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ABSTRACT

A COMPARISON OF PREDATOR TEAMS WITH DISTINCT GENETIC SIMILARITY
LEVELS IN SINGLE PREY HUNTING PROBLEM

Yalçın, Çağrı

M.S., Department of Computer Engineering

Supervisor : Dr. Onur Tolga Şehitoğlu

August 2009, 45 pages

In the domain of the complex control problems for agents, neuroevolution, i.e. artificial evolu-

tion of neural networks, methods have been continuously shown to offer high performance so-

lutions which may be unpredictable by external controller design. Recent studies have proved

that these methods can also be successfully applied for cooperative multi-agent systems to

evolve the desired team behavior. For a given task which may benefit from both cooperation

and behavioral specialization, the genetic diversity of the team members may have important

effects on the team performance. In this thesis, the single prey hunting problem is chosen

as the case, where the performance of the evolved predator teams with distinct genetic sim-

ilarity levels are systematically examined. For this purpose, three similarity levels, namely

homogeneous, partially heterogeneous and heterogeneous, are adopted and analyzed in vari-

ous problem-specific and algorithmic settings. Our similarity levels differ from each other in

terms of the number of groups of identical agents in a single predator team, where identical-

ness of two agents refers to the fact that both have the same synaptic weight vector in their

neural network controllers. On the other hand, the problem-specific conditions comprise three

different fields of vision for predators, whereas algorithmic settings refer to varying number
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of individuals in the populations, as well as two different selection levels such as team and

group levels. According to the experimental results within a simulated grid environment, we

show that different genetic similarity level-field of vision-algorithmic setting combinations

beget different performance results.

Keywords: multi-agent systems, predator-prey problem, evolutionary methods, genetic algo-

rithms, artificial neural networks
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ÖZ

TEK AV AVLAMA PROBLEMİNDE FARKLI GENETİK BENZERLİK DÜZEYLERİNE
SAHİP AVCI TAKIMLARININ KARŞILAŞTIRILMASI

Yalçın, Çağrı

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Dr. Onur Tolga Şehitoğlu

Ağustos 2009, 45 sayfa

Yapay sinir ağlarının yapay evrimi yöntemlerinin, erkinler için karmaşık kontrol problemleri

alanında yüksek başarımlı çözümler sunduğu bilinmektedir. Harici bir kontrol edici tasarımı,

bu çözümleri tahmin edememektedir. Yakın zamandaki çalışmalar, bu evrimsel yöntemlerin,

işbirliği yapan çok erkinli sistemlerde arzu edilen takım davranışı evrimleştirilmesi için de

başarıyla uygulanabileceğini kanıtlamaktadır. İşbirliği ve davranışsal özelleşmeden yarar-

lanabilen bir görev için, takım üyelerinin genetik çeşitliliği takım başarımında önemli etkilere

sahip olabilir. Bu tezde, tek av avlama örnek problem olarak seçilmiş ve farklı genetik benzer-

lik düzeylerine sahip evrimleşmiş avcı takımlarının başarımı sistematik olarak sorgulanmıştır.

Bu amaçla, türdeş, orta seviye ve türdeş olmayan olmak üzere üç benzerlik düzeyi kullanılmış

ve probleme ve algoritmaya özgü çeşitli ayarlamalarda analiz edilmiştir. Benzerlik düzeyleri,

bir avcı takımındaki özdeş erkin gruplarının sayısı bakımından birbirlerinden ayrılmaktadır.

İki erkinin özdeşliği yapay sinir ağı kontrolörlerinde aynı sinaptik ağırlık dizilerine sahip ol-

malarına karşılık gelmektedir. Öte yandan, probleme özgü şartlar, avcılar için üç farklı görme

alanına; algoritmaya özgü ayarlamalar ise populasyonlardaki birey sayılarının değişimine ve

grup ve takım seçim düzeyleri olmak üzere iki farklı seçim seviyesinin kullanımına karşılık
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gelmektedir. Benzetim ortamındaki ızgara dünyasında gerçekleştirilen deney sonuçlarına

göre, farklı genetik benzerlik düzeyi-görme alanı-algoritmaya özgü ayar birleşimleri farklı

başarım sonuçları doğurmaktadır.

Anahtar Kelimeler: çok erkinli sistemler, avcı-av problemi, evrimsel yöntemler, genetik algo-

ritmalar, yapay sinir ağları
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CHAPTER 1

INTRODUCTION

According to the famous German philosopher Max Scheler, one of the most crucial charac-

teristics of the human being is its consciousness that can objectify himself [1]. In this context,

via the contributions of the fields like philosophy, mathematics, medicine, economics, psy-

chology and engineering from Ancient Greek to recent date, the humankind’s examinations

on his knowledge, mind, reasoning, self-improvement and creativity and his attempts to build

artifacts realizing these properties have given rise to the birth of a new science that was called

”artificial intelligence” (AI) firstly by McCarthy in 1955 [2]. Although there exists a strong

consensus about the name of the field, the debates regarding how it can be defined have con-

tinued. Russell and Norvig [2] give the following definitions of AI:

• “Systems that think like humans

• Systems that act like humans

• Systems that think rationally

• Systems that act rationally”

The concept of intelligent agent has been constructed in the light of these different AI ap-

proaches that have been in interaction with each other. Historically, the word agent comes

from the Latin agere, to do [2]. Woolridge et al. [3] define agent as: ”a computer system that

is situated in some environment, and that is capable of autonomous action in this environment

in order to meet its design objectives.” Autonomy is used to mean that the action of agents are

totally independent from any interference of humans or other systems, i.e. they are on their

own for their operations [4]. Surely, intelligent agents should have some additional properties
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than the simple agents do. In [3], they are suggested as the entities ”that are capable of flexible

autonomous action in order to meet their design objectives”, where flexibility is composed of

three particular points:

• “reactivity: intelligent agents are able to perceive their environment, and respond in

timely fashion to changes that occur in it in order to satisfy their design objectives

• pro-activeness: intelligent agents are able to exhibit goal-directed behavior by taking

the initiative in order to satisfy their design objectives

• social ability: intelligent agents are capable of interacting with other agents (and possi-

bly humans) in order to satisfy their design objectives”

As can be seen clearly, the complexity of building intelligent agent architectures directly

depends on the conditions of the agent environment. In [2], the following classifications of

environment properties are presented:

• Fully Observable vs. partially observable: Fully observable environment is the one

where agent can sense the complete and up-to-date state of it. Partially observable ones

give only the partial information about its state.

• Deterministic vs. stochastic: Deterministic environment is the one where the next en-

vironmental state is totally determined by the current state and the agent’s action in it.

In stochastic environments, there exist an uncertainty about the state from the agent’s

point of view.

• Episodic vs. sequential: Episodic environment is the one in which a single sense-act se-

quence of the agent is independent from the previous ones. In sequential environments,

the agent’s performance is the result of interacting sense-act sequences.

• Static vs. dynamic: Static environment is the one where not any external change in the

environmental state occur during the agent’s operation. Dynamic ones are the opposites.

• Discrete vs. continuous: Discrete environment is the one which has finite number of

distinct states and sense-act sequences. Continuous ones offer continuous value oppor-

tunities for them.
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• Single agent vs. multi-agent: Single agent environment is the one where only one agent

operates. In multi-agent ones, there are more than one agent.

In the light of these classifications, in some hard environmental conditions, e.g. partially

observable, sequential and stochastic, it is very difficult to build control architectures that can

successfully fulfill the aforementioned characteristics of intelligent agents.

1.1 Multi-Agent Systems

The research in the multi-agent systems (MAS) started in the mid 1970s and they are generally

defined as: “systems in which several interacting, intelligent agents pursue some set of goals

or perform some set of tasks.”[4] These systems cover various research fields, from robotic

agents to computational ones, such as software and artificial life agents; and are shown to

be useful in various industrial application domains, such as vehicle control or network com-

munication [5], [6]. The complexity of building control strategies for MAS stems not only

from the given environmental conditions, but also from its very nature where the action of

each agent depends also on its interaction with other agents. Task-oriented coordination is

the crucial part of interaction in MAS for both cooperative and competitive scenarios, where

in the former “several agents try to combine their efforts to accomplish as a group what the

individuals cannot” and in the latter “several agents try to get what only some of them can

have” [4].

