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ABSTRACT

EINSTEIN AETHER GRAVITY

AKBABA, Esin

M.Sc., Department of Physics

Supervisor : Prof. Dr. Atalay Karasu

September 2009, 32 pages

In this thesis, we review some basic properties of the Einstein-aether gravity. We derive

the field equations from an action and study a subclass of this theory corresponding to

the Einstein-Maxwell like theory. We also show that the Gödel type metrics are also

exact solutions of this theory. Furthermore, we determine the observational constraints

on the dimensionless preferred parameters of this theory using the parametrized post-

Newtonian formalism. We stress that none of calculations and discussions are original

in this thesis.

Keywords: Einstein-aether theory, Gödel type metrics, Newtonian limit, parametrized

post Newtonian formalism.
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ÖZ

EİNSTEİN ETER GRAVİTASYON KURAMI

AKBABA, Esin

Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi : Prof. Dr. Atalay Karasu

Eylül 2009, 32 sayfa

Bu tezde, Einstein-eter gravitasyon kuramının bazı temel özellikleri tekrarlanmıştır.

Aksiyon prensibinden alan denklemleri bulunmustur ve bu teorinin Einstein-Maxwell

benzeri kurama tekabül eden bir alt grubu çalışılmıştır. Ayrıca, Gödel tipi metrik-

lerinin bu teorinin tam çözümü olduğu gösterilmiştir. Parametreli Newton-sonrası

formalizmi kullanarak bu kuramın boyutsuz parametrelerin deneysel kısıtlamaları be-

lirlenmiştir. Bu tezdeki tartışmalar ve hesaplar orijinal değildir.

Anahtar Kelimeler: Einstein-aether kuramı, Gödel uzay-zamanı, Newton limiti, parame-

treli Newton-sonrası formalizmi.
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CHAPTER 1

INTRODUCTION

It is well known that the formulation of general relativity is based on the spacetime

metric. This theory is Lorentz covariant and locally Lorentz invariant. Moreover,

it does not possess preferred coordinate systems. On the other hand, one of the

Lorentz-invariance violating theory is the Einstein-aether theory, which represents a

gravitational theory with a preferred frame. This frame is introduced by a dynamical

unit time-like vector field. This theory contains four arbitrary dimensionless parame-

ters which preserve the Lorentz covariance of general relativity. The Einstein-aether

theory provides a simple model for us to see the gravitational and cosmological ef-

fects of a preferred frame. The Einstein-aether theory was first studied in [1] and [2]

and later revived in [3]. A subclass of Einstein-aether theory, corresponding to the

Einstein-Maxwell theory with dust distribution was studied in [3,4]. The structure of

this theory, status of observational constraints, and some recent developments have

been given in [5].

Recently, a class of metrics, called as Gödel-type metrics, was defined and used for

generating new solutions in various dimensions. It is shown that [6,7] in all dimensions

Einstein field equations for this class of metrics reduce to the Euclidean source-free

Maxwell equations. Most recently, it is shown [8] that Gödel-type metrics are also ex-

act solutions of the Einstein-aether theory and the only field equations, like in general

relativity, are the three dimensional Euclidean Maxwell equations with a constraint

on two of the preferred frame parameters.

The Newtonian limit of the Einstein-aether theory was examined in [9]. In that work,

both fields and sources were taken to be static and weak. Furthermore, the aether vec-

tor field was chosen to be a timelike Killing vector. The observational constraints on
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the parameters of the Einstein-aether theory are determined by parametrized post-

Newtonian(PPN) formalism [1, 10, 11, 15]. This formalism is an approximation to

general relativity and to all other metric theories. PPN approximation assumes that,

as in the Solar System, the sources of the field move slowly and gravitate weakly ev-

erywhere. Furthermore, PPN formalism is characterized by ten real parameters. Five

of them vanish identically for any theory which is derivable from an action principle.

The others measure the nonlinearity, spatial curvature, the preferred frame effects and

preffered location effects. To determine these parameters, one solves the approximate

field equations with the fluid source in a standard coordinate gauge.

In this thesis, we study some basic properties of the Einstein-aether theory, and show

that this and Einstein theories are equivalent when the metric is a subclass of Gödel

type metric. We also obtain the Newtonian and PPN expansion of this theory.

