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ABSTRACT 

 

TWO-SIDED ASSEMBLY LINE BALANCING 

MODELS AND HEURISTICS 

 

Arıkan, Uğur 

M.S., Department of Industrial Engineering 

Supervisor: Prof. Dr. Ömer Kırca 

 

September 2009, 156 pages 

 

This study is focused on two-sided assembly line balancing problems of type-I and type-II. This 

problem is encountered in production environments where a two-sided assembly line is used to 

produce physically large products. For type-I problems, there is a specified production target for 

a fixed time interval and the objective is to reach this production capacity with the minimum 

assembly line length used. On the other hand, type-II problem focuses on reaching the maximum 

production level using a fixed assembly line and workforce. Two different mathematical models 

for each problem type are developed to optimally solve the problems. Since the quality of the 

solutions by mathematical models decreases for large-sized problems due to time and memory 

limitations, two heuristic approaches are presented for solving large-sized type-I problem. The 

validity of all formulations is verified with the small-sized literature problems and the 

performances of the methods introduced are tested with large-sized literature problems. 

Keywords: Assembly Line Balancing, Two-Sided  



 

 

v 

ÖZ 

 

ÇĠFT TARAFLI MONTAJ HATTI DENGELEME 

MODELLERĠ VE SEZGĠSEL YÖNTEMLERĠ 

 

Arıkan, Uğur 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Ömer Kırca 

 

Eylül 2009, 156 sayfa 

 

Bu çalışmada tip-1 ve tip-II çift taraflı montaj bandı dengeleme problemleri üzerinde duruldu. 

Bu probleme fiziksel olarak büyük ürünlerin üretimi için çift taraflı montaj bandının kullanıldığı 

üretim ortamlarında rastlanır.Tip-I problemler için sabit bir zaman aralığı için belrlenen bir 

üretim hedefi bulunur ve amaç en kısa montaj bandı uzunluğu ile bu üretim kapasitesine 

ulaşmaktır. Diğer taraftan, tip-II problemleri sabit montaj bandı uzunluğu ve iş gücü ile en 

yüksek üretim seviyesine ulaşmaya odaklanır. Problemleri optimum bir şekilde çözebilmek için 

her tip problem için ikişer matematiksel model geliştirildi. Zaman ve hafıza sınırlamalarına bağlı 

olarak, büyük problemlere matematiksel modellerce bulunan sonuçların kalitesinin düşmesi 

nedeniyle büyük tip-I problemleri çözmek için iki sezgisel yöntem geliştirildi. Bütün 

formulasyonlarin geçerliliği küçük literatur problemleriyle doğrulandı ve sunulan metodların 

performansları büyük literatur problemleriyle test edildi. 

Anahtar Kelimeler: Montaj Hattı Dengeleme, Çift Taraflı  
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CHAPTER 1 
 

 

INTRODUCTION 

 

 

 

Assembly lines are flow-oriented production systems where the units of production performing 

the operations are aligned in a serial manner, referred to as stations. Workers and/or robots 

perform certain operations on the product at the stations in order to exploit a high specialization 

of labour and the associated learning effects (Shtub and Dar-El, 1989). The smallest individual 

and indivisible operations are called tasks. The necessary time for a task to be performed is 

called the task time or the processing time. Every product follows the stations along the 

assembly line until the raw materials turn into a final product. The operations assigned to 

stations are carried out on the product at each station within a specified time. This time, which is 

equal to the maximum of sums of processing times of the tasks in all stations, is called the cycle 

time. Production rate of the assembly line, which is the amount of final goods produced in a 

period of time, is directly determined by the cycle time. Assembly line balancing (ALB) problem 

is an assignment problem aiming to assign the tasks to the stations in order to minimize the cycle 

time, i.e. maximize the production rate, or minimize the line length, i.e. the workforce required. 

Due to the technological and/or organizational requirements, tasks cannot be carried out in an 

arbitrary sequence, but they are subject to precedence constraints. The general input parameters 

of any ALB problem, precedence constraints and task times, can be summarized on a precedence 

graph. Figure 1.1 shows an example precedence graph. 

Each node in the precedence graph is a task. The task times are displayed over each node. The 

arcs between the nodes state the precedence constraints. For instance, task 2 in Figure 1.1 has a 

processing time of two units and cannot be processed before task 1 is carried out.
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Assembly line balancing problem is a well-studied problem in the literature. Among the types of 

ALB problems, this study focuses on two-sided assembly line balancing (2SALB) problem. 

In chapter 2, literature review is presented in three parts. In the first part, types of assembly line 

balancing problems in the literature are reviewed. Second part includes the fundamental studies 

on general ALB problems. Final part of the chapter focuses on the studies on 2SALB. 

 

 

 

 

 

Figure 1.1 Precedence Graph 

 

 

 

In chapter 3, mathematical models developed to solve 2SALB problems optimally are 

introduced. Mathematical models are developed to solve the problem for two different 

objectives: minimize the line length and minimize the cycle time. 

 2SALB, Type-I (minimize line length), with binary station variables 

 2SALB, Type-I (minimize line length), with integer station variables 

 2SALB, Type-II (minimize cycle time), with binary station variables 
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 2SALB, Type-II (minimize cycle time), with integer station variables 

Performances of the proposed mathematical models are tested with large-sized problems which 

are studied in the literature. Solutions found by models with binary station variables are 

compared with the solutions found by models with integer station variables in order to observe 

which performs better for 2SALB problems. 

In chapter 4, two heuristic approaches are proposed for 2SALB problems with the objective of 

minimizing the line length: 

 First heuristic approach tries to solve the entire 2SALB problem by dividing the problem 

into sub-problems and solving the sub-problems with a modified version of the proposed 

mathematical model. 

 Second heuristic approach tries to find good balances by assigning tasks one by one 

using various selection and assignment rules. 

Performances of the proposed heuristic approaches are again tested with large-sized problems 

that are studied in the literature. 

In chapter 5, the work undertaken, results of the experiments and the possible future research 

directions are summarized. 
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CHAPTER 2 
 

 

LITERATURE REVIEW 

 

 

 

2.1  Classification of Assembly Line Balancing Problems 

Many types of ALB problems are derived and studied in the literature. Among the ALB 

problems, the most well-known and well-studied is certainly the simple assembly line balancing 

(SALB) problem (Boysen, Fliedner, and Scholl, 2007). It uses many assumptions to simplify the 

problem without ignoring its main aspects; hence, it is regarded as the core problem of ALB. 

Set of assumptions used for SALB problems are listed below (Baybars, 1986; Scholl and 

Becker, 2006): 

1. Mass-production of one homogeneous product is carried out. 

2. All tasks are processed in a predetermined mode, i.e. no alternatives for the processes 

exist. 

3. The assembly line is a paced line with a fixed cycle time for all stations. 

4. The assembly line is a serial line.  

5. The processing sequence of the tasks should not violate the precedence relations. 

6. The task times are deterministic. 

7. There are no restrictions for the assignment of tasks except for precedence constraints. 

8. A task is indivisible. Hence, it needs to be completed in a single station. 

9. All stations are identical with respect to workforce, technology, etc. 

A feasible line balance for a SALB problem is an assignment that does not violate the 

precedence relations (Boysen, Fliednerand and Scholl, 2007). SALB further assumes that the 

cycle times of all stations are equal to each other. Assembly lines satisfying this assumption are 
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called paced. However, it is possible, inevitable in most cases, that some stations will have a 

sum of processing times smaller than the cycle time of the assembly line. The unproductive 

period of time at a station is called idle time. A good assembly line balance should have as few 

idle time as possible. 

According to the objective function considered, SALB problems are further categorized in four 

types (Scholl and Becker, 2006): 

 SALBP-I (Type-I): Minimizing the length of the assembly line for a given cycle time. 

This objective is equivalent to minimizing the idle times of opened stations. 

 SALBP-II (Type-II): Minimizing the cycle time for a given number of stations opened. 

 SALBP-E: Maximizing the line efficiency, E. This objective both considers number of 

stations and cycle time as a variable (Bautista and Pereira, 2006). The line efficiency is 

the productive fraction of the line‟s total operating time: 

E = tsum / (N CT), where tsum is the sum of processing times of all tasks, N is the number 

of stations and CT is the cycle time. 

 SALBP-F: This is the feasibility problem which is to establish whether or not a feasible 

line balance exists for a given cycle time and line length. 

In the literature, the assumptions of SALB problem are relaxed and various model extensions are 

considered. Also, variations with respect to the objective are studied. A detailed classification of 

ALB problems was presented by the work of Boysen, Fliedner and Scholl (2007). The most 

common variations are explained below: 

Mixed-Model Line: Different models of a product are produced in an arbitrarily intermixed 

sequence (Scholl, 1999). The task time may differ between models. Producing each model of the 

product requires the completion of its own set of tasks. In other words, each model has its own 

precedence graph. 

Multi-Model Line: Multi-model line produces a sequence of batches of one model with 

intermediate setup operations. Hence, the ALB problem is not only a sequencing problem but 

also a lot sizing problem (Burns and Daganzo, 1987; Dobson and Yano, 1994). 

U-Shaped Line: Instead of a straight line, the stations are arranged along a narrow “U”, where 

both legs are closely together. This configuration allows crossover stations. Work pieces may 
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revisit the same station at a later stage in the production process. This can result in better 

balances for cases with large number of tasks and stations (Miltenburg and Wijngaard, 1994; 

Scholl and Klein, 1999). 

Parallel Stations: In cases when the processing times of some tasks are greater than the aimed 

cycle time, parallelism should be considered. Parallelism is the duplication of a station task 

group. The tasks are performed on different stations on different products simultaneously. In 

these problems, number of parallel stations is another decision variable to be considered. 

Two-Sided Line (2SALB): These lines are necessary when assembling physically large products, 

such as buses and trucks. In these lines, both left and right sides of the assembly line may be 

used. At a time different tasks may be carried out at the sides of the stations. A two-sided 

assembly line is illustrated in Figure 1.2. A mated-station consists of right and left stations 

directly facing each other. The nature of the physically large products imposes side restrictions 

on the tasks. In other words, some tasks may only be performed on the left of the assembly line 

(L-tasks) and some tasks may only be performed on the right (R-tasks), while some tasks, 

without side restrictions, may be assigned to either side of the line (E-tasks). Both sides of the 

mated-stations are identical to each other and they are subject to the same cycle time. 

 

 

 

 

 

Figure 2.1 Two-Sided Assembly Line 
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2.2  Literature on General Assembly Line Balancing 

ALB problem is first described by Bryton (1954) in his master‟s thesis work at Northwestern 

University. Salveson (1955) formulated the SALB problem as a linear programming problem 

incorporating all possible combinations of task assignments to stations. However, this approach 

can often lead to infeasible line balances since it allows task divisibility. Bowman (1960) 

formulated the SALB problem as an integer programming problem depicting task assignments to 

stations with 0-1 variables. This approach provided feasible assembly balances with indivisible 

tasks. Later, integer programming problem was modified by White (1961). 

Integer programming (IP) formulations of SALB problem were contributed by Klein (1963); 

Thangavelu and Shetty (1971); Patterson and Albracht (1975); and Talbot and Patterson (1984), 

who formulated the problem as a general integer program without binary variables.  General 

integer program formulation by Patterson and Albracht (1975) significantly reduced the size of 

the problem. Also Patterson and Albracht (1975) introduced earliest and latest station concepts. 

The authors presenting IP formulations (Thanganelu and Shetty 1971, Patterson and Albracht 

1975, and Talbot and Patterson 1984) proposed optimal solutions using branch and bound 

techniques based on IP codes. On the other hand, Klein (1963) and Gutjahr and Nemhauser 

(1964) used shortest path techniques to solve the problem.  

Helgeson and Birnie (1961) introduced Ranked Positional Weight Heuristic for solving SALB 

problem. Hoffman (1963) proposed a heuristic algorithm based on a precedence matrix. The 

heuristic generates feasible task combinations for the station under consideration using the 

matrix and selects the combination with minimum idle time. 

Dynamic programming (DP) formulations were introduced by Jackson (1956), Held et al. (1963) 

and Kao and Queyranne (1982). Held and Karp (1962) and Schrage and Baker (1978) also 

presented DP formulations in the general context of sequencing the precedence relations. 

Compared to traditional DP algorithms, the labeling scheme introduced by Schrage and Baker 

(1978) is quite efficient according to time and memory requirements. 

Jackson (1956), Hu (1961), Van Assche and Herroelen (1979), Johnson (1981) and Wee and 

Magazine (1981) introduced specialized branch and bound approaches to solve SALB problems. 
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Johnson (1988) introduced Fast Algorithm for Balancing Lines Effectively (FABLE) as a branch 

and bound procedure to find an optimal solution to large-sized SALB problems. FABLE is a 

„laser‟ type, depth-first, branch-and-bound algorithm, with logic designed for very fast 

achievement of feasibility, ensuring a feasible solution to any line of 1000 or even more tasks. It 

utilizes new and existing dominance rules and bound arguments. 

Hoffman (1992) introduced an exact branch and bound method for SALBP-I which guaranteed 

optimality. Boctor (1995) proposed a multiple-rule heuristic approach. The heuristic determines 

the schedulable tasks at each step and assigns the task with the highest priority. Priorities of the 

tasks are determined with the rules below: 

1. The task having processing time equal to the remaining time of the station under 

consideration. 

 If there are no such tasks, the step is skipped. 

 If more than one such task exists, the task with the maximum number of 

immediate successors is assigned. 

2. The „severe task‟ having the maximum number of successors. 

 If there are no such tasks, the step is skipped. 

 If more than one such task exists, task with the largest processing time is 

assigned. 

3. Combination of two tasks having a processing time equal to the remaining time. 

 If there are no such tasks, the step is skipped. 

 If more than one such combination exists, combination with the maximum 

number of immediate successors is assigned. 

4. The task having the maximum number of successors. 

 If more than one such task exists, the task with the maximum number of „severe‟ 

immediate successors is assigned. 

 If more than one such task exists, the task with the largest processing time is 

assigned. 

„Severe task‟ is a task with a task time greater than or equal to one half of the cycle time. 
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2.3  Literature on Two-Sided Assembly Line Balancing (2SALB) 

Bartholdi (1993) was first to address 2SALB problem. Bartholdi (1993) developed an interactive 

algorithm for balancing one-sided and two-sided assembly lines. The program uses a modified 

First Fit Rule (FFR). The set of schedulable tasks is created at each step. The sequence of the 

tasks in the set is the same as the sequence they are introduced to the program. The first task of 

the set is assigned. The user interaction allows modifying the sequence of the tasks in the set. 

Kim et al. used genetic algorithm (GA) techniques to solve type-II 2SALB problems. The steps 

of the GA are presented with an encoding and decoding procedure of a possible solution to the 

problem. The overall framework of the GA procedure is as follows: 

Step 1: Initial population is generated 

Step 2: Each individual is evaluated. 

Step 3: More fit individuals are selected with respect to the evaluation function value in order to 

pass on their good characteristics to offspring. 

Step 4: A new crossover operator, called structured one-point crossover (SOX), is developed. 

Using this operator, offspring is generated. 

Step 5: A mutation operator is used to produces an offspring by introducing small changes in 

order to avoid a premature convergence to a local optima. 

Step 6: Genetic crossover and mutation operations are followed by an adaptation procedure in 

order to complete the missing positions of the resulting offspring. 

Lee et al. (2001) introduced two new performance measures: work relatedness and work 

slackness. Work relatedness measure (WR) is based on the formulation of Agrawal (1985). 

Work relatedness measures the interrelation of the tasks assigned to the same station. Two tasks 

are interrelated if one is reachable from the other on the precedence graph. Assigning 

interrelated tasks to a station is preferable according to this measure. Work slackness (WS) is a 

measure to quantify the tightness of task sequences. Use of this measure tends to put some room 

between two related tasks that are assigned to companion stations. In case the preceding task 

delays, the succeeding task will not be affected if there is sufficient slack time. This can be 

achieved by modifying the task sequence within a station. That is, the sequence of the tasks that 
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do not have precedence relations may be flexibly adjusted and work slackness may be improved. 

The authors propose a heuristic approach using these performance measures. The heuristic 

approach is based on grouping the tasks. 

Wu et al. (2008) proposed a branch-and-bound algorithm (B&B) to solve the balancing problem 

optimally. Also a non-linear mathematical model for type-I problem is introduced. Since the size 

of 2SALB enumeration tree is very large owing to the existence of E tasks, task assignment rules 

are developed and applied in order to reduce the size of the tree. Developed rules are: 

Step 1: the tasks will be ranked according to its start time in the current position, the earlier it 

starts, the earlier it will be branched. 

Step 2: ties broken, tasks with original L or R operation direction are assigned first 

Step 3: ties broken, tasks with the maximal ranked positional weight are assigned first. 

Step 4: ties broken, tasks with the maximal operation time are assigned first. 

Step 5: ties broken, assigned randomly. 

Baykasoglu and Dereli (2008) also used ant-colony optimization (ACO) technique for 2SALB 

problem. The objective is to minimize the number of workstations for a given cycle time. Also a 

secondary objective of maximizing work relatedness measured by Agrawal‟s formulation is 

used. The proposed algorithm can handle zoning constraints. 

Xiaofeng et al. (2008) introduced a station-oriented enumerative algorithm depending on the 

concepts of earliest start time and latest start time. These values are used to develop a heuristics 

to assign tasks to stations as time within the cycle time of a station increases. Positions, mated 

stations, are considered one by one. The procedure may lead infeasible solutions violating the 

precedence relations. Hence, a backtracking mechanism is proposed to remove these infeasible 

solutions. 

Kim et al. (2009) proposed a mathematical model and a genetic algorithm for 2SALB-II. This is 

the first mathematical model for type-II 2SALBP problem. The model uses binary station 

variables for each task-station-side (Xijk). The mathematical model is tested on small-sized 

literature problems with 12, 16 and 24 tasks. Optimal solutions to the problems are found and 
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the model is verified. However, due to time and memory requirements, MIP is not tested on 

large-sized problems. A neighbourhood genetic algorithm (n-GA) is developed for relatively 

large-sized problems. The algorithm uses a localized evolution to promote population diversity 

and search efficiency. Member of the population is presented by a two-dimensional grid. A 

single member and its surrounding eight neighbours form the subject of the genetic algorithm. 

The fitness of the potential solutions is measured by an evaluation function. The algorithm 

creates better-fit generations based on the initial population of nine members and the genetic 

factors formulated. The results of the genetic algorithm are tested on large-sized problems with 

65, 148 and 205 tasks. The solutions of the algorithm are compared with the results obtained by 

one another genetic algorithm proposed by Kim et al. (2000) and the first fit rule (FFR) proposed 

by Bartholdi (1993). 

Ozcan and Toklu (2009) proposed a mixed integer goal programming for 2SALB problem. The 

objective is to minimize the deviations from three specified target values in a lexicographic 

order: 

 Number of mated-stations 

 Cycle time 

 Number of tasks assigned to a workstation 

In the second part of the paper, fuzziness is introduced into the problem. The objective is to 

maximize the weighted average of fuzzy goals with a membership function. 

Ozcan and Toklu (2009) introduced mathematical model and a simulated annealing algorithm 

for solving mixed model 2SALB problems. The proposed mathematical model aims to minimize 

the line length (number of mated-stations). The model also aims a secondary objective of 

minimizing the number of stations. The model is designed for handling positive and negative 

zoning constraints, fixed location constraints and synchronous task constraints. In the second 

part of the paper, simulated annealing algorithm is introduced. The algorithm has two objectives: 

weighted line efficiency and weighted smoothness index. The objectives are used to maximize 

line efficiency and distribute the work load evenly among the stations. These objectives provide 

the minimization of the number of stations. 
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Ozcan and Toklu (2009) proposed a tabu search algorithm for two-sided assembly line 

balancing. The line efficiency and the smoothness index are considered as the performance 

criteria. Proposed approach is tested on a set of test problems taken from literature and the 

computational results show that the algorithm performs well. 

Simaria and Vilarinho (2009) developed a mathematical model to formally describe the two-

sided mixed-model assembly line balancing problem. The objective of the model is to minimize 

the line length. However, the proposed model considers balancing the workloads between 

workstations and balancing the workloads within the workstations for different models as a 

secondary objective. Furthermore, an ant-colony optimization algorithm to solve type-I 2SALB 

problems is proposed. In the proposed procedure two ants „work‟ simultaneously, one at each 

side of the line, to build a balancing solution which verifies the precedence, zoning, capacity, 

side and synchronism constraints of the assembly process. 
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CHAPTER 3 
 

 

MATHEMATICAL MODELS FOR TWO-SIDED ASSEMBLY LINE 

BALANCING PROBLEMS 

 

 

 

In chapter 3, two mathematical models are developed for 2SALB type-I problem and two 

mathematical models are developed for 2SALB type-II problem. The objective of type-I 

problem is to minimize the length of the assembly line which can achieve a given production 

rate, i.e. complete the assembly process in a given cycle time. On the other hand, the objective of 

type-II problem is to maximize the production rate, i.e. minimize the cycle length, for an 

assembly line with a fixed length. In the models for both types of problems, there is no parallel 

station. Hence, the cycle time has to be always greater than the maximum task time among all 

tasks of that model. The chapter begins with introducing the terminology, assumptions and 

notation used for the mathematical models. Then, the mathematical models are explained one by 

one. Validation of the models and parametric testing of the performance of the models are 

explained at the end of each type of problem. 

3.1  Terminology, Assumptions and Notation 

Necessary definitions on terminology, assumptions used by the models and notation are 

introduced prior to mathematical models. 

3.1.1  Terminology 

Task: Indivisible work element. 

Left (Right) Task: Task that should be performed at the left (right) side of the line according to 

side constraints. 
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Either Task: Task that can be performed at either side of the line, having no side constraint. 

Station: Location on assembly line on which certain tasks are done repeatedly. Each station has 

two mated-stations on the left and right of the line. Mated-stations can be used to process 

different tasks simultaneously, each having the same cycle time. 

Task Time: Duration necessary to perform a task. 

Cycle Time: Available time to perform all tasks assigned to a station. 

Precedence Relations: Restrictions on the order of execution of the tasks due to the nature of the 

tasks and the products assembled. 

Precedence Graph: A network based representation of precedence relations. The tasks are 

represented by nodes while precedence relations between tasks are represented by arcs. In 

addition to precedence relations, task times and side preferences of each task may be displayed 

in parenthesis above the task nodes in the precedence graph. An example of a precedence graph 

is given in the first chapter in Figure 1.1. 

Predecessors of a task: Set of tasks that must be completed before the process of the considered 

task can start. For example, the predecessor set of task 4 in Figure 1.1 is {1, 2, 3}. 

Immediate Predecessors of a task: A subset of set of predecessors of the considered task. 

Completion of the tasks in this set guarantees that the considered task can start, since the other 

tasks in the set of precedence tasks must have been completed before the tasks in the set of 

immediate predecessors. For example, the immediate predecessor set of task 4 in Figure 1.1 is 

{2, 3}. 

Successors of a task: Set of tasks which cannot be started before the completion of the 

considered task. 

Immediate Successors of a task: A subset of set of successors of the considered task. Tasks in 

this set can immediately start after the completion of the considered task if other predecessor 

tasks of these tasks are already completed. 
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Precedence Matrix: Precedence matrix is the matrix illustration of precedence relations. The 

precedence matrix of a problem with N tasks is an upper right square matrix with dimension 

NxN having 0‟s and 1‟s as entries: 

 

An example of a precedence matrix is given on Table 3.1 for the precedence graph given in 

Figure 1.1. 

