Saharomyes erevisiae are given in Table 5.2 [59, 60, 77℄. (Thedata used for Table 5.3(a) and Table 5.3() are available at �Uri Alon's Moleular Cell BiologyLab, http://www.weizmann.a.il/mb/UriAlon (aessed 1-June-2009)�, and the data usedfor Table 5.3(b) is available at �DBTBS, http://dbtbs.hg.jp (aessed 1-June-2009)�.Table 5.2 demonstrates and emphasizes that our proposed approah an be applied toGRNs as well. In this setion, the results of applying the proposed algorithms to real geneexpression data are presented. We used the gene expression data of Spellman et al. [81℄ andthe TF binding data of Lee et al. [53℄.The same data set used to test PCPr in 5.2.2 is also used to test PCPDPr. The priorinformation matrix, B, is again derived from binding data by the method of Bernard et al. [6℄.Dense nodes are found in the same way desribed in Setion 3.1.2. If a gene is estimatedto have more than 5 onnetions with probability greater than 0.8 in B, then that node isonsidered as dense. Based on the data we used, genes that have been found as dense from Bare ACE2, MCM1, NDD1, SWI4, SWI5, SWI6 and CLB2. These dense genes are importantfor transition between phases of the ell yle. Both SWI5 and ACE2 are TFs that ativatethe transription of genes expressed early in G1 phase in order to promote the transition fromM to G1. The three genes SWI4, SWI6, and MBP1 are DNA binding omponents of MBF andSBF, whih regulate the late G1 spei� transription, inluding ylins and DNA synthesisgenes. The two genes NDD1 and CLB2 play a role in G2/M transition. At this stage of theell division, the ell undergoes a huge hange in the transription of genes in order to proeedto the following phase.The same �gold standard� network mentioned in Setion 5.2.2 is used to evaluate the al-gorithms. The results are given in Table 5.3. The network derived by PCPDPr with β = 40is also given in Figure 5.6. It is lear from the results reported in Table 5.3 that PCPDProutputs a better network in a shorter time. The results for DBNBA and PCPr are inludedin this table again for the ease of omparison.As reported in Table 5.3, PCPDPr and PCPr always have higher preisions than both PCand DBNBA. And PCPDPr with β = 40 has a muh better preision than DBNBA with aomparable reall. Also, we should emphasize here that sine we ould not obtain the algorithmbut only the results for DBNBA, we an not report the time for that algorithm. But, the timeelapsed for PCPr and PCPDPr for β = 40 shows that PCPDPr outputs a better network inmuh shorter time than PCPr. 61



Table 5.3: Quality of the derived networks for 25-gene experimentAlgorithm TP FP+FN Time Preision ReallPC 5 19 + 79 = 98 0.37 0.20 0.05PCPr (β = 20) 16 11 + 68 = 79 0.48 0.59 0.19PCPr (β = 30) 20 11 + 64 = 75 0.67 0.64 0.23PCPr (β = 40) 37 14 + 47 = 61 4.17 0.72 0.44PCPDPr (β = 20) 18 11 + 65 = 76 0.49 0.62 0.21PCPDPr (β = 30) 25 11 + 59 = 70 0.46 0.69 0.29PCPDPr (β = 40) 38 14 + 46 = 60 0.69 0.73 0.45
DBNBA 44 34 + 40 = 74 - 0.56 0.52Again, by onsidering the result when β = 40, we an see that PCPDPr is missing impor-tant interations like: SWI6-STB1, SWI6-CLB2, SWI6-MBP1, SWI5-CLB2, ACE2-CLN2, andACE2-CDC28. Most of these interations are also missing in the study of Bernard et al. [6℄. Itis also worth mentioning here that all these are not atually protein-protein interations [84℄,where protein-protein interations should not be expeted to be extrated by using the typesof data used here.
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In the resulted network shown in Figure 5.6, we observe that we have 14 FP interations; inother words, our algorithm predited 14 interations whih are not disovered yet; 11 of thoseinterations are gene-gene interations and only 3 are between TFs and genes; this indiatesthat using TF binding data is useful to derease FPs. Our algorithm predited the false positiverelationship between d21 and CLB5. The reason for this FP type of relationship is that bothd21 and CLB5 are regulated by the same TF, namely MBP1; this indiates that both d21and CLB5 are orrelated. Similarly, the edge between CLB2 and CLN2 resulted beause bothare regulated by two di�erent TFs whih are regulated by NDD1. We also predited a falsepositive relationship between CLN1-CTS1 and CLN1-EGT2. A possible interpretation forthis ould be that both CTS1 and EGT2 are regulated indiretly by NDD1 through SWI5;CLN1 is also regulated by NDD1. Therefore, our algorithm predited interations betweenCLN1 and both CTS1 and EGT2. These two interations were also predited by Bernard etal.. Two more interations, namely FKH1-d20 and NDD1-d20, are worth onsidering forfurther investigation. Both FKH1 and NDD1 are TFs required for G2/M spei� transription;also d20 is important in metaphase/anaphase transition in the M-phase of the ell yle.This result should be interesting beause FKH1 and NDD1 may ontrol the expression ofd20 through other genes, whih we did not onsider in this experiment. PCPDPr has anadditional advantage that supports the need for its development; PCPDPr disovered all theedges disovered by PCPr, and in addition it disovered a new TP edge, namely CDC6-CLB2,whih is the only di�erene between the outputs of the two algorithms.Comparing our TP interations with those reported by Bernard et al., it an be seenthat there are 30 ommon interations. In addition to these, PCPDPr did disover 7 novelinterations, with respet to Bernard et al., like: ACE2-PCL2, MBP1-CLB5, FKH1-CLB2,SWI5-PCL2, CDC6-CLB2, SWI6-CDC6 and SWI6-CLB5.Key TFs based validationGene Ontology (GO) is one of the most important ontologies built within the funtional bioin-formatis �eld [16℄. The goal of GO is to provide a strutured and ontrolled voabulary todesribe gene funtions and the proess in whih the genes are involved.We validated our results using GO annotations based on the sub-networks derived fromthe resulting network shown in Figure 5.6. We grouped the 10 TFs into four groups: G1/Stransition of mitoti ell yle (SWI4, SWI6 and STB1), G2/M spei� transription in mitotiell yle (FKH1 and NDD1), Interphase of mitoti ell yle (SWI4, SWI5, SWI6, FKH1,ACE2, STB1 and NDD1) and DNA repliation (MBP1 and MCM1); these TFs will be alledkey TFs. We onsidered all the genes and (non-key) TFs whih interat with eah group ofkey TFs as a sub-network, and we validated the GO annotations for eah subnetwork using theGO Term Finder available at �Gene Ontology Term Finder, http://db.yeastgenome.org/63