In chapter 2, we review the Einstein-aether action principle and derive the field equa-

tions.

In chapter 3, we review the Gödel type metrics in general relativity and show that

this type of metrics are also exact solutions of the Einstein-aether theory.

In chapter 4, we study the Newtonian limit of the Einstein-aether theory.

In chapter 5, we determine the observational constraints on the parameters of the

Einstein-aether theory by using the parametrized post-Newtonian formalism.
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CHAPTER 2

EINSTEIN-AETHER GRAVITY

2.1 Action and Field Equations

In general relativity, the spacetime structure is characterized by the metric tensor

gab, and the theory is both diffeomorphism invariant and locally Lorentz invariant.

Furthermore in general relativity there are no preferred frames. Einstein-aether theory

is a simple extension of general relativity containing a dynamical unit timelike vector

field ua that breaks the local Lorentz symmetry. This dynamical vector field is called

the aether and specifies a preferred rest frame at each point of spacetime. Einstein-

aether theory contains four free parameters which preserve the lorentz covariance of

general relativity.

In this chapter, we review the Einstein-aether action principle and derive the field

equations.

The conventional Einstein-aether action is defined as [3]

I =
1

16πG∗

∫ √−g
(
R−Kab

mn∇au
m∇bu

n + λ(gabu
aub + 1)

)
d4x, (2.1)

where

Kab
mn = c1g

abgmn + c2δ
a
mδb

n + c3δ
a
nδb

m − c4u
aubgmn. (2.2)

Here ua is a time-like unit vector, R is the scalar curvature and λ is the Lagrange

multiplier field and c1, c2, c3 and c4 are dimensionless constants. The metric signature

is chosen as (−+ ++) and the speed of light defined by the metric gab is unity. The

constant G∗ is related to the Newton’s gravitational constant G. Throughout this

work we take Latin indices a, b, c, ... to run from 0 to 4 and Latin indices from the

middle of the alphabet i, j, k, ... to run from 1 to 3. We use the notation c14 = c1 + c4,
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c123 = c1 + c2 + c3, etc.

The field equations are obtained by making variation of Eq.(2.1) with respect to the

metric gab,the vector field ua and the Lagrange multiplier field λ.

For this purposes we may split the action as,

I ≡ I1 + I2 + I3 + I4 + I5 + I6,

where

I1 =
1

16πG∗

∫ √−gRd4x. (2.3)

I2 = − c1

16πG∗

∫ √−ggabgmn(∇au
m)(∇bu

n)d4x. (2.4)

I3 = − c2

16πG∗

∫ √−gδa
mδb

n(∇au
m)(∇bu

n)d4x. (2.5)

I4 = − c3

16πG∗

∫ √−gδa
nδb

m(∇au
m)(∇bu

n)d4x. (2.6)

I5 =
c4

16πG∗

∫ √−guaubgmn(∇au
m)(∇bu

n)d4x. (2.7)

I6 =
1

16πG∗

∫ √−gλ(gabu
aub + 1)d4x. (2.8)

Variation with respect to λ:

It is clear that,

δIα ≡ 0, α = 1 · · · 5

Variation of Eq.(2.8)

δI6 =
1

16πG∗

∫ √−g(gabu
aub + 1)δλd4x,

≡ 0,

with respect to λ yields constraint equation

gabu
aub ≡ −1. (2.9)

The Lagrange multiplier field λ constrains the vector field ua to have a lenght -1.
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Variation with respect to ua:

The variation of Eq.(2.3) is,

δI1 = 0,

with respect to the field ua.

Variation of Eq.(2.4) is,

δI2 = − c1

16πG∗

∫ √−ggabgmn[δ(∇au
m)(∇bu

n) + (∇au
m)δ(∇bu

n)d4x,

= − c1

8πG∗

∫ √−ggabgmn(∇bu
n)δ(∇au

m)d4x,

= − c1

8πG∗

∫ √−ggabgmn(∇bu
n)∇a(δum)d4x,

= − c1

8πG∗

∫ √−g∇a(gabgmn(∇bu
n)δum)d4x

+
c1

8πG∗

∫ √−gδum∇a(gabgmn(∇bu
n))d4x,

= − c1

8πG∗

∫ √−g∇a[(∇aum)δum]d4x

+
c1

8πG∗

∫ √−g∇a(∇aum)δumd4x. (2.10)

The first term of Eq.(2.10) vanishes due to the Gauss’ Theorem,

δI2 =
c1

8πG∗

∫ √−g∇a(∇aum)δumd4x.

