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ABSTRACT

DEVELOPMENT OF A FAST ANALYTICAL METHOD FOR
PREDICTION OF PART DYNAMICS IN MACHINING STABILITY
ANALYSIS

Alan, Salih
M.S., Department of Mechanical Engineering
Supervisor: Prof. Dr. H. Nevzat Ozgiiven
Co-Supervisor: Assoc. Prof. Dr. Erhan Budak

September 2009, 87 pages

The objective of this study is to develop and implement practical and
accurate methods for prediction of the workpiece dynamics during a
complete machining cycle of the workpiece, so that FRFs of the workpiece
can be used in chatter stability analysis. For this purpose, a structural
modification method is used since it is an efficient tool for updating FRFs
due to structural modifications. The removed mass is considered as a
structural modification to the finished workpiece in order to determine the
FRFs at different stages of the process. The method is implemented in a
computer code and demonstrated on representative parts such as turbine
blades. The predictions are compared and verified with the data obtained
using FEA. The FRFs are used in chatter stability analyses, and the effect of

part dynamics on stability is studied.

Keywords: Chatter Vibrations, Chatter Stability, Structural Dynamics,

Structural Modification, Finite Element Formulation.
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Oz

METAL ISLEMENIN KARARLILIK ANALIZINDE PARCA
DINAMIGININ TAHMINI ICIN HIZLI ANALITIK BIR YONTEMIN
GELISTIRILMESI

Alan, Salih
Yiiksek Lisans, Makine Miihendisligi Boliimii
Tez yoneticisi: Prof. Dr. H. Nevzat Ozgiiven
Yardimci tez yoneticisi: Dog. Dr. Erhan Budak

Eyliil 2009, 87 sayfa

Bu c¢alismadaki amag, metal islemede, bir parcanin biitiin isleme
cevrimindeki dinamiginin tahmin edilmesi igin pratik ve dogru
yontemlerin gelistirilmesi ve uygulanmasidir. Bu amagla, yapisal
degisimden etkilenen FTF'lerin yeni degerlerinin bulunmasinda verimli bir
arac¢ olan bir yapisal degisim yontemi kullanilmigtir. isleme esnasindaki
kiitle  kaldirilmasim1  islenen parcadaki yapisal degisim olarak
degerlendirerek, farkli isleme asamalardaki FTF’ler hesaplanabilir. Yontem,
bir bilgisayar yazilimiyla gergeklestirilmistir ve tiirbin kanatciklar1 gibi
tipik parcalarda uygulanmistir. Teorik sonuglar, sonlu elemanlar
analizinden elde edilen sonuglarla karsilastirilmis ve dogrulanmistir. Bu
FTF’ler kararlilik analizlerinde kullanilmis ve parca dinamiginin kararlilik

tizerindeki etkisi incelenmistir.

Anahtar kelimeler: Tirlama Titresimleri, Tirlama Kararliligi, Yap:

Dinamigi, Yapisal Degisiklik, Sonlu Elemanlar.
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CHAPTER 1

INTRODUCTION

1.1 Objective

Machining vibrations develop due to the relative motion between the tool
and the workpiece. Even though both tool and workpiece may contribute to
the relative displacement, in general, only the dynamics of the tool is
considered in the stability analysis, and the dynamics of the workpiece is
neglected. Although this can be considered as a valid approach for cases
where the workpiece is much stiffer than the tool, for cases where the
workpiece is relatively flexible, part dynamics should also be taken into
account in the calculation of the frequency response functions (FRF). For
those cases neglecting the effect of part dynamics may result in significant

errors in stability predictions.

For a flexible workpiece, FRFs of the part are required to be known for all
stages of the machining cycle. Part dynamics prior to and after machining
can be determined by experimental techniques or finite element analysis.
However, it would not be practical to use these methods for each stage of
manufacturing as the part geometry, and thus the dynamics, vary
continuously. In this study, a structural modification technique is employed
to predict the part dynamics during a complete machining cycle. In the

method applied, the effect of removed material on the workpiece dynamics

1



is considered. Based on the practical methodology presented, chatter
stability analysis and predictions can be performed more accurately by

considering the complete structural dynamics in a machining system.

1.2 Literature Review

Chatter is undesired self-excited vibrations between the machine tool and
the workpiece. It may yield important problems like poor surface finish,
tool wear and fracture, damage to the machine and lower productivity.
Previous research revealed that there are two basic reasons for chatter:
regenerative effect and mode coupling effect. The regenerative chatter can
be explained as the vibration induced by the phase shift between the
surfaces generated in successive passes on the same surface [1]. Mode
coupling effect is present for the cases in which there are relative motions
between the tool and the part in two directions [2]. Since the stability limit
for regenerative chatter is lower than the one for the mode coupling,

regenerative chatter is considered in machining stability analyses.

The theory of prediction of chatter vibration was established by Tobias and
Fishwick [3, 4]. For the turning chatter problem, they built a mathematical
theory and proposed the stability chart approach which gives the stability
conditions for a given cutting system. Later, the regenerative effect was
modeled using the feedback control theory by Merritt [5] and stability
boundaries of the cutting process were calculated. Application of the
receptance function to chatter prediction was offered by Tlusty [6]. He used

the receptance of the motion between the tool and the workpiece, and



developed a stability law for orthogonal cutting, which gives the limit of

axial depth of cut without chatter for different cutting speeds.

The mechanics for milling is much complicated than other processes, since
as the cutting tool rotates, the directions of the loadings and the vibrations
change. Minis and Yanushevski [7, 8] formulated the chatter in milling
using the Floquet’s theorem and Fourier series and determined the stability
limits numerically using Nyquist stability criterion. Altintas and Budak [9-
11] presented an analytical frequency based method for the stability
prediction of milling and applied this method to predict the stability of

different milling systems.

Stability lobe theory is developed as a remedy for the chatter problem. In
this theory, the chatter stability is predicted by analytical methods. The
stable depths of cut are calculated for different spindle speeds and stability
lobe diagram is plotted. The equation for the limiting depth of cut, i.e. the

maximum chatter-free depth of cut, is given in by Tlusty [2] as:

-1
Y = 5K, Re(G(a))

(1.1)

where Ks is the cutting force coefficient in the chip direction, relating the
cutting force and the cutting area, and G(w) is the FRF of the system. If the
part dynamics is neglected, the FRF of the tool point is directly taken as
G(w) . However; if the flexibility of the workpiece is considered, the FRF of
the system is calculated by the addition of the tool point FRF and the

workpiece FRF at the contact position [12, 13]:



[G(@)]=[Guar (@) + Gronpiece (@) ] (1.2)

The tool point FRF can be obtained by analytical methods or by
experimental techniques. Analytical methods to predict the dynamics of the
spindle-tool holder-tool system have been developed in detail in recent
studies by Ertiirk et al. [14-17]. Experimental modal analysis can also be

used to obtain the tool dynamics.

The effect of the workpiece dynamics to chatter is investigated by several
researchers. Bravo et al. [12] and Thevenot et al. [18, 19] demonstrated that
for thin-walled structures, part dynamics affects the stability. They
proposed the three-dimensional stability lobe diagram, third dimension
being the steps of the machining or the tool position. The stability lobe for
the intermediate stages of the machining are plotted to obtain the 3D
stability diagram. Le Lan et al. [20] used the finite element method to
determine the stable depths of cut over a machining process and showed
them on a color axis called stability map. A model considering the effect of
part dynamics during milling was developed by Mafié et al. [21] and they
optimized the productivity by controlling the spindle speed during
machining. Weinert et al. [22] studied the five-axis milling process in time
domain and modeled the workpiece by finite elements. The material
removal effect has been introduced to chatter stability by Atlar et al. [13].
They modeled the workpiece as a beam and revealed the change of

dynamics and therefore the stability as the workpiece is machined.



In this study, structural modification method is applied in order to take the
effects of material removal into account. Structural modification is used to
obtain the change in the dynamics of an original system if it is modified by
a modifying structure. There are two types of structural modification
problems: direct problem and inverse problem [23]. In the direct problem,
the intention is to determine the dynamics of the structure after
modification and the procedure is straightforward. The inverse problem, on
the other hand, aims to determine the necessary modification to obtain a

defined modified system.

In this work, part dynamics is required to be predicted during a machining
cycle. The dynamics of the original and the modifying structures are known
and that of the modified structure is sought, so the problem in hand is of

direct type.

Direct structural modification, also named reanalysis, is practical to be used
in design processes. Design alternatives with different modifications to an
original structure may be too difficult to analyze with experiments and
finite element methods. Using reanalysis, for a known original system
dynamics, the design alternatives can easily be resolved and the dynamics

of modified systems can be obtained.

Ozgiiven [24] developed an exact and general method for structural
modifications using frequency response functions. The method is
applicable even for cases with additional degrees of freedom due to
modification. The input for the method is the FRFs of the original system

and the dynamic properties of the modifying structure. The FRFs of the



modified structure are obtained as the output of the method. For machining
stability analysis, the FRF of the workpiece at each step is required to be

known, so the method mentioned is applicable, since it is FRF based.

