SLOPE STABILITY ASSESSMENT ALONG THE BURSA-İNEGÖL-BOZÜYÜK ROAD AT KM: 72+000-72+200

A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY

ΒY

DAMLA GAYE ÖZTEPE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN GEOLOGICAL ENGINEERING

SEPTEMBER 2009

Approval of the thesis:

SLOPE STABILITY ASSESSMENT ALONG THE BURSA-İNEGÖL-BOZÜYÜK ROAD AT KM: 72+000-72+200

submitted by **DAMLA GAYE ÖZTEPE** in partial fulfillment of the requirements for the degree of **Master of Science in Geological Engineering Department**, **Middle East Technical University** by,

Prof. Dr. Canan Özgen	
Dean, Graduate School of Natural and Applied Scie	nces
Prof. Dr. M. Zeki Çamur	
Head of Department, Geological Engineering	
Prof. Dr. Haluk Akgün	
Supervisor, Geological Engineering Dept., METU	
Examining Committee Members:	
Prof. Dr. Asuman G. Türkmenoğlu	
Geological Engineering Dept., METU	
Prof. Dr. Haluk Akgün Geological Engineering Dept., METU	
Prof. Dr. Erdal Çokca	
Civil Engineering Dept., METU	
Assoc. Prof. Dr. Kemal Önder Çetin	
Civil Engineering Dept., METO	
Asst. Prof. Dr. Nejan Huvaj Sarıhan Civil Engineering Dept., METU	
-	

Date: 11.09.2009

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name, Last Name: Damla Gaye ÖZTEPE

Signature:

ABSTRACT

SLOPE STABILITY ASSESSMENT ALONG THE BURSA-İNEGÖL-BOZÜYÜK ROAD AT KM: 72+000-72+200

ÖZTEPE, Damla Gaye M.S., Department of Geological Engineering Supervisor : Prof. Dr. Haluk AKGÜN

September 2009, 183 pages

The purpose of this study is to determine the most suitable remediation technique via geotechnical assessment of the landslide that occurred during the construction of Bursa-İnegöl-Bozüyük Road at KM: 72+000-72+200 in an ancient landslide area.

For this purpose, the geotechnical parameters of the mobilized soil along the slide surface was determined by back analyses of the landslide at four profiles by utilizing the Slope/W software. The landslide was then modeled using coupled analyses (with the Seep/W and Slope/W softwares) along the most representative profile of the study area by considering the landslide mechanism, the parameters determined from the geotechnical investigations, the size of the landslide and the location of the slip circle. In addition, since the study area is located in a second degree earthquake hazard region, pseudo-static stability analyses using the Slope/W software were performed incorporating the earthquake potential. The most suitable slope remediation technique was determined to be a combination of surface and subsurface drainage, application of rock buttress at the toe of the slide and unloading of the landslide material.

A static and dynamic analyses of the landslide was also performed through utilizing finite element analyses. The static analyses were calibrated using the inclinometer

readings in the field. After obtaining a good agreement with the inclinometer readings and finite element analyses results, the dynamic analyses were performed using acceleration time histories, which were determined considering the seismic characteristics of the study area.

Keywords: Landslide, Back analysis, Coupled analysis, Pseudo-static analysis, Dynamic analysis, Slope stabilization techniques.

BURSA-İNEGÖL-BOZÜYÜK YOLU KM: 72+000-72+200 ARASI ŞEV DURAYLILIĞININ DEĞERLENDİRİLMESİ

ÖZTEPE, Damla Gaye Yüksek Lisans, Jeoloji Mühendisliği Bölümü Tez Yöneticisi : Prof. Dr. Haluk AKGÜN

Eylül 2009, 183 sayfa

Bu çalışmanın amacı, Bursa-İnegöl-Bozüyük Yolu inşaatı sırasında eski heyelan bölgesindeki KM: 72+000-72+200'de meydana gelen heyelanın jeoteknik değerlendirilmesinin yapılarak en uygun iyileştirme tekniğini belirlemektir.

Bu amaçla, öncelikli olarak heyelan geometrisi 4 adet profil üzerinde geriye dönük analiz yöntemi ile incelenerek kayma yüzeyi boyunca mobilize olmuş zeminin parametreleri Slope/W yazılımı kullanılarak bulunmuştur. Çalışma sahasını en iyi şekilde temsil eden profil üzerinde birleştirilmiş analiz yapılarak (Seep/W ve Slope/W yazılımları ile) heyelanın mekanizması, jeoteknik değerlendirmelerden elde edilen parametreler, heyelanın büyüklüğü ve kayma dairesinin konumu göz önüne alınarak heyelan modellenmiştir. Ayrıca çalışma sahasının ikinci derece deprem bölgesinde bulunmasından dolayı deprem durumu için sözde statik analizi Slope/W program kullanlarak yapılmış ve en uygun iyileştirme tekniği olarak yüzey ve yeraltı sularının drenajı, kaya topuk dolgusu ve yük hafifletmesi önerilmiştir.

Heyelanın statik ve dinamik koşullardaki analizi sonlu eleman yöntemi kullanılarak yapılmıştır. Statik koşuldaki analiz, arazide yapılan inklinometre ölçümleri kullanılarak kalibre edilmiştir. Dinamik analiz, inklinometre sonuçları ve sonlu eleman yöntemi kullanılarak elde edilen sonuçların iyi uyum sağlaması ile çalışma

alanının sismik karakteri gözönüne alınarak seçilen ivme kayıtları kullanılarak yapılmıştır.

Anahtar Kelimeler: Heyelan, Geriye dönük analiz, Birleştirilmiş analiz, Sözde statik analizi, Dinamik analiz, Şev stabilizasyon teknikleri In Loving Memory of My Dear Grandmother, Elmas CEYHAN

ACKNOWLEDGEMENTS

I would like to express my special thanks and gratitude to my supervisor Prof. Dr. Haluk Akgün for his guidance, trust and support at every stage of this study.

I would like to express my special thanks to Dr. Mustafa K. Koçkar for his contributions, comments and suggestions by sparing his time out of his busy schedule.

I gratefully acknowledge Hasan Özaslan of Yüksel Proje Uluslararası A.Ş. for providing data, help, and support throughout this study.

I would also like to deeply thank Tunay Çetin for his understanding, tolerance and guidance throughout the study.

I would also like to thank to my friends Sevinç Ünsal Oral, Volkan Sevilmiş, Selim Cambazoğlu, Serkan Üçer and A. Mert Eker for their help and support.

Finally, I would like to thank my family, my little Efe Çınar and H. Berkay Oral for their endless patience, moral support and encouragement regarding my life.

I would like to express my deepest gratitude to my grandmother Elmas Ceyhan. I wish you were here to share my happiness. Rest in peace.

TABLE OF CONTENTS

ABSTRACT	iv
ÖZ	vi
ACKNOWLEDGEMENTS	ix
TABLE OF CONTENTS	x
LIST OF TABLES	xiii
LIST OF FIGURES	xiv
CHAPTERS	
1. INTRODUCTION	1
1.1. Purpose and Scope	1
1.2. Location and Accessibility of the Study Area	2
1.3. Climate	3
1.4. Previous Studies	5
2. REGIONAL GEOLOGY	6
2.1. Stratigraphy	6
2.1.1. The Pazarcık Mélange (Pzp)	6
2.1.2. Talus (Qym)	7
2.1.3. Recent Alluvium (Qal)	8
2.2. Structural Geology and Tectonism	8
2.2.1. The Paleotectonic Period Structures	8
2.2.1.1. Unconformities	9
2.2.1.2. Foliation and Cleavage	9
2.2.1.3. Folds	9
2.2.1.4. Drag and Thrust Faults	10
2.2.2. Neotectonic Period Structures	10
2.3. Hydrogeology	11
2.4. Seismicity	12
3. ENGINEERING GEOLOGICAL ASSESSMENT OF THE STUDY AREA	16
3.1. Site Investigations	16
3.1.1. Standard Penetration Test (SPT)	17
3.1.2. Pressuremeter Test	18
3.1.3. Inclinometers	18
3.1.4. Discontinuity Scanline Survey	19

3.2. Laboratory Tests	22
3.2.1. Soil Laboratory Tests	22
3.2.2. Rock Laboratory Test Results	22
3.3. Assessment of Site Investigation and Laboratory Test Results	23
4. SLOPE STABILITY ANALYSIS	37
4.1. Introduction	37
4.2. Methods of Slope Stability Analysis	38
4.2.1. Limit Equilibrium Method	38
4.2.2. Finite Element Method	43
4.3. Seismic Slope Stability Analysis	45
4.3.1. Pseudo-Static Method	46
4.3.2. Newmark's Displacement Method	47
4.3.3. Postearthquake Stability	48
4.3.4. Dynamic Finite Element Analysis	48
5. ASSESSMENT OF SLOPE INSTABILITY	49
5.1. Introduction	49
5.2. Mechanism of the Landslide	49
5.3. Determination of the Shear Strength Parameters	51
5.3.1. Back Analysis	51
5.3.2. Determination of the Shear Strength Parameters of the Failure Sur	face
by Back Analysis	52
5.4. Modeling of the Landslide	55
5.4.1. Limit Equilibrium Modeling of the Landslide	55
5.4.1.1. Steady State Model	56
5.4.1.2. Transient Model	59
5.4.2. Finite Element Modeling of the Landslide	61
5.4.3. Seismic Slope Stability of the Landslide	66
5.4.3.1. Pseudo-Static Analysis of the Landslide	67
6. SLOPE STABILIZATION AND DYNAMIC ANALYSIS OF THE LANDSLIDE	68
6.1. Slope Stabilization Methods	68
6.1.1. Drainage	69
6.1.1.1. Surface Water Drainage	69
6.1.1.2. Subsurface Water Drainage	71
6.1.2. Unloading and Rock Buttresses	74
•	

6.2. Slope Stabilization Methods of the Landslide	76
6.3. Dynamic Analysis of the Landslide	80
7. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS	86
REFERENCES	88

APPENDICES

A: GEOLOGICAL MAP AND CROSS SECTIONS	94
B: BOREHOLE LOGS	98
C: CORE BOX PHOTOS	136
D: SOIL LABORATORY TEST RESULTS	145
E: PRESSUREMETER TEST RESULTS	155
F: INCLINOMETER RESULTS	169

LIST OF TABLES

TABLES

Table 2.1. The annual groundwater budget of İnegöl Plain (General Directorate of
State Hydraulic Works, 1981)11
Table 3.1. List of boreholes17
Table 3.2. Results of the inclinometer measurements 19
Table 3.3. Results of Rock Mechanics Tests 22
Table 3.4. The Rock Mass Rating (RMR) System (after Bieniawski, 1989)35
Table 3.5. RMR classification of the Pazarcık mélange schist block
Table 4.1. Static Equilibrium Conditions Satisfied by Limit Equilibrium Methods
(Abramson et al., 2002)
Table 4.2 Equations and unknowns associated with the method of slices (Abramson
et al., 2002)41
Table 4.3. Common limit equilibrium methods and their conditions (Nash, 1992)43
Table 4.4. Typical seismic coefficients and FS in practices (Abramson et al.,
2002)
Table 5.1. Parameters used in the steady state seepage analysis for Seep/W $\ldots\ldots 57$
Table 5.2. Geotechnical parameters used in the steady state analysis for
Slope/W
Table 5.3. Parameters used in PLAXIS62
Table 5.4. Total displacements
Table 5.5. FS values corresponding to seismic horizontal coefficients of 0.10g
and 0.15g67
Table 6.1. Data utilized for the attenuation relationships (Boore et al., 1997)81
Table 6.2. Scenario earthquakes used in the dynamic slope stability analyses
(PEER, 2009)
Table 6.3. Potential displacements for dynamic slope stability analyses 85

LIST OF FIGURES

FIGURES

Figure 1.1. Location map of the study area3					
Figure 1.2. Total rainfall quantities for each month of the year (from 1971 to 2000)					
for the Bursa city center4					
Figure 1.3. Average temperature for each month of the year (from 1975 to 2006) for					
the Bursa city center4					
Figure 2.1. Zone of earthquake for Bursa Province (Earthquake Research					
Department, 2009)12					
Figure 2.2. PGA values with 10% probability of exceedance in 50 years					
(Erdik et al., 2006)12					
Figure 2.3. Tectonic map of northwestern Turkey (Okay et al., 2008)14					
Figure 2.4. Epicentral distribution of earthquakes having a magnitude greater than					
4.0 around the İnegöl District (Sayısal Grafik Ltd., 2009)15					
Figure 3.1. Photograph of a schist block of the Pazarcık mélange taken during the					
scanline survey20					
Figure 3.2. Contour plot of the pole concentration of the discontinuities21					
Figure 3.3. The major discontinuity plane in the study area21					
Figure 3.4. SPT $N_{\rm 1,60}$ values vs. depth for the landslide material24					
Figure 3.5. LL values vs. depth for the landslide material25					
Figure 3.6. PI values vs. depth for the landslide material					
Figure 3.7. SPT $N_{\rm 1,60}$ values vs. depth for parts of the Pazarcık mélange that					
weathered into soil					
Figure 3.8. LL values vs. depth for parts of the Pazarcık mélange that weathered					
into soil29					
Figure 3.9. PI values vs. depth for parts of the Pazarcık mélange that weathered					
into soil					
Figure 3.10. SPT $N_{\rm 1,60}$ values vs. depth for the Pazarcık mélange33					
Figure 3.11. LL values vs. depth for the Pazarcık mélange					
Figure 3.12. PI values vs. depth for the Pazarcık mélange					
Figure 4.1. Division of sliding mass into slices (Abramson et al., 2002)40					

Figure 4.2. Forces acting on a typical slice (Abramson et al., 2002)40
Figure 4.3. Definitions of terms used for FEM (Abramson et al., 2002)45
Figure 5.1. Digital elevation model of the study area (the boundary of the landslide
is denoted with the solid red line)50
Figure 5.2. Normal stress vs. shear stress as calculated by RocLab 1.053
Figure 5.3. Back analyses results showing the c'- ϕ ' pairs for FS=1.0 for the various
cross sections
Figure 5.4. Input model for steady state seepage analysis56
Figure 5.5. Result of the steady state seepage analysis
Figure 5.6. Pore water pressure distribution as a result of the steady state
seepage analysis
Figure 5.7. The result of the slope stability model for steady state condition
Figure 5.8. Transient seepage analysis having initial condition from steady
state analysis
Figure 5.9. The result of a slope stability model for transient condition60
Figure 5.10. Input model for the transient seepage analysis by drawing initial
groundwater level61
Figure 5.11. The result of the slope stability model for transient condition through
drawing the initial groundwater position61
Figure 5.12.a. Generated mesh, b. deformed mesh of the landslide model63
Figure 5.13. Total displacements obtained by PLAXIS v.8.2
Figure 5.14. Comparison of the horizontal displacements for IBH-7i65
Figure 5.15. Comparison of the FS values obtained with the limit equilibrium
analysis and the finite element method66
Figure 6.1.a. Benching scheme for cut (low benches permit maximum
inclination to reduce the effect of runoff erosion), b. Longitudinal and downslope
drains (Hunt, 2005)70
Figure 6.2. Typical slope trench drain (Hunt, 2005)73
Figure 6.3. Slope stabilization by excavation (Duncan et al., 2005)74
Figure 6.4. Structural buttress (Duncan et al., 2005)75
Figure 6.5 Slope stabilization by cut and fill (Duncan et al., 2005)75
Figure 6.6. A schematic view of subsurface drainage system (Hunt, 2005)76
Figure 6.7. A schematic view of surface drainage system77

Figure 6.8. Landslide remediation steps presented as a function of FS under static conditions. a. Dewatering by subsurface and surface drainage resulting in a FS=0.79, b. Application of rock buttress resulting in a FS=1.26, c. Unloading the Figure 6.9. Landslide remediation steps presented as a function of FS under pseudo-static conditions. a. Dewatering by subsurface and surface drainage resulting in a FS=0.60, b. Application of rock buttress resulting in a FS=0.79, c. Unloading the landslide material resulting in a FS=1.2179 Figure 6.10. Potential horizontal displacement utilizing the Düzce earthquake Figure 6.11. Potential horizontal displacement utilizing the Imperial Valley earthquake record83 Figure 6.12. Potential horizontal displacement utilizing the Parkfield earthquake Figure 6.13. Potential horizontal displacement utilizing the Supersitition Hills

CHAPTER 1

INTRODUCTION

Slope failures, such as landslides and avalanches, can occur in almost any hilly or mountainous terrain, or offshore, often with a very frequent incidence of occurrence, and can be very destructive, at times catastrophic. The potential for failure is identifiable, and therefore forewarning is possible, but the actual time of occurrence is not predictable. Most slopes can be stabilized, but under some conditions failure cannot be prevented by reasonable means (Hunt, 2005).

Landslides are one of the important natural hazards in Turkey. Apart from causing life loss and destroying agricultural areas and roads, statistics indicate that landslides have damaged 11.70% of a total of 35,570 residential areas (recorded in the database of the General Directorate of Disaster Affairs and Damage Assessment Department) throughout Turkey between the period of 1950-2005. A large proportion of the landslides took place in Eastern, Middle and Western Black Sea Region, and along active faults and fault zones in Turkey (Gökçe et al., 2006).

1.1. Purpose and Scope

The purpose of this study is to analyze the stability of a landslide that occurred in the Bursa-Bozüyük-İnegöl Road between the kilometers 72+000 and 72+200 and to find the most appropriate stabilization mechanism to this landslide.

Within the scope of this study, first of all a detailed literature survey including geological and geotechnical data about the study area was performed and slope stability analysis and remediation methods were reviewed. As a second stage the collected data regarding the geology, hydrogeology, seismicity, site investigation tests and results of both field and laboratory tests were evaluated in order to

understand the failure mechanism of the landslide. In the final stage the landslide was modeled using back analysis and the most suitable stabilization technique under static and dynamic conditions due to earthquake loading were discussed.

1.2. Location and Accessibility of the Study Area

The study area is located 75 km away from the city center of Bursa. The site is located 2 km away from the Güneykestane Village and 26 km away from the İnegöl District. The site is accessible through the Bursa-İnegöl-Bozüyük E90 State highway. A location map of the study area is shown in Figure 1.1.

Figure 1.1. Location map of the study area

1.3. Climate

The study area is influenced by the Marmara Sea due to its close proximity. Marmara region's climate in which the summers are warm and dry and the winters are lukewarm and rainy prevails in the study area. The annual mean precipitation according to the Turkish State Meteorological Service was 673.5 mm in the period of 1971-2000 and annual mean temperature was 14.5°C in the period of 1975-2006. Figures 1.2 and 1.3 show the total rainfall quantities for each month of the year (from 1971 to 2000) and the average temperatures for each month of the year between 1975-2006, respectively.

Figure 1.2. Total rainfall quantities for each month of the year (from 1971 to 2000) for the Bursa city center

Figure 1.3. Average temperature for each month of the year (from 1975 to 2006) for the Bursa city center

1.4. Previous Studies

The general geological aspects and geological evalution of the İnegöl District were studied by Eroskay (1965); Bingöl et al. (1975); Brinkman (1976); Yılmaz (1981); Bargu (1982); Ketin (1984); Genç (1986); Genç et al. (1986); and Koçyiğit et al. (1991). The metamorphic rocks of the İnegöl Basin and their relationships with the plutonic rock assemblages of the region were studied by Ketin (1947); Kaaden (1960); Öztunalı (1973); Ayaroğlu (1979); Yılmaz (1979); Tekeli (1981); Servais (1982); Şentürk and Karaköse (1982); and Okay (1984). Granit and Titant (1960); Altınlı (1965); (1966); (1975a,b); Altınlı and Yetiş (1972); Altınlı et al. (1970); Görür et al. (1983); and Altıner et al. (1989) carried out studies on the Post Triassic cover rocks and their paleogeographic distribution in the İnegöl Basin. Bürküt (1966), Çoğulu et al. (1965), Çoğulu and Krummenacher (1967); Ataman (1973) and Bingöl et al. (1982) carried out studies on the geochemistry and geochronology of the plutonic rock assemblages of the region.

Sönmez (2003) studied the liquefaction potential of the Inegöl district and prepared its liquefaction potential map. According to Sönmez (2003), the geology of the Inegöl basin includes three main geological units, which are the Pre-Neogene aged basement rocks, Neogene aged units and Quaternary alluvial deposits. Pre-Neogene is represented by the Permian–Trias aged schist and marble, Trias-aged igneous rock, Dogger–Lower Cretaceous-aged limestone, Upper Cretaceous-aged marl and Lutetian-aged andesite and trachite from the lowermost to the uppermost of the unit. The sedimentary rocks of Neogene are composed of an alternation of mudstone, sandstone, limestone and marl. The Quaternary alluvial deposits overlie the basement and sedimentary rocks at the central part of the Inegöl basin. They are composed of gravel, sand, silt and clay layers in different thicknesses.

CHAPTER 2

REGIONAL GEOLOGY

2.1. Stratigraphy

The study area is divided into two main tectonic belts on the basis of deposition type, age, deposition environment, geological evolution and metamorphism conditions of the outcropped rock masses. These belts are the North and South Tectonic belts respectively. These belts are separated from each other with İzmir -Ankara suture zone of approximately Cretaceous age. The belt located towards the north of the İzmir – Ankara Suture Zone is named as "North Tectonic Belt" and is situated towards the southwest part of the West Pontides. The units that compose the North Tectonic Belt are the Devonian - Carboniferous Pazarcık mélange, Mahmudiye mafic – ultramafics, the Upper Carboniferous Bozüyük granitoid, the Lower - Middle and Upper Triassic Karakaya group and these units are unconformably overlain by the Lower Jurassic (Hettangian – Pleinsbachian) Bakırköy formation, the Middle Jurassic - Lower Cretaceous (Callovian -Hauterivian) Bilecik group, the Cretaceous (Aptian – Maastrichtian) Kabalar group. The common cover rock units of both the North and South Tectonic Belts are the Middle – Upper Miocene Inegöl group and the Pliocene – Quaternary loosely consolidated river clastics (Yüksel Proje Uluslararası A.Ş., 2007). A 1:1,000 scale geological map of the study area is given in Appendix A, Figure A1.

2.1.1. The Pazarcık Mélange (Pzp)

The Pazarcık Mélange is composed of structurally stacked rock packages with different thicknesses that are metamorphosed in green schist facies. This unit shows erosional and some fault contact relationship with the overlying Karakaya group, an erosional relationship with the Bakırköy formation and a tectonic contact relation with the Mahmudiye mafic – ultramafics. This unit is also intruded by the

Bozüyük granitoide and has undergone contact metamorphism. It shows a younger relation both regarding erosional and thrust type tectonism with the inegol group that is formed of continental clastics. Scaled type and reference cross-sections have shown that the Pazarcik mélange is formed from a variety of rock types and it was also observed that these show thrust type structure. Some of these facies are packages of different thicknesses that show sequential relationship and some others show a thrust structure of up to 2,500 m thickness with tectonic contact relation either individually or with each other. The source rock of all these facies can be divided in three groups. These three groups are: ocean floor sediments, upper mantle – oceanic crust and dominantly continental margin deposits like accretionary prism - fore-arc basin units. Schist, graphite-schist, meta-sandstone, calc-schist, marble, meta-basalt, meta-serpentine, chert, meta-ryhodacite, meta-tracite, metaandesite, meta-diorite, meta-peridotide and slate type rocks can commonly be in this unit. On the other hand, these three different rock assemblages exhibit a chaotic assemblage within thrust structure in some places and show the characteristics of a typical acretionary prism. Although some deposits and facies within these deposits have gone through metamorphism and active tectonism of several stages, they preserved their primary sedimentary structure and stratigraphic relations in some places. The Pazarcık mélange is thought to be of Devonian -Carboniferous age (Yüksel Proje Uluslararası A.Ş., 2007).

2.1.2. Talus (Qym)

The rocks that have disintegrated from highly inclined natural slopes because of the topographic properties of the region have been deposited at the slope bottoms and flat areas as a result of precipitation, gravity, topographic inclination and mostly of tectonism. This talus unit contains angular – moderately angular material up to block size (Yüksel Proje Uluslararası A.Ş., 2007).

2.1.3. Recent Alluvium (Qal)

This formation that is observed at the base of the Mezit and Aksu stream valleys is formed of sandy silty gravel, gravelly silty sand, large gravel and blocks (Yüksel Proje Uluslararası A.Ş., 2007).

2.2. Structural Geology and Tectonism

The main structural elements in the study area can be can be put into two main groups. These are the Paleotectonic structures that have formed before Pliocene and the Neotectonic period structures that have developed after Pliocene or that have changed their characteristics and continued to be active. The Paleotectonic period structures contain foliation, cleavage, folding, thrust and drag faults and along with these different type of unconformities can be included in the structures of this period. On the other hand, most of the neotectonic structures are oblique slip steeply dipping normal faults. Some of these faults are inherited from the previous tectonic period and they changed their characteristics at the Neotectonic period, some others are subsequently formed fractures that are still active. Considering that the Neotectonic structures are formed concentrated in the İzmir – Ankara Suture Zone that joins the North and South Tectonic Belts clearly shows without a doubt that the old weakness planes play an important role in the formation of these structures. At this section, structural periods are assessed for the North Tectonic Belt and the cover units (Yüksel Proje Uluslararası A.Ş., 2007).

2.2.1. The Paleotectonic Period Structures

These structures are various unconformities, foliation, cleavage, folding, thrust and drag faults. The important ones are explained below in detail (Yüksel Proje Uluslararası A.Ş., 2007).

2.2.1.1. Unconformities

Regional unconformities are observed between the Karakaya group and metamorphic units of the Pazarcık mélange that form the basement; at the base – top of Bakırköy formation and base of İnegöl group. Apart from these, these is a short hiatus between the Bilecik group that is formed of platform carbonates and the Soğukçam pelagic limestone that is a unit of the Kabalar group, and erosion related unconformities not of regional extent is observed between the flysch clastics that form the upper half of the Kabalar group and the older units.

2.2.1.2. Foliation and Cleavage

The foliation and cleavage that is formed parallel to the primary stratification at different outcropping metamorphic units of the North Tectonic Belt is especially observed at the Pazarcık mélange. The Pazarcık mélange is the most dominant unit of the North Tectonic Belt and is generally metamorphosed in greenschist facies conditions. Although the strike of the unit shows variations, the dominant foliation strike is NE – SW and WNW – ESE. The general trend of the foliation can also easily be understood from the trend of the axes of the folds. The foliation that is formed parallel to the primary lamination and the bedding has undergone different type and scale of (microscopic – mapable scale) folding and cleavage and finally undergone a deformation of cataclastic type. The type and phases of these deformations are reflected on the mineral groups that the rock contains, microscopic – mesoscopic scale texture and structure as well.

2.2.1.3. Folds

The Paleotectonic period units of pre-Pliocene have folded effectively in different dimensions and types. The first of the oldest units that have folded effectively is the Pazarcık mélange. The folds are ranging between microscopic to 20 km in length, open folds to mesoscopic scale close – vertical, box, angular, recumbent and

regional scale anticlinorium and synclinorium. The strike and dip values of the axes of folds are frequently changing. The general strike direction of the fold axes definitively show that these have formed under an approximately NNW – SSE trending compressional stress system.

The other outcropping units in the North Tectonic Belt that show regional scale folding are the Bakırköy formation, the Bilecik group and the Kabalar group. The youngest paleotectonic unit that the folds are formed extensively is the İnegöl group. Folds within the İnegöl group are cut by oblique slip normal faults at some locations. These folds are the youngest folds that have formed during the paleotectonic period and have formed connected to an approximately N – S trending compressional stress system that is effective at the region at late Miocene, Pre-Pliocene.

2.2.1.4. Drag and Thrust Faults

The Pazarcık mélange has undergone metamorphism under green schist facies conditions and is mainly formed of ocean floor and dominant continental margin rock assemblages. These assemblages are present within a SSE dipping thrust fault zone along with either each other or with the Mahmudiye mafic – ultramafics that is formed of a missing oceanic crust slice.

2.2.2. Neotectonic Period Structures

The Neotectonic period structures are characterized dominantly by oblique slip normal faults. Besides from these, left-lateral faults with significant dip slip component have also been developed. Angular unconformity that is between the Pliocene formations and the İnegöl group discern the Paleotectonic period Late Miocene compression stage from the Neotectonic period subsidence – extension at Pliocene.

2.3. Hydrogeology

The study area is located in the İnegöl Plain which is situated in the southeast of the Bursa province, between 29°19' - 29°46' longitude and 39°00' - 40°10' latitude. The most important streams at and in the vicinity of the study area are the Mezit and Aksu streams. These streams can include groundwater according to the properties of the rock groups of the Pazarcık mélange that outcrops in this area. Although the units can be accepted as low permeable to impervious, they can presumably allow groundwater to circulate through the fracture systems and fault lines that they contain. On the other hand, colluvial deposits that can be observed at the river valley bottoms and slope bottoms may contain groundwater.

Recharge of the groundwater in the İnegöl Plain occurs through infiltration from precipitation and surface run-off and groundwater discharge occurs through artificial discharge with the wells and streams. According to the Hydrogeological Investigation Report of İnegöl Plain prepared by General Directorate of State Hydraulic Works (1981), the annual safe yield in the İnegöl Plain was estimated to be 40×10^6 m³/year. The annual groundwater budget of İnegöl Plain is given in Table 2.1.

Recharge x 10 ⁶ m ³ /year			Discharge x 10 ⁶ m³/year		
a)	Infiltration from precipitation	11.0	a) Discharge to stream	35.0	
b)	Infiltration from surface run- off	25.0	b) Artificial discharge	5.0	
c)	Through side discharge	4.0			
TOTAL 40.0		TOTAL	40.0		

Table 2.1. The annual groundwater budget of İnegöl Plain (General Directorate of State Hydraulic Works, 1981)

2.4. Seismicity

The study area is located in a second degree earthquake zone according to Turkish Earthquake Zoning Map prepared by the Earthquake Research Department (2009). The expected acceleration values in the study area are between 0.3 g and 0.4 g (Figures 2.1 and 2.2).

Figure 2.1. Zone of earthquake for Bursa Province (Earthquake Research Department, 2009)

Figure 2.2. PGA values with 10% probability of exceedance in 50 years (Erdik et al., 2006)

The study area is located in the Eskişehir fault zone which is also known as the İnönü - Eskişehir fault zone (Figure 2.3).

The Eskişehir fault zone defines the boundary between the strike-slip North Anatolian Fault Zone (NAFZ) and the Western Anatolian extensional region which is represented dominantly by normal faults (Barka et al., 1995; Altunel and Barka, 1998). The Eskişehir fault zone is defined as a right-lateral strike-slip fault with a normal component (Şengör et al., 1985; Şaroğlu et al., 1992; Barka et al., 1995; Altunel and Barka, 1998). The faults that form the Eskişehir fault zone are mostly active and have the capacity of producing small to medium-sized earthquakes (Koçyiğit, 2003). During the instrumental period in the 20^{th} century, in the area between Eskişehir and Bursa (39.5° - 40.3° N and 29.0° - 31.0° E) 53 earthquakes with M≥4 have occurred. The largest event recorded on the Eskişehir fault zone is the 20 February 1956 Eskişehir (Çukurhisar) earthquake with M=6.4. The epicentral distribution of these earthquakes displays a seismic activity in the area (Okay et al., 2008).

Figure 2.3. Tectonic map of northwestern Turkey (Okay et al., 2008)

As shown on the tectonic map of Northwestern Turkey in Figure 2.3, the seismicity of the Marmara region is very high due to the presence of the active fault segments of the North Anatolian Fault Zone (NAFZ). It is evident that the earthquakes are generally associated with active faults.

The major earthquakes (M>6.5) such as the Kocaeli Earthquake with Ms=7.4 and the Hendek Adapazarı Earthquake with surface magnitude (Ms) 6.6 occurred on the northern branch of NAFZ. Although large earthquakes such as the Kocaeli and the Manyas (Ms=7.0) earthquakes occurred nearly 100 km from İnegöl, many earthquakes with magnitudes between 5.0 and 6.0 occurred around İnegöl (Sönmez, 2003). The earthquakes that occurred at a 100 km radius around the study area between 1900 and 2009 with a magnitude greater than 4.0 is shown in Figure 2.4.

Figure 2.4. Epicentral distribution of earthquakes having a magnitude greater than 4.0 around the İnegöl District (Sayısal Grafik Ltd., 2009)

CHAPTER 3

ENGINEERING GEOLOGICAL ASSESSMENT OF THE STUDY AREA

Within the scope of "the Bursa – İnegöl – Bozüyük Highway (Section II) Construction Job (between KM: 69+400 – 81+700)"; geological and geotechnical investigation studies have been conducted by Yüksel Proje Uluslararası A.Ş. comprising engineering geological mapping, borehole drillings, in-situ and laboratory tests in order to determine the physical and mechanical properties, mass movement geometry, the reasons and mechanisms for the movement of the units that were observed at the left side of the Bursa – İnegöl – Bozüyük Road between KM: 72+000 – 72+200 of the project route. In this context, an engineering geological map of the landslide area has been prepared, geological model studies have been conducted, weathering zones have been determined with the aid of borehole data and the history of the mass movement and its consecutive formation in the area have been examined. According to the acquired data; the lithological and geotechnical properties of the units are analyzed in this section.

3.1. Site Investigations

For the purpose of subsurface characterization, a total of about 276.0 m of boring (a total of 13 boreholes, max 36.0 m and min 15.0 m deep) was performed by Yüksel Proje Uluslararası A.Ş. at the landslide area in between November-December 2006. A list of the boreholes including the coordinates, borehole depth and depth to the groundwater are summarized in Table 3.1. The boreholes that contain a "i" letter at the end of borehole number are the boreholes with inclinometers. The coordinates of the boreholes are given by Gauss Krüger coordinate system.

Table 3.1. List of boreholes

Boroholo ID	Coordinate			Depth (m)	Groundwater
Dorenole ID	N (X)	E (Y)	Elevation (m)	Deptii (iii)	Depth (m)
IBH72 – 1	4 423 358.15	475 294.60	520.65	15.45	2.05
IBH72 – 2i	4 423 311.77	475 292.73	512.95	15.00	1.70
IBH72 – 3i	4 423 337.98	475 327.38	528.70	21.00	7.40
IBH72 – 4	4 423 365.60	475 366.73	538.69	22.45	13.45
IBH72 – 5	4 423 389.41	475 399.26	543.75	17.30	4.60
IBH72 – 6i	4 423 281.52	475 318.08	514.70	15.25	2.15
IBH72 – 7i	4 423 311.61	475 348.09	529.70	27.05	8.50
IBH72 – 8i	4 423 335.09	475 374.62	542.32	36.00	13.00
IBH72 – 9i	4 423 362.45	475 403.16	545.97	30.00	11.00
IBH72 – 10i	4 423 398.81	475 441.25	553.53	21.13	8.90
IBH72 – 11	4 423 426.14	475 470.53	566.04	15.25	13.90
IBH72 – 12	4 423 285.90	475 377.29	525.90	15.00	8.75
IBH72 – 13	4 423 310.72	475 399.30	537.45	25.00	16.00

3.1.1. Standard Penetration Test (SPT)

Standard Penetration Testing (SPT) was performed in each borehole, at every 1.5 m interval in order to determine the engineering classification of subsurface soils. ASTM compliant standard penetration and coring test equipments were used throughout the insitu tests. The energy delivered to the rods were estimated as 60% consistent with the energy requirements of a safety hammer. A total of 265 standard penetration tests were performed at selected depths. The 13 borehole logs are given in Appendix B. Additionally, core samples were taken at stiff soil or rock layers and the photos of the core boxes are given in Appendix C. The results of the sieve analysis tests and the Atterberg limit tests performed by Yüksel Proje Uluslararası A.Ş. are given in Appendix D.

3.1.2. Pressuremeter Test

A pressuremeter consists of a probe that, when placed in a borehole, can be inflated. The volume changes of the probe can be measured by means of a surface volume meter to which the probe is connected. A pressure versus volume change graph can be plotted and converted into a stress-strain curve. From the test results a limit pressure and a deformation modulus are determined (Abramson et al., 2002).

The pressuremeter tests were performed in the study area by Yüksel Proje Uluslararası A.Ş. using Louis Menard GA type pressuremeter with a 60 mm N type probe. The deformation modulus (E_p) with limit (P_1) and net limit (P_1)_{net} pressures varying with depth are plotted and given in Appendix E.

3.1.3. Inclinometers

Inclinometers provide information on the depth of landslide movements, thickness of the shear zone, amount of movements, rate of movements and direction of movements. Lateral movements below the ground surface can be measured by an inclinometer system. A special casing is installed in a borehole. The inside of the casing has four longitudinal grooves at the four quadrants and the inclinometer probe has wheels that truck along a diametrically opposite pair of grooves. An accelerometer within the probe aligned in the plane of wheels, measures the tilt of the probe and casing at any position along its length. By taking successive incremental readings as the probe is pulled up the casing, the in-ground shape of the casing is obtained. If landslide movements occur after the casing has been installed and initially read, the tilt of the casing in the shear zone of the landslide will change. The depth and amount of shear movement is obtained by subtracting the initial set of tilt readings from the subsequent readings (Cornforth, 2005).

During the site investigations, 7 inclinometer boreholes have been placed in the study area and inclinometer readings were taken periodically. The inclinometer measurements were recorded and plotted as depth vs. cumulative displacement

and depth vs. incremental displacement graphs that are given in Appendix F. The results of the inclinometer measurements are summarized in Table 3.2.

	Depth of Borehole (m)	Landslide Movement				
Borehole ID		Measurement Duration (days)	Amount (mm)	Depth (m)	Rate (mm/day)	
IBH72 – 2i	15.00	67	-	-	-	
IBH72 – 3i	21.00	37	76.0	5.70	2.05	
IBH72 – 6i	15.25	73	Ι	Ι	_	
IBH72 – 7i	27.05	9	41.0	23.2	4.56	
IBH72 – 8i	36.00	5	38.0	29.1	7.60	
IBH72 – 9i	30.00	6	34.0	23.6	5.67	
IBH72 – 10i	21.13	6	26.0	5.70	4.33	

Table 3.2. Results of the inclinometer measurements

As it can be seen from Table 3.2, the critical slip surface moves with a mean speed ranging from 2.05 to 7.60 mm/day.

3.1.4. Discontinuity Scanline Survey

Although many different techniques have been proposed for sampling discontinuities in rock exposures, the line or scanline approach is preferred on the basis that it is indiscriminate (all discontinuities whether large or small are recorded) and provides more detail on discontinuity spacing and attitude than the other methods. However there is currently no universally accepted standard for scanline sampling. In practice, a scanline survey is carried out by fixing a measuring tape to the rock face by short lengths of wire attached to masonry nails hammered into the rock. The nails should be spaced at approximately 3 m intervals along the tape

which must be kept as taut and as straight as possible. The face orientation and the scanline orientation should be recorded along with other information such as the location and date (ISRM, 1981).

In order to get detail information about the discontinuities in rock exposures, a scanline survey was performed in August 2008 in the study area. A photograph taken during the scanline survey is given in Figure 3.1.

Figure 3.1. Photograph of a schist block of the Pazarcık mélange taken during the scanline survey

Since the area was almost entirely covered with the landslide material and soil, a scanline survey was performed only on one rock exposure, a schist block from the Pazarcık mélange, and 22 discontinuity measurements were taken. The analysis of the discontinuity data was performed with the DIPS software (Diederichs and Hoek, 1989) and the general trend of the pole concentrations were plotted on an equatorial equal angle net (Figure 3.2). The contour plot of the pole concentration data led to one dominant discontinuity set with an orientation of 58°/064° (dip/dip direction) as shown in Figure 3.3.

Figure 3.2. Contour plot of the pole concentration of the discontinuities

Figure 3.3. The major discontinuity plane in the study area

3.2. Laboratory Tests

3.2.1. Soil Laboratory Tests

In order to determine the physical and index properties of the soil and to understand the characteristics of the lithology; natural unit weight, moisture content, specific gravity, sieve and Atterberg tests have been conducted on the disturbed (SPT) samples. A summary of the laboratory test results as well as of the soil classifications are presented in Appendix D.

3.2.2. Rock Laboratory Test Results

Schist and graphite-schist levels containing metasandstone – limestone blocks were observed in the study area from which core samples could be retrieved. Uniaxial compression tests have been conducted on the core samples in the Rock Mechanics Laboratory of Yüksel Proje Uluslararası A.Ş. and the results are given in Table 3.3 below.