 

 

 

Table 3.1 Precedence Matrix 

 

 

 

 

 

3.1.2  Assumptions 

Assumptions introduced below are applicable in all the following models and heuristics. Further 

assumptions will be introduced as used. 

 Tasks times are deterministic. 
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 All stations are equally skilled with respect to the labour force and technology. 

 Precedence graph is known and fixed. 

3.1.3  Notation 

Notation introduced below are used in all the following models and heuristics. Further notation 

will be introduced as needed. 

Sets 

L : Set of left tasks 

R : Set of right tasks 

E : Set of either tasks 

T : Set of tasks (T = E ∪ L ∪ R) 

K : Set of sides; K = {0 (right), 1 (left)} 

J : Set of stations 

Pi : Set of immediate predecessors of task i 

Pi
*
 : Set of all predecessors of task i 

Si : Set of immediate successors of task i 

Si
*
 : Set of all successors of task i 

Ci : Set of tasks that cannot be assigned to the same side with task i 

  

H : Set of pairs of tasks that have no precedence relations and that can be assigned to the 

same side of the assembly line. 

 H = {(i, h) | i ∈ T, h ∈ T, h ∈ (T – Pi
*
 – Si

*
 – Ci)} 

Indices 
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i, p, h : Task number  i  =  1, …, n(T) ; p = 1, …, n(T) ; h = 1, …, n(T) 

j : Station number j = 1, …, n(J) 

k : Side number  k = 0 (for right tasks), 1 (for left tasks) 

Parameters 

ti : Task time of task i  

Diri : Preferred side of task i, i ∈ (L∪R) 

  

Decision Variables 

Stai : Station number that task i is assigned to (i ∈ T) 

Zih : Binary variable for preventing overlaps of tasks in H ((i,h) ∈ H) 

This variable will be free if the tasks are assigned to different mated-stations or to the 

different sides of the same mated-station. Otherwise, the order of these tasks will be 

determined by the value of this variable. 

 

ADi : Binary variable that states the side that the task is assigned to (i ∈ T) 

  

3.2  Mathematical Models for Type-I Problem 

Side constraints of tasks may insert additional difficulty to scheduling tasks. While using two 

sides of the assembly line to process different tasks concurrently promises a better balance with 

a smaller cycle time or less number of stations, idle times cannot be avoided in some cases 

depending on side and precedence constraints. A set of tasks whose sum of processing times of 

left constrained tasks is much greater than the sum of processing times of right constrained tasks, 

or vice versa, generally causes much idle time if there is not a sufficient number of tasks without 
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side constraints. For an extreme example, let the sum of processing times of L tasks be 100 units, 

the sum of processing times R tasks be 20 units and that of E tasks be 10 units. Relaxing all the 

other constraints, even task indivisibility constraint, the best schedule leaves 70 units of idle 

time. The relaxed solution is displayed in Figure 3.2. Tasks are assigned to the shaded regions of 

the assembly line while the remaining regions are idle. 

 

 

 

 

 

Figure 3.1 Idle Times Resulting from Side Constraints 

 

 

 

In this chapter, two different mathematical models are developed to obtain a balance which 

seeks to minimize the length of the assembly line, i.e. number of mated-stations necessary for 

completing all the tasks in a given cycle time. 

3.2.1  A Mathematical Model for Type-I Problem with Binary Station Variables 

A mathematical model for Type-I 2SALB problems which uses binary station variables is 

developed. This model will be called as MM/Bin-I. Additional notation for MM/Bin-I is 

introduced in the following section. 

3.2.1.1  Additional Notation 

Indices 
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t : Big number index t = 1, 2, 3, 4 

Parameters 

CT : Cycle time 

Mt : t
th
 big number 

MaxN : Upper bound for the length of the line 

 n(J) = MaxN 

Decision Variables 

Xijk : Binary variable for task-station-side assignment (i ∈ T, j ∈ J, k ∈ K) 

  

FTi : Finish time of task i in the station that the task is assigned to (less than or equal to the 

cycle time) 

N : Line length, i.e. number of mated-stations 

 

3.2.1.2  Mathematical Model 

A mathematical model for solving type-I problems using binary station variables (Xijk) is 

introduced below: 

Objective 

  

Constraints 
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The objective (1) minimizes the length of the assembly line, i.e. number of mated-stations used. 

Constraint (2) is used for recording the station number to which each task is assigned. 

Constraints (3) and (4) ensure that tasks with side constraints are assigned to the proper sides. 

Constraint (5) ensures that every task is assigned to only one side of only one station. 

Constraints (6) and (7) are used for recording the side that each task is assigned to. Constraint (8) 

states that tasks cannot be assigned to an earlier station than the stations its predecessors are 

assigned to. Constraint (9) ensures that tasks cannot have a finish time smaller than its 

processing time. Constraint (10) restricts the finish times of the tasks with the cycle time. 

Constraint (11) states that tasks with precedence relations cannot be operated simultaneously 
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when they are assigned to the same station. Constraints (12) and (13) prevent the tasks which are 

not connected to each other on precedence graph and are assigned to the same side of the same 

station from overlapping. Constraint (14) together with the objective equates the assembly line 

length to the maximum of the station numbers that tasks are assigned to. Constraints (15), (16) 

and (17) define the types of the variables. 

3.2.1.3  Choice of Big Number Parameters 

Four different big number parameters are used in this model. Keeping these parameters as small 

as possible is very important for reducing the feasible region. In addition, in order to make the 

mathematical model work without dividing the feasible region, relative magnitudes of these 

parameters need to be determined properly. Hence, the constraints using these parameters are 

studied in detail. 

 

 

Constraint (11) 

Constraint (8) ensures that Stai is greater than or equal to Stap. Hence, the left hand side of the 

equation cannot be negative. Then, M1 should ensure that if these tasks are not assigned to the 

same station, the finish times of these tasks should be free of this constraint. CT is a good and 

sufficient lower bound on M1. 

M1 = CT              (18) 

Constraint (12) and Constraint (13) 

These constraints work symmetrically. Hence, they need to be investigated together. These 

constraints should be passive whenever one of the following conditions is satisfied: 

 The tasks are assigned to different stations 

 The tasks are assigned to different sides 

In addition, only one of these constraints should be active at a time, depending on the value of 

Zih. All possible cases are investigated for determining big number parameters. 
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Case I: ADi = ADh 

 Case I-a: Stai = Stah 

 The constraints reduce to: 

 (12) M2.(1 - Zih) + FTh ≥ FTi + th 

(13) M2.Zih + FTi ≥ FTh + ti 

One of the constraints will be active and one of the constraints will be passive depending 

on the value of Zih as expected. In order to guarantee that the constraint is passive while 

the other is active, the following inequality should be satisfied: 

M2 ≥ CT 

 Case I-b: Stai - Stah = d, (N-1) ≥ d ≥ 1 

 The constraints reduce to: 

 (12) M2.(1 - Zih) – M3.d + FTh ≥ FTi + th 

(13) M2.Zih + M3.d + FTi ≥ FTh + ti 

If Zih = 1, constraint (12) will increase FTh and the objective function value. Hence, such 

a case will be eliminated by the model by forcing Zih to be equal to 0 in this case. In 

order to guarantee that the constraints are passive, below inequalities need to be 

satisfied: 

M3 ≥ CT             (19) 

M2 ≥ M3.MaxN 

 Case I-c: Stah – Stai = d, (N-1) ≥ d ≥ 1 

 The constraints reduce to: 

 (12) M2.(1 - Zih) + M3.d + FTh ≥ FTi + th 

 (13) M2.Zih - M3.d + FTi ≥ FTh + ti 
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If Zih = 0, constraint (13) will increase FTi and the objective function value. Hence, such 

a case will be eliminated by the model by forcing Zih to be equal to 1 in this case. In 

order to guarantee that the constraints are passive, below inequalities need to be 

satisfied: 

M3 ≥ CT 

M2 ≥ M3.MaxN 

Case II: ADi - ADh = 1 

 Case II-a: Stai = Stah 

 The constraints reduce to: 

 (12) M2.(1 - Zih) – M4 + FTh ≥ FTi + th 

(13) M2.Zih + M4 + FTi ≥ FTh + ti 

If Zih = 1, constraint (12) will increase FTh and the objective function value. Hence, such 

a case will be eliminated by the model by forcing Zih to be equal to 0 in this case. In 

order to guarantee that the constraints are passive, below inequalities need to be 

satisfied: 

M4 ≥ CT 

M2 ≥ M4 + CT 

 Case II-b: Stai - Stah = d, (N-1) ≥ d > 0 

 The constraints reduce to: 

 (12) M2.(1 - Zih) - M3.d - M4 + FTh ≥ FTi + th 

(13) M2.Zih + M3.d + M4 + FTi ≥ FTh + ti 

If Zih = 1, constraint (12) will increase FTh and the objective function value. Hence, such 

a case will be eliminated by the model by forcing Zih to be equal to 0 in this case. In 



 

 

24 

order to guarantee that the constraints are passive, below inequalities need to be 

satisfied: 

M3 + M4 ≥ CT 

M2 ≥ M3.MaxN + M4            (20) 

 Case II-c: Stah – Stai = d, (N-1) ≥ d > 0 

 The constraints reduce to: 

 (12) M2.(1 - Zih) + M3.d - M4 + FTh ≥ FTi + th 

 (13) M2.Zih - M3.d + M4 + FTi ≥ FTh + ti 

If Zih = 1, constraint (12) will increase FTh and the objective function value. Hence, such 

a case will be eliminated by the model by forcing Zih to be equal to 0 in this case. In 

order to guarantee that the constraints are passive, below inequalities need to be 

satisfied: 

M2 + M3 ≥ M4 + CT 

M4 ≥ M3.MaxN             (21) 

Case III: ADi - ADh = -1 

 Case III-a: Stai = Stah 

 The constraints reduce to: 

 (12) M2.(1 - Zih) + M4 + FTh ≥ FTi + th 

(13) M2.Zih - M4 + FTi ≥ FTh + ti 

If Zih = 0, constraint (13) will increase FTi and the objective function value. Hence, such 

a case will be eliminated by the model by forcing Zih to be equal to 1 in this case. In 

order to guarantee that the constraints are passive, below inequalities need to be 

satisfied: 

M4 ≥ CT 
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M2 ≥ M4 + CT 

 Case III-b: Stai - Stah = d, (N-1) ≥ d > 0 

 The constraints reduce to: 

 (12) M2.(1 - Zih) – M3.d + M4 + FTh ≥ FTi + th 

 (13) M2.Zih + M3.d - M4 + FTi ≥ FTh + ti 

If Zih = 0, constraint (13) will increase FTi and the objective function value. Hence, such 

a case will be eliminated by the model by forcing Zih to be equal to 1 in this case. In 

order to guarantee that the constraints are passive, below inequalities need to be 

satisfied: 

M4 ≥ M3.MaxN 

M2 + M3 ≥ M4 +CT 

 Case III-c: Stah – Stai = d, (N-1) ≥ d > 0 

 The constraints reduce to: 

 (12) M2.(1 - Zih) + M3.d + M4 + FTh ≥ FTi + th 

(13) M2.Zih - M3.d - M4 + FTi ≥ FTh + ti 

If Zih = 0, constraint (13) will increase FTi and the objective function value. Hence, such 

a case will be eliminated by the model by forcing Zih to be equal to 1 in this case. In 

order to guarantee that the constraints are passive, below inequalities need to be 

satisfied: 

M3 + M4 ≥ CT 

 M2 ≥ M3.MaxN + M4 

Critical inequalities are (19), (20) and (21). All other necessary inequalities are satisfied with 

these inequalities. Taking these three inequalities into consideration, lowest possible big number 

parameters are as follows: 
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M2 = 2.MaxN.CT             (22) 

M3 = CT              (23) 

M4 = MaxN.CT              (24) 

Experiments show that choice of the big-M parameters is crucial in reducing the feasible region. 

Parameters given in equations (18), (22), (23) and (24) ensure that no feasible MIP solution is 

eliminated. In addition, they are the minimum possible big number parameters for the proposed 

mathematical model. Big number parameter calculation includes another parameter called MaxN 

which is the upper bound for the line length. Hence, calculation of this parameter is also very 

important. Upper bounds used for type-I 2SALB problems are calculated by the heuristics 

introduced in Chapter 4. Constraints (11), (12) and (13) are updated with the derived big number 

parameters and displayed below: 

  

 

 

 

 

3.2.2  A Mathematical Model for Type-I Problem with Integer Station Variables 

A mathematical model for Type-I 2SALB problems which uses only the integer station variables 

and excludes binary station variables is developed. This model will be called as MM/Int-I. 

Additional notation for MM/Int-I is introduced in the following section. 

3.2.2.1  Additional Notation 

Indices 

t : Big number index t = 1, 2, 3, 4 

Parameters 

CT : Cycle time 
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Mt : t
th
 big number 

MaxN : Upper bound for the length of the line 

 n(J) = MaxN 

Decision Variables 

FTi : Finish time of task i in the assembly line (may be greater than the cycle time) 

N : Line length, i.e. number of mated-stations 

3.2.2.2  Mathematical Model 

Developed mathematical model with integer station variables that uses only Stai and excludes 

Xijk is given below: 

Objective 

 

Constraints 
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The objective (25) minimizes the length of the assembly line, i.e. number of mated-stations used. 

Constraint (26) together with the objective equates the length of the assembly line to the 

maximum of the station numbers that tasks are assigned to. Constraint (27) gives the lower 

bound 1 for station numbers. Constraint (28) fixes the side of left and right tasks. Constraint (29) 

states that tasks cannot be assigned to an earlier station than the stations its predecessors are 

assigned to. Constraint (30) ensures that precedence relations are satisfied with respect to the 

task schedule. Constraints (31) and (32) ensure that FTi lies between the starting time of the 

station that the task is assigned and the finishing time of that station. Constraints (33) and (34) 

prevent tasks with no precedence relation and which are assigned to the same side from 

overlapping. Constraints (35), (36) and (37) state the type of the variables. 

3.2.2.3  Choice of Big Number Parameters 

Two different big number parameters are used in this model. In order to keep these parameters 

as small as possible and make the mathematical model run properly without restricting any 

feasible MIP solution, the constraints that use these parameters are studied in detail. 

Constraint (33) and Constraint (34) 

These constraints work symmetrically. Hence, they need to be investigated together. These 

constraints should be passive whenever one of the following conditions is satisfied: 

 The tasks are assigned to different stations 

 The tasks are assigned to different sides 

In addition, only one of these constraints should be active at a time, depending on the value of 

Zih. All possible cases are investigated for determining big number parameters. 

Case I: ADi = ADh 

The constraints reduce to: 

(33) M1.(1 - Zih) + FTh ≥ FTi + th 
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(34) M1.Zih + FTi ≥ FTh + ti 

One of the constraints will be active and one of the constraints will be passive depending on the 

value of Zih as expected. Maximum value of (FTi – FTh) and (FTh – FTi) is (N – 1).CT. Hence, in 

order to guarantee that the constraint is passive while the other is active, the following inequality 

should be satisfied: 

M1 ≥ MaxN.CT 

Case II: ADi - ADh = 1 

The constraints reduce to: 

(33) M1.(1 - Zih) – M2 + FTh ≥ FTi + th 

(34) M1.Zih + M2 + FTi ≥ FTh + ti 

If Zih = 1, constraint (12) will increase FTh and the objective function value. Hence, such a case 

will be eliminated by the model by forcing Zih to be equal to 0 in this case. In order to guarantee 

that the constraints are passive, below inequalities need to be satisfied: 

M1 ≥ M2 + MaxN.CT             (38) 

M2 ≥ MaxN.CT              (39) 

Case III: ADi - ADh = -1 

The constraints reduce to: 

(33) M1.(1 - Zih) + M2 + FTh ≥ FTi + th 

(34) M1.Zih – M2 + FTi ≥ FTh + ti 

If Zih = 0, constraint (13) will increase FTi and the objective function value. Hence, such a case 

will be eliminated by the model by forcing Zih to be equal to 1 in this case. In order to guarantee 

that the constraints are passive, below inequalities need to be satisfied: 

M2 ≥ MaxN.CT 

M1 ≥ M2 + MaxN.CT 
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Critical inequalities are (38) and (39). All other necessary inequalities are satisfied with these 

inequalities. Taking these two inequalities into consideration, lowest possible big number 

parameters are as follows: 

M1 = 2.MaxN.CT             (40) 

M2 = MaxN.CT              (41) 

Constraints (33) and (34) are updated using the derived big number parameters and displayed 

below: 

  

 

 

3.2.3  Computational Experiments and Comparison of the Performances of the Models 

Three large-sized problems that are focused in the literature are selected for testing the 

performances of the mathematical models: 148-task problem (Bartholdi, 1993), 65-task problem 

and 205-task problem (Lee et al., 2001). The problems will be named as P148, P65 and P205 

respectively and the data of the problems may be found in Appendix A. No solutions to these 

problems with mathematical models are available in the literature yet. Solutions to the 

mathematical models with binary (MM/Bin-I) and integer (MM/Int-I) station variables proposed 

in this study are compared. The mathematical models are developed using AMPL (a modeling 

language for mathematical programming) and solved using the version 10.1 of CPLEX. A cutoff 

after 10800 s run is used for all of the problems, that is, if the optimal solution cannot be found 

in 10800 seconds, current best solution is returned. AMPL code of MM/Int-I is given in 

Appendix E. 

 

Two basic performance criteria are used for testing the quality of the solutions: 

 Line Length Gap: The percentage of the gap between the best solution found in the 

specified time interval (if optimality is not confirmed) and the lower bound on the 

number of stations. 
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where, LBN is calculated by the formulations proposed by Wu et al. (2008): 

 

 

 

 

 

 Solution Time: It is the time necessary to confirm optimality of the solution found. Here 

„relmipgap‟ property of CPLEX is used to confirm optimality if a solution equal to the 

lower bound on the number of stations is reached. Unless the optimality is confirmed, 

solution time is limited to 10800 s. 

The results of MM/Bin-I and MM/Int-I to P65, P148 and P205 are summarized in Table 3.2, 

Table 3.3 and Table 3.4 respectively. 

 

Table 3.2 Comparison of MM/Bin-I and MM/Int-I Solutions to P65 

 

CPU time(s) 4197.56 1.59 144.59

MM/Int-I

Solution 7* 6* 5*

CPU time(s) 10800.00 10800.00 10800.00

MM/Bin-I

Solution 8 ns 6

Optimal N 7 6 5

Cycle Time 381 490 544

LB for N 7 6 5
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Asterisk sign, *, in the table indicates that the solution found is optimal. The abbreviation “ns” is 

used to indicate that no solution could be found. Complete solutions to P65 found by MM/Int-I 

are displayed Appendix B. 

 

 

 

Table 3.3 Comparison of MM/Bin-I and MM/Int-I Solutions to P148 

 

10800 10800CPU time(s) 10800 10800 10800 10800 10800

Solution 16 14 10 10 8 7 6*

MM/Int-I

10800 10800CPU time(s) 10800 10800 10800 10800 10800

Solution ns ns ns ns ns ns ns

MM/Bin-I

6 6Optimal N 13 11 9 8 7

459 510

LB for N 13 11 9 8 7 6 6

Cycle Time 204 255 306 357 408

 

 

 

 

Asterisk sign, *, in the table indicates that the solution found is optimal. The abbreviation “ns” is 

used to indicate that no solution could be found. 
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Table 3.4 Comparison of MM/Bin-I and MM/Int-I Solutions to P205 

 

CPU time(s) 10800 10800 10800

MM/Integer

Solution 13 10 8

CPU time(s) 10800 10800 10800

MM/Binary

Solution 22 ns ns

Optimal N n/a n/a n/a

Cycle Time 1133 1510 2077

LB for N 11 8 6

 

 

 

 

Asterisk sign, *, in the table indicates that the solution found is optimal. The abbreviation “ns” is 

used to indicate that no solution could be found while “n/a” indicates that the optimal solution to 

the corresponding problem is not available in the literature.  

From Table 3.2, it can be seen that MM/Int-I managed to find optimal solutions to the problems 

with different cycle times of P65 within quite reasonable times. MM/Bin-I also managed to find 

good solutions which use only one station more to the two of the problems. However, it failed to 

find a feasible solution in 10800 seconds to the other problem. The results to the problem with 

148 tasks show clearly that MM/Int-I outperforms MM/Bin-I. MM/Int-I managed to find good 

solutions to all problems of P148 with different cycle times and furthermore, reached the optimal 

solution for one of the problems. On the other hand, MM/Bin-I failed to find feasible solutions 

to any of the problems. This is also the same case with the problems having 205 tasks, P205. 

MM/Bin-I found a solution to only one of the problems which is quite poor with respect to line 

length gap. On the other hand, MM/Int-I again managed to find good solutions to the problems 

with 205 tasks. 
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Depending on the analysis carried out with the solutions to large-sized problems, it can be 

claimed that mathematical model with integer station variables greatly reduces the problem size 

compared to mathematical model with binary station variables since MM/Int-I managed to find 

remarkably better solutions than MM/Bin-I. Furthermore, it may be claimed that, despite the 

decrease in the quality of the solution as the problem size gets larger, MM/Int-I still finds 

reasonable solutions in reasonable times. In order to analyze the quality of the solutions line 

length gap is used. Figure 3.2 displays the quality of the solutions and the trend of the quality as 

the problem size increases. 

 

 

 

 

 

Figure 3.2 Line Length Gap Performance of MM/Int-I to Large-Sized Problems 
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The decrease in the quality of the solutions as the problem size gets larger may clearly be 

observed by Figure 3.2. 

3.3  Mathematical Models for Type-II Problem 

Two different mathematical models are developed to obtain a balancing which seeks to 

minimize the cycle time, i.e. maximize the production rate, for a fixed assembly line. 

3.3.1  A Mathematical Model for Type-II Problem with Binary Station Variables 

A mathematical model for Type-II 2SALB problem which uses binary station variables is 

developed. This mathematical model will be called as MM/Bin-II. 

3.3.1.1  Additional Notation 

Indices 

t : Big number index t = 1, 2, 3, 4 

Parameters 

N : Number of stations N = n(J) 

Mt : t
th
 big number 

MaxCT : Upper bound for the cycle time 

Decision Variables 

FTi : Finish time of task i in the station that the task is assigned to (smaller than or equal to 

the cycle time) 

CT : Cycle time 

3.3.1.2  Mathematical Model 

Developed mathematical model for solving type-II problems using binary station variables (Xijk) 

is introduced below: 

Objective 
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Constraints 

 

  

  

  

 

  

 

  

 

 

 

  

 

 

 

The objective (42) minimizes the cycle length. Constraint (43) is used for recording the station 

number to which each task is assigned. Constraints (44) and (45) ensure that tasks with side 

constraints are assigned to the proper sides. Constraint (46) ensures that every task is assigned to 

one side of one station. Constraints (47) and (48) are used for recording the side that each task is 

assigned to. Constraint (49) states that tasks cannot be assigned to an earlier station than the 
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stations its predecessors are assigned to. Constraint (50) ensures that tasks cannot have a finish 

time smaller than its processing time. Constraint (51) equates the cycle time to the maximum of 

finish times of all tasks. Constraint (52) states that tasks with precedence relations cannot be 

operated simultaneously when they are assigned to the same station. Constraints (53) and (54) 

prevent the tasks that are assigned to the same station and the same side from overlapping. 