1.2 Homogeneity vs. Heterogeneity in Cooperative Agent Teams

Floreano and Keller [16] emphasize that “Cooperation applies the situations where two or

more individuals obtain a net benefit by working together”. This directly reflects the fact

that for a given goal, the agent architectures should be designed so that the interactions of

agents with each other and the environment provide them a reasonable task performance that

cannot be guaranteed to be managed by a single agent. For this purpose, various agent coop-

eration and communication protocols have been proposed in MAS [4]. From the perspective

of the artificial evolution of cooperative teams, a wide variety of successful studies has been

continously submitted [6], [9], [10], [11], [15], etc..
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For a particular task assigned to an agent team, deciding the control rule of each member is a

challenging issue, since various types of team compositions directly affect the resulting good-

ness of the team. In the multi-robot team research, sundry studies have been proposed where

each robot in the team is assigned a predetermined role via different sensory morphologies

and behavioral controller design [7], [8]. Intelligent agent teams built with machine learning

techniques, e.g. artificial evolution, have also harnessed the controller diversity of members,

for which the proposed works have generally adopted two distinct approaches: The first ap-

proach tries to differentiate the agent controllers with the help of the suboperations of the

related learning algorithm using a single potential solution set [6]. In the second one, the

decision about the difference of agent controllers is given previously by creating subteams

(groups) each of which acts with a different controller obtained as a result of the operations

in a discrete potential solution set [9]. These heterogeneous systems are taking the advan-

tage of specialization where each specialized agent or agent group is expected to focus on

particular subtasks to display a high performance behavior in team level. However, as Quinn

et al. [10] point out, homogeneous teams, whose members share the same identical control

structures and sensory morphologies, do not necessarily offer behavioral homogeneity during

their operations, since the behavior of each identical agent in a team can vary due to its current

and history of sensory inputs. Baldassare et al. have succeeded to observe some behavioral

specializations in evolved homogeneous teams for the task of aggregation and moving to-

gether toward a light target. On the other hand, in homogenenous teams, agent’s ability of

specialization can be improved due to the type of the selected controller architecture. In the

multiple predator, single prey problem, Nitschke [11] showed that homogeneous teams with

controllers that use both current and historical sensory information display better specializa-

tion and performance than homogenenous teams that have controllers that use only current

sensor input for action.

In the artificial evolution of cooperative heterogeneous teams, an important issue that should

be coped with is credit assignment problem, i.e. ambiguity about the individual contributions

to the team performance. In fact, the contribution of each agent to the team performance

may differentiate from each other. This problem can be solved in cooperative scenarios that

easily allow the direct calculation of individual effect to the team goodness [6]. However, in

some cases, this calculation may not be so easy. Bull and Holland [12] proposed the approach

of fitness sharing, where each individual is assumed to have equal role on the team perfor-
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mance. This simple approach has been effectively adopted in various studies related to MAS

and other fields [11], [13]. In some other studies [14], [15], for the individual contribution,

various indirect evaluation methods have been proposed, which are said to give more robust

measurements than fitness sharing.

1.3 Evolving Controllers for Agents

In his famous study, Turing [17] draws the attention to the difficulty and inefficiency of pro-

gramming his intelligent machines manually and offers a learning method where so-called

“child” programs, which are initially ineffective, are improved through the evaluations of an

external experimenter. He explains this process by bridging an analogy on the natural evolu-

tion as follows:

• “Structure of the child machine = hereditary material”

• “Changes of the child machine = mutation”

• “Natural selection = judgment of the experimenter”

He also mentions the importance of the randomness and discusses the learning process “as

a search for a form of behaviour which will satisfy the teacher (or some other criterion)”.

Actually, Turing’s ideas created crucial fundamentals for the development of intelligent agent

controllers which are expected to show high performance results in different initial environ-

mental conditions.

By taking inspirations from the rules of natural evolution such as competition, selection re-

production and random variation, the approach of evolving controllers for agents takes an

initial controller set and applies repetitive evaluations and modifications on the set members

to obtain better and better performing hypotheses through iterations, where goodness of a be-

havioral controller is determined by the human’s point of view [18]. Hence, it can be seen

as an intelligent search technique in the hypothesis space to obtain an optimal or sub-optimal

agent controller design.

Up to now, a huge number of studies harnessing this approach has been presented. From

the robotics field, one of the first examples is the study of Beer and Gallagher [19], where

5



controllers are evolved for homing and locomotion of simulated legged robots. Another early

study is performed by Koza [20], where wall-following behavior is evolved for robots in sim-

ulation environment. Nolfi et al. [21] use a single physical robot during evolution and manage

to evolve a controller which makes the robot display straight motion and object avoidance. In

all of these works, a-priori design of a proper fitness function which reflects the desired be-

havior and reasonably differentiates high performing controllers from low performing ones is

crucial.

1.4 The Predator-Prey Problem

The Predator-Prey problem is a well-known problem in MAS and various definitions as well

as methods have been proposed for it. In its original form, four predator agents try to catch

a single prey by occupying its four orthogonally adjacent squares in a simulated, infinite grid

world [22]. All agents are allowed to move to vertical or horizontal squares and the behavioral

strategy of prey is totally random. Korf [23] extended the problem by adding diagonal motion

capability and suggested a greedy approach for predator agents. In his grid world, initially,

the predators are allowed to see the complete world once and start to move in turn. Without

any communication, in each turn, a predator is designed to move to the best possible square

via utilizing an evaluation function which calculates the fitness of each movable square by

substracting its distance to the nearest predator from its distance to prey. Hence, each preda-

tor is exposed to an attractive force towards the prey and a repulsive one from the nearest

predator. Korf’s prey adopts a probabilistic evading strategy. In [49], Stephens and Merx

focused on various different control strategies, such as local, distributed and centralized. In

the local strategy, a predator broadcasts its global positional information, only when it is close

to the prey. In the distributed one, communication of global positional information occurs for

all steps. In the centralized strategy, a single predator rules other predators to occupy each

quadrant of the prey’s neighborhood by a different predator [26]. They found that while dis-

tributed and centralizad strategies resulted in high level capture rates, the local strategy was

insufficient for a reasonable success. Using reinforcement learning, Tan [24] proposed that

sharing of sensor readings and experiences gives important advantages to predator agents.

Above studies can be seen as non-evolutionary approaches to the predator-prey domain. In

Section 2.2, we will mention various studies applying evolutionary methods to the domain
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and clarify the definition of our problem.

1.5 Systematic Comparison of Evolved Predator Teams

The methods of artificial evolution induce impressive results in the development of intelligent

agent behaviors that cannot be offered by manual designs. They are also shown to be effec-

tive for the derivation of controllers in cooperative agent teams, where agents should operate

together to achieve a task via their local interactions with each other and environment. Ac-

cording to the task characteristics, the choice of various team compositions, perceptual and

algorithmic parameter settings may have important effects on the success of evolved behav-

iors.

Our work mainly focuses on the evolution cooperative predator agent teams whose similarity

levels are previously defined as homogeneous, partially heterogenous and heterogenous. In

the first composition, each of the four predators in a team has an identical controller. In the

next one, we define two groups each of which consists of a different controller for the use

of a distinct two predator sub-team. In the last one, each agent adopts a different controller.

Throughout our experiments, we evolve them with different fields of vision, population sizes

and level of selections such as team and group level. The results of the experiments are

compared with respect to various performance metrics.

The forthcoming organization of the thesis is as follows: Chapter 2 will give descriptions

about artificial evolution methods and the details on Genetic Algorithms. Besides, it will

present a literature survey on the use of these methods for predator-prey domain and other

multi-agent systems. Chapter 3 will clarify the details of simulation environment and the

adopted architectures of prey and predators. In Chapter 4, we will present the details of our

team compositions, population sizes, level of selections, genetic algorithm and initial envi-

ronmental set-ups. Chapter 5 will show the performance results of our evolutions. Chapter

6 will put a general review of the results and final comments, as well as some future works

waiting to be done.
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CHAPTER 2

ARTIFICIAL EVOLUTION

According to neo-Darwinian paradigm, populations and species of living organisms have been

exposed to sundry physical processes such as competition, selection, mutation and reproduc-

tion. Reproduction is a fundamental aspect of species, where the genetic information of in-

dividuals are transferred to next generations by creating new ones. Mutation is the result of

the inevitable errors during these transfers. Competition occurs within the share of the limited

resources among the members of growing populations. As a direct result of this, selection

is performed where individuals that are better suited to their environment survive and the

weaker ones are eliminated. Hence, natural evolution can be seen as the total product of these

processes [31].

