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ABSTRACT 

A COMPARISON OF SOME ROBUST REGRESSION TECHNIQUES 

Avcı, Ezgi 

M.S., Department of Industrial Engineering 

Supervisor: Prof. Dr. Gülser Köksal 

September 2009, 141 Pages 

Robust regression is a commonly required approach in industrial studies like 

data mining, quality control and improvement, and finance areas. Among the 

robust regression methods; Least Median Squares, Least Trimmed Squares, M-

regression, MM-method, Least Absolute Deviations, Locally Weighted Scatter 

Plot Smoothing and Multivariate Adaptive Regression Splines are compared 

under contaminated normal distributions with each other and Ordinary Least 

Squares with respect to the multiple outlier detection performance measures. In 

this comparison; a simulation study is performed by changing some of the 

parameters such as outlier density, outlier locations in the x-axis, sample size 

and number of independent variables. In the comparison of the methods, 

multiple outlier detection is carried out with respect to the performance 

measures detection capability, false alarm rate and improved mean square error 

and ratio of improved mean square error. As a result of this simulation study, 

the three most competitive methods are compared on an industrial data set with 

respect to the coefficient of multiple determination and mean square error. 

Keywords: Robust Regression, Multiple Outlier Detection, Multiple 

Regression 
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ÖZ 

BAZI SAĞLAM REGRESYON YÖNTEMLERİNİN  

BİR KARŞILAŞTIRMASI 

 

Avcı, Ezgi 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Gülser Köksal 

Eylül 2009, 141 Sayfa 

 

Sağlam(robust) regresyon endüstriyel çalışmalarda; örneğin veri madenciliği, 

kalite kontrol ve iyileştirme ve finans alanlarında sıklıkla gerek duyulan bir 

yaklaşımdır. Sağlam regresyon yöntemlerinden En Küçük Medyan Kareler, En 

Küçük Budanmış Kareler, M-regresyon, MM, En Küçük Mutlak Değerler, 

LOWESS ve MARS metotları yaklaşık normal dağılıma göre aykırı değerleri 

işleme başarımı bakımından En Küçük Kareler metodu ile karşılaştırılmıştır. 

Bu karşılaştırmada; aykırı değerlerin oranı, x uzayındaki yeri, örneklem 

büyüklüğü ve bağımsız değişken sayısı gibi parametreler değiştirilerek bir 

benzetim çalışması gerçekleştirilmiştir. Metotların karşılaştırılmasında aykırı 

değerleri belirlemede tip 1 ve 2 hata oranı, iyileştirilmiş hata kareler ortalaması 

ve iyileştirilmiş hata kareler ortalaması oranı gibi başarım ölçüleri 

kullanılmıştır. Bu benzetim çalışması sonucunda en iyi başarım gösteren üç 

metot bir endüstriyel veri seti üzerinde uygulanmış olup belirleme katsayısı ve 

ortalama karesel hata başarım ölçülerine göre bu metotların başarımı 

tartışılmıştır. 
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Anahtar Kelimeler: Sağlam Regresyon, Çoklu Aykırı Değer Bulma, Çoklu 

Regresyon 
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CHAPTER 1 

INTRODUCTION 

 

Regression analysis is a statistical technique for investigating and modeling the 

relationship between variables. There are many application areas of regression, 

including engineering, physical sciences, economics, management, life and 

biological sciences, and the social sciences. Regression can be said to be the 

most widely used statistical technique (Montgomery and Peck, 1991). 

In industrial applications, regression analysis is commonly used in quality 

control and improvement, and data mining. Ordinary Least Squares (OLS) 

method is usually preferred in these studies because it is a well established 

method and most of the computer packages are capable of making regression 

analysis with OLS. However, this method has some assumptions. Without 

satisfying these assumptions, the results will not be valid and should not be 

used. The most important assumption of OLS is normality. Briefly, normality 

assumption indicates that the regression errors should be normally distributed. 

However, the errors are frequently not distributed normally because of some 

outliers in the data.  

 

The concept of an outlier has attracted the attention of the researchers since the 

earliest attempts to interpret the data. It is more important to decide whether we 

should delete the observations, which are “unrepresentative” or “mavericks” of 
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the data, than the development of the statistical method. These observations are 

often seen as contamination to the data. They reduce and affect the information 

that we may get from the source or generating mechanism. Exploring the 

interpretation and categorization of outliers is not straightforward (Barnett and 

Lewis, 1994) 

 

Therefore regression analysis becomes troublesome and requires using 

techniques like data transformation which may not always solve the problem. 

Moreover the analysis may take time and typically needs expertise.  

 

To overcome these problems new statistical techniques, which are called robust 

(resistant), have been introduced that are not so easily affected by outliers 

(Rousseeuw and Leroy, 1987). Robust regression methods aim to minimize the 

impact of the outliers on regression estimators, but still invoke parametric 

assumptions after smoothing the influence of outliers on the regression line 

(Lane, 2002). 

 

Robust regression methods are gaining more and more importance, but there 

are few comparative studies about the performances of these approaches. 

People carrying out applications in various industries appreciate suggestions 

about which robust methods they should prefer to use. 

 

In this thesis, our aim is to extend the scope of the few comparative studies and 

guide the people making applications in industry. For this purpose, we extend 

the simulation comparison of M-regression, MM-method, Least Trimmed 

Squares (LTS) and Least Median Squares (LMS) performed by Wisnowski 

(1999). We use the same simulation approach with the addition of Least 

Absolute Deviations (LAD), Locally Weighted Scatter Plot Smoothing 

(LOWESS) and Multivariate Adaptive Regression Splines (MARS). The 

design parameters are selected as the number of independent variables k=2 for 
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n=40 observations or k=6 with n=60 observations. The outlier density is either 

10% or 20%, that is; 10% or 20% of the outliers can be outlying.The 

magnitude of the outliers is between three and five standard deviation units. 

The outliers are either generated randomly or in groups. These groups are 

called clouds. The number of multiple point clouds is either one or two. The 

results are compared by performance measures which are detection capability 

(PP), false alarm rate (PO), improved mean square error (IMSE) and ratio of 

IMSE. Furthermore from the simulation the most promising robust methods, 

which are M-regression, LAD and LTS are specified and applied on an 

industrial data set. A cross-validation approach is used to compare the 

methods’ performances on the industrial data. Criteria on which the robust 

regression methods compared are coefficient of multiple determination (R2) 

and mean square error (MSE). Detection capability and false alarm rate cannot 

be used since in real life data outliers are not known for sure as in the 

simulation study. 

 

This thesis is organized into five chapters. In the second chapter, some 

background information about robustness, outliers, OLS assumptions, robust 

regression techniques and previous comparative studies are given. In the third 

chapter, a Monte Carlo simulation study is performed on three different Y-

space outlier scenarios, which are adapted from Wisnowski (1999). From the 

simulation study, the three most promising robust regression methods are 

determined and their performances are compared on an industrial data set in 

chapter four. Conclusions and suggestions for future studies are mentioned in 

chapter five. 
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CHAPTER 2 

LITERATURE REVIEW 

 

In this chapter, first the definition and types of robustness are presented. Then, 

OLS assumptions are discussed. Since the most basic assumption of OLS is 

usually violated by outliers; outlier types, which are interior Y-space and 

interior X-space, are investigated. Robust regression methods, which are 

especially developed for detecting outliers in the data, are explained next. Their 

algorithms and basic properties are analyzed. At the end of the chapter, 

previous comparative studies are briefly discussed. 

2.1 Robustness 
 

Box (1953) used the term robustness for the first time (Hogg, 1979). Portnoy 

and He (2000) state that there are more than 3000 entries with “robust” and 

“robustness” as key words in the Current Index to Statistics. These findings can 

be classified as “density”, “rank”, “bootstrap”, “censored” or “smoothing”  but 

most of them sees robustness as alternatives to OLS  method and normality 

theory.  As indicated by Portnoy and He (2000), the importance of robust 

estimators was recognized in a study called Princeton which was conducted by 

Pearson, Student, Box and Tukey. Huber’s (1964) classic minimax approach 

and Hampel’s (1968, 1974) introduction of influence functions was the first 

milestones of the modern theory of robust statistics. After these studies the 

importance of robustness was understood. Huber (1964) might be considered 

as the first research that defines robustness as “approximate validity of a 

parametric model”. Hampel (1974) studied the properties of statistical 

functions and introduced three important robustness concepts: qualitative 
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robustness (continuity), influence function (derivative), and breakdown point 

(Portnoy and He, 2000). 

There are many perspectives of robustness. Box and Tiao (1962) mentioned 

about two types of robustness: criterion robustness and inference robustness. 

Criterion robustness selects a criterion for statistical optimality and then 

investigates its variation as the parent distribution deviates from the form 

assumed. Inference robustness is about the changes in quantities leading to 

inference (significance levels, coverage probability, etc.). Then some studies 

have been performed about efficiency robustness, qualitative robustness, bias 

robustness, Bayesian robustness, and so on (Portnoy and He, 2000). 

The word robust has many meanings but briefly robustness can be defined as 

“signifying insensitivity to small deviations from the assumptions”. 

Correspondingly distributional robustness can be defined as “the shape of the 

true underlying distribution deviates slightly from the assumed model (usually 

the normal distribution”) (Huber, 1981). In our study, we are interested only in 

the distributional robustness to contaminated normal distributions. Skewed and 

asymmetric distributions are out of our scope.  

A statistical procedure based on the OLS assumptions may be substantially 

affected by the deviations from normality.  In a survey, Tukey (1960) showed 

that contamination by just two observations from a N(0, 9) distribution among 

1000 N(0, 1) observations is enough to make the mean absolute deviation 

(MAD) estimator more efficient than the sample standard deviation, which is 

asymptotically optimal for the Gaussian scale parameter (Portnoy and He, 

2000).  

Huber (1981) indicates that some people may ask whether robust procedures 

are needed at all, because there is a common two-step approach to deal with 

outliers: 

1. Clean the data by applying some rule for outlier detection. 
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2. Use classical estimation and testing procedures on the remainder of the 

data. 

Unfortunately, they will not do the same job as the robust estimators. From 

Huber (1981) the reasons can be summarized as: 

1. Separating the two steps accurately is a hard work. Moreover in the 

multiple regression case, outliers are difficult to detect. 

2. Although the sample come from a normal distribution with some gross 

outliers, the cleaned data may not be normal (there may be both kinds 

of statistical errors, false rejection and false acceptance). If the sample 

does not come from a normal distribution, the situation is even worse.  

As a result, the classical normal theory is not applicable to cleaned 

samples, so applying the two-step procedure may be more difficult than 

applying the straight robust procedure. 

3. Robust regression methods are a smooth transition between full 

acceptance and full rejection of an observation; therefore the best 

rejection procedures are not competitive against the best robust 

procedures.  

Huber (1981) defines a parametric model as a “hopefully good approximation 

to the underlying situation, but we cannot and do not assume that it is exactly 

correct”.  As a result there should be three properties of any statistical 

procedure: 

1. At the assumed model, it should have a reasonably good efficiency. 

2. Small deviations, occurrence of gross errors in a small fraction of the 

observations, from the model assumptions should affect the 

performance only slightly.  

3. Larger deviations from the assumed model should not affect the 

parameters substantially. 
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Therefore robust regression is classified in the family of parametric regression 

methods. Related with these ideas, robust estimates can be specified as 

consistent estimates of the unknown parameters at the idealized model. Since 

they have robustness property, they will not drift too far away if the model is 

only approximately true (Huber, 1981). 

To illustrate the difference between parametric robustness and nonparametric 

method, the following example can be given. Suppose that a random sample is 

drawn from a mixture model with 90% from N (0, 1) and 10% from N (t, 1) for 

some large value of t. If we use a central model of N (θ, 1), then a robust 

estimate of location would aim at the center of the majority; that is, θ=0. 

However, the estimate will be biased from the contamination from N (t, 1). A 

robust estimate tries to control the bias regardless of the size of t. On the other 

hand, a nonparametric estimate of location would aim at the center of the 

mixture distribution, which is not 0 in this case.  So, it is important to know 

what we are searching in the analysis. If we believe in a parametric model that 

approximates reality and wish to estimate the parameters related with this 

model, then robust estimates are our best choice. But if we are not sure about 

the underlying distribution, we consider the data as a sample from an unknown 

population and are interested in a population quantity, then a nonparametric 

estimate is more appropriate (see Portney and Welsh 1992) as cited in Portnoy 

and He (2000).  

2.2. Ordinary Least Squares and Assumptions  
 

Regression analysis is a statistical technique for investigating and modeling the 

relationship between variables. There are lots of application areas of regression 

including engineering, the physical sciences, economics, management, life and 

biological sciences, and the social sciences. Regression can be said to be the 

most widely used statistical technique (Montgomery and Peck, 1991) 
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Among the various regression methods, OLS is the most commonly used one. 

It was discovered independently by Carl Friedrich Gauss in Germany around 

1975 and by Adrien Marie Legendre in France around 1805. Astronomic and 

geodetic data were used in the early applications of the method.  Its first 

published appearance was in 1805 in an appendix to a book by Legendre on 

determining the orbits of comets (Birkes and Dodge, 1993). As it is stated by 

Rousseeuw and Leroy (1987), among the many possible regression techniques, 

the OLS method has generally been used because of tradition and ease of its 

computation. 

A regression model that has more than one independent variable is called a 

multiple linear regression model. The model can be formulated as 

      

If we take k=1, the model is called simple linear regression model. The 

parameters  are called the regression coefficients. This model illustrates a k-

dimensional hyperplane. The parameter   indicates the expected change in 

the response y per unit change in  when all the remaining independent 

variables are held constant. Therefore,  can also be called partial regression 

coefficient (Montgomery and Peck, 1992). 

In multiple linear regression, the real functional relationship between the 

response and the independent variables is unknown. The regression model is an 

approximation to the real relationship. But over certain ranges of the 

independent variables, it is an adequate approximation (Montgomery and Peck, 

1991).  

To estimate the coefficients, the straight line that “best” fits the data points in 

the plot is found. To judge how well the estimated regression line fits the data, 

we can analyze the size of the residuals. The smaller the residuals, the more 

accurate the fit is (Birkes and Dodge, 1993). 
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The residuals of a regression model are defined as the n differences 

 , i= 1, 2,…, n ; 

where  is an observation and  is the corresponding fitted value calculated 

from the fitted regression equation.  

From the definition of the residuals, it can be said that  are the amount of 

response that the regression equation has not been able to explain. Therefore, 

we can think of the  as the observed errors if the model is correct (Draper 

and Smith, 1981). 

As stated by Montgomery and Peck (1991), a OLS regression model is valid if 

and only if the assumptions below are true; 

1. The relationship between y and x is linear, or at least it is well 

approximated by a straight line. 

2. The error term ε has zero mean. 

3. The error term ε has constant variance σ2. 

4. The errors are uncorrelated. 

5. The errors are normally distributed. 

Assumptions 4 and 5 mean that the errors are independent random variables. 

Assumption 5 is the basic requirement for hypothesis testing and interval 

estimation. If the model is fitted without validating the assumptions, it can be 

unstable which means that by using a different sample, a totally different 

model can be fitted with opposite conclusions (Montgomery and Peck, 1991). 

The normality assumption violation is the basis for robust regression. Although 

small departures from normality do not affect the model greatly, gross 

vialotions of normality assumption is more dangerous since the t- or F-

statistics, confidence and prediction intervals depend on the normality 

assumption. Moreover if the errors come from a heavy-tailed distribution, the 

OLS regression line may be sensitive to a small subset of the data since these 
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types of outliers “pull” the least squares regression line too much in their 

direction (Montgomery and Peck, 1992) or outliers may be a result of 

misplaced decimal points, recording and transmission errors, exceptional 

phenomena such as earthquakes and strikes, or members of a different 

population contaminating into the sample. These undesirable situations may be 

results in non-optimal solutions. Real data usually have outliers but they cannot 

be identified by the users since nowadays much data is analyzed by computers, 

without careful inspection and screening. Outliers may totally spoil an ordinary 

LS analysis. Often such influential points remain hidden because they do not 

always show up in the usual OLS residual plots (Rousseeuw and Leroy, 1987). 

2.3. Outliers in Regression 
 

An outlying observation, or outlier, is “the observation that appears to deviate 

markedly from other members of the sample in which it occurs”, as Grubbs 

(1969) remarks (Barnett and Lewis, 1994).  

As discussed by Barnett and Lewis (1994), there are three different sources of 

variability: 

1. Inherent variability: In this type, observations vary over the population; 

such variation is a natural property of the population. It is 

uncontrollable and reflects the distributional properties of a correct 

basic model.  

2. Measurement error: Inadequacies in the measurement instrument, the 

rounding of obtained values, or recording mistakes. 

3. Execution error: If we carelessly choose a biased sample or take 

observations that do not represent the population we try to get 

information, this type of variability occurs. 

From these three sources of variability, we are nearly interested in outliers that 

may be a perfectly reasonable reflection of the natural inherent variation and 
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reflects an inadequate basic model. A more appropriate model should be 

assumed in this case. But again it must be remarked that distributional 

robustness (against inherent alternatives) are out of our scope, robustness 

against contamination is mentioned in our study.  

2.3.1. Interior Y-space Outliers 
 

Regression outliers can seriously violate the standard OLS analysis. Outliers 

can be in both X and Y directions. Outliers in y-direction have received 

attention in literature because one usually considers the yi as observations and 

the xi as fixed numbers (which is only true when the design has been given in 

advance) and because such “vertical” outliers often possess large positive or 

large negative residuals. Even in multiple regression with a large number of 

independent variables (p), where it is so difficult to visualize the data, such 

outliers can often be discovered from the list of residuals or from the residual 

plots (Rousseeuw and Leroy, 1987). 

2.3.2. Interior X-space Outliers 
 

Explanatory variables can also have outliers. In many applications, one 

receives a list of variables, and then has to choose a response variable and 

some explanatory variables. So, there is no reason why gross errors would only 

occur in the response variable. Moreover, the probability of having an outlier in 

explanatory variables is higher than the probability of having an outlier in the 

response because usually this probability is greater than one; therefore the 

probability of having incorrect results is higher. An X-space outlier affects LS 

regression line greatly because it pulls the LS line towards itself. Therefore it is 

called a leverage point.  In general, an observation (xk , yk ) is called a leverage 

point whenever xk lies far away from the bulk of the observed xi in the sample. 

Note that this does not take yk into account, so the point (xk , yk ) does not 

necessarily have to be a regression outlier. When (xk , yk ) is close to the 
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regression line specified by the most of the data, then it is a good leverage 

point. In this case, it may perfectly lie on the regression line and it is even 

useful because it will narrow certain confidence regions (Rousseeuw and 

Leroy, 1987). The x and y-axis direction outliers are shown in Figure 2.1. The 

figure is adapted from Rousseuw and Leroy (1987). 

 

 

 

Figure 2.1: x-axis, y-axis and both x-axis and y-axis outliers 

 

 

2.3.3. Detection of Multiple Outliers 
 

There are two common ways to deal with outliers. The first one is regression 

diagnostics which are computed from the data to identify influential 

observations. Then these observations are corrected or deleted, followed by an 

LS analysis on the remaining cases. At the case of a single outlier, the effect of 

deleting one point at a time is easy to calculate. However, if there are multiple 
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outliers, it is not straightforward to analyze their affects on the regression line 

and extensive computations are required. The second approach to deal with 

outliers is to use robust methods whose results are still valid even if a certain 

amount of data is contaminated. It is thought that robust regression techniques 

hide the outliers, but the opposite is true because the outliers are far away from 

the robust fit so they can be detected by their large residuals from it 

(Rousseeuw and Leroy, 1987). 

In fact, diagnostics and robust regression have the same goal, but they proceed 

in the opposite order.  In the diagnostics, first the outliers are identified and 

then a regression line is fitted to the data without outliers. But in robust 

regression, first a robust regression line is fitted to the majority of the data and 

then the outliers are discovered by looking at the large residuals from the 

robust regression. Sometimes, both methods give exactly the same results, and 

then the difference is mostly subjective. There are almost as many robust 

methods as there are diagnostics, and to differentiate between them it is 

important to compare the robust methods’ performances with respect to the 

OLS method’s performance (Rousseeuw and Leroy, 1987). 

2.4. Robust Regression Methods 

Robust regression methods are developed for situations in which the 

distribution is close to normal. Many ways have been discussed in literature to 

make an estimator robust. Changing the minimization criteria of the errors 

which means using different weight functions; and trimming specified 

proportions of the data are the most common ways. M-regression and LAD can 

be cited for the first group; LTS can be cited for the second group. 

Still none of them has been shown to be truly superior in all outlier data 

configurations (Anderson, 2001). The aim of this study is to compare the 

performances of seven of the robust regression methods which are LAD, M, 

MM, LTS, LMS, MARS and LOWESS. In fact, in literature MARS and 
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LOWESS methods are classified in the nonparametric regression methods. 

However; the aim of this study is to measure the methods’ performances 

against the outliers, not against the model complexity. For this reason, these 

two methods are taken in the group “robust”.  

These seven regression methods have been studied for two reasons. The first 

reason is that they are the most mentioned methods in the alternative regression 

methods literature. The second one is that these methods are all available in a 

statistical package called S-PLUS and evaluation procedures are easy to 

understand for the people carrying out applications in industry. 

There are some fundamental concepts of the robust regression methods which 

are breakdown point, asymptotic efficiency and bounded influence. 

Breakdown Point: Let Z be any sample of n data points and T be a regression 

estimator. If we apply T to such a sample Z, we will get a vector of regression 

coefficients T (Z). The breakdown point of the estimator at the sample Z is 

defined as the smallest fraction of contamination that can cause the estimator T 

to take on values arbitrarily far from T (Z). It is important that this definition 

includes no probability distributions. For example, OLS has a breakdown point 

of 1/n which goes to zero for increasing n. This again shows the OLS method’s 

high sensitivity to outliers (Rousseeuw and Leroy, 1987).  

Asymptotic Efficiency: Asymptotic can be defined as concerning the limiting 

behavior of a procedure as the sample size goes to infinity. Asymptotic 

properties can also be called large-sample properties and not directly related to 

real life data which occurs in finite sample sizes. However, asymptotic 

properties are often more readily obtainable.  

The asymptotic efficiency of an x% means that for an infinitely large sample, 

the reciprocal of the ratio of the variance of the estimator to the smallest 

variance, which is the variance of the OLS estimate when the error distribution 

is normal. 
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Bounded Influence: An estimator is called bounded influence if it can bound 

the influence of X-space outliers by means of some weight function w. That is, 

bounded influence estimators are robust to X-space outliers which have large 

effect on the OLS regression line because they can pull the line towards 

themselves.  

In the following, the robust regression methods studied in this thesis are 

introduced briefly. 

2.4.1. Least Absolute Deviations 

 
The method of LAD is developed by Joseph Boscovich in 1757, 50 years 

before the method of OLS, to accommodate inconsistent measurements for the 

purpose of estimating the shape of the earth.  30 years later Pierre Simon 

Laplace favored to use the method; it saw occasional use until the OLS method 

overshadowed it.  OLS method is computationally simpler and also Gauss and 

Laplace developed a supporting theory for it. Computers are now able to do 

complex calculations and lots of theoretical foundations have been laid for a 

variety of alternative methods, including the method of LAD (Birkes and 

Dodge, 1993).  

Regression line estimation algorithm is discussed in Birkes and Dodge (1993) 

very clearly. Assume that the proposed simple linear regression model is Y =  

 + βX + е.  Scatter plot of the data can be checked whether the model is 

appropriate for representing the relations between X and Y. In the method of 

OLS, the estimates of the regression coefficients    are found by 

minimizing the sum of the squares of the residuals, ∑ ̂ . Whereas in the LAD 

method, the estimates are found by minimizing the sum of the absolute values 

of the residuals, ∑| ̂ |. That is, the LAD estimates     are the values of a 

and b that minimize 

 ∑| |. 
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The difference is called the deviation of the point ( , ) from the line 

 . LAD regression is sometimes called L1-regression because L1 norm of the 

vector of deviations is used. 

The concept of LAD estimation is simpler than the OLS estimate concept but 

the LAD method’s calculation of the estimates is more complicated. Instead of 

formulas, there are algorithms for calculating the LAD estimates. Birkes and 

Dodge (1993) explain this algorithm for simple and multiple regression cases. 