Structural modification will be applied with additional degrees of freedom
in this study. The workpiece will be modeled by finite element method as
three-dimensional solids. The dynamic properties of the modifying
structure include the mass and stiffness matrices of the material added.
These matrices will be calculated during modification using the geometries
of the elements in the added material. Mass and stiffness matrices of 3D
linear brick elements are derived by applying the general procedure given
by Cook et al. [25]. Numerical integration will be performed to calculate the
integrals in the procedure. The sampling points for the 3D tetrahedral solid

elements are taken from the book of Macneal [26].

1.3 Scope of the Thesis

The outline of the dissertation is given below:

In Chapter 2, the theoretical background of the study is presented. First, the
structural modification technique used will be introduced and the theory of
the method will be given briefly. Then, the modeling of two finite elements,
the eight node hexahedral element and the ten-node tetrahedral element,

will be shown.

In Chapter 3, the procedure of predicting the part dynamics by using the

structural modification method will be given. The steps in the procedure



will be explained in detail. The procedure will be applied to parts with
different geometries to show the prediction accuracy of the method

employed.

In Chapter 4, the effects of part dynamics on machining stability will be
examined for a case study in three axis machining. Machining stability
analysis will be performed for different cutting strategies for the predicted

part dynamics. The strategies will be compared for productivity.

In Chapter 5 machining stability analysis for a case study in five axis
machining will be performed for predicted workpiece dynamics. Different

strategies will be compared for productivity in five axis machining.

In the last chapter, the results will be discussed and suggestions for future

work in the field will be given.



CHAPTER 2

THEORY

2.1 Structural Modification with Additional Degrees of Freedom

In this section, the structural modification method with additional degrees
of freedom will be introduced. The formulation of the method employed

will be given briefly and the implementation in Matlab will be presented.

2.1.1 Matrix Inversion Method

Matrix Inversion Method is an FRF based structural modification method
developed by Ozgiiven [24]. Using the FRFs of the original system and the
dynamic structural matrix of the modifying system, the FRFs of the

modified system are calculated.

Two different formulations are given in this method. The first one is
applicable for structural modification without adding new degrees of
freedom. The second one is for the systems which have additional degrees
of freedom due to the modification. In this work, structural modification
with additional degrees of freedom is used, since without adding new
nodes, it is not practical to model the material removal from the workpiece

in the machining steps.



The formulation of the structural modification with additional degrees of
freedom is given below. The equation of motion for a dynamic system can

be written as:
[MI{x}+i[H]{x}+ [K]{x} = {F} (2.1)

In the above equation; [M], [H] and [K] denote the mass, structural
damping and stiffness matrices of the system, respectively. {F} and {x}
vectors are the generalized force and coordinate vectors. The response {X}
of the system to a harmonic force {F} with frequency @ can be expressed

as:

() =[[K]- o [M]+i[H]]{F) 22)
The receptance matrix, [«], is defined by:
[a] =[[K]- & [M]+i[H]] (2.3)

A structural modification to the original structure may be represented by

the modification matrices, [AM], [AH] and [AK]. Dynamic structural

modification matrix, [D] , can be written as:
[D]=[AK]-@’[AM]+i[AH] (2.4)

The receptance matrix, [ }/] , of the modified structure is in the form of:



[]=[[[K]+[aK]]-? [[M]+[aM]]+i[[H]+[aH]]] 2.5)

The coordinates of the modified structure can be divided into three groups.
The first group, (a), involves the unmodified coordinates of the original
structure. The second group, (b), is the group of coordinates which are
contained by both the original and the modifying structures. The
coordinates in the third group, (c), are the ones which belong only to the
modifying structure. Using this classification, equations (2.3) and (2.5) can

be rewritten as follows:

-1
[a]lz{Z:a Zﬂ =[K]-*[M]+i[H] (2.6)
Vaa Ya Va B [0[]_1 0 000
Yoo Yoo Ve | = 0]+]0 D] (2.7)
7ca ycb 7cc 0 0 0 O

Note that in the above equations, ¢; and y; are submatrices of [«] and [y],

respectively. If equation (2.7) is pre-multiplied by

and post-multiplied by [y], the following equation can be obtained:

10



o] [1 0 0 0 [am OJD]

[“]0=0|0[]+o o 0] - |[7] (2.8)
00 I oooy o{o J'[D]y

Equation (2.8) can be operated to obtain the following equation:

Vha Voo Toe
Oaa Uy 0 Yaa Tab Vac [aab O].[D]|:b:| [aab O].[D]|:7/bb 7bj|
cb cc

s Py 01=|7a oo Toe |

T S e s e

2.9)

The relations (2.10) and (2.11) are used to obtain the equations (2.12) to
(2.15) from (2.9):

ool ) %]
o ol ] o
[ S el 2]
o k% el el

(el 0] 7™ |-fan @14

11



Too  7he
b Vac +» O[|D =|la,, O 2.15
o vl 0f0] 7 7% fa, 0 219

The parts of the receptance matrix of the modified structure are obtained as:

e T{ls ol et ] oo
e Sl e T ot

[l =[au] [ : °”D]m 2.19)

Vo ¢ Vel=low 0]{[I]—[D]{7 > ﬂ (2.19)

j/cb 7cc

In the above formulation, only a single matrix inversion is necessary. The
order of this matrix is equal to the degree of freedom of the modifying
structure and it is generally much less than the degree of freedom of the
modified structure. Note that the computation effort for matrix inversion
becomes extremely high if the size of the matrix increases. Therefore, the

proposed method brings computational efficiency for local modifications.
2.1.2 Implementation of the Method

The formulation described above is implemented in the software Matlab
using two functions. The first function is the organization function. In this

function, the matrices [«] and [D], and the node numbers relevant to the

12



degrees of freedom of these matrices are taken as input. The intersecting

nodes in the two node vectors are found. The elements of the [a] matrix for

the coordinates on the intersecting nodes must be on the lowermost rows
and rightmost columns. Similarly, the elements related with the intersecting

coordinates of the [D] matrix must be on the topmost rows and leftmost

columns. The matrices are reorganized to be ready for the matrix
operations. The second function, i.e. the calculation function, directly
applies the equations (2.16) through (2.19) and calculates the components of

the FREF, [ }/] , of the modified structure.

2.2 Finite Element Modeling of Basic Solid Elements

This section presents the modeling of two solid finite elements, the eight-
node hexahedral element and the ten-node tetrahedral element. The
stiffness and mass matrices of these elements will be obtained as the
outcome of the modeling. These matrices will be used in the structural
modification procedure which represents the machining process of three-

dimensional workpiece.

2.21 Eight-node Hexahedral Linear Solid Element

The element is also known as eight-node brick element. The stiffness and
mass matrices of an eight-node linear solid element will be obtained in this

section. The degree of freedom of the element is 24, with three orthogonal

translational displacement freedoms at each of the eight nodes.

13



The stiffness matrix of a three-dimensional structure is given as [25]:
[K]=[[B] [E][B]dv (2.20)
Vv

Here, [B] is the strain-displacement relation matrix for 3D elastic body and
[E] is the elasticity matrix. The elasticity matrix of an isotropic element in

3D can be written as:

(1—v) v v 0 0 0
v (l—v) v 0 0 0
v (1—v) 0 0 0
1-2v
[E]=E| O 0 0 >~ ¢ 0 2.21)
0 0 0 0o =%
2
0 0 0 0 0 =%
L 2 |
where
- & (2.22)

(1+v)(1-2v)
E and v are the modulus of elasticity and the Poisson’s ratio, respectively.

The strains, {8} , and the displacements of the structure, {A} , are related to

each other with the strain-displacement matrix [B] as:

14



{e} =[B]{A} (2.23)

The strain matrix in 3D is in the form of;

(e} =1" (2.24)

The displacement matrix in 3D can be written as:
u

{A}=1v (2.25)
w

where U, v and w are the displacements in X, y and z directions,

respectively. The strain-displacement matrix has the form:

9 5 o 2 o 9
OX oy 0z
B =0 £ o 2 2 o (2.26)
oy ox oz
o 0o & o 2 9@
i 01 oy OX |

The displacement of a point on the element can be expressed using the
shape functions and the nodal displacements. Using the same shape

functions in three directions, the displacement vector can be written as:

15



T
HZ

(2.27)

where [ 67 | =(u;,V;,W,,...,Us, V5, W, ) . From equations (2.23), (2.24), (2.26) and

(2.27) the matrix [B] can be expressed as:

Ay o M M
OX OX OX
0 % 0 0 N,
oy oy
0 0 N, 0 0 N,
[B]: 0z 0z
NN g o Mo
oy  oX oy
0 % N, 0 0
oz oy
% 0 ON, ON, ONg
| oz ox oz oz

ON,
OX
ONg
0z

ONg
0z

oN,

oN,

oX |

(2.28)

The 3D isoparametric element, shown in Figure 2.1 is used in the

formulation. This element is superior to be applied to different geometry.