With the increasing availability and computing power of digital computer systems, the field of

evolutionary computation has started to emerge in the early 1960s by taking inspirations from

the aforementioned characteristic processes of natural evolution. The proposed methods have

been shown to be effective in various areas such as optimization, the design of controllers for

intelligent agents and even the natural evolution itself to get better insights on it.

The three main types of evolutionary algorithms are as follows: Genetic algorithms, Evo-

lution strategies, Evolutionary programming. Besides, there are also other techniques such

as genetic programming and classifier systems which are seen as the derivatives of genetic

algorithms. All of these methods share some common aspects [31]:

• Population of individuals (candidate solutions)

• Randomized generation of the descendants of individuals

• A fitness value assigned to individuals with respect to their evaluations
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• Selection of better individuals

Genetic algorithms were originally proposed by Holland [32], [33] and mainly favors crossover

operator. It also adopts mutation, however, with a less probability. Besides, a probabilistic se-

lection method is applied. Genetic programming was suggested by Koza [34] and adopts the

general characteristics of genetic algorithms to evolve executable computer programs with

tree-formed representations. On the other hand, classifier systems were described by Hol-

land [35] and Goldberg [36] and utilizes genetic algorithms to search the solution space of

condition-action pair rules.

Evolution strategies were described by Rechenberg [37], [38] and Schwefel [39], [40] are ex-

posed to some modifications through the history. In its modern state, each individual contains

a solution offering in search space, as well as some parameters to control individual mutation

distribution. Crossover is also used and selection is performed in a deterministic fashion by

taking only the best performing ones [31].

Evolutionary programming was firstly developed by Fogel [41] to evolve finite state ma-

chines. It focuses on mutation and does not adopt recombination (crossover). It harnesses a

probabilistic selection operator. In its modern state, it is also applicable for real-valued vector

solution spaces.

A strict claim which scatters the advantages of evolutionary methods to all problem domains

is questionable. In [31], Schwefel gives his insights on the point as follows:

“Since, according to the no-free-lunch (NFL) theorem (Wolpert and Macready 1996), there

cannot exist any algorithm for solving all (e.g. optimization) problems that is generally (on

average) superior to any competitor, the question of whether evolutionary algorithms (EAs)

are inferior/superior to any alternative approach is senseless. What could be claimed solely is

that EAs behave better than other methods with respect to solving a specific class of problems-

with the consequence that they behave worse for other problem classes.”

He suggests that classical optimization methods are more efficient than evolutionary ones

“in solving linear, quadratic, strongly convex, unimodal, separable, and many other special

problems”. However, evolutionary methods should be taken into account “when discontin-

uous, nondifferentiable, multimodal, noisy, and otherwise unconventional response surfaces

are involved”. Afterwards, he concludes his ideas in the following simple implications:
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• Evolutionary algorithms should not be adopted, if a known traditional method solves

the problem in an exact fashion.

• Evolutionary algorithms are preferable, when a manual attempt for a new solution

method is costly.

A clarifying addition to Schwefel’s former suggestion can be the fact that evolutionary meth-

ods can be used if a known method is not easily calculable. Furthermore, they can also be

adopted in the domains where a known method gives only one sub-optimal result, since they

provide the opportunity of obtaining a wide variety of optimal and sub-optimal solutions due

to their use of randomness and their maintenance of a solution candidate set. On the other

hand, the use of artificial evolution for agent controllers takes its motivation mainly from the

latter suggestion, since, in most of the cases, the environmental and problem-specific condi-

tions make manual designs costly and even unpredictable.

2.1 Genetic Algorithms

As a population-based method, a genetic algorithm starts to operate on a set of usually ran-

domly generated candidate solutions, which are also called individuals or chromosomes.

Then, each individual of the population is evaluated and assigned a fitness value. After-

wards, some of these individuals are selected and copied to a mating buffer for recombination

(crossover) and mutation. This selection process is performed probabilistically, where indi-

viduals with higher fitness values have higher chance to be selected. After the recombination

and mutation are completed, depending on a combining rule, the original population and the

mating buffer are merged to build a new population, i.e. next generation. This whole process

continues iteratively until a satisfactory condition is reached.

Algorithm 1 depicts the general scheme of a genetic algorithm. In most of the cases, a genetic

algorithm maintains a fixed-sized population through iterations. Therefore, different meth-

ods can be proposed for the combination of mating buffer and original population. A simple

approach is using all individuals in the buffer and randomly selected ones from the original

set. Another one may be making the size of the buffer equal to the original population and

replacing all population members with the newly generated ones in the buffer. Both of these

approaches have a main drawback: Relying on mating set and random additions (former case)
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Algorithm 1 The Genetic Algorithm
1: Initialize population P

2: while Termination condition is not satisfied do

3: Evaluate individuals in P

4: Select mating buffer M from P

5: Apply crossover and mutation on M

6: Combine M and P to build a new P

7: end while

or relying only on mating set (latter one) may cause some deteriorations of individual perfor-

mances through generations. A fine responsive method is combining the whole buffer with

a subset of best performing individuals from the original population, which is called elitist

strategy and generally leads to faster and better convergence results due to its preservation of

top ranking ones in each iteration [31].

On other hand, the probabilistic selection techniques offered to build mating buffer have also

shown some varieties. A simple technique is fitness proportional selection, also known as

roulette-wheel selection, which selects the buffer members with respect to probabilities cal-

culated for each individual via dividing its fitness by the total fitness value in the original

population. In some situations where fitness differences between individuals are very high,

this technique leads to a high level selection pressure, which refers to the danger of continuous

selection of only a very small set of top ranking members. This situation is unwanted, since it

hinders the genetic diversity, and therefore, the possibility of building diverse solutions in the

buffer. To overcome this, another technique called ranked selection is suggested, where the

individuals of the original population are ranked and probabilistically selected according to

these ranks rather than their fitnesses. Another simple, but effective technique is tournament

selection which performs a number of tournaments each of which consists of equal number of

randomly selected individuals. The output of a single tournament is the highest ranking chro-

mosome, and outputs coming from all tournaments are combined to form the mating buffer.

The selection pressure of the tournament selection can be adjusted with the choice of size

for a tournament. A very small size causes a low level pressure and is undesirable, since the

selection probability of high performing individuals become less. In the same way, a very

large number begets a high level pressure and should also be avoided, since it increases the

selection probability of only the same best ranking individual, and by this way, does not allow
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a desired genetic diversity in the mating buffer [31], [42].

The main rationale behind crossover is the fact that we may obtain higher performing individ-

uals by combining sundry random parts of two high ranked ones. Although it is not always

the case, crossover has shown to be an effective operator to obtain fitter individuals. Mostly,

it is applied with a high probability in the mating buffer. There are different recombination

approaches in the literature. One is one-point crossover, where a random point is firstly deter-

mined and the whole segments after that point are swapped between two individuals. Another

one is two-point crossover, where two different random points are selected at first and the

swapping operation occurs between two individuals’ corresponding parts that are located in

between these points. A third approach is uniform crossover, which swaps randomly selected

single points between two individuals.

Mutation is performed after crossover with a less probability by changing random and very

small parts of chromosomes. By this way, new solution candidates are obtained. In binary

individual representations, it is achieved by flipping randomly selected bits. In representations

of floating point vectors, it is applied by adding random floating point numbers to randomly

selected points of chromosomes.