The aim of the algorithm is to find the line which has the least sum of absolute 

deviations and best fits the data. The algorithm starts with finding the best line 

among all the lines passing through for any given point ( , ). Let’s say the 

best line passing through the initial point is ( , ), now we should find the 

best line passing through this point. This line also passes through another data 

point ( , ). The algorithm continues like this until the most recent line 

obtained will be the same as the previous line. This is the best line, called the 

LAD regression line, among all the lines without regard to what points they 

pass through. 

The procedure is described as follows: 

For each point ( , ) the slope of the line, which is formulated as (yi-y0)/(xi-

x0),  passing through the two points  ( , ) and ( , ) is calculated. If xi = x0 

for some i, the slope is not defined but such points can be ignored.  The points 

are reindexed as, 

 /  /  /  . 

Let 

 ∑| |.  

The index k is found by satisfying the conditions, 

| |  …  | |         
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| |  …  | |  |  |    . 

The best line passing through (x0,y0) is the line, 

    , where 

 

. 

For the multiple regression case, the regression coefficient estimates are chosen 

to minimize 

∑  |       |  . 

As in the simple regression case, there are no formulas for the minimizing 

values, but an algorithm is used to obtain the values. 

Let, 
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Then the sum of absolute deviations can be written as 

'i iy b x−∑   

The vector b will be found by the algorithm which minimizes the above 

equation. 

The algorithm for multiple LAD regression is iterative as in the simple case. 

The algorithm starts with a vector b, and finds a better vector, and goes on until 

the best vector  is obtained. At each step, having a vector of estimates b, we 
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find a better vector b* by first finding a suitable “direction” vector d and then 

finding the value of t for which b* = b + td is best.  

In order to find the best vector of estimates in direction d, we should find the 

value of t that minimizes  

( ) 'i iy b td x− +∑   

If we write 'i i iz y b x= −  and 'i iw d x= , then the procedure must find the value 

of t that minimizes  

i iz tw−∑  

We put the ratios  i iz w  in increasing order, and reindex the z and w values 

according to this order, and the index k is found by 

1 2 1
1...
2kw w w T−+ + <  

1 2 1
1...
2k kw w w w T−+ + >

 
 

where iT w=∑   . k kz w  is the minimum value of t 

(Birkes and Dodges, 1993). 

The strength of LAD method comes from its robustness to Y-space outliers. 

For this reason, LAD estimates can sometimes be used as starting values for 

iterative regression algorithms. This method is especially suitable when the 

error distribution is heavy-tailed or asymmetric or when the sample size is very 

large (Birkes and Dodge, 1993). The breakdown point of the LAD estimator is 

no better than 0% because it is highly sensitive to outliers in the X-space 

(Rousseeuw and Leroy, 1987). That is; LAD is neither a high breakdown nor a 

bounded influence estimator. 
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Even for a simple linear regression model, it is not easy to calculate LAD 

estimates by using a hand calculator and paper and pencil because it involves 

the construction of a series of tables.  LAD regression estimates are available in 

the S-PLUS 2000 Robust Library with the function l1fit. This function uses the 

Barrodale-Roberts (1974) algorithm which is based on the simplex algorithm 

for solving linear programming models. The algorithm for the multiple cases 

forms an initial vector of estimates; on the other hand the Barrodale-Roberts 

algorithm includes a special start-up phase (Birkes and Dodges, 1993). 

2.4.2. M-regression 
 

The M-estimate is constructed by Huber (1964) to be optimal if the error 

distribution is contaminated normal. His criterion for the optimality is 

minimization of the maximum possible variance for infinitely large samples.  

The M in the M-regression was chosen because there is a relationship between 

M-estimation and maximum likelihood estimation. If the population of errors 

were assumed to have a particular distribution, some of the M-estimates would 

be maximum likelihood estimates. But the main goal of M-regression is to 

perform well for a wide range of distributions (Birkes and Dodge, 1993). 

The algorithm for estimating the regression line for both the simple and 

multiple cases is discussed in Birkes and Dodge (1993) very explicitly. M-

regression is a generalization of OLS and LAD methods by choosing the 

minimization criterion as ∑ ̂ , where ρ(e) is some function of e. OLS and 

LAD estimation can be regarded as the particular cases of M-estimation in 

which ρ(e)= e2 and ρ(e)=lel.  

The M-estimates mentioned here are Huber M-estimates. In M-estimation, the 

advantages of LAD and OLS estimation are tried to be combined by defining 

the ρ(e) function as: 
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   2 | |                 

    .   

Huber suggested that k = 1.5 , where  is an estimate of the standard deviation 

of the population of random errors.  = 1.483 MAD is used to estimate σ, 

where MAD is the median of the absolute deviations. The constant 1.483 is 

chosen to guarantee that if the normality assumption is valid, and then  is still 

a good estimate. LAD estimates’ advantage is being not as sensitive to outliers 

as OLS estimates, on the other hand, OLS estimates perform better than the 

LAD estimates when there no outliers. 

The minimization criterion is to minimize: 

 

The values of a and b that minimize this equation will be the Huber M-

estimates  and . The algorithm for minimizing the above equation is started 

by finding the initial estimates of α and β by OLS estimates. These are used to 

calculate the deviations and an estimate of σ. These will be used to get 

improved  .  Let a0 and b0 be the current estimates of α and β. The 

deviations are calculated as 0 0( )i iy a b x− + and from them 0ˆ 1.483MADσ = is 

calculated. Response values can be defined as 0 0 0
iy a b xi ei= + + . To get rid of 

large deviations, an adjustment of y-values is done by 0 0* *i i iy a b x e= + +  

where *ie  is the adjusted error vector obtained by truncating 0
ie , so that none 

of the deviations is larger than 0ˆ1.5σ in absolute value. If 0
ie  is between 

0ˆ1.5σ− and 0ˆ1.5σ , 0*i ie e= ; if 0
ie is less than 0ˆ1.5σ− , 0ˆ* 1.5ie σ= −  and 

0ˆ* 1.5ie σ=  if 0
ie is greater than 0ˆ1.5σ . 

For the multiple regression case, the minimization criteria is 

1 1( ( ... ))i o i p ipy b b x b xρ − + + +∑  
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 where the Huber M-estimates 0 1
ˆ ˆ ˆ, ,..., pβ β β  are the values of 0 1, , ..., pb b b  . 

Let  
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The vector  of Huber M-estimates is defined to be the vector b that minimizes  

∑ ′  .  

β, the vector of regression coefficients, is first estimated by the vector of LS 

estimates to calculate deviations and an estimate of σ. Then the deviations and 

the  will be used to obtain an improved estimate of β. The algorithm goes on 

until the improved estimate of β is at least approximately the same as the 

previous estimate.  

To describe the algorithm, let b0 the current estimate of β. The deviations of the 

yi values from the estimated regression line and the estimate of σ is calculated 

by 0( ) 'i iy b x−   and 1.483 . 

As in the simple regression case; to get rid of large deviations, some 

adjustments are made to the response values. 0 0( ) 'i i ie y b x= −  is the deviation 

of yi from the current estimated regression line, and if we put y on the right 

hand side 0 0( ) 'i i iy b x e= + . If we define a new y value as * 0 *( ) 'i iy b x e= + , 

where *ie  is the adjusted error vector obtained by truncating 0
ie , so that none 

of the deviations is larger than 0ˆ1.5σ in absolute value.  As a result, we get the 

improved estimate of β from the adjusted data (Birkes and Dodge, 1993). 

M-estimator is statistically more efficient (at a model with Gaussian errors) 

than LAD method. However its breakdown point is 1/n because of the outliers 
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in X-space which means that it not bounded influence (Rousseeuw and Leroy, 

1987). 

S-plus rreg function can calculate Huber M-estimates by using an algorithm 

which applies Iteratively Reweighted Least Squares Procedure (S-PLUS 

Robust Manual). 

2.4.3. Least Median of Squares 
 

M-estimator’s breakdown point is not high unless they have redescending ψ 

functions, in which case they need a good starting point (Venables&Ripley, 

1999).  A regression estimator with a high breakdown point was developed by 

Rouseeuw (1984) which is given by 

   

The residual ei of the ith case is the difference between actual and the estimated 

value.   The square is necessary if n is even, when the central median is taken. 

This method is very resistant and needs no scale estimate (Venables and 

Ripley, 1999).  This estimator is robust to both x and y-axis outliers with 

breakdown point 50%. If p>1 and the observations are in general position, then 

the breakdown point of the LMS method is  

/2 2 /  . 

Unfortunately, LMS has a low asymptotic efficiency. Furthermore, it gives too 

much sensitivity to central data values (Rousseuw and Leroy, 1987).  

S-PLUS has different functions to calculate LMS and LTS estimates like 

lmsreg, ltsreg and lqs. But since lmsreg and ltsreg are not fully documented, 

and give different results in different releases, we will use lqs by choosing the 

method option as LMS and LTS (Venables and Ripley, 1999).   
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2.4.4. Least Trimmed Squares 
 

To improve the slow rate of convergence of the LMS, Rousseeuw (1983, 1984) 

introduced LTS by the following minimization criteria 

 :  

    

where :  ≤ … ≤ :  are the ordered squared residuals from smallest to 

largest. In OLS estimation, we minimize the sum of all the residuals but here 

we can limit one’s attention to a “trimmed” sum of squares and minimize h of 

the residuals, so the important thing is to find the number h. LTS estimator 

breakdown point is 50%, that is; it can cope with several outliers at the same 

time up to n/2 of the data. LTS is also a reliable data analysis tool because its 

robustness is not affected by the number of independent variables, so can be 

used in multiple regression case (Rousseuw and Leroy, 1987). 

Putting  /2 +1, the LTS estimator has an breakdown point of /2

2 / . Moreover for  /2 1 /2 , the LTS estimator takes its 

possible maximum value for the breakdown point (Rousseuw and Leroy, 

1987). 

Rousseeuw and Van Driessen (2006) stated that the computation time of 

existing LTS algorithm grows too much with the size of the data set and they 

developed a new algorithm called Fast-LTS. For small data sets, Fast-LTS 

finds the same results with LTS; but for larger data sets, it gives more accurate 

results than existing algorithms for LTS. But since there is no program code 

available for this new algorithm, we used the existing LTS algorithm. 
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2.4.5. MM-estimation 
 

To combine the high breakdown property of LMS and LTS with the efficiency 

of M-estimation; Yohai et al. (1991) introduced MM-estimation (Venables and 

Ripley, 1999).  

Yohai’s estimators are defined in three stages. The algorithm starts with 

calculating a high breakdown point estimate of θ*. For this purpose, the robust 

estimator does not need to be efficient. At the second stage, an M-estimate of 

scale sn with 50% breakdown is computed on the residuals ri (θ*) from the 

robust fit. At the third stage, equation below is minimized and the solution 

gives the MM-estimator .  

/  0, 

which satisfies  

, 

where  

 /  . 

 

The function must satisfy the following conditions: 

1. ρ is symmetric and continuously differentiable, and ρ(0)=0. 

2. There exists c>0 such that ρ is strictly increasing on 0, c  and constant 

on c,∞  .  

These two conditions imply that ψ = ρ' has to be properly redescending. The 

important point about this algorithm is that ρ may be quite different from the 
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second stage scale estimate s  , because the first and the second stage estimates 

must have the high breakdown property, on the other hand, the third stage 

estimate’s goal is to have high effiency. Yohai showed that MM-estimators 

inherit the 50% breakdown point of the first stage and, also has the exact fit 

property. Also, he proved that if the normality assumption is valid, then MM-

estimators are still highly efficient (Rousseeuw and Leroy, 1987). 

S-PLUS rlm function with the MM option can handle the calculations. Also 

lmRobMM function uses a slightly different M-estimatior with similar 

properties and gives approximately the same results as rlm function (Venables 

and Ripley, 1999). 

Anderson (2001) compared the different options for MM-method in S-PLUS; 

which are MM1, MM2 and MM3. MM1 efficiency level is 90% with an 

optimal loss function, MM2 efficiency level is 80% with an optimal loss 

function and MM3 efficiency level is 85% with a Tukey’s Bisquare loss 

function. The loss function determines the degree of downweighting which the 

outliers receive in the regression estimation. But she stated after the study that 

the differences among the MM-type estimators were small with respect to three 

performance measures: relative efficiency, bias and significance test of the null 

hypothesis. As a result she recommends that the default options of MM-

estimator be used unless the researcher has reason to believe that changing the 

efficiency or the weighting function would produce improved results. 

Up to now, five of the robust regression methods are discussed. Most of the 

robust regression methods have both strong and weak properties. To 

summarize, methods with high breakdown point are LMS, LTS and MM. Also 

these methods are robust to outliers in X-space (high leverage points). 

However LMS and LTS are not efficient estimators. On the other hand LAD, 

M and MM have high efficiency (Rousseeuw and Leroy 1987; Anderson 

2001). 
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As mentioned before, the last two regression methods are in the class of 

nonparametric regression. Huber (1981) discusses the difference between 

robust and nonparametric methods very clearly. A procedure is called 

nonparametric if it is supposed to be used for a broad, non-parameterized set of 

underlying distributions. For instance, the sample mean and the sample median 

are the nonparametric estimates of the population mean and median but the 

sample mean is not a robust estimate of the population mean because it is 

highly sensitive to outliers. Nonparametric procedures can also be robust. For 

instance, median is a nonparametric statistic, but it is also a highly robust 

estimate for estimating the center of a symmetric distribution as a central 

model.  

In this study, the robustness properties of the two nonparametric methods 

MARS and LOWESS will also be analyzed and discussed. You will find brief 

description of these methods in the following sections. 

2.4.7. Multivariate Adaptive Regression Splines 

 
MARS is an adaptive procedure that can be used for multiple regression cases 

(Hastie et al., 2001). The aim of the MARS procedure is to combine the 

recursive partitioning and spline fitting’s advantages. The advantage of 

recursive partitioning is its adaptability through its local variable subset 

selection strategy which tracks the dependencies associated with a wide variety 

of complex functional forms. The two disadvantages of recursive partitioning 

are the lack of continuity of its models and its inability to capture simple 

relationships such as linear, additive or interactions of low order compared to 

n. Whereas, spline fitting is a nonadaptive procedure which produces 

continuous models with continuous derivatives. But it has the disadvantage that 

very large basis function sets are usually required in high dimensions to capture 

relatively simple functional relationships (Friedman, 1991). 
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MARS uses expansions in piecewise linear basis functions of the form (x-t)+ 

and (t-x)+ . The “+” means positive part, so  

+

x-t, if x>t
(x-t) =  

0,  otherwise
⎧
⎨
⎩

  and   +

t-x, if x<t
(t-x) =  

0,  otherwise.
⎧
⎨
⎩

.    

Each function is piecewise linear, with a knot at the value t. These are linear 

splines which are called a reflected pair. Our aim is to form these reflected 

pairs for each input Xj with knots at each observed value xij of that input. So, 

the collection of basis functions is  

 ,   , ,…..,
, ,…,

 . 

There are totally 2Np basis functions if all of the input values are distinct. 

Although, each basis function depends only on a single Xj , it is considered as 

function over the entire input space, for example,    . 

The model-building strategy is similar to forward stepwise linear regression, 

but different from regression, it can use functions from the set C (and their 

products) instead of using the original input variables.  Therefore, the model 

has the form 

  ∑ ,  

where each hm(X) is a function in C, or a product of two or more such 

functions. 

The coefficients βm are estimated by the minimization criteria of standard 

linear regression. The trick is finding the functions hm(X). The algorithm starts 

with only the constant function h0(X) = 1 in the model and all functions in the 

set C are candidate functions. 
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At each stage, we consider all products of a function hm in the model set M 

with one of the reflected pairs in C as a new basis function pair. We add to the 

model M the term of the form 

1 2
ˆ ˆ( ).( ) ( ).( ) ,

l j l j lM Mh X X t h X t X h Mβ β+ + + +− + − ∈  

that produces the largest decrease in training error. Here, 1
ˆ

Mβ +  and 2
ˆ

Mβ +  are 

coefficients estimated by least squares along with all the other M+1 

coefficients in the model. Then the winning products are added to the model 

and the process is continued until the model set M contains some preset 

number of terms.  

For example, at the first stage a function of the form   

 ;   is considered to be added to the model, since 

multiplication by the constant function just produces the function itself.  

Suppose the best choice of the function form is  

 . Then we include this pair of basis functions  to the set M.  At the second 

stage, we consider adding a pair of products of the form 

.   and   .   ,    

where for , we have the choices  

1,
,
 .
  

At the end of this process, we have a large model which overfits the data, so a 

backward deletion procedure is applied.  The term whose removal causes the 

smallest increase in residual square error (RSS) is deleted from the model at 

each stage. These deletions produce an estimated best model  of each number 

of terms of λ.  
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Cross-validation can be used to estimate the optimal value of the λ, but MARS 

procedure uses generalized cross-validation for computational time saving. 

Generalized cross-validation criterion is computed by  

( )
( )

2

1
2

ˆ ( )
( )

1 ( )

N

i i
i

y f x
GCV

M N

λ

λ
λ

=

−
=

−

∑

 

where M(λ) is the effective number of parameters in the model. Effective 

number of parameters is the total number of terms in the model plus the 

number of parameters used in selecting the optimal positions of the knots. By 

backward selection, we choose the model that minimizes the GCV (λ) 

criterion. 

Advantage of the MARS method is that the piecewise linear basis functions has 

the ability to operate locally, that is outside of their range they are zero.  But 

when they are multiplied together, the result is nonzero only over the small part 

of the feature space where both component functions are nonzero. Therefore, 

the regression surface is built up by using nonzero components locally-only 

when they are needed. This advantage is important because parameters should 

be spent carefully in high dimensions, as they can run out quickly. The second 

advantage of MARS method is easiness of computation. First, the reflected pair 

is fit with right most knot. As the knot is moved successively one position at a 

time to the left; over the left part of the domain area, the basis functions differ 

by zero and by a constant over the right part. (Hastie et al., 2001).   

MARS method is added to the S-PLUS by calling the MDA and MASS 

libraries from R-language. After adding the libraries, MARS method can be 

applied on S-PLUS with the function “mars()”. 
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2.4.8. Local Weighted Scatter Plot Smoothing 
 

A small number of outliers can seriously affect the estimates accuracy. So, to 

decrease the influence of outliers, some smoothing methods have been 

developed. Among them LOWESS is a well known method which is called a 

“robust version of LOESS” (Takezawa, 2006). The LOWESS algorithm is 

quite complex; it uses robust locally linear fits. A window is placed about , 

we weight the data points that lie inside the window so that points near to  get 

the most weight and a robust weighted regression is used to predict the value at 

 (Venables and Ripley, 1999). 

LOWESS algorithm is 

1.  is the result of the smoothing data by LOESS.  

2. Robustness weights   1, … ,  are derived as follows  

/ 6 ̂ , 

where 

  are the residuals 

̂ | |  is the scale estimate 

B(u) is a bisquare weight function which is 

 1      0  1 
0             1 | |  

   

3. Smoothing by LOESS is carried out with weight of  on the ith data. 

That is,  in eq(…) is replaced with  .  to obtain 

estimates. The residuals are calculated as    

4. (2) and (3) above are repeated three more times. 

As a result, we obtain smoothing that is robust to outliers. 

S-PLUS has a function called loess () which implements the loess method. If 

family= “symmetric” is assigned in loess (), calculation of LOWESS is carried 
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out. If family is not chosen or family= “Gaussian” is assigned, LOESS is 

executed (Takezawa, 2006). The parameter f controls the size of the window 

and is the proportion of the data which is included.  In S-PLUS, the default 

value is f=2/3 but it is often too large for scatter plots with appreciable 

structure (Venables and Ripley, 1999). 

2.5. Previous Comparative Studies 
 

Stigler (1977) presents a comparison of the performances of eleven robust 

estimators by using real data sets. He mentioned that most of the robustness 

studies have relied upon mathematical theory, computer simulated data or a 

combination of these and there is a lack of real data studies. His data sets are 

from the physics like the speed of light or density of the earth. The estimators 

considered in this study are the mean, median, 10%, 15%, and 25% trimmed 

means, three versions of M-estimators, Edgeworth, outmean and Hogg’s T1 

which are taken from the comprehensive Princeton Simulation study. The 

performance measures are relative error and relative rank. The relative error 

measures the absolute value of an estimator’s error relative to the sizes of the 

errors achieved by other estimators for the same data set. On the other hand, 

the relative rank does not take into account the actual errors of estimation. Only 

their ranks are calculated for each data set. Eventually it is found that light 

trimming improves the sample mean, but that the sample mean is also 

competitive among the many recently proposed methods. 

 

Nevit and Tam (1997) investigate some nonparametric and robust regression 

methods’ performance for situations in which the underlying assumptions of 

OLS are violated by the presence of outliers in the observed data. This study is 

only carried out for simple linear regression. A program called GAUSS is used 

for the simulation study. Design parameters included are sample size and types 

of the distribution. Unit normal, contaminated normal, lognormal and t-5 df 

distributions are considered. Variance, bias, mean squared error and relative 
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mean square error are chosen as the performance measures. LAD, 10% and 

20% Winsorized least squares, 10% trimmed least squares are the robust 

methods and monotonic regression, weighted median estimator, Theil median 

estimator are the nonparametric methods included in this study. The results of 

the study demonstrated that under mild data contamination (10%), none of the 

methods outperform the others. But when the outlier density is increased to 

30%, the LAD slope estimator is the most competitive one. Moreover, it can be 

said that for the nonnormal distributions, the symmetry of the error distribution 

dramatically affects the estimator performance. LAD estimator is no more 

desirable but the Winsorized least squares and the nonparametric method Theil 

are preferable. 

Wisnowski (1999) carried out a comprehensive multiple outlier detection study 

by using some robust methods and Monte Carlo Simulation. He mentions about 

the two reasons why robust regression is not widely used. The first mentioned 

reason is that an extra effort should be spent to get the appropriate software 

which is capable of making robust analyses. The second is that performance 

analyses are required. Therefore, the aim of his study is to compare the 

performance of the leading multiple outlier detection procedures for the linear 

regression model. Both the direct and indirect procedures are taken in this 

study. The indirect procedures include the robust regression methods which are 

LMS, LTS, M and MM. Detection capability and false alarm rate are used as 

performance measures. The factorial design parameters are the sample size, 

percentage of outliers, number of independent variables, outlier location, 

number of multiple point clouds and the proportion of independent variables 

with outliers. The factorial design parameters are selected to be convenient 

with the literature. The simulated data were analyzed in S-PLUS 4.5.His 

simulation results demonstrate that OLS, M and MM methods outperform the 

other two robust methods LTS and LMS. OLS method’s strong performance is 

unexpected here. One lack of this comprehensive study is that, he did not 

compare the methods on real life data. 
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In 2001, Anderson also made a similar simulation study about some robust 

regression methods using Monte Carlo Simulation. M, MM, MM1, MM2, 

MM3 and LAV methods are compared on different data configurations. MM1 

is the MM method with the tuning parameter changed from 0.85 to 0.80 and 

MM2 uses the 0.90 tuning constant. MM3 is the MM method with the rho 

function is Tukey instead of optimal choice. Factorial design parameters are 

sample size, number of independent variables, outlier density and outlier 

location. Her performance measures are relative efficiency, bias and test of the 

null hypothesis. Her simulation results demonstrated that the MM type robust 

regression methods outperform OLS and LAV with respect to the three 

performance measures. 

 

Moreover, Lane (2002) made a robust regression study aiming to discuss and 

compare some robust regression methods which are LTS and MM method. A 

heuristic data set about the number of international phone calls from Belgium 

in years 1950-1973 was taken from Rousseeuw and Leroy (1987). In this data 

set, the outliers occurred by using a different system of measurement in the 

years 1964-1969 and known. He used S-PLUS 2000 to model the data with 

outliers. As a performance criterion he compared the regression lines. Both the 

robust methods’ lines fit the data better than the OLS regression line. As a 

result, he advised to use robust regression to handle with the outliers in the 

data. 
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CHAPTER 3 

A SIMULATION STUDY FOR COMPARING PERFORMANCES OF 

ROBUST REGRESSION METHODS 

 

To compare robust regression techniques, simulation has been a commonly 

used tool ever since Pearson study conducted in 1930 published at Biometrika. 