Similarly, variations of Eq.(2.5),(2.6) are,

δI3 =
c2

8πG∗

∫ √−g∇m(∇nun)δumd4x.

δI4 =
c3

8πG∗

∫ √−g∇n(∇mun)δumd4x.

Variation of Eq.(2.7) is,

δI5 =
c4

16πG∗

∫ √−gubgmn(∇au
m)(∇bu

n)δuad4x

+
c4

16πG∗

∫ √−guagmn(∇au
m)(∇bu

n)δubd4x

+
c4

16πG∗

∫ √−guaubgmn(∇bu
n)∇a(δum)d4x

+
c4

16πG∗

∫ √−guaubgmn(∇au
m)∇b(δun)d4x.
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δI5 =
c4

8πG∗

∫ √−g[ubgan(∇mua)(∇bu
n)−∇b(uaubgmn∇au

n)]δumd4x.

Variation of Eq.(2.8) is,

δI6 =
1

16πG∗

(∫ √−gλgabu
bδuad4x +

∫ √−gλgabu
aδubd4x

)
.

δI6 =
1

8πG∗

∫ √−gλgmnunδumd4x.

Finally, we sum up the results,

δI ≡ 0.

δI1 + δI2 + δI3 + δI4 + δI5 + δI6 ≡ 0

and obtain the aether field equation,

c4u
m∇mua∇bua +∇aJ

a
b + λub = 0 (2.11)

where

Ja
m = Kab

mn∇bu
n. (2.12)

Variation with respect to gab:

We note that

δ(∇au
m) = (δΓm

ad)u
d.

The variation of the Christoffel symbol

Γm
ad =

1
2
gmn(∂agdn + ∂dgan − ∂ngad), (2.13)

yields

δΓm
ad =

1
2
δgmn(∂agdn + ∂dgan − ∂ngad) +

1
2
gmn(δ∂agdn + δ∂dgan − δ∂ngad),

=
1
2
δgmnδc

n(∂agdc + ∂dgac − ∂cgad)

+
1
2
gmn(δ∂agdn + δ∂dgan − δ∂ngad).

δΓm
ad = − 1

2
gmnδgneg

ce(∂agdc + ∂dgac − ∂cgad)

+
1
2
gmn(∂agdn + ∂dgan − ∂ngad).

Using δc
n = gneg

ce and
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δgdn = −gcdgenδgce, (2.14)

we obtain,

δΓm
ad = −gmnδgneΓe

ad +
1
2
gmn(∂agdn + ∂dgan − ∂ngad).

It can also be written as,

δΓm
ad =

1
2
gmn(−δgneΓe

ad − δgneΓe
ad + ∂agdn + ∂dgan − ∂ngad). (2.15)

This can be further simplified, by adding and subtracting the term (δgedΓe
an +

δgaeΓe
nd) to the Eq.(2.15), then in covariant form we obtain

δΓm
ad =

1
2
gmn(∇aδgdn +∇dδgan −∇nδgad),

and

δ(∇au
m) =

1
2
udgmn(∇aδgdn +∇dδgan −∇nδgad),

= −1
2
uc(gcd∇aδg

md + gad∇cδg
md + gmd∇dδgac),

where we have used Eq.(2.14).

Furthermore,

Kab
mn∇au

mδ(∇bu
n) = − 1

2
Kab

mn∇au
muc(gcd∇bδg

nd

+ gbd∇cδg
nd + gnd∇dδgbc). (2.16)

Changing n ←→ a , d ←→ b for the first and second terms of Eq. (2.16), we have,

Kab
mn∇au

mδ(∇bu
n) = − 1

2
Knd

ma∇numucgcb∇dδg
ab

− 1
2
Knd

ma∇numucgbd∇cδg
ab

+
1
2
Krs

mn∇ru
mucgndgasgbc∇dδg

ab,

where we have used equation(2.14).

