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ABSTRACT

A COMPARISON OF SOME ROBUST REGRESSION TECHNIQUES

Avci, Ezgi
M.S., Department of Industrial Engineering
Supervisor: Prof. Dr. Giilser Koksal

September 2009, 141 Pages

Robust regression is a commonly required approach in industrial studies like
data mining, quality control and improvement, and finance areas. Among the
robust regression methods; Least Median Squares, Least Trimmed Squares, M-
regression, MM-method, Least Absolute Deviations, Locally Weighted Scatter
Plot Smoothing and Multivariate Adaptive Regression Splines are compared
under contaminated normal distributions with each other and Ordinary Least
Squares with respect to the multiple outlier detection performance measures. In
this comparison; a simulation study is performed by changing some of the
parameters such as outlier density, outlier locations in the x-axis, sample size
and number of independent variables. In the comparison of the methods,
multiple outlier detection is carried out with respect to the performance
measures detection capability, false alarm rate and improved mean square error
and ratio of improved mean square error. As a result of this simulation study,
the three most competitive methods are compared on an industrial data set with

respect to the coefficient of multiple determination and mean square error.

Keywords: Robust Regression, Multiple Outlier Detection, Multiple

Regression

v



0z

BAZI SAGLAM REGRESYON YONTEMLERININ
BiR KARSILASTIRMASI

Avci, Ezgi
Yiiksek Lisans, Endiistri Miihendisligi Bolimii
Tez Yoneticisi: Prof. Dr. Glilser Koksal

Eyliil 2009, 141 Sayfa

Saglam(robust) regresyon endiistriyel c¢alismalarda; 6rnegin veri madenciligi,
kalite kontrol ve iyilestirme ve finans alanlarinda siklikla gerek duyulan bir
yaklagimdir. Saglam regresyon yontemlerinden En Kiiciik Medyan Kareler, En
Kiiciik Budanmis Kareler, M-regresyon, MM, En Kiigiilk Mutlak Degerler,
LOWESS ve MARS metotlar1 yaklagik normal dagilima gore aykir1 degerleri
isleme basarimi bakimindan En Kii¢iik Kareler metodu ile karsilagtirilmigtir.
Bu karsilagtirmada; aykir1 degerlerin orani, x uzayindaki yeri, O6rneklem
biiylikliigii ve bagimsiz degisken sayisi gibi parametreler degistirilerek bir
benzetim caligsmasi gerceklestirilmistir. Metotlarin karsilastirilmasinda aykiri
degerleri belirlemede tip 1 ve 2 hata orani, iyilestirilmis hata kareler ortalamasi
ve 1iyilestirilmis hata kareler ortalamasi oram1 gibi basarim Olgiileri
kullanilmigtir. Bu benzetim caligmas1 sonucunda en iyi basarim gosteren ii¢
metot bir endiistriyel veri seti lizerinde uygulanmis olup belirleme katsayis1 ve
ortalama karesel hata basarim Olgiilerine goére bu metotlarin basarimi

tartisilmistir.



Anahtar Kelimeler: Saglam Regresyon, Coklu Aykiri Deger Bulma, Coklu

Regresyon
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CHAPTER 1

INTRODUCTION

Regression analysis is a statistical technique for investigating and modeling the
relationship between variables. There are many application areas of regression,
including engineering, physical sciences, economics, management, life and
biological sciences, and the social sciences. Regression can be said to be the

most widely used statistical technique (Montgomery and Peck, 1991).

In industrial applications, regression analysis is commonly used in quality
control and improvement, and data mining. Ordinary Least Squares (OLS)
method is usually preferred in these studies because it is a well established
method and most of the computer packages are capable of making regression
analysis with OLS. However, this method has some assumptions. Without
satisfying these assumptions, the results will not be valid and should not be
used. The most important assumption of OLS is normality. Briefly, normality
assumption indicates that the regression errors should be normally distributed.
However, the errors are frequently not distributed normally because of some

outliers in the data.

The concept of an outlier has attracted the attention of the researchers since the
earliest attempts to interpret the data. It is more important to decide whether we

should delete the observations, which are “unrepresentative” or “mavericks” of



the data, than the development of the statistical method. These observations are
often seen as contamination to the data. They reduce and affect the information
that we may get from the source or generating mechanism. Exploring the
interpretation and categorization of outliers is not straightforward (Barnett and

Lewis, 1994)

Therefore regression analysis becomes troublesome and requires using
techniques like data transformation which may not always solve the problem.

Moreover the analysis may take time and typically needs expertise.

To overcome these problems new statistical techniques, which are called robust
(resistant), have been introduced that are not so easily affected by outliers
(Rousseeuw and Leroy, 1987). Robust regression methods aim to minimize the
impact of the outliers on regression estimators, but still invoke parametric
assumptions after smoothing the influence of outliers on the regression line

(Lane, 2002).

Robust regression methods are gaining more and more importance, but there
are few comparative studies about the performances of these approaches.
People carrying out applications in various industries appreciate suggestions

about which robust methods they should prefer to use.

In this thesis, our aim is to extend the scope of the few comparative studies and
guide the people making applications in industry. For this purpose, we extend
the simulation comparison of M-regression, MM-method, Least Trimmed
Squares (LTS) and Least Median Squares (LMS) performed by Wisnowski
(1999). We use the same simulation approach with the addition of Least
Absolute Deviations (LAD), Locally Weighted Scatter Plot Smoothing
(LOWESS) and Multivariate Adaptive Regression Splines (MARS). The

design parameters are selected as the number of independent variables k=2 for



n=40 observations or k=6 with n=60 observations. The outlier density is either
10% or 20%, that is; 10% or 20% of the outliers can be outlying.The
magnitude of the outliers is between three and five standard deviation units.
The outliers are either generated randomly or in groups. These groups are
called clouds. The number of multiple point clouds is either one or two. The
results are compared by performance measures which are detection capability
(PP), false alarm rate (PO), improved mean square error (IMSE) and ratio of
IMSE. Furthermore from the simulation the most promising robust methods,
which are M-regression, LAD and LTS are specified and applied on an
industrial data set. A cross-validation approach is used to compare the
methods’ performances on the industrial data. Criteria on which the robust
regression methods compared are coefficient of multiple determination (R?)
and mean square error (MSE). Detection capability and false alarm rate cannot
be used since in real life data outliers are not known for sure as in the

simulation study.

This thesis is organized into five chapters. In the second chapter, some
background information about robustness, outliers, OLS assumptions, robust
regression techniques and previous comparative studies are given. In the third
chapter, a Monte Carlo simulation study is performed on three different Y-
space outlier scenarios, which are adapted from Wisnowski (1999). From the
simulation study, the three most promising robust regression methods are
determined and their performances are compared on an industrial data set in
chapter four. Conclusions and suggestions for future studies are mentioned in

chapter five.



CHAPTER 2

LITERATURE REVIEW

In this chapter, first the definition and types of robustness are presented. Then,
OLS assumptions are discussed. Since the most basic assumption of OLS is
usually violated by outliers; outlier types, which are interior Y-space and
interior X-space, are investigated. Robust regression methods, which are
especially developed for detecting outliers in the data, are explained next. Their
algorithms and basic properties are analyzed. At the end of the chapter,

previous comparative studies are briefly discussed.

2.1 Robustness

Box (1953) used the term robustness for the first time (Hogg, 1979). Portnoy
and He (2000) state that there are more than 3000 entries with “robust” and
“robustness” as key words in the Current Index to Statistics. These findings can
be classified as “density”, “rank”, “bootstrap”, “censored” or “smoothing” but
most of them sees robustness as alternatives to OLS method and normality
theory. As indicated by Portnoy and He (2000), the importance of robust
estimators was recognized in a study called Princeton which was conducted by
Pearson, Student, Box and Tukey. Huber’s (1964) classic minimax approach
and Hampel’s (1968, 1974) introduction of influence functions was the first
milestones of the modern theory of robust statistics. After these studies the
importance of robustness was understood. Huber (1964) might be considered
as the first research that defines robustness as “approximate validity of a

parametric model”. Hampel (1974) studied the properties of statistical

functions and introduced three important robustness concepts: qualitative



robustness (continuity), influence function (derivative), and breakdown point

(Portnoy and He, 2000).

There are many perspectives of robustness. Box and Tiao (1962) mentioned
about two types of robustness: criterion robustness and inference robustness.
Criterion robustness selects a criterion for statistical optimality and then
investigates its variation as the parent distribution deviates from the form
assumed. Inference robustness is about the changes in quantities leading to
inference (significance levels, coverage probability, etc.). Then some studies
have been performed about efficiency robustness, qualitative robustness, bias

robustness, Bayesian robustness, and so on (Portnoy and He, 2000).

The word robust has many meanings but briefly robustness can be defined as
“signifying insensitivity to small deviations from the assumptions’.
Correspondingly distributional robustness can be defined as “the shape of the
true underlying distribution deviates slightly from the assumed model (usually
the normal distribution”’) (Huber, 1981). In our study, we are interested only in
the distributional robustness to contaminated normal distributions. Skewed and

asymmetric distributions are out of our scope.

A statistical procedure based on the OLS assumptions may be substantially
affected by the deviations from normality. In a survey, Tukey (1960) showed
that contamination by just two observations from a N(0, 9) distribution among
1000 N(O, 1) observations is enough to make the mean absolute deviation
(MAD) estimator more efficient than the sample standard deviation, which is
asymptotically optimal for the Gaussian scale parameter (Portnoy and He,

2000).

Huber (1981) indicates that some people may ask whether robust procedures
are needed at all, because there is a common two-step approach to deal with

outliers:

1. Clean the data by applying some rule for outlier detection.



2. Use classical estimation and testing procedures on the remainder of the

data.

Unfortunately, they will not do the same job as the robust estimators. From

Huber (1981) the reasons can be summarized as:

1. Separating the two steps accurately is a hard work. Moreover in the
multiple regression case, outliers are difficult to detect.

2. Although the sample come from a normal distribution with some gross
outliers, the cleaned data may not be normal (there may be both kinds
of statistical errors, false rejection and false acceptance). If the sample
does not come from a normal distribution, the situation is even worse.
As a result, the classical normal theory is not applicable to cleaned
samples, so applying the two-step procedure may be more difficult than
applying the straight robust procedure.

3. Robust regression methods are a smooth transition between full
acceptance and full rejection of an observation; therefore the best
rejection procedures are not competitive against the best robust

procedures.

Huber (1981) defines a parametric model as a “hopefully good approximation
to the underlying situation, but we cannot and do not assume that it is exactly
correct”. As a result there should be three properties of any statistical

procedure:

1. At the assumed model, it should have a reasonably good efficiency.

2. Small deviations, occurrence of gross errors in a small fraction of the
observations, from the model assumptions should affect the
performance only slightly.

3. Larger deviations from the assumed model should not affect the

parameters substantially.



Therefore robust regression is classified in the family of parametric regression
methods. Related with these ideas, robust estimates can be specified as
consistent estimates of the unknown parameters at the idealized model. Since
they have robustness property, they will not drift too far away if the model is
only approximately true (Huber, 1981).

To illustrate the difference between parametric robustness and nonparametric
method, the following example can be given. Suppose that a random sample is
drawn from a mixture model with 90% from N (0, 1) and 10% from N (t, 1) for
some large value of t. If we use a central model of N (0, 1), then a robust
estimate of location would aim at the center of the majority; that is, 6=0.
However, the estimate will be biased from the contamination from N (t, 1). A
robust estimate tries to control the bias regardless of the size of t. On the other
hand, a nonparametric estimate of location would aim at the center of the
mixture distribution, which is not 0 in this case. So, it is important to know
what we are searching in the analysis. If we believe in a parametric model that
approximates reality and wish to estimate the parameters related with this
model, then robust estimates are our best choice. But if we are not sure about
the underlying distribution, we consider the data as a sample from an unknown
population and are interested in a population quantity, then a nonparametric
estimate is more appropriate (see Portney and Welsh 1992) as cited in Portnoy

and He (2000).

2.2. Ordinary Least Squares and Assumptions

Regression analysis is a statistical technique for investigating and modeling the
relationship between variables. There are lots of application areas of regression
including engineering, the physical sciences, economics, management, life and
biological sciences, and the social sciences. Regression can be said to be the

most widely used statistical technique (Montgomery and Peck, 1991)



Among the various regression methods, OLS is the most commonly used one.
It was discovered independently by Carl Friedrich Gauss in Germany around
1975 and by Adrien Marie Legendre in France around 1805. Astronomic and
geodetic data were used in the early applications of the method. Its first
published appearance was in 1805 in an appendix to a book by Legendre on
determining the orbits of comets (Birkes and Dodge, 1993). As it is stated by
Rousseeuw and Leroy (1987), among the many possible regression techniques,
the OLS method has generally been used because of tradition and ease of its

computation.

A regression model that has more than one independent variable is called a

multiple linear regression model. The model can be formulated as

y= Bo+ B1xy+ Baxy + 4 Brxy + €

If we take k=1, the model is called simple linear regression model. The

parameters f3; are called the regression coefficients. This model illustrates a k-
dimensional hyperplane. The parameter f; indicates the expected change in
the response y per unit change in x; when all the remaining independent
variables are held constant. Therefore, f; can also be called partial regression

coefficient (Montgomery and Peck, 1992).

In multiple linear regression, the real functional relationship between the
response and the independent variables is unknown. The regression model is an
approximation to the real relationship. But over certain ranges of the
independent variables, it is an adequate approximation (Montgomery and Peck,

1991).

To estimate the coefficients, the straight line that “best” fits the data points in
the plot is found. To judge how well the estimated regression line fits the data,
we can analyze the size of the residuals. The smaller the residuals, the more

accurate the fit is (Birkes and Dodge, 1993).



The residuals of a regression model are defined as the n differences
e =Y _yia 1= 17 25---:n;

where Y; is an observation and Y; is the corresponding fitted value calculated

from the fitted regression equation.

From the definition of the residuals, it can be said that e; are the amount of
response that the regression equation has not been able to explain. Therefore,

we can think of the e; as the observed errors if the model is correct (Draper

and Smith, 1981).

As stated by Montgomery and Peck (1991), a OLS regression model is valid if

and only if the assumptions below are true;

1. The relationship between y and x is linear, or at least it is well
approximated by a straight line.

The error term € has zero mean.

The error term ¢ has constant variance o°.

The errors are uncorrelated.

AN

The errors are normally distributed.

Assumptions 4 and 5 mean that the errors are independent random variables.
Assumption 5 is the basic requirement for hypothesis testing and interval
estimation. If the model is fitted without validating the assumptions, it can be
unstable which means that by using a different sample, a totally different

model can be fitted with opposite conclusions (Montgomery and Peck, 1991).

The normality assumption violation is the basis for robust regression. Although
small departures from normality do not affect the model greatly, gross
vialotions of normality assumption is more dangerous since the t- or F-
statistics, confidence and prediction intervals depend on the normality
assumption. Moreover if the errors come from a heavy-tailed distribution, the

OLS regression line may be sensitive to a small subset of the data since these



types of outliers “pull” the least squares regression line too much in their
direction (Montgomery and Peck, 1992) or outliers may be a result of
misplaced decimal points, recording and transmission errors, exceptional
phenomena such as earthquakes and strikes, or members of a different
population contaminating into the sample. These undesirable situations may be
results in non-optimal solutions. Real data usually have outliers but they cannot
be identified by the users since nowadays much data is analyzed by computers,
without careful inspection and screening. Outliers may totally spoil an ordinary
LS analysis. Often such influential points remain hidden because they do not

always show up in the usual OLS residual plots (Rousseeuw and Leroy, 1987).

2.3. Outliers in Regression

An outlying observation, or outlier, is “the observation that appears to deviate

markedly from other members of the sample in which it occurs”, as Grubbs

(1969) remarks (Barnett and Lewis, 1994).

As discussed by Barnett and Lewis (1994), there are three different sources of

variability:

1. Inherent variability: In this type, observations vary over the population;
such variation is a natural property of the population. It is
uncontrollable and reflects the distributional properties of a correct
basic model.

2. Measurement error: Inadequacies in the measurement instrument, the
rounding of obtained values, or recording mistakes.

3. Execution error: If we carelessly choose a biased sample or take
observations that do not represent the population we try to get

information, this type of variability occurs.

From these three sources of variability, we are nearly interested in outliers that

may be a perfectly reasonable reflection of the natural inherent variation and
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reflects an inadequate basic model. A more appropriate model should be
assumed in this case. But again it must be remarked that distributional
robustness (against inherent alternatives) are out of our scope, robustness

against contamination is mentioned in our study.

2.3.1. Interior Y-space Outliers

Regression outliers can seriously violate the standard OLS analysis. Outliers
can be in both X and Y directions. Outliers in y-direction have received
attention in literature because one usually considers the y; as observations and
the x; as fixed numbers (which is only true when the design has been given in
advance) and because such “vertical” outliers often possess large positive or
large negative residuals. Even in multiple regression with a large number of
independent variables (p), where it is so difficult to visualize the data, such
outliers can often be discovered from the list of residuals or from the residual

plots (Rousseeuw and Leroy, 1987).

2.3.2. Interior X-space Outliers

Explanatory variables can also have outliers. In many applications, one
receives a list of variables, and then has to choose a response variable and
some explanatory variables. So, there is no reason why gross errors would only
occur in the response variable. Moreover, the probability of having an outlier in
explanatory variables is higher than the probability of having an outlier in the
response because usually this probability is greater than one; therefore the
probability of having incorrect results is higher. An X-space outlier affects LS
regression line greatly because it pulls the LS line towards itself. Therefore it is
called a leverage point. In general, an observation (xy , yi ) is called a leverage
point whenever xy lies far away from the bulk of the observed x; in the sample.
Note that this does not take yx into account, so the point (xi , yx ) does not

necessarily have to be a regression outlier. When (xx , yx ) is close to the
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regression line specified by the most of the data, then it is a good leverage
point. In this case, it may perfectly lie on the regression line and it is even
useful because it will narrow certain confidence regions (Rousseeuw and
Leroy, 1987). The x and y-axis direction outliers are shown in Figure 2.1. The

figure is adapted from Rousseuw and Leroy (1987).

y
1‘ y-axis
outlier both x-axis and
® g Y-axis outlier
o 0%
oo b )
oo .
oo 0 X-axis
DBU 0 ® outlier
O
> X

Figure 2.1: x-axis, y-axis and both x-axis and y-axis outliers

2.3.3. Detection of Multiple Outliers

There are two common ways to deal with outliers. The first one is regression
diagnostics which are computed from the data to identify influential
observations. Then these observations are corrected or deleted, followed by an
LS analysis on the remaining cases. At the case of a single outlier, the effect of

deleting one point at a time is easy to calculate. However, if there are multiple
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outliers, it is not straightforward to analyze their affects on the regression line
and extensive computations are required. The second approach to deal with
outliers is to use robust methods whose results are still valid even if a certain
amount of data is contaminated. It is thought that robust regression techniques
hide the outliers, but the opposite is true because the outliers are far away from
the robust fit so they can be detected by their large residuals from it
(Rousseeuw and Leroy, 1987).

In fact, diagnostics and robust regression have the same goal, but they proceed
in the opposite order. In the diagnostics, first the outliers are identified and
then a regression line is fitted to the data without outliers. But in robust
regression, first a robust regression line is fitted to the majority of the data and
then the outliers are discovered by looking at the large residuals from the
robust regression. Sometimes, both methods give exactly the same results, and
then the difference is mostly subjective. There are almost as many robust
methods as there are diagnostics, and to differentiate between them it is
important to compare the robust methods’ performances with respect to the

OLS method’s performance (Rousseeuw and Leroy, 1987).
2.4. Robust Regression Methods

Robust regression methods are developed for situations in which the
distribution is close to normal. Many ways have been discussed in literature to
make an estimator robust. Changing the minimization criteria of the errors
which means using different weight functions; and trimming specified
proportions of the data are the most common ways. M-regression and LAD can

be cited for the first group; LTS can be cited for the second group.

Still none of them has been shown to be truly superior in all outlier data
configurations (Anderson, 2001). The aim of this study is to compare the
performances of seven of the robust regression methods which are LAD, M,

MM, LTS, LMS, MARS and LOWESS. In fact, in literature MARS and
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LOWESS methods are classified in the nonparametric regression methods.
However; the aim of this study is to measure the methods’ performances
against the outliers, not against the model complexity. For this reason, these

two methods are taken in the group “robust”.

These seven regression methods have been studied for two reasons. The first
reason is that they are the most mentioned methods in the alternative regression
methods literature. The second one is that these methods are all available in a
statistical package called S-PLUS and evaluation procedures are easy to

understand for the people carrying out applications in industry.

There are some fundamental concepts of the robust regression methods which

are breakdown point, asymptotic efficiency and bounded influence.

Breakdown Point: Let Z be any sample of n data points and T be a regression
estimator. If we apply T to such a sample Z, we will get a vector of regression
coefficients T (Z). The breakdown point of the estimator at the sample Z is
defined as the smallest fraction of contamination that can cause the estimator T
to take on values arbitrarily far from T (Z). It is important that this definition
includes no probability distributions. For example, OLS has a breakdown point
of 1/n which goes to zero for increasing n. This again shows the OLS method’s

high sensitivity to outliers (Rousseeuw and Leroy, 1987).

Asymptotic Efficiency: Asymptotic can be defined as concerning the limiting
behavior of a procedure as the sample size goes to infinity. Asymptotic
properties can also be called large-sample properties and not directly related to
real life data which occurs in finite sample sizes. However, asymptotic

properties are often more readily obtainable.

The asymptotic efficiency of an x% means that for an infinitely large sample,
the reciprocal of the ratio of the variance of the estimator to the smallest
variance, which is the variance of the OLS estimate when the error distribution

is normal.
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Bounded Influence: An estimator is called bounded influence if it can bound
the influence of X-space outliers by means of some weight function w. That is,
bounded influence estimators are robust to X-space outliers which have large
effect on the OLS regression line because they can pull the line towards

themselves.

In the following, the robust regression methods studied in this thesis are

introduced briefly.

