
1



NUMERICAL SOLUTION OF NONLINEAR REACTION-DIFFUSION AND

WAVE EQUATIONS
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ABSTRACT

NUMERICAL SOLUTION OF NONLINEAR REACTION-DIFFUSION AND
WAVE EQUATIONS

Meral, Gülnihal

Ph.D., Department of Mathematics

Supervisor : Prof. Dr. Münevver Tezer

May 2009, 156 pages

In this thesis, the two-dimensional initial and boundary value problems (IBVPs)

and the one-dimensional Cauchy problems defined by the nonlinear reaction-

diffusion and wave equations are numerically solved. The dual reciprocity bound-

ary element method (DRBEM) is used to discretize the IBVPs defined by single

and system of nonlinear reaction-diffusion equations and nonlinear wave equa-

tion, spatially. The advantage of DRBEM for the exterior regions is made use

of for the latter problem. The differential quadrature method (DQM) is used

for the spatial discretization of IBVPs and Cauchy problems defined by the

nonlinear reaction-diffusion and wave equations.

The DRBEM and DQM applications result in first and second order system

of ordinary differential equations in time. These systems are solved with three

different time integration methods, the finite difference method (FDM), the least

squares method (LSM) and the finite element method (FEM) and comparisons

among the methods are made. In the FDM a relaxation parameter is used to
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smooth the solution between the consecutive time levels.

It is found that DRBEM+FEM procedure gives better accuracy for the IBVPs

defined by nonlinear reaction-diffusion equation. The DRBEM+LSM procedure

with exponential and rational radial basis functions is found suitable for exte-

rior wave problem. The same result is also valid when DQM is used for space

discretization instead of DRBEM for Cauchy and IBVPs defined by nonlinear

reaction-diffusion and wave equations.

Keywords: DRBEM, DQM, FDM, LSM, FEM, nonlinear reaction-diffusion equa-

tion, nonlinear wave equation
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ÖZ

DOĞRUSAL OLMAYAN REAKSİYON-YAYILIM VE DALGA
DENKLEMLERİNİN SAYISAL ÇÖZÜMÜ

Meral, Gülnihal

Doktora, Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Münevver Tezer

Mayıs 2009, 156 sayfa

Bu tezde, doğrusal olmayan reaksiyon-yayılım ve dalga denklemleri tarafından

tanımlanan iki boyutlu başlangıç ve sınır değer problemleri ile bir boyutlu Cauchy

problemleri sayısal olarak çözülmüştür.

Karşılıklı sınır elemanları yöntemi, doğrusal olmayan reaksiyon-yayılım denk-

lem ve denklem sistemleri, ve doğrusal olmayan dalga denklemleri tarafından

tanımlanan başlangıç ve sınır değer problemlerinin uzay koordinatlarının ayrık-

laştırılmasında kullanılmıştır. Sonuncu problemde metodun sonsuz bölgelerde

uygulanabilme özelliği kullanılmıştır. Diferensiyel kareleme yöntemi, doğrusal

olmayan reaksiyon-yayılım ve dalga denklemleri tarafından tanımlanan başlangıç

ve sınır değer problemleri ile Cauchy problemlerinin uzay koordinatlarının ayrık-

laştırılmasında kullanılmıştır. Her iki uygulama da birinci ve ikinci dereceden

zamana bağlı adi diferensiyel denklem sistemleri ile sonuçlanmaktadır. Bu sis-

temlerin çözümleri için üç farklı zaman integrasyonu (sonlu farklar metodu, en

küçük kareler metodu ve sonlu elemanlar metodu) kullanılmış ve metotlar arası
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karşılaştırmalar yapılmıştır. Sonlu farklar metodunda çözümü ardışık zaman

aralıklarında düzeltmek amacıyla yumuşatma parametresi kullanılmıştır.

Karşılıklı sınır elemanları metodu ve sonlu elemanlar metotları birleşimi ile

doğrusal olmayan reaksiyon-yayılım denklemleri için elde edilen çözümün doğru-

luk bakımından daha iyi olduğu görülmüştür. Metodun, üstel ve rasyonel radyal

temelli fonksiyonlar ile kullanıldığında, en küçük kareler yöntemi ile olan birleşi-

mi ise, doğrusal olmayan dalga denklemleri ile dış bölgede elde edilen çözüm için

uygun bulunmuştur. Doğrusal olmayan reaksiyon-yayılım ve dalga denklemleri

tarafından tanımlanan başlangıç ve sınır değer problemleri ve Cauchy problem-

lerinin uzay türevlerinin ayrıklaştırılmasında, karşılıklı sınır elemanları metodu

yerine diferensiyel kareleme metodunun kullanılması durumunda da aynı zaman

integrasyonu metotlarının üstünlüğü geçerlidir.

Anahtar Kelimeler: Karşılıklı sınır elemanları metodu, diferensiyel kareleme

metodu, sonlu farklar metodu, en küçük kareler metodu, sonlu elemanlar metodu,

doğrusal olmayan reaksiyon-yayılım denklemi, doğrusal olmayan dalga denklemi
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3.2 The Differential Quadrature Method Solution of Nonlin-
ear Reaction-Diffusion Equation . . . . . . . . . . . . . 96

3.2.1 The DQM Solution of the one-dimensional Cauchy
Problem for Nonlinear Reaction-Diffusion Equa-
tion . . . . . . . . . . . . . . . . . . . . . . . . 97

3.2.2 The DQM Solution of the two-dimensional Ini-
tial and Boundary Value Problem for Nonlinear
Reaction-Diffusion Equation . . . . . . . . . . 98

xi



3.3 The Differential Quadrature Method Solution of Nonlin-
ear Wave Equation . . . . . . . . . . . . . . . . . . . . . 100

3.3.1 The DQM Solution of the one-dimensional Cauchy
Problem for Nonlinear Wave Equation . . . . . 100

3.3.2 The DQM Solution of the two-dimensional Ini-
tial and Boundary Value Problem for Nonlinear
Wave Equation . . . . . . . . . . . . . . . . . . 101

3.4 Time Integration Methods for the Nonlinear Reaction-
Diffusion Equation . . . . . . . . . . . . . . . . . . . . 103

3.4.1 FDM for the Time Discretization of the DQM
Solution of one-dimensional Cauchy Problem . 103

3.4.2 FDM for the Time Discretization of the DQM
Solution of Initial and Boundary Value Problem 104

3.4.3 LSM for the Time Discretization of the DQM
Solution of one-dimensional Cauchy Problem . 105

3.4.4 LSM for the Time Discretization of the DQM
Solution of Initial and Boundary Value Problem 106

3.4.5 FEM for the Time Discretization of the DQM
Solution of one-dimensional Cauchy Problem . 109

3.4.6 FEM for the Time Discretization of the DQM
Solution of Initial and Boundary Value Problem 111

3.5 Time Integration Methods for the Nonlinear Wave Equa-
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.5.1 FDM for the Time Discretization of the DQM
Solution of the Nonlinear Wave Equation . . . 114

3.5.2 LSM for the Time Discretization of the DQM
Solution of the Nonlinear Wave Equation . . . 115

3.5.3 FEM for the Time Discretization of the DQM
Solution of the Nonlinear Wave Equation . . . 117

3.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . 118

3.6.1 Fisher Equation . . . . . . . . . . . . . . . . . 120

3.6.2 Generalized Fisher Equation . . . . . . . . . . 123

3.6.3 Nonlinear Equation of Fisher type with p(u) =
6u(1− u) . . . . . . . . . . . . . . . . . . . . . 126

3.6.4 Nonlinear Reaction-Diffusion Equation with p(u) =
u(1− u)(u− 1) . . . . . . . . . . . . . . . . . 129

xii



3.6.5 Two-dimensional Nonlinear Reaction-Diffusion
Equation . . . . . . . . . . . . . . . . . . . . . 132

3.6.6 Nonlinear Wave Equation with p(u) =
3

2
(u3 − u) 135

3.6.7 Nonlinear Wave Equation with p(u) = u2−u−u3137
3.6.8 Two-dimensional Nonlinear Wave Equation . 138

4 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

CURRICULUM VITAE . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

xiii



LIST OF TABLES

TABLES

Table 2.1 Maximum absolute errors for Problem 2.6.1 at small time levels 64

Table 2.2 Maximum absolute errors for Problem 2.6.1 at increasing time

levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Table 2.3 Maximum absolute errors for the first component of the solution

of Problem 2.6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Table 2.4 Maximum absolute errors for the second component of the so-

lution of Problem 2.6.2 . . . . . . . . . . . . . . . . . . . . . . . . . 69

Table 3.1 Maximum absolute errors for Problem 3.6.1 . . . . . . . . . . 121

Table 3.2 Maximum absolute errors for Problem 3.6.2 . . . . . . . . . . 124

Table 3.3 Maximum absolute errors for Problem 3.6.3 . . . . . . . . . . 127

Table 3.4 Maximum absolute errors for Problem 3.6.4 . . . . . . . . . . 130

Table 3.5 Maximum absolute errors for Problem 3.6.5 . . . . . . . . . . 135

Table 3.6 Maximum absolute errors for Problem 3.6.6 . . . . . . . . . . 136

Table 3.7 Maximum absolute errors for Problem 3.6.7 . . . . . . . . . . 137

Table 3.8 Maximum absolute errors for Problem 3.6.8 . . . . . . . . . . 139

xiv



LIST OF FIGURES

FIGURES

Figure 2.1 Matrix-vector equations for boundary nodes . . . . . . . . 30

Figure 2.2 Matrix-vector equations for interior nodes . . . . . . . . . 31

Figure 2.3 Final DRBEM matrix-vector equations . . . . . . . . . . . 32

Figure 2.4 A typical time element . . . . . . . . . . . . . . . . . . . . 46

Figure 2.5 Maximum absolute error depending on the number of bound-

ary elements at t = 2 for problem 2.6.1 . . . . . . . . . . . . . . . . 61

Figure 2.6 Maximum absolute errors with different time steps for prob-

lem 2.6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 2.7 Solutions at small time levels for problem 2.6.1 . . . . . . . 65

Figure 2.8 Solutions of problem 2.6.1 at steady state . . . . . . . . . 66

Figure 2.9 Maximum absolute errors for problem 2.6.1 at several times 67

Figure 2.10 Graph of the first component of the solution for problem 2.6.3 71

Figure 2.11 Graph of the second component of the solution for problem

2.6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Figure 2.12 u and v at t = 0 for Problem 2.6.3 . . . . . . . . . . . . . . 73

Figure 2.13 u at t = 1 for Problem 2.6.3 . . . . . . . . . . . . . . . . . 74

Figure 2.14 u at t = 2 for Problem 2.6.3 . . . . . . . . . . . . . . . . . 75

Figure 2.15 u at t = 5 for Problem 2.6.3 . . . . . . . . . . . . . . . . . 76

Figure 2.16 v at t = 1 for Problem 2.6.3 . . . . . . . . . . . . . . . . . 77

Figure 2.17 v at t = 2 for Problem 2.6.3 . . . . . . . . . . . . . . . . . 78

Figure 2.18 v at t = 5 for Problem 2.6.3 . . . . . . . . . . . . . . . . . 79

xv



Figure 2.19 DRBEM+FDM solution of Problem 2.6.4 with f (r) = 1+ r

with different nonlinearities . . . . . . . . . . . . . . . . . . . . . . 82

Figure 2.20 DRBEM+FDM solution of Problem 2.6.4 with f (r) =
(2− r)

(r + 1)4
with different nonlinearities . . . . . . . . . . . . . . . . . . 83

Figure 2.21 DRBEM+FDM solution of Problem 2.6.4 with f (r) = e−r2

with different nonlinearities . . . . . . . . . . . . . . . . . . . . . . . 84

Figure 2.22 DRBEM+LSM solution of Problem 2.6.4 with f (r) =
(2− r)

(r + 1)4
with different nonlinearities . . . . . . . . . . . . . . . . . . 85

Figure 2.23 DRBEM+LSM solution of Problem 2.6.4 with f (r) = e−r2

with different nonlinearities . . . . . . . . . . . . . . . . . . . . . . . 86

Figure 3.1 Discretization of the domain with CGL points and renum-

berred form using CGL points . . . . . . . . . . . . . . . . . . . . . 107

Figure 3.2 Behaviour of numerical solutions of Problem 3.6.1 at x = 0

for increasing time levels . . . . . . . . . . . . . . . . . . . . . . . . 122

Figure 3.3 Behaviour of numerical solutions of Problem 3.6.2 at x = 0

for increasing time levels . . . . . . . . . . . . . . . . . . . . . . . . 125

Figure 3.4 Behaviour of numerical solutions of Problem 3.6.3 at x = 0

for increasing time levels . . . . . . . . . . . . . . . . . . . . . . . . 128

Figure 3.5 Numerical solutions of Problem 3.6.4 at x = 0 for increasing

time levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Figure 3.6 Maximum absolute errors of the DQM+FDM solution at

t = 5 for Problem 3.6.5 with different relaxation parameters . . . . . 133

Figure 3.7 Solutions of Problem 3.6.5 at t = 12 . . . . . . . . . . . . . 134

Figure 3.8 Solutions of Problem 3.6.8 for several time levels at the point

(7.5, 7.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Figure 3.9 Solutions of Problem 3.6.8 at t = 2 . . . . . . . . . . . . . 141

xvi



LIST OF ABBREVIATIONS AND SYMBOLS

BEM Boundary Element Method

DRM Dual Reciprocity Method

DRBEM Dual Reciprocity Boundary Element Method

DQM Differential Quadrature Method

PDQ Polynomial Based Differential Quadrature Method

FDQ Fourier Based Differential Quadrature Method

CGL Chebyshev Gauss Lobatto

FDM Finite Difference Method

LSM Least Squares Method

FEM Finite Element Method

ODE Ordinary Differential Equation

PDE Partial Differential Equation

IBVP Initial and Boundary Value Problem

Ω Computational domain

Γ Boundary of the computational domain Ω

∇2 Laplace operator

µ Relaxation parameter in FDM time integration

p(u) The nonlinear function of u

tm m-th time level

τm Maximum absolute error for the m-th time level

xvii



uexact Exact solution

unum Numerical solution

ν The diffusivity constant

c The wave speed

w
(m)
ij Weighting coefficient for the m−th derivative (in DQM formulation)

li (x) i− th degree Lagrange polynomial

PN (x) N − th degree polynomial

N Number of boundary elements in DRBEM

Number of discretized points in one direction in DQM

Nx Number of boundary elements in x−direction in DQM

Ny Number of boundary elements in y−direction in DQM

L Number of points in the solution domain in DRBEM

xviii



CHAPTER 1

INTRODUCTION

Nonlinear reaction-diffusion equations model a huge number of problems in biol-

ogy, chemistry, ecology and biomedicine. With such a wide range of application

fields, the solutions of nonlinear reaction-diffusion equations are very attractive

among the researchers.

The group of particles such as cells, bacteria, chemicals, animals and so on

usually move around in a random way which can be thought as a diffusion

process [1]. Without loss of generality one can consider the one-dimensional

case and assume that a particle moves randomly backward and forward along a

line in fixed steps ∆x that are taken in a fixed time ∆t. It is important to know

the probability that a particle reaches a point m space steps to the right (m∆x)

after n time steps (n∆t).

The classical approach to diffusion (Fickian diffusion) says that in the n-dimen-

sional case the flux J of material which can be cells, amount of chemical, number

of animals etc., is proportional to the gradient of concentration of material, i.e.

J = −D∇u (1.1)

where u(x, t) is the concentration of the species with x = (x1, x2, x3, ..., xn), n ≥
1 and D is the diffusivity of the particles that measures how efficiently the

particles disperse from a high to a low density. The minus sign in (1.1) indicates

that the dispersion is from a high to a low concentration.

Using the general conservation equation which says that the rate of change of the

1



amount of material in a region is equal to the rate of flow across the boundary

plus any that is created within the boundary, the reaction-diffusion equation is

obtained as [1]

u̇ = p+∇(D∇u) (1.2)

where the upper dot denotes the time derivative , p represents the source of

particles which is called the reaction term and may be a function of u, x and t

and the diffusivity D may be a function of space and u.

For the case D is space-dependent, nonlinear reaction-diffusion equations take

the form of nonlinear parabolic partial differential equations and can be written

as [1]

u̇ = D∇2u+ p(u) (1.3)

where ∇2 denotes the Laplacian operator. If the reaction term p vanishes, equa-

tion (1.3) is simply the heat equation. Equation (1.3) arises in the modeling

of biomedical importance from diffusion of genetically engineered organisms in

heterogeneous environments to effect of white and grey matter in the growth

and spread of brain tumors.

In an ecological context the reaction term p in (1.3) could represent the birth-

death process and u the population density. With the logistic population growth

p = ru(1 − u

K
) where r is the linear reproduction rate and K the carrying

capacity of the environment the resulting equation

u̇ = ru(1− u

K
) +D∇2u (1.4)

is known as Fisher-Kolmogorov equation and it is a model for the spread of an

advantageous gene in a population [1].

In the more general case the so-called Zeldovich equation with p(u) = u(1 −

2



u)(u− a) (0 < a < 1) arises in combustion theory and its particular degenerate

case with p(u) = u2 − u3 is also referred as Zeldovich equation in [2].

If two or more species are interacting such as cells, reactants, populations, bac-

teria or chemicals, the system of nonlinear reaction-diffusion equations are ob-

tained in the form

u̇ = D∇2u+ p(u) (1.5)

where u = (u1, u2, ..., um)
T (i = 1, 2, ...,m) is the vector of densities or con-

centrations each diffusing with its own diffusion coefficient Di and interacting

according to the vector source term (reaction term) p. D is the matrix of the

diffusivities which if there is no diffusion among the species, is simply a diagonal

matrix.

One of the most important feature of the nonlinear parabolic equations is their

ability to support travelling wave solutions. A travelling wave is the wave which

travels without change of shape. Thus, a travelling wave solution has the same

shape for all time levels and the speed of propagation of this shape is constant

and denoted by c. It is noted in [3] that unlike the wave equation which is hyper-

bolic and propagates any wave profile with a specific speed, reaction-diffusion

equations may only allow certain wave profiles to propagate, each one with its

own characteristic velocity. The travelling wave solutions for the Fisher and

Fisher-Kolmogorov equations are found in [3] and [1], respectively.

On the other hand, the wave equation models the wave and oscillation pheno-

mena [4], such as transmission of sound in air, the spreading of ripples on a pond

of water, the transmission of radio waves or the waves produced by earthquakes

etc. [5]. These topics include the applications in engineering such as acoustics,

electromagnetics and fluid dynamics.

The n-dimensional wave equation (the simplest of all hyperbolic differential

equations) is given by
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ü = c2∇2u (1.6)

where u is a function of space and time with the second order time derivative

ü, ∇2 is the Laplacian operator and c is the given fixed constant which is equal

to the propagation speed of the wave and called as the wave speed. In the

one-dimensional case, u can represent physically the normal displacement of the

particles of a vibrating string, for two-dimensions it represents the waves on

the surface of water whereas it can represent waves in acoustics or optics in

three-dimensional case [6].

The equation

ü = c2∇2u+ p(u) (1.7)

is the most natural generalization of the wave equation with the nonlinear func-

tion p of u. It appears in many fields of physics. In the one-dimensional case, for

a cubic nonlinearity p(u) = u−u3(Klein-Gordon equation) it has been used as a

model field theory, with the nonlinearity p(u) = − sin u (the sine-Gordon equa-

tion) equation (1.7) has applications in elementary particle theory, dislocations

in crystals, one-dimensional molecular systems [7].

In order to develop a predictive understanding on these real life problems gen-

uinely, one should be able to solve the initial and boundary value or Cauchy

problems defined by the modeling equations (1.3) and (1.7). However, these

problems do not have exact solution or not easy to solve, due to their complex-

ity. Thus, it is important to find accurate and efficient approximate (numerical)

solutions. The best known oldest approximation techniques are the finite dif-

ference method (FDM) and the finite element method (FEM). Such methods

discretize the domain into a number of elements or cells and they are called

’domain discretization methods’.

FDM is a numerical technique, which approximates the solutions to differential

equations by replacing its derivatives using truncated Taylor series, and expresses
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them in terms of the values at a number of discrete mesh points. This transforms

the problem to a system of algebraic equations. Although the method applies

relatively straightforward internal discretization scheme and is computationally

economical, main difficulties arise in the consideration of curved boundaries and

the insertion of boundary conditions.

FEM was originally evolved to represent the geometry of the problem and to

simplify the introduction of the boundary conditions. The method divides the

domain of the problem into small parts, which are called elements, and the

approximation is made using the polynomial interpolation functions on each

element. A weighted residual statement is constructed and this produces the

influence matrices, which express the properties of each element in terms of a

discrete number of nodal values. A global matrix is obtained by assembling all

of the influence matrices and this enables a simpler way for the insertation of

boundary conditions comparing to FDM. The disadvantages of FEM are that

large quantities of data are needed to discretize the full domain and there are

also difficulties when modeling infinite regions and moving boundary problems.

The boundary element method (BEM) is a well established numerical method,

which is emerged as a powerful alternative to the finite difference and partic-

ularly to finite elements. The basic idea behind the method is to transform

the partial differential equation (PDE) into an integral equation which can be

obtained as a special case of the general weighted residual statement [8]. The

fundamental solution of the differential equation is used as the weight function

and this transforms the weighting residual statement involving domain integrals

into a formula containing only boundary integrals. Then, the method uses the

given boundary conditions to fit the boundary values into the integral equation.

Once this is done, the integral equation can then be used again to calculate the

solution numerically at any desired point in the interior of the solution domain.

The most important future of the BEM is that it only requires discretization

of the surface rather than the volume. Hence, the method results in a much

smaller systems of equations comparing to domain discretization methods. The

BEM coefficient matrices are not sparsed but contain lots of scattered zeros.

As is marked in [9], the numerical accuracy of boundary elements is generally
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greater than that of finite elements. BEM can also be used for analyzing prob-

lems with stress (or flux) concentration, which is not the case for FEM. The

main advantage of the BEM is that contrary to the classical domain methods it

is well-suited to solve the problems in infinite domains which arise for instance

in solid mechanics, hydraulics, stress analysis, etc.

The BEM considered as an integral equation method has a long history that can

be traced back to the beginning of 20-th century. The word BEM is first ap-

peared in literature in 1977 in the work of Brebbia and Dominguez [10] which in-

dicates the surface discretization character of the method. Since then the method

has an increasing popularity and it has become a widely used technique with

applications in many areas of science and engineering including fluid mechanics,

acoustics, electromagnetics, fracture mechanics, elastodynamics and magneto-

hydrodynamics. Furthermore, the time dependent problems such as transient

heat conduction and wave propagation are also handled by BEM [5, 8, 9, 11].