The researcher is free to specify the type of the distribution and is able to know 

what kind of a mechanism produced his data. For example, outlier observations 

are exactly known. Therefore it is easy to evaluate the performance of the 

methods for such simulated data. But even if the researcher is very 

experienced, there is no guarantee that the simulated samples actually represent 

the data. In fact, the researchers generally focus on a narrow range of 

alternatives to normality that is independent, identically distributed samples 

from long tailed symmetric continuous distributions. However the real data can 

be correlated biased and the outlying observations are not known for sure. As a 

result the performance of the methods should also be compared on real data 

sets (Stigler, 1977). 

In this study, we used both approaches. In this chapter, a Monte Carlo 

simulation study is performed with respect to the scenarios indicated by 

Wisnowski (1999). The seven robust regression methods are compared by the 

performance measures which are detection capability, false alarm rate and an 

improved mean square error. After the simulation results are obtained, for each 

performance measure a Repeated ANOVA study is conducted and analyzed to 

see whether there is a significant difference between the methods. The results 

are discussed and the most promising methods which will be used in the real 

data case are determined. 
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3.1. Monte Carlo Simulation Study Planning  
 

3.1.1.  Data Generation and Outlier Planting 
 

Monte Carlo simulation approach is used to test the performance of the robust 

regression procedures studied.  The S-PLUS code for the simulation and data 

generation scenarios are adapted from Wisnowski (1999). A fixed percentage 

of clean observations are generated and then outliers are placed at the specified 

locations as suggested by the scenario and design parameters. 

 For the clean observations, the independent variable levels are generated from 

a multivariate normal distribution with μx = 7.5 and σx = 4. Wisnowski (1999) 

states that these parameter values are selected to be consistent with some of the 

results in the literature. The dependent variable for the ith clean observation is 

generated by  ′   where β is the vector of known regression 

coefficients, which are all equal to 5 for each of the k independent variables 

and equal to 0 for the intercept and  is distributed N(0,1).  

To generate outliers; the ith independent variable value for the jth observation 

can be taken as  ,  4   where ,  is the average of the 

clean values for the ith independent variable,  is the magnitude of the 

outlying shift distance in X-space in standard deviation units, . , which is 

used to separate multiple observations in a cloud to protect against singular 

matrices, is a random variable generated from a Uniform (0, 0.025). If the ith 

observation is a y-axis outlier, the response value is calculated by  ′

  where  is the magnitude of the outlying distance off the regression plane 

in standard deviation units. 

In our simulation study, outliers are placed at three different locations which 

are randomly scattered outliers in the interior of X-space, outliers in multiple 

point clouds at the centroid of X-space and outliers in multiple point clouds 
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when the independent variables are randomly scattered in the interior of X-

space. These scenarios represent only the X-space outliers since the LAD, M 

and MM methods are vulnerable in high leverage situations as stated by 

Wisnowski (1999).  

3.1.2.  Performance Measures 
 

To compare the robust regression methods’ performances, we have chosen 

three performance measures: detection capability, false alarm rate and mean 

square error of the clean data.  The first two measures are adapted from Hadi 

and Simonoff (1993) and Wisnowski (1999). The third one is an improved 

version of relative efficiency used in Anderson (2001). 

Detection Capability (PP) = P (at least one planted outlier is detected) = p1 

The complement of detection capability is the masking probability and can be 

shown as, P (Masking) = P (none of the planted outlier is detected) =1- p1.  
 

False Alarm Rate (PO) = P (a clean observation is swamped) 

Improved Mean Square Error (IMSE): This performance measure is improved 

based on the idea of relative efficiency measure mentioned in Anderson (2001). 

Relative efficiency can be defined as the degree to which an estimator performs 

like OLS, when OLS has normally distributed errors. Relative efficiency is 

usually expressed as a percentage as in defined by Ryan (1997) as cited by 

Anderson (2001), 

Relative Efficiency = MSE Robust / MSE OLS 

This ratio theoretically is between 0 and 1, but can exceed one if the robust 

MSE is less than the OLS MSE. For this reason, higher percentages are more 

desirable. 
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The MSE OLS in the ratio is the mean square error of the data without outliers. 

However, MSE Robust is the mean square error of the robust regression model 

calculated by including all the error terms in the summation. But this gives a 

disadvantage to robust estimators because these methods give outliers very 

large values so that they can be easily detected.  

When we fit a robust regression line to the data, the model includes outliers 

and as a result the outliers’ residuals will be much larger than the normal 

observations’ residuals. When calculating the MSE of robust regression 

methods, the outliers’ residual values should be ignored. By this way, we will 

prevent penalizing these methods because they fit the regression line based on 

majority of the data, but not close to outliers. Therefore, in our simulation 

study improved MSE (IMSE) is used as the third performance measure. 

Ratio of the IMSE: It is found by dividing the IMSE of the robust method by 

the IMSE of OLS. It shows how the method performs compared with OLS 

when there are no outliers in the data. 

3.1.3.  Factorial Design 
 

The factorial design of the study considers the sample size, percentage of 

outliers, number of independent variables (dimension of the data), outlier 

location (  is the magnitude of the unusualness in x-space;  is the 

magnitude of unusualness in y-space), the number of multiple point clouds and 

the proportion of independent variables with outliers. The factorial design 

parameters are selected to be convenient with the literature (Wisnowski, 1999). 

 The number of independent variables are k=2 for n=40 observations or k=6 

with n=60 observations. The outlier density is either 10% or 20%. The 

magnitude of the outliers is between 3 and 5 standard deviation units. The 

number of multiple point clouds is either 1 or 2.   
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To define an observation as an outlier, we should use cut off values for each 

robust regression procedure. The simulated cutoff values for each procedure is 

calculated as the 95th percentile of the absolute value of the residuals from the 

normally distributed data which does not contain outliers. S-PLUS is used to 

perform the simulations.  

The results of the cut-off simulation results are not the same as in the 

Wisnowski (1999). The difference is not because of the iteration number, if we 

iterate 10000 times, the results do not change. Also, if analyze the seed (i) 

function in S-PLUS 4.5 which is the S-PLUS version used in Wisnowski, the 

generated seeds are as the same as the S-PLUS 6 version. Moreover, the 

random number generator function rnorm () gives the same random numbers 

both in S-PLUS 4.5 and S-PLUS 6. To validate our cut-off values, Minitab14 is 

used and we get the same cut-off values as in ours from Minitab. 

Our performance measures; detection capability, false alarm rate and improved 

mean square error are calculated by performing 500 replications.   

3.2.  Simulation Results and Performance Analysis 
 

In all three scenarios, there is no independent variable that is unusual in the X-

space for the interior X-space outliers. That is, no high-leverage point is 

intentionally located in the samples. The response values for the interior X-

space outliers are  sigma away from the regression plane which is obtained 

from the clean cases.  is the magnitude of unusualness in y-space whose 

value can be 3σ, 4σ or 5σ. 

There are three cases for the interior X-space outliers. In the first case, multiple 

outliers are randomly scattered in the interior of X-space. In the second case, 

multiple point clouds or clusters of outliers are located near the centroid of X-

space. The third study considers multiple point clouds randomly placed 

(different for each replication) in the interior of X-space. 
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3.2.1. Scenario 1: Randomly Scattered Regression Outliers in the Interior 
of X-space: 
 

In this scenario, the outliers have random levels of the independent variables 

with the same distribution as the clean observations but the dependent variable 

values are placed at  sigma away from the regression plane. The response to 

the ith clean observation is generated by ′   where β is the 

coefficients vector which is known and selected to be 5 for each of the k 

independent variables and 0 for the intercept. xi is the vector of k independent 

variables distributed N (7.5, 4) and  is the random error term distributed N (0, 

1).  The response to the ith outlying observation is generated by ′   

where  is the outlying distance off the regression plane in standard deviation 

units, which equals 1 in our study. The factorial design with the simulation 

results in Table 3.1 includes the following factors: A (n: sample size and k: 

number of independent variables in the regression equation), B(dens : outlier 

density), C(  : is the magnitude of unusualness in y-space), D (cld : number 

of clouds).  

3.2.2. Scenario2: Regression Outliers in Multiple Point Clouds at the 
Centroid of X-space: 
 

This scenario compares the performance of the robust regression procedures 

when there are multiple Y-space outliers forming clouds at the centroid of X-

space. 

The response to the ith clean case is generated by ′    where β is the 

coefficients vector which is known and selected to be 5 for each of the k 

independent variables and 0 for the intercept. Xi is the vector of k independent 

variables whose distribution is N (7.5, 4) and  is the random error term 

distributed N (0, 1).   
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Table 3.1: Design matrix with detection capability (first), false alarm rates 

(second), IMSE (third) and ratio of the IMSE (fourth) for Scenario-1. 

 

A 
n,k 

B 
dens 

C 
δR 

OLS M MM LTS LMS LAD LWS MARS 

40,2 10% 3σ 0.970 
0.067 
1.043 
1 

0.971 
0.057 
0.986 
0.945 

0.972 
0.058 
0.998 
0.957 

0.832 
0.043 
1.270 
1.218 

0.819 
0.037 
1.218 
1.168 

0.960 
0.064 
1.002 
0.961 

0.873 
0.076 
0.903 
0.866 

0.872 
0.074 
0.983 
0.942 

60,6 10% 3σ 0.902 
0.065 
1.020 
1 

0.901 
0.055 
0.964 
0.945

0.902 
0.057 
0.967 
0.948

0.744 
0.064 
1.472 
1.443

0.733 
0.059 
1.418 
1.390

0.901 
0.056 
0.995 
0.975

0.576 
0.059 
0.775 
0.760 

0.747 
0.069 
1.130 
1.108 

40,2 20% 3σ 0.885 
0.101 
1.306 
1 

0.872 
0.087 
1.236 
0.946 

0.876 
0.089 
1.229 
0.941 

0.824 
0.046 
1.283 
0.982 

0.807 
0.046 
1.292 
0.989 

0.889 
0.066 
1.112 
0.851 

0.796 
0.113 
1.135 
0.869 

0.773 
0.113 
1.248 
0.956 

60,6 20% 3σ 0.744 
0.098 
1.282 
1 

0.721 
0.086 
1.234 
0.962

0.727 
0.088 
1.230 
0.959

0.691 
0.083 
1.726 
1.346

0.676 
0.073 
1.651 
1.288

0.773 
0.074 
1.142 
0.891

0.475 
0.095 
1.009 
0.787 

0.590 
0.103 
1.177 
0.918 

40,2 10% 4σ 0.997 
0.078 
1.135 
1 

0.998 
0.054 
0.965 
0.850 

0.998 
0.056 
0.965 
0.850 

0.986 
0.039 
1.229 
1.083 

0.984 
0.035 
1.198 
1.055 

0.998 
0.054 
1.002 
0.883 

0.949 
0.093 
1.004 
0.884 

0.941 
0.091 
1.102 
0.971 

60,6 10% 4σ 0.989 
0.080 
1.134 
1 

0.995 
0.052 
0.935 
0.825

0.995 
0.054 
0.940 
0.829

0.959 
0.059 
1.391 
1.227

0.962 
0.053 
1.337 
1.179

0.994 
0.056 
0.996 
0.878

0.759 
0.077 
0.889 
0.784 

0.917 
0.090 
1.269 
1.119 

40,2 20% 4σ 0.984 
0.141 
1.610 
1 

0.982 
0.096 
1.302 
0.809 

0.983 
0.095 
1.268 
0.787 

0.983 
0.038 
1.171 
0.727 

0.980 
0.037 
1.185 
0.736 

0.990 
0.067 
1.113 
0.691 

0.918 
0.159 
1.423 
0.884 

0.921 
0.159 
1.587 
0.986 
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Table 3.1 (cont’d): Design matrix with detection capability (first), false alarm 

rates (second), IMSE (third) and ratio of the IMSE (fourth) for Scenario-1. 

 

A 
n,k 

B 
dens 

C 
δR 

OLS M MM LTS LMS LAD LWS MARS

60,6 20% 4σ 0.951 
0.140 
1.608 
1 

0.944 
0.103 
1.369 
0.851 

0.945 
0.101 
1.337 
0.831 

0.952 
0.063 
1.427 
0.887 

0.951 
0.049 
1.320 
0.821 

0.973 
0.074 
1.145 
0.712 

0.683 
0.139 
1.309 
0.814 

0.791 
0.150 
1.498 
0.932 

40,2 10% 5σ 1 
0.094 
1.253 
1 

1 
0.051 
0.941 
0.751

1 
0.053 
0.938 
0.749

0.999 
0.039 
1.220 
0.974

0.999 
0.039 
1.184 
0.945

1 
0.054 
1.002 
0.799

0.976 
0.115 
1.134 
0.905 

0.957 
0.111 
1.240 
0.990 

60,6 10% 5σ 0.999 
0.099 
1.280 
1 

0.999 
0.047 
0.895 
0.699 

1 
0.048 
0.893 
0.698 

0.096 
0.057 
1.370 
1.070 

0.996 
0.052 
1.321 
1.032 

0.999 
0.056 
0.996 
0.778 

0.853 
0.099 
1.036 
0.809 

0.921 
0.113 
1.236 
0.966 

40,2 20% 5σ 0.995 
0.195 
2 
1 

0.997 
0.090 
1.259 
0.629

0.998 
0.083 
1.170 
0.585

0.998 
0.037 
1.158 
0.579

0.999 
0.035 
1.158 
0.579

0.999 
0.067 
1.134 
0.567

0.948 
0.215 
1.793 
0.896 

0.950 
0.218 
2.028 
1.014 

60,6 20% 5σ 0.985 
0.195 
2.028 
1 

0.987 
0.106 
1.386 
0.683 

0.988 
0.094 
1.277 
0.630 

0.993 
0.058 
1.347 
0.664 

0.995 
0.044 
1.244 
0.613 

0.998 
0.074 
1.145 
0.564 

0.784 
0.191 
1.694 
0.835 

0.844 
0.204 
1.912 
0.943 

Average  
probabilities 

  0.883 
0.113 
1.334 
1 

0.947 
0.074 
1.099 
0.825

0.949 
0.073 
1.085 
0.814

0.838 
0.052 
1.338 
1.017

0.908 
0.047 
1.298 
0.983

0.956 
0.064 
1.058 
0.796

0.799 
0.119 
1.128 
0.841 

0.852 
0.125 
1.318 
0.987 

 

 

The response to the ith outlying observation is generated by ′   

where xi is the vector of k independent variables distributed unif (7.375, 7.625) 

and   is the outlying distance off the regression plane in standard deviation 

units, which equals 1 in our study. If the number of clouds is two, the response 

values for the outliers in the first cloud are generated as above and the second 

clouds response values are generated by ′   .  
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The four factors in this scenario are A (n: sample size and k: number of 

independent variables in the regression equation), B (dens: outlier density), C 

(  : is the magnitude of unusualness in y-space), D (cld: number of clouds). 

 

Wisnowski (1999) stated that in this scenario the levels of  are chosen close 

to one another because initial studies have demonstrated that none of the robust 

regression procedures have detection capability below 3σe and nearly all had 

perfect detection capability at 5σe and below.  

 

The factorial design and the simulation results are presented in Table 3.2. 

3.2.3. Scenario3: Regression Outliers in Multiple Point Clouds:  
Independent Variables Randomly Scattered on the Interior of X-Space 
 

In this case, the multiple outlier clouds are not placed at the centroid but at 

different locations in X-space for each replication.  In a single point cloud, the  

location of the independent variables for outlying observations is determined 

by using the median of the first three clean observations for each variable. To 

guarantee the variation of the outlying observations, we add unif (0, 0.25) to 

this median value. In the second cloud, outliers are placed around the median 

value of the last three clean observations in each variable. To cover the X-

Space adequately, median of the three observations is used. If median of more 

than three observations is used, then the outlying observations will be placed 

too close to the centroid of X-space (Wisnowski, 1999).  

 

The factorial design matrix with the simulation results is demonstrated in Table 

3.3 where the factors are A (n: sample size and k: number of independent 

variables in the regression equation), B (dens: outlier density), C ( : is the 

magnitude of unusualness in y-space) and D (cld: number of clouds). 
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Table 3.2: Design matrix with detection capability (first), false alarm rates 

(second), IMSE (third) and ratio of the IMSE (fourth) for Scenario-2. 

 

A 
n,k 

B 
dens 

C 
δR 

D 
cld 

OLS LTS LMS M MM LAD LWS MARS 

40,2 10% 3σ 1 1 
0.063 
1.012 
1 

0.934 
0.037 
1.197 
1.183 

0.928 
0.033 
1.177 
1.164 

1 
0.053 
0.960 
0.949 

1 
0.055 
0.962 
0.951 

1 
0.053 
0.989 
0.977 

0.969 
0.074 
0.894 
0.883 

0.594 
0.081 
1.043 
1.031 

60,6 10% 3σ 1 1 
0.058 
0.981 
1 

0.977 
0.058 
1.387 
1.414

0.964 
0.052 
1.343 
1.369

1 
0.049 
0.925 
0.943

1 
0.051 
0.930 
0.948

1 
0.055 
0.978 
0.997 

1 
0.198 
1.734 
1.767 

0.227 
0.080 
1.365 
1.391 

40,2 20% 3σ 1 0.997 
0.098 
1.279 
1 

0.902 
0.055 
1.678 
1.312 

0.881 
0.053 
1.600 
1.251 

0.998 
0.081 
1.188 
0.928 

0.996 
0.084 
1.189 
0.929 

0.994 
0.061 
1.076 
0.841 

0.290 
0.105 
1.084 
0.847 

0.038 
0.119 
1.292 
1.010 

60,6 20% 3σ 1 1 
0.094 
1.257 
1 

0.712 
0.162 
5.673 
4.513

0.787 
0.103 
3.082 
2.452

0.998 
0.079 
1.171 
0.931

0.998 
0.081 
1.175 
0.935

0.998 
0.065 
1.061 
0.844 

1 
0.452 
3.173 
2.524 

0.002 
0.110 
1.591 
1.266 

40,2 10% 4σ 1 1 
0.073 
1.086 
1 

1 
0.037 
1.197 
1.102 

1 
0.033 
1.177 
1.084 

1 
0.050 
0.941 
0.866 

1 
0.052 
0.942 
0.867 

1 
0.053 
0.990 
0.912 

1 
0.090 
0.990 
0.912 

0.776 
0.109 
1.239 
1.141 

60,6 10% 4σ 1 1 
0.068 
1.059 
1 

1 
0.058 
1.387 
1.309

1 
0.052 
1.343 
1.268

1 
0.048 
1.902 
1.796

1 
0.049 
0.906 
0.855

1 
0.055 
0.978 
0.923 

1 
0.358 
2.627 
2.481 

0.793 
0.106 
1.203 
1.136 

40,2 20% 4σ 1 1 
0.139 
1.569 
1 

0.994 
0.039 
1.266 
0.807 

0.998 
0.033 
1.153 
0.735 

1 
0.083 
1.197 
0.763 

1 
0.086 
1.189 
0.758 

1 
0.061 
1.076 
0.686 

0.909 
0.142 
1.352 
0.862 

0.243 
0.170 
1.688 
1.076 

60,6 20% 4σ 1 1 
0.137 
1.561 
1 

0.964 
0.073 
2.322 
1.487

0.994 
0.047 
1.450 
0.929

1 
0.081 
1.182 
0.757

1 
0.084 
1.190 
0.762

1 
0.065 
1.061 
0.680 

1 
0.701 
5.220 
3.344 

0.011 
0.150 
1.890 
1.211 

40,2 10% 3σ 2 1 
0.050 
0.918 
1 

0.948 
0.038 
1.195 
1.301 

0.944 
0.033 
1.177 
1.282 

1 
0.049 
0.922 
1.004 

1 
0.050 
0.921 
1.003 

1 
0.048 
0.966 
1.052 

1 
0.053 
0.765 
0.833 

1 
0.054 
0.854 
0.930 
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Table 3.2  (cont’d): Design matrix with detection capability (first), false alarm 

rates (second), IMSE (third) and ratio of the IMSE (fourth) for Scenario-2. 

 

A 
n,k 

B 
dens 

C 
δR 

D 
cld 

OLS LTS LMS M MM LAD LWS MARS 

60,6 10% 3σ 2 1 
0.046 
0.811 
1 

0.967 
0.059 
1.384 
1.706 

0.955 
0.052 
1.343 
1.656 

1 
0.046 
0.888 
1.095 

1 
0.047 
0.885 
1.091 

1 
0.051 
0.952 
1.174 

1 
0.036 
0.600 
0.740 

1 
0.044 
0.767 
0.946 

40,2 20% 3σ 2 1 
0.049 
0.907 
1 

0.945 
0.372 
1.156 
1.274

0.925 
0.032 
1.144 
1.261

1 
0.047 
0.909 
1.002

1 
0.048 
0.907 
1 

1 
0.049 
0.958 
1.056 

1 
0.049 
0.725 
0.799 

1 
0.055 
0.847 
0.934 

60,6 20% 3σ 2 1 
0.044 
0.864 
1 

0.973 
0.056 
1.346 
1.558 

0.953 
0.048 
1.297 
1.501 

1 
0.044 
0.867 
1.003 

1 
0.044 
0.864 
1 

1 
0.051 
0.941 
1.089 

1 
0.028 
0.530 
0.613 

0.953 
0.028 
0.558 
0.646 

40,2 10% 4σ 2 1 
0.050 
0.918 
1 

1 
0.038 
1.195 
1.302

1 
0.033 
1.177 
1.282

1 
0.049 
0.922 
1.004

1 
0.050 
0.921 
1.003

1 
0.048 
0.966 
1.052 

1 
0.053 
0.765 
0.833 

1 
0.054 
0.854 
0.930 

60,6 10% 4σ 2 1 
0.073 
1.086 
1 

1 
0.037 
1.197 
1.102 

1 
0.033 
1.177 
1.084 

1 
0.050 
0.941 
0.866 

1 
0.052 
0.942 
0.867 

1 
0.053 
0.990 
0.912 

1 
0.090 
0.990 
0.912 

0.776 
0.109 
1.239 
1.141 

40,2 20% 4σ 2 1 
0.049 
0.907 
1 

1 
0.036 
1.147 
1.264

1 
0.032 
1.135 
1.251

1 
0.047 
0.910 
1.003

1 
0.048 
0.909 
1.002

1 
0.049 
0.959 
1.057 

1 
0.049 
0.725 
0.799 

1 
0.055 
0.847 
0.934 

60,6 20% 4σ 2 1 
0.045 
0.864 
1 

1 
0.056 
1.336 
1.546 

1 
0.048 
1.297 
1.501 

1 
0.044 
0.868 
1.005 

1 
0.044 
0.865 
1.001 

1 
0.051 
0.941 
1.089 

1 
0.028 
0.530 
0.613 

0.747 
0.005 
0.247 
0.286 

Avrg. 
Prob. 