2.4.1. Least Absolute Deviations

The method of LAD is developed by Joseph Boscovich in 1757, 50 years
before the method of OLS, to accommodate inconsistent measurements for the
purpose of estimating the shape of the earth. 30 years later Pierre Simon
Laplace favored to use the method; it saw occasional use until the OLS method
overshadowed it. OLS method is computationally simpler and also Gauss and
Laplace developed a supporting theory for it. Computers are now able to do
complex calculations and lots of theoretical foundations have been laid for a
variety of alternative methods, including the method of LAD (Birkes and
Dodge, 1993).

Regression line estimation algorithm is discussed in Birkes and Dodge (1993)
very clearly. Assume that the proposed simple linear regression model is Y =
« + BX + e. Scatter plot of the data can be checked whether the model is
appropriate for representing the relations between X and Y. In the method of
OLS, the estimates of the regression coefficients @& and fare found by
minimizing the sum of the squares of the residuals, Y, é?. Whereas in the LAD
method, the estimates are found by minimizing the sum of the absolute values
of the residuals, Y|&;|. That is, the LAD estimates & and f are the values of a

and b that minimize

2lyi = (a+ bxy)|.
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The difference is called the deviation of the point (x;, y;) from the line ¥ = a +
bX . LAD regression is sometimes called L;-regression because L; norm of the

vector of deviations is used.

The concept of LAD estimation is simpler than the OLS estimate concept but
the LAD method’s calculation of the estimates is more complicated. Instead of
formulas, there are algorithms for calculating the LAD estimates. Birkes and
Dodge (1993) explain this algorithm for simple and multiple regression cases.
The aim of the algorithm is to find the line which has the least sum of absolute
deviations and best fits the data. The algorithm starts with finding the best line
among all the lines passing through for any given point (x,, yo). Let’s say the
best line passing through the initial point is (x;,y;), now we should find the
best line passing through this point. This line also passes through another data
point (x,,y,). The algorithm continues like this until the most recent line
obtained will be the same as the previous line. This is the best line, called the
LAD regression line, among all the lines without regard to what points they

pass through.
The procedure is described as follows:

For each point (x;, y;) the slope of the line, which is formulated as (yi-yo)/(xi-
Xp), passing through the two points (x,,y,) and (x;, y;) is calculated. If x; = x
for some 1, the slope is not defined but such points can be ignored. The points

are reindexed as,

1 = Y0)/(x1 —%0) < (V2 —Y0)/(x2 = x0) < -+ < (Vn — Yo)/ (X — Xo)-
Let
T = Xlx; — xol.

The index k is found by satisfying the conditions,

1
|x1—x0| + ...+ |xk_1_xO| < E T
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1
|X1 —XOl + ...+ |xk_1 —XOl + |Xk - XOl > E T.
The best line passing through (xX¢,yo) is the line,

Yy ="+ % x, where

« _ Yk~ Yo
Bi = =,

Bo = Yo — B1Xo-

For the multiple regression case, the regression coefficient estimates are chosen

to minimize
X ¥i— (|lbg+ by xj1 + by xi + b3 x;3]) .

As in the simple regression case, there are no formulas for the minimizing

values, but an algorithm is used to obtain the values.

Let,
b, 1
b, Xit
b= and x, =
b, Xio
b Xi3

Then the sum of absolute deviations can be written as

Z|yi —b'xl.|

The vector b will be found by the algorithm which minimizes the above

equation.

The algorithm for multiple LAD regression is iterative as in the simple case.

The algorithm starts with a vector b, and finds a better vector, and goes on until

the best vector f is obtained. At each step, having a vector of estimates b, we
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find a better vector b* by first finding a suitable “direction” vector d and then

finding the value of t for which b* =b + td is best.

In order to find the best vector of estimates in direction d, we should find the

value of t that minimizes
2|y~ (b+1d) x|

If we write z, =y, —b'x, andw, =d 'x,, then the procedure must find the value

of t that minimizes

2=t

We put the ratios z,/w, in increasing order, and reindex the z and w values

according to this order, and the index k is found by

1
|W1|+|W2|...+|Wk_1| < ET
1
|W1|+|W2|...|Wk_]|+|wk| > ET

where 7=Y|w| . z,/w, is the minimum value of t

(Birkes and Dodges, 1993).

The strength of LAD method comes from its robustness to Y-space outliers.
For this reason, LAD estimates can sometimes be used as starting values for
iterative regression algorithms. This method is especially suitable when the
error distribution is heavy-tailed or asymmetric or when the sample size is very
large (Birkes and Dodge, 1993). The breakdown point of the LAD estimator is
no better than 0% because it is highly sensitive to outliers in the X-space
(Rousseeuw and Leroy, 1987). That is; LAD is neither a high breakdown nor a

bounded influence estimator.
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Even for a simple linear regression model, it is not easy to calculate LAD
estimates by using a hand calculator and paper and pencil because it involves
the construction of a series of tables. LAD regression estimates are available in
the S-PLUS 2000 Robust Library with the function //fit. This function uses the
Barrodale-Roberts (1974) algorithm which is based on the simplex algorithm
for solving linear programming models. The algorithm for the multiple cases
forms an initial vector of estimates; on the other hand the Barrodale-Roberts

algorithm includes a special start-up phase (Birkes and Dodges, 1993).

2.4.2. M-regression

The M-estimate is constructed by Huber (1964) to be optimal if the error
distribution is contaminated normal. His criterion for the optimality is
minimization of the maximum possible variance for infinitely large samples.
The M in the M-regression was chosen because there is a relationship between
M-estimation and maximum likelihood estimation. If the population of errors
were assumed to have a particular distribution, some of the M-estimates would
be maximum likelihood estimates. But the main goal of M-regression is to

perform well for a wide range of distributions (Birkes and Dodge, 1993).

The algorithm for estimating the regression line for both the simple and
multiple cases is discussed in Birkes and Dodge (1993) very explicitly. M-
regression is a generalization of OLS and LAD methods by choosing the
minimization criterion as ), p(é;), where p(e) is some function of e. OLS and
LAD estimation can be regarded as the particular cases of M-estimation in

which p(e)= ¢” and p(e)=lel.

The M-estimates mentioned here are Huber M-estimates. In M-estimation, the
advantages of LAD and OLS estimation are tried to be combined by defining

the p(e) function as:
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e? if —k <e<k

p(e)={2k|e|—k2 ife<kork<e

Huber suggested that k = 1.5, where & is an estimate of the standard deviation
of the population of random errors. 6 = 1.483 MAD is used to estimate o,
where MAD is the median of the absolute deviations. The constant 1.483 is
chosen to guarantee that if the normality assumption is valid, and then & is still
a good estimate. LAD estimates’ advantage is being not as sensitive to outliers
as OLS estimates, on the other hand, OLS estimates perform better than the

LAD estimates when there no outliers.

The minimization criterion is to minimize:

> p(yi - (@+bx)

The values of a and b that minimize this equation will be the Huber M-

estimates @ and f3. The algorithm for minimizing the above equation is started
by finding the initial estimates of a and 3 by OLS estimates. These are used to

calculate the deviations and an estimate of o. These will be used to get

improved & and . Let a° and b’ be the current estimates of o and . The

A

deviations are calculated asy, —(a’ +5b°x,)and from them &°=1.483MA4D is
calculated. Response values can be defined as y, = a’ +5°xi+ei’. To get rid of
large deviations, an adjustment of y-values is done by y*=a’+b"x, +e *
where e, * is the adjusted error vector obtained by truncatinge,’, so that none
of the deviations is larger than 1.56°in absolute value. If ¢’ is between
~-1.56%and 1.56°, e*=¢"; if ¢’is less than —-1.56°, e*=-1.56" and

e*=1.56" if ¢ is greater than 1.56° .
For the multiple regression case, the minimization criteria is

zp(yz _(b() +bl'xi1 +'“+bpxip))
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where the Huber M-estimates ﬁo, ﬁl,..., ﬁp are the values of b,,b,,...,b, .

Let
b, 1
b Xii
b= and x, =| .
bp Yip

The vector 8 of Huber M-estimates is defined to be the vector b that minimizes

Xp(yi—(a+b'xy).

B, the vector of regression coefficients, is first estimated by the vector of LS
estimates to calculate deviations and an estimate of 6. Then the deviations and
the & will be used to obtain an improved estimate of . The algorithm goes on
until the improved estimate of P is at least approximately the same as the

previous estimate.

To describe the algorithm, let b’ the current estimate of . The deviations of the
yi values from the estimated regression line and the estimate of ¢ is calculated

by y,—(b°)'x, and & = 1.483 MAD.

As in the simple regression case; to get rid of large deviations, some

adjustments are made to the response values. e’ =y, —(b°)'x, is the deviation
of y; from the current estimated regression line, and if we put y on the right
hand side y, =(b°)'x+, e’ . If we define a new y value asy, =(b")'x+e,,
where e, * is the adjusted error vector obtained by truncatinge,’, so that none

of the deviations is larger than 1.56° in absolute value. As a result, we get the

improved estimate of S from the adjusted data (Birkes and Dodge, 1993).

M-estimator is statistically more efficient (at a model with Gaussian errors)

than LAD method. However its breakdown point is 1/n because of the outliers
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in X-space which means that it not bounded influence (Rousseeuw and Leroy,

1987).

S-plus rreg function can calculate Huber M-estimates by using an algorithm
which applies Iteratively Reweighted Least Squares Procedure (S-PLUS
Robust Manual).

2.4.3. Least Median of Squares

M-estimator’s breakdown point is not high unless they have redescending
functions, in which case they need a good starting point (Venables&Ripley,
1999). A regression estimator with a high breakdown point was developed by

Rouseeuw (1984) which is given by
Minimize med e?

The residual e; of the ith case is the difference between actual and the estimated
value. The square is necessary if n is even, when the central median is taken.
This method is very resistant and needs no scale estimate (Venables and
Ripley, 1999). This estimator is robust to both x and y-axis outliers with
breakdown point 50%. If p>1 and the observations are in general position, then

the breakdown point of the LMS method is

([n/2] —p+2)/n.

Unfortunately, LMS has a low asymptotic efficiency. Furthermore, it gives too

much sensitivity to central data values (Rousseuw and Leroy, 1987).

S-PLUS has different functions to calculate LMS and LTS estimates like
Imsreg, ltsreg and lgs. But since /msreg and ltsreg are not fully documented,

and give different results in different releases, we will use /gs by choosing the

method option as LMS and LTS (Venables and Ripley, 1999).
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2.4.4. Least Trimmed Squares

To improve the slow rate of convergence of the LMS, Rousseeuw (1983, 1984)

introduced LTS by the following minimization criteria

h
Minimize Z(ez)i:n
i=1

where (€2)1., < ... < (€?),,., are the ordered squared residuals from smallest to
largest. In OLS estimation, we minimize the sum of all the residuals but here
we can limit one’s attention to a “trimmed” sum of squares and minimize h of
the residuals, so the important thing is to find the number h. LTS estimator
breakdown point is 50%, that is; it can cope with several outliers at the same
time up to n/2 of the data. LTS is also a reliable data analysis tool because its
robustness is not affected by the number of independent variables, so can be

used in multiple regression case (Rousseuw and Leroy, 1987).

Putting h = [n/2]+1, the LTS estimator has an breakdown point of ([n/2] —
p + 2)/n. Moreover for h = [n/2] + [(p + 1)/2], the LTS estimator takes its

possible maximum value for the breakdown point (Rousseuw and Leroy,

1987).

Rousseeuw and Van Driessen (2006) stated that the computation time of
existing LTS algorithm grows too much with the size of the data set and they
developed a new algorithm called Fast-LTS. For small data sets, Fast-LTS
finds the same results with LTS; but for larger data sets, it gives more accurate
results than existing algorithms for LTS. But since there is no program code

available for this new algorithm, we used the existing LTS algorithm.
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2.4.5. MM-estimation

To combine the high breakdown property of LMS and LTS with the efficiency
of M-estimation; Yohai et al. (1991) introduced MM-estimation (Venables and
Ripley, 1999).

Yohai’s estimators are defined in three stages. The algorithm starts with
calculating a high breakdown point estimate of 0", For this purpose, the robust
estimator does not need to be efficient. At the second stage, an M-estimate of
scale s, with 50% breakdown is computed on the residuals r; (9*) from the
robust fit. At the third stage, equation below is minimized and the solution

gives the MM-estimator 6.

D 0@ (0)/sn)xi = 0,
i=1

which satisfies
S(6) <56,

where

SO)= ) (i (0)/sn) -
i=1

The function must satisfy the following conditions:

1. pis symmetric and continuously differentiable, and p(0)=0.
2. There exists ¢>0 such that p is strictly increasing on [0, c] and constant

on [c,©) .

These two conditions imply that y = p' has to be properly redescending. The
important point about this algorithm is that p may be quite different from the
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second stage scale estimate s,, , because the first and the second stage estimates
must have the high breakdown property, on the other hand, the third stage
estimate’s goal is to have high effiency. Yohai showed that MM-estimators
inherit the 50% breakdown point of the first stage and, also has the exact fit
property. Also, he proved that if the normality assumption is valid, then MM-

estimators are still highly efficient (Rousseeuw and Leroy, 1987).

S-PLUS rim function with the MM option can handle the calculations. Also
ImRobMM function uses a slightly different M-estimatior with similar

properties and gives approximately the same results as 7/m function (Venables

and Ripley, 1999).

Anderson (2001) compared the different options for MM-method in S-PLUS;
which are MM1, MM2 and MM3. MMI1 efficiency level is 90% with an
optimal loss function, MM2 efficiency level is 80% with an optimal loss
function and MM3 efficiency level is 85% with a Tukey’s Bisquare loss
function. The loss function determines the degree of downweighting which the
outliers receive in the regression estimation. But she stated after the study that
the differences among the MM-type estimators were small with respect to three
performance measures: relative efficiency, bias and significance test of the null
hypothesis. As a result she recommends that the default options of MM-
estimator be used unless the researcher has reason to believe that changing the

efficiency or the weighting function would produce improved results.

Up to now, five of the robust regression methods are discussed. Most of the
robust regression methods have both strong and weak properties. To
summarize, methods with high breakdown point are LMS, LTS and MM. Also
these methods are robust to outliers in X-space (high leverage points).
However LMS and LTS are not efficient estimators. On the other hand LAD,
M and MM have high efficiency (Rousseeuw and Leroy 1987; Anderson
2001).
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As mentioned before, the last two regression methods are in the class of
nonparametric regression. Huber (1981) discusses the difference between
robust and nonparametric methods very clearly. A procedure is called
nonparametric if it is supposed to be used for a broad, non-parameterized set of
underlying distributions. For instance, the sample mean and the sample median
are the nonparametric estimates of the population mean and median but the
sample mean is not a robust estimate of the population mean because it is
highly sensitive to outliers. Nonparametric procedures can also be robust. For
instance, median is a nonparametric statistic, but it is also a highly robust
estimate for estimating the center of a symmetric distribution as a central

model.

In this study, the robustness properties of the two nonparametric methods
MARS and LOWESS will also be analyzed and discussed. You will find brief

description of these methods in the following sections.

2.4.7. Multivariate Adaptive Regression Splines

MARS is an adaptive procedure that can be used for multiple regression cases
(Hastie et al., 2001). The aim of the MARS procedure is to combine the
recursive partitioning and spline fitting’s advantages. The advantage of
recursive partitioning is its adaptability through its local variable subset
selection strategy which tracks the dependencies associated with a wide variety
of complex functional forms. The two disadvantages of recursive partitioning
are the lack of continuity of its models and its inability to capture simple
relationships such as linear, additive or interactions of low order compared to
n. Whereas, spline fitting is a nonadaptive procedure which produces
continuous models with continuous derivatives. But it has the disadvantage that
very large basis function sets are usually required in high dimensions to capture

relatively simple functional relationships (Friedman, 1991).
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MARS uses expansions in piecewise linear basis functions of the form (x-t):

and (t-x)+ . The “+” means positive part, so

x-t, if x>t t-x, if x<t
(x-t),= . and (t-x),= .
0, otherwise 0, otherwise.

Each function is piecewise linear, with a knot at the value t. These are linear
splines which are called a reflected pair. Our aim is to form these reflected
pairs for each input X; with knots at each observed value x;; of that input. So,

the collection of basis functions is

C = {(X] - t)+’ (t - Xj)+}te{xlj,xzj,.....,xNj} .

j=12,..p
There are totally 2N, basis functions if all of the input values are distinct.
Although, each basis function depends only on a single X; , it is considered as

function over the entire input space, for example, h(X) = (X; — t), .

The model-building strategy is similar to forward stepwise linear regression,
but different from regression, it can use functions from the set C (and their
products) instead of using the original input variables. Therefore, the model

has the form

fQO) = Bo+ Xin=1Bmhmn(X),

where each hy(X) is a function in C, or a product of two or more such

functions.

The coefficients Py, are estimated by the minimization criteria of standard
linear regression. The trick is finding the functions hy,(X). The algorithm starts
with only the constant function hy(X) = 1 in the model and all functions in the

set C are candidate functions.
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At each stage, we consider all products of a function h,, in the model set M
with one of the reflected pairs in C as a new basis function pair. We add to the

model M the term of the form

Buh COAX | =), + By oh (X)(t=X ), .h e M

that produces the largest decrease in training error. Here, ﬂAMH and ﬁMﬂ are

coefficients estimated by least squares along with all the other M+1
coefficients in the model. Then the winning products are added to the model
and the process is continued until the model set M contains some preset

number of terms.

For example, at the first stage a function of the form  B;(X; —t)4 +
pi(t—Xj)4;t € {xl-j} is considered to be added to the model, since
multiplication by the constant function just produces the function itself.
Suppose the best choice of the function form is £;(X; — x11)4+ + B1(x11 —
X,)+ - Then we include this pair of basis functions to the set M. At the second

stage, we consider adding a pair of products of the form
hm(X) (X] - t)+ and hm(X) (t - X])+ ,t € {xij}
where for h,,, we have the choices

ho(X) =1,
hi(X) = (X — X11)4, o7
hy(X) = (x11 — X3) 4 -

At the end of this process, we have a large model which overfits the data, so a
backward deletion procedure is applied. The term whose removal causes the
smallest increase in residual square error (RSS) is deleted from the model at
each stage. These deletions produce an estimated best model f; of each number

of terms of A.
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Cross-validation can be used to estimate the optimal value of the A, but MARS
procedure uses generalized cross-validation for computational time saving.
Generalized cross-validation criterion is computed by
. 2
(y i f 2 (xi ))
GCV (A)=- >
(1-M(A)/N)

M=

where M(A) is the effective number of parameters in the model. Effective
number of parameters is the total number of terms in the model plus the
number of parameters used in selecting the optimal positions of the knots. By
backward selection, we choose the model that minimizes the GCV ()

criterion.

Advantage of the MARS method is that the piecewise linear basis functions has
the ability to operate locally, that is outside of their range they are zero. But
when they are multiplied together, the result is nonzero only over the small part
of the feature space where both component functions are nonzero. Therefore,
the regression surface is built up by using nonzero components locally-only
when they are needed. This advantage is important because parameters should
be spent carefully in high dimensions, as they can run out quickly. The second
advantage of MARS method is easiness of computation. First, the reflected pair
is fit with right most knot. As the knot is moved successively one position at a
time to the left; over the left part of the domain area, the basis functions differ

by zero and by a constant over the right part. (Hastie et al., 2001).

MARS method is added to the S-PLUS by calling the MDA and MASS
libraries from R-language. After adding the libraries, MARS method can be
applied on S-PLUS with the function “mars()”.
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2.4.8. Local Weighted Scatter Plot Smoothing

A small number of outliers can seriously affect the estimates accuracy. So, to
decrease the influence of outliers, some smoothing methods have been
developed. Among them LOWESS is a well known method which is called a
“robust version of LOESS” (Takezawa, 2006). The LOWESS algorithm is
quite complex; it uses robust locally linear fits. A window is placed about x,
we weight the data points that lie inside the window so that points near to x get
the most weight and a robust weighted regression is used to predict the value at

x (Venables and Ripley, 1999).
LOWESS algorithm is

1. Y, is the result of the smoothing data by LOESS.
2. Robustness weights ({o;} (i = 1, ...,n)) are derived as follows
0; = B(11/(6%)),
where
1r; = Y; — Y, are the residuals
§ = med(|r;|) is the scale estimate

B(u) is a bisquare weight function which is

B(u)_{i—gm—uz)z 0< lui<1
0 1< |ul

3. Smoothing by LOESS is carried out with weight of g; on the ith data.

Xi —x*
h(x)

i—X

) in eq(...) is replaced with <al- W (X‘ )) to obtain

That is, w ( e

estimates. The residuals are calculatedas r; = Y; — Y,

4. (2) and (3) above are repeated three more times.
As a result, we obtain smoothing that is robust to outliers.

S-PLUS has a function called loess () which implements the loess method. If

family= “symmetric” is assigned in loess (), calculation of LOWESS is carried
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out. If family is not chosen or family= “Gaussian” is assigned, LOESS is
executed (Takezawa, 2006). The parameter f controls the size of the window
and is the proportion of the data which is included. In S-PLUS, the default
value is f=2/3 but it is often too large for scatter plots with appreciable

structure (Venables and Ripley, 1999).

2.5. Previous Comparative Studies

Stigler (1977) presents a comparison of the performances of eleven robust
estimators by using real data sets. He mentioned that most of the robustness
studies have relied upon mathematical theory, computer simulated data or a
combination of these and there is a lack of real data studies. His data sets are
from the physics like the speed of light or density of the earth. The estimators
considered in this study are the mean, median, 10%, 15%, and 25% trimmed
means, three versions of M-estimators, Edgeworth, outmean and Hogg’s T1
which are taken from the comprehensive Princeton Simulation study. The
performance measures are relative error and relative rank. The relative error
measures the absolute value of an estimator’s error relative to the sizes of the
errors achieved by other estimators for the same data set. On the other hand,
the relative rank does not take into account the actual errors of estimation. Only
their ranks are calculated for each data set. Eventually it is found that light
trimming improves the sample mean, but that the sample mean is also

competitive among the many recently proposed methods.