Using Gauss’ Theorem and changing indices, n ←→ m , a ←→ b , we obtain

Kab
mn∇bu

nδ(∇au
m) = [

1
2
∇d(Kmd

nb∇munua)

+
1
2
∇c(Kmd

nb∇munucgad)

− 1
2
∇d(Krs

mn∇ru
nucgmdgsbgca)]δgab.
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Then,

Kab
mn∇bu

nδ(∇au
m) = [

1
2
∇m(Jm

bua)

+
1
2
∇m(Jd

bu
mgad)

− 1
2
∇m((Js

du
cgmdgsbgca)]δgab.

Kab
mn∇bu

nδ(∇au
m) = [

1
2
∇m(Jm

bua) +
1
2
∇m(Jabu

m)

− 1
2
∇m((Jm

b ua)]δgab.

Similarly, we can calculate the following expressions

Kab
mn∇au

mδ(∇bu
n) = [

1
2
∇m(Jm

aub + Jbau
m − Jm

a ub)]δgab.

Kab
mn∇bu

nδ(∇au
m)+Kab

mn∇au
mδ(∇bu

n) = [∇m(Jm
(bua)+J(ab)u

m−J m
(b ua)]δg

ab.

δKab
mn = c1(gmnδgab + gabδgmn)− c4(uaubδgmn).

δ(Kab
mn)∇au

m∇bu
n = ∇au

m∇bu
n(c1gmnδgab + c1g

abδgmn − c4u
aubδgmn)

= [c1∇au
m∇bu

ngmn − c1∇ru
m∇su

ngrsgmagnb

+ c4∇ru
m∇su

nurusgmagnb]δgab,

where we have used equation(2.14).

Variation of (
√−gR) is,

δ(
√−gR) =

√−g(Rab − 1
2
gabR)δgab =

√−gGabδg
ab.

Substituting all these results to the variation, the field equations can be written in the

form Gab = Sab where Gab is the Einstein tensor and Sab is the aether stress tensor:

Gab = ∇m(Jm
(bua) − J m

(b ua) + J(ab)u
m)− 1

2
gabK

cd
mn∇cu

m∇du
n

+ c1(∇aun∇bu
n −∇rua∇rub) + λuaub + c4u̇au̇b. (2.17)

where u̇a = ub∇bua and brackets around the indices denote the symmetrization.

Finally, the variational principle(2.1) implies the following field equations

gabu
aub ≡ −1.

8



c4u
m∇mua∇bua +∇aJ

a
b + λub = 0.

Gab = ∇m(Jm
(bua) − J m

(b ua) + J(ab)u
m)− 1

2
gabK

cd
mn∇cu

m∇du
n

+ c1(∇aun∇bu
n −∇rua∇rub) + λuaub + c4u̇au̇b.

2.2 Special case: Einstein-Maxwell Theory

In this section we study a special class of Einstein-aether theory which corresponds to

the Einstein-Maxwell theory with a dust distribution (without pressure) [3, 8]. Now,

let c2 ≡ c4 ≡ 0 and c3 ≡ −c1. Then the action contains only the antisymmetrized

derivative of the dynamical unit timelike vector field.

The tensor given in Eq.(2.2) can now be calculated as

Kab
mn = c1g

abgmn − c1δ
a
nδb

m,

and hence Eq.(2.12) becomes,

Ja
m = c1(gabgmn − δa

nδb
m)∇bu

n,

= c1(∇aum −∇mua).

If we define

Fab = ∇aub −∇bua,

which has the same form of the electromagnetic field tensor, then the action (2.1)

becomes,

S =
1

16πG∗

∫ √−g(R− F abFab + λ(gabu
aub + 1))d4x. (2.18)

The field equations are obtained by making variation of Eq.(2.18) with respect to gab,

ua and λ.