   1 
0.071 
1.067 
1 

0.957 
0.076 
1.629 
1.511

0.958 
0.045 
1.380 
1.317

1 
0.056 
1.043 
0.995

1 
0.058 
0.981 
0.936

1 
0.054 
0.993 
0.959 

0.948 
0.157 
1.419 
1.235 

0.635 
0.083 
1.095 
1.001 
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Table 3.3: Design matrix with detection capability (first), false alarm rates 

(second), IMSE (third) and ratio of the IMSE (fourth) for Scenario-3 

 

A 
n,k 

B 
dens 

C 
δR

D 
cld 

OLS LTS LMS M MM LAD LWS MARS 

40,2 10% 3σ 1 
 
 

0.726 
0.070 
1.063 
1 

0.672 
0.042 
1.237 
1.163 

0.663 
0.038 
1.229 
1.156 

0.762 
0.057 
0.983 
0.924 

0.763 
0.059 
0.983 
0.924 

0.752 
0.055 
1.006 
0.946 

0.633 
0.081 
0.926 
0.871 

0.550 
0.086 
1.058 
0.995 

60,6 10% 3σ 1 
 
 

0.619 
0.072 
1.072 
1 

0.650 
0.064 
1.459 
1.361 

0.631 
0.054 
1.381 
1.288 

0.683 
0.057 
0.975 
0.909 

0.686 
0.059 
0.976 
0.910 

0.684 
0.061 
1.022 
0.953 

0.739 
0.068 
0.840 
0.784 

0.390 
0.082 
1.542 
1.438 

40,2 20% 3σ 1 
 
 

0.567 
0.111 
1.377 
1 

0.612 
0.055 
1.446 
1.050 

0.596 
0.051 
1.410 
1.024 

0.593 
0.090 
1.258 
0.913 

0.599 
0.091 
1.247 
0.905 

0.628 
0.076 
1.186 
0.861 

0.404 
0.109 
1.105 
0.802 

0.243 
0.116 
1.274 
0.925 

60,6 20% 3σ 1 
 
 

0.394 
0.115 
1.402 
1 

0.456 
0.107 
2.216 
1.581 

0.412 
0.104 
2.204 
1.572 

0.398 
0.102 
1.366 
0.974 

0.406 
0.104 
1.362 
0.971 

0.420 
0.098 
1.371 
0.978 

0.653 
0.100 
1.048 
0.747 

0.170 
0.102 
1.511 
1.078 

40,2 10% 4σ 1 
 
 

0.919 
0.083 
1.167 
1 

0.915 
0.039 
1.215 
1.041 

0.904 
0.036 
1.203 
1.031 

0.950 
0.056 
0.970 
0.831 

0.951 
0.058 
0.970 
0.831 

0.947 
0.056 
1.007 
0.863 

0.837 
0.098 
1.036 
0.888 

0.727 
0.110 
1.244 
1.066 

60,6 10% 4σ 1 
 
 

0.836 
0.091 
1.224 
1 

0.905 
0.059 
1.395 
1.140 

0.903 
0.050 
1.328 
1.085 

0.921 
0.056 
0.962 
0.786 

0.926 
0.057 
0.955 
0.780 

0.915 
0.061 
1.028 
0.840 

0.877 
0.095 
1.025 
0.837 

0.570 
0.107 
1.454 
1.188 

40,2 20% 4σ 1 
 
 

0.800 
0.159 
1.735 
1 

0.906 
0.039 
1.200 
0.692 

0.897 
0.039 
1.223 
0.705 

0.842 
0.110 
1.410 
0.813 

0.857 
0.103 
1.337 
0.771 

0.881 
0.078 
1.207 
0.696 

0.593 
0.148 
1.383 
0.797 

0.315 
0.159 
1.617 
0.932 

60,6 20% 4σ 1 
 
 

0.590 
0.166 
1.822 
1 

0.776 
0.085 
1.986 
1.090 

0.764 
0.081 
1.945 
1.067 

0.602 
0.141 
1.716 
0.942 

0.620 
0.134 
1.664 
0.913 

0.674 
0.115 
1.545 
0.848 

0.782 
0.159 
1.436 
0.788 

0.225 
0.139 
1.742 
0.956 

40,2 10% 5σ 1 
 

0.984 
0.099 
1.302 
1 

0.987 
0.039 
1.206 
0.926 

0.984 
0.036 
1.204 
0.925 

0.997 
0.054 
0.948 
0.728 

0.997 
0.056 
0.947 
0.727 

0.995 
0.056 
1.007 
0.773 

0.946 
0.116 
1.178 
0.905 

0.825 
0.139 
1.478 
1.135 

60,6 10% 5σ 1 
 

0.945 
0.118 
1.420 
1 

0.986 
0.056 
1.360 
0.958 

0.988 
0.049 
1.308 
0.921 

0.990 
0.050 
0.919 
0.647 

0.990 
0.050 
0.907 
0.639 

0.989 
0.061 
1.028 
0.724 

0.938 
0.132 
1.263 
0.889 

0.679 
0.133 
1.655 
1.165 
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Table 3.3 (cont’d): Design matrix with detection capability (first), false alarm 

rates (second), IMSE (third) and ratio of the IMSE (fourth) for for Scenario-3. 

 

A 
n,k 

B 
dens 

C 
δR

D 
cld 

OLS LTS LMS M MM LAD LWS MARS

40,2 20% 5σ 1 
 

0.927 
0.217 
2.196 
1 

0.987 
0.037 
1.147 
0.522 

0.983 
0.037 
1.179 
0.537 

0.957 
0.121 
1.493 
0.680 

0.970 
0.097 
1.279 
0.582 

0.978 
0.078 
1.211 
0.551 

0.756 
0.188 
1.741 
0.793 

0.384 
0.199 
1.079 
0.491 

60,6 20% 5σ 1 
 

0.758 
0.224 
0.362 
1 

0.937 
0.067 
1.609 
0.681 

0.938 
0.058 
1.546 
0.654 

0.771 
0.182 
2.123 
0.899 

0.800 
0.147 
1.848 
0.782 

0.847 
0.123 
1.657 
0.701 

0.864 
0.227 
1.934 
0.819 

0.245 
0.168 
2.665 
1.128 

40,2 
 

10% 3σ 2 
 

0.802 
0.287 
4.817 
1 

0.802 
0.041 
1.228 
0.255 

0.794 
0.038 
1.213 
0.252 

0.868 
0.054 
0.944 
0.196 

0.868 
0.055 
0.944 
0.196 

0.862 
0.052 
0.988 
0.205 

0.830 
0.253 
5.602 
1.163 

0.802 
0.363 
10.383 
2.155 

60,6 10% 3σ 2 
 

0.817 
0.464 
16.223 
1 

0.820 
0.061 
1.404 
0.086 

0.812 
0.051 
1.328 
0.082 

0.871 
0.050 
0.901 
0.055 

0.872 
0.049 
0.902 
0.056 

0.862 
0.054 
0.977 
0.060 

0.882 
0.551 
20.708 
1.276 

0.598 
0.325 
24.428 
1.508 

40,2 20% 3σ 2 
 
 

0.752 
0.461 
13.832 
1 

0.793 
0.040 
1.192 
0.086 

0.784 
0.039 
1.201 
0.086 

0.827 
0.061 
1.015 
0.073 

0.830 
0.062 
1.017 
0.073 

0.822 
0.061 
1.080 
0.078 

0.748 
0.362 
15.898 
1.149 

0.704 
0.462 
23.012 
1.664 

60,6 20% 3σ 2 
 
 

0.789 
0.618 
56.112 
1 

0.782 
0.066 
1.484 
0.026 

0.778 
0.058 
1.426 
0.025 

0.779 
0.063 
1.038 
0.018 

0.781 
0.064 
1.036 
0.018 

0.792 
0.074 
1.149 
0.020 

0.850 
0.659 
46.080 
0.821 

0.447 
0.369 
33.609 
0.599 

40,2 10% 4σ 2 
 
 

0.898 
0.295 
4.913 
1 

0.922 
0.039 
1.205 
0.245 

0.915 
0.036 
1.204 
0.245 

0.954 
0.053 
0.939 
0.191 

0.954 
0.054 
0.940 
0.191 

0.946 
0.053 
0.989 
0.201 

0.911 
0.258 
5.670 
1.154 

0.862 
0.370 
10.078 
2.051 

60,6 10% 4σ 2 
 
 

0.886 
0.465 
16.362 
1 

0.932 
0.060 
1.395 
0.085 

0.934 
0.051 
1.322 
0.081 

0.961 
0.048 
0.892 
0.054 

0.961 
0.048 
0.893 
0.055 

0.956 
0.054 
0.977 
0.060 

0.911 
0.556 
20.955 
1.281 

0.665 
0.338 
24.545 
1.500 

40,2 20% 4σ 2 
 
 

0.813 
0.473 
14.177 
1 

0.921 
0.036 
1.146 
0.081 

0.918 
0.035 
1.157 
0.082 

0.938 
0.063 
1.023 
0.073 

0.939 
0.064 
1.022 
0.072 

0.936 
0.062 
1.082 
0.076 

0.820 
0.374 
16.100 
1.136 

0.743 
0.478 
23.436 
1.653 

60,6 20% 4σ 2 
 
 

0.823 
0.623 
56.501 
1 

0.922 
0.058 
1.376 
0.024 

0.922 
0.050 
1.328 
0.023 

0.902 
0.069 
1.096 
0.019 

0.907 
0.069 
1.076 
0.019 

0.918 
0.076 
1.164 
0.020 

0.876 
0.662 
46.609 
0.825 

0.477 
0.388 
35.210 
0.623 
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Table 3.3 (cont’d):  Design matrix with detection capability (first), false alarm 

rates (second), IMSE (third) and ratio of the IMSE (fourth) for Scenario-3 

 

A 
n,k 

B 
den
s 

C 
δR 

D 
cld 

OLS LTS LMS M MM LAD LWS MARS 

40,2 10
% 

4σ 2 
 
 

0.898 
0.295 
4.913 
1 

0.922 
0.039 
1.205 
0.245 

0.915 
0.036 
1.204 
0.245 

0.954 
0.053 
0.939 
0.191 

0.954 
0.054 
0.940 
0.191 

0.946 
0.053 
0.989 
0.201 

0.911 
0.258 
5.670 
1.154 

0.862 
0.370 
10.078 
2.051 

60,6 10
% 

4σ 2 
 
 

0.886 
0.465 
16.362 
1 

0.932 
0.060 
1.395 
0.085 

0.934 
0.051 
1.322 
0.081 

0.961 
0.048 
0.892 
0.054 

0.961 
0.048 
0.893 
0.055 

0.956 
0.054 
0.977 
0.060 

0.911 
0.556 
20.955 
1.281 

0.665 
0.338 
24.545 
1.500 

40,2 20
% 

4σ 2 
 
 

0.813 
0.473 
14.177 
1 

0.921 
0.036 
1.146 
0.081 

0.918 
0.035 
1.157 
0.082 

0.938 
0.063 
1.023 
0.073 

0.939 
0.064 
1.022 
0.072 

0.936 
0.062 
1.082 
0.076 

0.820 
0.374 
16.100 
1.136 

0.743 
0.478 
23.436 
1.653 

60,6 20
% 

4σ 2 
 
 

0.823 
0.623 
56.501 
1 

0.922 
0.058 
1.376 
0.024 

0.922 
0.050 
1.328 
0.023 

0.902 
0.069 
1.096 
0.019 

0.907 
0.069 
1.076 
0.019 

0.918 
0.076 
1.164 
0.020 

0.876 
0.662 
46.609 
0.825 

0.477 
0.388 
35.210 
0.623 

40,2 10
% 

5σ 2 
 

0.940 
0.301 
5.036 
1 

0.954 
0.039 
1.205 
0.239 

0.955 
0.036 
1.205 
0.239 

0.967 
0.054 
0.934 
0.185 

0.965 
0.052 
0.990 
0.196 

0.965 
0.052 
0.990 
0.196 

0.944 
0.264 
5.766 
1.145 

0.898 
0.383 
10.776 
2.140 

60,6 10
% 

5σ 2 
 

0.921 
0.469 
16.536 
1 

0.970 
0.060 
1.396 
0.084 

0.970 
0.050 
1.315 
0.079 

0.978 
0.047 
0.883 
0.053 

0.979 
0.047 
0.883 
0.053 

0.976 
0.055 
0.978 
0.059 

0.927 
0.565 
21.252 
1.285 

0.697 
0.344 
25.046 
1.515 

40,2 20
% 

5σ 2 
 

0.874 
0.489 
14.615 
1 

0.960 
0.036 
1.147 
0.078 

0.959 
0.035 
1.157 
0.079 

0.964 
0.060 
1.003 
0.069 

0.965 
0.062 
0.994 
0.069 

0.962 
0.062 
1.084 
0.074 

0.883 
0.389 
16.382 
1.121 

0.786 
0.497 
24.023 
1.644 

60,6 20
% 

5σ 2 0.860 
0.631 
57.000 
1 

0.964 
0.056 
1.328 
0.023 

0.966 
0.049 
1.307 
0.023 

0.960 
0.072 
1.114 
0.019 

0.964 
0.064 
1.037 
0.018 

0.965 
0.077 
1.169 
0.021 

0.896 
0.667 
47.263 
0.829 

0.510 
0.409 
36.904 
0.647 

Avr. 
prb 

      0.802 
0.296 
12.178 
1 

0.855 
0.053 
1.374 
0.563 

0.849 
0.048 
1.347 
0.553 

0.851 
0.074 
1.121 
0.461 

0.856 
0.071 
1.092 
0.448 

0.861 
0.069 
1.121 
0.450 

0.813 
0.295 
11.800 
0.963 

0.563 
0.261 
12.490 
1.258 
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Table 3.4: Average Performance Measures of the Robust Regression Methods 

 
 

 Scenario1  Scenario2  Scenario3  

Methods PP PO IMSE Ratio of 

IMSE 

PP PO IMSE Ratio of 

IMSE 

PP PO IMSE Ratio of 

IMSE 

OLS 0.883 0.113 1.334 1 1 0.071 1.067 1 0.802 0.296 12.178 1 

LTS 0.947 0.074 1.099 1.017 0.957 0.076 1.629 1.511 0.855 0.053 1.374 0.563 

LMS 0.949 0.073 1.085 0.983 0.958 0.045 1.380 1.317 0.849 0.048 1.347 0.553 

M 0.838 0.052 1.338 0.825 1 0.056 1.043 0.995 0.851 0.074 1.121 0.461 

MM 0.908 0.047 1.298 0.814 1 0.058 0.981 0.936 0.856 0.071 1.092 0.448 

LAD 0.956 0.064 1.058 0.796 1 0.054 0.993 0.959 0.861 0.069 1.121 0.450 

LOWESS 0.799 0.119 1.128 0.841 0.948 0.157 1.419 1.235 0.813 0.295 11.800 0.963 

MARS 0.852 0.125 1.318 0.986 0.635 0.083 1.095 1.001 0.563 0.261 12.490 1.258 
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The performances of the robust regression methods are tested using four 

performance measures which are detection capability (PP), false alarm rate 

(PO), improved mean square error (IMSE) and ratio of the IMSE. The average 

values of the robust regression methods’ performance measures for the three 

simulation scenarios can be seen in Table 3.4. 

 

As Table 3.4 demonstrates, the M-estimators which are M, MM and the LAD 

method seem to outperform the other methods according to many of the 

performance measures and scenarios.  Multiple outlier detection scenarios are 

important for our study, so we should make our comments for each scenario 

respectively. 

 

While comparing the seven robust regression methods, repeated ANOVA is 

used supported by SPSS 16 to test the null hypothesis that there is no statistical 

difference between the methods for each performance measure. Firstly, the 

assumptions of ANOVA for each measure are checked by residual plots. If the 

assumptions of ANOVA are not satisfied, logarithmic transformations of the 

performance measures are used. Different outlier locations are entered as 

subjects and robust methods are entered as treatments.  

 

A repeated measures ANOVA is applied in this comparison study because 

there are 8 treatments (methods) and every treatment is to be used exactly once 

on each of the n objects (outlier locations).  Least Significant Difference (LSD) 

adjustment with 0.05 confidence intervals is used to make pairwise 

comparisons. The Repeated ANOVA Tables are presented in Appendix A.  
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Comparison of the methods for Scenario 1: Randomly Scattered 

Regression Outliers in the Interior of X-space 

 

The outliers have random levels of the independent variables with the same 

distribution as the clean observations but the dependent variable values are 

placed at  sigma away from the regression plane. 

 
For each scenario twelf tables are constructed by SPPS. For each performance 

measure there are three tables. To test the null hypothesis that if there is no 

significant difference between the methods with respect to PP in Scenario-1, 

Tables A.1, A.2 and A.3 can be analyzed. As can be seen from Table A.1, the 

null hypothesis indicates that there is sphericity. So the sphericity assumption 

is assumed if the p-value is greater than 0.05. Since the sphericity is not 

satisfied for this case; the “Tests of Within-Subjects Effects” table, 

Greenhouse-Geisser p-value should be used from Table A.2. Since the p-value 

is smaller than 0.05, we can reject the null hypothesis which indicates the 

methods are equal. As a result, we can say that there is a significant difference 

between the methods with respect to PP. 

 

To see which methods perform better, we should analyze the “Pairwise 

Comparisons” in Table A.3. To interpret the figure, the 95% confidence 

intervals should be checked. If the interval includes zero, then we can say that 

there is not a significant difference between these two methods with respect to 

the corresponding measure. To see which method’s performance is better, we 

should use the mean difference column. For the detection capability (PP) 

measure, higher values are preferred because this shows that this method’s 

outlier detection capacity is larger. For example, for the first row OLS (pp)-M 

(pp) < 0. This indicates that mean detection capability of OLS method is 

significantly smaller than the mean detection capability of M method. 

Therefore; we can say that M estimators outperform OLS estimators with 
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respect to PP performance measure. The rest of the table can be interpreted in 

the same way. Table 3.5 demonstrates the competitive relationships according 

to Table A.3. While comparing the methods pairwisely, (<) means the method 

in the column outperforms the corresponding method in the row. The empty 

cells indicate that there is no significant difference between the method in the 

row and its corresponding method in the column. 

From Tables A.4, A.5 and A.6, the null hypothesis that there is no significant 

difference between the methods with respect to PO can be tested for Scenario-

1.  As can be seen from Table A.4, the p-value is not greater than 0.05, i.e., 

sphericity is not satisfied so the “Tests of Within-Subjects Effects”, 

Greenhouse-Geisser p-value should be used from Table A.5. Since the p-value 

is smaller than 0.05, we can reject the null hypothesis which indicates that the 

methods are equal. As a result, we can say that there is a significant difference 

between the methods with respect to PO. To see which methods perform better, 

we should analyze the “Pairwise Comparisons” in Table A.6. These 

comparisons are given in Table 3.5. 

Tables A.7, A.8 and A.9 are used to test if there is a significant difference 

among the methods with respect to IMSE for Scenario-1. As it can be seen 

from Table A.7 the p-value is not greater than 0.05, hence the sphericity 

assumption is not satisfied. Therefore the Greenhouse-Geisser p-value in Table 

A.8 should be used. Since it is smaller than 0.05, we can reject the null 

hypothesis that the methods are equal. Therefore it can be said that there is a 

significant difference between the methods with respect to IMSE. To see which 

methods perform better, we should analyze the “Pairwise Comparisons” in 

Table A.9. These comparisons are demonstrated in Table 3.5. 

Tables A.27, A.28 and A.29 are used to test if there is a significant difference 

among the methods with respect to the ratio of IMSE for Scenario-1. As it can 

be seen from Table A.27 the p-value is not greater than 0.05, hence the 

sphericity assumption is not satisfied. Therefore the Greenhouse-Geisser p-
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value in Table A.28 should be used. Since it is smaller than 0.05, we can reject 

the null hypothesis that the methods are equal. Therefore it can be said that 

there is a significant difference between the methods with respect to IMSE. To 

see which methods perform better, we should analyze the “Pairwise 

Comparisons” in Table A.29. These comparisons are demonstrated in Table 

3.5. 

For the detection capability (PP); the LAD method outperforms the methods 

OLS, M, LTS, LMS, LOWESS and MARS. LOWESS and MARS 

nonparametric methods are outperformed by OLS, M, MM, LMS and LAD. As 

a result; LAD is a desirable method when the performance measure is detection 

capability. 

For the false alarm rate (PO); OLS is outperformed by M, MM, LTS, LMS, 

LAD and MARS methods. LTS and LMS methods show stronger performance 

than M and MM. LTS is outperformed by LMS. LAD is superior to OLS and 

MM, but not as competitive as the methods LTS and LMS. LOWESS and 

MARS nonparametric methods are outperformed by M, MM, LTS, LMS and 

LAD. As a result; LTS and LMS are superior when the performance measure is 

false alarm rate. 

For the improved mean squared error (IMSE); OLS is outperformed by M, 

MM, LAD and LOWESS. M and MM are superior to LTS, LMS and MARS. 

LAD outperforms LTS and LTS outperforms LMS. For the ratio of IMSE, the 

comments are same as the IMSE. As a result; LAD, M and MM are desirable 

methods when the performance measure is detection capability. 

For scenario-1, we can say that LAD is competitive among the other methods. 
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Table 3.5: Pairwise Comparisons of the Robust Regression Methods for PP, 

PO, IMSE and ratio of IMSE for Scenario-1 

 

Measure Methods M MM LTS LMS LAD LWS MARS 

PP OLS     < 
(.039) 

> 
(.000) 

> 
(.000) 

M     < 
(.044) 

> 
(.000) 

> 
(.000) 

MM      > 
(.000) 

> 
(.000) 

LTS     < 
(.039) 

  

LMS     < 
(.000) 

> 
(.001) 

> 
(.004) 

LAD      > 
(.000) 

> 
(.000) 

LWS        

PO OLS < 
(.000) 

< 
(.000) 

< 
(.000) 

< 
(.000) 

< 
(.000) 

 < 
(.000) 

M   < 
(.013) 

< 
(.003) 

 > 
(.000) 

> 
(.000) 

MM   < 
(.008) 

< 
(.001) 

< 
(.046) 

> 
(.000) 

> 
(.000) 

LTS    < 
(.001) 

> 
(.012) 

> 
(.000) 

> 
(.000) 

LMS     > 
(.001) 

> 
(.000) 

> 
(.000) 

LAD      > 
(.000) 

> 
(.000) 

LWS       > 
(.031) 
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Table 3.5(cont’d): Pairwise Comparisons of the Robust Regression Methods 

for PP, PO, IMSE and ratio of IMSE for Scenario-1 

 

Measure Methods M MM LTS LMS LAD LWS MARS 

IMSE OLS < 
(.000) 

< 
(.001) 

  < 
(.001) 

< 
(.000) 

 

M   >
(.009) 

>
(.022) 

  > 
(.002) 

MM   > 
(.003) 

> 
(.006) 

  > 
(.002) 

LTS    < 
(.002) 

< 
(.000) 

  

LMS     < 
(.000) 

  

LAD       > 
(.001) 

LWS       > 
(.000) 

Ratio of 

the 

IMSE 

M  >
(.007) 

>
(.014) 

  > 
(.001) 

MM  > 
(.003) 

> 
(.006) 

  > 
(.002) 

LTS   < 
(.001) 

< 
(.000) 

  

LMS    < 
(.000) 

  

LAD      > 
(.001) 

LWS      > 
(.000) 
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Scenario2: Regression Outliers in Multiple Point Clouds at the Centroid of 
X-space 
 

This scenario compares the performance of the robust regression procedures 

when there are multiple Y-space outliers forming clouds at the centroid of X-

space. 

Table A.10 illustrates that the p-value is smaller than 0.05, so we cannot 

assume sphericity. Since the sphericity is not satisfied; Greenhouse-Geisser p-

value is used from Table A.11 to determine if there exists significant difference 

between the methods with respect to PP for scenario2. Since it is smaller than 

0.05, we can say that there is a significant difference between the methods. To 

see which methods outperform the others, Table A.12 is analyzed and Table 

3.6 is demonstrated.  

From Tables A.13 and A.14; the hypothesis that if there is a significant 

difference between the methods with respect to PO can be tested for Scenario-

2. As can be seen from Table A.13, since the p-value is not greater than 0.05, 

sphericity is not satisfied for this case; the “Tests of Within-Subjects Effects”, 

Greenhouse-Geisser p-value should be used from Table A.14. Since the p-

value is not smaller than 0.05, we cannot reject the null hypothesis which 

indicates that the methods are equal with respect to PO. So part 2 of Table 3.6. 

cannot be used. 
 

Tables A.15, A.16 and A.17 are used to test the hypothesis that if there is a 

significant difference between the methods with respect to IMSE for Scenario-

2. As can be seen from figure A.15, since the p-value is not greater than 0.05, 

sphericity is not satisfied but the Greenhouse-Geisser p-value in Table A.16 is 

smaller than 0.05, we can reject the null hypothesis which indicates that the 

methods are equal. Therefore; it can be said that there is a significant difference 

between the methods with respect to IMSE. To see which methods perform 
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better, we should analyze the “Pairwise Comparisons” in Table A.17. These 

comparisons are demonstrated in Table 3.6. 

Tables A.30, A.31 and A.32 are used to test the hypothesis that if there is a 

significant difference between the methods with respect to ratio of IMSE for 

Scenario-2. As can be seen from figure A.30, since the p-value is not greater 

than 0.05, sphericity is not satisfied but the Greenhouse-Geisser p-value in 

Table A.31 is smaller than 0.05, we can reject the null hypothesis which 

indicates that the methods are equal. Therefore; it can be said that there is a 

significant difference between the methods with respect to the ratio of IMSE. 