gi-bin/GO/goTermFinder (aessed 1-June-2009)�. This system takes a set of genes andreturns p-values orresponding to GO terms. Eah p-value indiates the on�dene that theset of genes share the orresponding GO term. The smaller the p-value is, the more spei� isthe GO term shared by the genes.Here, we propose a new tehnique whih utilizes key TFs to measure and validate thesigni�ane of the interations between the genes and the TFs of eah group. The proposedapproah works as follows. We �rst �nd the p-value of the TFs within eah group of genes andthe genes/TFs they interat with; we denote this set of genes by S. Then, we �nd the p-valueof the genes/TFs with whom the key TFs interat, after exluding (from the former TFs) keyTFs that do not interat with eah other, i.e., we leave in the former set of TFs all key TFsthat have internal interations among eah other; we denote this set of genes by S′.To illustrate the proposed validation proess, onsider the following example set S of G1/Sgroup whih ontains the following TFs/genes (SWI4, SWI6, STB1, CLB2, PCL2, HTA1, d6,MBP1, MCM1, NDD1, CLN2, d21, CLB5). The genes/TFs other than the key TFs are thegenes that the key TFs interat with. Set S′ has the following TFs/genes (SWI4, SWI6, CLB2,PCL2, HTA1, d6, MBP1, MCM1, NDD1, CLN2, d21, CLB5). We see that SWI4 andSWI6 are inluded in the set S′ beause SWI4 interats with SWI6, and SWI6 interats withSWI4. We found the p-value for eah set of genes S and S′ for the four groups enumeratedabove. The p-value in S′ indiates how signi�ant are the interations among TFs in S. If thep-value of S′ is very lose to the p-value of the orresponding S, then we say that we havegained most of the information that was in S, and this infers that the interations within Sare signi�ant. We applied this method to the four groups enumerated above and the resultsare summarized in Table 5.4.Table 5.4: P-values of S and S′ sets for both PCPr and PCPDPr when β = 40Group Set S Set S′

G1/S 9.39 × e−7 5.6 × e−5

G2/M 0.00025 >0.01Interphase 4.23 × e−14 4.23 × e−14DNA Repliation 1.34 × e−5 0.00996From the results reported in Table 5.4, it an be easily seen that our sub-networks for the�rst and fourth groups are strong as they gained all of the interations in the S set. The othertwo groups did not gain enough information from set S as they ontain small number of TFs.Sine the sets S and S′ are the same for both PCPr and PCPDPr (beause the interationsare almost the same), we had the same p-values for both algorithms.64



Finally, we want to elaborate more on the appliability of the proposed validation approah.There are three ases to be onsidered as the key TFs are onerned. In the �rst ase, theredoes not exist any interation between the key TFs. Consequently, no key TF is expeted tobe in set S′. As a result, the p-value of set S′ will be muh larger than the p-value of set S;this indiates that the information in S was not ompletely gained. This ase is what we seein the DNA Repliation group. The seond ase overs the situation where eah key TF isonneted to at least one other key TF. In this ase, the p-values of the two sets S and S′ arethe same beause S and S′ ontain the same set of genes. This ase is prominent in groupInterphase. The last ase is somehow in between the other two ases, i.e., only some of the keyTFs are onneted to eah other while eah of the remaining key TFs are not onneted to anykey TFs. In this ase, not all the key TFs in S will be present in S′, and that will ause thep-value to drop down. Depending on the signi�ane of the eliminated key TFs, the p-valueof S′ will inrease. This ase is shown in group G1/S in Table 5.4. To sum up, the proposedapproah onsiders three ases of key TFs onnetivity and the information gain depends onthe degree of onnetivity.Empirial analysis of gssAs gss is a greedy proedure, it may not always �nd the best graph. To be able to see how wellthe gss proedure e�ets the output, we de�ned two algorithms alled gPC and gPCPr, wheregPC (greedy PC) is the same as the PC algorithm exept that the separators are searhed onlyby applying the gss proedure. Like the PC algorithm, no prior knowledge is used. On theother hand, gPCPr, is the same as gPC exept that it uses prior knowledge to update the valueof α0 (see Setion 3.2). We performed some experiments with the same parameters given inSetion 5.2.3. The results are shown in Figure 5.7. gPC and gPCPr demonstrate an aeptableperformane, but never performs better than PCPDPr, as a struture learning algorithm issaid to perform better than another, if it inreases both preision and reall. But neither gPCnor gPCPr shows suh a performane, though they are sometimes better than PCPDPr in onlyone aspet. Similar results for (normalized) SHD are also available in Figure 5.7.One important point in these results is the high reall values in gPC and gPCPr. Thisshows that as the algorithms do not searh for all andidate separators, but only the oneshosen greedily, sometimes they an not �nd the separators despite their existene, thereforethe algorithms keep suh edges in the graph. This inreases TPs and dereases FNs, but alsoinreases FPs, therefore a larger reall and smaller preision is obtained. There are two typesof errors in gPC and gPCPr. The �rst type of error is the error resulting from small samplesize and the other type is the error due to greedy steps. As the sample size inreases, greedystep errors beome more apparent; preision dereases and reall inreases.65
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5.2.4 Yeast ell-yle modelTo be able to demonstrate the salability of PCPDPr, an experiment is devised to derive alarge network by using the PCPDPr algorithm. For this experiment, we hose all genes thathave been previously identi�ed as related to the ell yle [81℄. We used the same miroarraydata as in the previous experiment and used the loation data of Harbison et al. [34℄. Thereare almost 800 genes that have been previously determined to be ell yle related [81℄. Fromthese genes, we extrated a set of 763 genes for whih both miroarray data and loation dataare available. Among these 763 genes, only 27 of them are available as TFs in loation data,so only these are used to ompute prior information matrix B. A phase variable is then addedas in the previous experiment. It took approximately 84.5 minutes for PCPDPr to output anetwork with 1830 edges for β = 30 and 87.9 minutes to output a network with 2112 edges for
β = 40; we used the same other parameters as in the previous experiment.As it is hard to onstrut a �gold standard" network for suh a large gene set, we use onlythe key TFs based validation for this experiment. This is another evidene in support of theimportane of the developed validation approah.For the analysis, �rst we have lassi�ed the 27 TFs based on their GO annotation. Sevengenes are related to Interphase of mitoti ell yle, 10 genes are related to the ell yleproess, 4 genes are related to G1/S transition of mitoti ell yle, and 4 genes are related toG2/M spei� transription in mitoti ell yle. After this, we found the S and S′ sets fromthe output graph. 66