Borehole ID	Depth (m)	Natural Unit Weight γn (kN/m³)	Uniaxial Compression Strength q _u (MPa)
IBH 72-3i	9.25-9.45	27.5	48.3
IBH 72-3i	15.00-15.35	24.9	31.2
IBH 72-3i	19.00-19.25	25.0	8.40
IBH 72-5	13.95-14.20	26.8	9.30
IBH 72-5	15.05-15.25	26.8	16.2
IBH 72-5	16.83-16.95	27.1	19.7
IBH 72-13	22.90-23.30	27.2	24.8
IBH 72-13	24.70-25.00	27.7	22.6

Table 3.3. Results of Rock Mechanics Tests

3.3. Assessment of Site Investigation and Laboratory Test Results

Boring logs summarizing soil profiles are presented in Appendix B. Based on these boreholes, three distinct layers were identified: i) landslide material, ii) parts of the Pazarcık mélange that weathered into soil, and iii) the Pazarcık mélange (schist and graphite-schist levels containing metasandstone – limestone blocks). The Pazarcık mélange forms the basement rock of the landslide. The geological and geotechnical properties of this and the other relevant units are given below:

i) Landslide Material:

This unit is composed of weathered schist – graphite-schist types of rocks of the Pazarcık mélange that are locally weathered into soil and mobilized by the landslide. According to the borehole logs, these units are found out to be composed of brown – yellowish brown, greenish gray colored, gravelly, silty sand, clayey sand and sandy silt, and also schist – graphite-schist type of rocks. The thickness of the unit is found out to be 3.00 – 29.0 m from the borehole logs and it was determined that the slip surface formed at the schist – graphite-schist contact. The range of the laboratory test results of the samples obtained from the SPT conducted at the landslide material is given below:

SPT (N)	3 ≤ SPT (N) ≤ 50+
Water content (W _n)	5% ≤ Wn ≤ 32%
Liquid limit (LL)	$NP \le LL \le 53\%$
Plasticity Index (PI)	$NP \le PI \le 25$
Retained at number 4 sieve (+4)	1% ≤+ 4 ≤ 86%
Passing number 200 sieve (-200)	1% ≤ -200 ≤ 80%
Soil class (USCS)	SM, SC, CL, GP to GM, ML, GM, MH

A summary of the SPT N values vs. depth for the landslide material is shown in Figure 3.4.

Figure 3.4. SPT $N_{\rm 1,60}\,values\,vs.$ depth for the landslide material

A summary of the LL values vs. depth is shown in Figure 3.5.

Figure 3.5. LL values vs. depth for the landslide material

A summary of the PI values vs. depth is shown in Figure 3.6.

Figure 3.6. PI values vs. depth for the landslide material

The schist type of rocks that are included within the landslide mass are brown to yellowish light brown, greenish gray colored, disintegrable, weak to very weak in strength, very to completely weathered, occasionally moderately weathered and occasionally fragmented. On the other hand, the graphite-schist type rocks are dark gray to black colored, disintegrable, very weak in strength, generally completely weathered and occasionally decomposed into clay at some locations.

ii) Parts of the Pazarcık Mélange that Weathered into Soil

This unit represents the upper part of the schist – graphite-schist type of rocks that are included in the Pazarcık mélange that have weathered into soil. The thickness of this unit changes approximately from 1.00 to 11.0 m in the borehole logs. The

unit is generally composed of brown – yellowish brown – greenish gray – brownish gray color, medium to very dense, sandy gravel/gravelly silty sand and medium to hard sandy silt. The gravel is generally moderately angular – round and is of schist – quartzite origin. The range of laboratory test results on the samples obtained from SPT testing is given below:

SPT (N)	7 ≤ SPT (N) ≤ 50+
Water content (W _n)	13% ≤ Wn ≤ 33%
Liquid limit (LL)	$NP \le LL \le 47\%$
Plasticity Index (PI)	NP ≤ PI ≤ 23
Retained at number 4 sieve (+4)	3% ≤ +4 ≤ 61%
Passing number 200 sieve (-200)	11% ≤ -200 ≤ 72%
Soil class(USCS)	SM, SC, ML, GP to GM, GM

A summary of the SPT N values vs. depth is shown in Figure 3.7.

Figure 3.7. SPT $N_{\rm 1,60}$ values vs. depth for parts of the Pazarcık mélange that weathered into soil

A summary of the LL values vs. depth is shown in Figure 3.8.

Figure 3.8. LL values vs. depth for parts of the Pazarcık mélange that weathered into soil

A summary of the PI values vs. depth is shown in Figure 3.8.

Figure 3.9. PI values vs. depth for parts of the Pazarcık mélange that weathered into soil

iii) Pazarcık Melange (Pzp)

The Pazarcık mélange, which has basement unit characteristics is represented by schist and graphite-schist type of rocks that contain limestone blocks. These rock groups show lateral and vertical transitions in very close distances which is a general structural characteristic of the unit. The geotechnical properties of these rock groups are presented below.

In the light of data gathered from the geological field studies and the boreholes, the schist type of rocks are generally green – greenish light gray – yellowish brown – violet – purple color, disintegrable, low to moderately hard, generally of low to very low strength, occasionally of moderate strength, highly to completely weathered, occasionally slightly to moderately weathered, occasionally fragmented. The

discontinuities were observed to have dips ranging from 0° to 90°, open apertures, polished, rough, undulated and dense clay infillings. In this unit, the graphite-schist bands and quartzite veins were occasionally observed. The total core recovery (TCR), rock quality designation (RQD) and laboratory and pressuremeter test result ranges of schist type rocks are summarized below:

Total Core Recovery (TCR)	0% ≤ TCR ≤ 100%
Rock Quality Designation (RQD)	0% ≤ RQD ≤ 100%
Uniaxial Compressive Strength (q_u)	8.40 MPa ≤ q _u ≤ 48.3 MPa
Natural unit weight (γ _n)	24.9 kN/m ³ $\leq \gamma_n \leq$ 27.7 kN/m ³
Pressuremeter limit pressure (PIn)	$6.76 \text{ kgf/cm}^2 \le \text{Pln} \le 41.5 \text{ kgf/cm}^2$
Pressuremeter module (Ep)	66 kgf/cm ² \leq Ep \leq 4,552 kgf/cm ²

The graphite-schist type rocks that are present in this unit are generally; dark gray – black – grayish dark gray colored, disintegrable, occasionally of low hardness, weak to very weak strength, highly to completely weathered and possess limestone and quartzite veins. The total core recovery (TCR), rock quality designation (RQD), laboratory and pressuremeter test results of the graphite-schist type of rocks are summarized below.

Total Core Recovery (TCR)	0% ≤ TCR ≤ 98%
Rock Quality Designation (RQD)	$0\% \le RQD \le 66\%$
Natural unit weight (γ _n)	27.2 kN/m ³
Uniaxial Compressive Strength (q _u)	24.8 MPa
Pressuremeter limit pressure(PIn)	5.66 kgf/cm ²
Pressuremeter module (Ep)	47 kgf/cm ²

The results of the laboratory tests that have been conducted on the samples gathered from SPT testing in highly to completely weathered levels of the graphite-schist unit is given below:

SPT (N)	17 ≤ SPT (N) ≤ 50+
Water content (Wn)	6% ≤ Wn ≤ 30%
Liquid limit (LL)	NP ≤ LL ≤ 47%
Plasticity Index (PI)	NP ≤ PI ≤ 15
Retained at number 4 sieve (+4)	$8\% \leq +4 \leq 52\%$
Passing number 200 sieve (-200)	6% ≤ -200 ≤ 44%
Soil class (USCS)	SM, SC, GP to GM

The schist type of rocks are generally regarded as impervious, occasionally of low permeability. The graphite-schist type rocks, on the other hand, are regarded as impervious. However, since this unit possesses a discontinuity set, it may be expected to allow groundwater circulation.

A summary of the SPT N values vs. depth is shown in Figure 3.10.

Figure 3.10. SPT $N_{1,60}$ values vs. depth for the Pazarcık mélange

A summary of the LL values vs. depth is shown in Figure 3.11.

Figure 3.11. LL values vs. depth for the Pazarcık mélange

A summary of the PI values vs. depth is shown in Figure 3.12.

Figure 3.12. PI values vs. depth for the Pazarcık mélange

Rock mass classification systems are very useful tools for the preliminary design stage of a project, when very little detailed information on the rock mass is available. On the other hand, utilization of several rock mass classification systems is recommended to build up a picture of composition and characteristics of the rock mass to provide initial estimates of the shear strength and the deformational properties of the rock mass (Hoek et al., 1995). Rock mass strength parameters can be obtained by means of Rock Mass Rating (RMR), Q-system, Geological Strength Index (GSI) and Rock Mass Index (RMi) systems. In this study the RMR classification, for characterizing the overall properties of the rock mass quality was used. The RMR uses six parameters that are readily determined in the field: uniaxial compressive strength of the intact rock, rock quality designation (RQD), spacing of discontinuities, condition of discontinuities, groundwater conditions, and orientation of discontinuities (Bieniawski, 1989). The Rock Mass Rating system is presented in Table 3.4, giving the ratings for each of the six parameters. These ratings are summed to give a value of RMR and the rock mass is classified according to the RMR value.

	Parameter			Bange of volues				_
-	r arallieter			range of values				
Stre	ngth Point-load f strength index	>10 MPa	4 - 10 MPa	2 - 4 MPa	1 - 2 MPa	For this lo compressiv preferred	w range ve te	•unia st
1 mat	erial Uniaxial comp. strength	>250 MPa	100 - 250 MPa	50 - 100 MPa	25 - 50 MPa	5 - 25 MPa	1 - 5 MPa	< M
	Rating	15	12	7	4	2	1	(
	Drill core Quality RQD	90% - 100%	75% - 90%	50% - 75%	25% - 50%		< 25%	
2	Rating	20	17	13	8		3	
S	acing of discontinuities	> 2 m	0.6 - 2 . m	200 - 600 mm	60 - 200 mm		< 60 mm	_
3	Rating	20	15	10	8		5	
		Very rough surfaces	Slightly rough surfaces	Slightly rough surfaces	Slickensided surfaces	Soft gouge	e >5 mm t	hick
Co	ndition of discontinuities	Not continuous	Separation < 1 mm	Separation < 1 mm	or Gouge < 5 mm thick	or Separat	ion > 5 m	m
	(See E)	No separation	Slightly weathered wal	s Highly weathered walls	or Separation 1-5 mm	Continuous	5	
•	Pating	Unweathered wall rock	25	20	Continuous	_	0	
	I Saung	50	2.5	20	05,405	_	v + 405	
	Inflow per 10 m tunnel length (l/m)	None	< 10	10 - 25	25 - 125		> 125	
Groundi ter	va (Joint water press)/ (Major principal σ)	0	< 0.1	0.1, - 0.2	0.2 - 0.5		> 0.5	
	General conditions	Completely dry	Damp	Wet	Dripping		Flowing	
	Rating	15	10	7	4		0	
RATING A	JUSTMENT FOR DISCONT	INUITY ORIENTATIONS (See	F)					
rike and dip	orientations	Very favourable	Favourable	Fair	Unfavourable	Very	Unfavour	able
	Tunnels & mines	0	-2	-5	-10		-12	_
Ratings	Foundations	0	-2	-7	-15		-25	_
	Slopes	0	-5	-25	-50			_
ROCK MAS	S CLASSES DETERMINED	FROM TOTAL RATINGS	•					_
ating		100 ← 81	80 ← 61	60 ← 41	40 ← 21		< 21	
ass number		1			IV		V	_
escription		Very good rock	Good rock	Fair rock	Poor rock	Poor rock Very poor rock		
MEANING	OF ROCK CLASSES							_
ass number		I	1	III	IV		v .	
verage stand	-up time	20 yrs for 15 m span	1 year for 10 m spa	n 1 week for 5 m span	10 hrs for 2.5 m span	30 mir	n for 1 m	span
ohesion of ro	ck mass (kPa)	> 400	300 - 400	200 - 300	100 - 200		< 100	
riction angle	of rock mass (deg)	> 45	35 - 45	25 - 35	15 - 25	-	< 15	_
GUIDELIN	S FOR CLASSIFICATION	F DISCONTINUITY conditions	5					_
iscontinuity k	ength (persistence)	<1m	1 - 3 m	3 - 10 m	10 - 20 m		> 20 m	··
ating	3	6	4	2	1		0	
eparation (a	erture)	None	< 0.1 mm	0.1 - 1.0 mm	1 - 5 mm		> 5 mm	
ating oughness		6 Very rough	5 Bounh	4 Sliaktiv rouah	1 Smooth	Si	0 inkonsider	4
ating		6	5	3	1		0	
filling (gouge)	None	Hard filling < 5 mn	n Hard filling > 5 mm	Soft filling < 5 mm	Soft f	filling > 5	mm
ating Institution		6	4 Slightly was the set	2 Madautalu wanthand	2	Da	0	4
atinas		6	5	3	nignly weathered	De	0	
EFFECT O	DISCONTINUITY STRIKE	AND DIP ORIENT ATION IN TU	NNELLING**					_
	Strike perpe	endicular to tunnel axis		:	Strike parallel to tunnel axis			
Driv	e with dip - Dip 45 - 90°	Drive with dip -	Dip 20 - 45°	Dip 45 - 90°		Dip 20 - 45°	•	
	Very favourable	Favour	able	Very unfavourable		Fair		
Drive	against dip - Dip 45-90°	Drive against dig	- Dip 20-45°	Di	p 0-20 - Invespective of strike°)		
	Fair	Unfavou	rable	-	Fair			

 Table 3.4. The Rock Mass Rating (RMR) System (after Bieniawski, 1989)

As a result of the scanline survey, the RMR classification rating value and the rock mass classification of the Pazarcık mélange schist block are given in Table 3.5 (Section 3.1.4 gives more details on the schist block).

Parameter	Rating Value			
Strength of Intact Rock		2		
RQD		3		
Spacing of Discontinuity		<60 mm		
	Persistence	1-3 m	4	
Condition of	Aperture	>5 mm	0	
Discontinuity	Roughness	Slightly rough	3	
Discontinuity	Infilling	Soft filling <5 mm	2	
	Weathering	Highly weathering	1	
Groundwater Completely dry			15	
RMR			35	
Book Maga Class			(IV)	
ROCK WASS CLASS	Poor Rock			

Table 3.5. RMR classification of the Pazarcık mélange schist block

CHAPTER 4

SLOPE STABILITY ANALYSIS

4.1. Introduction

The scope of the stability analysis of an existing slope is to verify its safety condition and whether or not to carry out preventive or corrective measures. In the case where a slope is to be designed, stability analyses enables the engineer to assess a suitable geometry to ensure a minimum factor of safety (FS) under environmental conditions such as rainfall and vegetation, as well as anthropic action such as: excavations, loadings and drainage. There are two types of stability analyses: total stress and effective stress analyses. The first case corresponds to short term situations, saturated soils and impeded drainage conditions, such as end-ofconstruction cases. The second case, effective stress analyses, can be used for long term stability analyses in which drained conditions prevail, or even short term cases, when pore pressures are known accurately. It is suggested that most natural slopes and also slopes in residual soils should be analyzed through the effective stress method, considering the maximum water level that can be reached under severe rainstorms (Sayao, 2004).

The analysis of slopes takes into account a variety of factors relating to topography, geology, and material properties, often relating to whether the slope was naturally formed or engineered (Abramson et al., 2002).

4.2. Methods of Slope Stability Analysis

A quantitative assessment of the stability of a slope is clearly important when judgement is needed about whether the slope is stable or not, and decisions are to be made as a consequence. There are a number of different methods of stability analysis available, but the procedures are broadly similar in concept (Nash, 1992).

4.2.1. Limit Equilibrium Method

The limit equilibrium method is commonly used in slope stability analysis since it is relatively simple when compared with the finite element analysis.

Firstly, the slope under consideration and the soil forming it are modeled theoretically, including the loadings on the slope and a failure criterion for the soil is introduced. The analysis then indicates whether the failure criterion is reached, and a comparison may then be made between these conditions and those under which the modeled slope just fail. It is important to realize that the results of such an analysis are of limited value themselves, as they are dependent on the theoretical models adopted for the slope and the soil. However, when combined with experience of their application in similar conditions, the results are a useful input to the decision-making process (Nash, 1992).

In the limit equilibrium method a failure surface of simple shape is assumed and the material above this surface is considered as a free body. Then the sliding mass is divided into a number of slices. The disturbing and resisting forces above the assumed failure surface are estimated enabling the formulation of equations concerning force equilibrium or moment equilibrium (or both) of the potential sliding surface. The solution of these equations provides quantitative information, called "Factor of Safety (FS)", concerning the stability of the slope. Table 4.1 lists the common methods of analysis and the conditions of static equilibrium that are satisfied in determining the FS (Abramson et al., 2002).

Method	Force E	quilibrium	Moment Equilibrium	
	х	у		
Ordinary method of slices (OMS)	No	No	Yes	
Bishop's simplified	Yes	No	Yes	
Janbu's simplified	Yes	Yes	No	
Lowe and Karafiath	Yes	Yes	No	
Corps of Engineers	Yes	Yes	No	
Spencer's	Yes	Yes	Yes	
Bishop's rigorous	Yes	Yes	Yes	
Janbu's generalized	Yes	Yes	No	
Sarma's	Yes	Yes	Yes	
Morgenstern-Price	Yes	Yes	Yes	

Table 4.1. Static Equilibrium Conditions Satisfied by Limit Equilibrium Methods (Abramson et al., 2002)

The next step is repeating the calculations for a number of sliding surfaces and finding a factor of safety for each. The sliding surface with a minimum factor of safety is marked as the critical surface along which failure is most probable. In the limit equilibrium method, in addition to the internal friction angle, factors such as the weight of sliding mass, cohesion, pore pressure, geometry of the slope, seismic acceleration, tension crack position and external loads are all taken into account (Bromhead, 1992).

All limit equilibrium methods for slope stability analysis divide a slide-mass into "n" smaller slices (Figure 4.1) and each slice is affected by a general system of forces; as shown in Figure 4.2 (Abramson et al., 2002).

Figure 4.1. Division of sliding mass into slices (Abramson et al., 2002)

Figure 4.2. Forces acting on a typical slice (Abramson et al., 2002)

The thrust line indicated in Figure 4.2 connects the points of application of the interslice forces, Z_i . The location of this thrust line may be assumed, as in the rigorous Janbu method, or its location may be determined using a rigorous method of analysis that satisfies complete equilibrium. The popular simplified methods of analysis neglect the location of the interslice force because complete equilibrium is not satisfied for the failure mass (Abramson et al., 2002).

For this system there are (6n-2) unknowns, as listed in Table 4.2. In addition, since only four equations can be written for the limit equilibrium of the system, the solution is statically indeterminate. However, a solution is possible provided that the number of unknowns can be reduced by making some simplifying assumptions. One of the common assumptions is that the normal force on the base of the slice acts at the midpoint thus reducing the number of unknowns to (5n -2). This then requires an additional (n-2) assumption to make the problem determinate. It is these assumptions that generally categorize the available methods of analysis (Abramson et al., 2002).

Equations	Condition	Unknown	Variable
n	Moment equilibrium	1	Factor of safety
	for each slice	UnknownVariableum1Factor of safetyumnNormal force at base of ean innLocation of normal force, AornShear force at base of eacnn-1Interslice force, Zreenn-1Inclination of interslice forcendn-1Location of interslice forcen-1Total number of unknow	Normal force at base of each slice, N'
2n	Force equilibrium in	n	Location of normal force, N'
	each slice)	n	Shear force at base of each slice, Sm
_	Mohr-Coulomb relationship between	n-1	Interslice force, Z
		n-1	Inclination of interslice force, θ
	shear strength and normal effective stress	n-1	Location of interslice force (line of thrust)
4n	Total number of equations	6n-2	Total number of unknowns

Table 4.2 Equations and unknowns associated with the method of slices (Abramson et al., 2002)

The assumptions made by each of these methods, to render the problem determinate, are summarized below (Abramson et al., 2002).

<u>Ordinary Method of Slices (OMS)</u>: This is the simplest of the method of slices and allows hand calculation. In this method, interslice forces are assumed to be parallel to the base of the slice and it fails to satisfy force equilibrium. Bishop's Simplified Method: Bishop assumes that all interslice shear forces are zero, reducing the number of unknowns by (n-1). This leaves (4n-1) unknowns, leaving the solution overdetermined as horizontal force equilibrium will not be satisfied for one slice.

<u>Janbu's Simplified Method</u>: Interslice shear forces are assumed to be zero, reducing the number of unknowns to (4n - 1). This leads to an over determined solution that will not completely satisfy moment equilibrium conditions. However, Janbu presented a correction factor, f_o , to account for this inadequacy.

<u>Bishop's Rigorous Method:</u> Bishop assumes (n -1) interslice shear forces to calculate an FS. Since this assumption leaves (4n -1) unknowns, moment equilibrium cannot be directly satisfied for all slices. However, Bishop introduces an additional unknown by suggesting that there exists a unique distribution of the interslice resultant force, out of a possible infinite number, that will rigorously satisfy the equilibrium equations.

<u>Janbu's Generalized Method</u>: Janbu assumes a location of the thrust line, thereby reducing the number of unknowns to (4n -1). Similar to the rigorous Bishop method, Janbu's generalized method also suggests that the actual location of the thrust line is an additional unknown, and thus equilibrium can be satisfied rigorously if the assumption selects the correct thrust line.

<u>Spencer's Method</u>: In the Spencer method, it is assumed that the resultant interslice force has a constant, but an unknown inclination (Spencer, 1967). These (n-1) assumptions again reduce the number of unknowns to (4n-1), but the unknown inclination is an additional component that subsequently increases the number of unknowns to match the required 4n equations.

<u>Morgenstern-Price Method</u>: Morgenstern and Price method is similar to Spencer's method, except that the inclination of the interslice resultant force is assumed to vary according to a "portion" of an arbitrary function. This additional "portion" of a selected function introduces an additional unknown, leaving 4n unknowns and 4n equations (Morgenstern and Price, 1965).

A summary of the common limit equilibrium methods and their conditions are given in Table 4.3.

Mathad	Shape of	pe of Assumptions about		Calculated practically by		
Method	surface	interslice forces	Hand	Computer		
Ordinary method of slices (OMS)	Circular	Resultant parallel to base	Yes	Yes		
Bishop's simplified	Circular	Horizontal	Yes	Yes		
Janbu's simplified	Circular, Noncircular	Horizontal correction factor	Yes	Yes		
Spencer's	Circular, Noncircular	Constant inclination	No	Yes		
Bishop's rigorous	Circular, Noncircular	Assume distribution	Yes	Yes		
Janbu's generalized	Circular, Noncircular	Define trust line	Yes	Yes		
Morgenstern- Circular, X		X/E=λf(x)	No	Yes		

Table 4.3. C	Common li	imit equilibrium	methods and	their condit	ions (Nash,	1992)
--------------	-----------	------------------	-------------	--------------	-------------	-------

4.2.2. Finite Element Method

The finite element method (FEM) can be effectively used for stability evaluations utilizing the c- ϕ reduction procedure (Brinkgreve and Bakker 1991, Vermeer and van Langen, 1989). A suitable alternative to the traditional limit equilibrium approaches is the finite element method in that, it is more versatile and requires fewer a priory assumptions, especially regarding the failure mechanism. Evolution

of the failure zone is gradually dependent on the deformation behavior of soils described by a suitable constitutive model (Potts and Zdravkovic, 1999). Thus no assumption needs to be made in advance about the shape or location of the failure surface that arises naturally in the zones where the shear strength of soils is insufficient to resist the shear load. In modeling failure processes attention is usually limited to elastic-perfect plastic behavior so that the hardening or the softening behavior of real soils confirmed by a number of experimental observations is excluded from the analysis. An extensive numerical experimentation on stability of slopes under these assumptions is reported by Griffith (2001). The use of finite elements in geotechnical engineering, however, is much more versatile and by no means limited to stability analysis of earth slopes. The stresses within the slopes are strongly influenced by K_0 , the ratio of lateral to vertical normal effective stresses, but conventional limit equilibrium procedures ignore this important feature (Chowdhury, 1981). In reality, the stress distributions within the slopes would be different and hence, would significantly influence their stability.

The finite element method (FEM) bypasses many of the deficiencies that are inherent with the limit equilibrium methods. It was first introduced to geotechnical engineering by Clough and Woodward (1967), but its use has been limited to the analysis of complex earth structures. For typical cases, the FEM can incorporate incremental construction for embankments and excavations in an attempt to simulate the stress history of the soil within the slope. However, the quality of the FEM is directly dependent on the ability of the selected constitutive model to realistically simulate the nonlinear behavior of the soil within the slope. For new embankment designs, the data may be collected from laboratory tests. For excavations and natural slopes, the constitutive model can only really be developed on the basis of high quality field tests that are further supported by field observations (Abramson et al., 2002).

The FEM essentially divides the soil continuum into discrete units, that is, finite elements (Figure 4.3). These elements are interconnected at their nodes and at predefined boundaries of the continuum. The displacement method formulation of the FEM is typically used for geotechnical applications and presents results in the form of displacements, stresses, and strains at the nodal points. There are many

two and three dimensional computer programs available for finite element analyses of slopes and embankments.

Figure 4.3. Definitions of terms used for FEM (Abramson et al., 2002)

4.3. Seismic Slope Stability Analysis

Earthquake ground motions are capable of inducing large destabilizing inertial forces of a cyclic nature, in slopes and embankments. Also, the shear strength of the soil may be reduced due to transient loads (i.e., cyclic strains) or due to the generation of excess pore water pressures. The combined effect of the seismic loads and the changes in shear strength will result in an overall decrease in the stability of the affected slope (Abramson et al., 2002).

Typically, cyclic loads will generate excess pore water pressures in loose, saturated cohesionless material (gravels, sands and nonplastic silts), which may liquefy with a considerable loss of pre-earthquake strength. However, cohesive soils and dry cohesionless materials are not generally affected by cyclic loads to the same extent. If the cohesive soil is not sensitive, in most cases it appears that at least 80 percent of the static shear strength will be retained during and after the cyclic loading (Makdisi and Seed, 1978). In general, four methods of analysis have been

proposed for the evaluation of the stability of slopes during earthquakes. With an increasing order of the complexity and expense, these are the pseudo-static method, Newmark's displacement method, post-earthquake stability, and dynamic finite element analysis.

4.3.1. Pseudo-Static Method

The pseudo-static method offers the simplest approach for evaluating the stability of a slope in an earthquake prone region. In its implementation, the limit equilibrium method is modified to include horizontal and vertical static seismic forces that are used to simulate the potential inertial forces due to ground accelerations in an earthquake. These seismic forces are assumed to be proportional to the weight of the potential sliding mass times seismic coefficients, k_h and k_v , expressed in terms of the acceleration of the underlying earth (in units of g). It is recommended that only the most critical surface, as identified by a static analysis, should be reanalyzed using pseudo-static seismic coefficients, as it will be the most stressed region within the slope (Abramson, et al., 2002).

Typically, the seismic force is presumed to act in the horizontal direction only, that is, $k_v=0$, inducing inertial force, k_hW , in the slope, where W is the weight of the potential sliding mass. A FS is then calculated using conventional methods. The greatest difficulty with this procedure involves the selection of an appropriate seismic coefficient and the value of an acceptable FS (Abramson, et al., 2002).

The magnitude of the seismic coefficient should effectively simulate the nature of the expected earthquake forces, which will depend on earthquake intensity, for example, peak ground acceleration (PGA), duration of shaking and frequency content. Of course as a very conservative assumption, one can select a seismic coefficient that is equal to the PGA expected at the slope. However, this conservatism will lead to a very uneconomic evaluation. The selection of such coefficients, therefore, must be rationalized if slopes are to be designed economically (Abramson et al., 2002). Some typical seismic coefficients that have been used for evaluating the seismic stability of slopes are given in Table 4.4.

Seismic Coefficient	Remarks
0.10	Major earthquake, FS>1.0 (Corps of Engineers, 1982)
0.15	Great Earthquake, FS>1.0 (Corps of Engineers, 1982)
0.15-0.25	Japan, FS>1.0
0.05-0.15	State of California
0.15	Seed (1979), with FS>1.15 and a 20 percent strength reduction
(1/3)PGA - (1/2)PGA*	Marcuson and Franklin (1983), FS>1.0
(1/2)PGA*	Hynes-Graffin and Franklin (1984), FS>1.0 and a 20 percent strength reduction

Table 4.4. Typical seismic coefficients and FS in practices (Abramson et al., 2002)

*PGA in g

4.3.2. Newmark's Displacement Method

The procedure proposed by Newmark (1965) extends the simple pseudo-static approach by directly considering the acceleration time history (accelerogram) of the slide mass within the slope. This accelerogram, selected to represent a realistic model of the ground motions expected at the site, is then compared with the yield acceleration to determine permanent displacements (Abramson et al., 2002).

Newmark's method assumes existence of a well-defined slip surface, a rigid, perfectly plastic slide material, a negligible loss of shear strength during shaking, and occurrence of permanent strains only if the dynamic stress exceeds the shear resistance. Also, the slope is only presumed to deform in the downslope direction, thus implying infinite dynamic shear resistance in the upslope direction. The procedure requires that the value of a yield acceleration or critical seismic coefficient, k_y, be determined for the potential failure surface using conventional limit equilibrium methods. The main difficulty associated with this method is related to the selection of an appropriate accelerogram that simulates the motions of the slide mass. However, once this has been selected, the permanent displacements are calculated by double integration of the portions of the accelerogram that exceed the yield acceleration for the critical failure surface (Abramson et al., 2002).

The reported permanent displacements represent the motion of the center of gravity of the slide mass. For a planar slip-surface, the direction of this permanent displacement will be parallel to the slip surface. For the typical nonplanar failure surface, the direction of the permanent displacements is not immediately obvious. In such cases, the initial direction of the block's motion may be determined by considering the free-body forces that exist along the boundary of the slide mass. This direction may be calculated first by the resultant of all the shear forces and all the normal forces acting along the failure surface boundary. This essentially amounts to a vertical summation of the shear and normal forces at the base of all slices, as determined in a limit equilibrium analysis. The permanent displacements are then assumed to act along the direction of the resultant of the cumulative shear and normal forces (Bromhead, 1992).

A typical ground response analysis consists of selecting an accelerogram to represent excepted motions on bedrock, which should effectively simulate the intensity, duration and frequency content of the shaking motions. Then by using a numerical model, these bedrock motions are propagated through the overlying soil layers. Results from such an analysis can provide acceleration, stress and strain time histories within the geometric model of the slope (Abramson et al., 2002).

4.3.3. Postearthquake Stability

Postearthquake stability is calculated using laboratory undrained strengths, determined on representative soil samples that have been subjected to the cyclic loads comparable to the anticipated earthquake (Abramson et al., 2002).

4.3.4. Dynamic Finite Element Analysis

In dynamic finite element analysis, a coupled two- (or three-) dimensional analysis using an appropriate constitutive soil model will provide details concerning stresses, strains, and permanent displacements (Abramson et al., 2002).

CHAPTER 5

ASSESSMENT OF SLOPE INSTABILITY

5.1. Introduction

Within the scope of "the Bursa – İnegöl – Bozüyük Highway (Section II) Construction Job between KM: 69+400 - 81+700" a considerable amount of mass movement occurred during the construction work of the left cutting slope in between KM: 72+000 and 72+200 in May, 2006. 40 to 60 cm wide tension cracks formed approximately 110 m behind the cutting slope; and throughout the terrain, surface deformations occurred due to mass movement. As a solution to this problem, the left cutting slope was inclined with a ratio of 3/2 (h/V). However, despite all the preventive measures taken, the mass movement continued and the width of the tension crack at the crown area of the mass movement was measured in terms of meters. After the movement, the cutting slope was observed to be displaced about 1.0 - 1.5 m within the road cut.

5.2. Mechanism of the Landslide

The landslide has occurred inside the Pazarcık mélange (Pzp). The rocks in the mélange are very weak and completely decomposed. According to Abramson et al. (2002), mélanges are difficult geotechnical materials to deal in analyzing slope stability because of their heterogeneity and complex nature. In light of the conducted studies, the landslide in general is controlled by fault lines and advanced joint systems but also exhibits circular slip properties in the toe region. According to the data provided by the geological – geotechnical investigations, the landslide has a length of approximately 200 m, a width of approximately 130 m and an elevation difference between the landslides' crown and toe is approximately 48 m. The mass thickness of the current landslide according to the inclinometer measurements was found to vary between approximately 3 - 29 m along the slip surface and the

current mean speed of the movement along the most critical slip surface was measured to range from 2.05 to 7.60 mm/day. The digital elevation model of the study area and its close vicinity is given in Figure 5.1.

Figure 5.1. Digital elevation model of the study area (the boundary of the landslide is denoted with the solid red line)

According to the Varnes (1978), if the ratio of the depth (D) to the length (L) of a landslide is greater than 0.15, the landslide can be categorized as a "rotational slide". If the ratio is less than 0.10, it is a "translational slide". The landslide, with an average D/L ratio of about 0.08 appears to be a translational slide.

In addition to the excavation at the toe of slope, the most important factors triggering the landslide are the active surface water and groundwater flow.

5.3. Determination of the Shear Strength Parameters

Following the geotechnical site investigation, a back analysis has been carried out using the limit equilibrium stability software Slope/W to determine the mobilized shear strength of the slope.

5.3.1. Back Analysis

Back analysis is probably the most valuable tool available for the slope stability problems. With the aid of the back analysis methods, relevant shear strength parameters can be obtained that otherwise would not be obtained through conventional laboratory testing (Abramson et al., 2002).

According to Filz et al. (1992), an analytic model of a failed or failing slope developed by back analysis consists of five components:

(1) Landslide geometry including the ground surface, slip surface, and material boundary locations

(2) Pore water pressures on the sliding surface at the time of failure. These are necessary for effective stress analysis

- (3) External loads acting on the slope at the time of failure
- (4) Unit weights of the materials involved in the landslide
- (5) Strength of materials along the failure surface.

Often the first four components of the model can be evaluated with reasonable accuracy based on field and laboratory investigations. Back analysis is often used to establish the fifth component of the model, that is, the soil strengths, on the assumption that the factor of safety is equal to 1.0 at the time of failure. Because of large deformations, residual strengths are often in effect along the existing failure surfaces, and the material strengths can be characterized by values of effective

stress, residual friction angle and the effective cohesion intercept (Abramson et al., 2002).

5.3.2. Determination of the Shear Strength Parameters of the Failure Surface by Back Analysis

Back analyses were carried out using conventional limit equilibrium method to establish the mobilized shear strength parameters of the slope. The back analyses were performed on four cross sections, which are nearly parallel to the direction of movement, using the slice method of Morgenstern and Price with the help of Slope/W. The location and direction of the cross sections used in the analysis are given in Appendix A, Figure A1 and the cross sections are given in Appendix A, Figures A2 through A5.

During the back analysis well defined slip surfaces and groundwater tables were adopted in the models. The positions of the failure surface for all four cross sections were obtained from the results of the inclinometer readings.

The slope consisted of three lithologies from bottom to the top, namely the Pazarcık mélange, parts of the Pazarcık mélange that weathered into soil, and the landslide material which were defined in the back analyses. The strength parameters of parts of the Pazarcık mélange that weathered into soil that will be used in the stability analyses were determined by Yüksel Proje Uluslararası A.Ş. (2007) from the field investigations and correlations of soil properties as follows:

The cohesion was determined using approximate correlation between undrained shear strength and SPT(N) values (Sowers, 1979) and the lower bound of the correlation, c' = 5 kPa, was taken into account in order to be on the safe side. The internal friction angle was determined using the relationship between SPT (N) and internal friction angle (Peck et al., 1974) and the lower value of the internal friction angle (ϕ ') of 30° was chosen.

The rock mass strength parameters of the Pazarcık mélange were determined by using the RocLab 1.0 computer software which is based on the generalized Hoek-Brown failure criterion. In addition to the Hoek-Brown failure criterion using the other parameters (mb, s and a), RocLab always calculates equivalent Mohr-Coulomb parameters (cohesion and friction angle) for the rock mass (Rocscience, 2002). Figure 5.2 shows the graphical relationship between the normal and shear stresses of Pazarcık mélange as calculated by RocLab.

Figure 5.2. Normal stress vs. shear stress as calculated by RocLab 1.0

The strength parameters of the Pazarcık mélange were determined according to RocLab as follows:

c = 141 kPa φ = 33° After the determination of the strength parameters for the parts of the Pazarcık mélange that weathered into soil and for the Pazarcık mélange, the strength parameters of the landslide material were obtained from back analysis by adjusting c' and ϕ ' parameters until the factor of safety is unity (FS=1.0) which is regarded as a prerequisite for failure in a limit equilibrium analytical model. Back analyses results showing the c'- ϕ ' pairs of limit equilibrium condition in the form of c'- ϕ ' curves are given in Figure 5.3.

Figure 5.3. Back analyses results showing the c'- ϕ ' pairs for FS=1.0 for the various cross sections

As it can be seen from Figure 5.3, all four curves c'- ϕ ' curves intersect at six points. According to Craig (1992), the residual cohesion for many soils is very low and can be taken as zero. In addition to Craig's statement, since four of the six intersections intersections fall in the region where c' has a negative value and since c' cannot take a value smaller than "0°", it is taken as zero. For the c'=0 condition ϕ ' ranges between 12° and 16°. Due to the cohesionless nature of the landslide material and the statement of Craig (1992), the pairs of c' = 0 kPa and ϕ ' = 15.7° have been considered as representative mean values for the landslide material and will be used for slope design.

5.4. Modeling of the Landslide

After the determination of the shear strength parameters for all three materials, the most suitable cross section that represents the landslide area was chosen in order to model the landslide and to find the most appropriate remediation technique.

Since the deepest landslide mass, the longest slip surface and the highest number of inclinometer measurements (4) were present in cross section C-C', this cross section was selected for slope design. The landslide was modeled through utilizing both limit equilibrium analysis and finite element method.

5.4.1. Limit Equilibrium Modeling of the Landslide

A coupled hydrogeological-slope stability analysis was used to assess the stability of the landslide. Since rainfall can be defined as a parameter decreasing the shear strength (due to an increase in pore water pressure on the failure surface), the landslide was modeled using the approach of a general infiltration analysis combined with a hydrogeological-slope stability analysis performed with the computer softwares SEEP/W and SLOPE/W. There are two fundamental types of the finite element seepage analyses, which are the steady-state and the transient analyses, respectively.

Steady state describes a situation where the state of the model is time independent. This type of analysis does not consider how long it takes to achieve a steady condition. The model will reach a solved set of pressure and flow conditions for the given set of unique boundary conditions applied to it and that is the extent of the analysis. A transient analysis by definition means one that is always changing. It is changing because it considers how long the soil takes to respond to the user boundary conditions. For a transient analysis, it is essential to define the initial (starting) total head at all the nodes. It is important to recognize that the initial conditions for a transient analysis can have a significant effect on the solution (Geo-Slope, 2008).

5.4.1.1. Steady State Model

Water contributes greatly to many landslides. Careful examination of existing drainage lines and potential change of drainage routes to the spot under scrutiny should be made. Such drainage may appear on the surface or may go underground and reappear as seepage water that may cause damage to slopes (Abramson et al., 2002). Therefore the boundary conditions of the model should be determined carefully while constructing the model.

In the steady state seepage analysis three boundary conditions, which are infiltration, potential seepage face and zero pressure head were adopted to the model in order to represent a realistic case of the landslide (Figure 5.4).

Figure 5.4. Input model for steady state seepage analysis

While assigning the infiltration rate, an annual mean precipitation of 673.5 mm, in accordance with the Turkish State Meteorological Service between the years 1960 and 2000 in the region was considered which led to an infiltration rate from precipitation of 2.1 $\times 10^{-8}$ m/s in modeling the study area. According to Freeze and
Cherry (1979), the hydraulic conductivity of fractured metamorphic rocks varies between 10^{-8} m/s and 10^{-4} m/s. By considering these numbers, the hydraulic conductivity values that were used in the steady state analysis are given in Table 5.1. The result of the steady state seepage analysis is given in Figure 5.5.

Hydraulic Material Conductivity, k (m/s) Landslide Material 1.0x10⁻⁶ Parts of Pazarcık Mélange 2.0x10⁻⁶

Table 5.1. Parameters used in the steady state seepage analysis for Seep/W

5.0x10⁻⁷ Pazarcık Mélange

Figure 5.5. Result of the steady state seepage analysis

As it can be seen from Figure 5.5, the position of the groundwater table is almost identical to the actual case, as given in the cross section C-C' in Appendix A, Figure A4. The resulting pore water pressure distribution (Figure 5.6) was directly linked into the slope stability analysis in order to perform a coupled slope stability analysis. The geotechnical material parameters used in the slope stability analysis are given in Table 5.2.