The edge lengths and the angles between the edges in the element can be

different.

16



z 5

Figure 2.1. 3D isoparametric solid element

Using the global coordinate system, it is very difficult to model and analyze
the elements with irregular geometry. To simplify the geometry and the
analysis, the natural coordinate system is introduced. The 3D solid element

in the natural coordinates is shown in Figure 2.2.

Figure 2.2. The 3D solid element in natural coordinates

The element matrices are obtained using the natural coordinates.
Numerical integration is used to calculate the volume integrals and it is

easy to perform numerical integration in natural coordinates.

17



For isoparametric elements, the relation between the global and natural

coordinates is given as follows:

8

=2 XN (&) Y= N (6. €, =2 2N (61.) (2.29)

1

where (X;,Y;,Z) are the nodal coordinates in the global coordinate system.
The same shape functions N, are used to express both the coordinates and

the displacements in the isoparametric element. The shape functions in the

natural coordinates —1<¢&,7,¢ <1 are:

N, = 5(1-£)(1-7)(1+¢)

N, =(1-£)(1-7)(1=¢)
N, = 5(1-£)(L+7)(1-¢)
N, =2 (1-¢)(L+7)(1+¢)
. (2.30)
N, = §(1+ E)(1-7)(1+¢)
N, =5 (1+£)(1-n)(1-¢)
N, =5(1+)(1+7)(1=¢)

N8:%@+SXLHﬂ@+C)

The value of the shape function N, is unity at the i" node and zero at the

other nodes of the element. The variables of the integral of the stiffness

matrix can be changed to natural coordinates as:
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[K]=[[B] [E][B]dxdydz jH[B | [E][B]det[I]dédnds (2.31)

Here, [J] is the Jacobian of the transformation between the global and

natural coordinates. The determinant of the Jacobian matrix in the integral
can be considered as a factor that scales the volumes in two coordinate
systems. To procure [B] matrix, the derivatives of the shape functions with
respect to the global coordinates (0N;/0x, etc)) are required. The

transformation between the coordinate systems is given as follows:

0 0
¢ X
0 0
—=|I = (2.32)
ar Pl
0 o
o¢ 0z
The elements of the Jacobian matrix are:
oy @
o0& o0& o
)= & ¥ @ (2.33)
on on 0n
x y a
| 0¢ 0¢ 0¢ ]

Using equation (2.29), the derivatives of the global coordinates with respect

to the natural ones can be obtained:
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X & N oy ¢

- = X —, ——= —

on 21:77 on izﬂ:y@n on = 'on
ﬁ:ix%, ﬂ:iy%, E:izi%

Inverting equation (2.32), the following equation can be obtained:

2
o¢
0
on
9
o¢

R o Qo R

(2.34)

(2.35)

The derivatives of the shape functions in the natural coordinates can be

obtained analytically for N, as follows:

Tr =g ). T £)(10). T2 = (- £) )

(2.36)

The derivatives for the other shape functions can be written in the similar

form. The matrix [J], however, has to be inverted numerically. The

integration in equation (2.31) can be calculated to obtain the stiffness matrix

of the eight node hexahedral element. The Gauss quadrature is used as the

numerical integration method:
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(2.37)

i=1 §i77i§i

Il
4N
Il
JUN

where m is the number of sampling points, H; are the weighting factors for

the i" point and &,7,,¢

are the coordinates of the sampling point. [B] and
det[J] have to be calculated at each sampling point. Two points integration

in each direction is necessary for convergence. The reason is that the

determinant of the [J] matrix has quadratic terms and therefore the order
of the integrand is 2, assuming small element sizes and so constant [B]

matrix. 2x2x2 integration is performed for three-dimensional integration.
The integration points are Pi(ill \/§,i1/ \/§,i1/ \/5) and the weighting

factors are H,=1. The stiffness matrix can be obtained by numerical

integration at the eight points described.

Since linear shape functions are used in the formulation, parasitic shear
occurs in the element modeled. This causes the element be too stiff in
bending. This problem can be surpassed by adding the missing modes as
internal freedoms to append quadrilateral terms to the displacement

expression [25]:

U= Y Ny +(1-¢)a +(1-n?)a, +(1-¢)a,
v=_§8: N +(1-£%)a, +(1-n")a +(1-¢7)a (2.38)
w=Y Nw +(1-&)a, +(1-7°)a, +(1-£%) 3,

i=1
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where a, are the nodeless degrees of freedom. With the inclusion of

internal freedoms, the elemental equation can be written as:

i el )

Here, {a} is the nodeless degrees of freedom vector with nine elements,
and the matrices [K,,], [K,] and [K,,] contain quadratic terms. Note that
{6} is the nodal displacement vector with 24 elements. Since {u} vector has
now 33 terms, the size of [B] matrix is 6x33. Using static condensation [25],

the nodeless degrees of freedom can be eliminated to have the elemental

equation in the form:
[Ke J{6}=1Q} (2.40)

where [Kée] is the new elemental stiffness matrix and can be obtained by:

[K;eil - [[Kee]_ [Kea][Kaa ]71[Kae } (2.41)

The new element was tested for different geometries in which the edges are
in orthogonal directions and observed to have the same stiffness matrix
with the one obtained from the finite element program Ansys, which

verifies the modeling of the finite element.

The mass matrix of a three-dimensional structure is given by [25]:
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[M]:Jp[N]T[N]dV (2.42)

where p is the mass density and [N] is the shape function matrix. As

performed in stiffness matrix calculation, Gauss quadrature with eight

points over the volume can be used to obtain the elemental mass matrix:
1 el pl 8
[M]=]_[.[,P[N] [N]det[3]dednds = ;(p[N]T [N]det[3]), (2.43)

The mass matrix of the element model using the described formulation is

the same as the mass matrix of the same element modeled in Ansys.

2.2.2 Ten-node Tetrahedral Linear Solid Element

The degree of freedom of the element is 30, with three orthogonal
displacement freedoms at each of the ten nodes (Figure 2.3). The procedure
applied to model this element is similar to the one for the eight-node brick
element. Equations (2.20 - 2.26) are valid for the ten-node tetrahedral

element as well.

8

)
£

Figure 2.3. Ten-node tetrahedral solid element in the natural coordinates

23



Using the 30 degrees of freedom, {§T}:(ul,vl,wl,...,ulo,vlo,wlo), the

displacement vector can be written as:

10
> Ny,
- N, 0 0 N, ... Ny 0 0
{A}=12 Ny, =/ 0 N, 0 0 N, N, 0 [{5} (2.44)
o 0 0 N 0 0 N, Ny
ZNiWI
i=1

Equations (2.23), (2.24), (2.26) and (2.44) lead to the strain-displacement

matrix:

N,
| Oz

ON,
0z
ON,

N,
OX

ON,
0z

ON,,

OX

oN,
0z

ON,,

oy

ON,,

0z

ON,,

OX

ON,,

0z

ON,,

0z

ON,,

ON,,
ox |

(2.45)

The relation between the global and natural coordinates is the same as in

equation (2.29), with the exception that there are ten nodes at present:
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= XN (&) ¥ N (6 € =2 2N, (£1.) (2.46)

The shape functions for the tetrahedral element are:

s=45(1-¢-n-¢) (2.47)
4

The definition of the Jacobian is the same as in hexahedral element. The
derivatives of the shape functions in the natural coordinates can again be
taken analytically. Numerical integration will be applied to calculate the
integral of the stiffness matrix. Macneal [26] suggested four-point

integration to approximate the volume integral of the tetrahedral element.

Table 2.1. Integration points for the tetrahedral element [26]

E [ [ ¢ [weight
a | p | B |14
g« | B [
f B |« [
BB [
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where a=(5+3\/§)/20=0.58541020 and 3= (5-/5)/20=0.13819660.

The stiffness matrix of the tetrahedral element is calculated with the
procedure described. It is observed that the calculated stiffness matrix for
the tetrahedral element is the same as the stiffness matrix of the element
modeled in Ansys. Similar procedure is followed to obtain the mass matrix

of the element.
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CHAPTER 3

THE PROCEDURE OF PREDICTING THE WORKPIECE DYNAMICS

BY STRUCTURAL MODIFICATION

In this chapter, the algorithm of the workpiece dynamics prediction
procedure developed and the application of this procedure to case studies
will be presented. The computer programs used in the procedure are Ansys
and Matlab. The machined workpiece is modeled with Ansys in order to
obtain the dynamics of the workpiece for the final state of machining. Part
dynamics at different stages of the machining is predicted by using Matlab.
The procedure can be divided into three steps as:

e Geometric and finite element modeling

e Modal analysis and FRF extraction

e Structural modification and FRF prediction

The programming for the implementation of the method built up will be

explained thoroughly.

3.1 Geometric and Finite Element Modeling of the Workpiece

The geometry of the workpiece is an input for the procedure. Part geometry
must be defined for each stage where the dynamics is required to be

predicted. Each volume removed between two successive stages is modeled

27



separately. The geometry of the workpiece can be modeled by using a CAD

software or it may be modeled on Ansys.