The results of PCPDPr when β = 30 show that the 7 TFs related to the interphase termhave onnetions to 40 genes, whih have p-value of 0.00022 with respet to interphase ofmitoti ell yle term. Among those 40 genes, YHP1, SWI4, FKH1, ACE2, CIK1, NDD1,and KIP2 are the genes most related to the interphase term. The 10 TFs related to ell yleterms have 60 genes onneted to them; those genes are related to the mitoti ell yle termwith p-value as 4.77 × 10−6. The genes whih are onneted to the 4 TFs related to G1/Stransition of the mitoti ell yle were related to the same term with a p-value of 0.00568.Also, we have seen that CIK1 and KIP2 are among the genes onneted to G2/M transitionTFs. These two genes are related to the mirotubule motor ativity, whih is essential forassembly of the mitoti spindle at the beginning of M phase, with p-value of 0.00463.Similarly, we have analyzed the genes onneted to TF lasses when β = 40. We havefound that the list of genes whih are related to the interphase TFs have a signi�ant p-valueof 2.63 × 10−5 with respet to the same term. Also, we have found that the same gene list ishighly related to yline �dependent protein kinase regulator ativity funtion with p-value of
1.47× 10−8. This funtional term was not disovered using β = 30. Besides, the genes relatedto G1/S term showed to be related to the term with p-value of 0.00549.Moreover, we have analyzed the histone luster by Spellman [81℄. This luster has 9 genes,all of them are histone genes; they are related to hromatin assembly and disassembly GOterm with p-value of 1.7× 10−12. We got all the genes with whih the 9 histone genes interatbased on our algorithm (17 genes when β = 40 and 16 genes when β = 30), and study theGO annotation related to them. For β = 40, we found that 8 out of 9 of the histone genesare among the 17 genes they bind to. This means that, most of the histone genes are found tobe dependent on eah other. The 17 genes are related to hromatin assembly and disassemblyGO term with p-value of 2.35 × 10−9. When β = 30, we found that 8 out of 9 of the histonegenes were among the 16; these genes have p-value of 1.1×10−9 with respet to the hromatinassembly and disassembly GO term. For both β = 30 and β = 40, HHO1 is the gene that wasnot inluded in the 16 or 17 genes, respetively.5.2.5 Raf Signalling PathwayTo evaluate PCPDPr with a well-known strutured network, in this setion we report the resultsfor the Raf signalling pathway. Raf is an important protein for human immune system. Raf isinvolved in signalling proliferation of immune system ells. Raf signalling pathway has widelybeen studied in the literature, e.g., [24, 73, 93℄. So this network has a relatively well-knownstruture; urrently aepted Raf signalling pathway is shown in Figure 5.8.From the study by Sahs et al. [73℄, protein onentration data from ytometry experimentsis available about Raf signalling pathway. Werhli et al. [93℄ split this data into 5 data sets of 100samples eah in order to better test their inferene algorithm. We also follow the same strategy67
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In [93℄, the results are given in terms of the TP ounts orresponding to 5 FPs for theundireted graphs. We also report the results here in the same way for omparability. Tobe able to �x the number of FPs, we found the value of α for PC and α0 for PCPDPr thatoutputs a network with 5 FPs aording to the urrently aepted Raf pathway in Figure 5.8,and used that α values in the experiments. Again for BNMCMC we found a threshold thatoutputs a network with 5 FPs based on the set of sampled networks by MCMC. The resultsin Figure 5.9(a) demonstrates that PCPDPr outputs a more reliable network as the error barsshow the standard deviation of the results for 5 di�erent data sets. The result for diretedgraph evaluation is shown in Figure 5.9(b). As an be seen, the performanes of PCPDPr andBNMCMC is almost the same, but we must mention here that, MCMC is a omputationallyvery expensive proedure and BNMCMC is exeuted for approximately 2.6 hours on the averagewith the parameters suggested by the authors of [93℄ for eah of the 5 data sets, while PCPDProutputs these networks in only 0.32 seonds on the average.5.3 Large-sale Gene Regulatory Network ControlThe experimental results for the algorithms proposed for salable intervention in GRNs aregiven in this setion. Again, following the presentation of the methods in Chapter 4 they aregiven in two separate setions.5.3.1 Salable Control by Feature RedutionThis setion reports the experimental results for the feature redution method desribed inSetion 4.1. For these experiments, we used PBNs [78, 79℄ as the modeling tehnique. Theidea in PBNs is to use more than one boolean funtion for eah target gene instead one, usedin Boolean networks (see Setion 2.2.2 for details)The PBN derivation algorithm uses three parameters:1. The number of regulators that will be hosen for eah gene. Biologially, genes arethought to be regulated by few number of genes [17, 48℄. So, among one, two and threegene-regulator sets, the genes with highest COD values are seleted, where the errormeasure is the best-�t extension error [51℄.2. The number of funtions that will be used to model eah gene. It is set to 3 basedon some initial test runs that hek the model's ability to predit the next state of thenetwork given its urrent state.3. The probabilities assigned to the funtions hosen to model a gene. Probability c(i)j whihis the probability of hoosing the jth funtion for gene i, is alulated based on CODvalues as disussed in Setion 2.2.2. 69



Perturbation probability [79℄, say p, is the probability of randomly hanging the expressionlevel of genes in the model. This way, all the states in the model beome reahable, and theunderlying Markov Chain orresponding to the PBN beomes ergodi [79℄. Ergodiity meansthat the steady-state probability of a Markov Chain an be estimated empirially. More detailsabout this parameter of the PBN an be found in [79℄. In our settings for deriving the PBN,the perturbation probability p is set to 0.01.There are two types of error measures used in this setion. The �rst error measure is theperentage di�erene between the optimal value funtion of the original model and the valuefuntion of the poliy found after feature redution. In other words, error is the perentagedi�erene between value funtions of the poliies found by following paths (a) and (b) in Fig-ure 4.1. The seond measure is the type named as simulation error. This type of error is foundby simulating the model applying the interventions implied by the poliy to see how well thepoliy does in keeping the model out of the undesirable states.As the models used are disrete in this setion, data are disretized before usage. Intervaldisretization with 2 bins is applied as the disretization method when neessary.Syntheti dataWe �rst evaluated our algorithm on some syntheti data sets generated using the algorithmproposed in [102℄, whih is based on a regulation matrix A. Matrix A is set suh that eahentry aij of A gives the degree of regulation of gene j on gene i, and the diagonal of A is 1,i.e., for all i, aii = 1. If Yt denotes the system state at time t, the next state is generated asfollows:
Yt+1 = A(Yt −N) + ε (5.2)where N is the threshold that a gene has to be above (or below) in order to a�et other genes,and ε is the noise uniformly distributed in a spei�ed range. In the experiments, N is set as50 and ε is randomly set uniformly in the range [−10, 10].To generate the data sets, we used the same parameters that are used in [102℄. Setting Y0 torandom values, we generated 500 samples from eah network, where one sample is taken every5 steps of the simulation. Eah aij is set to be 0.1 or −0.1 representing positive or negativeregulation6, respetively. For example, for the network shown in Figure 5.10(a), a53 = −0.1and a14 = 0.1. In the �gures, arrows denote positive regulation and the lines with a bar denotenegative regulation. Expression levels are assumed to be in the range [−100, 100], so in datageneration, if a value goes above (below) these limits, it is set to 100 (−100). Finally, the datagenerated by the above simulation is disretized into binary levels (ON and OFF).In all of the syntheti data experiments, the objetive is to down regulate the seond gene6Notie that positive or negative regulation does not mean to always inrease or derease the expressionlevel of the gene. The net e�et depends on the value of the regulator's expression level and N .70



and the �rst gene is intervened. For this objetive, we assigned a negative reward of −5 to thestates if the expression level of the seond gene is 1 (ON), and a reward of 0 otherwise. Thereare two ations where one is the intervention of the �rst gene, whose ost is 1, and the otheris the ostless monitoring ation.