Nevit and Tam (1997) investigate some nonparametric and robust regression
methods’ performance for situations in which the underlying assumptions of
OLS are violated by the presence of outliers in the observed data. This study is
only carried out for simple linear regression. A program called GAUSS is used
for the simulation study. Design parameters included are sample size and types
of the distribution. Unit normal, contaminated normal, lognormal and t-5 df

distributions are considered. Variance, bias, mean squared error and relative
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mean square error are chosen as the performance measures. LAD, 10% and
20% Winsorized least squares, 10% trimmed least squares are the robust
methods and monotonic regression, weighted median estimator, Theil median
estimator are the nonparametric methods included in this study. The results of
the study demonstrated that under mild data contamination (10%), none of the
methods outperform the others. But when the outlier density is increased to
30%, the LAD slope estimator is the most competitive one. Moreover, it can be
said that for the nonnormal distributions, the symmetry of the error distribution
dramatically affects the estimator performance. LAD estimator is no more
desirable but the Winsorized least squares and the nonparametric method Theil

are preferable.

Wisnowski (1999) carried out a comprehensive multiple outlier detection study
by using some robust methods and Monte Carlo Simulation. He mentions about
the two reasons why robust regression is not widely used. The first mentioned
reason is that an extra effort should be spent to get the appropriate software
which is capable of making robust analyses. The second is that performance
analyses are required. Therefore, the aim of his study is to compare the
performance of the leading multiple outlier detection procedures for the linear
regression model. Both the direct and indirect procedures are taken in this
study. The indirect procedures include the robust regression methods which are
LMS, LTS, M and MM. Detection capability and false alarm rate are used as
performance measures. The factorial design parameters are the sample size,
percentage of outliers, number of independent variables, outlier location,
number of multiple point clouds and the proportion of independent variables
with outliers. The factorial design parameters are selected to be convenient
with the literature. The simulated data were analyzed in S-PLUS 4.5.His
simulation results demonstrate that OLS, M and MM methods outperform the
other two robust methods LTS and LMS. OLS method’s strong performance is
unexpected here. One lack of this comprehensive study is that, he did not

compare the methods on real life data.
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In 2001, Anderson also made a similar simulation study about some robust
regression methods using Monte Carlo Simulation. M, MM, MM1, MM2,
MM3 and LAV methods are compared on different data configurations. MM 1
is the MM method with the tuning parameter changed from 0.85 to 0.80 and
MM2 uses the 0.90 tuning constant. MM3 is the MM method with the rho
function is Tukey instead of optimal choice. Factorial design parameters are
sample size, number of independent variables, outlier density and outlier
location. Her performance measures are relative efficiency, bias and test of the
null hypothesis. Her simulation results demonstrated that the MM type robust
regression methods outperform OLS and LAV with respect to the three

performance measures.

Moreover, Lane (2002) made a robust regression study aiming to discuss and
compare some robust regression methods which are LTS and MM method. A
heuristic data set about the number of international phone calls from Belgium
in years 1950-1973 was taken from Rousseeuw and Leroy (1987). In this data
set, the outliers occurred by using a different system of measurement in the
years 1964-1969 and known. He used S-PLUS 2000 to model the data with
outliers. As a performance criterion he compared the regression lines. Both the
robust methods’ lines fit the data better than the OLS regression line. As a
result, he advised to use robust regression to handle with the outliers in the

data.
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CHAPTER 3

A SIMULATION STUDY FOR COMPARING PERFORMANCES OF

ROBUST REGRESSION METHODS

To compare robust regression techniques, simulation has been a commonly
used tool ever since Pearson study conducted in 1930 published at Biometrika.
The researcher is free to specify the type of the distribution and is able to know
what kind of a mechanism produced his data. For example, outlier observations
are exactly known. Therefore it is easy to evaluate the performance of the
methods for such simulated data. But even if the researcher is very
experienced, there is no guarantee that the simulated samples actually represent
the data. In fact, the researchers generally focus on a narrow range of
alternatives to normality that is independent, identically distributed samples
from long tailed symmetric continuous distributions. However the real data can
be correlated biased and the outlying observations are not known for sure. As a
result the performance of the methods should also be compared on real data

sets (Stigler, 1977).

In this study, we used both approaches. In this chapter, a Monte Carlo
simulation study is performed with respect to the scenarios indicated by
Wisnowski (1999). The seven robust regression methods are compared by the
performance measures which are detection capability, false alarm rate and an
improved mean square error. After the simulation results are obtained, for each
performance measure a Repeated ANOVA study is conducted and analyzed to
see whether there is a significant difference between the methods. The results
are discussed and the most promising methods which will be used in the real

data case are determined.
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3.1. Monte Carlo Simulation Study Planning

3.1.1. Data Generation and Outlier Planting

Monte Carlo simulation approach is used to test the performance of the robust
regression procedures studied. The S-PLUS code for the simulation and data
generation scenarios are adapted from Wisnowski (1999). A fixed percentage
of clean observations are generated and then outliers are placed at the specified

locations as suggested by the scenario and design parameters.

For the clean observations, the independent variable levels are generated from
a multivariate normal distribution with py = 7.5 and ox = 4. Wisnowski (1999)
states that these parameter values are selected to be consistent with some of the
results in the literature. The dependent variable for the i™ clean observation is
generated by y; = x;8 + & where B is the vector of known regression
coefficients, which are all equal to 5 for each of the k independent variables

and equal to 0 for the intercept and ¢; is distributed N(0,1).

To generate outliers; the i independent variable value for the j™ observation
can be taken as x;; = X ciean + 46, + & Where X; cjeqn is the average of the
clean values for the i" independent variable, §, is the magnitude of the
outlying shift distance in X-space in standard deviation units, oy. &;j, which is
used to separate multiple observations in a cloud to protect against singular
matrices, is a random variable generated from a Uniform (0, 0.025). If the i®
observation is a y-axis outlier, the response value is calculated by y; = x;8 +
&g where &y is the magnitude of the outlying distance off the regression plane

in standard deviation units.

In our simulation study, outliers are placed at three different locations which
are randomly scattered outliers in the interior of X-space, outliers in multiple

point clouds at the centroid of X-space and outliers in multiple point clouds
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when the independent variables are randomly scattered in the interior of X-
space. These scenarios represent only the X-space outliers since the LAD, M
and MM methods are vulnerable in high leverage situations as stated by

Wisnowski (1999).

3.1.2. Performance Measures

To compare the robust regression methods’ performances, we have chosen
three performance measures: detection capability, false alarm rate and mean
square error of the clean data. The first two measures are adapted from Hadi
and Simonoff (1993) and Wisnowski (1999). The third one is an improved

version of relative efficiency used in Anderson (2001).

Detection Capability (PP) = P (at least one planted outlier is detected) = p;
The complement of detection capability is the masking probability and can be

shown as, P (Masking) = P (none of the planted outlier is detected) =1- p;.

False Alarm Rate (PO) = P (a clean observation is swamped)

Improved Mean Square Error (IMSE): This performance measure is improved
based on the idea of relative efficiency measure mentioned in Anderson (2001).
Relative efficiency can be defined as the degree to which an estimator performs
like OLS, when OLS has normally distributed errors. Relative efficiency is
usually expressed as a percentage as in defined by Ryan (1997) as cited by
Anderson (2001),

Relative Efficiency = MSE Robust / MSE OLS

This ratio theoretically is between 0 and 1, but can exceed one if the robust
MSE is less than the OLS MSE. For this reason, higher percentages are more

desirable.
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The MSE OLS in the ratio is the mean square error of the data without outliers.
However, MSE Robust is the mean square error of the robust regression model
calculated by including all the error terms in the summation. But this gives a
disadvantage to robust estimators because these methods give outliers very

large values so that they can be easily detected.

When we fit a robust regression line to the data, the model includes outliers
and as a result the outliers’ residuals will be much larger than the normal
observations’ residuals. When calculating the MSE of robust regression
methods, the outliers’ residual values should be ignored. By this way, we will
prevent penalizing these methods because they fit the regression line based on
majority of the data, but not close to outliers. Therefore, in our simulation

study improved MSE (IMSE) is used as the third performance measure.

Ratio of the IMSE: 1t is found by dividing the IMSE of the robust method by
the IMSE of OLS. It shows how the method performs compared with OLS

when there are no outliers in the data.

3.1.3. Factorial Design

The factorial design of the study considers the sample size, percentage of
outliers, number of independent variables (dimension of the data), outlier
location (6; is the magnitude of the unusualness in x-space; &g is the
magnitude of unusualness in y-space), the number of multiple point clouds and
the proportion of independent variables with outliers. The factorial design

parameters are selected to be convenient with the literature (Wisnowski, 1999).

The number of independent variables are k=2 for n=40 observations or k=6
with n=60 observations. The outlier density is either 10% or 20%. The
magnitude of the outliers is between 3 and 5 standard deviation units. The

number of multiple point clouds is either 1 or 2.
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To define an observation as an outlier, we should use cut off values for each
robust regression procedure. The simulated cutoff values for each procedure is
calculated as the 95™ percentile of the absolute value of the residuals from the
normally distributed data which does not contain outliers. S-PLUS is used to

perform the simulations.

The results of the cut-off simulation results are not the same as in the
Wisnowski (1999). The difference is not because of the iteration number, if we
iterate 10000 times, the results do not change. Also, if analyze the seed (i)
function in S-PLUS 4.5 which is the S-PLUS version used in Wisnowski, the
generated seeds are as the same as the S-PLUS 6 version. Moreover, the
random number generator function rnorm () gives the same random numbers
both in S-PLUS 4.5 and S-PLUS 6. To validate our cut-off values, Minitab14 is

used and we get the same cut-off values as in ours from Minitab.

Our performance measures; detection capability, false alarm rate and improved

mean square error are calculated by performing 500 replications.

3.2. Simulation Results and Performance Analysis

In all three scenarios, there is no independent variable that is unusual in the X-
space for the interior X-space outliers. That is, no high-leverage point is
intentionally located in the samples. The response values for the interior X-
space outliers are p sigma away from the regression plane which is obtained
from the clean cases. ; is the magnitude of unusualness in y-space whose

value can be 36, 46 or 5o.

There are three cases for the interior X-space outliers. In the first case, multiple
outliers are randomly scattered in the interior of X-space. In the second case,
multiple point clouds or clusters of outliers are located near the centroid of X-
space. The third study considers multiple point clouds randomly placed

(different for each replication) in the interior of X-space.
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3.2.1. Scenario 1: Randomly Scattered Regression Outliers in the Interior
of X-space:

In this scenario, the outliers have random levels of the independent variables
with the same distribution as the clean observations but the dependent variable
values are placed at 6z sigma away from the regression plane. The response to

the i"

clean observation is generated by y; = x; + & where B is the
coefficients vector which is known and selected to be 5 for each of the k
independent variables and 0 for the intercept. x; is the vector of k independent
variables distributed N (7.5, 4) and ¢; is the random error term distributed N (0,
1). The response to the i™ outlying observation is generated by y; = x;B + O
where 6y is the outlying distance off the regression plane in standard deviation
units, which equals 1 in our study. The factorial design with the simulation
results in Table 3.1 includes the following factors: A (n: sample size and k:
number of independent variables in the regression equation), B(dens : outlier

density), C(dy : is the magnitude of unusualness in y-space), D (cld : number

of clouds).

3.2.2. Scenario2: Regression Outliers in Multiple Point Clouds at the
Centroid of X-space:

This scenario compares the performance of the robust regression procedures
when there are multiple Y-space outliers forming clouds at the centroid of X-

space.

The response to the i" clean case is generated by y; = x;B + & where B is the
coefticients vector which is known and selected to be 5 for each of the k
independent variables and 0 for the intercept. X; is the vector of k independent
variables whose distribution is N (7.5, 4) and ¢; is the random error term

distributed N (0, 1).
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Table 3.1: Design matrix with detection capability (first), false alarm rates

(second), IMSE (third) and ratio of the IMSE (fourth) for Scenario-1.

A
nk
40,2

60,6

40,2

60,6

40,2

60,6

40,2

B
dens
10%

10%

20%

20%

10%

10%

20%

C

30

36

36

30

40

40

40

OLS

0.970
0.067
1.043

0.902
0.065
1.020

0.885
0.101
1.306

0.744
0.098
1.282

0.997
0.078
1.135

0.989
0.080
1.134

0.984
0.141
1.610

M

0.971
0.057
0.986
0.945
0.901
0.055
0.964
0.945
0.872
0.087
1.236
0.946
0.721
0.086
1.234
0.962

0.998
0.054
0.965
0.850
0.995
0.052
0.935
0.825
0.982
0.096
1.302
0.809

MM

0.972
0.058
0.998
0.957
0.902
0.057
0.967
0.948
0.876
0.089
1.229
0.941
0.727
0.088
1.230
0.959

0.998
0.056
0.965
0.850
0.995
0.054
0.940
0.829
0.983
0.095
1.268
0.787

40

LTS

0.832
0.043
1.270
1.218
0.744
0.064
1.472
1.443
0.824
0.046
1.283
0.982
0.691
0.083
1.726
1.346

0.986
0.039
1.229
1.083
0.959
0.059
1.391
1.227
0.983
0.038
1.171
0.727

LMS

0.819
0.037
1.218
1.168
0.733
0.059
1.418
1.390
0.807
0.046
1.292
0.989
0.676
0.073
1.651
1.288

0.984
0.035
1.198
1.055
0.962
0.053
1.337
1.179
0.980
0.037
1.185
0.736

LAD

0.960
0.064
1.002
0.961
0.901
0.056
0.995
0.975
0.889
0.066
1.112
0.851
0.773
0.074
1.142
0.891

0.998
0.054
1.002
0.883
0.994
0.056
0.996
0.878
0.990
0.067
1.113
0.691

LWS

0.873
0.076
0.903
0.866
0.576
0.059
0.775
0.760
0.796
0.113
1.135
0.869
0.475
0.095
1.009
0.787

0.949
0.093
1.004
0.884
0.759
0.077
0.889
0.784
0.918
0.159
1.423
0.884

MARS

0.872
0.074
0.983
0.942
0.747
0.069
1.130
1.108
0.773
0.113
1.248
0.956
0.590
0.103
1.177
0918

0.941
0.091
1.102
0.971
0.917
0.090
1.269
1.119
0.921
0.159
1.587
0.986



Table 3.1 (cont’d): Design matrix with detection capability (first), false alarm
rates (second), IMSE (third) and ratio of the IMSE (fourth) for Scenario-1.

A B C |OLS M MM | LTS | LMS | LAD LWS | MARS
nk dens | op
60,6 20% 40 0951 0.944 0.945 0.952 0951 0.973 0.683 @ 0.791

0.140 ' 0.103  0.101 0.063 0.049 0.074 0.139 0.150
1.608 1369 1337 1.427 1320 1.145 1.309 @ 1.498
1 0.851 0.831 0.887 | 0.821 0.712  0.814 @ 0.932
40,2 10% | 56 1 1 1 0.999 | 0.999 |1 0.976 | 0.957
0.094 | 0.051 | 0.053 | 0.039 | 0.039 | 0.054 | 0.115 | 0.111
1.253 | 0.941 | 0.938 | 1.220 | 1.184 | 1.002 | 1.134 | 1.240
1 0.751 | 0.749 | 0.974 | 0.945 | 0.799 | 0.905 | 0.990
60,6 10% 56 0999 0.999 1 0.096 | 0.996 0.999  0.853 @ 0.921
0.099  0.047 0.048 0.057 0.052  0.056 0.099 @ 0.113
1.280 0.895 0.893  1.370 1321 0.996 1.036 1.236

1 0.699 0.698 1.070 | 1.032  0.778 | 0.809 @ 0.966
40,2 20% | 56 | 0.995 | 0.997 | 0.998 | 0.998 | 0.999 | 0.999 | 0.948 | 0.950
0.195 | 0.090 | 0.083 | 0.037 | 0.035 | 0.067 | 0.215 | 0.218
2 1.259 | 1.170 | 1.158 | 1.158 | 1.134 | 1.793 | 2.028
1 0.629 | 0.585 | 0.579 | 0.579 | 0.567 | 0.896 | 1.014
60,6 20% So | 0.985 0.987 0.988 0.993  0.995 0.998 0.784 @ 0.844

0.195  0.106 0.094 0.058 0.044 0.074 0.191 @ 0.204
2.028 1386 1.277 1.347 1244 1.145 1.694 1912

1 0.683  0.630 0.664 0.613  0.564 0.835 @ 0.943
Average 0.883 | 0.947 | 0.949 | 0.838 | 0.908 | 0.956 | 0.799 | 0.852
probabilities 0.113 | 0.074 | 0.073 | 0.052 | 0.047 | 0.064 A 0.119 | 0.125
1.334 | 1.099 | 1.085 | 1.338 | 1.298 | 1.058 | 1.128 | 1.318
1 0.825 | 0.814 | 1.017 | 0.983 | 0.796 | 0.841 | 0.987

The response to the it outlying observation is generated by y; = x;8 + 8y
where x; is the vector of k independent variables distributed unif (7.375, 7.625)
and Jy is the outlying distance off the regression plane in standard deviation
units, which equals 1 in our study. If the number of clouds is two, the response
values for the outliers in the first cloud are generated as above and the second

clouds response values are generated by y; = x;8 — 6 .

41



The four factors in this scenario are A (n: sample size and k: number of
independent variables in the regression equation), B (dens: outlier density), C

(0g : is the magnitude of unusualness in y-space), D (cld: number of clouds).

Wisnowski (1999) stated that in this scenario the levels of 6 are chosen close
to one another because initial studies have demonstrated that none of the robust
regression procedures have detection capability below 3o, and nearly all had

perfect detection capability at 56, and below.

The factorial design and the simulation results are presented in Table 3.2.

3.2.3. Scenario3: Regression Outliers in Multiple Point Clouds:
Independent Variables Randomly Scattered on the Interior of X-Space

In this case, the multiple outlier clouds are not placed at the centroid but at
different locations in X-space for each replication. In a single point cloud, the

location of the independent variables for outlying observations is determined
by using the median of the first three clean observations for each variable. To
guarantee the variation of the outlying observations, we add unif (0, 0.25) to
this median value. In the second cloud, outliers are placed around the median
value of the last three clean observations in each variable. To cover the X-
Space adequately, median of the three observations is used. If median of more
than three observations is used, then the outlying observations will be placed

too close to the centroid of X-space (Wisnowski, 1999).

The factorial design matrix with the simulation results is demonstrated in Table
3.3 where the factors are A (n: sample size and k: number of independent
variables in the regression equation), B (dens: outlier density), C (&: is the

magnitude of unusualness in y-space) and D (cld: number of clouds).
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Table 3.2: Design matrix with detection capability (first), false alarm rates

(second), IMSE (third) and ratio of the IMSE (fourth) for Scenario-2.

nk
40,2

60,6

40,2

60,6

40,2

60,6

40,2

60,6

40,2

B
dens
10%

10%

20%

20%

10%

10%

20%

20%

10%

C

36

30

30

30

4c

46

4o

4o

36

D
cld

OLS

0.063
1.012

0.058
0.981

0.997
0.098
1.279

0.094
1.257

0.073
1.086

0.068
1.059

0.139
1.569

0.137
1.561

0.050
0.918

LTS

0.934
0.037
1.197
1.183
0.977
0.058
1.387
1.414
0.902
0.055
1.678
1.312
0.712
0.162
5.673
4.513

0.037
1.197
1.102

0.058
1.387
1.309
0.994
0.039
1.266
0.807
0.964
0.073
2.322
1.487
0.948
0.038
1.195
1.301

LMS

0.928
0.033
1.177
1.164
0.964
0.052
1.343
1.369
0.881
0.053
1.600
1.251
0.787
0.103
3.082
2.452

0.033
1.177
1.084

0.052
1.343
1.268
0.998
0.033
1.153
0.735
0.994
0.047
1.450
0.929
0.944
0.033
1.177
1.282
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M

0.053
0.960
0.949

0.049
0.925
0.943
0.998
0.081
1.188
0.928
0.998
0.079
1.171
0.931

0.050
0.941
0.866

0.048
1.902
1.796

0.083
1.197
0.763

0.081
1.182
0.757

0.049
0.922
1.004

MM

0.055
0.962
0.951

0.051
0.930
0.948
0.996
0.084
1.189
0.929
0.998
0.081
1.175
0.935

0.052
0.942
0.867

0.049
0.906
0.855

0.086
1.189
0.758

0.084
1.190
0.762

0.050
0.921
1.003

LAD

0.053
0.989
0.977

0.055
0.978
0.997
0.994
0.061
1.076
0.841
0.998
0.065
1.061
0.844

0.053
0.990
0.912

0.055
0.978
0.923

0.061
1.076
0.686

0.065
1.061
0.680

0.048
0.966
1.052

LWS

0.969
0.074
0.894
0.883

0.198
1.734
1.767
0.290
0.105
1.084
0.847

0.452
3.173
2.524

0.090
0.990
0.912

0.358
2.627
2.481
0.909
0.142
1.352
0.862

0.701
5.220
3.344

0.053
0.765
0.833

MARS

0.594
0.081
1.043
1.031
0.227
0.080
1.365
1.391
0.038
0.119
1.292
1.010
0.002
0.110
1.591
1.266

0.776
0.109
1.239
1.141
0.793
0.106
1.203
1.136
0.243
0.170
1.688
1.076
0.011
0.150
1.890
1.211

0.054
0.854
0.930



Table 3.2 (cont’d): Design matrix with detection capability (first), false alarm
rates (second), IMSE (third) and ratio of the IMSE (fourth) for Scenario-2.

nk
60,6

40,2

60,6

40,2

60,6

40,2

60,6

Avrg.
Prob.