Numerical simulations with FDM, FEM and BEM can be carried out using a

large number of grid points. However, in some practical applications the nume-

rical solutions of PDEs are required at only a few specified points in the physical

domain. To achieve an acceptable degree of accuracy, these methods still require

the use of a large number of grid points to obtain accurate solutions at these

specified points. As a result, they require more storage and computational effort.

The differential quadrature method (DQM) is an efficient discretization tech-

nique to obtain accurate numerical solutions using considerably small number

of grid points. The method is introduced by R. E. Bellman and his associates

[12, 13] in the early 1970’s and since then it has been successfully employed to

many problems in engineering and science. The DQM depends on the idea of

integral quadrature. It approximates a partial derivative of the solution with

respect to a coordinate direction as a linear weighted sum of all functional values

of the solution at all mesh points along that direction. The key to DQM is to

determine the weighting coefficients for the discretization of a derivative of any

order. In the early work [12] two different methods to determine the weighting

coefficients are suggested. The first method solves an algebraic equation system
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whereas the second one uses a simple algebraic formulation with the coordi-

nates of grid points chosen as the roots of the shifted Legendre polynomial. The

current methods for determination of the weighting coefficients are generalized

under the analysis of a high order polynomial approximation and the analysis of

a linear vector space in [14]. In this approach the weighting coefficients for the

first order derivative are determined by a simple algebraic formulation without

any restriction on the choice of grid points and the second and higher order

derivatives are determined by a recurrence relation, and this method is called as

the polynomial based differential quadrature method (PDQ). Another approach

to compute the weighting coefficients of the first and second order derivatives

is used in [15] when the solution of a PDE is approximated by a Fourier se-

ries expansion. This approach is called the Fourier expansion based differential

quadrature method (FDQ). For both PDQ and FDQ methods a linear vector

space analysis is employed.

In this thesis, both the DRBEM and DQM are applied spatially to solve initial

and boundary value and Cauchy problems defined by nonlinear reaction-diffusion

and nonlinear wave equations. The advantage of DRBEM is made use of in

solving the exterior nonlinear wave problem by using only the interior boundary.

Three types of time integration methods (FDM, FEM, LSM) are combined with

DRBEM and DQM successfully for obtaining accurate results. These constitute

the main original contribution of this thesis.

1.1 Mathematical Problems

In the thesis, we consider the initial and boundary value problems, and the

Cauchy problems defined by nonlinear reaction-diffusion (1.3) and nonlinear

wave equations (1.7).

1.1.1 Initial and Boundary Value Problems

The initial and boundary value problems
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∂iu(x, y, t)

∂ti
= ∇2u(x, y, t) + p(u(x, y, t)) (x, y) ∈ Ω, t > 0

β(x, y, t)u+ γ(x, y, t)q = 0 (x, y) ∈ Γ, t > 0

∂k−1u(x, y, 0)

∂tk−1
= uk−1(x, y) k = 1, i

(1.8)

defined by the nonlinear reaction-diffusion (i=1) and wave (i = 2) equations are

considered. In equation (1.8) Ω denotes a two-dimensional region in R
2 with

boundary Γ, β(x, y, t), γ(x, y, t) and uk−1(x, y) (k = 1, i) are given functions,

p(u(x, y, t)) is the given nonlinear function, and q denotes the normal derivative
∂u

∂n
.

In such problems, it is not an easy task to find the corresponding fundamental

solution necessary in obtaining boundary element formulation, since they involve

time derivatives and the nonlinearity. In [16, 17, 18], the time-dependent funda-

mental solution is used and the resulting integral equations have been found with

some domain integrals, which removes one of the main advantage (the boundary

only character) of the BEM.

In the case that the problem includes time derivatives and nonlinear terms, an

effective technique to treat the domain integrals is the dual reciprocity method

(DRM). The technique approximates the integrands of the domain integrals

using radial basis functions and converts the domain integrals into boundary

integrals. This method is called the dual reciprocity BEM (DRBEM) and it gives

the linear algebraic equations approximating the problem, being considered, at

chosen points inside the solution domain and at the discretized boundary nodes.

The DRBEM is introduced in the early 1980’s and the method is extended to

more general problems including nonlinearity and infinite regions in [19, 20].

The basic idea behind the DRBEM is to employ a fundamental solution corre-

sponding to a simpler equation and treat the remaining terms in the original

equation as nonhomogenity. This may contain the time derivatives and nonlinear
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terms, and is expressed through a procedure which involves a series expansion

using global approximating functions, and the application of reciprocity rules

[20].

In the first part of the thesis, the DRBEM is described for the Poisson equation

[20]. Then, the method is extended to a more general case in which the right-

hand side of the governing equation is taken as an unknown nonlinear function

of the problem variable as well as a function of time derivatives and space. The

right-hand side is approximated using several types of radial basis functions

(linear, exponential and rational) [20, 21, 22, 23] suitable for the problems de-

fined in both finite and infinite regions. Then, the DRBEM formulations are

given for the initial and mixed type boundary value problems defined by the

nonlinear reaction-diffusion and wave equations. The latter problem is defined

in an exterior region and the advantage of using DRBEM in such domains is

made use of. In the applications, the numerical solutions to initial and boundary

value problems defined by the nonlinear reaction-diffusion and nonlinear wave

equations are considered. First, the nonlinear reaction-diffusion problem in a

rectangular region with mixed type boundary conditions is solved. Next, two

problems are given in terms of system of nonlinear reaction-diffusion equations.

The last application of this chapter is an initial and boundary value problem

defined by the nonlinear wave equation given in a region which is outside of an

obstacle.

DRBEM application to nonlinear reaction-diffusion and wave equations results

with a nonlinear system of first and second order ordinary differential equations

(ODEs) in time, respectively. The linerization is made, by taking the nonlinear-

ity in the previous time level.

In the second part of the thesis, DQM is developed for the solution of equations

containing Laplace operator on the left-hand side, and the right-hand side may

be a function of first and second order time derivatives of the solution and

nonlinearity. Then, corresponding DQM equations for the nonlinear reaction-

diffusion and wave equations are derived. Since DQM is a domain discretization

method, the resulting linear ordinary differential equations in time are obtained
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in terms of matrix-matrix equations, instead of matrix-vector equations as in

the case of DRBEM. Then, the equations are reorganized as the matrix-vector

equations to be able to apply a time integration method.

Although DQM is a domain discretization method, it gives the advantage of us-

ing small number of freedom comparing to DRBEM. The computational domain

is discretized using Chebyshev-Gauss-Lobatto (CGL) points, which leads to sta-

ble solutions [14]. In the applications, the initial and boundary value problems

defined by the nonlinear reaction-diffusion and wave equations are solved. The

applications are limited to finite rectangular domains for initial and boundary

value problems.

The obtained linear system of differential equations in time after the space dis-

cretizations require a time integration scheme for obtaining the solution at the

desired time level or at steady-state. There are several time integration methods

to treat these ODEs such as FDM, least squares method (LSM), FEM, DQM

etc.

Throughout the thesis, three different time integration schemes are used, FDM,

LSM and FEM. A comparison among the methods is made and the superiority

of the methods is discussed in terms of accuracy.

The explicit FDMs (forward and central differences for the nonlinear reaction-

diffusion and wave equations, respectively) are used for the solution of ODEs.

Since explicit methods may lead to instabilities and need small time increments,

a relaxation procedure [20] is used for the solutions which is a linear approxi-

mation for the variation of the solution in time.

The application of LSM for the ODEs resulting from the one-dimensional tran-

sient problems was first formulated in 1974 in [24] and since then it is used in

several studies (e.g. [25, 26, 27, 28]). The method approximates the unknown

function, which now depends on time only after the space discretization, by us-

ing interpolation functions of time. Then, the residual vector is obtained using

this approximate solution and the error functional is constructed in terms of the

residual vector. The method is based on the idea of minimizing the error func-
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tional with respect to the unknown (either the solution or its normal derivative

on the boundary depending on the boundary conditions and the solution itself

in the interior domain).

The same initial value problems are solved also by using the FEM. The time

domain is divided into finite elements. This method is a direct method for the

solution but since the nonlinearity is taken in the previous time level, we prefer

to apply the method in the selected time intervals and use the found values from

the previous time interval as the initial values.

The DQM may also be used for the time integration and it is used in [29, 30]

as a time integration scheme for the system of ODEs in time resulting from the

DRBEM application in space variables. As in the FEM it gives the solutions at

once.

1.1.2 Cauchy Problems

The Cauchy problems























∂iu(x, t)

∂ti
= κ

∂2u(x, t)

∂x2
+ p(u(x, t)) x ∈ R

∂k−1u(x, 0)

∂tk−1
= uk−1(x) x ∈ R k = 1, i

(1.9)

defined by the one-dimensional nonlinear reaction-diffusion(i=1) and wave equa-

tions (i = 2) are solved. In equation (1.9) uk−1(x) (k=1 or k=1,2 for the non-

linear reaction-diffusion and nonlinear wave equations, respectively) are known

functions of space, p is the given nonlinear function and κ denotes the diffusivity

constant ν or the square of the wave speed c for the nonlinear reaction-diffusion

and wave equations, respectively.

The Cauchy problems do not involve boundary conditions and are not easy to

treat. DRBEM and the domain discretization methods other than DQM require

the implementation of boundary conditions. The DRBEM also is not suitable
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for such one-dimensional problems, since boundary of the computational domain

consists of only two points.

In the second part of the thesis, the DQM is applied for the one-dimensional

Cauchy problems in the form of problem (1.9). Quite small number of discretiza-

tion points are seen to be enough to obtain the solution. In all the applications

the CGL points are used. Then, the obtained time dependent system of ODEs,

which is first or second order for the nonlinear reaction-diffusion or nonlinear

wave equations, respectively are solved using three different time integration

schemes, FDM, LSM and FEM. The comparison among the methods is made in

terms of accuracy.

1.2 Review of the Existing Literature

Solving the nonlinear reaction-diffusion equation has attracted much interest for

a long time and several numerical methods have been developed over the last

four decades.

In the early work of Gazdag and Canosa in 1974 [31] Fisher equation was solved

by finite Fourier series for the numerical evaluation of the space derivative which

is called accurate space derivative method. It has been shown that the accuracy

of this approach is orders of magnitude higher than that obtained by using FDM

for space derivatives. In [32, 33, 34] and [35] FDM was made use of for solving

one-dimensional Fisher equation and system of Fisher equations, respectively.

They have used nonstandard FDM to eliminate instabilities. For the Fisher

equation Carey and Shen have developed a least squares finite element formu-

lation in space, combined with the Euler scheme in time, which produces stable

results for the test cases investigated [36]. Viability of the moving mesh finite

difference methods for the traveling wave solutions of Fisher’s equation was in-

vestigated in [37], and it has been shown that equidistribution of arc-length or

curvature is not suitable. The nonstandard finite difference schemes preserving

the positivity property of the solution have been used for the system of one-

dimensional reaction-diffusion equations, and the functional relation between
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the space and time step sizes has been determined in the paper of Mickens’ [35].

Then, the comparison between the nodal integral method and nonstandard finite

difference schemes has been made using the Fisher equation as a model problem

[38]. In [39], the Sinc collocation method has been used to solve the Fisher

equation and the error in the approximation of the solution has been shown

to converge at an exponential rate. Another comparison among the discrete

singular convolution and three other time integration schemes (Accurate space

derivative method, Fourier pseudospectral method and Crank-Nicolson scheme)

has been made in [40]. In [41], the noniterative exponential time-linearization

and the iterative exponential quasilinearization techniques for one-dimensional

reaction-diffusion equations based on the discretization of the time derivative

have been presented and applied to the Nagumo and Fisher equations. The

Fisher-Kolmogorov equation has been solved numerically by Mittal and Ku-

mar [42] using wavelet Galerkin method and their results have been seen to be

available for the large values of linear growth rate (the linear reproduction rate

given in equation (1.4)). Branco et al. [43] have proposed numerical methods

for solving integro-differential equations which generalize the Fisher equation

(one-dimensional nonlinear reaction-diffusion equation). The stability and con-

vergence of the methods are studied. In the latest two studies [44, 45], the

numerical solution of one-dimensional nonlinear reaction-diffusion equation is

given by using, the finite volume method and proper orthogonal decomposition

method, respectively.

The two-dimensional nonlinear reaction-diffusion equation has been discretized

by Galerkin FEM spatially leading to a nonlinear ODE system with quite large

size, and the solution of Fisher equation has been obtained using a standard

ODE solver in [46]. The travelling wave solutions of two-dimensional nonlinear

reaction-diffusion (quadratic Fisher equation in two spatial dimensions) equation

have been studied by Brazhnik and Tyson [47], and the existence of several other

traveling waves with nontrivial front geometry along with a plane wave has

been shown. FDM (An extended trapezoidal formula) is used in both directions

for the solutions of two-dimensional linear diffusion, convection-diffusion and

nonlinear reaction-diffusion equations [48]. This locally one-dimensional time
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integration scheme is unconditionally stable.

A class of a system of second order nonlinear reaction-diffusion equations in

two-space dimensions known as Brusselator system has been solved in [49] using

a linear combination of first-order finite difference schemes leading to a second-

order approximations for the components of the solution. In [50], the one-

dimensional systems of linear and nonlinear PDEs and the reaction-diffusion

Brusselator model have been handled by Adomain decomposition method. The

decomposition method has the advantage of being more coincise for analytical

and numerical purposes. An efficient higher-order FDM has been presented for

the system of two-dimensional nonlinear reaction-diffusion equations, and the

method has been found fourth-order accurate in both the temporal and spatial

dimensions [51]. The DRBEM has been used for the spatial discretization of

the two-dimensional Brusselator system by Ang [52]. In this study, a predictor-

corrector approach has been adopted by using finite difference approximations

for the time derivatives to linearize the nonlinear terms. Then, DRBEM idea

has constituted a linear system of algebraic equations. The Galerkin finite ele-

ment method has been used for the spatial discretization of the solution of one-

dimensional reaction-diffusion equations combined with the first- and second-

order semi-implicit, fully-implicit, operator splitting time integration techniques

in [53]. The variational iteration method has also been used for three different

kinds of nonlinear PDEs including the system of nonlinear reaction-diffusion

equations [54].

One of the earliest work by Strauss and Vazquez [55] for the numerical solution

of one-dimensional nonlinear wave equation used the implicit FDM and New-

ton’s method to solve the resulting system. Later in [21] the two-dimensional

linear wave equation has been solved in an infinite domain using DRBEM with

rational type radial basis functions. A FEM has been used for the solution of the

nonlinear exterior wave problems in [56]. In their solution procedure the infinite

domain is divided into two parts (finite and infinite) with an artificial bound-

ary between them. By analyzing the problem in infinite domain a Dirichlet to

Neumann relation is derived on the artificial boundary, then a new well-posed

problem is obtained in the finite domain. The multisympletic structure of the
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nonlinear Klein-Gordon equation was derived directly from the variational prin-

ciple by Wang and Quin [57], and the higher order and Fourier pseudospectral

multi-sympletic schemes, which satisfy the multi-sympletic conservation law,

were used in [58] and [59], respectively. The Adomain decomposition method

was implemented to one-dimensional nonlinear Klein-Gordon equation, and the

convergence of the method was proved in [60]. Existence and uniqueness of

the solution of the special type of the nonlinear wave equation, the damped

Klein-Gordon equation with damping term (
∂y

∂t
) have been established, and a

numerical method has been developed based on FEM in [61]. The same equa-

tion has also been solved using a method based on variational method and FEM

approach for the space discretization [62]. In this study, the Gauss-Legendre

quadrature has been utilized for numerical integrations of nonlinear terms, and

Runge-Kutta method is used for solving resulting ODEs in time. Yusufoğlu [64]

has used He’s variational iteration method for solving the linear and nonlinear

Klein Gordon equation. Bratsos [65] proposed a three-time-level finite difference

scheme based on a fourth-order rational approximant to the matrix-exponential

term for the solution of sine-Gordon equation. Then, the obtained second or-

der system of ODEs was solved using a predictor-corrector scheme. Differential

transform method for solving linear and nonlinear Klein-Gordon equations has

been implemented in [66]. The Adomain decomposition method has been used

to solve nonlinear Klein-Gordon equation in [67].

1.3 Plan of the Thesis

In Chapter 2, the combinations of the dual reciprocity boundary element method

with three different time integration methods (FDM, LSM and FEM) are in-

troduced for solving the initial and boundary value problems defined by the

nonlinear reaction-diffusion and wave equations. The DRBEM is used for the

discretization of the spatial domain by taking the solution and its normal deriva-

tive values as unknowns on the boundary nodes. Solution can also be obtained

at any required interior point. The DRBEM is applied using the fundamental

solution of Laplace equation keeping the time derivative and the nonlinear func-
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tion as the nonhomogenity. The corresponding formulations are derived for the

initial and mixed-type boundary value problems in finite domains in the case of

the nonlinear reaction-diffusion equation ( Section 2.2) and for the initial and

boundary value problems defined by the nonlinear wave equation in infinite re-

gions (Section 2.3). The formulations are extended to the system of nonlinear

reaction-diffusion equations in Section 2.5. The advantage of using DRBEM in

infinite domains is made use of in solving nonlinear wave equation in an exterior

domain. The nonlinear wave equation is solved using three different radial basis

functions, linear, exponential and rational radial basis functions. The former is

known to be not suitable to the nature of the problem, since it tends to infinity

for the points far enough from the obstacle boundary. It was possible to obtain

results even with linear radial basis functions with the help of relaxation pa-

rameter in time discretization. The other radial basis functions are suitable for

infinite regions. The DRBEM solution of all of these problems result with the

time dependent system of ODEs. The corresponding first-order system of ODEs

for the nonlinear reaction-diffusion equation is solved using three different time

integration methods, FDM, LSM and FEM. For the solution of ODEs obtained

after DRBEM discretization of the nonlinear wave equation, FDM and LSM are

made use of. In all these solution procedures, the linearization for the system of

ODEs obtained from the DRBEM application, is made via taking the nonlinear

function at the previous time level. The applications of the proposed meth-

ods are given in Section 2.6. These methods are applied initially to nonlinear

reaction-diffusion equation in a unit square . Then, the method is applied to two

systems of nonlinear reaction-diffusion equations. The first system contains an

exact solution and thus the comparison among the solutions is made in terms of

accuracy. Second system (Brusselator system) does not have an exact solution,

but the solutions are seen to satisfy the expected behaviour of the solution. The

last application in this chapter is the solution of nonlinear exterior wave equa-

tion in an infinite region, which is defined for the outside of an obstacle. In the

application procedure, the above mentioned three different radial basis functions

are used. The solution by using linear radial basis functions are only obtained

using FDM with the help of relaxation parameter. The problem does not have

an exact solution, either. The expected behaviour of the solution is seen to be
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satisfied by all the methods with the proper radial basis functions used.

In Chapter 3, the one-dimensional Cauchy problems and the two-dimensional

initial and boundary value problems for the nonlinear reaction-diffusion equa-

tions are solved using the combined application of DQM and the time integra-

tion methods FDM, LSM and FEM. The DQM is a suitable method for the

one-dimensional Cauchy problems, since it may be used without boundary con-

ditions. The corresponding formulations are derived through Sections 3.2-3.5.

Numerical results are given in Section 3.6. Several test problems are solved

(Problems 3.6.1-3.6.8). The comparison among the time integration methods is

made.

Finally, in Chapter 4 the conclusions obtained in Chapters 2 and 3 are combined,

and comparisons among the methods in space direction (DRBEM and DQM),

and among the time integration methods (FDM, LSM and FEM) are given.

17



CHAPTER 2

THE DUAL RECIPROCITY BOUNDARY ELEMENT

METHOD SOLUTION OF NONLINEAR

REACTION-DIFFUSION AND WAVE EQUATIONS

The numerical solution of nonlinear reaction-diffusion equation and the nonlinear

wave equation are demanding tasks, since they appear in many branches of

science and engineering.

The governing equation for reaction-diffusion mechanisms are given by

∂u

∂t
= p+∇(D∇u) (2.1)

where D may be a function of x and u, and p a function of u, x and t [1, 68].

Diffusion of genetically engineered organisms in heterogeneous environments,

effect of white and grey matter in the growth and spread of brain tumours are

some of the areas where equation (2.1) models.

In an ecological context, the nonlinear term p could represent the birth-death

process with the population density u. With logistic population growth p =

ru (1− u/K) where r is the linear reproduction rate andK the carrying capacity

of the environment, the resulting equation is the well known Fisher-Kolmogorov

equation [1].

Nonlinear wave equation in an unbounded domain is also encountered in a variety

of applications. The nonlinearity may originate from the material constitutive

relations, from the large amplitude of the motion or from the presence of a

variable boundary [56].

18



With such important applications, it is desirable to find efficient numerical solu-

tions for these time dependent nonlinear partial differential equations. A number

of combined methods for the time dependent partial differential equations is ap-

plied in the literature. For solving these problems classical methods discretize the

spatial domain of the problem with one of the known methods such as boundary

element method (BEM), finite element method (FEM), differential quadrature

method (DQM) and finite difference method (FDM); then the resulting system

of time dependent equations is solved by using the time integration schemes such

as FDM, RKM (Runge-Kutta Method), LSM (Least Squares Method) etc.