(a) Network 1 (b) Network 2Figure 5.10: Syntheti networks
The �rst set of data is generated from the network shown in Figure 5.10(a) that representsmatrix A in Eq (5.2). As an be seen in Figure 5.10(a), there are two omponents in thenetwork onneted via gene 3. So, we an expet that a subset of genes, namely {4, 5, 6, 7},an be ignored in �nding a ontrol poliy beause they seem to be less related to the ontroland reward genes, namely 1 and 2.Table 5.5: In�uene Sores of genes in network 1Gene 3 4 5 6 7 8Sore 1.004 1.181 0.626 0.923 1.162 1.282The IS values for all genes are shown in Table 5.5; these values demonstrate that the leastsored genes are 5 and 6. In ase Th is given as 1, the set that will be hosen is {5, 6}. Table 5.6shows the errors assoiated with the di�erent gene subsets; only subsets that have error lessthan 10% are listed. From the results reported in Table 5.6, it an be easily seen that {5, 6} isone of the three best subsets.The seond set of syntheti data is generated from the network shown in Figure 5.10(b).In this network, the expression level of the seond gene has to be ontrolled indiretly. The71



Table 5.6: Gene subsets with error less than 10% for network 1Subset Error Subset Error Subset Error3 2.582 5 8 2.073 3 5 8 2.2455 2.073 6 7 0.203 3 5 7 2.2456 0.134 6 8 0.000 3 5 6 0.1737 0.184 7 8 0.758 5 6 7 8 0.1738 0.026 6 7 8 0.173 3 6 7 8 0.1733 5 2.245 5 7 8 2.245 3 5 7 8 2.2453 6 0.173 5 6 8 0.000 3 5 6 8 0.1733 7 2.245 5 6 7 0.173 3 5 6 7 0.1733 8 3.012 3 7 8 2.245 3 5 6 7 8 0.1735 6 0.000 3 6 8 0.1735 7 2.245 3 6 7 0.173
Table 5.7: In�uene Sores of genes in network 2Gene 3 4 5 6 7 8Sore 2.837 2.502 1.944 2.623 1.534 2.875

Table 5.8: Gene subsets with error less than 10% for network 2Subset Error Subset Error Subset Error3 3.177 3 7 1.246 3 6 7 2.0045 0.085 5 6 4.812 3 5 7 0.8586 3.990 5 7 0.429 3 5 6 4.2357 0.287 6 7 2.004 3 5 6 7 2.0043 5 2.295 5 6 7 2.0043 6 4.985 4 5 7 9.517
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�rst gene is onneted to the reward gene through genes 4 and 8. This time, a subset ofthe genes, namely {3, 5, 6, 7}, is expeted to be the andidates for removal. The results areshown in Table 5.7 and Table 5.8. Genes 5 and 7 have the smallest sores, so they an be theandidates for removal. And if we hek Table 5.8, we see that the best subset is {5} followedby {7} and {5, 7}. This means that if Th is set as 2 for the data derived from this network,the subset {5, 7} will be hosen for removal; it is the third best subset out of 64 subsets.Gene expression dataMetastati Melanoma:In this setion, we report the results of the appliation of the gene seletion algorithm tothe gene expression data produed in a study of metastati melanoma [7℄. The data was alsoused in [67℄ for deriving a PBN model; 7 genes are hosen from the whole data set based ontheir ability to predit the states of eah other; these genes are pirin, WNT5A, S100P, RET1,MART1, HADHB and STC2. The objetive here is spei�ed as down-regulating WNT5A; andpirin is used as the ontrol gene, as in [64℄. The reward funtion is set in the same way as in thesyntheti data based experiments. The data is relatively small ompared to the syntheti datasets, it has 31 samples. This an be a disadvantage for the gene seletion algorithm beausethe information that the data ontains is small ompared to the syntheti data sets. Sine theauthors of [67℄ were also working on binary data, the samples were disretized to binary levels.Table 5.9: In�uene Sores of genes for melanoma dataGene 3 4 5 6 7Sore 0.775 0.911 0.333 0.526 1.333The results are given in Table 5.9 and Table 5.10. Although the error rates are large in thisase, there is still one subset, {5} with minimum IS, that we an remove with error less than2% and with appropriate Th. The high error rates an be due to high degree of onnetivityamong the seleted genes. This is onsistent with the information stated above that the genesare seleted based on their ability to predit eah other's state. Another reason an be thepossible high e�ets of most of the genes on the reward gene, WNT5A.Yeast Cell Cyle:In this setion, we report the results of appliation of our method to a set of well-knowntransription fators of budding yeast (Saharomyes erevisiae). These 11 transription fa-tors were previously identi�ed to be the important regulators for the yeast ell yle [99℄ :ACE2, FKH1, FKH2, MBP1, MCM1, NDD1, SKN7, STB1, SWI4, SWI5 and SWI6. Themiroarray data with 77 time steps that we have used in this experiment was produed by73



Table 5.10: Gene subset errors of genes for melanoma dataSubset Error Subset Error Subset Error3 20.766 4 5 12.907 3 5 7 30.1794 14.477 3 7 27.822 3 5 6 31.7395 1.856 3 6 34.248 3 4 7 16.5496 19.223 3 5 21.643 3 4 6 38.6417 39.257 3 4 29.564 3 4 5 34.9746 7 42.276 5 6 7 43.796 3 4 5 6 27.9665 7 38.417 4 6 7 32.570 3 4 5 7 16.5495 6 19.980 4 5 7 31.461 3 4 6 7 16.5494 7 31.238 4 5 6 27.966 3 5 6 7 35.6194 6 19.935 3 6 7 44.455 4 5 6 7 31.274Spellman et al. [81℄. Missing values in the data were imputed by using the KNNImpute soft-ware [88℄. Again, before applying our method, we disretized the data set �rst into binarylevels by interval disretization.The reward gene is set as SWI4, whih is one of the important transription fators (partof the SBF omplex) that play a role in G1 phase. Control gene is set as ACE2; it is hosensine the PBN model derived from the data has ACE2 as one of the regulators of SWI47. Theobjetive is set as down-regulating SWI4 and the reward funtion is set in the same way aspreviously desribed. Table 5.11: In�uene sores of genes for yeast dataGene FKH2 MBP1 MCM1 NDD1 SKN7 STB1 FKH1 SWI5 SWI6Sore 1.605 0.836 0.610 1.128 1.312 0.642 1.489 0.471 1.226The IS sores of genes are given in Table 5.11. SWI5 is the lowest sored gene with a soreof 0.471. If this gene is eliminated, an error of 1.5% ours; see Table 5.12 for errors of someof the subsets. This error is very low and demonstrates the appliability of the method in asethe threshold is hosen as 0.5. The ase orresponding to elimination of SWI5 and MCM1(with a threshold of 0.62 for instane) has an error of 5.4% whih an be onsidered aeptablefor some ases. The omputational gain, however, orresponding to this error rate is huge; it7Note that, to the best of our knowledge, ACE2 and SWI4 have not been identi�ed as regulating eahother. But veri�ation of the model derived by the modeling algorithm we use here, is out of the sope of thisexperiment. 74