Constraints (55), (56) and (57) state the types of the variables. 

3.3.1.3  Choice of Big Number Parameters 

Four different big number parameters are used in constraints (52), (53) and (54). Since keeping 

these parameters as small as possible is important for reducing the feasible region and 

determining the relative magnitudes of these parameters is necessary for the model to run 

properly, these constraints are studied in detail (see section 3.2.1.3 for a similar study). Derived 

big number parameters are given below: 

 

 

 

 

Using derived big number parameters, updated constraints are as follows: 
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3.3.2  A Mathematical Model for Type-II Problem with Integer Station Variables 

A mathematical model for solving type-II problems using integer station variables (excluding 

Xijk and using only Stai instead) is developed. This mathematical model will be called as 

MM/Int-II. 

3.3.2.1  Additional Notation 

Indices 

t : Big number index t = 1, 2, 3, 4 

Parameters 

N : Number of stations 

Mt : t
th
 big number 

MaxCT : Upper bound for the cycle time 

Decision Variables 

FTi : Finish time of task i in station that the task is assigned to (smaller than or equal to the 

cycle time) 

CT : Cycle time 

3.3.2.2  Mathematical Model 

Developed mathematical model for solving type-II problems with integer station variables is 

given below: 

Objective 

 

Constraints 
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The objective (62) minimizes the cycle length. Constraint (63) states the upper bound on the 

station number variable of tasks. Constraint (64) gives the lower bound 1 for station numbers. 

Constraint (65) satisfies the side constraints of left and right tasks. Constraint (66) states that 

tasks cannot be assigned to an earlier station than the stations its predecessors are assigned to. 

Constraints (67) and (68) ensure that FTi lies between the task time and the cycle time.  

Constraint (69) states that tasks with precedence relations cannot be operated simultaneously if 

they are assigned to the same station. Constraints (70) and (71) prevent tasks with no precedence 

relation and which are assigned to the same station and to the same side from overlapping. 

Constraints (72), (73) and (74) state the types of the variables. 

3.3.2.3  Choice of Big Number Parameters 

Four different big number parameters are used in constraints (69), (70) and (71). Again these 

constraints are studied in detail (see section 3.2.2.3 for a similar study). 

Developed big number parameters are given below: 
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Updated constraints with the derived big number parameters are given below: 

Objective 

 

 

 

 

 

3.3.4  Performance Comparison of Models with Large-Sized Literature Problems 

Three large-sized problems that are focused in the literature are selected for testing the 

performances of the mathematical models: 148-task problem (Bartholdi, 1993), 65-task problem 

and 205-task problem (Lee et al., 2001). The problems will be named as P148, P65 and P205 

respectively and the data of the problems may be found in Appendix A. No solutions to these 

problems with mathematical models are available in the literature yet. Solutions to the 

mathematical models with binary (MM/Bin-II) and integer (MM/Int-II) station variables 

proposed in this study are compared. The mathematical models are developed using AMPL (a 

modeling language for mathematical programming) and solved using the version 10.1 of 

CPLEX. A cutoff after 10800 s run is used for all of the problems, that is, if the optimal solution 

cannot be found in 10800 seconds, current best solution is returned. AMPL code of MM/Int-II is 

given in Appendix E. 

Two basic performance criteria are used for comparing the results: 

Cycle Time: Best solution if optimality cannot be confirmed. 

Solution Time: It is the required time to find the optimal solution. If optimality cannot be 

confirmed solution time is 10800 s since a cutoff after 10800 s run is applied. 
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The solutions to P65, P148 and P205 are summarized in Table 3.5, Table 3.6 and Table 3.7 

respectively. 

 

 

 

Table 3.5 Comparison of MM/Bin-II and MM/Int-II Solutions to P65 

 

CPU time(s) 10800 10800 10800 10800 10800

Solution 652 537 443 374 336

MM/Int-II

CPU time(s) 10800 10800 10800 10800 10800

Solution 649 525 439 388 330

MM/Bin-II

Optimal CT n/a n/a n/a n/a n/a

LB for CT 638 510 425 365 319

No.of stations 4 5 6 7 8

 

 

 

 

Abbreviation “n/a” indicates that the optimal solution for the corresponding problem is not 

available in the literature. Complete solutions for P65 found by MM/Int-II are displayed in 

Appendix C. 
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Table 3.6 Comparison of MM/Bin-II and MM/Int-II Solutions to P148 

 

CPU time(s) 10800 10800 10800

MM/Int-II

Solution 3124 2749 2335

CPU time(s) 10800 10800 10800

MM/Bin-II

Solution ns 4672 4552

Optimal CT n/a n/a n/a

No.of stations 4 5 6

LB for CT 2919 2335 1946

 

 

 

 

Abbreviation “n/a” used indicates that the optimal solution for the corresponding problem is not 

available in the literature and abbreviation “ns” indicates that no solution is found. 
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Table 3.7 Comparison of MM/Bin-II and MM/Int-II Solutions to P205 

 

CPU time(s) 10800 10800 10800

MM/Int-II

Solution 700 561 479

CPU time(s) 10800 10800 10800

MM/Bin-II

Solution 697 658 495

Optimal CT n/a n/a n/a

No.of stations 4 5 6

LB for CT 641 513 427

 

 

 

 

Abbreviation “n/a” used indicates that the optimal solution for the corresponding problem is not 

available in the literature. 

These solutions are the first mathematical model solutions to these large-sized problems. 

However, they fail to be the best results in the literature. Optimal solutions to these problems are 

not known yet. However, to the best of my knowledge, minimum cycle times for these problems 

up to now are found by the neighbourhood genetic algorithm (n-GA) proposed by Kim et al. 

(2009). 

From Table 3.5, it can be seen that both of the proposed mathematical models find good 

solutions within 10800 seconds. Since the solution times are equal and the solutions are very 

close, it is very difficult to select the model with superior performance. However, the solutions 

to P148 and P205 summarized in Table 3.6 and Table 3.7 clearly show that mathematical model 

with integer station variables finds better solutions than the model with binary station variables. 

Also, it can be observed that as the number of mated-stations increases, deviation of the 

solutions from the lower increases within the specified time limit. 
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For better understanding the performances of MM/Int-II for large-sized problems, cycle length 

gap is used. This measure is evaluated by the below formula: 

 

Cycle length gap ranges and average cycle length gaps (average of the gaps of the solutions 

found to the same problem with different number of stations) of MM/Int-II for P65, P148 and 

P205 are displayed in Figure 3.3. 

 

 

 

 

 

Figure 3.3 Cycle Time Gap Performance of MM/Int-II for Large-Sized Problems 
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It may clearly seen from Figure 3.4 that MM/Int-II finds solutions close to the lower bound for 

the problem with 65 tasks. However, the gap between the lower bound and the solution found by 

the proposed mathematical model increases as the problem size gets larger. It can be claimed 

that heuristic approaches may be preferred for a problem whose size is as large as that of P148 

and P205. 
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CHAPTER 4 
 

 

HEURISTIC APPROACHES 

 

 

 

The development in the computer technology promises better solutions to large-sized problems 

found by the mathematical models. However, the performance of the models is limited with 

solution time and memory. This leads the authors to develop faster algorithms that find good 

solutions to large-sized 2SALB problems within relatively very small times. In this study, two 

heuristics are developed for solving 2SALB Type-I problems. 

In the following sections, the heuristics are explained in detail. Finally the performances of the 

heuristics are compared with other approaches to solve 2SALB, Type-I problems in literature. 

4.1  Rolling Horizon Heuristic (RHH) Approach for Type-I 2SALB Problems 

The experiments on the mathematical models for Type-I 2SALB problems show that the 

mathematical model with integer station variables (MM/Int-I) outperforms the model with 

binary station variables (MM/Bin-I). However, as expected, the qualities of the solutions in a 

specified time limit decrease as the size of the problem increases. On the other hand, the 

solutions to the large-sized problems found by MM/Int-I are still reasonable. This gives the idea 

that the advantages of the mathematical models may be exploited with a heuristic approach. 

Main logic and the structure of the algorithm that uses the mathematical model are explained in 

the next section. 

4.1.1  Main Logic and Structure of Heuristic Approach 

Main logic of this heuristic approach is partitioning the large-sized 2SALB problems into 

smaller problems decreasing the time and memory requirements. This purpose is achieved by a 

myopic look to the assembly line and solving the mathematical model to assign tasks only to a
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specified number of stations at each step. While passing to the next stage, the stations in 

consideration are updated, like a rolling horizon. The tasks that are not assigned to the specified 

stations are assigned arbitrarily to a dummy station with no precedence or time constraints. 

The heuristic may be summarized as follows: 

 Parameters of the heuristics are determined. One of these parameters is the number of 

stations that the mathematical models will be solved for at each step, in other words, the 

length of the rolling horizon. The other parameter is the number of stations that the tasks 

assigned to will be fixed at every step. 

 The modified mathematical model for a specified number of stations is solved. 

 The solution is investigated. The tasks that are assigned to the specified number of 

stations are fixed with side, station number and finish time variables. Remaining tasks 

are still recognized as variables. 

 The planning horizon is rolled for the specified number of stations, which is the value of 

the second parameter. The modified mathematical model is solved with the new 

variables and fixed values. 

The procedure continues until all variables are fixed, in other words, all tasks are assigned. An 

example progress of the heuristic is displayed in Figure 4.1. 
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Figure 4.1 Example Progress of RHH 

 

 

 

In the example case displayed in Figure 4.1, a rolling horizon length of two is used. In other 

words, heuristic approach solves a mathematical model that tries to assign tasks to the two 

stations which are currently in consideration. The mathematical model assigns the remaining 

tasks to a third station, which serves as a dummy station, regardless of the finish time, side and 

precedence constraints. The second parameter of the heuristic, number stations that will be fixed 

at each step, in the displayed example is one. At the end of every step, tasks assigned to the first 

station of the two stations in consideration are fixed and never changed till the end of the 

procedure. 

Here, a tradeoff appears. Size of the problem decreases as the number of stations filled at each 

step decrease. Decrease in the size of the problem promises better solutions to the current 

problem within a specified time limit. On the other hand, as the number stations decrease, the 

quality of the solutions is threatened since the whole problem cannot be taken into account at 

once. Hence, determining the length of the planning horizon is another problem that needs to be 

solved. 

In order to better make use of the smaller sized problems that will be solved at each step, using 

lower bounds on the station numbers play a very important role. Upper bounds cannot be used 

since the planning horizon moves from the earliest station to the final. In this study, lower 
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bounds are used and updated at each step to make use of the additional information provided at 

the end of each step in order to create smaller problems. Formulation of the lower bounds is 

explained in detail in Section 4.1.3. 

An important feature of the heuristic is the flexibility on the size of the planning horizon and on 

the number of stations that will be fixed at each step. This gives the opportunity to find the best 

solution by the heuristic with respect to the available time and memory limitations. For example, 

if the model cannot find a feasible solution in the given time limit or returns poor results, the 

problem size may be reduced by lessening the planning horizon length. On the other hand, if 

additional time and memory are available, quality of the solution may be increased by increasing 

the size of the planning horizon. 

4.1.2  Additional Notation 

The notation used for the mathematical model with integer station variables for Type-I 2SALB 

problem are also used in this algorithm. 

Parameters: 

LPH : Length of the planning horizon. In other words, this is the number of stations that the 

mathematical model will be solved for. An additional dummy station will be added and 

the remaining tasks will be assigned to the dummy station ignoring the precedence, side 

and finish time constraints. This value will be fixed at the beginning of the heuristic and 

at each step a mathematical model for this length will be solved. 

APH : Assignment length of the planning horizon. This value needs to be smaller than or 

equal to LPH. The solution found by the mathematical model for a problem of length 

LPH does not need to be totally applied. Better solutions may be achieved assigning the 

tasks to the first APH stations of the solution the problem with LPH stations. Like LPH, 

APH is fixed at the beginning of the algorithm and the same value is used until all tasks 

are assigned. 

SPH : Starting station number of the planning horizon. This number may be considered as the 

step number of the algorithm. At each step the mathematical model will be solved for the 

stations SPH, SPH+1, … SPH+LPH-1. And the number of SPH is increased by APH at 

the end of each step. 
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s : A sufficiently small integer 

Variables: 

ai : binary variable (i ∈ T) 

  

4.1.3  Use of Earliest Stations 

As explained in the previous section, main idea of this heuristic is to decrease the size of the 

problem, achieve good and fast solutions for the sub problems and finally, reach the solution to 

the main problem at the end of a rolling horizon. Use of earliest stations may also well serve this 

purpose. Extensive use of earliest stations to reduce the size of the sub problems is explained in 

detail in this section. 

Notation: 

ESTi : Earliest start time of task i ignoring task indivisibility constraint. The assembly line is 

assumed to be continuous, regarded as one large station. Hence, ESTi may be greater 

than the cycle time. 

EFTi : Earliest finish time of task i ignoring task indivisibility constraint. Since the assembly 

line is assumed to be continuous, ESTi may also be greater than the cycle time. 

EST‟i : Earliest start time of task i with task indivisibility constraint. This value is always 

smaller than or equal to the cycle time. 

EFT‟i : Earliest finish time of task i with task indivisibility constraint. This value is always 

smaller than or equal to the cycle time. 

ES_ST i : Station that the ESTi falls into. 

ES_FT i : Station that the EFTi falls into. 

EStai : Earliest station that task i can be assigned to. 

Formulation: 
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Earliest stations are calculated with the help of precedence matrix as follows: 

 

 

 

 

 

 

 

 

Earliest stations are calculated recursively using the above calculation. Hence, it requires that a 

task does not precede a task whose task number is smaller. The formulation may be used without 

a modification since the requirement is already satisfied by the definition of precedence 

diagrams. 

 

The calculation of earliest station numbers is dynamic. At the end of each step, the calculation is 

repeated by fixing the station numbers and finish times of the assigned tasks. This 

implementation promises better earliest station numbers and further decreases the number of 

tasks that will be treated as variables for the current planning horizon. 

4.1.4  Modified Mathematical Model with Integer Station Variables 

The mathematical model is modified to be used in the heuristic. Since the whole problem is not 

taken into account, the objective of minimizing the length of assembly line cannot be used. 

Hence, the objective is replaced with minimizing the total idle time of the stations taken into 
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account. Minimizing total idle time is equivalent to maximizing the total of processing times 

assigned to the stations in consideration. 

Objective 

 

Constraints 
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The objective (79) maximizes the sum of processing times of tasks assigned to the stations in 

consideration, i.e. minimizes the idle time of the tasks that are assigned to these stations. Second 

part of the objective is needed at the final steps of the algorithm if the length of the planning 

horizon, LPH, is greater than one station. Since the sum of station numbers is multiplied with a 

sufficiently small integer, it serves as a secondary objective and tries to compress the remaining 

tasks to the earliest stations if possible at the final steps of the algorithm. Constraint (80) and 

(81) are used for assigning the tasks with ai=1 into the planning horizon and assigning the 

remaining tasks to the dummy station. Constraints (82) satisfies the side constraints of left and 

right tasks. Constraint (83) states that tasks cannot be assigned to an earlier station than the 

stations its predecessors are assigned to and this constraint only applies to the tasks with ai=1. 

Constraints (84) and (85) ensure that FTi lies between the starting time of the station that the task 

is assigned and the finishing time of that station.  Constraint (86) states that tasks with 

precedence relations cannot be operated simultaneously. Constraints (87) and (88) prevent tasks 

with no precedence relation and which are assigned to the same side from overlapping if they are 

assigned in the current step. Constraints (89), (90), (91) and (92) state the types of the variables. 

 

4.1.5  Algorithm 

The steps of the algorithm are explained below: 

Step 0. Set ai = 0 for all tasks and set SPH = 1. Determine the heuristic parameters LPH and 

APH. 

Step 1. Calculate earliest station numbers. 

If the earliest station number of task i is larger than or equal to (SPH + LPH), eliminate 

the task from the problem by carrying out necessary fixations:  

 fix ai = 0 (discard the task from the objective) 

 fix Stai = SPH + LPH (assign the task to the dummy station) 

Do not fix variables of the remaining tasks. Also remove fixations of earlier stages from 

these tasks. 

Step 2. Solve the modified mathematical model for the fixed LPH, fixed APH and current SPH. 
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The fixed values of variables in Step 1 are not violated. 

Step 3. Get the solution from the mathematical model and investigate Stai values. 

 If Stai <= SPH + APH -1, 

 fix ai = 1 

 fix Stai, ADi and FTi to the values found in the current solution. 

Unlike Step 1, these values will remain fixed until the end of the algorithm.  

Step 4. Calculate the sum of the values ai for all tasks. 

 If the sum is equal to the number of tasks, i.e. if all tasks are assigned, STOP. 

The solution to the final mathematical model is the solution of the algorithm to 

the given problem. 

 Otherwise, set SPH = SPH + APH. Go to Step 1. 

The results of the RHH are given later in this chapter after the second heuristic is introduced. 

4.2  Extended Multiple Rule Heuristic (EMRH) Approach for Type-I 2SALB Problems 

Inspired by the multiple rule heuristic approach (Boctor, 1995), another heuristic approach to 

generate fast and good solutions to 2SALB Type-I problems is developed. The rules used by the 

multiple rule heuristic approach are given in Section 2.2. Heuristic approach proposed in this 

study may be regarded as an extended version of the multiple rule heuristic approach. 

Determination of the rules for task selection is based on numerous experiments. The algorithm is 

programmed in Microsoft Visual C# 2008 Express Edition and tested on Core2 Quad, 2.84 GHz, 

2.00 GB RAM personal computer. 

4.2.1  Main Logic and Structure of Heuristic Approach 

The heuristic tries to assign one task at each step of the algorithm. This kind of assignment 

definitely generates fast solutions. The quality of the solutions depends on the rules followed for 

task selection and task assignment procedures. Since this is the most critical part of the heuristic, 

many experiments on different problems are carried out. The rules are determined by these 

observations. However, it is very hard to claim the best rules. The best combination of rules for a 

particular problem may result in a poor result for another problem. Since the algorithm works 
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fast enough, it is decided to try various combinations of selection and assignment rules on a 

single run. The results for all combinations followed are summarized at the end of the algorithm. 

Hence, solutions of this heuristic approach can also be regarded as an experiment for observing 

which combination of selection and assignment criteria performs better. 

The weakness of this kind of heuristic approaches is that they are stacked to the rules determined 

at the beginning. As described above, this heuristic tries to overcome this weakness by using 

different combinations of selection and assignment rules. However, the weakness still exists 

since a combination of rules may be better at one stage of the algorithm while another 

combination may be better on another. This approach also tries to overcome this weakness by 

generating random rules at the beginning of each step. This property of EMRH creates diversity 

and tries to handle the cases that could not be handled by the rules determined by the 

observations to the experiments. 

The algorithm may be summarized as follows: 

 Generate the set of available tasks (the tasks whose immediate predecessors are already 

assigned) at the beginning of each step 

 Apply four selection rules to select the best task from the available task set 

 Apply three assignment rules to assign the selected task 

The rules are described in detail in the following sections. 

4.2.2  Selection Rules 

Eight selection rules are developed in this approach. Each algorithm uses four of them to select 

the task that will be assigned at each step. The rules are applied in a hierarchical way. Hence, the 

order of the rules is also important. 

Developed rules are described below: 

Minimum Station (MinSta): This is the minimum station number that the task can be assigned 

to. This rule is surely the most prior selection rule in order to minimize the total number of 

stations. Hence, in all combinations of rules, this is used as the first selection rule. 

Minimum Start Time (MinST): This is the start time of the candidate task in the station. In 

calculation of this value, the finish time of the predecessors of the task is taken into account. 
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Maximum Finish Time (MaxFT): This is the finish time of the candidate task in the station if 

selected and assigned. This rule tries to assign the task with the longest processing time while 

possible. 

Side Constrained (Constrained): This rule selects left and right tasks among the candidate tasks 

and eliminates tasks without side constraints. This rule also tries to relax the later stages of the 

problem. 

Minimum Idle (MinIdle): This is rule is the most complex one in calculations. Idle times are 

calculated in two parts. First part is the difference between the start time of the selected task and 

finish time of the previous task assigned to the same station. The second part calculates the idle 

time after the completion of the selected task. For this calculation, the algorithm simulates the 

further step. If no tasks can be assigned to the station that the selected task is to be assigned, the 

difference between the cycle time and the finish time of the selected task is also regarded as idle 

time. For example, if the selected task finishes at time 4 in the station with cycle time 5 and if 

there are no tasks that can be assigned to the 1 unit of time after this task, this difference is also 

regarded as idle. 

Maximum Immediate Successors (MaxImmSuc): This rule weights the tasks with respect to their 

precedence relations. However, this rule looks one stage ahead, since it only counts the 

immediate successors. 

Maximum Successors (MaxSuc): This is the number of all successors of the candidate tasks. The 

rule selects the task with the maximum number of successors, i.e. with the maximum n(S*i). 

Maximum Task Time (MaxTT): With this rule it is aimed to assign the longest tasks first. This 

rule helps to create a balance in which longest tasks take the first places in the stations to reduce 

the risk of leaving idle times. 

36 of the possible combinations of these rules each containing four rules are selected for the 

algorithm with respect to the experiments. The first rule in all of these combinations is MinSta. 

Each combination is called a sub-algorithm (SA). All sub-algorithms used by EMRH in a single 

run are summarized in Table 4.1. 
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Table 4.1 Combinations of Selection Rules used by EMRH 

 

Rule 1 Rule 2 Rule 3 Rule 4

SA-1 MinSta MinST MinIdle MaxSuc

SA-2 MinSta MinIdle MinST MaxSuc

SA-3 MinSta MinST MaxSuc MinIdle

SA-4 MinSta MinIdle MaxSuc MinST

SA-5 MinSta MaxSuc MinIdle MinST

SA-6 MinSta MaxSuc MinST MinIdle

SA-7 MinSta MinST MinIdle MaxFT

SA-8 MinSta MinIdle MaxFT MinST

SA-9 MinSta MinIdle MaxFT MaxSuc

SA-10 MinSta MinIdle MaxSuc MaxFT

SA-11 MinSta MinST MinIdle MaxImmSuc

SA-12 MinSta MinIdle MinST MaxImmSuc

SA-13 MinSta MinST MaxImmSuc MinIdle

SA-14 MinSta MinIdle MaxImmSuc MinST

SA-15 MinSta MaxImmSuc MinIdle MinST

SA-16 MinSta MaxImmSuc MinST MinIdle

SA-17 MinSta MinIdle MaxFT MaxImmSuc

SA-18 MinSta MinIdle MaxImmSuc MaxFT

SA-19 MinSta MinIdle MaxTT MaxSuc

SA-20 MinSta MinIdle MaxSuc MaxTT

SA-21 MinSta MaxSuc MinIdle MaxTT

SA-22 MinSta MaxSuc MaxTT MinIdle

SA-23 MinSta MaxTT MinIdle MaxSuc

SA-24 MinSta MinIdle MaxTT MaxImmSuc

SA-25 MinSta MaxTT MaxImmSuc MinIdle

SA-26 MinSta MinIdle MaxImmSuc MaxTT

SA-27 MinSta MaxImmSuc MinIdle MaxTT

SA-28 MinSta MaxImmSuc MaxTT MinIdle

SA-29 MinSta MinIdle Constrained MaxSuc

SA-30 MinSta MinIdle Constrained MaxImmSuc

SA-31 MinSta MinST Constrained MaxSuc

SA-32 MinSta MinST Constrained MaxImmSuc

SA-33 MinSta MinIdle MaxSuc Constrained

SA-34 MinSta MinIdle MaxImmSuc Constrained

SA-35 MinSta MinST Constrained MaxSuc

SA-36 MinSta MinST MaxImmSuc Constrained  
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4.2.3  Assignment Rules 

A variable called „Preferred Side‟ is stored through the algorithm for each E task. These values 

are updated at each step depending on the selection rules. The side satisfying the selection rule is 

determined as the preferred side of the task for the current step. For example, if the candidate 

task may be assigned to station 2 if assigned to left and may be assigned to station 3 if assigned 

to right, then the preferred side with respect to MinSta rule is updated as left. Preferred sides of 

E tasks are returned to either at the beginning of each step. 