B
dens
10%

20%

20%

10%

10%

20%

20%

C

36

30

30

4o

40

4c

4c

D
cld

OLS

0.046
0.811

0.049
0.907

0.044
0.864

0.050
0.918

0.073
1.086

0.049
0.907

0.045
0.864

0.071
1.067

LTS

0.967
0.059
1.384
1.706
0.945
0.372
1.156
1.274
0.973
0.056
1.346
1.558

0.038
1.195
1.302

0.037
1.197
1.102

0.036
1.147
1.264

0.056
1.336
1.546
0.957
0.076
1.629
1.511

LMS

0.955
0.052
1.343
1.656
0.925
0.032
1.144
1.261
0.953
0.048
1.297
1.501

0.033
1.177
1.282

0.033
1.177
1.084

0.032
1.135
1.251

0.048
1.297
1.501
0.958
0.045
1.380
1.317

44

0.046
0.888
1.095

0.047
0.909
1.002

0.044
0.867
1.003

0.049
0.922
1.004

0.050
0.941
0.866

0.047
0.910
1.003

0.044
0.868
1.005

0.056
1.043
0.995

MM

0.047
0.885
1.091

0.048
0.907

0.044
0.864

0.050
0.921
1.003

0.052
0.942
0.867

0.048
0.909
1.002

0.044
0.865
1.001

0.058
0.981
0.936

LAD

0.051
0.952
1.174

0.049
0.958
1.056

0.051
0.941
1.089

0.048
0.966
1.052

0.053
0.990
0.912

0.049
0.959
1.057

0.051
0.941
1.089

0.054
0.993
0.959

LWS

0.036
0.600
0.740

0.049
0.725
0.799

0.028
0.530
0.613

0.053
0.765
0.833

0.090
0.990
0.912

0.049
0.725
0.799

0.028
0.530
0.613
0.948
0.157
1.419
1.235

MARS

0.044
0.767
0.946

0.055
0.847
0.934
0.953
0.028
0.558
0.646

0.054
0.854
0.930
0.776
0.109
1.239
1.141

0.055
0.847
0.934
0.747
0.005
0.247
0.286
0.635
0.083
1.095
1.001



Table 3.3: Design matrix with detection capability (first), false alarm rates

(second), IMSE (third) and ratio of the IMSE (fourth) for Scenario-3

A
nk
40,2

60,6

40,2

60,6

40,2

60,6

40,2

60,6

40,2

60,6

B
dens
10%

10%

20%

20%

10%

10%

20%

20%

10%

10%

C

30

30

30

30

40

40

40

40

56

5S¢

D
cld

OLS

0.726
0.070
1.063

0.619
0.072
1.072

0.567
0.111
1.377

0.394
0.115
1.402

0.919
0.083
1.167

0.836
0.091
1.224

0.800
0.159
1.735

0.590
0.166
1.822

0.984
0.099
1.302

0.945
0.118
1.420

LTS

0.672
0.042
1.237
1.163
0.650
0.064
1.459
1.361
0.612
0.055
1.446
1.050
0.456
0.107
2.216
1.581
0.915
0.039
1.215
1.041
0.905
0.059
1.395
1.140
0.906
0.039
1.200
0.692
0.776
0.085
1.986
1.090
0.987
0.039
1.206
0.926
0.986
0.056
1.360
0.958

LMS

0.663
0.038
1.229
1.156
0.631
0.054
1.381
1.288
0.596
0.051
1.410
1.024
0.412
0.104
2.204
1.572
0.904
0.036
1.203
1.031
0.903
0.050
1.328
1.085
0.897
0.039
1.223
0.705
0.764
0.081
1.945
1.067
0.984
0.036
1.204
0.925
0.988
0.049
1.308
0.921

45

0.762
0.057
0.983
0.924
0.683
0.057
0.975
0.909
0.593
0.090
1.258
0.913
0.398
0.102
1.366
0.974
0.950
0.056
0.970
0.831
0.921
0.056
0.962
0.786
0.842
0.110
1.410
0.813
0.602
0.141
1.716
0.942
0.997
0.054
0.948
0.728
0.990
0.050
0.919
0.647

MM

0.763
0.059
0.983
0.924
0.686
0.059
0.976
0.910
0.599
0.091
1.247
0.905
0.406
0.104
1.362
0.971
0.951
0.058
0.970
0.831
0.926
0.057
0.955
0.780
0.857
0.103
1.337
0.771
0.620
0.134
1.664
0.913
0.997
0.056
0.947
0.727
0.990
0.050
0.907
0.639

LAD

0.752
0.055
1.006
0.946
0.684
0.061
1.022
0.953
0.628
0.076
1.186
0.861
0.420
0.098
1.371
0.978
0.947
0.056
1.007
0.863
0.915
0.061
1.028
0.840
0.881
0.078
1.207
0.696
0.674
0.115
1.545
0.848
0.995
0.056
1.007
0.773
0.989
0.061
1.028
0.724

LWS

0.633
0.081
0.926
0.871
0.739
0.068
0.840
0.784
0.404
0.109
1.105
0.802
0.653
0.100
1.048
0.747
0.837
0.098
1.036
0.888
0.877
0.095
1.025
0.837
0.593
0.148
1.383
0.797
0.782
0.159
1.436
0.788
0.946
0.116
1.178
0.905
0.938
0.132
1.263
0.889

MARS

0.550
0.086
1.058
0.995
0.390
0.082
1.542
1.438
0.243
0.116
1.274
0.925
0.170
0.102
1.511
1.078
0.727
0.110
1.244
1.066
0.570
0.107
1.454
1.188
0.315
0.159
1.617
0.932
0.225
0.139
1.742
0.956
0.825
0.139
1.478
1.135
0.679
0.133
1.655
1.165



Table 3.3 (cont’d): Design matrix with detection capability (first), false alarm
rates (second), IMSE (third) and ratio of the IMSE (fourth) for for Scenario-3.

A
nk
40,2

60,6

40,2

60,6

40,2

60,6

40,2

60,6

40,2

60,6

B
dens
20%

20%

10%

10%

20%

20%

10%

10%

20%

20%

C

S¢

S¢

30

30

30

36

40

40

40

40

D
cld

OLS

0.927
0.217
2.196

0.758
0.224
0.362

0.802
0.287
4.817

0.817
0.464
16.223

0.752
0.461
13.832

0.789
0.618
56.112

0.898
0.295
4913

0.886
0.465
16.362

0.813
0.473
14.177

0.823
0.623
56.501

LTS

0.987
0.037
1.147
0.522
0.937
0.067
1.609
0.681
0.802
0.041
1.228
0.255
0.820
0.061
1.404
0.086
0.793
0.040
1.192
0.086
0.782
0.066
1.484
0.026
0.922
0.039
1.205
0.245
0.932
0.060
1.395
0.085
0.921
0.036
1.146
0.081
0.922
0.058
1.376
0.024

LMS

0.983
0.037
1.179
0.537
0.938
0.058
1.546
0.654
0.794
0.038
1.213
0.252
0.812
0.051
1.328
0.082
0.784
0.039
1.201
0.086
0.778
0.058
1.426
0.025
0.915
0.036
1.204
0.245
0.934
0.051
1.322
0.081
0.918
0.035
1.157
0.082
0.922
0.050
1.328
0.023

46

0.957
0.121
1.493
0.680
0.771
0.182
2.123
0.899
0.868
0.054
0.944
0.196
0.871
0.050
0.901
0.055
0.827
0.061
1.015
0.073
0.779
0.063
1.038
0.018
0.954
0.053
0.939
0.191
0.961
0.048
0.892
0.054
0.938
0.063
1.023
0.073
0.902
0.069
1.096
0.019

MM

0.970
0.097
1.279
0.582
0.800
0.147
1.848
0.782
0.868
0.055
0.944
0.196
0.872
0.049
0.902
0.056
0.830
0.062
1.017
0.073
0.781
0.064
1.036
0.018
0.954
0.054
0.940
0.191
0.961
0.048
0.893
0.055
0.939
0.064
1.022
0.072
0.907
0.069
1.076
0.019

LAD

0.978
0.078
1.211
0.551
0.847
0.123
1.657
0.701
0.862
0.052
0.988
0.205
0.862
0.054
0.977
0.060
0.822
0.061
1.080
0.078
0.792
0.074
1.149
0.020
0.946
0.053
0.989
0.201
0.956
0.054
0.977
0.060
0.936
0.062
1.082
0.076
0.918
0.076
1.164
0.020

LWS

0.756
0.188
1.741
0.793
0.864
0.227
1.934
0.819
0.830
0.253
5.602
1.163
0.882
0.551
20.708
1.276
0.748
0.362
15.898
1.149
0.850
0.659
46.080
0.821
0.911
0.258
5.670
1.154
0911
0.556
20.955
1.281
0.820
0.374
16.100
1.136
0.876
0.662
46.609
0.825

MARS

0.384
0.199
1.079
0.491
0.245
0.168
2.665
1.128
0.802
0.363
10.383
2.155
0.598
0.325
24.428
1.508
0.704
0.462
23.012
1.664
0.447
0.369
33.609
0.599
0.862
0.370
10.078
2.051
0.665
0.338
24.545
1.500
0.743
0.478
23.436
1.653
0.477
0.388
35.210
0.623



Table 3.3 (cont’d): Design matrix with detection capability (first), false alarm
rates (second), IMSE (third) and ratio of the IMSE (fourth) for Scenario-3

A
nk

40,2

60,6

40,2

60,6

40,2

60,6

40,2

60,6

Avr.
prb

B
den

10
%

10
%

20
%

20
%

10
%

10
%

20
%

20
%

C

40

40

40

40

56

S¢

S¢

S¢

D
cld

OLS

0.898
0.295
4.913

0.886
0.465
16.362

0.813
0.473
14.177

0.823
0.623
56.501

0.940
0.301
5.036

0.921
0.469
16.536

0.874
0.489
14.615

0.860
0.631
57.000

0.802
0.296
12.178

LTS

0.922
0.039
1.205
0.245
0.932
0.060
1.395
0.085
0.921
0.036
1.146
0.081
0.922
0.058
1.376
0.024
0.954
0.039
1.205
0.239
0.970
0.060
1.396
0.084
0.960
0.036
1.147
0.078
0.964
0.056
1.328
0.023
0.855
0.053
1.374
0.563

LMS

0.915
0.036
1.204
0.245
0.934
0.051
1.322
0.081
0.918
0.035
1.157
0.082
0.922
0.050
1.328
0.023
0.955
0.036
1.205
0.239
0.970
0.050
1.315
0.079
0.959
0.035
1.157
0.079
0.966
0.049
1.307
0.023
0.849
0.048
1.347
0.553

47

0.954
0.053
0.939
0.191
0.961
0.048
0.892
0.054
0.938
0.063
1.023
0.073
0.902
0.069
1.096
0.019
0.967
0.054
0.934
0.185
0.978
0.047
0.883
0.053
0.964
0.060
1.003
0.069
0.960
0.072
1.114
0.019
0.851
0.074
1.121
0.461

MM

0.954
0.054
0.940
0.191
0.961
0.048
0.893
0.055
0.939
0.064
1.022
0.072
0.907
0.069
1.076
0.019
0.965
0.052
0.990
0.196
0.979
0.047
0.883
0.053
0.965
0.062
0.994
0.069
0.964
0.064
1.037
0.018
0.856
0.071
1.092
0.448

LAD

0.946
0.053
0.989
0.201
0.956
0.054
0.977
0.060
0.936
0.062
1.082
0.076
0.918
0.076
1.164
0.020
0.965
0.052
0.990
0.196
0.976
0.055
0.978
0.059
0.962
0.062
1.084
0.074
0.965
0.077
1.169
0.021
0.861
0.069
1.121
0.450

LWS

0.911
0.258
5.670
1.154
0.911
0.556
20.955
1.281
0.820
0.374
16.100
1.136
0.876
0.662
46.609
0.825
0.944
0.264
5.766
1.145
0.927
0.565
21.252
1.285
0.883
0.389
16.382
1.121
0.896
0.667
47.263
0.829
0.813
0.295
11.800
0.963

MARS

0.862
0.370
10.078
2.051
0.665
0.338
24.545
1.500
0.743
0.478
23.436
1.653
0.477
0.388
35.210
0.623
0.898
0.383
10.776
2.140
0.697
0.344
25.046
1.515
0.786
0.497
24.023
1.644
0.510
0.409
36.904
0.647
0.563
0.261
12.490
1.258



1%

Methods

OLS

LTS
LMS

M

MM
LAD
LOWESS
MARS

PP

0.883
0.947
0.949
0.838
0.908
0.956
0.799
0.852

Table 3.4: Average Performance Measures of the Robust Regression Methods

Scenariol

PO

0.113
0.074
0.073
0.052
0.047
0.064
0.119
0.125

IMSE

1.334
1.099
1.085
1.338
1.298
1.058
1.128
1.318

Ratio of = PP
IMSE

1 1
1.017 0.957
0.983 0.958
0.825 1
0.814 1
0.796 1
0.841 0.948
0.986 0.635

Scenario2

PO

0.071
0.076
0.045
0.056
0.058
0.054
0.157
0.083

IMSE

1.067
1.629
1.380
1.043
0.981
0.993
1.419
1.095

Ratio of = PP
IMSE

1 0.802
1.511 0.855
1.317 0.849
0.995 0.851
0.936 0.856
0.959 0.861
1.235 0.813
1.001 0.563

Scenario3
PO IMSE
0.296 12.178
0.053 1.374
0.048 1.347
0.074 1.121
0.071 1.092
0.069 1.121
0.295 11.800
0.261 12.490

Ratio of
IMSE

0.563
0.553
0.461
0.448
0.450
0.963
1.258



The performances of the robust regression methods are tested using four
performance measures which are detection capability (PP), false alarm rate
(PO), improved mean square error (IMSE) and ratio of the IMSE. The average
values of the robust regression methods’ performance measures for the three

simulation scenarios can be seen in Table 3.4.

As Table 3.4 demonstrates, the M-estimators which are M, MM and the LAD
method seem to outperform the other methods according to many of the
performance measures and scenarios. Multiple outlier detection scenarios are
important for our study, so we should make our comments for each scenario

respectively.

While comparing the seven robust regression methods, repeated ANOVA is
used supported by SPSS 16 to test the null hypothesis that there is no statistical
difference between the methods for each performance measure. Firstly, the
assumptions of ANOVA for each measure are checked by residual plots. If the
assumptions of ANOVA are not satisfied, logarithmic transformations of the
performance measures are used. Different outlier locations are entered as

subjects and robust methods are entered as treatments.

A repeated measures ANOVA is applied in this comparison study because
there are 8 treatments (methods) and every treatment is to be used exactly once
on each of the n objects (outlier locations). Least Significant Difference (LSD)
adjustment with 0.05 confidence intervals is used to make pairwise

comparisons. The Repeated ANOVA Tables are presented in Appendix A.
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Comparison of the methods for Scenario 1: Randomly Scattered

Regression Outliers in the Interior of X-space

The outliers have random levels of the independent variables with the same
distribution as the clean observations but the dependent variable values are

placed at 8z sigma away from the regression plane.

For each scenario twelf tables are constructed by SPPS. For each performance
measure there are three tables. To test the null hypothesis that if there is no
significant difference between the methods with respect to PP in Scenario-1,
Tables A.1, A.2 and A.3 can be analyzed. As can be seen from Table A.1, the
null hypothesis indicates that there is sphericity. So the sphericity assumption
is assumed if the p-value is greater than 0.05. Since the sphericity is not
satisfied for this case; the “Tests of Within-Subjects Effects” table,
Greenhouse-Geisser p-value should be used from Table A.2. Since the p-value
is smaller than 0.05, we can reject the null hypothesis which indicates the
methods are equal. As a result, we can say that there is a significant difference

between the methods with respect to PP.

To see which methods perform better, we should analyze the “Pairwise
Comparisons” in Table A.3. To interpret the figure, the 95% confidence
intervals should be checked. If the interval includes zero, then we can say that
there is not a significant difference between these two methods with respect to
the corresponding measure. To see which method’s performance is better, we
should use the mean difference column. For the detection capability (PP)
measure, higher values are preferred because this shows that this method’s
outlier detection capacity is larger. For example, for the first row OLS (pp)-M
(pp) < 0. This indicates that mean detection capability of OLS method is
significantly smaller than the mean detection capability of M method.

Therefore; we can say that M estimators outperform OLS estimators with
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respect to PP performance measure. The rest of the table can be interpreted in
the same way. Table 3.5 demonstrates the competitive relationships according
to Table A.3. While comparing the methods pairwisely, (<) means the method
in the column outperforms the corresponding method in the row. The empty
cells indicate that there is no significant difference between the method in the

row and its corresponding method in the column.

From Tables A.4, A.5 and A.6, the null hypothesis that there is no significant
difference between the methods with respect to PO can be tested for Scenario-
1. As can be seen from Table A.4, the p-value is not greater than 0.05, i.e.,
sphericity is not satisfied so the “Tests of Within-Subjects Effects”,
Greenhouse-Geisser p-value should be used from Table A.5. Since the p-value
is smaller than 0.05, we can reject the null hypothesis which indicates that the
methods are equal. As a result, we can say that there is a significant difference
between the methods with respect to PO. To see which methods perform better,
we should analyze the “Pairwise Comparisons” in Table A.6. These

comparisons are given in Table 3.5.

Tables A.7, A.8 and A.9 are used to test if there is a significant difference
among the methods with respect to IMSE for Scenario-1. As it can be seen
from Table A.7 the p-value is not greater than 0.05, hence the sphericity
assumption is not satisfied. Therefore the Greenhouse-Geisser p-value in Table
A.8 should be used. Since it is smaller than 0.05, we can reject the null
hypothesis that the methods are equal. Therefore it can be said that there is a
significant difference between the methods with respect to IMSE. To see which
methods perform better, we should analyze the “Pairwise Comparisons” in

Table A.9. These comparisons are demonstrated in Table 3.5.

Tables A.27, A.28 and A.29 are used to test if there is a significant difference
among the methods with respect to the ratio of IMSE for Scenario-1. As it can
be seen from Table A.27 the p-value is not greater than 0.05, hence the

sphericity assumption is not satisfied. Therefore the Greenhouse-Geisser p-
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value in Table A.28 should be used. Since it is smaller than 0.05, we can reject
the null hypothesis that the methods are equal. Therefore it can be said that
there is a significant difference between the methods with respect to IMSE. To
see which methods perform better, we should analyze the ‘“Pairwise
Comparisons” in Table A.29. These comparisons are demonstrated in Table

3.5.

For the detection capability (PP); the LAD method outperforms the methods
OLS, M, LTS, LMS, LOWESS and MARS. LOWESS and MARS
nonparametric methods are outperformed by OLS, M, MM, LMS and LAD. As
a result; LAD is a desirable method when the performance measure is detection

capability.

For the false alarm rate (PO); OLS is outperformed by M, MM, LTS, LMS,
LAD and MARS methods. LTS and LMS methods show stronger performance
than M and MM. LTS is outperformed by LMS. LAD is superior to OLS and
MM, but not as competitive as the methods LTS and LMS. LOWESS and
MARS nonparametric methods are outperformed by M, MM, LTS, LMS and
LAD. As aresult; LTS and LMS are superior when the performance measure is

false alarm rate.

For the improved mean squared error (IMSE); OLS is outperformed by M,
MM, LAD and LOWESS. M and MM are superior to LTS, LMS and MARS.
LAD outperforms LTS and LTS outperforms LMS. For the ratio of IMSE, the
comments are same as the IMSE. As a result; LAD, M and MM are desirable

methods when the performance measure is detection capability.

For scenario-1, we can say that LAD is competitive among the other methods.

52



Table 3.5: Pairwise Comparisons of the Robust Regression Methods for PP,
PO, IMSE and ratio of IMSE for Scenario-1

Measure | Methods M MM LTS LMS LAD LWS MARS

PP OLS < > >
(.039)  (.000)  (.000)

M < > >
(.044) | (.000) | (.000)
MM > >
(.000)  (.000)
LTS <
(.039)
LMS < > >
(-000)  (.001) @ (.004)
LAD > >
(.000) | (.000)
LWS
PO OLS < < < < < <
(.000) | (.000) | (.000) | (.000) | (.000) (.000)
M < < > >
(.013) | (.003) (.000) | (.000)
MM < < < > >
(.008) | (.001) | (.046) | (.000) | (.000)
LTS < > > >
(.001)  (.012)  (.000)  (.000)
LMS > > >
(.001) | (.000) | (.000)
LAD > >
(.000)  (.000)
LWS >
(.031)
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Table 3.5(cont’d): Pairwise Comparisons of the Robust Regression Methods
for PP, PO, IMSE and ratio of IMSE for Scenario-1

Measure | Methods

IMSE OLS

MM

LTS

LMS

LAD

LWS

Ratioof M
the
IMSE

MM

LTS

LMS

LAD

LWS

M

<
(.000)

MM

<
(.001)

LTS | LMS
> >
(.009) | (.022)
> >

(.003)  (.006)

<

(.002)
> >
(007) | (.014)
> >

(.003)  (.006)

<
(.001)
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LAD

<
(.001)

(.000)

(.000)

(.000)

(.000)

LWS

(.000)

MARS

(.002)

(.002)

(.001)
(.000)
(.001)

(.002)

(.001)

(.000)



Scenario2: Regression Outliers in Multiple Point Clouds at the Centroid of
X-space

This scenario compares the performance of the robust regression procedures
when there are multiple Y-space outliers forming clouds at the centroid of X-

space.

Table A.10 illustrates that the p-value is smaller than 0.05, so we cannot
assume sphericity. Since the sphericity is not satisfied; Greenhouse-Geisser p-
value is used from Table A.11 to determine if there exists significant difference
between the methods with respect to PP for scenario2. Since it is smaller than
0.05, we can say that there is a significant difference between the methods. To
see which methods outperform the others, Table A.12 is analyzed and Table

3.6 is demonstrated.

From Tables A.13 and A.14; the hypothesis that if there is a significant
difference between the methods with respect to PO can be tested for Scenario-
2. As can be seen from Table A.13, since the p-value is not greater than 0.05,
sphericity is not satisfied for this case; the “Tests of Within-Subjects Effects”,
Greenhouse-Geisser p-value should be used from Table A.14. Since the p-
value is not smaller than 0.05, we cannot reject the null hypothesis which
indicates that the methods are equal with respect to PO. So part 2 of Table 3.6.

cannot be used.

