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ABSTRACT

ENTANGLEMENT TRANSFORMATIONS AND QUANTUM ERROR
CORRECTION

Gül, Yusuf

Ph.D., Department of Physics

Supervisor : Prof. Dr. Namık Kemal Pak

July 2009, 77 pages

The main subject of this thesis is the investigation of the transformations of pure

multipartite entangled states having Schmidt rank 2 by using only local operations

assisted with classical communications (LOCC). A new parameterization is used for

describing the entangled state of p particles distributed to p distant, spatially separated

persons. Product, bipartite and truly multipartite states are identified in this new

parametrization. Moreover, alternative parameterizations of local operations carried

out by each party are provided. For the case of a deterministic transformation to

a truly multipartite final state, one can find an analytic expression that determines

whether such a transformation is possible. In this case, a chain of measurements by

each party for carrying out the transformation is found. It can also be seen that,

under deterministic LOCC transformations, there are some quantities that remain

invariant. For the purpose of applying the results of this thesis in the context of the

quantum information and computation, brief reviews of the entanglement purification,

measurement based quantum computation and quantum codes are given.

Keywords: Quantum information theory, quantum computation, entanglement.
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ÖZ

DOLANIKLIK DÖNÜŞÜMLER VE KUANTUM HATA DÜZELTME

Gül, Yusuf

Doktora, Fizik Bölümü

Tez Yöneticisi : Prof. Dr. Namık Kemal Pak

Temmuz 2008, 77 sayfa

Bu tezin konusu rankı iki olan çok partili saf dolanık durumların dönüşümlerinin klasik

iletişimle desteklenen yerel ölçümler kullanılarak sorgulanmasıdır. Uzaysal olarak

ayrık, birbirinden uzak p kişiye p parçası dağıtılarak elde edilen dolanıklık durumlarını

belirten yeni bir parametrizasyon geliştirildi. Bu yeni parametrizazyon da çarpımlı,

ikili ve tamamen parçalı durumlar tanımlandı. Ayrıca her bir parti tarafından yapılan

lokal operasyonların parametrizasyonu geliştirildi. Tamamen parçalı son durumlara

belirlenebilir dönüşümler yapılırken böyle bir dönüşümün mümkün olup olmadığını

belirten analitik ifade bulunabileceği gösterildi. Bu durumda, dönüşümü yapmak için

her parti tarafından yapılan bir ölçümler zinciri bulundu. Yine görülüyor ki, belir-

lenebilir dönüşümler altında bazı değerler değişmez olarak kalıyor. Bu tezin sonuçlarını

kuvantum bilgi ve hesaplama alanında uygulamak amacıyla, dolanıklık saflaştırması,

ölçüm temelli kuvantum hesaplama ve kuvantum kodları gözden geçirildi.

Anahtar Kelimeler: Kuantum bilgi kuramı, kuantum hesaplama, dolanıklık.
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ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 ENTANGLEMENT TRANSFORMATIONS AND ERROR CORREC-
TION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Entanglement Transformations . . . . . . . . . . . . . . . . . 9

2.2 Entanglement Purification and Error Correction . . . . . . . . 14

2.3 Measurement Based Quantum Computation . . . . . . . . . . 16

3 RANK TWO ENTANGLEMENT TRANSFORMATIONS . . . . . . . 18

3.1 The Description of the States and the Local Operations . . . . 18

3.1.1 The parametrization of states . . . . . . . . . . . . . 18

3.1.2 LU equivalence . . . . . . . . . . . . . . . . . . . . . 21

3.1.3 Measurements by a Single Party . . . . . . . . . . . . 27

3.1.4 Some monotones . . . . . . . . . . . . . . . . . . . . 34

3.1.5 The Ability of a Single Party to Obtain a Product State 34

3.2 Deterministic Transformations of States by Many Parties . . . 35

3.2.1 Deterministic transformation into states with vanish-
ing cosine . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.2 An alternative parametrization of complex numbers . 38

3.2.3 Transformations from states with non-zero cosines . . 40

3.2.4 Transformations from states with vanishing cosines to
those without any . . . . . . . . . . . . . . . . . . . . 45

vii



3.2.5 Invariants under deterministic LOCC transformations 46

4 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

APPENDICES

A TENSOR PRODUCTS . . . . . . . . . . . . . . . . . . . . . . . . . . 61

A.1 Representing Composite States in Quantum Mechanics . . . . 61

A.2 Operators and Tensor products . . . . . . . . . . . . . . . . . 62

B QUANTUM CODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

B.1 Quantum Information and Error Correction . . . . . . . . . . 63

B.2 Error Group and Stabilizer States . . . . . . . . . . . . . . . . 66

B.3 Non-Binary Quantum Stabilizer Codes and Quantum Codes
from AG Codes . . . . . . . . . . . . . . . . . . . . . . . . . . 72

CURRICULUM VITAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

viii



CHAPTER 1

INTRODUCTION

The classical theory of computing is based on the Church-Turing principle. In Turing’s

terms, this principle can be expressed as,

“Every function which would naturally be regarded as computable can be computed

by the universal Turing machine”.

In this statement the model of computation is classical and any stage of computation

is described by numbers. These numbers are used in specification of the state of the

computation which is measurable in physical sense.

As the computers get smaller and smaller with the advent of technology, one encoun-

ters with new challenges of these scales, namely the new laws and rules of the quantum

mechanics. But, in the quantum model as well as the classical one, Turing machine

cannot be described by Church- Turing principle since the statement “Every function

which would naturally be regarded as computable” need a concrete definition for being

natural and computable. For any function to be computable, this statement should

be modified in accordance with the physical nature of the quantum mechanics which

describes the state of the computation with its own rules which are different from the

classical computation model.

The construction of the classical reversible machine [4,5] equivalent to Turing ma-

chine made the Quantum mechanics important for computational tasks. Benioff [1]

constructed the reversible Turing machines based on the unitary evolution of quantum

system. But this was a quantum machine, not a quantum computer. Feynman [2],

in his seminal paper, introduced universal quantum simulator which consists of a lat-

tice of spin system with nearest-neighbour interactions. This quantum simulator has
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great advantage over classical ones in speeding up the computations using quantum

parallelism in quantum Turing machine. In quantum parallelism, one can use several

computational bases at the same time and this makes quantum computers much more

powerful than the classical ones. Later, Deutsch [3] expressed the computational task

as the programs which are the symbolic representations of some laws of the physics.

In this framework, instead of Turing-Thesis describing any function as naturally com-

putable, he treats computational task as the simulation of one physical process by

another. This physical approach to the computing and the challenge of manufactur-

ing the universal quantum computing machines placed Quantum mechanics at the

center of the studies in the new computation and information [6-9].

Entanglement, quantum correlations and interferences [14-22], which have no classical

counterparts, lead us to new directions in the realm of computing machines. En-

tanglement is observed in composite systems; the basis of the Hilbert space of this

composite system is described by tensor product of the basis of the Hilbert spaces

of individual subsystems. The general state of the composite system is described as

the superposition of the bases of individual systems. A composite system is called

entangled or non-separable state if one cannot write it in the tensor product of the

basis of the Hilbert spaces of subsystems. On the contrary, non-entangled states are

separable. The non-classical properties of entangled states are shown by Einstein-

Podolsky and Rosen. Thought in the context of the principles of special theory of

relativity, these authors concluded that quantum mechanics is incomplete on the ba-

sis of the reality and locality assumptions. That is, if one can predict the value of a

physical quantity with certainty, then this value has physical reality and, nothing is

faster than the speed of light in the transmission of the results of the local operations

acting in the state space of the individual subsystems. Contrary to Einstein’s local

realism, standard quantum mechanics accept the wavefunction as mathematical tool,

not as a physical reality. The non-local property of quantum mechanics comes from

the predictions of the correlations and there is no influence of the measurement per-

formed on the one system over the others. If there is no a priori assigned values of the

composite system shared by many parties, then one cannot predict the values of the

results of the measurements of the others. Assuming the EPR argument is true, Bell

obtained inequalities which shows that the predictions of quantum mechanics con-

2



tradicts possibility of the existence of Einstein’s local realism. Quantum mechanics

introduce the correlations obtained from the result of the measurements of the en-

tangled states. These correlations between distant parties make quantum information

non-local and help us overcome some limitations of classical information [10-13]. As

in the Young’s double slit experiment, probabilistic nature of quantum mechanics lead

us to use destructive and constructive interferences in entangled states. Together with

the correlations, interferences is used in implementing the quantum algorithms.

Following the EPR argument, Entanglement transformations play an important role

in understanding the nature of entanglement. Combining with the Local Operations

and Classical Communication protocols (LOCC), they help us understand the physical

nature of the theory of quantum information and computation. One particular form

of entanglement transformations is called entanglement distillation. These are stud-

ied widely in quantum information theory to obtain Einstein-Podolsky-Rosen (EPR)

pairs from an ensemble of entangled states [27-30]. Deterministic entanglement trans-

formations are described as the transformations such that the conversion probability

between entangled states is unity. When the entanglement transformations are not

succeeded with unity, i.e, conversion probability between entangled states is not unity,

they are called probabilistic transformations. In the deterministic transformations for

bipartite states, two parties , say Alice and Bob spatially separated from each other,

can convert one entangled state into the other with certainty by Local Operations and

Classical Communications (LOCC), where each party is only allowed to act on his own

subsystem locally . The conditions for deterministic entanglement transformations for

pure bipartite entangled states are obtained using the linear algebraic majorization

theory [41].

With the exception of the bipartite entangled states, multipartite states are not entan-

gled in a straight manner. Classifications and characterizations of them are required

to be employed for quantum informational tasks. Due to the subtle properties of

multipartite entangled states, the challenge with the multipartite entanglement trans-

formations concentrated on the quantification of entanglement [31-38] and possible

conversion protocols between them [39-44]. As a most commonly studied multipar-
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tite entangled states in quantum information and computation, Greenberger-Horne-

Zeilinger (GHZ) states and W-states are three particle entangled states and all en-

tangled states are obtained from these states. But one cannot obtain these two states

from each other. Reducibilities, equivalences, and partial entropies of a pair of mul-

tipartite pure states and exact reducibilities between GHZ and EPR states are given

in [45]. Allowing each party to make a local operation and to communicate classically

with the rest of the parties leads a splitting of the subsequent processes into several

branches. Each branch corresponds to the entangled states. Along the particular

branches, transformations between entangles states are succeeded with some proba-

bility. In each round of these processes, success probabilities of converting entangled

states depends on the previous local operations. In this manner stochastic LOCC is

studied in [46]. Performing LOCC individual positive operator-valued measurements

is applied in subsystem of each parties and optimal distillation of (GHZ) state from

an arbitrary pure state is obtained by one successful branch protocols [47].

The employment of entangled states and their conversion makes new directions in

quantum informational tasks, namely transmission of quantum information by using

entanglement as a resource. In the transmission of quantum information through a

communication channel, quantum data compression [27] and quantum teleportation

[28] play a central role. In quantum data compression, transmission of a quantum

information through channel is carried out by quantum states and quantified by the

fidelity which measures resemblance of input quantum states to the output quantum

states . In quantum teleportation, entanglement shared by the sender and receiver via

a noisy channel is used as the source for information transmission. Both techniques

suffer from noise as well as imperfect operations in communication channels and com-

putation processes. In quantum informational tasks, entanglement purification com-

bined with quantum teleportation appears as a good candidate to generate entangled

states with perfect entanglement. In quantum teleportation, entangled states shared

by distant parties (say Alice and Bob) behave as a communication channel. When

we send maximally entangled qubits over noisy channel, it is not easy to obtain max-

imally entangled qubits at the output. For these non-maximally entangled qubits one

finds non-unit fidelity. Entanglement purification [28,30,48] helps us to increase the
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fidelity of some of these qubits at the expense of decreasing the number of maximally

entangled qubits by concentrating or distilling the entanglement of the total ensemble

into much less number of copies at the output. Experiments [49-54] with photons and

atoms, and entanglement swapping [55-59] gives new insights in entanglement based

quantum communication and computational applications. Entanglement purification

is mostly used in quantum repeater [58-67] for long distance communication and quan-

tum computation in which gates are teleportation-based [68-71]. In the multipartite

case, entanglement purification protocols are constructed by Graph states and sta-

bilizers [72-74]. Since imperfections in measurement processes plays very important

role in the one-way quantum computation model [75-77], entanglement purification

becomes an efficient tool in fault-tolerant quantum computation [78].

As another employment of entanglement in quantum informational and computa-

tional tasks, one can use entanglement in encoding the information and reach efficient

quantum codes using the physical nature of information and computation. In both

encoding and error syndrome processes entanglement becomes crucial and in spite of

the No-Cloning theorem [24-27] quantum error correction is constructed [79-84]. The

complete processes of the encoding and decoding is described by the quantum restora-

tion circuits [85,86]. Using the parallelism with the classical error correcting codes,

quantum codes are obtained by the Calderbank-Shor-Steane (CSS) construction [82-

84] and the stabilizer states [99-102] for binary case. The extension to non-binary case

is done by orthogonal geometry [87-90,98,103] and algebraic geometry [91-97].

In encoding the information in a quantum system, one can use both entanglement and

entanglement transformations as physical resource.

In the first case, logical qubits obtained by entanglement in quantum network model

consist of the quantum gates. Due to the collapse of the wavefunction, a quantum

measurement alters the quantum state by projecting it into one of the eigenstates and

it is impossible to distinguish two non-orthogonal states transformed by two different

error operators. Shor noticed the role of the entanglement in encoding and decoding

stages of quantum information. In the encoding stage, as in the classical error cor-

5



rection, he used the physical qubits with a definite initial state in adding redundancy

to the information qubits. Then, making these local auxiliary qubits entangled with

the information qubits, he obtained the logical qubits. One can make a local auxiliary

qubit entangled with its system qubit and the global state becomes an entangled state

between the system and the auxiliary qubits. For example, in one qubit error cor-

rection case, the logical qubits are GHZ-states. In the decoding stage, measurement

is used to detect the error syndrome on the particular qubit. To overcome the col-

lapse of the wavefunction in the measurement processes, he used the ancillary qubits.

These ancillary qubits are just local auxilary qubits with initial states as in the encod-

ing stages. Making these ancillary qubits entangled with the logical qubits, he made

measurements on the ancillary qubits instead of the information qubits. Then, in

detecting the error syndrome, he used the correlations coming from the entanglement

between these ancillary and logical qubits. This approach, in the terminology of Shor,

is called ”fight entanglement with entanglement”, contains mainly two entanglement

generation processes. That is, Entangling one qubit with (n-1) qubits, and entangling

these n qubits with ancilla qubits and constructing error syndrome by correlations and

without measurement. These items above are combined in Quantum restoration cir-

cuits containing both encoding and decoding stages. Parity of the n-qubit is given as

the eigenvalue of the operator σz,1, σz,2, , , , σz,n where +1 corresponds to even parity

and −1 corresponds to odd parity in error syndrome detection. Together with LOCC,

this makes restoration circuits capable of error correction on logical qubits. In this

framework, the logical qubits appear as entangled multipartite entangled states and

the complete process of transmission of logical qubits via restoration circuits can be

treated as conversion of the entangled states into each other. In the same way, due

to the error correction capability of these restoration circuits, the logical qubits are

treated as quantum error correcting codes. This makes our treatment possible for two

things, namely entanglement transformations, and the quantum codes.