In this chapter, the numerical solution of the system of nonlinear reaction-

diffusion equations as well as the single nonlinear reaction-diffusion equation

and the nonlinear exterior wave equation (defined in an exterior domain) are

considered. The dual reciprocity boundary element method is explained in Sec-

tion 2.1. The boundary integral equations and the DRBEM for the Poisson

equation are derived in Sections 2.1.1 and 2.1.2, respectively. Then, in Section

2.1.4, the method is extended to a more general form where the right-hand side

includes a function of position, time, the time derivative of the unknown func-

tion and a function containing unknown function. Thus, the right-hand side

function may include a nonlinear term. In the solution procedure, the DRBEM

is employed for the discretization of spatial partial derivatives. For the DRBEM

discretization, the fundamental solution of the Laplace equation is used; the

nonlinearity, and the time derivatives which are first and second order for the

nonlinear reaction-diffusion and wave equations respectively, are treated as the

nonhomogenity. The usage of the fundamental solution of the Laplace equation

gives the resulting DRBEM matrices in terms of integrals of logarithmic function

and its normal derivative, which can be computed easily and accurately. The

right-hand side function is approximated by using linear radial basis functions

for the nonlinear reaction-diffusion and for the nonlinear exterior wave equa-

tions. Several kinds of radial basis functions are used for exterior wave equation

in order to fulfill the regularity condition at infinity and the usage as well as

the suitable choice among them are explained in Sections 2.1.3 and 2.3. The

DRBEM application to the spatial derivatives results in a time dependent sys-
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tem of ordinary differential equations (ODE) of first and second order for the

nonlinear reaction-diffusion and nonlinear wave equations, respectively. These

systems of ODEs are then solved with three different time integration schemes:

FDM, LSM and FEM, which are explained in Section 2.4. These schemes are

used for the time integration in order to see the advantages and disadvantages

of the methods, and make a comparison among the methods. In all time in-

tegration methods, the nonlinearity is evaluated at the previous time level and

the combined application of the DRBEM with the mentioned time integration

methods ends up with a linear system of equations. The resulting system of

linear equations are solved by using any direct method (Gaussian type) to have

the solution at any required time level at the discretized nodal space points,

iteratively. The FEM as applied to the system of initial value problems is de-

scribed in Section 2.4.5, and it needs less iteration comparing to the other two

time integration methods, since it divides the time interval into blocks and the

iteration is run between these blocks. Section 2.5 contains DRBEM application

to the system of nonlinear reaction-diffusion equations with above mentioned

time integration schemes. The applications of the proposed methods including

the comparison among them are made in Section 2.6 by solving several test

problems for the nonlinear reaction-diffusion equation, and the DRBEM with

the combination of FDM and LSM is applied to a test problem in an exterior

region using different radial basis functions.

2.1 The Dual Reciprocity Boundary Element Method

The boundary element method is a well established numerical technique, that

leads numerical solutions to a wide range of problems in science and engineering

[20]. The main advantage of the method is that it provides the solution in

terms of boundary values only which needs less computational time and data

preparation effort.

However, the BEM applications always require the fundamental solution of the

original differential equation in order to have boundary integrals only in the

formulation, which is one of the disadvantage of the method. In many cases,

20



especially for the nonlinear equations, it is hard to find a fundamental solution

and the BEM discretization of the problem ceases with not only the boundary

integrals but also with the domain integrals. This implies an internal discretiza-

tion which increases the amount of needed data to run the program substantially

and the method loses its attraction in this case.

One of the techniques, which enables a ”boundary only solution” and does not

depend on obtaining a fundamental solution is the dual reciprocity boundary

element method. This is a very useful technique to treat the domain integral

without discretizing the domain. It depends on the approximation of the in-

tegrand using radial basis functions and converts the domain integral into the

boundary integral at the selected points in the domain as well as on the bound-

ary.

In this section, the dual reciprocity boundary element method will be explained

for the Poisson equation, in which the nonhomogenity is a known function of

space. Moreover, the method will be extended to the time dependent nonlinear

problems, where nonhomogeneous term may also be a function of the unknown

function of the problem as well as a function of space and time.

2.1.1 Boundary Integral Equation for the Poisson Equation

In this section, the boundary integral equations are going to be derived for the

Poisson equation as in [69]. The Poisson equation is given by

∇2u = b(x, y) in Ω (2.2)

with the following boundary conditions:

i. Essential conditions of the type u = ū on Γ1

ii. Natural conditions such as, q =
∂u

∂n
= q̄ on Γ2

(2.3)

where ∇2 =
∂2

∂x2
+

∂2

∂y2
is the Laplace operator, n is the outward normal to the
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boundary Γ = Γ1 + Γ2 of Ω, and the bars indicate known values. In equation

(2.2), b (x, y) denotes a known function of position.

In order to find the boundary integral equation corresponding to Poisson equa-

tion, one should multiply the equation by the fundamental solution of Laplace

equation which is denoted by u∗. The fundamental solution u∗ satisfies Laplace’s

equation and represents the field generated by a concentrated unit charge acting

at a point i. The effect of this charge is propagated from i to infinity without

any consideration of boundary conditions. Thus, the solution can be written

∇2u∗ +∆i = 0 (2.4)

where ∆i represents the Dirac delta function which tends to infinity at the point

x = xi and is equal to zero everywhere else. The integral of ∆i over the domain

is equal to one. Moreover, the integral of the Dirac delta function multiplied by

any other function is equal to the value of the latter at the point i (xi).

For a two-dimensional isotropic domain the fundamental solution of equation

(2.4) is

u∗ =
1

2π
ln (

1

r
) (2.5)

where r is the distance from the point i of application of the delta function to

any point under consideration.

When equation (2.2) is multiplied by the fundamental solution of Laplace equa-

tion and integrated over the domain Ω, one obtains,

∫

Ω

(∇2u− b)u∗dΩ = 0. (2.6)

Integrating the equation (2.6) by parts in x and y twice gives,

∫

Ω

(∇2u∗u− bu∗)dΩ +

∫

Γ

∂u

∂n
u∗dΓ−

∫

Γ

u
∂u∗

∂n
dΓ = 0. (2.7)
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If one makes use of the boundary conditions given in equation (2.3)

∫

Ω
(∇2u∗)udΩ−

∫

Ω
bu∗dΩ = −

∫

Γ2

q̄u∗dΓ−
∫

Γ1

qu∗dΓ

+
∫

Γ2

uq∗dΓ +
∫

Γ1

ūq∗dΓ

(2.8)

where q∗ =
∂u∗

∂n
. After using the properties of the fundamental solution of

Laplace equation and grouping all the boundary terms together (i.e. in Γ =

Γ1 + Γ2) equation (2.8) gives the boundary integral equation for the Poisson

equation at the point i

ciui +

∫

Γ

uq∗dΓ +

∫

Ω

bu∗dΩ =

∫

Γ

qu∗dΓ. (2.9)

with the constant ci

ci =



















θi
2π
, if i ∈ Γ

1, if i ∈ Ω/Γ

(2.10)

where θi denotes the internal angle at the point i in radians.

The domain integral in (2.9) due to the right-hand side function b (x, y) in (2.2)

is also going to be transformed to boundary integrals with the help of the dual

reciprocity boundary element method.

2.1.2 DRBEM for the Poisson Equation

The dual reciprocity boundary element method is explained for the boundary

value problem defined by the Poisson equation (2.2) following the reference [20].

The solution to equation (2.2) can be expressed as the sum of the solution of

the Laplace equation and a particular solution û to (2.2) such that
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∇2û = b. (2.11)

It is generally difficult to find a particular solution û, especially in the case of

nonlinear or time dependent problems. The DRBEM proposes the use of a series

of particular solutions ûj instead of a single function û. The number of ûj used

is equal to the total number of points to be used in the region of the problem.

The following approximation for b is then proposed

b ≈
N+L
∑

j=1

αjfj (2.12)

where the αj are a set of initially unknown coefficients and the fj are the ap-

proximating or interpolating functions. The values N and L are the numbers of

boundary and internal points (nodes), respectively, which are going to be used

in the boundary discretization and inside evaluations. The particular solutions

ûj, and the approximating functions fj, are linked through the relation

∇2ûj = fj. (2.13)

The functions fj are only geometry-dependent and there is no restriction on

these functions. In fact, many different types may be used, each of which results

in a different function ûj as determined from equation (2.13).

Substituting equation (2.13) into equation (2.12) yields

b =
N+L
∑

j=1

αj∇2ûj (2.14)

which can be substituted into the boundary integral equation (2.9) to give the

following expression

ciui +

∫

Γ

uq∗dΓ−
∫

Γ

u∗qdΓ = −
N+L
∑

j=1

αj

∫

Ω

(∇2ûj)u
∗dΩ. (2.15)
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Integration by parts can be used twice for the right-hand side of equation (2.15)

which produces the following integral equation for each source node i,

ciui +

∫

Γ

uq∗dΓ−
∫

Γ

u∗qdΓ =
N+L
∑

j=1

αj(ciûij +

∫

Γ

q∗ûjdΓ−
∫

Γ

u∗q̂jdΓ). (2.16)

The term q̂j is defined as q̂j =
∂ûj

∂n
, where n is the unit outward normal to Γ,

and given by

q̂j =
∂ûj

∂x

∂x

∂n
+
∂ûj

∂y

∂y

∂n
. (2.17)

The domain integral due to the source term b in equation (2.9) has been substi-

tuted by equivalent boundary integrals and consequently equation (2.16) involves

no domain integrals. This is achieved by first approximating b using equation

(2.14) and then expressing both right- and left-hand sides of the resulting ex-

pression as boundary integrals using integration by parts twice.

Equation (2.16) can be discretized to obtain a system of linear equations. As-

sume that the boundary of the two-dimensional domain Ω is divided into N

segments or elements. The points where the unknown values are considered are

called ”nodes” and taken to be in the middle of the element for the so-called

constant elements, which are used in the applications of the thesis. In the case

of the constant elements the values of u and q are assumed to be constant over

each element and equal to the value at the mid-element node. The points on the

extreme of the elements are used only for defining the geometry of the problem.

The u and q values can be taken out of the integrals, since they are assumed to

be constant over each element. This gives for a source node i the expression
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ciui +
N
∑

k=1

uk

∫

Γk

q∗dΓ−
N
∑

k=1

qk

∫

Γk

u∗dΓ =

N+L
∑

j=1

αj(ciûij +
N
∑

k=1

∫

Γk

q∗ûjdΓ−
N
∑

k=1

∫

Γk

u∗q̂jdΓ)

(2.18)

for i = 1, 2, ..., N .

There is no need to approximate the variation of û and q̂ within each boundary

element by using interpolation functions and nodal values as done for u and q,

since they are known functions once f is defined.

After integrating over each boundary element with the substitution of the funda-

mental solution u∗ and its normal derivative q∗, equation (2.18) can be written

in terms of nodal values as

ciui +
N
∑

k=1

Hikuk −
N
∑

k=1

Gikqk =
N+L
∑

j=1

αj(ciûij +
N
∑

k=1

Hikûkj −
N
∑

k=1

Gikq̂kj)

i = 1, ..., N.

(2.19)

The index k is used for the boundary nodes which are the field points. After

application to all boundary nodes using a collocation technique, equation (2.19)

can be expressed in matrix-vector form as

Hu−Gq =
N+L
∑

j=1

αj(Hûj −Gq̂j) (2.20)
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where

Hik =

∫

Γk

q∗dΓk + ciδik =
1

2π

∫

Γk

(r − ri).n

|r − ri|2
dΓk + ciδik i 6= k,

Gik =

∫

Γk

u∗dΓk =
1

2π

∫

Γk

ln
1

|r − ri|
dΓk i 6= k,

Hii = ci,

Gii =
l

2π
(ln

2

l
+ 1)

(2.21)

with δ being the Kronecker delta function defined as

δik =















1, if i = k

0, if i 6= k

for i, k = 1, 2, ..., N , and l is the element length, ci are given in equation (2.10).

If each of the vectors ûj and q̂j is considered to be one column of the matrices

Û and Q̂ respectively, then equation (2.20) may be written without summation

to produce

Hu−Gq = (HÛ−GQ̂)α. (2.22)

The sizes of the matrices H and G are N × N and Û, Q̂ are N × (N + L),

the vector α is of size (N + L) × 1. The vectors u and q are defined on the

boundary with size N × 1.

Equation (2.22) is the basic equation for the application of the DRBEM and

involves discretization of the boundary only. The definition of interior nodes is

not normally a necessary condition to obtain a boundary solution; however, the

solution will usually be more accurate if a number of such nodes is used. An

obvious situation where interior nodes are necessary in order to obtain a solution
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arises if a homogeneous boundary condition is applied at all boundary nodes.

When interior nodes are defined, each one is independently placed, and they do

not form part of any element or cell, thus only the coordinates are needed as

input data. Hence, they can be defined in any order.

The α vector in (2.22) can be computed by using the approximation (2.12) [20].

Since b is a known function of space one can take the value of b at (N + L)

different points leading to a set of equations which can be expressed in matrix

form as

b = Fα (2.23)

where each column of F consists of a vector fj containing the values of the

function fj at the (N + L) DRBEM collocation points. Thus equation (2.23)

may be inverted to obtain α, i.e.,

α = F−1b. (2.24)

Writing equation (2.22) as

Hu−Gq = d (2.25)

where

d = (HÛ−GQ̂)F−1b (2.26)

it is seen that the calculation of the vector d is a matter of the multiplication

and subtraction of the known matrices H, Û,G, Q̂,F
−1

and the known vector

b.

The values at any internal point i can be calculated from equation (2.19) with

ci = 1 as
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ui = −
N
∑

k=1

Hikuk +
N
∑

k=1

Gikqk +
N+L
∑

j=1

αj(ûij +
N
∑

k=1

Hikûkj −
N
∑

k=1

Gikq̂kj)

i = 1, ..., L

(2.27)

and it can be written in the matrix-vector form

Iui = Gq−Hu+ (HÛ−GQ̂)α+ Ûiα. (2.28)

Here I is the L×L identity matrix,G,H are now L×N and Û, Q̂ areN×(N+L)

matrices; u, q, and α are vectors of length N and (N + L), respectively. ui

vector contains computed interior values and of size L × 1 and the matrix Û
i

is formed from (N + L) columns computed at L interior points, thus has the

size L × (N + L). The H and G matrices are produced by integrating over

the boundary by taking the distance r from each internal node and are not,

therefore, the same partitions of H and G given in (2.22).

Equation (2.22), the system for the boundary nodes can be schematized in Figure

2.1 and Figure 2.2 gives the schema for the system (2.28) which is obtained for

interior points [20].

29



Figure 2.1: Matrix-vector equations for boundary nodes
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Figure 2.2: Matrix-vector equations for interior nodes

The last term in the second schema, Figure 2.2, is extremely important. It is an

extra term, since it does not come out on the right-hand side of the first schema.

It is generated by the term αjûij of equation (2.27) and it can be incorporated

onto the main diagonal of H. At this point, one starts to see the superiority

of the DRBEM to the BEM, since the matrix-vector equations in these two

schemas, Figure 2.1 and Figure 2.2 can be combined in a third schema (Figure

2.3).

The abbreviations BS and IS for the matrix blocks in the third schema (Figure

(2.3)) are used for the boundary and interior solutions, respectively. Thus,

equations (2.22) and (2.28) can be represented together by the matrix-vector

equation
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Hu−Gq = (HÛ−GQ̂)α (2.29)

with the third schema (Figure 2.3). Now all the matrices are of size (N + L)×
(N + L) and vectors are of size (N + L)× 1.

It can be seen from Figure 2.3 and equation (2.29) that, it is enough to use (N+

L) DRBEM collocation points in order to obtain the solution at boundary and

interior nodes at once using equation (2.29), which is one of the main advantages

of the method comparing to the BEM.

Figure 2.3: Final DRBEM matrix-vector equations
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2.1.3 Different f Expansions

The particular solution û, its normal derivative q̂ and the corresponding approx-

imating functions f used in DRBEM formulation should be chosen in such a way

that the resulting matrix F in (2.23) should be nonsingular. Many types of f

may be proposed. f is given in terms of the distance functions r, used in the

definition of the fundamental solution (2.5), which is found to be the simplest

and most accurate alternative.

If the approximating functions fj are distance or radial basis functions of the

form

f = 1 + r + r2 + ...+ rm (2.30)

where r is the distance between the fixed and the field points, then it can be

shown that the corresponding û and q̂ functions are obtained using equation

(2.13) in the form

û =
r2

4
+
r3

9
+ ...+

r(m+2)

(m+ 2)2
(2.31)

and

q̂ = (
r

2
+
r2

3
+ ...+

rm+1

(m+ 2)
)
∂r

∂n
. (2.32)

In principle, any combination of terms may be selected from equation (2.30).

In all cases, however, results are found to differ little from those obtained using

f = 1 + r which is the simplest alternative [20].

As can be seen, for the bounded domains the choice of the radial basis functions

is quite arbitrary and the simple ones should be preferred. However, for the

unbounded domains, this is not the case and one can not be free to choose these

functions. They should be chosen in such a way that the far field contribution

vanishes,i.e., [21, 22, 23]

33



lim
Γ→∞

∫

Γ∞

(ûq∗ − q̂u∗)dΓ∞ = 0 (2.33)

and thus the only contribution is coming from the inner boundary.

For the solution of the nonlinear wave equation in an infinite region, two different

kinds of radial basis functions are used [21, 22, 23] and they are given with the

corresponding û and q̂ functions as,

f =
2c− r

(r + c)4
, û = − c+ 2r

2(r + c)2
, q̂ =

r

(r + c)3
∂r

∂n
(2.34)

and

f = exp(−r2), û =
1

4
(ln r2 + E1(r

2)), q̂ =
1

2r
(1− exp(−r2)) ∂r

∂n
(2.35)

where c is an arbitrary constant and E1 is the exponential integral given by [23]

E1 (X) =

∫ ∞

X

exp (−t)
t

dt. (2.36)

The choice of the radial basis functions as in (2.34) and (2.35) gives the oppor-

tunity to eliminate the boundary integral coming from far field boundary by the

decay of functions û and q̂ in the far boundary.

2.1.4 DRBEM for the Equation ∇2u = b(x, y, t, p (u) , u̇, ü)

In this section the application of the DRBEM to the Poisson equation, which is

described in the previous section, is extended to the problems governed by the

equations [20]

∇2u = b(x, y, t, p(u), u̇, ü). (2.37)
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Comparing to equation (2.2), in equation (2.37) the nonhomogenous term b now

contains the time, a function of the unknown u itself, which means that the

original partial differential equation may have a nonlinear term, and the first

and second order time derivatives u̇ and ü, respectively.

Assume that b is given as a linear function of p(u), u̇, ü and thus can be written

as

b = b0(x, y) + b1(x, y)p(u) + k1u̇+ k2ü (2.38)

where b0 and b1 are functions of position, k1 and k2 are constants and p (u) is

the nonlinear function which is given in terms of the unknown u.

The function b can be approximated by means of a set of coordinate functions

fj as

b = b0 + b1p (u) + k1u̇+ k2ü ≈
N+L
∑

j=1

αj(t)fj(x, y) (2.39)

where αj are unknown functions of time. The approximating functions are

known functions of geometry and are linked with particular solutions ûj through

∇2ûj = fj. This relation between ûj and fj gives the approximation in terms of

a Laplacian operator for b in the form

b ≈
N+L
∑

j=1

αj(t)∇2ûj. (2.40)

If we multiply both sides of equation (2.37) by the fundamental solution of the

Laplace equation, integrate over the domain Ω and apply integration by parts

twice, then follow the same steps as in Section 2.1.2, we obtain the matrix

equation

Hu−Gq = (HÛ−GQ̂)α (2.41)

35



where the time dependent vector α now is

α = F−1(k1u̇+ k2ü+ b0 +B1p(u)). (2.42)

The matrices H and G whose entries are given in terms of the normal derivative

of the fundamental solution and the fundamental solution itself, respectively,

are given in equation (2.21).

In equations (2.41) and (2.42) , Û, Q̂ and F compromise the columns ûj, q̂j and

fj at the (N + L) nodal points , respectively, b0 is the vector with components

b0 (xi, yi) at the nodes i = 1, ..., N + L. The matrix B1 refers to the diagonal

matrix with b1 (xi, yi) on the diagonals (i = 1, ..., (N + L)) and is of the size

(N + L) × (N + L). The H and G matrices are also extended to the sizes

(N + L)× (N + L) as in the third schema (Figure 2.3).

Substituting the vector α = F−1b back into equation (2.41), one can obtain

C(k1u̇+ k2ü) +Hu = Gq−C(b0 +B1p(u)) (2.43)

where

C = −(HÛ−GQ̂)F−1 (2.44)

and H, G, Û, Q̂, C are (N + L) × (N + L) matrices and u and q are

(N + L) × 1 vectors with N and L being the number of boundary and interior

nodes, respectively. The (N +L)× 1 vector p (u) is formed by evaluating p (u)

at (xi, yi, t) (i = 1, 2, ..., N + L) using a previously known solution vector u.

2.2 The Dual Reciprocity Boundary Element Method Solution of

Nonlinear Reaction-Diffusion Equation

The equation governing the nonlinear reaction-diffusion problem can be ex-

pressed as
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u̇ = ν∇2u+ p(u) (2.45)

in a two-dimensional bounded domain Ω in R
2 with the boundary Γ and ν is a

nonzero constant (diffusivity constant).

Equation (2.45) subjects to the initial condition

u(x, y, 0) = u0(x, y) (x, y) ∈ Ω (2.46)

and to the mixed type boundary conditions

β(x, y, t)u+ γ(x, y, t)q = 0 (x, y) ∈ Γ, t > 0 (2.47)

where q =
∂u

∂n
, n being the outward normal to the boundary and u0 (x, y),

β (x, y, t) and γ (x, y, t) 6= 0 are given functions.

If we put nonlinear reaction-diffusion equation in the form of Poisson equation,

the nonhomogenity term b takes the form (taking k1 = 1/ν, k2 = 0, b0 (x, y) =

0, b1 (x, y) = −1/ν in equation (2.38). )

b =
1

ν
(u̇− p(u)) (2.48)

Using a similar procedure as in Section 2.1.4 leads to the (N + L) × (N + L)

system of matrix-vector equations

Hu−Gq =
1

ν
(HÛ−GQ̂)α (2.49)

where

α = F−1b = F−1(u̇− p(u)). (2.50)
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Substitution of α in (2.49) gives

Hu−Gq =
1

ν
(HÛ−GQ̂)F−1(u̇− p(u)). (2.51)

Equation (2.51) can be rewritten to have

Cu̇+Hu = Gq+Cp (2.52)

with

C = −1

ν
(HÛ−GQ̂)F−1. (2.53)

The mixed type boundary conditions (2.47) are made use of to obtain the fol-

lowing system of ODE

Cu̇+ H̄u = Cp (2.54)

where

H̄ = H+GD (2.55)

with a diagonal matrix D defined as

Dii =



















βi

γi
i = 1, ..., N

0 i = N + 1, ..., N + L.

(2.56)

In equation (2.56) βi and γi denote the values of the functions β and γ at the

node i, respectively.
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2.3 The Dual Reciprocity Boundary Element Method Solution of

Nonlinear Wave Equation in an Infinite Region

The nonlinear scalar exterior wave equation can be described as

ü = c2∇2u+ p(u) (2.57)

in a two dimensional infinite domain Ω in R
2 which is the outside of an obstacle

with boundary Γ0, c is the wave speed, u(x, y, t) is the unknown wave function

and p(u) is the nonlinear term.

Equation (2.57) is supplied with the Dirichlet and Neumann type boundary

conditions

u(x, y, t) = ū(x, y, t) (x, y) ∈ Γ1, t > 0

q =
∂u

∂n
= q̄(x, y, t) (x, y) ∈ Γ2, t > 0

(2.58)

and with the initial conditions

u(x, y, 0) = u0(x, y) (x, y) ∈ Ω

u̇(x, y, 0) = u1(x, y) (x, y) ∈ Ω

(2.59)

for obtaining a well-defined problem. Here ū, q̄ are given functions of space and

time, and u0, u1 are given functions of space, n is the inward normal to the

boundary Γ0 = Γ1 + Γ2.