Tables A.15, A.16 and A.17 are used to test the hypothesis that if there is a
significant difference between the methods with respect to IMSE for Scenario-
2. As can be seen from figure A.15, since the p-value is not greater than 0.05,
sphericity is not satisfied but the Greenhouse-Geisser p-value in Table A.16 is
smaller than 0.05, we can reject the null hypothesis which indicates that the
methods are equal. Therefore; it can be said that there is a significant difference

between the methods with respect to IMSE. To see which methods perform
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better, we should analyze the “Pairwise Comparisons” in Table A.17. These

comparisons are demonstrated in Table 3.6.

Tables A.30, A.31 and A.32 are used to test the hypothesis that if there is a
significant difference between the methods with respect to ratio of IMSE for
Scenario-2. As can be seen from figure A.30, since the p-value is not greater
than 0.05, sphericity is not satisfied but the Greenhouse-Geisser p-value in
Table A.31 is smaller than 0.05, we can reject the null hypothesis which
indicates that the methods are equal. Therefore; it can be said that there is a
significant difference between the methods with respect to the ratio of IMSE.
To see which methods perform better, we should analyze the “Pairwise
Comparisons” in Table A.32. These comparisons are demonstrated in Table

3.6.

Our results have shown that there is no significant difference between the
methods for the PO measure but for the other three performance measures; we

can analyze the table to see which methods outperform the others.

For the PP; OLS is superior to the methods LTS, LMS and MARS. LTS and
LMS is outperformed by the methods M, MM and LAD. MARS is not as

competitive as the other methods.

For the IMSE; OLS shows stronger performance than LTS and LMS but shows
poorer performance than MM. LTS and LMS is outperformed by M, MM,
LAD and MARS. The comments are the same for the ratio of the IMSE.

As a result; M, MM and LAD methods perform well under scenario-2.

Scenario3: Regression Qutliers in Multiple Point Clouds: Independent

Variables Randomly Scattered on the Interior of X-Space

In this case, the multiple outlier clouds are not placed at the centroid but at

different locations in X-space for each replication.
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Table 3.6: Pairwise Comparisons of the Robust Regression Methods for PP,
PO, IMSE and ratio of IMSE for Scenario2

Measure | Methods | LTS LMS M MM LAD LWS MARS

PP

PO OLS
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Table 3.6 (cont’d): Pairwise Comparisons of the Robust Regression Methods
for PP, PO, IMSE and ratio of IMSE for Scenario2

Measure Methods LTS [ LMS M MM | LAD | LOWESS | MARS

IMSE OLS > > <
(.002) @ (.002) (.014)
LTS < < < < <
(.002) | (.000) | (.001) | (.043) (.009)
LMS < < < <
(-001) ' (.000) @ (.000) (.030)
M
MM
LAD
LWS
Ratio of LTS < < < <
the IMSE (.030) | (.013) | (.020) (.025)
LMS < < < <
(-006) @ (.000) @ (.001) (.016)
M > >
(.030) | (.006)
MM
LAD
LWS
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To test the null hypothesis which indicates the methods are equal with respect
to PP for Scenario3, Table A.18 can be analyzed. The sphericity assumption is
not satisfied. We should look at the “Tests of Within-Subjects Effects” in Table
A.19. Since the Greenhouse-Geisser p-value is smaller than 0.05, we can reject
the null hypothesis which indicates that the methods are equal with respect to
PP. To see which methods perform better, we should analyze the “Pairwise

Comparisons” in Table A.20. These results are demonstrated in Table 3.7.

From Tables A.21, A.22 and A.23 the null hypothesis that there is no
significant difference between the methods with respect to PO can be tested for
Scenario-3. As can be seen from Table A.21 the p-value is not greater than
0.05, sphericity is not satisfied for this case; the “Tests of Within-Subjects
Effects”, Greenhouse-Geisser p-value should be used from Table A.22. Since
the p-value is smaller than 0.05, we can reject the null hypothesis which
indicates that the methods are equal with respect to PO. As a result, we can say
that there is a significant difference between the methods with respect to PO.
To see which methods perform better, we should analyze the “Pairwise

Comparisons” in Table A.23. These comparisons are given in Table 3.7.

Tables A.24, A.25 and A.26 are used to test the hypothesis that if there is a
siginificant difference between the methods with respect to IMSE for Scenario-
3. As can be seen from Table A.24, since the p-value is not greater than 0.05,
sphericity is not satisfied but the Greenhouse-Geisser p-value in Table A.25 is
smaller than 0.05, we can reject the null hypothesis which indicates that the
methods are equal. Therefore; it can be said that there is a significant difference
between the methods with respest to IMSE. To see which methods perform
better, we should analyze the “Pairwise Comparisons” in Table A.26. These

comparisons are demonstrated in Table 3.7.

Tables A.33, A.34 and A.35 are used to test the hypothesis that if there is a

siginificant difference between the methods with respect to IMSE for Scenario-
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3. As can be seen from Table A.33, since the p-value is not greater than 0.05,
sphericity is not satisfied but the Greenhouse-Geisser p-value in Table A.34 is
smaller than 0.05, we can reject the null hypothesis which indicates that the
methods are equal. Therefore; it can be said that there is a significant difference
between the methods with respest to IMSE. To see which methods perform
better, we should analyze the “Pairwise Comparisons” in Table A.35. These

comparisons are demonstrated in Table 3.7.

Table 3.7 results have shown that; for the PP; OLS is outperformed by LTS,
LMS, M, MM and LAD but is superior to MARS. LTS shows stronger
performance than LMS and MM shows stronger performance than M.

LOWESS and MARS are outperformed by OLS and other robust methods.

For the PO; OLS is outperformed by LTS, LMS, M, MM and LAD. LTS and
LMS are superior to M, MM, LAD, LOWESS and MARS. LMS shows
stronger performance than LTS. LOWESS and MARS are outperformed by
OLS and other robust methods.

For the IMSE; OLS is outperformed by LTS, LMS, M, MM and LAD. LTS
and LMS show weaker performance than M, MM and LAD. MM is superior to
LAD. LOWESS and MARS are outperformed by OLS and other robust
methods.The comments for the ratio of the IMSE are the same as IMSE’s.

As aresult; LTS, MM and LAD methods perform well inder scenario-3.
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Table 3.7: Pairwise Comparisons of the Robust Regression Methods for PP,
PO, IMSE and ratio of IMSE for Scenario3

Measure Methods | LTS LMS | M MM LAD | LWS MARS
PP OLS < < < < < >
(.000) (.000) @ (.000) @ (.000) @ (.000) (.000)
LTS > > >
(.010) (.004) (.000)
LMS > >
(.006) (.000)
M < > >
(.011) (.002) (.000)
MM > >
(.001) (.000)
LAD > >
(.001) (.000)
LOWESS >
(.000)
PO OLS < < < < <
(.000) (.000) | (.000) | .000) | (.000)
LTS < > > > > >
(.000) @ (.002) @ (.001) @ (.000) @ (.000) (.000)
LMS > > > > >
(.000) | (.000) | (.000) | (.000) (.000)
M > >
(.000) (.000)
MM > >
(.000) (.000)
LAD > >

(.000)  (.000)
LWS
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Table 3.7(cont’d): Pairwise Comparisons of the Robust Regression Methods
for PP, PO, IMSE and ratio of IMSE for Scenario3

Measure | Methods | LTS LMS M MM LAD LOWESS | MARS
IMSE OLS < < < < <
(.000) (.000) (-000) (-000) (-000)
LTS < < < < > >
(.002) (.000) (.000) (.000) (.001) (.000)
LMS < < < > >
(.000) (.000) (-000) (.001) (.000)
M >(.000) >
(.000)
MM >(.000) >(.000) >
(.000)
LAD >(.000) >
(.000)
LWS >
(.002)
Ratio of LTS < < < < < > >
the (.000) (.017) (.014) (.004) (.002) (.006) (.000)
IMSE LMS < < < > >
(.018) (-005) (-002) (-004) (.000)
M > >
(.000) (.000)
MM > > >
(.000) (.000) (.000)
LAD > >
(-000) (.000)
LWS >
(.002)
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3.3. Discussion

For Scenario-1 if Tables 3.1 and 3.5 are analyzed, the LAD method’s PP stands
out among the other methods. Although OLS has good detection capability, it
is unsatisfactory because it swamps clean observations indicated by the high
false alarm rate. The M estimator does not perform well with respect to the PO
in high density outlier cases as expected because its optimal distribution is
close to normal. When the outlier density increases, the tails become heavier
and the distribution becomes far from normal. The MM method gives exactly
the same false alarm rates with the M method. Although the LTS and LMS
methods’ detection capability is low at 3c outlier locations, they can be
preferred for 46 and over outlier locations because of their low false alarm rate
and competitive detection capabilities. The order of the performances is as
same as Wisnowski (1999). The nonparametric methods LOWESS and MARS
cannot be preferred because of their low detection capabilities and high false
alarm rates. The LAD estimators’ IMSE and ratio of the IMSE are the lowest
among other methods. At 3o outlier locations, LOWESS is a better choice but
at 4o and beyond LAD is preferable as expected.

For Scenario-2 if Tables 3.2 and 3.6 are analyzed, again OLS, M, MM and
LAD are superior in detection capability. As indicated by Wisnowski (1999),
OLS’s false alarm rate is high in the single cloud outlier locations because of
the degradation in parameter estimates such that the clean data are no longer fit
well. However, when there are two clouds, there is no swamping because there
is an equal and opposite pull on the regression surface from each cloud that
leaves the parameter estimates unchanged from those obtained with clean
observations only. With respect to the improved mean square error and ratio of
the IMSE, we can order the methods by increasing performance as MM, M,
LAD> OLS > LMS, LTS> LOWESS, MARS. M and MM have nearly the
same detection capability, false alarm rate, IMSE and ratio of IMSE.

63



Scenario-3 is the most challenging one among the three scenarios. OLS, LTS
and LMS have the highest detection capabilities. The OLS does not fit the
outlying clouds as evidenced by the high detection capability; however they do
chase these observations enough to swamp some clean observations as stated
by Wisnowski (1999). Moreover, improved mean square error of the OLS
method is significantly high when compared with M, MM, LAD, LTS and
LMS methods under “two clouds, 60 observations, 6 independent variables”
outlier location scenarios. The IMSE and the ratio of the IMSE of the
nonparametric methods are even larger than OLS and they also have high false
alarm rates. Therefore, these methods are not preferable for this scenario. The
M and MM estimators have higher detection capabilities and significantly
better false alarm rates than OLS, especially for the high-dimension, high
density and also two cloud scenarios. The LTS and LMS estimators are very
outstanding methods with high detection capability, low false alarm rates and

competitive improved mean square errors.

64



CHAPTER 4

COMPARISON OF OLS, M-REGRESSION, LAD AND LTS METHODS
ON AN INDUSTRIAL DATA SET

In this chapter, OLS and three most promising methods, which are M, LAD
and LTS, from the simulation study are compared with respect to the
performance measures, coefficient of multiple determination and mean square
error. These methods are performed on an industrial data set. Firstly, the data
set is analyzed to see whether it is suitable for conducting robust methods.
Residual plots are checked to see if there are outliers in the data and what type
of outliers are they. Moreover, we check whether the data needs any
transformation to validate the close to normality and constant variance
assumption. Cross-validation approach is used to compare the methods
performance and to see if there is a significant difference between the methods,
Repeated ANOV A method is used. The results of the study are discussed at the

end.

4.1. Description of the Data Set

Our data is taken from a real life manufacturing process which includes the
sub-processes core, molding, melting, casting, fettling and painting, which was
studied by Bakir (2007). The dependent variable is the percentage of defectives
on a cylinder head. Without conducting any specific data analysis, the
company records values of certain parameters hourly, daily or weekly to
monitor the production processes. The requirement of the company is to

determine the most influential parameters that cause defects on the last product.
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Regression method is the most commonly used technique for determining the
relationship between a dependent variable and a number of independent
variables. Regression method is an easy to understand and interpret. In this
study, values of independent variables are determined by sampling; therefore
every individual item is associated with the average values of the batch that the
item belongs to. There are some missing values in the data since the company
did not record them. These values are eliminated by the proper methods and
our comparison study is conducted without missing values. The basic data set

includes 36 independent variables and 92 observations.

4.2. Cross-validation Approach, Applications and Performance Analysis

High dimension of the independent variables causes some shortcomings like
the collinearity between variables and increase in calculation time; thus a
model selection procedure is decided to be used. However, the variable
selection procedures for robust regression are very limited and they are
proposed by only specific robust regression methods. Hence, stepwise model
selection procedure of multiple linear regression in Minitab 14 is used. For the

implementation details of the selection procedure, Appendix B can be referred.

First the original data, with 92 observations and 36 independent variables, is
analyzed by multiple linear regression to see whether there are outliers and the
normality assumption is valid. Figure 4.1 demonstrates that the normality
assumption hypothesis is rejected with the Anderson Darling p-value which is

smaller than 0.005.

From Figure 4.2 the boxplot of the response value indicates that there are
outliers in the data. Therefore, our data is suitable for conducting robust
regression methods but we should also check that if we delete the outliers do
the rest of the data distributed normally. Since in our study, we are interested in

the data sets that are “close” to normal.
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Figure 4.1: Anderson Darling Test and Normal Probability Plot for the Original
Data with 92 Observations without Making any Transformation

The model selection was done by stepwise procedure using Minitab 14 with
default values which are alpha to enter (0.15) and alpha to remove (0.15). The
model selection output is presented in Appendix B.1. Eight significant
variables are determined and observations 16, 17, 45, 49, 52, 71, 78, 88 are
pointed as unusual observations which inavalidate the normality assumption.
Moreover, if the residual plots in Figure B.1 are analyzed, both the normality

and constant variance assumptions are not satisfied.
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Figure 4.2: Boxplot of the Original Data with 92 Observations

Second, the original data with deleting the outliers without making any
transformation is analyzed by multiple linear regression to see whether there
are the normality assumption becomes valid. Figure 4.3 demonstrates that the
normality assumption hypothesis is rejected with the Anderson Darling p-value
which is smaller than 0.005. This means that although the unusual values are
deleted, the remaining data of 84 observations still do not satisfy the normality

assumption.
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Figure 4.3: Anderson Darling Test and Normal Probability Plot for the Original
Data by Deleting Possible Outliers

Also, we can see from Figure 4.4 there still seems to be unusual observations

although we have deleted 10% of the original data.

Moreover Figure B.3 demonstrates that the constant variance assumption is not
satisfied either. The variance of the data seems to be increasing as the response
values increase. Since our data is a percentage data, logit transformation is

suitable.
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Figure 4.4: Boxplot of the Original Data by Deleting Possible Outliers

Logit transformation is applied to the original data with 92 observations and 36
independent variables. The transformed data is analyzed by multiple linear
regression to see whether there are outliers and the normality assumption is
valid. Figure 4.5 demonstrates that the normality assumption hypothesis is
rejected with the Anderson Darling p-value which is smaller than 0.005.

Boxplot of the transformed response value is demonstrated in Figure. 4.6.
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Figure 4.5: Anderson Darling Test and Normal Probability Plot for the Logit
Transformed Data with 92 Observations

Boxplot of LOGIT(y2)

Figure 4.6: Boxplot of the Logit Transformed Data with 92 Observations
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The model selection was done by stepwise regression procedure. The model
selection output is presented in Appendix B.2. Four significant variables x9,
x19, x22 and x28 are determined and observations 16, 21, 22, 70, 71, 72, 77,
78 are pointed as unusual observations which contaminate the normality

assumption.

To adjust the nonconstant error variance logit transformation will be used
because our dependent variable is a defective rate which is between 0 and 1.
After the transformation; the residuals versus the fitted values plot in Figure
B.2 the funnel type shape becomes less visible. Robust regression is suitable
for this data because there are unusual observations and one of the basic
advantages of robust regression is that it can be used with contaminated normal

distributions.

A 3-fold and 3-replicate cross validation approach is used to compare the
robust regression methods’ performance. The model selection was conducted
by using the train data sets. Then prediction performance measures which are
coefficient of multiple determination and mean square error are calculated for

each of the nine test data sets.

Coefficient of multiple determination R2 is defined as

R2=ﬁ=1_ﬁ
Syy Syy

It is a measure of the reduction in the variability of y obtained by using the

independent variables in the model (Montgomery and Peck, 1991).

The residual mean square error is

SSg

MSg =
E n—p
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It is an unbiased estimator of 6. A model with a small residual mean square is

usually preferred to a model with a small one (Montgomery and Peck, 1991).

Repeated ANOVA supported by SPSS 16 is used to see whether there is
significant difference between the alternative methods. The Repeated ANOVA

analysis is done with the average performance measures for each replication.

The average values of the OLS, M, LAD and LTS regression methods for the

three replications can be seen in Table 4.1.

Table 4.1: Average Performance Measures of the Methods

ORDINARY LEAST SQUARES

MSE Rep1l 1,653 R?2 Rep1l 0,194
Rep2 1,811 Rep2 0,219
Rep3 1,637 Rep3 0,246

M

MSE Rep1l 1,527 R? Rep1l 0,212
Rep2 1,506 Rep2 0,346
Rep3 1,728 Rep3 0,218

LAD

MSE Repl 1,576 R2 Repl 0,185
Rep2 1,094 Rep2 0
Rep3 1,528 Rep3 0,305

LTS

MSE Rep1l 1,653 R? Rep1l 0,141
Rep2 1,890 Rep2 0,175
Rep3 1.689 Rep3 0
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As Table 4.1 is analyzed, there seems not much difference between the

methods and M-regression seems to outperform the other methods.

To check the null hypothesis that there is no statistical difference between the
methods with respect to MSE; Tables C.1 and C.2 are analyzed. As can be seen
from Table C.1, the p-value is not greater than 0.05; thus sphericity is not
satisfied for this case; the “Tests of Within-Subjects Effects”, Greenhouse-
Geisser p-value should be used from Table C.2. Since the p-value is not
smaller than 0.05, we can not reject the null hypothesis which indicates that the

methods’ performances are equal with respect to MSE.

From Tables C.3 and C.4, the null hypothesis that there is no statistical
difference between the methods with respect to R” can be analyzed. Table C.3
demonstrates that the p-value is not greater than 0.05, thus sphericity is not
satisfied; the “Tests of Within-Subjects Effects”, Greenhouse-Geisser p-value
should be used from Table C.4. Since the p-value is not smaller than 0.05, we
can not reject the null hypothesis which indicates that the methods’

performances are equal with respect to R?.

4.3. Discussion

Performance analysis study of OLS, M-regression, LAD and LTS indicates that
the robust methods do not give better performance results than the classical
OLS method. This demonstrates that our industrial data exhibit different
behavior from the generated distributions and does not support the simulation

results.

These results support the studies of Stigler (1977) and Hill and Dixon (1982)
which are about robustness in real life. Stigler (1977) stated that most
robustness studies have relied upon mathematical theory and computer
simulated data. However, no matter how experienced the researcher in his
choice of sampling distributions, there is no guarantee that the samples he

generates are representative of real data. The real data can be correlated,
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biased, asymmetric or heterogeneous. He concluded that real data exhibit
different behavior from the simulated data used in most robustness studies and
this affects the recommendations for the choice of an estimator and relative
performances of the estimators. His data sets have more extreme values than
one would expect from normal samples. He found that light trimming provides
some improvement. Hill and Dixon (1982) conduct a real life study on
biomedical data by first transforming their data by a logarithmic function. The
biomedical distributions can be asymmetric and have shorter tails and other
anomalies. They recommend 15% trim is a ‘safe’ estimator to use when little is
known about the underlying distribution. Both of these real life studies
recommend using light trimming which means deleting the extreme values at
the specified trimming ratio. In fact, this exactly corresponds to the classical
way which is first deleting outliers and then fitting the OLS to the data without

outliers.

For our study, one of the reasons of this result can be the complexity of the
data. OLS and the three robust methods are not resistant to complexity of the
data; that is they only assume linear relationships between the independent
variables and the response variable. However, our data may require nonlinear
or nonparametric relations. Therefore both the OLS and the robust regression
methods cannot explain the data well. This can be proved by the low R values
in Table 4.1. The second reason can be the irrelevant variables in the data set.
In fact we have reduced the number of the independent variables by using the
stepwise regression procedure but the chosen variables still may not be relevant
with the response variable. Maybe there are more relevant parameters that

affect the process but are not noticed along the data collection.
Moreover, even if there is no significant difference between OLS and the three

other robust methods; the usage of OLS is not appropriate in this data set

because its basic assumption which is normality is not satisfied. That is we
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cannot say that the results are the same, so it is advisable to use OLS. The

‘safer’ way is to use the robust methods.
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CHAPTER 5

CONCLUSIONS AND SUGGESTIONS FOR FUTURE STUDIES

This study brings three contributions to the field of robust regression.Firstly;
the seven most promising robust regression methods which have not been
compared together in literature are compared. In fact two of them, MARS and
LOWESS, are classified in nonparametric regression methods in the literature
but only their outlier detection capacities are in the scope of this study. A
Monte Carlo simulation study is conducted using the three challenging
scenarios for multiple outlier detection. As a result of the comparisons M, MM,
LAD and LTS are the most promising robust methods among the others with

respect to the performance measures PP, PO and IMSE.

Secondly, an improved performance measure, which is the mean square error
of the robust regression lines without outliers, is developed. The idea comes
from the relative efficiency of a robust regression estimator which is defined by
the ratio of the MSE of the robust estimator over MSE of the OLS estimator.
However in this ratio the MSE of the robust estimator is evaluated by using all
residuals even the residuals of the outliers are very large in robust regression
whereas the MSE of OLS is calculated by using only the normal data without
outliers. In this idea, we behave as if we are penalizing the robust methods for
giving large residuals to outliers. But as far as known, the fundamental aim of a
robust method is fitting a regression line that is not so much pulled by outliers.
Therefore, we fit the OLS and the robust methods’ regression lines to the
contaminated data but omit the residuals of the outliers while calculating the

MSE. By this way, we have compared the methods at equal conditions.
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Thirdly, since there is very limited number of real life applications on robust
regression methods; we conducted a real life data analysis. An industrial data
set is used to compare the robust methods LAD, M, LTS with OLS. As a result,
for our real life data we see that there is no significant difference between the
robust methods and the classical OLS method. We have explained this situation
by complexity of the data and irrelevant variables. Moreover, even if the results
of the OLS and the robust regression methods are the same; the model fitted by
OLS is not valid because it is not applied with normality assumption satisfied.
As a result, robust methods are more appropriate to deal with outliers even if
their performances are the same with the classical methods since they do not

have such strict assumptions.