Figure 5.6. Pore water pressure distribution as a result of the steady state seepage analysis

Table 5.2. Geotechnical parameters used in the steady state analysis for Slope/M
--

Material	Material Model	ial Unit Cohesion, el (kN/m³) c' (kPa)		Internal Friction Angle, φ' (°)
Landslide Material	Mohr-Coulomb	20	0	15.7
Parts of Pazarcık Mélange	Mohr-Coulomb	20	5	30
Pazarcık Mélange	Mohr-Coulomb	26	141	33

The slope stability analysis uses, as input data, for each time step positive and negative pore water distributions obtained from the seepage analysis. The Morgenstern and Price method and half-sine function were selected to compute the factor of safety. The results of the seepage and slope stability analyses leading to FS=1.001 is given by Figure 5.7.

Figure 5.7. The result of the slope stability model for steady state condition

5.4.1.2. Transient Model

The transient analysis can be performed in two ways: by either reading the data from an initial condition file created in a separate analysis or by drawing the initial water table position (Casagli et al., 2005). In the first way, initial conditions are introduced from the file created by a steady-state seepage analysis. The parameters used in the transient model analysis are the same as that used in the steady state analysis. The result of a transient state seepage analysis model from the steady state analysis is given in Figure 5.8.

Figure 5.8. Transient seepage analysis having initial condition from steady state analysis

The slope stability analysis for each time step uses positive and negative pore water distributions obtained from the transient seepage analysis. The Morgenstern and Price method and the half-sine function were selected to compute the factor of safety. The result of a transient seepage slope stability analyses with a FS=0.996 is given in Figure 5.9.

Figure 5.9. The result of a slope stability model for transient condition

The input model for the transient analysis through drawing the initial groundwater position is given in Figure 5.10. The result of the transient seepage slope stability analyses through drawing the initial groundwater level led to a FS of 0.990, which was about 4% lower than that of the steady state slope stability analysis (Figure 5.11).

Figure 5.10. Input model for the transient seepage analysis by drawing initial groundwater level

Figure 5.11. The result of the slope stability model for transient condition through drawing the initial groundwater position

5.4.2. Finite Element Modeling of the Landslide

For the numerical analysis of the slope a 2D plane strain finite element model with simple Mohr-Coulomb model was constructed in PLAXIS v.8.2 (PLAXIS, 2006). The PLAXIS model was constructed in two stages. First, the original slope before the road construction (i.e. excavation) was modeled. After that, the failure condition which is the case of excavation at the toe was modeled. In these two models the predetermined shear strength parameters in the limit equilibrium method were used. Since in PLAXIS the slip surface cannot be defined and the most critical slip

surface was somehow determined to be shallower than the one determined by the inclinometer measurements, there was a need to insert a relatively weak layer, which can be referred to as a discrete shear zone along the identified slip surface to initiate the most critical slip surface.

Calibrations were performed using the shear wave velocities to fit the horizontal displacements obtained from the numerical model to the ones measured in the site by inclinometers. The parameters used in PLAXIS are given in Table 5.3. The generated and deformed mesh of the model is given in Figure 5.12 and the total displacements are shown in Figure 5.13.

Table 5.3.	Parameters	used in	PLAXIS
------------	------------	---------	--------

Material	Cohesion, c' (kPa)	Internal Friction Angle, φ' (°)	Poisson's Ratio, v	Shear Wave Velocity, V _s (m/s)
Landslide Material	0	15.7	0.33	110
Parts of Pazarcık Mélange	5	30	0.33	260
Pazarcık Mélange	141	33	0.25	350

Figure 5.12.a. Generated mesh, b. deformed mesh of the landslide model

Figure 5.13. Total displacements obtained by PLAXIS v.8.2.

The measured and computed values are given in Table 5.4. Comparison of the inclinometer readings of IBH-7i with the total displacement obtained with PLAXIS is shown in Figure 5.14. As it can be seen from Table 5.4, the displacements computed by PLAXIS are in good agreement with the readings obtained from the inclinometer measurements.

Borehole ID	Inclinometer Test Result	PLAXIS Result
IBH-7i	41 mm	41 mm
IBH-8i	38 mm	34 mm
IBH-9i	34 mm	30 mm
IBH-10i	26 mm	29 mm

Table 5.4. Total displacements

Figure 5.14. Comparison of the horizontal displacements for IBH-7i

Inspection of Figure 5.14 indicates that PLAXIS was particularly successful in predicting the horizontal displacements at the toe of the slope which is almost always considered as the most critical location of the entire slope.

The stability analysis was performed using the c-phi reduction method to calculate the global safety factor. The factor of safety values obtained before and after the excavation were determined to be 1.18 and 0.969, respectively. The factor of safety obtained from the limit equilibrium analyses before and after the excavation were calculated as 1.17 and 0.990, respectively. A comparison of the factor of safety values before and after excavation obtained with the limit equilibrium analysis and the finite element method indicates that the results are in good agreement (i.e., within 0.60% to 2.1%; Figure 5.15).

Figure 5.15. Comparison of the FS values obtained with the limit equilibrium analysis and the finite element method

It must be noted that the FS value obtained from PLAXIS is very close to the FS value calculated by Slope/W using Morgenstern-Price method for the case of before excavation. In the case of after excavation the FS value obtained from PLAXIS is about 2.1% lower than that of given by Slope/W. Although there is a slight difference in the FS, it can be concluded that for the static condition the finite element methods and the limit equilibrium analysis give similar results in terms of assessing the stability of the slopes.

5.4.3. Seismic Slope Stability of the Landslide

Earthquake motions can induce significant horizontal and vertical dynamic stresses in slopes. These stresses produce dynamic normal and shear stresses along the potential failure surfaces within the slope. When superimposed upon the previously existing static shear stresses, the dynamic shear stresses may exceed the available shear strength of the soil and produce instability of the slope. Therefore, in seismically active regions, earthquakes are a major trigger for the instability of natural and man-made slopes and seismic effects pose essential design considerations for slope stability (Kramer, 1996 and Li et al., 2009).

5.4.3.1. Pseudo-Static Analysis of the Landslide

Beginning in the 1920s, the seismic stability of earth structures has been analyzed by pseudo-static approach in which the effects of an earthquake are represented by constant horizontal and/or vertical accelerations (Kramer, 1996). In the pseudo-static analysis the earthquake effects are simplified as dimensionless horizontal and vertical seismic coefficients (k_h and k_v). However, it should be noted that pseudo static analysis is often based on a horizontal seismic coefficient. The magnitude of the coefficient is expressed in terms of a percentage of gravity acceleration (Li et al., 2009). Seed (1979) recommend the use a horizontal coefficient of 0.10 for earthquakes of Richter's magnitude 6.5 and 0.15 for earthquakes of Richter's magnitude 8.5. For both cases, a FS≥1.15 is required for slope design.

Depending on the seismicity of the study area, which is given in Section 1.4 in detail, the horizontal coefficient of 0.10 may be used for the pseudo-static seismic slope stability analysis. However, for a conservative approach a horizontal coefficient of 0.15 was also utilized in Slope/W. The FS values as a function of seismic horizontal coefficients are given in Table 5.5.

Table 5.5. FS values corresponding to seismic horizontal coefficients of 0.10g and 0.15g

k _h (g)	FS
0.10	0.675
0.15	0.579

CHAPTER 6

SLOPE STABILIZATION AND DYNAMIC ANALYSIS OF THE LANDSLIDE

6.1. Slope Stabilization Methods

Slope stabilization methods generally reduce driving forces, increase resisting forces, or both. Driving forces can be reduced by excavation of material from the appropriate part of the unstable ground and drainage of water to reduce the hydrostatic pressures acting on the unstable zone. Resisting forces can be increased by:

- 1. Drainage that increases the shear strength of the ground
- 2. Elimination of weak strata or other potential failure zones
- 3. Building of retaining structures or other supports
- 4. Provision of in-situ reinforcement of the ground

5. Chemical treatment (hardening of soils) to increase the shear strength of the ground (Abramson et al., 2002).

6.1.1 Drainage

Drainage is by far the most frequently used means of stabilizing slopes. Slope failures are very often precipitated by a rise in the groundwater level and increased pore pressures. Therefore, lowering groundwater levels and reducing pore pressures is a logical means of improving stability. In addition, improving drainage is often less expensive than other methods of stabilization, and a large volume of ground can frequently be stabilized at a relatively low cost. As a result, drainage is an often-used method, either alone or in conjunction with other methods. Drainage improves slope stability in two important ways:

1. It reduces pore pressures within the soil, thereby increasing the effective stress and the shear strength; and

2. it reduces the driving forces of water pressures in cracks, thereby reducing the shear stress required for equilibrium.

Once a system of drainage has been established, it must be maintained to keep it functional. Erosion may disrupt surface drains and ditches, and underground drains may become clogged by siltation or bacterial growth. Siltation can be minimized by constructing drains of materials that satisfy filter criteria, and bacterial clogging can be removed by flushing with chemical agents, such as bleach (Duncan et al., 2005).

6.1.1.1. Surface Water Drainage

Surface water is controlled to eliminate or reduce infiltration and to provide erosion protection. Cut slopes should be protected with interceptor drains installed along the crest of the cut, along benches and along the toe (Figure 6.1.a). On the long cuts the interceptors are connected to downslope collectors (Figure 6.1.b). All drains should be lined with nonerodable materials, free of cracks or other openings and designed to direct all concentrated runoff to discharge offslope. With failing slopes, installation of an interceptor along the crest beyond the head of the landslide area will reduce runoff into the landslide. Roadway storm water drains

should be located so as to not discharge on steep slopes immediately adjacent to the roadway.

Figure 6.1.a. Benching scheme for cut (low benches permit maximum inclination to reduce the effect of runoff erosion), b. Longitudinal and downslope drains (Hunt, 2005)

6.1.1.2. Subsurface Water Drainage

Subsurface drainage systems are installed to lower the piezometric level below the potential or existing sliding surface. Selection of the drainage method is based on the consideration of the slope materials, structure and groundwater conditions (static, perched, or artesian) and the location of the phreatic surface. As the drains are installed, the piezometric head is monitored by piezometers and the efficiency of the drains is evaluated. The season of the year and the potential for increased flow during wet seasons must be considered, and if piezometric levels are observed to rise to dangerous values (as determined by stability analysis or from monitoring slope movements), the installation of additional drains is required (Hunt, 2005).

6.1.1.2.1. Methods of Subsurface Water Drainage

Deep wells have been used to stabilize many deep-seated slide masses, but they are costly since continuous or frequent pumping is required. Check valves normally are installed so that when the water level rises, pumping begins. Deep wells are most effective if installed in relatively free draining material below the failing mass.

Vertical, cylindrical gravity drains are useful in perched water table conditions, where an impervious stratum overlies an open, free draining stratum with a lower piezometric level. The drains permit seepage by gravity through the confining stratum and thus relieve hydrostatic pressures. Clay strata over granular soils, or clays or shales over open-jointed rock, offer favorable conditions for gravity drains where a perched water table exists.

Sub horizontal drain is one of the most effective methods to improve stability of a cut slope or to stabilize a failing slope. Installed at a slight angle upslope to penetrate the phreatic zone and permit gravity flow, they usually consist of a perforated pipe, of 50.8 mm (2 in) diameter or larger, forced into a predrilled hole of slightly larger diameter than the pipe. Sub horizontal drains have been installed to lengths of more than 100 m. Spacing depends on the type of material being drained; fine-grained soils may require spacing as close as 3 to 8 m, whereas, for more permeable materials, 8 to 15 m may be sufficient. Santi et al. (2003) report on

recent installations of sub horizontal wick drains to stabilize slopes. Composed of geotextiles (i.e., polypropylene) they have the important advantages of stretching and not rupturing during deformation, and are resistant to clogging. Installation proceeds with a disposal plate attached to the end of a length of wick drain that is inserted into a drive pipe. The pipe, which can be a wire line drill rod, is pushed into the slope with a bulldozer or backhoe. Additional lengths of wicks and pipe are attached and driven into the slope. When the final length is installed, the drive pipe is extracted.

Drainage galleries are very effective for draining large movement masses but their installation is difficult and costly. They are used mostly in rock masses where roof support is less of a problem than in soils. Installed below the failure zone to be effective, they are often backfilled with stone. Vertical holes drilled into the galleries from the above provide for drainage from the failure zone into the galleries.

Interceptor trench drains or slots are installed along a slope to intercept seepage in a cut or sliding mass, but they must be sufficiently deep. The slotted pipe is laid in the trench bottom, embedded in sand, and covered with free-draining material, then sealed at the surface (Figure 6.2). The drain bottom should be sloped to provide for gravity drainage to a discharge point. Interceptor trench drains are generally not practical on steep, heavily vegetated slopes because installation of drains and access roads requires stripping the vegetation, which will further decrease stability.

Figure 6.2. Typical slope trench drain (Hunt, 2005)

Relief trenches or slots relieve pore pressures at the slope toe. They are relatively simple to install. Excavation should performed in sections and quickly backfilled with stone so as not to reduce the slope stability and possibly cause a total failure. Generally, relief trenches are most effective for slump slides where high toe seepage forces are the major cause of instability.

Electro-osmosis has been used occasionally to stabilize silts and clayey silts, but the method is relatively costly and not a permanent solution unless operation is maintained (Hunt, 2005).

6.1.2. Unloading and Rock Buttresses

A slope can be made more stable by excavation to reduce its height or make it less steep. Flattening a slope or reducing its height as shown in Figure 6.3 reduces the shear stresses along potential sliding surfaces and increases the factor of safety. As shown in Figure 6.3, any type of excavation results in a reduction of the useful area at the crest of the slope. Improving stability by excavation requires (1) that an area at the top of the slope can be sacrificed to improve stability, (2) that the site is accessible to construction equipment, and (3) that an area is available for disposal of the excavated material (Duncan et al., 2005).

Figure 6.3. Slope stabilization by excavation (Duncan et al., 2005)

Buttress fills are of two types. A buttress of high strength well-compacted material (Figure 6.4) provides strength and weight, both of which improve stability. A berm of uncompacted material at the bottom of a slope, sometimes called a gravity berm, provides weight and reduces the shear stresses in the slope, even if it consists of weak and compressible soil. The effectiveness of either type of berm is improved if

it is placed on a layer of free-draining material that allows drainage of water from the soil beneath. An example involving both excavation and buttressing is shown in Figure 6.5. Balancing the volume of cut and fill makes it unnecessary to dispose of material off-site or to import soil for buttress construction. Even soil that has been involved in sliding can be improved and made suitable for berm construction by compaction to high density near optimum water content (Duncan et al., 2005).

Figure 6.4. Structural buttress (Duncan et al., 2005)

Figure 6.5 Slope stabilization by cut and fill (Duncan et al., 2005)

6.2. Slope Stabilization Methods of the Landslide

According to the Technical Specification of General Directorate of Highways, $FS \ge 1.3$ is required for the static design of residual material and $FS \ge 1.1$ is required for the design of residual soil in earthquake condition (General Directorate of Highways, 2008). However, Seed (1979) recommended that $FS \ge 1.15$ is required in the earthquake condition. To be on the safe side $FS \ge 1.15$ was taken into consideration while designing the slope under earthquake condition.

As a remediation alternative, dewatering by subsurface and surface drainage, application of a rock buttress at the toe, and unloading of the landslide material is recommended in both static and pseudo-static conditions (with a seismic coefficient is 0.15). The subsurface drainage system is provided by sub horizontal drain which is one of the most effective and cheapest methods to improve stability of a cut slope. Sub horizontal drains have been installed to lengths ranging from 20 to 80 m with a spacing of 10 m. A schematic view of subsurface and surface drainage system is given in Figures 6.6 and 6.7, respectively.

Figure 6.6. A schematic view of subsurface drainage system (Hunt, 2005)

Figure 6.7. A schematic view of surface drainage system

The results of the model for static and pseudo-static conditions are given in Figure 6.8 (with FS=1.34) and in Figure 6.9 (with FS=1.21), respectively. The remediation methods are given step by step in these figures.

Figure 6.8. Landslide remediation steps presented as a function of FS under static conditions. a. Dewatering by subsurface and surface drainage resulting in a FS=0.79, b. Application of rock buttress resulting in a FS=1.26, c. Unloading the landslide material resulting in a FS=1.34

Figure 6.9. Landslide remediation steps presented as a function of FS under pseudo-static conditions. a. Dewatering by subsurface and surface drainage resulting in a FS=0.60, b. Application of rock buttress resulting in a FS=0.79, c. Unloading the landslide material resulting in a FS=1.21

The slope remediation algorithm for the static analysis presented in Figure 6.8 which encompasses dewatering by subsurface and surface drainage, application of a rock buttress at the toe and unloading of the landslide material leads to a FS of 1.34 which is sufficient for the stability of the slope according to the Technical Specification of General Directorate of Highways (2006). The remediation model for the pseudo-static analysis given in Figure 6.9 by which dewatering by subsurface and surface drainage, application of a rock buttress at the toe and unloading of the landslide material for a seismic coefficient of 0.15 g leads to a FS of 1.21 which is also sufficient for the stability of the slope according to the Technical Specification of General Directorate of Highways (2006).

6.3. Dynamic Analysis of the Landslide

Since dynamic response analysis may lead to a more precise seismic evaluation of slopes, the remedied slope was analyzed with PLAXIS. Four different earthquake records which possess seismic characteristics comparable to the seismicity of the study area as explained below were utilized in the dynamic slope stability analysis.

The study area is located in the Eskişehir Fault Zone, which is defined as a rightlateral strike-slip fault. The faults that form the Eskişehir fault zone are mostly active and have the capacity of producing small to medium-sized earthquakes (Koçyiğit, 2003). The largest event recorded along the Eskişehir Fault Zone is the 20 February 1956 Eskişehir (Çukurhisar) earthquake with a moment magnitude of 6.4. Therefore, for an assessment of design motion parameters, an earthquake with a moment magnitude of 6.4 was considered. The distance to the causative fault was assumed to be 4 km. The fault mechanism, magnitude, distance to the fault rupture and PGA were the main criteria in selecting these design scenario earthquakes.

Attenuation relations were used for the estimation of the ground motion accelerations by the use of determined parameters. Boore et al. (1997) mostly use near-mid field records (<80km) while deriving the attenuation relationships whereas Abrahamson and Silva (1997) make use of far field records for the derivation of the attenuation relationships (Douglas, 2001). Since a distance of 4 km is considered

as a near field, attenuation relationships proposed by Boore et al. (1997) were used in this study.

According to Boore et al. (1997), peak acceleration is determined by utilizing Eq. (6.1):

 $\log(Y) = b_1 + b_{1SS} G_{SS} + b_{1RS} G_{RS} + b_2 (M - 6) + b_3 (M - 6)^2 + b_4 r + b_5 \log r + b_6 G_B + b_7 G_C \pm \epsilon$ (6.1) where

Y: ground motion parameter (in cm/s for response spectra and g for peak acceleration)

M: moment magnitude

 $r = (d^2 + h^2)^{l/2}$

d: closest distance to the vertical projection of the fault plane to the ground surface in km

 G_{SS} = 1.0 for strike-slip faulting and 0.0 otherwise

 G_{RS} = 1.0 for reverse-slip faulting and 0.0 otherwise

 G_B = 1.0 for stiff soil site and 0.0 otherwise

 G_C = 1.0 for soft soil site and 0.0 otherwise

b₁ = 0.0 for strike-or reverse-slip faulting

The fault type is left lateral strike-slip, therefore noting that $G_{SS} = 1.0$, $G_{RS} = 0.0$, and $b_1 = 0.0$, Eqn. (6.1) may be expressed as:

$$\log(Y) = b_{1SS} + b_2(M-6) + b_3(M-6)^2 + b_4r + b_5\log r + b_6G_B + b_7G_C$$
(6.2)

All coefficients (for the larger horizontal component) used for the attenuation relations and the calculated PGA for study area are given in Table 6.1. below.

Table 6.1. Da	ta utilized for the	e attenuation	relationships	(from Boore	et al.,	1997)
				`	,	

b _{1SS}	b ₂	b ₃	b ₄	b_5	b ₆	b ₇	h	r	G_{B}	G _c	log(Y)	Y
-0.068	0.216	0	0	-0.777	0.158	0.254	5.48	8.13	0	0	-0.470	0.34

Utilizing the Boore et al. (1997) attenuation relationship, the expected PGA is determined to be 0.34 g. Since there is no earthquake recorded at or near the vicinity of the study area, the four earthquake records are selected as scenario events for the dynamic analysis as explained above. The earthquake database of PEER (2009) Strong Motion online catalog was searched and the records presented by Table 6.2. were obtained. As explained above, the fault mechanism, magnitude, distance to fault rupture and PGA are the main criteria in selecting these design scenario earthquakes.

Table 6.2. Scenario earthquakes used in the dynamic slope stability analyses (PEER, 2009)

Fault mechanism	Name	Magnitude	Distance (km)	PGA (g)
Strike-slip	Düzce	7.1	8.2	0.348
Strike-slip	Imperial Valley	6.5	4.2	0.360
Strike-slip	Parkfield	6.1	5.3	0.367
Strike-slip	Supersitition Hills	6.7	12.4	0.300

In the dynamic analyses, dynamic excitation was applied from the base of the model as acceleration time histories. The potential permanent displacements computed by PLAXIS are given in the following figures for the four selected earthquake records separately (Figures 6.10-6.13).

Figure 6.10. Potential horizontal displacement utilizing the Düzce earthquake record

Figure 6.11. Potential horizontal displacement utilizing the Imperial Valley earthquake record

Figure 6.12. Potential horizontal displacement utilizing the Parkfield earthquake record

Figure 6.13. Potential horizontal displacement utilizing the Supersitition Hills earthquake record

The potential displacements were calculated as 7.0 mm, 8.0 mm, 5.0 mm and 2.5 mm for the Düzce, Imperial Valley, Parkfield and Supersitition Hills earthquake records, respectively.

Name	Magnitude	Distance (km)	PGA (g)	Potential Displacement (mm)
Düzce	7.1	8.2	0.348	7.0
Imperial Valley	6.5	4.2	0.360	8.0
Parkfield	6.1	5.3	0.367	5.0
Supersitition Hills	6.7	12.4	0.300	2.5

Table 6.3	Potential di	splacements	for d	vnamic slo	pe stability	v analy	vses
1 4010 0.0.		spiacements	101 0	ynanne sie	pe stabilit	y anal	y 30 3

Inspection of the results presented by Table 6.3 indicates that as far as the potential permanent displacements are concerned, the slope may be expected to experience displacements of up to 8.0 mm during an earthquake occurring in the region.

CHAPTER 7

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

During the "Bursa – İnegöl – Bozüyük Road (Section II) Construction (between KM: 69+400 - 81+700)" a considerable amount of mass movement occurred in May, 2006 in between the KM: 72+000 and 72+200 during the construction work of the left cutting slope. 40 to 60 cm wide tension cracks formed approximately 110 m behind the cutting slope, and deformations have occurred throughout the terrain surface due to the mass movement. As a solution to this problem, the left cutting slope has been inclined with a ratio of 3/2 (h/V). However, despite all the preventive measures taken, the mass movement continued and the width of the tension crack at the crown area of the mass movement could be expressed in terms of meters. After the movement, the cutting slope displaced about 1.0 - 1.5 m within the road cut.

Initially, parameters of the mobilized soil along the slide surface was determined by back analyses of the landslide geometry along four profiles by using the Slope/W software. According to the back analyses results, shear strength parameters were determined as c = 0 kPa and $\phi = 15.7^{\circ}$ for the landslide material. Then, the study area was modeled using coupled analyses (with the computer programs of Seep/W and Slope/W) along the most representative profile of the study area and the most suitable remediation technique was determined by considering the landslide mechanism, parameters determined from the geotechnical investigations, the size of the landslide and location of the slip circle. Furthermore, since the study area is located in a second degree earthquake hazard region, pseudo-static stability analyses using the Slope/W software was performed for the earthquake potential and the most suitable remediation technique sare surface and subsurface drainage, application of rock buttress at the toe of the slope and unloading the landslide material.

Static and pseudo-static slope stability analyses were performed using Morgenstern-Price Method by Slope /W software. The factor of safety for the static analyses was found as 1.34, which is sufficient for the residual material. The factor of safety computed by the pseudo-static approach is 1.21 with the horizontal seismic coefficient of 0.15. The stability of the landslide was checked under selected earthquake records considering the seismicity of the region. Potential permanent displacements were estimated by using the finite element software PLAXIS using four different earthquake records representing the seismic characteristics of the region. The potential displacements computed with PLAXIS ranged between 2.5 and 8.0 mm, with a mean value of 5.6 mm. Thus, considering the potential permanent displacements, the slope may be expected to experience displacements of up to 10 mm during an earthquake occurring in the region.

REFERENCES

Abrahamson, N.A., and Silva, W.J., 1997, "Empirical Response Spectral Attenuation Relations for Shallow Crustal Earthquakes", Seismological Research Letters, 68(1), pp. 94–127.

Abramson, L. W., Lee, T., S., Sharma, S., Boyce, G., M., 2002, "Slope Stability and Stabilization Methods", John Wiley & Sons, Inc., New York, 712 pp.

Altıner, D., Koçyiğit, A., Farinacci, A. Nicossia, U., and Conti, M., 1991, "Kuzey Batı Anadolu'nun Kuzey Anadolu Fay Zonu Güneyindeki Rosso Ammonitico'lu Jura-Alt Kratese Stratigrafisi, Bölgenin Paleocoğrafik ve Tektonik Evrimi", TÜBİTAK-CRN/TBAG-1, Ankara, (in Turkish).

Altınlı, İ.E., 1965, "Geological and Hydrogeologic Investigation of the Yenişehir Basin", İstanbul Üniversitesi Fen Fakültesi Mec., Vol. 30, No. 2, pp. 31-51.

Altınlı, İ.E., 1966, "Domaniç Alanının Jeoloji ve Hidrojeoloji İncelemesi", İstanbul Üniversitesi Fen Fakültesi Mec., Vol. 31, No. 1, pp. 59-71, (in Turkish).

Altınlı, İ.E., 1975a, "Bilecik Jurasiği", Cumhuriyetin 50. Yılı Yerbilimleri Kongresi, MTA Enstitüsü, Ankara, pp. 103-111, (in Turkish).

Altınlı, İ.E., 1975b, "Orta Sakaryanın Jeolojisi", Cumhuriyetin 50. Yılı Yerbilimleri Kongresi, MTA Enstitüsü, Ankara, pp. 159-191, (in Turkish).

Altınlı, İ.E. and Yetiş, C., 1972, "Bakırköy-Osmaneli Alanının Jeoloji İncelemesi", İstanbul Üniversitesi Fen Fakültesi Mec., Vol. 37, No. 1, pp. 1-18, (in Turkish).

Altınlı, İ.E., Gürpınar, O., and Erişen, S., 1970, "Geology of the Erenköy-Deresakarı Area (Bilecik)", İstanbul Üniversitesi Fen Fakültesi Mec., Vol. 35, No. 1, pp. 77-83.

Altunel, E., and Barka, A., 1998, "Eskişehir Fay Zonunun İnönü-Sultandere Arasında Neotektonik Aktivitesi", Geological Bulletin of Turkey, 41, 2, pp. 41-52, (in Turkish).

Ataman, G., 1973, "Gürgenyayla (Domaniç) Granodiyoritik Kütlesinin Radyometrik Yaşı", TJK Bülteni, Vol. 1, pp. 22-26, (in Turkish).

Ayaroğlu, H., 1979, "Bozüyük Metamorfitlerinin (Bilecik) Petrokimyasal Özellikleri", TJK Bülteni Vol. 22, No. 1, pp. 101-1078, (in Turkish).

Bargu, S., 1982, "The Geology of İznik-Yenişehir-Osmaneli (Bilecik) Area", İstanbul Üniversitesi Yerbilimleri, Vol. 3, pp. 191-233.

Barka, A., Reilinger, R., Şaroğlu, F. and Şengör, A.M.C., 1995, "The Isparta Angle: Its Importance in the Neotectonics of the Eastern Mediterranean Region", Pişkin, Ö., Ergün, M., Savaşcın, M.Y. ve Tarcan, G. (eds.), IESCA-1995 Proceedings, pp. 3-17.

Bieniawski ,Z.T., 1989, "Engineering Rock Mass Classifications", John Wiley & Sons, Inc., New York, 251 pp.

Bingöl, E., Akyürek, B., Korkmazer, B., 1975, "Biga Yarımadasının Jeolojisi ve Karakaya Formasyonunun Bazı Özellikleri", Cumhuriyetin 50. Yılı Yerbilimleri Kongresi, MTA Enstitüsü, Ankara, pp. 70-75, (in Turkish).

Bingöl, E., Delaloy, M., and Ataman, G., 1982, "Granitic Intrusions in Western Anatolia: a Contribution to the Geodyamic Evolution of This Area", Eclogea Geol. Helv., Vol. 75, pp. 437-446.

Brinkgreve, R.B.J. and Bakker, H.L., 1991, "Non-linear Finite Element Analysis of Safety Factors", 7th International Conference on Computer Methods and Advances in Geomechanics, pp. 1117-1122.

Brinkman, R., 1976, "Geology of Turkey", Ferdinand Enke Verlag, Studgart.

Boore, D.M., Joyner, W.B., and Fumal, T.E., 1997, "Equations for Estimating Horizontal Response Spectra and Peak Acceleration from Western North American Earthquakes: A Summary of Recent Work", Seismological Research Letters, 68(1), pp. 128-153.

Bromhead, E., N., 1992, "The Stability of Slopes", Blacky Academic & Professional, London, 411 pp.

Bürküt, Y., 1966, "Kuzeybatı Anadolu'da Yer Alan Plutonların Mukayeseli Jenetik Etüdü", İTÜ Maden Fakültesi, İstanbul, (in Turkish).

Casagli, N., Dapporto, S., Ibsen, M.L., Tofani, V., and Vannocci, P., 2005, "Analysis of The Landslide Triggering Mechanism During The Storm of 20th–21st November 2000, in Northern Tuscany", Landslides 3(1), pp. 13-21.

Chowdhury, R.N., 1981, "Discussion of Stability Analysis of Embankments and Slopes", by S.K. Sarma, Journal of the Numerical and Analytical Methods in Geomechanics, Vol. 5, pp. 313-322.

Clough, R. W. and Woodward, R. J., 1967, "Analysis of Embankment Stresses and Deformations", Journal of the Geotechnical Division, ASCE, pp. 529-549.

Cornforth, D. H., 2005, "Landslides in Practice", John Wiley & Sons, Inc., New York, 596 pp.

Craig, R.F., 1992, "Soil Mechanics", ELBS, London. 427 pp.

Çoğulu, E., Delaloye, M., and Chessex, R., 1965, "Sur l'agede quelques roches plutoniques acides dans la region d'Eskişehir-Turquie", Arch. Sci. Geneve, No. 18.

Çoğulu, E. and Krummanacher, D., 1967, "Problemes Geochronometriques dans la partie N de l'Anatolie central (Turquie)", Schweiz Mineral Petrogr. Mitt., Vol. 47, pp. 825-833.

Diederichs, M., S. and Hoek, E., 1989, "DIPS, Data Interpretation Package Using Stereographic Projection", Rock Engineering Group, Department of Civil Engineering, University of Toronto.

DSİ, 1981, "Hydrogeological Investigation Report of İnegöl Plain", Ankara, 88 pp (in Turkish).

Douglas, J., 2001, "A Comprehensive Worldwide Summary of Strong-Motion Attenuation Relationships for Peak Ground Acceleration and Spectral Ordinates (1969 to 2000)", Imperial College of Science, Technology and Medicine, Civil Engineering Department, London, England.

Duncan, J.M. and Wright, S.G., 2005, "Soil Strength and Slope Stability", John Wiley & Sons, Inc, New York, 293 pp.

Erdik, M., Şeşetyan, K., Demircioğlu, M.B., Durukal, E., 2006, "Kıyı Yapıları, Demiryolları ve Havameydanları İnşaatlerı Deprem Teknik Yönetmeliği İçin Deprem Tehlikesi Belirlemesi", Deprem Mühendisliği Anabilim Dalı, Boğaziçi Üniversitesi, Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü, İstanbul, 48 pp, (in Turkish).

Eroskay, S.O., 1965, "Paşalarboğazı-Gölpazarı Sahasnın Jeolojisi", İstanbul Üniversitesi Fen Fakültesi Mec., Vol. 30, No. 3, pp. 135-170, (in Turkish).

Filz, G. M., Brandon, T. L., Duncan, J. M., 1992, "Back Analysis of the Olmstead Landslide Using Anisotropic Strengths", Transportation Research Board, 71st Annual Meeting, Washington, DC, pp. 12-16.

Freeze, R.A., and Cherry, J.A., 1979, "Groundwater", Prentice-Hall, Englewood Cliffs, New Jersey, 604 pp.

Genç, Ş., 1986, "Uludağ-İznik Gölü Arasının Jeolojisi", MTA Enstitüsü Rapor No. 243, Ankara (unpublished), (in Turkish).

Genç, Ş., Selçuk, H., Cevher, F., Gözler, Z., Karaman, T., Bilgi, C., and Akçören, F., 1986, "İnegöl (Bursa)-Pazaryeri (Bilecik) Arasının Jeolojisi", MTA Enstitüsü Rapor No. 255, Ankara (unpublished), (in Turkish).

General Directorate of Highways, 2006, Danışmanlık Hizmetlerine Ait Araştırma Mühendislik Hizmetleri Teknik Şartnamesi", 105 pp (in Turkish).

Geo-Slope International Ltd., 2008, "Seepage Modeling with SEEP/W an Engineering Methodology", Calgary, Alberta, Canada, 305 pp.

Geo-Slope International Ltd., 2008, "Stability Modeling with SLOPE/W 2007 Version an Engineering Methodology", Calgary, Alberta, Canada, 355 pp.

Gökçe O., Demir E., Özden, S., 2006, "Türkiye'de Heyelanlı Yerleşim Birimlerinin Dağılımı ve CBS Ortamında Sorgulanması (Afet Envanteri 1950-2005)", In Proc. of 1st National Landslide Symposium of Turkey, Branch Office of JMO in Trabzon, pp. 24-40, (in Turkish).

Görür, N., Şengör, A.M.C., and Akkök, R., 1983, "Pontidlerde Neo-Tetisin Kuzey Kolunun Açılmasına İlişkin Sedimentolojik Veriler", TJK Bülteni, Vol. 26, No. 1, pp. 1-20, (in Turkish).

Granit, Y., and Tintant, H., 1960, "Observations Preliminaries sur le Jurassique de la Region de Bilecique (Turquie)", Comptes Rendus Seances Acad Scie, Vol. 251, pp. 1801-1803.

Griffiths, D.V., 2001, "Stability Analysis of Highly Variable Soils by Elasto-Plastic Finite Element", International Journal for Numerical Methods in Engineering, Vol. 50, pp. 2667-2682.

Hoek, E., Kaiser, P.K., Bawden, W.F., 1995, "Support of Underground Excavations in Hard Rock", Balkema, Rotterdam, 215 pp.

Hunt, R. E., 2005, "Geotechnical Engineering Investigation Handbook", Second Edition, Taylor & Francis Group, Boca Raton, FL, 1066 pp.

ISRM, 1981, "Rock Characterization, Testing and Monitoring-ISRM Suggested Methods", Pergamon Press, Oxford, Brown, E.T. (ed.), 211 p.

Kaaden, V.D.G., 1959, "Anadolu'nun Kuzeybatı Kısmında Yeralan Metamorfik Olaylarla Magmatik Faaliyetler Arasındaki Yaş Münasebetleri", MTA Enstitüsü Dergisi, Vol. 52, pp. 15-34, (in Turkish).

Ketin, İ., 1947, "Uludağ Masifinin Tektoniği Hakkında", TJK Bülteni, Vol. 1, No. 1, pp. 60-88, (in Turkish).

Ketin, İ., 1984, "Türkiye'nin Bindirmeli Naplı Yapısında Yeni Gelişmeler ve Bir Örnek", Ketin Sempozyomu, pp. 19-36, (in Turkish).

Koçyiğit, A., 2003, "Orta Anadolu'nun Genel Neotektonik Özellikleri ve Depremselliği", TAPG Bulletin Special Volume 5, pp.1-24, (in Turkish).

Koçyiğit, A., Kaymakçı, N., Dirik, K., Rojay, B.F., Özcan, E., and Özçelik, Y., 1991, "Geological Characteristics of the Region between İnegöl-Bilecik-Bozüyük", METU-TPCo Applied Research Project, No. 90-03-09-01-05 (unpublished).

Kramer, S.L., 1996, "Geotechnical Earthquake Engineering", Prentice-Hall, Inc, New Jersey, 653 pp.

Li, A.J., Lyamin, A.V., Merifield, R.S., 2009, "Seismic Rock Slope Stability Charts Based On Limit Analysis Methods", Computers and Geotechnics, 36, pp. 135-148.

Makdisi, F.I. and Seed, H.B., 1978, "Simplified Procedure for Estimating Dam and Embankment Earthquake Induced Deformations", Journal of the Geotechnical Engineering Division, ASCE, Vol. 104, No GT-7, pp. 849-867.

Morgenstern, N.R. and Price, V.E., 1965, "The Analysis of the Stability of General Slip Surfaces", Geotechnique, V. 15, No. 1, pp. 77-93.

Nash, D.F.T., 1992, "A Comparative Review of Limit Equilibrium Methods of Stability Analysis", Slope Stability, M.G. Anderson, K.S. Richards, John Wiley & Sons, New York, pp. 11-77.

Okay, A.I., 1984, "Distribution and Characteristics of Northwest Turkish Blueschists", The Geological Evolution of the Eastern Mediterranean Spec. Publ., No. 3, edited by J.E. Dixon and A.H.F. Robertson, The Geological Society London, pp. 455-466.

Okay, A.I., Satır, M., Zattin, M., Cavazza, W., and Topuz, G., 2008, "An Oligocene Ductile Strike-Slip Shear Zone: The Uludağ Massif, Northwest Turkey-Implications for the Westward Translation of Anatolia", Geological Society of America Bulletin, Vol. 120, No. 7/8, pp. 893-911.

Öztunalı, Ö., 1973, "Uludağ (Kuzeybatı Anadolu) ve Eğriboz (Batı Anadolu) Masiflerinin Petrolojileri ve Jeokronolojileri", İstanbul Üniversitesi Fen Fakültesi Monografileri, İstanbul, (in Turkish).

Pacific Earthquake Engineering Center, 2009, "PEER Strong Motion Database", Accessed: 10.July.2009, http://peer.berkeley.edu/smcat/search.html

Peck, R.B., Hanson, W.E. and Thornburn, T.H., 1974, "Foundation Engineering", Second Edition, John Wiley & Sons.

Potts, D.M., Zdravkovic, L., 1999, "Finite Element Analysis in Geotechnical Engineering Theory", Thomas Telford Publishing, London.

Rocscience, 2002, "RocLab User's Guide", Rocscience Inc., Toronto, 25 pp.

Sancio, R.T., 1981, "The use of back calculations to obtain the shear and tensile strength of weathered rocks", In: Proc. Int. Symp. Weak Rocks, Tokyo vol. 2. Balkema, Rotterdam, pp. 647–652.

Santi, P.M., Crenshaw, B.A., and Elifrits, C.D., 2003, "Demonstration Projects Using Wick Drains to Stabilize Landslides", Environmental Eng. Science, 9, pp. 339-350.

Sayao, A.S.F.J., 2004, "Soil Slope Stability", Handbook of Slope Stabilization, J.A.R. Ortigao, A.S.F.J. Sayao, Springer, Germany, pp. 89-108.
Sayısal Grafik, 2009, "Türkiye Deprem Haritası", Updated: 23.June.2009, Accessed: 23.June.2009, http://www.sayisalgrafik.com.tr /deprem/tr_frames.htm> (in Turkish).

Seed, H.B., 1979, "Considerations in the Earthquake Resistant Design of Earth and Rockfill Dams", Geotechnique, Vol.29, No.3, pp. 125-263.

Servais, M., 1982, "Collosion et suture tethysienne en Anatolie central etude structural etmatamorphique (HP/BT) de la zone nord Kütahya", Üniv. Paris-Sud D'Orsay, Ph.D. Thesis (unpublished).

Sowers, G.F., 1979, "Introductory Soil Mechanics and Foundations: Geotechnical Engineering", Macmillan, 4th Edition, New York, 621 pp.

Sönmez, H., 2003, "Modification of the Liquefaction Potential Index and Liquefaction Susceptibility Mapping for a Liquefaction-Prone Area (İnegöl, Turkey)", Environmental Geology, 44, pp. 862-871.