2.2 Artificial Evolution in Predator-Prey Domain

In the original definition of predator-prey problem, where the prey capture is performed via

occupying orthogonally adjacent grid cells to the prey, Haynes and Sen [25] adopted genetic

programming to evolve cooperative predators, as well as a competitive co-evolution setup

where both predator and prey controllers are evolved. They conclude that a prey that linearly

moves in an infinite world is impossible to be surrounded. In [26], they modeled the problem

so that all agents act simultaneously and diagonal moves are not allowed. Regardless of any

field of vision, their predators can see the prey, however, cannot see each other. Their prey

is able to see all four predators and follows a strategy that makes it escape from the nearest

predator. Their predators can travel faster than the prey, since the prey is designed so that it

does not move in a particular percent of total simulations steps allowed. In such configuration,

they again harnessed genetic programming where after each move their evaluation function

increments the fitness of each predator controller according to the inverse of the Manhattan
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distance of that predator to the prey. Besides, the evaluation method adds extra rewards to the

predator controllers that make that predators locate adjacent to prey in the end of a simulation

trial. They concluded that heterogenous teams perform slightly better than homogeneous

ones, since their behavioral diversity can eliminate the deadlock situations that are faced in

homogeneous teams. Jim and Giles [28] designed simultaneously moving agents that have the

same speed and showed that for predator agents a communication language can be evolved

via a genetic algorithm and can increase their capture performance significantly. In a recent

study, Reverte et al. [30] extended Korf’s model by modifying the evaluation function and

adding transmission of relative location information between predators. Besides, they adopt

artificial evolution to evolve controllers which take the location information and the results

of evaluation functions of the other predators that are in the field of vision of that predator

as input. Their fitness evaluation method takes prey capture time and number of collisions

occured between predators into consideration. They use two different prey strategies such

that random and evading prey.

Yong and Miikkulainen [29] altered the problem so that occupying the square of the prey by

only one predator is said to be enough to capture the prey. They used three predators and one

prey where all agents are allowed to move only in orthogonal directions and to have the same

speed. Their prey is aware of its own global position, as well as the ones of all predators and

moves directly away from the nearest predator. They proposed two different predator teams

such as non-communicative and communicative ones. In the former, each predator can get its

own global position and that of the prey. In the latter, in addition to its own global position,

each predator can have both the global positions of the prey and other predators. Throughout

the experiments with communicative predators, they evolved homogeneous predator teams by

using a single population and heterogeneous predator teams by using a separate population

for each predator controller using cooperative coevolution. They showed that evolved het-

erogeneous teams are much more successful than the homogeneous ones, since their problem

demands role-based specializations and heterogenous agents are more responsive to these

requirements. An interesting result of their study is the fact that non-communicative and

heterogenous teams perform better than communicative and heterogenous ones, although the

former offers a less variety of role assignments. Due to this result, they suggested that for their

problem the information about other predator positions, i.e. communication, is not required,

even expands the solution space redundantly and creates some sort of noise that diverts the
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predators from best possible solutions. In all of their experiments, the predators adopt neural

network controllers and their evolutionary method is “The Enforced Subpopulations Method”

(ESP) where evolution occurs at the neuron level instead of the complete neural network and

each neuron is evolved in its own neuron subpopulation. Since three predators are used, three

ESP’s are run in a parallel fashion for heterogenous teams. The fitness of a team is calculated

with respect to the difference between the average final and initial distances of the predators

to the prey. This fitness is assigned to each of three predator controllers equally. Then, each

shared fitness value is again equally shared among the neurons that forms that controller.

In the robotics domain, Nolfi and Floreano [27] applied a competitive co-evolution method to

evolve a single predator and a single prey robot. A binary fitness value of 1 is assigned to a

predator controller and a value of 0 to a prey controller, if the predator robot touches to prey

during a trial, and vice versa if not. Nitschke [11] evolved controllers of both homogeneous

and heterogeneous predator robot teams, where the desired task is to immobilize a prey robot

adopting a static obstacle avoidance behavior. His fitness calculation for a predator team is

proportional to how much it is able to slow down the prey. He concluded that with respect to

several performance metrics, evolved heterogeneous teams show better performance results

with a greater variety of behavioral specializations than homogeneous ones.

In this study, we take the definition of Yong and Miikkulainen [29], except the fact that we use

four predators. Our simulated grid world is obstacle-free and toroidal as in the aforementioned

studies, where if an agent runs off a side of the arena, it will reappear on the opposite side.

Besides, our agents move sequentially and have limited range of perception. An example

Figure 2.1: A capture of the prey. The filled squares correspond to predators, whereas the
circle is the prey. On the right image, the predator located in the right of the prey is about to
occupy the square of it.

of our prey capture is depicted in Figure 2.1. The details about the simulator and the agent

architectures will be given in Chapter 3.
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2.3 Artificial Evolution in Other Multi-Agent Systems

Among the other domains, an interesting study was presented by Cardon et al. [43], where

they evolved heterogenous agent teams with a single population, multi-objective genetic algo-

rithm for a job scheduling problem whose objectives are delay minimization and completion

of predefined jobs. In [44], Bull and Fogarty evolved cooperative heterogeneous agents for a

simulated trail following task via classifier systems. In [45], they evolved agent teams for the

gait of a wall-climbing robot, where each leg is seen as a different agent and controlled by a

different classifier system. In [46], Nelson et al. evolved robot controllers for a competitive

searching task in a maze environment and showed that competition among robots leads to bet-

ter performance results than the evolution of search behavior for a single robot offers. Trianni

et al. [47] evolved aggregation behavior for swarm robotic systems and observed different be-

haviors emerged as a result of evolution. Bahceci [18] studied the effect of sundry paramater

settings in the genetic algorithm by selecting the evolution of aggregation behavior in robot

swarms as the case. In [9], Luke et al. evolved coordinated robot soccer teams via genetic

programming. They adopted both homogeneous and partially heterogeneous teams, where

the latter had various subteams, each of which operated with a different controller evolved

in a different population, and were shown to outperform the former. In [6], in addition to

evolving altruistic cooperation, Waibel et al. studied evolution of traditional cooperation for

a foraging task which do not benefit from the specialization of team members. They adopted

a single population genetic algorithm for the evolution of both homogeneous and heteroge-

neous teams. Besides, they proposed two different selection methods for the formation of

mating buffer. The first one is team level selection and selects high performing teams via

roulette wheel selection. The second one is individual level selection and selects high per-

forming individuals again with roulette wheel selection. They concluded that homogeneous

teams outperforms the heterogeneous teams regardless of these selection methods.

Despite these studies, for the problem domains which harness both the genetic diversity and

cooperation of team members, the performances of artificial evolution applied to teams with

different genetic similarity levels have not been fully studied. Within the existence of vari-

ous problem-specific and algorithmic settings, this point deserves even much more attention.

Hence, this study should be viewed as an attempt to build some answers on it.
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CHAPTER 3

SIMULATOR

3.1 Simulation Environment

The simulator developed for this study is an obtacle-free, toroidal 31x31 grid environment,

where the agents on it move sequentially, i.e. at each simulation step only a single agent is

allowed to perform its sense-act operation.

Figure 3.1: A snapshot of the simulator. The filled squares are predator agents, whereas the
single circle depicts the prey.

A snapshot of our simulator is shown in Figure 3.1. It contains four predators and one prey.

Each agent has a limited range of sense and occupies one different grid square during each of

its moves. Besides, each one maintains the same constant orientation in the north direction

without any rotational capability. From a single agent’s point of view, the environment is a

partially observable, stochastic, sequential, dynamic, discrete and multi-agent one.

16



3.2 Agent Architectures

3.2.1 Prey Architecture

The prey agent used in this study has a hypothetical architecture so that it knows the global x

and y coordinates of its own square and of the predators that are located in its square-shaped

field of vision.

3.2.2 Prey Controller

The prey employs a manually designed control algorithm, which generally forms an evading

strategy. Algorithm 2 explains the controller of the prey. In each of its turns, the prey firstly

Algorithm 2 The Controller of the Prey
1: Initialize x offset, xo f f , and y offset, yo f f , with zero

2: Find the closest predator p in the field of vision

3: Calculate the relative x and y offsets of p by subtracting the global x and y positions of p

from the ones of itself and assign them to xo f f and yo f f , respectively

4: if Both xo f f and yo f f are zero then

5: Do nothing

6: else if One of xo f f and yo f f is zero and the other is not then

7: Select an orthogonal square in the opposite direction of non-zero offset

8: else

9: Find the offset that has smaller absolute value

10: Select an orthogonal square in the opposite direction of that offset

11: end if

12: if The selected square is already filled by another predator then

13: Do nothing

14: else

15: Move to that square

16: end if

determines the closest predator in its field of vision in terms of Euclidean distance. Then, it

compares the absolute values of relative x and y offsets of that predator and selects an orthog-
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onally adjacent grid square in the opposite direction of the relative offset that has a smaller

absolute value. If one of the offsets is zero, it is not taken into account in the comparison. If

the prey cannot see any predator in its field of vision or the selected square is already occupied

by a predator, it does not move and preserves its current position.