Assignment rules are needed when the selected task is an E-task and the preferred side of the 

task is also E. In other words, these rules are used whenever assigning the task to the right and 

left stations are indifferent according to selection rules. Three assignment rules are developed to 

handle such cases: 

Remaining All (a): Processing times of all unassigned left tasks and task times of all unassigned 

right tasks are summed. Selected task is assigned to the side with minimum sum of remaining 

task time. This rule tries to leave space to the side with maximum total of remaining processing 

times. 

Remaining 2 Steps (b): Processing times of the tasks in the available task set and their immediate 

successors are summed for left and right tasks. Selected task is assigned to the side with 

minimum sum of remaining task time. 

Remaining 1 Step (c): Processing times of the tasks in the available task set are summed for left 

and right tasks. Selected task is assigned to the side with minimum sum of remaining task time. 

36 combination of selection rules are used with each of these three assignment rules. Hence, the 

algorithm actually solves 108 defined algorithms in a single run. From this point on the sub-

algorithms are named with the extension of the assignment rule sign. For instance, SA-1-a uses 

the selection rules listed in Table 4.10 and the assignment rule Remaining All. 

4.2.4  Random Rules 

In addition to the 108 defined combinations of selection and assignment rules, the algorithm 

further tries to provide more diversity using a random algorithm. 
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Random algorithm generates a combination of four selection rules among the eight developed 

rules. Then, an assignment rule among the three proposed assignment rules is selected. A task is 

selected from the available task set with respect to the random selection rules and assigned 

according to the random assignment rule. At the beginning of the next step, this process is 

repeated. Hence, the procedure is not stacked to one combination of rules through the algorithm, 

but uses different rules at each assignment. 

Number of random trials is entered before the algorithm is run. The current best solution is kept 

throughout the algorithm. Only the results that are as good as the current best solution are stored 

in order to reduce memory requirement. The best solutions found by the random algorithms are 

summarized at the end of the algorithm together with the solutions of the 108 sub-algorithms. 

4.2.5  Algorithm 

Additional notation used in the algorithm is described below: 

Additional Notation: 

NL  : Latest opened left station number. 

NR  : Latest opened right station number. 

FT_L(j)  : Finish time of the latest task in the left station of the j
th
 mated-station. 

FT_R(j) : Finish time of the latest task in the right station of the j
th
 mated-station. 

a(i)  : Binary variable indicating whether task i is assigned (i ∈ T) 

 

FT(i)  : Finish time of task i (i ∈ T) 

S(i)  : The side that task i is assigned to, L or R (i ∈ T) 

PS(i) : Preferred side of unassigned task i according to the current selection or 

assignment rule in consideration (i ∈ E) 

MSD(i) : Minimum station number that task i may be assigned to that is on the side S, 

where D ∈ {L,R} (i ∈ T). If the considered task can be assigned to the finally 
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opened station, the value of this variable is set to NL or NR according to the 

side constraint of the task. Otherwise this variable is set to NL+1 or NR+1. 

For E tasks, minimum station numbers for both L and R station are 

calculated. 

MSTD(i) : Earliest start time of the considered task for the earliest station on the 

side S, where D ∈ {L,R}, that it can be assigned to (i ∈ T). For E tasks 

minimum start times for both L and R stations are calculated. In the 

calculation of this variable, FT_L(i) and FT_R(i) are taken into account 

together with the cycle time and the latest finish time of the immediate 

predecessor tasks of the considered task. 

ITD (i) : This is the sum of the idle time left just before the starting time of the task and 

the idle time after the finish time of the task to the end of the cycle time (i ∈ T) 

for the station on the side D, where D ∈ {L,R}. First part of the summation time 

may occur due to precedence relations. Second part requires more complex 

calculations. It is assumed that the task in consideration is assigned and all the 

variables for the next step are calculated. If there are no tasks that may be 

assigned to the same station as the task in consideration, second part of the 

summation is calculated as the gap between the cycle time and assumed finish 

time of the task. Otherwise, this part of the summation is set as zero. This 

procedure tries to correct the miscalculations of resulting from ignoring the idle 

times that may occur after the considered task is finished. For E tasks, this 

variable is calculated for both L and R stations. 

 

The steps of the algorithm are summarized below: 

Step 0.  Open the first mated-station by setting: 

 NL = 1 

 NR = 1 

 FT_L(1) = 0 
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 FT_R(1) = 0 

Step 1. Generate the set of available tasks, Set_0. An available task is an unassigned 

task whose immediate predecessors are all assigned. 

   

- If n(Set _0) = 0, STOP 

- Else go to Step 2. 

Step 2. Calculate the variables MS(i), MST(i) and IT(i) for each task in Set _0. Set 

PS(i) = E for all E tasks in the set. Set PS(i) of the L and R tasks to their side 

constraints. 

 For E tasks, 

- If MSL(i) > MSR(i), set PS(i) = R 

- If MSL(i) < MSR(i), set PS(i) = L 

- Otherwise, preferred side remains as E. 

Step 3.  If n(Set _0) = 1, assign the task: 

- If PS(i) = L, update the variables as below: 

 

NL = MSL(i) 

a(i) = 1 

Return to Step 1. 

- If PS(i) = R, update the variables as below: 

 

NR = MSR(i) 

a(i) = 1 

Return to Step 1. 

- If PS(i) = E, update PS(i) according to the currently used assignment rule. If 

a tie occurs, update PS(i) to L or R randomly. Then, repeat this step. 
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Otherwise, go to Step 4. 

Step 4. Generate Set _1 among the tasks in Set _0 and update PS(i) of E tasks as the side 

that satisfies the first selection rule. It may remain E, if the rule is satisfied by 

both sides. 

  

 If n(Set _1) = 1, assign the task: 

- If PS(i) = L, update the variables as below: 

 

NL = MSL(i) 

a(i) = 1 

Return to Step 1. 

- If PS(i) = R, update the variables as below: 

 

NR = MSR(i) 

a(i) = 1 

Return to Step 1. 

- If PS(i) = E, update PS(i) according to the currently used assignment rule. If 

a tie occurs, update PS(i) to L or R randomly. Then, repeat this step. 

Otherwise, go to Step 5. 

Step 5. Generate Set _2 among the tasks in Set _1 and update PS(i) of E tasks as the side 

that satisfies the first selection rule. It may remain E, if the rule is satisfied by 

both sides. 

  

 If n(Set _2) = 1, assign the task: 

- If PS(i) = L, update the variables as below: 
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NL = MSL(i) 

a(i) = 1 

Return to Step 1. 

- If PS(i) = R, update the variables as below: 

 

NR = MSR(i) 

a(i) = 1 

Return to Step 1. 

- If PS(i) = E, update PS(i) according to the currently used assignment rule. If 

a tie occurs, update PS(i) to L or R randomly. Then, repeat this step. 

Otherwise, go to Step 6. 

Step 6. Generate Set _3 among the tasks in Set _2 and update PS(i) of E tasks as the side 

that satisfies the first selection rule. It may remain E, if the rule is satisfied by 

both sides. 

  

 If n(Set _3) = 1, assign the task: 

- If PS(i) = L, update the variables as below: 

 

NL = MSL(i) 

a(i) = 1 

Return to Step 1. 

- If PS(i) = R, update the variables as below: 

 

NR = MSR(i) 

a(i) = 1 

Return to Step 1. 
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- If PS(i) = E, update PS(i) according to the currently used assignment rule. If 

a tie occurs, update PS(i) to L or R randomly. Then, repeat this step. 

Otherwise, go to Step 7. 

Step 7. Generate Set _4 among the tasks in Set _3 and update PS(i) of E tasks as the side 

that satisfies the first selection rule. It may remain E, if the rule is satisfied by 

both sides. 

  

 Assign the first task in Set _4: 

- If PS(i) = L, update the variables as below: 

 

NL = MSL(i) 

a(i) = 1 

Return to Step 1. 

- If PS(i) = R, update the variables as below: 

 

NR = MSR(i) 

a(i) = 1 

Return to Step 1. 

- If PS(i) = E, update PS(i) according to the currently used assignment rule. If 

a tie occurs, update PS(i) to L or R randomly. Then, repeat this step. 

This seven step algorithm is in fact one of the 108 sub-algorithms that are solved by EMRH for a 

single run. Whenever EMRH reaches a solution for a sub-algorithm, the details of the solution 

are stored in the hard disk to reduce the virtual memory requirements. A report displaying the 

number of left and right stations found by each of the 108 sub-algorithms is created at the end of 

the EMRH run. Moreover, random algorithms may be solved for a specified number of times 

after the 108 sub-algorithms are solved. Random algorithms follow the same procedure as the 

algorithm described above except that generates four selection rules and one assignment rule 

whenever Step 2 is visited. EMRH keeps the best current solution throughout the random 
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algorithms and only saves the detailed solutions which are at least as good as the current best 

solution. 

The algorithm uses minimum station rule as the first rule in all of the sub-algorithms. Use of this 

rule as the first selection criterion guarantees that the objective of the heuristic is to minimize the 

length of the line, in other words, to minimize the number of mated-stations. This rule with the 

definition of the variables NL and NR also serves as a secondary objective of minimizing the 

number of stations. 

Figure 4.2 displays the flow chart of a sub-algorithm of EMRH. With this figure, hierarchical 

use of the selection rules may be better understood.  
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Figure 4.2 Flowchart of EMRH  
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4.3  Performance Comparison of RHH, EMRH and Other Heuristics in Literature 

Three large-sized problems focused in the literature are used for testing the heuristics: 148-task 

problem (Bartholdi, 1993), 65-task problem and 205-task problem (Lee et al., 2001). These 

problems will be named as P148, P65 and P205 respectively. Data of the problems may be found 

in Appendix A. Solutions to these large-sized problems with the same objective are proposed by 

the ant-colony optimization algorithm (ACO) by Baykasoglu and Dereli (2008), branch-and-

bound (B&B) algorithm proposed by Wu et al. (2008) and another ant-colony-optimization 

algorithm (2-ANTBAL) proposed by Simaria and Vilarinho (2009). Solutions proposed by these 

authors are used to test the performance of the heuristic approaches introduced in this study. 

Simaria and Vilarinho (2009) proposed the minimum, maximum and average number of stations 

of 10 runs of 2-ANTBAL. In this study, minimum values are used for comparison. 

Three measures are used to test the performance of the solutions: 

N : Number of mated-stations, i.e. length of the assembly line. 

n : Number of stations, n ∈ [2.N-1, 2.N]. 

 This measure is not used to compare the performance of RHH, since it is not 

included in the objective of the heuristic approach. 

Solution Time : Required time to reach the solution. This measure is used to compare RHH and 

EMRH only. 

Lower bounds on the number of mated-stations and lower bounds on the number of stations are 

calculated using the formulations proposed by Wu et al. (2008): 

LBN and LBn are calculated by the formulations proposed by Wu et al. (2008): 
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Solutions for 65-task problem are summarized in Table 4.2. 
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Table 4.2 of RHH, EMRH, ACO, B&B and 2-ANTBAL for P65 

 

n 14* 11* 10*

CPU time(s) 3.50 3.50 3.50

EMRH

N 7* 6* 5*

CPU time(s) 1542.87 1209.86 1200.10

RHH

N 7* 6* 5*

n 14* 12 10*

2-ANTBAL

N 7* 6* 5*

n 14* 11* 10*

B&B

N 7* 6* 5*

n 15 12 10*

ACO

N 8 6* 5*

Optimal n 14 11 10

Optimal N 7 6 5

LB for n 14 11 10

Cycle Time 381 490 544

LB for N 7 6 5

 

 

 

 

Asterisk sign, *, indicates that the solution found is optimal. Number of stations, n, is not given 

for RHH since it aims only to minimize the length of the assembly line, N. 

From Table 4.2, it can be seen that B&B, 2-ANTBAL, RHH and EMRH perform best reaching 

optimal solutions with respect to the objective of minimizing N for all of the problems. With 
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respect to the objective of minimizing n, B&B and EMRH perform best again finding the 

optimal solutions for all of the problems. 

Solutions for 148-task problem are summarized in Table 4.3. 
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Table 4.3 Performances of RHH, EMRH, ACO, B&B and 2-ANTBAL for P148 

 

12* 11*

CPU time(s) 17.00 17.00 17.00 18.00 18.00 18.00 18.00

n 26* 21* 17* 15* 13*

N 13* 11* 9* 8* 7* 6* 6*

EMRH

3599.16 2995.88CPU time(s) 10685.36 5920.06 4798.11 4193.09 3601.01

N 13* 11* 9* 8* 7* 6* 6*

RHH

12* 11*n 26* 21* 18 15* 14

N 13* 11* 9* 8* 7* 6* 6*

2-ANTBAL

12* 11*n 26* 21* n/a 15* 13*

N 13* 11* n/a 8* 7* 6* 6*

B&B

12* 11*n 26* 21* 18 15* 14

N 13* 11* 9* 8* 7* 6* 6*

ACO

12 11Optimal n 26 21 n/a 15 13

6 6

LB for n 26 21 17 15 13 12 11

Optimal N 13 11 9 8 7

459 510

LB for N 13 11 9 8 7 6 6

Cycle Time 204 255 306 357 408

 

 

 

Asterisk sign, *, indicates that the solution found is optimal. The optimal solution with respect to 

the objective of minimizing the number of stations to the 148-task with cycle time 306 is not 

known yet and the solution to this specific problem by B&B is not proposed by Wu et al. (2008). 

Hence corresponding entries are “n/a” in Table 4.3. 
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For the problem with 148 tasks, five of the heuristic approaches managed to find optimal line 

lengths for all of the problems. With respect to the secondary objective, B&B and EMRH 

performed best finding optimal number of opened stations to all of the problems. EMRH also 

managed to introduce the optimal solution for the problem with cycle time 306 for the first time. 

Solutions for 205-task problem are summarized in Table 4.4. 

 

 

 

Table 4.4 Performances of RHH, EMRH, ACO and 2-ANTBAL for P205 

 

Cycle Time 1133 1322 1510 1699 1888

Optimal N 11 n/a n/a n/a 7

LB for N 11 9 8 7 7

Optimal n n/a n/a n/a n/a 13

LB for n 21 18 16 14 13

N 12 11 9 9 8

ACO

n 24 22 18 18 15

N 11* 10 9 8 7*

2-ANTBAL

n 22 20 17 15 13*

N 11* 10 8* 7* 7*

RHH

CPU time(s) 5991.31 5397.54 4201.21 3603.67 3599.77

N 11* 9* 8* 7* 7*

EMRH

CPU time(s) 27 27 29 25 28

n 22 18* 16* 14* 13*
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Table 4.4 (continued) 

 

Cycle Time 2077 2266 2454 2643 2832

Optimal N 6 6 5 5 5

LB for N 6 6 5 5 5

Optimal n 12 n/a 10 n/a n/a

LB for n 12 11 10 9 9

N 7 6* 6 6 5*

ACO

n 14 12 12 11 10

N 6* 6* 5* 5* 5*

2-ANTBAL

n 12* 12 10* 10 10

N 6* 6* 5* 5* 5*

RHH

CPU time(s) 6001.35 4499.64 2999.70 3600.26 2399.93

N 6* 6* 5* 5* 5*

EMRH

CPU time(s) 33 34 31 28 27

n 12* 12 10* 10 10

 

 

 

 

Asterisk sign, *, indicates that the solution found is optimal. B&B solutions to P205 are not 

proposed by Wu et al. (2008), and therefore, this heuristic is discarded from the comparison for 

P205. 

Problems with 10 different cycle times are solved with the heuristic approaches. 

With respect to the primary objective of minimizing the line length, ACO achieved to find 

optimal solutions for two of the problems while 2-ANTBAL achieved to find optimal solutions 
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for seven of the problems. On the other hand, RHH achieved nine optimal results while EMRH 

managed to find optimal solutions to all of the problems. Three of these optimal solutions are 

introduced for the first time. 

With respect to the secondary objective, ACO could not manage to find optimal solutions while 

2-ANTBAL achieved to find optimal solutions for three of the problems. EMRH manage to 

verify optimality for six of the problems and found at least as good solutions as the other 

approaches did for the remaining four problems. Three of the optimal solutions are introduced 

for the first time. 

Complete solutions found by EMRH to three of the large-sized problems are given in Appendix 

D. 

With respect to the solution times, EMRH outperforms RHH. This is the expected result 

according to the structures of the heuristic approaches. EMRH managed to find solutions in at 

most 34 seconds for the large-sized literature problems. However, when compared with the 

mathematical models to solve Type-I 2SALB problems, RHH managed to find very good 

solutions in reasonable solution times. Well-known large-sized problems studied in the 

literature, EMRH managed to find the best results. However, the rules may still fail to perform 

well in unpredicted cases. In such cases, RHH may be used to exploit the advantages of 

mathematical models and find good solutions in reasonable solution times. 

4.4  Performance Tests of EMRH with respect to Side Freedom 

In order to observe the performances of EMRH for large-sized problems with different numbers 

of side constraints, experimental problems are generated from the 205-task problem (P205) 

proposed by Lee et al. (2001) and solved by the proposed heuristic. In order to define this 

characteristic of 2SALB problems, side freedom (SF), ratio of the number of E tasks to the 

number of all tasks, is used: 

 

Precedence relations and processing times of P205 are used for the experimental problems. 

Initially, all tasks are set to be E resulting in the problem with SF = 100%. This problem is P205 

with all side constraints relaxed. While generating the other problems, 10% of the E tasks in the 
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previous problem are randomly selected and updated as L or R tasks arbitrarily. Hence, each 

problem is a partially relaxed version of the problems that generated after the problem. With SF 

ranging from 100% to 0%, 11 problems are generated. Each problem is solved for three different 

cycle times, 1133, 1888 and 2643. 

Lower bounds on the number of mated-stations (LBN) and lower bounds on the number of 

stations (LBn) are again calculated with the formulation proposed by Wu et al. (2008). 

For comparing the solutions, line length gap and station number gap are used: 

 

 

33 problems are solved by EMRH and the best solutions found by the 108 sub-algorithms are 

used for comparing with the lower bounds. For all of the problems, solutions equal to LBN are 

reached. Averages of deviations from the lower bounds on the number of stations are displayed 

in Figure 4.3 
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Figure 4.3 Station Number Gap Performance of EMRH 

 

 

 

From Figure 4.3, EMRH keeps finding solutions as good as the solution found for the most 

relaxed problem until SF is equal to 10%. For the remaining two problems, station number gap 

slightly increases. 

EMRH tries to overcome the additional difficulty resulting from additional side constraints with 

different sub-algorithms. Hence, it is difficult to comment on the effect of side freedom from 

Figure 4.3. In order to observe the effect of this parameter, performances of sub-algorithms need 

to be investigated. Figure 4.4 displays the number of sub-algorithms that achieves the best 

solutions found by EMRH for each problem. 
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Figure 4.4 Performances of Sub-Algorithms of EMRH 

 

 

 

Since EMRH found the same solutions to almost all of the problems with different side 

freedoms, number of sub-algorithms that achieve the best solution of EMRH indicates the 

performance of sub-algorithms. Figure 4.4 shows that a smaller number of sub-algorithms 

manage to find the best solution as SF decreases. For the problems with CT = 1133, this number 

even decreases to one. The increase in the last problem is due to the increase in the lower bound 

of the problem. In other words, with the addition of new side constraints, a new station is opened 

and the problem is relaxed resulting in a more number of sub-algorithms achieving the best 

solution. Hence, this increase should not be considered in the analysis. For problems with cycle 

times 1888 and 2643, number of sub-algorithms achieving the best solution is almost stable until 
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SF equals 30%. For remaining problems, number of sub-algorithms achieving the best solution 

greatly decreases. 
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CHAPTER 5 
 

 

CONCLUSION 

 

 

 

This study focuses on solving two-sided assembly line balancing (2SALB) problems. This 

problem is very recent to the literature and very limited number of studies exists concerning 

2SALB. Existing studies generally propose a mathematical model and a heuristic approach. 

Mathematical models are verified with small-sized literature problems; however, solutions for 

large-sized problems have not been introduced yet. Similarly, this study also proposes 

mathematical models to solve 2SALB problems. Two mathematical models are developed for 

each of type-I and type-II problems, one with binary station variables (MM/Bin) and one with 

integer station variables (MM/Int). The mathematical model using integer station variables is the 

first mathematical model that excludes binary assignment variables from the model, trying to 

reduce the size of the feasible region of the relaxed linear program. Solutions for large-sized 

problems which are focused in the literature are introduced first time. Experiments show that 

MM/Int manages to find good solutions to large-sized problems while MM/Bin fails to return a 

solution for most of these problems. 

Despite the good performance of MM/Int, the quality of the solutions decreases as the size of the 

problem gets larger. In order to handle problems with greater size, 2 heuristic approaches are 

proposed in this study. Heuristic approaches focus on solving type-I 2SALB problems. Good 

solutions obtained from MM/Int give the idea of using a mathematical model in a heuristic 

approach. The first heuristic, called Rolling Horizon Heuristic (RHH), tries to obtain a solution 

by solving a modified version of MM/Int for sub-problems and proceeds like a rolling horizon. 

With flexible sub-problem size, the heuristic promises to use the limited resources, such as time 

and memory, most efficiently to find good solutions. Performance of RHH is tested with large-
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sized problems which are focused in the literature. RHH managed to find the optimal solutions 

to 19 of the 20 test problems, two of which are introduced first time. 

Second heuristic proposed in this study is inspired by multiple-rule heuristic approach (Boctor, 

1995). Based on numerous experiments, task selection and task assignment rules are developed 

to handle precedence and side constraints that result in idle times in these kinds of algorithms. 

Hence, the heuristic is called as Extended Multi Rule Heuristic (EMRH). Like RHH, 

performance of EMRH is tested with large-sized problems focused in the literature. EMRH 

manages to find the optimal solutions for all of the test problems, three of which are firstly 

introduced. Furthermore, EMRH tries to minimize the number of opened stations as a secondary 

objective. For 16 of the 20 problems, optimality with respect to the secondary objective is 

confirmed. Four of these optimal solutions are again introduced for the first time. 

Heuristics introduced in this study are compared with the proposed heuristics in the literature. 

Experiments shows that EMRH and RHH manages to find at least as good as the solutions found 

by the ant-colony algorithm (ACO) introduced by Baykasoglu and Dereli (2008) and the ant-

colony algorithm (2-ANTBAL) introduced by Simaria and Vilarinho (2009) in all of the 

problems and manages to perform better in some of these problems. On the other hand, branch-

and-bound algorithm (B&B) proposed by Wu et al. (2008) performs as well as RHH and EMRH. 