In the second case, cluster qubits take the place of logical qubits of the first case.

Connection between entanglement transformations and quantum codes is constructed

by quantum simulation following Feynman universal quantum simulator. First, con-

sider a d-dimensional lattice containing arrays of the interacting particles described
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by Ising model. These states are called cluster states and both entangled and prod-

uct states are obtained from cluster states using transformations by LOCC. For such

an entanglement transformation Cluster of qubits and measurements satisfy maximal

connectedness and persistency of entanglement. Namely, the set of n-qubits in a multi-

partite state is maximally connected if a pure Bell state is obtained by tracing out the

other qubits. And, persistency of entanglement gives us the number of local measure-

ments to make the entangled state completely disentangled. To obtain Bell state from

these n-qubit state, LOCC on selective qubits is carried out and correlations are used

for persistency of entanglement.One qubit measurements transforms the cluster states

into product states, and this is used once. Because of the irreversible character of

this scheme, it is called one-way quantum computer. Cluster states can be described

easily by mathematical graph theory. Introducing the vertices of a graph as local

quantum system, say qubits, and the edges as two particle interactions we can use

graph theory in quantum mechanics. The Ising model interactions can be described

in graph formalism and its eigenvalues lead us to the stabilizer formalism. When we

use graphs in quantum algorithms, we obtain the quantum state as the stabilizer code.

This thesis mainly concentrated on the nature of the entanglement and its transfor-

mations following physical description of Feynman and Deutsch about the information

and computation. In chapter II, we investigate the entanglement purification which

is used to obtain entangled states from mixed states and its applications in quantum

communication on long distances under noise effects and measurement based quantum

computation. This chapter only contains the technical review that motivates us to

study the topics in chapter three. In chapter III, we investigate rank two entanglement

transformations for deterministic case. In the case of deterministic transformations of

states by many parties, we considered the general LOCC transformation by successive

measurements of all parties. Each step in the process consists of a local measurement

by a party (say the kth) and the announcement of the measurement result to the

other parties by classical communication. Two or more successive measurements by

the same party can always be considered as a single measurement. For this reason,

it can be assumed that two successive local operations are carried out by different

parties.
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After each local measurement, classical information is sent to the other parties. All

of the parties may use this information for applying a local unitary to their particles

in order to change their states to some standard state.

Apart from that, the classical communication is used for parties to choose their local

measurements depending on the results of the previous measurements. For example,

suppose that the first party has done the very first local measurement and obtained

a particular result, say `1. Then, the party that will make the second measurement

and the measurement itself will be chosen depending on the value of `1. Similarly,

after the second measurement is done and the result `2 is obtained, the third party

and her measurement will be chosen depending on the value of (`1, `2), etc. In this

way, several measurements will be made until the time when it is stopped. Obviously,

the number of measurement steps at the stopping point may also be dependent on

the measurement results. It should also be obvious that any party may do several

measurements until the last step is reached.
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CHAPTER 2

ENTANGLEMENT TRANSFORMATIONS AND

ERROR CORRECTION

2.1 Entanglement Transformations

A quantum state |Ψ〉 ∈ H is separable if it can be factorized as [9-11]

|Ψ〉 = ⊗ni=1|ψi〉, |ψi〉 ∈ Hi (2.1)

where

H = ⊗ni=1Hi. (2.2)

If it cannot be factored as (2.1), it is called entangled.

When the system is composed of two subsystem A and B, one can write the state of

this composite system as

|Ψ〉AB =
dA∑
i=1

dB∑
j=1

Cij |ai〉A|bj〉B ∈ H = HA ⊗HB (2.3)

where {|ai〉A} ∈ HA and {|bj〉B} ∈ HB are the orthonormal bases with dimension dA

and dB respectively.

Using the biorthonormal decomposition, namely Schmidt decomposition, one can write

the state |Ψ〉AB in terms of the orthonormal vectors {|uk〉A} ∈ HA and {|vk〉B} ∈ HB.

as

|Ψ〉AB =
r∑
k

√
wk|uk〉A|vk〉B, wk > 0,

r∑
k

wk = 1 (2.4)

The coefficients wk are called Schmidt weights and r < d = min {dA, dB} is the

Schmidt rank of the state |Ψ〉AB.

9



In quantum computational and informational tasks, the most commonly used entan-

gled states are EPR or Bell-states

|Φ±〉 =
1√
2

[|01〉 ± |10〉] (2.5)

|Ψ±〉 =
1√
2

[|00〉 ± |11〉] (2.6)

and GHZ-states

|GHZ〉 =
1√
2

[|000〉 ± |111〉] (2.7)

Now, let us consider the Bell state [10,12,13,104,105]

|ψ〉 =
1√
2

(|00〉+ |11〉) (2.8)

which is pure state with the corresponding density matrix ρ = |ψ〉〈ψ| belongs to

H = H1 ⊗H2 Hilbert space of bipartite system of parties 1 and 2

ρ =
1
2


1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

 . (2.9)

The partial trace of it becomes

ρ1 = tr2ρ =
1
2

 1 0

0 1

 (2.10)

Since ρ1 6= ρ2
1 it’s a mixed state and this shows that a pure bipartite state ρ is trans-

formed to a maximally mixed state ρ1 belonging to the subsystem H1.

Thinking about the previous transformation from pure to the mixed state, purification

can be seen as to find a pure density matrix of the two subsystems whose partial trace

over the second system gives the density matrix of the given system.

Different from the purification of a mixed state [40], entanglement purification proto-

cols (EPP) are schemes which are used for the distillation of pure Bell states from the

mixed states which occurs during the transmission of the pure entangled state through
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noisy quantum channels [28,29.30,35,39]. Enhancing the classical Communication be-

tween two parties, these protocols are considered as one-way classical communication

(1-EPP) and two-way classical communication (2-EPP) purification protocols in which

each party is allowed to apply the local Unitary transformation in his/her own sub-

system [30].

One-way classical communication (1-EPP) entanglement purification protocols play

an important role in preparing maximally entangled states for Quantum Teleportation

[23,29,30,35,39] to use as a quantum communication channel. Entanglement Concen-

tration and it’s inverse process entanglement dilution [29] are the protocols which

are used to concentrate the entanglement in any pure bipartite state into maximally

entangled states by Local Operations and Classical Communications (LOCC). For a

given initial entangled state |ψAB〉, the final state |ψ′AB〉 is prepared by LOCC and

the entanglement is quantified by its entropy of entanglement [31-38]

E(|ψAB〉) = S(ρA) = S(ρB) (2.11)

where

S(ρ) = −Trρlog2ρ (2.12)

is the von Neumann entropy.

Now, we assume n-partly entangled state is distributed among two parties each having

the n-subsystem and they become sharing nE initial entanglement [29]. The initial

entangled state is described by

|Ψ〉⊗n = (α|0〉1i|0〉2i + β|1〉1i|1〉2i)
⊗
n. (2.13)

The coefficients of the superposition becomes using binomial terms αn−kβk and allow-

ing each party to perform local unitaries and measurement on their own subsystems

we see that the probability distribution of getting the output k is

pk = C(n, k)(α2)n−k(β2)k (2.14)

binomial where

11



C(n, k) =
n!

k!(n− k)!
. (2.15)

After performing the measurement two parties are left with maximally entangled state

which has more entropy of entanglement than the initial state. Besides this entan-

glement entropy, the expected entropy is bounded by initial pure state entropy E(Ψ)

and E(Ψ) −H where H is the Shannon entropy. In asymptotic case the fidelity and

probability reaches unity.

Two-way classical communication (2 − EPP ) purification protocols can be used to

distill the pure maximally entangled states and to classify the entanglement transfor-

mation between pure entangled states by using the majorization theory from linear

algebra [41].

Theorem(Nielsen): A pure bipartite entangled state |ψ〉 is transformed to another

pure bipartite state |φ〉 by LOCC iff

λψ ≺ λφ (2.16)

where λψ = trA|ψ〉〈ψ| and λφ = trA|φ〉〈φ| are the eigenvalues of the reduced density

matrices of the states.

Proof of this theorem directly leads following the facts about existence of some math-

ematical preliminaries

1.Existence of the equivalence between the one-way and two- way classical communi-

cation protocols

2. For some unitary operator U, any matrix A is written as A =
√
AA†U.

3. Vector of eigenvalues of ρ
′

=
∑
piUiρUi is majorized by the vector eigenvalues of ρ.

4. x ≺ y implies the existence of the matrix D such that x = Dy
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5. Repeated use of the Schmidt decomposition is allowed.

Consider the states

|ψ〉 =
√

0.6|11〉+
√

0.3|22〉+
√

0.1|33〉 (2.17)

|φ〉 =
√

0.15|11〉+
√

0.7|22〉+
√

0.15|33〉 (2.18)

Taking the trace over first subsystem A trA|ψ〉〈ψ| = 0.6|1〉〈1| + 0.3|2〉〈2| + 0.1|3〉〈3|

and trA|φ〉〈φ| = 0.15|1〉〈1|+ 0.7|2〉〈2|+ 0.15|3〉〈3| leads to the majorization relation in

terms of the ordered list


0.6

0.3

0.1

 ⊀


0.15

0.70

0.15

 . (2.19)

Since Nielsen’s theorem is not satisfied we cannot do an entanglement transformation.

The motivation behind to the attempt to classify the three and more qubit entangled

state in an equivalence classes [45,46,47] stem from the fact that all entangled pure

states of two qubits are equivalent to the Einstein-Podolski-Rosen (EPR) state. For

three qubit states, there exist equivalence between truly tripartite entangled pure

states and the Greenberger-Horne-Zeilinger (GHZ) state

|GHZ〉 =
1√
2

(|000〉+ |111〉) (2.20)

or W-states.

|W 〉 =
1√
3

(|001〉+ |010〉+ |100〉). (2.21)

These two states are inacessible from each other by LOCC even for a small probabil-

ity, whereas we can obtain EPR pair from both of the GHZ and W-states. Although

there is an equivalence between pure bipartite states and EPR states in asymptotic

case, for entanglement shared between three or more parties it is not easy to find such

an equivalence in asymptotic case by LOCC. This makes us to use LOCC without

13



imposing certainty called Stochastic LOCC(SLOCC) [46,47].

In conversion protocol of the pure multipartite states we are interested branches in-

stead of one-way and two-way protocols in pure multipartite states. Since each party

use LOCC in his own subsystem one by one and communicate by the other parties

classically, in conversion of multipartite entangled state the sequence of applications

of local unitaries and measurements become dependent to the last parties results.

This histories of applications will be described as branch which occurs with a finite

probability among the others.

Under SLOCC we would convert a three qubit entangled state |ψ〉 into |φ〉 with some

probability by the local unitaries such that

|φ〉 = A⊗B ⊗ C|ψ〉 (2.22)

where in each round operators act its own subsystem sequentially appearing as a

branch to complete the process. To reach a two way convertibility between three

qubit states |ψ〉 and |φ〉 reduced density matrices of each parties should have rank two

density matrices which implies the existence of the inverse operators of A, B, C.

2.2 Entanglement Purification and Error Correction

Entanglement purification in the presence of errors appears as the production of less

number of distilled finite block of EPR pairs which are much more entangled but less

than the possible entangled states [30,110]. In quantum error correction redundancy is

added to the information qubit and from a finite block of encoded n-qubits we obtain

correction for k-qubits compared for which k is less than n. This parallelism make the

derivation of Quantum Error Correction Codes (QECC) from 1− EPP. Equivalence

of the 1− EPP to quantum error correction is given in for the Pauli-diagonal channel

N =
3∑

k=0

pkσkρσk (2.23)

and a mixed state

Ê = I ⊗N(|Φ〉〈Φ|) (2.24)
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obtained from the output of the channel through which a part of a maximally en-

tangled state Φ is sent. Distillable entanglement in one way protocol and channel

capacity are the same when there is equivalence between them.

When we use quantum repeater [59-66], the effects of errors on entanglement connec-

tion appears due to both imperfect local operations and measurements, for example,

the local two-qubit unitary operator Uij acting on state ρ is described as

UijρU
†
ij → (1− β)UijρU

†
ij +

β

4
Trijρ⊗ Iij (2.25)

where β is the error probability, Trijρ is the partial trace over the subsystem i and

j and Iij is the identity matrix. In terms of the measurement error probability δ the

projective measurement operator is written as

Po = (1− δ)|0〉〈0|+ δ|1〉〈1| (2.26)

for the state |0〉 and in terms of the the memory error probability µ = 1− e−γτc ≈ γτc

ρ→ (1− µ)ρ+
µ

2
Triρ⊗ Ii (2.27)

Triρ is the partial trace over the subsystem i and Ii is the identity matrix for subsystem

i.

The encoding in quantum repeater [107] with repetition code is done by the CSS codes

and using the logical qubit

|0̃〉 = |000〉 and |1̃〉 = |111〉 (2.28)

the encoding process is taken in three steps:

1. Generation of encoded Bell pair

|Φ̃+〉12 =
1√
2

(|0̃〉1|0̃〉2 + |1̃〉1|1̃〉2) (2.29)

between neighboring stations 1 and 2 where three for memory qubits and three for

ancillary qubits. In memory qubits we prepare 1√
2
(|0̃〉1 + |1̃〉1) and |0̃〉1. In ancillary

qubits, we generate three copies of physical Bell pairs ( |0〉1|0〉2+|1〉1|1〉2√
2

)⊗3 and we im-

plement the teleportation controlled-NOT (CNOT) gates on memory qubits. Then

we obtain the encoded Bell pair by the transformation

1√
2

(|000〉1 + |111〉1)⊗ |000〉1 →
1√
2

(|000〉1|000〉2 + |111〉1|111〉2) (2.30)
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for stations 1, 2 and generalize it to the neighboring stations j and j+1 for j = 2, .., L−1

by |Φ̃+〉i,j+1.

2. Connection of entanglement between encoded Bell pairs ˜|Φ
+
〉12 and ˜|Φ

+
〉23 referring

the right and left encoding blocks by 2a and 2b on the mid station 2

3. Station 2 announce the outcomes of the Bell measurements.

These three step for quantum repeater can be generalized from three-qubit repetition

code to any [n, k, 2t + 1] CSS code which contains two two classical error correcting

codes CX and CZ and error syndrome for them are obtained by measurements in the

X or Z basis.

2.3 Measurement Based Quantum Computation

In measurement based computation information is stored in cluster states [75,76]. In

writing information into the cluster states we use an ensemble of qubits located on a

d-dimensional lattice with sides a and the interaction of the qubits are described by

the Hamiltonian

Hint = ~g(t)
∑
a,a
′

f(a− a′)1 + σ
(a)
z

2
1− σ(a)

z

2
(2.31)

which is equivalent to the quantum Ising model. g(t)f(a − a′)describes the coupling

strength. In quantum information this interaction describes the simultaneous condi-

tional phase gates between gates at sites a and a
′
.and read out by the one-particle

measurements. Corresponding to the interaction Hamiltonian (2.24) the cluster states

are written as

|Φ〉C =
⊗
c∈C

(|0〉c ⊗γ∈Γ σ
(c+γ)
z + |1〉c) (2.32)

with the convention that σ(c+γ)
z ≡ 1 when c+ γ /∈ C.