Şaroğlu, F., Emre, Ö. and Boray, A., 1987, "Türkiye'nin Aktif Fayları ve Depremsellikleri", Maden Tetkik Arama Genel Müdürlüğü, Rapor No. 8174, 394 pp. Ankara (unpublished), (in Turkish).

Şengör, A.M.C., Görür, N. and Şaroğlu, F., 1985, "Strike-Slip Faulting and Related Basin Formation in Zones of Tectonic Escape: Turkey as a Case Study. Biddle, K.T. and Christie-Blick, N. (ed), Strike-Slip Deformation, Basin Formation and Sedimentation da. Soc. of Eco. Paleo. And Min. Spec. Publ., 37, pp. 227-264.

Tofani V., Dapporto, S., Vannocci, P., and Casagli, N., 2006, "Infiltration, Seepage and Slope Instability Mechanisms During The 20-21 November 2000 Rainstorm in Tuscany, Central Italy", Natural Hazards and Earth System Sciences, 6, pp. 1025-1033.

Tokay, F. and Altınel, E., 2005, "Neotectonic Activity of Eskişehir Fault Zone in Vicinity of İnönü – Dodurga Area", Mineral Research Exploration Bulletin, 130, pp. 1-15.

Vermeer, P.A. and van Langen, H., 1989, "Soil Collapse Computations with Finite Elements", Ingenieur-Archiv 59.

Yüksel Proje Uluslararası A.Ş., 2006, "Bursa – İnegöl – Bozüyük Yolu İnşaatı İşi (II. Kısım) (KM:69+400 – 81+700) KM:72+000 – 72+200 Heyelanı Geoteknik Proje Raporu", Ankara, 120 pp.

APPENDIX A

GEOLOGICAL MAP AND CROSS SECTIONS

Figure A.1. Geological map of the study area (After Yüksel Proje, 2006)

APPENDIX B

BOREHOLE LOGS

	۲ÜI	KS	EI		PF	20	J	E						
Y B Ol Ti W	ÜKSEL PR irlik Mahalı 5610 ÇANK EL: (312) 4 ww.yukselp	OJE ULU esi 9. Cad (AYA-ANK 9570 00 proje.com.	SLARA de No: (ARA FAX: (3 tr	(R ASI . 41 31.2) 49	A.Ş. 5 70 2	4				SON	IDAJ	LO	GU / BORING LOG	-
													Page No 1/2	
PROJE	ADI / Pr	oject Na	me			: IN	IEGÓ	L-B	DZÜY	<u>(ÜK)</u>	YOLL	<u>n</u>	DELİK ÇAPI / Hole Diameter	1
SOND.		(Boring	Locat	ion		: H	ey ela	an / L	andsl	Ide	(Loft	-	YERALTI SUYU / Groundwater : 2,05 m	-
SOND	ALDER	/ Boring	e Dent	h		· 1.	2±04 5.45	0,20 m	,15 11	I SUL	rieit		BAS BIT TAR / Start Einish Date 10.12.2006 - 11.12.2006	- 2
SOND	AJ KOTU	/ Eleva	tion			: 52	20.65	5 m					KOORDINAT / Coordinate (E-W) Y 475 294.60	
SOND	AJ MAK.	&YÖNT.	/D.Ri	g & M	et.	: F	orem	ost B	-53 /	Rota	ry		KOORDINAT / Coordinate (N-S) X : 4 423 358,15	
		un		S	FAND	ART	PENE	TRA	SYON	DEN	IEYİ		- œ	
10		R/N			5	Stand	art Pe	netrat	tion Te	est				
ŰNLİ	SINSI De	BOY	D/ Ni	ARBE	SAYI f Blo	SI			GR. Gr	AFİK aph			JEOTEKNIK TANIMLAMA	
U DE	Ξ μ μ μ	RA	E	ε	ε					ore or				z
ONDA.	UMUI	ANE	- 15 a	9.30 0	0-45 cl	Ν	555.00						COFIL AVANI 2D %	IGEOI
88	Ξŏ	Ň	0	4) 4)	ю Ю		10	20	30	40	50	60		Ξ.
0														
ŀ														
- 1														
		10 100												
	SPT-1	1.50	10	10	11	21			21					
- 2	_	1.95							N				Brown- yellow.sh brown- greenish grey-	
	SPT-2	0.45	9	14	16	30			30				clayey, silty gravelly SAND / sandy GRAVEL	
-		2.45	10	10	47								Moist, fine -coarse grained, brittle-strong,	
	SPT-3	2.95	10	12	17	29				29			fine-coarse grained, angular sub-angular,	
- 3	SPT-4	3.00	12	14	16	30							originated pebbles, 15-25 % low plasticity	
L	Ontree	3.45		1000					30	N			and fine grained material	
	SPT-5	3.50	13	20	21	41					41			
- 4	-	3.95 4.00						24		\boldsymbol{k}				
	SPT-6	4.45	10	11	13	24			K					
-	CDT 7	4.50	11	15	10	34					34			
- 5	or 1-7	4.95	29.9	10	10					1			: :÷₽	
	SPT-8	5.00	16	13	15	28								
-		5.45 5.50								28				
6	SPT-9	5.05	11	12	13	25			1	25				
· · · · ·	DAYANI	5.95 MLILIK /	Stre	ngth			AY	RISM	A / W	eathe	ering		INCE DANELI / Fine Grained IRI DANELI/Coarse Grained	d
1	DAYANI	MLI		Stron	9	1		TAZE		. 1	resh		N : 0-2 ÇOK YUMUŞAK V.Soft N : 0-4 ÇOK GEVŞEK V.Loo:	se
11	ORTA D	A YANIML AYIF		M.Str M.We	ong Iak			AZ AY ORTA	RIŞMIŞ D. AYF	; 5 7. M	ilightly 1od. W	wv. eath.	N : 3-4 YUMUŞAK Soft N : 5-10 GEVŞEK Loose N : 5-8 ORTA KATI M .Stiff N : 11-30 ORTA SIKI M .Der	nse.
IV	ZAYIF			Weak		W		ÇOKA	YR.	S	lightly	W.	N : 9-15 KATI Stiff N : 31-50 SIKI Dense	е
. V	ÇOK 24	THE .		V.VVB	dh	1	3	101010	TLE A.	8	>omp.v	veat.	N : >30 SERT Hard	ise
KA or o ha	YA KAL	TESIT/		- RQ	D	4	(IRIK	LAR -	30 ci	m / Fr	actur	es	ORANLAR - Proportions	6.
% 25-5) ZAYI	F	v. Po	or		1-	2	ORTA	- NO	Mode	erate (N	1)	% 5-15 AZ Little % 5-20 AZ Little	ıy
% 50-75 % 75-91	5 ORT/ 1 ivi	Ą	Fa	air and		2- 10	10 - 20	SIK COKS	iki	Clos	e (CI) se (N		% 15-35 ÇOK Very % 20-50 ÇOK Very % 35 VE And	
% 90-11	DO ÇOK	iyi	Ex	cellent		>2	10	PARÇ	ALI	Crus	hed (C	n	AND AND AND AND AND AND AND AND AND AND	
SPT	Standart Standart	Penetras Penetrati	yon Te on Te≪	esti et		K		Karot Core	Numu Samol	nesi e			LOGU YAPAN KONTROL Logged By Checkert	
D	Örselenn	niş Numu	ne	953		Ρ		Press	siyomet	tre De	neyi		ISIM TalipERBAY	
UD	usturbed sample Pressuremeter Test ID Örselenmemiş Numune k Permeabilite Denevi							Press Perm	sureme eabilite	ter Te e Dene	st eyi		IName Jeoloji indirenzioji IMZA	-
result.) Örselenmemiş Numune k Permeabilit Undisturbed Sample Permeabilit								eability	Test			Sign	

TE	nu çank L: (312) 49 Myukselp	570 00 F roje.com.t	AX: (3 r	12) 49	5 70 24	4	SONDAJLOGU	J / BORING LOG	SONDA Borehole	J I e	No :	i	BH7	2-1
									SAYFA Page	1	No :		2/:	2
10		J/Run		ST	FAND S	ART Stand	PENETRASYON DENEYI art Penetration Test			ength	ring	(m)	coreR.	
ERINLIÓ h (m)	CINSI	BOM	DA Nu	ARBE Imb. c	SAYI of Blow	SI NS	GRAFİK Graph	JEOTEKNİK TANIMLAMA Geotechnical Description		LIK/Stre	Weathe	ture (30	сR)Л.(
SONDAU D	NUMUNE Samp. Typ	ANEVRA	0 - 15 cm	15-30 cm	30-45 cm	N	10 20 20 40 50 60		PROFIL Profile	AYANIMU	YRIŞMA /	drik / Fra d	(AROT%(T	RQD %
6 6	SPT-10	6.00	14	9	10	19	19				+	-	7	<u>.</u>
1.00 F	SPT-11	6.45 6.50	8	12	16	28	28							
7	SPT.12	6.95 7.00	8	10	11	21	Br pu sij	rown- yellow.sh brown- greenish grey- urple colored, medium dense-dense, clayey ilby gravelly SAND / sandy GRAVEL Moist	101					
4	011-12	7.45 7.50	0	10	10	21	121 fir qu	ne -coarse grained, brittle-strong, schist- uartzite originated, angular, 25-35 % fine-						
8	SPI-13	7.95	9	12	12	24	24 cc litt	oarse grained, angular sub-angular, brittle- ttle strong-strong, schist, quartzite originatec ebbles, 15-25 % low plasticity and fine						
	SPT-14	8.45 8.50	13	16	19	35	gr	rained material	0					
9	SPT-15	8.95	10	9	10	19	4 19	9.00 m	0 					
	SPT-16	9.45	8	10	12	22	D D)ark grey-black-green-greenish grey-light rown medium dense-dense clavey silty						
10	SPT-17	9.50 9.95	14	15	17	32	32 gr	ravelly SAND. Moist, fine-coarse grained, ngular, 20-30 % fine-coarse grained,	<u>.</u>					
10	SPT-18	10.00	10	12	16	28	28 m	ngular pebbles, %15-25 low plasticity, fine naterial	0					
- 4	SPT-19	10.45	11	10	12	22	• 22	10.85 m —	<u>•</u>					
11	SPT-20	10.95 11.00	25	19	20	39	39		\sim					
		11.45							~~~					
12	ODT 24	12.00	26	22	18	210	40		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
3	SP1-21	12.45	20	22	10	40			$\tilde{\sim}$					
13								eathered.	~~~~					
		13.50						122024993-2209079107	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
14	SPT-22	13.95	12	15	18	33	33		~~~~					
7943								44.50	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
10000		14-67 F 15 12 P					si si	CHIST ireen-areenish light arev-nink colored, soft	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
15	SPT-23	15.00	15	28	34	62		eak, completely weathered.	$\sim \sim$					
16								End of Boring: 15,45 m.						
	14				L	L	00 - 000	LOGU YAPAN			KON	ITRO	L	
NOT:	nuyuya perfore l	yeraltisi PVC bor	iyu gi u ind	irilip,l	kuyu :	ağzı l	etonu yapılmıştır. Na	IM Talip ERBAY ame Jeoloji Mühendisi			one	JUKEO		
Not:	Kuyuya perfore I	yeraltısı. ∍VC bor	iyu gi u ind	özlem irilip, l	ileri iç kuyu :	;in 15 ağzı I	00 m, Ø50 mm. ISI etonu yapılmıştır. Na MM Sii	Loog rAFAN Logged By IM Talip ERBAY ame Jeoloji Mühendisi IZA an			Che	a RU acke	1	الـ ل

N	ال)	KS	EI		PF	70),	E														
YÚ Bi DB TE WA	ÜKSEL PR rlik Mahall 3610 ÇANI EL: (312) 4 Aw.yukselj	ROJE ULL esi 9. Ca KAYA-AN 195 70 00 proje.com	JSLAR. dde No KARA FAX: (.tr	ARASI):41 (312) 4	A.Ş. 95 70 2	24			ŝ	SON	DAJ	LOC	gu / Bori	NG LOG		SONDA Borehol SAYFA	u i le	No :	İE	3H7	2-2	i
																Page	1	100		1/.	2	
PROJE	ADI / Pi	roject N	ame			11	NEG	ÖL-B∙	٥ZŨ١	′ÜΚ Υ	YOLU	J	DELİK ÇAPI	/Hole Diamet	ter :							
SONDA	J YERİ.	/ Boring	Loca	ation		÷ E	leyel	an / L	ands.	lide			YERALTI SU	IYU / Groundw	vater : 1	.70 m						
KILOM	ETRE / 0	Chainag	е			: 7	2+08	0, 1,	83 m	sol /	left		MUH.BOR.E	ER. / Casing	Depth : 4	,50 m H	W.	15,0	0 m	NW	0	
SONDA	J DER.	/ Boring	j Dept	th		: 1	5,00	m					BAŞ.BİT.TA	R. / Start Finis	h Date : 1	0.12.20	06 -	12.1	12.2	006		
SONDA	у коти	/ Eleva	ation			: 5	12,9	5 m					KOORDINA'	T / Coordinate	(E-W) Y :	4	75 2	92,7	73			
SONDA	J MAK.	&YÖNT	/D.Ri	ig & N	let.	î F	oren	iost E	3-53 /	Rota	ary		KOORDINA	T / Coordinate	(N-S) X 💠	44	23 3	11,7	77		_	-
		Run		S	FAN D.	ART	PEN	ETRA	SYON	DEN	EYİ						gth	p	F	Ч		
lõi		VN			S	itand	art P	enetra	tion T	est							treni	herir	30cr	Cor		
(m) (m)	e e	BO	DA	ARBE	SAY	ISI			GR	AFIK			JEO	TEKNIK TAP	NIMLAMA		IK/S	Veat	nre (R)/T		
PDE	Е С Тур	A	-	Te	1	809 F	_		Gr	aph			Geo	otechnical De	escription		VLIL	2	racti	CTC		_
9 DA	1UN ple	Έ<	50	0 0	5	N										le li	ANN A	SM	C/F	01%	%	БШ
Borin	NUN	4AN	-	5.3	0.4		10		20	40	50	60				Profi	AV	ΥR	1R II	AR	gD	UG.
0,111	2 07	2	-				10	20	, 30	40	1	00	2				-	~	-	-	ш.	-
U																5						
-																EHE						
145													Brown, loose	e. clavev. sand	V. GRAVEL /	2						
- 1								-					gravelly SAN	ID. Moist, fine	-coa r se grained							
													brittle-strong	; 30-40% fine-	coarse grained,							
-		1.50											graveny.			[2						
	SPT-1	1.95	4	3	4	1		/								P						
- 2		2.00	3	2				9								÷-∍						
	SP1-2	2 45	2	8	4	8									2.40 m	ē						
-		2.50		6	7	12		Α.,					Brown, med	ium dense-dei	nse, gravelly, silty	it Et						
	SP1-3	2.95	°	0	6	13		+			+		SAND, Mors	st-wet, fi ne- coa urounded_britt	arse grained, sub- tle-strong: 15-25%	T → D						
- 3	ODT 4	3.00	7	12	24	26					36		fie grained;	10-15 % brittle	-strong fine coars	0						
	351-4	3.45	ac -	12	24	1.00	ш						gravelly			ETE						
Г	SDT 5	3.50	24	28	23	51		-				51	Brown- gravi	sh brown, verv	dense sandv	0	1					
_ 4	01.1-0	3.95	21	20	20	–						F Ťi	GRAVEL. V	/et, fine-coarse	grained,	E-I						
		200404000											subrounded- quartzite-lime	rounded, little s estone originate	trong-strong, schis d: 10-15% fine-							
L		4.50											coarse grain	ed, strong sand	y, minor, 5% fine	<u> </u>						
		1.00											material. (LA	NDSLIDE MAT	ERIAL) 4.50 m 4	m ~						
- 5	K-1												SCHIST			NN						
							ш						Brown-yello	wish brown-gr	ey, brittle-little	hin	ПĽ.	ш				
	- P1-	5.40											strong, weal	k-very weak, n lower levels cr	noderately-slightly	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	IV	IV	8	80	16	
6													weathered.		Simpletery	h~~						
		6.00														\sim						
	DAVANI	MLILIK .	Stre	Stron	n		A	TA7E	W / A	eathe	roch		N · 0.2	COR VUMUSA	ne Grained		A NE	COK	OBEV	se Gi SEK	VLo	3d
- úi	ORTA D.	AYANIM	LI	M.Str	ong	- îi		AZ AY	RIŞMI	şs	lightly	W.	N : 3-4	YUMUŞAK	Soft	N: 5-	10	GEV	ŞEK	ğιτις	Loos	3e
111	ORTAZ	AYIF		M.We	eak	III		ORTA	D. AY	R. M	1od. W	eath.	N: 5-8	ORTA KATI	M.Stiff	N : 11	-30	ORT	ASI	<	M.D	ense
	COK 7A	VIE		VVeal V We	(ak		0	ÇOK A	AYR. IVEE A	: S	Sightly Comn V	VV. Veat	N : 9-15 N : 16-30	COK KATI	Stiff V Stiff	N: 31	-50 in	COM	(SIK		Uen: V De	38 ense
	3										and set		N : >30	SERT	Hard		-	3	(Avenue)			
KAY	A KALI	TESIT	ANIM	I - RC	D	ŀ	(IRIK		- 30 ci	n / Fr	actur	es	04.5	DEL/ AZ	ORANLAR - Pro	portions	5	DE			07	
% U-25 % 25-50	ÇUK 7 AVI	ZAYIF F	V. Pr	.Poor oor			.2	ORTA	EK	Mode	(VV) erate (N	4D	% 5-15	PEK AZ A7	Slightly	% 5- % 5-	20	PEK A7	AL		Sligh	itly
% 50-75	ORT	A	Fa	air		2.	10	SIK		Close	e (CI)	~Y	% 15-35	ÇOK	Very	% 20)-50	ÇOK	<		Very	t I
% 75-90		ivi	G	ood	•	1	0-20	ÇOK S		Inten	se (I)		% 35	VE	And							
% 90-10 SPT	o y∪K Standart	Penetra	⊏) syon T	esti	ıı	K K	20	Karo	ALI t Numi	Inesi	neu (C)		LOGU YAP.	AN	-		KON	ITRO	L		
	Standart	Penetrat	tion Te	est				Core	Samp	le	-		100.4	Logged B	у			Che	ecked	(
D	Orselenmiş Numune P Pressiyometre Deneyi Disturhed sample Pressuremeter Test								Name	Talip ERBA Jeoloji Mühen	Y disi											
UD	Örselen memiş Numune k Permeabilite Deneyi							IMZA		2012/06							_					
	Örselenmerniş Numune k Permeabilite Deneyi Undisturbed Sample Permeability Test									Sign												

00 T E WA	i610 ÇANH EL: (312) 4 ww.yukselp	KAYA-ANI 195 70 00 proje.com	Kara Fax: (: .tr	312) 49	95 70 2	4				SON	ND A	U	LOC	GU / BORING LOG	SONDA Borehol	l l e	10:	ĬE	BH7	2-2 i	
1			14												SAYFA Page	I	No :		2/:	2	
		/Run		S	TAND	ART	PENE lart Pe	TRAS	SYON	I DEN est	IEAĮ					ngth	'ng	(m	oreR.		
RINLIĞ (m)	INSI	UYOE	D/	ARBE	SAY	ISI			GR	AFİK				JEOTEKNİK TANIMLAMA		K/Stre	'eather	re (30c	R)/T.C		
AJ DEF Depth	JNE C . Type	EVRAI	E E	ສາມສ. ເ	5 510		-		G	арп				Geotechnical Description	근	NIMLIL	MA/ W	/ Fractu	T%(TC	.0	NC
SOND, Boring	NUML Samp	MANE	0 - 15	15-30	30-45	N	10	20	30	40) 6	50	60		PROF	DAYA	AYRIŞ	KIRIK/	KARO	RQD %	HOLI I
6		6.00												SCHIST Brown vollowich brown grov, brittle little	~~~~						_
	K-2													strong, weak-very weak, moderately-slightly weathered, lower levels completely	~~~~				50	0	1
• 7	14.0	7.00												weathered.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				10	0	I
	n-3	7.50		40	40	00							00	7.65 m	N'N				18	0	I
• 8	SP T-6	7.95	21	46	46	92							92 0	GRAPHITE SCHIST	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
	K-4													slightly-completely weathered.	~~~~	5			23	0	I
. 0		12122	50											0.00m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		57				I
9	SPT-7	9.00 9.14	14	875	5	R							R	SCHIST	~~~~	N V	N V				1
	K 5													Grey-light brown, brittle-little strong, weak- very weak, slightly-completely weathered.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			~	40	0	
• 10	145													10.20m	$\sim \sim$			Cr		U	1
		10.50												SCHIST	222				_		1
- 11	K-6													Green, brittle-friable, very weak, completely weathered.	~~~~				26	0	
		11.50												11.50 m	~~~~						1
12	K-7	12.00	50			5722								SCHIST Green ninkish-grey brittle-soft veryweak	~~~~	v	v		0	0	
	SPT-8 K-8	12.08	8	100	-	R							R	completely weathered.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Č	-	0	0	1
	K.Q	12.50												12.5011	~~~	57	57		20	0	1
• 13	160	13 30												SCHIST	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	14	IV.			Ч	1
	K-10	10.00												Green, brittle-little strong, weak-moderately weak, sligtly-completely weathered.	~~~~				66	43	
- 14		14.00													~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	N	IV	CI	<u> </u>		1
														SCHIST 14.40 m	~~~~	IV V	V	Cr	100	46	1
45	K-11													Purple, hard-moderately hard, weak-moderately weak, slightly-completely weathered.	~~~	 	=	W			
														End of Boring: 15,00 m.							I
16																					I
Nati	Kusse	15.00	- inte	noma	tro ha	MIC.	india	in ori	elzeis	0011				LOGU YAPAN Logged By			KON Che	TRO	Ĺ		
NOC	yapılmış	ştır.	T T TKI	nume	are DC	лusu	a nuur II	ιμ, erij	ensiy	unu				ISIM Telip ERBAY Name Jeoloji Mühendisi IM7A							
															1						

	/[]]	KS	EI		PF	20).JE						
2.													
YU Bi)KSEL PR rlik Mahalle	OJE ULU: esi 9. Cadi	BLARA de No:4	RASLA 41	4.Ş.								
06	610 ÇANK 11 (312) 4	(AYA-ANK 95 70 00 F	ARA AX: (3	12) 49	57024	4			SON	DAJ	LOC		
VA	ww.yukselp	proje.com	tr	12,40	0102							Borehole IBH/2-31	
												SAYFA No: 1/3	
PRO.IE	ADL/Pr	miect Na	me			: IN	IEGŐL-E	07ÜY	ÜK Y	ol U.		DELİK CAPI / Hole Diameter	
SONDA	J YERI	/ Borina	Locat	ion		: H	evelan / L	andsli	de	020		YERALTI SUYU / Groundwater 7.40 m	
KILOM	ETRE / C	Chainage				: 7:	2+079, 49	5,27 m	sol /	left		MUH.BOR.DER. / Casing Depth : 15,00 m HW, 13,50 m NW	
SONDA	J DER.	/ Boring	Depth	1		: 2	1,00 m					BAŞ BİT.TAR. / Start Finish Date : 07.12.2006-10.12.2006	
SONDA	J KOTU	/ Elevat	ion			: 5:	28,70 m					KOORDİNAT / Coordinate (E-W) Y : 475 327,38	
SONDA	J MAK.8	&YÖNT∍	D.Rig	g & Me	et.	: M	obile Dril	B-53/	/ Rota	ary		KOORDINAT / Coordinate (N-S) X : 4 423 337,98	
				S	TANE	ART	PENETR/	ASYON	DEN	EYİ			
ē	m					Stand	art Penetr	ation Te	est				
(ii) (iii)	CIN 6	2,000,0	DA	ARBE	SAYI	SI		GR.	AFİK				
e pth	Щ Ц Л	RA	E	unno. u ∈	5 010	W S	1						7
ADA.	MUN	μŊ,	15 CI	30 CI	42 CI	Ν						O SO TANI BE LE	<u> </u>
SOP	Sar	MAD	ė	15.	ŝ		10 2	0 30	40	50	60	R K KIR A P P O A	Ĕ
0													
-		0.50										Yellowish brown-light brown, silty SAND.	
	SPT-1	0.50	5	5	6	11		11				Woist, fine coarse grained, 25-30% slit.	
- 1	_	0.95										1.00 m	
	SPT-2	1.00	6	10	10	20		20					
-	101000000000000000000000000000000000000	1.45				-						completely weathered.	
-	SPT-3	1.95	7	8	7	15		15				r~~	
- 2	ODT 4	2.00	л	5	7	12	1	2				2.00 m ~	
	5P1-4	2.45	4	2	æ	12					ш		
	SPT-5	2.50	4	8	8	16		16				weathered.	
- 3		2.95	1001	~~		1.526.52						305m ~~~	
A-3-5 .	SPT-6	3.00	3	7	8	15		15				SCHIST	
<u>-</u>		3.45										Brown, friable, very weak, completely	
	SPT-7	0.05	5	7	7	14		14					
- 4		4.00					1					4.00 m	
	SPT-8	4 4 5	3	3	4	7	<u> </u>					Brown-greenish grey, purple, soft, very weak,	
-	SDT 0	4.50	5	5	7	12		2				Completely weathered clayey (Potential slip	
- 5	51 1-5	4.95	1.120	21	22	1992254	Ť	Ť				5.00 m	
10000	SPT-10	5.00	4	5	7	12		2					
- 1		5.45 5.50						-				Dark grey-black, soft, very weak, completely	
6	SPT-11	5.05	3	5	9	14	14				Ш	weathered.	
	DAYANI	0.95 VILILIK /	Strer	hath			AYRIS	MA / W	eathe	rina		INCE DANELI / Fine Grained IRI DANELI/Coarse Grained	
	DAYANI	мЦ		Stron	g	T	TAZE	menter	F	resh	191	N: D-2 ÇOKYUMUŞAK V.Soft N: D-4 ÇOKGEVŞEK V.Loos	se
	ORTA D	ayanim l Ayif	1	M.Str M.We	ong eak		AZ A ORT.	YRIŞMIŞ A.D. AYR	રું ઇ ૨. №	lightly ¥ 1od. W e	wr. ∋ath.	N: 3-4 YUMUŞAK Soft N: 5-1U GEVŞEK Loose N: 5-8 ORTAKATI M.Stiff N: 11-30 ORTASIKI M.Den	ise
IV	ZAYIF			Weak	<	IV	ÇOK	AYR.	F	lighly W	1.	N: 9-15 KATI Stiff N: 31-50 SIKI Dense	•
v	ÇOK ZA	YIF		V.We	ak	V	TUM	UYLE A.	C	Comp.VV	eat.	N: 16-30 ÇOK KATI V.Stiff N: >50 ÇUK SIKI V.Den: N: >30 SERT Hard	ise
KA	YA KAL	TESİ T/	NIM	- RQI	D	. 11	KIRIKLAR	- 30 cr	n / Fr	acture	s	ORANLAR - Proportions	
% 0-25 % 25-50	ÇOK ZAYI	ZAYIF F	V.I Po	Poor		1-	2 ORT.	REK	Wide	(W) erate (M)	% 5 PEKAZ Slightly % 5 PEKAZ Slightly % 5-15 AZ Little % 5-20 AZ Little	У
% 50-75	ORT	A	Fa	air		2-	10 SIK		Close	e (CI)	<i>'</i>	% 15-35 ÇOK Very % 20-50 ÇOK Very	
% 75-90 % 90-10	N COK	IYI	Go Ev	ood cellent		10	FZU ÇOK 10 PAPI	SIKI	Inten: Crust	se (I) hed (Cr	ì	% 35 VE And	
SPT	Standart	Penetras	yon Te	esti		K	Kar	ot Numu	nesi		(LOGU YAPAN KONTROL	
D	Standart Örselenn	Penetrati nis Numu	on Te: ne	st		Р	Cor Pre	e Sampl ssivomet	e tre Der	nevi		Logged By Checked	
	Disturbed sample Pressuremeter Test						Pre	ssureme	ter Tes	st		Name Jeoloji Mühendisi	
UD	Undistur	nemiş Nu hed Samr	mune Ne			k	Per	meabilite meabilitu	Dene Test	γr		IMZA Sign	
	Characters	oog oarlik					1.61	voonitty	1001				

TE	L: (312) 4 ww.yuksel	95 70 00 F proje .com	AX: (3 tr	12) 49	5702	4				ę	SON	ID /	71	LOG	GU / BORING LOG	SONDA Borehol SAYFA Page	l b e I	NO : NO :	i	3H7 3/	2-3 3	i
				S	TANE	ART	PENE	ETRA	SY	ON	DEN	ΕYİ					gth	βL	Ê	reR.		Γ
NLIĞİ 0	<u>v</u>		D		SAV	Stand	art Pe	enetra	ation	n Te	st VEIK				JEOTEKNÍK TANIMLAMA		/Stren	atheri	30ci	JT.Co		
DERI epth (r	Ype CI	a n	Nu	imb.c	of Blo	ws				Gra	aph				Geotechnical Description		ALILIK	A / We	racture	(TCR)		12.22
SONDAJ Boring De	NUMUN Samp. T	MANEV BOYU/F	0 - 15 cm	15-30 cm	30-45 cm	N	10	20	2	30	40)	50	60		PROFIL Profile	DAYANIN	AYRIŞMI	KIRIK/F	KAROT%	R QD %	LUGEON
16	K-7									Ш		+			SCHIST	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			Cr	100	60	
		16.50							Ŧ			Ŧ		m	Brown-yellowish brown, little-moderately hard, weak-moderately weak, moderately-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		,		_		
- 17	K-8											Ŧ		Ш	highly weathered, brittle in some parts, weak- very weak, completely weathered, dense	~~~				4.00		
	– P4 –	17.40										ŧ			quatrz veins.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1		СІ	100	6U	
															discontinuities; 0°,45°,70°,90°, light, matte, irregular, dense clay filling.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
- 18		18.00														~~~	ш	NZ:				
												t				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	N		~			
- 19	K-9															~~~~)		100	55	
																~~~	1		М			ĺ
-		19.50														~~~	1			-		İ
- 20	- P5-	19.90														NN			CI	100000		
-	K-10											Ŧ				~~~~	ł			100	47	
												Ŧ		Ш		~~~	1		Cr			
- 21-														Ш	End of Boring: 21.00 m							
-												t			End of Boring. 21,50 m.							
- 22								Ш				t										
2																						
- 23																						ĺ
												Ŧ										ĺ
												t										ĺ
- 24												t										
												T										
- 25																						
23									Ŧ			F										
												Ŧ										
26			271 2									t			LOGUVADAN		Ц	KON	TRO			L
Not -	KINANO	21.00 ~	i jaldi.		ro bo	rueu i	ndirili	n or	iolza	iver					Logged By			Che	cked	_		
NUL.	Vot : Kuyuya 21,00 m inklinometre borusu indinlip, enjeksiyonu yapılmıştır.														Name Jeoloji Mühendisi IMZA	-						
	Not : Kuyuya 21,00 m inklinometre borusu indinlip, enjeksiyonu yapılmıştır.															1						