Variation of Eq.(2.18) with respect to gab is,

δS =
1

16πG∗

∫
δ(
√−g)(R− c1F

abFab + λ(gabu
aub + 1))d4x

+
1

16πG∗

∫ √−g(δR− c1δ(F abFab) + λ(δgabu
aub + 1))d4x. (2.19)

Using Eq.(2.14), the identity

δ
√−g = −1

2
√−ggabδg

ab,

9



and ∫ √−ggabδRabd
4x = 0,

we obtain,

δS = − 1
32πG∗

∫ √−ggabδg
ab(R− c1F

abFab + λ(gabu
aub + 1))d4x

+
1

16πG∗

∫ √−gRabδg
abd4x− c1

8πG

∫ √−gFdbF
d

aδg
abd4x

− 1
16πG∗

λ

∫ √−guaubδg
abd4x ≡ 0.

Then, we have

−1
2
gabR− c1

2
F 2gab −Rab + 2c1FdbF

d
a + λuaub = 0,

where, F 2 = F abFab. The Einstein tensor Gab is simply given by

Gab =
−c1

2
gabF

2 + 2c1FdbF
d

a + λuaub. (2.20)

In terms of the energy momentum tensor of Fab is [8]

Gab = 2c1Tab + λuaub,

where

Tab = −1
4
gabF

2 + FdbF
d

a.

Variation with respect to ua is,

δS =
∫ √−g(−c1δF

2 + λgabδu
aub + λgabu

aδub)d4x.

δS = −2
∫ √−gc1F

ab(∇aδub −∇bδua)d4x + 2
∫ √−gλgabu

bδuad4x.

Using Gauss’ theorem we have,

δS = 4c1

∫ √−g(∇bF
b

a)δu
a + 2

∫ √−gλuaδu
ad4x = 0,

10



then we obtain

4c1∇bF
b

a + 2λua = 0,

∇aF
ab = − λ

2c1
ub, (2.21)

and variation with respect to λ gives the normalization condition

gabu
aub = −1. (2.22)

Now if we identify the rest energy density of dust ρ and vector potential An as [3]

ρ ↔ λ

An ↔
√

2c1un,

Eq.(2.21) can be interpreted as the Maxwell equation with 4-velocity ub and charge

density −λ/
√

2c1 of a charged dust fluid. We can easily find that charge to mass ratio

is −1/
√

2c1. Furthermore, in terms of the vector potential the constraint equation

(2.22) turns out to be

AnAn = −2c1.

It can be easily seen that c1 and λ are positive.

In order to obtain an explicit equation of motion for the dust, we take the gradient of

the constraint equation(2.22),

∇a(ubub) = 0,

= 2ub∇aub,

= 2(ub∇bua + ubFab). (2.23)

Defining F̃ab =
√

2c1Fab, Eq.(2.23) becomes,

ub∇bua = − 1√
2c1

F̃abu
b. (2.24)

This is the equation of motion for a particle in the electromagnetic field F̃ab with

charge to mass ratio − 1√
2c1

. On the other hand, this Maxwell-like special case of

Einstein-aether theory is different from the usual Einstein-Maxwell theory due to the

constraint equation (2.22) which breaks the gauge invariance of the theory.
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CHAPTER 3

GÖDEL-TYPE METRICS IN EINSTEIN-AETHER

THEORY

3.1 Gödel-Type Metrics in General Relativity

In this chapter we briefly review the Gödel-type metrics in general relativity and show

that these type of metrics are also exact solutions of the Einstein-aether theory.

The Gödel metric

ds2 = −(dx0)2 + (dx1)2 − 1
2
e2x1

(dx2)2 + (dx3)2 − 2ex1
dx0dx2, (3.1)

which describes a pressure-free perfect fluid solution in general relativity with a neg-

ative cosmological constant, was introduced by Kurt Gödel in 1949 [12]. It possesses

closed timelike and null curves. This metric can be put into the form [6,13]

gab = hab − uaub,

in two different ways. First, if we consider the background metric hab to be a 3-

dimensional non-flat metric then Eq.(3.1) takes the form

ds2 = (dx1)2 +
1
2
e2x1

(dx2)2 + (dx3)2 − (dx0 + ex1
dx2)2,

with a timelike unit vector

ua = δ0
a + ex1

δ2
a.

Second, if we consider the background metric hab to be the 3-dimensional flat metric

then Eq.(3.1) takes the form

ds2 = (dx0)2 + (dx1)2 + (dx3)2 − (
√

2dx0 +
1√
2
ex1

dx2)2,
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with a unit timelike vector

ua =
√

2δ0
a + (1/

√
2)ex1

δ2
a.