As a future study alternative outlier placement scenarios, for example high
magnitude and high contamination, can be performed based on the design
parameters determined. In addition, we cannot compare some of the robust
regression methods such as multiple stage general models because of
unavailability of software. These methods can be coded, or their codes can be
obtained and compared with the ones in our study. Furthermore, the variable
selection procedures for robust regression are very limited and they are
proposed by only specific robust regression methods. These procedures can be

extended and proposed for all the robust methods we have mentioned.
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APPENDIX A

REPEATED ANOVA RESULTS FOR THE COMPARISON OF THE
EIGHT REGRESSION METHODS

Table A.1: Test of Sphericity for Scenario-1 (PP)

Mauchly's Test of Sphericityb

Measure:PP

: a
Within Epsilon
Subjects Mauchly's | Approx. Chi- Greenhouse-| Huynh- Lower-
Effect w Square df Sig. Geisser Feldt bound
METHODS|,000 102,867 27(,000 ,290 ,356 ,143

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed

dependent variables is proportional to an identity matrix.

a. May be used to adjust the degrees of freedom for the averaged tests of significance.

Corrected tests are displayed in the Tests of Within-Subjects Effects table.

b. Design: Intercept
Within Subjects Design: METHODS

Table A.2: Tests of Within-Subjects Effects of PP for Scenario-1

Tests of Within-Subjects Effects

Measure:PP
Type Il Sum Mean
Source of Squares df Square F Sig.
METHODS Sphericity
18,876 7 2,697| 11,703 ,000
Assumed
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Table A.2 (cont’d): Tests of Within-Subjects Effects of PP for Scenario-1

Greenhouse-

) 18,876 2,029 9,306 11,703 ,000

Geisser

Huynh-Feldt 18,876 2,490 7,580 11,703 ,000

Lower-bound 18,876 1,000 18,876 11,703 ,006
Error(METHODS) Sphericity

17,743 77 ,230

Assumed

Greenhouse-

) 17,743] 22,314 , 795

Geisser

Huynh-Feldt 17,743] 27,394 ,648

Lower-bound 17,743] 11,000 1,613

Table A.3. Pairwise Comparisons of the Methods with respect to PP for

Scenario-

1

Pairwise Comparisons

Measure:PP
95% Confidence Interval for
Mean
H a

0} J) Difference Difference

METHODS METHODS (1-9) Std. Error Sig.? Lower Bound Upper Bound

OLS 2 ,034 ,096 732 - 177 ,244
3 -,075 ,044 121 -,172 ,023
4 ,514 ,333 ,152 -,220 1,247
5 ,216 ,137 ,143 -,085 ,517
6 -,204" ,087 ,039 -,396 -,012
7 1,052" ,149 ,000 724 1,381
8 ,032" ,145 ,000 ,612 1,251
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Table A.3(cont’d): Pairwise Comparisons of the Methods with respect to PP
for Scenario-1
M 1 -,034 ,096 732 -,244 177
3 -,108 ,083 217 -,290 ,074
4 480 356 204 -,303 1,263
5 ,182 176 323 -,205 570
6 -,238 ,105 ,044 -,469 -,007
7 1,019 174 ,000 636 1,402
8 898 ,148 ,000 572 1,224
MM 1 ,075 ,044 121 -,023 172
2 ,108 ,083 217 -,074 ,290
4 588 329 ,101 -,136 1,312
5 291 133 ,052 -,003 ,584
6 -,130 ,073 ,104 -,291 ,031
7 1,127 167 ,000 760 1,494
8 1,006 ,160 ,000 ,655 1,358
LTS 1 -514 333 152 -1,247 ,220
2 -,480 356 204 -1,263 ,303
3 -,588 329 ,101 -1,312 ,136
5 -,297 281 312 -,916 321
6 -718 306 ,039 -1,392 -,044
7 ,539 259 ,062 -,032 1,110
8 418 281 ,165 -,200 1,037
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Table A.3(cont’d):

Pairwise Comparisons of the Methods with respect to PP

for Scenario-1

LMS -,216 137 143 -517 ,085
-,182 176 323 -,570 ,205

-,291 133 ,052 -,584 ,003

297 281 312 -,321 916

-,420° ,086 ,000 -,610 -,230

836 ,193 ,001 412 1,261

716" ,198 ,004 279 1,152

LAD 204" ,087 ,039 ,012 ,396
238" ,105 ,044 ,007 469

,130 073 ,104 -,031 291

718" ,306 ,039 ,044 1,392

420" ,086 ,000 230 ,610

1,257 182 ,000 ,856 1,658

1,136 175 ,000 750 1,522

LOWESS -1,052° ,149 ,000 -1,381 - 724
-1,019° 174 ,000 -1,402 -,636

-1,127 167 ,000 -1,494 -,760

-,539 259 ,062 -1,110 ,032

-,836 1193 ,001 -1,261 -,412

-1,257 ,182 ,000 -1,658 -,856

-121 ,064 ,085 -,261 ,019
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Table A.3(cont’d): Pairwise Comparisons of the Methods with respect to PP
for Scenario-1

MARS 1 -,932" ,145 ,000 -1,251 -,612
2 -,898" ,148 ,000 -1,224 -,572
3 -1,006 ,160 ,000 -1,358 -,655
4 -,418 ,281 ,165 -1,037 ,200
5 -716° ,198 ,004 -1,152 -,279
6 -1,136 175 ,000 -1,522 -, 750
7 121 ,064 ,085 -,019 ,261

Based on estimated marginal means

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no

adjustments).

*. The mean difference is significant at the ,05 level.

Table A.4: Test of Sphericity for Scenario-1 (PO)
Mauchly's Test of Sphericityb

Measure:PO

Within Epsilon®

Subjects Mauchly's | Approx. Chi- Greenhouse-| Huynh- Lower-

Effect w Square df Sig. Geisser Feldt bound

METHODS],000 178,949 271,000 ,201 ,221 ,143

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed

dependent variables is proportional to an identity matrix.

a. May be used to adjust the degrees of freedom for the averaged tests of significance.

Corrected tests are displayed in the Tests of Within-Subjects Effects table.

b. Design: Intercept
Within Subjects Design: METHODS
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Table A.5: Tests of Within-Subjects Effects of PO for Scenario-1

Tests of Within-Subjects Effects

Measure:PO
Type lll Sum Mean
Source of Squares df Square F Sig.
METHODS Sphericity
2,479 7 ,354| 28,025 ,000
Assumed
Greenhouse-
) 2,479 1,405 1,764 28,025 ,000
Geisser
Huynh-Feldt 2,479 1,549 1,600 28,025 ,000
Lower-bound 2,479 1,000 2,479 28,025 ,000
Error(METHODS) Sphericity
,973 77 ,013
Assumed
Greenhouse-
. ,973| 15,460 ,063
Geisser
Huynh-Feldt ,973] 17,042 ,057
Lower-bound ,973] 11,000 ,088
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Table A.6. Pairwise Comparisons of the Methods with respect to PO for

Scenario-1

Pairwise Comparisons

Measure:PO
95% Confidence Interval for
0 %) Mean Difference®
METHODS METHODS| Difference (I-J) | Std. Error Sig.% Lower Bound | Upper Bound
oLS 2 1947 ,033 ,000 121 267
3 195" ,038 ,000 112 277
4 349" ,068 ,000 ,200 497
5 397 ,068 ,000 247 547
6 247 ,044 ,000 ,149 ,345
7 -,026 ,013 ,076 -,056 ,003
8 -,051" ,006 ,000 -,063 -,039
M 1 -,194" ,033 ,000 -,267 -121
3 ,000 ,007 967 -,015 ,016
4 154" ,052 ,013 ,040 ,269
5 203" ,053 ,003 ,087 ;319
6 ,053 ,028 ,083 -,008 114
7 221" ,038 ,000 -,304 -,137
8 -,245 ,036 ,000 -,324 -,166
MM 1 -,195" ,038 ,000 -277 -112
2 ,000 ,007 ,967 -,016 ,015
4 154" ,048 ,008 ,048 ,260
5 203" ,048 ,001 ,097 ,309
6 ,053" ,024 ,046 ,001 ,104
7 -221 ,041 ,000 -312 -,130
8 -,245 ,040 ,000 -,332 -,158
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Table A.6(cont’d): Pairwise Comparisons of the Methods with respect to PO

for Scenario-1

LTS 1 -,349" ,068 ,000 -,497 -,200
2 -,154" ,052 ,013 -,269 -,040
3 -,154° ,048 ,008 -,260 -,048
5 ,049° 012 ,001 ,023 074
6 -,101" ,034 ,012 -175 -,028
7 -,375" 075 ,000 -,540 -,210
8 -,399" ,070 ,000 -552 -,246
LMS 1 -397 ,068 ,000 -,547 -,247
2 -,203" ,053 ,003 -,319 -,087
3 -,203" ,048 ,001 -,309 -,097
4 -,049" 012 ,001 -,074 -,023
6 -,150" ,032 ,001 -221 -,079
7 - 424" 074 ,000 -,587 -,260
8 -,448" ,069 ,000 -,601 -,295
LAD 1 -,247 ,044 ,000 -,345 -,149
2 -,053 028 ,083 -114 ,008
3 -,053" 024 ,046 -,104 ,000
4 101" ,034 012 ,028 175
5 150" ,032 ,001 ,079 221
7 -274° ,048 ,000 -,379 -,168
8 -,298" ,045 ,000 -,398 -,198
LOWESS 1 ,026 013 076 -,003 ,056
2 221 ,038 ,000 137 ,304
3 221" 041 ,000 1130 312
4 375" 075 ,000 210 540
5 424 074 ,000 ,260 587
6 274" ,048 ,000 ,168 379
8 -,024" ,010 ,031 -,046 -,003
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Table A.6(cont’d): Pairwise Comparisons of the Methods with respect to PO
for Scenario-1

MARS 1 051 ,006 ,000 ,039 ,063
2 245’ ,036 ,000 ,166 324
3 245 ,040 ,000 ,158 ,332
4 1399 ,070 ,000 ,246 ,552
5 448" ,069 ,000 295 ,601
6 298 ,045 ,000 ,198 ,398
7 024 ,010 ,031 ,003 ,046
Based on estimated marginal means
*. The mean difference is significant at the ,05 level.
a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no
adjustments).
Table A.7: Test of Sphericity for Scenario-1 (MSE)
Mauchly's Test of Sphericityb
Measure:MSE
Within Epsilon®
Subjects Mauchly's | Approx. Chi- Greenhouse-| Huynh- Lower-
Effect w Square df Sig. Geisser Feldt bound
METHODS|,000 159,762 271,000 ,198 ,217 ,143

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed

dependent variables is proportional to an identity matrix.

a. May be used to adjust the degrees of freedom for the averaged tests of significance.

Corrected tests are displayed in the Tests of Within-Subjects Effects table.

b. Design: Intercept
Within Subjects Design: METHODS
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Table A.8: Tests of Within-Subjects Effects of MSE for Scenario-1

Measure:MSE

Tests of Within-Subjects Effects

Type Il Sum Mean
Source of Squares df Square F Sig.
METHODS Sphericity
,169 7 ,024 7,106 ,000
Assumed
Greenhouse-
,169 1,384 122 7,106 ,012
Geisser
Huynh-Feldt ,169 1,518 111 7,106 ,009
Lower-bound ,169 1,000 ,169 7,106 ,022
Error(METHODS) Sphericity
,262 77 ,003
Assumed
Greenhouse-
,262| 15,219 ,017
Geisser
Huynh-Feldt ,262| 16,703 ,016
Lower-bound ,262| 11,000 ,024
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Table A.9: Pairwise Comparisons of the Methods with respect to MSE for

Scenario-1

Measure:MSE

Pairwise Comparisons

95% Confidence Interval for
0 ) Mean Difference®
METHODS METHODS| Difference (I-J) | Std. Error Sig.? Lower Bound | Upper Bound
oLS 2 ,088" ,018 ,000 ,048 127
3 ,095" ,021 ,001 ,049 141
4 ,008 ,036 824 -,070 ,087
5 ,022 ,035 ,538 -,055 ,100
6 106" ,023 ,001 ,054 157
7 076" ,007 ,000 ,059 ,092
8 ,007 ,008 430 -,011 ,024
M 1 -,088" ,018 ,000 -127 -,048
3 ,007 ,004 ,087 -,001 ,016
4 -,080" ,025 ,009 -,135 -,024
5 -,065 ,024 ,022 -119 -,012
6 ,018 ,013 202 -,011 ,047
7 -,012 ,022 ,596 -,060 ,036
8 -,081" ,020 ,002 -,125 -,037
MM 1 -,095" ,021 ,001 -,141 -,049
2 -,007 ,004 ,087 -,016 ,001
4 -,087" ,022 ,003 -,136 -,037
5 -072" ,022 ,006 -,120 -,025
6 ,011 ,011 ,348 -,013 ,035
7 -,019 ,024 453 -,073 ,035
8 -,088" ,022 ,002 -,138 -,039
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Table A.9(cont’d):

Pairwise Comparisons of the Methods with respect to MSE

for Scenario-1

LTS 1 -,008 ,036 824 -,087 ,070
2 ,080° ,025 ,009 ,024 ,135
3 087" 022 ,003 ,037 1136
5 014" ,004 ,002 ,006 022
6 ,097° ,015 ,000 ,063 132
7 ,068 041 124 -,022 157
8 -,002 035 ,964 -,078 075
LMS 1 -,022 ,035 538 -,100 ,055
2 065" 024 022 012 1119
3 072" 022 ,006 025 1120
4 -,014" ,004 ,002 -,022 -,006
6 083" 014 ,000 ,052 114
7 ,053 ,040 207 -,034 141
8 -,016 ,034 651 -,091 ,059
LAD 1 -,106" 023 ,001 -,157 -,054
2 -,018 013 202 -,047 011
3 -,011 011 348 -,035 ,013
4 -,097" 015 ,000 -132 -,063
5 -,083" 014 ,000 -114 -,052
7 -,030 027 290 -,089 ,029
8 -,099" 023 ,001 -,149 -,049
LOWESS 1 -,076" ,007 ,000 -,092 -,059
2 012 ,022 596 -,036 ,060
3 ,019 024 453 -,035 073
4 -,068 041 124 -,157 022
5 -,053 ,040 207 -141 ,034
6 ,030 027 290 -,029 ,089
8 -,069" 013 ,000 -,097 -,042

95




Table A.9(cont’d):

Pairwise Comparisons of the Methods with respect to MSE
for Scenario-1

MARS 1 -,007 ,008 ,430 -,024 ,011
2 ,081" ,020 ,002 ,037 125
3 ,088 ,022 ,002 ,039 ,138
4 ,002 ,035 ,964 -,075 ,078
5 ,016 ,034 ,651 -,059 ,091
6 ,099 ,023 ,001 ,049 ,149
7 ,069° ,013 ,000 ,042 ,097
Based on estimated marginal means
*. The mean difference is significant at the ,05 level.
a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no
adjustments).
Table A.10: Test of Sphericity for Scenario-2 (PP)
Mauchly's Test of Sphericityb
Measure:PP
Within Epsilon®
Subjects | Mauchly's | Approx. Chi- Greenhouse-| Huynh- Lower-
Effect w Square df Sig. Geisser Feldt bound
METHOD],000 27 1,311 ,365 ,143

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed

dependent variables is proportional to an identity matrix.

a. May be used to adjust the degrees of freedom for the averaged tests of significance.

Corrected tests are displayed in the Tests of Within-Subjects Effects table.

b. Design:

Intercept

Within Subjects Design: METHOD
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Table A.11: Tests of Within-Subjects Effects of PP for Scenario-2

Tests of Within-Subjects Effects

Measure:PP
Type lll Sum Mean
Source of Squares df Square F Sig.
METHODS Sphericity
70,901 7 10,129| 16,004 ,000
Assumed
Greenhouse-
) 70,901 2,174 32,618 16,004 ,000
Geisser
Huynh-Feldt 70,901 2,556 27,743| 16,004 ,000
Lower-bound 70,901 1,000 70,901 16,004 ,001
Error(METHODS) Sphericity
66,454 105 ,633
Assumed
Greenhouse-
) 66,454 32,606 2,038
Geisser
Huynh-Feldt 66,454 38,335 1,734
Lower-bound 66,454 15,000 4,430
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Table A.12: Pairwise Comparisons of the Methods with respect to PP for

Scenario-2

Pairwise Comparisons

Measure:PP
95% Confidence Interval for
0 ) Mean Difference®
METHODS METHODS]| Difference (I-J) | Std. Error Sig.2 Lower Bound | Upper Bound
oLS 2 1,014 221 ,000 542 1,485
3 ,980" 228 ,001 494 1,466
4 ,008 ,022 731 -,040 ,056
5 ,027 ,020 ,200 -,016 ,069
6 ,038 ,026 164 -,017 ,093
7 401 225 ,095 -,079 881
8 2,250 463 ,000 1,264 3,236
LTS 1 -1,014° 221 ,000 -1,485 -,542
3 -,034 ,065 612 -173 ,105
4 -1,006" 215 ,000 -1,464 -,548
5 -,987" 211 ,000 -1,438 -,536
6 -976' 210 ,000 -1,424 -,528
7 -613" 282 ,047 -1,215 -,011
8 1,236 447 ,015 283 2,190
LMS 1 -,980" 228 ,001 -1,466 -,494
2 ,034 ,065 612 -,105 173
4 -972" 223 ,001 -1,448 -,496
5 -,953" 219 ,001 -1,420 -,486
6 -942" 218 ,001 -1,406 -,478
7 -,579 294 ,067 -1,205 ,047
8 1,270° 484 ,019 238 2,302
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Table A.12 (cont’d):

Pairwise Comparisons of the Methods with respect to PP

for Scenario-2

M -,008 ,022 731 -,056 ,040
1,006 215 ,000 548 1,464

972" 223 ,001 496 1,448

,019 ,019 333 -,021 ,059

,030 ,030 333 -,034 ,094

393 236 117 -111 897

2,242 456 ,000 1,269 3,215

MM -,027 ,020 ,200 -,069 ,016
987" 211 ,000 536 1,438

953" 219 ,001 486 1,420

-,019 ,019 333 -,059 ,021

011 ,011 333 -,013 ,035

374 222 113 -,100 848

2,223 452 ,000 1,261 3,186

LAD -,038 ,026 164 -,093 017
976 210 ,000 528 1,424

942 218 ,001 478 1,406

-,030 ,030 333 -,094 ,034

-,011 ,011 333 -,035 ,013

363 215 111 -,094 ,820

2,212 449 ,000 1,255 3,169

LOWESS -,401 225 ,095 -,881 ,079
613" 282 ,047 ,011 1,215

579 294 ,067 -,047 1,205

-,393 236 117 -,897 111

-374 222 113 -,848 ,100

-,363 215 111 -,820 ,094

1,849" 443 ,001 ,905 2,792
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Table A.12 (cont’d):

Pairwise Comparisons of the Methods with respect to PP

for Scenario-2

MARS 1

6

7

-2,250°
-1,236'
-1,270°
-2,242"
-2,223"
-2,212"

-1,849"

463
447
484
456
452

449

443

,000
,015
,019
,000
,000
,000

,001

-3,236
-2,190
-2,302
-3,215
-3,186
-3,169

-2,792

-1,264
-,283
-,238

-1,269

-1,261

-1,255

-,905

Based on estimated marginal means

*. The mean difference is significant at the ,05 level.

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no

adjustments).
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Table A.13: Test of Sphericity for Scenario-2 (PO)

Mauchly's Test of Sphericity®

Measure:PO

. a
Within Epsilon
Subjects Mauchly's | Approx. Chi- Greenhouse-| Huynh- Lower-
Effect w Square df Sig. Geisser Feldt bound
METHODS|,000 233,442 27(,000 ,296 ,344 ,143

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed

dependent variables is proportional to an identity matrix.

a. May be used to adjust the degrees of freedom for the averaged tests of significance.

Corrected tests are displayed in the Tests of Within-Subjects Effects table.

b. Design: Intercept
Within Subjects Design: METHODS

Table A.14: Tests of Within-Subjects Effects of PO for Scenario-2

Tests of Within-Subjects Effects

Measure:PO
Type [l Sum Mean
Source of Squares df Square F Sig.
METHODS Sphericity
1,811 7 ,259 2,394 ,026
Assumed
Greenhouse-
) 1,811 2,070 ,875 2,394 ,106
Geisser
Huynh-Feldt 1,811 2,407 , 752 2,394 ,096
Lower-bound 1,811 1,000 1,811 2,394 ,143
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Table A.14 (cont’d): Tests of Within-Subjects Effects of PO for Scenario-2

Error(METHODS) Sphericity

Assumed

Greenhouse-

Geisser

Huynh-Feldt

Lower-bound

11,348

11,348

11,348

11,348

31,055

36,109

15,000

105

,108

,365

,314

757

Table A.15: Test of Sphericity for Scenario-2 (MSE)

Measure:MSE

Mauchly's Test of Sphericityb

: a
Within Epsilon
Subjects Mauchly's | Approx. Chi- Greenhouse-| Huynh- Lower-
Effect w Square df Sig. Geisser Feldt bound
METHODS|,000 154,745 27(,000 ,340 ,408 ,143

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed

dependent variables is proportional to an identity matrix.

a. May be used to adjust the degrees of freedom for the averaged tests of significance.