To see which methods perform better, we should analyze the “Pairwise 

Comparisons” in Table A.32. These comparisons are demonstrated in Table 

3.6. 

Our results have shown that there is no significant difference between the 

methods for the PO measure but for the other three performance measures; we 

can analyze the table to see which methods outperform the others. 

For the PP; OLS is superior to the methods LTS, LMS and MARS. LTS and 

LMS is outperformed by the methods M, MM and LAD. MARS is not as 

competitive as the other methods. 

For the IMSE; OLS shows stronger performance than LTS and LMS but shows 

poorer performance than MM. LTS and LMS is outperformed by M, MM, 

LAD and MARS. The comments are the same for the ratio of the IMSE. 

As a result; M, MM and LAD methods perform well under scenario-2. 

Scenario3: Regression Outliers in Multiple Point Clouds:  Independent 

Variables Randomly Scattered on the Interior of X-Space 

 

In this case, the multiple outlier clouds are not placed at the centroid but at 

different locations in X-space for each replication. 
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Table 3.6:  Pairwise Comparisons of the Robust Regression Methods for PP, 

PO, IMSE and ratio of IMSE for Scenario2 

 

Measure Methods LTS LMS M MM LAD LWS MARS 

PP OLS > 
(.000) 

> 
(.001) 

    > 
(.000) 

LTS   < 
(.000) 

< 
(.000) 

< 
(.000) 

< 
(.047) 

> 
(.015) 

LMS   < 
(.001) 

< 
(.001) 

< 
(.001) 

 > 
(.019) 

M       > 
(.000) 

MM       > 
(.000) 

LAD       > 
(.000) 

LWS       > 
(.000) 

PO OLS        

LTS        

LMS        

M        

MM        

LAD        

LWS        
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Table 3.6 (cont’d): Pairwise Comparisons of the Robust Regression Methods 

for PP, PO, IMSE and ratio of IMSE for Scenario2 

 

Measure Methods LTS LMS M MM LAD LOWESS MARS 

IMSE OLS > 
(.002) 

> 
(.002) 

 < 
(.014) 

   

LTS   < 
(.002) 

< 
(.000) 

< 
(.001) 

< 
(.043) 

< 
(.009) 

LMS   < 
(.001) 

< 
(.000) 

< 
(.000) 

 < 
(.030) 

M        

MM        

LAD        

LWS        

Ratio of 

the IMSE 

LTS   < 
(.030) 

< 
(.013) 

< 
(.020) 

 < 
(.025) 

LMS   < 
(.006) 

< 
(.000) 

< 
(.001) 

 < 
(.016) 

M > 
(.030) 

> 
(.006) 

     

MM        

LAD        

LWS        
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To test the null hypothesis which indicates the methods are equal with respect 

to PP for Scenario3, Table A.18 can be analyzed. The sphericity assumption is 

not satisfied. We should look at the “Tests of Within-Subjects Effects” in Table 

A.19. Since the Greenhouse-Geisser p-value is smaller than 0.05, we can reject 

the null hypothesis which indicates that the methods are equal with respect to 

PP. To see which methods perform better, we should analyze the “Pairwise 

Comparisons” in Table A.20. These results are demonstrated in Table 3.7. 
 

From Tables A.21, A.22 and A.23 the null hypothesis that there is no 

significant difference between the methods with respect to PO can be tested for 

Scenario-3. As can be seen from Table A.21 the p-value is not greater than 

0.05, sphericity is not satisfied for this case; the “Tests of Within-Subjects 

Effects”, Greenhouse-Geisser p-value should be used from Table A.22. Since 

the p-value is smaller than 0.05, we can reject the null hypothesis which 

indicates that the methods are equal with respect to PO. As a result, we can say 

that there is a significant difference between the methods with respect to PO. 

To see which methods perform better, we should analyze the “Pairwise 

Comparisons” in Table A.23. These comparisons are given in Table 3.7. 

 Tables A.24, A.25 and A.26 are used to test the hypothesis that if there is a 

siginificant difference between the methods with respect to IMSE for Scenario-

3. As can be seen from Table A.24, since the p-value is not greater than 0.05, 

sphericity is not satisfied but the Greenhouse-Geisser p-value in Table A.25 is 

smaller than 0.05, we can reject the null hypothesis which indicates that the 

methods are equal. Therefore; it can be said that there is a significant difference 

between the methods with respest to IMSE. To see which methods perform 

better, we should analyze the “Pairwise Comparisons” in Table A.26. These 

comparisons are demonstrated in Table 3.7. 

Tables A.33, A.34 and A.35 are used to test the hypothesis that if there is a 

siginificant difference between the methods with respect to IMSE for Scenario-
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3. As can be seen from Table A.33, since the p-value is not greater than 0.05, 

sphericity is not satisfied but the Greenhouse-Geisser p-value in Table A.34 is 

smaller than 0.05, we can reject the null hypothesis which indicates that the 

methods are equal. Therefore; it can be said that there is a significant difference 

between the methods with respest to IMSE. To see which methods perform 

better, we should analyze the “Pairwise Comparisons” in Table A.35. These 

comparisons are demonstrated in Table 3.7. 

Table 3.7 results have shown that; for the PP; OLS is outperformed by LTS, 

LMS, M, MM and LAD but is superior to MARS. LTS shows stronger 

performance than LMS and MM shows stronger performance than M. 

LOWESS and MARS are outperformed by OLS and other robust methods. 

For the PO; OLS is outperformed by LTS, LMS, M, MM and LAD. LTS and 

LMS are superior to M, MM, LAD, LOWESS and MARS. LMS shows 

stronger performance than LTS. LOWESS and MARS are outperformed by 

OLS and other robust methods. 

For the IMSE; OLS is outperformed by LTS, LMS, M, MM and LAD. LTS 

and LMS show weaker performance than M, MM and LAD. MM is superior to 

LAD. LOWESS and MARS are outperformed by OLS and other robust 

methods.The comments for the ratio of the IMSE are the same as IMSE’s. 

As a result; LTS, MM and LAD methods perform well ınder scenario-3.
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Table 3.7: Pairwise Comparisons of the Robust Regression Methods for PP, 

PO, IMSE and ratio of IMSE for Scenario3 

 

Measure Methods LTS LMS M MM LAD LWS MARS 

PP OLS < 
(.000) 

< 
(.000) 

< 
(.000) 

< 
(.000) 

< 
(.000) 

 > 
(.000) 

LTS  > 
(.010) 

   > 
(.004) 

> 
(.000) 

LMS      > 
(.006) 

> 
(.000) 

M    < 
(.011) 

 > 
(.002) 

> 
(.000) 

MM      > 
(.001) 

> 
(.000) 

LAD      > 
(.001) 

> 
(.000) 

LOWESS       > 
(.000) 

PO OLS < 
(.000) 

< 
(.000) 

< 
(.000) 

< 
.000) 

< 
(.000) 

  

LTS  < 
(.000) 

> 
(.002) 

> 
(.001) 

> 
(.000) 

> 
(.000) 

> 
(.000) 

LMS   > 
(.000) 

> 
(.000) 

> 
(.000) 

> 
(.000) 

> 
(.000) 

M      > 
(.000) 

> 
(.000) 

MM      > 
(.000) 

> 
(.000) 

LAD      > 
(.000) 

> 
(.000) 

LWS        
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Table 3.7(cont’d): Pairwise Comparisons of the Robust Regression Methods 

for PP, PO, IMSE and ratio of IMSE for Scenario3 

 

Measure Methods LTS LMS M MM LAD LOWESS MARS 

IMSE OLS < 
(.000) 

< 
(.000) 

< 
(.000) 

< 
(.000) 

< 
(.000) 

  

LTS  < 
(.002) 

< 
(.000) 

< 
(.000) 

< 
(.000) 

> 
(.001) 

> 
(.000) 

LMS   < 
(.000) 

< 
(.000) 

< 
(.000) 

> 
(.001) 

> 
(.000) 

M      >(.000) > 
(.000) 

MM     >(.000) >(.000) > 
(.000) 

LAD      >(.000) > 
(.000) 

LWS       > 
(.002) 

Ratio of 

the 

IMSE 

LTS < 
(.000) 

< 
(.017) 

< 
(.014) 

< 
(.004) 

< 
(.002) 

> 
(.006) 

> 
(.000) 

LMS   < 
(.018) 

< 
(.005) 

< 
(.002) 

> 
(.004) 

> 
(.000) 

M      > 
(.000) 

> 
(.000) 

MM     > 
(.000) 

> 
(.000) 

> 
(.000) 

LAD      > 
(.000) 

> 
(.000) 

LWS       > 
(.002) 
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3.3. Discussion 
 

For Scenario-1 if Tables 3.1 and 3.5 are analyzed, the LAD method’s PP stands 

out among the other methods. Although OLS has good detection capability, it 

is unsatisfactory because it swamps clean observations indicated by the high 

false alarm rate. The M estimator does not perform well with respect to the PO 

in high density outlier cases as expected because its optimal distribution is 

close to normal. When the outlier density increases, the tails become heavier 

and the distribution becomes far from normal. The MM method gives exactly 

the same false alarm rates with the M method. Although the LTS and LMS 

methods’ detection capability is low at 3σ outlier locations, they can be 

preferred for 4σ and over outlier locations because of their low false alarm rate 

and competitive detection capabilities. The order of the performances is as 

same as Wisnowski (1999). The nonparametric methods LOWESS and MARS 

cannot be preferred because of their low detection capabilities and high false 

alarm rates. The LAD estimators’ IMSE and ratio of the IMSE are the lowest 

among other methods. At 3σ outlier locations, LOWESS is a better choice but 

at 4σ and beyond LAD is preferable as expected.  

For Scenario-2 if Tables 3.2 and 3.6 are analyzed, again OLS, M, MM and 

LAD are superior in detection capability. As indicated by Wisnowski (1999), 

OLS’s false alarm rate is high in the single cloud outlier locations because of 

the degradation in parameter estimates such that the clean data are no longer fit 

well. However, when there are two clouds, there is no swamping because there 

is an equal and opposite pull on the regression surface from each cloud that 

leaves the parameter estimates unchanged from those obtained with clean 

observations only. With respect to the improved mean square error and ratio of 

the IMSE, we can order the methods by increasing performance as MM, M, 

LAD> OLS > LMS, LTS> LOWESS, MARS. M and MM have nearly the 

same detection capability, false alarm rate, IMSE and ratio of IMSE. 
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Scenario-3 is the most challenging one among the three scenarios. OLS, LTS 

and LMS have the highest detection capabilities. The OLS does not fit the 

outlying clouds as evidenced by the high detection capability; however they do 

chase these observations enough to swamp some clean observations as stated 

by Wisnowski (1999). Moreover, improved mean square error of the OLS 

method is significantly high when compared with M, MM, LAD, LTS and 

LMS methods under “two clouds, 60 observations, 6 independent variables” 

outlier location scenarios. The IMSE and the ratio of the IMSE of the 

nonparametric methods are even larger than OLS and they also have high false 

alarm rates. Therefore, these methods are not preferable for this scenario. The 

M and MM estimators have higher detection capabilities and significantly 

better false alarm rates than OLS, especially for the high-dimension, high 

density and also two cloud scenarios. The LTS and LMS estimators are very 

outstanding methods with high detection capability, low false alarm rates and 

competitive improved mean square errors. 
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CHAPTER 4 

COMPARISON OF OLS, M-REGRESSION, LAD AND LTS METHODS 

ON AN INDUSTRIAL DATA SET 

 

 

In this chapter, OLS and three most promising methods, which are M, LAD 

and LTS, from the simulation study are compared with respect to the 

performance measures, coefficient of multiple determination and mean square 

error. These methods are performed on an industrial data set. Firstly, the data 

set is analyzed to see whether it is suitable for conducting robust methods. 

Residual plots are checked to see if there are outliers in the data and what type 

of outliers are they. Moreover, we check whether the data needs any 

transformation to validate the close to normality and constant variance 

assumption. Cross-validation approach is used to compare the methods 

performance and to see if there is a significant difference between the methods, 

Repeated ANOVA method is used. The results of the study are discussed at the 

end. 

4.1.  Description of the Data Set 
 

Our data is taken from a real life manufacturing process which includes the 

sub-processes core, molding, melting, casting, fettling and painting, which was 

studied by Bakır (2007). The dependent variable is the percentage of defectives 

on a cylinder head. Without conducting any specific data analysis, the 

company records values of certain parameters hourly, daily or weekly to 

monitor the production processes. The requirement of the company is to 

determine the most influential parameters that cause defects on the last product.  
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Regression method is the most commonly used technique for determining the 

relationship between a dependent variable and a number of independent 

variables. Regression method is an easy to understand and interpret. In this 

study, values of independent variables are determined by sampling; therefore 

every individual item is associated with the average values of the batch that the 

item belongs to. There are some missing values in the data since the company 

did not record them. These values are eliminated by the proper methods and 

our comparison study is conducted without missing values. The basic data set 

includes 36 independent variables and 92 observations.  

4.2. Cross-validation Approach, Applications and Performance Analysis 

 
High dimension of the independent variables causes some shortcomings like 

the collinearity between variables and increase in calculation time; thus a 

model selection procedure is decided to be used. However, the variable 

selection procedures for robust regression are very limited and they are 

proposed by only specific robust regression methods. Hence, stepwise model 

selection procedure of multiple linear regression in Minitab 14 is used. For the 

implementation details of the selection procedure, Appendix B can be referred. 

First the original data, with 92 observations and 36 independent variables, is 

analyzed by multiple linear regression to see whether there are outliers and the 

normality assumption is valid. Figure 4.1 demonstrates that the normality 

assumption hypothesis is rejected with the Anderson Darling p-value which is 

smaller than 0.005. 

From Figure 4.2 the boxplot of the response value indicates that there are 

outliers in the data. Therefore, our data is suitable for conducting robust 

regression methods but we should also check that if we delete the outliers do 

the rest of the data distributed normally. Since in our study, we are interested in 

the data sets that are “close” to normal. 



67 
 

 

 

Figure 4.1: Anderson Darling Test and Normal Probability Plot for the Original 
Data with 92 Observations without Making any Transformation 

 

 

The model selection was done by stepwise procedure using Minitab 14 with 

default values which are alpha to enter (0.15) and alpha to remove (0.15). The 

model selection output is presented in Appendix B.1. Eight significant 

variables are determined and observations 16, 17, 45, 49, 52, 71, 78, 88 are 

pointed as unusual observations which inavalidate the normality assumption. 

Moreover, if the residual plots in Figure B.1 are analyzed, both the normality 

and constant variance assumptions are not satisfied.  
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Figure 4.2: Boxplot of the Original Data with 92 Observations  

 

 

Second, the original data with deleting the outliers without making any 

transformation is analyzed by multiple linear regression to see whether there 

are the normality assumption becomes valid. Figure 4.3 demonstrates that the 

normality assumption hypothesis is rejected with the Anderson Darling p-value 

which is smaller than 0.005. This means that although the unusual values are 

deleted, the remaining data of 84 observations still do not satisfy the normality 

assumption.  
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Figure 4.3: Anderson Darling Test and Normal Probability Plot for the Original 

Data by Deleting Possible Outliers  

 

 

Also, we can see from Figure 4.4 there still seems to be unusual observations 

although we have deleted 10% of the original data. 

Moreover Figure B.3 demonstrates that the constant variance assumption is not 

satisfied either. The variance of the data seems to be increasing as the response 

values increase.  Since our data is a percentage data, logit transformation is 

suitable. 
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Figure 4.4: Boxplot of the Original Data by Deleting Possible Outliers  

 

 

Logit transformation is applied to the original data with 92 observations and 36 

independent variables. The transformed data is analyzed by multiple linear 

regression to see whether there are outliers and the normality assumption is 

valid. Figure 4.5 demonstrates that the normality assumption hypothesis is 

rejected with the Anderson Darling p-value which is smaller than 0.005. 

Boxplot of the transformed response value is demonstrated in Figure. 4.6.  
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Figure 4.5: Anderson Darling Test and Normal Probability Plot for the Logit 
Transformed Data with 92 Observations 

 

 

 

Figure 4.6: Boxplot of the Logit Transformed Data with 92 Observations  
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The model selection was done by stepwise regression procedure. The model 

selection output is presented in Appendix B.2. Four significant variables x9, 

x19, x22 and x28 are determined and observations 16, 21, 22, 70, 71, 72, 77, 

78 are pointed as unusual observations which contaminate the normality 

assumption.  

To adjust the nonconstant error variance logit transformation will be used 

because our dependent variable is a defective rate which is between 0 and 1. 

After the transformation; the residuals versus the fitted values plot in Figure 

B.2 the funnel type shape becomes less visible. Robust regression is suitable 

for this data because there are unusual observations and one of the basic 

advantages of robust regression is that it can be used with contaminated normal 

distributions.  

A 3-fold and 3-replicate cross validation approach is used to compare the 

robust regression methods’ performance. The model selection was conducted 

by using the train data sets. Then prediction performance measures which are 

coefficient of multiple determination and mean square error are calculated for 

each of the nine test data sets.  

Coefficient of multiple determination R2 is defined as  

1    . 

It is a measure of the reduction in the variability of y obtained by using the 

independent variables in the model (Montgomery and Peck, 1991). 

The residual mean square error is  

    . 
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It is an unbiased estimator of σ2. A model with a small residual mean square is 

usually preferred to a model with a small one (Montgomery and Peck, 1991). 

Repeated ANOVA supported by SPSS 16 is used to see whether there is 

significant difference between the alternative methods. The Repeated ANOVA 

analysis is done with the average performance measures for each replication.  

The average values of the OLS, M, LAD and LTS regression methods for the 

three replications can be seen in Table 4.1.  

 

 

Table 4.1: Average Performance Measures of the Methods 

 
 
ORDINARY LEAST SQUARES 

MSE  Rep1 1,653 R2  Rep1 0,194 

Rep2 1,811 Rep2 0,219 

Rep3 1,637 Rep3 0,246 

M 

MSE  Rep1 1,527 R2  Rep1 0,212 

Rep2 1,506 Rep2 0,346 

Rep3 1,728 Rep3 0,218 

LAD 

MSE  Rep1 1,576 R2  Rep1 0,185 

Rep2 1,094 Rep2 0 

Rep3 1,528 Rep3 0,305 

LTS 

MSE  Rep1 1,653 R2  Rep1 0,141 

Rep2 1,890 Rep2 0,175 

Rep3 1.689 Rep3 0 
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As Table 4.1 is analyzed, there seems not much difference between the 

methods and M-regression seems to outperform the other methods.   

To check the null hypothesis that there is no statistical difference between the 

methods with respect to MSE; Tables C.1 and C.2 are analyzed. As can be seen 

from Table C.1, the p-value is not greater than 0.05; thus sphericity is not 

satisfied for this case; the “Tests of Within-Subjects Effects”, Greenhouse-

Geisser p-value should be used from Table C.2. Since the p-value is not 

smaller than 0.05, we can not reject the null hypothesis which indicates that the 

methods’ performances are equal with respect to MSE.  

From Tables C.3 and C.4, the null hypothesis that there is no statistical 

difference between the methods with respect to R2 can be analyzed. Table C.3 

demonstrates that the p-value is not greater than 0.05, thus sphericity is not 

satisfied; the “Tests of Within-Subjects Effects”, Greenhouse-Geisser p-value 

should be used from Table C.4. Since the p-value is not smaller than 0.05, we 

can not reject the null hypothesis which indicates that the methods’ 

performances are equal with respect to R2.  

4.3. Discussion 
 

Performance analysis study of OLS, M-regression, LAD and LTS indicates that 

the robust methods do not give better performance results than the classical 

OLS method. This demonstrates that our industrial data exhibit different 

behavior from the generated distributions and does not support the simulation 

results.  

These results support the studies of Stigler (1977) and Hill and Dixon (1982) 

which are about robustness in real life. Stigler (1977) stated that most 

robustness studies have relied upon mathematical theory and computer 

simulated data. However, no matter how experienced the researcher in his 

choice of sampling distributions, there is no guarantee that the samples he 

generates are representative of real data. The real data can be correlated, 
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biased, asymmetric or heterogeneous. He concluded that real data exhibit 

different behavior from the simulated data used in most robustness studies and 

this affects the recommendations for the choice of an estimator and relative 

performances of the estimators. His data sets have more extreme values than 

one would expect from normal samples. He found that light trimming provides 

some improvement. Hill and Dixon (1982) conduct a real life study on 

biomedical data by first transforming their data by a logarithmic function. The 

biomedical distributions can be asymmetric and have shorter tails and other 

anomalies. They recommend 15% trim is a ‘safe’ estimator to use when little is 

known about the underlying distribution. Both of these real life studies 

recommend using light trimming which means deleting the extreme values at 

the specified trimming ratio. In fact, this exactly corresponds to the classical 

way which is first deleting outliers and then fitting the OLS to the data without 

outliers.  

For our study, one of the reasons of this result can be the complexity of the 

data. OLS and the three robust methods are not resistant to complexity of the 

data; that is they only assume linear relationships between the independent 

variables and the response variable. However, our data may require nonlinear 

or nonparametric relations. Therefore both the OLS and the robust regression 

methods cannot explain the data well. This can be proved by the low R2 values 

in Table 4.1. The second reason can be the irrelevant variables in the data set. 

In fact we have reduced the number of the independent variables by using the 

stepwise regression procedure but the chosen variables still may not be relevant 

with the response variable. Maybe there are more relevant parameters that 

affect the process but are not noticed along the data collection.  

 

Moreover, even if there is no significant difference between OLS and the three 

other robust methods; the usage of OLS is not appropriate in this data set 

because its basic assumption which is normality is not satisfied. That is we 
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cannot say that the results are the same, so it is advisable to use OLS. The 

‘safer’ way is to use the robust methods. 
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CHAPTER 5 
 

CONCLUSIONS AND SUGGESTIONS FOR FUTURE STUDIES 
 

 

This study brings three contributions to the field of robust regression.Firstly; 

the seven most promising robust regression methods which have not been 

compared together in literature are compared. In fact two of them, MARS and 

LOWESS, are classified in nonparametric regression methods in the literature 

but only their outlier detection capacities are in the scope of this study. A 

Monte Carlo simulation study is conducted using the three challenging 

scenarios for multiple outlier detection. As a result of the comparisons M, MM, 

LAD and LTS are the most promising robust methods among the others with 

respect to the performance measures PP, PO and IMSE. 

Secondly, an improved performance measure, which is the mean square error 

of the robust regression lines without outliers, is developed. The idea comes 

from the relative efficiency of a robust regression estimator which is defined by 

the ratio of the MSE of the robust estimator over MSE of the OLS estimator. 

However in this ratio the MSE of the robust estimator is evaluated by using all 

residuals even the residuals of the outliers are very large in robust regression 

whereas the MSE of OLS is calculated by using only the normal data without 

outliers. In this idea, we behave as if we are penalizing the robust methods for 

giving large residuals to outliers. But as far as known, the fundamental aim of a 

robust method is fitting a regression line that is not so much pulled by outliers. 

Therefore, we fit the OLS and the robust methods’ regression lines to the 

contaminated data but omit the residuals of the outliers while calculating the 

MSE. By this way, we have compared the methods at equal conditions. 
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Thirdly, since there is very limited number of real life applications on robust 

regression methods; we conducted a real life data analysis. An industrial data 

set is used to compare the robust methods LAD, M, LTS with OLS. As a result, 

for our real life data we see that there is no significant difference between the 

robust methods and the classical OLS method. We have explained this situation 

by complexity of the data and irrelevant variables. Moreover, even if the results 

of the OLS and the robust regression methods are the same; the model fitted by 

OLS is not valid because it is not applied with normality assumption satisfied. 

As a result, robust methods are more appropriate to deal with outliers even if 

their performances are the same with the classical methods since they do not 

have such strict assumptions. 