3.2.3 Predator Architecture

Each predator is designed to have 4 directional predator and 4 directional prey sensors located

at the center of its circular body. With such structure, the architecture of our predators can

be said to be inspired from the real robot models. Since the predators used in this study

are designed to have limited range of sense, i.e. not all agents are sensible to each other

always, we find the use of directional sensors convenient. By this way, our predators are more

informed about the advantageous directions to move and are tried to be compensated for their

lack of global position information of other agents in the environment. To the best of our

knowledge, up to now, not such a robotic-inspired architecture has been harnessed for the

predator-prey problem studied in the simulated grid world. Figure 3.2(a) shows a view of the

predator architecture.

3.2.4 Predator Controller

Each predator adopts a fixed topology multi-layer feed forward neural network controller.

It directly maps the sensory input taken at a simulation step to the 4 orthogonally adjacent

square and 1 staying options in a reactive manner, i.e. without any memory or plan. It has 9

input neurons, where 4 of them are connected to predator sensors, the other 4 are connected

to prey sensors and the last one is the bias, which has a constant value of 0.1 during all time

steps. Besides, it has 3 hidden neurons and 5 output neurons for the 4 possible orthogonal

directions such as up, down, left and right and an additional option for staying on the current

position. In this way, the predators and the prey have the same speed, i.e. both can move only

to orthogonally adjacent squares, and for a single predator it is impossible to catch the prey

via simply chasing it. Therefore, predators must cooperate somehow to block the possible

escape routes of the prey. After the calculation of the values for output neurons, the predator

selects the square with the highest value to move. If the selected square is already occupied
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(a) A view of the predator architecture. The
big square represents the body of a predator.
The triangles refer to 4 directional predator
sensors and 4 directional prey sensors. For
each direction, each prey and predator sensor
pair is designed to be overlapped. SY denotes
a prey sensor, whereas SD is a predator sen-
sor. n, s, e, and w refer to north, south, east,
and west directions, respectively.

(b) A predator with its square-shaped field of
vision. P denotes the said predator. The diag-
onal lines are used to differentiate the sensing
fields of directional sensors.

Figure 3.2: Predator architecture and its field of vision.

by another predator, not any move occurs. If the prey is on the selected square, the predator

is said to catch the prey. Figure 3.3 shows the architecture of the neural network controller of

predators.

3.2.5 Sensor Model

Each predator has the same square-shaped field of vision which is divided to 4 right triangles

to sense in 4 directions. Each directional sensor senses the related objects located in its own

90 degree field of vision, i.e. in the area of its right triangle. This area is taken equal for both

predator and prey sensors. Figure 3.2(b) represents a predator with its field of vision. The

north directed predator and prey sensors of the mentioned predator P are not activated, since

not any object is situated in the area of their right triangle-shaped fields of vision. On the

other hand, the west directed predator and prey sensors of P are activated by another predator

and the prey, respectively. Besides, the east directed predator sensor of P also senses another

predator located at the upper right. However, the predator at the bottom cannot be seen by P,

since it is out of the field of vision of P.
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Figure 3.3: The architecture of the neural network controller. 9 input neurons (1-4: predator
sensors, 5-8: prey sensors, 9: bias), 3 hidden neurons, and 5 output neurons (1:up, 2: down,
3:left, 4:right, 5:stay) are shown. First 8 input neurons are connected to hidden ones, whereas
bias is connected to both hidden and output neurons.

In a single time step, the reading of a predator sensor is calculated by the inverse of the

Euclidean distance between the sensing predator and the closest sensible predator, i.e. other

sensible predators are ignored. Since only one prey exists in the environment, the reading of

a prey sensor is directly equal to the inverse of the Euclidean distance between the sensing

predator and the prey located in 90 degree field of vision of that predator.
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CHAPTER 4

EXPERIMENTAL FRAMEWORK

4.1 Introduction

In our predator-prey problem, where the benefit of controller heterogeneity in a team has

been already shown [29], studying the effect of evolved partially heterogeneous teams seems

to form an interesting step, since it focuses on a relatively limited solution space than to-

tally heterogeneous ones, whereas it preserves the controller diversity in the team. Within

this motivation, we adopt three genetic similarity levels for predator teams, such as homoge-

neous, partially heterogeneous and heterogeneous. Besides, since the directional sensors of

the predators are designed to have a particular sensing range, to obtain more comprehensive

results, we alter the fields of vision of directional sensors for each similarity level through-

out the experiments. To the best of our knowledge, the effect of varying the field of vision

of predators has not been studied in the predator-prey problem, where the capture occurs by

occupying the cell of the prey. On the other hand, for the partially heterogeneous and hetero-

geneous levels, we vary sizes of populations and also use two different selection levels, such

as team and group level.

4.2 Levels of Genetic Similarity

The first similarity level in this study is homogeneous one, where a single population is used

and each individual in the population is evaluated via assigning it to all four predator con-

trollers. Therefore, the team members operate with the same controller during a trial with that

individual.
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In the next level, a partially heterogeneous team is formed by two chromosomes which come

from two distinct populations and have the same index numbers in their population arrays.

By this way, in a single trial, two predators have the same controller from the first population,

while the other two predators act with another controller from the second population. There-

fore, in this configuration, we have two groups (sub-teams) in a single team, where a group

has two agents that use the same controller.

In the third level, four individuals coming from four distinct populations are assigned to four

predator controllers, therefore, a totally heterogeneous team composition is obtained. Conse-

quently, we have four groups in a single team, where each group has only one agent. Again,

in a single trial, each selected chromosome has the same sequence number in its population

as the other selected ones have in their populations. The formations of three levels of genetic

similarity are depicted in Figure 4.1.

(a) Homogeneous Teams (b) Partially Heterogeneous Teams

(c) Heterogeneous Teams

Figure 4.1: Formation of teams with different genetic similarity levels during genetic algo-
rithm. Pi refers to predator i.
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4.3 Genetic Algorithm

The general scheme of the genetic algorithm used for homogeneous teams is given in Al-

gorithm 3. This algorithm starts with randomly initializing the individuals of the population

with a size of psize. For each of its iterations, i.e. generations, a random initial set-up set is

built. Afterwards, each single individual in the population is assigned to all controllers of a

predator team and is evaluated with the same initial set-up. Then, the individuals are sorted

with respect to their fitness values and e best performing (elite) individuals is selected and

Algorithm 3 The genetic algorithm used for homogeneous teams
1: Initialize psize individual population P randomly

2: Initialize current generation number, gcurrent ← 0

3: while gcurrent is less than a predefined threshold do

4: Create a random initial set-up set S

5: for i = 0 to psize do

6: Evaluate individual i in each member of S and calculate its final fitness

7: end for

8: Sort individuals according to their fitness values

9: Select e elite (best performing) individuals

10: Select psize − e individual mating buffer M via tournament selection

11: Apply crossover and mutation on M probabilistically

12: Combine M and e elite individuals and assign them back to P

13: gcurrent ← gcurrent + 1

14: end while

15: Return the best performing individual in P as the evolved controller

copied to a different location. Mating buffer is built via selecting psize−e number of individuals

from the original population with the size of psize. The building method of mating buffer is

called team level of selection, since all predators share the same controller during a single

trial. After applying probabilistic crossover and mutation operators, the new population is

formed via combining e elite individuals and the mating buffer. This process continues for

a predefined number of iterations and the best performing individual at the last generation is

taken to be the evolved controller of this genetic algorithm run.
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In partially heterogeneous and heterogeneous teams with group level of selection, a multiple

number of these algorithms is run in parallel except the fact that in each generation a single

randomly created initial set-up set is adopted for the operation of those teams whose con-

trollers are built with corresponding individuals of separate populations. Hence, after sharing

of team fitness among individuals that form the team, each seperate population performs its

own elitist strategy, selection, as well crossover and mutation operators. On the other hand, in

partially heterogeneous and heterogeneous teams with team level of selection, although sepa-

rate populations are again adopted, the elitism strategy and formation of mating buffer are not

performed in each population independently. Without any fitness sharing, they are realized

at the team level with respect to team fitnesses by preserving evaluated team compositions.