The nonhomogenity for the nonlinear wave equation now is in the form (taking

k1 = 0, k2 = 1/c2, b0(x, y) = 0, b1(x, y) = −1/c2 in equation (2.38). )

b =
1

c2
(ü− p(u)). (2.60)
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With a similar procedure given in Section 2.1.4 the boundary integral equation

for the problem (2.57- 2.59) can be obtained as

c2(ciui + (

∫

Γ0
uq∗dΓ0 −

∫

Γ0

u∗qdΓ0) + (

∫

Γ∞
uq∗dΓ∞ −

∫

Γ∞
qu∗dΓ∞)) =

−
∫

Ω

(ü− p(u))u∗dΩ

(2.61)

where Γ0 is the boundary of the obstacle, which is the inner boundary of the

exterior region Ω and Γ∞ is the infinitely distant circular boundary. i is a point

either on Γ0 or in the exterior region.

As is indicated in Section 2.1.3, the choice of the interpolation functions f for

unbounded domains can not be free. The first two integrals over the infinitely

remote boundary on the left-hand side of equation (2.61) are zero. For a transient

elastic wave propagation analysis this statement is verified by considering the

behaviour of potential u (x, t) and its normal derivative q (x, t) beyond the wave

front. In this case waves from infinity can not interfare in the analysis, because

of causality principle [21].

The boundary condition can be restricted only to the boundary Γ0, if the fol-

lowing condition is satisfied

lim
ξ→∞

∫

Γ∞

(ûq∗ − q̂u∗)dΓ∞ = 0 (2.62)

where ξ is the radius of the infinite circular region. For this, the radial basis

functions should be chosen properly as described in Section 2.1.3. With rational

and exponential radial basis functions given in (2.34) and (2.35) respectively,

the boundary of the region can be taken as Γ0. The nonhomogenity b given with

(2.60) can be approximated with one of these radial basis functions given by

equations (2.34) or (2.35) in the form
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b ≈
N+L
∑

j=1

αj (t) fj =
N+L
∑

j=1

αj(t)(∇2ûj). (2.63)

When this approximation is substituted into the boundary integral equation

(2.61), one has boundary integrals on both sides over the boundary Γ0, i.e.,

c2(ciui +
∫

Γ0

uq∗dΓ0 −
∫

Γ0

u∗qdΓ0) =

N+L
∑

j=1

αj(t)(ciûij +

∫

Γ0

q∗ûjdΓ0 −
∫

Γ0

u∗q̂jdΓ0)

i = 1, ..., N + L

(2.64)

where q̂j =
∂ûj

∂n
, n being the inward normal to the boundary Γ0. The point i is

one of the inner boundary (Γ0) node or one of these L scattered exterior node.

This equation can be written in matrix-vector form as

Hu−Gq =
1

c2
(HÛ−GQ̂)α (2.65)

with the (N+L)× (N+L) matrices H, G, Û, Q̂ and the (N+L)×1 vectors

u, q and α, which are obtained in a similar manner as in Section 2.1.4. The

vector α = F−1b is now

α = F−1b = F−1(ü− p(u)). (2.66)

Finally, the DRBEM formulation for the nonlinear exterior wave equation is

obtained as

Cü+Hu = Gq+Cp (2.67)

where
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C = − 1

c2
(HÛ−GQ̂)F−1. (2.68)

2.4 Time Integration Methods

In this section, several time integration schemes (FDM, LSM, FEM) are applied

to the system of ordinary differential equations (2.54) and (2.67) which are

obtained after DRBEM discretization of the nonlinear reaction-diffusion and

wave equations with the nonhomogenities (2.48) and (2.60), respectively.

2.4.1 FDM for the Time Discretization of the DRBEM Solution of

Nonlinear Reaction-Diffusion Equation

The time dependent system of ODEs (2.54) can be written in the form

u̇ = ¯̄Hu+ p (2.69)

where ¯̄H = −C−1H̄ and p is the vector containing the nonlinearity at the

discretized points.

The time derivative in this equation can be discretized explicitly or implicitly

using low order finite difference schemes. We will employ a two-level explicit

time integration scheme (Euler scheme)[20]

u̇ =
1

∆t
(um+1 − um) (2.70)

where superscript m indicates the time level and ∆t is the time step. Then

equation (2.69) takes the form

1

∆t
(um+1 − um) = ¯̄Hum + p(um). (2.71)
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Since this is an explicit scheme, the stability problems can be encountered and

∆t must be taken carefully. A relaxation procedure is employed to the right-

hand side of (2.71) with a parameter 0 ≤ µ ≤ 1 for the unknown u in the

form

u = (1− µ)um + µum+1 (2.72)

positioning the values of u between the time levelsm and (m+1). Then equation

(2.71) is written as

(I− µ∆t ¯̄H)um+1 = (I+∆t(1− µ) ¯̄H)um +∆tp(um). (2.73)

This system gives the solution iteratively, using the values from m-th time level

for the solution at (m+ 1)-st time level. The nonlinearity p (u) is approximated

only at the time level tm in order to obtain a linear system of equations at the

end.

2.4.2 FDM for the Time Discretization of the DRBEM Solution of

Nonlinear Wave Equation in an Exterior Region

Equation (2.67) which is the DRBEM discretized form of nonlinear exterior wave

equation can be written in the form

ü = Ĥu+ Ĝq+ p(u) (2.74)

with ü denoting the second order time derivative, q =
∂u

∂n
, n being the inward

normal to the obstacle boundary Γ0, Ĥ = −C−1H and Ĝ = C−1G. All the

matrices in equation (2.74) are (N + L) × (N + L) and the vectors are of size

(N+L)×1 where N is the number of boundary nodes on the obstacle boundary

and L is the number of nodes in the exterior domain Ω.

Employing central difference for ü i.e.,
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ü =
1

∆t2
(um+1 − 2um + um−1) (2.75)

gives

1

∆t2
(um+1 − 2um + um−1) = Ĥu

m
+ Ĝq

m+1
+ p(um). (2.76)

Employing a relaxation procedure in the form of equation (2.72) to equation

(2.76) the solution is obtained iteratively from

(I−∆t2µĤ)um+1 = (2I+∆t2(1−µ)Ĥ)um−um−1+∆t2Ĝq
m+1

+∆t2pm (2.77)

where pm = p (um).

Equation (2.77) gives the solution iteratively for m = 1, 2, .... . For m = 0 one

should make use of the initial condition (i.e. equation (2.59)) in terms of the

time derivative of the solution using the backward difference formula

u̇|t=0 =
1

∆t
(u0 − u−1) (2.78)

and this leads to the matrix-vector equations for m = 0

(I−∆t2µĤ)u1 = (I+∆t2(1− µ))Ĥu0 +∆tu1 +∆t2Ĝq
1
+∆t2p0 (2.79)

where u0, u1 and p0 are the vectors of length (N + L) × 1 containing the

initial conditions given in equation (2.59) and the nonlinearity, respectively.

The solution then is obtained iteratively from equation (2.77) for m = 1, 2, 3, ...

In all steps, the nonlinearity is evaluated at the m-th (previous) time level and

a linear system of equations are solved for the solution.

In solving the system (2.77) the unknowns um+1 and qm+1 on the boundary

are switched such that on the partition Γ1, q
m+1 and on the partition Γ2, u

m+1
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stay as unknowns, since they are given as boundary conditions on the other

partitions.

2.4.3 LSM for the Time Discretization of the DRBEM Solution of

Nonlinear Reaction-Diffusion Equation

In this section, a least squares method is applied to the time domain for the

solution of the nonlinear reaction-diffusion equation which has been discretized

spatially using DRBEM in Section 2.2.

The solution vector u of length (N + L) × 1 of the system of ODEs given in

equation (2.54) can be approximated in a typical element of length ∆t [26]

u ≈ φ1(t)u
m + φ2(t)u

m+1 (2.80)

where superscripts m and (m+ 1) denote the time levels and φ1, φ2 are linear

interpolation functions defined by

φ1 (t) =
tm+1 − t

∆t
, φ2 (t) =

t− tm

∆t
. (2.81)

The residual vector is obtained on each time element by substituting the ap-

proximation (2.80) in equation (2.54), i.e.,

r (t) = Cu̇+ H̄u−Cp(u). (2.82)

The square of the error over the time element constructs the error functional Π,

i.e.,
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Π =

∫ tm+1

tm
rT rdt

or

Π =

∫ tm+1

tm
(Cu̇+ H̄u−Cp(u))T (Cu̇+ H̄u−Cp(u))dt

(2.83)

over the m-th time element with the initial point tm and the end point tm+1

(Figure 2.4). Introducing a new variable ξ =
t− tm

∆t
transforms the integrals

over [0, 1]

Π = ∆t

∫ 1

0

(Cu̇+ H̄u−Cp(u))T (Cu̇+ H̄u−Cp(u))dξ. (2.84)

Figure 2.4: A typical time element

The error functional Π can be calculated using the approximation (2.80) and its

derivative u̇, i.e.,
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u̇ = φ̇1(t)u
m + φ̇2(t)u

m+1 (2.85)

where

φ̇1 =
dφ1
dt

=
dφ1
dξ

dξ

dt
= − 1

∆t

φ̇2 =
dφ1
dt

=
dφ2
dξ

dξ

dt
=

1

∆t
.

(2.86)

The desired recurrence relation between the m-th and (m+ 1)-st time levels is

found by minimizing the error functional with respect to the unknown vector

um+1 in the following form,

Aum+1 = B1u
m +B2p

m (2.87)

where

A =
1

∆t2
CTC+

1

2∆t
(CT H̄+ H̄

T
C) +

1

3
H̄

T
H̄

B1 =
1

∆t2
CTC− 1

2∆t
(CT H̄− H̄

T
C)− 1

6
H̄

T
H̄

B2 =
1

∆t
CTC+

1

2
H̄

T
C

(2.88)

with the (N + L) × (N + L) matrices H̄ and C given in equations (2.55) and

(2.44), respectively.

2.4.4 LSM for the Time Discretization of the DRBEM Solution of

Nonlinear Wave Equation in an Exterior Region

In Section 2.3 the DRBEM solution of nonlinear wave equation in an exterior

region is given as a system of second order ODEs in time (equation (2.67)). Space
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discretization is performed on the obstacle boundary of the exterior region Ω and

at the points of the region itself. There, the system of ODEs is given as

Cü+Hu = Gq+Cp (2.89)

with the matrix C = − 1

c2
(HÛ−GQ̂)F−1 depending on the DRBEM matrices

H, Û, Q̂, F given in Sections 2.1.2 and 2.1.3.

For the LSM discretization of the second order time derivative on the left-hand

side of equation (2.89) the quadratic time element Ωe
t = [tm−1, tm+1] is considered

instead of the linear ones due to the second order time derivative.

The time dependent vectors u and q in equation (2.89), which have the dis-

cretized values at the (N + L) DRBEM collocation points, can be approximated

on a typical quadratic time element as [26]

u ≈ φm−1u
m−1 + φmu

m + φm+1u
m+1

q ≈ φm−1q
m−1 + φmq

m + φm+1q
m+1

(2.90)

where

φm−1 =
1

2∆t2
(t− tm)(t− tm+1),

φm =
1

∆t2
(tm+1 − t)(t− tm−1),

φm+1 =
1

2∆t2
(t− tm)(t− tm−1).

(2.91)

The error functional Π is constructed by using the residual vector

r = Cü+Hu−Gq−Cp (2.92)

as

48



Π =

∫ tm+1

tm−1
rT rdt (2.93)

over the m-th time element with the initial point tm−1 and the terminal point

tm+1. Introducing the variable ξ =
t− tm

∆t
again transforms the integral

Π = ∆t

∫ 1

−1

(Cü+Hu−Gq−Cp)T (Cü+Hu−Gq−Cp)dξ (2.94)

with the quadratic interpolation functions in terms of ξ as

φ−1(ξ) =
1

2
ξ(ξ − 1), φ0(ξ) = (1− ξ)(1 + ξ), φ1(ξ) =

1

2
ξ(ξ + 1). (2.95)

The error functional Π can be calculated using the approximation vectors (2.90)

and their derivatives which can be written

ü = φ̈−1u
m−1 + φ̈0u

m + φ̈1u
m+1

q̈ = φ̈−1q
m−1 + φ̈0q

m + φ̈1q
m+1

(2.96)

where

φ̈−1 =
1

∆t2
, φ̈0 = −

2

∆t2
, φ̈1 =

1

∆t2
. (2.97)

For the LSM solution procedure, one should minimize the error functional Π

with respect to the unknown vectors um+1 and qm+1. Thus, on the first part

of the boundary Γ1, Π is minimized with respect to qm+1, since the boundary

conditions are of Dirichlet type and it is going to be minimized with respect

to um+1 on the second part of the boundary and for the nodes in the exterior

region Ω. By equating the gradient vectors to zero
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∂Π

∂qm+1
= 0 on Γ1

∂Π

∂um+1
= 0 on Γ2 and in Ω

(2.98)

one has the final form of the linear system of equations in the form

Aqm+1 = B1u
m−1 +B2u

m +B3u
m+1 +B4q

m−1 +B5q
m +B6p

m

Āu
m+1

= B̄1u
m−1

+ B̄2u
m
+ B̄3q

m+1
+ B̄4q

m−1
+ B̄5q

m
+ B̄6p

m

(2.99)

on Γ1, and on Γ2 and in Ω respectively. The matrices in equation (2.99) are

given in the form of the DRBEM matrices as

A =
4

15
GTG

B1 =
1

3∆t2
GTC− 1

15
GTH

B2 = − 2

3∆t2
GTC+

2

15
GTH

B3 =
1

3∆t2
GTC+

4

15
GTH

B4 =
1

15
GTG

(2.100)
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B5 = − 2

15
GTG

B6 = −1

3
GTC

Ā = − 1

3∆t2
CTH− 1

3∆t2
HTC− 2

∆t4
CTC− 4

15
HTH

B̄1 =
2

∆t4
CTC+

1

3∆t2
HTC+

1

3∆t2
CTH− 1

15
HTH

B̄2 = − 4

∆t4
CTC− 2

3∆t2
HTC+

4

3∆t2
CTH+

2

15
HTH

B̄3 = − 1

3∆t2
CTG− 4

15
HTG

B̄4 = − 1

3∆t2
CTG+

1

15
HTG

B̄5 = − 4

3∆t2
CTG− 2

15
HTG

B̄6 = −1

3
HTC− 2

∆t2
CTC

2.4.5 FEM for the Time Discretization of the DRBEM Solution of

Nonlinear Reaction-Diffusion Equation

In Sections 2.4.1-2.4.4 the FDM and the LSM are applied to the system of ODEs,

which are obtained after the DRBEM discretization to spatial derivatives of the

nonlinear reaction-diffusion and wave equations. In all these applications the

representitave time level [tm, tm+1] or [tm−1, tm+1] are taken and the solution is

obtained iteratively between the time levels m and (m + 1) or (m − 1) and

(m+ 1).
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For the FEM discretization of the time derivative, a partition of the time domain

Ωm = ((m− 1)T,mT ] m > 0 is taken and this domain Ωm is divided into M

finite elements and the solution is obtained at once in this domain without an

iteration.

The method is described with the first partition of the time domain Ω1 = (0, T ] .

The time domain Ω1 is divided into a number of finite elementsM each of which

has length ∆t, with two nodes at the ends of the elements.

For a typical element with the starting point t1 and end point t2, the linear

shape functions are defined as,

ψ1 =
t2 − t

∆t
, ψ2 =

t− t1

∆t
. (2.101)

With the help of these shape functions, the approximate solution denoted by uh
e

for the unknown vector ue is defined as [70]

uh
e (t) =

2
∑

j=1

uj
eψj(t) (2.102)

where uj
e is the value of uh

e at the node tj (j = 1, 2) for the element e. ue is the

discretized unknown vector obtained by using DRBEM for the time element ′e′.

For the FEM discretization of the time derivative of nonlinear reaction-diffusion

equation, the system of ODEs resulting from the DRBEM discretization is con-

sidered (equation (2.69))

u̇ = ¯̄Hu+ p (2.103)

where ¯̄H = −C−1H̄, C = −1

ν
(HÛ−GQ̂)F−1 with the nonlinear vector p.

In order to obtain the corresponding variational statement for the nonlinear

reaction-diffusion equation, one should multiply the equation (2.103) by ψk

(k = 1, 2) and integrate by parts i.e,
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∫ t2

t1
uh

e ψ̇kdt+
¯̄H

∫ t2

t1
uh

eψkdt = uh
e (t

2)ψk(t
2)− uh

e (t
1)ψk(t

1)

−
∫ t2

t1
p(u(0))ψk(t)dt.

(2.104)

As in the previous time integration schemes, the nonlinearity is evaluated at the

previous time level, in order to have a linear system of equations at the end.

After substituting the approximate solution uh
e , equation (2.104) can be written

as a linear system of equations of the form









s11 s12

s21 s22























(uh
e )1

(uh
e )2















=















(ge)1

(ge)2















(2.105)

where each entry of the matrix in (2.105) is an (N + L) × (N + L) matrix

skj (k, j = 1, 2) of element ′e′ and each entry of the vectors in (2.105) is

(N + L)× 1 vector for the points tk (k = 1, 2) given by,

skj = (

∫ t2

t1
ψ̇kψjdt)I + (

∫ t2

t1
ψkψjdt)

¯̄H

(ge)k = ψk(t
2)uh

e (t
2)− ψk(t

1)uh
e (t

1)− (

∫ t2

t1
p(u(0))ψkdt)

(2.106)

for k, j = 1, 2 where I is the identity matrix.

After the assembly procedure [70], which is obtained by adding up the con-

tributions coming from each element to obtain the whole system of equations,

one obtains the whole (N + L)M × (N + L)M system of equations, for the

representative time element [0, T ] in the form,

Sfuf = gf (2.107)
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with the unknown vector uf withM vector blocks of length (N+L). Each block

contains the solution for the time levels t = {t : t = d∆t, d = 0, 1, ...,M} . Sf and

gf are the assembled matrix and vector, respectively, for system of equations

(2.105) by using the element definitions given in (2.106).

After finding the solution for the time interval (0, T ] , the same procedure can

be applied for the interval (T, 2T ] by using the values for t = T as initial val-

ues. Therefore, the solution can be obtained recursively between the partitions

((m− 1)T,mT ], for m > 0 integer.

2.5 System of Nonlinear Reaction-Diffusion Equations

In this and in the sections 2.6.2 and 2.6.3 the system of nonlinear reaction

diffusion equations of the form

u̇ = ν1∇2u+ p1 (u, v) + h1 (x, y, t)

v̇ = ν2∇2v + p2 (u, v) + h2 (x, y, t)

(2.108)

in an open bounded domain Ω ⊂ R
2 is considered. The system is supplied with

the initial conditions

u (x, y, 0) = u0 (x, y)

(x, y) ∈ Ω

v (x, y, 0) = v0 (x, y)

(2.109)

and with the mixed type boundary conditions

β1 (x, y, t) u+ γ1 (x, y, t) q1 = 0

(x, y) ∈ Γ, t > 0

β2 (x, y, t) v + γ2 (x, y, t) q2 = 0

(2.110)
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where q1 =
∂u

∂n
, q2 =

∂v

∂n
, n being the outward normal to the boundary Γ

and u0 (x, y), v0 (x, y), β1 (x, y, t), β2 (x, y, t), γ1 (x, y, t) and γ2 (x, y, t) are given

functions.

In equation (2.108), ν1, ν2 are nonzero constants; h1, h2 are known functions of

time and position and p1 and p2 are the nonlinear functions of u and v.

In order to solve the system of nonlinear reaction-diffusion equations, the space

derivatives of both systems are discretized using the DRBEM, which is described

for a single nonlinear reaction-diffusion equation in Section 2.2. The nonho-

mogenities for the system of nonlinear reaction-diffusion equations are given

now

b1 =
1

ν1
(u̇− p1 (u, v)− h1 (x, y, t))

b2 =
1

ν2
(v̇ − p2 (u, v)− h2 (x, y, t)).

(2.111)

Following the same procedure explained in Section 2.2 we obtain two (N + L)×
(N + L) systems of time dependent ODEs (in matrix-vector form)

Hu−Gq1 =
1

ν1
(HÛ−GQ̂)F−1(u̇− p1(u,v)− h1)

Hv −Gq2 =
1

ν2
(HÛ−GQ̂)F−1(v̇ − p2(u,v)− h2).

(2.112)

We rewrite in the form

C1u̇+Hu = Gq1 +C1p1 +C1h1

C2v̇ +Hv = Gq2 +C2p2 +C2h2

(2.113)

with
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Ci = −
1

νi
(HÛ−GQ̂)F−1 (2.114)

for i = 1, 2.

The mixed type boundary conditions (2.110) are made use of to obtain the

following systems of ODEs

C1u̇+ H̄1u = C1p1 +C1h1

C2v̇ + H̄2v = C2p2 +C2h2

(2.115)

where

H̄i = H+GDi (2.116)

with a diagonal matrix Di defined as

(Di)jj =



















(βi)j
(γi)j

j = 1, ..., N

0 j = N + 1, ..., N + L

(2.117)

for i = 1, 2.

In equation (2.117) (βi)j and (γi)j denote the values of the functions βi and γi

at the node j, respectively.

The system of ODEs (2.115) discretized at the DRBEM collocation points is

also solved by using three different time algorithms FDM, LSM and FEM in

order to obtain accurate results.

The FDM can be applied as in Section 2.4.1 to obtain
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(I− µ1∆t
¯̄H1)u

m+1 = (I+∆t(1− µ1)
¯̄H1)u

m +∆t(pm,m
1 + h1

m+1)

(I− µ2∆t
¯̄H2)v

m+1 = (I+∆t(1− µ2)
¯̄H2)v

m +∆t(p2
m,m+1 + h2

m+1)

(2.118)

where ¯̄H1 = −C−11 H̄1,
¯̄H2 = −C−12 H̄2 and µ1, µ2 are the relaxation parameters

varying between 0 and 1 for the solutions u and v, respectively. In equation

(2.118) pi+1
m,m+i = pi+1(u

m,vm+i) denotes the vectors containing the nonlin-

earity for i = 0, 1.