As a future study alternative outlier placement scenarios, for example high 

magnitude and high contamination, can be performed based on the design 

parameters determined. In addition, we cannot compare some of the robust 

regression methods such as multiple stage general models because of 

unavailability of software. These methods can be coded, or their codes can be 

obtained and compared with the ones in our study. Furthermore, the variable 

selection procedures for robust regression are very limited and they are 

proposed by only specific robust regression methods. These procedures can be 

extended and proposed for all the robust methods we have mentioned. 
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APPENDIX A 

REPEATED ANOVA RESULTS FOR THE COMPARISON OF THE 

EIGHT REGRESSION METHODS 

 

Table A.1: Test of Sphericity for Scenario-1 (PP) 

 

Mauchly's Test of Sphericityb 

Measure:PP       

Within 

Subjects 

Effect 

Mauchly's 

W 

Approx. Chi-

Square df Sig. 

Epsilona 

Greenhouse-

Geisser 

Huynh-

Feldt 

Lower-

bound 

METHODS ,000 102,867 27 ,000 ,290 ,356 ,143 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed 

dependent variables is proportional to an identity matrix. 

a. May be used to adjust the degrees of freedom for the averaged tests of significance. 

Corrected tests are displayed in the Tests of Within-Subjects Effects table. 

b. Design: Intercept  

 Within Subjects Design: METHODS 

     

 
 

Table A.2: Tests of Within-Subjects Effects of PP for Scenario-1 
 

 
Tests of Within-Subjects Effects 

Measure:PP      

Source 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

METHODS Sphericity 

Assumed 
18,876 7 2,697 11,703 ,000
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Table A.2 (cont’d): Tests of Within-Subjects Effects of PP for Scenario-1 
 

 

 Greenhouse-

Geisser 
18,876 2,029 9,306 11,703 ,000

Huynh-Feldt 18,876 2,490 7,580 11,703 ,000

Lower-bound 18,876 1,000 18,876 11,703 ,006

Error(METHODS) Sphericity 

Assumed 
17,743 77 ,230

 

Greenhouse-

Geisser 
17,743 22,314 ,795

 

Huynh-Feldt 17,743 27,394 ,648  

Lower-bound 17,743 11,000 1,613  
 

 

Table A.3. Pairwise Comparisons of the Methods with respect to PP for 
Scenario-1 

 
 

 
Pairwise Comparisons 

Measure:PP     

(I) 

METHODS 

(J) 

METHODS 

Mean 

Difference 

(I-J) Std. Error Sig.a 

95% Confidence Interval for 

Differencea 

Lower Bound Upper Bound 

OLS 2 ,034 ,096 ,732 -,177 ,244

3 -,075 ,044 ,121 -,172 ,023

4 ,514 ,333 ,152 -,220 1,247

5 ,216 ,137 ,143 -,085 ,517

6 -,204* ,087 ,039 -,396 -,012

7 1,052* ,149 ,000 ,724 1,381

8 ,932* ,145 ,000 ,612 1,251

 



86 
 

 

 

 
Table A.3(cont’d):  Pairwise Comparisons of the Methods with respect to PP 

for Scenario-1 

 

 
M 1 -,034 ,096 ,732 -,244 ,177

3 -,108 ,083 ,217 -,290 ,074

4 ,480 ,356 ,204 -,303 1,263

5 ,182 ,176 ,323 -,205 ,570

6 -,238* ,105 ,044 -,469 -,007

7 1,019* ,174 ,000 ,636 1,402

8 ,898* ,148 ,000 ,572 1,224

MM 1 ,075 ,044 ,121 -,023 ,172

2 ,108 ,083 ,217 -,074 ,290

4 ,588 ,329 ,101 -,136 1,312

5 ,291 ,133 ,052 -,003 ,584

6 -,130 ,073 ,104 -,291 ,031

7 1,127* ,167 ,000 ,760 1,494

8 1,006* ,160 ,000 ,655 1,358

LTS 1 -,514 ,333 ,152 -1,247 ,220

2 -,480 ,356 ,204 -1,263 ,303

3 -,588 ,329 ,101 -1,312 ,136

5 -,297 ,281 ,312 -,916 ,321

6 -,718* ,306 ,039 -1,392 -,044

7 ,539 ,259 ,062 -,032 1,110

8 ,418 ,281 ,165 -,200 1,037
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Table A.3(cont’d):  Pairwise Comparisons of the Methods with respect to PP 

for Scenario-1 
 

 
LMS 1 -,216 ,137 ,143 -,517 ,085

2 -,182 ,176 ,323 -,570 ,205

3 -,291 ,133 ,052 -,584 ,003

4 ,297 ,281 ,312 -,321 ,916

6 -,420* ,086 ,000 -,610 -,230

7 ,836* ,193 ,001 ,412 1,261

8 ,716* ,198 ,004 ,279 1,152

LAD 1 ,204* ,087 ,039 ,012 ,396

2 ,238* ,105 ,044 ,007 ,469

3 ,130 ,073 ,104 -,031 ,291

4 ,718* ,306 ,039 ,044 1,392

5 ,420* ,086 ,000 ,230 ,610

7 1,257* ,182 ,000 ,856 1,658

8 1,136* ,175 ,000 ,750 1,522

LOWESS 1 -1,052* ,149 ,000 -1,381 -,724

2 -1,019* ,174 ,000 -1,402 -,636

3 -1,127* ,167 ,000 -1,494 -,760

4 -,539 ,259 ,062 -1,110 ,032

5 -,836* ,193 ,001 -1,261 -,412

6 -1,257* ,182 ,000 -1,658 -,856

8 -,121 ,064 ,085 -,261 ,019
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Table A.3(cont’d):  Pairwise Comparisons of the Methods with respect to PP 

for Scenario-1 
 

 
MARS 1 -,932* ,145 ,000 -1,251 -,612

2 -,898* ,148 ,000 -1,224 -,572

3 -1,006* ,160 ,000 -1,358 -,655

4 -,418 ,281 ,165 -1,037 ,200

5 -,716* ,198 ,004 -1,152 -,279

6 -1,136* ,175 ,000 -1,522 -,750

7 ,121 ,064 ,085 -,019 ,261

Based on estimated marginal means    

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 

adjustments). 

*. The mean difference is significant at the ,05 level.   

 

 

 
Table A.4: Test of Sphericity for Scenario-1 (PO) 

 

Mauchly's Test of Sphericityb 

Measure:PO       

Within 

Subjects 

Effect 

Mauchly's 

W 

Approx. Chi-

Square df Sig. 

Epsilona 

Greenhouse-

Geisser 

Huynh-

Feldt 

Lower-

bound 

METHODS ,000 178,949 27 ,000 ,201 ,221 ,143 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed 

dependent variables is proportional to an identity matrix. 

a. May be used to adjust the degrees of freedom for the averaged tests of significance. 

Corrected tests are displayed in the Tests of Within-Subjects Effects table. 

b. Design: Intercept  

 Within Subjects Design: METHODS 
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Table A.5: Tests of Within-Subjects Effects of PO for Scenario-1 

 
 
 

Tests of Within-Subjects Effects 

Measure:PO      

Source 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

METHODS Sphericity 

Assumed 
2,479 7 ,354 28,025 ,000

Greenhouse-

Geisser 
2,479 1,405 1,764 28,025 ,000

Huynh-Feldt 2,479 1,549 1,600 28,025 ,000

Lower-bound 2,479 1,000 2,479 28,025 ,000

Error(METHODS) Sphericity 

Assumed 
,973 77 ,013

 

Greenhouse-

Geisser 
,973 15,460 ,063

 

Huynh-Feldt ,973 17,042 ,057  

Lower-bound ,973 11,000 ,088  
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Table A.6. Pairwise Comparisons of the Methods with respect to P0 for 

Scenario-1 
  
 
 

Pairwise Comparisons 

Measure:PO     

(I) 

METHODS 

(J) 

METHODS 

Mean 

Difference (I-J) Std. Error Sig.a 

95% Confidence Interval for 

Differencea 

Lower Bound Upper Bound 

OLS 2 ,194* ,033 ,000 ,121 ,267

3 ,195* ,038 ,000 ,112 ,277

4 ,349* ,068 ,000 ,200 ,497

5 ,397* ,068 ,000 ,247 ,547

6 ,247* ,044 ,000 ,149 ,345

7 -,026 ,013 ,076 -,056 ,003

8 -,051* ,006 ,000 -,063 -,039

M 1 -,194* ,033 ,000 -,267 -,121

3 ,000 ,007 ,967 -,015 ,016

4 ,154* ,052 ,013 ,040 ,269

5 ,203* ,053 ,003 ,087 ,319

6 ,053 ,028 ,083 -,008 ,114

7 -,221* ,038 ,000 -,304 -,137

8 -,245* ,036 ,000 -,324 -,166

MM 1 -,195* ,038 ,000 -,277 -,112

2 ,000 ,007 ,967 -,016 ,015

4 ,154* ,048 ,008 ,048 ,260

5 ,203* ,048 ,001 ,097 ,309

6 ,053* ,024 ,046 ,001 ,104

7 -,221* ,041 ,000 -,312 -,130

8 -,245* ,040 ,000 -,332 -,158
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Table A.6(cont’d):  Pairwise Comparisons of the Methods with respect to P0 
for Scenario-1 

 

LTS 1 -,349* ,068 ,000 -,497 -,200

2 -,154* ,052 ,013 -,269 -,040

3 -,154* ,048 ,008 -,260 -,048

5 ,049* ,012 ,001 ,023 ,074

6 -,101* ,034 ,012 -,175 -,028

7 -,375* ,075 ,000 -,540 -,210

8 -,399* ,070 ,000 -,552 -,246

LMS 1 -,397* ,068 ,000 -,547 -,247

2 -,203* ,053 ,003 -,319 -,087

3 -,203* ,048 ,001 -,309 -,097

4 -,049* ,012 ,001 -,074 -,023

6 -,150* ,032 ,001 -,221 -,079

7 -,424* ,074 ,000 -,587 -,260

8 -,448* ,069 ,000 -,601 -,295

LAD 1 -,247* ,044 ,000 -,345 -,149

2 -,053 ,028 ,083 -,114 ,008

3 -,053* ,024 ,046 -,104 ,000

4 ,101* ,034 ,012 ,028 ,175

5 ,150* ,032 ,001 ,079 ,221

7 -,274* ,048 ,000 -,379 -,168

8 -,298* ,045 ,000 -,398 -,198

LOWESS 1 ,026 ,013 ,076 -,003 ,056

2 ,221* ,038 ,000 ,137 ,304

3 ,221* ,041 ,000 ,130 ,312

4 ,375* ,075 ,000 ,210 ,540

5 ,424* ,074 ,000 ,260 ,587

6 ,274* ,048 ,000 ,168 ,379

8 -,024* ,010 ,031 -,046 -,003
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Table A.6(cont’d):  Pairwise Comparisons of the Methods with respect to P0 
for Scenario-1 

 

MARS 1 ,051* ,006 ,000 ,039 ,063

2 ,245* ,036 ,000 ,166 ,324

3 ,245* ,040 ,000 ,158 ,332

4 ,399* ,070 ,000 ,246 ,552

5 ,448* ,069 ,000 ,295 ,601

6 ,298* ,045 ,000 ,198 ,398

7 ,024* ,010 ,031 ,003 ,046

Based on estimated marginal means    

*. The mean difference is significant at the ,05 level.   

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 

adjustments). 

 

 

Table A.7: Test of Sphericity for Scenario-1 (MSE) 

 

Mauchly's Test of Sphericityb 

Measure:MSE       

Within 

Subjects 

Effect 

Mauchly's 

W 

Approx. Chi-

Square df Sig. 

Epsilona 

Greenhouse-

Geisser 

Huynh-

Feldt 

Lower-

bound 

METHODS ,000 159,762 27 ,000 ,198 ,217 ,143 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed 

dependent variables is proportional to an identity matrix. 

a. May be used to adjust the degrees of freedom for the averaged tests of significance. 

Corrected tests are displayed in the Tests of Within-Subjects Effects table. 

b. Design: Intercept  

 Within Subjects Design: METHODS 
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Table A.8: Tests of Within-Subjects Effects of MSE for Scenario-1 
 

 

Tests of Within-Subjects Effects 

Measure:MSE      

Source 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

METHODS Sphericity 

Assumed 
,169 7 ,024 7,106 ,000

Greenhouse-

Geisser 
,169 1,384 ,122 7,106 ,012

Huynh-Feldt ,169 1,518 ,111 7,106 ,009

Lower-bound ,169 1,000 ,169 7,106 ,022

Error(METHODS) Sphericity 

Assumed 
,262 77 ,003

 

Greenhouse-

Geisser 
,262 15,219 ,017

 

Huynh-Feldt ,262 16,703 ,016  

Lower-bound ,262 11,000 ,024  
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Table A.9:  Pairwise Comparisons of the Methods with respect to MSE for 
Scenario-1 

 
 

 
Pairwise Comparisons 

Measure:MSE     

(I) 

METHODS 

(J) 

METHODS 

Mean 

Difference (I-J) Std. Error Sig.a 

95% Confidence Interval for 

Differencea 

Lower Bound Upper Bound 

OLS 2 ,088* ,018 ,000 ,048 ,127

3 ,095* ,021 ,001 ,049 ,141

4 ,008 ,036 ,824 -,070 ,087

5 ,022 ,035 ,538 -,055 ,100

6 ,106* ,023 ,001 ,054 ,157

7 ,076* ,007 ,000 ,059 ,092

8 ,007 ,008 ,430 -,011 ,024

M 1 -,088* ,018 ,000 -,127 -,048

3 ,007 ,004 ,087 -,001 ,016

4 -,080* ,025 ,009 -,135 -,024

5 -,065* ,024 ,022 -,119 -,012

6 ,018 ,013 ,202 -,011 ,047

7 -,012 ,022 ,596 -,060 ,036

8 -,081* ,020 ,002 -,125 -,037

MM 1 -,095* ,021 ,001 -,141 -,049

2 -,007 ,004 ,087 -,016 ,001

4 -,087* ,022 ,003 -,136 -,037

5 -,072* ,022 ,006 -,120 -,025

6 ,011 ,011 ,348 -,013 ,035

7 -,019 ,024 ,453 -,073 ,035

8 -,088* ,022 ,002 -,138 -,039
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Table A.9(cont’d):  Pairwise Comparisons of the Methods with respect to MSE 
for Scenario-1 

 

LTS 1 -,008 ,036 ,824 -,087 ,070

2 ,080* ,025 ,009 ,024 ,135

3 ,087* ,022 ,003 ,037 ,136

5 ,014* ,004 ,002 ,006 ,022

6 ,097* ,015 ,000 ,063 ,132

7 ,068 ,041 ,124 -,022 ,157

8 -,002 ,035 ,964 -,078 ,075

LMS 1 -,022 ,035 ,538 -,100 ,055

2 ,065* ,024 ,022 ,012 ,119

3 ,072* ,022 ,006 ,025 ,120

4 -,014* ,004 ,002 -,022 -,006

6 ,083* ,014 ,000 ,052 ,114

7 ,053 ,040 ,207 -,034 ,141

8 -,016 ,034 ,651 -,091 ,059

LAD 1 -,106* ,023 ,001 -,157 -,054

2 -,018 ,013 ,202 -,047 ,011

3 -,011 ,011 ,348 -,035 ,013

4 -,097* ,015 ,000 -,132 -,063

5 -,083* ,014 ,000 -,114 -,052

7 -,030 ,027 ,290 -,089 ,029

8 -,099* ,023 ,001 -,149 -,049

LOWESS 1 -,076* ,007 ,000 -,092 -,059

2 ,012 ,022 ,596 -,036 ,060

3 ,019 ,024 ,453 -,035 ,073

4 -,068 ,041 ,124 -,157 ,022

5 -,053 ,040 ,207 -,141 ,034

6 ,030 ,027 ,290 -,029 ,089

8 -,069* ,013 ,000 -,097 -,042
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Table A.9(cont’d):  Pairwise Comparisons of the Methods with respect to MSE 
for Scenario-1 

 

MARS 1 -,007 ,008 ,430 -,024 ,011

2 ,081* ,020 ,002 ,037 ,125

3 ,088* ,022 ,002 ,039 ,138

4 ,002 ,035 ,964 -,075 ,078

5 ,016 ,034 ,651 -,059 ,091

6 ,099* ,023 ,001 ,049 ,149

7 ,069* ,013 ,000 ,042 ,097

Based on estimated marginal means    

*. The mean difference is significant at the ,05 level.   

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 

adjustments). 

 

Table A.10: Test of Sphericity for Scenario-2 (PP) 

 

Mauchly's Test of Sphericityb 

Measure:PP       

Within 

Subjects 

Effect 

Mauchly's 

W 

Approx. Chi-

Square df Sig. 

Epsilona 

Greenhouse-

Geisser 

Huynh-

Feldt 

Lower-

bound 

METHOD ,000 . 27 . ,311 ,365 ,143 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed 

dependent variables is proportional to an identity matrix. 

a. May be used to adjust the degrees of freedom for the averaged tests of significance. 

Corrected tests are displayed in the Tests of Within-Subjects Effects table. 

b. Design: Intercept  

 Within Subjects Design: METHOD 

     

.  
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Table A.11: Tests of Within-Subjects Effects of PP for Scenario-2 

 
 

Tests of Within-Subjects Effects 

Measure:PP      

Source 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

METHODS Sphericity 

Assumed 
70,901 7 10,129 16,004 ,000

Greenhouse-

Geisser 
70,901 2,174 32,618 16,004 ,000

Huynh-Feldt 70,901 2,556 27,743 16,004 ,000

Lower-bound 70,901 1,000 70,901 16,004 ,001

Error(METHODS) Sphericity 

Assumed 
66,454 105 ,633

 

Greenhouse-

Geisser 
66,454 32,606 2,038

 

Huynh-Feldt 66,454 38,335 1,734  

Lower-bound 66,454 15,000 4,430  
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Table A.12: Pairwise Comparisons of the Methods with respect to PP for 
Scenario-2 

 

 
Pairwise Comparisons 

Measure:PP     

(I) 

METHODS 

(J) 

METHODS 

Mean 

Difference (I-J) Std. Error Sig.a 

95% Confidence Interval for 

Differencea 

Lower Bound Upper Bound 

OLS 2 1,014* ,221 ,000 ,542 1,485

3 ,980* ,228 ,001 ,494 1,466

4 ,008 ,022 ,731 -,040 ,056

5 ,027 ,020 ,200 -,016 ,069

6 ,038 ,026 ,164 -,017 ,093

7 ,401 ,225 ,095 -,079 ,881

8 2,250* ,463 ,000 1,264 3,236

LTS 1 -1,014* ,221 ,000 -1,485 -,542

3 -,034 ,065 ,612 -,173 ,105

4 -1,006* ,215 ,000 -1,464 -,548

5 -,987* ,211 ,000 -1,438 -,536

6 -,976* ,210 ,000 -1,424 -,528

7 -,613* ,282 ,047 -1,215 -,011

8 1,236* ,447 ,015 ,283 2,190

LMS 1 -,980* ,228 ,001 -1,466 -,494

2 ,034 ,065 ,612 -,105 ,173

4 -,972* ,223 ,001 -1,448 -,496

5 -,953* ,219 ,001 -1,420 -,486

6 -,942* ,218 ,001 -1,406 -,478

7 -,579 ,294 ,067 -1,205 ,047

8 1,270* ,484 ,019 ,238 2,302
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Table A.12 (cont’d): Pairwise Comparisons of the Methods with respect to PP 
for Scenario-2 

 

.M 1 -,008 ,022 ,731 -,056 ,040

2 1,006* ,215 ,000 ,548 1,464

3 ,972* ,223 ,001 ,496 1,448

5 ,019 ,019 ,333 -,021 ,059

6 ,030 ,030 ,333 -,034 ,094

7 ,393 ,236 ,117 -,111 ,897

8 2,242* ,456 ,000 1,269 3,215

MM 1 -,027 ,020 ,200 -,069 ,016

2 ,987* ,211 ,000 ,536 1,438

3 ,953* ,219 ,001 ,486 1,420

4 -,019 ,019 ,333 -,059 ,021

6 ,011 ,011 ,333 -,013 ,035

7 ,374 ,222 ,113 -,100 ,848

8 2,223* ,452 ,000 1,261 3,186

LAD 1 -,038 ,026 ,164 -,093 ,017

2 ,976* ,210 ,000 ,528 1,424

3 ,942* ,218 ,001 ,478 1,406

4 -,030 ,030 ,333 -,094 ,034

5 -,011 ,011 ,333 -,035 ,013

7 ,363 ,215 ,111 -,094 ,820

8 2,212* ,449 ,000 1,255 3,169

LOWESS 1 -,401 ,225 ,095 -,881 ,079

2 ,613* ,282 ,047 ,011 1,215

3 ,579 ,294 ,067 -,047 1,205

4 -,393 ,236 ,117 -,897 ,111

5 -,374 ,222 ,113 -,848 ,100

6 -,363 ,215 ,111 -,820 ,094

8 1,849* ,443 ,001 ,905 2,792
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Table A.12 (cont’d): Pairwise Comparisons of the Methods with respect to PP 
for Scenario-2 

 

MARS 1 -2,250* ,463 ,000 -3,236 -1,264

2 -1,236* ,447 ,015 -2,190 -,283

3 -1,270* ,484 ,019 -2,302 -,238

4 -2,242* ,456 ,000 -3,215 -1,269

5 -2,223* ,452 ,000 -3,186 -1,261

6 -2,212* ,449 ,000 -3,169 -1,255

7 -1,849* ,443 ,001 -2,792 -,905

Based on estimated marginal means    

*. The mean difference is significant at the ,05 level.   

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 

adjustments). 
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Table A.13: Test of Sphericity for Scenario-2 (PO) 

 

Mauchly's Test of Sphericityb 

Measure:PO       

Within 

Subjects 

Effect 

Mauchly's 

W 

Approx. Chi-

Square df Sig. 

Epsilona 

Greenhouse-

Geisser 

Huynh-

Feldt 

Lower-

bound 

METHODS ,000 233,442 27 ,000 ,296 ,344 ,143 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed 

dependent variables is proportional to an identity matrix. 

a. May be used to adjust the degrees of freedom for the averaged tests of significance. 

Corrected tests are displayed in the Tests of Within-Subjects Effects table. 

b. Design: Intercept  

 Within Subjects Design: METHODS 

     

 
 
 
 

Table A.14: Tests of Within-Subjects Effects of PO for Scenario-2 
 

 
Tests of Within-Subjects Effects 

Measure:PO      

Source 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

METHODS Sphericity 

Assumed 
1,811 7 ,259 2,394 ,026

Greenhouse-

Geisser 
1,811 2,070 ,875 2,394 ,106

Huynh-Feldt 1,811 2,407 ,752 2,394 ,096

Lower-bound 1,811 1,000 1,811 2,394 ,143
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Table A.14 (cont’d): Tests of Within-Subjects Effects of PO for Scenario-2 
 
 

 
 

Error(METHODS) Sphericity 

Assumed 
11,348 105 ,108

 

Greenhouse-

Geisser 
11,348 31,055 ,365

 

Huynh-Feldt 11,348 36,109 ,314  

Lower-bound 11,348 15,000 ,757  
 
 

 

 Table A.15: Test of Sphericity for Scenario-2 (MSE)  

 

Mauchly's Test of Sphericityb 

Measure:MSE       

Within 

Subjects 

Effect 

Mauchly's 

W 

Approx. Chi-

Square df Sig. 

Epsilona 

Greenhouse-

Geisser 

Huynh-

Feldt 

Lower-

bound 

METHODS ,000 154,745 27 ,000 ,340 ,408 ,143 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed 

dependent variables is proportional to an identity matrix. 

a. May be used to adjust the degrees of freedom for the averaged tests of significance. 