All the volumes obtained in geometric modeling are glued in Ansys. Gluing
the volumes provides rigid coupling between them. At the same time, the
stages of the dynamic prediction are obtained as intermediate steps of the
machining procedure. The unmachined model is meshed using three-
dimensional solid elements. The data obtained by meshing are saved to be
used in the following steps. These data include the element numbers on
each volume, the node numbers on each element and the coordinates of

each node.

3.2 Modal Analysis and FRF Extraction for the Initial Model

Modal analysis is performed for the machined workpiece geometry. The
natural frequencies and the corresponding mode shapes are extracted and

saved to be used in the calculation of the FRF of the machined workpiece.

The data obtained from the modal analysis are used to calculate the FRF of

the machined geometry. The elements of the FRF, «;, can be written in

terms of the natural frequencies, ®,, and the mode shapes, {¢r}, as in the

following equation:

i

2 H 2
r=1 a)r - +|7/ra)r

(3.1)
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where o is the frequency for which the elements of the FRF are calculated

and y, is the damping coefficient of the r" mode.

While calculating the FRF, some degrees of freedom can be considered as
redundant degrees of freedom. If no more modification is to be applied on a
degree of freedom, and also the dynamics about it is not required to be
known, then it is not necessary to keep the element of the FRF matrix for
this degree of freedom. For the initial state of the procedure, i.e. for the
machined geometry, there will not be any modification on the degrees of
freedom which are not common with the volumes machined. If it is not
necessary to know the dynamics of these degrees of freedom for the
machining stability analysis, the elements of the FRF related to these

degrees of freedom are redundant.

3.3 Prediction of the Workpiece Dynamics at Different Machining

Stages by Structural Modification

Structural modification is implemented in the software Matlab. The details
of the method are given in Chapter 2. The data related with the machining
cycle have been obtained from Ansys and saved in the previous steps.
These data are the inputs for this step. The volumes removed during
machining are added to the machined geometry, in a reverse order.
Following the procedure presented in Chapter 2, the element matrices are
obtained in Matlab by using the material properties and the geometry of

the element.
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For each volume, the elements can be added one by one, or as a group. The
computation time depends on the number of elements added at each step.
For lower number of elements per addition, more modification steps are
required; hence the number of computation is higher. If the number of
elements added at each step is increased, the number of computation
decreases. However, as the number of elements added increases, the size of
addition matrices increases. In the structural modification method used, the
dynamic matrix of the addition element is inverted. The time for inversion
and also the time for assembling the dynamics matrix become important as
the size of the addition matrices increases. To minimize the computation
time, for a frequency value, the structural modification procedure is
applied for different number of elements added at each step. For the whole
frequency range, the number of elements that gives the minimum

computation time is used.

3.4 Case Studies

The procedure described above is applied to different geometries. The

details of the geometries and the results of the procedure are given below.

3.41 Geometry1l

The first geometry is a simple one. The initial geometry shown in Figure 3.1

is a cube of sides 5 mm each and it is modeled in Ansys. An identical cube is

added as modification from one side.

30



Figure 3.1. Initial and modified structures for geometry 1

Ten-node tetrahedral elements are used to mesh the geometry. The meshes

of the models are given in Figure 3.2.

Figure 3.2. Mesh model of geometry 1.

The details of the model are listed in Table 3.1.

Table 3.1. Details about geometry 1

Modulus of elasticity (GPa) 200
Poisson’s ratio 0.3
Density (kg/m?3) 7800
Number of nodes 425
DOF of initial model 582
Number of elements added 100
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The initial cube is fixed from one of its faces (Al in Figure 3.1). Modal
analysis is performed for this model in Ansys and the outputs of the modal
analysis are saved to be used in FRF extraction. The FRFs of the initial
model are extracted in Matlab for different frequencies, and the elements of
the second cube are added to these FRFs as modification. The model with
two cubes is also analyzed in Ansys and the first two natural frequencies
for this model are determined to be 35751 and 35761 Hz. The modification
procedure is applied in a frequency range near these two frequencies. The
FRF for the displacement in y-direction due to the force in y-direction of
node 1 (Figure 3.1), obtained by modal analysis and predicted by the

developed procedure are plotted in Figure 3.3.

[m/N]
[m/N]

ly-ly
1y-ly

Log Magnitude FRF.
Log Magnitude FRF.

6 6
10 L L L L L L L L L 10 L L L L L L L L L
3.57 3.571 3.572 3.573 3.574 3.575 3.576 3.577 3.578 3.579 3.58 3.57 3.571 3.572 3.573 3.574 3.575 3.576 3.577 3.578 3.579 3.58

Frequency [Hz] M 104 Frequency [Hz] X 104

Figure 3.3. FRF plots for geometry 1; left plot: predicted by the developed
method, right plot: analyzed in Ansys

It can be concluded that the FRF predicted by the method developed is the

same as the FRF obtained by modal analysis.
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3.4.2 Geometry 2

The second case study is the application of the method to a previous work.
Atlar et al. [13] analyzed a workpiece modeled as a beam to show the
change in the workpiece FRF during machining. They used structural
modification without additional degrees of freedom to obtain the part
dynamics through the machining process. In the current study, the same
workpiece is modeled using three-dimensional solid elements, and
structural modification with additional degrees of freedom is applied to

predict the FRFs of the part in the intermediate steps.

The geometry of the workpiece is shown in Figure 3.4. The dimensions in
the figure are in mm. The material is steel with the following material
properties, 200 GPa Young’'s modulus, 0.3 Poisson’s ratio and 7800 kg/m?
density. The boundary conditions are fixed-free. The finite element analysis

is performed by using the FE program MSC. Marc Mentat.

]

= 3
T T T T T T T T 711 [ 1715
= N
= 100 \ 50 \

Figure 3.4. Beam model studied by Atlar et al. [13]

The thickness of the beam is 15 mm initially and it is decreased to 10 mm, 5
mm and 3 mm in the roughing, semi-finishing and finishing cuts,
respectively. A coding convention is proposed to indicate the stage of

machining. B19, for instance, denotes the 9" step of the 1% cut (roughing
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cut). The FRFs of the workpiece at intermediate stages were calculated, and

the ones for the steps shown in Figure 3.5 were plotted in Figure 3.6.

Bi1 B19
T 1LAYER, 1 ELEMENT —1 1LAYER, 9 ELEMENTS
— I I I I I I I I ] —]
I S — — — — I S S S e —
1 1 1 1 1 1 1 1 1 1 T T T T 1 1 Il 1 1 1]
] |
— B21 — B29
— 2LAYER, 1 ELEMENT — 2 LAYER, 9 ELEMENTS
I I I I I I
1 1 1 1 1 1 1 1 1 ] 1 1 1 1 1 1 f 1 1 ]
—1 —1
B31 B39
- 3LAYER, 1 ELEMENT - 3 LAYER, 9 ELEMENTS
: : : : : : : : : 1 T T T T T T T T T 1
— —

Figure 3.5. Beam models of 1%, 274 and 3 cuts at the end of, 1% (Ieft) and
9t (right) steps [13].
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Figure 3.6. FRFs of the workpiece and the tool for the stages shown in
Figure 3.5 [13]

Figure 3.6 is taken from the study of Atlar et al. [13]. The plots include the

tool point FRF of the spindle-tool holder-tool system used in the machining

stability analysis.
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The model of the same geometry meshed by brick solid elements, and the

steps of the machining are shown in Figure 3.8. Ansys is used as the finite

element program. Table 3.2 presents the details of the model.

Table 3.2. Details about geometry 2

Number of nodes 220
Dof of initial model 240
Number of elements added 90

The predicted FRFs of the workpiece are plotted in Figure 3.7, for the nodes

shown in Figure 3.8.

Log Magnitude FRF [m/N]

10° : : : : . 107

10°

Log Magnitude FRF [m/N]

9
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0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000

Frequency [Hz] Frequency [Hz]

Figure 3.7. FRFs of the workpiece for the steps shown in Figure 3.8
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Figure 3.8. 3D mesh models for the steps shown in Figure 3.5

It can be observed that, since the stiffness of the workpiece near to the fixed
end is larger than that at other positions, the magnitudes of FRFs are lower
near to the fixed end. As also pointed out in [13], as the workpiece is
machined, its flexibility increases and comparing with the FRFs of the tool,

the dynamics of the workpiece becomes significant in the analysis.
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Figure 3.6 and Figure 3.7 show that the results of the developed procedure
are in good agreement with the previous study. There are only slight
deviations in the magnitudes of the FRFs at the peak points. Also, there are
some additional peaks observed in the 3D model. In the present study, the
geometry is modeled with more degrees of freedom; hence, the results are

more reliable than that of the previous study.

3.4.3 Geometry 3

The third geometry is a blade model, as shown in Figure 3.9.

Figure 3.9. Blade analyzed

One of the surfaces of the blade is extruded to obtain a volume to be
machined and this extruded volume is divided to five pieces to represent

the steps of machining, which can be seen in Figure 3.10.