takes 3.32 minutes to solve when SWI5 and MCM1 are eliminated and 12.10 minutes whenSWI5 is eliminated, while it takes 52.25 minutes to solve without any elimination. We disussmore time omplexity below.Table 5.12: Subset errors of genes for yeast dataSubset Error Subset ErrorFKH2 9.684 FKH1 5.049MBP1 0.123 SWI5 1.506MCM1 2.399 SWI6 1.821NDD1 5.119 SWI5 MCM1 5.409SKN7 2.062 SWI5 MCM1 FKH1 9.319STB1 1.372
Comparison to other methodsThe GRN ontrol problem has been previously studied as evident by the available orrespondingliterature (see Setion 4.3), however salability and feature redution issues have not yet beenonsidered for this problem. As mentioned before, feature redution an also be performedafter the modeling phase. But due to the omputational gain of redution before modeling,irrelevant genes are eliminated prior to the modeling phase (see Figure 4.1).As mentioned before, ontrol genes an be determined by using the in�uene onept [64, 78℄whih is the underlying notion for the In�uene Sore introdued in this study. The genes analso be eliminated after the modeling phase on path (a) in Figure 4.1 by using the in�ueneonept. This feature redution method eliminates genes with the lowest sores, where thesore is omputed as in Equation 4.8 exept that instead of the Inf(gi, gj) value, this time,In�uene value from [78℄ is used. Notie that, this method is di�erent from ours in the stepwhere it applies; it is a method that an be applied given the model, i.e., it is applied afterthe modeling phase. Sine the In�uene value disussed in [78℄ is omputed based on the PBNmodel; we performed a number of experiments to demonstrate how this type of eliminationompares to ours. This will show the e�et of elimination before the modeling step.A struture learning (or modeling) algorithm may output a number of models for a givendata set, where eah of these models are equally likely. When this is the ase, most of themodeling algorithms hoose one of these models as their output. The number of equally likelymethods gets smaller as the number of samples in the dataset gets larger. The PBN learningalgorithm we use in this work outputs one of the equally likely models by breaking the tiesrandomly during the onstrution. To eliminate the e�et of this for a fair omparison, we75



repeated the proess of the following the paths 20 times for eah data set and reported theaverage results, also we sampled the data sets of 1000 steps instead of the previously used 500for syntheti networks.A ontrol poliy an also be evaluated by simulations; starting from a random initial state,apply the poliy and ount the number of undesired state visits. Although omparison ofvalue funtions is more aurate, this type of evaluation provides a kind of weighted di�erenebetween value funtions by eliminating the e�et of states that are hardly visited. So if thesteady state probability of a state in a model is small then the e�et of the value funtiondi�erene (if any) for that state will also be small. This type of evaluation also has theadvantage of being faster ompared to the value determination, as the value determination fora given poliy requires very long time to exeute. So, we hose the number of undesired statevisits in the simulation as the evaluation metri for this experiment with 20 iterations. Eahstarting from a random initial state, we performed 5 simulations of 1000 steps and averaged thenumber of undesired state visits. The results will be given as average perentages of undesiredstate visits in 1000 steps.For the experiment, we used the same 4 data sets. The ontrol problems are de�ned inexatly the same way as before. To be able to make a fair omparison, we hose the thresholdvalues so that two genes will be eliminated for eah of the methods. We will all the methodthat is based on hoosing the ontrol gene in Pal et al. [64℄ and Shmulevih et al. [78℄ as PSreferring to the names of the authors. Note that this time, Path (a) also has a feature redutionstep applied after model generation (i.e. after Model(M) is obtained in Figure 4.1).Table 5.13: Comparison to PS
FRGC PSSim. Error Time Sim. Error TimeNetwork-1 48.35 4.76 50.81 48.27Network-2 32.30 2.67 36.53 40.60Metastati Melanoma 28.05 0.77 21.43 14.15Yeast Cell Cyle 9.46 305.20 9.12 5772.83The results are given in Table 5.13. The Sim. Error olumn gives the simulation errorsde�ned above. Although PS has the advantage of diretly using the model, the results demon-strate that FRGC outputs omparable results to PS, sometimes even better. This shows thatfousing on important parts of the model by eliminating irrelevant genes provides a reliablemodel redution method for ontrol. Only the metastati melanoma results an be onsideredas signi�antly di�erent, but notie that we fore two-gene elimination for omparison here76



instead of the one-gene elimination in Setion 5.3.1. The given table also inludes the totaltime of following Path (a) with PS and Path (b) with FRGC in Figure Figure 4.1. Exeutiontime results demonstrate the omputational gain of FRGC ompared to PS.Time omplexityThe omplexity of deriving a Boolean network under the best-�t extension paradigm is givenin [51℄ as O(
(

n
k

)

.n.m.poly(k)), where n is the number of genes, k is the number of preditors(regulators) for eah gene, m is the number of samples in the data and poly(k) is a polynomialfuntion of k, whih is in most ases equal to k. Deriving a PBN adds an additional ost of
O(
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n
k

)

.nf.n), where nf is the number of funtions for eah target gene, beause, for eah gene,we are hoosing nf funtions out of (

n
k

). The last two steps in path (a) of Figure 4.1, whih arethe onstrution of the MDP and value iteration, have an equal omplexity of O(a.4n) for thebinary ase, where a is the number of ations. So, the dominating term in the total omplexityof path (a) is O(4n) for k < n (whih is generally the ase for GRNs). The omplexityof omputing IS(g) is O(n.m), sine it depends on all genes other than g and the su�ientstatistis for Inf(g, gi) are olleted from the data in one pass. Sine we are omputing IS forall genes and removing the l seleted genes in the algorithm, the total omplexity of featureredution is O(n2.m + l.n.m), assuming no lever data strutures in shifting the olumns ofa multi-dimensional array. So, the total omplexity of both paths in Figure 4.1 is dominatedby the O(4n) term for the binary ase. Even if the strutured representations that may havelower average ase omplexity in terms of n are used in solving the MDP, the feature redutionalgorithm does not dominate the overall omplexity, provided that k ≥ 2 in PBN modeling,whih is usually the ase.Table 5.14: Elapsed time (in ses.) for the experimentsNetwork 1 Network 2 Metastati melanoma Yeast Cell ylePath (a) 19.141 19.157 4.329 3135.258Path (b) 1.125 1.110 1.015 199.362The main purpose of performing feature redution is to ahieve speed-up in reahing thepoliy with tolerable error rate. In this sense, Table 5.14 ontains the elapsed time for �ndingthe poliies for eah of the data sets used in the experiments. From the results reportedin Table 5.14, it an be easily seen that there is a signi�ant derease in time. The results hereare also in orrelation with the omplexity analysis.
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5.3.2 Salable Control by Edge Elimination from Fatored Represen-tationsThis setion reports the results for the edge elimination tehnique proposed for salability inontrol of GRNs. The details of the proposed method are disussed in Setion 4.2. There aretwo experiments reported in this setion. They are based on the Boolean models proposed formammalian ell-yle and human T-ell ativation.Control of mammalian ell-yleThe �rst experiment is adapted from a reent study [26℄. In this study, a mutation that anlead to a anerous state is implemented in the Boolean logi model of the mammalian ellyle. The model is relatively small and has 9 genes, where this property enouraged us to usethis model, as this will demonstrate the e�et of the proposed method to the optimal solutionsof ontrol problems. This model has been onstruted by Faure et al. [27℄. In [26℄ gene p27 isassumed to be mutated and it is always inative. This leads to the situation where both CyDand Rb genes might be inative (OFF), whih in turn leads to unlimited proliferation. Thelogial rules of the mutated ell yle model is given in Table 5.15. The notation is onventional;
X represents logial NOT of X , ∨ and ∧ represent logial OR and AND operators, respetively.Table 5.15: Mutated ell yle modelProdut Preditors