These cluster states satisfy the set of eigenvalue equations

Ka|Φ〉C = κ|Φ〉C (2.33)

where

Ka = σ(a)
x ⊗γ∈Γ∪−Γ σ

(a+γ)
z (2.34)
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for a ∈ C and Γ ∪ −Γ specifies the sites of all qubits which interacts with a.

To transform these entangled cluster states into a Bell state we measure all qubits in

the neighborhood of the the path P ⊂ C connecting the sites c and c′ for c, c′ ∈ C.

Besides the Bell states, using LOCC, one can obtain the class of the multipartite states

|Ψ〉 = α|00...0〉+ β|11...1〉 (2.35)

where for the values α = β = 1√
2
, GHZ-states are obtained.

The stabilizer states corresponds to the κ = (−1)Ka value and the eigenvalue equation

is written in the form

Ka|Φ〉C = (−1)κa |Φ〉C (2.36)

where κa ∈ 0, 1 and this allows us to write graphs states in the form

σ(a)
x ⊗ (σ(b)

z )Γab |Φ〉C = (−1)κa |Φ〉C (2.37)

where a,b are the edges of the graphs which are occupied by the qubits and Γab is the

adjacency matrix taking values only 0 and 1. In this way we treat the cluster states

particular case of graph states.
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CHAPTER 3

RANK TWO ENTANGLEMENT

TRANSFORMATIONS

3.1 The Description of the States and the Local Operations

Any local operation on a rank-2 state transforms it either to a rank-2 state or to a

product state. Hence, analyzing the possible effects of local measurements on these

states are somewhat simpler than the ones on other multipartite entangled states. The

main goal of this section is to understand the LOCC-convertibility properties of the

rank-2 states. In other words, given a rank-2 state |ψ〉, under which cases are these

p parties able to transform it to another given rank-2 state |φ〉 by LOCC? LOCC

convertibility can be studied for deterministic transformations where a single final

state |φ〉 is desired to be produced with probability 1, or for probabilistic transforma-

tions where a number of different final states are needed to be produced with known

probabilities.

In order to be able to study the LOCC transformations, it is necessary to have a good

parametrization of the rank-2 states and the local operations that can be applied on

them. For this purpose, we first start with the description of a possible parametrization

of rank-2 states.

3.1.1 The parametrization of states

By definition, any rank-2 state |ψ〉 can be expressed in the form

|ψ〉 =
1√
N

(|α1 ⊗ α2 ⊗ · · · ⊗ αp〉+ z|β1 ⊗ β2 ⊗ · · · ⊗ βp〉) (3.1)
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where |αk〉 and |βk〉 are normalized states in the Hilbert space Hk of the particle

possessed by the party-k, where their relative phases are adjusted suitably such that

they have a real, non-negative inner product ck = 〈αk|βk〉 (i.e., ck ≥ 0), and z is a

complex number. Here N is the normalization factor

N = 1 + |z|2 + c1c2 · · · cp(z + z∗) . (3.2)

The overall phase of the state |ψ〉 can be eliminated by absorbing it into the overall

phase of a pair {|αk〉, |βk〉} for one of the parties without any problem.

Apart from the individual states used, this state depends on one complex parameter z,

and p real parameters c1, . . . , cp, the cosines, which are numbers from the closed [0, 1]

interval. The collection of these parameters will be denoted by λ = (z; c1, c2, . . . , cp).

The (p + 1)-tuple λ will be considered as a point in a space Λ which is essentially

C× [0, 1]p. However, there are a few adjustments that need to be made before defining

the space Λ precisely. First, if |ψ〉 is a rank-2 state, then the complex number z has

to be non-zero. However, treating the product states (i.e., rank-1 states) by the same

parametrization has some advantages. For this reason, we tend to include z = 0

values as possible values of this parameter. Moreover, the value z = ∞ should also

be included as a possible value for this parameter, for which case |ψ〉 is again a

product state. In other words, the parameter z can be chosen from the extended

complex numbers C′ = C ∪ {∞}. Apart from this, note that the point λ0 = (z =

−1; c1 = 1, . . . , cp = 1) cannot possibly be identified with a state. As a result, we

exclude this point from Λ. Hence, the parameter space Λ is defined as Λ = C′ ×

[0, 1]p \ {(−1; 1, 1, . . . , 1)}. Consequently, any rank-2 or rank-1 state can be expressed

by using a point λ in the space Λ.

At this point, it is appropriate to describe various types of states represented as points

in Λ. There are essentially three types of states that can be described as a point in

Λ. (1) The first one of these are the product states. These are included as points in Λ

for completeness, due to the fact that some local operations produce them. (2) Next,

bipartite entangled states between any two parties (say party-k1 and party-k2) can

also be described as a point in Λ. For such states, the other parties are unentangled.

For these states, it turns out that the cosines can be chosen in a multitude of different

ways which turns out to be a nuisance. (3) The rest of the states will be called as
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truly multipartite states. Any state which is not a product or a bipartite entangled

state will be considered as truly multipartite. In this case, there are at least three

parties which are entangled.

The following set of rules gives us the conditions which enables us to recognize the

type of the state from the parametrization. Let λ = (z; c1, c2, . . . , cp).

(1) The point λ corresponds to a product state if either (i) z = 0, or (ii) z = ∞

or (iii) cosines are 1 for at least p − 1 parties. (Example: The following points

for three-partite states correspond to product states: λ1 = (0; 0.2, 0.3, 0.4), λ2 =

(∞; 0.2, 0.3, 0.4), λ3 = (5 + i; 0.2, 1, 1), λ4 = (5 + i; 1, 1, 1).)

(2) The point λ corresponds to a bipartite entangled state if z 6= 0,∞ and the

cosines are equal to 1 for exactly p−2 parties. For example, for a bipartite state

between parties k1 and k2, only the cosines ck1 and ck2 are different from 1; the

rest of the cosines should be 1. (Example: λ5 = (5 + i; 0.2, 0.3, 1) is a bipartite

entangled state between party-1 and party-2.)

(3) The point λ corresponds to a truly multipartite state if z 6= 0,∞ and the

cosines ck are less than 1 for three or more parties. (Example: λ6 = (5 +

i; 0.2, 0.3, 0.4) is a truly multipartite entangled state. Similarly the state λ7 =

(5 + i; 0.2, 0.3, 0.4, 1, 1, 1) is also truly multipartite entangled. The point λ7 cor-

responds to a state for 6 parties, but in this special case the last three parties

are unentangled. )

The rules above can easily be justified in terms of the concurrences of a given state.

Concurrence for party k is simply defined as the concurrence of the state |ψ〉 considered

as an entangled state between party-k and the rest. It is defined as

Ck = 2
√

det ρ(k) (3.3)

where ρ(k) is the reduced density matrix of the state |ψ〉 for the party k, which is given

by ρ(k) = tr1,2,...,k−1,k+1,...,p|ψ〉〈ψ|. It is straightforward to compute the concurrences

for the state in Eq. (3.1) as

Ck =
2|z|
√

1− c2
k

√
1− (c1 · · · ck−1ck+1 · · · cp)2

N
. (3.4)
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The non-zero value of the concurrence Ck is an indication that the kth particle is

entangled with the others. In other words, Ck = 0 if and only if party-k is unentangled.

Note that for z 6= 0,∞, the concurrence Ck can be non-zero if and only if ck < 1 and

there is another cosine which is less than 1.

It is obvious that the cases z = 0 and z = ∞ gives product states. For the case for

which z 6= 0,∞ we have the following possibilities: (1) If all cosines are 1, or if only

one of them is less than 1, then all concurrences vanish, C1 = · · · = Cp = 0, and the

state is a product state. (2) If only two cosines, say ck1 and ck2 are less than 1, then

Ck1 = Ck2 are nonzero and the rest of the concurrences vanish, in which case we have

a bipartite entangled state between parties k1 and k2. (3) Finally, if three or more

cosines are less than 1, then the concurrence Ck will be non-zero if and only if ck < 1.

Hence all parties with a cosine less than 1 are entangled. Since there are at least three

entangled parties, this is a truly multipartite state.

3.1.2 LU equivalence

Next, we need to provide a description of local unitary (LU) equivalence between states

that are expressed by using the parametrization given above. We say that two states

|ψ〉 and |φ〉 are LU-equivalent, if we can find local unitary operators Vk on each local

Hilbert space Hk such that |ψ〉 = (V1 ⊗ · · · ⊗ Vp)|φ〉. Obviously, LU-equivalent states

can be converted into each other by LOCC, with necessary local quantum operations

being the indicated unitaries. The opposite is also true. If two states |ψ〉 and |φ〉 are

LOCC-convertible into each other, in other words if

• |ψ〉 can be transformed into |φ〉 by LOCC and

• |φ〉 can be transformed into |ψ〉 by LOCC,

then |ψ〉 and |φ〉 are LU equivalent [28,30].

It is straightforward to show that any two states described by the same parameter

λ = (z; c1, . . . , cp) are LU-equivalent. Such states differ only in the pairs of states

{|αk〉, |βk〉} chosen from Hk and the inner-product preserving property of the unitary

operators immediately leads to the LU-equivalence. Hence, the points λ of Λ denotes
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a collection states which are all LU-equivalent. Such states are all LU-equivalent to

the following representative state

|Φ(λ)〉 =
1√
N(λ)

(
|0⊗ 0⊗ · · · ⊗ 0〉+ z|wc1 ⊗ wc2 ⊗ · · · ⊗ wcp〉

)
(3.5)

where |wck〉 = ck|0〉+
√

1− c2
k|1〉 and

N(λ) = 1 + |z|2 + c1c2 · · · cp(z + z∗) (3.6)

Apart from this, it is possible to express the same state by using two different points,

say λ and λ′. Expressed in a different way, there might be different points λ and λ′

of Λ such that the representative states |Φ(λ)〉 and |Φ(λ′)〉 are LU-equivalent. We

will say that the points λ and λ′ are (LU) equivalent if this happens and denote it as

λ ∼ λ′. Our job is now to express this relation in terms of the individual z and cosine

parameters.

For any given point λ of Λ, let us define its “conjugate” λ̂ by

if λ = (z; c1, c2, . . . , cp) then λ̂ = (
1
z

; c1, c2, . . . , cp) . (3.7)

It can be seen easily that λ ∼ λ̂. It turns out that, for most points of the space

Λ, the corresponding equivalence class is formed by this pair of points. But there

are exceptions. Below, the precise criteria for deciding whether two given points

of Λ are equivalent are given. Once this equivalence relation is handled, the set of

equivalence classes Λ/ ∼ is identical with the set of LU-equivalence classes of states.

The solution of the LOCC convertibility problem should obviously be expressed in

terms of these equivalence classes. In other words, instead of saying that a state |ψ〉

can be LOCC converted to another state |φ〉, we will always be saying that an LU-

equivalence class of states can be LOCC-converted to another LU-equivalence class.

This makes Λ/ ∼ as the central mathematical object that should be used for describing

LOCC convertibility property of states. (However, due to its simplicity, it might still

be easier to work with Λ rather than Λ/ ∼.)

For determining whether two given points, say λ = (z; c1, c2, . . . , cp) and λ′ = (z′; c′1, c
′
2, . . . , c

′
p)

are LU-equivalent, we make use of the types of these states. The rules of LU-

equivalence can be summarized as follows.
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(1) if λ is product state, then λ ∼ λ′ if and only if λ′ is a product state. This is a

rather obvious statement.

(2) If λ is a bipartite entangled state between party-k and party-`, then λ ∼ λ′ if

and only if λ′ is also a bipartite state between the same parties and they have

the same “concurrence”, in other words

|z|
√

1− c2
k

√
1− c2

`

N(λ)
=
|z′ |
√

1− c′2k
√

1− c′2`
N(λ′)

(3.8)

This result is also straightforward.

(3) If λ is truly multipartite then λ ∼ λ′ if and only if (a) the corresponding cosines

are identical (i.e., ck = c′k for all k) and (b) the following condition holds for z

depending on whether there is a vanishing cosine:

(i) when no cosines vanish, either z′ = z or z′ = 1/z,

(ii) when there is a vanishing cosine, either |z′| = |z| or |z′| = 1/|z|.

(Examples: The only other point λ1 = (1+i; 0.2, 0.3, 0.4) is equivalent to is λ̂1 =

((1−i)/2; 0.2, 0.3, 0.4). However, the point λ2 = (1+i; 0, 0.3, 0.4) has a vanishing

cosine and therefore λ2 is equivalent to all points of the form (
√

2eiθ; 0, 0.3, 0.4)

and of the form (eiθ/
√

2; 0, 0.3, 0.4) for all θ. In this case, the equivalence class

of λ2 contains infinitely many points. Finally, the point λ3 = (1; 0.2, 0.3, 0.4) is

equivalent only to itself. Similarly, λ4 = (−1; 0.2, 0.3, 0.4) is also equivalent only

to itself.)

Although the statements for the product and bipartite states looks rather straightfor-

ward, it is still necessary to provide a proof for the case of truly multipartite states.

The following lemma covers this case but it is also valid for a larger class of entangled

states having larger Schmidt ranks.

Lemma: Let |ψ〉 be a state of p particles which is expressed as

|ψ〉 =
r∑
i=1

|ϕ(1)
i ⊗ ϕ

(2)
i ⊗ · · · ⊗ ϕ

(p)
i 〉 (3.9)

where, for each k, F (k) =
{
|ϕ(k)

1 〉, |ϕ
(k)
2 〉, . . . , |ϕ

(k)
r 〉
}

is a set of r non-zero vectors from

the Hilbert space Hk. Then the following statements hold.

(a) If there is a party ` where the set F (`) is linearly independent, then the set of

r vectors
{
|ϕ(1)
i ⊗ ϕ

(2)
i ⊗ · · · ⊗ ϕ

(p)
i 〉
}r
i=1

is also linearly independent. Moreover,
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for any party k other than the `th, the support of the reduced density matrix of

the kth party is the same as the linear span of F (k). (i.e., ∀k 6= `, supp ρ(k) =

spanF (k).)

(b) If there are at least two parties `1 and `2 where the sets F (`1) and F (`2) are both

linearly independent, then |ψ〉 has Schmidt rank r.

(c) If there are at least three parties `1, `2 and `3 where the sets F (`1), F (`2) and

F (`3) are all linearly independent, then the expression of |ψ〉 as a superposition

of r product states is unique. In other words, if |β(k)
i 〉 are vectors such that

|ψ〉 =
r∑
i=1

|β(1)
i ⊗ β

(2)
i ⊗ · · · ⊗ β

(p)
i 〉 (3.10)

then there is a permutation Q of r objects such that for any i = 1, . . . , r we have

|β(1)
i ⊗ β

(2)
i ⊗ · · · ⊗ β

(p)
i 〉 = |ϕ(1)

Qi ⊗ ϕ
(2)
Qi ⊗ · · · ⊗ ϕ

(p)
Qi 〉 . (3.11)

It should be noted that the vectors |ϕ(k)
i 〉 are not required to be normalized; they just

need to be non-zero. Any linear coefficient should be considered to be absorbed into

one of these vectors. Basically, depending on the number of parties k where F (k) are

linearly independent, we make progressively stronger claims detailed above.