However, after team level of selection is completed, crossover and mutation are applied at

each population separately. The details about selection levels and fitness evaluation methods

will be explained in detail in Section 4.3.3 and Section 4.3.4, respectively.

4.3.1 Parameter Settings

Throughout the experiments with homogeneous teams, a population of 100 chromosomes is

used. This forms evaluation of totally 100 teams in each generation of the genetic algorithm.

To equalize the number of evaluated teams, the experiments with partially heterogeneous

teams adopt two populations each of which has 100 individuals. With the same purpose,

experiments with heterogeneous teams use four populations each of which consists of again

100 individuals. Apart from equalization of number of evaluated teams, we also equalize the

total number of individuals among experiments with different similarity levels. Therefore,

additional experiments are performed, where experiments with partially heterogeneous teams

adopt two populations each of which has 50 individuals, which makes totally 2 × 50 = 100

individuals, and experiments with heterogeneous teams are carried out with four populations

each of which has 25 individuals, which makes in total 4 × 25 = 100 individuals. In all

experiments, the genetic algorithm lasts for 200 generations and the highest ranking individual

at the last generation is accepted as the evolved controller. Surely, in the similarity levels

other than homogeneous one, we obtain multiple evolved controllers coming from separate,

co-evolved populations.

Since the performance of a single genetic algorithm run is highly dependent on the randomly
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generated initial population and probabilistic genetic operations throughout iterations, to rea-

sonably compare the experimental set-ups, we perform 10 independent evolutionary runs for

each experiment and take the average of the performances of evolved controllers built as a

result of these runs.

4.3.2 Genetic Architecture of Predator Controller

The synaptic weights of the neural network in Figure 3.3 are encoded as 9×3 + 3×5 + 5 = 47

floating point numbers on the genome of an individual in the population. In the initialization

of the population, a random floating point number between [-1, 1] is assigned to each gene of

each individual.

4.3.3 Genetic Operations

Elitist strategy and tournament selection are preferred for all evolutionary experiments. For

100 member populations, we adopt an elitist strategy which takes 10 best performing individ-

uals unchanged and perform tournaments with a size of 5. For 50 and 25 member populations,

elitist strategy takes 5 highest ranking individuals for both of them and tournament selection

arranges tournaments with a size of 5 and 3, respectively.

For homogeneous teams, only team level of tournament selection is adopted, since each indi-

vidual in the population is assigned to each of 4 predator controllers in a team during fitness

evaluation. On the other hand, for partially heterogeneous and heterogeneous team composi-

tions, the selection is applied from two distinct perspectives, such as group (sub-team) level

and team level. Figure 4.3 depicts a schematic view of a representative example for both group

and team levels of selection in partially heterogeneous teams. As can be seen, each popula-

tion is supposed to have 7 individuals and corresponding individuals in two populations create

controllers for a predator team as explained in Figure 4.1(b). In the group level of selection,

after evaluation of teams, each team fitness value is equally shared among groups that create

that team. Then, each population performs its own independent elitist strategy and tournament

selection. If each team fitness has a different value, then the resulting new teams selected with

elitism is guaranteed to preserve their previous team compositions. However, independent

tournament selections cannot guarantee this, since independent probabilistic selections in two
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separate populations create previously unseen couplings, i.e. team compositions. Conversely,

in the team level of selection, after evaluation of teams, selection directly occurs at the team

level, i.e. for both of populations, a single elitist strategy and tournament selection are per-

formed according to the team fitness values. With such selection level, separate populations

can be thought to be merged and to behave like a single population, where a single individual

is composed of the individuals that are responsible for the controllers of the defined sub-teams

in a team. Therefore, the selected teams are guaranteed to be some of the ones in previous

team compositions.

After selection is completed and mating buffer is built, as shown in Figure 4.3, a two-point

crossover is applied between adjacent individuals, where the size of the swapped parts is

d47/3e = 16. We give a probability of 0.8 to perform a crossover within each pair. Mutation

is performed with a probability of 0.5 on each individual in the mating buffer by adding a

random floating point number between [-1, 1] to a randomly selected gene of that individual.

In this way, each gene, i.e. synaptic weight, on an individual in the buffer has a probability of

0.5÷47 to be mutated. It is important to note that in both of group and team levels of selection,

crossover and mutation are performed in each population in an independent fashion, therefore,

any gene migration between populations is not allowed.

4.3.4 Fitness Evaluation

As explained in Algorithm 3, at each generation of genetic algorithm, an initial set-up set is

randomly generated and each team is evaluated with this set. For homogeneous teams, the

average of the fitness values coming from the members of this set is directly assigned to that

individual. For other similarity levels, this average is equally shared among the individuals

that form the controllers of sub-teams. In a single initial set-up, the fitness of a team is

calculated with the following formula:

Ft =


(60 − dcapturet )/10 if prey captured

(dinitt − d f inalt )/10 otherwise
(4.1)

, where Ft denotes the fitness of team t, dcapturet is the average Euclidean distance of predators

in t to the prey at the time of capture, and dinitt and d f inalt are the average Euclidean distances

of predators in t to the prey at the first and last simulation steps, respectively. Each simulation

trial is limited to 100 moves for each agent. If the capture occurs during these moves, the
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current trial is stopped and the next one starts.

The above fitness function is similar to the one proposed in [29]. If the prey is captured, it

takes capture positions of the predators into account. If the prey is not captured, the amount

of approaching of the predator team to the prey is taken into consideration. The time passed

up to the capture moment has no role in the fitness calculation. Hence, predator teams that

catch the prey in a shorter time interval get not any extra reward.

4.3.5 Initial Set-ups

In each generation, each team is evaluated with the same 5 randomly generated initial-setups.

In each set-up, the starting locations of predators are fixed on the bottom middle and only the

initial position of the prey is random.

Figure 4.2: A sample initial set-up. The same predator positions are used in all set-up sets at
all generations of the genetic algorithm. The position of the prey is randomly generated. The
numbers on the agent bodies reflects the order of turns.

Figure 4.2 shows a sample initial set-up. The numbers on agent bodies determine the order

of turns of agents. In partially heterogeneous agents, predators with numbers 1 and 2 adopt

same controller, while the ones with numbers 3 and 4 operate with another same controller.
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Figure 4.3: A representative example of levels of selection for partially heterogeneous teams.
Gij denotes the group (sub-team) j of predator team i. Each population is designed to have
7 individuals. The elite individuals are supposed to be the first 3 ones of the unevaluated,
previous populations. In group level of selection, new coupling possibilities can be observed,
wheras in team level of selection, the selected teams come from previous team compositions.
C and M signs denote crossover and mutation, respectively.
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CHAPTER 5

EXPERIMENTS AND RESULTS

In this study, we take the single prey capture problem as the case and aim to compare the

performances of evolved predator teams with three different levels of genetic similarity within

the existence of sundry variations in sensing ranges of predator agents, as well as in the level

of selection and also in the size of populations in the evolutionary method. Table 5.1 shows

these design choices. Therefore, a total of 3 + 3× 2 + 3× 2 + 2 + 2 = 19 experimental set-ups

is built and 19 × 10 = 190 evolutionary runs are performed, where each set-up is repeated

10 times independently. For all experiments, the prey employs the same evading algorithm,

where the half of the edge length of its square-shaped field of vision is fixed to 6.

Table 5.1: Experimental Set-ups. FOV denotes the height of the right triangle-shaped field of
vision of each directional sensor on each predator of a team, i.e. the half of the edge length of
the square-shaped total field of vision of a predator. numpop and sizepop refer to the number
of populations and the number of individuals in each population, respectively.