YU Bi OR TE	JKSEL PR rlik Mahallı 3610 ÇANH EL' (312) 4 ww.yuksel;	KS OJE ULU esi 9. Cac (AYA-AN 95 70 00 proje.com	JSLAR/ ide No: KARA FAX: ( tr	ARASI (41) (312) 49	<b>PF</b> A.Ş. 95 70 2	<b>RC</b>		SU / BORING LOG	SONDAJ Borehole	No:	İE	3H72	-4
200									SAYFA	No:		1/3	
PROJE	ADL / PI	roiect N	ame			· in		DELİK CAPL ( Hole Diameter	Page			1590	
SONDA	VI YERI	/ Boring	ul nca	tion		: H	levelan / Landslide	YEBALTI SUYU / Groundwater	13 45 m				
KILOM	ETRE / C	Chainad	e			: 7	2+079, 45,27 m sol / left	MUH.BOR.DER. / Casing Depth :	1.50 m HV	1. 22.0	00 m	NW	
SONDA	J DER.	/ Borinc	Dept	th		: 2	2,45 m	BAS.BIT.TAR. / Start Finish Date :	07.12.2006	-10.1	2.20	06	
SONDA	Л КОТИ	/ Eleva	tion			: 5	38,69 m	KOORDINAT / Coordinate (E-W) Y	475	366,	73		
SONDA	J MAK.	&YÖNT	./D.Ri	ig & M	et.	: F	oremost B-53 / Rotary	KOORDÍNAT / Coordinate (N-S) X	4 423	365,6	60		
a i		h	1	S	TAND	ART	PENETRASYON DENEYI		4			œ	
i di		A/U			5	and	dart Penetration Test		200	Build	Dcm	Core	
JZ C	<u>N</u>	Ň	D	ARBE	SAY	SI	GRAFİK	JEOTEKNÍK TANIMLAMA	Į,	athe	e (3(	E.	
е Ш	ype	E ≤	Ni	umb. c	of Blow	NS	Graph	Geotechnical Description		N N	ctur	TCH	
Dep	UNE le T	N N	сШ	сm	cm					MA	/ Fra	T%(	, Z
DND Ding	IML	ANE	- 15	8.9	0-45	N			OFILE A		RIK.	RO	JOH JOH
ы К С С С С	ĨZ Ŝ	M.	0	<b>4</b>	8		10 20 30 40 50 60		<u> </u>	A A	R	2 2	έゴ
0									~~~~				
-									~~~				
									N N				
- 1									NN				
									N° N				
		1.50					38		NN				
	SPT-1	4.05	15	19	19	38	· · · · · · · · · · · · · · · · · · ·		N~N				
- 2	_	2.00	120823	Deres of	2.2	-			~~~~				
	SPT-2	D 4E	12	15	18	33	33		Nº N				
- 3	12101537555	2.40	100					SCHIST	~				
	SPT-3	2 95	103	9	11	20	20 2	Yellow-yellowish brown, soft-friable, very weak, completely weathered clavey	N				
- 3	ODT 4	3.00				47		weak, completely weathered endycy	n n n	/ V			
	5P1-4	3 45	9	0	9	14	17		~~~~				
7	CDT E	3.50	a	12	10	22	22		NN				
_ 1	ar I-J	3.95	~	12	10				~~~~				
- <del></del>	SPL6	4.00	8	q	15	24			~~~~				
	96.68	4.45	×.		19	200	/ 24		~~~~				
	SPT-7	4.50	9	8	11	19	19		Nº N				
- 5	9117	4.95							NN				
	SPT-8	5.00	6	7	8	15			NN				
- )		5.45							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
6	SPT-9	0.00	16	14	18	32	32		Nº N				
		5.95		L									Ļ
	DAYANI	MLILIK /	Stre	Strop	a	1	TAZE Fresh	N 0-2 COK YUMUSAK V Soft		CON	Oars	e Gra BEK M	Loose
II	ORTA D.	AYANIM	LI	M.Str	ong	ii.	AZ AYRIŞMIŞ Slightly W.	N: 3-4 YUMUŞAK Soft	N : 5-10	GE/	VŞEK	εΥ Γι	Dose
	ORTA ZA	۹YIF		M.We	eak ,		I ORTA D. AYR. Mod. Weath.	N : 5-8 ORTA KATI M.Stiff	N: 11-3		TA SII	(IN)	Dens
V	ÇOKZA	YIF		V.We	ak	V	v çokark. Siigittiyw. ′ TÜMÜYLEA Comp.Weat.	N : 16-30 ÇOK KATI V.Stiff	N : >50	çol	' KSIKI	V	Dense
								N : >30 SERT Hard				1000	
KA 1	YA KALİ	TESIT		Poor	D		KIRIKLAR - 30 cm / Fractures	ORANLAR - P	roportions % F	DEL	67	0	lightly
% 25-50	) ZAYI	F	Po	oor		1-	-2 ORTA Moderate (M)	% 5-15 AZ Little	% 5-20	AZ	1 Cr	Li	ittle
% 50-75	ORT/	Ą	Fa	air		2-	-10 SIK Close (CI)	% 15-35 ÇOK Very	% 20-5	çoi	<	V	ery
% 75-90 % 90-10	IYI UYI DO COM	IN	G	ood xcellen	t	10	u-zu ÇUK SIKI Intense (I) 20 PARCALI Crushed (Cr)	% J5 VE And					
SPT	Standart	Penetra	syon T	esti		K	Karot Numunesi	LOGU YAPAN		KON	ITROI	2	
D	Standart Orselenn	Penetrat	tion Te	est		P	Core Sample Pressivometre Denevi	Logged By	_	Ch	ecked		
0	Disturber	d sample	1			٢	Pressuremeter Test	Name Jeoloji Mühendisi					
UD	Örselenn	nemiş Nı	umune	9		k	Permeabilite Deneyi	IMZA					
2	Undistur	bed Sam	iple				Permeability Test	oign	1				



W	EL: (312) 4 ww.yuksel;	95 70 00 F iroje.com.	AX: ( tr	312) 49	95 70 2	24			S	ON	DA.	JLC	G	U/BORING LOG	SOND/ Boreho SAYFA Page	AJ Ie	No: No:	į	івн 3/	72-⁄ 3	ł
ē		U/Run		S	TANC 5	) ART Stanc	PENETRA lart Penetra	.SY( ation	ON [ n Tes	DEN st	EYİ		Ì			ength	ering	Jcm)	CoreR.		
DERINLI pth (m)	≣ cinsi /pe	RA BOY	D/ Ni	ARBE umb. (	SAY of Blo	ISI ws		C	GRA Gra	FİK ph				JEOTEKNİK TANIMLAMA Geotechnical Description		ILUK/St	/ Weath	acture (3	(ТСR)/Т.)		
SONDAJI Boring De	NUMUNI Samp. Ty	MANEVF	0 - 15 cm	15-30 cm	30-45 cm	N	10 20	)	30	40	50	) 6	30		PROFIL Profile	DAYANIN	AYRIŞMA	KIRIK/Fr	KAROT%	RQD %	LUGEON
16	SPT-30	16.00 16.43	27	40	50 13	R						R	H	SCHIST	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	,	V			6	
- 17														Definiton on page 2/3 17.00 m	~~~~		• 				
-		10.00													~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
- 18 -	SPT-31	18.00	26	27	34	61						6'	/		~~~~~	1					
- 19	SPT-32	19.00 19.45	24	17	26	43					/	3		GRAPHITE SCHIST	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		IV				
- 20	SPT-33	20.00	12	6	11	17			/					Dark grey-black, soft-friable, very weak, slightly-completely weathered.	\$ \$ \$ \$ \$ \$ \$ \$		V				
<b>-</b> 21		20.45 21.00	-	23											~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
-	SPT-34	21.45	18	24	41	65						65	Ĭ		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
- 22	SPT-35	22.00	15	19	30	49					49	/			~~~~						
- 23														End of Boring : 22,45 m.							
<b>-</b> 24																					
- 25																					
2													Ħ								

Yu Bi Ote	<b>/UI</b> ÜKSEL PR riik Mahalli 561 0 ÇANK	KS IOJE ULU esi 9. Cac KAYA-ANI	EI ISLAR. Ide No KARA	ARASI (41	<b>PF</b> A.ş.	70	DJE		RONDA						~
TE WA	EL: (312) 4 ww.yuksel;	195 70 00 proje.com	FAX: ( .tr	(312) 49	95 70 2	4	SUNDAJLUG	507 BORING LUG	Borehol		NO:	İE	3H7	2-5	
								•	Page	d	NU.		17,	3	
PROJE	ADI / P	roject Na	ame			11 :	NEGÖL-BOZÜYÜK YOLU	DELİK ÇAPI / Hole Diameter :						_	
SONDA	AJ YERİ	/ Boring	Loca	ation		: +	Heyalan / Landslide	YERALTI SUYU / Groundwater : 4	.60 m					_	
KILOM	ETRE / C	Chainag	e			: 7	2+081, 133,65 m sol / left	MUH.BOR.DER. / Casing Depth 4	,50 m H	<u>W,</u>	13,5	i0 m	NM	<u>l</u>	
SONDA	AJ DER.	/ Boring	j Dept	th		: 1	17,30 m	BAŞ.BIT.TAR. / Start Finish Date : 1	1.12.20	06-1	13.1:	2.20	06		
SONDA	4Ј КОТИ	I / Eleva	ition			: 5	543,75 m	KOORDINAT / Coordinate (E-W) Y	41	/53	99,2	26			
SONDA	AJ MAK.	&YONT	./D.Ri	ig & M	et.	: (	Craelius D-500 / Rotary	KOORDINAT / Coordinate (N-S) X	4 42	23.3	89,4	1	_		_
		Rur		5	IAND	ART	PENETRASYON DENEYI			ofth	Bu	Ê	reR.		
<u>G</u>	70	λΩ	4		5	stand	dart Penetration Test			Strer	heri	30°	ů.		
ΞĽ	E No	BO	D,	ARBE	SAY	SI	GRAFIK			IKA	Veat	an	R)/		
epth	ЩĘ	RA		umb.i	лыо Іс	ws	Graph	Geolechnical Description	12	MLIL	A/V	ract	θŪ		-
DAU	AUN	Ц	5 CL	0 cr	5 cr	N			DFIL	ANII	MŞI	K/F	6L	%	ίΟ Ξ
SON	NUN	MAL	5	15-01	9-7	14.84	10 20 30 40 50 60		Prof	λA	AYR	Ϋ́	AR	Sol	LUG
0		0.00				1			7.1.B	_	È	-	-	_	-
U	SPT-1	0.45	8	8	8	14		1	0						
<b>-</b>		0.50	7		4	20		Brown-vellowish brown-areenish arev-areen	E÷E						
3	SP 1-2	0.95	с. 	9	L:	20		colored, medium dense, greavelly, silty	2						
	SPT-3	1.00	9	1	1	25	25	<ul> <li>SAND / sandy SILT. Moist, fine-coarse</li> <li>grained, brittle-little hard-medium hard; 30- 40% law ploatisity fine metarial; 20, 20% fine</li> </ul>	0						
ŀ	SPT-4	1.45	8	7	8	15	15	<ul> <li>coarse grained, brittle-hard, angular, schist- quartzite originated gravel gravel amount</li> </ul>	" 	ĺ					
<b>-</b> 2	SDT 5	1.95 2.00	6	a	1	24	24	reduces at lower leves and fine material increases							
-	3F 1-0	2.45 2.50			- 12 				0						
- 3	SPT-6	2.95	8	8	1	19	19	-	0. 						
	SPT-7	3.45	6	1	1	21	21	-							
	SPT-8	3.50	7	9	°1,	20	20		ē						
- 4	SPT-9	4:00	8	1	1	24	24	1							
	SPT-10	4.50	6	1	1	22	• 22								
- 5	SPT-11	4.95 5.00	7	1	a,	21			0	ĺ					
-	SPT.12	5.45 5.50	7	1	9	20	20	-	0						
6	01 1 12	5.95		<u> </u>				1							
C	AYANIN	MLILIK /	Stre	ngth	Ĵ.	í.,	AYRIŞMA / Weathering	INCE DANELI / Fine Grained	iRi Di	ANE	LI/C	oars	e Gr	aine	əd
	DAYANI ORTA D	MLI AYANIM		Stron M Str	g		TAZE Fresh AZ AYRISMIS Slightly W	N : 0-2 ÇOKYUMUŞAK V.Soft N : 3-4 YUMUSAK Soft	N: 0-4	4 10	ÇOK GE\	(GEV)	ξΕΚ	V.Lo	IO SE
iii	ORTAZ	AYIF		MW	eak	- iii	I ORTA D. AYR. Mod. Weath.	N : 5-8 ORTA KATI M.Stiff	N: 11	-30	ORT	ASI	<	M.D	ense
IV V	ZAYIF	VIE		Weak	( volk		✓ ÇOKAYR. SlightlyW.	N : 9-15 KATI Stiff	N: 31	-50	SIKI	< 911/		Den	se
×	ÇÜKZA	TIF		V. VVE	ак	×	TOMOTLE A Comp.weat.	N : >30 SERT Hard	IN . 20	U	yor	Corn	i i	V.DE	anse
KA	YA KALI	itesi t <i>i</i>	ANIM	I - RQ	D		KIRIKLAR - 30 cm / Fractures	ORANLAR - Pro	oortions	9					
% 0-25 % 25.50	ÇOK 7 7 AVI	ZAYIF	V.	Poor		1	SEYREK Wide (W)	% 5 PEKAZ Slightly % 5-15 A7 Little	% 5 % F	20	PEK	AZ		Sligh	itly
% 50-75	ORT	A	F	air		2-	-10 SIK Close (Cl)	% 15-35 ÇOK Very	% 20	-50	ÇOK	<		Very	ł
% 75-90 % co.12		-TVI	G	boo		11	D-20 COK SIKI Intense (I)	% 35 VE And							
% 90-10 SPT	u ÇUK Stanıdart	Penetra:	E: syon T	xcellen esti	I	_ ×	20 PARÇALI Crushed (Ur) ( Karot Numunesi	LOGU YAPAN	-		KON	TRO			
223	Standart	Penetrat	tion Te	est		52	Core Sample	Logged By			Che	cked			
D	Urselenn	nış Numı d samrla	une			P	Pressiyometre Deneyi Pressuremeter Test	ISIM Talip ERBAY Name Jeoloji Mühendisi							
UD	Örselenr	nemiş Nı	umune	Э		k	Permeabilite Deneyi	IMZA							
0	Undistur	bed Sam	ple			54,00	Permeability Test	Sign							

TE	EL: (312) 4 ww.yukselp	GYA-ANK 95 70 00 I proje.com	Kara Fax: (: .tr	312) 49	95 70 2	24				soi	NDA	JL	. <b>0</b> G	U / BORING LOG	SONDA Borehol	N   Ie	No :	İ	BH7	'2-5	
															SAYFA Page	1	No:	_	2/:	3	_
10		J/Rur		S	FAND S	ART Stand	PENE art Pei	TRA5 netrat	SYON tion T	I DEN 'est	1EAI					ength	ering	(m)	CoreR.		
ERINL) th (m)	cinsi Je	A BOY	D/ Nit	ARBE umb. (	SAY of Blo	ISI ws			GR GI	AFİK raph				JEOTEKNİK TANIMLAMA Geotechnical Description		ILIK/Sh	Weath	cture (3)	CR)/T.(		
SONDAJ D Boring Dep	NUMUNE Samp. Tyr	MANEVR	0 - 15 cm	15-30 cm	30-45 cm	N	10	20	30	1 41	) 5	50	60		PROFIL Profile	DAYANIML	AYRIŞMA/	KIRIK / Fra	KAROT%(	RQD %	LUGEON
6	SPT-13	6.00	7	7	9	16		16				П		17 W Tanta An I hade							
•	SPT-14	6.45 6.50	6	8	1	21			21	1				Brown-yellowish brown-greenish grey-green colored, medium dense, greavelly, silty SAND / sandy SILT	5						
- 7	SPT-15	7.00	6	8	1	19			19					(Descrpition on page 1/3)							
-	SPT-16	7.50	7	1	1	23			2	3											
- 8	SPT-17	7.95 8.00	4	6	8	14		X						8.00 m	· - · - 0						
-	SPT-18	8.45 8.50	8	1	1	26				26					5						
- 9	SPT-19	8.95 9.00	6	5	8	13			ſ					Grrenish dark grev-green-black, medium	• • • •						
-	SPT-20	9.45 9.50	6	9	1	20		Ň	20					dense, silty gravelly <b>SAND.</b> Moist, fine- coarse grained, brittle-hard, angular, schist,							
- 10	SPT-21	9.95 10.00	5	6	1	17		1	17					brittle-little hard, angular, schist, graphite- schits originated gravelly, 20-30% low	·						
- 3	SPT-22	10.45 10.50	5	8	1	19		ļ	19					plasticity, fine material.	÷						
- 11	SPT-23	10.95 11.00	3	8	5	13									÷-9 •						
-	SPT-24	11.45 11.50 11.60	5		-	R			Ť			-	R	11.50 m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	┢	-		$\vdash$		
<b>-</b> 12		12.20		_										GRAPHITE SCHIST	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	v	V				
•	SPT-25	12.50 12.54 12.60	4	9	æ	R							R	completely weathered.	nin	_	_				
- 13	K-1													13.10 m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	V	V		55	33	
÷		13.50												2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\vdash$	-	-			
<b>-</b> 14	K-2													SCHIST Light green, medium hard, weak-moderately weak, slightly weathered fresh very dense	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				100	100	
-		14.60												quartzite veins. (14.80-15.90 gprahite schist bands)	~~~~		я	С			
- 15	22													Discontinuities; 30°,70°,90° light, shiny, slick, ondulating.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1	IJ		100	100	
-	r-3														~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1				100	
16	K-4	15.80													~~~~				97	90	

TE WA	EL: (312) 4 ww.yuksel	95 70 00 proje.com	FAX: ( Itr	312) 49	95 70 2	24				sc	DNI	DAJ	LO	GL	J/BORING LOG	SONDA Borehol	l l e	No :	j	BH	72-{	5
		Ę	1	¢.			PENG	TRA	SYD		ENE	=vi		10		Page	ر ح	N0:		3/	3	_
lĞİ	75	/U/Ru		J	5	Stand	lart Pe	enetra	tion	Test	:	-11					trengt	hering	30cm)	CoreF		
ERINL th (m)	E CINS Pe	A BO	D/ Nu	ARBE umb. (	SAY of Blo	ISI WS			GI	RAF Grapi	İK h				JEOTEKNIK TANIMLAMA Geotechnical Description		SMIT	/ Weat	cture (	тскул		
NDAJ E	MUNE mp. Ty	NEVR	15 cm	-30 cm	-45 cm	N										OFIL	YANIM	RIŞMA.	IIK / Fra	ROT%(	% O	GEON
SOL	NU Sar	MA	ò	15-	Ŕ	6.4	10	20	3	0	40	50	60			A A A A	DA	AYF	ЯX	KAF	ROI	1
16	-1220708													L	SCHIST Light Green, medium hard, medium strong - padium woold alighthuwaatharad, fraah waru	~~~~		4				
	K-4													d	riedium weaki siignuy weatriereu, iresn, very Jense quartz veins. Definition op nage 2/3)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	iii	Ú	С	97	90	
- 17														ľ	Bennadir dri page 2/3)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
									-					ŧ	End of Boring: 17,30 m.							
- 18									-					ŧ								
														Ŧ.								
														Ē								
- 19														ľ								
•														ŧ.								
- 20														t								
														ţ.								
- 21														t								
									1					t								
- 22																						
														t								
- 23																						
- 24																						
														ł								
														ł								
- 25														ł								
26																						L
Not :	Kuyuya	yeraltıs	uyu g	özlem	leri iç	;in 17	',00 m	,Ø50	) mm						LOGU YAPAN Logged By			KON Che	ITRO eckec	L		
	perfore	PVC bo	ru ind	lirilip,	kuyu	ağzı I	beton	u yapı	lmış	tır.				IS N	SIM Talip ERBAY Jame Jeoloji Mühendisi							
														In S	VIZA							

Yu Bi Of	<b>YÜI</b> ÜKSEL PR İrlik Mahallı 3610 ÇANK	KS OJE ULU esi 9. Cac KAYA-AN	E ISLAR/ Ide No: KARA	ARASI :41	PF ^{A.ş.}	20	DJE							
T E WA	EL: (312) 4 ww.yuksel;	95 70 00 proje.com	FAX: ( .tr	312) 49	95 70 2	4	SONDAJEUG	507 BURING LUG	Borehole SAYFA	N	lo: lo:	İB	H72·	-6i
DDOID		ania at NI				. is			Page					
PRUJE	AUT PI	(Paring	ame	tion		기 : 니 ·	NEGOL-BOZUTUK TOLU	VERALTI SUVU / Graundwater	15 m					
KILOM	AJ TERL	hoinog	LULA	1001		. 11	2+110, 1.50 m sol / loft	MULL POP DEP / Cooling Dopth 1	5.00 m k	1.67				
SOND		/ Roring	Dont	th		. 1	5.25 m	PAS PIT TAP / Start Einich Date	6 12 200	100	7 1 2	200	16	
SONDA		/ Eleva	tion			5	14 07 m	KOORDÍNAT / Coordinate (E-W) Y	0.12.200 //7	53	18.0	8	10	
SONDA	ALMAK :	RYÖNT	/D Ri	ia & M	let	· · ·	raelius D-750 / Rotary	KOORDINAT / Coordinate (N-S) X	1.12	3.28	31.5	2		
JONDA		SIGNI		ig a ivi	TAND					-	1,5	2	~	
		J/RL		9	5	Stand	fart Penetration Test			engt	ing	(m)	le l	
SLIG	2	Л	D		CAVI			JEOTEKNÍK TANIMLAMA		Stre	athe	8	E C	
H CH	pe	ŭ	Ni	umb. a	of Blow	WS	Graph	Geotechnical Description		EK	We	ture	(H)	
U DI Oept	e T	NY N	E	E	E	1		48	<u> </u>	M	VA/	Frac	L)%	Z
ND/	MU	UN E	15.0	8	45 (	Ν			OFI	YAN	RISI	IK/		S E
8 S G B	Sal	ΜA	ė	15	8		10 20 30 40 50 60		Pre	DA	AY	Ξ	A C	23
0									- ? .					
								Dark grey-black, medium dense-dense,						
								grained, brittle-hard, schist originated; 15-	<b>?</b> :					
- 1								25% fine-coarse grained, brittle-hard, angula	÷.					
- 13								gravel; 20-30% fine material.						
-		1.50												
	SPT-1		6	8	10	18	8							
- 2		1.95							. o.					
		2.25												
-	SPT-2		10	14	20	34	34		0					
		2.70							· •					
- 3		3.00					38		Ξo.					
	SPT-3	0.45	12	16	22	38								
-		3.45						3.50 m -	<u>•</u> - •					
	CDT 4	3.75	11	14	50			Moist, fine-coarse grained, brittle-hard, 15-20%						
- 4	3F 1-4	4 10	Late:	-14	5			fine-coarse grained, gravelly, 15-20% fine						
		4.50						4.30 m	~ ~		_	_	+	-
<b>F</b>	ODTO	4.50	10	14	20	34			~~~					
	SP 1-9	4 95	10	17	20	07		GRAPHITE SCHIST	~~~					
- °		4.00						(Definiton on page 2/2).	~	v	V			
5.40	- P1 -	5.25	10	12	14	26	28		$\sim$	20	222			
0	SPT-6	5 70	10	12					~~~					
0									$\sim$					
	DAVANI		Stre	ngth		-	AYRIŞMA / Weathering	INCE DANELI / Fine Grained	IRI DA	NEI	LICO	arse	Grai	ned
l îr	ORTA D.		LI	M.Str	9 ong	h.	AZ AYRIŞMIŞ Slightly W.	N : 3-4 YUMUŞAK Soft	N: 5-1	0	GEV	ŞEK	ER V.	JOSE
111	ORTA ZA	۹YIF		M.We	eak	111	I ORTA D. AYR. Mod. Weath.	N : 5-8 ORTA KATI M.Stiff	N: 11-	30	ORT	Ā SIK	I M	Dense
	ZAYIF COK 7A	VIE		VVeak V We	( aak		/ ÇOKAYR. SlightlyW. TÜMÜYLEA CompWeat	N : 9-15 KALL Stiff N : 16-30 COK KATL V Stiff	N : 31-	5U 1	SIKI	SIKI	Di V	ense Dense
1000	2-11-10						compared compared	N : >30 SERT Hard		5-15 S	1			201100
KA	YA KALI	TESIT	ANIM	I - RQ	D	ŀ	KIRIKLAR - 30 cm / Fractures	ORANLAR - Pro	oortions		D.C	0.7		E a la star
% U-25 % 25-50	ÇUK J 7AVI	ZAYIF F	V. Pr	Poor oor		1	-2 ORTA Moderate (M)	≫ 5 PEKAZ Slightly %5-15 AZ Little	% 5 % 5-7	0	PEK AZ	AL	SI Li	lightly ttle
% 50-75	5 ORT	д	Fa	air		2-	10 SIK Close (CI)	% 15-35 ÇOK Very	% 20-	50	ÇOK		V	ery
% 75-90 % an 10	ן (אן כ איסס חר	IVI	G	ood			0-20 ÇOKSIKI Intense (I)	% 35 VE And						
SPT	Standart	Penetra	syon T	esti		K	Karot Numunesi	LOGU YAPAN	1		KON	TROL		
-	Standart	Penetrat	tion Te	est		2	Core Sample	Logged By			Che	cked		
U	Disturhe	nış Numi d samnle	nue			Ч	Pressiyometre Deneyi Pressuremeter Test	Name Jeoloji Mühendisi						
UD	Örselenn	nemiş Nı	umune			k	Permeabilite Deneyi	IMZA						
0	Undistur	bed Sam	ple				Permeability Test	Sign	2					

TE	EL: (312) 4 ww.yukselp	95 70 00 i proje.com.	FAX: ((	312) 49	95 70 2	4	SONDAJ LOG	SU / BORING LOG	SONDA Boreholi SAYFA	4 L 5 4	40: 40:	İE	3H7 2/3	2-6i 2	
<ul> <li>SONDAJ DERINLIĞi</li> <li>Boring Depth (m)</li> </ul>	Samp. Type	0.0 6.45	ຜ 0.15 cm g	ST RBE W006:51 14	SAYI	ART Stanc ISI N <b>30</b>	PENETRASYON DENEYI dart Penetration Test GRAFIK Graph 10 20 30 40 50 60	JEOTEKNİK TANIMLAMA Geotechnical Description	bage Profile Profile	DAYANIMULIK/Strength	AYRIŞMA/ Weathering	KIRIK/Fracture (30cm)	KAROT%(TCR)/T.CoreR.	ROD%	LUGEON
- 7 - 8 - 9 - 10	SPT-8 SPT-9 SPT-10 SPT-11 SPT-12	6.70 7.15 7.50 7.95 8.25 8.40 8.70 9.00 9.45 9.70 10.15	16 15 18 17 11	18 17 22 18 20	22 22 13 25 40	40 39 35 43 60	40 39 38 40 40 40 40 40 40 40 40 40 40 40 40 40	GRAPHITE SCHIST Dark grey-black colored, soft-friable, very weak, completely weathered. 10.40 m	22222222222222222222222222222222222222	2 >	$\geq$ >				
- 11 - 12	SPT-13 K-1 — P3 —	10.50 10.62 11.40 12.00	12	-	-	R		SCHIST Greenish grey- green colored, brittle- little hard, weak- very weak, heaviliy-completely weathered. Lower levels (13.50m-15.25m) soft,very	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	N	IV.		27	0	
<b>-</b> 13	К-2	12.50						weak, completely wearlered.	22222	V	V	Cr	41	0	
<b>-</b> 14 - - 15	K-3 SPT-14 K-4	14.00 14.14 15.00	50 14	-	-	R	R		2222222	v	V	01	0 12	0	
- 16 Not :	Kuyuya yapılmış	15,00 m	inklii	nome	tre bo	orusu	indirilip, enjeksiyonu	End of Borehole: 15,25 m. LOGU YAPAN Logged By ISIM Taip ERBAY Name Jeoloji Mühendisi IMZA			KON Che	TRO			

	<b>/Ш</b> ÜKSEL PR irlik Mahalik 3610 ÇANk EL: (312) 4	OJE ULL OJE ULL SI 9. Cad (AYA-AN 95 70 00	JSLAR Ide No KARA FAX: (	ARASI (41 (312) 49	<b>PF</b> A.Ş. 35 70 2	<b>RC</b>	DJE	SON	IDAJ	LOG		10 :	İB	H7	2_7i	
W	ww.yukselp	oroje.com	n.tr								Borehole SAYFA	10.		40	2-71	
		raio et M				· is		יצוייצו	VOLU		Page '	10.		1/4		_
SONDA		(Boring	ame 11.oca	tion		· II	evelan ( Land	slide	TOLU		YERALTI SUYU ( Groundwater 850 m					
KILOM	ETRE / C	Chainag	le le			: 7	2+118, 43,97	m sol	/ left		MUH.BOR.DER. / Casing Depth : 25.10 m HW	21,0	n 01	۱N	N	
SONDA	AJ DER.	/ Boring	g Dept	th		: 2	7,05 m				BAŞ.BİT.TAR. / Start Finish Date : 22.11.2006-2	6.11.	200	)6		_
SONDA	AJ KOTU	/ Eleva	ation			: 5	29,70 m				KOORDINAT / Coordinate (E-W) Y : 475 3	48,09				
SONDA	AJ MAK.	8YÖNT	JD.Ri	ig & M	let.	: C	raelius D 750	/ Rota	ary		KOORDINAT / Coordinate (N-S) X : 4 423 3	11,61	_		_	
		/Rur		5	TAND	ART	PENETRASYO	N DEN	IEYI		di la constanta di la constanta di la constanta di la constanta di la constanta di la constanta di la constanta	Bu	Ê	oreR.		
) LIĞ	ō	Πλα			0434	stanu		TESL				ather	B	T.C		
h (m	Image: Second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second										Geotechnical Description	Wea	ture	CR)		
AJ D Dept	Numb. or blows           United of blows           United of blows           United of blows           United of blows           United of blows           United of blows           United of blows           United of blows           United of blows           United of blows           United of blows           United of blows           United of blows           United of blows           United of blows           United of blows           United of blows           United of blows           United of blows           United of blows           United of blows           United of blows           United of blows           United of blows           United of blows           United of blows           United of blows           United of blows           United of blows           United of blows           United of blows           United of blows           United of blows           United of blows           United of blows           United of blows           United of blows           United of blows											MA/	Fra	D%1		Z
UND/	Man Burger MUN MUN MUN MUN MUN MUN MUN MUN MUN MUN MUN										AVAN Office	RIS	RIK/	RO.	2D %	Ē
ым	Ξö	X	0	æ:	ĕ		10 20 3	0 40	) 50	60		A	Z	3	Ξ.	-
0											۲~۲					
-	WWW.yukælprojecom.tr       E       ADI / Project Name       INEGÓL-BOZÚYÚK YOLU         2AJ YERI / Boring Location       I       Heyelan / Landslide         METRE / Chainage       72+118, 43,97 m sol / left         2AJ DER. / Boring Depth       27,05 m         2AJ MAK.&YONT/D.Rig & Met.       Craelius D 750 / Rotary         2AJ MAK.&YONT/D.Rig & Met.       Craelius D 750 / Rotary         2AJ MAK.&YONT/D.Rig & Met.       Craelius D 750 / Rotary         Standart Penetration Test       DARBE SAYISI         00       B       STANDART PENETRASYON DENEYI         10       DARBE SAYISI       GRAFIK         01       DARBE SAYISI       GRAFIK         02       04       9       9         02       04       9       9         04       04       9       9         07       03       40       50         1       1.55       50       -       -         1       1.55       50       -       -       R         1       50       -       -       R       -         1       52       50       -       -       R       -         1       1.55       50       -       - </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>															
											scніst 🗸					
- 1	JE ADI / Project Name       : INEGÓL-BOZÚYÚK YOLU         DAJ YERI / Boring Location       : Heyelan / Landslide         METRE / Chainage       : 72+118, 43,97 m sol / left         DAJ DER. / Boring Depth       : 27,05 m         DAJ KOTU / Elevation       : 529,70 m         DAJ MAK.&YÓNT /D. Rig & Met.       : Craelius D 750 / Rotary         STANDART PENETRASYON DENEYI       Standart Penetration Test         DARBE SAYISI       Numb. of Blows         GRAFIK       UNMb. of Blows         SPT-1       1.55         1.55       5         SPT-2       2.25         2.39       14         K-2       3.00         SPT-3       10         3.45       3.75         SPT-4       10         A.20       17         MAX       Strong         ORTA ZAYIF       M:Weak         ZAYIF       Weak         ZAYIF       V.Veak										vellow, yellowish ligt brown, pinkish-purple	N				
	DAJ YERI / Boring Location       : Heyelan / Landslide         METRE / Chainage       : 72+118, 43,97 m sol / left         DAJ DER. / Boring Depth       : 27,05 m         DAJ KOTU / Elevation       : 529,70 m         DAJ MAK.&YONT/D. Rig & Met.       : Craelius D 750 / Rotary         STANDART PENETRASYON DENEYI       Standart Penetration Test         DARBE SAYISI       DARBE SAYISI         Numb. of Blows       GRAFIK         Windows       : Setting Samatrian and the setting Samatrian and the setting Samatrian and the setting Samatrian and the setting Samatrian and the setting Samatrian and the setting Samatrian and the setting Samatrian and the setting Samatrian and the setting Samatrian and the setting Samatrian and the setting Samatrian and the setting Samatrian and the setting Samatrian and the setting Samatrian and the setting Samatrian and the setting Samatrian and the setting Samatrian and the setting Samatrian and the setting Samatrian and the setting Samatrian and the setting Samatrian and the setting Samatrian and the setting Samatrian and the setting Samatrian and the setting Samatrian and the setting Samatrian and the setting Samatrian and the setting Samatrian and the setting Samatrian and the setting Samatrian and the setting Samatrian and the setting Samatrian and the setting Samatrian and the setting Samatrian and the setting Samatrian and the setting Samatrian and the setting Samatrian and the setting Samatrian and the setting Samatrian and the setting Samatrian and the setting Samatrian and the setting Samatrian and the setting Samatrian and the setting Samatrian and the setting Samatrian and the setting Samatrian and the setting Samatrian and the setting Samatrian and the setting										some parts, weak-medium weak to very	V				
	IE AD/YHUgetrivante       IntelSOC-002010101010101         DAJ YER / Boring Location       I Heyelan / Landslide         WETRE / Chainage       I 27,05 m         DAJ KOTU / Elevation       S29,70 m         DAJ MAK &YONT/D.Rig & Met       Craelius D 750 / Rotary         STANDART PENETRASYON DENEYI       Standart Penetration Test         DARBE SAYISI       DARBE SAYISI         Mumb. of Blows       GRAFIK         VI 0 0       VI 0 0         VI 0 0       VI 0 0         VI 0 0       VI 0 0         VI 0 0       VI 0 0         VI 0 0       VI 0 0         VI 0 0       VI 0 0         VI 0 0       VI 0 0         VI 0 0       VI 0 0         VI 0 0       VI 0 0         VI 0 0       VI 0 0         VI 0 0       VI 0 0         VI 0 0       VI 0 0         VI 0 0       VI 0 0         VI 0 0       VI 0 0         VI 0 0       VI 0         VI 0 0       VI 0         VI 0 0       VI 0         VI 0 0       VI 0         VI 0 0       VI 0         VI 0       VI 0         VI 0       VI 0         VI 0										weak in some parts, heavily-completely		ŀ			
- 2	INTERCE / Chainage       : 72+118, 43,97 m sol / left         AJ DER. / Boring Depth       : 27,05 m         AJ KOTU / Elevation       : 529,70 m         DAJ MAK.&YÓNT/D. Rig & Met.       : Craelius D 750 / Rotary         Standart Penetration Test       Standart Penetration Test         DARBE SAYISI       DARBE SAYISI         DARBE SAYISI       GRAFIK         DARBE SAYISI       GRAFIK         DARBE SAYISI       GRAFIK         DARBE SAYISI       GRAFIK         DARBE SAYISI       GRAFIK         DAYANIML       Stong         VB       : S         SPT-1       1.50         SD       : S         SPT-2       : S0         3.00       17         SPT-3       : 10         SAF5       : 3.75         SPT-4       : 10         DAYANIMLI       Strong         MC       : A XYIF         MWeak       : III         ORTA DAYANIMLI       Strong         ORTA DAYANIMLI       Strong         III       1 AZ YRIŞMA / Weathering         ORTA DAYANIMLI       Strong         ORTA DAYANIMLI       Strong         IIII       COK ZAYIF												3	44	0	
	METRE / Chainage       : 72+118, 43,97 m sol / left         DAJ DER. / Boring Depth       : 27,05 m         DAJ KOTU / Elevation       : 529,70 m         DAJ MAK, &YONT/D. Rig & Met.       : Craelius D 750 / Rotary         STANDART PENETRASYON DENEYI       Standart Penetration Test         DARBE SAYISI       GRAFIK         Numb. of Blows       GRAFIK         Numb. of Blows       GRAFIK         SPT-1       1.50       50         1.55       50       -         K-1       5       50         SPT-2       2.25       50         3.00       17       10       12         SPT-3       3.45       3.75         SPT-4       4.20       1       1         DAYANIMLL       Strong       1       AZE         GRA ZAYIF       Weak       III       ORTA DAYANIMLI         K:4       6,00       1       17       12       29         DAYANIMLI       Strong       1       AZE       Fresh         ORTA DAYANIMLI       Strong       1       AZE       Fresh         ORTA DAYANIMLI       Strong       1       AZE       Fresh         ORTA DAYANIMLI       Strong										Note: 9.2-9.5m graphite schist bands.		ŀ	_		
-	JAJ LODER, / Boring Depth       : 27,05 m         2AJ KOTU / Elevation       : 529,70 m         DAJ MAK, &YÖNT/D, Rig & Met.       : Craelius D 750 / Rotary         Standart Penetration Test       Standart Penetration Test         DARBE SAYISI       GRAFIK         Will Standart Penetration Test       DARBE SAYISI         DARBE SAYISI       GRAFIK         Will Standart Penetration Test       DARBE SAYISI         DARBE SAYISI       GRAFIK         SPT-1       1.50       50         1.55       50       -         SPT-2       2.25       50         SPT-3       3.45         3.75       10       17         SPT-4       4.20         A       A         A       A         A       A         SPT-4       10         A       10         A       A         STANDART PENETRASYON Versitering         DAYANIMLI       Strong         ORTA DAYANIMLI       Strong         ORTA DAYANIMLI       Strong         ORTA DAYANIMLI       Strong         ORTA DAYANIMLI       Strong         ORTA DAYANIMLI       Strong         ORTA DAYANIMIL												ſ	3		
- 3	DAJ MAK &YONT /D.Rig & Met.       : Craelius D 750 / Rotary         STANDART PENETRASYON DENEYI       Standart Penetration Test         Standart Penetration Test       DARBE SAYISI         DARBE SAYISI       GRAFIK         Numb. of Blows       GRAFIK         Numb. of Blows       0         SPT-1       1.50       50         N       9       9         N       9       9         N       10       20       30       40       50         SPT-1       1.55       50       -       -       R       -       -         SPT-2       2.25       50       -       -       R       -       -       R       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       <											v		S.	U	
	Standart Penetration Test           OR BE SAYISI Numb. of Blows           SP1-1         1.50 1.55         50 5         -         R         GRAFIK           SP1-1         1.50 1.55         50 5         -         -         R         -         -         R           SP1-2 X-2         2.25 2.39         50 14         -         -         R         -         -         R           SP1-2 X-2         3.00 3.45         17         10         12         22         -         22         -         22         -         29         -         -         29         -         -         29         -         -         29         -         -         29         -         -         29         -         -         29         -         -         29         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -<										$\sim$					