The LSM can be applied to the equations in (2.115) as in the case of single

reaction-diffusion equation which is explained in Section 2.4.3 to have

Aum+1 = B1u
m +B2(p1

m,m + h1
m+1)

Āv
m+1

= B̄1v
m
+ B̄2(p2

m,m+1 + h2
m+1)

(2.119)

where

A =
1

∆t2
C1

TC1 +
1

2∆t
(C1

T H̄1 + H̄1
T
C1) +

1

3
H̄1

T
H̄1

B1 =
1

∆t2
C1

TC1 −
1

2∆t
(C1

T H̄1 − H̄1
T
C1)−

1

6
H̄1

T
H̄1

B2 =
1

∆t
C1

TC1 +
1

2
H̄1

T
C1

Ā =
1

∆t2
C2

TC2 +
1

2∆t
(C2

T H̄2 + H̄2
T
C2) +

1

3
H̄2

T
H̄2

B̄1 =
1

∆t2
C2

TC2 −
1

2∆t
(C2

T H̄2 − H̄2
T
C2)−

1

6
H̄2

T
H̄2

B̄2 =
1

∆t
C2

TC2 +
1

2
H̄2

T
C2.

(2.120)

Taking the FEM formulation for the single nonlinear reaction-diffusion equation

into consideration (Section 2.4.5), one can write the FEM solution of the systems
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of ODEs (2.115) for a typical time element with the starting point t1 and the

end point t2 as
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(2.121)

where

skj = (

∫ t2

t1
ψ̇kψjdt)I+ (

∫ t2

t1
ψkψjdt)

¯̄H1

(ḡe)k = ψk(t
2)uh

e (t
2)− ψk(t

1)uh
e (t

1)− (

∫ t2

t1
(p1(u(t

1),v(t1)) + h1(t
2))ψkdt)

s̄kj = (

∫ t2

t1
ψ̇kψjdt)I+ (

∫ t2

t1
ψkψjdt)

¯̄H2

(¯̄ge)k = ψk(t
2)vh

e (t
2)− ψk(t

1)vh
e (t

1)− (

∫ t2

t1
(p2(u(t

2),v(t1)) + h2(t
2))ψkdt).

(2.122)

With the approximation vectors uh
e and vh

e similar to equation (2.102) the dis-

cretized unknown vectors ue and ve are obtained by using DRBEM for the time

element ’e’, respectively.

The assembly procedure leads to the following (N + L)M × (N + L)M system

of matrix-vector equations in the form
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(S1)f ūf = ḡf

(S2)f v̄f = ¯̄gf

(2.123)

for the unknown vectors ūf and v̄f with vector blocks of length (N+L) contain-

ing the solution at the time levels t = {t : t = d∆t, d = 0, 1, ...,M}. (S1)f , (S2)f

and ḡf , ¯̄gf are the assembled matrices and vectors for the element equations

(2.121), respectively.

In all time integration schemes the nonlinearities are taken in the previous step

for the first equation and the values of u found are used in the second nonlin-

earity for obtaining v.

2.6 Numerical Results

In this section, the numerical solution of the nonlinear reaction-diffusion equa-

tion as well as the system of nonlinear reaction-diffusion equations, and the

nonlinear wave equation are considered. The equations are discretized by the

DRBEM spatially. As the temporal discretization method, which is applied

to the system of ODEs obtained after the DRBEM discretization of the space

derivatives, three different methods (FDM, LSM and FEM) are used for the non-

linear reaction-diffusion equations, and two different methods (FDM and LSM)

are used for the nonlinear wave equation. The above mentioned time integration

methods are aimed to use for obtaining accurate and computationally efficient

results. Several numbers of constant boundary elements (N) and time steps

(∆t) are tested to find the best solution for each test problem. The comparison

between the time integration methods is made in terms of maximum absolute

error, whenever the exact solution is available.

The problems considered in this section are (1) Nonlinear reaction-diffusion

problem, (2) System of nonlinear reaction-diffusion equations, (3) Nonlinear

reaction-diffusion Brusselator system (4) Nonlinear exterior wave equation.
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For these test problems, the maximum absolute error τm for the m-th time level

tm which is defined in the form

τm = max
1≤i≤(N+L)

|uexact(xi, yi, t
m)− unum(xi, yi, t

m)| (2.124)

is used to measure the quality of the numerical solution, whenever the exact

solution is available (Problems 2.6.1 and 2.6.2). For the other problems the

expected behaviour of the solutions are checked.

In equation (2.124) (xi, yi) is one of the DRBEM collocation point either on

the boundary or in the domain, uexact(xi, yi, t
m) and unum(xi, yi, t

m) denote the

exact and numerical solutions obtained by one of the above mentioned time

integration methods (FDM, LSM or FEM) combined with DRBEM at (xi, yi)

for the m-th time level, respectively.

In the case that the exact solution is not available ( Problem 2.6.3 and 2.6.4),

the known behaviour of the solution is seen to be satisfied by the numerical

solutions obtained with the mentioned time integration methods.

2.6.1 Nonlinear Reaction-Diffusion Problem

The solution of the following nonlinear reaction-diffusion equation

u̇ =
1

2
∇2u+ u2(1− u) (2.125)

is considered in the unit square Ω = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} for t ≥ 0.

Initial and the mixed type boundary conditions are taken appropriate with the

exact solution [48]

u(x, y, t) =
1

1 + ep(x+y−pt)
where p =

1√
2
. (2.126)

In the DRBEM dicretization of the square region, we use several number of (as

12, 20, 40, 60, 80) constant elements on the boundary and as can be seen from
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Figure 2.5, N = 40 is found to be the suitable number of freedom in terms of

maximum absolute error.

Since we use an explicit FDM for time derivative discretization, stability prob-

lems may occur and usually very small time increments are needed. Therefore,

the number of iterations may be quite large causing a computationally expen-

sive scheme for reaching the steady-state solution. For this reason, we propose

a relaxation procedure between two time levels. But the choice of the relaxation

parameter µ is also important and it is found by trial and error. For this problem

we found the optimal value of the relaxation parameter as 0.8.

10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

1.2

1.4

N

τ m

– : DRBEM+FDM
+: DRBEM+LSM
* : DRBEM+FEM

Figure 2.5: Maximum absolute error depending on the number of boundary
elements at t = 2 for problem 2.6.1

61



The problem is also solved using the combinations of DRBEM with LSM and

FEM. As the time increment we have seen that ∆t = 0.01 is a better choice for

the FDM and FEM whereas LSM needs only ∆t = 0.1 to achieve an accuracy

about 10−3 for small time levels (up to t = 2.0) (Figures 2.6(a)-2.6(c)).The same

is observed in [25] that the smaller the time increment is, the larger the error in

LSM.
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Figure 2.6: Maximum absolute errors with different time steps for problem
2.6.1
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To measure the quality of the approximate solutions with those three time in-

tegration methods we use the maximum absolute error τm given in (2.124).

The results in terms of these maximum absolute errors for small time levels as

well as the time levels leading to steady-state are presented in Tables 2.1 and

2.2 for the points on the line x =
1

2
.

In Table 2.1, the maximum absolute errors at small time levels are presented.

We see from this table that the methods give the same accuracy for very small

time levels like t = 0.01 and t = 0.1 when ∆t = 0.01 and ∆t = 0.1 are used

in FDM, FEM and LSM, respectively. The difference between the methods

becomes visible starting from the time t = 0.5. We observe that FDM with the

optimal value of the relaxation parameter and FEM give better results than the

results with LSM. For larger time levels through steady-state FDM and FEM

have almost the same accuracy and they are both better than LSM (Table 2.2).

Table 2.1: Maximum absolute errors for Problem 2.6.1 at small time levels

Method t = 0.01 t = 0.1 t = 0.5 t = 2.0
FDM 1.7×10−3 1.2×10−3 1.2×10−3 1.1×10−3
LSM 4.4×10−3 1.4×10−3 2.8×10−2 6.9×10−2
FEM 1.4×10−3 1.7×10−3 2.5×10−3 4.4× 10−3

Table 2.2: Maximum absolute errors for Problem 2.6.1 at increasing time levels

Method t = 8.0 t = 12.0 t = 16.0 t = 20.0
FDM 4.5×10−4 3.4×10−5 4.8×10−6 5.7×10−7
LSM 6.6×10−2 9.5×10−3 1.2×10−3 1.6×10−4
FEM 6.0×10−4 1.7×10−4 2.5×10−5 3.4× 10−6
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Figures 2.7 and 2.8 show the agreement of the solutions with the exact solution

on the line x =
1

2
with L = 20 interior nodes at several time levels. From these

figures one can see that the agreement of the solutions with the exact solution

obtained by FDM and FEM time integrations is much better than obtained by

LSM time integration. At the steady-state all the methods coincide.
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Figure 2.7: Solutions at small time levels for problem 2.6.1
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Figure 2.8: Solutions of problem 2.6.1 at steady state

In Figure 2.9, one can also see that, the maximum absolute errors for the

DRBEM solution with the combination of FDM or FEM are almost the same

which is less than the maximum absolute error obtained by LSM even when

∆t = 0.1 is used for the time increment. Also, at steady-state each maximum

absolute error tends to zero.
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Figure 2.9: Maximum absolute errors for problem 2.6.1 at several times

As a result the combinations DRBEM+FDM and DRBEM+FEM are preferred

for this initial and boundary value problem defined by the nonlinear reaction-

diffusion equation (2.125). Although LSM uses larger time increment the accu-

racy is still lower then the accuracies obtained by FDM and FEM.

2.6.2 Nonlinear Reaction-Diffusion System

We consider solving the system [51]
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u̇ = ∇2u+ u2(1− v2) + h1(x, y, t)

v̇ = ∇2v + v2(1− u2) + h2(x, y, t)

(2.127)

in Ω = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} for t ≥ 0.

The functions h1 (x, y, t), h2 (x, y, t), the Neumann type boundary conditions

and the initial condition are selected to accommodate the exact solution which

is given in [51]

u (x, y, t) = exp (−t) sin x sin y

v (x, y, t) = exp (−2t) sin 2x sin 2y.
(2.128)

N = 80 boundary nodes and L = 20 interior nodes are used in DRBEM for

obtaining the agreement with the exact solution. We take the interior nodes on

the line x =
1

2
. It is observed that the relaxation parameter in FDM must be

taken greater than or equal to 0.7 for both unknowns to achieve a preassigned

accuracy at all transient levels.

Our previous observation for the time increment is also valid for Problem 2.6.2

that we need to take ∆t = 0.01 for FDM and for each time block [tiM , t(i+1)M ]

in FEM at the transient levels. The same time step does not give results in

LSM, we need to take larger time step as ∆t = 0.1. Through steady-state all

three integration schemes give almost the same accuracy especially for the first

component of the solution.

Tables 2.3 and 2.4 show the maximum absolute errors for the first and second

components of the solution, respectively. For this system of nonlinear reaction-

diffusion equations FDM with a proper value of relaxation parameter seems to

give better accuracy for the first component of the solution. For the second

component there is an accuracy drop in the results obtained by FDM whereas
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LSM and FEM give almost the same accuracy.

Table 2.3: Maximum absolute errors for the first component of the solution of
Problem 2.6.2

Method t=0.1 t=0.5 t=1.0 t=1.5
FDM 3.4×10−3 4.9×10−3 6.2×10−3 7.4×10−3
LSM 1.2 4.5×10−1 2.0×10−1 1.4×10−1
FEM 6.3×10−1 4.2×10−1 2.6×10−1 1.6×10−1

Method t=2.0 t=3.0 t=5.0
FDM 8.2×10−3 9.0×10−3 9.2×10−3
LSM 9.1×10−2 3.5×10−2 4.8×10−3
FEM 9.4×10−2 3.5×10−2 4.7×10−3

Table 2.4: Maximum absolute errors for the second component of the solution
of Problem 2.6.2

Method t=0.1 t=0.5 t=1.0 t=1.5
FDM 4.0×10−2 1.1×10−1 1.4×10−1 1.4×10−1
LSM 2.4 6.1×10−1 1.8×10−1 9.4×10−2
FEM 7.4×10−1 3.3×10−1 1.2×10−1 4.5×10−2

Method t=2.0 t=3.0 t=5.0
FDM 1.4×10−1 1.2× 10−1 9.9×10−2
LSM 4.0×10−2 6.3×10−3 1.2×10−4
FEM 1.7×10−2 2.3×10−3 4.1×10−5
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2.6.3 Nonlinear Reaction-Diffusion Brusselator System

The nonlinear reaction-diffusion Brusselator system is considered which is in the

form

u̇ =
1

500
∇2u+ 1 + u2v − 3

2
u

v̇ =
1

500
∇2v + 1

2
u− u2v

(2.129)

in the unit square Ω = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} for t ≥ 0.

Equation (2.129) is subjected to the initial conditions

u (x, y, 0) =
1

2
x2 − 1

3
x3

(x, y) ∈ Ω

v (x, y, 0) =
1

2
y2 − 1

3
y3

(2.130)

and the boundary conditions are

(

∂u

∂n
,
∂v

∂n

)

= (0, 0) (x, y) ∈ Γ, t > 0. (2.131)

There is no exact solution given to this problem. It is reported in [49, 52] that

the solution (u, v) of the system (2.129) tends to (1, 1/2) for increasing t.

One can see from Figures 2.10 and 2.11 that the DRBEM solutions obtained

with all three time integration schemes coincide especially at the steady-state.

The time step ∆t = 0.1 is seen to be enough to catch the behaviour of the

solution.

In [52], they use DRBEM with a predictor-corrector approach in time in solving

the same problem, and they used at least N=64 boundary nodes in order to

catch the behaviour of the solution. In our calculations we have used only

N = 8 constant boundary elements to catch the behaviour of the solution and

this number is very small comparing to the number used in [52].
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Figure 2.10: Graph of the first component of the solution for problem 2.6.3
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Figure 2.11: Graph of the second component of the solution for problem 2.6.3
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The level curves of the solutions u and v are given at t = 0, 1, 2 and 5 in the

Figures 2.12-2.18 for observing the consistency of the solution as t increases. In

order to draw these level curves we define a regular mesh (0.1 ≤ x ≤ 0.9, 0.1 ≤
y ≤ 0.9) with 81 interior points (L). It can be seen from these figures that the

DRBEM solution has the same behaviour with all these three time integration

schemes, i.e., (u, v) tends to (1, 1/2) smoothly as t increases.
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Figure 2.12: u and v at t = 0 for Problem 2.6.3
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Figure 2.13: u at t = 1 for Problem 2.6.3
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Figure 2.14: u at t = 2 for Problem 2.6.3
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Figure 2.15: u at t = 5 for Problem 2.6.3
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Figure 2.16: v at t = 1 for Problem 2.6.3
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Figure 2.17: v at t = 2 for Problem 2.6.3
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Figure 2.18: v at t = 5 for Problem 2.6.3
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2.6.4 Nonlinear Exterior Wave Problem

We consider the nonlinear exterior wave equation

ü = c2∇2u+ qu2 (2.132)

in a two-dimensional infinite domain which is the outside of an obstacle (a circle)

with radius r = 0.25 [56]. The wave speed c is taken as 200 and three different

values of the nonnegative constant q (q =0, q =2000, q =5000) are examined.

The homogeneous initial values u|t=0 and u̇|t=0 are taken throughout the infinite

domain. On the obstacle boundary Γ0, u is prescribed as u = 1. Thus, the

obstacle is at rest as t → 0− and starts to radiate cylindrical waves as t → 0+

[56].

The solution is expected to oscillate for the linear case (q = 0), and it blows up

for the nonlinear cases (q = 2000 and q = 5000), [56].

Three different types of radial basis functions (f (r) = 1+r, f (r) =
2− r

(1 + r)4
and

f (r) = e−r2

) are used in the calculations. The number of boundary elements

(constant) used is N = 120. The solution is computed along straight lines

radiating from r = 0.25 to r = 0.5.

For the DRBEM+FDM solution it is observed that the relaxation parameter

gains more importance comparing to the parabolic problems (Problems 2.6.1-

2.6.3). It is hard to find a proper value of the relaxation parameter which works

for every nonlinear function and for all times. It can be seen from Figures 2.19(a),

2.20(a), 2.21(a) that the DRBEM+FDM solution for q = 0 with different radial

basis functions oscillate for increasing t. For the cases q = 2000 and q = 5000

(Figures 2.19(b), 2.20(b), 2.21(b); 2.19(c), 2.20(c), 2.21(c)) the DRBEM+FDM

solution has an unlimited growth. It is also noticed that the solution starts to

grow at an earlier time level for the stronger nonlinearity with q = 5000. The

time increment ∆t is taken as ∆t = 0.01 for all values of q.
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In DRBEM+FDM solution procedure it is possible to use the radial basis func-

tion f = 1+ r with the help of relaxation parameter, although it is not suitable

for infinite regions. However, the computations are not extended to the points

further than r = 0.5.

It is also noted that the relaxation parameter for the nonlinear wave equation is

required to be less than 0.5, whereas for the nonlinear reaction-diffusion equation

it has to be taken greater than 0.7.

For the DRBEM+LSM solution, it is noticed that the usage of the linear radial

basis function does not give results due to the fact that the linear radial basis

functions are not suitable for the exterior regions. This difficulty is overcome by

the usage of a relaxation parameter for the DRBEM+FDM solution. In Figures

2.22 and 2.23, the expected behaviour, i.e., the solution oscillates in the linear

case and has an unlimited growth for the nonlinear cases, is seen to be satisfied

with the corresponding radial basis functions f (r) =
(2− r)

(r + 1)4
and f (r) = e−r2

.

In the linear case (q = 0), for all time levels ∆t may be taken as 0.01. However,

for increasing times and for the nonlinear cases ∆t should be chosen in between

0.01 and 0.15. The same is also observed in the nonlinear reaction-diffusion

problems as LSM needs larger time increment.
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Figure 2.19: DRBEM+FDM solution of Problem 2.6.4 with f (r) = 1+r with
different nonlinearities
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Figure 2.20: DRBEM+FDM solution of Problem 2.6.4 with f (r) =
(2− r)

(r + 1)4

with different nonlinearities
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Figure 2.21: DRBEM+FDM solution of Problem 2.6.4 with f (r) = e−r2

with
different nonlinearities
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Figure 2.22: DRBEM+LSM solution of Problem 2.6.4 with f (r) =
(2− r)

(r + 1)4

with different nonlinearities
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Figure 2.23: DRBEM+LSM solution of Problem 2.6.4 with f (r) = e−r2

with
different nonlinearities
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In this chapter, the initial and boundary value problems defined by the nonlinear

reaction-diffusion and wave equations have been solved. In the latter case the

problem is defined in an exterior region. The DRBEM is used as the spatial

discretization. DRBEM discretizes boundary of the problem only and it solves

the problems defined in an exterior region discretizing only the inner boundary

of the region. Thus, as a discretization method, DRBEM is a suitable method

for such exterior problems. Following the DRBEM discretization of the space

derivatives, the obtained system of ordinary differential equations with respect

to time, is solved using three different time integration methods, FDM, LSM

and FEM. The comparison among the methods is made.

The DRBEM+FDM and DRBEM+FEM solution procedures give better ac-

curacy compared to the DRBEM+LSM solution procedure, for the boundary

and initial value problems defined by the nonlinear reaction-diffusion equation

and system of nonlinear reaction-diffusion equations. It is possible to use LSM

time integration method with larger time steps but still there is an accuracy

drop in terms of maximum absolute error. Although, the DRBEM+FDM and

DRBEM+FEM solutions have almost the same accuracy (in terms of maximum

absolute error for the problems that have exact solution), FEM is accepted as

the method of choice since FDM solutions depend on the relaxation parame-

ter. For the problems which the exact solutions are not known the expected

behaviour of the solution is caught by all the methods.

For the solution of exterior wave equation, several radial basis functions (linear,

exponential, rational) are used for the DRBEM application. As the time inte-

gration method FDM and LSM are used. It is known that the linear radial basis

functions are not suitable to the nature of the problem. One needs such radial

basis functions that vanish for the far enough boundary. It is observed that,

the difficulty of using linear radial basis functions is overcome with the help of

relaxation parameter in FDM to obtain the solution at the points not very far

from the obstacle. The DRBEM is applied with exponential and rational basis

functions when LSM time integration is used. In the computations the expected

behaviour of the solution is seen to be satisfied by both methods.
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CHAPTER 3

THE DIFFERENTIAL QUADRATURE METHOD

SOLUTION OF NONLINEAR

REACTION-DIFFUSION AND WAVE EQUATIONS

In this chapter, numerical solutions of nonlinear reaction-diffusion and wave

equations are going to be presented. The spatial derivatives are discretized by

applying the differential quadrature method. And the obtained systems of initial

value problems are solved using three different time integration schemes, FDM,

LSM and FEM.

The differential quadrature method [14] approximates the solution of a par-

tial differential equation using a high order polynomial approximation or using

Fourier series expansion (in case the solution is known to be periodic). The poly-

nomial based differential quadrature method is going to be applied for nonlinear

reaction-diffusion and wave equations explaining in detail the first and second

order derivative approximations in Section 3.1. The DQM formulations for the

nonlinear reaction-diffusion and the wave equations are given in Sections 3.2 and

3.3, respectively. Then, the time dependent initial value problems resulting from

the DQM discretization in space are solved using three different time integration

schemes (FDM, LSM, FEM) which are explained in Sections 3.4 and 3.5. The

applications of the proposed methods are considered in Section 3.6 by solving

several test problems.
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3.1 The Differential Quadrature Method

In this section, the differential quadrature method based on polynomial approx-

imation is explained following the reference [14]. The method depends on the

high order polynomial approximation of a smooth solution and its derivatives of

a given partial differential equation, and based on the Weirstrass’ first Theorem

which is stated as follows:

Weierstrass’ first Theorem Let f (x) be a real valued continuous function

defined in the closed interval [a, b]. Then there exists a sequence of polynomials

Pn (x) which converges to f (x) uniformly as n goes to infinity, i.e. for every ε >

0, there exists a polynomial Pn (x) of degree n = n (ε) such that the inequality

|f (x)− Pn (x)| ≤ ε

holds through the interval [a, b].

Thus, if u (x) represents a smooth solution of a PDE, then it can be accurately

approximated by a high degree polynomial, say degree N−1. It is shown in [14]

that this approximated polynomial constitutes an N -dimensional linear vector

space VN with the operation of vector addition and scalar multiplication. This

approximation can be expressed as

u (x) ≈ PN−1 (x) =
N−1
∑

k=0

dkx
k (3.1)

where dk’s are constants.