Heuristics proposed in this study are also compared with each other. By the quality of the 

solutions, the heuristics almost equally performs. On the other hand, EMRH finds the solutions 

within quite impressive solution times. Numerous experiments on deciding the selection and 

assignment rules that EMRH uses are the most important reason of the good solutions found by 

this heuristic. However, there is always the risk of observing problematic precedence and side 

constraints that cannot be handled by the rules that EMRH uses. On the other hand, RHH always 

promises good solutions as it exploits the advantages of mathematical modeling. The flexibility 

of RHH on the planning horizon size allows using limited resources, i.e. time and memory, most 

efficiently. 

For future studies, mathematical models that use integer station variables only excluding the 

binary assignment variables may be modified for special types of 2SALB problems, such as 

problems with zoning constraints or mixed-model problems. Also, RHH and EMRH may be 

modified for different types of 2SALB problems. 
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Furthermore, EMRH may be regarded as an analysis tool for better understanding 2SALB 

problems. At the end of the run of the algorithm, a summary of the best solutions found by sub-

algorithms, different combinations of selection and assignment rules, is provided. This report 

may be used to understand which combinations work best and how they may be improved. 
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APPENDIX A 

DATA OF LARGE-SIZED PROBLEMS 
 

 

Table A.1 Data of 65-Task Problem 

Task No Side Task Time Immediate Successors 

1 E 49 3 

2 E 49 3 

3 E 71 4, 23 

4 E 26 5, 6, 7, 9, 11, 12, 25, 26, 27, 41, 45, 49 

5 E 42 14 

6 E 30 14 

7 R 167 8 

8 R 91 14 

9 L 52 10 

10 L 153 14 

11 E 68 14 

12 E 52 14 

13 E 135 14 

14 E 54 15, 18, 20, 22 

15 E 57 16 

16 L 151 17 

17 L 39 31 

18 R 194 19 

19 R 35 21 

20 E 119 21 

21 E 34 31 

22 E 38 31 

23 E 104 24 

24 E 84 31 

25 L 113 31 
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Table A.1 (continued) 

26 R 72 31 

27 R 62 28 

28 R 272 50 

29 L 89 50 

30 L 49 50 

31 E 11 32, 36, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62 

32 E 45 33 

33 E 54 34 

34 E 106 35 

35 R 132 50 

36 E 52 37 

37 E 157 38 

38 E 109 39, 40 

39 L 32 50 

40 R 32 50 

41 E 52 42 

42 E 193 43 

43 E 34 62 

44 R 34 46 

45 L 97 46 

46 E 37 47 

47 L 25 48 

48 L 89 50 

49 E 27 50 

50 E 50 65 

51 R 46 65 

52 E 46 65 

53 L 55 65 

54 E 118 65 

55 R 47 65 

56 E 164 57 

57 E 113 65 

58 L 69 65 

59 R 30 65 
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Table A.1 (continued) 

60 E 25 65 

61 R 106 65 

62 E 23 63 

63 L 118 64 

64 L 155 65 

65 E 65 - 

 

Table A.2 Data of 205-Task Problem 

Task No Side Task Time Immediate Successors 

1 E 692 36 

2 E 42 3, 4 

3 R 261 5 

4 L 261 5 

5 E 157 7, 13 

6 E 90 36 

7 R 54 8 

8 R 67 9 

9 R 30 10 

10 R 106 11 

11 R 32 12 

12 R 62 36 

13 L 54 14 

14 L 67 15 

15 L 30 16 

16 L 106 17 

17 L 32 18 

18 L 62 36 

19 E 56 36 

20 E 67 22 

21 E 86 22 

22 E 37 23 

23 E 41 24, 34 

24 E 72 26, 27, 28 
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Table A.2 (continued) 

25 R 86 28 

26 L 16 35 

27 R 51 35 

28 R 66 29 

29 R 41 30, 33 

30 R 72 31, 32 

31 R 51 35 

32 R 16 35 

33 R 15 35 

34 L 15 35 

35 E 85 36 

36 E 59 

37, 40, 41, 42, 62, 69, 72, 75, 83, 110, 

111, 112 

37 L 23 38 

38 L 13 39 

39 L 19 45 

40 E 108 43, 54 

41 E 214 92 

42 E 80 43, 54 

43 L 37 44 

44 L 84 45 

45 L 18 46, 48, 51, 53 

46 L 12 47 

47 L 29 92 

48 L 37 49 

49 L 13 50 

50 L 70 92 

51 L 217 52 

52 L 72 92 

53 L 85 92 

54 R 43 55, 133 

55 R 97 56, 59, 61 

56 R 37 57 

57 R 13 58 
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Table A.2 (continued) 

58 R 35 92 

59 R 217 60 

60 R 72 92 

61 R 85 92 

62 E 25 63 

63 E 37 64 

64 E 37 65, 68 

65 E 103 66 

66 E 140 67 

67 E 49 80 

68 E 35 80 

69 E 51 70 

70 E 88 71 

71 E 53 73 

72 E 144 73 

73 E 337 74 

74 E 107 76 

75 E 371 92 

76 E 97 77, 78, 79 

77 E 166 80, 82 

78 L 92 80 

79 R 92 80 

80 E 106 81 

81 E 49 84 

82 E 92 92 

83 E 371 92 

84 E 87 85 

85 E 162 86, 88, 90 

86 E 96 87 

87 E 79 92 

88 E 96 89 

89 E 42 92 

90 R 88 91 

91 R 90 92 
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Table A.2 (continued) 

92 R 97 93, 94, 95, 96, 97, 98, 99 

93 R 270 135 

94 E 452 135 

95 R 48 113 

96 E 338 113 

97 E 34 100 

98 E 65 100 

99 E 50 100 

100 E 112 101, 103, 105, 109, 130, 131, 134 

101 E 48 102 

102 E 117 113 

103 E 50 104 

104 R 68 113 

105 L 232 106, 107 

106 L 122 108 

107 E 151 108 

108 L 31 113 

109 E 97 113 

110 R 308 113 

111 L 116 113 

112 R 312 113 

113 E 34 

114, 115, 116, 117, 118, 119, 120, 121, 

122, 123, 124, 161, 162, 163, 169 

114 L 128 160 

115 E 54 160 

116 R 175 160 

117 E 55 160 

118 E 306 126 

119 E 59 126 

120 E 59 126 

121 E 66 126 

122 E 66 126 

123 E 23 126 

124 E 244 125 
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Table A.2 (continued) 

125 E 54 126 

126 R 294 127, 128, 129 

127 E 84 135 

128 E 61 135 

129 E 57 135 

130 R 38 136 

131 E 944 132 

132 R 511 133 

133 R 625 189 

134 R 445 189 

135 L 68 

136, 137, 138, 139, 140, 141, 142, 144, 

145, 147, 148, 149, 150, 151, 152 

136 L 53 189 

137 E 49 160 

138 E 92 160 

139 E 236 160 

140 L 116 143 

141 L 265 143 

142 L 149 143 

143 L 74 160 

144 E 332 160 

145 E 324 146 

146 L 104 160 

147 L 51 160 

148 R 58 160 

149 R 67 160 

150 R 49 160 

151 E 107 160 

152 L 38 160 

153 L 27 154 

154 E 68 155 

155 E 207 156 

156 E 202 157 

157 E 83 189 
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Table A.2 (continued) 

158 R 35 159 

159 R 58 189 

160 E 42 164, 170, 178, 179, 184 

161 R 68 167 

162 R 68 165 

163 R 68 164 

164 R 103 165 

165 R 103 166 

166 R 103 167 

167 R 103 168 

168 R 103 177 

169 L 68 170 

170 L 103 172 

171 L 68 172 

172 L 103 173 

173 L 103 175 

174 L 68 175 

175 L 103 176 

176 L 103 177 

177 E 10 185, 186, 187, 188, 194, 195 

178 E 187 180 

179 L 134 180 

180 L 89 181, 183 

181 L 58 182 

182 L 49 - 

183 L 134 - 

184 L 53 - 

185 E 334 189 

186 R 24 189 

187 R 76 189 

188 L 76 189 

189 E 192 190, 191, 193 

190 E 98 - 

191 R 258 192 
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Table A.2 (continued) 

192 E 165 - 

193 R 38 - 

194 E 115 197 

195 L 83 196 

196 R 56 197 

197 R 29 198, 199 

198 R 303 - 

199 R 18 - 

200 R 29 - 

201 L 154 - 

202 L 90 - 

203 L 93 - 

204 E 94 - 

205 E 165 - 

 

Table A.3 Data of 148-Task Problem 

Task No Side Task Time Immediate Predecessors 

1 E 16   

2 E 30   

3 E 7 2 

4 E 47 3 

5 E 29 1, 3 

6 E 8 1, 3 

7 E 39 1, 3 

8 E 37 1, 4 

9 E 32 6 

10 E 29 8 

11 E 17   

12 E 11 11 

13 E 32 12 

14 E 15 5, 7, 9, 10 

15 L 53 14 

16 R 53 14 

17 E 8 15, 16 

18 L 24 17 

19 R 24 17 
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Table A.3 (continued) 

20 E 8 18, 19 

21 R 7 20 

22 L 8 20 

23 L 14 20 

24 R 13 20 

25 R 10 21, 22, 23, 24 

26 R 25 21, 22, 23, 24 

27 L 11 21, 22, 23, 24 

28 L 25 21, 22, 23, 24 

29 E 11 25, 26, 27, 28 

30 R 29   

31 E 25 29 

32 L 10   

33 R 14   

34 L 41 32 

35 R 42 33 

36 R 47 31, 34, 35 

37 R 7 36 

38 R 80 37 

39 R 7 38 

40 R 41 39 

41 R 47 40 

42 L 16   

43 L 32 42 

44 L 66 43 

45 L 80 37 

46 L 7 45 

47 L 41 46 

48 E 13 40, 47 

49 L 47 47 

50 E 33   

51 L 34 50 

52 L 11   

53 L 118 51, 52 

54 L 25 40, 47 

55 R 7 54 

56 E 28   

57 L 12   

58 L 52   

59 E 14   
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Table A.3 (continued) 

60 E 3   

61 E 3   

62 E 8 61 

63 E 16 62 

64 R 33   

65 E 8 64 

66 E 18 65 

67 E 10 63, 66 

68 E 14 67 

69 R 28 51 

70 R 11   

71 R 118 64, 70 

72 R 25 54, 64 

73 E 40 56 

74 E 40   

75 E 101 59, 74 

76 E 5 54 

77 E 28 76 

78 E 8 77 

79 E 111 69 

80 E 7 79 

81 E 26 80 

82 E 10 57, 78, 81 

83 E 21 82 

84 E 26 82 

85 E 20   

86 E 21 58, 73 

87 E 47 86 

88 E 23 58, 73 

89 E 13 54, 59, 73 

90 E 19 54, 73, 75 

91 E 115   

92 E 35   

93 L 26   

94 E 46   

95 E 20 68 

96 E 31 73 

97 E 19 75 

98 E 34 68 

99 E 51 65 
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Table A.3 (continued) 

100 E 39 99 

101 E 30 95, 98, 100 

102 E 26 101 

103 E 13 101 

104 E 45 96 

105 E 58 91 

106 E 28 84 

107 E 8 106 

108 E 43 107 

109 E 40 108 

110 E 34 109 

111 E 23 90 

112 L 162 111 

113 L 11 112 

114 E 19 113 

115 E 14 114 

116 E 31 113 

117 E 32 116 

118 E 26 117 

119 E 55 105 

120 E 31 113 

121 E 32 120 

122 E 26 121 

123 E 19 113 

124 E 14 123 

125 E 19 115, 124 

126 E 48 118, 122 

127 E 55 102, 103 

128 L 8 113 

129 L 11 128 

130 L 27 129 

131 L 18 130 

132 E 36   

133 L 23 54, 55 

134 R 20 72 

135 E 46 92, 132, 133, 134 

136 E 64 135 

137 L 22 130 

138 E 15   

139 E 34 138 
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Table A.3 (continued) 

140 E 22 139 

141 L 151   

142 R 148 141 

143 L 64 142 

144 L 170   

145 R 137 144 

146 R 64 142 

147 L 78 142, 145 

148 R 78 142, 145 
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APPENDIX B 

MATHEMATICAL MODEL SOLUTIONS FOR TYPE-I PROBLEMS 
 

 

Table B.1 MM/Int-I Solution for 65-Task Problem with CT=381 and CT=490 

 

CT = 381 CT = 490 

Task Station Side 

Finish 

Time Station Side Finish Time 

1 1 L 49 1 L 49 

2 1 R 87 1 L 98 

3 1 R 158 1 R 206 

4 1 R 184 1 L 240 

5 1 L 346 2 L 94 

6 2 L 191 1 L 390 

7 2 R 290 2 R 204 

8 2 R 381 2 R 295 

9 2 L 52 2 L 337 

10 2 L 381 2 L 490 

11 1 L 304 1 L 308 

12 1 L 236 1 L 360 

13 1 L 184 1 R 135 

14 3 L 54 3 L 54 

15 3 R 373 3 L 111 

16 4 L 264 3 L 381 

17 4 L 337 3 L 420 

18 3 R 316 3 R 300 

19 4 R 35 3 R 373 

20 3 L 366 3 L 230 

21 4 L 298 3 R 407 

22 3 R 122 3 R 338 

23 2 R 104 1 R 406 

24 3 R 84 1 R 490 

25 4 L 113 2 L 232 

26 1 R 256 3 R 72 
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Table B.1 (continued) 

27 1 R 370 1 R 302 

28 4 R 341 4 R 459 

29 6 L 112 5 L 112 

30 5 L 376 1 L 147 

31 4 L 348 3 L 431 

32 5 L 163 4 L 163 

33 6 L 166 4 L 217 

34 6 R 272 4 L 323 

35 7 R 257 6 R 212 

36 5 R 52 3 L 490 

37 5 R 372 4 R 157 

38 6 R 381 5 L 339 

39 7 L 150 6 L 212 

40 7 R 125 5 R 371 

41 1 R 308 2 L 52 

42 3 L 247 2 R 488 

43 4 R 69 3 R 106 

44 1 R 34 1 R 240 

45 2 L 149 1 L 490 

46 2 L 228 2 R 37 

47 4 L 373 2 L 119 

48 6 L 324 5 L 483 

49 5 R 215 3 R 434 

50 7 R 307 6 R 262 

51 7 R 46 3 R 480 

52 6 R 46 6 R 308 

53 6 L 379 5 L 394 

54 5 L 118 4 L 118 

55 7 R 93 6 R 47 

56 5 L 327 4 L 487 

57 6 R 159 6 R 421 

58 6 L 235 6 L 421 

59 5 R 188 4 R 187 

60 4 R 373 6 L 25 

61 5 R 158 5 R 477 

62 6 L 23 5 L 23 

63 7 L 118 5 L 230 

64 7 L 307 6 L 180 

65 7 R 372 6 R 486 
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Table B.2 MM/Int-I Solution to 65-Task Problem with CT=544 

 

CT = 544 

Task Station Side 

Finish 

Time 

1 1 R 83 

2 1 R 132 

3 1 R 203 

4 1 R 229 

5 2 L 139 

6 1 L 379 

7 1 R 396 

8 2 R 304 

9 1 L 544 

10 2 L 408 

11 1 L 349 

12 1 L 281 

13 1 L 135 

14 2 L 462 

15 2 R 519 

16 3 L 270 

17 3 L 309 

18 3 R 194 

19 3 R 267 

20 3 L 119 

21 3 R 301 

22 3 R 232 

23 2 R 104 

24 2 R 388 

25 1 L 492 

26 2 R 213 

27 2 R 450 

28 4 R 537 

29 1 L 224 

30 2 L 511 

31 3 L 320 

32 3 L 365 

33 3 L 419 

34 4 L 133 

35 4 R 265 

36 4 L 387 

37 4 L 544 
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Table B.2 (continued) 

35 4 R 265 

36 4 L 387 

37 4 L 544 

38 5 R 109 

39 5 L 187 

40 5 R 141 

41 1 R 475 

42 3 R 494 

43 4 R 110 

44 1 R 34 

45 2 L 97 

46 2 R 141 

47 2 L 166 

48 2 L 255 

49 1 R 423 

50 5 L 474 

51 4 R 76 

52 4 L 179 

53 5 L 242 

54 3 L 537 

55 3 R 541 

56 5 R 311 

57 5 L 424 

58 5 L 311 

59 4 R 30 

60 4 L 25 

61 5 R 474 

62 4 R 133 

63 4 L 297 

64 5 L 155 

65 5 R 539 
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APPENDIX C 

MATHEMATICAL MODEL SOLUTIONS FOR TYPE-II PROBLEMS 
 

 

Table C.1 MM/Int-II Solution to 65-Task Problem with N=4 and N=5 

 

N = 4 N = 5 

Task Station Side Finish Time Station Side Finish Time 

1 1 R 49 1 L 49 

2 1 L 49 1 R 49 

3 1 R 154 1 L 120 

4 1 R 180 1 L 146 

5 1 L 482 1 L 188 

6 2 L 211 2 R 155 

7 1 R 347 1 R 537 

8 2 R 91 2 R 125 

9 1 L 440 1 L 360 

10 1 L 652 1 L 537 

11 2 L 68 1 L 256 

12 1 R 652 1 L 308 

13 1 R 482 1 R 184 

14 2 L 265 2 R 209 

15 2 R 450 2 L 347 

16 2 L 619 2 L 498 

17 3 L 73 2 L 537 

18 2 R 652 2 R 507 

19 3 R 35 3 R 76 

20 2 L 468 3 L 257 

21 3 R 69 3 L 291 

22 3 R 134 3 R 114 

23 1 L 388 2 R 313 

24 2 L 349 3 L 375 

25 2 L 181 3 L 113 

26 2 R 200 1 R 318 
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Table C.1 (continued) 

27 1 R 544 1 R 246 

28 3 R 464 3 R 386 

29 1 L 138 3 L 537 

30 1 L 187 4 L 49 

31 3 R 145 3 L 386 

32 3 L 207 3 R 431 

33 3 L 261 3 R 537 

34 3 L 367 4 L 533 

35 4 R 392 5 R 292 

36 3 L 419 4 R 52 

37 3 R 621 4 L 240 

38 4 L 164 5 L 301 

39 4 L 432 5 L 422 

40 4 R 230 5 R 370 

41 1 R 596 1 R 370 

42 2 R 393 2 L 193 

43 3 L 34 4 L 83 

44 1 R 83 2 R 34 

45 1 L 284 2 L 290 

46 2 R 128 3 R 37 

47 2 L 652 3 L 138 

48 3 L 162 5 L 390 

49 3 R 96 2 R 537 

50 4 R 555 5 L 472 

51 4 R 92 5 R 338 

52 4 R 46 3 R 477 

53 4 L 55 3 L 441 

54 4 L 400 4 R 494 

55 3 R 192 5 R 160 

56 3 L 652 4 R 270 

57 4 R 505 5 R 113 

58 3 L 488 4 L 427 

59 4 R 260 4 R 82 

60 4 R 587 5 L 180 

61 4 R 198 4 R 376 

62 3 R 652 4 R 106 

63 4 L 282 4 L 358 

64 4 L 587 5 L 155 

65 4 R 652 5 R 537 
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Table C.2 MM/Int-II Solutions to 65-Task Problem with N=6 and N=7 

 

N = 6 N = 7 

Task Station Side Finish Time Station Side Finish Time 

1 1 R 83 1 R 49 

2 1 L 49 1 L 49 

3 1 R 154 1 L 120 

4 1 R 180 1 R 210 

5 1 L 330 1 L 374 

6 2 L 134 2 L 272 

7 1 R 426 2 R 194 

8 2 R 91 2 R 374 

9 2 L 52 1 L 276 

10 2 L 287 2 L 242 

11 2 R 352 1 R 312 

12 2 L 104 1 L 328 

13 1 L 184 1 R 184 

14 2 L 438 3 L 54 

15 3 L 94 3 R 141 

16 3 L 364 3 L 324 

17 3 L 441 4 L 39 

18 3 R 228 3 R 374 

19 3 R 263 4 R 35 

20 3 L 213 3 L 173 

21 3 R 443 4 L 73 

22 3 L 402 3 R 179 

23 1 L 288 1 L 224 

24 3 R 409 3 R 84 

25 1 L 443 4 L 186 

26 2 R 424 2 R 266 

27 3 R 325 1 R 374 

28 5 R 325 4 R 307 

29 4 L 163 2 L 89 

30 4 L 49 3 L 373 

31 4 R 11 4 L 197 

32 4 L 233 4 L 242 

33 4 L 287 4 R 374 

34 5 L 106 6 L 106 

35 6 R 277 6 R 238 

36 4 R 63 5 R 52 

37 4 R 313 5 L 209 

38 5 R 434 5 L 318 
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Table C.2 (continued) 

38 5 R 434 5 L 318 

39 6 L 150 6 L 138 

40 6 R 32 7 R 196 

41 1 R 259 5 L 52 

42 2 R 284 5 R 245 

43 3 R 34 6 R 34 

44 1 R 34 1 R 244 

45 2 L 384 2 L 374 

46 3 L 37 5 R 282 

47 4 L 188 6 L 186 

48 4 L 431 7 L 89 

49 1 R 207 2 R 27 

50 6 R 327 7 L 309 

51 4 R 109 5 R 328 

52 5 L 152 5 R 374 

53 4 L 342 5 L 374 

54 6 L 118 4 L 374 

55 4 R 156 6 R 106 

56 5 L 316 7 R 164 

57 6 R 145 7 R 309 

58 6 L 374 6 L 374 

59 5 R 53 6 R 268 

60 4 L 74 6 R 59 

61 4 R 419 6 R 374 

62 5 R 23 6 L 161 

63 5 L 434 6 L 304 

64 6 L 305 7 L 244 

65 6 R 439 7 R 374 
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Table C.3 MM/Int-II Solution to 65-Task Problem with N=8 

 
N = 8 

Task Station Side Finish Time 

1 1 L 49 

2 1 R 49 

3 1 R 120 

4 1 R 250 

5 1 R 292 

6 3 L 30 

7 2 R 167 

8 2 R 330 

9 1 L 325 

10 2 L 153 

11 2 L 221 

12 2 L 273 

13 1 L 273 

14 3 L 84 

15 3 R 141 

16 3 L 319 

17 4 L 158 

18 4 R 290 

19 4 R 325 

20 4 L 119 

21 5 R 34 

22 4 L 196 

23 1 R 224 

24 3 L 168 

25 4 L 309 

26 2 R 239 

27 4 R 96 

28 6 R 325 

29 1 L 138 

30 6 L 336 

31 5 R 45 

32 5 R 90 

33 5 R 144 

34 7 L 106 

35 8 R 210 

36 5 L 174 

37 5 L 331 

38 7 R 109 
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Table C.3 (continued) 

39 8 L 150 

40 8 R 32 

41 2 L 325 

42 3 R 334 

43 4 R 34 

44 1 R 326 

45 5 L 97 

46 5 R 181 

47 6 L 25 

48 6 L 114 

49 3 R 27 

50 8 R 260 

51 5 R 333 

52 8 R 78 

53 6 L 287 

54 8 L 118 

55 7 R 156 

56 7 R 320 

57 8 L 263 

58 7 L 330 

59 6 R 30 

60 5 L 122 

61 5 R 287 

62 6 R 53 

63 6 L 232 

64 7 L 261 

65 8 R 328 
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APPENDIX D 

EMRH SOLUTIONS FOR TYPE-I PROBLEMS 
 

 