Figure 3.10. Initial volume (0) and volumes machined (1-5) for geometry 2
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The mesh generation and modal analysis are performed in Ansys. The
meshes for the unmachined and machined workpiece are shown in Figure

3.11.

Figure 3.11. Mesh model of unmachined (left) and machined (right)
workpiece

Table 3.3 presents the details of the model studied.

Table 3.3. Details about geometry 3

Number of nodes 2208
DOF of initial model 3333
Number of elements added 651

The blade is fixed from one of its surfaces (Al in Figure 3.9). The machined
geometry is analyzed in Ansys. The procedure suggested in this work is

followed to obtain the FRFs in different machining stages. These stages and
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the nodes whose FRFs are calculated at these stages are shown in Figure

3.12.

VOLUME 4 2 VOLUME 3
REMOVED ___ REMOVED

Figure 3.12. Mesh models for the steps of machining the workpiece
analyzed

The FRFs predicted for the machining steps shown in Figure 3.12 are
plotted in Figure 3.13. Note that in this analysis the initial structure is the
machined workpiece, and unmachined geometry is obtained by structural
modification. Figure 3.13 shows the first three natural frequencies at the
corresponding stages. It can be concluded that as the workpiece is
machined, the natural frequencies are shifted and the magnitudes at the
peaks of the FRFs also change. In Figure 3.14, the FRF for the unmachined
geometry, obtained by the method developed is compared with that
obtained by direct modal analysis of the unmachined geometry by using
Ansys. The good agreement in two plots reveals the accuracy of the method

developed.
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Figure 3.13. Predicted FRFs in the steps shown in Figure 3.12
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Figure 3.14. FRF of the unmachined workpiece, predicted by the method
developed (solid line) and calculated by using Ansys (dashed line)
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It should be noted that for the calculation of the FRFs for the initial model,
the number of modes used in the computations may be selected to be lower
than the total number of modes of the initial model. Using lower number of
degrees of freedom will decrease the computation time and the prediction
procedure will be faster. However, the predicted FRFs for the machining
steps will be less accurate. For the three geometries analyzed in this

chapter, all modes of the initial models are used in the computations.
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CHAPTER 4

MACHINING STABILITY ANALYSIS FOR DIFFERENT CUTTING

STRATEGIES IN THREE AXIS MACHINING

In this chapter, machining of a plate is modeled and stability analysis is
performed for different cutting strategies. The dynamics of the plate is
predicted for different stages of the machining cycle. Stable cutting
conditions are obtained from the machining stability analyses. The effect of
workpiece dynamics to productivity is investigated by comparing the

results of stability analyses for different strategies.

4.1 Prediction of Workpiece FRF

A plate of dimensions 70 mm (height) x 70 mm (width) x 9.5 mm (thickness)
is modeled. The material of the plate is Al 7075 alloy. The plate is to be
machined along its thickness, in order to drop the thickness from 9.5 mm to

3 mm. The geometry for the unmachined plate is shown in Figure 4.1.
The material properties are taken as modulus of elasticity of 70 GPa,

Poisson’s ratio of 0.33 and density of 2800 kg / m3. Damping of the system is

modeled as structural damping with a damping coefficient of 1.52%.
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Figure 4.1. Geometry for the unmachined plate

The machining of the plate is modeled as the removal of the volume parts,
in three steps in x and y directions, and in five steps in z direction. Different
cases will be analyzed for different thickness change during machining. The
thickness of the layer removed is the radial depth of cut of the machining
step. In machining stability analysis, smaller radial depth of cut results in
larger stability limits for the axial depth of cut. The thicknesses of the layers
removed are modeled to decrease in order, so that for the semi-finishing

and finishing cuts more stable cutting conditions are obtained.

A total of six strategies will be analyzed. Three of the strategies modeled
are layer removal strategies and the other three are step removal strategies.
In layer removal, the thickness is reduced for all the layer of the plate,
whereas in step removal, the thickness is reduced to its final value for each
step. Figure 4.2 and Figure 4.3 show the machining stages of layer and step
removals, respectively.
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The removal type and the thicknesses of the layers for the strategies

modeled are given in Table 4.1.

Table 4.1. Removal types and layer thicknesses of the strategies

Thickness | Thickness | Thickness | Thickness
Strategy | Removal type of the 1+ of the 2nd of the 3 | of the final
layer (mm) | layer (mm) | layer (mm) | layer (mm)

A layer 3.0 2.0 15 3.0

B layer 4.0 1.5 1.0 3.0

C layer 5.0 1.0 0.5 3.0

D step 3.0 2.0 1.5 3.0

E step 4.0 1.5 1.0 3.0

F step 5.0 1.0 0.5 3.0

Thickness change for case A: 9.5 mm - 6.5 mm - 4.5 mm - 3 mm. The

volume division for case A is shown in Figure 4.4.

Figure 4.4. Volume division for strategy A
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To indicate the position of machining, a coding convention is used as
A_1_1_1. Here, the letter denotes the cutting strategy applied and the
numbers stand for the corresponding cutting steps in y, z and x directions.
The step A_1_1_1 is the removal of the first element from the unmachined

workpiece.

Using the procedure described in Chapter 3, the dynamics of the workpiece
at each step is predicted. The FRFs, in x and y directions, of the workpiece
for the step A_1_1_1, i.e. the unmachined stage, are plotted in Figure 4.5
and Figure 4.6. The first two natural frequencies of the unmachined plate
are 1616 and 3679 Hz, respectively, so the FRFs are plotted in a frequency
range of 0-4000 Hz. Note that, these are the receptances for the point that is

in contact with the tool.
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Figure 4.5. Workpiece FRFx for the step A_1_1_1 (unmachined stage)
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Figure 4.6. Workpiece FRFyy for the step A_1_1_1 (unmachined stage)

For the successive machining steps in x direction, steps A_1.1 1, A_ 1 1 2
and A_1_1_3 as shown in Figure 4.7, the change in the FRF, in x and y
directions respectively, of the workpiece is shown in Figure 4.8 and Figure

4.9.
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Figure 4.7. Successive machining steps in x direction
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Figure 4.8. Workpiece FRFx for the steps A_1.1 1,A_. 1.1 2and A_1.1_3
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Figure 4.9. Workpiece FRFyy for the steps A_1 .1 1,A 1.1 2and A_1.13
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For different steps in z direction, steps A 1 1.1, A 121, A_13]1,
A_ 1.4 1,and A_1_5_1 as shown in Figure, the change in the FRFs, in x and
y directions respectively, of the workpiece can be seen in Figure 4.11 and
Figure 4.12. The magnitude of the receptance around the fixed end of the
workpiece has lower value than that near to the free end. The stiffness of

the workpiece is higher at the fixed end side, as expected.

Figure 4.10. Different steps in z direction
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The effect of the decreased thickness on the part dynamics can be seen
plotting the FRFs at the first steps of each layer which are shown in Figure
4.13. The FRFs at these steps are shown in Figure 4.14 and Figure 4.15. The
workpiece becomes more flexible as its thickness is reduced and the

magnitudes of the FRFs increase.
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Figure 4.13. Different steps in y direction
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Figure 4.14. Workpiece FRFx for the steps A_1_1 1,A_ 2.1 1and A_3_1_1
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Figure 4.15. Workpiece FRFx for the steps A_ 1.1 1,A_ 2.1 1and A_3_1 1

4.2 Effects of Workpiece Flexibility to Stability Diagrams

The FRFs of the workpiece at all the steps are used in the machining
stability analysis to determine the chatter free depth of cuts. The stability
analysis is handled by using the software Cutpro, a machining simulation
program developed by the Manufacturing Automation Laboratories of
University of British Columbia. Note that, the experimentally obtained tool
point FRFs are used in the analysis to include the dynamics of the spindle-
holder-tool system. The FRFs, in x and y directions, of the tool used in the

analysis are given in Figure 4.16 and Figure 4.17.
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Figure 4.17. Tool point FRFyy

For the known dynamics of the tool and the workpiece, the machining
analysis is carried out. The tool used is a cylindrical end, uniform four-
fluted tool. The material of the tool is carbide, the diameter is 6 mm, the

helix angle is 30° and the relief and rake angles are 5° each. Average cutting
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coefficient is assumed in the analysis. The spindle direction is clockwise
and the milling mode is down-milling with a feed rate of 0.1 mm/flute. The
radial depth of cut is the thickness change of the workpiece and it has the
values of 3 mm, 2 mm and 1.5 mm in corresponding layers in strategy A.
Figure 4.18 shows the axial and radial depths of cut for the machining of

the aluminum plate.