Corrected tests are displayed in the Tests of Within-Subjects Effects table.

b. Design: Intercept
Within Subjects Design: METHODS
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Table A.16: Tests of Within-Subjects Effects of MSE for Scenario-2

Measure:MSE

Tests of Within-Subjects Effects

Type Il Sum Mean
Source of Squares df Square F Sig.
METHODS Sphericity
,485 7 ,069 4,833 ,000
Assumed
Greenhouse-
) ,485 2,377 ,204 4,833 ,010
Geisser
Huynh-Feldt ,485 2,854 ,170 4,833 ,006
Lower-bound ,485 1,000 ,485 4,833 ,044
Error(METHODS) Sphericity
1,506 105 ,014
Assumed
Greenhouse-
) 1,506] 35,651 ,042
Geisser
Huynh-Feldt 1,506] 42,811 ,035
Lower-bound 1,506 15,000 ,100
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Table A.17: Pairwise Comparisons of the Methods with respect to MSE for

Measure:MSE

Scenario-2

Pairwise Comparisons

95% Confidence Interval for

0 ) Mean Difference®
METHODS METHODS| Difference (I-J) | Std. Error Sig.? Lower Bound | Upper Bound
oLS 2 -,145" ,039 ,002 -,228 -,062
3 -,105" ,028 ,002 -,165 -,045
4 011 ,021 614 -,034 ,055
5 031" ,011 ,014 ,007 ,055
6 ,023 017 ,199 -,014 ,060
7 -,024 ,058 682 -147 ,099
8 021 ,040 ,604 -,064 ,106
LTS 1 145" ,039 ,002 ,062 228
3 ,040 ,019 ,055 ,000 ,081
4 156" ,042 ,002 ,066 246
5 176" ,037 ,000 ,097 255
6 168" ,041 ,001 ,081 256
7 121 ,055 ,043 ,004 238
8 166" ,055 ,009 ,048 284
LMS 1 105" ,028 ,002 ,045 ,165
2 -,040 ,019 ,055 -,081 ,001
4 116" ,029 ,001 ,055 177
5 136" ,023 ,000 ,088 ,184
6 128 ,024 ,000 ,076 ,180
7 ,081 ,062 214 -,052 214
8 126" ,053 ,030 ,014 238

104




Table A.17 (cont’d):

Pairwise Comparisons of the Methods with respect to
MSE for Scenario-2

M 1 -,011 021 614 -,055 ,034
2 -,156" ,042 ,002 -,246 -,066
3 -116" ,029 ,001 -177 -,055
5 ,020 ,020 ,329 -,023 ,063
6 ,013 ,020 541 -,030 ,055
7 -,035 ,059 564 -,161 ,091
8 ,010 ,047 828 -,089 ,110
MM 1 -,031" ,011 ,014 -,055 -,007
2 -176" ,037 ,000 -,255 -,097
3 -136" ,023 ,000 -,184 -,088
4 -,020 ,020 ,329 -,063 ,023
6 -,008 ,008 347 -,025 ,009
7 -,055 ,064 ,405 -,192 ,082
8 -,010 ,045 ,828 -,107 ,087
LAD 1 -,023 ,017 ,199 -,060 014
2 -,168" ,041 ,001 -,256 -,081
3 -128" 024 ,000 -,180 -,076
4 -,013 ,020 541 -,055 ,030
5 ,008 ,008 347 -,009 ,025
7 -,047 ,069 ,503 -,194 ,100
8 -,002 ,050 ,966 -,108 ,104
LOWESS 1 024 ,058 682 -,099 147
2 -121° ,055 ,043 -,238 -,004
3 -,081 ,062 214 -214 ,052
4 ,035 ,059 564 -,091 161
5 ,055 ,064 ,405 -,082 1192
6 ,047 ,069 ,503 -,100 194
8 ,045 ,048 361 -,057 147
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Table A.17 (cont’d): Pairwise Comparisons of the Methods with respect to

MSE for Scenario-2

MARS 1 -,021 ,040 ,604 -,106 ,064
2 -,166° ,055 ,009 -,284 -,048
3 -126° ,053 ,030 -,238 -,014
4 -,010 ,047 ,828 -,110 ,089
5 ,010 ,045 ,828 -,087 ,107
6 ,002 ,050 ,966 -,104 ,108
7 -,045 ,048 ,361 -,147 ,057
Based on estimated marginal means
*. The mean difference is significant at the ,05 level.
a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no
adjustments).
Table A.18: Test of Sphericity for Scenario-3 (PP)
Mauchly's Test of Sphericityb
Measure:PP
Within Epsilon®
Subjects Mauchly's | Approx. Chi- Greenhouse-| Huynh- Lower-
Effect w Square df Sig. Geisser Feldt bound
METHODS],000 333,927 27(,000 311 344 ,143

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed

dependent variables is proportional to an identity matrix.

a. May be used to adjust the degrees of freedom for the averaged tests of significance.

Corrected tests are displayed in the Tests of Within-Subjects Effects table.

b. Design: Intercept
Within Subjects Design: METHODS
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Table A.19: Tests of Within-Subjects Effects of PP for Scenario-3

Tests of Within-Subjects Effects

Measure:PP
Type Il Sum Mean
Source of Squares df Square F Sig.
METHODS Sphericity
15,730 7 2,247 44,132 ,000
Assumed
Greenhouse-
) 15,730 2,175 7,231 44,132 ,000
Geisser
Huynh-Feldt 15,730 2,411 6,525 44,132 ,000
Lower-bound 15,730 1,000 15,730 44,132 ,000
Error(METHODS) Sphericity
8,198 161 ,051
Assumed
Greenhouse-
) 8,198 50,030 ,164
Geisser
Huynh-Feldt 8,198 55,449 ,148
Lower-bound 8,198| 23,000 ,356
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Table A.20: Pairwise Comparisons of the Methods with respect to PP for

Scenario-3

Pairwise Comparisons

Measure:PP
95% Confidence Interval for
0 ) Mean Difference®
METHODS METHODS| Difference (I-J) | Std. Error Sig.? Lower Bound | Upper Bound
oLS 2 -,265 ,052 ,000 -,373 -,156
3 -,242" ,054 ,000 -,355 -,130
4 -,294 ,049 ,000 -,395 -,193
5 -,315° ,048 ,000 -,415 -,215
6 -312° ,042 ,000 -,399 -,225
7 -,008 ,057 ,886 -127 110
8 579" ,068 ,000 439 719
LTS 1 265 ,052 ,000 ,156 373
3 022" ,008 ,010 ,006 ,039
4 -,030 ,056 ,600 -,145 ,085
5 -,050 ,050 ,326 -,154 ,053
6 -,047 ,035 ,193 -121 ,026
7 256" ,079 ,004 ,093 420
8 844" ,105 ,000 ,626 1,061
LMS 1 242" ,054 ,000 ,130 ,355
2 -,022" ,008 ,010 -,039 -,006
4 -,052 ,056 361 -,167 ,063
5 -,073 ,051 ,165 -,178 ,032
6 -,070 ,036 ,067 -,144 ,005
7 234" ,078 ,006 ,073 ,395
8 821" ,105 ,000 ,604 1,039
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Table A.20 (cont’d): Pairwise Comparisons of the Methods with respect to PP

for Scenario-3

M 1 294 ,049 ,000 ,193 ,395
2 ,030 ,056 ,600 -,085 ,145
3 ,052 ,056 361 -,063 167
5 -,021" ,007 ,011 -,036 -,005
6 -,018 021 415 -,062 ,027
7 286" ,084 ,002 113 ,459
8 873" ,088 ,000 692 1,055
MM 1 315" ,048 ,000 215 415
2 ,050 ,050 326 -,053 154
3 ,073 ,051 ,165 -,032 178
4 021" ,007 ,011 ,005 ,036
6 ,003 016 ,849 -,030 ,036
7 307 ,085 ,001 131 482
8 894 ,091 ,000 ,706 1,083
LAD 1 312° ,042 ,000 225 ,399
2 ,047 ,035 ,193 -,026 121
3 ,070 ,036 ,067 -,005 144
4 ,018 021 415 -,027 ,062
5 -,003 016 ,849 -,036 ,030
7 304" ,080 ,001 ,139 468
8 891 ,091 ,000 702 1,080
LOWESS 1 ,008 ,057 886 -,110 127
2 -,256" ,079 ,004 -,420 -,093
3 -,234° ,078 ,006 -,395 -,073
4 -,286" ,084 ,002 -,459 -113
5 -,307 ,085 ,001 -,482 -131
6 -,304" ,080 ,001 -,468 -,139
8 587" ,069 ,000 444 730
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Table A.20 (cont’d): Pairwise Comparisons of the Methods with respect to PP
for Scenario-3

MARS 1 -579° ,068 ,000 -, 719 -,439
2 -,844 ,105 ,000 -1,061 -,626
3 -821" ,105 ,000 -1,039 -,604
4 -873 ,088 ,000 -1,055 -,692
5 -,894° ,001 ,000 -1,083 -, 706
6 -,891° ,001 ,000 -1,080 -,702
7 -,587" ,069 ,000 -, 730 -,444

Based on estimated marginal means

*. The mean difference is significant at the ,05 level.

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no

adjustments).

Table A.21: Test of Sphericity for Scenario-3 (PO)
Mauchly's Test of Sphericityb

Measure:PO

Within Epsilon®

Subjects Mauchly's | Approx. Chi- Greenhouse-| Huynh- Lower-

Effect w Square df Sig. Geisser Feldt bound

METHODS],000 423,356 27(,000 ,185 ,191 ,143

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed

dependent variables is proportional to an identity matrix.

a. May be used to adjust the degrees of freedom for the averaged tests of significance.

Corrected tests are displayed in the Tests of Within-Subjects Effects table.

b. Design: Intercept
Within Subjects Design: METHODS
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Table A.22: Tests of Within-Subjects Effects of PO for Scenario-3

Tests of Within-Subjects Effects

Measure:PO
Type Il Sum Mean
Source of Squares df Square F Sig.
METHODS Sphericity
23,746 7 3,392 51,638 ,000
Assumed
Greenhouse-
23,746 1,294 18,352| 51,638 ,000
Geisser
Huynh-Feldt 23,746 1,339 17,740 51,638 ,000
Lower-bound 23,746 1,000 23,746 51,638 ,000
Error(METHODS) Sphericity
10,577 161 ,066
Assumed
Greenhouse-
10,577] 29,760 ,355
Geisser
Huynh-Feldt 10,577| 30,786 344
Lower-bound 10,577] 23,000 ,460
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Table A.23: Pairwise Comparisons of the Methods with respect to PO for

Scenario-3

Pairwise Comparisons

Measure:PO
95% Confidence Interval for
0 ) Mean Difference®
METHODS METHODS| Difference (I-J) | Std. Error Sig.? Lower Bound | Upper Bound
oLS 2 801 ,099 ,000 ,596 1,006
3 844" ,099 ,000 ,639 1,050
4 664" ,106 ,000 446 883
5 673" ,105 ,000 456 891
6 678" ,098 ,000 476 881
7 643 ,021 ,998 -,043 ,043
8 ,051 ,038 ,199 -,029 ,130
LTS 1 -,801° ,099 ,000 -1,006 -,596
3 044" ,006 ,000 ,032 ,055
4 -,136° ,038 ,002 -,215 -,058
5 127 ,034 ,001 -,197 -,058
6 -123" ,024 ,000 -172 -,073
7 -,801" ,099 ,000 -1,006 -,595
8 -,750° ,086 ,000 -,928 -573
LMS 1 -844" ,099 ,000 -1,050 -,639
2 -,044" ,006 ,000 -,055 -,032
4 -,180° ,034 ,000 -,251 -,109
5 -171 ,030 ,000 -,232 -,109
6 -,166° ,021 ,000 -,209 -124
7 -,844 ,100 ,000 -1,052 -,637
8 -794° ,085 ,000 -,969 -,618
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Table A.23(cont’d): Pairwise Comparisons of the Methods with respect to PO

for Scenario-3

M 1 -,664" ,106 ,000 -,883 -,446
2 136 ,038 ,002 ,058 215
3 ,180° ,034 ,000 ,109 251
5 ,009 ,007 226 -,006 024
6 ,014 ,017 422 -,021 ,048
7 -,664" ,110 ,000 -,891 -,438
8 -,614" ,090 ,000 -,800 -,428
MM 1 -673 ,105 ,000 -,891 -,456
2 127 ,034 ,001 ,058 197
3 171" ,030 ,000 ,109 232
4 -,009 ,007 226 -,024 ,006
6 ,005 ,012 ,709 -,021 ,030
7 -673" ,109 ,000 -,899 -,448
8 -,623" ,088 ,000 -,805 -,441
LAD 1 -678" ,098 ,000 -,881 -,476
2 123" ,024 ,000 073 172
3 166 ,021 ,000 124 ,209
4 -,014 ,017 422 -,048 ,021
5 -,005 ,012 ,709 -,030 ,021
7 -678" 1101 ,000 -,887 -,470
8 -,628" ,082 ,000 -797 -,458
LOWESS 1 -,643 021 ,998 -,043 ,043
2 801 ,099 ,000 ,595 1,006
3 844" ,100 ,000 637 1,052
4 664" ,110 ,000 438 ,891
5 673 ,109 ,000 448 ,899
6 678" 1101 ,000 470 887
8 ,051 ,051 335 -,056 157
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Table A.23(cont’d): Pairwise Comparisons of the Methods with respect to PO

for Scenario-3

MARS 1 -,051 ,038 ,199 -,130 ,029
2 750" ,086 ,000 ,573 ,928
3 794 ,085 ,000 ,618 ,969
4 614 ,090 ,000 428 ,800
5 623" ,088 ,000 441 ,805
6 628 ,082 ,000 ,458 797
7 -,051 ,051 ,335 -,157 ,056
Based on estimated marginal means
*. The mean difference is significant at the ,05 level.
a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no
adjustments).
Table A.24: Test of Sphericity for Scenario-3 (MSE)
Mauchly's Test of Sphericityb
Measure:MSE
Within Epsilon®
Subjects Mauchly's | Approx. Chi- Greenhouse-| Huynh- Lower-
Effect w Square df Sig. Geisser Feldt bound
METHODS ,000 615,444 271,000 152 153 ,143

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed

dependent variables is proportional to an identity matrix.

a. May be used to adjust the degrees of freedom for the averaged tests of significance.

Corrected tests are displayed in the Tests of Within-Subjects Effects table.

b. Design: Intercept
Within Subjects Design: METHODS
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Table A.25: Tests of Within-Subjects Effects of MSE for Scenario-3

Measure:MSE

Tests of Within-Subjects Effects

Type Il Sum Mean
Source of Squares df Square F Sig.
METHODS Sphericity
17,916 7 2,659 22,754 ,000
Assumed
Greenhouse-
) 17,916 1,062 16,871 22,754 ,000
Geisser
Huynh-Feldt 17,916 1,071 16,735 22,754 ,000
Lower-bound 17,916 1,000 17,916| 22,754 ,000
Error(METHODS) Sphericity
18,110 161 112
Assumed
Greenhouse-
) 18,110| 24,424 741
Geisser
Huynh-Feldt 18,110| 24,623 ,735
Lower-bound 18,110] 23,000 , 787
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Table A.26: Pairwise Comparisons of the Methods with respect to MSE for
Scenario-3

Measure:MSE

Pairwise Comparisons

%) Mean 95% Confidence Interval for

mn METH | Difference Difference”

METHODS ODS (I-9) Std. Error Sig.? Lower Bound Upper Bound

OLS 2 552 ,126 ,000 ,292 ,812
3 560" ,126 ,000 ,299 ,821
4 646 ,129 ,000 379 914
5 654" ,129 ,000 ,388 ,920
6 639 ,125 ,000 ,380 ,897
7 ,024 ,017 ,163 -,010 ,059
8 -,068 ,036 ,073 -,142 ,007

LTS 1 -,552" ,126 ,000 -,812 -,292
3 ,008" ,002 ,002 ,003 ,013
4 ,094 ,018 ,000 ,056 ,133
5 102" ,016 ,000 ,070 ,135
6 ,087" ,012 ,000 ,062 112
7 -,528 ,134 ,001 -,806 -,250
8 -619° ,129 ,000 -,887 -,352

LMS 1 -,560° ,126 ,000 -,821 -,299
2 -,008 ,002 ,002 -,013 -,003
4 086" ,017 ,000 ,050 ,122
5 ,094" ,014 ,000 ,065 124
6 079 ,011 ,000 ,057 ,101
7 -,536 ,135 ,001 -,815 -,257
8 -,628 ,129 ,000 -,895 -,360
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Table A.26 (cont’d): Pairwise Comparisons of the Methods with respect to
MSE for Scenario-3

M -,646 ,129 ,000 -,914 -,379
-,094" ,018 ,000 -,133 -,056

-,086° ,017 ,000 -122 -,050

,008 ,004 ,057 ,000 ,016

-,007 ,009 ,406 -,026 ,011

-622" ,139 ,000 -,909 -,336

- 714 134 ,000 -,992 -,436

MM -,654" 129 ,000 -,920 -,388
-102" ,016 ,000 -,135 -,070

-,094" ,014 ,000 -124 -,065

-,008 ,004 ,057 -,016 ,000

-,016° ,006 017 -,028 -,003

-,630" ,138 ,000 -,915 -,346

- 722 133 ,000 -,997 -, 447

LAD -,639° 125 ,000 -,897 -,380
-,087" ,012 ,000 -112 -,062

-,079 011 ,000 -,101 -,057

,007 ,009 406 -,011 ,026

016" ,006 017 ,003 ,028

-615 134 ,000 -,892 -,338

-,706° 129 ,000 -,974 -,439

LOWESS -,024 ,017 ,163 -,059 ,010
528" 134 ,001 250 ,806

536 135 ,001 257 815

622" ,139 ,000 336 ,909

,630° ,138 ,000 346 ,915

615 134 ,000 338 892

-,092" ,026 ,002 -,146 -,038
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Table A.26 (cont’d): Pairwise Comparisons of the Methods with respect to
MSE for Scenario-3

MARS 1 ,068 ,036 ,073 -,007 ,142
2 619" ,129 ,000 ,352 ,887
3 628" ,129 ,000 ,360 ,895
4 714 ,134 ,000 ,436 ,992
5 722" 133 ,000 447 ,997
6 706" 129 ,000 439 974
7 ,092 ,026 ,002 ,038 , 146
Based on estimated marginal means
*. The mean difference is significant at the ,05 level.
a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no
adjustments).
Table A.27: Test of Sphericity for Scenario-1 (Ratio of IMSE)
Mauchly's Test of Sphericityb
Measure:MEASURE_1
Within Epsilon®
Subjects Mauchly's [Approx. Chi- Greenhouse-| Huynh- Lower-
Effect w Square df Sig. Geisser Feldt bound
METHODS ,000 132,537 20 ,000 ,227 ,249 ,167

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed

dependent variables is proportional to an identity matrix.

a. May be used to adjust the degrees of freedom for the averaged tests of significance.

Corrected tests are displayed in the Tests of Within-Subjects Effects table.

b. Design: Intercept
Within Subjects Design: METHODS
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Table A.28: Tests of Within-Subjects Effects of the ratio of IMSE for

Tests of Within-Subjects Effects

Measure:MEASURE_1

Scenario-1

Type Il Sum Mean
Source of Squares df Square F Sig.
METHODS Sphericity
,663 6 ,110 7,378 ,000
Assumed
Greenhouse-
) ,663 1,365 ,486 7,378 ,011
Geisser
Huynh-Feldt ,663 1,492 444 7,378 ,008
Lower-bound ,663 1,000 ,663 7,378 ,020
Error(METHODS) Sphericity
,988 66 ,015
Assumed
Greenhouse-
) ,988| 15,014 ,066
Geisser
Huynh-Feldt ,988| 16,416 ,060
Lower-bound ,988| 11,000 ,090
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Table A.29: Pairwise Comparisons of the Methods with respect to the ratio of
IMSE for Scenario-1

Measure:MEASURE_1

Pairwise Comparisons

0 %) 95% Confidence Interval for

METHO METHO| Mean Difference Difference”

DS DS (I-9) Std. Error Sig.? Lower Bound Upper Bound

1 2 ,011 ,006 ,083 -,002 ,024
3 -192° ,058 ,007 -,319 -,065
4 -,158 ,054 ,014 -277 -,039
5 ,029 ,023 ,235 -,022 ,079
6 -,016 ,040 ,692 -,105 ,072
7 -162" ,038 ,001 -, 247 -,078

2 1 -,011 ,006 ,083 -,024 ,002
3 -,203 ,054 ,003 -321 -,085
4 -,169° ,050 ,006 -,278 -,060
5 ,018 ,020 ,385 -,025 ,061
6 -,027 ,044 547 -125 ,070
7 -173 ,042 ,002 -,265 -,082

3 1 192" ,058 ,007 ,065 ,319
2 203" ,054 ,003 ,085 321
4 034" ,008 ,001 ,017 ,050
5 221 ,043 ,000 126 315
6 176 ,088 071 -,017 ,369
7 ,030 ,074 ,697 -,134 ,194
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Table A.29 (cont’d):

Pairwise Comparisons of the Methods with respect to the

ratio of IMSE for Scenario-1

4 1 158" ,054 ,014 ,039 277
2 1169 ,050 ,006 ,060 278
3 -,034" ,008 ,001 -,050 -,017
5 187" ,038 ,000 ,103 271
6 142 ,084 ,118 -,042 326
7 -,004 071 ,956 -,159 151
5 1 -,029 ,023 235 -,079 ,022
2 -,018 ,020 385 -,061 ,025
3 -221 ,043 ,000 -,315 -,126
4 -187 ,038 ,000 -271 -,103
6 -,045 ,047 358 -,149 ,058
7 -191° ,040 ,001 -,278 -,104
6 1 ,016 ,040 692 -,072 ,105
2 ,027 ,044 547 -,070 125
3 -,176 ,088 071 -,369 017
4 -,142 ,084 ,118 -,326 ,042
5 ,045 ,047 358 -,058 ,149
7 -,146° ,027 ,000 -,206 -,086
7 1 162" ,038 ,001 ,078 247
2 173 ,042 ,002 ,082 ,265
3 -,030 074 697 -,194 134
4 ,004 071 ,956 -,151 ,159
5 1917 ,040 ,001 ,104 278
6 146" ,027 ,000 ,086 206

Based on estimated marginal means

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no

adjustments).