-	SP1-1       1.50       50       -       -       R         SP1-1       1.55       50       -       -       R         SP1-2       2.25       50       -       -       R         SP1-3       3.45       3.75       10       17       10       12       22         SP1-4       4.20       17       10       12       29       29       29         DAYANIMLILIK / Strength       AYRIŞMA / Weathering       I       TAZE       Fresh       Sightly         ORTA DAYANIMLI       Strong       I       TAZE       Fresh       Sightly       Sightly         QOKZAVIF       V.Weak       V.Weak       V       QOKAVR, Sightly       Moderate (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod wide (hod											0	Cr	100	0	
	SP1-1       1.50       50       -       -       R         SP1-2       2.25       50       -       -       R         SP1-2       2.39       14       -       -       R         SP1-3       3.00       17       10       12       22         SP1-3       3.00       17       10       12       22         SP1-4       10       17       12       29       29         K-3       3.75       10       17       12       29       29         K-4       -       -       -       A       -       -       SPT-4         K.4       -       -       -       -       -       SPT-4       -       -         DAYANIMLILIK / Strength       -       -       -       -       -       -       -         DAYANIMLLIK / Strength       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <td></td> <td></td> <td>ŀ</td> <td>100</td> <td>-</td> <td></td>												ŀ	100	-	
- 4	K-1       1.33       5         K-1       2.25       50         SPT-2       2.39       14       -         K-2       3.00       17       10       12       22         SPT-3       3.75       3.75       10       17       12       29         SPT-4       4.20       10       17       12       29         K-4       200       10       17       12       29															
		4.20										N.	ſ			
-												V				
- 5											1 ~~~					
	K-4										~~~		2	52	10	
											r~~1					
6		6.00									~~~					
	DAYANIN	ALILIK /	Stre	ngth		63	AYRIŞMA / 1	Weath	ering	uuu	INCE DANELI / Fine Grained IRI DANE	LI/Coz	arse	e Gr	ained	ł
		MLI avanim		Stron	ig iona	1	TAZE	JIQ C	Fresh Slightly \	JAZ	N : 0-2 ÇOKYUMUŞAK V.Soft N : 0-4	ÇOKG	EVŞ	BEK	V.Loos	se
iii	6.00         AYRIŞMA / Weathering           DAYANIMLILIK / Strength         AYRIŞMA / Weathering           DAYANIMLI         Strong         I         TAZE           ORTA DAYANIMLI         MStrong         I         TAZE         Fresh           ORTA DAYANIMLI         MStrong         I         AZ AYRIŞMİŞ         Silghti yw.           ORTA ZAYIF         MWeak         III         ORTA D. AYR.         Mod. Weal           ZAYIF         Weak         IV         ÇOK.ZAYIF.         Silghti yw.           ÇOK ZAYIF         V.Weak         V         TÜMÜYLE A.         Comp. Weak           XIA KALİTESİ TANIMI - RQD         KIRKLAR - 30 cm / Fractures         ON / Fractures										N : 5-8 ORTA KATI M.Stiff N : 11-30	ORTA	SIK	а	M.Den	156
	6.00     AYRIŞMA / Weathering       DAYANIMLI     Strong     I     TAZE       DAYANIMLI     Strong     I     TAZE       ORTA DAYANIMLI     MStrong     II     TAZE       ORTA DAYANIMLI     MStrong     II     AZ AYRIŞMŞ       ORTA ZAYIF     MWeak     III     ORTA.D.AYR.       ZAYIF     Weak     IV     ÇOK AYR.       ÇOK ZAYIF     V.Weak     V     TÜMÜYLE A       ÇOK ZAYIF     V.Poor     1     SEYREK       ÇOK ZAYIF     V.Poor     1     SEYREK       ÇOK ZAYIF     V.Poor     1     SEYREK       ÇOK ZAYIF     V.Poor     1     SEYREK       QOKTA     Fair     2-10     SIK       D. ORTA     Fair     2-10     SIK       D. ORTA     Fair     2-10     SIK										N : 9-15 KATI Stiff N : 31-50 N : 16-30 COK KATI V Stiff N : >50	SIKI	SIKI		Dense ∨Den	; ISB
5-1-92	3011201										N :> 30 SERT Hard	3.000.00			1.0.01	
KA % 0-25	COK	TESIT. ZAYIF	<u>anim</u> V	Poor	D		SEYREK	<u>em / Fr</u> Wide	racture e (W)	25	ORANLAR - Proportions % 5 PEKAZ Slightly % 5	PEK A	١Z	3	Sliahtl	v
% 25-50	ZAYI	F	P	oor		1-	2 ORTA	Mode	erate (M	Ŋ	% 5-15 AZ Little % 5-20	AZ	1570		Little	4
% 50-75 % 75-90	D ORT/ D IYI	۹.	Fa	air ood		2-	1U SIK )-20 ÇOKSIKI	Close Inter	e (Cl) nse (l)		% 15-35 ÇUK Very % 20-50 % 35 VE And %	ÇÜK		5	∨ery	
% 90-10		Y  Den -t-	E	xcellen	t	>2	20 PARÇALI	Crus	hed (Cr	)		1/01/77	DC:			
ari	Standart	Penetra	syon I tion Te	esa est		К	Core Sam	iple			LOGO TAPAN Logged By	Checl	ked	2		
D	Orselenn	niş Numi	une			Ρ	Pressiyon	ietre De	neyi		ISIM Talip ERBAY Name Jeoloii Mühendisi					
UD	Örselenn	nemiş Nı	umune	9		k	Permeabil	ite Dene	eyi		IMZA					_
0	Undistur	bed Sam	nple				Permeabil	ity Test			Sign					

UI T W	6610 ÇANk EL: (312) 4 ww.yukselp	(AYA-ANH 95 70 00 I proje.com.	(ARA FAX: (3 tr	312) 49	6 70 2	4	S	SONDAJ L	.0G	U / BORING LOG	SONDA Borehol SAYFA Page	1 L 9	No: No:	İE	3H7 2/-	2-7i 4	
-	2	Run		ST	FAND	ART	PENETRASYON	DENEYİ			1 495	hgth	бц	Ê	reR.		
iNLİĞİ m)	NSI N	IOYU/	-D/	PRE	SAV	Stand	rt Penetration Te	st Fik		JEOTEKNİK TANIMLAMA		K/Stren	eatheri	e (30c)	Q/T.Co		
J DER Depth (	NE CÍ Type	VRA E	E.	Ę	E				_	Geotechnical Description	<u>ب</u>	IMULU	AA/ W	Fractur	%(TCF	1.95	Z
SOND [#] Boring [	NUMU Samp.	MANE	0 - 15 0	15-30 0	30-45 0	N	10 20 30	40 50	60		PROF   Profile	DAYAN	AYRIŞN	KIRIK/	KAROT	RQD %	LUGEC
6	SPT-5	6.00	10	14	20	34		34			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		6.3 				
		6.45								SCHIST	~~~~					1202	
- 7	К-5								Ť	Yellow, yellowish-light brown, pinkish-purple colored, brittle-little hard to medium hard in	222				19	0	
	SPT 6	7.50	24	27	30	57		N	Ţ.	some parts. weak-medium weak to very weak in some parts, heavily-completely	~~~~	N	N	Cr	-		
- 8	K-6	7.95	~ '	2,				5	7	weathered, quartzite veins. Note: 9.20m-9.50m Graphite schist bands	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	, v	V	<i>.</i>	60	0	
-	SPT-7	8.25	22	25	28	53			53		~~~~						
<b>-</b> 9	K-7	9.00									~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				0	0	
	SPT-8	9.45	10	12	20	32		32			N N N N				195201	1.52.75	
9,90	K-8 - P1 -	9.80	19	10	24	42		42		9.80 m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				46	0	
- 10	SPT-9 K-9	10.25	13	10	24	42					~~~~				0	0	
	SPT-10	10.50	15	20	31	51			51		NN						
- 11		10.95								2011/2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					$\square$	
	K-10									Greenish grev. soft-brittle. verv weak.	~~~~				13	0	
- 12	SPT 11	12.00	8	10	11	21				heavily-completely weathered, contains	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				-		
ŀ	K-11	12.45				<u> </u>	21				~~~~				60	0	
- 13	SPT-12	12.10	9	8	12	20	20				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	v	IV V	Cr			
-	K-12	13.50								13.50 m	NN				0	0	
<b>-</b> 14	SPT-13	13.95	8	10	13	23	• 23			GRAPHITE SCHIST	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
1201	K-13									(Definition on page 3/4)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				D	0	
3.0		40.00									~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
- 15	SPT-14	15.00	7	10	16	26		26			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
- 16	K-14	15.45									~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				Ō	0	
										LOGU YAPAN Looged By	NN		KON Che	TRO ecker	L		
										ISIM Talip ERBAY Name Jeoloji Mühendisi							
										IIIIZA Circ	T .						

00 TI W	rlik Mahali 661 0 ÇANF EL: (312) 4 ww.yukselp	esi 9. Cad (AYA-AN) 95 70 00 I proje.com	de No: (ARA FAX: (3 tr	41 312) 49	<u>9</u> - 15 70 2	4			ę	SON	ID <b>A</b> .	JLO	GU / BORING LOG	SONDA Borehol	J I e	No:	I	BH	72-7	7i
		c	-	07	FAND	ADT	DENET	740	VON	DEN	ΓVi		-	Page	i T	No:		3/	4	_
ō	- 222	U/Ru		5	I AND 5	Stand	art Pene	tratio	n Te	DEN	ETI				rength	ering	(m)	CoreR		
ERINL h (m)	CINS	A BOY	DA	ARBE	SAYI	ISI			GR/ Gr:	AFİK aph			JEOTEKNIK TANIMLAMA Geotechnical Description		ILIK/St	Weath	ture (3	CR)/T.		
SONDAJ DI Boring Dept	NUMUNE Samp. Typ	MANEVR	0 - 15 cm	15-30 cm	30-45 cm	N	10	20	30	40	50	) 60		PROFIL Profile	DAYANIML	AYRIŞMA/	KIRIK / Frac	KAROT%(T	RQD %	LUGEON
16	K-14				÷	l.t			H		HI		GRAPHITE SCHIST	~~~~		1.1		0	0	F
- 17	SPT-15	16.50 16.95	13	15	22	37					37		Dark grey-black colroed, soft-friable, very weak, heavily-completely weathered, parthy classe;	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
-	– P2 – K-15	17.40											party stayey:	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				26	0	
- 18	SPT-16	18.00 18.37	38	47	<u>50</u> 7	R						R		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
- - 19	K-16 SPT-17	18.70	15	25	35	60						60		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ł			0	0	
-	K-17 SPT-18	19.15 19.50	14	27	38	65						65		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				0	0	
- 20	51 1-10	19.95	100.7	6.28	5.5							$\checkmark$		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
- 21	K-18	21.00							/	/			20.50 m SCHIST green, soft, very weak, completely weathered	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	v	IV ∨	Cr	0	0	
-	SPT-19	21.45	9	9	11	20		20	Ì				21.40 m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				┝	-	
<b>-</b> 22	K-19	1202111010																D	0	
	SPT-20	22.50	18	18	20	38				38				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				F		1
- 23	SPT-21	23.00 23.40	22	29	50 10	R						R		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
- 24	K-20	24.00			50							R	SCHIST greenish grey, pinkish-purple colored. soft.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				0	0	
-	SPT-22	24.43	26	46	13	R							very weak, completely weathered.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
- 25	K-21													~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				20	0	
- 26	<u>SPT-23</u> K-22	25.50 25.60	50 10	3	4	R						R		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				16	0	
													LOGU YAPAN Logged By ISIM Talip FRRAV			KON Che	ITRO ecked	L I		
													Name Jeoloji Mühendisi IMZA	-						
1													Charles 1	1						

00 Te WA	i610 ÇANI EL: (312) 4 ww.yukseli	<aya-ani 95 70 00 I proje.com</aya-ani 	(ARA FAX: (1 tr	312) 49	95 70 2	24				S	ON	DA	J	L <b>O</b> G	U / BORING LOG	SOND/ Boreho SAYFA Page	AJ le	No: No:	İE	3H7 4/-	2-7i 4	i
linliği (m)	insi	aoYU/Run	DA	S ⁻ ARBE	TAND S SAY	) ART Stand	PENE lart Pe	ETRA enetra	SYC ition	DN I Te: GRA	DEN st .FİK	EYİ			JEOTEKNİK TANIMLAMA		K/Strength	(eathering	re (30cm)	R)/T.CoreR.		
SONDAJ DEF Boring Depth	NUMUNE C Samp. Type	MANEVRA	0 - 15 cm Z	15-30 cm dm	30-45 cm	ws N	10	20	) (	Gra	iph 40	6	50	60	Geotechnical Description	PROF IL Profile	DAYANIMLILI	AYRIŞMA/ W	KIRIK / Fractu	КАROT%(ТСІ	RQD %	LUGEON
26	K-23	26.00	50		5	d.r									SCHIST (Definition on page 3/4)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				16	0	
- 27 -	27     27.00     50     -     R       .28     .29     .21     .27.05     .2     .2     .2													R ,	End of Boring: 27,05 m.	~ ~	1		-			_
- 28	28																					
- 29	- 28 - 29 - 30 - 31																					
- - 30	· 28 · 29 · 30 · 31 · 32																					
- - 31	· 29       · 30       · 31       · 32       · 33																					
- - 32	<ul> <li>30</li> <li>31</li> <li>32</li> <li>33</li> <li>33</li> </ul>																					
- - 33	· 31 · 32 · 33																					
- - 34	32       33       34																					
- - 35	34 35																					
- 36	i line individual de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la const																					
Not : yapılı	Kuyuya nıştır.	27,00 m	inkli	nome	tre bo	orusu	indiril	ip, çir	nen	ito e	njek	siyo	nu		LOGU YAPAN Logged By ISIM Talip ERBAY Name Jeoloji Mühendisi IMZA			KON Che	ITRO	L		

1	۲ÜI	KS	EI		PF	RO	JE												
YI Bi Of TI W	ÜKSEL PR irlik Mahall 6610 ÇANI EL: (312) 4 ww.yuksel;	ROJE ULL esi 9. Cac KAYA-ANI 195 70 00 proje.com	ISLARV Ide No KARA FAX: ( tr	ARASI :41 312) 49	A.Ş. 95 70 2	14		:	SON	DAJ	L00	U / BORING LOG	SONDA Borehol	NJ I	No :	İB	3H7	2-8	
													SAYFA	Ì	No:		1/4	4	
PROJE	ADL/ P	rniect N:	ame			: INF	GÖL-B	07ŪY	ŰΚ Υ	'OLU	1 1	DELİK CAPL / Hole Diameter	Faye				_		_
SOND	AJ YERÍ	/ Boring	Loca	tion		: Hev	/elan/L	andsl	ide			YERALTI SUYU / Groundwater : 1	3.00 m						_
KILOM	ETRE / (	Chainag	е			: 72+	119, 79	9,38 m	n sol /	sol		MUH.BOR.DER. / Casing Depth : 3	.00 m H	IW,	36.0	10 m	N٧	1	_
SOND	AJ DER.	/ Boring	Dept	:h		: 36,	00 m					BAŞ.BİT.TAR. / Start Finish Date : 3	0.11.20	06-0	06.12	2.20	06		
SOND	4Ј КОТИ	) / Eleva	tion			: 542	,32 m			c1		KOORDÍNAT / Coordinate (E-W) Y :	4	75 3	74,6	62			
SOND	AJ MAK.	&YÖNT	/D.Ri	g & M	et.	: Cra	elius D	500/	Rota	ry .		KOORDINAT / Coordinate (N-S) X :	4 43	23 3	35,0	19	-	-	_
		<b>R</b> ur		5	IAND	ARTPI	ENE IRA	SYON	DENI	EYI				gth	b.	ε	reR.		
LIĞİ	0	'nλ			0000	standan	Penetra	ation I				IFOTEKNIK TANIMI AMA		Strer	theri	(30c	T.Co		
N (L)	CIN:	B	DA Nu	amb. c	5AYI of Blov	SI NS		GR, Gr	aph			Geotechnical Description		LIK	Wea	ture	CR)/		
V DE	e Ty	<pre>K</pre>	Ę	Ę	E			200402			-		<u> </u>	MLI	AA /	Frac	Ш%	035	Z
ND/	NMU	ШZ	15 0	Ŗ	-45 (	Ν							ROFI	YAN	RISI	RK/	ROT	% ()	GEC
ßå	Sa	W/	ó	5	8		10 20	) 30	40	50	60		ЦЦ	DA	Aγ	KIF	KA	RG	3
0		1.7									ш								
-																			
									ш		Ш								
- 1						I H							26						
													-						
-	ODT 4	1.50	5	7	0	16		16					P :						
- 2	5P 1-1	1.95	0	с.	5	10							-						
2	SPT-2	2.00	7	10	15	25		N	25			Brown-yellowish brown-grey-greenish grey							
-	01-1-2	2.45	~	0.000				X				colored, medium dense, silty, gravelly SAND Moist fine-coarse grained brittle-							
	SPT-3	2.50	5	6	8	14		14				hard, 25-30% fine-coarse grained, brittle-							
- 3	_	2.95						48			Щ	hard, schist-quartzite originated gravel, 15- 25% low plasticity fine material	Ξ						
	SPT-4	0.00	6	8	10	18		18				20% low plasticity, file matchai.							
-	a and	3.45 3.50	~	Sector.		i ii		Ň			Ш		è _ :						
	SPT-5	2.05	8	11	14	25			25				. ?						
- 4	010437538	4.00			4.0	I H		X					_0.						
	SPT-6	4 45	6	8	10	18		18			Ш								
-	EDT 7	4.50	0	7	0	16	- 1	16					P.–.						
- 5	5P1-7	4.95	9	6	9	'°						5.00 m	- ?						
- 3	SPT-8	5.00	8	12	15	27		N	27		Ш	5.00 m	0%0	1					
-	01 1 0	5.45	01 <del>0</del> 0	0.99 <u>7</u> 76		- H			₩			(Description on page 2/4)	5						
6	SPT-9	0.00	18	16	21	37				37		(jjjjj	P:2						
		5.95	Cáma					A0 (W				NCE DANELL/Fine Onsided					- 0		
1	DAYANI	MLI.	oue	Stron	g	.1	TAZE	/04 / 99	Fi	ring resh	-	N : D-2 COKYUMUŞAK V.Soft	N : 0-	4	ÇOK	GEV	ŞEK	V.Lo	ose
Ш	ORTA D	AYANIMI		M.Str	ong	Ш	AZA	RIŞMI	ş si	lig htly V	Ν.	N: 3-4 YUMUŞAK Soft	N : 5-	10	GEV	ŞEK		Loos	3e
	ZAYIF	AYIF		W.vve Weak	eak	III IV	COK.	AYR.	R. M SI	od. We liahtly V	eath. N.	N: 5-8 ORTAKATI M.Stiff N: 9-15 KATI Stiff	N : 11 N : 31	-30	SIKI	A SH	a	M.D Den	ense se
٧	ÇOKZA	YIF		V.We	ak	٧	TÜMÜ	JYLE A	C	omp.W	eat.	N: 16-30 ÇOK KATI V.Stiff	N : >5	50	ÇOk	SIK	10076	V.D	ense
KA		TESI T	0 NUM		n	1/1		- 30 at	n / Fr	acture		N : >30 SERT Hard	nortions	69					
% 0-25	ÇOK	ZAYIF	V.	Poor	5	1	SEYF	EK	Wide	(W)		% 5 PEKAZ Slightly	% 5		PEK	AZ		Slig	ntly
% 25-51 % 70-7	D ZAYI	IF	Po	oor		1-2	ORTA	С.	Mode	rate (M	)	% 5-15 AZ Little	% 5-	20	AZ	2		Little	1
% 50-79 % 75-91	0 IYI	*	ra Gi	an ood		10-2	0 ÇOK	SIKI	Intens	se (l)		% 35 VE And	76 ZU	1-20	YUK	0		very	1
% 90-11	00 ÇOK	Y  Ponotro	E	c ellen	t	>20	PARC	ALI	Crush	ned (Cr	)				KOP	TDO			
SPI	Standart	: Penetrat	ion Te	esu		ĸ	Core	e Sampl	le			LOGO YAPAN Logged By			Che	cked	-		
D	Örselenr	niş Numı	une	1000 C		Ρ	Pres	siyome	tre Den	eyi		ISIM Talip ERBAY	1						
UD	Disturbe Orselenr	d sample nemis Nu	imune	R.		k	Pres Perr	sureme neabilite	eter Tes e Dener	ət Vi		IName Jeoloji Muhendisi IMZA	-						_
2006) 2	Undistur	bed Sam	ple				Perr	neability	Test	87		Sign							

Yu Bi Of		KS ROJE ULU esi 9. Cad KAYA-ANI	E SLAR/ Ide No	ARASI :41	<b>PF</b> a.ş.	20	J	E												
TE W2	EL: (312) 4 ww.yuksel;	195 70 00 proje.com.	FAX: ( tr	312)4	95 70 2	24				SON	DAJ	LOG	SU / BORING LOG	SONDA Borehol SAYEA	ա լ e	No :	İE	BH7	2-8i	
_		-		¢.	TAND	ADT				DEM		5		Page	1	10:		2/4	1	
Ğİ		/U/Ru		J	1000	Stand	art Pe	enetral	tion T	est					tren gth	nering	80 cm)	CoreR		
DERINL oth (m)	E CINS (pe	RA BOY	D/ Ni	ARBE	SAYI of Blo	ISI ws			GR/ Gra	AFİK aph			JEOTEKNIK TANIMLAMA Geotechnical Description		<b>LILIK/S</b>	/ Weath	acture (	TCR)/T		
SONDAJ [ Boring De	NUMUNE Samp. Ty	MANEVF	0 - 15 cm	15-30 cm	30-45 cm	N	10	20	30	40	50	60		PROFIL Profile	DAYANIM	AYRIŞMA	KIRIK / Fra	KAROT%(	RQD %	LUGEON
6	SPT-10	6.00	12	18	18	36					36			0.0	7.5	1.5		1.5		
	SPT-11	6.50 6.95	13	12	9	21			21				Yellowish brown, silty, sandy <b>GRAVEL</b> . Most, fine-coarse grained, little hard- madium bord, achist ariginated, 15, 25%	0.0						
- 7	SPT-12	7.00	7	10	10	20	_		6 <u>2</u> 0				sand; 5-10% fine material. (Talus / Landslide material)	0.0						
	SPT-13	7.50	5	3	3	6	7	6						0.00						
- 8	SPT-14	8.00 8.45	2	1	2	3	<b>1</b> 3							0.0						
- 	SPT-15	8.50	15	5	3	8		8					SCHIST Greenish-brownish grey colored,							
- 9	SPT-16	9.00 9.45	7	21	12	33				• 33			soft-friable, very weak, completely weathered.	$\tilde{\tilde{a}}$	V	V				
	K-1	9.50											9.50 m -	$\sim \sim$	IV V	IV ∨		6	0	
- 10	К-2	10.00												~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			Cr	27	25	
		10.50												$\gamma^{\prime}_{\prime} \gamma^{\prime}_{\prime}$			СІ			
- 11	К-3													~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		1	1925	94	39	
		11.80											SCHIST	$\sim \sim$	IV	IV	Cr			
- 12													Brown-yellowish brown, brittle-little hard to medium hard in some parts, moderately to highly weathered. dense quartzite veins	~~~			CI			
	K-4												Discontinuities; 0°,30°,45°,90° open, irregular, slippery in some parts, calcite, clay,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	L		Cr	95	34	
- 13													filling, FeO-MnO covered.	~~~~	V	IV V				
		13.60												~~~~	III IV	III I⊻	CI			
- 14	K-5	1000000												~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	v	IV ∨	Cr	100	0	
		14.50												~~~			CI			
- 15	K-6													~~~~	ш	ш		100	39	
16		16.00												~~~~	N	IV I	Cr			
		10.00	•	•									LOGU YAPAN Logged By			KON Che	TRO ecked			
													ISIM Talip ERBAY Name Jeoloji Mühendisi IM 7a							
													Sign							

Standart Penetration Test         JEOTEKNIK TANIMLAMA Geotedmical Description         Graph Bigging Compare Standart Penetration Test         JEOTEKNIK TANIMLAMA Geotedmical Description         Graph Bigging Compare Standart Penetration Test           18         18.00         18.00         19.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00	Bir 06 TE WV	lik Mahallı 610 ÇANI L. (312) 4 wv.yukselş	esi 9. Cac KAYA-ANI 95 70 00 proje.com	de No: (ARA FAX: (( tr	41 31 <i>2</i> ) 49	- 95 70 2	24			5	SON	DAJ	LOG	U / BORING LOG	SOND/ Boreho	∿J I Ie	No:	i	вн7	72-8	l
Image: Standart Penetration Test         JECTEKNIK TANIMLAMA Geotechnical Description         Image: Standart Penetration Test           Image: Standart Penetration Test         DAREESAVISI Standart Penetration Test         JECTEKNIK TANIMLAMA Geotechnical Description         Image: Standart Penetration Test           Image: Standart Penetration Test         DAREESAVISI Standart Penetration Test         JECTEKNIK TANIMLAMA Geotechnical Description         Image: Standart Penetration Test           Image: Standart Penetration Test         DAREESAVISI Standart Penetration Test         JECTEKNIK TANIMLAMA Geotechnical Description         Image: Standart Penetration Test           Image: Standart Penetration Test         DAREESAVISI Standart Penetration Test         JECTEKNIK TANIMLAMA Geotechnical Description         Image: Standart Penetration Test           Image: Standart Penetration Test         Standart Penetration Test         JECTEKNIK TANIMLAMA Geotechnical Description         Image: Standart Penetration Test           Image: Standart Penetration Test         JECTEKNIK TANIMLAMA Geotechnical Description         Image: Standart Penetration Test         JECTEKNIK TANIMLAMA Geotechnical Description         Image: Standart Penetration Test           Image: Standart Penetration Test         JECTEKNIK TANIMLAMA Geotechnical Description         Image: Standart Penetration Test         JECTEKNIK TANIMLAMA Geotechnical Description           Image: Standart Penetration Test         Image: Standart Penetratis Standart Penetration Test         JECTEKNIK TANIMLAM															SAYFA Page	· 1	No:		3/	4	
Wite and the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of t	iĞi		/U/Run		S	TAND S	ART Stand	PENE art Pe	TRA5	SYON ion Ti	DENI est	EYİ				trength	hering	30 cm)	.CoreR.		
0 x0         2 x0         x         0         x         0         x         2 x0         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x	ONDAJ DERINL oring Depth (m)	UMUNE CINS amp. Type	ANEVRA BO	I- 15 cm Z D C D	RBE mb.co mb.co 0E-5	SAYI of Blov	SI ws N			GR/ Gr	AFİK aph	- 22		Geotechnical Description	ROFIL rofile	AYANIMLILIK/S	YRIŞMA / Weat	IRIK / Fracture (	АROT%(ТСR)/Т	QD %	NGEON
-17         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50         -17.50 <td>йй 16</td> <td>ΖŰ</td> <td>≥ 16.00</td> <td>0</td> <td>-</td> <td>9</td> <td></td> <td>10</td> <td>20</td> <td>30</td> <td>40</td> <td>50</td> <td>60</td> <td></td> <td></td> <td>à</td> <td>¥</td> <td>⊠ Cr</td> <td>X</td> <td>ŭ</td> <td>5</td>	йй 16	ΖŰ	≥ 16.00	0	-	9		10	20	30	40	50	60			à	¥	⊠ Cr	X	ŭ	5
Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50         Image: 17.50<	- 17	K-7												SCHIST	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				100	24	1
18       18.10       18.10       Image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: im	•	K-8	17.50											Brown-yellowish brown, brittle-little hard to medium hard in some parts, weak-medium weak to very weak in some parts, mednerste bidbh weathered dense	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1			97	32	1
19       19.00       19.00       19.00       19.00       19.00       100, Feo-MnO covered.         20       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       18.8       14.9       19.80       19.80       19.80       18.8       14.9       19.80       19.80       19.80       19.80       18.8       14.9       19.80       18.8       14.9       19.80       18.8       14.9       19.80       18.8       14.9       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.80       19.	- 18 -	K-9	18.10											quartzite veins. Discontinuities; 0°,30°,45°,90° open,		⊪	III I∨	Cr	100	0	1
K:10       19.80       19.80       48       0         20       K:11       20.50 m       7       48       0         21       21.00       5       65       15         22       22.50       5       65       15         23       K:13       23.50       5       66       9         24       K:14       24.80       60       9       7       60       9         26       26.00 m       10       10       0       0       0       0       0       0       99       0       99       0       99       0       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10	- 19		19.00											irregular, slippery in some parts, calcite-clay filling, FeO-MnO covered.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			CI	_		I
K-11       21.00       21.00       48       0         - 21       21.00       65       15         - 22       22.50       65       15         - 23       K-13       23.50       5       5         - 24       K-14       23.50       60       8         - 24       K-16       25.10       60       8         - 26       25.10       60       60       9         - 26       26.00 m       60       9       60         - 26       26.00 m       60       9       60	- 20	K-10	19.80												$\sim \sim \sim$				68	44	
21       21.00       21.00       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	-	K-11												20.50 m		1		6	48	0	
K-12       K-12       K-12       K-12       K-13       K-13       K-13       K-13       K-13       K-14       K-14       K-14       K-14       K-15       K-15       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16       K-16	<b>-</b> 21		21.00												$\sim \sim$				-		
22.50       22.50         -23       K-13         23.50       23.50         -24       K-14         24.60       60         25       K-15         26       26.00	- 22	K-12													~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	IV V	IV V		65	15	
K-13       23.50       Purple-greenish grey colored, soft-friable, little hard, weak-very weak, highly-completely weathered.       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N <td>- 23</td> <td></td> <td>22.50</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>CONFT</td> <td>~~~~~</td> <td></td> <td></td> <td>Cr</td> <td>54</td> <td></td> <td> </td>	- 23		22.50											CONFT	~~~~~			Cr	54		
24       K-14         24.60       24.60         25       K-15         25.10       NV         K-16       26.00 m         26       26.00 m		к-13	23.50											Purple-greenish grey colored, soft-friable, little hard, weak-very weak, highly- completely weathered.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				01	U	
26     26.00     26.00     26.00     0     0     0       26     26.00     26.00     0     0     0     0	<b>-</b> 24	K-14													~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	III I∨	III IV		60	9	
K-16         26.00         V         V         V         99         0           LOGUYAPAN         LOGUYAPAN         KONTROL	<b>-</b> 25	K-15	24.60 25.10												~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				0	0	1
LOGUYAPAN KONTROL	- 26	K-16	26.00											26.00 m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ň	V		99	0	1
Logged By Checked			20.00				•							LOGU YAPAN Logged By			KON Che	ITRO ecked	L		

06 TE WV	610 ÇANI EL: (312) 4 wv.yuksel;	KAYA-ANK 95 70 00 I proje.com	(ARA FAX: ( tr	31.2) 4	95 70 2	24			1	SON	DAJ	LO	GU / BORING LOG	SONDA Borehol	uj e	No:	İE	BH7	2-8	i
			_	24										Page	1	No:	_	4/-	4	
		J/Run		S	TAND 5	)ART Stanc	PENE lart Pe	ETRA: enetra	SYON tion Ti	DEN est	EYI				ength	ring	(uo)	oreR.		
RINLIÓ (m)	CINSI	ВОУ	DA	RBE	SAYI	ISI			GR	AFİK			JEOTEKNÍK TANIMLAMA		<b>IK/Str</b>	Veathe	ure (30	R)/LC		
A DEI Depth	INE C	NRA	E NU	imb.c	E BIO	ws	-		GI	арп			Geolechnical Description	<u> </u>	NIMLIL	MA/V	Fracti	L%(TC		N
SOND, Boring	NUML Samp	MANE	0 - 15	15-30	30-45	N	10	20	30	40	50	60		PROF Profile	DAYA	AYRIŞ	KIRIK,	KARO ⁷	RQD %	LUGE
26	K-16	26.10			7.5								26.00 m	$\sim \sim$		1.7		99	0	
-													SCHIST Brown, brittle-little hard, weak-very weak,	~~~						
- 27	K-17												heavily-completely weathered.	$\sim \sim$	1			71	0	
		27.50											27.40 m	~~~~						
	K-18	21.00											SCHIST	NN				18	0	
- 28	2	28.00											Purple-grennish grey, soft-friable, very weak completely weathered.	~~~~						1
-	K-19													~~~	IV V	IV V		19	0	
- 29		29.00											29.00 m	~~~						
2000	0.80590075	15. CARDON												~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			Cr	20	5.5274	
-	K-20												GRAPHITE SCHIST	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				0	0	
- 30	CDT 17	30.00	15	17	22	20					39		weak, heavilt-completely weathered.	N°N				-		
	SP1-17	30.45	10	11	22	39								~~~						
- 21	K-21	04.00	50											$\sim$				0	0	
- 31	SPT-18 K-22	31.00 31.10	10	Ξ	~	R						R	31.10 m		$\vdash$		ž.	48	n	
	K-23	31.50												~~~				64	n	1
<b>-</b> 32	11.20	32.00												~~~						-
-	V 24													~~~	14	IV.	ľ	66	20	
1000000	N-24											1		NN				00	20	
- 33		33.00											SCHIST Greenish-greenish light grey, brittle-little hard	~~~				-		1
-	K-25												to medium nard in some parts, weak-very weak, medium-heavily weathered, lower	$\sim$				97	12	
<b>-</b> 34		34.00											ieveis completely weathered.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					_	
	14.00													NN	IV V	IV ∨	Cr			
	K-26													~~~ ~~~		8		45	0	
- 35		35.00											35.30 m	~~~				⊢	-	1
-	K-27												Dark grey-black, soft-friable, very weak,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				52	12	
36	N. 7789 C 1975	36.00											END OF BORING : 36,00 m.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
					-	-							LOGU YAPAN Logged By			KON Che	ITRO ecked	-		
Not :	Kuyuya vapilmis	36,00 m stir.	inkli	nome	tre bo	orusu	ı indiri	lip, en	jeksiy	onu			TSIM Talip ERBAY Name Jeoloji Mühendisi							
													IMZA Sign							

												_	_	
	/UI ÜKSEL PR rlik Mahalle 361 0 ÇANK	OJE ULU OJE ULU SSI 9. Cad	EI ISLAR/ Ide No: KARA	ARASI. :41	<b>PF</b> A.ş.	26	DJE							
TE WA	EL: (312) 4 ww.yukselp	95 70 00 proje.com	FAX: ( .tr	312) 49	95 70 2	4	SONDAJLOG	JU / BORING LOG	Boreholi	9 N	10:	İBI	H72-	9i
0									Page	35	10.		1/4	
PROJE	ADI / Pr	roject Na	ame	23		: IN	JEGŐL-BOZŰYŰK YOLU	DELİK ÇAPI / Hole Diameter :						
SONDA	J YERI	/ Boring	Loca	ition		: H	eyelan / Landslide	YERALTI SUYU / Groundwater : 1	1.00 m	NAZ -	20.0	0	N D A Z	
SOND/		/ Roring	Dent	th		· 12	2+119, 116,92 m sol/ieit 0.00 m	NUH.BUK.DEK./Casing Depth 0	.00 m H	<u>vv,.</u> 06.0	30.0	2.00	. <u>VVV</u> 16	
SONDA	AL KOTH	/ Eleva	tion			: 54	45.97 m	KOORDINAT / Coordinate (E-W) Y	<u>0.12.20</u>	15 4	03.1	6	0	
SONDA	J MAK.	RYÖNT.	/D.Ri	g & M	et.	: Fo	oremost B-53 / Rotary	KOORDÍNAT / Coordinate (N-S) X	4 42	23 36	62,4	5		
3 1		un		S	TAND	ART	PENETRASYON DENEYI			ŧ	-	-	с.	
ē		L/R			5	Standa	art Penetration Test			reng	erinç	0 cm	Cor	
(I) (I)	Ю Z D	λõ	DA	ARBE	SAYI	SI	GRAFİK	JEOTEKNİK TANIMLAMA		KSt	/eath	re G	5	
pth	Ър	SA B	Nu	umb. c	of Blow	NS		Geotechnical Description	125	- -	M/N	actu	E L	
DAJ	AUN Iple	ΈV	5 CH	0 cu	2 cu	N			)FiL	ANIA	ŚW	K/F	%10	: N
Bori	NUN	MAN	6	15-0	30-4	1.20	10 20 30 40 50 60		Prof	AV.	AYR	EN -	AK IO	LUG
0	007.4	0.00	E	4	E	•	9		-0.		<u>`</u>	_	1000 ACC	-
Ľ	5P1-1	0.45	<u> </u>	1		3								
	SPT-2	0.50	4	5	7	12	12		P					
- 1	3710 N.377	0.95		8	23	185522		Brown-yellowish light brown-yellow colored,						
120	SPT-3	1.00	5	7	8	15	15	medium dense-dense, gravelly, silty SAND /						
-	9602 2639	1.45						coarse grained, brittle-hard; 30-40% low	÷					
	SPT-4	1.00	7	7	8	15	15	plasticity, fine material; 10-20% fine-medium						
- 2	ODTE	2.00	5	7	10	47	17	gravel.	-0					
	SP I-5	2.45	9	8	10	11		Gravel ratio increases (25,25%) towards						
Г	SPT-6	2.50	6	10	12	22	22	lower levels (after 5.00 meters)	°.∸.;					
- 3		2.95	-						Ξ.					
	SPT-7	3.00	7	10	13	23	123							
		3.45 3.50							•					
	SPT-8	2.05	10	15	18	33	33							
- 4		4.00		10	10				_0.					