Proof: First we show (a). Let us assume that ` = 1 without loss of generality. Let us

suppose that there are numbers a1, a2, . . . , ar such that

r∑
i=1

ai|ϕ(1)
i ⊗ ϕ

(2)
i ⊗ · · · ⊗ ϕ

(p)
i 〉 = 0 . (3.12)

Let |Θ〉 be any vector in the Hilbert space of all parties except the 1st, i.e., |Θ〉 ∈

⊗k 6=1Hk. Then, the above expansion leads to

r∑
i=1

|ϕ(1)
i 〉

(
ai〈Θ|ϕ(2)

i ⊗ · · · ⊗ ϕ
(p)
i 〉
)

= 0 . (3.13)

But, as the set F (1) is linearly independent, we should have ai〈Θ〉ϕ
(2)〉⊗···⊗ϕ(p)

i
i = 0 for

all i and for all |Θ〉. Now, since we can choose |Θ〉 to be equal to |ϕ(2)
i ⊗· · ·⊗ϕ

(p)
i 〉, the

only way all of these terms to be zero is that we have a1 = a2 = · · · = ar = 0. In other

words, the set of vectors
{
|ϕ(1)
i ⊗ ϕ

(2)
i ⊗ · · · ⊗ ϕ

(p)
i 〉
}r
i=1

are linearly independent.
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To show the second part, let us suppose that k = 2 without loss of generality (these

assumptions are made to simplify the notation). The reduced density matrix for the

second party is

ρ(2) =
r∑

i,j=1

Sji|ϕ(2)
i 〉〈ϕ

(2)
j | . (3.14)

where S is the overlap matrix given by Sij = 〈χi|χj〉 where |χi〉 = |ϕ(1)
i ⊗ ϕ

(3)
i ⊗

· · · ⊗ ϕ(p)
i 〉. Now, by applying the same argument above, we can see that the set of

r-vectors {|χi〉}ri=1 is also linearly independent. Therefore, the overlap matrix S is

strictly positive definite. From the expression of ρ(2), it is obvious that the support

of ρ(2) is included in spanF (2). To show that these two subspaces are identical, let

us suppose the contrary. Let |ϕ′〉 be a non-zero vector in spanF (2) but orthogonal

to the support of ρ(2). Then, at least one of bi = 〈ϕ(2)
i |ϕ′〉 is non-zero and therefore

〈ϕ′|ρ(2)|ϕ′〉 =
∑

ij Sjib
∗
jbi > 0, which is a contradiction. This then shows that the two

subspaces are identical, i.e., supp ρ(2) = spanF (2).

As a side remark, it should be noted that the set F (2) can possibly be linearly depen-

dent, in which case dim spanF (2) < r. The proof above only shows that the subspace

spanned by the non-zero eigenvectors of ρ(2) is the same as the subspace spanF (2).

Hence, the matrix rank of ρ(2) is the same as the number of linearly independent

vectors in F (2).

We then continue with part (b). Since there are at least two parties where the asso-

ciated set of vectors F (`1) and F (`2) are linearly independent, the conclusion in part

(a) can be extended to all parties. In other words, for any k (including k = `1 and

k = `2) we have supp ρ(k) = spanF (k). In particular, the matrix ranks of the reduced

density matrices ρ(`1) and ρ(`2) are both equal to r. This shows that |ψ〉 cannot be

written as a sum of a lesser number of product states. Hence, the Schmidt rank of |ψ〉

is r.

Finally, we consider the statement in part (c). Let B(k) =
{
|β(k)

1 〉, |β
(k)
2 〉, . . . , |β

(k)
r 〉
}

.

First, since the Schmidt rank of |ψ〉 is r, all of the vectors |β(k)
i 〉 are non-zero. Next,

we note that the obvious statement about the support of the reduced density matrices,

i.e., supp ρ(k) ⊂ spanB(k) holds in general. But for k = `1, `2, `3, the dimension of the

support is r. As each B(k) contains r vectors, we conclude that the sets B(`1), B(`2) and

B(`3) are also linearly independent. In short, the prerequisite conditions for part (c) is

25



satisfied for the new vectors |β(k)
i 〉 as well. Therefore, we have spanB(k) = spanF (k).

At this point, let us suppose that (`1, `2, `3) = (1, 2, 3), without loss of generality.

Since spanB(1) = spanF (1) and B(1) is linearly independent, there is an r× r matrix

Z such that

|β(1)
i 〉 =

r∑
j=1

Zji|ϕ(1)
j 〉 . (3.15)

Inserting this into the expansions of |ψ〉 we get

∑
j

|ϕ(1)
j ⊗ ϕ

(2)
j ⊗ · · · ⊗ ϕ

(p)
j 〉 =

∑
ij

Zji|ϕ(1)
j ⊗ β

(2)
i ⊗ · · · ⊗ β

(p)
i 〉 . (3.16)

Using the linear independence of F (1), we get

|ϕ(2)
j ⊗ · · · ⊗ ϕ

(p)
j 〉 =

r∑
i=1

Zji|β(2)
i ⊗ · · · ⊗ β

(p)
i 〉 (3.17)

which must hold true for all r. In here we see that a rank-1 state (product state) is

expanded as a sum of r product states. Note that B(2) and B(3) are both linearly

independent and therefore part (b) of this lemma can be applied to this expression.

It then directly follows that only one number in the sequence Zj1, Zj2, . . . , Zjr can be

non-zero (otherwise we get a contradiction for the Schmidt rank of the state on the

left-hand side). As Z is a square matrix, each row and each column should contain

only one non-zero entry.

Let Q be the permutation that gives the index of the non-zero entry for a given column.

In other words, Zji 6= 0 only for j = Qi. Then, we have

|β(1)
i 〉 = ZQii|ϕ

(1)
Qi
〉 , (3.18)

|ϕ(2)
Qi
⊗ · · · ⊗ ϕ(p)

Qi
〉 = ZQii|β

(2)
i ⊗ · · · ⊗ β

(p)
i 〉 , (3.19)

=⇒ |β(1)
i ⊗ β

(2)
i ⊗ · · · ⊗ β

(p)
i 〉 = |ϕ(1)

Qi ⊗ ϕ
(2)
Qi ⊗ · · · ⊗ ϕ

(p)
Qi 〉 , (3.20)

which is what is needed to be proved.�

At this point, let us briefly investigate the implication of the lemma for the rank-2

states. Let |ψ〉 be the state defined by Eq. (3.1) and suppose that z 6= 0,∞. In

this case, the conditions in the lemma are satisfied with r = 2. Here, the statement

that the set F (k) = {|αk〉, |βk〉} is linearly independent is identical with the statement

ck < 1. Hence, part (b) of lemma says that as long as there are two cosines that are
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less than 1, then the state is a rank-2 entangled state (and hence it can never be a

product state). Part (c) of the lemma implies that if there are at least three cosines

less than 1, then the expansion of |ψ〉 is unique. The most one can do in here is to

exchange the places of the first two terms. Consequently, the cosines of individual

parties cannot change. The third rule of LU-equivalence follows from here.

3.1.3 Measurements by a Single Party

In this section, we investigate the local operations carried out by a single party and

their description on the space Λ. Consider the local operations applied by party k.

Such operations can be described by the general measurement formalism, i.e., by a set

of measurement operators {M`}n`=1 on Hk which satisfy the probability-sum condition

n∑
`=1

M †`M` = 1k . (3.21)

Let us suppose that the initial state is |ψ〉 given in Eq. (3.1) and has parameters

λ = (z; c1, . . . , cp). The measurement changes the state into (M` ⊗ 1′k)|ψ〉 (up to

normalization) with probability p` = 〈ψ|(M †`M`)⊗1′k|ψ〉. Here, 1′k denotes the identity

operator acting on all parties except the kth one.

Our first job is to find out the parameters λ(`) for the final states. For this purpose,

let us define A`, B`, C` and γ` as

A` = ‖M`|αk〉‖ , (3.22)

B` = ‖M`|βk〉‖ , (3.23)

C`e
iγ` =

1
A`B`

〈αk|M †`M`|βk〉 . (3.24)

Here we take C` to be a non-negative real number and define the phase γ` accordingly.

By Schwarz inequality we also have C` ≤ 1. The parameters A` and B` are also

necessarily non-negative.

When the kth party carries out the measurement, the outcome ` occurs with proba-
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bility p` and the final state becomes λ(`) = (z(`); c1, . . . , ck−1, C`, ck+1, . . . , cp), where

z(`) = z
B`e

iγ`

A`
, (3.25)

p` = A2
`

N(λ(`))
N(λ)

(3.26)

=
A2
` + |z|2B2

` +A`B`c1 · · · ck−1C`ck+1 · · · cp(zeiγ` + z∗e−iγ`)
N(λ)

. (3.27)

Hence, to describe the effect of the measurement, we need the values of four real

parameters for each outcome: A`, B`, C` and γ`. Obviously, possible values of these

parameters are restricted by the probability-sum condition (3.21), which turns out to

be the only restriction on them. These parameters then provides a parametrization

of the local measurement done by party k.

First parametrization of local measurements. A local measurement by party-k

on a state λ = (z; c1, . . . , cp) can be described by

(i) a set of outcomes,

(ii) non-negative numbers A`, B`, C` and angles γ` for each outcome `,

(iii) where the rules for final states and their corresponding probabilities are given in

(3.25,3.26)

if and only if these parameters satisfy the following conditions

n∑
`=1

A2
` =

n∑
`=1

B2
` = 1 , (3.28)

n∑
`=1

A`B`C`e
iγ` = ck , (3.29)

C` ≤ 1 . (3.30)

Proof: It is straightforward to show that these conditions are necessary, implied by the

probability sum rule in Eq. (3.21). Here, we will show the opposite. Namely, if A`, B`,

C` and γ` are parameters satisfying (3.28-3.30), then we can find a set of measurement

operators {M`} which produce these parameters. Without loss of generality, let us

consider the case where ck < 1 (otherwise, party k is unentangled with the remaining
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parties and what she does has no effect on the state). The proof is as follows: Let

|α⊥k 〉 and |β⊥k 〉 be the “dual basis” satisfying

〈α⊥k |αk〉 = 〈β⊥k |βk〉 = 1 , (3.31)

〈α⊥k |βk〉 = 〈β⊥k |αk〉 = 0 . (3.32)

These states are well-defined. They are simply defined as follows:

|α⊥k 〉 =
1

1− c2
k

(|αk〉 − ck|βk〉) , (3.33)

|β⊥k 〉 =
1

1− c2
k

(−ck|αk〉+ |βk〉) . (3.34)

Define the operators P` on Hk as follows,

P` = A2
` |α⊥k 〉〈α⊥k |+B2

` |β⊥k 〉〈β⊥k |+(
A`B`C`e

iγ` |α⊥k 〉〈β⊥k |+ h.c.
)

(3.35)

It is straightforward to show that P` is positive semidefinite (where the inequality

C` ≤ 1 is employed) and
∑

` P` = 1k (where the remaining restrictions, (3.28) and

(3.29), are employed). In short, the set of operators {P`} forms a positive-operator

valued measure (POVM). We simply define M` =
√
P`. It is then easy to check that

the same parameters are produced by these measurement operators. �

There are a number of remarks that should be made about the parametrization of

local measurements described above. Notice that this parametrization depends on the

initial state λ through the appearance of the cosine ck in (3.29). Our next observation

is that such a local measurement does not change the cosines of the other parties, i.e.,

ck′ remains the same for k′ 6= k. The only change is in the cosine for party k (i.e., ck

becomes C` now) and the parameter z.

Let us consider the special case ck = 1, which is excluded from the proof given above.

Physically, this case does not need any further elaboration because party-k cannot do

anything to change the state. Mathematically, the conditions in Eq. (3.28-3.30) imply

the same conclusion because applying the Schwarz inequality for Eq. (3.29) we can see

that C` = 1, γ` = 0 and A` = B` for all `. Hence z(`) = z and λ(`) = λ; i.e., nothing

changes for any outcome. In short, the description of the local measurement given

above can also be extended to the case ck = 1 without any mathematical problem.
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Another remark is about simplifying the transformation parameters. A simplification

becomes necessary if two possible outcomes produce the same points in Λ, i.e., we have

` 6= `′ but λ(`) = λ(`′). In other words, the individual parameters satisfy C` = C`′ ,

γ` = γ`′ andB`/A` = B`′/A`′ . If such a situation occurs, then it is possible to construct

a new local operation where these two outcomes appear as a single outcome. We will

denote the new, constructed measurement by tildes, Ãm, etc. The new parameters

are identical with the old parameters for all m 6= `, `′. But, m = `′ is absent from the

list of outcomes and for m = ` we have

Ã` =
√
A2
` +A2

`′ , (3.36)

B̃` =
√
B2
` +B2

`′ , (3.37)

C̃` = C` , (3.38)

γ̃` = γ` . (3.39)

It is then easy to show that this new parameter set satisfies the relations in Eq. (3.28-

3.30). Furthermore, we have λ̃(`) = λ(`) = λ(`′) and new probabilities satisfying

p̃` = p` + p′`.

In conclusion, when considering a particular local measurement, it can be safely as-

sumed that the final points λ(`) are different for each outcome `. Expressed differently,

we can assume that the set of values of pairs (z(`), C`) are different. Note that it is still

possible for different outcomes to be LU equivalent, e.g., we might have λ(1) ∼ λ(2)

and λ(1) 6= λ(2). Appearance of LU-equivalent points of Λ cannot be eliminated by

any trick.

The special measurements where either A` = 0 or B` = 0 produces a product state

(where z(`) is either 0 or ∞). If |ψ〉 is a truly multipartite state, then this is the only

possibility for party-k to collapse the whole state to a product state. If A` = 0, then

the corresponding probability p` has to be computed by a limiting procedure. Note

that, the cases A` = B` = 0 can be discarded as this implies that the corresponding

POVM operator is zero and hence the transformation has 0 probability of occurrence.

Finally, the following simple, but general property of local measurements will be very

useful later on.

Theorem 1. Consider a local measurement by party-k on a state corresponding to
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point λ = (z; c1, . . . , cp) where |z| ≥ 1. Then,

(a) There is at least one outcome ` for which C` ≥ ck.

(b) There is at least one outcome m for which |z|(m) ≥ |z|.

If ≤ 1, then part (b) should be expressed as: There is at least one outcome m for

which |z|(m) ≤ |z|. Both (a) and (b) can be interpreted as stating that there is at least

one outcome where the final state is “closer to the product states”. However, it is not

known whether being “close to product states” can be defined unambiguously. Here,

the interpretation seems likely based on the fact that z = ∞ (or z = 0) correspond

to a product state. Similarly, if all cosines are 1, the state is a product state. The

distribution of values of these two parameters makes it look like that the state is

approaching to product states.

Proof: We start with (a). If ck = 0, there is nothing to be shown. So, consider only

the cases ck > 0. let us assume the “contrary” and suppose that C` ≤ ck for all `.

Then we have

ck =
∑
`

A`B`C`e
iγ` ≤

∑
`

A`B`C` (3.40)

≤ ck
∑
`

A`B` ≤ ck
√

(
∑
`

A2
` )(
∑
`

B2
` ) = ck (3.41)

and, as a result, all inequalities must be equalities. Namely, we should have γ` = 0

when A`B`C` 6= 0, C` = ck when A`B` 6= 0 and A` = B` from the Schwarz inequality.