Motivated by the Gödel metric, a class of metrics of the form

gab = hab − uaub, (3.2)

are called Gödel-type metrics if the following conditions are satisfied.

1. hab is a degenerate (D ×D) matrix with rank equal to D − 1,

2. h0a = 0, x0 is a fixed coordinate,

3. ∂0hab = 0,

4. hij is the metric of (D − 1) dimensional Euclidian space,

5. ua is a timelike unit vector, i.e. uaua = −1,

6. ∂0ua = 0.

In [6, 7] it was shown that Gödel-type metrics can be used in constructing solutions

in various dimensions.

Now, we show that in four dimensions Gödel-type metrics form an exact solution of

the Einstein equations with charged dust source provided that a simple 3-dimensional

Euclidian source-free Maxwell’s equation is satisfied.

Let

ua = − 1
u0

δa
0

be a timelike vector with u0 = 1 and uk=constant. Then, defining an antisymmetric

tensor fab,

fab = ub,a − ua,b = 2∇[aub],

which is closely analogous with the electromagnetic field tensor, the Christoffel sym-

bols can be found as

Γm
ab =

1
2
(uaf

m
b + ubf

m
a)−

1
2
(ua,b + ub,a)um.

13



The following identities are useful in the derivation of Einstein tensor:

ua∂aub = 0,

uafab = 0,

u̇a = 0.

The Ricci tensor is given by

Rbd = ∂cΓc
bd − ∂dΓc

bc + Γe
bdΓ

c
ec − Γe

bcΓ
c
ed

and the corresponding Christoffel symbols can be calculated as

Γc
bc =

1
2
(ubf

c
b + ucf

c
b)−

1
2
(ub,c + uc,b)uc.

On the other hand, we calculate the following expressions

∂cΓc
bd =

1
2
∂c(ubf

c
d + udf

c
b)−

1
2
∂c(uc(ub,d + ud,b)),

=
1
2
(ub,cf

c
d − ub∂cf

c
d + ud,cf

c
b − ud∂cfb

c),

=
1
2
(ub,cf

c
d − ubjd + ud,cf

c
b − udjb),

where jb = ∂af
a

b .

Γe
bcΓ

c
ed =

1
4
(ubf

e
c + ucf

e
b − ueub,c − ueuc,b)(uef

c
d + udf

c
e − ucue,d − ucud,e),

=
1
4

(−ubudf
2 + fe

b(ue,d + ud,e) + f c
d(ub,c + uc,b)

)
. (3.3)

Then we get the Ricci tensor,

Rbd =
1
2
(ub,cf

c
d − ubjd + ud,cf

c
b − udjb)

− 1
4

(−ubudf
2 + fe

b(ue,d + ud,e) + f c
d(ub,c + uc,b)

)

=
1
2
(fdef

e
b − ubjd − udjb) +

1
4
ubudf

2.

The Ricci scalar is obtained as,

R = gbdRbd

=
1
2
(gbdfdef

e
b − gbdubjd − gbdudjb) +

1
4
gbdubudf

2

=
1
4
f2 − udjd.

14



Finally the Einstein tensor, with jd = 0, is simply given by,

Gbd = Rbd − 1
2
gbdR

=
1
2
fdef

e
b +

1
4
ubudf

2 − 1
8
gbdf

2

=
1
2
T f

bd +
1
4
f2ubud, (3.4)

where the Maxwell energy momentum tensor T f
bd is

T f
bd = fdef

e
b − 1

4
gbdf

2.

Eq.(3.4) implies that the Gödel-type metric(3.2) is a solution of the charged dust field

equations in 4-dimensions. The energy density of the dust fluid is 1
4f2. Furthermore,

we have

ji = ∂kf
k

i = 0, i = 1, 2, 3

since j0 = 0.

In covariant form the above equation can also be written as

∇af
ab =

1
2
f2ub. (3.5)

3.2 Gödel-Type Metrics in Einstein-Aether Theory

In this section we show that Gödel-type of metrics of general relativity are also exact

solutions of the Einstein-aether theory. We use the Gödel-type metric and its time-like

vector ua in Einstein-aether theory [8].