*. The mean difference is significant at the ,05 level.
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Table A.30: Test of Sphericity for Scenario-2 (ratio of IMSE)

Mauchly's Test of Sphericityb

Measure:MEASURE_1

. a
Within Epsilon
Subjects Mauchly's [Approx. Chi- Greenhouse-| Huynh- Lower-
Effect W Square df Sig. Geisser Feldt bound
METHODS|,000 144,937 20|,000 ,372 ,440 ,167

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed

dependent variables is proportional to an identity matrix.

a. May be used to adjust the degrees of freedom for the averaged tests of significance.

Corrected tests are displayed in the Tests of Within-Subjects Effects table.

b. Design: Intercept
Within Subjects Design: METHODS

Table A.31: Tests of Within-Subjects Effects of the ratio of IMSE for
Scenario-2

Tests of Within-Subjects Effects

Measure:MEASURE_1

Type Il Sum Mean
Source of Squares df Square F Sig.
METHODS Sphericity
4,692 6 ,782 3,880 ,002
Assumed
Greenhouse-
) 4,692 2,231 2,103 3,880 ,027
Geisser
Huynh-Feldt 4,692 2,639 1,777 3,880 ,020
Lower-bound 4,692 1,000 4,692 3,880 ,068
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Table A.31 (cont’d): Tests of Within-Subjects Effects of the ratio of IMSE for

Scenario-2
Error(METHODS) Sphericity
18,138 90 ,202
Assumed
Greenhouse-
) 18,138| 33,471 ,542
Geisser
Huynh-Feldt 18,138| 39,592 ,458
Lower-bound 18,138] 15,000 1,209

Table A.32: Pairwise Comparisons of the Methods with respect to the ratio of
MSE for Scenario-2

Measure:MEASURE_1

Pairwise Comparisons

0 ) 95% Confidence Interval for

METHO METHO| Mean Difference Difference”

DS DS (1-9) Std. Error Sig.* Lower Bound Upper Bound

1 2 ,195 129 151 -,080 469
3 517 216 ,030 ,057 ,976
4 576 ,205 ,013 ,139 1,012
5 553" 212 ,020 ,100 1,005
6 276 220 229 -,193 746
7 5117 206 ,025 ,072 ,950

2 1 -,195 129 151 -,469 ,080
3 322" 1102 ,006 ,105 ,539
4 381 ,084 ,000 ,201 561
5 358" ,088 ,001 170 546
6 ,082 213 707 -,373 ,536
7 316 117 ,016 ,068 565
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Table A.32 (cont’d):

Pairwise Comparisons of the Methods with respect to the

ratio of MSE for Scenario-2

3 1 -517" 216 ,030 -,976 -,057
2 -322° ,102 ,006 -,539 -,105
4 ,059 ,059 331 -,066 ,184
5 ,036 ,058 544 -,088 ,160
6 -,240 ,205 258 -677 ,196
7 -,006 ,089 ,951 -,195 ,184
4 1 -576 205 ,013 -1,012 -,139
2 -,381° ,084 ,000 -,561 -,201
3 -,059 ,059 331 -,184 ,066
5 -,023 ,016 182 -,058 ,012
6 -,299 220 1194 -,769 ,170
7 -,065 ,078 421 -,231 ,102
5 1 -,553" 212 ,020 -1,005 -,100
2 -,358" ,088 ,001 -,546 -,170
3 -,036 ,058 544 -,160 ,088
4 ,023 ,016 182 -,012 ,058
6 -,276 229 247 -,765 213
7 -,042 ,088 644 -,230 147
6 1 -,276 220 229 -, 746 ,193
2 -,082 213 707 -,536 373
3 240 205 258 -,196 677
4 299 220 ,194 -,170 769
5 276 229 247 -,213 765
7 235 178 207 -,145 614

124




Table A.32 (cont’d): Pairwise Comparisons of the Methods with respect to the

ratio of MSE for Scenario-2

7 1 -511" ,206 ,025 -,950 -,072
2 -,316’ 117 ,016 -,565 -,068
3 ,006 ,089 ,951 -,184 ,195
4 ,065 ,078 421 -,102 ,231
5 ,042 ,088 ,644 -,147 ,230
6 -,235 ,178 ,207 -,614 ,145

Based on estimated marginal means

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no

adjustments).

*. The mean difference is significant at the ,05 level.
Table A.33: Test of Sphericity for Scenario-3 (ratio of the IMSE)

Mauchly's Test of Sphericityb

Measure:MEASURE_1

Within Epsilon®

Subjects Mauchly's [Approx. Chi- Greenhouse-| Huynh- Lower-

Effect w Square df Sig. Geisser Feldt bound

METHODS],000 412,578 20{,000 ,208 ,215 ,167

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed

dependent variables is proportional to an identity matrix.

a. May be used to adjust the degrees of freedom for the averaged tests of significance.

Corrected tests are displayed in the Tests of Within-Subjects Effects table.

b. Design: Intercept
Within Subjects Design: METHODS
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Table A.34: Tests of Within-Subjects Effects of the ratio of the MSE for

Tests of Within-Subjects Effects

Measure:MEASURE_1

Scenario-3

Type Il Sum Mean
Source of Squares df Square F Sig.
METHODS Sphericity
14,355 6 2,392 21,389 ,000
Assumed
Greenhouse-
) 14,355 1,250 11,479 21,389 ,000
Geisser
Huynh-Feldt 14,355 1,288 11,146| 21,389 ,000
Lower-bound 14,355 1,000 14,355| 21,389 ,000
Error(METHODS) Sphericity
15,436 138 112
Assumed
Greenhouse-
) 15,436| 28,761 ,537
Geisser
Huynh-Feldt 15,436| 29,622 521
Lower-bound 15,436] 23,000 ,671
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Table A.35: Pairwise Comparisons of the Methods with respect to the ratio of
MSE for Scenario-3

Measure:MEASURE_1

Pairwise Comparisons

0 %) 95% Confidence Interval for

METHO METHO|Mean Difference Difference”

DS DS (I-9) Std. Error Sig.? Lower Bound Upper Bound

1 2 011 ,004 ,017 ,002 ,019
3 ,103" ,039 ,014 ,023 ,182
4 1157 ,036 ,004 ,041 ,189
5 113" ,032 ,002 ,046 ,180
6 -,399° ,132 ,006 -,673 -,126
7 -,695 ,160 ,000 -1,026 -,364

2 1 -,011" ,004 ,017 -,019 -,002
3 ,092 ,036 ,018 ,017 ,167
4 105" ,033 ,005 ,035 174
5 11027 ,030 ,002 ,041 ,164
6 -,410° ,130 ,004 -,679 -,141
7 -, 706 ,158 ,000 -1,033 -,378

3 1 -,103" ,039 ,014 -,182 -,023
2 -,092" ,036 ,018 -,167 -,017
4 ,013 ,006 ,061 ,000 ,026
5 ,010 ,013 ,435 -,017 ,037
6 -,502" 111 ,000 -, 732 -,272
7 -,798 ,146 ,000 -1,100 -,495
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Table A.35 (cont’d): Pairwise Comparisons of the Methods with respect to the

ratio of MSE for Scenario-3

4 1 -115° ,036 ,004 -,189 -,041
2 -,105 ,033 ,005 -174 -,035
3 -,013 ,006 ,061 -,026 ,001
5 -,002 ,008 788 -,019 ,014
6 -515 ,109 ,000 -,739 -,290
7 -,810° 144 ,000 -1,107 -513
5 1 -113 ,032 ,002 -,180 -,046
2 -,102° ,030 ,002 -,164 -,041
3 -,010 013 435 -,037 017
4 ,002 ,008 788 -,014 ,019
6 -512" ,108 ,000 -,736 -,289
7 -,808" 142 ,000 -1,102 -514
6 1 399 132 ,006 126 673
2 410" ,130 ,004 141 679
3 502" 111 ,000 272 732
4 515" ,109 ,000 290 739
5 512" ,108 ,000 289 736
7 -,295° 072 ,000 -,444 -,147
7 1 695 ,160 ,000 364 1,026
2 706 158 ,000 378 1,033
3 798 146 ,000 495 1,100
4 810 144 ,000 513 1,107
5 808" 142 ,000 514 1,102
6 295 072 ,000 147 444

Based on estimated marginal means
*. The mean difference is significant at the ,05 level.

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no

adjustments).
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APPENDIX B

MODEL SELECTION AND RESIDUAL ANALYSIS FOR THE
ORIGINAL DATA

B.1. Model Selection Output for the Original Data without Making any

Transformation

Stepwise Regression: y2(p)-azot versus x2; x3; ...

Alpha-to-Enter: 0,15 Alpha-to-Remove: 0,15

Response is y2(p)-azot on 35 predictors, with N = 92

Step 1 2 3 4 5 6
Constant -0,04380 0,51583 1,05162 0,81391 1,56444 1,63715
X22 0,00398 0,00370 0,00365 0,00323 0,00331 0,00362
T-Value 4,44 4,21 4,23 3,79 3,93 4,21
P-value 0,000 0,000 0,000 0,000 0,000 0,000
x14 -0,113 -0,113 -0,125 -0,117 -0,116
T-Value -2,51 -2,57 -2,92 -2,75 -2,74
P-value 0,014 0,012 0,004 0,007 0,008
X9 -0,167 -0,253 -0,259 -0,273
T-Value -2,16 -3,07 -3,18 -3,36
P-value 0,034 0,003 0,002 0,001
X8 0,0146 0,0156 0,0177
T-Value 2,55 2,75 3,05
P-value 0,012 0,007 0,003
X29 -0,25 -0,22
T-Value -1,78 -1,59
P-value 0,079 0,114
x12 -0,00064
T-Value -1,55
P-value 0,126
S 0,0507 0,0492 0,0483 0,0468 0,0462 0,0459
R-Sq 17,96 23,39 27,24 32,30 34,70 36,48
R-Sq(adj) 17,05 21,67 24,75 29,19 30,90 32,00
Mallows C-p 13,2 8,5 5,7 1,5 0,5 0,3
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Step 7 8 9

Constant 0,3583 0,3453 0,2595
Xx22 0,00333 0,00369 0,00363
T-Value 3,83 4,12 4,08
P-value 0,000 0,000 0,000
x14 -0,118 -0,111 -0,105
T-Value -2,81 -2,66 -2,52
P-value 0,006 0,009 0,014
X9 -0,288 -0,300 -0,315
T-Value -3,55 -3,71 -3,89
P-vValue 0,001 0,000 0,000
X8 0,0171 0,0173 0,0196
T-Value 2,99 3,04 3,34
P-vValue 0,004 0,003 0,001
X29 -0,32 -0,35 -0,38
T-Value -2,12 -2,35 -2,52
P-value 0,037 0,021 0,014
x12 -0,00071 -0,00076 -0,00077
T-Value -1,73 -1,85 -1,90
P-value 0,087 0,067 0,061
X26 0,00120 0,00130 0,00138
T-Value 1,63 1,77 1,88
P-value 0,108 0,081 0,063
X36 -1,21 -1,25
T-Value -1,50 -1,56
P-value 0,136 0,124
x34 -0,49
T-Value -1,47
P-Value 0,147
S 0,0454 0,0451 0,0448
R-Sq 38,42 40,05 41,58
R-Sq(adj) 33,29 34,28 35,17
Mallows C-p -0,1 -0,1 0,0

Regression Analysis: y2(p)-azot versus x8; x9; ...

The regression equation is
y2(p)-azot = 0,345 + 0,0173 x8 - 0,300 x9 - 0,000756 x12 - 0,111 x14
+ 0,00369 x22 + 0,00130 x26 - 0,352 x29 - 1,21 x36

Predictor Coef SE Coef T P
Constant 0,3453 0,9414 0,37 0,715
X8 0,017339 0,005697 3,04 0,003
X9 -0,29974 0,08084 -3,71 0,000
x12 -0,0007558 0,0004079 -1,85 0,067
x14 -0,11147 0,04185 -2,66 0,009
X22 0,0036923 0,0008965 4,12 0,000
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x26 0,0012979 0,0007353 1,77 0,081

x29 -0,3520 0,1498 -2,35 0,021

x36 -1,2142 0,8074 -1,50 0,136

S = 0,0451005 R-Sq = 40,1% R-Sq(adj) = 34,3%

Analysis of Variance

Source DF SS MS F P

Regression 8 0,112805 0,014101 6,93 0,000

Residual Error 83 0,168826 0,002034

Total 91 0,281632

Source DF Seq SS

X8 1 0,007593

X9 1 0,024676

x12 1 0,001304

x14 1 0,027176

x22 1 0,036651

X26 1 0,001512

x29 1 0,009294

Xx36 1 0,004601

Unusual Observations

Obs x8 y2(p)-azot Fit SE Fit Residual St Resid
16 40,8 0,28570 0,11454 0,01541 0,17116 4,04R
17 39,8 0,20000 0,09243 0,01116 0,10757 2,46R
45 39,0 0,00000 0,03226 0,02710 -0,03226 -0,89 X
49 38,2 0,00000 -0,02771 0,03478 0,02771 0,97 X
52 35,0 0,00000 0,00667 0,02970 -0,00667 -0,20 X
71 39,6 0,00000 0,09361 0,01499 -0,09361 -2,20R
78 40,5 0,29060 0,11242 0,01381 0,17818 4,15R
88 39,0 0,10560 0,01395 0,01506 0,09165 2,16R

R denotes an observation with a large standardized residual.
X denotes an observation whose X value gives it large influence.
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Residual Plots for y2(p)-azot
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Figure B.1: Residual Plots for the Original Data with 92 observations without
Making Transformation

132



B.2. Model Selection Output for the Original Data with Making Logit
Transformation

Stepwise Regression: LOGITY?2 versus x2; x3; ...

Alpha-to-Enter: 0,15 Alpha-to-Remove: 0,15

Response is LOGITY2 on 35 predictors, with N = 92

Step 1 2 3 4
Constant -5,5917 -7,3578 3,1234 0,7232
Xx22 0,146 0,130 0,129 0,119
T-Value 8,37 7,33 7,40 6,76
P-value 0,000 0,000 0,000 0,000
x19 0,115 0,118 0,114
T-Value 2,93 3,07 3,01
P-value 0,004 0,003 0,003
X9 -3,3 -3,3
T-Value -2,20 -2,22
P-value 0,030 0,029
X28 0,175
T-Value 1,99
P-Value 0,049
S 0,989 0,950 0,930 0,914
R-Sq 43,75 48,69 51,38 53,50
R-Sq(adj) 43,12 47,54 49,72 51,36
Mallows C-p 13,0 6,2 3,3 1,5

Regression Analysis: LOGITY?2 versus x9; x19; x22; x28

The regression equation is
LOGITY2 = 0,72 - 3,26 x9 + 0,114 x19 + 0,119 x22 + 0,175 x28

Predictor Coef SE Coef T P
Constant 0,723 4,875 0,15 0,882
X9 -3,258 1,470 -2,22 0,029
x19 0,11433 0,03800 3,01 0,003
x22 0,11946 0,01768 6,76 0,000
xX28 0,17540 0,08796 1,99 0,049

S = 0,914286 R-Sq = 53,5% R-Sq(adj) = 51,4%

Analysis of Variance
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Source DF
Regression 4
Residual Error 87
Total 91
Source DF Seq SS
X9 1 4,686
x19 1 28,350
X22 1 47,315
x28 1 3,324
Unusual Observations
Obs X9 LOGITY2
16 3,21 -0,3980
21 3,23 -4,0000
22 3,18 -4,0000
70 3,15 -4,0000
71 3,19 -4,0000
72 3,26 -4,0000
77 3,16 -0,7270
78 3,17 -0,3876
R denotes
X denotes

SS
83,675
72,725

156,400

Fit
-2,7830
-2,0690
-1,7981
-1,6953
-1,7263
-1,4408
-2,5885
-2,2078

MS

F

P

20,919 25,02 0,000

0,836

SE Fit
0,2138
0,2153
0,1754
0,3277
0,3840
0,3663
0,1202
0,1913

Residual
2,3850
-1,9309
-2,2019
-2,3047
-2,2736
-2,5592
1,8615
1,8202

St

Resid
2,68R
-2,17R
-2,45R
-2,70R
-2,74RX
-3,06R
2,05R
2,04R

an observation with a large standardized residual.
an observation whose X value gives it large influence.
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Figure B.2: Residual Plots for the Original Data with 92 observations with

Making Logit Transformation
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B.3. Model Selection Output for the Original Data with Deleting
Outliers without Making any Transformation

Stepwise Regression: y2(p)-azot versus x2; x3; ...

Alpha-to-Enter: 0,15 Alpha-to-Remove: 0,15

Response is y2(p)-azot on 35 predictors, with N = 84

Step 1 2 3 4 5
Constant -0,03151 0,45003 0,71027 0,95893 0,99699
x22 0,00284 0,00271 0,00236 0,00215 0,00229
T-Value 4,84 4,81 4,09 3,67 3,89
P-value 0,000 0,000 0,000 0,000 0,000
X9 -0,150 -0,138 -0,147 -0,145
T-Value -2,88 -2,69 -2,88 -2,87
P-value 0,005 0,009 0,005 0,005
x20 -0,0071 -0,0068 -0,0060
T-Value -2,10 -2,02 -1,80
P-Value 0,039 0,046 0,075
x11 -0,0110 -0,0114
T-Value -1,67 -1,75
P-Value 0,099 0,083
X3 -0,0019
T-Value -1,47
P-Value 0,145
S 0,0304 0,0291 0,0285 0,0282 0,0280
R-Sq 22,25 29,47 33,15 35,43 37,18
R-Sq(adj) 21,30 27,73 30,64 32,16 33,16
Mallows C-p 6,0 0,0 -2,0 -2,6 -2,5

Regression Analysis: y2(p)-azot versus x3; x9; x11; x20; x22

The regression equation is
y2(p)-azot = 0,997 - 0,00190 x3 - 0,145 x9 - 0,0114 x11 - 0,00605 x20
+ 0,00229 x22

Predictor Coef SE Coef T P
Constant 0,9970 0,2515 3,96 0,000
X3 -0,001896 0,001286 -1,47 0,145
X9 -0,14507 0,05062 -2,87 0,005
x11 -0,011429 0,006514 -1,75 0,083
x20 -0,006047 0,003354 -1,80 0,075
Xx22 0,0022914 0,0005888 3,89 0,000

S = 0,0280148 R-Sq = 37,2% R-Sg(adj) = 33,2%
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Analysis of Variance

Source DF SS MS F P
Regression 5 0,0362341 0,0072468 9,23 0,000
Residual Error 78 0,0612166 0,0007848

Total 83 0,0974507

Source DF Seq SS

x3 1 0,0008638

X9 1 0,0088952

x11 1 0,0072507

x20 1 0,0073377

X22 1 0,0118867

Unusual Observations

Obs x3 y2(p)-azot Fit SE Fit Residual St Resid
23 33,7 0,09900 0,04308 0,00589 0,05592 2,04R
66 33,7 0,00010 0,05596 0,01098 -0,05586 -2,17R
71 32,0 0,15790 0,04923 0,00710 0,10867 4,01R
74 33,7 0,16540 0,05738 0,00740 0,10802 4 ,00R
82 34,0 0,11610 0,04792 0,00596 0,06818 2,49R

R denotes an observation with a large standardized residual.

Residual Plots for y2(p)-azot
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Figure B.3: Residual Plots for the Original Data by Deleting outliers without
Making any Transformation
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APPENDIX C

REPEATED ANOVA RESULTS FOR THE COMPARISON OF THE
OLS, HUBERM, LAV AND LTS REGRESSION METHODS

Table C.1: Test of Sphericity for the Industrial Data with respect to MSE

Measure:MEASURE_1

Mauchly's Test of Sphericity”

H a
Within Epsilon
Subjects Mauchly's [Approx. Chi- Greenhouse-| Huynh- Lower-
Effect W Square df Sig. Geisser Feldt bound
METHODS|,000 5 .1,395 ,637 ,333

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed

dependent variables is proportional to an identity matrix.

a. May be used to adjust the degrees of freedom for the averaged tests of significance.

Corrected tests are displayed in the Tests of Within-Subjects Effects table.

b. Design: Intercept
Within Subjects Design: METHODS
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Table C.2: Tests of Within-Subjects Effects with respect to MSE for the

Industrial Data

Tests of Within-Subjects Effects

Measure:MEASURE_1

Type Il Sum Mean
Source of Squares df Square F Sig.
METHODS Sphericity
,213 3(,071 2,008(,214
Assumed
Greenhouse-
) ,213 1,186(,180 2,008(,283
Geisser
Huynh-Feldt ,213 1,911},111 2,008(,252
Lower-bound ,213 1,000(,213 2,008(,292
Error(METHODS) Sphericity
,212 6(,035
Assumed
Greenhouse-
) ,212 2,371{,089
Geisser
Huynh-Feldt 212 3,822(,055
Lower-bound 212 2,000(,106
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Table C.3: Test of Sphericity for the Industrial Data with respect to R?

Measure:MEASURE_1

Mauchly's Test of Sphericity®

. a
Within Epsilon
Subjects Mauchly's [Approx. Chi- Greenhouse-| Huynh- Lower-
Effect W Square df Sig. Geisser Feldt bound
METHODS|,000 5 .],606 1,000,333

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed

dependent variables is proportional to an identity matrix.

a. May be used to adjust the degrees of freedom for the averaged tests of significance.

Corrected tests are displayed in the Tests of Within-Subjects Effects table.

b. Design: Intercept
Within Subjects Design: METHODS
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Table C.4: Tests of Within-Subjects Effects with respect to R* for the

Industrial Data

Tests of Within-Subjects Effects

Measure:MEASURE_1

Type lll Sum Mean
Source of Squares df Square F Sig.
METHODS Sphericity
,049 3(,016 4,723],051
Assumed
Greenhouse-
,049 1,819(,027 4,723],098
Geisser
Huynh-Feldt ,049 3,000(,016 4,723],051
Lower-bound ,049 1,000(,049 4,723],162
Error(METHODS) Sphericity
,021 6,003
Assumed
Greenhouse-
,021 3,637(,006
Geisser
Huynh-Feldt ,021 6,000(,003
Lower-bound ,021 2,000(,010
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