Table D.1 EMRH Solutions to 65-Task Problem with CT=381 and CT=490 

 
CT = 381 CT = 490 

Task Station Side Finish Time Station Side Finish Time 

1 1 R 49 1 R 49 

2 1 L 49 1 L 49 

3 1 L 120 1 R 120 

4 1 L 146 1 R 146 

5 2 R 253 1 R 188 

6 1 L 381 1 L 214 

7 1 R 351 1 R 355 

8 2 R 91 1 R 446 

9 1 L 198 1 L 266 

10 1 L 351 1 L 419 

11 2 R 159 2 R 68 

12 2 R 211 2 L 52 

13 1 R 184 1 L 184 

14 2 R 307 2 R 122 

15 3 L 57 2 R 179 

16 3 L 208 2 L 426 

17 3 L 247 3 L 39 

18 3 R 194 2 R 373 

19 3 R 348 2 R 408 

20 3 R 313 2 L 275 

21 4 L 34 2 R 442 

22 2 L 379 4 L 485 

23 2 L 104 2 L 156 

24 4 R 84 3 R 84 

25 2 L 217 3 L 152 

26 2 L 289 3 L 224 

27 5 L 203 2 L 488 

28 6 R 272 3 R 356 

29 7 L 89 3 L 313 
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Table D.1 (continued) 

30 7 L 227 3 L 362 

31 4 R 95 3 R 367 

32 5 R 154 3 R 412 

33 5 R 208 4 R 54 

34 5 R 314 4 R 160 

35 7 R 132 4 R 292 

36 4 R 147 4 L 52 

37 4 L 355 4 L 209 

38 5 R 109 4 L 318 

39 6 L 369 4 L 350 

40 5 R 346 4 R 442 

41 2 L 341 3 L 414 

42 4 R 340 5 R 193 

43 4 R 374 5 R 227 

44 2 R 341 1 R 480 

45 3 L 344 4 L 447 

46 3 L 381 4 R 484 

47 4 L 380 5 L 25 

48 7 L 178 5 L 114 

49 2 R 368 1 L 446 

50 7 L 277 5 L 475 

51 6 R 365 3 R 458 

52 7 R 284 3 L 460 

53 5 L 376 5 L 169 

54 5 L 321 4 R 410 

55 6 R 319 2 R 489 

56 4 L 198 5 L 333 

57 6 L 268 5 R 446 

58 6 L 337 5 L 402 

59 1 R 381 3 R 488 

60 3 R 373 1 L 471 

61 7 R 238 5 R 333 

62 5 L 23 5 L 425 

63 5 L 141 6 L 118 

64 6 L 155 6 L 273 

65 7 L 349 6 L 338 
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Table D.2 EMRH Solution to 65-Task Problem with CT=544 

 
CT = 544 

Task Station Side Finish Time 

1 1 R 49 

2 1 L 49 

3 1 R 120 

4 1 R 146 

5 1 L 278 

6 1 L 308 

7 1 R 313 

8 1 R 404 

9 1 L 236 

10 1 L 461 

11 1 R 472 

12 1 L 513 

13 1 L 184 

14 2 R 54 

15 2 R 111 

16 2 L 374 

17 2 L 413 

18 2 R 305 

19 2 R 340 

20 2 L 223 

21 2 R 374 

22 3 L 542 

23 2 L 104 

24 2 R 458 

25 3 L 113 

26 2 L 485 

27 3 L 504 

28 4 R 436 

29 4 L 366 

30 4 L 415 

31 3 L 124 

32 3 R 238 

33 3 R 326 

34 3 R 455 

35 5 R 132 

36 3 L 176 

37 3 L 333 

38 3 L 442 
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Table D.2 (continued) 

39 4 L 447 

40 3 R 487 

41 2 R 510 

42 3 R 193 

43 3 R 272 

44 1 R 506 

45 4 L 97 

46 4 L 134 

47 4 L 159 

48 4 L 536 

49 1 L 540 

50 5 R 288 

51 4 R 482 

52 4 R 528 

53 2 L 540 

54 5 L 118 

55 3 R 534 

56 4 R 164 

57 5 L 231 

58 5 L 300 

59 1 R 536 

60 2 R 535 

61 5 R 238 

62 3 R 349 

63 4 L 277 

64 5 L 455 

65 5 L 520 
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Table D.3 EMRH Solutions to 205-Task Problem with CT=1133 and CT=1322 

 
CT = 1133 CT = 1322 

Task Station Side Finish Time Station Side Finish Time 

1 1 L 1093 1 L 1149 

2 1 L 109 1 L 109 

3 1 R 690 1 R 690 

4 1 L 370 1 L 370 

5 1 R 847 1 R 847 

6 2 R 330 2 R 141 

7 1 R 973 1 R 973 

8 1 R 1040 1 R 1040 

9 1 R 1070 1 R 1070 

10 2 R 106 1 R 1176 

11 2 R 138 1 R 1208 

12 2 R 392 2 L 200 

13 2 L 54 1 L 1203 

14 2 L 121 1 L 1270 

15 2 L 151 1 L 1300 

16 2 L 257 2 L 106 

17 2 L 289 2 L 138 

18 2 L 351 2 L 262 

19 2 L 407 1 L 426 

20 1 L 67 1 L 67 

21 1 R 86 1 R 86 

22 1 R 123 1 R 123 

23 1 R 164 1 R 164 

24 1 R 236 1 R 236 

25 1 R 322 1 R 322 

26 1 L 386 1 L 442 

27 2 R 189 1 R 1259 

28 1 R 388 1 R 388 

29 1 R 429 1 R 429 

30 1 R 919 1 R 919 

31 2 R 240 2 R 51 

32 1 R 1086 1 R 1275 

33 1 R 1101 1 R 1290 

34 1 L 401 1 L 457 

35 2 L 492 2 R 226 

36 2 L 551 2 L 321 

37 2 L 1103 2 L 1221 

38 2 L 1116 2 L 1234 
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Table D.3 (continued) 

39 3 L 426 2 L 1290 

40 2 R 803 2 R 741 

41 3 R 902 4 L 431 

42 2 R 883 2 R 821 

43 3 L 407 2 L 1271 

44 3 L 510 3 L 250 

45 3 L 528 3 L 268 

46 3 L 1073 3 L 1076 

47 3 L 1115 3 L 1214 

48 3 L 1061 3 L 1064 

49 3 L 1086 3 L 1089 

50 4 L 287 3 L 1284 

51 4 L 217 4 L 217 

52 4 L 359 4 L 503 

53 4 L 444 4 L 588 

54 3 R 232 2 R 1308 

55 3 R 421 3 R 189 

56 3 R 458 4 R 37 

57 3 R 471 4 R 50 

58 3 R 937 4 R 302 

59 3 R 688 4 R 267 

60 3 R 1009 4 R 374 

61 3 R 1094 4 R 459 

62 2 R 908 2 R 864 

63 2 R 945 2 R 901 

64 2 R 982 2 R 938 

65 2 R 1085 2 R 1041 

66 3 R 140 2 R 1181 

67 3 R 189 2 R 1230 

68 2 R 1120 2 R 1265 

69 2 L 602 2 L 372 

70 2 L 690 2 L 460 

71 2 L 743 2 L 513 

72 2 R 695 2 L 657 

73 2 L 1080 2 L 994 

74 3 L 107 2 L 1101 

75 4 R 651 4 R 830 

76 3 L 204 2 L 1198 

77 3 L 370 3 L 166 

78 3 L 620 3 L 360 

79 3 R 324 3 R 92 
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Table D.3 (continued) 

80 3 L 726 3 L 466 

81 3 L 775 3 L 515 

82 4 L 536 4 L 680 

83 4 L 907 4 L 1051 

84 3 L 862 3 L 602 

85 3 L 1024 3 L 764 

86 4 R 96 3 L 1185 

87 4 R 730 4 R 909 

88 4 R 192 3 L 985 

89 4 R 772 3 L 1027 

90 4 R 280 4 R 997 

91 4 R 862 3 R 1302 

92 4 R 1004 5 R 97 

93 7 R 270 4 R 1267 

94 5 L 1114 8 L 581 

95 5 R 48 8 R 1260 

96 5 R 386 6 R 989 

97 4 R 1038 6 L 737 

98 4 R 1103 6 L 802 

99 4 L 1073 4 R 1317 

100 5 L 112 6 R 1101 

101 5 L 392 8 L 629 

102 5 L 631 6 R 1218 

103 5 R 436 7 R 1319 

104 5 R 655 6 R 1286 

105 5 L 344 7 L 1176 

106 5 L 514 7 L 1298 

107 5 R 587 8 L 780 

108 5 L 662 8 L 811 

109 5 R 752 8 L 908 

110 5 R 1060 9 R 308 

111 4 L 1023 8 L 1024 

112 6 R 312 2 R 633 

113 6 R 346 9 R 342 

114 7 L 182 5 L 128 

115 7 L 236 4 L 1250 

116 7 R 880 5 R 272 

117 6 L 1124 4 L 1305 

118 6 R 896 3 R 739 

119 6 R 955 3 R 798 

120 6 L 1003 3 L 823 

 

 

 



 

 

116 

Table D.3 (continued) 

121 6 R 1021 3 R 864 

122 6 L 1069 3 L 889 

123 6 R 1044 2 L 1313 

124 6 R 590 3 R 433 

125 7 L 54 3 R 918 

126 7 R 564 3 R 1212 

127 7 R 648 4 L 1135 

128 7 L 688 4 L 1196 

129 7 R 705 8 L 1268 

130 5 R 1098 7 R 38 

131 6 L 944 7 L 944 

132 9 R 923 8 R 511 

133 10 R 625 8 R 1136 

134 10 R 1070 7 R 741 

135 7 L 921 5 L 196 

136 8 L 1122 8 L 53 

137 7 R 997 5 R 645 

138 7 R 1089 5 R 737 

139 8 R 560 5 L 962 

140 7 L 1037 5 L 312 

141 8 L 265 5 L 577 

142 8 L 414 5 L 726 

143 8 L 488 5 L 1036 

144 8 L 820 5 R 1069 

145 8 R 324 5 R 596 

146 8 L 924 5 L 1140 

147 7 L 1088 5 L 1191 

148 8 R 618 5 R 1127 

149 8 R 685 5 R 1194 

150 8 R 734 5 R 1243 

151 8 R 841 5 L 1298 

152 7 L 1126 3 L 1322 

153 9 L 449 6 L 829 

154 9 L 517 6 L 897 

155 9 L 724 6 L 1104 

156 9 L 1009 7 R 240 

157 9 L 1092 7 R 824 

158 7 R 1124 6 R 1321 

159 8 R 967 7 R 882 

160 8 L 966 6 L 42 

161 8 R 909 6 R 342 
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Table D.3 (continued) 

162 7 R 948 6 R 68 

163 6 R 1112 5 R 1311 

164 8 R 1070 6 R 171 

165 9 R 103 6 R 274 

166 9 R 206 6 R 445 

167 9 R 309 6 R 548 

168 9 R 412 6 R 651 

169 7 L 304 6 L 110 

170 8 L 1069 6 L 213 

171 7 L 372 6 L 281 

172 9 L 103 6 L 384 

173 9 L 206 6 L 487 

174 7 L 440 9 L 695 

175 9 L 309 6 L 590 

176 9 L 412 6 L 693 

177 9 L 422 6 L 703 

178 10 L 597 8 L 1211 

179 10 L 731 9 L 134 

180 10 L 820 9 L 415 

181 10 L 878 9 L 473 

182 10 L 1081 9 L 744 

183 11 L 134 9 L 878 

184 11 L 187 8 L 1321 

185 10 L 334 7 R 1216 

186 10 R 1094 7 R 1240 

187 11 R 76 8 R 1212 

188 10 L 410 8 L 129 

189 11 R 268 9 L 326 

190 11 L 375 9 R 698 

191 11 R 526 9 R 600 

192 11 R 691 9 R 863 

193 11 R 729 9 R 901 

194 9 R 1038 6 L 1302 

195 9 L 807 6 L 1187 

196 9 R 1094 7 R 296 

197 9 R 1123 7 R 1269 

198 11 R 1032 9 R 1204 

199 10 R 1112 8 R 1278 

200 11 R 1061 8 R 1307 

201 10 L 1032 9 L 627 

202 11 L 277 9 L 968 
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Table D.3 (continued) 

203 7 L 533 9 L 1061 

204 7 L 627 9 L 1155 

205 7 L 853 9 L 1320 

 
Table D.4 EMRH Solutions to 205-Task Problem with CT=1510 and CT=1699 

 
CT = 1510 CT = 1699 

Task Station Side Finish Time Station Side Finish Time 

1 1 L 1149 1 L 1149 

2 1 L 109 1 L 109 

3 1 R 690 1 R 690 

4 1 L 370 1 L 370 

5 1 R 847 1 R 847 

6 1 R 1431 1 R 1431 

7 1 R 973 1 R 973 

8 1 R 1040 1 R 1040 

9 1 R 1070 1 R 1070 

10 1 R 1176 1 R 1176 

11 1 R 1208 1 R 1208 

12 1 L 1500 1 L 1500 

13 1 L 1203 1 L 1203 

14 1 L 1270 1 L 1270 

15 1 L 1300 1 L 1300 

16 1 L 1406 1 L 1406 

17 1 L 1438 1 L 1438 

18 2 L 62 1 L 1562 

19 1 L 426 1 L 426 

20 1 L 67 1 L 67 

21 1 R 86 1 R 86 

22 1 R 123 1 R 123 

23 1 R 164 1 R 164 

24 1 R 236 1 R 236 

25 1 R 322 1 R 322 

26 1 L 442 1 L 442 

27 1 R 1259 1 R 1259 

28 1 R 388 1 R 388 

29 1 R 429 1 R 429 

30 1 R 919 1 R 919 

31 1 R 1310 1 R 1310 

32 1 R 1326 1 R 1326 

33 1 R 1341 1 R 1341 
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Table D.4 (continued) 

34 1 L 457 1 L 457 

35 2 R 85 1 R 1516 

36 2 R 144 1 L 1621 

37 2 L 1217 1 L 1695 

38 2 L 1230 2 L 1005 

39 2 L 1286 2 L 1061 

40 2 R 564 2 R 420 

41 3 L 1209 3 L 798 

42 2 R 644 2 R 500 

43 2 L 1267 2 L 1042 

44 2 L 1370 2 L 1145 

45 2 L 1388 2 L 1163 

46 2 L 1492 2 L 1694 

47 3 L 1238 3 L 827 

48 3 L 627 3 L 216 

49 3 L 640 3 L 229 

50 3 L 1308 3 L 897 

51 3 L 857 3 L 488 

52 3 L 1380 3 L 969 

53 3 L 1465 3 L 1054 

54 2 R 1223 2 R 1036 

55 2 R 1320 2 R 1133 

56 2 R 1498 3 R 642 

57 3 R 1043 3 R 655 

58 3 R 1295 3 R 907 

59 3 R 1260 3 R 872 

60 3 R 1367 3 R 979 

61 3 R 1452 3 R 1064 

62 2 R 687 1 R 1664 

63 2 R 724 2 R 537 

64 2 R 761 2 R 574 

65 2 R 864 2 R 677 

66 2 R 1004 2 R 817 

67 2 R 1053 2 R 866 

68 2 R 1088 2 R 901 

69 2 L 202 1 L 1672 

70 2 L 290 2 L 88 

71 2 L 343 2 L 141 

72 2 L 487 2 L 285 

73 2 L 824 2 L 622 

74 2 L 931 2 L 729 
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Table D.4 (continued) 

75 4 L 371 3 L 1425 

76 2 L 1028 2 L 826 

77 2 L 1194 2 L 992 

78 2 L 1480 2 L 1255 

79 2 R 1180 2 R 993 

80 3 L 106 2 L 1361 

81 3 L 155 2 L 1410 

82 4 R 92 3 R 1156 

83 4 R 463 3 R 1527 

84 3 L 242 2 L 1497 

85 3 L 404 2 L 1659 

86 3 L 995 3 L 584 

87 4 L 450 3 L 1504 

88 3 R 646 3 R 221 

89 3 L 899 3 L 271 

90 4 R 551 3 R 1615 

91 3 R 1030 3 R 605 

92 4 R 648 4 R 97 

93 4 R 918 4 R 367 

94 7 L 786 6 L 1467 

95 6 R 1362 7 R 124 

96 6 L 338 5 L 853 

97 3 L 1499 3 R 1699 

98 5 L 1281 4 L 1639 

99 5 R 737 3 R 1665 

100 6 L 450 5 L 965 

101 6 R 1410 6 L 1515 

102 6 L 567 5 L 1082 

103 6 L 1456 6 L 1565 

104 6 R 1012 5 R 1605 

105 6 L 1208 6 L 347 

106 6 L 1330 6 L 469 

107 7 L 937 7 L 151 

108 7 L 968 6 L 1596 

109 7 L 1065 7 R 221 

110 7 R 1444 7 R 529 

111 7 L 1181 7 L 267 

112 2 R 456 2 R 312 

113 7 L 1478 7 L 622 

114 4 L 723 4 L 128 

115 4 L 777 4 L 182 
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Table D.4 (continued) 

116 4 R 1093 4 R 542 

117 4 L 832 4 L 237 

118 3 R 550 2 R 1683 

119 2 R 1379 3 L 59 

120 2 R 1438 3 R 59 

121 3 L 470 3 L 125 

122 3 L 536 3 R 125 

123 2 R 1461 2 L 1682 

124 3 R 244 2 R 1377 

125 3 L 590 3 L 179 

126 3 R 940 3 R 515 

127 4 L 534 3 L 1588 

128 4 L 595 3 L 1649 

129 3 R 1509 4 L 1696 

130 5 R 1368 4 R 1698 

131 6 R 944 5 R 1537 

132 7 R 511 6 R 511 

133 7 R 1136 6 R 1192 

134 8 R 445 6 R 1637 

135 4 L 1036 4 L 492 

136 5 L 1485 6 L 522 

137 4 L 1466 4 R 915 

138 5 R 92 4 R 1007 

139 5 R 328 4 R 1243 

140 4 L 1152 4 L 608 

141 4 L 1417 4 L 873 

142 5 L 149 4 L 1022 

143 5 L 223 4 L 1096 

144 5 L 555 4 L 1428 

145 4 R 1417 4 R 866 

146 5 L 659 4 L 1532 

147 2 L 113 4 L 288 

148 4 R 1475 4 R 1301 

149 5 R 395 4 R 1368 

150 5 R 444 4 R 1417 

151 5 R 551 4 R 1524 

152 2 L 151 3 L 1687 

153 4 L 1493 5 L 1109 

154 5 L 1349 5 L 1177 

155 6 L 774 5 L 1384 

156 6 L 976 5 L 1669 
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Table D.4 (continued) 

157 6 R 1151 6 L 605 

158 4 R 1510 5 R 1640 

159 6 R 1209 5 R 1698 

160 5 L 701 4 L 1574 

161 5 R 1011 5 R 274 

162 5 R 687 4 R 1660 

163 5 R 619 4 R 1592 

164 5 R 840 5 R 103 

165 5 R 943 5 R 206 

166 5 R 1114 5 R 377 

167 5 R 1217 5 R 480 

168 5 R 1320 5 R 583 

169 4 L 900 4 L 356 

170 5 L 804 5 L 103 

171 4 L 968 4 L 424 

172 5 L 907 5 L 206 

173 5 L 1010 5 L 309 

174 7 L 1436 6 L 1664 

175 5 L 1113 5 L 412 

176 5 L 1216 5 L 515 

177 5 R 1330 5 R 593 

178 7 L 1368 7 L 454 

179 8 L 134 7 L 588 

180 8 L 223 7 L 711 

181 8 L 281 7 L 769 

182 8 L 484 7 L 972 

183 8 L 618 7 L 1106 

184 6 L 1509 7 L 1159 

185 7 L 334 6 L 939 

186 5 R 1507 6 R 1661 

187 6 R 1285 7 R 76 

188 6 L 1406 6 L 1015 

189 8 R 637 7 R 721 

190 8 L 806 7 R 1095 

191 8 R 895 7 R 979 

192 8 R 1060 7 R 1260 

193 8 R 1098 7 R 1298 

194 5 R 1483 6 L 115 

195 5 L 1432 5 L 1467 

196 6 R 1068 6 R 567 

197 6 R 1314 6 R 1690 
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Table D.4 (continued) 

198 8 R 1401 7 R 1601 

199 6 R 1428 7 R 997 

200 6 R 1457 7 R 1630 

201 8 L 435 7 L 923 

202 8 L 708 7 L 1249 

203 8 L 899 7 L 1342 

204 8 L 993 7 L 1436 

205 8 L 1158 7 L 1601 

 

Table D.5 EMRH Solutions to 205-Task Problem with CT=1888 and CT=2077 

 
CT = 1888 CT = 2077 

Task Station Side 

Finish 

Time Station Side 

Finish 

Time 

1 1 L 1093 1 L 1093 

2 1 L 109 1 L 109 

3 1 R 690 1 R 690 

4 1 L 370 1 L 370 

5 1 R 847 1 R 847 

6 1 R 1431 1 R 1431 

7 1 R 973 1 R 973 

8 1 R 1040 1 R 1040 

9 1 R 1070 1 R 1070 

10 1 R 1176 1 R 1176 

11 1 R 1208 1 R 1208 

12 1 R 1493 1 R 1493 

13 1 L 1147 1 L 1147 

14 1 L 1214 1 L 1214 

15 1 L 1244 1 L 1244 

16 1 L 1350 1 L 1350 

17 1 L 1382 1 L 1382 

18 1 L 1444 1 L 1444 

19 1 L 1500 1 L 1500 

20 1 L 67 1 L 67 

21 1 R 86 1 R 86 

22 1 R 123 1 R 123 

23 1 R 164 1 R 164 

24 1 R 236 1 R 236 

25 1 R 322 1 R 322 

26 1 L 386 1 L 386 

27 1 R 1259 1 R 1259 
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Table D.5 (continued) 

28 1 R 388 1 R 388 

29 1 R 429 1 R 429 

30 1 R 919 1 R 919 

31 1 R 1310 1 R 1310 

32 1 R 1326 1 R 1326 

33 1 R 1341 1 R 1341 

34 1 L 401 1 L 401 

35 1 L 1585 1 L 1585 

36 1 L 1644 1 L 1644 

37 1 L 1859 1 L 1939 

38 1 L 1872 1 L 1952 

39 2 L 763 1 L 2008 

40 2 R 108 1 R 1896 

41 2 R 1228 2 R 962 

42 2 R 188 1 L 1916 

43 2 L 744 1 L 1989 

44 2 L 847 2 L 791 

45 2 L 865 2 L 809 

46 2 L 1410 2 L 1354 

47 2 L 1669 2 L 1709 

48 2 L 1398 2 L 1342 

49 2 L 1423 2 L 1367 

50 2 L 1739 2 L 1779 

51 2 L 1640 2 L 1584 

52 2 L 1811 2 L 1851 

53 3 L 85 2 L 1936 

54 2 R 558 1 R 2073 

55 2 R 747 2 R 389 

56 2 R 784 2 R 426 

57 2 R 797 2 R 439 

58 2 R 1263 2 R 997 

59 2 R 1014 2 R 656 

60 2 R 1335 2 R 1069 

61 2 R 1420 2 R 1154 

62 1 R 1813 1 R 1921 

63 1 R 1850 1 R 1958 

64 1 R 1887 1 R 1995 

65 2 R 291 2 R 103 

66 2 R 431 2 R 243 

67 2 R 480 2 R 292 

68 2 R 515 1 R 2030 
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Table D.5 (continued) 