The last relation rules out the product-state producing outcomes (A` = 0 or B` = 0)

and hence we have C` = ck and γ` = 0 for all `. This means that all outcomes

are identical and the state has not changed (i.e., party-k has done a local unitary

transformation only).

What we have shown above is that, for any measurement, there should be an ` such

that C` ≥ ck for some `. Moreover, if the local operation is not a local unitary, then

we should have the strict inequality C` > ck for some `. (Note: This last statement

cannot be extended to the cases where ck = 0. For such states, it is possible to find

local measurements that are not local unitaries in such a way that C` = 0 for all

outcomes.)
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For showing part (b), let us assume that |z|(`) ≤ |z| for all outcomes `. This implies

that B` ≤ A`. Finally,

1 =
∑
`

B2
` ≤

∑
`

A2
` = 1 (3.42)

implies that all inequalities must have been equalities, i.e., A` = B` and hence |z|(`) =

|z| for all `. Therefore the conclusion follows.�

For the local measurement described above, the restrictions (3.28,3.29) imply the

following identities

∑
`

p`
1

N(λ(`))
=

1
N(λ)

, (3.43)

∑
`

p`
|z(`)|2

N(λ(`))
=

|z|2

N(λ)
, (3.44)

∑
`

p`
z(`)C`
N(λ(`))

=
zck
N(λ)

. (3.45)

Note that the last relation is complex, i.e., it actually contains two real relations.

These relations are valid for all special cases as well, without any exceptions. One

important feature of these relations is that they are expressed entirely in terms of

two real parameters (the probability p` and the final cosine C`) and one complex

parameter (z(`)). More importantly, these relations form a basis for an alternative

parametrization of the measurement by local party k.

Second parametrization of local measurements. A local measurement by party

k on the state λ = (z; c1, . . . , cp) can be described by

(i) a set of outcomes,

(ii) and one complex number z(`) and two real numbers C`, p` ∈ [0, 1] defined for

each outcome `,

(iii) where the transition rule is that the outcome ` occurs with probability p` and the

final state becomes λ(`) = (z(`); c1, . . . , ck−1, C`, ck+1, . . . , cp)

if p` satisfy the probability sum rule (i.e.,
∑

` p` = 1) and the relations (3.43) and

(3.45) are satisfied. (Note that (3.44) follows from these two relations.)
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Proof: What we need to show is that given z(`), C` and p` satisfying the stated condi-

tions, we can find A`, B` and γ` satisfying the conditions of the first parametrization.

We define

A` =

√
p`N(λ)
N(λ(`))

(3.46)

B` =
|z(`)|
|z|

√
p`N(λ)
N(λ(`))

(3.47)

γ` = arg
(
z(`)/z

)
(3.48)

It is then easy to check that Eq. (3.28-3.30) are satisfied.

But there are some special cases that need to be concentrated on. These are situations

where the definitions of A`, B` or γ` are problemmatic. (1) First, let us consider the

special case z = 0. Namely, the initial state is a product state. Obviously, a product

state can only be transformed to product states. Therefore, we only need to check

that our equations indeed produces this result. Using Eq. (3.44), we can see that

for all `, we either have z(`) = 0 or N(λ(`)) = ∞. The latter can happen only with

z(`) =∞, which is itself a product state. As a result, in this case, the new parameters

define a valid transformation (we do not need to check if A`, B`, γ` satisfy the desired

properties). Note that the same conclusion holds for the z =∞ case as well.

(2) Next, consider the situation where z 6= 0,∞ but N(λ) = 0. This can happen only

when c1 = c2 = . . . = cp = 1 and z = −1. However, this point has specifically been

excluded from Λ.

(3) Next, suppose that z 6= 0,∞ and N(λ) 6= 0. In such a case, note that N(λ(`)) 6= 0

for any ` with p` 6= 0. Hence, A` is well defined. For B`, we have to check the case

where N(λ(`)) =∞. But this can happen only when z(`) =∞ and B` can be defined

by the limiting procedure. In the limit, we should take N(λ(`))/|z(`)|2 = 1. As a result,

if z(`) =∞, then we define A` = 0 and B` =
√
p`N(λ), but γ` can be arbitrary. The

relations (3.28) and (3.29) are satisfied in this case. Finally, the special case where

z(`) = 0 also does not create a problem. In that case we take A =
√
p` and B` = 0; γ`

is again arbitrary. These cases do not create any problem too. With this, the proof

of the claim is completed.�
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3.1.4 Some monotones

The relations (3.43-3.45) may be useful in constructing new entanglement monotones.

Entanglement monotones are those functions of states which never increase on the

average under probabilistic LOCC transformations. [38,42] For pure states, f is a

monotone if whenever the state |ψ〉 is converted by LOCC into states |φ`〉 with prob-

abilities p`, then

p(ψ) ≥
∑
`

p`f(φ`) . (3.49)

Obviously, it is sufficient to check this inequality only for local operations. Note that

monotones have the same value for LU-equivalent states.

A new monotone f for rank-2 states can be defined as follows: For a state with

parameter point λ,

f(λ) = min
λ′∼λ

1
N(λ′)

, (3.50)

in other words, the smallest value for N−1 among LU equivalent points is an entan-

glement monotone. For a truly multipartite state λ = (z; c1, c2, . . . , cp), we have

f(λ) =

 N(λ)−1 if |z| ≥ 1,

N(λ̂)−1 = N(λ)/|z|2 if |z| ≤ 1.
(3.51)

The fact that this is a monotone can be seen easily from (3.43), when we take into

account the fact that we can choose the initial parameter point λ such that |z| ≥ 1.

What is now left is to give the values of this monotone for product and bipartite

states. For product states, obviously taking z = ∞ gives us the minimum of f = 0.

For a bipartite state between parties k1 and k2 with concurrence Ck1 = Ck2 = C, the

minimum is obtained for the parameter point λ for which ck1 = ck2 = 0, i.e., in the

Schmidt decomposed form. Hence, it can easily be found that

f(λ) =
1
2

(
1−

√
1− C2

)
. (3.52)

3.1.5 The Ability of a Single Party to Obtain a Product State

In this subsection, we will try to answer the quaestion “what a single party can do if

she wants to destroy the entanglement?” Suppose that the party k wants to reduce
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the whole state to a product state. Consider the case where all parties except k are not

doing any local operations. The question is to find the maximum success probability

of party-k. We consider an arbitrary truly multipartite state such that ck < 1.

Remember that party k produces a product state only when either A` = 0 or B` = 0.

Without loss of generality, we can suppose that the first two ` values correspond to

these cases (A1 = 0 and B2 = 0). We can show that, for a given A2 and B1, we can

find an appropriate set of parameters A`, B`, C` and γ` if and only if

(1−A2
2)(1−B2

1) ≥ c2
k . (3.53)

The success probability can be expressed as

psucc = p1 + p2 =
A2

2 +B2
1 |z|2

N(λ)
(3.54)

Our job is to maximize the probability above subject to the restriction above. The

final result for the maximum probability of success is

psucc,max =
1

N(λ)


(1− c2

k)‖z|2 if 1/ck < |z| ,

1 + |z|2 − 2ck|z| if ck ≤ |z| ≤ 1/ck ,

1− c2
k if |z| < ck .

(3.55)

These expressions probably tell us the level of command of party-k on the entangle-

ment of the state.

We can then check the particular cases. If ck = 1, we can see that psucc,max = 0 as we

have discussed above. If ck = 0, then we have psucc,max = 1. In that case, party-k has

the largest “command” on the entanglement.

3.2 Deterministic Transformations of States by Many Parties

For deterministic transformations, it is required that all of the possible final states are

the same state up to LU equivalence. In other words, when the parties start from an

initial state λ = (z; c1, . . . , cp) and desire to obtain a final state λ′ = (z′; c′1, . . . , c
′
p),

all final states after every possible chain of local operations is a point of Λ which is

LU-equivalent to λ′. If a protocol of local measurements can be found, we say that λ

can be (deterministically) converted or transformed into λ′ by LOCC.
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Below, the conditions that enable us to decide if λ can be converted to λ′ by LOCC

are given. But, in here, only the case where λ represents a truly multipartite state

is investigated. (Otherwise, the transformations rules are already known: i.e., if λ

is a bipartite state, then the transformation conditions are Nielsen’s majorization

condition [41]; if λ is product state, then it can be converted only into product states.)

Moreover, we are going to assume that λ′ is also a truly multipartite state. The

transformation into bipartite states seems to be a rather difficult problem.

Because of LU equivalence between λ and λ̂, the initial point can be chosen to be

either of these points. Here, we will choose λ in such a way that |z| ≥ 1, a convention

which will simplify some of the discussions. Similarly for the final state; it will be

assumed that |z′| ≥ 1. Now, if LOCC conversion of λ to λ′ is possible, theorem 1

above implies the following necessary conditions: |z′| ≥ ‖z| and c′k ≥ ck for all parties

k. In other words, the z parameter and the cosine parameters for all parties approach

to “those of a product state”. It appears that if both λ and λ′ are points with a

vanishing cosine, then these conditions are also sufficient.

3.2.1 Deterministic transformation into states with vanishing cosine

Essentially, if λ to λ′ conversion is possible and λ′ has vanishing cosines, then λ should

also have vanishing cosines for the same parties. Hence, the first case we will take

up is the transformation between states with vanishing cosines. Luckily, the rules of

transformation are very simple.

Theorem 2. Let λ = (z; c1, . . . , cp) and λ′ = (z′; c′1, . . . , c
′
p) be such that |z| ≥ 1,

|z′| ≥ 1, both of these states are truly multipartite and both have a vanishing cosine

parameter. Then λ can be LOCC converted into λ′ if and only if |z′| ≥ |z| and c′k ≥ ck
for all parties k. Proof: Necessity is obvious as it follows from theorem 1. We can

prove sufficiency step by step. We will first show that, if λ has a vanishing cosine,

then it is possible to increase one of the parameters in any desired amount. After that,

we summarize the protocol that needs to be followed in the conversion of λ into λ′.

Without loss of generality, we can suppose that the first party, k = 1, has a vanishing

cosine for both states, i.e., c1 = c′1 = 0. Moreover, without loss of generality we can

assume that both z and z′ are positive real numbers (by using LU-equivalence).
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(1) First, we show that the 1st party can increase the absolute value of the z parameter.

In other words, the state λ = (z; 0, c2, . . . , cp) can be converted to λ̃ = (z′; 0, c2, . . . , cp)

for any real number z′ with z′ > z. (If z′ = z, nothing needs to be done.) In terms

of the first parametrization of local measurements, this can be achieved by a two

outcome measurement, having the following parameters

A1 =

√
z′2z2 − 1
z′4 − 1

, (3.56)

A2 = z′
√
z′2 − z2

z′4 − 1
, (3.57)

B1 =
z′

z

√
z′2z2 − 1
z′4 − 1

, (3.58)

B2 =
1
z

√
z′2 − z2

z′4 − 1
, (3.59)

C1 = C2 = γ1 = γ2 = 0 . (3.60)

It can be easily seen that the conditions (3.28-3.30) are satisfied by these parameters.

Although this is not needed, the parameters for the second parametrization can also

be given and the possibility of the transformation can be seen from this viewpoint.

They are

z(1) = z′ , (3.61)

z(2) =
1
z′

, (3.62)

p1 =
z′2z2 − 1

(z2 + 1)(z′2 − 1)
, (3.63)

p2 =
z′2 − z2

(z2 + 1)(z′2 − 1)
, (3.64)

C1 = C2 = 0 . (3.65)

In that case, it can easily be checked that the conditions (3.43) and (3.45) are satisfied.

Thus, whichever parametrization used, we always get the final states λ̃ and ˆ̃
λ with

total probability 1. Therefore, 1st party can convert λ into λ̃. In other words, he can

increase the modulus of the z parameter.

(2) Second, it will be shown that any party other than the 1st one, can increase

their own cosine parameter to any desired value. For this purpose let us consider a

given ck ≥ 0 (initial cosine can be zero) and another desired one c′k where c′k > ck.

We exclude the possibility c′k = ck because in that case nothing needs to be done.

Then the kth party can do the following two outcome measurement (where the first
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parametrization is shown only)

A1 = A2 = B1 = B2 =
1√
2

, (3.66)

C1 = C2 = c′k , (3.67)

γ1 = −γ2 = arccos
ck
c′k

. (3.68)

Then it is trivial to check that the conditions (3.28-3.30) are satisfied. Moreover, for

both outcomes, the final point is LU-equivalent to (z; 0, c2, . . . , ck−1, c
′
k, ck+1, . . . , cp)

(if the initial state is (z; 0, c2, . . . , ck−1, ck, ck+1, . . . , cp)). Note that, if the initial cosine

vanishes (ck = 0), then γ1 = −γ2 = π/2, independent of the final cosine.

It is obvious what the conversion protocol is. All parties do a single measurement to

complete their part of the job. The 1st party increases only the modulus of z parame-

ter. The rest of the parties increase their cosines. The order of these local operations

are immaterial. Note that each individual local operation is also deterministic.�

Next case that we will deal with are the transformations from λ without a vanishing

cosine to another, truly multipartite state λ′. Obviously, by theorem 1, all cosines

of λ′ should be non-zero as well. Before stating the rules of the transformation, it is

necessary to give an alternative parametrization of the complex z parameter which

appears to be very useful.

3.2.2 An alternative parametrization of complex numbers

Let z be a complex number having the polar decomposition z = exp(ρ + iθ). We

define the real valued functions n = n(z) and s = s(z) as follows,

n =
cos θ

cosh ρ
, (3.69)

s =
sin θ

sinh ρ
. (3.70)

First, note that n takes on values in the closed [−1, 1] interval, but s takes on values

in the closed [−∞,+∞] interval. In particular, s has the value ±∞ on the unit circle

|z| = 1. At the special points z = ±1 of the unit circle, however, s does not have a

definite value, neither does it have a limit. Fortunately, these two points are the only

places where n reaches its boundary values, namely n = +1 only at z = 1. Similarly,

n = −1 only at z = −1.
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The correspondence between z and the pair is two-to-one. If z is replaced with 1/z,

then these two functions do not change: n(1/z) = n(z) and s(1/z) = s(z). The

opposite is also true, i.e., if n(z) = n(z′) and s(z) = s(z′) then we either have z = z′

or z = 1/z′. To see this, it is sufficient to express the following functions of polar

coordinates,

cosh ρ =

√
1 + s2

n2 + s2
, (3.71)

cos θ = n

√
1 + s2

n2 + s2
, (3.72)

| sinh ρ| =

√
1− n2

n2 + s2
, (3.73)

| sin θ| = |s|
√

1− n2

n2 + s2
. (3.74)

The first two relations state that different points on the complex plane that have the

same values for the (n, s) pair should be such that ρ and θ have the same magnitude

but probably they have different sign. This leaves us four possibilities. Investigation of

all possibilities leads us to the conclusion stated above. As a result, the correspondence

between the (n, s) pair and the complex numbers outside the unit circle (|z| > 1) is

one-to-one. The complex conjugation and negation of the complex number z leads to

simple transformations of the (n, s) pair, which are listed below,

z → 1
z

, (n, s)→ (n, s) , (3.75)

z → z∗ , (n, s)→ (n,−s) , (3.76)

z → −z , (n, s)→ (−n,−s) . (3.77)

Hence, in terms of the sign of these two functions, the complex plane (outside unit

circle) is divided into four regions, the four quadrants.