Using

fab = ub,a − ua,b = 2∇[aub]

and ua∇au
b = 0(u̇b = 0), we find

Ja
m =

1
2
(c1 − c3)fa

m. (3.6)

To calculate λ,

λ = c4u̇
au̇a + ua∇bJ

b
a,

we specifically calculate,

∇bJ
b

a =
1
2
(c1 − c3)(∂bf

b
a − Γe

abf
b

e)

=
1
2
(c1 − c3)(∂bf

b
a +

1
2
f2ua).
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ua∇bJ
b

a =
1
2
(c1 − c3)(ua∂bf

b
a −

1
2
f2)

= −1
4
(c1 − c3)f2.

Then we obtain,

λ = −1
4
(c1 − c3)f2.

In order to calculate the field equations the following derivations are useful:

L = Kab
mn(∇au

m)(∇bu
n)

=
1
2
(c1g

abgmn + c2δ
a
mδb

n + c3δ
a
nδb

m + c4u
aubgmn)(−fm

a)(∇bu
n)

=
1
4
(c1 − c3)f2. (3.7)

The Maxwell equation becomes,

∇ef
e

a =
1
2
f2ua. (3.8)

To obtain the field equations we calculate

∇e(Je
(aub) − J e

(a ub) + J(ab)u
e) = ∇e(Je

aub + Je
bua)

= (∇eJ
e

a)ub + Je
a∇eub + (∇eJ

e
b)ua + Je

b∇eua

=
1
2
(c1 − c3)(f2uaub + fe

a∇eub + fe
b∇eua)

and

c1(∇aue∇bu
e −∇eua∇eub) = c1(fae +∇eua)∇bu

e − c1∇eua∇eub

= c1fae∇bu
e + c1∇eua(f e

b ),

where we have used Eq.(3.6) and (3.8). Therefore, the Einstein field equations comes

out to be

Gab = (c1 − c3)(
1
2
T f

ab +
1
4
f2uaub). (3.9)

Now, a comparison of Eq.(3.8) and (3.9) with Eq.(3.4) and (3.5) implies that c1−c3 =

1. Hence the only field equations remaining for the Einstein-aether theory are given

in Eq.(3.8).
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CHAPTER 4

NEWTONIAN LIMIT OF THE EINSTEIN-AETHER

THEORY

In this chapter, we will study the Newtonian limit of the Einstein-aether theory [9]

which will enable us to see the observable effects of the aether field(for example,

Newtonian theory works well in the Solar System experiments).We assume that the

metric field is so weak that we can consider it as nearly flat. And therefore, we can

split the metric into two:

gab = ηab + hab,

where ηab is the Minkowski metric and hab is the small metric perturbation such that

| hab |¿ 1.

To linearize the field equations we keep only the first order terms of hab. Then, the

linearized Christoffel symbols can be written as,

Γm
ab =

1
2
(∂ahb

m + ∂bh
m
a − ∂mhab)

and the Ricci tensor is,

Rab = ∂cΓc
ab − ∂bΓc

ac

=
1
2
(∂c∂ahbc −¤hab − ∂b∂ah + ∂b∂

chac) (4.1)

where, ¤ ≡ ∂a∂
a, the d’Alembertian operator and h ≡ ha

a = ηabhab, trace of the hab.

The Ricci scalar is,

R = ∂a∂bh
ab −¤h.

Finally, we obtain the linearized Einstein tensor,

Gab =
1
2
(∂c∂ahbc −¤hab − ∂b∂ah + ∂b∂

chac − ηab∂c∂dh
cd + ηab¤h). (4.2)

17



For simplicity, we define a new quantity [14],

γab ≡ hab − 1
2
ηabh,

in terms of which gab is given by,

gab = ηab + γab − 1
2
ηabγ, (4.3)

where γ is the trace of the γab.