69 1 L 1695 1 L 1695 

70 1 L 1783 1 L 1783 

71 1 L 1836 1 L 1836 

72 1 R 1788 1 R 1788 

73 2 L 337 2 L 337 

74 2 L 444 2 L 444 

75 3 R 371 2 R 1525 

76 2 L 541 2 L 541 

77 2 L 707 2 L 707 

78 2 L 957 2 L 901 

79 2 R 650 2 R 748 

80 2 L 1063 2 L 1007 

81 2 L 1112 2 L 1056 

82 2 R 1792 2 R 1801 

83 3 L 456 3 L 371 

84 2 L 1199 2 L 1143 

85 2 L 1361 2 L 1305 

86 2 R 1516 2 R 1621 

87 3 R 450 2 R 1880 

88 2 R 1612 2 L 1680 

89 2 L 1853 2 R 1922 

90 2 R 1700 2 R 1709 

91 2 R 1882 2 R 2012 

92 3 R 855 3 R 717 

93 4 R 642 3 R 1611 

94 4 L 839 4 R 518 

95 3 R 1197 3 R 1059 

96 3 L 1258 3 L 1120 

97 3 R 889 3 R 751 

98 3 L 920 3 L 782 

99 3 R 939 3 R 801 

100 3 R 1051 3 R 913 

101 3 R 1099 3 R 961 

102 3 R 1314 3 R 1176 

103 3 R 1149 3 R 1011 

104 3 R 1382 3 R 1244 

105 3 L 1490 3 L 1352 

106 3 L 1612 3 L 1474 

107 3 L 1763 3 L 1625 

108 3 L 1794 3 L 1656 

109 3 R 1479 3 R 1341 
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Table D.5 (continued) 

110 3 R 758 3 R 308 

111 3 L 572 2 L 2052 

112 3 R 1791 3 R 620 

113 3 L 1828 3 L 1690 

114 4 L 967 4 L 248 

115 4 L 1082 4 L 302 

116 4 R 1252 4 R 1189 

117 4 R 1631 3 R 2074 

118 4 R 306 3 R 1996 

119 3 L 1887 3 L 1993 

120 3 R 1888 3 L 2052 

121 4 L 310 4 L 66 

122 4 R 372 4 R 66 

123 4 L 333 3 R 2019 

124 4 L 244 3 L 1934 

125 4 L 387 4 L 120 

126 4 R 936 4 R 812 

127 4 R 1020 4 R 896 

128 4 L 1028 4 R 957 

129 4 R 1077 4 R 1014 

130 3 R 1829 3 R 1649 

131 6 L 944 4 L 1450 

132 6 R 1516 5 R 1788 

133 7 R 625 6 R 625 

134 5 R 1805 4 R 1838 

135 4 L 1150 4 L 1518 

136 5 L 1750 5 L 1915 

137 4 R 1680 4 R 1887 

138 4 L 1772 4 R 1979 

139 5 L 236 5 R 236 

140 4 L 1266 4 L 1634 

141 4 L 1531 4 L 1899 

142 4 L 1680 4 L 2048 

143 4 L 1846 5 L 398 

144 5 R 332 5 R 568 

145 4 R 1576 5 L 324 

146 5 L 340 5 L 502 

147 5 L 391 5 L 553 

148 4 R 1738 4 R 2037 

149 4 R 1805 5 R 635 

150 4 R 1854 5 R 684 
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Table D.5 (continued) 

151 5 R 439 5 L 660 

152 4 L 1884 5 L 698 

153 5 L 1137 4 L 2075 

154 5 L 1205 5 R 752 

155 5 L 1412 5 L 1462 

156 5 L 1697 5 L 1747 

157 5 L 1833 5 R 1927 

158 5 R 1245 4 R 2072 

159 6 R 58 5 R 1985 

160 5 R 481 5 L 740 

161 5 R 891 4 R 1393 

162 5 R 617 4 R 1325 

163 5 R 549 4 R 1257 

164 5 R 720 5 R 855 

165 5 R 823 5 R 958 

166 5 R 994 5 R 1061 

167 5 R 1097 5 R 1164 

168 5 R 1200 5 R 1267 

169 5 L 459 4 L 370 

170 5 L 630 5 L 843 

171 5 L 527 4 L 438 

172 5 L 733 5 L 946 

173 5 L 836 5 L 1049 

174 5 L 904 4 L 506 

175 5 L 1007 5 L 1152 

176 5 L 1110 5 L 1255 

177 5 R 1210 5 R 1277 

178 6 R 684 6 L 521 

179 6 L 1154 6 L 655 

180 6 L 1243 6 L 744 

181 6 L 1301 6 L 802 

182 6 L 1504 6 L 1005 

183 6 L 1638 6 L 1139 

184 5 L 1886 5 L 2044 

185 6 R 392 6 L 334 

186 5 R 1885 5 R 2009 

187 6 R 468 6 R 701 

188 6 L 1020 5 L 1991 

189 7 R 817 6 R 893 

190 7 R 1173 6 L 1237 

191 7 R 1075 6 R 1151 
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Table D.5 (continued) 

192 7 R 1338 6 R 1316 

193 7 R 1376 6 R 1354 

194 5 R 1360 5 L 1862 

195 5 L 1495 5 L 1545 

196 5 R 1861 5 R 1844 

197 6 R 497 5 R 2038 

198 6 R 1005 6 R 1657 

199 6 R 702 5 R 2056 

200 6 R 1545 6 R 1686 

201 6 L 1455 6 L 956 

202 6 L 1728 6 L 1327 

203 6 L 1821 6 L 1420 

204 6 R 1639 6 L 1514 

205 6 R 1804 6 L 1679 

 
Table D.6 EMRH Solutions to 205-Task Problem with CT=2266 and CT=2454 

 
CT = 2266 CT = 2454 

Task Station Side Finish Time Station Side Finish Time 

1 1 L 1093 1 L 1093 

2 1 L 109 1 L 109 

3 1 R 690 1 R 690 

4 1 L 370 1 L 370 

5 1 R 847 1 R 847 

6 1 R 1431 1 R 1431 

7 1 R 973 1 R 973 

8 1 R 1040 1 R 1040 

9 1 R 1070 1 R 1070 

10 1 R 1176 1 R 1176 

11 1 R 1208 1 R 1208 

12 1 R 1493 1 R 1493 

13 1 L 1147 1 L 1147 

14 1 L 1214 1 L 1214 

15 1 L 1244 1 L 1244 

16 1 L 1350 1 L 1350 

17 1 L 1382 1 L 1382 

18 1 L 1444 1 L 1444 

19 1 L 1500 1 L 1500 

20 1 L 67 1 L 67 

21 1 R 86 1 R 86 

22 1 R 123 1 R 123 
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Table D.6 (continued) 

23 1 R 164 1 R 164 

24 1 R 236 1 R 236 

25 1 R 322 1 R 322 

26 1 L 386 1 L 386 

27 1 R 1259 1 R 1259 

28 1 R 388 1 R 388 

29 1 R 429 1 R 429 

30 1 R 919 1 R 919 

31 1 R 1310 1 R 1310 

32 1 R 1326 1 R 1326 

33 1 R 1341 1 R 1341 

34 1 L 401 1 L 401 

35 1 L 1585 1 L 1585 

36 1 L 1644 1 L 1644 

37 1 L 2196 1 L 2400 

38 1 L 2209 1 L 2413 

39 1 L 2265 2 L 185 

40 1 R 1896 1 R 1896 

41 2 R 859 2 R 670 

42 1 R 1976 1 R 1976 

43 1 L 2246 1 L 2450 

44 2 L 454 2 L 269 

45 2 L 472 2 L 287 

46 2 L 1017 2 L 832 

47 2 L 1276 2 L 1091 

48 2 L 1005 2 L 820 

49 2 L 1030 2 L 845 

50 2 L 1346 2 L 1161 

51 2 L 1247 2 L 1062 

52 2 L 1418 2 L 1233 

53 2 L 1503 2 L 1318 

54 1 R 2256 1 R 2445 

55 2 R 286 2 R 189 

56 2 R 415 2 R 226 

57 2 R 428 2 R 239 

58 2 R 894 2 R 705 

59 2 R 645 2 R 456 

60 2 R 966 2 R 777 

61 2 R 1051 2 R 862 

62 1 R 2001 1 R 2001 

63 1 R 2038 1 R 2038 
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Table D.6 (continued) 

64 1 R 2075 1 R 2075 

65 1 R 2178 1 R 2178 

66 2 R 140 1 R 2318 

67 2 R 189 1 R 2367 

68 1 R 2213 1 R 2402 

69 1 L 1695 1 L 1695 

70 1 L 1783 1 L 1783 

71 1 L 1836 1 L 1836 

72 1 R 1788 1 R 1788 

73 1 L 2173 1 L 2173 

74 2 L 107 1 L 2280 

75 2 R 1702 2 R 1513 

76 2 L 204 1 L 2377 

77 2 L 370 2 L 166 

78 2 L 564 2 L 379 

79 2 R 378 2 R 92 

80 2 L 670 2 L 485 

81 2 L 719 2 L 534 

82 2 L 1595 2 L 1410 

83 2 L 1966 2 L 1781 

84 2 L 806 2 L 621 

85 2 L 968 2 L 783 

86 2 R 1147 2 R 958 

87 2 R 1781 2 R 1592 

88 2 R 1243 2 R 1054 

89 2 R 1823 2 R 1634 

90 2 R 1331 2 R 1142 

91 2 R 1913 2 R 1724 

92 3 R 97 2 R 2129 

93 4 R 270 3 R 1139 

94 3 L 1295 3 L 923 

95 3 R 210 2 R 2242 

96 3 R 548 3 R 338 

97 3 L 131 2 L 2163 

98 3 R 162 2 R 2194 

99 3 L 181 2 L 2213 

100 3 L 293 2 L 2325 

101 3 L 573 2 L 2373 

102 3 L 812 3 L 471 

103 3 R 598 2 L 2423 

104 3 R 817 3 R 557 
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Table D.6 (continued) 

105 3 L 525 3 L 232 

106 3 L 695 3 L 354 

107 3 R 749 3 R 489 

108 3 L 843 3 L 954 

109 3 R 914 2 R 2422 

110 3 R 1222 2 R 2032 

111 2 L 2082 2 L 1897 

112 2 R 2225 3 R 869 

113 3 R 1256 3 L 988 

114 3 L 1818 3 L 1610 

115 3 L 1872 3 L 1664 

116 4 R 445 3 R 2132 

117 3 L 1927 3 L 1719 

118 3 L 1601 3 R 1445 

119 3 R 1559 3 L 1291 

120 3 R 1618 3 L 1350 

121 3 L 1667 3 L 1416 

122 3 R 1684 3 L 1482 

123 3 L 1690 3 R 1468 

124 3 R 1500 3 L 1232 

125 3 R 1738 3 R 1522 

126 3 R 2032 3 R 1816 

127 3 R 2116 3 R 1900 

128 3 L 2124 3 L 1916 

129 3 R 2173 3 R 1957 

130 4 R 619 4 R 1769 

131 4 L 944 4 L 1691 

132 5 R 1301 4 R 2280 

133 5 R 1982 5 R 625 

134 4 R 1064 5 R 1070 

135 4 L 1012 3 L 2052 

136 4 L 2263 5 L 255 

137 4 R 1437 3 R 2181 

138 4 R 1529 3 R 2273 

139 4 R 1765 4 L 501 

140 4 L 1128 3 L 2168 

141 4 L 1393 4 L 265 

142 4 L 1542 3 L 2317 

143 4 L 1616 4 L 575 

144 4 L 1948 4 R 656 

145 4 R 1388 4 R 324 
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Table D.6 (continued) 

146 4 L 2052 4 L 679 

147 4 L 2103 3 L 2368 

148 4 R 1823 3 R 2331 

149 4 R 1890 3 R 2398 

150 4 R 1939 3 R 2447 

151 4 R 2046 4 R 763 

152 4 L 2141 3 L 2406 

153 4 L 2210 3 L 2433 

154 5 R 583 4 L 747 

155 5 R 790 4 R 1731 

156 5 L 1259 5 L 202 

157 5 L 1342 5 L 338 

158 4 R 2081 4 R 2315 

159 4 R 2139 4 R 2429 

160 4 L 2183 4 R 805 

161 4 R 581 4 R 1215 

162 4 R 513 4 R 941 

163 3 R 2241 4 R 873 

164 5 R 103 4 R 1044 

165 5 R 206 4 R 1147 

166 5 R 309 4 R 1318 

167 5 R 412 4 R 1421 

168 5 R 515 4 R 1524 

169 3 L 1995 3 L 1787 

170 5 L 103 4 L 1794 

171 3 L 2063 3 L 1855 

172 5 L 206 4 L 1897 

173 5 L 309 4 L 2000 

174 3 L 2192 3 L 1984 

175 5 L 412 4 L 2103 

176 5 L 515 4 L 2206 

177 5 L 525 4 L 2216 

178 5 L 1605 5 L 935 

179 5 L 1739 5 L 1069 

180 5 L 1828 5 L 1158 

181 5 L 1886 5 L 1408 

182 5 L 1935 5 L 1611 

183 5 L 2069 5 L 1745 

184 5 L 2122 5 L 1798 

185 5 L 1057 5 L 672 

186 5 R 2006 4 R 2453 
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Table D.6 (continued) 

187 5 R 2082 5 R 1146 

188 5 L 1418 5 L 748 

189 6 L 192 5 L 1350 

190 6 L 444 5 R 1852 

191 6 R 561 5 R 1754 

192 6 R 726 5 L 1963 

193 6 R 764 5 R 1890 

194 5 L 723 4 L 2414 

195 5 L 608 4 L 2299 

196 5 R 1357 4 R 2371 

197 5 R 2111 5 R 1175 

198 6 R 303 5 R 1496 

199 5 R 2129 5 R 1193 

200 5 R 2158 5 R 1919 

201 6 L 346 5 L 1562 

202 6 L 534 5 L 2053 

203 5 L 2215 5 L 2146 

204 4 R 2233 5 R 2013 

205 6 L 699 5 R 2178 

 
Table D.7 EMRH Solutions to 205-Task Problem with CT=2643 and CT=2832 

 
CT = 2643 CT = 2832 

Task Station Side Finish Time Station Side Finish Time 

1 1 L 1093 1 L 1093 

2 1 L 109 1 L 109 

3 1 R 690 1 R 690 

4 1 L 370 1 L 370 

5 1 R 847 1 R 847 

6 1 R 1431 1 R 1431 

7 1 R 973 1 R 973 

8 1 R 1040 1 R 1040 

9 1 R 1070 1 R 1070 

10 1 R 1176 1 R 1176 

11 1 R 1208 1 R 1208 

12 1 R 1493 1 R 1493 

13 1 L 1147 1 L 1147 

14 1 L 1214 1 L 1214 

15 1 L 1244 1 L 1244 

16 1 L 1350 1 L 1350 

17 1 L 1382 1 L 1382 
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Table D.7 (continued) 

18 1 L 1444 1 L 1444 

19 1 L 1500 1 L 1500 

20 1 L 67 1 L 67 

21 1 R 86 1 R 86 

22 1 R 123 1 R 123 

23 1 R 164 1 R 164 

24 1 R 236 1 R 236 

25 1 R 322 1 R 322 

26 1 L 386 1 L 386 

27 1 R 1259 1 R 1259 

28 1 R 388 1 R 388 

29 1 R 429 1 R 429 

30 1 R 919 1 R 919 

31 1 R 1310 1 R 1310 

32 1 R 1326 1 R 1326 

33 1 R 1341 1 R 1341 

34 1 L 401 1 L 401 

35 1 L 1585 1 L 1585 

36 1 L 1644 1 L 1644 

37 1 L 2400 1 L 2400 

38 1 L 2579 1 L 2579 

39 1 L 2635 1 L 2635 

40 1 R 1896 1 R 1896 

41 2 R 481 2 R 431 

42 1 R 1976 1 R 1976 

43 1 L 2616 1 L 2616 

44 2 L 84 1 L 2719 

45 2 L 102 1 L 2737 

46 2 L 647 1 L 2786 

47 2 L 906 1 L 2828 

48 2 L 635 1 L 2774 

49 2 L 660 1 L 2799 

50 2 L 976 2 L 783 

51 2 L 877 2 L 713 

52 2 L 1048 2 L 855 

53 2 L 1133 2 L 940 

54 1 R 2537 1 R 2537 

55 1 R 2634 1 R 2634 

56 2 R 37 1 R 2671 

57 2 R 50 1 R 2684 

58 2 R 516 1 R 2719 
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Table D.7 (continued) 

59 2 R 267 2 R 217 

60 2 R 588 2 R 503 

61 2 R 673 1 R 2804 

62 1 R 2001 1 R 2001 

63 1 R 2038 1 R 2038 

64 1 R 2075 1 R 2075 

65 1 R 2178 1 R 2178 

66 1 R 2318 1 R 2318 

67 1 R 2367 1 R 2367 

68 1 R 2402 1 R 2402 

69 1 L 1695 1 L 1695 

70 1 L 1783 1 L 1783 

71 1 L 1836 1 L 1836 

72 1 R 1788 1 R 1788 

73 1 L 2173 1 L 2173 

74 1 L 2280 1 L 2280 

75 2 R 1324 2 R 1154 

76 1 L 2377 1 L 2377 

77 1 L 2566 1 L 2566 

78 2 L 194 2 L 92 

79 1 R 2494 1 R 2494 

80 2 L 300 2 L 198 

81 2 L 349 2 L 247 

82 2 L 1225 2 L 1032 

83 2 L 1596 2 L 1403 

84 2 L 436 2 L 334 

85 2 L 598 2 L 496 

86 2 R 769 2 R 599 

87 2 R 1403 2 R 1233 

88 2 R 865 2 R 695 

89 2 R 1445 2 R 1275 

90 2 R 953 2 R 783 

91 2 R 1535 2 R 1365 

92 2 R 1940 2 R 1770 

93 3 R 733 3 R 936 

94 3 L 574 3 L 816 

95 2 R 2282 2 R 2112 

96 2 L 2343 2 L 2173 

97 2 R 1974 2 R 1804 

98 2 L 2005 2 L 1835 

99 2 R 2024 2 R 1854 
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Table D.7 (continued) 

100 2 R 2136 2 R 1966 

101 2 R 2184 2 R 2014 

102 2 R 2399 2 R 2229 

103 2 R 2234 2 R 2064 

104 2 R 2467 2 R 2297 

105 2 L 2575 2 L 2405 

106 3 L 122 2 L 2527 

107 3 R 151 2 L 2678 

108 3 L 605 2 L 2709 

109 2 R 2564 2 R 2394 

110 2 R 1843 2 R 1673 

111 2 L 1712 2 L 1519 

112 3 R 463 2 R 2706 

113 3 L 639 2 L 2743 

114 3 L 1272 3 L 1089 

115 3 R 1159 3 R 1047 

116 3 R 1712 3 R 1222 

117 3 L 1327 3 R 1601 

118 3 R 1039 3 R 306 

119 3 L 942 2 L 2802 

120 3 L 1001 2 R 2803 

121 3 L 1067 3 L 310 

122 3 R 1105 3 R 372 

123 3 L 1090 2 L 2825 

124 3 L 883 3 L 244 

125 3 L 1144 3 L 364 

126 3 R 1453 3 R 666 

127 3 R 1537 3 L 900 

128 3 L 1524 3 L 961 

129 3 L 1581 3 R 993 

130 2 R 2602 2 R 2744 

131 4 R 1780 4 R 1218 

132 4 R 2291 4 R 1729 

133 5 R 625 4 R 2410 

134 5 R 1070 5 R 445 

135 3 L 1649 3 L 1157 

136 3 L 2638 4 L 944 

137 3 R 2085 3 R 1650 

138 3 R 2177 3 R 1742 

139 3 R 2413 3 L 1923 

140 3 L 1765 3 L 1273 
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Table D.7 (continued) 

141 3 L 2030 3 L 1538 

142 3 L 2179 3 L 1687 

143 3 L 2253 3 L 1997 

144 3 L 2585 3 R 2074 

145 3 R 2036 3 R 1546 

146 4 L 104 3 L 2101 

147 4 L 155 3 L 2152 

148 3 R 2471 3 R 2132 

149 3 R 2538 3 R 2199 

150 3 R 2587 3 R 2248 

151 4 R 107 3 L 2259 

152 4 L 193 3 L 2297 

153 4 L 845 3 L 2811 

154 4 L 913 4 R 274 

155 4 L 1120 4 L 491 

156 4 L 1405 4 L 776 

157 4 L 1603 4 L 1027 

158 3 R 2622 3 R 2796 

159 4 R 2405 4 R 2468 

160 4 L 235 3 L 2339 

161 4 R 517 3 R 2658 

162 4 R 243 3 R 2384 

163 4 R 175 3 R 2316 

164 4 R 346 3 R 2487 

165 4 R 449 3 R 2590 

166 4 R 620 3 R 2761 

167 4 R 723 4 R 103 

168 4 R 826 4 R 206 

169 3 L 1395 3 L 2407 

170 4 L 338 3 L 2510 

171 3 L 1463 3 L 2578 

172 4 L 441 3 L 2681 

173 4 L 544 3 L 2784 

174 4 L 612 4 L 68 

175 4 L 715 4 L 171 

176 4 L 818 4 L 274 

177 4 R 836 4 L 284 

178 4 L 2200 4 L 1624 

179 4 L 2334 4 L 1758 

180 4 L 2423 4 L 1847 

181 4 L 2481 4 L 1905 
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Table D.7 (continued) 

182 4 L 2530 4 L 1954 

183 5 L 288 4 L 2088 

184 4 L 2583 4 L 2141 

185 4 L 1937 4 L 1361 

186 4 R 2429 4 R 2492 

187 4 R 2505 4 R 2568 

188 4 L 2013 4 L 1437 

189 5 R 1262 5 R 637 

190 5 L 1360 5 L 735 

191 5 R 1520 5 R 895 

192 5 R 1685 5 R 1060 

193 5 R 1723 5 R 1098 

194 4 L 1520 4 L 891 

195 4 L 1203 4 L 574 

196 4 R 2347 4 R 1785 

197 4 R 2534 4 R 2597 

198 5 R 2026 5 R 1401 

199 4 R 2552 4 R 2615 

200 4 R 2581 4 R 2644 

201 5 L 154 4 L 2751 

202 5 L 378 5 L 90 

203 5 L 471 4 L 2234 

204 5 L 565 4 L 2328 

205 5 L 730 4 L 2493 

 
Table D.8 EMRH Solutions to 148-Task Problem with CT=204 and CT=255 

 
CT = 204 CT = 255 

Task Station Side Finish Time Station Side Finish Time 

1 1 L 16 1 R 53 

2 1 R 30 1 R 30 

3 1 R 37 1 R 37 

4 1 R 84 1 R 100 

5 1 L 104 1 R 245 

6 1 L 75 1 R 145 

7 1 L 143 1 R 184 

8 1 R 121 1 R 137 

9 1 R 153 1 R 216 

10 1 L 172 1 L 202 

11 3 L 203 4 L 255 

12 5 L 203 7 R 242 
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Table D.8 (continued) 