Level of Genetic Similarity FOV Level of Selection numpop sizepop

Homogeneous (Hom) 4, 8, 12 Team (TL) 1 100
Partially Heterogeneous (PartHet) 4, 8, 12 Group (GL) 2 100, 50
Heterogeneous (Het) 4, 8, 12 Group (GL) 4 100, 25
Partially Heterogeneous (PartHet) 8 Team (TL) 2 100, 50
Heterogeneous (Het) 8 Team (TL) 4 100, 25

To measure the performances of evolved teams and to compare them in a more accurate

fashion, we build a single, randomly generated 100 initial prey positions set and adopt it for

the evaluation of each evolved team. Figure 5.1 shows the average of the fitness values of 10

evolved predator teams for each experimental set-up, where each fitness value is an average

performance of that team on the same test set that consists of 100 randomly generated initial
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prey positions. Through the increase of field of vision of directional sensors, the general

tendency for each team composition is the increase of performances. However, the fitness

increase observed in partially heterogeneous teams is greater than the ones observed in other

team compositions. On the other hand, as can be expected, the decrease in population sizes

begets lower average performances. In all field of vision settings, evolved homogeneous teams

are the worst performing ones. This is also an expected result which reflects an important

characteristic of our problem, i.e. harnessing the genetic diversity among team members,

since even heterogeneous teams evolved within 25 member populations can outperform them.

An interesting observation is the fact that while heterogeneous teams evolved within 100

member populations take the lead in FOV = 4, partially heterogeneous teams evolved within

100 member populations become the best performing ones in other fields of vision. Besides,

in FOV = 12, partially heterogeneous teams evolved within 50 member populations shows

better average performance than heterogeneous ones evolved within 100 member populations.

At first glance, not any significant performance difference is observed among the teams

evolved with different levels of selection. In both group and team levels, corresponding set-

ups show similar average fitness values, except that heterogeneous teams evolved within 25

member population and team level of selection show better performance than their corre-

sponding ones evolved with group level of selection. Besides, in both levels, the partially

heterogeneous teams evolved within 100 member populations are the best performing ones,

the heterogeneous teams evolved within 100 member populations become the second, the

partially heterogeneous teams evolved within 50 member populations are the third, and the

evolved homogeneous teams take the last position. Despite these observations, an impor-

tant difference between team and group levels of selection is shown in Figure 5.2(b). At

first generation samples, teams evolved with team level of selection generally outperform the

ones evolved with group level of selection. However, as approaching to the 200th generation,

teams evolved with group level of selection catch them with greater increases in their average

fitnesses. Therefore, our team level of selection is more preferable in genetic algorithms with

smaller number of generations. This result may be due to the fact that the preservation of

team structures allows team level of selection better optimization opportunity in a short time

interval; however, limits it in terms of finding better solutions in the next generations. Con-

versely, previously unseen coupling chances make group level of selection be able to have a

fitness rise with an increasing slope, although they seem to form a detrimental effect on the
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team performance at the first periods of evolution.

In Figure 5.2, for all field of vision choices, the homogeneous teams are outperformed by

other evolved teams even from the first generation sample 25. Generally, as the generation

number increases, the average fitness also rises except some rare cases where sundry fitness

decreases are observed at some intermediate generation samples. However, these decreases

are eliminated by sharp fitness increases at the next generation samples. In Figure 5.3, which

is the linewise representation of Figure 5.2 without standard deviations, as the field of vision

increases, both the average performances of evolved homogenenous teams and heterogeneous

teams evolved within 25 member populations are outperformed by other set-ups via increasing

differences for each generation sample except the partially heterogeneous and heterogeneous

teams evolved with the team level of selection where the average fitnesses are more compact.

In Figure 5.2(a), partially heterogeneous teams and heterogeneous teams evolved within 100

member populations show similar performances at 25th generation. However, in the next gen-

eration sample, the average fitness of the partially heterogeneous teams decreases, whereas

heterogeneous ones maintain their fitness increase and take the lead. In the remaining gen-

eration samples, although partially heterogeneous teams eliminate the previous decrease by

strong fitness rises, they could not reach the level of heterogeneous ones. On the other hand,

in the 25th and 50th generations, partially heterogeneous teams evolved within 50 member

populations show greater average fitness than heterogeneous teams evolved within 25 member

populations. In the next generation samples, heterogeneous ones start to approach partially

heterogeneous teams such that at 200th generation, only a small difference remains between

them.

In Figure 5.2(c), for the first generation sample, evolved partially heterogeneous teams beat

the evolved heterogeneous ones regardless of the population size. In the next sample, het-

erogeneous teams evolved within 100 member populations outperform the partially hetero-

geneous teams evolved within 50 member populations; however, their average performance

could not beat the one of the partially heterogeneous teams evolved within 100 member pop-

ulations. In the long run, heterogeneous ones lose their rank and locate at the third position

which is under the performances of evolved partially heterogeneous teams. For all generation

samples, heterogeneous teams evolved within 25 member populations take the fourth best

position which has only homogeneous teams below itself.
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In addition to the above average fitness comparisons, we try to figure out which genetic sim-

ilarity level is the most efficient one by comparing their prey capture rates and the average

simulation steps required for them up to the capture moment. For this purpose, set-ups with

100 member population(s) are only considered and three best performing, evolved teams are

selected for each of them. Figure 5.4 shows the capture rates and the related average simu-

lation steps for best three teams of each set-up, where the test set is the previously adopted,

100 member initial prey position set. For each trial, a single simulation step is defined to be a

single motion cycle at the global level, where each of 5 agents in the environment completes

its single sense-act sequence. The teams located in the bottom right of the coordinate system

in the figures are said to be the most efficient ones, because they are effectively able to fulfill

our two objectives: they catch the greatest number of preys in the smallest time interval.

In FOV = 4, evolved homogeneous teams have the lowest capture rates with the lowest

average times. Other similarity levels manage to catch greater number of preys with similar

average times as in homogeneous level. Specifically, partially heterogeneous teams show the

best capture rates. Compared to the results in Figure 5.1(a), an important implication for

FOV = 4 can be the fact that although the evolved heterogeneous teams show better average

fitness values, when only best three out of 10 evolved teams are considered for each, partially

heterogeneous teams outperform all. A possible explanation for this lies again in Figure

5.1(a), where standard deviation of the performances of evolved partially heterogeneous teams

is relatively high.

In FOV = 8, we observe a clear classification between similarity levels: evolved homoge-

neous teams have the lowest capture rates and low average times. Heterogeneous teams show

greater capture rates with the highest average times, whereas partially heterogeneous teams

show the greatest capture rates, as well as the lowest average times. Focusing on levels of

selection, the effect of team level of selection in heterogeneous similarity level is a slight de-

crease in capture rates and a rather greater decrease in average times. On the other hand, the

effect of team level of selection in partially heterogeneous similarity level is a slight decrease

in capture rates and a rather greater increase in average times.

In FOV = 12, the performances of similarity levels scatters in a more compact fashion. The

performance of homogeneous teams approach to the ones of other similarity levels. However,

the ranking of levels in terms of the capture rates and the average times is the same as in
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FOV = 8.

Focusing on the evolved behaviors of predator teams, a general result is the fact that although

similar dynamic role specializations are observed throughout different fields of vision, the fre-

quency of them increases, as the field of vision of predators rises. This fact is especially clear

for evolved homogeneous teams: In FOV = 4, only a small percent of them has predators that

can show dynamic roles, such as chasing the prey and waiting to block the prey, during a sin-

gle trial. In some initial set-ups, the predators do not take specific roles and show the similar

chasing behaviors that lead to unsuccessful trials. However, in FOV = 12, the number of the

evolved homogeneous teams including predators that can show these dynamic roles increases

significantly. Moreover, the members of these successful teams act in a compact fashion such

that generally they start with a global flocking behavior and divide into two heterogeneously

behaving sub-teams as getting closer to the prey. On the other hand, although a huge number

of the evolved heterogeneous teams generally includes predators that can show the aforemen-

tioned dynamic role specializations even in FOV = 4, their predator agents mostly act in a

heavily dispersed fashion which creates a waste of time to sandwich and capture the prey and

even unsuccessful trials in some rare cases. Conversely, the partially heterogeneous teams can

operate in a more compact way like some successful homogeneous teams again by building

heterogeneously behaving sub-teams. Different from homogeneous teams, they can show this

behavioral heterogeneity even at the start of a simulation trial. Besides, most of the time they

have dynamically role taking predators even in FOV = 4 like heterogeneous teams. There-

fore, it can be concluded that the partially heterogeneous teams combine the advantages of

two worlds: the compact team level behavior of homogeneous teams and frequently observed

behavioral specializations of heterogeneous teams.
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(a) Average fitness values and standard deviations of 10 evolved
teams for each experimental set-up except the non-homogeneous
ones evolved with team level of selection.