Next, we consider the curves that are defined as the sets of complex numbers for which

the ratio s/n is constant. These curves will be very important for us as it will be found

that under deterministic LOCC transformations, the z parameter of the states cannot

leave these curves. In here, we just note the following relation

z − 1
z

= ±2
√

1− n2
√

1 + s2

n2 + s2
(n+ is) , (3.78)

which implies that the complex number z − 1/z has an invariant phase along these

curves. Since the transformation z → z−1 changes this phase angle by π, we tend to
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define it modulo π. Hence,

φ = arg
(
z − 1

z

)
(mod π) = arctan

s

n
= arctan

tan θ
tanh ρ

. (3.79)

This angle appears to be an invariant under deterministic LOCC.

3.2.3 Transformations from states with non-zero cosines

In here, we consider the transformation of the state λ = (z; c1, . . . , cp) into λ′(z′; c′1, . . . , c
′
p)

where both states have non-zero cosines. Moreover, we again require both states to be

truly multipartite. Hence, for both of these points, there are at most two points in Λ

that can be LU-equivalent. We choose these two points such that |z|′ ≥ 1 and |z| ≥ 1.

The following theorem handles the LOCC transformation rule for such states.

Theorem 3. Let λ and λ′ be as described above, having non-zero cosines. Let (n, s)

and (n′, s′) denote the values of the n and s functions of their z parameters. It is

possible to convert λ into λ′ by LOCC if and only if

(a) c′k ≥ ck for all parties k, and

(b) the following equality is satisfied

n′

n
=
s′

s
=
c1c2 . . . cp
c′1c
′
2 . . . c

′
p

. (3.80)

Proof: First we show necessity. If λ can be converted into λ′, then part (a) follows from

theorem 1. The relation in (b) follows from the extension of the relations (3.43-3.45)

into the whole protocol. Let us use L for denoting the outcomes of all measurements

in the conversion protocol, i.e., L = (`1, `2, · · · , `N ) where `i is the result of ith

local operation and N is the (random) number of operations. Let pL denote the

probability of the outcome L. Let λ(L) denote the final state after the last measurement

when L has occurred (note that these are states that are directly obtained from the

second parametrization of local operations; they should not be replaced with their

LU-equivalents). Let λ(L) = (z(L); c(L)
1 , . . . , c

(L)
p ) and let us use c(λ(L)) for denoting

the product of all cosines for the state in question, i.e., c(λ(L)) = c
(L)
1 · · · c(L)

p . Now,
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the relations (3.43-3.45) immediately lead to

∑
L

pL
1

N(λ(L))
=

1
N(λ)

, (3.81)

∑
L

pL
|z(L)|2

N(λ(L))
=

|z|2

N(λ)
, (3.82)

∑
L

pL
z(L)c(λ(L))
N(λ(L))

=
zc(λ)
N(λ)

. (3.83)

All of these relations are valid for all probabilistic transformations as well. However,

for the current deterministic transformation, all final states can be either λ(L) = λ′ or

λ(L) = λ̂′. Hence, we can collect all terms within the summation into just two terms

with total probabilities p and q = (1 − p) respectively. Using, N(λ̂′) = N(λ′)/|z′|2,

the relations above can be expressed as

p
1

N(λ′)
+ q
|z′|2

N(λ′)
=

1
N(λ)

, (3.84)

p
|z′|2

N(λ′)
+ q

1
N(λ′)

=
|z|2

N(λ)
, (3.85)

pz′ + qz′∗

N(λ′)
c(λ′) =

zc(λ)
N(λ)

. (3.86)

(Note that these equations are valid for the cases z′ = ±1 as well, for which λ̂′ = λ′ and

there should only be a single term. For these special cases, the equation above holds

for all possible probabilities p.) These equations are equivalent with the following four

equations

N(λ′)
N(λ)

=
|z′|2 + 1
|z|2 + 1

, (3.87)

(p− q) |z
′|2 − 1
|z′|2 + 1

=
|z|2 − 1
|z|2 + 1

, (3.88)

Re z′

|z′|2 + 1
c(λ′) =

Re z
|z|2 + 1

c(λ) , (3.89)

(p− q) Im z′

|z′|2 + 1
c(λ′) =

Im z

|z|2 + 1
c(λ) . (3.90)

Expressing the last three relations in terms of n and s, we get the desired relation.

This completes the proof of necessity. (Again, note that for the special cases z′ = ±1,

the equations do not depend on the precise value of p− q.)

For the sufficiency part of the proof, we will argue that the parties consecutively make

a deterministic transformation by a local operation to bring the initial state to the
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desired final state. Hence, there will be a chain of points λ(k)

λ(0) = λ→ λ(1) → λ(2) → · · · → λ(p) = λ′

where party-k takes the kth turn to change the state point from λ(k−1) into λ(k). Here,

the intermediate points are given as

λ(0) = (z(0); c1, c2, c3, . . . , cp) ,

λ(1) = (z(1); c′1, c2, c3, . . . , cp) ,

λ(2) = (z(2); c′1, c
′
2, c3, . . . , cp) ,

· · · · · ·

λ(p) = (z(p); c′1, c
′
2, c
′
3, . . . , c

′
p) ,

where z(0) = z and z(p) = z′. The kth party essentially increases her cosine from ck to

c′k while this change is associated by a definite change in the value of the z parameter

from z(k−1) to z(k). The latter essentially shifts along a curve, one of the constant s/n

curves, by a definite amount. Hence, by finding out the curve that the points z and

z′ lie, we can easily find the necessary intermediate points z(k). Since all intermediate

points have definite n and s values (e.g., n(z(1)) = n(z)c1/c
′
1, etc.), there is no problem

of finding the values of z(1), . . . , z(p−1). Hence, what is left for us is to show that any

transition by a single party (say from λ(k−1) to λ(k) by the kth party) can be carried

out. Obviously, we only need to consider the cases for which c′k > ck (otherwise, for

c′k = ck, we have λ(k−1) = λ(k) and no local operation by the kth party is necessary.)

Before going to the actual proof let us note special points and curves on the complex

plane. Note that the special values of 0 and∞ for n or s cannot change in these deter-

ministic transformations. Specifically, these correspond to (a) the real axis, Im z = 0,

where s = 0; (b) the imaginary axis, Re z = 0, where n = 0; (c) and the unit circle,

|z| = 1 where s = ±∞. These are curves that are invariant under deterministic LOCC

transformations. Hence, their intersections, specifically z = ±1,±i need special at-

tention. For example, the points ±1: These points can never appear as a final state,

because they have extreme n′ values of ±1 and the relation in part (b) of theorem can

never be satisfied except for the trivial case of λ′ = λ. However, it will be seen that,

the initial value z = ±1 can be met, while the final z′ does not need to be on the unit

circle or the real axis.
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Now, let us consider the local measurement done by the kth party to transform her

state from λ(k−1) to λ(k). This is a deterministic transformation with two outcomes,

but here the outcomes will be denoted as ± to distinguish it from the notation of the

chain. The special cases of interest are

(I) When z(k) and z(k−1) are not on the unit circle, i.e., both ρ(k) and ρ(k−1) are

strictly positive (here z(m) = exp(ρ(m) + iθ(m)).). Using the second parametriza-

tion of local operations, the parameters of transformation are

p± =
1
2

(
1± tanh ρ(k−1)

tanh ρ(k)

)
, (3.91)

C± = c′k , (3.92)

z+ = z(k) , (3.93)

z− = 1/z(k) . (3.94)

Now, it is straightforward, but tedious, to check that p± are probabilities and

the parameters given above satisfy the conditions (3.43) and (3.45). Finally, it

is trivial to see that the final state is LU-equivalent to λ(k).

(II) Either z or z′ are on the unit circle, (in which case both points must be on the

unit circle and therefore ρ(k−1) = ρ(k) = 0), but both points are different from

±1,±i. In other words, θ(k−1) and θ(k) are not an integer multiple of π/2. In this

case, the parametrization above in part I is valid, except that the probabilities

should be expressed in terms of the polar angles

p± =
1
2

(
1± tan θ(k−1)

tan θ(k)

)
(3.95)

Here too, it is straightforward, but tedious, to check that this local operation

describes the needed transformation.

Now, with I and II, we have handled all cases except the ones where either z(k−1)

or z(k) is one of ±1,±i. The remaining special cases are handled below.

(III) The case where either z(k) = ±i or z(k−1) = ±i. Since the complex numbers ±i

have (n, s) parametrization given by (n, s) = (0,±∞), by part (b) of the current

theorem, we cannot leave this point by LOCC transformations. Hence both of

the z parameters should be ±i. Moreover, as z parameters of points in Λ, i and
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−i correspond to LU-equivalent points. Hence, we can write z(k−1) = z(k) = i

without loss of generality. The main idea is that, even though the z parameter

does not change, the kth party can increase her cosine for this special case. The

parameters of the transformation are given as

p± =
1
2

(
1± ck

c′k

)
, (3.96)

C± = c′k , (3.97)

z± = ±i . (3.98)

(IV) The case where z(k) = ±1. This final point have an extreme n value of ±1.

Hence, by part (b) of the theorem, the only way this final point is reached is that

z(k−1) = z(k) and c′k = ck. In other words λ(k−1) = λ(k) and no transformation

is needed.

(V) The case where z(k−1) = ±1. In here we will show that any point in the complex

plane, except the imaginary axis is reachable. Note that by part (b) of the

theorem, the point z(k) satisfies n(z(k)) = ±(ck/c′k). However, due to the fact

that s(z(k−1)) does not have a definite value, s(z(k)) is arbitrary. Hence, suppose

that z(k) is a number on the complex plane such that

n(z(k)) =
2Re z(k)

|z(k)|2 + 1
= ±ck

c′k
. (3.99)

Then, the parameters of the local measurement by the kth party in second

parametrization are given by

p± =
1
2

, (3.100)

C± = c′k , (3.101)

z+ = z(k) , (3.102)

z− =
1
z(k)

. (3.103)

Once it is observed that

N(λ(k)) = 1 + |z(k)|2 + c′1 · · · c′kck+1 · · · cp(2Re z(k)) , (3.104)

=
(

1 + |z(k)|2
)(

1 + c′1 · · · c′k−1ckck+1 · · · cp n(z(k))
c′k
ck

)
,(3.105)

=
(

1 + |z(k)|2
) N(λ(k−1))

2
(3.106)

it becomes straightforward to verify that the relations (3.43) and (3.45) are

satisfied and the desired final state is produced. �
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3.2.4 Transformations from states with vanishing cosines to those without

any

Let ΛM denote the truly multipartite points in Λ. Above, we have been describing

the LOCC transformation rule among two points in this set. Specifically, let ΛM0

be the set of truly multipartite points with a vanishing cosine. Let, Λ′M0 be the set

of other truly multipartite points. Theorem 2 describes the LOCC transition rule

between points in ΛM0 while theorem 3 describes it for points in Λ′M0. What is left

is to give the rules of transition between these two sets. It is obvious that no state

in Λ′M0 can be transformed to one in ΛM0 due to the cosine rule of theorem 1. The

following theorem handles the transitions from ΛM0 into Λ′M0.

Theorem 4. Let λ = (z; c1, . . . , cp) be a state with a vanishing cosine and λ′ =

(z′; c′1, . . . , c
′
p) be a state having non-zero cosines. The point λ can be transformed into

point λ′ if and only if

(a) c′k ≥ ck for all k,

(b) |z| = 1.

(c) z′ is purely imaginary.

Proof: Note that by LU-equivalence we can choose z to be real positive with z ≥ 1

and z′ to be satisfying |z′| ≥ 1. Hence part (b) can be stated as z = 1.

For proving the necessity of the conditions, we use the relations (3.81-3.83) again.

Moreover, the results (3.87-3.90) are valid as well. Simply use c(λ) = 0 and c(λ′) 6= 0

in the last two equations. From (3.89) we get Re z′ = 0. In Eq. (3.90), we use

Im z′ = (z′/i) 6= 0 and then find p = q. This then leads to |z|| = 1. Finally, part (a)

follows from theorem 1.

For proving sufficiency, we make use of theorem 2. Without loss of generality, let

us suppose that the first party has vanishing cosine, i.e., c1 = 0. In theorem 2, it

is shown that all parties except the first can increase their cosines to any desired

value without changing anything else. Hence, the initial state λ = (z; 0, c2, . . . , cp)

can be transformed into λ̃ = (z; 0, c′2, . . . , c
′
p). Now, at this point, 1st party will do

a single measurement and change the state from λ̃ into λ′ = (z′; c′1, c
′
2, . . . , c

′
p). The
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needed measurement has two outcomes and the following parameters in the second

parametrization

p± =
1
2

, (3.107)

C± = c′1 , (3.108)

z+ = z′ , (3.109)

z− =
1
z′

. (3.110)

It is trivial to check that the relations (3.43) and (3.45) are satisfied and the measure-

ment produces the desired final state.�

3.2.5 Invariants under deterministic LOCC transformations

It can be seen that, under deterministic LOCC transformations, there are some quan-

tities that remain invariant. One of these is the phase angle of z − z−1 modulo π.

Another invariant is
N(λ)

1 + |z|2
= 1 + c1 · · · cpn(z) , (3.111)

yet another is c1 · · · cps(z), etc.

Although the deterministic transitions from a given state are allowed only to a re-

stricted set of states, it might be useful to consider also the sets of states that can be

transformed into a given state. In that case, the truly multipartite states are sepa-

rated into various disjoint sets, which will be denoted by Mξ where ξ is a continuous

parameter to be described below. For λ = (z; c1, . . . , cp), we say that λ is in set Mξ if

ξ = c1c2 · · · cp
z + z∗

1 + |z|2
= c1c2 · · · cp n(z) =

N(λ)
1 + |z|2

. (3.112)

Note that ξ can take on values only in the open interval (−1, 1) for truly multipartite

states. This quantity is an invariant of deterministic transformations provided the

final state is also truly multipartite. Hence, it is not possible to transform any state in

one of these states to another state in another set. (However, it should be noted that

if probabilistic transformations are allowed, then it becomes possible to leave these

sets.)The class M0 is specially treated in theorems 2 and 4. Basically M0 contain those

states having vanishing cosines as well as those states having a purely imaginary z

parameter. All states in this set can be obtained from a single LU-equivalent class of
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“ancestor state”, the so-called GHZ state λGHZ = (1; 0, 0, . . . , 0), in other words states

which are LU-equivalent to

|GHZ〉 =
1√
2

(|0, 0, . . . , 0〉+ |1, 1, . . . , 1〉) . (3.113)

Note that these states correspond to a single point of Λ/ ∼ since all of them are

LU-equivalent.

An interesting special subset of M0 is formed from states with non-zero cosines having

a z-parameter equal to ±i, i.e., the set Li, which is defined as

Li = {(z; c1, c2, . . . , cp) : c1 · · · cp 6= 0 , z = ±i} (3.114)

Note that Li is also invariant under deterministic LOCC. If a state in Li is transformed

deterministically to a truly multipartite state, then the final state must be in Li as

well. As a result, only the cosines of the state can be increased in a deterministic

transformations. It is not possible to change the z parameter to anything other than

±i. (Obviously, this conclusion does not hold if the final state is bipartite entangled.)