For the numerical solution of a PDE, one needs to find out the functional values

at the desired nodal points. Assuming that there are N nodal points in the

closed interval [a, b] with coordinates a = x1, x2, ..., xN = b and the functional

value at a nodal point xi is u (xi), the constants dk can be determined from the

following equation system
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





























































d0 + d1x1 + d2x
2
1 + ...+ dN−1x

N−1
1 = u(x1)

d0 + d1x2 + d2x
2
2 + ...+ dN−1x

N−1
2 = u(x2)

..................................................................

d0 + d1xN + d2x
2
N + ...+ dN−1x

N−1
N = u(xN).

(3.2)

The coefficient matrix of the system (3.2) is Vandermonde matrix, which is

known to be nonsingular. Thus, equation (3.2) has a unique solution for con-

stants d0, d1, d2..., dN−1. Once the constants are determined, the approximated

polynomial is obtained. For the case, in which N is large the system is highly

ill-conditioned and its inversion is very difficult, and it is hard to determine the

constants d0, d1, d2, ..., dN−1.

As is shown in [14], there exist many sets of base vectors in the linear vector space

VN of approximated polynomial PN−1 (x). In this case, the vectors of this vector

space are polynomials which are called the base polynomials. In this section,

the base polynomials are set as the Lagrange interpolation polynomials for the

application of the differential quadrature method (Shu’s general approach [14]).

For simplicity the k-th degree Lagrange interpolation polynomial is written in

the form

lk(x) =
N(x, xk)

M (1)(xk)
(3.3)

with
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M(x) = (x− x1)(x− x2)...(x− xN) = N(x, xk)(x− xk)

M (1)(xk) = (xk − x1)...(xk − xk−1)(xk − xk+1)...(xk − xN) =
N
∏

i=1,i6=k

(xk − xi)

N(xk, xj) =M (1)(xk)δkj
(3.4)

where δkj is the Kronecker delta function and k = 1, 2, ..., N .

The k-th degree Lagrange polynomial lk (x) in equation (3.3) possesses the prop-

erty

lk(xi) =















1, when k = i

0, otherwise.

(3.5)

When the Lagrange polynomials lk(x) in (3.3) are used in the approximation

polynomial PN−1(x), this gives together with the property (3.5)

u(x) ≈ PN(x) =
N
∑

i=1

u(xi)li(x). (3.6)

Assuming that the solution u is sufficiently smooth over the interval [a, b], i.e.

m times continuously differentiable, its m−th order derivative
∂mu

∂xm
at any grid

point can be approximated as

∂mu

∂xm
|x=xi

=
N
∑

j=1

w
(m)
ij u(xj), i 6= j i = 1, 2, ..., N (3.7)

where the weighting coefficients w
(m)
ij for m = 1 are given in the form
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w
(1)
ij =

N (1)(xi, xj)

M (1)(xj)
, i 6= j. (3.8)

Differentiating the first equation given in (3.4), w
(1)
ij can be rewritten as

w
(1)
ij =

M (1)(xi)

(xi − xj)M (1)(xj)
, i 6= j. (3.9)

The weighting coefficients w
(1)
ii are calculated according to the property of a

linear vector space, if one set of base polynomials satisfies a linear operator,

so does another set of base polynomials. Thus, the equation system for deter-

mination of w
(1)
ij derived from the Lagrange interpolation polynomials in (3.6)

should be equivalent to that derived from another set of base polynomials xk−1

(k = 1, 2, ..., N), in (3.1). Therefore w
(1)
ij satisfies the following equation which

is obtained by the base polynomial xk−1 when k = 1

N
∑

j=1

w
(1)
ij = 0 or w

(1)
ii = −

N
∑

j=1,j 6=i

w
(1)
ij . (3.10)

By using Shu’s general approach, i.e., polynomial approximation and the lin-

ear vector space analysis, the second order weighting coefficients w
(2)
ij can be

obtained in terms of first order weighting coefficients as

w
(2)
ij = 2w

(1)
ij (w

(1)
ii −

1

xi − xj

) for i 6= j

w
(2)
ii = −

N
∑

j=1,j 6=i

w
(2)
ij .

(3.11)

Shu’s general approach can be applied for finding the recurrence relation formu-

lation for higher order derivatives for m = 2, 3, ..., N − 1
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w
(m)
ij = m(w

(1)
ij w

(m−1)
ii −

w
(m−1)
ij

xi − xj

), i 6= j

w
(m)
ii = −

N
∑

j=1,j 6=i

w
(m)
ij

(3.12)

with i, j = 1, 2, ..., N.

In the other existing numerical methods, it is often preferred to use the uni-

form mesh, due to its practical use. However, for the DQM discretization, it

is demonstrated in [14] that, the use of the nonuniform mesh in the PDQ ap-

proach gives rise to more stable numerical results. Thus, in this study also,

the Chebyshev-Gauss-Lobatto (CGL) points are used to discretize the spatial

domain as a nonuniform mesh which clusters close to the end points.

To define the CGL points one should use the Chebyshev polynomial of degree k

which is defined by

Tk (x) = cos kθ, θ = arccos x. (3.13)

The Chebyshev-Gauss-Lobatto points are chosen as the roots of |TN (x)| = 1,

which are given by

xi = cos (iπ/N), i = 0, 1, ..., N. (3.14)

Equation (3.14) is valid for the interval [−1, 1]. For a general domain [a, b], the

following transformation

x =
(b− a)

2
(1− ξ) + a (3.15)

can be used to map the interval [a, b] in the x-domain onto the interval [−1, 1]
in the ξ-domain.
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3.1.1 DQM for the Equation ∇2u = b(x, t, p (u) , u̇, ü)

In this section, the application of the DQM to the equations of the type

∇2u = b(x, t, p(u), u̇, ü) (3.16)

with

b = b0(x, t) + b1(x, t)p(u) + k1u̇+ k2ü (3.17)

is considered. In equation (3.17) b0 and b1 are functions of position and time, k1

and k2 are constants and p (u) is the nonlinear function which is given in terms

of the unknown u. Here x denotes the position vector either in one- or two-space

dimensions.

DQM Formulation in one-space Dimension

In one-space dimension equation (3.16) takes the form

∂2u

∂x2
= b0(x, t) + b1(x, t)p(u) + k1u̇+ k2ü. (3.18)

Assuming that N grid points are taken in the computational domain [a, b], the

DQM formulation for equation (3.18) at any grid point x = xi (i = 1, 2, ..., N)

can be obtained using the derivative approximation (3.7) with m = 2 and the

weighting coefficients for second order derivatives (equation (3.11))

N
∑

k=1

w
(2)
ik u(xk, t) = b0(xi, t) + b1(xi, t)p(u(xi, t)) + k1u̇|x=xi

+ k2ü|x=xi

i = 1, 2, ..., N.

(3.19)

Writing in matrix-vector form, this formulation leads to a system of N × N

ODEs, i.e.,
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Bu = b0 +B1p+ k1u̇+ k2ü (3.20)

where B is the N×N matrix containing the second order weighting coefficients,

u, u̇ and ü are the N × 1 vectors containing the unknown and its first and

second order time derivatives, at the grid points, respectively, b0 and p are the

vectors of length N containing the function values of b0 and the nonlinearity,

respectively, at the grid points. B1 is the N × N diagonal matrix with the

diagonals containing the function b1 at xi for i = 1, 2, ..., N .

DQM Formulation in two-space Dimensions

In two space dimensions equation (3.16) is written as

∂2u

∂x2
+
∂2u

∂y2
= b0(x, y, t) + b1(x, y, t)p(u) + k1u̇+ k2ü. (3.21)

If one takes Nx grid points in x-direction and Ny grid points in y-direction in

the computational rectangular domain [a1, b1]× [a2, b2], the DQM discretization

for equation (3.21) with the second order weighting coefficients (3.11) in x- and

y- directions leads to

Nx
∑

k=1

w
(2)
ik u(xk, yj, t) +

Ny
∑

k=1

w̄
(2)
jk u(xi, yk, t) = b0(xi, yj, t) + b1(xi, yj, t)p(u)

+k1u̇(xi, yj, t) + k2ü(xi, yj, t)

(3.22)

for i = 1, 2, ..., Nx and j = 1, 2, ..., Ny.

Then, the system is rearranged as an Nx ×Ny system of matrices

BxU+UBy
T = B0 + P̃+ U̇+ Ü (3.23)

where Bx is an Nx × Nx matrix and By is an Ny × Ny matrix containing the

second order weighting coefficients in x- and y-directions, respectively. U is
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the Nx × Ny matrix containing u(xi, yj) as the ij-th entry, B0, P̃, U̇ and Ü

are the Nx×Ny matrices containing b0(xi, yj), b1(xi, yj)p(xi, yj), k1u̇(xi, yj) and

k2ü(xi, yj), respectively as the ij-th entry.

3.2 The Differential Quadrature Method Solution of Nonlinear Reaction-

Diffusion Equation

In this section, two kinds of problems governed by the nonlinear reaction-

diffusion equation

u̇ = ν∇2u+ p (u) (3.24)

will be considered. In equation (3.24) ∇2 is the Laplacian operator either in

one- or two-space dimensions, u is the unknown function with the first order

time derivative u̇ and p (u) is the nonlinear function.

The first problem considered is the one-dimensional Cauchy problem which will

be presented in Section 3.2.1. In solving Cauchy problems one tackles difficulty

of having no boundary conditions. At this stage, we make use of DQM which

may also be applied without any boundary conditions.

Next, in Section 3.2.2, the two-dimensional initial and boundary value problem

is solved which has been also solved using DRBEM in Chapter 2. In DRBEM

only the boundary discretization is necessery together with some needed in-

terior points, which is computationally less expensive comparing to the other

discretization methods. Although, the DQM is a domain discretization method

the solution can be obtained with a very small number of freedom. In Section

3.6, it is observed that this number is even less than the one used in Chapter 2

with DRBEM.
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3.2.1 The DQM Solution of the one-dimensional Cauchy Problem

for Nonlinear Reaction-Diffusion Equation

The one-dimensional Cauchy problem governed by the nonlinear reaction-diffusion

equation























u̇ = ν

(

∂2u

∂x2

)

+ p (u) x ∈ R, t > 0

u (x, 0) = u0 (x) x ∈ R

(3.25)

is discretized in space using DQM. For the Fisher type equation the nonlinear

function p (u) satisfies the conditions















p (0) = p (1) = 0, p′ (0) > 0 > p′ (1)

p (0) > 0, 1 > u > 0

(3.26)

and ν is a nonzero constant, u0 is a given function of position. This problem

together with the properties (3.26) shows a model describing the interaction

between reaction mechanism and diffusion transportation corresponding to some

physical and biological systems [71].

When the nonlinear reaction-diffusion equation (3.25) is compared with the gen-

eral form (3.16) (taking k1 =
1

ν
, k2 = 0, b0 (x) = 0, b1 (x) = −

1

ν
) the function b

will take the form

b =
1

ν
u̇− 1

ν
p (u) . (3.27)

Assuming that I = [a, b] (a, b ∈ R) is taken as the computational domain with

N CGL points, one has the N ×N system of ODEs from the DQM formulation

(Equation (3.20), i.e.,
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u̇ = νBu+ p (u). (3.28)

3.2.2 The DQM Solution of the two-dimensional Initial and Bound-

ary Value Problem for Nonlinear Reaction-Diffusion Equation

The initial and boundary value problem for the nonlinear reaction-diffusion equa-

tion is given by











































u̇ = ν

(

∂2u

∂x2
+
∂2u

∂y2

)

+ p (u) (x, y) ∈ Ω, t > 0

u (x, y, 0) = u0 (x, y) (x, y) ∈ Ω

β (x, y, t) u+ γ (x, y, t) q = 0 (x, y) ∈ Γ, t > 0

(3.29)

where q =
∂u

∂n
, n being the outward normal to the boundary. u0 (x, y) is a given

function in a rectangular domain Ω = {(a1, b1)× (a2, b2) : a1, b1, a2, b2 ∈ R}
with boundary Γ. β (x, y, t) and γ (x, y, t) are given functions in Γ× [0, T ].

The problem (3.29) is written in the form of general equation (3.21) by taking

b0 = 0, b1 = −
1

ν
, k1 =

1

ν
and k2 = 0 as

(

∂2u

∂x2
+
∂2u

∂y2

)

=
1

ν
u̇− 1

ν
p. (3.30)

We discretize the rectangular domain Ω using Nx CGL points in x-direction and

Ny CGL points in y-direction , which makes totally NxNy discretization points

in the domain of the problem.

The mixed type boundary condition in problem (3.29)
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β(xi, yj, t)u(xi, yj, t) + γ(xi, yj, t)q(xi, yj, t) = 0

or equivalently

β(xi, yj, t)u(xi, yj, t) + γ(xi, yj, t)(
∂u

∂x

∂x

∂n
+
∂u

∂y

∂y

∂n
)|(xi,yj ,t) = 0

(3.31)

is also discretized by using DQM approximation for the derivatives

∂u

∂x
(xi, yj, t) =

Nx
∑

k=1

w
(1)
ik u(xk, yj, t)

and

∂u

∂y
(xi, yj, t) =

Ny
∑

k=1

w̄
(1)
jk u(xi, yk, t)

(3.32)

for (xi, yj) ∈ Γ, i.e. with i = 1, Nx, j = 1, 2, ...., Ny and j = 1, Ny,

i = 1, 2, ...., Nx.

The nonlinear reaction-diffusion equation (3.30) is discretized for the interior

points, i.e., for i = 2, ...Nx − 1 and j = 2, ...Ny − 1

u̇(xi, yj, t)− p(u(xi, yj, t)) = ν(w
(2)
i1 u(x1, yj, t) + w

(2)
iNx
u(xNx

, yj, t)+

Nx−1
∑

k=2

w
(2)
ik u(xk, yj, t)) + ν(w̄

(2)
j1 u(xi, y1, t) + w̄

(2)
jNy

u(xi, yNy
, t) +

Ny−1
∑

k=2

w̄
(2)
jk u(xi, yk, t))

(3.33)

where the four terms outside of the summations come from the computed uij

values on the boundary (from equations (3.31) and (3.32)).

Thus, the discretized equations (3.31) with (3.32) for the boundary condition

together with (3.33) for the differential equation itself lead to the following

equation system
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U̇ = BxU+UBy
T +P (3.34)

with the (Nx − 2) × (Nx − 2) matrix Bx and (Ny − 2) × (Ny − 2) matrix By

containing the second order weighting coefficients in x- and y-directions times

the diffusivity constant ν at interior nodes, respectively. U, U̇ denote the (Nx−
2) × (Ny − 2) matrices containing u(xi, yj), u̇(xi, yj) as the ij-th entry for i =

2, 3, ..., Nx−2, j = 2, 3, ..., Ny−2. Also the (Nx−2)×(Ny−2) matrix P contains

the nonlinearity and the terms coming from the boundary.

3.3 The Differential Quadrature Method Solution of Nonlinear Wave

Equation

This section contains the differential quadrature solution of the nonlinear wave

equation

ü = c2∇2u+ p (u) (3.35)

where ∇2 is the Laplacian operator in one- or two-space dimensions, u is the

unknown function with the second order time derivative ü, p (u) is the nonlinear

function and c is the nonzero wave speed.

As in the previous section, first the DQM solution of the Cauchy problem will

be considered which gives the opportunity of having solution without boundary

conditions. It is followed by the solution of two-dimensional initial and boundary

value problem for the nonlinear wave equation.

3.3.1 The DQM Solution of the one-dimensional Cauchy Problem

for Nonlinear Wave Equation

The Cauchy problem for the one-dimensional nonlinear wave equation can be

described as
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





































ü = c2uxx + p (u) x ∈ R, t > 0

u (x, 0) = u0 (x) x ∈ R

u̇ (x, 0) = u1 (x) x ∈ R

(3.36)

with the nonzero wave speed c and the nonlinear function p (u) for the unknown

u. The functions u0 and u1 are the known functions of position.

Now, the general form (3.17) of the nonhomogenity b takes the form (by taking

b0 (x, t) = 0, b1 (x, t) = −
1

c2
, k1 = 0, k2 =

1

c2
)

b =
1

c2
ü− 1

c2
p (u) . (3.37)

With a similar procedure given in Section 3.1.1 the spatial discretization for the

problem (3.36) by using DQM is obtained in matrix-vector form of length N

ü = c2Bu+ p (u) (3.38)

where B matrix contains the second order weighting coefficients and the vec-

tors u, ü, p(u) contain discretized values of the solution, its second order time

derivative and the nonlinearity, respectively.

3.3.2 The DQM Solution of the two-dimensional Initial and Bound-

ary Value Problem for Nonlinear Wave Equation

The initial and boundary value problem for the nonlinear wave equation is given

by
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

































































ü = c2
(

∂2u

∂x2
+
∂2u

∂y2

)

+ p (u) (x, y) ∈ Ω, t > 0

u (x, y, 0) = u0 (x, y) (x, y) ∈ Ω

u̇ (x, y, 0) = u1 (x, y) (x, y) ∈ Ω

β (x, y, t) u+ γ (x, y, t) q = 0 (x, y) ∈ Γ, t > 0

(3.39)

where q =
∂u

∂n
, n being the outward normal to the boundary. u0 (x, y) and

u1 (x, y) are given functions in a rectangular domain Ω = {(a1, b1)× (a2, b2) : a1,

b1, a2, b2 ∈ R} with boundary Γ. β (x, y, t) and γ (x, y, t) are given functions

in Γ× [0, T ].

When the problem is matched with the general form (3.21) by taking b0 =

0, b1 = −
1

c2
, k1 = 0 k2 =

1

c2
as

(

∂2u

∂x2
+
∂2u

∂y2

)

=
1

c2
ü− 1

c2
p. (3.40)

The DQM formulation for the two-dimensional initial and boundary value prob-

lem follows the same steps with the DQM discretization of the nonlinear reaction-

diffusion equation which is given in Section 3.2.2. The only difference in the

formulation is caused from the second order time derivative and the resulting

formulation takes the form

Ü = BxU+UBy
T +P (3.41)

with the (Nx − 2) × (Nx − 2) matrix Bx and (Ny − 2) × (Ny − 2) matrix By

containing the second order weighting coefficients in x- and y-directions respec-

tively, times the square of the wave constant c at interior nodes. U, Ü denote

the (Nx− 2)× (Ny− 2) matrices containing u(xi, yj), ü(xi, yj) as the ij-th entry

for i = 2, 3, ..., Nx − 2, j = 2, 3, ..., Ny − 2. Also, the (Nx − 2)× (Ny − 2) matrix
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P contains the nonlinearity and the terms coming from the boundary.

3.4 Time Integration Methods for the Nonlinear Reaction-Diffusion

Equation

The time integration methods given in Chapter 2 (FDM, LSM and FEM) are also

used for the solution of system of ordinary differential equations in time resulting

from the DQM discretization of the nonlinear reaction-diffusion equation.

3.4.1 FDM for the Time Discretization of the DQM Solution of one-

dimensional Cauchy Problem

The time dependent system of ODEs obtained after the DQM discretization of

the nonlinear reaction-diffusion equation (Equation (3.28)) can be written in the

form

u̇ = B̃u+ p(u) (3.42)

where p is the N × 1 vector containing the nonlinearity, B̃ denotes the N ×N

matrix containing the second order weighting coefficients in x-direction times

the diffusivity constant ν. This equation is similar to equation (2.69) when the

DQM matrix B̃ is replaced by the DRBEM matrix ¯̄H.

Thus, as in Section 2.4.1, the time derivative can be discretized using the Euler

scheme [20] to have

1

∆t
(um+1 − um) = B̃u

m
+ p(um) (3.43)

where m denotes the time level, ∆t is the time increment and p (um) is the

vector of length N containing the nonlinearity. Since Euler scheme is an explicit

method, a relaxation procedure with a parameter 0 ≤ µ ≤ 1 for the unknown u

in the form
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u = (1− µ)um + µum+1 (3.44)

is employed to the right-hand side of equation (3.43) in order to avoid the sta-

bility problems and this leads to

(I− µ∆tB̃)um+1 = (I+∆t(1− µ)B̃)um +∆tp(um). (3.45)

Equation (3.45) contains an N × N system of linear equations which gives the

solution vector u at (m+ 1)-st time level in terms of the solution at m-th level.

In the solution procedure, the nonlinearity p is approximated at m-th time level

tm in order to have a linear system of equations.

3.4.2 FDM for the Time Discretization of the DQM Solution of Ini-

tial and Boundary Value Problem

The (Nx − 2)× (Ny − 2) system of equations obtained after the DQM solution

of two-dimensional initial and boundary value problem (3.34) is discretized by

using FDM for the time derivative as

1

∆t
(Um+1 −Um) = BxU

m +UmBy
T +Pm (3.46)

where Pm denotes the vector evaluated at them-th time level. For the boundary

nodes, equation (3.31) is used together with the DQM discretized form of the

derivatives given in equation (3.32).

Since, this is a rectangular system, it is hard to arrange the system dimension if

the relaxation procedure is applied from the begining. Thus, we first find Um+1

from equation (3.46) then we apply the relaxation procedure in the form

Um+1 = (1− µ)Um + µUm+1 (3.47)

104



for 0 ≤ µ ≤ 1.

3.4.3 LSM for the Time Discretization of the DQM Solution of one-

dimensional Cauchy Problem

The DQM solution of the one-dimensional nonlinear reaction-diffusion equation

(equation (3.42)) can be approximated

u ≈ φ1 (t)u
m + φ2 (t)u

m+1 (3.48)

for a typical time element of length ∆t betweenm and (m+1)-st time levels. The

linear interpolation functions φ1, φ2 are defined in Section 2.4.3 with equation

(2.81).

The residual vector r is obtained by substituting the approximation vector u

from equation (3.48) in equation (3.42)

r (t) = u̇− B̃u− p (u) . (3.49)

The error functional Π is constructed by taking the square of the error over each

time element m for m=0,1,2,... i.e. [25],

Π =

∫ tm+1

tm
rT rdt

or

Π =

∫ tm+1

tm
(u̇− B̃u− p(u))T (u̇− B̃u− p(u))dt.

(3.50)

Setting up a new variable ξ =
t− tm

∆t
transforms the integrals to the ones over

[0, 1]

Π = ∆t

∫ 1

0

(u̇− B̃u− p(u))T (u̇− B̃u− p(u))dξ. (3.51)
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The error functional can be calculated after substituting the approximation for

the unknown u, and the approximation for the derivative of the solution which

is obtained by taking the derivative of the approximation (3.48) (also given by

equations (2.85) and (2.86) in Section 2.4.3).

The desired recurrence relation is obtained by minimizing the error functional

with respect to um+1 in the form

Aum+1 = B1u
m +B2p

m (3.52)

where

A =
1

∆t2
I− 1

2∆t
(B̃+ B̃

T
) +

1

3
B̃

T
B̃

B1 =
1

∆t2
I+

1

2∆t
(B̃− B̃

T
)− 1

6
B̃

T
B̃

B2 =
1

∆t
I− 1

2
B̃

T
.