13 9 L 204 10 L 217 

14 1 L 187 2 R 15 

15 2 L 53 2 L 154 

16 2 R 53 2 R 68 

17 2 R 61 2 R 165 

18 2 L 117 2 L 212 

19 2 R 85 2 R 189 

20 2 L 125 2 R 247 

21 2 R 134 2 R 254 

22 2 L 133 3 L 22 

23 2 L 147 3 L 14 

24 2 R 147 3 R 13 

25 2 R 157 3 R 58 

26 2 R 182 3 R 48 

27 2 L 158 3 L 58 

28 2 L 183 3 L 47 

29 2 R 201 3 R 69 

30 10 R 166 10 R 250 

31 3 R 25 3 R 94 

32 1 L 26 1 L 10 

33 1 R 167 2 R 82 

34 1 L 67 1 L 51 

35 2 R 127 2 R 124 

36 3 R 72 3 R 141 

37 3 R 79 3 R 148 

38 3 R 159 3 R 228 

39 3 R 166 3 R 235 

40 4 R 41 4 R 41 

41 11 R 47 10 R 221 

42 7 L 68 8 L 39 

43 9 L 114 8 L 71 

44 10 L 172 8 L 255 

45 4 L 80 3 L 242 

46 4 L 87 4 L 7 

47 4 L 128 4 L 48 

48 7 R 193 7 R 255 

49 11 L 47 10 L 47 

50 3 L 174 1 L 235 

51 6 L 34 2 L 188 

52 8 L 189 3 L 253 

53 11 L 165 8 L 189 

 

 

 



 

 

140 

Table D.8 (continued) 

54 4 L 153 4 L 73 

55 4 R 187 4 R 165 

56 1 R 195 1 L 79 

57 3 L 186 1 L 247 

58 7 L 52 6 L 203 

59 1 L 201 1 L 133 

60 1 R 201 1 R 251 

61 1 R 198 1 R 248 

62 2 R 190 2 R 205 

63 3 R 182 2 R 239 

64 4 R 74 2 R 157 

65 4 R 82 2 R 197 

66 4 R 100 2 R 223 

67 4 R 110 3 R 23 

68 4 R 124 3 L 72 

69 6 R 90 4 R 69 

70 3 R 193 8 R 194 

71 11 R 165 9 R 118 

72 5 R 184 4 R 158 

73 2 L 93 1 L 119 

74 3 L 40 1 L 173 

75 3 L 141 2 L 101 

76 4 R 180 4 L 231 

77 5 R 28 5 R 28 

78 5 R 36 5 R 36 

79 7 R 111 4 L 226 

80 7 R 118 4 L 238 

81 7 R 144 5 L 199 

82 7 R 154 5 L 209 

83 11 R 186 11 L 43 

84 7 R 180 5 L 235 

85 2 L 203 4 R 255 

86 7 L 204 6 L 255 

87 12 R 47 10 L 94 

88 12 L 23 9 L 255 

89 8 R 203 8 R 255 

90 4 L 172 4 L 92 

91 7 L 183 5 R 151 

92 6 R 125 4 R 200 

93 10 L 198 9 L 232 

94 12 L 69 10 L 140 
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Table D.8 (continued) 

95 5 R 56 3 R 255 

96 9 R 110 7 R 179 

97 10 R 185 10 L 236 

98 5 R 90 4 R 103 

99 4 R 175 3 L 123 

100 5 R 129 3 L 162 

101 5 R 159 4 R 133 

102 9 R 136 7 L 255 

103 6 R 189 5 R 253 

104 12 R 92 10 L 185 

105 9 L 172 5 R 209 

106 8 R 28 6 R 28 

107 8 L 178 6 R 36 

108 9 R 43 6 R 79 

109 9 R 176 6 R 189 

110 11 L 199 9 R 230 

111 4 L 195 4 L 115 

112 5 L 162 5 L 162 

113 5 L 173 5 L 173 

114 6 R 144 6 R 130 

115 6 R 203 6 R 237 

116 6 R 31 5 R 240 

117 6 R 176 6 R 111 

118 9 R 202 7 R 205 

119 12 L 124 10 R 119 

120 6 R 62 6 L 234 

121 9 L 32 7 L 202 

122 10 L 26 7 R 231 

123 6 L 204 6 R 149 

124 8 R 190 6 R 251 

125 10 R 204 10 L 255 

126 12 R 140 8 R 242 

127 12 L 179 10 R 174 

128 5 L 181 5 L 243 

129 5 L 192 5 L 254 

130 9 L 59 7 L 229 

131 13 L 18 11 L 61 

132 9 R 79 2 L 248 

133 9 L 82 8 L 23 

134 5 R 204 4 R 220 

135 10 L 72 8 R 183 
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Table D.8 (continued) 

136 12 R 204 9 L 142 

137 12 L 201 11 L 22 

138 4 R 202 4 R 235 

139 10 L 106 6 R 223 

140 13 R 22 9 R 252 

141 6 L 185 6 L 151 

142 8 R 176 7 R 148 

143 13 L 82 9 L 206 

144 8 L 170 7 L 170 

145 10 R 137 8 R 137 

146 13 R 86 10 R 64 

147 13 L 160 9 L 78 

148 13 R 164 9 R 196 

 
Table D.9 EMRH Solutions to 148-Task Problem with CT=306 and CT=357 

 
CT = 306 CT = 357 

Task Station Side Finish Time Station Side Finish Time 

1 1 R 16 1 R 263 

2 1 R 168 1 R 315 

3 1 R 175 1 R 322 

4 1 R 222 2 R 47 

5 1 R 251 1 R 351 

6 1 R 259 1 L 335 

7 1 R 298 2 R 114 

8 1 L 306 2 R 151 

9 2 R 60 2 R 183 

10 2 R 89 2 R 212 

11 1 L 191 1 L 283 

12 1 L 202 1 L 294 

13 7 R 306 7 R 65 

14 2 R 104 2 R 227 

15 2 L 204 3 L 53 

16 2 R 157 2 R 280 

17 2 L 212 3 R 220 

18 2 L 236 3 L 311 

19 2 R 249 3 R 244 

20 2 R 257 3 L 319 

21 2 R 264 3 R 326 

22 2 L 302 3 L 327 

23 3 L 14 3 L 341 
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Table D.9 (continued) 

24 2 R 277 3 R 339 

25 3 R 259 3 R 351 

26 3 R 284 4 R 25 

27 3 L 25 4 L 11 

28 3 L 50 4 L 36 

29 3 R 295 4 L 47 

30 6 R 291 1 R 29 

31 4 R 162 4 L 72 

32 1 L 62 1 L 10 

33 1 R 85 1 R 43 

34 1 L 103 1 L 51 

35 1 R 127 1 R 85 

36 4 R 209 5 R 47 

37 4 R 216 5 R 54 

38 4 R 296 5 R 134 

39 4 R 303 5 R 141 

40 5 R 41 5 R 182 

41 7 R 93 5 R 229 

42 1 L 119 1 L 67 

43 1 L 151 1 L 99 

44 6 L 100 1 L 165 

45 5 L 80 5 L 195 

46 5 L 87 5 L 202 

47 5 L 128 5 L 243 

48 5 L 285 7 R 78 

49 6 L 147 5 L 290 

50 1 L 235 1 L 327 

51 1 L 269 2 L 34 

52 1 L 162 1 L 176 

53 6 L 265 2 L 152 

54 5 L 153 5 L 315 

55 5 R 164 5 R 357 

56 2 R 185 2 R 308 

57 1 L 174 1 L 188 

58 1 L 52 1 L 240 

59 1 R 63 1 R 277 

60 1 R 304 1 R 357 

61 1 R 301 1 R 354 

62 2 R 285 2 L 311 

63 3 L 236 2 L 327 

64 1 R 49 1 R 118 
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Table D.9 (continued) 

65 1 R 71 1 R 285 

66 2 L 254 1 L 353 

67 3 L 246 2 L 337 

68 3 L 260 3 R 258 

69 2 R 28 2 R 75 

70 1 R 138 1 R 129 

71 7 R 211 1 R 247 

72 5 R 189 6 R 25 

73 2 R 225 2 R 348 

74 2 L 294 3 R 298 

75 3 R 249 4 R 341 

76 5 L 158 5 L 320 

77 5 L 186 5 L 348 

78 5 L 194 5 L 356 

79 4 L 111 4 L 183 

80 4 L 118 4 L 268 

81 4 L 144 4 L 294 

82 5 L 204 6 R 55 

83 5 L 306 7 R 99 

84 5 L 230 6 R 81 

85 6 L 285 2 L 357 

86 2 R 306 3 R 319 

87 8 L 229 7 R 146 

88 7 L 306 4 L 352 

89 6 R 304 7 R 159 

90 5 L 249 6 R 100 

91 4 L 259 5 L 115 

92 4 L 294 4 L 329 

93 3 L 306 1 L 266 

94 8 L 275 7 R 205 

95 3 L 280 5 R 249 

96 5 R 72 5 R 280 

97 6 L 304 7 R 224 

98 5 R 106 5 R 314 

99 5 R 157 6 R 151 

100 5 R 248 6 R 190 

101 5 R 278 6 R 220 

102 6 R 26 6 R 246 

103 5 R 291 6 R 259 

104 9 L 45 7 R 269 

105 6 R 84 6 R 317 
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Table D.9 (continued) 

106 6 R 112 6 R 345 

107 6 R 120 6 R 353 

108 6 R 163 7 L 83 

109 6 R 203 7 L 123 

110 9 L 79 7 R 303 

111 6 R 226 6 L 126 

112 7 L 162 6 L 288 

113 7 L 173 6 L 299 

114 7 L 238 7 L 142 

115 7 L 252 7 L 156 

116 7 L 283 7 L 187 

117 8 R 32 7 L 219 

118 8 R 58 7 L 245 

119 9 L 134 8 L 55 

120 7 R 242 7 L 276 

121 7 R 274 7 L 308 

122 8 R 84 7 L 334 

123 8 R 103 7 R 19 

124 8 R 117 7 R 33 

125 8 R 278 7 R 322 

126 9 L 182 8 L 103 

127 9 L 237 8 L 158 

128 7 L 181 6 L 307 

129 7 L 192 6 L 318 

130 7 L 219 6 L 345 

131 8 L 18 7 L 18 

132 6 R 262 5 R 350 

133 5 L 272 6 L 23 

134 5 R 209 6 R 45 

135 7 R 46 6 L 103 

136 9 L 301 8 L 222 

137 8 L 40 7 L 40 

138 5 R 306 3 L 356 

139 6 L 34 6 L 57 

140 8 L 297 7 L 356 

141 2 L 151 2 L 303 

142 3 R 148 3 R 148 

143 8 L 104 3 L 287 

144 3 L 220 3 L 223 

145 4 R 137 4 R 162 

146 8 R 181 3 R 212 
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Table D.9 (continued) 

147 8 L 182 4 L 261 

148 8 R 259 4 R 240 

 
Table D.10 EMRH Solutions to 148-Task Problem with CT=408 and CT=459 

 
CT = 408 CT = 459 

Task Station Side Finish Time Station Side Finish Time 

1 1 R 300 1 L 16 

2 1 R 277 1 R 30 

3 1 R 284 1 R 37 

4 1 R 347 1 R 84 

5 1 L 363 1 L 104 

6 1 R 355 1 L 75 

7 1 L 402 1 L 143 

8 1 R 392 1 R 121 

9 2 R 32 1 R 153 

10 2 R 61 1 L 172 

11 4 R 402 2 R 448 

12 5 L 408 2 R 459 

13 6 R 66 5 L 104 

14 2 R 76 1 L 187 

15 2 L 374 1 L 240 

16 2 R 129 1 R 262 

17 2 L 382 1 R 270 

18 3 L 24 1 L 332 

19 3 R 24 1 R 294 

20 3 R 247 1 L 340 

21 3 R 254 1 R 348 

22 3 L 281 1 L 348 

23 3 L 295 1 L 362 

24 3 R 267 1 R 361 

25 3 R 378 1 R 411 

26 4 R 25 1 R 436 

27 3 L 306 1 L 373 

34 1 L 51 1 L 67 

35 1 R 85 1 R 209 

36 4 R 136 2 R 72 

37 4 R 143 2 R 79 

38 4 R 223 2 R 159 

39 4 R 230 2 R 166 

40 4 R 271 2 R 207 
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Table D.10 (continued) 

41 4 R 318 5 R 150 

42 1 L 67 3 L 359 

43 1 L 99 4 L 280 

44 1 L 165 5 L 170 

45 4 L 269 2 L 181 

46 4 L 276 2 L 188 

47 4 L 317 2 L 229 

48 6 R 79 4 R 459 

49 4 L 364 5 L 217 

50 3 L 121 1 L 450 

51 3 L 155 2 L 330 

52 1 L 176 2 L 459 

53 3 L 273 5 L 335 

54 4 L 389 2 L 254 

55 5 R 7 2 R 431 

56 1 L 294 1 L 268 

57 1 L 188 2 L 342 

58 1 L 240 2 L 448 

59 2 R 143 1 R 341 

60 1 R 406 1 L 453 

61 1 R 403 1 L 409 

62 2 L 390 1 L 417 

63 3 R 394 2 R 223 

64 1 R 118 1 R 327 

65 1 R 400 1 L 406 

66 2 L 408 2 R 241 

67 3 R 404 2 R 251 

68 4 R 332 2 R 265 

69 4 R 53 2 R 385 

70 1 R 129 1 R 458 

71 1 R 247 5 R 268 

72 5 R 32 3 R 263 

73 1 L 334 1 L 308 

74 2 R 183 1 R 401 

75 3 R 368 2 L 101 

76 4 R 407 2 R 270 

77 5 R 103 2 R 298 

78 5 R 111 2 R 306 

79 4 L 189 3 R 111 

80 4 R 339 3 R 118 

81 4 R 365 3 R 144 
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Table D.10 (continued) 

82 5 R 121 3 R 154 

83 6 R 100 5 R 289 

84 5 R 147 3 R 180 

85 6 R 186 5 R 309 

86 6 L 202 3 R 459 

87 6 R 279 5 R 356 

88 5 R 406 4 L 459 

89 6 R 292 5 L 348 

90 4 L 408 2 L 273 

91 5 L 115 4 R 263 

92 5 R 321 3 R 368 

93 1 L 266 5 L 374 

94 6 R 338 5 R 402 

95 4 R 385 2 L 362 

96 6 L 233 4 L 311 

97 6 R 357 5 L 393 

98 5 R 181 2 L 396 

99 3 L 382 2 R 357 

100 5 R 220 2 R 424 

101 5 R 250 3 R 210 

102 6 L 259 4 L 337 

103 6 L 272 4 L 350 

104 7 L 45 5 L 438 

105 6 L 330 4 L 408 

106 5 R 278 3 R 238 

107 5 R 286 3 R 271 

108 6 L 43 3 L 402 

109 6 L 370 5 R 40 

110 7 L 79 5 R 436 

111 5 R 75 2 L 296 

112 5 L 277 3 L 162 

113 5 L 288 3 L 173 

114 6 L 62 3 R 387 

115 6 L 384 4 L 422 

116 5 R 352 3 R 302 

117 6 L 94 3 R 419 

118 6 R 126 4 R 446 

119 7 L 134 6 R 55 

120 5 R 383 3 R 333 

121 6 L 126 3 L 434 

122 6 R 152 5 L 26 
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Table D.10 (continued) 

123 6 L 145 3 R 438 

124 6 R 166 4 L 436 

125 6 L 403 5 L 457 

126 7 L 182 6 L 48 

127 7 L 237 6 L 103 

128 5 L 296 3 L 332 

129 5 L 307 3 L 343 

130 5 L 334 4 L 197 

131 5 L 352 6 L 121 

132 6 L 181 4 L 233 

133 5 L 375 3 L 457 

134 5 R 52 4 R 283 

135 6 R 232 5 L 72 

136 7 L 301 6 R 119 

137 5 L 397 6 L 143 

138 3 L 397 4 L 248 

139 6 R 34 5 R 74 

140 6 R 379 5 R 458 

141 2 L 151 3 L 324 

142 2 R 331 4 R 148 

143 3 L 88 6 L 207 

144 2 L 321 4 L 170 

145 3 R 161 4 R 420 

146 2 R 395 6 R 183 

147 4 L 78 6 L 285 

148 3 R 239 6 R 261 
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Table D.11 EMRH Solution to 148-Task Problem with CT=510 

 
CT = 510 

Task Station Side Finish Time 

1 1 R 53 

2 1 R 30 

3 1 R 37 

4 1 R 100 

5 1 R 174 

6 1 R 108 

7 1 R 213 

8 1 R 145 

9 1 R 245 

10 1 R 274 

11 2 L 321 

12 3 R 377 

13 3 L 413 

14 1 R 289 

15 1 L 489 

16 1 R 342 

17 1 L 497 

18 2 L 24 

19 2 R 24 

20 2 R 32 

21 2 R 39 

22 2 L 84 

23 2 L 98 

24 2 R 52 

26 2 R 499 

27 2 L 109 

28 2 L 134 

29 2 R 510 

30 4 R 471 

31 3 L 25 

32 1 L 10 

33 1 R 356 

34 1 L 51 

35 1 R 398 

36 3 R 195 

37 3 R 202 

38 3 R 282 

39 3 R 289 
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Table D.11 (continued) 

40 3 R 330 

41 5 R 47 

42 2 L 337 

43 3 L 57 

44 3 L 215 

45 3 L 295 

46 3 L 302 

47 3 L 343 

48 3 L 381 

49 3 L 460 

50 1 L 239 

51 1 L 273 

52 1 L 508 

53 5 L 118 

54 3 L 368 

55 3 R 510 

56 1 R 426 

57 1 L 285 

58 2 L 76 

59 1 L 65 

60 2 L 505 

61 1 R 510 

62 2 R 60 

63 2 R 76 

64 1 R 499 

65 1 R 507 

66 2 R 94 

67 2 R 104 

68 2 R 118 

69 2 R 146 

70 3 R 388 

71 5 R 165 

72 4 R 148 

73 1 R 466 

74 1 L 105 

75 1 L 206 

76 3 R 503 

77 4 R 51 

78 4 R 59 

79 2 R 257 

80 2 R 264 
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Table D.11 (continued) 

74 1 L 105 

75 1 L 206 

76 3 R 503 

77 4 R 51 

78 4 R 59 

79 2 R 257 

80 2 R 264 

81 2 R 290 

82 4 R 69 

83 4 R 492 

84 4 R 95 

85 3 L 480 

86 3 R 409 

87 5 R 212 

88 4 L 509 

89 4 R 505 

90 3 R 498 

91 2 L 452 

92 2 L 487 

93 3 L 506 

94 5 R 258 

95 2 R 361 

96 3 R 440 

97 5 R 277 

98 2 R 395 

99 2 R 341 

100 2 R 434 

101 2 R 464 

102 3 R 466 

103 3 R 479 

104 5 R 322 

105 3 L 115 

106 4 R 123 

107 4 R 156 

108 4 R 199 

109 4 L 446 

110 5 R 356 

111 4 R 23 

112 4 L 185 

113 4 L 196 

114 4 L 296 
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Table D.11 (continued) 

115 4 L 460 

116 4 L 235 

117 4 L 328 

118 4 L 486 

119 5 R 411 

120 4 L 266 

121 4 L 360 

122 4 R 428 

123 4 L 379 

124 4 R 442 

125 5 R 430 

126 5 R 478 

127 5 L 173 

128 4 L 204 

129 4 L 277 

130 4 L 406 

131 5 L 191 

132 3 R 366 

133 4 L 23 

134 4 R 219 

135 4 R 402 

136 5 L 255 

137 5 L 277 

138 2 L 502 

139 3 L 149 

140 5 L 299 

141 1 L 436 

142 3 R 148 

143 5 L 363 

144 2 L 304 

145 4 R 356 

146 6 R 64 

147 5 L 441 

148 6 R 142 
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APPENDIX E 

AMPL CODES OF MATHEMATICAL MODELS 
 

 

AMPL Code of MM/Int-I 

param CT; 

set T; set L; set R; set E; 

param t{T}; param MaxN; param Dir{L union R}; 

param PreMatrix{T,T}; 

set P{i in T} = {p in T: PreMatrix[i,p]=1}; 

param HMatrix{i in T, h in T}; 

set HR = {i in I, h in I: HMatrix[i,h]=1}; 

var N >= 0; var Sta{i in T} integer; var FT{i in T}; var z{(i,h) in HR} binary; var AD{i in T} 

binary; 

 

minimize length: N; 

subject to C11{i in T}: 

Sta[i] <= N; 

subject to C12{i in T}: 

Sta[i] >= 1; 

subject to C2{i in I, p in P[i]}:



 

 

155 

Sta[p] <= Sta[i]; 

subject to C3{i in L union R}: 

AD[i] = Dir[i]; 

subject to C41{i in T}: 

FT[i] <= Sta[i] * CT; 

subject to C42{i in T}: 

FT[i] >= (Sta[i] -1) * CT + t[i]; 

subject to C5{i in I, p in P[i]}: 

FT[i] >= FT[p] + t[i]; 

subject to C61{(i,h) in HR}: 

2*MaxN*CT*(1 - z[i,h]) + MaxN*CT*(AD[h] - AD[i]) + FT[h] >= FT[i] + t[h]; 

subject to C62{(i,h) in HR}: 

2*MaxN*CT *z[i,h] + MaxN*CT*(AD[i] - AD[h]) + FT[i] >= FT[h] + t[i]; 

 

AMPL Code of MM/Int-II 

param N; set T; set L; set R; set E; 

param t{T}; param MaxCT; param Dir{L union R}; 

param PreMatrix{T,T}; 

set P{i in I} = {p in T: PreMatrix[i,p]=1}; 

param HMatrix{i in T, h in T}; 

set HR = {i in T, h in T: HMatrix[i,h]=1}; 
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var CT >=0; var Sta{i in T} integer; var FT{i in T}; var z{(i,h) in HR} binary; var AD{i in T}; 

 

minimize cycle: CT; 

subject to C11{i in T}: 

Sta[i] <= N; 

subject to C12{i in T}: 

Sta[i] >= 1; 

subject to C2{i in T, p in P[i]}: 

Sta[p] <= Sta[i]; 

subject to C3{i in L union R}: 

AD[i] = Dir[i]; 

subject to C41{i in T}: 

FT[i] <= CT; 

subject to C42{i in T}: 

FT[i] >= t[i]; 

subject to C5{i in T, p in P[i]}: 

MaxCT*(Sta[i] - Sta[p]) + FT[i] >= FT[p] + t[i]; 

subject to C61{(i,h) in HR}: 

2*N*MaxCT*(1-z[i,h]) + MaxCT*(Sta[h] - Sta[i] + N*(AD[h] - AD[i])) + FT[h] >= FT[i] + 

t[h]; 

subject to C62{(i,h) in HR}: 

2*N*MaxCT*z[i,h] + MaxCT*(Sta[i] - Sta[h]+N*(AD[i] - AD[h])) + FT[i] >= FT[h] + t[i]; 