The sets Mξ for ξ 6= 0 do contain infinitely many LU-equivalence classes of “ancestor

states”. These ancestor states are those members of Mξ that has a z parameter equal

to +1 (if ξ > 0) or −1 (if ξ < 0), i.e.,

Aξ = {(sgn ξ; c1, c2, . . . , cp) ∈ ΛM : c1c2 · · · cp = |ξ|} . (3.115)

These states cannot be obtained deterministically from any other rank-2 state. How-

ever, they are all ancestors of states in Mξ, i.e., any state in Mξ can be obtained from

one of these ancestors. Moreover, any non-ancestor state can be obtained from an

infinite number of ancestors. Because of this many-to-many relationship of LOCC-

convertibility, the set Mξ forms a single connected whole.
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CHAPTER 4

CONCLUSION

In this thesis we mainly concentrated on the deterministic transformations of pure

multipartite states having rank-2. These pure multipartite states are described as

points in Λ− space in terms of the complex parameters z and cosines. Using this new

parametrization description of product, bipartite and truly multipartite states and the

rules LU- equivalence between them are given.

Local operations of parties are described in terms of the general measurements. In

this way measurement done by the single party is parameterized and probabilities for

the measurement outcomes are identified. It is seen that this parametrization depends

on cosine of the initial state and cosines of the other parties is not affected by local

measurement of a single party. When two possible outcomes produce the same points

in Λ − space, one can choose to construct a new local operation where these two

outcomes appear as a single outcome.

As a minor application of the parametrization of states and local operations, we inves-

tigate some aspects of LOCC conversion phenomenon. If the initial state is a product

state, then obviously there is nothing to be done. If the state is bipartite entangled

between k and another party, then this can be done with certainty. Also, if k is un-

entangled from the rest, then success probability is 0. Then, excluding these special

cases, we considered an arbitrary truly multipartite state.

In deterministic transformations of states by many parties, it is seen that possible

final states are the same state up to LU equivalence and after every possible chain of

local operations, all final states are described as an LU-equivalent point in Λ− space.

In the case of deterministic transformation into states with vanishing cosine, same
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parties should have vanishing cosines. It is seen that, in LOCC conversion, any party

other than the 1st one, can increase their own cosine parameter to any desired value

without regarding the order of these local operations are immaterial and the 1st party

increases only the modulus of z parameter.

An alternative parametrization of complex numbers is given in describing transforma-

tions from states with non-zero cosines and with vanishing cosines to those without

any, requiring both states to be truly multipartite and LU-equivalent.

The quantities which are under deterministic LOCC transformations is identified.

These quantities are used to describe disjoint sets and the truly multipartite states

are separated into the sets in deterministic transitions.

Besides the deterministic transitions from a given state to a restricted set of states,

we considered the sets of states that can be transformed into a given state and showed

that the truly multipartite states are separated into various disjoint sets. It is shown

that transforming any state in one of these states to another state in another set

is not possible. Among the infinitely many equivalence classes of ancestor states,

those states in which only the cosines of the state can be increased in a deterministic

transformations is described.

The deterministic LOCC convertibility problem for rank-2 states have not been com-

pletely solved obviously, because there is nothing known about the transformation of

truly multipartite states into bipartite states. There is nothing known also about the

probabilistic transformations. But, probably the approach taken above, i.e., param-

eterizing the states and subsequently parameterizing the local operations as above

might prove useful for these problems as well.

Following the results of this thesis about the nature of the entanglement and its trans-

formations, we will continue to extend this work to find the possible applications in

encoding quantum information.

Since the mixed states are the ensembles of pure states, our approach to the entangle-

ment purification is based on the connection of entanglement, namely entanglement
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swapping, for pure states in the application of quantum information and computa-

tion. Instead of thinking the transformations of the Bell states with vanishing cosines,

we considered the multipartite entangled states in terms of the parametrization of

complex numbers and investigated the transformations with non-zero cosines. We in-

vestigate the way of bringing the initial state to desired final state by a chain of local

operations in a deterministic manner. In terms of these states we will try to reach the

schemes of encoding quantum information in quantum repeaters for a long distance

quantum communication networks [107]. A technical chapter which sets necessary

tools for this future works is given in the appendices. The quantum repeaters may

be chosen as hybrid quantum repeaters which contains both discrete and continuous

variables.

The connection between entanglement and quantum codes is established in two ways

depending on the nature of the physical resource in communication and computation.

First is the way in which we use physical qubits as logical qubits, and in the second

we use entanglement transformations as physical resource in quantum communication

and computation.

As an application of this thesis, we will use entanglement as resource for the quantum

informational tasks and study entanglement-assisted quantum error-correcting codes

(EAQECC ). Since, it is possible to construct an EAQECC from any classical linear

code, we will use classical linear codes to find good quantum codes in the needs of

particular applications. In the hybrid construction of quantum codes such as quantum

code that can transmit both classical and quantum information at the same time, we

will try to reach a non-binary stabilizer state and Qudit Stabilizer States constructions

of quantum codes. Besides the classical linear codes, we will try to use Quantum Codes

From Algebraic Geometry Codes in EAQECC applications.

Concerning the relation between entanglement transformations and quantum codes,

we considered the ability of a single party to obtain a product state. Since product

states are obtained from entangled states by destroying entanglement, the question

we tried to answer is ”what a single party can do if she wants to destroy the entan-

glement?”. Besides the parametrization of states, we also use the parametrization of

the local measurements. Then, we obtained the conditions of success probability of
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LOCC conversion into product states is being unity.

Using the mapping between The one-way quantum computer model(1WQC) and

Teleportation-based quantum computer (TQC) we will use quantum encoding schemes

to use unified derivations of measurement-based schemes for quantum computational

and informational tasks. In this way, Construction of graph states will be important

tool.

Rank-Two entanglement transformations with or without raising the rank of the mul-

tipartite states to higher orders stand as a bridge between quantum informational

tasks and quantum codes. In this respect, this study will be helpful in rendering the

description of computational and informational processes more physical.
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APPENDIX A

TENSOR PRODUCTS

A.1 Representing Composite States in Quantum Mechanics

In quantum mechanics, some of which are seen in the context of quantum information

processing, it is necessary to work with multi-particle states.

Suppose that H1 and H2 are two Hilbert spaces of dimension N1 and N2. We can put

these two Hilbert spaces together to construct a larger Hilbert space. We denote this

larger space by H and use the tensor product operation symbol ⊗. Then we write

H = H1 ⊗H2 (A.1)

where the dimension of the larger space becomes

dim(H) = dim(H1)dim(H2) = N1N2 (A.2)

Now, let |φ〉 ∈ H1 and |ϕ〉 ∈ H2 then |ψ〉 ∈ H is constructed as

|ψ〉 = |φ〉 ⊗ |ϕ〉 (A.3)

and it satisfies the linearity. That is,

|ψ〉 ⊗ [|ϕ1〉+ |ϕ2〉] = |φ〉 ⊗ |ϕ1〉+ |φ〉 ⊗ |ϕ2〉 (A.4)

and

|φ〉 ⊗ (α|ϕ〉) = α|φ〉 ⊗ |ϕ〉. (A.5)

The inner product of two vectors belonging to the larger Hilbert space H is given for

|ψ1〉 = |φ1〉 ⊗ |ϕ1〉

|ψ2〉 = |φ2〉 ⊗ |ϕ2〉 (A.6)
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as

〈ψ1|ψ2〉 = (〈φ1| ⊗ 〈ϕ1|)(|φ2〉 ⊗ |ϕ2〉) = 〈φ1|φ2〉〈ϕ1|φ2〉 (A.7)

A.2 Operators and Tensor products

Let A is an operator and acts on |φ〉 ∈ H1 and B is another operator acting on

|φ〉 ∈ H2. then we can create an operator A⊗B acting on |φ〉 ∈ H as follows

(A⊗B)|ψ〉 = (A⊗B)(|φ〉 ⊗ |ϕ〉) = (A|ψ〉)⊗ (B|φ〉). (A.8)

Expressing the operators in terms of the matrices we can define tensor products of

matrices. Let

A =

 a11 a12

a21 a22

 . (A.9)

and

B =

 b11 b12

b21 b22

 . (A.10)

Then

A⊗B =


a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22

 . (A.11)
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APPENDIX B

QUANTUM CODES

B.1 Quantum Information and Error Correction

In quantum information theory, classical bits are replaced by their quantum analaog

called qubit [10] which is in the form

|v〉 = α|0〉+ β|1〉 (B.1)

where the normalization condition |α|2 + |β|2 = 1 implies the conservation of proba-

bility.

Representing Qubit as a vector in C2 lead us to express larger alphabets such as Fq

where q = pm and p is prime [106]. As an information unit Qubit corresponds to

q = 2 and for q > 2 information unit is called as qudit and described as

|v〉 =
∑

a0,.an−1εFn2

ca0,...an−1 |a0, ...an−1〉 =
∑
aεFn2

ca|a〉 (B.2)

where n-qubit system can be represented as the n-fold tensor product of the form

(Cq)n = Cq ⊗ ....⊗ Cq = Cq
n

(B.3)

Using this representation we define the quantum code

Definition: A quantum code Q the subspace of (Cq)n = Cqn with the length n and

K = dimCQ for k = log2K ≤ n

Unlike classical coding theory where adding redundancy to codes in error detection

and correction by repetition, this repetition is impossible in the computational pro-
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cesses of quantum computer stated in following theorems.

Theorem 1.(No-Cloning Theorem)[104,99] It is impossible to find a quantum opera-

tion that copy the state |ψ〉to |ψ〉 ⊗ |ψ〉 for any state |ψ〉.

Proof: To prove the theorem we will assume the existence of such an quantum oper-

ation and come to a contradiction at the end of the proof. For a given |ψ〉 6= |φ〉 the

process of copying is implied by |ψ〉 → |ψ〉and|φ〉 → |φ〉 then for the superposition of

them

|ψ〉+ |φ〉 = |ψ〉|ψ〉+ |φ〉|φ〉 (B.4)

But in the theorem its argued that

|ψ〉+ |φ〉 = (|ψ〉+ |φ〉|)(|ψ〉+ |φ〉|) (B.5)

which leads a contradiction since

|ψ〉|ψ〉+ |φ〉|φ〉 6= (|ψ〉+ |φ〉|)(|ψ〉+ |φ〉|) (B.6)

Theorem 2.(Distinguishing Quantum States)[104,99] For a given non-orthogonal quan-

tum state it is impossible to distinguishes them unambiguously.

Proof: Let M be a Hermitian operator associated with eigenvalues mi and projection

operators Pi which allow us to distinguishes two non-orthogonal states |ψa〉 and |ψb〉.

Then

〈ψa|Pα|ψa〉 = 〈ψb|Pβ|ψb〉 = 1 (B.7)

and

〈ψa|Pβ|ψa〉 = 〈ψb|Pα|ψb〉 = 0 (B.8)

By the assumption |ψa〉 and |ψb〉 are non-orthogonal we can write

|ψb〉 = c|ψa〉+ d|ϕ〉 (B.9)

where the normalization condition |c|2 + |d|2 = 1 and |ϕ〉 and |ψa〉 are orthogonal to

each other. Using

〈ψb|Pβ|ψb〉 = |d|2〈φ|Pβ|φ〉 (B.10)
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we obtain

〈ψb|Pβ|ψb〉 ≤ |d|2 (B.11)

and the condition (7) is satisfied only for |d|2 = 1 which requires |ψb〉 = |ϕ〉 saying

the two states must be orthogonal contradicting our assumption that they are non-

orthogonal.

These previous two no-go theorem act as guide in constructing quantum codes. To

construct Quantum Error Correcting Codes, adding redundancy without cloning and

protecting quantum registers against noise from environment are the two basic issues.

Redundancy is simply obtained by direct product of the single-qubit computational

basis states and the encoding operation is denoted as ξ : Hk
2 → Hn

2 where Hk
2 is

the unencoded k-qubit Hilbert space and Hn
2 is the encoded n-qubit space which is

also identified as the image space Cq just as the classical case. As an example |0̄〉 is

the encoded image of |0〉 and |011〉 is the encoded image of |011〉 where r=n-k isthe

redundancy added to the quantum codes.

Second theorem plays a central role in analysis of errors on quantum registers due

to the interactions with environment. The effect of the environment is described by

the trace preserving quantum operation withe error operators Ea. Now let us take

quantum register is encoded to two distinct computational basis |̄i〉 and |j̄〉 and two

different error operators act such a way that Ea |̄i〉 and Eb|j̄〉 where the image of one

codeword is not easily distinguishable with another one. Using the second theorem,the

encoded quantum registers |̄i〉 and |j̄〉 should satisfy the condition

〈̄i|E†aEb|j̄〉 = 0(̄i 6= j̄) (B.12)

for the error operators Ea, Eb should be correctable. Since the state are disturbed by

the measurement, a quantum operation doing measurement on quantum registers is

not allowed for error correction. Instead of taking taking two different computational

basis, if we look at the two error operator in the same computational basis in which

the need to distinguish the error will disappear and we obtain the condition for the

codeword Cq to satisfy

〈̄i|E†aEb |̄i〉 = 〈j̄|E†aEb|j̄〉. (B.13)
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In other words this condition can be expressed as the environment is unaware of

distinguish the encoded computational states. In terms of the codeword basis |c〉εCq

it is written as

λab = 〈̄i|E†aEb |̄i〉 = 〈c|E†aEb|c〉 (B.14)

and the necessary and sufficient conditions to have an quantum error correcting codes

are given by this three conditions.

Definition: Number of qubits where E is not the identity is called the quantum weight

wt(E) of an error.

Following this definition we describe the distance of a q-ary quantum code Cq of the

length n as [104,105]

d = max{d : 〈u|v〉 = 0, wt(E) ≤ d− 1⇒ 〈u|E|v〉 = 0} (B.15)

Using these parameters we describe a q-ary quantum code of length n, dimension k,

and the minimum distance d by [[n, k, d]]q and two properties of them:

1. An [[n, k, d]]q code is pure iff wt(E) ≤ d− 1⇒ 〈u|E|v〉 = 0

2.An [[n, k, d]]q code is non-degenerate iff wt(E) ≤ d− 1 ⇒ |u〉 and E|v〉 are linearly

independent.

B.2 Error Group and Stabilizer States

There are three basic errors also called Pauli errors [10] acting on a qubit

|v〉 = α|0〉+ β|1〉 (B.16)

such that

I = σI =

 0 1

1 0

 , σI |v〉 = α|0〉+ β|1〉 (B.17)
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σx =

 0 1

1 0

 , σx|v〉 = β|0〉+ α|1〉 (B.18)

σz =

 1 0

0 −1

 , σz|v〉 = α|0〉 − β|1〉 (B.19)

σy = iσxσz =

 0 −i

i 0

 , σy|v〉 = −iβ|0〉+ iα|0〉 (B.20)

where there are the relations among them below

σ2
x = σ2

y = σ2
z = I, σxσz = −σzσx (B.21)

A quantum error operation acting on (C2)⊗nis given by [104,106]

e = iλw0 ⊗ w1 ⊗ ....⊗ wn−1 (B.22)

where i =
√
−i, λ = 0, 1, 2, 3, wjε{I, σx, σy, σz}, (0 ≤ j ≤ n − 1) and its action on a

basis element |a〉 = |a0〉 ⊗ |a1〉 ⊗ ...⊗ |an−1〉 where (a = a0, .an−1εFn2 ) is described by

e|a〉 = iλ(w0|a0〉)⊗ (w0|a0〉)⊗ ...⊗ (wn−1|a0n−1〉) (B.23)

The set of quantum error operators

En = {iλw0 ⊗ ..⊗ wn−1|0 ≤ λ ≤ 3, wjε{I, σx, σy, σz}, 0 ≤ j ≤ n− 1} (B.24)

is a finite non-Abelian group.