(3.53)

3.4.4 LSM for the Time Discretization of the DQM Solution of Initial

and Boundary Value Problem

In this section, we consider the LSM solution of equation (3.34) which is the sys-

tem of ODEs in time resulting from the DQM discretization of two-dimensional

initial and boundary value problem. First, we reorganize the (Nx−2)× (Ny−2)

system (3.34) which contains products of matrices in the form of matrix-vector

equations of length (Nx − 2)(Ny − 2), assuming that Nx grid points are taken

in x-direction and Ny grid points are taken in y-direction. The reason for this

transformation is to apply LSM to a matrix-vector system. For this, CGL points

are renumbered only in the interior of the region. Boundary values are sepa-

rately inserted. (Discretization of the domain and the reorganization can be

seen in Figure 3.1)
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(a) Discretization of the domain with the CGL points

(b) Renumberred CGL points

Figure 3.1: Discretization of the domain with CGL points and renumberred
form using CGL points
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Rewriting the system (3.34) in matrix-vector form leads to (Nx − 2)(Ny − 2)

matrix-vector equations of the form

˙̃u = (B̃x + B̃y)ũ+ p̃ (3.54)

where ũ = (u22, u32, ..., u(Nx−1)2, u23, ..., u(Nx−1)3, ..., u2(Ny−1), ..., u(Nx−1)(Ny−1))
T ,

p̃ = (p22, p32, ..., p(Nx−1)2, p23, ..., p(Nx−1)3, ..., p2(Ny−1), ..., p(Nx−1)(Ny−1))
T . Here uij’s

and pij’s are the entries of the matrices U and P, respectively.

The matrices B̃x, B̃y are expressed as

B̃x =



























Bx

Bx

.

.

.

Bx



























(3.55)

where Bx is the (Nx − 2) × (Nx − 2) matrix of second order weighting coeffi-

cients,

B̃y =



























(By)11 (By)12 ... (By)1(Ny−2)

(By)21 (By)22 ... (By)2(Ny−2)

.

.

.

(By)(Ny−2)1 (By)(Ny−2)2 ... (By)(Ny−2)(Ny−2)



























(3.56)

with (Nx − 2)× (Nx − 2) diagonal matrix

108



(By)ij =



























(by)(i+1)(j+1)

(by)(i+1)(j+1)

.

.

.

(by)(i+1)(j+1)



























. (3.57)

Here (by)(i+1)(j+1) are the ij-th entry of the matrix By containing the second

order coefficients times the diffusivity constant in y-direction.

Thus, the corresponding matrix-vector equations for the DQM solution of the

two-dimensional initial and boundary value problem, defined by the nonlinear

reaction-diffusion equation, is obtained as

˙̃u = B′ũ+ p̃ (3.58)

where B′ = B̃x + B̃y.

Then, the application of LSM to the system of ODEs (3.58) with the solution

vector ũ of length (Nx− 2)(Ny − 2) follows the same lines as to obtain a similar

system (3.52) for the one-dimensional nonlinear reaction-diffusion equation .

The Nx × Nx matrix B̃ in (3.53) is replaced by the (Nx − 2)(Ny − 2) × (Nx −
2)(Ny − 2) matrix B′.

3.4.5 FEM for the Time Discretization of the DQM Solution of one-

dimensional Cauchy Problem

In this section, the time dependent system of ODEs, obtained after the DQM

discretization of the one-dimensional Cauchy problem, defined by the nonlinear

reaction-diffusion equation (Equation (3.42)), is solved using FEM. For this time

discretization method, a partition Ωm in time, Ωm = ((m− 1)T,mT ] m > 0, is

taken and the domain Ωm is divided into M finite elements. Thus, the solution
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is obtained at once in this domain without an iteration as is done in Section

2.4.5.

For the solution procedure, the first partition of the time domain (Ω1 = (0, T ] )

is divided into M time elements each of length ∆t, with two nodes at the end

of each element. The approximate solution denoted by uh
e is defined as [70]

uh
e (t) =

2
∑

j=1

uj
eψj (t) (3.59)

where uj
e is the value of uh

e at the node tj (j = 1, 2) for the element ′e′. ue is

the discretized unknown vector obtained by using DQM for the time element ′e′

with the linear shape functions defined in Chapter 2 (Equations (2.101)).

The corresponding variational statement is obtained after the multiplication of

the system (3.42) by the shape functions ψk (k = 1, 2), and integration by parts

i.e,

∫ t2

t1
uh

e ψ̇kdt+ B̃

∫ t2

t1
uh

eψkdt = uh
e (t

2)ψk(t
2)− uh

e (t
1)ψk(t

1)

−
∫ t2

t1
p (u(0))ψk(t)dt

(3.60)

with B̃ = νB.

Substitution of the approximate solution uh
e given in equation (3.59) to equation

(3.60) gives the solution as a linear system of equations of the form









s11 s12

s21 s22























(uh
e )1

(uh
e )2















=















(ge)1

(ge)2















(3.61)

where each entry of the matrix in (3.61) is an N ×N matrix skj (k, j = 1, 2) for

element ′e′ and each entry of the vectors in (3.61) is N × 1 vector for the points
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tk (k = 1, 2)

skj = (

∫ t2

t1
ψ̇kψjdt)I + (

∫ t2

t1
ψkψjdt)B̃

(ge)k = ψk(t
2)uh

e (t
2)− ψk(t

1)uh
e (t

1)− (

∫ t2

t1
p (u(0))ψkdt)

(3.62)

for k, j = 1, 2 where I is the identity matrix.

After the assembly procedure [70], the whole NM × NM system of equations

for the representative time element (0, T ] is obtained as

Sf ūf = gf (3.63)

with the unknown vector ūf with M vector blocks of length N . Each block

contains the solution for the time levels t = {t : t = d∆t, d = 0, 1, ...,M} . Sf

and gf are the assembled matrix and vector, respectively, for the system of

equations (3.61).

The solution is continued to the m-th partition ((m − 1)T,mT ] , m > 0, m

integer), repeating the same procedure described here for the first partition, and

using the values obtained for the last node of (m− 1)-st partition.

3.4.6 FEM for the Time Discretization of the DQM Solution of Ini-

tial and Boundary Value Problem

For the time discretization of the DQM solution of the two-dimensional nonlinear

reaction-diffusion equation by FEM, the matrix-vector formulation obtained in

Section 3.4.4 is used, i.e.,

˙̃u = B′ũ+ p̃. (3.64)

To find the solution, the time domain Ωm is divided into M finite elements as
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is done in the previous section and the same steps are followed..

Therefore, the resulting system of linear equations for a typical element ′e′ will

be obtained as









s̃11 s̃12

s̃21 s̃22























(ũh
e )1

(ũh
e )2















=















(g̃e)1

(g̃e)2















(3.65)

where each entry of the matrix in (3.65) is an (Nx−2)(Ny−2)×(Nx−2)(Ny−2)

matrix s̃kj (k, j = 1, 2) for element ′e′ and each entry of the vectors in (3.65)

is (Nx − 2)(Ny − 2)× 1 vector for the points tk (k = 1, 2)

s̃kj = (

∫ t2

t1
ψ̇kψjdt)I + (

∫ t2

t1
ψkψjdt)B

′

(g̃e)k = ψk(t
2)ũh

e (t
2)− ψk(t

1)ũh
e (t

1)− (

∫ t2

t1
p(ũ(0))ψkdt)

(3.66)

for k, j = 1, 2 and I is the identity matrix.

Then, the assembly procedure will give the whole (Nx − 2)(Ny − 2)M × (Nx −
2)(Ny − 2)M system of equations for the first partition of time (0, T ] as

S̃f
˜̃uf = g̃f . (3.67)

The unknown vector ˜̃uf is with M vector blocks each of which has length (Nx−
2)(Ny − 2) for each element of the time domain Ωm, and the assembled matrix

S̃f , the assembled vector g̃f are obtained from the assembly of the system (3.65).

Then, the above described solution procedure may be continued up to the desired

time level, using the values found from the previous step as the initial data.
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3.5 Time Integration Methods for the Nonlinear Wave Equation

In this Section the system of ODEs obtained from the DQM discretization of

nonlinear wave equation will be discretized using FDM, LSM and FEM. The

systems (3.38) and (3.41) of second order ordinary differential equations with

respect to time for the nonlinear wave equations in one- and two-space dimen-

sions, respectively, can be written in the following form

¨̃u = B̃ũ+ p̃ (ũ). (3.68)

For the one-dimensional problem (3.38) ũ = u, p̃ = p and B̃ = c2B with the

N × N matrix B containing the second order DQM weighting coefficients and

the nonlinear function p in terms of the unknown u.

In order to obtain equation (3.68) for the two-dimensional case the reformulation

described in Section 3.4.4 is once more used. Thus, in equation (3.68) ũ and p̃

are the vectors of length (Nx− 2)(Ny− 2) containing the entries of the matrices

U and P which are provided for the DQM solution of the two-dimensional wave

equation by equation (3.41), and the vectors are given in the form

ũ = (u22, u32, ..., u(Nx−1)2, u23, ..., u(Nx−1)3, ..., u2(Ny−1), ..., u(Nx−1)(Ny−1))
T ,

p̃ = (p22, p32, ..., p(Nx−1)2, p23, ..., p(Nx−1)3, ..., p2(Ny−1), ..., p(Nx−1)(Ny−1))
T

(3.69)

and B̃ = B̃x + B̃y which are defined with the block matrices in equations (3.55)

and (3.56). The matrices B̃x and B̃y contain the matrices Bx and By which

have the second order weighting coefficients times square of the wave speed c

(the diffusivity constant ν in the nonlinear reaction-diffusion equation case).
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3.5.1 FDM for the Time Discretization of the DQM Solution of the

Nonlinear Wave Equation

In order to solve the second order time dependent system of ordinary differential

equations (3.68) using FDM the central difference formula is applied, i.e.,

1

∆t2
(ũm+1 − 2ũm + 2ũm−1) = B̃ũ

m
+ p(ũm). (3.70)

Since central difference is an explicit scheme, a relaxation procedure given in

(3.44) is employed to the right-hand side of equation (3.70) to have,

(I−∆t2µB̃)ũm+1 = (2I+∆t2(1− µ)B̃)ũm − ũm−1 +∆t2p̃(ũm). (3.71)

This is an iterative procedure to find the values at (m+ 1)-st level using pre-

viously obtained two consecutive level solutions. However, one still needs the

value of ũ−1 in order to find ũ1. To this end, the second initial condition, given

in terms of the first order time derivative in problems (3.36) and (3.39) for the

one- and two-dimensional cases, is made use of with its backward difference

approximation

∂ũ

∂t
|t=0 =

ũ0 − ũ−1

∆t
or ũ−1 = ũ0 −∆t

∂ũ

∂t
|t=0. (3.72)

Thus, equation (3.71) together with equation (3.72) produces the following sys-

tem of equations to be solved for m = 1 as

(I−∆t2µB̃)ũ1 = (I+∆t2 (1− µ) B̃)ũ0 +∆tũ1 +∆t2p̃(ũ0) (3.73)

where ũ0 and ũ1 denote the vectors of length N containing the initial conditions

u0 (x) and u1 (x) of problem (3.36) or the vector of length (Nx − 2)(Ny − 2)

containing the initial conditions u0 (x, y) and u1 (x, y) of problem (3.39) at the

grid points for the one- and two-dimensional problems, respectively.
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Thus, using equation (3.73) for the first step and equation (3.71) for m = 1, 2, ...

iteratively, one is able to find the solution at the desired time level.

3.5.2 LSM for the Time Discretization of the DQM Solution of the

Nonlinear Wave Equation

Solution of the second order time dependent system of ordinary differential equa-

tions resulting from the DQM discretization of nonlinear wave equation can be

approximated by the quadratic interpolation functions (defined in Section 2 with

the equation (2.91))

ũ = φ−1ũ
m−1 + φ0ũ

m + φ1ũ
m+1 (3.74)

over the m-th time element with the initial point tm−1 and the terminal point

tm+1.

The error functional over the m-th time element, which is obtained in terms of

the residual vector r as in the previous sections, leads to

Π =

∫ tm+1

tm−1
rT rdt = ∆t

∫ 1

−1

(¨̃u− B̃ũ− p̃)T (¨̃u− B̃ũ− p̃)dξ (3.75)

with the appropriate transformation (ξ =
t− tm

∆t
) (The transformed quadratic

interpolation functions are given by equation (2.95)).

The second derivatives of the quadratic interpolation functions are replaced in

(3.74) by using the definitions (2.97) as

¨̃u = φ̈−1ũ
m−1 + φ̈0ũ

m + φ̈1ũ
m+1 =

1

∆t2
ũm−1 − 2

∆t2
ũm +

1

∆t2
ũm+1. (3.76)

One should minimize the error functional Π with respect to ũm+1 to obtain the

final system of linear equations
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A1ũ
m+1 = A2ũ

m−1 +A3ũ
m +A4p̃

m (3.77)

with the matrices

A1 = − 2

∆t4
I+

1

3∆t2
(B̃+ B̃T )− 4

15
B̃T B̃

A2 =
2

∆t4
I− 1

3∆t2
(B̃+ B̃T )− 1

15
B̃T B̃

A3 = − 4

∆t4
I+

2

3∆t2
(B̃T − 2B̃) +

2

15
B̃T B̃

A4 = − 2

∆t2
I+

1

3
B̃T .

(3.78)

Equation (3.77) is used to obtain the solution for m = 1, 2, ... iteratively. For

m = 0, one should make use of the initial condition given in terms of the first

order time derivative of the solution at t = 0. The approximation (3.74) is

differentiated with respect to ′t′ and evaluated at t = 0, i.e.,

∂ũ

∂t
|t=0 = φ̇−1ũ

−1 + φ̇0ũ
0 + φ̇1ũ

1 (3.79)

which gives,

ũ−1 = ũ1 − 2∆t

(

∂ũ

∂t
|t=0

)

. (3.80)

Thus, this approximation is used in equation (3.77) to obtain the iteration step

for m = 0,

(A1 −A2) ũ
1 = A3ũ

0 − 2∆tA2
˙̃u
0
+A4p̃

0 (3.81)

where the matrices A1, A2, A3, A4 are defined in equation (3.78).
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3.5.3 FEM for the Time Discretization of the DQM Solution of the

Nonlinear Wave Equation

The FEM solution of the ODEs resulting from the DQM discretization of non-

linear wave equation is going to be described for the first partition of the time

domain Ω1 = (0, T ] initially, then the same procedure can be followed for the

other partitions. Each partition is divided into M finite elements each of which

has length ∆t, with two nodes at the end points.

The unknown vector ũe for the element ′e′ of the first partititon Ω1 is approxi-

mated by ũh
e as

ũh
e (t) =

2
∑

j=1

ũj
eψj(t) (3.82)

where ũj
e is the value of ũh

e at the node tj (j = 1, 2) and ψj’s are the linear

shape functions defined by the equation (2.101).

The variational statement is obtained after multiplying the equation (3.68) by

the shape function ψk (k = 1, 2), and integrating by parts as

∫ t2

t1

∂ũh
e

∂t
ψ̇kdt+ B̃

∫ t2

t1
ũh

eψkdt =
∂ũh

e

∂t
(t2)ψk(t

2)− ∂ũh
e

∂t
(t1)ψk(t

1)

−
∫ t2

t1
p̃(ũ(0))ψk(t)dt

(3.83)

where the solution ũ is taken at t = 0 for the evaluation of the nonlinear function

for the first partition.

Then, the linear system of equations are obtained after substituting the approx-

imate solution (3.82) in (3.83) and performing the integrals, as
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







s̃11 s̃12

s̃21 s̃22























(ũh
e )1

(ũh
e )2















=















(g̃e)1

(g̃e)2















(3.84)

where

s̃kj = (

∫ t2

t1
ψ̇kψ̇jdt)I+ (

∫ t2

t1
ψkψjdt)B̃

(g̃e)k = ψk(t
2)
∂ũh

e

∂t
(t2)− ψk(t

1)
∂ũh

e

∂t
(t1)−

∫ t2

t1
p̃(ũ(0))ψkdt

(3.85)

for k = 1, 2.

A similar assembly procedure is applied to have the whole system of equations

for the partition [0, T ] . However, this time we need the value of
∂ũ

∂t
at t = T as

the last entry of the load vector and likewise to the previous time integration

schemes, it is approximated by using the approximation (3.82).

The final assembled system

S̃w
˜̃uw = g̃w (3.86)

is obtained for the unknown ˜̃uw with M blocks each of length N and (Nx −
2)(Ny − 2) for the one- and two-dimensional problems respectively. Each block

contains the solution ũ for the time levels t = d∆t, d = 0, 1, ...,M . The matrix

S̃w and the vector g̃w are the assembled forms of s̃kj and (g̃e)k, respectively.

3.6 Numerical Results

In this section, the numerical solutions of the Cauchy problems and the boundary-

initial value problems defined by one-dimensional and two-dimensional nonlinear

reaction-diffusion and wave equations are solved, respectively. The spatial dis-

cretization is done by using the DQM which approximates the solution and its

spatial derivatives using high degree polynomials. The DQM is known to give

very good accuracy with a considerably small number of mesh points. Then, the

obtained system of ODEs in time are discretized with the temporal discretization
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methods as FDM, LSM and FEM. For each problem several number of DQM

points N or (Nx− 2)(Ny − 2) (depending on the dimension of the problem) and

time steps ∆t are tested to find the best solution in terms of maximum absolute

errors.

The problems considered in this section are (1) Fisher equation, (2) Generalized

Fisher equation, (3) Nonlinear equation of Fisher type with p(u) = 6u(1 − u),

(4) Nonlinear reaction-diffusion equation with p(u) = u(1− u)(u− 1), (5) Two-

dimensional nonlinear reaction-diffusion equation, (6) Nonlinear wave equation

with p(u) =
3

2
(u3 − u), (7) Nonlinear wave equation with p(u) = u2 − u − u3,

(8) Two-dimensional nonlinear wave equation.

For these test problems, the maximum absolute error τm for the m-th time level

which is defined in the form

τm = max
1≤i≤Nx,1≤j≤Ny

|uexact(xi, yj, t
m)− unum(xi, yj, t

m)| (3.87)

is used to measure the quality of the numerical solution.

The calculations for the test problems are performed using the Chebyshev-

Gauss-Lobatto points which are giving rise to more stable results [14].

As the computational domain [−1, 1] is taken for the Cauchy Problems (Problem

3.6.1-3.6.4 and 3.6.6, 3.6.7). The problems are solved with very small number

of discretization points, which is one of the main advantage of the DQM. The

other advantage, which we make use of in our problems is that, the method

does not need any boundary condition to evaluate the solution, which is not

the case for the other discretization methods. However, for boundary value

problems (Problems 3.6.5 and 3.6.8), we have better accuracy comparing to one-

dimensional initial value-problems. Thus, having boundary conditions leads to

more accurate results.
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3.6.1 Fisher Equation

The Cauchy problem for the nonlinear reaction-diffusion equation























u̇ =
∂2u

∂x2
+ u(1− u) x ∈ (−∞,∞), t > 0

u (x, 0) =
1

4
[(1− tanh(

x

2
√
6
))2 x ∈ (−∞,∞)

(3.88)

is considered which is called Fisher equation. Problem (3.88) is proposed as a

model for the propagation of an advantageous gene in a population [1].

The exact solution to this problem is [71]

u (x, t) =
1

4
[1− tanh[(

1

2
√
6
)(x− 5

√
6t)]

2

. (3.89)

Several time steps (between 0.001 and 0.1) are tested. It is noted that the

accuracy remains the same for all time steps and thus ∆t = 0.1 is preferred in

the calculations since a larger time step leads to small number of iterations to

achieve steady-state solution.

As is noted in Section 3.1, for large number of discretization points the Van-

dermonde system becomes ill-conditioned. However, it is seen that, N = 5 is

enough to obtain the solution with 7 digits accuracy at steady-state when FDM

or FEM is used for the time discretization. But, N = 5 is seen to be not enough

for obtaining the LSM solution for the times t > 0.5 and one needs more dis-

cretization points (N = 21) in DQM. In either case, (N = 5, N = 21) the

number of freedom is very small comparing to the other discretization methods,

which makes the DQM solution computationally less expensive than the other

methods.

The comparison between the methods can be observed from Table 3.1. The

relaxation parameter µ seems to be not very much effective on accuracy for this

Cauchy problem. ( The results corresponding to FDM in Table 3.1 are obtained
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with µ = 0.7.) One can also see that FDM and FEM time integration schemes

give the same accuracy which is higher than the one obtained by LSM. One

should take into account that FDM and LSM need more iterations comparing

to FEM, which makes the solution procedure computationally expensive. Thus,

the combination of DQM in space- FEM in time solution procedure is preferred

for this problem.

Table 3.1: Maximum absolute errors for Problem 3.6.1

Method t = 0.01 t = 0.1 t = 0.5 t = 2.0 t = 20.0
FDM 7.6×10−6 5.5×10−4 2.6×10−3 8.8×10−3 2.1×10−7
LSM(N = 5) 6.0×10−5 6.6×10−3 7.6×10−1 —— ——
LSM(N = 21) 2.7×10−4 3.1×10−3 1.7×10−2 3.0×10−2 2.1×10−6
FEM 6.4×10−6 5.3×10−4 8.9×10−3 8.7×10−3 2.0×10−7

From equation (3.89), it can be easily observed that the exact solution possesses

the property

lim
t→−∞

u(x, t) = 0, lim
t→∞

u(x, t) = 1. (3.90)

In Figure 3.2, the exact solution and the solutions obtained by the proposed

methods are given at several time levels at the point x = 0. It can be observed

from the figures that the behaviour of the exact solution (Equation (3.90)) is

caught by all the methods.
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Figure 3.2: Behaviour of numerical solutions of Problem 3.6.1 at x = 0 for
increasing time levels
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3.6.2 Generalized Fisher Equation

The nonlinear reaction-diffusion equation with ν = 1 and p (u) = u (1− uα)

is called generalized Fisher equation. In this example, the generalized Fisher

equation for α = 6, i.e.,























u̇ =
∂2u

∂x2
+ u(1− u6) x ∈ (−∞,∞), t > 0

u(x, 0) =
1

(1 + e(3/2)x)1/3
x ∈ (−∞,∞)

(3.91)

is solved. The exact solution to this problem is given in [71] as

u(x, t) = (
1

2
tanh [−3

4
(x− 5

2
t)] +

1

2
)1/3. (3.92)

The maximum absolute errors are given in Table 3.2 at various time levels up

to steady-state with N = 5 DQM discretization points for all time integration

methods, and also with N = 21 for the LSM. There, the superiority of FDM and

FEM over LSM can be observed in terms of accuracy. For the small time levels

the methods coincide. But the LSM does not work well for the times tending to

steady-state. Thus, one should increase the number of discretization points in

DQM to N = 21 to obtain the solution with LSM also at steady-state. Even in

this case, there are two digits accuracy drop in the solution at steady-state with

LSM.
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Table 3.2: Maximum absolute errors for Problem 3.6.2

Method t = 0.01 t = 2.0 t = 5.0
FDM 2.9×10−4 7.4×10−4 1.0×10−8
LSM(N = 5) 3.0×10−4 1.0 7.3×10−1
LSM(N = 21) 1.0×10−3 8.0×10−4 5.3×10−6
FEM 2.8×10−4 7.8×10−4 1.1×10−8

Among the several time steps between 0.001 and 0.1, ∆t = 0.01 is found to be

the suitable choice in obtaining solutions for all time levels. As in the previous

problem the accuracy is almost the same with FDM and FEM but it drops in

LSM. It can be concluded that a higher order nonlinear function results with a

need of smaller time increment.