	SPT-6         2.95         6         10           2.95         7         10           SPT-7         3.45         10         15           SPT-8         3.95         10         15           SPT-9         9         12         4.45           SPT-10         4.50         5         5					22	22		: ; <b>−</b>					
Г	SPT-10	4.50	5	5	7	12	12		2					
- 5		4.95	-						-					
	SPT-11	0.00	9	15	20	35	35							
		5.45 5.50							ò					
6	SPT-12	5.95	8	13	14	27	27							
0	AYANIN	ALILIK /	Stre	ngth			AYRIŞMA / Weathering	INCE DANELI / Fine Grained	IRI D/	ANE	Li/Ca	arse	Grai	ned
	DAYANI	MLI avanimi	u .	Stron	g ong		TAZE Fresh	N: 0-2 ÇOKYUMUŞAK V.Soft	N : 0-4	1	ÇOK	GEVŞI	EK V.	Loose
iii	ORTAZA	AYIF	-'	M.We	eak	111	ORTA D. AYR. Mod. Weath.	N : 5-8 ORTA KATI M.Stiff	N: 11	-30	ORT	4 SIKI	I M.	.Dense
	ZAYIF	VIE		VVeak	( ak		′ÇOKAYR. SlightlyW. TÜMÜYLEA Comma Weat	N : 9-15 KATI Stiff N : 16:30 COKKATI V Stiff	N: 31	-50 n	SIKI	SIKI	De	ense Dense
1.1	YONZA	un:		v. vvc	GIL		TOMOTEE AC Obmp.Wear.	N : >30 SERT Hard	14 : 23	<b>.</b>	<b>γ</b> οι.	ona	1.30	Dense
KA % 0-25	YA KALI	TESIT/		Poor	D	K	SEVREK Mide AM	ORANLAR - Prop % 5 PEK AZ Slightly	ortions	į.	PFK	A7	21	iahtly
% 25-50	) ŽAYI	F	Po	Dor		1-3	2 ORTA Moderate (M)	% 5-15 AZ Little	% 5-2	20	AZ		Lit	rtle
% 50-75 % 75-90	5 ORTA 1 IVI	<del>ц</del>	Fa	air ood		2-1 10	10 SIK Close (Cl) 1-20 COK SIKI Intense (l)	% 15-35 ÇOK Very % 35 VE And	% 20	-50	ÇOK		Ve	əry
% 90-10	O ÇOK	IYI	E	xcellen	t	>2	20 PARÇALI Crushed (Cr)	AND AND AND						
SPT	Standart Standart	Penetras	syon T ion Te	esti est		K	Karot Numunesi Core Sample	LOGU YAPAN Logged By			KONT Che	ROL		
D	Orselenn	niş Numu	ine			Ρ	Pressiyometre Deneyi	ISIM Talip ERBAY	t		0110			
UD	Disturbed Örselenn	d sample nemiş Nu	Imune	9		k	Pressuremeter Test Permeabilite Deneγi	IName seoroji wuhendisi IMZA	+					
87853) 0	Undistur	bed Sam	ple	9.2			Permeability Test	Sign	11					

TE	EL: (312) 4 ww.yukselp	35 70 00 F roje.com.	FAX: (3 tr	312) 49	5 70 2	4				S	SON	DA.	JL	OG	iu / Boring Log	SOND/ Boreho SAYFA	NJ le	No:	İE	3H7	2-9	i
		un		ST	FAND	ART	PENE	TRA	SYC	DN I	DEN	EYİ				Page	£	NO:		2/- 2/-	4	Г
5	ō	YU/R			5	and	lart Pe	netra	tion	Te	st	89125212			IEOTEKNIK TANIMI AMA		Streng	thering	(30cm)	T.Core		
pth (m	E CIN ype	RA BC	DA Nu	ARBE umb. c	SAYI of Blow	SI NS			Ģ	iRA Gra	aph Aph				Geotechnical Description		<b>VULLK</b>	V/Wea	acture	(TCR)		
loring De	UMUN Samp. T	IANEVI	) - 15 cm	15-30 cm	30-45 cm	N	10	20		20	40	E		80		PROFIL	AYANIN	VRIŞM4	<b>JRIK/F</b>	AROT%	(OD %	ACLOI-
о ш 6	∠ 00 SPT-13	≥ 6.00	10	10	14	24	10	20		30 24	40	50	Ŧ	50				4	×	×	œ	f
3	SPT-14	6.45 6.50	8	12	17	29				X	29		Ŧ		Brown-vellowish light brown-vellow colored,	• _						
7	SPT-15	6.95 7.00	8	9	11	20				4					medium dense-dense, gravelly, silty SAND / sandy SILT / silty, gravelly SAND. Moist fine-	īь						l
		7.45 7.50	0	11	11	22				20					coarse grained, brittle-hard; 30-40% low plasticity, fine material; 10-20% fine-medium grained, angular, guartzite-schist originated	•						l
	SP1-16	7.95 8.00	ז			22		18	ľ				t		gravel.	-0						
	SPT-17	8.45 8.50	1	1	11	18							Ŧ		Gravel ratio increases (25-35%) towards lower levels (after 5.00 meters)							l
	SPT-18	8.95	11	13	19	32					• 32					÷						l
	SPT-19	9.00 9.45	6	8	19	27				4	27											l
9	SPT-20	9.50	6	10	13	23			Ľ	23						0						l
)	SPT-21	9.90	10	21	35	56						5	6	,	10.00 m	0.0						l
	SPT-22	10.45 10.50	18	21	17	38					•	38	1			0 0 . 0 <del>.</del>						l
1	SPT-23	10.95 11.00	18	26	27	53						N	×.	53	Brown, hard, siltyi gravelly SAND / sandy GRAVEL. Moist, fine-coarse grained, brittle-	0.0						l
	CPT 24	11.45 11.50	28	32	22	54						5			hard, angular-quartzite-schist originated gravel; 10-20% fine material.	0.00						l
2	5P1-24	11.95 12.00										ľ	1		Uppoer levels dominated with sandy silt. (Talus / Landslide material)	0 0						l
	SPT-25	12.45	13	12	14	26				Í	26				······	0.00						
3	SPT-26	12.95	7	11	14	25				ł	25			Ŧ		0.0						
	SPT-27	13.00 13.45	12	14	14	28					28					0.0						
4	SPT-28	13.50 13.95	10	9	19	28				ł	49					0.0						
+	SPT-29	14.00	24	28	21	49							• 4	9		0.0						
	SPT-30	14.45 14.50	9	17	18	35					1	35										
5	SPT-31	14.95 15.00	8	15	17	32					1											
	SPT 33	15.45 15.50	7	12	17	29				ļ	29					0.0						
b'	3-1-32	15.95	10		2000) (					I	ĨĬ				16.00 m			KON				L





YU Bi OR TE W	JKSEL PR Vik Mahalli S610 ÇANI EL: (312) 4 www.yukselş	KS OJE ULL esi 9. Cad (AYA-AN 95 70 00 proje.com	JSLAR, ide No: KARA FAX: ( Ltr	ARASI. 41 312) 49	<b>PF</b> A.Ş. 85 70 2	<b>RC</b>	)JE	SONDAJ	LOG	GU / BORING LOG	SOND.A Borehol	U I	No:	İBI	H72	-10	)i
											SAYFA	١	No:		1/3	Ê.	
PPAIR		enin et M				· 181					Page				10.020		
PRUJE		roject N	ame			. IN	EGUL-BUZUII	JK YULU de		DELIK ÇAPI / Hole Diameter	00						
SUNDA	AJ YERL	/ Boring	Loca	tion		. 116	yeian / Landsin		-	YERAL II SUYU / Groundwater	0.90 m	LINAZ	04	00 -	o. N.D.	A /	
SOND/		/ Poring	e Dopt	b		. 12	13 m	I SULTIEIL	5	PAS PIT TAP / Stort Einich Date	12.30 11	06.0	17 1	2 201	16	V	
SONDA			tion			· 21	3.53 m				A.12.20	75.4	41.5	5	50		
SONDA		RYÖNT	/D Ri	n & M	et	: 00	bile Drill B-53 /	Rotary	-	KOORDINAT / Coordinate (L-W) 1	1.1	733	91,2	:1			
00107		S	1	5	TAND	ARTE	PENETRASYON		-	Reenteinary obsidinate (n-e) x	1		00,0		Q ²	1	
20		J/R			5	tanda	rt Penetration Te	st				engt	ring	cm)	oref		
SLIG.	Ω	JYC .	D.		EAV	e1	GRA	FIK		JEOTEKNÍK TANIMLAMA		Str	athe	8	J.C		
ER!	Cipe	ŭ	Ni	umb. c	of Blo	NS	Gra	aph		Geotechnical Description		ĽĚ	We	dure	CR)		
Dep	e T	R.	Ę	E	сIJ					• 2	<u> </u>	IMI	MA.	Fra	D%1		Z
ND/	JML	UN N	15	ē	-42	Ν					Pille Bille	YAN.	RIŞI	RIK/	ROI	% (I)	ШÜ
SO Bor	Sa NL	ΜA	ö	15	8		10 20 30	40 50	60		H H H	DA	AΥ	ЯX	¥	R0	З
0	5 SA																
-										Prown modium donos, olgrou, oith <b>COND</b>							
										Moist, fine-coarse grained, brittle-little							
- 1										hard,angular, schist-quartzite originated ; 5-	17.5						
10										10% brittle-little hard gravelly, 30-40% fine material							
		4.50															
	SPT-1	1.50	5	7	8	15	• 15										
- 2	_	1.95		-			- N - I			2.00 m							
	SPT-2		9	10	11	21	21			Brown, very dense, gravelly, sandy, clayey	÷=-						
-	in the second second second second second second second second second second second second second second second	2.45		2.07	57072					brittle-hard gravelly, 20-30% fine coarse	3-7						
162340	SPT-3	2.05	7	7	8	15	15		Ш	sandy.	2						
- 3	2255000000000	3.00		_			12			3.00 m							
	SPT-4	2.45	3	5	1	12	Ń			Greenish grey-brown-green, medium dense	1.0.1						
-	ODTE	3.50	7		4.4	10	N 10		ш	clayey, siltyi gravelly SAND / sandy	0.0						
	SP 1-5	3 95	1	8	11	19				little hard 20-30% fine-coarse grained, brittle	-97						
- 4	ODTA	4.00	5	a	12	22	N.			brittle-little hard,angular, schist quartzite							
	SP 1-0	4.45	ľ	Ň	10		22		Ш	originated gravel; 10-20% fine material.	0.0						
<b>[</b>	SPT-7	4.50	8	13	15	28	I X	28			0.0						
- 5	Or start	4.95	ľ	10	50												
	SPT-8	5.00	11	40	<u>-50</u>	R				5.15m	0.0		la -				
-		5.34	50		3	1.000			n	Green-greenish grey soft-friable, very weak	N	77.2	5.65	19423			
6	SPT-9	5.61	11	-	-	R			R	completely weathered.	1 mon	V	V	Cr			
				L							NN						
	DAYANIN	MUL	Stre	Stron	a	1	TAZE	Eresh		N.º 0-2 COKYUMUSAK V Soft	N 0-		COK	GEV	e Gr	VIO	a
i.	ORTA D	AYANIM	LI	M.Str	ong	- ît	AZ AYRIŞMIŞ	Slightly V	V.	N : 3-4 YUMUŞAK Soft	N : 5-	10	GEV	ŞEK		Loos	e.
III INZ	ORTA ZA	۹YIF		M.We	eak		ORTA D. AYR	:. Mod. We Slightly V	ath.	N : 5-8 ORTA KATI M.Stiff	N: 11	-30	ORT	ASIK	a i	M.De	ense
V	ÇOKZA	YIF		V.We	ak	V	TÜMÜYLE A	Comp.W	v. eat.	N : 16-30 ÇOK KATI V.Stiff	N: >5	-00 i0	ÇOk	SIKI		V.De	ense
										N : >30 SERT Hard							
KA % 0-25	TA KALI	7 AVIE	anim V	I - RQ Poor	ט	<u>К</u>	SEYREK	Vide 000	S	ORANLAR - Pro % 5. PEKAZ Slightly	portions % 5	Ģ	PFk	A7		Sliah	ntlv
% 25-50	Ĵ ŽAYI	F	P	oor		1-2	ORTA	Moderate (M)	)	% 5-15 AZ Little	% 5-	20	AZ	1.11		Little	į
% 50-75 % 75 oc	5 ORT/	Ą	Fa	air and		2-1	0 SIK 20 COKSUA	Close (CI)		% 15-35 ÇOK Very % 35 VE And	% 20	1-50	ÇOk	(	3	√ery	
% 90-10	<u>, c</u> ok	IYI	E	<u>ccel</u> len	t	>20	D PARÇALI	Crushed (Cr)		AND YE AND							
SPT	Standart	Penetra	syon T	esti		K	Karot Numur	iesi		LOGU YAPAN	12.		KON	TROL	2		
D	Stan dart Orselenn	r≓enetra niş Numi	uon l'é une	st		P	Core Sample Pressivometr	e Denevi		Logged By ISIM Talip FRBAY	+		Che	скед			
002	Disturbe	d sample					Pressuremet	erTest		Name Jeoloji Mühendisi							
UD	Unselenn	nemış Nı hed Sow	umune Inle			k	Permeabilite Permeability	Deneyi Test		liviza Sian	1						
	VITALISIA	uou uarr	סוקו				renneability	1001			1	_					

uobi U ÇANKAYA-ANKARA TEL: (312) 495 70 00 FAX: (312) 495 70 24 www.yukselproje.com.tr							SONDAJ LOGU / BORING LOG									İBH72-10i 2/3				
		J/Run	STANDART PENETRASYON DENEYI Standart Penetration Test											i ugo	ength	ring	(cm)	oreR.		
ERINLIÓ th (m)	NUMUNE CINSI Samp. Type	MANEVRA BOYL	DARBE SAYISI						GR/ Gr	4FİK aph			JEOTEKNİK TANIMLAMA Geotechnical Description		ULIK/Str	/ Weathe	cture (30	TCR)/T.C		
SONDAJ E Boring Dep			0 - 15 cm	15-30 cm	30-45 cm	N	10	20	30	40	50	60		PROFIL Profile	DAYANIM	AYRIŞMA.	KIRIK/Fra	KAROT%(	RQD %	LUGEON
6	SP T-10	6.00 6.25	45	50 10	1	R						R	(Definition on page 1/3) 6.25 m CHLORITE SCHIST	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	V	V	Cr			
- 7	K-1												Green, brittle-little hard, weak-very weak, medium-heavily weathered, Discontinuities; 45°,70°-90°, open, irregular, slippery, clay. 45°,90° closed, calcite filling (1.00-5.00 mm thickness).	$\sim$	1. NO. 1	III IV		100	19	
- 8	K-2	7.50											7.50 m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-	63 0		57	0	
-	K-3	8.20											SCHIST Grey-greenish grey- brownish light grey, brittle-little hard, weak-very weak, heavily-	$\sim \sim \sim \sim \sim \sim \sim \sim \sim \sim \sim \sim \sim \sim \sim \sim \sim \sim \sim $	í s			51	0	
- 9	SPT-11	9.00	50	-	-	R						R	B.20m), soft, very weak, kompletely weathered, clayey. Dense quartzide veins (10.00-12.40m)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
-	K-4	5.01	e												IV V	IV V	Cr	60	0	
- 10 -	K-5	10.00												~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	A			30		
- 11	SP T-12	11.00	47	50	-	R						R		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
-	K-6	11.21	.(2875)	6		1002							2 2	$\sim \sim \sim \sim$	2000 20			18	0	
<b>-</b> 12		12.00											12.40 m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				┢		
<b>-</b> 13	K-7												LIMESTONE Light grey colored, hard, strong, slightly weathered.					75	57	
- - 14	K-8	13.50											Discontinuities; 30°,70°,90°, open, mattei ondulating, rough, calcite filling. Closed fractures (1.00-2.00 mm thick) filled with calcite. Schist bands in some parts.		F	Ш	W	92	83	
- 15		15.00											14.85 m			12 1				
-	K-9	10.00											GRAPHITE SCHIST Dark grey-black, little-medium hard, medium weak, medium weathered, dense limestone and quartzie veins.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Ш	М	69	49	
16													LOGU YAPAN Logged By	~		KON Che	TRO ecked	L		

TEL: (312) 495 70 00 FAX: (312) 495 70 24 www.yukselproje.com.tr									:	SON	DA.	ILO	GU / BORING LOG	SONDAJ No: Borehole			İBH72-10i			
		c													1	NO:	_	3/3		
NDAJ DERINLIĞİ ing Depth (m)	0.502	MANEVRA BOYU/RU	Standart Penetration Test												rength	ering	(mag)	CoreR		
	NUMUNE CINSI Samp. Type		DARBE SAYISI Numb of Blows						GR/ Gr	AFİK aph			JEOTEKNİK TANIMLAMA Geotechnical Description		ILIKVS	Weath	ture (3	кот%(тск)/т.		
			15 cm	-30 cm	-45 cm	N								OFIL	YANIMU	RIŞMA/	IK/Frac		% O(	SEON
S 8			ò	15	8		10	20	30	40	50	60	(Definition on name 2/3)	H A A	DA	AYI	KIR	N.	ROI	LUG
16	K-10	16.10 16.50 17.40 17.85											(Definition on page 2/3) 16.10m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						1
														2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				22	0	
17			12																	L
	CDT 13			19	35	54							1					-	H	ł
• 18	581-13				00						5	4	GRAPHITE SCHIST							
	K-11																	55	0	
		10.70											some parts, weak-very weak, heavily-	~~~	IV	īV				
• 19		18.70											quartzite veins.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	۷	۷	CI			1
	K-12																	38	U	
Ĩ		19.50												~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					Η	ł
20													1	~						
	K-13 SPT-14 21.0												1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ļ			22	0	
													1							
21		21.00	50		-	R						R		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		,				
		8 - 3	13	Î	1.1.5								END OF BORING: 21.13 m.	2 Y				с		Γ
													1							
22											t		1							
													1							
23													1							
2.5													-							
													-							
24													1							
202													1							
													1							
25													1							
													1							
26													1							
PC3			-	_									LOGU YAPAN	-	-	KON	TRO	L		-
Not : Kuvuva 21.00 m inklinometre borusu indirilin, enieksivonu									Logged By ISIM Taip EBBAY	Checked				1						
HOL .								1 J	or congre				blance							
Yu Bi	<b>/UI</b> ÜKSEL PR	KS ROJE ULU esi 9. Cac	EI ISLAR	ARASI	<b>PF</b> A.ş.	70	DJE													
--------------------	-----------------------------------------	-----------------------------------	-----------------------	------------------	-------------------	--------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------------------	-----------------------------------------------------------------------------------------------	--------------------	-------------	---------------	------------	-------------	------------					
UE TE WA	561 U ÇANA EL: (312) 4 ww.yuksel;	KAYA-AN 195 70 00 proje.com	Kara Fax: ( .tr	(312) 49	95 70 2	24	SOND	AJLOG	U / BORING LOG	SONDAJ Borehole	No		BH7	2-1′	1					
G.										Page	No		1/	2						
PROJE	ADI / Pi	roject Na	ame			: iN	JEGÖL-BOZÜYÜK YC	)LU	DELİK ÇAPI / Hole Diameter :											
SONDA	AJ YERİ	/ Boring	Loca	ation		: H	eyelan / Landslide		YERALTI SUYU / Groundwater : 13	3,90 m										
KILOM	ETRE / C	Chainag	е			: 7	2+119, 211,63 m sol/	left	MUH.BOR.DER. / Casing Depth : 12	2,50 m N	JVV -									
SONDA	AJ DER.	/ Boring	Dept	th		: 1	5,25 m		BAŞ.BİT.TAR. / Start Finish Date : 08	3.12.200	6-09	.12.2	006							
SONDA	AJ KOTU	J / Eleva	tion			: 5	66,04 m		KOORDİNAT / Coordinate (E-W) Y	47	5 470	),53								
SONDA	AJ MAK.	&YÖNT	/D.Ri	ig & M	let.	: C	raelius D-750 / Rotary	l:	KOORDİNAT / Coordinate (N-S) X	4 42	3 4 2 6	5,14			_					
		L N		S	TAND	ART	PENETRASYON DENEY	ri.			the s	2 2	en.							
<u>0</u>		Ĩ,			93	Stand	art Penetration Test				tren	80 cr	Col							
ZΞ	SZ	l ĝ	D,	ARBE	SAY	ISI	GRAFİK		JEOTEKNIK TANIMLAMA		SS 1	Le ()	5							
변문	Ър Гур	SA E	N	umb. (	of Blo	WS	Graph		Geotechnical Description			actu	10L							
DAU	N e	E	E I	E C	D C M	SNT.				e Fi	NIN NIN	FI-	0T%	%	NO					
ONI	am	AN	- 14	5-30	0-4	N				Log Log	AVA	E N	ARO	0D	ВÜ					
SВ	zω	Σ	0	-	en l	-	10 20 30 40	50 60		••••	□ <	$( \times$	$\leq$	œ	-					
0																				
-																				
									Brown-yellowish brown, very hard, gravelly,											
- 1									clayey, silty SAND. Moist, fine-coarse	26.										
									medium grained, brittle-hard, angular schist-	···										
-	-	1.50							qartzite originated gravel.	9										
	SPT-1	1.05	10	13	13	26	• 26			- 0										
- 2		1.95								-0										
		2.25		100	22					· · - ·										
-	SPT-2	0.70	10	11	14	25	é 25			• <u>-</u> •										
		2.70								÷. ?										
- 3	0.07.0	3.00		<b>_</b>	15	04	24			- • •										
	SP1-3	2.45	•	9	15	24				::÷										
7		2.70					N			?.∸.:										
4	SPT-4	0.70	14	15	24	39	39			÷ .										
- 4	0.000	4.15	0.0400						hereite an	- ? ·										
		4.50						N	4.30 m											
Γ	SPTE	4.00	19	33	30	63		63		?.∸.:										
5	01 1-0	4 95							Greenish grey- brownish grey, hard, gravelly,	÷ ?										
Ŭ		ENE							silty SAND. Moist, fine-coarse grained, brittle; 20-30% fine-coarse grained, brittle -bard	- °										
5.40	SPT-6	0.20	11	17	25	42		42	schist originated gravel; 15-25% fine											
6	01-1-0	5.70																		
, e										÷. 1				L	Ļ					
	DAYANI		Stre	ngth	<i>a</i>	-	AYRIŞMA / Weatherin	ng	INCE DANELI / Fine Grained		NELI	Coar	se G	rain	ad					
i.	ORTA D.		LI	M.Str	9 ong	n.	AZ AYRIŞMIŞ Slig	htly W.	N : 3-4 YUMUŞAK Soft	N: 5-1	D Ğ	EVŞE	VƏEN. K	Loos	se					
111	ORTA Z	AYIF		MW	eak	111	ORTA D. AYR. Mod	I. Weath.	N : 5-8 ORTA KATI M.Stiff	N: 11-	30 0	RTAS	IKI	M.D	ense					
	COK 7A	VIE		VVeał V W/e	( vak		′ÇOKAYR. Slig TÜMÜYLEA Con	htly VV. nn Weat	N : 9-15 KALL Stiff N : 16-30 COK KATL V Stiff	N: 31-( N: >50	50 S I C	IKI OK SII	ĸI	Den V De	Se ense					
1.32	3.01.120.1				, and		, only the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the sourc	ip in out	N : >30 SERT Hard		3		197	01.040						
KA	YA KAL	ITESI TA	ANIM	I - RQ	D	ŀ	(IRIKLAR - 30 cm / Frac	tures	ORANLAR - Prop	ortions	-			0.						
% U-25 % 25-50	ÇOK 1 7AYI	CZAYIF IF	V. Pi	.Poor		1	SEYREK Wide (V 2 ORTA Moderat	V) te(N/0	% 5 PEKAZ Slightly % 5-15 A7 Little	% 5 % 5-2(	р Дар	EK AZ 7		Sligh	atly =					
% 50-75	5 ORT	A	Fa	air		2-	10 SIK Close (C	21)	% 15-35 ÇOK Very	% 20-	50 Ç	OK		Very	i i					
% 75-90 % 00.40	) iyi n cov	1vi	G	ood		10	0-20 ÇOKSIKI Intense	(l) 1 (Cr)	% 35 VE And											
76 90-10 SPT	Standart	Penetra:	E: sγon T	xcellen Testi	ι	K	20 PARÇALI Crushed Karot Numunesi	1(U)	LOGU YAPAN		K	ONTRO	DL							
222	Standart	Penetrat	tion Te	est		50	Core Sample		Logged By		C	hecke	d							
D	Urselenn	nış Numı d cample	Jne			Ρ	Pressivemetre Deney	0	ISIM Talip ERBAY Name Jeoloji Mühendisi											
UD	Örselenr	nemiş Nı	umune	Э		k	Permeabilite Deneyi		IMZA	·										
anna an C	Undistur	bed Sam	ple			570.03	Permeability Test		Sign											

Ut TI W	EL: (312) 4 AW.yukselp	95 70 00 F roje.com	Gara Fax: (3 tr	312) 49	5 70 2	4			;	SON	JAJ	LOC	SU / BORING LOG	SONDA Borehol	J r e	No :	İB	BH7:	2-11	i
1														SAYFA Page	1	NO :		2/:	2	
	-	/Run		ST	rand s	ART	PENE	TRAS	YON	DENE	Yİ			4	ngth	ing	(mo	oreR.		
(m)	insi	BOYU	DA	RBE	SAY	ISI		non ar	GR/	AFİK			JEOTEKNİK TANIMLAMA		IK/Stre	/eathe	ire (30	R)/T.C		
AJ DEF Depth	Type	VRA	Nu B	imb.c E	f Blo E	WS	-		Gr	aph		_	Geotechnical Description		NIMLIL	MA/ W	Fractu	Γ%(TC		Z
SOND/ Boring	NUMU Samp.	MANE	0 - 15 י	15-30	30-45	N	10	20	30	40	50	60		PROF Profile	DAYAN	AYRIŞI	KIRIK/	KAROT	RQD %	LUGEC
6	SPT-7	6.00	11	8	6	14				Ħ			Gravellyi silty SAND	- ?	1 2.4					
•		6.45						Ĩ			Ш		6.60 m							
- 7	SPT-8	0.70	11	8	9	17		i.	17		Ш			Ξ.						
		7.15									Ш			-						
	SPT-9	7.50	9	10	16	26			7	26	Ш		Brown-yellowish brown, towards lower leves, brownish grey-greenish grey colored, very	-	5					
- 8		7.95							/		Ш		hard, gravelly, silty, SAND / sandy SILT. Moist, fine-coarse grained, brittle; 5-15% fine-							
-	SPT-10	0.20	11	9	11	20			20				medium grained, brittle, schist originated gravel; %35-45 low-medium plasticity, fine	• _						
- 9		8.70 9.00									Ш		malenal.	20	à.					
	SPT-11	9.45	7	9	11	20			20		Ш									
		9.70							À						5					
- 10	SPT-12	10.15	12	15	18	33				33	Ш									
-	SPT-13	10.50	4	4	4	8		8			Ш			• -						
- 11		10.95	cnido.	0.000	95.7	1004					Ш		10.85 m Brown-greyish brown-dark grey colored, vert	-0-						
_	SPT-14	11.25	17	28	29	57					-	57	stiff, siltyi gravelly SAND / sadny GRAVEL. Moist, fine-coarse grained, brittle-little hard;							
10		11.70										1	originated gravel; 5-15% fine material.	- •						
- 12	SPT-15	12.00	28	12	æ	R					₩	R	12.27 m						_	
•		12.60									Ш			~~~~					_	
- 13	K-1													$\tilde{\}$				61	0	
_		13.50			50								GRAPHITE SCHIST	NN						
14	SPT-16	13.90	20	32	10	R						R	very weak, heavily-completely weathered.	~~~~	V	IV ∨	Cr			
- 14											₩			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		3		10000		
-	K-2												් 	n ⁿ n				23	U	
- 15	SPT-17	15.00	44	<u>50</u> 10		R						R		$\sim \sim$				-		
-													END OF BORING: 15,25 m.	14.						Γ
16																				L
Not : K	iuyuya ye	raltisuy	u göz	lemlei	ri için	15,0	0 m , Ø	)50 m	m.				LOGU YAPAN Logged By			KON Che	TRO	L		
р У	erfore P\ apılmıştır	/C boru	indiril	lip, 40	x40x	15 cm	1. kuyu	ı ağzı	betor	าน			ISIM Talip ERBAY Name Jeoloji Mühendisi IM7A							
													Cian							

)	וטי	KS	E		PF	RC	J	E						
Y B OI T W	UKSEL PR irlik Mahallı 5610 ÇANI EL: (312) 4 ww.yukselş	ROJE ULU esi 9. Cad KAYA-ANI 195 70 00 proje.com	ISLAR/ Ide No KARA FAX: ( .tr	ARASI :41 (31.2) 4!	A.Ş. 95 70 2	24			1	SON	DAJ	LOC	GU / BORING LOG	2
													Page No. 1/2	
PROJE	EADL/ PI	roject N	ame			: 11	IEGĈ	L-B	٥ZÜ١	/ÜK \	YOLL		DELİK ÇAPI / Hole Diameter	
SOND	AJ YERI	/ Boring	Loca	tion		: H	eyela	n/L	ands	lide			YERALTI SUYU / Groundwater : 8.75 m	
KILOM	ETRE / (	Chainag	e			: 1:	2+15	9,46	,59 n	n sol .	/ left	-	MUH.BOR.DER. / Casing Depth : 4,50 m HW, 15,00 m NW	
SOND	AJ DER.	/ Boring	tion.	n		. 1	25.001	n Lm				-	BAŞ,BIT,TAK, / Start Finish Date : 10,12,2000 - 12,12,2000	
SOND	ALMAK	8YÖNT	/D Ri	a & N	let	: 0.	20,90 Iobile	Drill	B-53	/ Ro	tarv	-	KOORDINAT/Coordinate (N-S) X 4423 285 90	_
001107	in the second	5	I	S	TAND	ART	PENE	TRA	SYON	DEN	EYİ	-		П
10		NH/			5	Stand	art Pe	netra	tion T	est			Sorie and	
JNC NC									GR	AFİK			JEOTEKNİK TANIMLAMA 🕺 👹 🗒 🗒	
pth (	E Z B Numb. of Blows Graph								Gr	raph			Geotechnical Description 📋 🎽 টু 단	
Del													PT%	NO
OND	NUUUUU 0 0 45 c 5-30 c 15 c									40	50	-		ΠGE
о Ш	⊇™ ⊻ ⇔ ∽ ∺ 10 20 30 40 5									40	50	60		-
0													<u> </u>	
-		0.50		10	10									
	SP I-1	0.95	9	10	10	20		20	ĸ				- N ^ĩ M	
- 1	CDT 2	1.00	6	13	16	29			Ň	29				
	an I-2	1.45	Ľ	10	10	20		4.4	$\mathbf{V}$		_		- ^ /	
	SPT-3	1.50	11	6	8	14		14					H M.M.I.I.I	
- 2	_	1.95					ш							
	SPT-4	2.00	9	13	16	29				29				
-		2.45	0955	-	2500	1975							່ (ັ _ທ ິ)	
	SPT-5	2.05	10	7	5	12	12	í.					SCHIST Brown vellowich light brown, brittle friable	
- 3		3.00											little hard-hard, very weak to weak in some V N	
	SP 1-6	3.45	3	3	б	9	9					Ш	parts, completely weathered.	
Ē.	SPT 7	3.50	g	ġ	11	20		20				_		
- 4	01 1-r	3.95		Ŭ.				20						
	SPT-8	4.00	8	9	9	18	ш		18					
ŀ		4.45											H	
	SPT-9	4.50	6	9	13	22		22	•					
- 5		4.95 5.00	585		1025	020			$\mathbb{N}$	29			H M~~~~	
	SPT-10	5.45	10	11	18	29								
3	ODT 44	5.50	А	5	11	16		16.4						
6	5P1-11	5.95	о <b>т</b> .	ľ		"		100.					-  ~	
	DAYANI	ALILIK /	Stre	ngth			AY	RIŞM	ia / W	eathe	ering		INCE DANELI / Fine Grained IRI DANELI/Coarse Grain	ed
1	DAYANI ORTA D	MLI avanimi	e e	Stron M Str	g	4		TAZE	RISMI	G C	resh Slia htty	W.	N: 0-2 ÇOKYUMUŞAK V.Soft N: 0-4 ÇOKGEVŞEK V.Lo N: 3-4 YUMUŞAK Soft N: 5-10 GEVŞEK Loo	JOSE
111	I ORTA DAYANIMLI M.Strong II AZ AYRIŞMIŞ Sligh II ORTA ZAYIF M.Weak III ORTA D. AYR. Mod.								D. AY	₽.N	1od. W	eath.	. N : 5-8 ORTA KATI M.Stiff N : 11-30 ORTA SIKI M.D	)ense
IV	✓ ZAYIF Weak IV ÇOKAYR. Slighti ÇOKZAYIF V.Weak V TÜMÜYLEA. Comp								YR.	S	lightly	W.	N: 9-15 KATI Stiff N: 31-50 SIKI Den	ise
v	<b>Ç</b> UK ZA	TIC		V.VV.E	sa K	×.			TLE A	2 OL	vomp.v	veat.	N : >30 SERT Hard	ense
KA	YA KAL	TESI T	ANIM	I - RQ	D	!	(IRIK)	AR -	30 ci	m / Fr	actur	es	ORANLAR - Proportions	
% U-25 % 25-5	UK 0 ZAYI	F	V. Po	Poor		1-	2 0	ORTA	EK	Mode	e (VV) erate (N	0	% 5 PEKAZ Slightly % 5 PEKAZ Slig % 5-15 AZ Little % 5-20 AZ Little	ntiy e
% 50-7	5 ORT.	A	Fa	air		2-	10 8	SIK		Close	e (CI) `		% 15-35 ÇOK Very % 20-50 ÇOK Very	y I
% 75-9 % 90-1	00 COK	IYI	G	ood xcellen	t		1-20 ( 20 I	JUK S PARC	i Kl A Ll	Inten Crus	se (I) hed (C	rì	% 35 VE And	
SPT	Standart	Penetras	syon T	esti	-	K		Karot	Num	unesi		·	LOGU YAPAN KONTROL	_
D	Standart Penetration Test Core Sample Örselenmis Numune P Pressivometre Denevi									le tre De	nevi		Logged By Checked	
	Disturbe	Disturbed sample Pressuremeter Test								eter Te	st		Name Jeoloji Mühendisi	
UD	Orselenmemiş Numune k Permeabilite Deneyi							Perm	eabilit	e Dene v Te≪t	eyi		IMZA Sign	
	ondistdf	seu bam	ihie					Lett	reautiit	y rest				



Y	/UI		EI ISLAR/	ARASI	<b>PF</b> A.ş.	70	JE									
TE	EL: (312) 4 ww.yukselp	95 70 00 proje.com	KARA FAX: ( .tr	312) 49	95 70 2	24		ę	SONI	DAJI	LOG	U / BORING LOG SONDAJ No : Borehole SAYFA	İE	3H7	2-13	}
9												No: Page	8	1/	3	
PROJE	ADI / Pr	roject Na	ame			1i :	JEGÖL-BO	ΣÜY	ÜK Y	OLU		DELİK ÇAPI / Hole Diameter :				
SONDA	J YERİ ı	/ Boring	Loca	tion		: H	eyelan / La	andsli	ide			YERALTI SUYU / Groundwater : 16.00 m				
KILOM	ETRE / C	Chainag	е			: 7	2+158,79	,74 m	i sol/	left		MUH.BOR.DER. / Casing Depth : 24.00 m HW, 4.	50 m	n NV	V	
SONDA	J DER.	/ Boring	Dept	th		: 2	5,00 m					BAŞ.BİT.TAR. / Start Finish Date : 07.12.2006-11.	12.20	)06		
SONDA	AJ KOTU	/ Eleva	tion			: 5	37,45 m					KOORDÍNAT / Coordinate (E-W) Y : 475 399,	30			
SONDA	AJ MAK.	8YÖNT	/D.Ri	ig & M	let.	: C	raelius D 5	50071	Rotar	У		KOORDİNAT / Coordinate (N-S) X : 4 423 310,	72	_		_
		Sun		S	TAND	ART	PENETRAS	SYON	DENE	ΞYİ		1 문 - 프	2	Ч		
ē	Standart Penetration Test								est			erij.	0 C C	Cor		
Ξ.E	DARBE SAYISI GRAFIK								AFİK			JEOTEKNIK TANIMLAMA	9	5		
pth	U Numb. of Blows								221.22/5			Geotechnical Description	actu	(TC		
ADe												SA N & L	E F	0T%	%	NO.
orin ON	am	IAN	÷	5-3	9-4	14	40.00	-	10	50		A M Tofic	Ě	AR(	gD	nG
ωш	zω	2		-	.05		10 20	30	40	50	60		<u>⊢</u> ≚	×	с	-
0									+++++			우글 위				
-												0.0				
											1111	Brown-green-greenish grey colored, dense-				
- 1									╋╋╋			coarse grained, brittle-hard, angular.				
												0. 0.5				
	-	1.50										0.0				
	SPT-1	1.95	12	21	39	60			╋╋╋		60					
- 2	0.000 (S)	2.00												2342555	0 0 1000	
	K-1	85 - XISA									Ш	0.0		36	0	
	C T D	2.50	6	12	25	37			37			. o <u></u>			2	
_ 2	3F 1-2	2.95	l °	12	20	57						P.o. P.				
- 3	SDT 2	3.00	4	3	11	14		14				<u>e</u> .e				
_	0101-0	3.45	20122		0.0							3.50m				
	K-2	3.50												20	n	
- 4	1352	4.00	50			-						SCHIST Grace brittle little hard medium hard in		20	<u>а</u>	
0.00	SPT-4	4.00	10	2	370	R					R	some parts, weak-very weak, medium weak				
-		1.718.862.5	329947						╋╋╋			in some parts, moderately-highly weathered,				
	K-3											niecewise		52	9	
- 5											ш		č.			
6		5.20										Fracture; 0°,90° open, rough, clay filling.			ct	
6	K-4										ш	~~~		28	U	
		ALILIK /	Stre	nath	20	1.5	AYRISM	A / W	eathe	ring	ш	INCE DANEL / Fine Grained IRI DANEL //	loar	se Gi	raine	L
1	DAYANI	VILI		Stron	g	1	TAZE		Fr	resh		N : 0-2 ÇOK YUMUŞAK V.Soft N : 0-4 ÇO	KGE	/ŞEK	V.Lo	iose
II.	ORTA D	AYANIM	Ļ	M.Str	ong	11	AZ AY	RIŞMIŞ	ş si	ightly V	N.	N : 3-4 YUMUŞAK Soft N : 5-10 GE	VŞEK	<	Loos	se
	ZAYIE	×γ⊫		Weak	eak <		COKA	U. AYE YR	R. Mi St	od. VVe liahtly V	eath. A/	N : 5-8 URTAKATI M.Stiff N : 11-30 UK N : 9-15 KATI Stiff N : 31-50 SI	TA SI (I	KI	M.Dens	anse se
V	ÇOKZA	YIF		V.We	eak	V	TÜMÜ'	YLE A	. Cr	omp.W	'eat.	N : 16-30 ÇOK KATI V.Stiff N : >50 ÇC	KSIK	(	V.De	ense
1/03		тесіт	6 billba					20.00				N : >30 SERT Hard				
% 0-25	COK	ZAYIF	VIIII.	Poor	U	1	SEYRE	SU CH EK	Wide	(W)	:9	%5 PEKAZ Slightly %5 PE	KAZ		Sligh	ntly
% 25-50	ZAYI	F	P	oor		1-	2 ORTA		Moder	rate (M)	)	% 5-15 AZ Little % 5-20 AZ	perattit		Little	
% 50-75 % 75-ar	o ORTA 1 ivi	4	Fa	air ood		2-	10 SIK 1-20 COMS	1KI	Close	(CI) se (I)		% 15-35 ÇUK Very   % 20-50 ÇC   % 35 VE And	К		Very	ł
% 90-10	<u>0 ÇOK</u>	IYI	E	xcellen	t	>	20 PARÇA	4LI	Crush	ed (Cr)		200 (2010)				
SPT	Standart Stordart	Penetra	syon T	esti		K	Karot	Numu	nesi			LOGU YAPAN KO	VTRO	L		
D	Orselenn	niş Numı	uori Te Jne	:51		P	Press	⇒ampte iyomet	e tre Den	ieyi		ISIM Talip ERBAY CY	eu Ke (	1		
	Disturbed	urbed sample Pressuremeter Test								st.		Name Jeoloji Mühendisi				
UD	Örselenmemiş Numune k Permeabilite Deneyi Undistuded Sample Barmachilite Tact							∃abilite eahilit∿	) Deney V Test	yn		Sign				
	eneroidII	Jug Oarli	NIV.				i oilli	- NE BILY	1001							

UE TE WA	eru ÇANk E. (312) 4! wv.yukselp	ATA-ANI 35 70 00 I iroje.com	VARA FAX: (3 tr	312) 49	5 70 2	4			:	SON	DAJ	LOC	GU / BORING LOG	SONDA Borehol	J N e	No :	İВ	H72	2-13	li i
		c		67	LAND	ADT	DENF	TDAC	VON	DEM	EVI			Page	1	10:	)	2/:	} 	
ē	122	'U/Ru		2	I AND S	Stand	art Pei	netrat	ion Te	DEN est	ETI				trength	nering	80cm)	CoreR		
ERINL th (m)	CINS De	ABO	D4 Nu	RBE mb. c	SAYI of Blow	ISI WS			GR/ Gr	AFİK aph			JEOTEKNÍK TANIMLAMA Geotechnical Description		SMIT	Weath	cture (3	FCR)/T		
SONDAJ D Boring Dep	NUMUNE Samp. Tyj	MANEVR	0 - 15 cm	15-30 cm	30-45 cm	N	10	20	30	40	50	60		PROFIL Profile	DAYANIML	AYRIŞMA/	KIRIK/Fra	KAROT%(	RQD %	LUGEON
6	K-5	6.00			-	la:				T				~~~~	IV V	IV V		60	0	_
		6.50											SCHIST Crease brittle little bard, medium bard in	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					-	
- 7	K-6	7.20											some parts, weak-very weak, moderately weak in some parts, medium-highly	NN				89	14	
-	1100	7.20											weathered, completely weathered in some parts, piecewise.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
- 8	K-7												Fracture: 0°,90° open, rough, clay filled	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	III IV	III M		51	0	
		8.30												~~~~		<u>a.</u>		_	_	
	K-8			94532										~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				36	0	
- 9	SPT-5	9.00 9.20	27	<u>50</u> 5	-	R						R		NN			ŀ			
	K-9											17		n'~~				75	0	
- 10		10.00										1		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				_	_	
-	K-10													~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				49	0	
- 11	SPT-6	10.70	14	21	28	49					49 1			~~~~						
		11.15												~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	IV	IV	Ī	1000	-	
	K-11										1			~~~~	V	V		41	U	
- 12	SPT-7	12.00	17	21	23	44				44	ļ			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			ľ			
-	K-12	12.45									/			~~~~				100	0	
- 13	CAR - 585	13.00								1				$\sim \sim$		$\square$		32		
i i	K-13	13.50			22	-22							10.75	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				0	0	
- 14	SPT-8	13.95	14	14	15	29			29 •				SCHIST	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	v	V		_	_	
1.14.000	K-14										N		Brown-green-greenish grey, soft, very weak, completely weathered	N N				0	0	
	SPT-9	14.70	16	50	÷	R							14.90 m —	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		H				
- 15	V 15	14.90		D								/	SCHIST Purple, grey, hard-medium hard, strong- medium strong, slightly weathered	~~~~	1	1 I		70	21	
- 16	K-10	15.00											Clayey,gravelly SAND					12	31	
.0		10.00				J							LOGU YAPAN	4-1 F		KON	TROL	5		
													Logged By ISIM Talip ERBAY Name Jeoloji Mühendisi			Che	cked			
													IM7A	1						_