:

| __—¥»a axial depth of cut

|

Db, radial depth of cut

e

Figure 4.18. Axial and radial depths of cut for the machining process

The stability lobe diagrams obtained using Cutpro for the steps A_1 1_1,
A 112 and A_1_1_3 are shown in Figure 4.19. The dynamics of the
workpiece does not change significantly between these steps, so the

stability lobes have quite similar limits. The shifts in the lobes show that it

54



would be practical to use the absolute limiting depth of cuts for the passes

along the width direction.
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Figure 4.19. Stability limits for the steps A_1.1 1,A_ 1.1 2and A_1_1_3

The stability lobe diagrams for the steps A_1.1.1, A 1.2 1, A 1.31,
A 141 and A_1 5_1 are plotted in Figure 4.20. As the stiffness of the

workpiece increases, the limiting depth of cut increases.
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Figure 4.20. Stability limits for the steps A_1 1.1, A 1.2 1,A_ 131,
A141andA 151

55



The stability diagrams for the initial steps of each layer removal are shown

in Figure 4.21. The flexibility increases as the thickness is reduced, and the

stable depth of cut decreases.
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Figure 4.21. Stability limits for the steps A_1.1 1, A 2 1 1and A_3_1_1

4.3 Different Cutting Strategies

The machining of the plate is modeled with six different cutting strategies.
In this section, these strategies are described in detail. The limiting stable

depths of cut for each step of the strategies are given. The manufacturing

times for the strategies are compared.
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4.3.1 Stable Depths of Cut for Different Cutting Strategies
The stability limits obtained by Cutpro for the strategy A is given in Table
4.2. The stability limits for the same radial depth of cut increase, near to the

fixed end of the plate.

Table 4.2. Stability limits for the steps for strategy A

Step | A1_(9.5mm-6.5mm) | A2_ (6.5 mm —4.5mm) | A3_ (4.5 mm - 3.0 mm)
11 0.20 0.08 0.03
1.2 0.19 0.08 0.03
213 0.19 0.08 0.03
21 0.45 0.16 0.07
22 0.39 0.15 0.06
23 0.34 0.14 0.06
3.1 0.73 0.46 0.19
32 0.89 0.38 0.15
3.3 1.01 0.37 0.15
41 1.22 1.86 0.85
42 1.20 1.73 0.72
43 1.21 1.78 0.71
51 1.22 1.80 2.44
52 1.22 1.78 2.36
53 1.22 1.78 2.36

The minimum of the three stability limits along x direction should be taken
as the limiting depth of cut in the corresponding step. Table 4.2 can be
simplified to Table 4.3.
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Table 4.3. Stability limits for strategy A (simplified for variation along
width direction)

Step | A1_(9.5mm-6.5mm) | A2_ (6.5 mm —-4.5mm) | A3_ (4.5 mm - 3.0 mm)
1 0.19 0.08 0.03
2 0.34 0.14 0.06
3 0.73 0.37 0.15
4 1.20 1.73 0.71
5 1.22 1.78 2.36

Table 4.4, Table 4.5, Table 4.6, Table 4.7 and Table 4.8 present the limiting

depths of cut for strategies B to F.

Table 4.4. Stability limits for strategy B

Step | B1_(9.5mm-55mm) | B2_ (5.5 mm -4.0 mm) | B3_ (4.0 mm - 3.0 mm)
1 0.17 0.06 0.03
2 0.26 0.11 0.05
3 0.48 0.27 0.14
4 0.94 1.26 0.62
5 0.94 2.27 3.48

Table 4.5. Stability limits for strategy C

Step | C1_(9.5mm-4.5mm) | A2_ (4.5 mm-3.5mm) | A3_ (3.5 mm - 3.0 mm)
1 0.15 0.04 0.03
2 0.27 0.08 0.06
3 0.45 0.20 0.15
4 0.78 0.81 0.64
5 0.78 3.42 6.61
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Table 4.6. Stability limits for strategy D

Step | D1_(9.5mm-6.5mm) | D2_ (6.5 mm —4.5 mm) | D3_ (4.5 mm - 3.0 mm)
_1 0.19 0.22 0.28
2 0.36 0.42 0.43
3 1.43 0.89 1.20
4 1.23 1.81 1.60
5 1.22 1.78 2.36

Table 4.7. Stability limits for strategy E

Step | E1_(9.5mm-55mm) | E2_ (5.5 mm -4.0 mm) | E3_ (4.0 mm - 3.0 mm)
_1 0.17 0.27 0.36
2 0.31 0.48 0.52
3 0.67 1.39 1.35
4 0.95 2.19 3.03
5 0.94 2.33 3.48

Table 4.8. Stability limits for strategy F

Step | F1_(9.5mm-45mm) | F2_ (45 mm-3.5mm) | F3_ (3.5 mm - 3.0 mm)
1 0.15 0.37 0.58
2 0.29 0.58 0.78
3 0.56 1.55 1.64
4 0.78 2.26 3.71
5 0.78 3.45 6.61
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4.3.2 Machining Times for Different Cutting Strategies

The height for each step modeled is 14 mm. Number of passes required to
remove material of height 14 mm can be calculated by rounding to the first

integer greater than the ratio of the height to the limiting depth of cut.

nop = roundup[aLJ 4.1)
lim

Number of passes required for the strategy A can be calculated using the
limiting depths of cut values listed in Table 4.3. Table 4.9 shows the number

of passes for each step for strategy A.

Table 4.9. Number of passes for the steps of strategy A

Step | A1_ | A2_ A3_

1 74 175 467

2 42 100 234
3 20 38 94
4 12 9 20
5 12 8 6
Total | 1311

Table 4.10 gives the total number of passes for strategies A to F.
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Table 4.10. Total number of passes for six strategies

Strategy | Total number of passes
A 1311
B 1505
C 1652
D 387
E 374
F 348

The machining time for one pass is related with the width (w) of the

workpiece removed in the pass and the feed rate (V; ). The width is 70 mm

and the same for all passes. The feed rate depends on the feed rate per flute
( f), the number of flutes on the cutter (N ) and the spindle speed (n). The
feed rate per flute is taken as 0.1 mm/flute. The number of flutes on the
cutter is four and the spindle speed is taken 3000 rpm in the analyses. The

feed rate in mm/s can be calculated as:

N-f-n_4.0.1-3000
60 60

V, = =20mm/s 4.2)

The machining time for one pass can now be obtained as:

fo W 0mm Lo (4.3)
V, 20mm/s

The machining times for the six strategies are listed in Table 4.11.
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Table 4.11. Manufacturing time for six strategies

Strategy Machining time (s)
A 4588.5
B 5267.5
C 5782
D 1354.5
E 1309
F 1218

It can be concluded that step removal is superior to the layer removal in
terms of productivity. For the same thickness variations, step removal
strategies require much less time than the layer removal strategies. For
layer removal, the productivity decreases if the thickness removed in the
rough cut is increased and the thickness removed in the semi-finishing and
tinishing cuts are decreased. In the step removal strategies, increasing the
thickness removed in the rough cut and decreasing those in the semi-

finishing and finishing cuts, the productivity increases.
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CHAPTER 5

MACHINING STABILITY ANALYSIS FOR FIVE AXIS MACHINING

In this chapter, the procedure developed is applied to a five axis machining
process of a blade. For the predicted part dynamics of the blade throughout
the machining cycle, machining stability analyses are performed. Different
production strategies are compared for the productivity in the finishing

cuts.

5.1 Production Strategies

The geometry of the machined blade is shown in Figure 5.1. Blade is
machined on a hub as seen in Figure 5.2. The production of the blade on the
hub can be divided into three cycles: rough cut, semi-finishing cut and
finishing cut. In the rough cut, the disc is machined to obtain the slots for
the blade. After the semi-finishing and finishing cuts, the final accurate
surfaces of the blade are produced. It can be assumed that the workpiece
dynamics in the rough cut does not affect the system dynamics, and thus
neither the stability of the machining. As the blade gets much thinner in
semi-finishing and finishing cuts, its dynamics becomes significant for

stability.
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Figure 5.1. Geometry of the blade analyzed

Figure 5.2. A typical hub and blades machined on the hub

The three cycles can be schematically shown in profile view of the blade as

in Figure 5.3.

ROUGHING SEMI-FINISHING FINISHING

Figure 5.3. Three machining cycles in profile view
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The number of the steps of the material removal in the rough cut is
different for different production strategies which will be compared in the
following sections. In one approach, the material in the roughing cycle can
be removed in a single step, and then the semi-finishing and finishing
cycles can be performed. Figure 5.4 shows the steps of a single roughing

machining.

xxxxxxxxx

..................

|||||||||
|||||||||
|||||||||
|||||||||

ROUGHING SEMI-FINISHING
+ FINISHING

Figure 5.4. Steps of a single roughing machine (Strategy A)

It is also possible to divide the roughing into two or more steps and
perform the semi-finishing and finishing cuts after each of these steps. The
length of the machined part of the blade outside the hub will be smaller
with more number of steps in roughing cut, and this will result in much
stiffer blade and much stable finishing. The number of steps in the
roughing strategies A, B and C is one, two and three, respectively. The
single roughing cycle shown in Figure 5.4 is performed in strategy A. As
seen in Figure 5.5, in strategy B, roughing is performed in two cycles: in the
tirst cycle, half of the material is removed and in the second cycle, for the

remaining half is removed.
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Figure 5.5. Steps of machining with two stages in roughing
(Strategy B)

In strategy C, in the first step of the rough cut, 30% of the material is
removed. In the second cut, 30% more material is removed and finally in
the third step, the roughing is completed. Figure 5.6 shows the steps of

machining in strategy C.
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Figure 5.6. Steps of machining with three stages in roughing (Strategy C)



If it is assumed that the part dynamics does not affect the stability in
roughing cycles, the production times for roughing cycles for the strategies
will be the same. To analyze the effect of the part dynamics to productivity
of the process, the stability limits in the semi-finishing and finishing cuts
are required to obtain the production times at these cuts. To simplify the
analysis, finishing of only one of the surfaces will be analyzed. Being
dependent on the change in the part dynamics, the productivity for
tinishing the other surface and the semi-finishing of both surfaces may be

expected to have a similar behavior to the case analyzed.