(b) Average fitness values and standard deviations of 10 evolved
teams for each of partially heterogeneous and heterogeneous cases.
The performances of team level and group level of selections are
compared only for FOV = 8.

Figure 5.1: Average fitness values of 10 evolved teams for each experimental set-up with
standard deviations. The same, randomly generated 100 member prey positions set is used
for the evaluation of each team. Hom refers to a homogeneous team, whereas PartHet and
Het are partially heterogeneous and heterogeneous teams, respectively. The numbers coming
after them are population sizes. T L and GL are the abbreviations for team level and group
level of selections, respectively.
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(a) Average fitness values and standard deviations of 10 best performing teams after 25, 50, 100, and
200 generations for each experimental set-up in FOV = 4.

(b) Average fitness values and standard deviations of 10 best performing teams after 25, 50, 100, and
200 generations for each experimental set-up in FOV = 8.

(c) Average fitness values and standard deviations of 10 best performing teams after 25, 50, 100, and
200 generations for each experimental set-up in FOV = 12.

Figure 5.2: Average fitness values and standard deviations of 10 best performing teams after
25, 50, 100, and 200 generations for each experimental set-up.
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(a) Average fitness values of 10 best performing
teams after 25, 50, 100, and 200 generations for
each experimental set-up in FOV = 4.

(b) Average fitness values of 10 best performing
teams after 25, 50, 100, and 200 generations for
each experimental set-up in FOV = 8 except non-
homogenenous teams evolved with team level of se-
lection.

(c) Average fitness values of 10 best performing
teams after 25, 50, 100, and 200 generations for
each non-homogenenous team composition evolved
with team level of selection in FOV = 8.

(d) Average fitness values of 10 best performing
teams after 25, 50, 100, and 200 generations for
each experimental set-up in FOV = 12.

Figure 5.3: Linewise representation of Figure 5.2 without standard deviations.
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(a) FOV=4

(b) FOV=8

(c) FOV=12

Figure 5.4: The capture rate and the related average simulation steps for three best performing,
evolved teams of each set-up with a population size of 100. A single simulation step refer to
one global motion cycle, where each of 5 agents (including prey) completes a single sense-act
operation. The same, randomly generated 100 member prey positions set is used.
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CHAPTER 6

CONCLUSION

In this study, we examined the performance comparison of evolved predator teams with dis-

tinct genetic similarity levels in a single prey capture problem, where the prey is said to be

hunted, when its grid cell is occupied by one of the four predator agents in a simulated grid

world. These levels were predefined as homogeneous, partially heterogeneous and heteroge-

neous. In the homogeneous level, all four predators in a team adopted the same controller

that corresponded to an individual of a single population. In the partially heterogeneous level,

two sub-teams each of which had two predators and operated with a different controller that

comes from a separate population were built. In the heterogeneous level, the controller of

each predator agent was different from each other. Hence, four controllers coming from four

separate, co-evolved populations were used. For each similarity level, the effects of the use of

three distinct fields of vision for the sensors of predators on the team performance were inves-

tigated. Besides, for each of partially heterogeneous and heterogeneous teams, two distinct

population sizes were used with the aim of equalizing the number of teams and individuals

adopted in the genetic algorithm with the ones in the evolution of the homogeneous team

composition. In addition to this, two different levels of selection, such as group (sub-team)

level and team level, were also analyzed and compared for the teams other than homogeneous

ones.

The simulated environment used in this study was designed to be an obstacle-free, toroidal

grid world. The agents were supposed to move via taking turns. For all experiments, the

predator agents were assumed to have the same initial positions with the same order of turns;

however, the prey was allowed to have random initial positions. Again in all experiments,

the prey was supposed to employ the same manually designed control algorithm that made it
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move directly away from the nearest predator that was located in the constant field of vision of

itself. The prey and the predators were allowed to move only in orthogonal directions and to

have the same speed. Each predator was assumed to have directional sensors with a particular

field of vision. The readings of these directional sensors were taken as input to the multi-layer

feed-forward neural network controller of it.

Each individual in the population(s) encoded the connection weights of the neural network

controller(s) of predator(s). The elitist strategy and tournament selection were used for all evo-

lutionary experiments. While homogeneous teams were evolved within a single 100 member

population, partially heterogeneous and heterogeneous teams were evolved within two 100

and 50 member populations and four 100 and 25 member populations, respectively. For the

100 member population(s), the elitist strategy was designed to take 10 best performing in-

dividuals unchanged and tournaments with a size of 5 were performed. For the 50 member

populations, the elitist strategy took 5 best performing individuals unchanged and tourna-

ments were performed again with a size of 5. For the 50 member populations, elitism took

5 best performing chromosomes and the tournaments had a size of 3. In the group level of

selection, after the evaluation of each team, the fitness was equally shared among the chromo-

somes that form the controllers in the team; and independent elitism and tournament selection

was applied for each population. On the other hand, in the team level of selection, separate

populations acted like a single big population; and elitist strategy and tournament selection

occurred at the team level without changing some of the previous team compositions. To ob-

tain more reliable results, each evolutionary experiment was repeated 10 times with different

seeds. Besides, each of 10 evolved teams of each experiment was tested in the same randomly

generated 100 initial prey position set.

In the light of the above configurations, we obtained the following contributions:

• In the evolutionary approaches to the single prey-multiple predators problem, where

prey capture is done via occupying the grid cell of the prey, adopting directional sensors

with limited range of sense instead of global positional information of agents is also an

appropriate way to obtain successful results.

• For all fields of vision and generation samples, evolved homogeneous teams are gen-

erally outperformed even by partially heterogeneous and heterogeneous teams evolved

within populations that have much smaller number of individuals than homogeneous
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ones. Besides, as the field of vision increases, both the average performances of evolved

homogeneous teams and heterogeneous teams evolved within 25 member populations

are surpassed by other set-ups via increasing amounts for each generation sample ex-

cept the partially heterogeneous and heterogeneous teams evolved with the team level

of selection where the average fitnesses scatter in a more compact fashion.

• In the smallest field of vision, the heterogeneous teams evolved within 100 member

populations give the highest average performance. As the vision area increases, par-

tially heterogeneous teams evolved within 100 member populations take the lead. In

the highest field of vision, even partially heterogeneous teams evolved within 50 mem-

ber populations can outperform the heterogeneous teams evolved within 100 member

populations.

• In the intermediate field of vision, the team level of selection and the group level of

selection give similar final average performances for partially heterogeneous and het-

erogeneous team compositions. However, in the first generation samples, the teams

evolved with the team level of selection give higher performance results and this differ-

ence is eliminated throughout the next samples by greater fitness increase of the teams

evolved with the group level of selection.

• Partially heterogeneous teams are generally more preferable than homogeneous and

heterogeneous teams, since they can capture more preys in smaller time interval via

behaving globally compact and being able to show frequent dynamic roles, where the

former observation comes from the homogeneous teams and the latter one is from het-

erogeneous ones.

• Although the types of role specializations in evolved predator teams do not change

through the increase of the field of vision, their frequencies increase and this fact creates

generally more successful predator teams.

This study can be expanded via adopting varying numbers of predators and preys with more

diverse genetic similarity levels, as well as with varying order of turns and randomly generated

initial predator positions. Besides, a different fitness function that takes the capture time into

the consideration can also be adopted. An interesting addition would be the use of a more

reliable fitness sharing method that assigns more fitness to the individuals that contribute to
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the team performance more than others. Furthermore, the effect of the crossover between the

individuals of separate populations, i.e. gene migration, is also worth analyzing. Another

noteworthy investigation would be the use of recurrent neural networks or neuromodulated

plasticity for homogeneous teams and comparing the role specializations and performances

of them with the ones of the partially heterogeneous and heterogeneous teams that have only

feed forward neural network controllers. Finally, the benefit of partially heterogeneous team

compositions should also be examined in the domains other than predator-prey.
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[1] M. Scheler, İnsanın Kosmostaki Yeri, Trans.: Harun Tepe, Ayraç Yayınevi, Ankara,
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