CycD Input

Rb (CycD ∧ CycE) ∧ CycA ∧ CycB)

E2F (Rb ∧ CycA ∧ CycB)

CycE (E2F ∧ Rb)

CycA (E2F ∧ Rb ∧ Cdc20 ∧ (Cdh1 ∧ Ubc)) ∨ (CycA ∧ Rb ∧ Cdc20 ∧ (Cdh1 ∧ Ubc))

Cdc20 CycB

Cdh1 (CycA ∧ CycB) ∨ (Cdc20)

Ubc (Cdh1) ∨ (Cdh1 ∧ Ubc ∧ (Cdc20 ∨ CycA ∨ CycB))

CycB (Cdc20 ∧ Cdh1)The relationship given in Table 5.15 is temporal; the value of the Produt olumn at timestep t + 1 is determined by the value of the logial formula given in Preditors olumn at t.So the set of formulae given onstitute a number of di�erent BoNs orresponding to di�erentvalues of the input gene. In the ell yle model, there is only one input gene so there aretwo di�erent BoNs orresponding to CycD taking values 0 and 1. From these two BoNs, weonstruted a PBN with eah BoN being equally probable at eah step of the simulation.78



Given the PBN model of the mammalian ell yle, the undesirable states are de�ned asthe states leading to ell yle without any limitation and these are the ones where CycD are
Rb are both inative. So the objetive funtion is de�ned as: Φ({CycD,Rb}) = CycD ∨ Rb.Based on this, we de�ned the reward funtion for the FMDP as follows:

R(s, a) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

10 if a = noop, (CycD, Rb) 6= (0, 0) in s
1 if a = noop, (CycD, Rb) = (0, 0) in s
9 if a 6= noop, (CycD, Rb) 6= (0, 0) in s
0 if a 6= noop, (CycD, Rb) = (0, 0) in s (5.3)Equation 5.3 re�ets the fat that the ost of eah ation is 1 and the reward reeived fora desirable state is 10. Given the reward funtion, eah of the genes in the model (exept theinput gene) is then onsidered to be the only ontrol gene for a separate experiment. So foreah experiment, the ation set is omposed of a 'noop' ation and the ation that immediatelytoggles the value of the ontrol gene. Having de�ned all omponents of the FMDP this way,we solved it using the proposed redution method. As this model is small enough for optimalsolution, we used SPUDD to solve the FMDP.The reward funtion de�ned in Equation 5.3 is for the FMDPs without redution. Ifthe redution is applied then, as disussed in Setion 4.2.3, this reward funtion is updatedaording to the ahievable set of objetives and δ.To be able to evaluate the results, we performed simulations. These simulations orrespondto observing the evolution of the model under the poliies omputed. Starting from a randominitial state, the simulation is exeuted for 10,000 steps, and this is repeated 10 times eahstarting from a new random state. The average of these 10 runs is reported in the results. Apoliy is evaluated aording to the number of interventions performed (whih gives an ideaabout the ost of this poliy) and the number of undesirable state visits (whih gives an ideaon how �suessful� the poliy is) throughout the simulation. Without any intervention, thesystem stays in undesirable states in 130 out of 10,000 steps on the average. The results aregiven in Table 5.16; they also inlude optimal solutions where the redution method is notapplied (the olumn orresponding to πδ=0). The olumn with δ = 0.05 gives the results ofredueFMDP where 0.05 is hosen as the threshold, and the olumn orresponding to πδestis the one on whih the redution method is applied (redueFMDP2 ), where δest denotes δomputed by the CT algorithm. The last value in Table 5.16 is the time elapsed to solve theproblem. Running times should be interpreted keeping in mind that suh a small network ishardly suitable for the analysis of the omputational requirements of the redution method.As an be seen in the results, estimating the threshold based on CT is not only is e�ient interms of time, but also outputs muh better poliies than redueFMDP.The results demonstrate that the poliy found after edge elimination by redueFMDP2 is79



Table 5.16: Cell yle ontrol, number of undesired states, number of interventions and timein ses. Control gene πδ=0 πδ=0.05 πδest(no redution) (redueFMDP) (redueFMDP2 )
Rb 92.60, 14.00, 0.26 101.20, 14.60, 13.30 91.00, 12.20, 0.59

E2F 106.70, 11.40, 0.33 107.30, 36.60, 14.00 110.40, 87.10, 0.21
CycE 96.40, 12.40, 0.37 108.10, 13.10, 13.31 109.90, 14.30, 0.21
CycA 112.20, 9.20, 0.46 923.30, 855.50, 12.89 110.80, 4.60, 0.26
Cdc20 86.10, 27.90, 0.34 88.50, 27.40, 13.62 92.10, 28.70, 0.29
Cdh1 89.90, 37.90, 0.27 409.80, 366.00, 13.65 1068.70, 1035.20, 0.21
Ubc 121.80, 0.50, 0.26 433.10, 338.30, 13.15 123.90, 0.00, 0.56
CyB 83.90, 29.30, 0.44 81.40, 55.50, 14.27 105.10, 14.80, 0.24almost as good as the optimal poliy for most of the ontrol genes. Only for one ontrol gene(Cdh1), the poliy is not as good. Rb is seen as the most e�etive one, and this oinides withthe results reported in [26℄. For a omparison, the poliies orresponding to δ = 0 and δest aregiven in Figure 5.11. Note that after the redution proedure is applied, a simpli�ed poliy isexpeted as we simplify the problem. This is learly seen in Figure 5.11; πδest

is a �generalized�version of πδ=0. This is also important as simpliity is an issue to determine the appliabilityof a poliy in linial pratie.
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Control of T-ell ativationA similar Boolean pathway to the mammalian ell-yle for the ativation of transriptionfators (TFs) that ativate T-ells is given in [49℄; this model has 40 genes. So, solving thisproblem with MDP formalism requires very large resoures as the size of the state spae is 240.T-ells form a type of white blood ells known as lymphoytes. They play an importantrole for immunity suh that its dysfuntion has severe onsequenes for the organism. T-ells have the ability to reognize foreign agents and subsequently eliminate them. By theirT-Cell Reeptor (TCR) they detet the potentially dangerous agents and then ativate (andproliferate) through a signalling asade [40℄.Chroni lymphoyti leukemia (CLL) is a type of aner aused by the unontrolled pro-liferation of immunologially immature lymphoytes. ZAP-70 is an important gene in thesignalling pathway of T-ell ativation [40℄. High ZAP-70 expression is thought to be the in-diator of T-ell ativation and prognosis and overall survival for CLL [36, 62℄. Similarly, inT-ell ativation model of Klamt et al. [49℄, if ZAP-70 is overexpressed (it is always ON), thenthe TFs that lead to proliferation of T-ells beome always ative (ON). So, in the light ofthese �ndings, we introdued a ZAP-70 overexpression mutation to the model given in [49℄.ZAP-70 is, therefore, always ative (ON) in our mutated model given in Table 5.17 as logialformulae. This mutation (aording to our model) leads to unlimited T-ell proliferation; thatis a anerous state.The �rst three genes in Table 5.17 are the input variables as given in [49℄, and the last fourare the output TFs whih ativate T-ells. Having de�ned the PBN model of T-ell ativationin the same way as the ell yle model in the previous setion, the ontrol problem here isde�ned as �nding an intervention strategy that avoids the ativation of output TFs. So, thestates that we try to avoid are those where AP1, CRE, NFAT and NFkB are all ative (ON)together. The objetive funtion, therefore, is:
Φ({AP1, CRE, NFAT, NFkB}) = AP1 ∨ CRE ∨ NFAT ∨ NFkB (5.4)We de�ned the reward funtion similarly to ell yle model as follows:

R(s, a) =
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:

10 if a = noop, (AP1, CRE,NFAT, NFkB) 6= (1, 1, 1, 1) in s
1 if a = noop, (AP1, CRE,NFAT, NFkB) = (1, 1, 1, 1) in s
9 if a 6= noop, (AP1, CRE,NFAT, NFkB) 6= (1, 1, 1, 1) in s
0 if a 6= noop, (AP1, CRE,NFAT, NFkB) = (1, 1, 1, 1) in s (5.5)Again, we should mention that the reward funtion in Equation 5.5 may be updated whenthe redution methods are applied.Given one of the genes as the ontrol gene and a �noop� ation, we tried to �nd the best81



Table 5.17: Mutated T-ell ativation modelProdut Preditors
CD45 Input

CD8 Input

TCRlig Input

Ca IP3

Calcin Ca

cCbl 1
CREB Rsk

DAG PLCg(act)

ERK MEK

Fos ERK

Fyn (Lck ∧ CD45) ∨ (TCRbind ∧ CD45)

Gads LAT

Grb2Sos LAT

lKKbeta PKCth

IP3 PLCg(act)

JNK SEK

Jun JNK

LAT 1
Lck PAGCsk ∧ CD8 ∧ CD45

lkB lKKbeta

ltk SLP76

MEK Raf

PAGCsk Fyn ∨ TCRbind

PKCth DAG

PLCg(act) (SLP76 ∧ PLCg(bind)) ∧ (ltk ∨ Rlk)

PLCg(bind) LAT

Raf Ras

Ras Grb2Sos ∨ RasGRPI

RasGRPI PKCth ∧ DAG

Rlk Lck

Rsk ERK

SEK PKCth

SLP76 Gads

TCRbind TCRlig ∧ cCbl

TCRphos Fyn ∨ (TCRbind ∧ Lck)

AP1 Jun ∧ Fos

CRE CREB

NFAT Calcin

NFkB lkB
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ontrol gene and intervention strategy using the proposed methods. The problem is too largeto solve exatly with our urrent omputing resoures; so for an approximate solution, weused APRICODD with the size parameter set to 75. To be able to evaluate the poliies, weperformed simulations. We applied eah poliy in 10 simulations eah starting from a randominitial state for 10,000 steps and ounted the number of undesired states (the states whereall output TFs are ON) and number of interventions during the simulation. The results arereported in Table 5.18 as average of these 10 simulations; note that not all of the genes arereported in the table as ontrol genes, rather only those that lead to good poliies in termsof the simulation results. Without any intervention, the system stays in undesirable states in9,754 steps out of 10,000. Again, we report the results with and without redution and δest is
δ omputed by the CT algorithm.Among all other ontrol genes, ERK and MEK are the most e�etive ones in terms ofboth the number of undesired states and the number of interventions. Number of interventionshere is important as it represents the ost assoiated with the ontrol poliy. ERK andMEKe�etively stop ativation of four output TFs with relatively low ost. The poliies where ERKis the ontrol gene for δ = 0 and δest are given in Figure 5.12. The poliy orresponding to
δest is again a �simpler� version of the one for δ = 0. Raf/MEK/ERK pathway has beenshown to be important in the development of leukemia [85℄. All genes in this pathway are seenas the most e�etive ones in ontrol whih oinide with this �nding. It is also interesting tonote that the poliy found where Raf is the ontrol gene for δest is better than for δ = 0. Thismay be due to the fat that we are using an approximate FMDP solver here (APRICODD).So simplifying the model by the redution method proposed, leads to fousing on the parts ofthe model that are more important for ontrol.As an be reognized from the results reported in Table 5.18, redution with the CTalgorithm an provide large omputational savings for most of the ontrol genes. For instane,it takes only 1.05 seonds to �nd a good poliy where Calcin is the ontrol gene, instead of173.3 seonds with no redution. For 3 genes, namely DAG, PKCth and PCLg(act), usageof the redution method does not help in terms of time, but also does not e�et the solutionquality.5.4 Closing RemarksThere are several data sets and models used for evaluating the proposed algorithms. The datasets used for modeling are the most widely studied data sets in the �eld of GRN modeling.These data sets have beome the benhmark data sets for model derivation algorithms. Thetime-series gene expression data of Spellman et al. [81℄ overs a large number of genes ofbudding yeast. Most of the studies investigating yeast ell-yle use this data set. The data83



Table 5.18: T-ell ativation ontrol, number of undesired states, number of interventions andtime in seondsControl gene πδ=0 πδ=0.1 πδest(no redution) (redueFMDP) (redueFMDP2 )
Ca 20.00, 9648.90, 92.96 18.10, 9638.80, 41.55 20.10, 9773.50, 1.05

Calcin 9.70, 9608.90, 158.95 9.40, 9601.90, 41.03 10.40, 9742.60, 1.04
CREB 9.80, 9604.10, 157.71 8.60, 9605.00, 40.99 10.90, 9742.60, 1.08
DAG 3240.60, 3242.20, 211.24 3243.40, 3247.40, 41.12 3241.70, 3242.90, 212.06
ERK 19.60, 4865.30, 263.38 18.70, 4865.30, 41.03 21.60, 4868.60, 35.99
Fos 9.70, 9609.10, 156.64 11.40, 9588.20, 40.94 8.80, 9593.20, 1.03

lKKbeta 18.10, 9644.30, 87.79 18.80, 9628.40, 40.99 20.10, 9772.70, 1.05
JNK 19.80, 9643.30, 89.71 18.70, 9639.40, 41.19 19.30, 9657.10, 32.51
Jun 9.80, 9602.90, 155.98 9.30, 9580.50, 41.17 9.70, 9600.10, 1.03
lkB 9.90, 9585.70, 160.03 10.40, 9600.30, 41.22 9.90, 9743.70, 1.05

MEK 26.00, 4883.40, 121.95 27.10, 4886.20, 41.14 29.6, 4973.60, 27.15
PKCth 30.40, 4878.10, 126.99 30.30, 4874.70, 41.03 32.40, 4878.70, 128.49