UC TE WA	ioru ÇANI EL: (312) 4 ww.yukselj	95 70 00   proje.com	varka FAX: (: .tr	312) 49	5 70 2	4				SON	IDAJ	LOG	GU / BORING LOG	SONDA Borehol SAYFA	l l e I	N0:	İE	3H7 3/	2-1 3	3
		Run		S	ΓAND	ART	PENE	ETRAS	SYON	I DEN	EYİ			Page	, dth	БĽ	Ê	IeR.		
RINLİĞİ (m)	insi	BOYU/	DA	RBE	SAY	SI	art Pe	netral	GF	est RAFİK			JEOTEKNÍK TANIMLAMA		JK/Stren	Veatheri	ure (30ci	R)/T.Co		
ONDAJ DEI Joring Depth	JUMUNE C	ANEVRA	0 - 15 cm	15-30 cm	80-45 cm	N	10	20	0		50	60	Geotechnical Description	PROFIL Profile	AYANIMLIL	VRIŞMA/V	IRIK/Fracti	АROT%(ТС	(GD %	UGEON
юш 16	200	2			0.	é, r	10	20	31	1 40	50	60				4	×	×	œ	
	7 16.50 SPT-10 8 14 15 29									Ĺ			Brown-greyish brown, medium dense, clayey gravelly <b>SAND.</b> Moist, fine-coarse grained, brittle-little hard; 10-20% fine coarse grained,	0 _ 0						
- 17	17 16.95									1			angular gravel; 25-35 fine material. (Potential Slip Surface)	Ξ.Þ.						
-	K-16													• <u>-</u> •				27	U	
- 18		18.00												~~~~					_	
-	K-17										<u>\</u>		8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				45	0	
- 19		40.50									1		8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
	K-18	19.50											SCHIST Grey-greenish grey-purple, brittle little hard, weak-very weak, moderately-heavily	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	N	IV		27	0	
_ 20	K_10	20.00											weathered, lower levels completeley weathered, piecewise.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	V	V		35	Ω	
- 21	it it	21.00	50			_						Λ		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					172	
_	SPT-11	21.05	5	-	-	R					+	R		$\sim$					_	
- 22	K-20													~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				18	0	
-	PDT 43	22.50	45	50		Б						R		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
- 23	3F1-12	22.73	40	8	-	n							22.70 m GRAPHITE SCHIST Dark greychlack, medium bard, medium	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		(4	2			
-	K-21												strong-medium weak, slightly-moderately weathered, quartzite veins.	N~N				96	66	
<b>-</b> 24		24.00											23.80 m	~~~~	11 111	11 111				
-	K-22												Green-purple-greenish grey, moderately hard, moderately strong, slightly weathered,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				98	40	
<b>-</b> 25 <b>-</b>			_											~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		-				-
-													END OF BORING: 25.00 m.							
26																	TPO			
Not :	Kuyuya perfore	yeraltısı PVC bo	uyu g ru ind	özlem irilip,	leri iç kuyu	in 25 ağzı t	,00 m Detonu	, Ø 50 u yapı	ımm. Imışt	ır.			LOGU YAPAN Logged By ISIM Talip ERBAY Name Jeoloji Mühendisi IMZA			KON Che	TRO			-

**APPENDIX C** 

CORE BOX PHOTOS

BURSA - INEGOL - BOZUYUK YOLU KM-72-100 - IBH72 -2i KUYU NO :4,50 - 15,00 m DERINLIK SANDIK NO :1/1 YUKSEL PROJ HUYUSOMI -

BOREHOLE NO : IBH72-2i CORE BOX NO : 1/1



BOREHOLE NO : IBH72-3i CORE BOX NO : 1/2

BURSA - INEGOL - BOZUYUK YOLU KM:72+100 KUYU NO BH72 - 31 DERINLIK 18,00 - 21,00 m. SANDIK NO 2/2 YUKSEL PROJE

BOREHOLE NO : IBH72-3i CORE BOX NO : 2/2



BOREHOLE NO : IBH72-5 CORE BOX NO : 1/1

BURSA - INEGOL - BOZUYUK YOLU * KM . 72+100 KUYU NO : 18H72 - 61 DERINLIK : 10.62 - 15,25 m. SANDIK NO : 1/1 PROJ

BOREHOLE NO : IBH72-6i CORE BOX NO : 1/1



BOREHOLE NO : IBH72-7i CORE BOX NO : 1/1

BURSA - INEGOL - BOZUYEN Their KM = 72 + 100 KUYU NO BH72 - 81 DERINLIK : 9.50 - 17.50 m. SANDIK NO: 1/3 YUKSEL PROJE

BOREHOLE NO : IBH72-8i CORE BOX NO : 1/3



BOREHOLE NO : IBH72-8i CORE BOX NO : 2/3

BURSA - INEGOL - BOZUYUK YOLU KM-72+100 KUYU NO : IBH72 - SI-: 31,50 - 36,00 m. DERINLIK YUKSEL PROJE 5 AI IK NO : 3/3

BOREHOLE NO : IBH72-8i CORE BOX NO : 3/3



BOREHOLE NO : IBH72-9i CORE BOX NO : 1/1

BURSA - INEGOL - BOZUYUK YOLU KM -72+100 KUYU NO IBH72 - 10i DERINLIK 625 - 18,70 m. SANDIK NO: 1/2

BOREHOLE NO : IBH72-10İ CORE BOX NO : 1/2



BOREHOLE NO : IBH72-10İ CORE BOX NO : 2/2

BURSA - INEGOL BOZUYUK KM 72 + 100 KUYU NO BH72 - 11 DERINLIK - 12.60 - 15.25 m. SANDIK NO. = 1/1 YUKSEL PROJE R. A.

BOREHOLE NO : IBH72-11 CORE BOX NO : 1/1



BOREHOLE NO : IBH72-12 CORE BOX NO : 1/1

BURSA - INEGOL - BOZUYUK YOLU KM 72+100 IBH72 - 13 KUYU NO : 2.00 - 20,00 m. DERINLIK 12 SANDIK NO -1/10 YUKSEL PROJE

BOREHOLE NO : IBH72-13i CORE BOX NO : 1/2



BOREHOLE NO : IBH72-13i CORE BOX NO : 2/2

# APPENDIX D

# SOIL LABORATORY TEST RESULTS

SOIL-ROCK MECHANICS LABORATORY

### Form of Test Results

PROJECT NAME: BURSA - İNEGÖL - BOZÜYÜK ROAD

	SAMPLE	1					A	LIMITS	RG	SIE	EVE Lysis	SOIL	UNCONFINED COMPRESSION	TRIA COMPR	AXIAL RESSION
BOREHOLE	ID	DEPTH	Wn %	en	γ́n kN/m³	γs	LL	PL %	PI	+4 %	-200 %	CLASS. (USCS)	TEST qu	TE C	ST Ø
		()					76	76					kPa	kPa	degree
İBH72-1	SPT-1	1,50-1,95	25				49	29	20	4	65	ML			
	SPT-2	2,00-2,45	24				40	26	14	15	42	SC			
	SPT-3	2,50-2,95	14				-	NP	-	25	25	SM			
	SPT-4	3,00-3,45	14				-	NP	-	22	22	SM			
	SPT-5	3,50-3,95	15				-	NP	-	19	29	SM			
	SPT-6	4,00-4,45	14				-	NP	-	12	26	SM			
	SPT-*7	4,50-4,95	18				-	NP	-	52	18	GM			
	SPT-8	5,00-5,45	21				-	NP	-	31	26	SM			
	SPT-9	5,50-5,95	14				-	NP	-	45	21	GM			
	SPT-10	6,00-6,45	22				42	25	17	16	37	SC			
	SPT-11	6,50-6,95	23				43	27	16	13	44	SM			
	SPT-12	7,00-7,45	24				46	29	17	16	44	SM			
	SPT-13	7,50-7,95	18				-	NP	-	17	39	SM			
	SPT-14	8,00-8,45	17				-	NP	-	28	33	SM			
	SPT-16	9,00-9,45	15				-	NP	-	27	30	SM			
	SPT-17	9,50-9,95	15				-	NP	-	24	29	SM			
	SPT-18	10,00-10,45	17				-	NP	-	26	31	SM			

YÜKSEL PROJE

SOIL-ROCK MECHANICS LABORATORY

Form of Test Results

PROJECT NAME: BURSA - İNEGÖL - BOZÜYÜK ROAD

	SAMDI P	-					A	TTERBE	RG	SIE	VE		UNCONFINED	TRIA	AXIAL
	37.00 20	-						LIMITS	i	ANA	YSIS	SOIL	COMPRESSION	COMPR	RESSION
BOREHOLE		DEPTH	Wn	en	$\gamma_n$	Y 5	11	PI	PI	+4	-200	CLASS.	TEST	TE	ST
ID	ID	(m)	%		kN/m³		%	%		%	%	(USCS)	qu	с	ø
													kPa	kPa	degree
İBH72-1	SPT-19	10,50-10,95	18				42	23	19	15	35	SC			
	SPT-20	11,00-11,45	12				-	NP	-	21	25	SM			
	SPT-21	12,00-12,45	15				-	NP	-	23	22	SM			
	SPT-22	13,50-13,95	17				45	22	23	5	53	CL			
	SPT-23	15,00-15,45	11				-	NP	-	41	13	SM			
İBH72-2i	SPT-1	1,50-1,95	20				-	NP	-	19	39	SM			
	SPT-2/A	2,00-2,40	5				-	NP	-	64	1	GW			
	SPT-2/B	2,40-2,45	20				-	NP	-	13	24	SM			
	SPT-3	2,50-2,95	9				34	23	11	5	13	SM			
	SPT-4	3,00-3,45	6				-	NP	-	54	17	GM			
	SPT-5	3,50-3,95	13				-	NP	-	61	11	GP-GM			
	SPT-6/A	7,50-7,65	10				-	NP	-	37	22	SM			
	SPT-6/B	7,65-7,95	10				31	19	12	31	20	SC			
	SPT-7	9,00-9,14	11				-	NP	-	41	16	SM			
	SPT-8	12,00-12,08	13				-	NP	-	62	12	GM			

ZEML-Fr-23

SOIL-ROCK MECHANICS LABORATORY

#### Form of Test Results

PROJECT NAME: BURSA - İNEGÖL - BOZÜYÜK ROAD

	SAMPLE						A	TTERBE	RG	SIE	VE	SOIL	UNCONFINED COMPRESSION	TRIA	AXIAL RESSION
		DEBT	Wn	en	$\gamma_n$	Ys		DI	DI	+4	-200	CLASS.	TEST	TI	EST
ID	ID	(m)	%		kN/m ³		%	%	FI	%	%	(USCS)	qu	C	Ø
İBH72.3i	SDT.1	0.50.0.95	17				38	28	10	26	30	SM	KPa	кра	degree
1011/2-01	CDT 2	1,00,1,45	42				50	ND	10	20	7	CD CM			
	SP1-2	1,00-1,45	13				-	NP	-	55	/	GP-GM			
	SPT-3	1,50-1,95	17				42	27	15	17	36	SM			
	SPT-4	2,00-2,45	16				48	31	17	37	31	GM			
	SPT-5	2,50-2,95	18				48	29	19	6	46	SM			
	SPT-6/A	3,00-3,15	24				-	NP	-	13	43	SM			
	SPT-6/B	3,15-3,45	22				34	25	9	10	46	SM			
	SPT-7	3,50-3,95	24				44	28	16	8	54	ML			
	SPT-8	4,00-4,45	23				41	26	15	9	56	ML			
	SPT-9	4,50-4,95	8				43	26	17	14	38	SC			
	SPT-10	5,00-5,45	19				45	26	19	7	44	SC			
	SPT-11	5,50-5,95	27				48	27	21	2	60	CL			
	SPT-12	6,00-6,45	16				41	24	17	10	35	SC			
	SPT-13/A	6,50-6,65	20				-	NP	-	12	37	SM			
	SPT-13/B	6,65-6,95	31				-	NP	-	9	48	SM			
	SPT-14	7,00-7,45	23				47	28	19	7	44	SC			
	SPT-15/A	7,50-7,95	24				-	NP	-	9	45	SM			

# YÜKSEL PROJE

SOIL-ROCK MECHANICS LABORATORY

Form of Test Results

PROJECT NAME: BURSA - İNEGÖL - BOZÜYÜK ROAD

	SAMPI F	=					A	TTERBE	RG	SIE	EVE		UNCONFINED	TRI	AXIAL
	0/1111 21	-						LIMITS	6	ANA	LYSIS	SOIL	COMPRESSION	COMPR	RESSION
BOREHOLE		DEPTH	Wn	en	$\gamma_n$	Ys	ш	PL	PI	+4	-200	CLASS.	TEST	TI	ST
ID	1D	(m)	%		kN/m°		%	%		%	%	(USCS)	qu	C	ø
													kPa	kPa	degree
İBH72-3i	SPT-15/B	7,65-7,95	17				-	NP	-	27	23	SM			
	SPT-16	8,00-8,13	13				-	NP	-	65	6	GW-GM			
	SPT-17	13,50-13,62	22				-	NP	-	5	43	SM			
İBH72-4	SPT-1	1,50-1,95	21				42	26	16	19	32	SM			
	SPT-2	2,00-2,45	21				42	28	14	26	30	SM			
	SPT-3	2,50-2,95	31				52	34	18	13	54	ΜΗ			
	SPT-4	3,00-3,45	31				49	32	17	12	34	SM			
	SPT-5	3,50-3,95	24				-	NP	-	30	22	SM			
	SPT-6	4,00-4,45	28				-	NP	-	30	24	SM			
	SPT-7	4,50-4,95	29				-	NP	-	23	30	SM			
	SPT-8	5,00-5,45	27				-	NP	-	39	18	SM			
	SPT-9	5,50-5,95	25				-	NP	-	37	20	SM			
	SPT-10	6,00-6,45	26				46	30	16	21	33	SM			
	SPT-11	6,50-6,95	31				53	33	20	1	74	MH			
	SPT-12	7,00-7,45	32				51	32	19	3	66	MH			
	SPT-13	7,50-7,95	29				45	31	14	1	57	ML			

ZEML-Fr-23

SOIL-ROCK MECHANICS LABORATORY

#### Form of Test Results

PROJECT NAME: BURSA - İNEGÖL - BOZÜYÜK ROAD

	SAMPLE						A	TTERBE	RG	SIE	VE	SOIL	UNCONFINED	TRIA	AXIAL RESSION
		05071	Wn	en	$\gamma_n$	Ys			DI	+4	-200	CLASS.	TEST	TE	ST
ID ID	ID	(m)	%		kN/m ³		%	PL %	FI	%	%	(USCS)	qu kPa	C kPa	Ø dearee
İBH72-4	SPT-14	8,00-8,45	25				44	29	15	10	45	SM			
	SPT-15	8,50-8,95	30				48	29	19	7	60	ML			
	SPT-16	9,00-9,45	23				41	26	15	16	32	SC			
	SPT-17	9,50-9,95	27				38	26	12	9	58	ML			
	SPT-18	10,00-10,45	14				-	NP	-	40	19	SM			
	SPT-19	10,50-10,95	18				38	24	14	29	34	SC			
	SPT-20/A	11,00-11,25	19				-	NP	-	20	25	SM			
	SPT-20/B	11,25-11,45	15				-	NP	-	21	34	SM			
	SPT-21	11,50-11,95	11				-	NP	-	28	23	SM			
	SPT-22	12,00-12,45	10				-	NP	-	39	18	SM			
	SPT-23	12,50-12,95	10				-	NP	-	37	21	SM			
	SPT-24	13,00-13,45	10				-	NP	-	37	22	SM			
	SPT-25	13,50-13,95	10				-	NP	-	36	20	SM			
	SPT-26	14,00-14,45	13				42	23	19	20	41	SC			
	SPT-27	14,50-14,95	17				39	24	15	6	44	SC			
	SPT-28	15,00-15,45	15				-	NP	-	17	34	SM			
	SPT-29	15,50-15,95	16				-	NP	-	10	42	SM			

# YÜKSEL PROJE

SOIL-ROCK MECHANICS LABORATORY

Form of Test Results

PROJECT NAME: BURSA - İNEGÖL - BOZÜYÜK ROAD

	SAMPLE	E					A	TTERBE	RG	SIE	EVE	5011			AXIAL
			wn	en	γ.	γ.		LIMITS		+4	-200	CLASS.	TEST	TE	EST
BOREHOLE ID	ID	DEPTH (m)	%		kN/m³	<i>``</i>	LL %	PL %	PI	%	%	(USCS)	qu	С	ø
		,					70	10					kPa	kPa	degree
İBH72-4	SPT-30	16,00-16,43	14				-	NP	-	28	22	SM			
	SPT-31	18,00-18,45	10				39	23	16	15	25	SC			
	SPT-32	19,00-19,45	9				-	NP	-	36	19	SM			
	SPT-33	20,00-20,45	13				43	21	22	23	39	SC			
	SPT-34	21,00-21,45	6				-	NP	-	48	13	SM			
	SPT-35	22,00-22,45	10				32	18	14	19	27	SC			
İBH72-5	SPT-1	0,00-0,45	22				40	27	13	9	48	SM			
	SPT-2	0,50-0,95	17				47	28	19	22	38	SC			
	SPT-3	1,00-1,45	17				47	29	18	6	53	CL			
	SPT-4	1,50-1,95	19				41	26	15	8	49	SC			
	SPT-5	2,00-2,45	21				42	26	16	4	60	ML			
	SPT-6	2,50-2,95	21				48	30	18	7	57	ML			
	SPT-7	3,00-3,45	18				40	24	16	45	21	GC			
	SPT-8	3,50-3,95	14				43	28	15	28	21	SM			
	SPT-9	4,00-4,45	23				43	27	16	10	45	SM			
	SPT-10	4,50-4,95	24				43	27	16	3	49	SM			

ZEML-Fr-23

SOIL-ROCK MECHANICS LABORATORY

#### Form of Test Results

PROJECT NAME: BURSA - İNEGÖL - BOZÜYÜK ROAD

	SAMPLE	1					A	TTERBE	RG	SIE	EVE LYSIS	SOIL	UNCONFINED COMPRESSION	TRIA	AXIAL RESSION
DODELIOL E		DEST	₩n	en	$\gamma_n$	Y,		DI	ы	+4	-200	CLASS.	TEST	т	ST
ID	ID	(m)	%		kN/m³		%	PL %	FI	%	%	(USCS)	qu	С	ø
													kPa	kPa	degree
IBH72-5	SPT-11	5,00-5,45	30				51	30	21	7	55	MH			
	SPT-12	5,50-5,95	19				46	29	17	29	28	SM			
	SPT-13	6,00-6,45	22				-	NP	-	11	39	SM			
	SPT-14	6,50-6,94	26				Inade	equate S	ample	5	54	MH			
	SPT-15	7,00-7,45	20				Inade	equate S	ample	6	53	MH			
	SPT-16	7,50-7,95	18				40	27	13	28	19	SM			
	SPT-17	8,00-8,45	23				-	NP	-	11	43	SM			
	SPT-18/A	8,50-8,75	23				-	NP	-	10	45	SM			
	SPT-18/B	8,75-8,95	23				45	29	16	20	38	SM			
	SPT-19	9,00-9,45	17				41	25	16	9	38	SC			
	SPT-20/A	9,50-9,65	19				inade	equate S	ample	3	52	CL			
	SPT-20/B	9,65-9,80	28				44	27	18	4	49	SM/SC			
	SPT-20/C	9,80-9,85	15				-	NP	-	21	36	SM			
	SPT-21/A	10,00-10,30	14				-	NP	-	10	37	SM			
	SPT-21/B	10,30-10,45	27				43	25	18	7	46	SC			
	SPT-22/A	10,50-10,65	9				-	NP	-	31	20	SM			
	SPT-22/B	10,65-10,80	23					NP	-	6	47	SM			

#### YÜKSEL PROJE

SOIL-ROCK MECHANICS LABORATORY

Form of Test Results

PROJECT NAME: BURSA - İNEGÖL - BOZÜYÜK ROAD

	SAMPLE						A	TTERBE	RG	SIE	EVE	5011	UNCONFINED		
			Wn	en	γ.,	γ.		LIMITS		+4	-200	CLASS.	TEST	TE	EST
BOREHOLE	ID	DEPTH (m)	%		kN/m ³	/ 5	LL	PL %	PI	%	%	(USCS)	qu	С	ø
.2		()					76	76					kPa	kPa	degree
İBH72-5	SPT-22/C	10,80-10,95	18				Inade	equate S	iample	8	50	CL			
	SPT-23/A	11,00-11,30	12				-	NP	-	20	22	SM			
	SPT-23/B	11,30-11,45	22				-	NP	-	6	44	SM			
	SPT-24	11,50-11,60	11				-	NP	-	35	21	SM			
	SPT-25	12,30-12,54	14				-	NP	-	12	28	SM			
İBH72-6i	SPT-1	1,50-1,95	18				-	NP	-	16	35	SM			
	SPT-2	2,25-2,70	14				-	NP	-	16	39	SM			
	SPT-3	3,00-3,45	12				-	NP	-	15	28	SM			
	SPT-4/A	3,50-3,75	15				35	20	15	23	36	SC			
	SPT-4/B	3,75-4,10	13				34	19	15	35	24	SC			
	SPT-5	4,50-4,95	12				36	18	18	6	36	SC			
	SPT-6	5,25-5,70	10				31	17	14	14	27	SC			
	SPT-7	6,00-6,45	11				32	18	14	17	23	SC			
	SPT-8	6,70-7,15	13				35	20	15	13	26	SC			
	SPT-9	7,50-7,95	12				31	17	14	12	25	SC			
	SPT-10	8,25-8,70	11				-	NP	-	36	18	SM			

ZEML-Fr-23

SOIL-ROCK MECHANICS LABORATORY

#### Form of Test Results

PROJECT NAME: BURSA - İNEGÖL - BOZÜYÜK ROAD

	SAMPLE	E					A	ITERBE LIMITS	RG	SIE	EVE Lysis	SOIL	UNCONFINED COMPRESSION	TRI/ COMPF	AXIAL RESSION
BOREHOLE ID	ID	DEPTH (m)	Wn %	en	γn kN/m³	Ύs	LL %	PL %	PI	+4 %	-200 %	CLASS. (USCS)	qu kPa	C kPa	Ø degree
İBH72-6i	SPT-11	9,00-9,45	13				-	NP	-	8	32	SM			
	SPT-12	9,70-10,15	14				-	NP	-	16	32	SM			
	SPT-13	10,50-10,62	9				-	NP	-	23	23	SM			
	SPT-14	14,00-14,14	8				-	NP	-	25	21	SM			
	SPT-15	15,00-15,25	15				-	NP	-	7	32	SM			
İBH72-7i	SPT-1	1,50-1,55	7				-	NP	-	78	7	GP-GM			
	SPT-2	2,25-2,39	8				-	NP	-	83	3	GP			
	SPT-3	3,00-3,45	12				-	NP	-	69	10	GP-GM			
	SPT-4	3,75-4,20	14				-	NP	-	55	14	GM			
	SPT-5	6,00-6,45	10				-	NP	-	73	4	GP			
	SPT-6	7,50-7,95	5				-	NP	-	74	3	GP			
	SPT-7	8,25-8,70	13				-	NP	-	62	7	GP-GM			
	SPT-8/A	9,00-9,20	14				-	NP	-	46	20	GM			
	SPT-8/B	9,20-9,45	9				35	23	12	37	18	SC			
	SPT-9	9,80-10,25	15				-	NP	-	16	30	SM			
	SPT-10	10,50-10,95	16				-	NP	-	30	19	SM			

# YÜKSEL PROJE

SOIL-ROCK MECHANICS LABORATORY

Form of Test Results

PROJECT NAME: BURSA - İNEGÖL - BOZÜYÜK ROAD

	SAMPLE	-					A	TTERBE	RG	SI	EVE		UNCONFINED	TRIA	AXIAL
					~	~		LIMITS	<b>i</b>	ANA	LYSIS	SOIL	COMPRESSION	COMPR	RESSION
BOREHOLE	ID	DEPTH	wn %	en	/ n	/ 5	LL	PL	PI	+4	-200	(USCS)	IESI		-51 Ø
ID		(m)	~		KIN/III		%	%		~	70	(0303)	kPa	kPa	degree
İBH72-7i	SPT-11	12,00-12,45	22				-	NP	-	9	42	SM			
	SPT-12	12,70-13,15	11				-	NP	-	58	5	GW			
	SPT-13	13,50-13,95	14				32	21	11	14	26	SC			
	SPT-14	15,00-15,45	14				39	24	15	17	33	SC			
	SPT-15	16,50-16,95	14				33	19	14	11	30	SC			
	SPT-16	18,00-18,37	7				29	16	13	13	21	SC			
	SPT-17	18,70-19,15	10				-	NP	-	55	8	GW-GM			
	SPT-18	19,50-19,95	11				-	NP	-	33	16	SM			
	SPT-19	21,00-21,45	16				40	26	14	24	28	SM/SC			
	SPT-20	22,50-22,95	14				36	22	14	14	29	SC			
	SPT-21	23,00-23,45	14				38	25	13	15	40	SM			
	SPT-22	24,00-24,43	11				32	20	12	18	27	SC			
	SPT-23	25,50-25,60	3				-	NP	-	87	1	GW			
	SPT-24	27,00-27,05	7				-	NP	-	80	1	GW			
İBH72-8i	SPT-1	1,50-1,95	18				44	28	16	8	46	SM			
	SPT-2	2,00-2,45	22				40	24	16	6	53	CL			

ZEML-Fr-23

SOIL-ROCK MECHANICS LABORATORY

#### Form of Test Results

PROJECT NAME: BURSA - İNEGÖL - BOZÜYÜK ROAD

	SAMPLE	1					A	LIMITS	RG	SIE	EVE YSIS	SOIL	UNCONFINED COMPRESSION	TRIA	AXIAL RESSION
		DEDTH	٧٧n	en	$\gamma_n$	γ,		DI	DI	+4	-200	CLASS.	TEST	т	ST
ID	ID	(m)	%		kN/m³		%	%		%	%	(USCS)	qu kPa	C kPa	Ø degree
İBH72-8i	SPT-3	2,50-2,95	12				42	27	16	37	24	SM			
	SPT-4	3,00-3,45	16				44	28	16	9	58	ML			
	SPT-5	3,50-3,95	19				47	27	15	2	66	CL			
	SPT-6	4,00-4,45	18				45	27	16	8	62	CL/ML			
	SPT-7	4,50-4,95	16				44	28	20	12	53	ML			
	SPT-8	5,00-5,45	12				35	23	18	59	11	GP-GM			
	SPT-9	5,50-5,95	14				-	NP	12	65	10	GP-GM			
	SPT-10	6,00-6,45	10				-	NP	-	72	7	GP-GM			
	SPT-11	6,50-6,95	14				-	NP	-	66	8	GP-GM			
	SPT-12	7,00-7,45	13				-	NP	-	67	7	GP-GM			
	SPT-13	7,50-7,95	18				-	NP	-	50	10	GP-GM			
	SPT-14	8,00-8,45	18				-	NP	-	45	11	GP-GM			
	SPT-15/A	8,50-8,75	12				-	NP	-	72	4	GW			
	SPT-15/B	8,75-9,00	16				-	NP	-	28	19	SM			
	SPT-16	9,00-9,45	12				-	NP	-	45	15	GM			
	SPT-17	30,00-30,45	20				-	NP	-	9	44	SM			
	SPT-18	31,00-31,10	10				-	NP	-	12	19	SM			

# YÜKSEL PROJE

SOIL-ROCK MECHANICS LABORATORY

Form of Test Results

PROJECT NAME: BURSA - İNEGÖL - BOZÜYÜK ROAD

	SAMPLE	E					A	LIMITS	RG	SIE	eve Lysis	SOIL	UNCONFINED COMPRESSION	TRI/ COMPF	AXIAL RESSION
		DEDTH	Wn	en	$\gamma_n$	Ys.		DI	DI	+4	-200	CLASS.	TEST	TI	EST
ID	ID	(m)	%		kN/m³		%	%	F1	%	%	(USCS)	qu	С	ø
													kPa	kPa	degree
İBH72-9i	SPT-1	0,00-0,45	17				43	26	17	6	48	SC			
	SPT-2	0,50-0,95	20				43	26	17	6	46	SC			
	SPT-3	1,00-1,45	20				42	26	16	8	49	SM			
	SPT-4	1,50-1,95	18				43	25	18	11	40	SC			
	SPT-5	2,00-2,45	16				39	25	14	10	42	SC			
	SPT-6	2,50-2,95	18				36	22	14	6	47	SC			
	SPT-7	3,00-3,45	17				38	24	14	9	45	SC			
	SPT-8	3,50-3,95	16				Inade	equate S	ample	9	58	CL			
	SPT-9	4,00-4,45	17				42	25	17	21	29	SC			
	SPT-10	4,50-4,95	23				43	26	17	6	52	CL			
	SPT-11	5,00-5,45	27				46	29	17	2	77	ML			
	SPT-12	5,50-5,95	27				44	28	16	2	74	ML			
	SPT-13	6,00-6,45	22				40	25	15	11	35	SC			
	SPT-14	6,50-6,95	23				40	27	13	8	43	SM			
	SPT-15	7,00-7,45	32				42	28	14	5	61	ML			
	SPT-16	7,50-7,95	24				45	26	19	2	61	CL			
	SPT-17	8,00-8,45	23				-	NP	-	28	29	SM			

ZEML-Fr-23

SOIL-ROCK MECHANICS LABORATORY

#### Form of Test Results

PROJECT NAME: BURSA - İNEGÖL - BOZÜYÜK ROAD

	SAMPLE	E					A	tterbe Limits	RG	SIE	EVE Lysis	SOIL	UNCONFINED COMPRESSION	TRI/ COMPF	AXIAL RESSION
BOREHOLE ID	ID	DEPTH (m)	Wn %	en	γn kN/m³	γ,	LL %	PL %	PI	+4 %	-200 %	CLASS. (USCS)	TEST qu	C kDo	ST Ø
İBH72-9i	SPT-18	8,50-8,95	21				43	26	17	7	55	CL	NF G	Kra	uegree
	SPT-19	9,00-9,45	26				43	26	17	6	56	CL			
	SPT-20	9,50-9,95	19				-	NP	-	12	43	SM			
	SPT-21/A	10,00-10,25	12				-	NP	-	27	27	SM			
	SPT-21/B	10,25-10,45	21				-	NP	-	14	49	SM			
	SPT-22	10,50-10,95	16				32	25	7	20	27	SM			
	SPT-23	11,00-11,45	13				33	24	9	29	19	SC			
	SPT-24	11,50-11,95	11				-	NP	-	49	15	GM			
	SPT-25	12,00-12,45	22				46	25	21	10	58	CL			
	SPT-26	12,50-12,95	24				44	26	18	11	48	SC			
	SPT-27	13,00-13,45	22				47	22	25	12	42	SC			
	SPT-28	13,50-13,95	18				45	26	19	12	39	SC			
	SPT-29	14,00-14,45	15				33	23	10	34	25	GC			
	SPT-30	14,50-14,95	21				37	23	14	4	54	CL			
	SPT-31	15,00-15,45	21				41	25	16	3	54	CL			
	SPT-32	15,50-15,95	17				41	24	17	6	53	CL			
	SPT-33	16,00-16,45	20				43	25	18	8	49	SC			

#### YÜKSEL PROJE

SOIL-ROCK MECHANICS LABORATORY

Form of Test Results

PROJECT NAME: BURSA - İNEGÖL - BOZÜYÜK ROAD

	SAMPLE						A	TTERBE	RG	SIE	EVE		UNCONFINED	TRI	AXIAL
			14/0	on	v	ν	<u> </u>	LIMITS	,	ANA +1	200	CLASS	COMPRESSION	COMPR	ESSION
BOREHOLE ID	ID	DEPTH (m)	%	GI	/n kN/m³	/ 5	LL %	PL %	PI	%	%	(USCS)	qu kPa	C kPa	Ø degree
İBH72-9i	SPT-34	16,50-16,95	17				46	25	21	6	48	SC			
	SPT-35	17,00-17,45	17				45	22	23	12	43	SC			
	SPT-36	17,50-17,95	15				41	28	13	13	39	SM			
	SPT-37	18,00-18,45	12				-	NP	-	27	32	SM			
	SPT-38	18,50-18,95	12				40	22	18	11	33	SC			
	SPT-39/A	19,00-19,15	13				-	NP	-	11	38	SM			
	SPT-39/B	19,15-19,28	12				-	NP	-	11	43	SM			
	SPT-40	20,50-20,93	8				-	NP	-	52	11	GP-GM			
	SPT-41	22,50-22,95	14				48	25	23	7	56	CL			
	SPT-42	24,00-24,29	9				-	NP	-	35	29	SM			
	SPT-43	26,90-27,00	11				-	NP	-	19	30	SM			
İBH72-10i	SPT-1	1,50-1,95	18				40	25	15	6	50	CL			
	SPT-2	2,00-2,45	16				47	28	19	22	42	SM			
	SPT-3/A	2,50-2,85	21				Inade	equate S	ample	6	51	CL			
	SPT-3/B	2,85-2,95	20				Inadequate Sample			13	53	CL			
	SPT-4	3,00-3,45	19				42	26	16	10	46	SM			

ZEML-Fr-23

SOIL-ROCK MECHANICS LABORATORY

Form of Test Results

PROJECT NAME: BURSA - İNEGÖL - BOZÜYÜK ROAD

	SAMPLE	E					A	LIMITS	RG	SIE	EVE Lysis	SOIL	UNCONFINED COMPRESSION	TRIA COMPR	AXIAL RESSION
BOREHOLE ID	ID	DEPTH (m)	Wn %	en	γn kN/m³	γs	LL %	PL %	PI	+4 %	-200 %	CLASS. (USCS)	TEST qu kPa	C kPa	ST Ø degree
İBH72-10i	SPT-5	3,50-3,95	20				43	27	16	11	40	SM			
	SPT-6	4,00-4,45	16				43	26	17	21	28	SM			
	SPT-7	4,50-4,95	17				-	NP	-	25	27	SM			
	SPT-8	5,00-5,34	16				-	NP	-	19	38	SM			
	SPT-9	5,50-5,61	13				-	NP	-	10	42	SM			
	SPT-10	6,00-6,25	11				Inade	equate S	ample	8	51	CL			
	SPT-11	9,00-9,07	8				-	NP	-	69	8	GP-GM			
	SPT-12	11,00-11,21	8				-	NP	-	38	19	SM			
	SPT-13	17,40-17,85	12				-	NP	-	8	29	SM			
	SPT-14	21,00-21,13	10				-	NP	-	30	15	SM			
İBH72-11	SPT-1	1,50-1,95	24				-	NP	-	12	40	SM			
	SPT-2	2,50-2,70	25				41	26	15	4	51	CL/ML			
	SPT-3	3,00-3,45	26				46	31	15	3	53	ML			
	SPT-4	3,70-4,15	21				-	NP	-	30	26	SM			
	SPT-5	4,50-4,95	16				-	NP	-	21	25	SM			
	SPT-6	5,25-5,70	13				-	NP	-	50	16	GM			

YÜKSEL PROJE

SOIL-ROCK MECHANICS LABORATORY

Form of Test Results

PROJECT NAME: BURSA - İNEGÖL - BOZÜYÜK ROAD

	SAMPLE	E					A	TTERBE LIMITS	RG	SIE	EVE Lysis	SOIL	UNCONFINED COMPRESSION	TRIA COMPF	AXIAL RESSION
BOREHOLE ID	ID	DEPTH (m)	wn %	en	γn kN/m³	γ,	LL %	PL %	PI	+4 %	-200 %	CLASS. (USCS)	qu kPa	C kPa	ST Ø degree
İBH72-11	SPT-7	6,00-6,45	19				43	26	17	28	29	SC			
	SPT-8	6,70-7,15	33				43	28	15	3	72	ML			
	SPT-9	7,50-7,95	25				42	30	12	8	38	SM			
	SPT-10	8,25-8,70	23				37	22	15	15	33	SC			
	SPT-11	9,00-9,45	22				36	25	11	7	35	SM			
	SPT-12	9,70-10,15	24				47	29	18	17	43	SM			
	SPT-13/A	10,50-10,95	22				-	NP	-	23	27	SM			
	SPT-13/B	10,50-10,95	21				-	NP	-	10	44	SM			
	SPT-14	11,25-11,70	16				39	24	15	24	33	SC			
	SPT-15	12,00-12,27	30				-	NP	-	11	37	SM			
	SPT-16	13,50-13,90	12				-	NP	-	24	28	SM			
	SPT-17	15,00-15,25	8				-	NP	-	52	6	GP-GM			
İBH72-12	SPT-1	0,50-0,95	11				-	NP	-	57	16	GM			
	SPT-2	1,00-1,45	8				-	NP	-	61	14	GM			
	SPT-3	1,50-1,95	17				-	NP	-	48	17	GM			
	SPT-4/A	2,00-2,30	14				-	NP	-	34	27	SM			

ZEML-Fr-23

SOIL-ROCK MECHANICS LABORATORY

Form of Test Results

PROJECT NAME: BURSA - İNEGÖL - BOZÜYÜK ROAD

	SAMPLE	E					A	TTERBE LIMITS	RG	SIE	EVE Lysis	SOIL	UNCONFINED COMPRESSION	TRI/	AXIAL RESSION
BOREHOLE ID	ID	DEPTH (m)	Wn %	en	γ́" kN/m³	γ,	LL %	PL %	PI	+4 %	-200 %	CLASS. (USCS)	TEST qu kPa	C kPa	ST Ø degree
İBH72-12	SPT-4/B	2,30-2,45	7				-	NP	-	41	15	SM			
	SPT-5	2,50-2,95	11				-	NP	-	56	15	GM			
	SPT-6	3,00-3,45	17				35	26	9	38	24	GM			
	SPT-7	3,50-3,95	14				37	26	11	52	20	GM			
	SPT-8	4,00-4,45	16				36	25	11	29	28	SM			
	SPT-9	4,50-4,95	19				45	31	14	23	51	ML			
	SPT-10	5,00-5,45	17				41	28	13	25	43	SM			
	SPT-11	5,50-5,95	24				-	NP	-	28	18	SM			
	SPT-12	6,00-6,10	6				-	NP	-	86	2	GP			
	SPT-13/A	12,00-12,20	10				-	NP	-	51	18	GM			
	SPT-13/B	12,20-12,45	10				-	NP	-	47	18	GM			
	SPT-14	13,50-13,95	11				-	NP	-	4	45	SM			
İBH72-13	SPT-1	1,50-1,95	6				-	NP	-	76	6	GP-GM			
	SPT-2	2,50-3,00	7				-	NP	-	83	6	GP-GM			
	SPT-3	3,00-3,45	5				-	NP	-	85	3	GP			
	SPT-4	4,00-4,10	8				-	NP	-	39	7	SP-SM			

### YÜKSEL PROJE

SOIL-ROCK MECHANICS LABORATORY

Form of Test Results

PROJECT NAME: BURSA - İNEGÖL - BOZÜYÜK ROAD

	SAMDI P	-					A	TTERBE	RG	SIE	VE		UNCONFINED	TRIA	XIAL
	3AMF LL	-						LIMITS	i	ANA	YSIS	SOIL	COMPRESSION	COMPR	RESSION
BOREHOLE		DEPTH	Wn	en	$\gamma_n$	Ys	ш	PL	PI	+4	-200	CLASS.	TEST	TE	ST
ID	ID	(m)	%		kN/m³		%	%		%	%	(USCS)	qu	C	ø
inura co	007.0		~										кра	кга	degree
IBH/2-13	SP1-5	9,00-9,20	9				-	NP	-	60	8	GP-GM			
	SPT-6	10,70-11,15	8				-	NP	-	63	9	GP-GM			
	SPT-7	12,00-12,45	15				-	NP	-	37	18	SM			
	SPT-8/A	13,50-13,75	16				-	NP	-	27	28	SM			
	SPT-8/B	13,75-13,95	24				Inade	equate S	ample	28	80	ML			
	SPT-9	14,70-14,90	22				-	NP	-	21	32	SM			
	SPT-10	16,50-16,95	16				41	23	18	32	20	SC			
	SPT-11	21,00-21,05	5				-	NP	-	57	7	GW-GM			
	SPT-12	22,50-22,73	9				-	NP	-	49	7	GW-GM			

ZEML-Fr-23

# APPENDIX E

# PRESSUREMETER TEST RESULTS





























YÜ	KSE		BUR\$A-İNEGÖL-BOZÜYÜK ROAD (SECTION II) 72+000 LAND\$LIDE	
Birlik Mahaliesi 9. Cadde No:41 06410 CANKARA			SONDAJ NO / BOREHOLE NO	IBH72-1
TEL: (312) 495 70 00 FAX: (312) 495 70 24			YASS / GWL	2.05 m
	ZEMİN PROFILİ SOIL PROFILE	STANDART PENETRASYON DENEYI STANDART PENETRATION	PRESIYOMETRE DENEYI PRESSUREMETER TEST	
ZEMİN TANIMI SOIL		TEST N / 30 cm	DEFORMASYON MODÜLÜ MODULUS OF DEFORMATION (kg/cm ² )	NET LIMIT BASINÇ NET LIMIT PRESSURE (kg/cm²)
DESCR.		0 10 30 50 50	1000	1 10 100
CLAYEY SILTY GRAVELLY SAND/SNDY GRAVEL	01-101-11-101-101-101-101-101-101-111-101-101-101-1 -1-1-1-1	0 1 2 2 3 3 3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3		
9.00 m. — DLAYEY SILTY GRAVELLY SAND 10.85 m. —	101-101-101-101-101-101-101-101-101-101	3 18 22 3 28 32 10 22 28 32		
BRAPHITE SCHIST	* * * * * * * * *	11 12 40 13 33	<b>4</b> 7	5.86
14.50 m SCHIST	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	14		
Kuyu Sonu End of Borehole : 16,46 m.		16		

YÜ	<se< th=""><th></th><th colspan="2">BURSA-İNEGÖL-BOZÜYÜK ROAD (SECTION II) 72+000 LANDSLIDE</th></se<>		BURSA-İNEGÖL-BOZÜYÜK ROAD (SECTION II) 72+000 LANDSLIDE	
YUKOBL PROJE ULUGLARARADI A.Ş. Birlik Mahaliesi 9. Cadde No:41 064:0 Canika Ya.anika Pa			SONDAJ NO / BOREHOLE NO	IBH72-2İ
DESTO GANKATA-ANKARA TEL: (312) 495 70 00 FAX: (312) 495 70 24			YASS / GWL	1.70 m
ZEMİN TANIMI SOIL	ZEMİN PROFILİ SOIL PROFILE	STANDART PENETRASYON DENEYI STANDART PENETRATION	PRESIYOMETRE DENEYI PRESSUREMETER TEST	
		TEST N / 30 cm	DEFORMASYON MODÜLÜ MODULUS OF DEFORMATION (kg/cm ² )	NET LİMİT BASINÇ NET LİMİT PRESSURE (kg/cm²)
DESCR.		50 40 20 10 20 10	1000	+ <del>6</del> <del>6</del>
CLAYEV, SANDY GRAVEL / GRAVELLY SAND 2.40 m GRAVELLY SILTY SAND 3.50 m SANDY GRAVEL 4.50 m SCHIST 10.30 m SCHIST 11.50 m SCHIST 12.50 m SCHIST 12.50 m SCHIST 14.40 m SCHIST 14.40 m SCHIST	2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2	0 0 0 0   1 7 0   2 13   3 38   4 5   6 7   7 82   8 9   9 8   9 8   9 8   9 8   10 11   11 12   13 14   15 16   17		
		17		
YÜKSEL PROJE VÖKBEL PROJE ULUBLARARADI A.Ş. BIRIK Mahaliesi 9. Gadde Nosti DEGI 0. GANKAYAANKARA			BURSA-İNEGÖL-BOZÜYÜK ROAD (SECTION II) 72+000 LANDSLIDE	
-----------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------------------------------	------------------------------------------------------------------------------------	-----------------------------------------------------------------------	----------------------------------------------------
			SONDAJ NO / BOREHOLE NO	IBH72-3İ
TEL: (312) 495 70 00 FAX: (312) 495 70 24 www.yukselproje.com.tr		YASS / GWL	7.40 m	
	PROFILI ROFILE	STANDART PENETRASYON DENEYI STANDART PENETRATION	PRESIYOMETRE DENEYI PRESSUREMETER TEST	
ZEMİN TANIMI SOIL	ZEMÌN P SOIL PG	TEST N / 30 cm	DEFORMASYON MODÜLÜ MODULUS OF DEFORMATION (kg/cm ² )	NET LİMİT BASINÇ NET LİMİT PRESSURE (kg/cm²)
DESCR.		0 30 50 50	1000	t 5 6
SILTY SAND 1.00 m	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 1   1 20   1 20   2 16   3 16   4 16   5 12   12 14   6 18   9 46   9 10   11 12		6 67 0
SCHIST Kuyu Somu	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	13 Re   14 Re   15 Re   16 Re   17 Re   18 Re   19 Re   20 Re	4552	41.52
End of Borehole : 21,00 m.		22		

YÜKSEL PROJE VÕKGEL PROJE ULUGLARARAGI A.Ş. Birlik Mahailesi 9. Gadde No:41 DEG10 ÇANKAYAANKARA TEL: (312) 495 70 00 FAX: (312) 495 70 24 www.wiketender.com			BURSA-İNEGÖL-BOZÜYÜK ROAD (SECTION II) 72+000 LANDSLIDE	
			SONDAJ NO / BOREHOLE NO	IBH72-6İ
			YASS / GWL	2.15 m
ROFILİ		STANDART PENETRASYON DENEYI STANDART PENETRATION	PRESİYOMETRE DENEYİ PRESSUREMETER TEST	
ZEMIN TANIMI SOIL	TEST N / 30 cm	DEFORMASYON MODÜLÜ MODULUS OF DEFORMATION (kg/cm ² )	NET LİMİT BASINÇ NET LİMİT PRESSURE (kg/cm²)	
DESCR.		8 7 8 8 9 0	10000	+ 6 6
CLAYEY GRAVELLY SAND	101 - 1 - 1 - 10 1 - 1 - 0 - 1 - 10	0 1 1 2 2 2 2 2		
3.50 m GRAVELLY CLAYEY SILTY SAND 4.50 m	10.10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 38 4 34 5 79		
BRAPHITE SCHIST	**************************************	6 30 40 7 38 8		
10.40 m. —	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	9	223	17.28
вснівт	* * * * * * * * * *	12 13 14		
Kuyu Sonu End of Borehole : 16,26 m.	~ ~	15 R		
		17		

		BURSA-İNEGÖL-BOZÜYÜK ROAD (SECTION II) 72+000 LANDSLIDE		
YÜKBEL PROJE ULUBLARARADI A.Ş. Birlik Mahalesi 9. Cadde No:41 064-0 Cankwa.ankka.p.4			SONDAJ NO / BOREHOLE NO	IBH72-7İ
DESID GANKATAANKARA TEL: (312) 495 70 00 FAX: (312) 495 70 24 www.vukseinole.com/r			YASS / GWL	8.50 m
	PROFIL] ROFILE	STANDART PENETRASYON DENEYI STANDART PENETRATION	PRESIYOMETRE DENEYI PRESSUREMETER TEST	
ZEMIN TANIMI SOIL	ZEMİN F SOIL PF	TEST N / 30 cm	DEFORMASYON MODÜLÜ MODULUS OF DEFORMATION (kg/cm ² )	NET LİMİT BASINÇ NET LİMİT PRESSURE (kg/cm²)
DESCR.		0 10 30 50	10 10 10 10 10 10 10	- 5 §
SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST SCHIST Kuyu Sonu End of Borehole : 27,06 m.	<b>*</b> * <b>*</b> * <b>*</b> * <b>*</b> * <b>*</b> * <b>*</b> * <b>*</b> * * * *	0   R   R   R     1   R   R   R     2   22   25   R     3   22   25   S     4   S   S   S     5   34   S   S     6   34   S   S     7   S   S2   S     9   S2   S   S     10   S2   S   S     11   21   S   S     12   20   S   S     13   20   S   S     14   20   S   S     15   26   R   S     20   S   S   S     21   20   S   S     22   S   R   R     23   R   R   R     24   R   R   R     27   R   R   S     30   S   S   S		
		30		

YÜKSEL PROJE			BURSA-İNEGÖL-BOZÜYÜK ROAD (SECTION II) 72+000 LANDSLIDE	
			SONDAJ NO / BOREHOLE NO	IBH72-12
TEL: (312) 495 70 00 www.vukseloole.com		FAX: (312) 495 70 24	YASS / GWL	8.75 m
ROFIL) Active		STANDART PENETRASYON DENEYI STANDART PENETRATION	PRESIYOMETRE DENEYI PRESSUREMETER TEST	
ZEMİN TANIMI SOIL	ZEMÌN P SOIL PR	TEST N / 30 cm	DEFORMASYON MODÜLÜ MODULUS OF DEFORMATION (kg/cm²)	NET LİMİT BASINÇ NET LİMİT PRESSURE (kg/cm ² )
DESCR.		0 10 20 20	10000	- <del>2</del> 90
аснівт 5.10 m. — аснівт 11.50 m. — акарніте аснівт 13.50 m. — аснівт Киуц Вопц	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		Q   Q   Q     Image: Constraint of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se	
Kuyu Sonu End of Borehole : 15,00 m.		16		
		17		

**APPENDIX F** 

INCLINOMETER RESULTS







## YÜKSEL PROJE

#### İNEGÖL - BOZÜYÜK YOLU (2.KISIM) KM: 72+000-72+200 HEYELANI



## YÜKSEL PROJE

#### İNEGÖL - BOZÜYÜK YOLU (2.KISIM) KM: 72+000-72+200 HEYELANI















# YÜKSEL PROJE

İNEGÖL - BOZÜYÜK YOLU (2.KISIM) KM: 72+000-72+200 HEYELANI





KM: 72+000-72+200 HEYELANI



KM: 72+000-72+200 HEYELANI