In this way n-qubit error basis is transformed into Pauli group Gn which is a multi-

plicative group by allowing to multiply En with −1 and ±i. The weight of an operator

En is defined the number of qubits where wj 6= Ij .

Definition:The 1-qubit Pauli group G1 is given by

G1 = {±σI ,±iσI ,±σx,±iσx,±σy,±iσy,±σz,±iσz} (B.25)

Definition: A set of elements 〈g1, g2...gm〉 is called the generator of the group G if the

element gi can be written as a product of ( elements from the list 〈g1, g2...gm〉. We
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write G = 〈g1, g2...gm〉.

Example:The generators of G1 are

G1 = 〈σx, σz, σI〉 (B.26)

and every element of G1 is expressed as the product of the generators

+σI = iσIiσIiσIiσI

−σI = iσIiσI

−iσI = iσIiσIiσI (B.27)

−σx = iσIiσIσx

+iσx = iσIσx

−iσx = iσIiσIiσIσx (B.28)

+σy = iσIσxσz

−σy = iσIiσIσxσz

(B.29)

+iσy = iσIiσIσxσz

−iσy = iσIiσIiσIσxσz

(B.30)

−σz = iσIiσIσz

+iσz = iσIσz

−iσz = iσIiσIiσIσz (B.31)

Definition: The n-qubit Pauli group consists of all 4n tensor products of σI , σx, σy, σz

and overall phases of ±1 and ±i.

Any error in the the Pauli group can be written as [104]

e = iλσ1
j1 ⊗ ....⊗ σ

n
jn (B.32)
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where λ = 0, 1, 2, 3, σkjk denotes the qubit k = 1..n, jk = 0, x, y, z. Using the relation

σky = −iσkxσkz the error operator () takes the form

e = iλ
′
σx(a)σz(b) (B.33)

where a = a1...an and b = b1...bn and

σx(a) ≡ (σ1
x)a1 ⊗ ...⊗ (σnx)an , (B.34)

σz(b) ≡ (σ1
z)
b1 ⊗ ...⊗ (σnz )bn . (B.35)

The center of the group Gn is given by C = {±I,±iI}and each coset eC = {±e,±ie}

is taken as the single error

Theorem: [104]

1. The orders of Gn and Gn/C are |Gn| = 22n+2 = 4n+1 and |Gn/C| = 22n.

2. For all eεGn, (a)e2 = I; (b)e† = ±e, (c)e−1 = e†

3. For all e, fεGn, either [e, f ] = 0or{e, f} = 0.

Proof:(1) Total numbers of errors in Gn is obtained as 4 × 2n × 2n where 4 comes

from the four values of iλ
′

and for each a and b strings there are 2n possible case

leading |Gn| = 4n+1. Since eC is a single error one can ignore the factor iλ
′

and obtain

|Gn/C| = 22n.

(2)(a) Since (−1)λ+a.b = ±1 then it follows,

e2 = i2λσx(a)σz(b)σx(a)σz(b)

= (−1)λ(−1)a.b(σx(a))2(σz(b))2 = (−1)λ+a.bI = ±I (B.36)

(b) Since the Pauli operators are Hermitian

e† = (−i)λσ†z(b)σ†x(a) = (−1)λ(−1)a.b(σx(a))(σz(b)) = ±e

(c) Since λ+ a.b takes integer values e−1 = e = e†

(3) Let e = iλeσx(ae)σz(be) and f = iλf σx(af )σz(bf ) be two error operators. Then

Since be.af + bf .ae is an integer, it follows that [e, f ] = 0 when its even and {e, f} = 0
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when it is odd.

ef = iλe+λfσx(ae)σz(be)σx(af )σz(bf )

= iλe+λf (−1)be.afσx(ae)σx(af )σz(be)σz(bf )

= iλe+λf (−1)be.af (−1)bf .aeσx(af )σz(bf )σx(ae)σz(be)

= (−1)be.af+bf .aefe (B.37)

In QECC an encoding operation sends both of the states and operators in to encode

one such that

unencoded k-qubit states |u〉εHk
2 → n-qubit codewords |c〉 = ξ|u〉εHn

2 and

unencoded operators AεGk → encoded operators Ā = ξAξ† which maps codewords

Cq → Cq. For unencoded error operator e = iλσx(a)σz(b) is sent by encoding operation

as

ē = ξ[iλσx(a)σz(b)]ξ†

= iλX(a)Z(b) (B.38)

where

X(a) = (X1)a1 ...(X1)ak

Z(b) = (Z1)b1 ...(Z1)bk (B.39)

In quantum stabilizer codes the stabilizer group is obtained from a set of (n − k)

operators g1....gn−k which is the generators of the Abelian group S known as the

stabilizer of quantum code Cq. Each element in S can be written as

s = gp11 ....g
pn−k
n−k (B.40)

and for all sεS and |c〉εCq

s|c〉 = |c〉. (B.41)

Since each elements of the stabilizer group S has order 2 i.e., g2
i = I and pi = 0, 1

then for the bit string of length (n − 1) one can claim that S is isomorphic to Fn−k2 ,

p = p1...pn−kεF
n−k
2 . In Fn−k2 the number of bit strings ia also the order of S such that

|S| = 2n−k.
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Using the fact that g2
i = I, the eigenvalue equation

gi|li〉 = λi|li〉 (B.42)

leads to the

g2
i |li〉 = λ2

i |li〉 (B.43)

then λ2
i = 1 and λi = (−1)li where li = 0, 1.

Since any encoded quantum code Cq lies in a 2n dimensional Hilbert space Hn
2 , the

states for Hk
2 is constructed as direct product of single qubits

|δ〉 = |δ1〉 ⊗ .....⊗ |δk〉 (B.44)

where each qubit obeys the eigenvalue equation

σjz|δj〉 = (−1)δj |δj〉 (B.45)

for j = 1, ..., k.

The encoding operation ξ : Hk
2 → Hn

2 leaves the eigenvalue equation invariant and

preserves the eigenvalue (−1)δj in such that in terms of the encoded states |δ̄〉 it

becomes

Zj |δ̄〉 = ξσjz|δ〉

= (−1)δjξ|δ〉

= (−1)δj |δ̄〉 (B.46)

where the set of {Zj : j = 1, .., k} can be chosen as commuting with the generators

{gi}.

For the encoded quantum codeword CqεH
n
2 , the the basis is described by the set

{g1, ..., gn−k;Z1, ..., Zk} which has 2n-dimensional simultaneous eigenstates. Labelling

the eigenstates by the bit strings l = l1, .., l(n−k) and δ̄ = δ̄1, .., δ̄k the eigenvalue

equations can be written in terms of the simultaneous eigenstates as

gi|l; δ̄〉 = (−1)li |l; δ〉

Zj |l; δ̄〉 = (−1)δ̄j |l; δ̄〉 (B.47)
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where i = 1, .., n − k; j = 1, .., k and li, δ̄j = 0, 1. and in terms of (41), equation (42)

becomes

s(p)|l; δ̄〉 = (−1)l.p|l; δ〉 (B.48)

where l.p = l1p1 + ...+ ln−kpn−k(mod2).

In decoding processes, for a quantum stabilizer code with generators g1, ..., gn−k) and

a Pauli error eεGn, the error syndrome is given by

li =

 0 if [e, gi] = 0 ,

1 if {e, gi} = 0 ,
(B.49)

where (i = 1, ..., n− k)

B.3 Non-Binary Quantum Stabilizer Codes and Quantum Codes from

AG Codes

Let Fpm be the Galois field of q = pm elements where p is prime and and m is an

integer. Let α1, .., αm be the elements of a basis of Fpm over Fp and define the linear

functional tr : Fpm → Fp which is called trace function and satisfies [87,95,106]

tr(l + s) = tr(l) + tr(s)

tr(αl) = αtr(l) (B.50)

for all l, s ∈ Fpm , α ∈ Fp.

For any l, s ∈ Fpm we describe the dit flip and phase flip errors acting on a single qudit

as

Tl|a〉 = |a+ l〉

Rs|a〉 = ζTr(sa)
p |a〉 (B.51)

where ζp = e
2πi
p is a pth root of unity and Tr : Fq → Fp is the trace function.
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In matrix form the linear operators is expressed as Ti,j = δ(i,j−1)modp and Ri,j = ζiδi,j .

where i = 0, ..., (p− 1).They satisfy the relations

TR = ζRT (B.52)

and in matrix form

T iRj = ζi,jRjT i (B.53)

(T iRj)(T kRh) = ζih−jk(T kRh)(RjT i) (B.54)

For l, sεFpm the operators TlRs form an orthonormal basis then

(TlRs)(Tl′Rs′ ) = ζ〈l,s
′ 〉−〈l′ ,s〉(Tl′Rs′ )(TlRs) (B.55)

A quantum error TlRs(l, s ∈ Fp) acts on a qubit in the basis () as

TlRs|a〉 = ζTr(sa)
p |a+ l〉 (a ∈ Fp) (B.56)

and on an n-qubit the error operator e is written as

e = ζtpw1 ⊗ w2 ⊗ ...⊗ wn (wi = TlRs, t, li, siεFp) (B.57)

acting on the basis ()of Cpn

e|a1....an〉 = ζtp(w1|a1〉)⊗ (w2)|a2〉 ⊗ ...⊗ (wn|a1〉)

= ζt+s1a1+..+snan
p (|a1 + l1〉 ⊗ ..⊗ |an + ln〉)

= ζ(s,a)+t
p |a+ l〉 (B.58)

where (s = (s1, ., sn), l = (l1, ., ln) ∈ Fnp ).

Non-binary stabilizer codes is obtained by the error operators

Ea,b = Ta(1)Rb(1) ⊗ Ta(2)Rb(2) ⊗ ....⊗ Ta(n)Rb(n) (B.59)

over the vectors

a = (a(1), a(2), ..., a(n)),

b = (b(1), b(2), ..., b(n)) (B.60)
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from the space Fnpm . The error group for an n-state q-ary system is

Gn = {ζiEa,b : a, b ∈ Fnpm , 0 ≤ i ≤ p− 1} (B.61)

with order p2mn+1 and center Z(Gn) = 〈ζI〉 which has order p. The error operators

satisfies the relation

(EaEb)(EcEd) = ζ〈a,d〉−〈b,c〉(EcEd)(EaEb) (B.62)

Corresponding to the linear [n, k, d] code C with error correcting capability t = bd−1
2 c

we can construct C⊥ as the dual of the code C [105]

C⊥ = {υ ∈ Fn2 : υ.c = 0∀c ∈ C} (B.63)

and the dim(C⊥) = n− k. C is called weakly self-dual code if C⊥ ⊂ C. These weakly

self-dual code C is used to construct the quantum code Q which is a subclass of the

larger class of stabilizer codes called as Calderbank-Shor-Steane (CSS)codes. In CSS

construction superposition of the codewords of C is used to express the codewords of

the quantum code Q.

If v ∈ C then a quantum state |cw〉 is defined in c-basis as

|cw〉 = 2−
dim(C)

2

∑
c∈C

(−1)v.w|v〉, w ∈ Fn2 . (B.64)

If we use an s-basis where the codewords of the quantum code Q are the set of

|cw〉∀w ∈ C, at first we change the basis by rotating

|0〉 → |0〉+ |1〉√
2

|1〉 → |0〉 − |1〉√
2

(B.65)

then we obtain the state as

|sw〉 = 2
dim(C⊥)

2

∑
c∈C⊥

|u+ w〉, w ∈ Fn2 (B.66)

The dimension of the quantum code Q is

dim(Q) = dim(C)− dim(C⊥) = k − (n− k) = 2k − n (B.67)
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and it contains 22k−n codewords.

In Stean’s approach [83,84,91], we construct the quantum codes Q(C1, C2)such that

• C1 and C2 are [n, k1, d] and [n, k2, d
′
] and C⊥2 is [n, n− k2, d] codes;

• C2 ⊂ C1;

• C1 and C⊥2 both corrects t error;

• H1 and H2 are the parity check matrices of C1 and C⊥2 .

Then, for ∀u ∈ C1 we define the state

|su+w〉 =
1

2
k2
2

∑
u∈C1,w∈C1/C2

|u+ w〉, (B.68)

where |C2| is the cardinality of C2 and C1/C2is the cosets.

When the state |s′u+w〉 is effected by the errors

|s(u+w),error〉 =
1

2
k2
2

∑
u∈C1,w∈C1/C2

(−1)(u+v).epf |u+ w + ebf 〉, (B.69)

where epf and ebf are the phase-flip and bit-flip errors.

Up to now we use binary fieldGF (2) with two elements in CSS construction [82,89,103].

To extend it to the higher q-ary case [89,98] we use the field extension GF (pk) which

is a k-dimensional vector space over GF (p). For a basis B of vector space the ex-

tension takes place by the homomorphism B : GF (pk) → [GF (p)]k. Now taking our

codewords C as our vectors over the finite field GF (2k) and B⊥(C⊥) as the dual of C

w.r.to basis B⊥ we express the homomorphism for codewords as

B⊥(C⊥)→ [B(C)]⊥ (B.70)

For k = 2 we obtain GF (4) = F4 = {0, w, w2, 1} where w2 = w + 1 , w̄ = w2, w3 = 1

and {w, w̄} is basis for F4. Using these basis we associate a vector v ∈ F4

v = aw + bw̄, a, b ∈ Fn2 (B.71)
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In this field classical linear codes which is additive code over F4 is obtained by

D = wC1 + w̄C⊥2 ⊆ F4n (B.72)

where C1 is a [n1, k1, d1]2 code and C2 is a [n2, k2, d2]2 code satisfying C1 ⊆ C2

Let X be a smooth, projective, absolutely irreducible curve of genus g over a finite

field Fpm = Fq. Given a divisor A on X defined over Fq, let

L(A) = {f ∈ Fq(X) : (f) ≥ −A} ∪ {0} (B.73)

and

Ω(A) = {η ∈ Ω(X) : (η) ≥ A} ∪ {0}. (B.74)

Let `(A) and suppD denote the dimension of L(A) as an Fq vector space and support

of a divisor D.

Algebraic Geometry codes CL(D,G) and CΩ(D,G) can be constructed using divisors

D =
∑n

i=1 Pi andG =
∑m

i=1 αiQi on X where P1 , ..., Pn, Q1, .., Qm are pairwise distinct

Fq rational points and αi ∈ N for all i, 1 ≤ i ≤ m. The two algebraic geometry codes

are related in that

CL(D,G)⊥ = CΩ(D,G). (B.75)
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