PLCg(act) 2455.60, 2445.90, 211.46 2453.20, 3280.70, 41.32 2456.00, 2444.00, 222.43
Raf 3244.10, 3251.90, 217.02 3249.40, 3249.90, 41.01 39.40, 4991.20, 17.14
Rsk 20.30, 9630.60, 89.95 18.40, 9658.00, 41.05 19.90, 9768.90, 1.05
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sets of Lee et al. [53℄ and Harbison et al. [34℄ are also two of the most widely used genome-wide loation analysis (ChIP-hip) data sets in the literature. These data sets exhibit theommon harateristis (or hallenges) in biologial data sets, namely having large number ofgenes assoiated with small number of samples, missing values, some amount of noise and therequirement for little or a fair number of pre-proessing steps for some of the analysis. Unlikethe data by Spellman et al., protein onentration data by Sahs et al. [73℄ for the Raf pathwayis stati; it is one of the largest data sets for the Raf pathway. This diversity in the datasetsutilized demonstrate the ability of the proposed algorithms to work for data sets of di�erenttypes.Compared to the modeling literature, GRN ontrol may be onsidered in its infany. There-fore, there are no data sets that an be lassi�ed as benhmarks for testing new methods. Hav-ing this in mind, for feature redution in MDPs, again the data by Spellman et al. was used inaddition to the small metestati melanoma data set that was used in several papers for bothdisrete modeling and ontrol. As the algorithms proposed for FMDPs do not require a dataset but a model for testing, two models from two di�erent organisms (yeast and human) wereused. These models have the ommon property of being Boolean models. Although a Booleanmodel is not mandatory, for the ease of presentation and larity, PBNs were hosen as themodel in FMDP evaluations. This is one of the reasons for using these two models (ell yleand T-ell ativation models) as the testbed. Another reason is their potential involvementin the development of undesired situations. Mutations an lead to anerous states in bothmodels.Some further tests an be performed to get more insights about the algorithms. It is possibleto study the e�et of the two thresholds for the prior knowledge to determine whether a gene isdense or not; a gene is onsidered to be dense if it has more onnetions than a given number(�rst threshold) with a larger probability value than a given probability (seond threshold).Another test ould be onduted to study limiting the maximum order for PCPDPr; there aresome suggestions in the literature to determine the maximum value of the order depending onthe sample size [82℄. Moreover, the e�et of the subjetive reward funtion de�nition on theredution algorithms for MDPs and FMDPs is an interesting aspet to investigate. All of theseare on my agenda for future work.
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CHAPTER 6CONCLUSIONS
Modeling and ontrol of GRNs is an essential problem that has reeived the attention ofdi�erent researh group as evident by the already published literature whih has been reviewedin this dissertation. However, we identi�ed ertain gaps within the existing literature andsuessfully handled them within the sope of this dissertation. To wrap up this doument,we present in this losing hapter a summary of our �ndings, the onlusions and the possiblefuture researh diretions.6.1 Summary and ConlusionsThis dissertation investigates two important issues about GRNs whih ould be lassi�ed amongthe most essential mehanisms in order to oneive the ellular organization. These two issuesare GRN modeling and ontrol, where modeling refers to deriving a representation of the GRNand ontrol refers to intervening the dynamis of the GRN in a way that alters the possiblefuture states aording to a ertain objetive.In general, we onentrated on onstraint-based struture learning algorithms for GRNmodeling and espeially the PC algorithm. Two modi�ations have been proposed for the PCalgorithm to learn better networks by integrating multiple data types. This is based on the fatthat most of the biologial data types have some amount of noise and not abundant enoughto derive all relationships between the genes. One of the data types (TF binding loation -ChIP-hip) is named as the prior knowledge and is used to �diret� the searh for onditionalindependenies through adapting the signi�ane level in statistial tests in the PC algorithm.The data type on whih these tests are performed is the miroarray gene expression data.Another information derived from TF binding loation data is the set of dense nodes that havea large number of onnetions. These nodes are handled in a speial way with a greedy searhalgorithm to get rid of the exponential burst of the number of statistial tests.For GRN ontrol, we foused on the redution algorithms that an be used to eliminatesome of the irrelevant omponents in the data or model. This is important for salabilityand for reduing the resoures (ost) required to takle the problem. We proposed a methodfor MDPs that removes genes at the very beginning of the proess starting from the data86



and ending in a poliy to ontrol the GRN implied by the data. Those genes are identi�edto be negligible for the solution of the ontrol problem. Other than that, for the �rst time,GRN ontrol is formulated by using the FMDP framework and a method to simplify the givenFMDP has been devised. The experiments showed that the solution of the simpli�ed FMDPis a near-optimal poliy for the original problem.Syntheti and real experiments are performed to evaluate the proposed methods. Theresults demonstrate the appliability, e�etiveness and salability of the proposed algorithms.6.2 Future Researh DiretionsFirst, we are working on the theoretial error bounds for the greedy separator searh proe-dure. Although some empirial tests have been performed to evaluate the e�etiveness of themethod, a theoretial analysis may also be very useful. Seond, we want to apply the proposedalgorithms to other types of data and derive other kinds of biologial networks, like proteininteration networks. Protein interation networks are also known to inlude dense regions, aproperty that makes them a suitable andidate appliation area. The proedure introduedto use prior knowledge also allows for the use of prior information in an inremental way. Aswe have already omputed prior information matrix B from some type of biologial data, weargue that it should be possible that new information obtained from other soures an beadded to this matrix as long as the prior knowledge an be mapped to a probability value. Ofourse there should be some onstraints and restritions to be taken into onsideration whileexpanding B to over new information soures; in other words, this is not a trivial proess andshould be arefully handled in order not to diverse from the main theme of having matrix B.Suh an inremental extension of this work is also to be investigated. Furthermore, inorpo-rating temporal information available in time-series miroarray data into PCPDPr is also onour agenda. This should bring a new dimension into the problem and still need to be arefullyinvestigated.Although the gene elimination algorithm for MDPs is good at �nding some less importantgenes, the order relationship among genes in the error rates an not be in general apturedby the sore funtion. To give exat solutions or to be able to give an error bound, the soremust always be diretly proportional to the error. Also, a sore funtion that gives the soreof a set of genes instead of a single gene may improve the results beause summation of thesores of genes in a set may not be always proportional to the error of that set. We are alsoworking on an automated method to determine the threshold value. Solving the onstrutedMDP in �nite horizon is another extension that is worth further onsideration; investigatingthe e�et of the horizon on the quality of the solution an bring new insights to the problem.Finally, adapting some other biologial information (pathway information for instane) while87



determining the genes to eliminate is also among our plans.In the light of the �ndings in this thesis, we are planning to apply the developed ideas toa genome-wide ontrol problem. This will test the salability limits of the algorithms. Butthis study should wait until the existene of the genome-wide PBN model of an organism.Existing models mostly fous on ertain biologial omponents. Although the results andmodels presented here are not diretly appliable to linial pratie yet, genome-wide solutionof a ontrol problem gives the hane to ompare the poliies found to real treatments, wherethis may lead to new insights of the applied linial treatments and drug disovery researh.There are several types of di�erent FMDPs in terms of the performane riterion and thelength of the horizon. Also there an be onstraints on the solution related to the appliability,suh as the number of genes involved in the �nal fatored poliy. Finding the best simple poliydepending on a set of genes whose size does not exeed a pre-de�ned value an be essential forthe appliability of that poliy as a treatment in mediine for instane. Investigating the e�etof the redution method to these other types of FMDPs is another future researh diretion tobe investigated.As a losing remark, it is worth emphasizing that this thesis ontains the desription ofsome novel approahes to handle the modeling and ontrol of GRNs. The developed approahesare very promising as evident by the reported test results, the published related papers, andthe identi�ed future researh diretions. I do onsider my e�orts re�eted in this dissertationas a major step in the right diretion. The outome and vision I shaped as a result of thisstudy will de�nitely drive my future researh for the oming years.
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