The finishing of one of the surfaces of the blade will be analyzed for the
three strategies. The thickness of the material removed in the finishing step
is 0.5 mm. The finishing cut is modeled as a ten step procedure. The blade
can be modeled as it is clamped from the surface connected to the hub. For
strategies B and C, the finishing at the intermediate stages can also be

modeled as clamped from the surface roughed.

The steps of strategies A, B and C are shown in Figure 5.7, Figure 5.8 and

Figure 5.9, in side view, respectively.

T Ty T
T e T

Figure 5.7. Finishing steps in strategy A
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Figure 5.9. Finishing steps in strategy C

5.2 Details of the Machining Process

The type of the tool is ball end and it is uniform four-fluted. Tool material is
carbide, tool diameter is 8 mm and helix, relief and rake angles are 30°, 5°

and 5° respectively. Average cutting coefficient is assumed. Spindle
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direction is counter-clockwise and the feed rate is 0.12 mm/flute. The radial

depth of cut is 0.5 mm, which is the same for the three strategies.

The material of the blade is titanium alloy Ti-6Al-4V. The modulus of
elasticity of the alloy is 113.8 GPa, Poisson’s ratio is 0.342 and the density is
4430 kg/m?3. Damping of the system is modeled as structural damping with

a damping coefficient of 2%.

The workpiece dynamics is predicted for each of the ten steps for the
strategies described in the previous section. The division for the ten steps
along the blade is shown in Figure 5.10. The node which is in contact with
the tool in the first step, i.e. at the unmachined stage, can be seen in Figure
5.10. The FRFs of this node for the three strategies described are plotted in
Figure 5.11 and Figure 5.12. Note that, x is the feed direction and y is along

the thickness direction.

Figure 5.10. The ten steps in finishing of the blade
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Figure 5.11. Workpiece FRFx for the first steps in three strategies

Among the three strategies compared, the length of the blade outside hub is
the highest in strategy A and it is the lowest in strategy C. The magnitude
of the FRF, in x direction, decreases as the length of the blade outside the
hub decreases. The value of the first natural frequency is the highest in

strategy C.

x 10°

T
str. A
str. B[]
str. C

y (Real) [m/N]

y
o
T

Workpiece FRF
[
T
x

1 | |

_5 1 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Frequency [Hz]

Figure 5.12. Workpiece FRFyy for the first steps in three strategies
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The magnitudes of the FRFs in y direction are quite similar for the three
strategies, while the frequencies are shifted. These FRFs are used in
machining stability to determine the stability limits. The experimentally
obtained tool point FRFs, in x and y directions, used in the analysis are

shown in Figure 5.13 and Figure 5.14.
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Figure 5.13. Tool point FRFx«
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Figure 5.14. Tool point FRFyy
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The stability diagrams for the first step for the three strategies are plotted in

Figure 5.15. As the machining process goes on in a step, the stability lobes

will be shifted. Hence, it is practical to select the limiting depth of cut in

these plots as the stable axial depth of cut used in the analysis.
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Figure 5.15. Stability lobe diagrams for the first steps in three strategies

Table 5.1 presents the absolute stability limits for axial depths of cut in the

ten steps of machining for the production strategies.

Table 5.1. Stability limits, in mm, for the steps in strategies A, B and C

Step |1 2 3 4 5 6 7 8 9 10

A 012 019 |035 |081 |235 |723 |10.07 |996 |995 |9.95
B 011 (021 |070 |6.55 |996 |723 |10.07 996 |995 |9.95
C 0.15 | 053 |10.28 | 2.58 |10.07 {9.95 |10.07 |996 |995 |9.95

The stability limits listed in Table 5.1 show that as the number of steps in

the roughing cut increases, more stable cutting occurs.
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The average dimensions of the steps on the blade in axial and feed

directions, shown in Figure 5.16, are given in Table 5.2.

feed direction

axial direction

Figure 5.16. Axial and feed directions on the blade

Table 5.2. The lengths of the steps in axial and feed directions

Steps | 1 2 3 4 5 6 7 8 9 10

L,.. |525 |520 (520 [520 |520 |520 |520 |520 |520 |5.16

L., |88.06 |86.32 |84.97 | 83.97 | 83.34 | 83.12 | 83.28 | 83.78 | 84.56 | 85.51

The number of passes required to remove the i step, nop,, can be

calculated by rounding up the ratio of the length of the step in axial

direction of the tool (L, ;) to the limiting axial depth of cut in the same step

(alim,i )

L.
nop, = roundup[aax—"] (5.1)
lim,i

The numbers of passes for the steps in each strategy are given in Table 5.3.
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Table 5.3. Number of passes in the steps in strategies A, B and C

Step |1 2 3 4 5 6 7 8 9 10
A 44 28 15 7 3 1 1 1 1 1
B 48 25 8 1 1 1 1 1 1 1
C 35 10 1 3 1 1 1 1 1 1

The number of flutes on the tool is four. Spindle speed is taken as 10000
rpm. Feed rate is 0.12 mm/flute. The feed rate in mmy/s can be calculated as

in equation.

N-f.-n_ 4.0.12-10000

V, =
60 60

=80mm/s (5.2)

The machining time for one pass at each step can be calculated by dividing

the length in feed direction to the feed rate and is tabulated in Table 5.4.

Table 5.4. Machining time, in seconds, for one pass in the steps

Step 1 2 3 4 5 6 7 8 9 10

Time |1.04 |1.08 |1.06 [1.05 |1.04 |1.04 |1.04 |1.05 |1.06 |1.07

The machining time in each step and the total machining time can be
calculated for three strategies. Table 5.5 lists the manufacturing times for

the strategies.
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Table 5.5. Machining time, in seconds, for strategies A, B and C

Step |1 2 3 4 5 6 7 8 9 10 | Total

A 458 (302 (159 |74 |31 |10 |10 |11 |11 |11 |107.7

B 499 |27.0 |85 1.1 |10 |10 |10 |11 |11 |11 |928

C 364 |10.8 |1.1 32 |10 |10 |10 |11 |11 |11 |578

It can be concluded that, dividing the rough cut into two steps decrease the
finishing time 14%, and dividing into three steps results in 46% decrease in

machining time.

5.3 Effect of the Thickness Removed in Finishing Cut to Productivity

In this section, finishing of the same blade is modeled with the only

exception that the thickness removed is 0.25 mm. Strategies labeled as D, E

and F, corresponding to the strategies A, B and C in the previous analysis,

respectively, will be compared for productivity.

Stable depth of cuts for strategies D, E and F are presented in Table 5.6.

Table 5.6. Stability limits, in mm, for the steps in strategies D, E and F

Step |1 2 3 4 5 6 7 8 9 10

D 011 |0.17 |032 |076 |[222 |655 |13.69 |13.43 |13.42 |13.42

E 009 |016 |[055 |512 |13.43 |6.55 |13.69 |13.43 |13.42 | 13.42

F 0.10 | 032 |1472 |215 |13.73 |13.43 | 13.69 | 1343 | 13.42 | 13.42

The number of passes required for finishing the steps in strategies D, E and
F are given in Table 5.7.
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Table 5.7. Number of passes in the steps in strategies D, E and F

Step |1 2 3 4 5 6 7 8 9 10
D 48 31 17 7 3 1 1 1 1 1
E 59 33 10 2 1 1 1 1 1 1
F 53 17 1 3 1 1 1 1 1 1

The machining time calculated for strategies D, E and F are listed in Table
5.8

Table 5.8. Machining time, in seconds, for strategies D, E and F

Step |1 2 3 4 5 6 7 8 9 10 Total

D 499 |335 |180 (74 |31 1.0 1.0 1.1 1.1 1.1 117.2

E 614 |356 |10.6 |21 1.0 1.0 1.0 1.1 1.1 1.1 116.0

F 55.1 | 184 | 1.1 3.2 1.0 1.0 1.0 1.1 1.1 1.1 84.1

For 0.25 mm thickness removal in the finishing cut, machining times for the
strategy with single roughing and the strategy with two steps in roughing
are very close. However, for three steps in rough cut, there is 28% decrease
in machining time, which shows that the strategy F is the most productive

strategy of the strategies considered.