For the solution of generalized Fisher equation the same property ( lim
t→−∞

u(x, t) =

0, lim
t→∞

u(x, t) = 1) as in the case of Fisher equation (Problem 3.6.1) is valid.

In Figure 3.3, the exact and the DQM solutions are given at x = 0 at increasing

times. It can be also seen that the steady-state is achieved at an earlier time

(at t = 1) comparing to the Fisher equation, which is the effect of stronger

nonlinearity.
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Figure 3.3: Behaviour of numerical solutions of Problem 3.6.2 at x = 0 for
increasing time levels
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3.6.3 Nonlinear Equation of Fisher type with p(u) = 6u(1− u)

The following Cauchy problem for the nonlinear reaction-diffusion equation























u̇ =
∂2u

∂x2
+ 6u(1− u) x ∈ (−∞,∞), t > 0

u(x, 0) =
1

(1 + ex)2
x ∈ (−∞,∞)

(3.93)

has the effects of linear diffusion via
∂2u

∂x2
with the nonlinear reaction 6u (1− u).

The exact solution to this problem is stated as

u(x, t) =
1

(1 + ex−5t)2
(3.94)

in [72].

In Table 3.3, the same observations are valid with the Problem 3.6.2 that the

approximate solutions obtained with the time integration methods FDM and

FEM are better than the solutions obtained with LSM in terms of accuracy and

the number of discretization points.
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Table 3.3: Maximum absolute errors for Problem 3.6.3

Method t = 0.01 t = 2.0 t = 5.0
FDM 2.9×10−4 3.0×10−4 8.0×10−11
LSM(N = 5) 3.6×10−4 1.48 1.48
LSM(N = 21) 1.4×10−3 1.9×10−4 7.0×10−6
FEM 2.9×10−4 2.8×10−4 7.6×10−11

The computations are carried out by taking ∆t = 0.01. As in the previous test

problem, one needs smaller time increment since the nonlinearity is stronger

than the nonlinearity in the Fisher equation. Also LSM needs more DQM dis-

cretization points.

Figure 3.4 shows the agreement between the exact solution and the proposed

numerical solutions at x = 0 with respect to time levels. As in the previous

problem, the steady-state is arrived at an earlier time comparing to the Fisher

equation, but the solution is increasing with a higher rate comparing to Problem

3.6.2 at small time levels.
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Figure 3.4: Behaviour of numerical solutions of Problem 3.6.3 at x = 0 for
increasing time levels

128



3.6.4 Nonlinear Reaction-Diffusion Equation with p(u) = u(1−u)(u−1)

The Cauchy problem defined by the nonlinear reaction-diffusion equation with

the nonlinearity p (u) = u (1− u) (u− 1)























u̇ =
∂2u

∂x2
+ u(1− u)(u− 1) x ∈ (−∞,∞), t > 0

u (x, 0) =
1

2
+

1

2
tanh

√
2

4
x x ∈ (−∞,∞)

(3.95)

is solved. The exact solution to this problem is stated as

u (x, t) =
1

2
+

1

2
tanh(

√
2

4
x− 1

4
t) (3.96)

in [72].

The maximum absolute errors for the problem in this section are shown in Table

3.4 by using ∆t = 0.1. They justify our previous observations obtained in the

problems 3.6.1-3.6.3. The LSM needs N = 21 discretization points in DQM

and it achieves lower accuracy at small time levels although through steady-

state all three methods have equal accuracy. Thus, the combination of DQM in

space-FEM in time solution procedure is preferred.
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Table 3.4: Maximum absolute errors for Problem 3.6.4

Method t = 0.01 t = 0.5 t = 1.0 t = 6.0 t = 20.0
FDM 3.9×10−5 7.3×10−3 3.3×10−2 9.5×10−2 9.2×10−5
LSM (N = 5) 8.2×10−5 3.422 — — —
LSM(N = 21) 3.8×10−4 2.1×10−2 4.1×10−2 5.8×10−2 9.4×10−5
FEM 3.6×10−5 5.7×10−3 2.5×10−2 8.2×10−2 9.2×10−5

Figure 3.5 shows that the solution reaches steady-state which is zero for increas-

ing time levels. The agreement with the exact solution is also observed.
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Figure 3.5: Numerical solutions of Problem 3.6.4 at x = 0 for increasing time
levels
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3.6.5 Two-dimensional Nonlinear Reaction-Diffusion Equation

The two-dimensional initial and boundary value problem for the nonlinear reac-

tion diffusion equation

u̇ =
1

2

(

∂2u

∂x2
+
∂2u

∂y2

)

+ u2 (1− u) (3.97)

is considered in a square region Ω = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}. The

initial and Dirichlet type boundary conditions are taken appropriate with the

exact solution [48]

u(x, y, t) =
1

1 + ep(x+y−pt)
where p =

1√
2
. (3.98)

For this boundary value problem the DQM discretization is performed by taking

only five points in each direction (Nx = Ny = 5). It is possible to obtain solution

even with a very small number of Chebyshev-Gauss-Lobatto points .

The time step ∆t = 0.01 is found to be a suitable choice for all the time integra-

tion methods but in FDM the relaxation parameter µ needs the value 0.9. FEM

and FDM give almost the same accuracy. In LSM the accuracy drop is noticed

through steady-state. The advantage of using relaxation parameter in FDM is

realized for initial and boundary value problems as in the DRBEM solution in

Chapter 2. However, the dependence to the relaxation parameter is stronger for

DRBEM solution (for µ < 0.7 one cannot obtain the solution). In the DQM,

the solution can still be obtained for small values of µ but the accuracy drops.

Figure 3.6 shows maximum absolute errors with respect to values of relaxation

parameter µ at t = 5. It can be seen that as µ increases we obtain better

accuracy.
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Figure 3.6: Maximum absolute errors of the DQM+FDM solution at t = 5
for Problem 3.6.5 with different relaxation parameters

In Figure 3.7 we present the exact solution and the DQM solutions obtained by

FDM, LSM and FEM time integration methods at t = 12. LSM time discretiza-

tion gives still oscillations although FDM and FEM already reach steady-state

solution.
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Figure 3.7: Solutions of Problem 3.6.5 at t = 12
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In Table 3.5, one can see the maximum absolute errors obtained with the

DQM+FDM, DQM+LSM and DQM+FEM solutions at several time levels start-

ing from small ones reaching to steady-state. In order to obtain these results

5 grid points are used in each direction which is very small comparing to the

solution obtained by DRBEM in Chapter 2. The FEM is the method of choice

for time integration in DQM solution of initial and boundary value problems in

terms of accuracy since it is a direct method compared to FDM.

Table 3.5: Maximum absolute errors for Problem 3.6.5

Method t = 0.01 t = 0.1 t = 2.0 t = 5.0 t = 20.0
FDM 3.2×10−4 6.4×10−4 8.1×10−4 4.8×10−4 4.8×10−7
LSM 3.2×10−2 8.7×10−2 1.3×10−1 1.9×10−1 2.2×10−1
FEM 9.6×10−4 1.4×10−3 1.3×10−3 7.6 ×10−4 6.5×10−7

3.6.6 Nonlinear Wave Equation with p(u) =
3

2
(u3 − u)

The Cauchy problem defined by the nonlinear wave equation


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






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









∂2u

∂t2
=

1

2

∂2u

∂x2
+

3

2
(u3 − u) x ∈ (−∞,∞), t > 0

u(x, 0) = tanhx x ∈ (−∞,∞)

u̇(x, 0) = −sech2x x ∈ (−∞,∞)

(3.99)
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is solved with the combination of DQM and three time integration methods

FDM, LSM and FEM.

The exact solution of this equation is given in [73] as

u (x, t) = tanh (x− t). (3.100)

As in the Cauchy problems with reaction-diffusion equations, the relaxation

parameter is not much effective in FDM. The time step ∆t ≤ 0.01 can be used

in all the time integration methods. Higher values than this cause significant

accuracy drop.

In Table 3.6 the maximum absolute errors of the DQM solutions with three

time integration methods are given. For obtaining the solutions only N = 8

discretization points (CGL) are used in DQM. It can be observed from the table

that LSM achieves considerable accuracy increase for small time levels contrary

to Cauchy problems with reaction-diffusion equation.

For higher time levels all the time integration methods exhibit accuracy drop.

This may be due to the oscillatory behaviour of the wave equation. The FEM

time discretization does not give the expected accuracy as FDM and LSM. Thus,

LSM appears to be the suitable time integration method for Cauchy problems

defined by nonlinear wave equation.

Table 3.6: Maximum absolute errors for Problem 3.6.6

Method t = 0.01 t = 0.1 t = 0.5 t = 1.0
FDM 3.8×10−5 4.1×10−4 6.0×10−3 4.8×10−2
LSM 7.6×10−7 8.1×10−5 4.2×10−3 4.2×10−2
FEM 9.7×10−3 9.8×10−2 4.9×10−1 9.3×10−1
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3.6.7 Nonlinear Wave Equation with p(u) = u2 − u− u3

Another Cauchy problem defined by the nonlinear wave equation

ü =
∂2u

∂x2
+ u2 − u− u3 (3.101)

is considered. The initial conditions are taken appropriate with the exact solu-

tion [72]

u (x, t) =
3

2
(1 + tanh[

1√
3
(x− t

2
)])
−1/2

. (3.102)

The DQM solution with N = 8 CGL discretization points and the previously

mentioned time integration methods (FDM, LSM, FEM) are used and the maxi-

mum absolute errors are given in Table 3.7. ∆t = 0.1 is found to be suitable time

increment for all methods. It can be concluded that Cauchy problems defined

by nonlinear wave equation are better solved with the combination of DQM and

LSM, especially for small time levels.

Table 3.7: Maximum absolute errors for Problem 3.6.7

Method t = 0.01 t = 0.1 t = 0.5 t = 1.0
FDM 1.1×10−4 1.1×10−2 1.9×10−1 7.4×10−1
LSM 5.8×10−5 5.8×10−3 9.9×10−2 9.9×10−1
FEM 2.4×10−3 9.7×10−3 8.3×10−2 2.0×10−1
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3.6.8 Two-dimensional Nonlinear Wave Equation

The two-dimensional initial and boundary value problem for the nonlinear wave

equation

ü =
1

2

(

∂2u

∂x2
+
∂2u

∂y2

)

+ u5 (3.103)

is considered in the square region Ω = {(x, y) | 5 ≤ x ≤ 10, 5 ≤ y ≤ 10}. The
initial and Dirichlet type boundary conditions are taken consistent with the

exact solution [72] defined by

u(x, y, t) =
1

2
(
x2

4
+
y2

4
− t2

4
)−1/4 (3.104)

which is defined for x2 + y2 > t2.

For the DQM discretization of this problem, we use 5 CGL grid points in each

direction, thus totally 25 nodes in the region. As the time step, it is found that

∆t = 0.01 is the suitable choice for all time integration methods.

In Table 3.8, one can see the maximum absolute errors for the DQM solution of

the problem, obtained with FDM, LSM and FEM time integration methods at

several time levels. In this problem we are limited by the condition x2+y2 > t2,

thus, we stop our calculations at t = 5 before this condition is satisfied. The

superiority of LSM is kept over the other time integration methods at all time

levels also for the two-dimensional nonlinear wave equation as in the case of the

one-dimensional problem. It is noted that, for the boundary-value problem the

accuracy is better comparing to the one-dimensional Cauchy problems which is

due to lack of boundary conditions. The accuracy also drops at high values of

time.
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Table 3.8: Maximum absolute errors for Problem 3.6.8

Method t = 0.01 t = 0.1 t = 0.5 t = 2.0 t = 5.0
FDM 1.9×10−8 4.9×10−6 2.0×10−4 3.5×10−3 2.6×10−2
LSM 4.5×10−9 4.6×10−7 1.2×10−5 8.3×10−5 2.1×10−4
FEM 2.3×10−2 1.9×10−3 1.9×10−3 2.1×10−3 4.7×10−3

In Figure 3.8 the agreement of the exact solution with our solutions at several

time levels at the point (7.5, 7.5) is observed. The superiority of DQM+LSM

solution is noted in these figures. Moreover, the harmony between the behaviours

of the solutions with the exact solution is seen to be maintained in Figure 3.9

at the fixed time level t = 2.
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Figure 3.8: Solutions of Problem 3.6.8 for several time levels at the point
(7.5, 7.5)
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Figure 3.9: Solutions of Problem 3.6.8 at t = 2
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In this chapter, the Cauchy problems, and initial and boundary value problems

defined by the nonlinear reaction-diffusion and wave equations are solved by

using DQM in space and with three different discretization methods (FDM,

LSM and FEM) in time.

The resulting ordinary differential equations in time can be expressed in the

form

∂iu

∂ti
= Ãu+ b̃ (3.105)

after the DQM application and the linearization (i.e. taking the nonlinearity

always in the previous level). Here i = 1 or i = 2 corresponds to nonlinear

reaction-diffusion or wave equations, respectively. Clearly, Ã depends on the

spatial discretization DQM. In [14], it has been shown that for a stable DQM

solution of diffusion type equations, the real part of eigenvalues of Ã should

be negative or zero. For the problems considered in the thesis, it is checked

that the matrix Ã has eigenvalues with negative real parts. For the nonlinear

wave equation numerical instabilities may still occur for large values of time.

However, using CGL nonuniform gridpoints increases the accuracy even the

number of points is small [74].

For the Cauchy problems considered, the effect of relaxation parameter in using

FDM is not that pronounced. But for initial and boundary problems it achieves

a significant accuracy increase.

In the Cauchy problems defined by nonlinear reaction-diffusion equations we

are able to use quite large time steps in all the time integration methods. As a

result both FDM and FEM are the methods of choice giving more accuracy than

LSM (LSM needs more DQM discretization points to achieve the same accuracy

with FDM and FEM). The combination of DQM in space-FEM in time solution

procedure is preferred for the Cauchy problems.

For the two-dimensional initial and boundary value problems defined by the non-

linear reaction-diffusion equation, the positive effect of the relaxation parameter
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is realized in terms of accuracy. With the proper choice of relaxation parameter

both FDM and FEM are suitable time integration methods which can be used

with quite large time steps. As a direct method FEM is preffered to FDM.

In the Cauchy problems defined by the nonlinear wave equations, FDM and

LSM give almost the same accuracy whereas there is a certain accuracy drop

in FEM, when the same time step is used. As in the case of one-dimensional

Cauchy problems defined by reaction-diffusion equation the relaxation parameter

in FDM is not that important. Still the combination of DQM and LSM appears

to be much suitable and it does not need very small time increment.

For the two-dimensional initial and boundary value problems defined by the

nonlinear wave equation the same observations are obtained as in the Cauchy

problems. The DQM with FDM and LSM give almost the same accuracy in

terms of maximum absolute errors. And as a direct method DQM with LSM is

the method of choice.
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CHAPTER 4

CONCLUSION

This thesis is devoted to the numerical solutions of nonlinear reaction-diffusion

and wave equations.

First, the numerical solutions of the initial and boundary value problems defined

by the nonlinear reaction-diffusion and exterior wave equations are presented.

The dual reciprocity boundary element method (DRBEM) is used to discretize

the spatial partial derivatives. To do so, fundamental solution of Laplace equa-

tion is used; the nonlinearity and the first and second order time derivatives in

the nonlinear reaction-diffusion and wave equations, respectively, are taken as

the nonhomogenity. The DRBEM is preferred, since it is suitable for the infinite

regions and gives the flexibility of using fundamental solution which corresponds

to a simpler part of the original equation (in the thesis the Laplace equation).

The right-hand side is approximated using the linear radial basis functions in

the solution of nonlinear reaction-diffusion equation. For the nonlinear wave

equation defined in the exterior of an obstacle three different kinds of radial ba-

sis functions are used; linear, rational and exponential. The latter two types are

known to be suitable for the problems defined in infinite domains. The DRBEM

application to the space derivatives ends up with a system of initial value prob-

lems in time which is first and second order for the nonlinear reaction-diffusion

and wave equations, respectively. To solve these system of ordinary differential

equations (ODE), three different time integration methods are used, finite dif-

ference method (FDM), least squares method (LSM) and finite element method

(FEM). The comparison among the methods is made in each case in terms of
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accuracy. An explicit FDM (Euler Method) is used. Since explicit methods may

lead to unstable results and need very small time increments, a relaxation pro-

cedure, which is a linear approximation in time for the variation of the solution,

is used for the solution. In all time integration methods the nonlinearity is taken

in the previous time step, and thus the application of the above mentioned time

integration methods results with a system of linear algebraic equations. The

FDM and LSM give the solution at the required time level iteratively whereas

FEM does not need any iteration, and gives the solution at once. However, since

we solve the nonlinear problems and the linearization is made by taking the non-

linearity in the previous time level, we prefer to divide the whole time interval

into time blocks, and solve the system in each block using the information from

the previous block.

The methods are tested with the initial and boundary value problems defined

by the nonlinear reaction-diffusion as well as the system of nonlinear reaction-

diffusion equations, and the nonlinear wave equations. The first test problem

(The nonlinear reaction-diffusion equation) shows that the solutions obtained

with the combinations of DRBEM and FDM, DRBEM and FEM reach almost

the same accuracy at steady-state, which is higher than the one obtained by

the DRBEM and LSM solution. In the previous studies and also in the thesis

it is observed that comparing to the FDM and FEM, LSM needs larger time

increment. However, for the same (larger) value of the time increment the

superiority of the FDM and FEM are still preserved. Since FDM needs the

optimal value of the relaxation parameter to obtain the best accuracy and needs

more iteration, FEM is found to be the method of choice. The application to the

system of nonlinear reaction-diffusion equations also supports the superiority of

FEM over the other time integration methods. The last two test problems in

this chapter do not have exact solutions. The third problem is the well-known

Brusselator system given in terms of nonlinear reaction-diffusion equations, and

the expected behaviour of the solution is seen to be satisfied by all the time

integration methods combined with DRBEM. The last problem is defined in the

exterior of a circle and the suitability of the DRBEM to the infinite domains

is made use of. The FDM and LSM are used as the time integration methods.
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The linear radial basis functions are once more seen to be not suitable for the

infinite domains, and it can only be used by the FDM with the optimal value of

relaxation parameter for points not very far from the obstacle. The oscillatory

and the blow up behaviours for the linear and nonlinear cases, respectively, are

caught by both methods.

In the second part of the thesis, the solutions of the one-dimensional Cauchy

problems, and the two-dimensional initial and boundary value problems defined

by the nonlinear reaction-diffusion equations are presented by using differen-

tial quadrature method (DQM). The DQM is preferred for the one-dimensional

Cauchy problems since it may be used without the need of boundary conditions.

The DQM has also the advantage of giving accurate results with a very small

number of discretization points comparing to other methods. For the discretiza-

tion of the domain the Chebyshev-Gauss-Lobatto (CGL) points are used which

are known to lead more stable results comparing to uniform meshes. The ob-

tained system of initial value problems in time are then solved using the same

time integration schemes (FDM, LSM and FEM). The nonlinearity is taken at

the previous time level in each case to obtain a linear system of equations.

In the applications, several test problems for the one-dimensional Cauchy prob-

lems and initial and boundary value problems defined by the nonlinear reaction-

diffusion, and the wave equations are used to be able to have accurate results

and for the comparison of the methods. The results for the test problems for

the Cauchy problems defined by the nonlinear reaction-diffusion equations show

that the relaxation parameter in using FDM is not that pronounced. It gains

importance for the initial and boundary value problems. It is observed that

as the nonlinearity gets stronger, the methods need smaller time increments to

achieve the prescribed accuracies. The results show that FDM and FEM are the

methods of choice with almost the same accuracy for these kinds of problems.

Even though the effect of the relaxation parameter is not as that much strong

as in the DRBEM solution, the relaxation parameter effects the accuracy of the

DQM solutions in the case of two-dimensional initial and boundary value prob-

lems. For the DQM solution of the two-dimensional nonlinear reaction-diffusion

equation with the mentioned time integration methods the FDM and FEM are
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found to have almost the same accuracy, which is higher than the accuracy ob-

tained with LSM. The results support our previous observations for these kinds

of problems, namely for the nonlinear reaction-diffusion equations the time inte-

gration method FEM is found to be the method of choice in terms of accuracy.

Note that the FEM does not need any parameter to determine for obtaining the

solution, and needs less iterations (the iteration is just made among the time

blocks).

For the one-dimensional Cauchy problems as well as the two-dimensional ini-

tial and boundary value problems defined by the nonlinear wave equations, the

superiority of the time integration methods is completely different, and FEM

looses its attractiveness for these kind of problems. FDM and LSM are seen to

be superior in terms of accuracy comparing to FEM. Thus, as a direct method,

needing no parameter, LSM time integration scheme, is found to be the method

of choice for the problems defined by the nonlinear wave equations.

This thesis gives the DRBEM and DQM solutions of nonlinear reaction-diffusion

and nonlinear wave equations when each method is combined with FDM, LSM

and FEM time integration schemes. These methods for solving time dependent

system of ODEs are deeply compared in terms of accuracy. The combinations

of these solution procedures are the original contributions for solving IBVPs

defined by nonlinear reaction-diffusion and nonlinear wave equations.

The thesis involves nonlinearities in reaction-diffusion and wave equations in

terms of added functions of solutions to the equations. The DRBEM and DQM

solution procedures are not directly applicable when the nonlinearity is included

in the diffusion operator. Future researches and studies should concentrate on

these type of nonlinearities, and use the advantages of DRBEM and DQM.
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