Corrected tests are displayed in the Tests of Within-Subjects Effects table. 

b. Design: Intercept  

 Within Subjects Design: METHODS 
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Table A.16: Tests of Within-Subjects Effects of MSE for Scenario-2 
 
 

Tests of Within-Subjects Effects 

Measure:MSE      

Source 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

METHODS Sphericity 

Assumed 
,485 7 ,069 4,833 ,000

Greenhouse-

Geisser 
,485 2,377 ,204 4,833 ,010

Huynh-Feldt ,485 2,854 ,170 4,833 ,006

Lower-bound ,485 1,000 ,485 4,833 ,044

Error(METHODS) Sphericity 

Assumed 
1,506 105 ,014

 

Greenhouse-

Geisser 
1,506 35,651 ,042

 

Huynh-Feldt 1,506 42,811 ,035  

Lower-bound 1,506 15,000 ,100  
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Table A.17: Pairwise Comparisons of the Methods with respect to MSE for 
Scenario-2 

 
 
 

Pairwise Comparisons 

Measure:MSE     

(I) 

METHODS 

(J) 

METHODS 

Mean 

Difference (I-J) Std. Error Sig.a 

95% Confidence Interval for 

Differencea 

Lower Bound Upper Bound 

OLS 2 -,145* ,039 ,002 -,228 -,062

3 -,105* ,028 ,002 -,165 -,045

4 ,011 ,021 ,614 -,034 ,055

5 ,031* ,011 ,014 ,007 ,055

6 ,023 ,017 ,199 -,014 ,060

7 -,024 ,058 ,682 -,147 ,099

8 ,021 ,040 ,604 -,064 ,106

LTS 1 ,145* ,039 ,002 ,062 ,228

3 ,040 ,019 ,055 ,000 ,081

4 ,156* ,042 ,002 ,066 ,246

5 ,176* ,037 ,000 ,097 ,255

6 ,168* ,041 ,001 ,081 ,256

7 ,121* ,055 ,043 ,004 ,238

8 ,166* ,055 ,009 ,048 ,284

LMS 1 ,105* ,028 ,002 ,045 ,165

2 -,040 ,019 ,055 -,081 ,001

4 ,116* ,029 ,001 ,055 ,177

5 ,136* ,023 ,000 ,088 ,184

6 ,128* ,024 ,000 ,076 ,180

7 ,081 ,062 ,214 -,052 ,214

8 ,126* ,053 ,030 ,014 ,238
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Table A.17 (cont’d): Pairwise Comparisons of the Methods with respect to 
MSE for Scenario-2 

 

M 1 -,011 ,021 ,614 -,055 ,034

2 -,156* ,042 ,002 -,246 -,066

3 -,116* ,029 ,001 -,177 -,055

5 ,020 ,020 ,329 -,023 ,063

6 ,013 ,020 ,541 -,030 ,055

7 -,035 ,059 ,564 -,161 ,091

8 ,010 ,047 ,828 -,089 ,110

MM 1 -,031* ,011 ,014 -,055 -,007

2 -,176* ,037 ,000 -,255 -,097

3 -,136* ,023 ,000 -,184 -,088

4 -,020 ,020 ,329 -,063 ,023

6 -,008 ,008 ,347 -,025 ,009

7 -,055 ,064 ,405 -,192 ,082

8 -,010 ,045 ,828 -,107 ,087

LAD 1 -,023 ,017 ,199 -,060 ,014

2 -,168* ,041 ,001 -,256 -,081

3 -,128* ,024 ,000 -,180 -,076

4 -,013 ,020 ,541 -,055 ,030

5 ,008 ,008 ,347 -,009 ,025

7 -,047 ,069 ,503 -,194 ,100

8 -,002 ,050 ,966 -,108 ,104

LOWESS 1 ,024 ,058 ,682 -,099 ,147

2 -,121* ,055 ,043 -,238 -,004

3 -,081 ,062 ,214 -,214 ,052

4 ,035 ,059 ,564 -,091 ,161

5 ,055 ,064 ,405 -,082 ,192

6 ,047 ,069 ,503 -,100 ,194

8 ,045 ,048 ,361 -,057 ,147
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Table A.17 (cont’d): Pairwise Comparisons of the Methods with respect to 
MSE for Scenario-2 

 

MARS 1 -,021 ,040 ,604 -,106 ,064

2 -,166* ,055 ,009 -,284 -,048

3 -,126* ,053 ,030 -,238 -,014

4 -,010 ,047 ,828 -,110 ,089

5 ,010 ,045 ,828 -,087 ,107

6 ,002 ,050 ,966 -,104 ,108

7 -,045 ,048 ,361 -,147 ,057

Based on estimated marginal means    

*. The mean difference is significant at the ,05 level.   

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 

adjustments). 
 

 

Table A.18: Test of Sphericity for Scenario-3 (PP) 

 

Mauchly's Test of Sphericityb 

Measure:PP       

Within 

Subjects 

Effect 

Mauchly's 

W 

Approx. Chi-

Square df Sig. 

Epsilona 

Greenhouse-

Geisser 

Huynh-

Feldt 

Lower-

bound 

METHODS ,000 333,927 27 ,000 ,311 ,344 ,143 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed 

dependent variables is proportional to an identity matrix. 

a. May be used to adjust the degrees of freedom for the averaged tests of significance. 

Corrected tests are displayed in the Tests of Within-Subjects Effects table. 

b. Design: Intercept  

 Within Subjects Design: METHODS 
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Table A.19: Tests of Within-Subjects Effects of PP for Scenario-3 

 
 
 

Tests of Within-Subjects Effects 

Measure:PP      

Source 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

METHODS Sphericity 

Assumed 
15,730 7 2,247 44,132 ,000

Greenhouse-

Geisser 
15,730 2,175 7,231 44,132 ,000

Huynh-Feldt 15,730 2,411 6,525 44,132 ,000

Lower-bound 15,730 1,000 15,730 44,132 ,000

Error(METHODS) Sphericity 

Assumed 
8,198 161 ,051

 

Greenhouse-

Geisser 
8,198 50,030 ,164

 

Huynh-Feldt 8,198 55,449 ,148  

Lower-bound 8,198 23,000 ,356  
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Table A.20: Pairwise Comparisons of the Methods with respect to PP for 
Scenario-3 

 
 

 
Pairwise Comparisons 

Measure:PP     

(I) 

METHODS 

(J) 

METHODS 

Mean 

Difference (I-J) Std. Error Sig.a 

95% Confidence Interval for 

Differencea 

Lower Bound Upper Bound 

OLS 2 -,265* ,052 ,000 -,373 -,156

3 -,242* ,054 ,000 -,355 -,130

4 -,294* ,049 ,000 -,395 -,193

5 -,315* ,048 ,000 -,415 -,215

6 -,312* ,042 ,000 -,399 -,225

7 -,008 ,057 ,886 -,127 ,110

8 ,579* ,068 ,000 ,439 ,719

LTS 1 ,265* ,052 ,000 ,156 ,373

3 ,022* ,008 ,010 ,006 ,039

4 -,030 ,056 ,600 -,145 ,085

5 -,050 ,050 ,326 -,154 ,053

6 -,047 ,035 ,193 -,121 ,026

7 ,256* ,079 ,004 ,093 ,420

8 ,844* ,105 ,000 ,626 1,061

LMS 1 ,242* ,054 ,000 ,130 ,355

2 -,022* ,008 ,010 -,039 -,006

4 -,052 ,056 ,361 -,167 ,063

5 -,073 ,051 ,165 -,178 ,032

6 -,070 ,036 ,067 -,144 ,005

7 ,234* ,078 ,006 ,073 ,395

8 ,821* ,105 ,000 ,604 1,039
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Table A.20 (cont’d): Pairwise Comparisons of the Methods with respect to PP 
for Scenario-3 

 

 
M 1 ,294* ,049 ,000 ,193 ,395

2 ,030 ,056 ,600 -,085 ,145

3 ,052 ,056 ,361 -,063 ,167

5 -,021* ,007 ,011 -,036 -,005

6 -,018 ,021 ,415 -,062 ,027

7 ,286* ,084 ,002 ,113 ,459

8 ,873* ,088 ,000 ,692 1,055

MM 1 ,315* ,048 ,000 ,215 ,415

2 ,050 ,050 ,326 -,053 ,154

3 ,073 ,051 ,165 -,032 ,178

4 ,021* ,007 ,011 ,005 ,036

6 ,003 ,016 ,849 -,030 ,036

7 ,307* ,085 ,001 ,131 ,482

8 ,894* ,091 ,000 ,706 1,083

LAD 1 ,312* ,042 ,000 ,225 ,399

2 ,047 ,035 ,193 -,026 ,121

3 ,070 ,036 ,067 -,005 ,144

4 ,018 ,021 ,415 -,027 ,062

5 -,003 ,016 ,849 -,036 ,030

7 ,304* ,080 ,001 ,139 ,468

8 ,891* ,091 ,000 ,702 1,080

LOWESS 1 ,008 ,057 ,886 -,110 ,127

2 -,256* ,079 ,004 -,420 -,093

3 -,234* ,078 ,006 -,395 -,073

4 -,286* ,084 ,002 -,459 -,113

5 -,307* ,085 ,001 -,482 -,131

6 -,304* ,080 ,001 -,468 -,139

8 ,587* ,069 ,000 ,444 ,730
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Table A.20 (cont’d): Pairwise Comparisons of the Methods with respect to PP 
for Scenario-3 

 

 
MARS 1 -,579* ,068 ,000 -,719 -,439

2 -,844* ,105 ,000 -1,061 -,626

3 -,821* ,105 ,000 -1,039 -,604

4 -,873* ,088 ,000 -1,055 -,692

5 -,894* ,091 ,000 -1,083 -,706

6 -,891* ,091 ,000 -1,080 -,702

7 -,587* ,069 ,000 -,730 -,444

Based on estimated marginal means    

*. The mean difference is significant at the ,05 level.   

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 

adjustments). 

 

 
Table A.21: Test of Sphericity for Scenario-3 (PO) 

 

Mauchly's Test of Sphericityb 

Measure:PO       

Within 

Subjects 

Effect 

Mauchly's 

W 

Approx. Chi-

Square df Sig. 

Epsilona 

Greenhouse-

Geisser 

Huynh-

Feldt 

Lower-

bound 

METHODS ,000 423,356 27 ,000 ,185 ,191 ,143 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed 

dependent variables is proportional to an identity matrix. 

a. May be used to adjust the degrees of freedom for the averaged tests of significance. 

Corrected tests are displayed in the Tests of Within-Subjects Effects table. 

b. Design: Intercept  

 Within Subjects Design: METHODS 
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Table A.22: Tests of Within-Subjects Effects of PO for Scenario-3 
 
 

 
Tests of Within-Subjects Effects 

Measure:PO      

Source 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

METHODS Sphericity 

Assumed 
23,746 7 3,392 51,638 ,000

Greenhouse-

Geisser 
23,746 1,294 18,352 51,638 ,000

Huynh-Feldt 23,746 1,339 17,740 51,638 ,000

Lower-bound 23,746 1,000 23,746 51,638 ,000

Error(METHODS) Sphericity 

Assumed 
10,577 161 ,066

 

Greenhouse-

Geisser 
10,577 29,760 ,355

 

Huynh-Feldt 10,577 30,786 ,344  

Lower-bound 10,577 23,000 ,460  
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Table A.23: Pairwise Comparisons of the Methods with respect to PO for 
Scenario-3 

 
 

 
Pairwise Comparisons 

Measure:PO     

(I) 

METHODS 

(J) 

METHODS 

Mean 

Difference (I-J) Std. Error Sig.a 

95% Confidence Interval for 

Differencea 

Lower Bound Upper Bound 

OLS 2 ,801* ,099 ,000 ,596 1,006

3 ,844* ,099 ,000 ,639 1,050

4 ,664* ,106 ,000 ,446 ,883

5 ,673* ,105 ,000 ,456 ,891

6 ,678* ,098 ,000 ,476 ,881

7 ,643 ,021 ,998 -,043 ,043

8 ,051 ,038 ,199 -,029 ,130

LTS 1 -,801* ,099 ,000 -1,006 -,596

3 ,044* ,006 ,000 ,032 ,055

4 -,136* ,038 ,002 -,215 -,058

5 -,127* ,034 ,001 -,197 -,058

6 -,123* ,024 ,000 -,172 -,073

7 -,801* ,099 ,000 -1,006 -,595

8 -,750* ,086 ,000 -,928 -,573

LMS 1 -,844* ,099 ,000 -1,050 -,639

2 -,044* ,006 ,000 -,055 -,032

4 -,180* ,034 ,000 -,251 -,109

5 -,171* ,030 ,000 -,232 -,109

6 -,166* ,021 ,000 -,209 -,124

7 -,844* ,100 ,000 -1,052 -,637

8 -,794* ,085 ,000 -,969 -,618
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Table A.23(cont’d):  Pairwise Comparisons of the Methods with respect to PO 
for Scenario-3 

 

M 1 -,664* ,106 ,000 -,883 -,446

2 ,136* ,038 ,002 ,058 ,215

3 ,180* ,034 ,000 ,109 ,251

5 ,009 ,007 ,226 -,006 ,024

6 ,014 ,017 ,422 -,021 ,048

7 -,664* ,110 ,000 -,891 -,438

8 -,614* ,090 ,000 -,800 -,428

MM 1 -,673* ,105 ,000 -,891 -,456

2 ,127* ,034 ,001 ,058 ,197

3 ,171* ,030 ,000 ,109 ,232

4 -,009 ,007 ,226 -,024 ,006

6 ,005 ,012 ,709 -,021 ,030

7 -,673* ,109 ,000 -,899 -,448

8 -,623* ,088 ,000 -,805 -,441

LAD 1 -,678* ,098 ,000 -,881 -,476

2 ,123* ,024 ,000 ,073 ,172

3 ,166* ,021 ,000 ,124 ,209

4 -,014 ,017 ,422 -,048 ,021

5 -,005 ,012 ,709 -,030 ,021

7 -,678* ,101 ,000 -,887 -,470

8 -,628* ,082 ,000 -,797 -,458

LOWESS 1 -,643 ,021 ,998 -,043 ,043

2 ,801* ,099 ,000 ,595 1,006

3 ,844* ,100 ,000 ,637 1,052

4 ,664* ,110 ,000 ,438 ,891

5 ,673* ,109 ,000 ,448 ,899

6 ,678* ,101 ,000 ,470 ,887

8 ,051 ,051 ,335 -,056 ,157
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Table A.23(cont’d):  Pairwise Comparisons of the Methods with respect to PO 
for Scenario-3 

 

MARS 1 -,051 ,038 ,199 -,130 ,029

2 ,750* ,086 ,000 ,573 ,928

3 ,794* ,085 ,000 ,618 ,969

4 ,614* ,090 ,000 ,428 ,800

5 ,623* ,088 ,000 ,441 ,805

6 ,628* ,082 ,000 ,458 ,797

7 -,051 ,051 ,335 -,157 ,056

Based on estimated marginal means    

*. The mean difference is significant at the ,05 level.   

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 

adjustments). 
 

 

Table A.24: Test of Sphericity for Scenario-3 (MSE) 

 

Mauchly's Test of Sphericityb 

Measure:MSE       

Within 

Subjects 

Effect 

Mauchly's 

W 

Approx. Chi-

Square df Sig. 

Epsilona 

Greenhouse-

Geisser 

Huynh-

Feldt 

Lower-

bound 

METHODS ,000 615,444 27 ,000 ,152 ,153 ,143

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed 

dependent variables is proportional to an identity matrix. 

a. May be used to adjust the degrees of freedom for the averaged tests of significance. 

Corrected tests are displayed in the Tests of Within-Subjects Effects table. 

b. Design: Intercept  

 Within Subjects Design: METHODS 
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Table A.25: Tests of Within-Subjects Effects of MSE for Scenario-3 
 
 

 
Tests of Within-Subjects Effects 

Measure:MSE      

Source 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

METHODS Sphericity 

Assumed 
17,916 7 2,559 22,754 ,000

Greenhouse-

Geisser 
17,916 1,062 16,871 22,754 ,000

Huynh-Feldt 17,916 1,071 16,735 22,754 ,000

Lower-bound 17,916 1,000 17,916 22,754 ,000

Error(METHODS) Sphericity 

Assumed 
18,110 161 ,112

 

Greenhouse-

Geisser 
18,110 24,424 ,741

 

Huynh-Feldt 18,110 24,623 ,735  

Lower-bound 18,110 23,000 ,787  
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Table A.26: Pairwise Comparisons of the Methods with respect to MSE for 
Scenario-3 

 
 

 
Pairwise Comparisons 

Measure:MSE     

(I) 

METHODS 

(J) 

METH

ODS 

Mean 

Difference 

(I-J) Std. Error Sig.a 

95% Confidence Interval for 

Differencea 

Lower Bound Upper Bound 

OLS 2 ,552* ,126 ,000 ,292 ,812

3 ,560* ,126 ,000 ,299 ,821

4 ,646* ,129 ,000 ,379 ,914

5 ,654* ,129 ,000 ,388 ,920

6 ,639* ,125 ,000 ,380 ,897

7 ,024 ,017 ,163 -,010 ,059

8 -,068 ,036 ,073 -,142 ,007

LTS 1 -,552* ,126 ,000 -,812 -,292

3 ,008* ,002 ,002 ,003 ,013

4 ,094* ,018 ,000 ,056 ,133

5 ,102* ,016 ,000 ,070 ,135

6 ,087* ,012 ,000 ,062 ,112

7 -,528* ,134 ,001 -,806 -,250

8 -,619* ,129 ,000 -,887 -,352

LMS 1 -,560* ,126 ,000 -,821 -,299

2 -,008* ,002 ,002 -,013 -,003

4 ,086* ,017 ,000 ,050 ,122

5 ,094* ,014 ,000 ,065 ,124

6 ,079* ,011 ,000 ,057 ,101

7 -,536* ,135 ,001 -,815 -,257

8 -,628* ,129 ,000 -,895 -,360
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Table A.26 (cont’d):  Pairwise Comparisons of the Methods with respect to 
MSE for Scenario-3 

 

 
M 1 -,646* ,129 ,000 -,914 -,379

2 -,094* ,018 ,000 -,133 -,056

3 -,086* ,017 ,000 -,122 -,050

5 ,008 ,004 ,057 ,000 ,016

6 -,007 ,009 ,406 -,026 ,011

7 -,622* ,139 ,000 -,909 -,336

8 -,714* ,134 ,000 -,992 -,436

MM 1 -,654* ,129 ,000 -,920 -,388

2 -,102* ,016 ,000 -,135 -,070

3 -,094* ,014 ,000 -,124 -,065

4 -,008 ,004 ,057 -,016 ,000

6 -,016* ,006 ,017 -,028 -,003

7 -,630* ,138 ,000 -,915 -,346

8 -,722* ,133 ,000 -,997 -,447

LAD 1 -,639* ,125 ,000 -,897 -,380

2 -,087* ,012 ,000 -,112 -,062

3 -,079* ,011 ,000 -,101 -,057

4 ,007 ,009 ,406 -,011 ,026

5 ,016* ,006 ,017 ,003 ,028

7 -,615* ,134 ,000 -,892 -,338

8 -,706* ,129 ,000 -,974 -,439

LOWESS 1 -,024 ,017 ,163 -,059 ,010

2 ,528* ,134 ,001 ,250 ,806

3 ,536* ,135 ,001 ,257 ,815

4 ,622* ,139 ,000 ,336 ,909

5 ,630* ,138 ,000 ,346 ,915

6 ,615* ,134 ,000 ,338 ,892

8 -,092* ,026 ,002 -,146 -,038



118 
 

Table A.26 (cont’d):  Pairwise Comparisons of the Methods with respect to 
MSE for Scenario-3 

 

 
MARS 1 ,068 ,036 ,073 -,007 ,142

2 ,619* ,129 ,000 ,352 ,887

3 ,628* ,129 ,000 ,360 ,895

4 ,714* ,134 ,000 ,436 ,992

5 ,722* ,133 ,000 ,447 ,997

6 ,706* ,129 ,000 ,439 ,974

7 ,092* ,026 ,002 ,038 ,146

Based on estimated marginal means    

*. The mean difference is significant at the ,05 level.   

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 

adjustments). 

 

 
Table A.27: Test of Sphericity for Scenario-1 (Ratio of IMSE) 

 

Mauchly's Test of Sphericityb 

Measure:MEASURE_1       

Within 

Subjects 

Effect 

Mauchly's 

W 

Approx. Chi-

Square df Sig. 

Epsilona 

Greenhouse-

Geisser 

Huynh-

Feldt 

Lower-

bound 

METHODS ,000 132,537 20 ,000 ,227 ,249 ,167

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed 

dependent variables is proportional to an identity matrix. 

a. May be used to adjust the degrees of freedom for the averaged tests of significance. 

Corrected tests are displayed in the Tests of Within-Subjects Effects table. 

b. Design: Intercept  

 Within Subjects Design: METHODS 
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Table A.28: Tests of Within-Subjects Effects of the ratio of IMSE for 
Scenario-1 

 
 
 

Tests of Within-Subjects Effects 

Measure:MEASURE_1      

Source 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

METHODS Sphericity 

Assumed 
,663 6 ,110 7,378 ,000

Greenhouse-

Geisser 
,663 1,365 ,486 7,378 ,011

Huynh-Feldt ,663 1,492 ,444 7,378 ,008

Lower-bound ,663 1,000 ,663 7,378 ,020

Error(METHODS) Sphericity 

Assumed 
,988 66 ,015

 

Greenhouse-

Geisser 
,988 15,014 ,066

 

Huynh-Feldt ,988 16,416 ,060  

Lower-bound ,988 11,000 ,090  
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Table A.29: Pairwise Comparisons of the Methods with respect to the ratio of 
IMSE for Scenario-1 

 
 
 

Pairwise Comparisons 

Measure:MEASURE_1     

(I) 

METHO

DS 

(J) 

METHO

DS 

Mean Difference 

(I-J) Std. Error Sig.a 

95% Confidence Interval for 

Differencea 

Lower Bound Upper Bound 

1 2 ,011 ,006 ,083 -,002 ,024

3 -,192* ,058 ,007 -,319 -,065

4 -,158* ,054 ,014 -,277 -,039

5 ,029 ,023 ,235 -,022 ,079

6 -,016 ,040 ,692 -,105 ,072

7 -,162* ,038 ,001 -,247 -,078

2 1 -,011 ,006 ,083 -,024 ,002

3 -,203* ,054 ,003 -,321 -,085

4 -,169* ,050 ,006 -,278 -,060

5 ,018 ,020 ,385 -,025 ,061

6 -,027 ,044 ,547 -,125 ,070

7 -,173* ,042 ,002 -,265 -,082

3 1 ,192* ,058 ,007 ,065 ,319

2 ,203* ,054 ,003 ,085 ,321

4 ,034* ,008 ,001 ,017 ,050

5 ,221* ,043 ,000 ,126 ,315

6 ,176 ,088 ,071 -,017 ,369

7 ,030 ,074 ,697 -,134 ,194
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Table A.29 (cont’d):  Pairwise Comparisons of the Methods with respect to the 
ratio of IMSE for Scenario-1 

 

 
4 1 ,158* ,054 ,014 ,039 ,277

2 ,169* ,050 ,006 ,060 ,278

3 -,034* ,008 ,001 -,050 -,017

5 ,187* ,038 ,000 ,103 ,271

6 ,142 ,084 ,118 -,042 ,326

7 -,004 ,071 ,956 -,159 ,151

5 1 -,029 ,023 ,235 -,079 ,022

2 -,018 ,020 ,385 -,061 ,025

3 -,221* ,043 ,000 -,315 -,126

4 -,187* ,038 ,000 -,271 -,103

6 -,045 ,047 ,358 -,149 ,058

7 -,191* ,040 ,001 -,278 -,104

6 1 ,016 ,040 ,692 -,072 ,105

2 ,027 ,044 ,547 -,070 ,125

3 -,176 ,088 ,071 -,369 ,017

4 -,142 ,084 ,118 -,326 ,042

5 ,045 ,047 ,358 -,058 ,149

7 -,146* ,027 ,000 -,206 -,086

7 1 ,162* ,038 ,001 ,078 ,247

2 ,173* ,042 ,002 ,082 ,265

3 -,030 ,074 ,697 -,194 ,134

4 ,004 ,071 ,956 -,151 ,159

5 ,191* ,040 ,001 ,104 ,278

6 ,146* ,027 ,000 ,086 ,206

Based on estimated marginal means    

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 

adjustments). 

*. The mean difference is significant at the ,05 level.   
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Table A.30: Test of Sphericity for Scenario-2 (ratio of IMSE) 

 

Mauchly's Test of Sphericityb 

Measure:MEASURE_1       

Within 

Subjects 

Effect 

Mauchly's 

W 

Approx. Chi-

Square df Sig. 

Epsilona 

Greenhouse-

Geisser 

Huynh-

Feldt 

Lower-

bound 

METHODS ,000 144,937 20 ,000 ,372 ,440 ,167 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed 

dependent variables is proportional to an identity matrix. 

a. May be used to adjust the degrees of freedom for the averaged tests of significance. 