Comparing the results for productivity over the six strategies considered
the number of steps in the rough cut improves the productivity. However,
the rate of improvement depends on the change in the part dynamics.
Stability analysis for different production strategies may reveal more

productive cutting.

76




CHAPTER 6

SUMMARY AND CONCLUSION

In this thesis, the effect of the part dynamics to the machining stability is
studied. It is shown both analytically and experimentally that, the stability
of a machining process may depend on the workpiece dynamics. The
change in part dynamics is predicted by a structural modification method.

The effect of material removal to part dynamics is considered.

6.1 Theoretical Background

The change in part dynamics, considering material removal is predicted
using a structural modification method. For known dynamics of the
original system and the modifying structure, the dynamics of the modified
structure is determined. More specifically; using the FRF of the original
system and the mass and stiffness matrices of the modifying structure, the
FRF of the modified structure is calculated. Matrix inversion is performed
in the method. The order of the matrix inverted is equal to the order of the
modifying structure, which is generally much smaller than the order of the
original structure. This makes the method practical to determine the

dynamics of the modified structure, from that of the original structure.
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The dynamics of the machined workpiece is obtained by modal analysis on
a finite element program. Material removed during machining is
considered as modification to the machined workpiece and the dynamics of
the unmachined workpiece is predicted. Material removal can be divided
into a number of volumes to model the stages of machining. The part

dynamics at each stage is predicted by the structural modification method.

Structural modification is applied with additional degrees of freedom. The
nodes that belong to the material removal can be divided into two groups:
nodes coinciding with those of the original system and the additional
nodes. The method applied is practical as the degrees of freedom related

with the additional nodes are taken into account.

The method is implemented in Matlab, with two functions. Rearrangement
of the elements is required in the method. One of the Matlab function
makes this rearrangement. The second function calculates the FRFs of the

modified structure.

The material removed during machining is taken as the modifying
structure in the modification procedure. The mass and stiffness matrices of
the elements representing material removed are required. To make the
method more practical, two solid finite elements are modeled. Using these
two solid elements, material remoedl can be modeled in three dimensional
spaces. For known material properties and geometry, mass and stiffness

matrices of the modifying structure are obtained.
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6.2 Procedure of Predicting Part Dynamics Considering Material

Removal

At the beginning of the procedure, the unmachined geometry is divided
into volumes representing material removals and the volume of the
machined workpiece. All volumes are modeled using the finite element
analysis program Ansys. The modeled volumes are meshed in order to
obtain the finite elements on the volumes. The data about these elements
are transferred to Matlab in order to be used in the structural modification
process. The transferred data include the element numbers on each volume,

the node numbers on each element and the coordinates of each node.

The machined geometry is the original structure in the modification
procedure. Modal analysis on the machined geometry is performed in
Ansys and using the result of this analysis, the FRFs of the structure at
different stages of machining operation, as well as the FRF of the original
structure are calculated in Matlab. Using the transferred data about the
elements, the mass and stiffness matrices of the elements representing the
material removed are calculated. These matrices belong to the modifying
structure in this procedure. The FRFs of the workpiece, at each stage can be

calculated by the modification procedure.

The method implemented is applied to predict the dynamics of different
workpiece geometries. The results of the predictions show that the
described procedure is accurate to predict the part dynamics at machining

stages even for complex geometries like blades.
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6.3 Effect of Workpiece Dynamics to Machining Stability

Machining stability analysis is performed on two different workpiece
geometries. The first workpiece is a cantilever plate and the second is a
blade. For both geometries, different cutting strategies are compared for

productivity.

The material of the plate is aluminum. It is modeled as fixed from one its
surfaces. Damping of the plate is modeled with proportional structural
damping. The machining of the plate is modeled by dividing the material
removed into parts in three orthogonal directions. The order of the material
removal is determined by the strategy performed. Two different material
removal processes are performed: layer removal and step removal. In layer
removal, layers of the plate are machined one by one. In step removal, the

plate is machined for all layers in one step.

The thickness of the unmachined plate is 9.5 mm and it is decreased to 3
with three layers. The machining stages in three layers are named as
roughing, semi-finishing and finishing. Three different layer thickness
variations are modeled. In the first thickness variation, the thicknesses are
set as 3, 2 and 1.5 mm. In the second and third variation; in order to see the
effect of the thicknesses in semi-finishing and finishing stages, to
productivity, these thicknesses are decreased and the thickness in roughing

is increased.

Three thickness variations are modeled both for layer and step removals,

hence a total of six strategies are obtained. For all strategies, part dynamics
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at each stage is predicted by the method developed. The predicted FRFs are

used in machining stability analysis to obtain stability limits.

Machining stability analysis is performed with the software Cutpro which
is a machining simulation program. The dynamics of the tool is included in
the analysis with experimentally obtained tool point FRFs. For the

conditions specified in section 4.2, the stability analysis is performed.

For unmachined workpiece in strategy A, for the first three successive steps
in width direction, stability lobe diagrams have a similar limiting value.
Shifting is observed for the stability lobes in the three steps, which makes
difficult to determine a common stability over the limiting axial depth of
cut. For all strategies, the limiting axial depth of cut is taken as the stability

limit in the corresponding step.

For the steps at different positions in height direction, in the first layer, the
magnitudes of the FRFs decrease near to the fixed end. This condition

results in higher stability limits for the steps near to the fixed end.

Part dynamics at the first step of each layer are also compared and it is
observed that the magnitudes of FRFs are higher for thinner workpiece.

Hence, the stability limit decreases for thinner workpiece.

Stability limits are derived and listed for all the steps in six strategies. For a
selected spindle speed, machining time for one pass is calculated. The
number of passes required at each step is also calculated using the stable

axial depth of cut at that step. The machining time for each step is obtained
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by multiplying the number of passes at the step with the machining time

for one pass. The manufacturing times for six strategies are determined.

Comparing the results of the six strategies, step removal is determined to be
much productive than layer removal. In layer removal process; increasing
the thickness in roughing and decreasing the thickness in semi-finishing
and finishing, the machining time increases. In step removal, for higher
thickness of the first layer and lower thicknesses of the second and third

layers, machining time is lower.

In the second case study, finishing of a blade is analyzed for different
strategies in terms of productivity. The blade is cut on a hub in three
machining cycles, roughing, semi-finishing and finishing. In roughing, the
slots of the blade are obtained. After semi-finishing and finishing cuts, final
geometry of the blade is obtained. The blade is more flexible in semi-
finishing and finishing cycles than in roughing cycle. The machining
productivity depends on the change in workpiece dynamics in semi-

finishing and finishing cuts.

Three production strategies are compared for the productivity in finishing
cycle. The thickness removed in finishing is taken as 0.5 mm. The difference
between the production strategies is the number of stages in roughing
cycle. In the first strategy, roughing is performed in a single step. In the
second strategy; after half of surface is roughed, it is semi-finished and
finished, and then the rest of the blade is machined similarly. In the third

strategy, the roughing is divided into three steps.
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The machining of the blade surface is divided into ten steps. The change in
part dynamics is predicted by the method developed at the ten steps, for
three strategies. Machining stability analysis is performed in Cutpro, for the
conditions given in Section 5.2. At each step, the limiting depth of cut is
taken as the stability limit, since the part dynamics also change along the

feed direction.

The machining time for one pass at each of the ten steps is calculated for a
spindle speed. The number of passes necessary to machine the material in a
step is calculated by dividing the axial length of the step to the axial
stability limit. Summation of the manufacturing times at the ten steps gives

the finishing time.

Comparing the finishing time for three strategies; the third strategy, in
which the roughing is divided into three stages, is found to be the most
productive. The manufacturing time for the third strategy is almost half of

the time for the strategy with single roughing.

To analyze the productivity for a different value of the thickness removed
in finishing cycle, the same blade is modeled for a finishing thickness of
0.25 mm. Similar procedure is applied for this case and the same three

strategies are performed.
The results show that dividing the rough cut in three stages is the most

productive strategy. The machining time in the third strategy is 28% less

than the first strategy.
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6.4 General Conclusion

The analytical procedure developed in this study is practical to predict the
workpiece dynamics at different stages of machining. It is shown that the
change in the dynamics of the workpiece affects the stability of the
machining process. At each stage of the machining cycle; in order to
determine the stability limit, the dynamics of the workpiece is required to
be known. The predictions for the dynamics of workpiece with different
geometries are compared and verified with the results of finite element
analyses. The procedure developed is practical to be applied to complex
three dimensional geometries. Different production strategies can be

compared for productivity using the method developed.

6.5 Suggestions for Future Work

Machining stability analysis is performed in this study using the software
Cutpro. The FRFs at each machining stage are saved in different files. These
tiles are opened with Cutpro, to represent the part dynamics in the stability
analysis. For each stability analysis performed, corresponding file is
selected. If the calculations for stability are performed in Matlab, the time
spent during file selection will be eliminated and the method will be much

practical to use.
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