Corrected tests are displayed in the Tests of Within-Subjects Effects table. 

b. Design: Intercept  

 Within Subjects Design: METHODS 

     

 
 
 

Table A.31: Tests of Within-Subjects Effects of the ratio of IMSE for 
Scenario-2 

 
 

Tests of Within-Subjects Effects 

Measure:MEASURE_1      

Source 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

METHODS Sphericity 

Assumed 
4,692 6 ,782 3,880 ,002

Greenhouse-

Geisser 
4,692 2,231 2,103 3,880 ,027

Huynh-Feldt 4,692 2,639 1,777 3,880 ,020

Lower-bound 4,692 1,000 4,692 3,880 ,068
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Table A.31 (cont’d): Tests of Within-Subjects Effects of the ratio of IMSE for 
Scenario-2 

 
 

 
Error(METHODS) Sphericity 

Assumed 
18,138 90 ,202

 

Greenhouse-

Geisser 
18,138 33,471 ,542

 

Huynh-Feldt 18,138 39,592 ,458  

Lower-bound 18,138 15,000 1,209  
 
 

 
 

Table A.32:  Pairwise Comparisons of the Methods with respect to the ratio of 
MSE for Scenario-2 

 
Pairwise Comparisons 

Measure:MEASURE_1     

(I) 

METHO

DS 

(J) 

METHO

DS 

Mean Difference 

(I-J) Std. Error Sig.a 

95% Confidence Interval for 

Differencea 

Lower Bound Upper Bound 

1 2 ,195 ,129 ,151 -,080 ,469

3 ,517* ,216 ,030 ,057 ,976

4 ,576* ,205 ,013 ,139 1,012

5 ,553* ,212 ,020 ,100 1,005

6 ,276 ,220 ,229 -,193 ,746

7 ,511* ,206 ,025 ,072 ,950

2 1 -,195 ,129 ,151 -,469 ,080

3 ,322* ,102 ,006 ,105 ,539

4 ,381* ,084 ,000 ,201 ,561

5 ,358* ,088 ,001 ,170 ,546

6 ,082 ,213 ,707 -,373 ,536

7 ,316* ,117 ,016 ,068 ,565
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Table A.32 (cont’d):  Pairwise Comparisons of the Methods with respect to the 
ratio of MSE for Scenario-2 

 

 
3 1 -,517* ,216 ,030 -,976 -,057

2 -,322* ,102 ,006 -,539 -,105

4 ,059 ,059 ,331 -,066 ,184

5 ,036 ,058 ,544 -,088 ,160

6 -,240 ,205 ,258 -,677 ,196

7 -,006 ,089 ,951 -,195 ,184

4 1 -,576* ,205 ,013 -1,012 -,139

2 -,381* ,084 ,000 -,561 -,201

3 -,059 ,059 ,331 -,184 ,066

5 -,023 ,016 ,182 -,058 ,012

6 -,299 ,220 ,194 -,769 ,170

7 -,065 ,078 ,421 -,231 ,102

5 1 -,553* ,212 ,020 -1,005 -,100

2 -,358* ,088 ,001 -,546 -,170

3 -,036 ,058 ,544 -,160 ,088

4 ,023 ,016 ,182 -,012 ,058

6 -,276 ,229 ,247 -,765 ,213

7 -,042 ,088 ,644 -,230 ,147

6 1 -,276 ,220 ,229 -,746 ,193

2 -,082 ,213 ,707 -,536 ,373

3 ,240 ,205 ,258 -,196 ,677

4 ,299 ,220 ,194 -,170 ,769

5 ,276 ,229 ,247 -,213 ,765

7 ,235 ,178 ,207 -,145 ,614
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Table A.32 (cont’d):  Pairwise Comparisons of the Methods with respect to the 
ratio of MSE for Scenario-2 

 

 
7 1 -,511* ,206 ,025 -,950 -,072

2 -,316* ,117 ,016 -,565 -,068

3 ,006 ,089 ,951 -,184 ,195

4 ,065 ,078 ,421 -,102 ,231

5 ,042 ,088 ,644 -,147 ,230

6 -,235 ,178 ,207 -,614 ,145

Based on estimated marginal means    

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 

adjustments). 

*. The mean difference is significant at the ,05 level.   

 

 

 
Table A.33: Test of Sphericity for Scenario-3 (ratio of the IMSE) 

 

Mauchly's Test of Sphericityb 

Measure:MEASURE_1       

Within 

Subjects 

Effect 

Mauchly's 

W 

Approx. Chi-

Square df Sig. 

Epsilona 

Greenhouse-

Geisser 

Huynh-

Feldt 

Lower-

bound 

METHODS ,000 412,578 20 ,000 ,208 ,215 ,167 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed 

dependent variables is proportional to an identity matrix. 

a. May be used to adjust the degrees of freedom for the averaged tests of significance. 

Corrected tests are displayed in the Tests of Within-Subjects Effects table. 

b. Design: Intercept  

 Within Subjects Design: METHODS 
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Table A.34: Tests of Within-Subjects Effects of the ratio of the MSE for 
Scenario-3 

 
 

 
Tests of Within-Subjects Effects 

Measure:MEASURE_1      

Source 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

METHODS Sphericity 

Assumed 
14,355 6 2,392 21,389 ,000

Greenhouse-

Geisser 
14,355 1,250 11,479 21,389 ,000

Huynh-Feldt 14,355 1,288 11,146 21,389 ,000

Lower-bound 14,355 1,000 14,355 21,389 ,000

Error(METHODS) Sphericity 

Assumed 
15,436 138 ,112

 

Greenhouse-

Geisser 
15,436 28,761 ,537

 

Huynh-Feldt 15,436 29,622 ,521  

Lower-bound 15,436 23,000 ,671  
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Table A.35: Pairwise Comparisons of the Methods with respect to the ratio of 
MSE for Scenario-3 

 
 
 

Pairwise Comparisons 

Measure:MEASURE_1     

(I) 

METHO

DS 

(J) 

METHO

DS 

Mean Difference 

(I-J) Std. Error Sig.a 

95% Confidence Interval for 

Differencea 

Lower Bound Upper Bound 

1 2 ,011* ,004 ,017 ,002 ,019

3 ,103* ,039 ,014 ,023 ,182

4 ,115* ,036 ,004 ,041 ,189

5 ,113* ,032 ,002 ,046 ,180

6 -,399* ,132 ,006 -,673 -,126

7 -,695* ,160 ,000 -1,026 -,364

2 1 -,011* ,004 ,017 -,019 -,002

3 ,092* ,036 ,018 ,017 ,167

4 ,105* ,033 ,005 ,035 ,174

5 ,102* ,030 ,002 ,041 ,164

6 -,410* ,130 ,004 -,679 -,141

7 -,706* ,158 ,000 -1,033 -,378

3 1 -,103* ,039 ,014 -,182 -,023

2 -,092* ,036 ,018 -,167 -,017

4 ,013 ,006 ,061 ,000 ,026

5 ,010 ,013 ,435 -,017 ,037

6 -,502* ,111 ,000 -,732 -,272

7 -,798* ,146 ,000 -1,100 -,495
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Table A.35 (cont’d): Pairwise Comparisons of the Methods with respect to the 
ratio of MSE for Scenario-3 

 

 
4 1 -,115* ,036 ,004 -,189 -,041

2 -,105* ,033 ,005 -,174 -,035

3 -,013 ,006 ,061 -,026 ,001

5 -,002 ,008 ,788 -,019 ,014

6 -,515* ,109 ,000 -,739 -,290

7 -,810* ,144 ,000 -1,107 -,513

5 1 -,113* ,032 ,002 -,180 -,046

2 -,102* ,030 ,002 -,164 -,041

3 -,010 ,013 ,435 -,037 ,017

4 ,002 ,008 ,788 -,014 ,019

6 -,512* ,108 ,000 -,736 -,289

7 -,808* ,142 ,000 -1,102 -,514

6 1 ,399* ,132 ,006 ,126 ,673

2 ,410* ,130 ,004 ,141 ,679

3 ,502* ,111 ,000 ,272 ,732

4 ,515* ,109 ,000 ,290 ,739

5 ,512* ,108 ,000 ,289 ,736

7 -,295* ,072 ,000 -,444 -,147

7 1 ,695* ,160 ,000 ,364 1,026

2 ,706* ,158 ,000 ,378 1,033

3 ,798* ,146 ,000 ,495 1,100

4 ,810* ,144 ,000 ,513 1,107

5 ,808* ,142 ,000 ,514 1,102

6 ,295* ,072 ,000 ,147 ,444

Based on estimated marginal means    

*. The mean difference is significant at the ,05 level.   

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 

adjustments). 
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APPENDIX B 

MODEL SELECTION AND RESIDUAL ANALYSIS FOR THE 

ORIGINAL DATA 

 

B.1. Model Selection Output for the Original Data without Making any 

Transformation 

 
 
Stepwise Regression: y2(p)-azot versus x2; x3; ...  
 
  Alpha-to-Enter: 0,15  Alpha-to-Remove: 0,15 
 
 
Response is y2(p)-azot on 35 predictors, with N = 92 
 
 
Step                1        2        3        4        5         6 
Constant     -0,04380  0,51583  1,05162  0,81391  1,56444   1,63715 
 
x22           0,00398  0,00370  0,00365  0,00323  0,00331   0,00362 
T-Value          4,44     4,21     4,23     3,79     3,93      4,21 
P-Value         0,000    0,000    0,000    0,000    0,000     0,000 
 
x14                     -0,113   -0,113   -0,125   -0,117    -0,116 
T-Value                  -2,51    -2,57    -2,92    -2,75     -2,74 
P-Value                  0,014    0,012    0,004    0,007     0,008 
 
x9                               -0,167   -0,253   -0,259    -0,273 
T-Value                           -2,16    -3,07    -3,18     -3,36 
P-Value                           0,034    0,003    0,002     0,001 
 
x8                                        0,0146   0,0156    0,0177 
T-Value                                     2,55     2,75      3,05 
P-Value                                    0,012    0,007     0,003 
 
x29                                                 -0,25     -0,22 
T-Value                                             -1,78     -1,59 
P-Value                                             0,079     0,114 
 
x12                                                        -0,00064 
T-Value                                                       -1,55 
P-Value                                                       0,126 
 
S              0,0507   0,0492   0,0483   0,0468   0,0462    0,0459 
R-Sq            17,96    23,39    27,24    32,30    34,70     36,48 
R-Sq(adj)       17,05    21,67    24,75    29,19    30,90     32,00 
Mallows C-p      13,2      8,5      5,7      1,5      0,5       0,3 
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Step                7         8         9 
Constant       0,3583    0,3453    0,2595 
 
x22           0,00333   0,00369   0,00363 
T-Value          3,83      4,12      4,08 
P-Value         0,000     0,000     0,000 
 
x14            -0,118    -0,111    -0,105 
T-Value         -2,81     -2,66     -2,52 
P-Value         0,006     0,009     0,014 
 
x9             -0,288    -0,300    -0,315 
T-Value         -3,55     -3,71     -3,89 
P-Value         0,001     0,000     0,000 
 
x8             0,0171    0,0173    0,0196 
T-Value          2,99      3,04      3,34 
P-Value         0,004     0,003     0,001 
 
x29             -0,32     -0,35     -0,38 
T-Value         -2,12     -2,35     -2,52 
P-Value         0,037     0,021     0,014 
 
x12          -0,00071  -0,00076  -0,00077 
T-Value         -1,73     -1,85     -1,90 
P-Value         0,087     0,067     0,061 
 
x26           0,00120   0,00130   0,00138 
T-Value          1,63      1,77      1,88 
P-Value         0,108     0,081     0,063 
 
x36                       -1,21     -1,25 
T-Value                   -1,50     -1,56 
P-Value                   0,136     0,124 
 
x34                                 -0,49 
T-Value                             -1,47 
P-Value                             0,147 
 
S              0,0454    0,0451    0,0448 
R-Sq            38,42     40,05     41,58 
R-Sq(adj)       33,29     34,28     35,17 
Mallows C-p      -0,1      -0,1       0,0 
 
 
 

Regression Analysis: y2(p)-azot versus x8; x9; ...  
 
The regression equation is 
y2(p)-azot = 0,345 + 0,0173 x8 - 0,300 x9 - 0,000756 x12 - 0,111 x14 
             + 0,00369 x22 + 0,00130 x26 - 0,352 x29 - 1,21 x36 
 
 
Predictor        Coef    SE Coef      T      P 
Constant       0,3453     0,9414   0,37  0,715 
x8           0,017339   0,005697   3,04  0,003 
x9           -0,29974    0,08084  -3,71  0,000 
x12        -0,0007558  0,0004079  -1,85  0,067 
x14          -0,11147    0,04185  -2,66  0,009 
x22         0,0036923  0,0008965   4,12  0,000 



131 
 

x26         0,0012979  0,0007353   1,77  0,081 
x29           -0,3520     0,1498  -2,35  0,021 
x36           -1,2142     0,8074  -1,50  0,136 
 
 
S = 0,0451005   R-Sq = 40,1%   R-Sq(adj) = 34,3% 
 
 
Analysis of Variance 
 
Source          DF        SS        MS     F      P 
Regression       8  0,112805  0,014101  6,93  0,000 
Residual Error  83  0,168826  0,002034 
Total           91  0,281632 
 
 
Source  DF    Seq SS 
x8       1  0,007593 
x9       1  0,024676 
x12      1  0,001304 
x14      1  0,027176 
x22      1  0,036651 
x26      1  0,001512 
x29      1  0,009294 
x36      1  0,004601 
 
 
Unusual Observations 
 
Obs    x8  y2(p)-azot       Fit   SE Fit  Residual  St Resid 
 16  40,8     0,28570   0,11454  0,01541   0,17116      4,04R 
 17  39,8     0,20000   0,09243  0,01116   0,10757      2,46R 
 45  39,0     0,00000   0,03226  0,02710  -0,03226     -0,89 X 
 49  38,2     0,00000  -0,02771  0,03478   0,02771      0,97 X 
 52  35,0     0,00000   0,00667  0,02970  -0,00667     -0,20 X 
 71  39,6     0,00000   0,09361  0,01499  -0,09361     -2,20R 
 78  40,5     0,29060   0,11242  0,01381   0,17818      4,15R 
 88  39,0     0,10560   0,01395  0,01506   0,09165      2,16R 
 
R denotes an observation with a large standardized residual. 
X denotes an observation whose X value gives it large influence. 
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Figure B.1:  Residual Plots for the Original Data with 92 observations without 
Making Transformation 
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B.2. Model Selection Output for the Original Data with Making Logit 
Transformation 
 
Stepwise Regression: LOGITY2 versus x2; x3; ...  
 
  Alpha-to-Enter: 0,15  Alpha-to-Remove: 0,15 
 
 
Response is LOGITY2 on 35 predictors, with N = 92 
 
 
Step               1        2       3       4 
Constant     -5,5917  -7,3578  3,1234  0,7232 
 
x22            0,146    0,130   0,129   0,119 
T-Value         8,37     7,33    7,40    6,76 
P-Value        0,000    0,000   0,000   0,000 
 
x19                     0,115   0,118   0,114 
T-Value                  2,93    3,07    3,01 
P-Value                 0,004   0,003   0,003 
 
x9                               -3,3    -3,3 
T-Value                         -2,20   -2,22 
P-Value                         0,030   0,029 
 
x28                                     0,175 
T-Value                                  1,99 
P-Value                                 0,049 
 
S              0,989    0,950   0,930   0,914 
R-Sq           43,75    48,69   51,38   53,50 
R-Sq(adj)      43,12    47,54   49,72   51,36 
Mallows C-p     13,0      6,2     3,3     1,5 
 
 
 
 

Regression Analysis: LOGITY2 versus x9; x19; x22; x28  
 
 
The regression equation is 
LOGITY2 = 0,72 - 3,26 x9 + 0,114 x19 + 0,119 x22 + 0,175 x28 
 
 
Predictor     Coef  SE Coef      T      P 
Constant     0,723    4,875   0,15  0,882 
x9          -3,258    1,470  -2,22  0,029 
x19        0,11433  0,03800   3,01  0,003 
x22        0,11946  0,01768   6,76  0,000 
x28        0,17540  0,08796   1,99  0,049 
 
 
S = 0,914286   R-Sq = 53,5%   R-Sq(adj) = 51,4% 
 
 
Analysis of Variance 
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Source          DF       SS      MS      F      P 
Regression       4   83,675  20,919  25,02  0,000 
Residual Error  87   72,725   0,836 
Total           91  156,400 
 
 
 
 
Source  DF  Seq SS 
x9       1   4,686 
x19      1  28,350 
x22      1  47,315 
x28      1   3,324 
 
 
Unusual Observations 
 
Obs    x9  LOGITY2      Fit  SE Fit  Residual  St Resid 
 16  3,21  -0,3980  -2,7830  0,2138    2,3850      2,68R 
 21  3,23  -4,0000  -2,0690  0,2153   -1,9309     -2,17R 
 22  3,18  -4,0000  -1,7981  0,1754   -2,2019     -2,45R 
 70  3,15  -4,0000  -1,6953  0,3277   -2,3047     -2,70R 
 71  3,19  -4,0000  -1,7263  0,3840   -2,2736     -2,74RX 
 72  3,26  -4,0000  -1,4408  0,3663   -2,5592     -3,06R 
 77  3,16  -0,7270  -2,5885  0,1202    1,8615      2,05R 
 78  3,17  -0,3876  -2,2078  0,1913    1,8202      2,04R 
 
R denotes an observation with a large standardized residual. 
X denotes an observation whose X value gives it large influence. 
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Figure B.2: Residual Plots for the Original Data with 92 observations with 

Making Logit Transformation 
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B.3. Model Selection Output for the Original Data with Deleting 
Outliers without Making any Transformation 

 
Stepwise Regression: y2(p)-azot versus x2; x3; ...  
 
  Alpha-to-Enter: 0,15  Alpha-to-Remove: 0,15 
 
 
Response is y2(p)-azot on 35 predictors, with N = 84 
 
 
Step                1        2        3        4        5 
Constant     -0,03151  0,45003  0,71027  0,95893  0,99699 
 
x22           0,00284  0,00271  0,00236  0,00215  0,00229 
T-Value          4,84     4,81     4,09     3,67     3,89 
P-Value         0,000    0,000    0,000    0,000    0,000 
 
x9                      -0,150   -0,138   -0,147   -0,145 
T-Value                  -2,88    -2,69    -2,88    -2,87 
P-Value                  0,005    0,009    0,005    0,005 
 
x20                             -0,0071  -0,0068  -0,0060 
T-Value                           -2,10    -2,02    -1,80 
P-Value                           0,039    0,046    0,075 
 
x11                                      -0,0110  -0,0114 
T-Value                                    -1,67    -1,75 
P-Value                                    0,099    0,083 
 
x3                                                -0,0019 
T-Value                                             -1,47 
P-Value                                             0,145 
 
S              0,0304   0,0291   0,0285   0,0282   0,0280 
R-Sq            22,25    29,47    33,15    35,43    37,18 
R-Sq(adj)       21,30    27,73    30,64    32,16    33,16 
Mallows C-p       6,0      0,0     -2,0     -2,6     -2,5 
 
 

Regression Analysis: y2(p)-azot versus x3; x9; x11; x20; x22  
 
The regression equation is 
y2(p)-azot = 0,997 - 0,00190 x3 - 0,145 x9 - 0,0114 x11 - 0,00605 x20 
             + 0,00229 x22 
 
Predictor       Coef    SE Coef      T      P 
Constant      0,9970     0,2515   3,96  0,000 
x3         -0,001896   0,001286  -1,47  0,145 
x9          -0,14507    0,05062  -2,87  0,005 
x11        -0,011429   0,006514  -1,75  0,083 
x20        -0,006047   0,003354  -1,80  0,075 
x22        0,0022914  0,0005888   3,89  0,000 
 
 
S = 0,0280148   R-Sq = 37,2%   R-Sq(adj) = 33,2% 
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Analysis of Variance 
 
Source          DF         SS         MS     F      P 
Regression       5  0,0362341  0,0072468  9,23  0,000 
Residual Error  78  0,0612166  0,0007848 
Total           83  0,0974507 
 
 
Source  DF     Seq SS 
x3       1  0,0008638 
x9       1  0,0088952 
x11      1  0,0072507 
x20      1  0,0073377 
x22      1  0,0118867 
 
 
Unusual Observations 
 
Obs    x3  y2(p)-azot      Fit   SE Fit  Residual  St Resid 
 23  33,7     0,09900  0,04308  0,00589   0,05592      2,04R 
 66  33,7     0,00010  0,05596  0,01098  -0,05586     -2,17R 
 71  32,0     0,15790  0,04923  0,00710   0,10867      4,01R 
 74  33,7     0,16540  0,05738  0,00740   0,10802      4,00R 
 82  34,0     0,11610  0,04792  0,00596   0,06818      2,49R 
 
R denotes an observation with a large standardized residual. 

 
 
 
 

 

Figure B.3: Residual Plots for the Original Data by Deleting outliers without 
Making any Transformation 
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APPENDIX C 

REPEATED ANOVA RESULTS FOR THE COMPARISON OF THE 

OLS, HUBERM, LAV AND LTS REGRESSION METHODS 

 

Table C.1: Test of Sphericity for the Industrial Data with respect to MSE 

 

Mauchly's Test of Sphericityb 

Measure:MEASURE_1       

Within 

Subjects 

Effect 

Mauchly's 

W 

Approx. Chi-

Square df Sig. 

Epsilona 

Greenhouse-

Geisser 

Huynh-

Feldt 

Lower-

bound 

METHODS ,000 . 5 . ,395 ,637 ,333 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed 

dependent variables is proportional to an identity matrix. 

a. May be used to adjust the degrees of freedom for the averaged tests of significance. 

Corrected tests are displayed in the Tests of Within-Subjects Effects table. 

b. Design: Intercept  

 Within Subjects Design: METHODS 
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Table C.2: Tests of Within-Subjects Effects with respect to MSE for the 

Industrial Data 

 

 

Tests of Within-Subjects Effects 

Measure:MEASURE_1      

Source 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

METHODS Sphericity 

Assumed 
,213 3 ,071 2,008 ,214 

Greenhouse-

Geisser 
,213 1,186 ,180 2,008 ,283 

Huynh-Feldt ,213 1,911 ,111 2,008 ,252 

Lower-bound ,213 1,000 ,213 2,008 ,292 

Error(METHODS) Sphericity 

Assumed 
,212 6 ,035 

  

Greenhouse-

Geisser 
,212 2,371 ,089 

  

Huynh-Feldt ,212 3,822 ,055   

Lower-bound ,212 2,000 ,106   
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Table C.3: Test of Sphericity for the Industrial Data with respect to R2 

 

Mauchly's Test of Sphericityb 

Measure:MEASURE_1       

Within 

Subjects 

Effect 

Mauchly's 

W 

Approx. Chi-

Square df Sig. 

Epsilona 

Greenhouse-

Geisser 

Huynh-

Feldt 

Lower-

bound 

METHODS ,000 . 5 . ,606 1,000 ,333 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed 

dependent variables is proportional to an identity matrix. 

a. May be used to adjust the degrees of freedom for the averaged tests of significance. 

Corrected tests are displayed in the Tests of Within-Subjects Effects table. 

b. Design: Intercept  

 Within Subjects Design: METHODS 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



141 
 

Table C.4: Tests of Within-Subjects Effects with respect to R2  for the 

Industrial Data 

 

 
Tests of Within-Subjects Effects 

Measure:MEASURE_1      

Source 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

METHODS Sphericity 

Assumed 
,049 3 ,016 4,723 ,051 

Greenhouse-

Geisser 
,049 1,819 ,027 4,723 ,098 

Huynh-Feldt ,049 3,000 ,016 4,723 ,051 

Lower-bound ,049 1,000 ,049 4,723 ,162 

Error(METHODS) Sphericity 

Assumed 
,021 6 ,003 

  

Greenhouse-

Geisser 
,021 3,637 ,006 

  

Huynh-Feldt ,021 6,000 ,003   

Lower-bound ,021 2,000 ,010   

 

 
 

 