Then, linearized field equations in terms of the defined quantity are,

Gab =
1
2
(∂c∂aγbc + ∂c∂bγac − ηab∂c∂dγ

cd −¤γab). (4.4)

Using the Hilbert gauge [14],

∂bγ
ab = 0,

our linearized field equations reduce to,

Gab = −1
2
¤γab. (4.5)

Eq.(4.5) can also be written as,

¤γab = −16πG Tab. (4.6)

We consider the retarded solution of Eq.(4.6) [14],

γab(x) = 4GN

∫
d3x′

Tab(x0 − |x− x′|,x′)
|x− x′| . (4.7)

In the Newtonian limit we consider small velocities, which means T00 À |T0i| and

T00 À |Tij |. Then Eq.(4.7) becomes,

γ00 = −4φ,

γ0i = γij = 0,

where φ is the Newtonian potential,

φ(x) = −GN

∫
d3x′

T00(t,x′)
|x− x′| .

Using Eq.(4.3) we can write the Newtonian limit metric,

ds2 = −(1 + 2φ)dt2 + (1− 2φ)(dx2 + dy2 + dz2). (4.8)
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We can choose, without loss of generality, the dynamical vector ua as,

ua = (u0, 0, 0, 0) = u0δa
0 , (4.9)

with the condition,

uaua = −1.

The aether field in Newtonian limit becomes,

u0g00u
0 = −1.

u0 = (1 + 2φ)−
1
2 ∼= 1− φ.

Then we can write,

ua = (1− φ)δa
0

and also we have

ua = gabu
b = ga0u

0 = g00u
0δ0

a = (−1− 2φ)(1− φ)δ0
a
∼= −(1 + φ)δ0

a. (4.10)

Using Eq.(2.11), we obtain the value of Lagrange multiplier field λ in Newtonian limit,

λ = c3∇2φ,

where ∇2 is the three-dimensional Laplace operator.

The energy-momentum tensor for the vector field at linear order is,

S00 = c14∇2φ,

and other components are zero.

The linearized field equations are,

Gab = Rab − 1
2
ηabR.

Then we have,

Gab =
1
2
(∂c∂bh

c
a + ∂c∂ah

c
b − ∂a∂bh− ∂d∂

dhab − ηab∂c∂dh
cd + ηab∂d∂

dh). (4.11)

The Einstein field equations, with matter field, can be written as,

Gab = Sab + 8πG∗Tab. (4.12)
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The time-time component of Eq.(4.12) becomes

S00 + 8πG∗T00 = 2∇2φ, (4.13)

where T00 is the matter energy-momentum tensor for a dust distribution.

We assume T00 = ρm(x) where ρm(x) is the matter density.

Rewriting Eq.(4.13) as a Poisson’s equation we have,

∇2φ = 4πGNρm,

where GN is the Newton’s constant,

GN =
(
1− c14

2

)−1
G∗ (4.14)

which is seen to be rescaled.
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CHAPTER 5

POST-NEWTONIAN PARAMETERS AND

CONSTRAINTS IN EINSTEIN-AETHER THEORY

There are alternative theories of gravity to explain the geometry of the universe.

We can test a candidate theory by comparing it with the Solar System observations.

In the Solar System the gravity is weak and stress, internal energy and velocity of

the matter are low, which enable us to simplify our theory without losing any accu-

racy. It can be considered as a correction to the Newtonian theory. This correction

is called as ‘Parametrized Post Newtonian(PPN) analysis’. It has 10 parameters,

γ(related to spatial curvature), β(related to nonlinearity), ξ(related to preferred lo-

cation effects), ζ1, ζ2, ζ3, ζ4(related to total momentum conservation), α1, α2(related

to preferred frame effects), α3(related to total momentum conservation and preferred

frame effects), named as ‘PPN parameters’, to be specified [1, 10,11].

In this chapter, we examine PPN parameters in Einstein-aether theory [15]. Before

calculation of the PPN parameters of the Einstein-aether theory, we will give neces-

sary introductive calculations and definitions.

It is convenient to write the Einstein’s field equations

TG
ab = Rab − 1

2
gabR, (5.1)

in terms of the total energy momentum tensor as

TG
ab = Rab +

1
2
gabT

G,

where TG
ab = Sab + Tab and TG = TG a

a .

We rewrite the Einstein’s equations in a nonstandard form as

Rab = (Scd + 8πG∗Tcd)(δc
aδ

d
b −

1
2
gabg

cd), (5.2)
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where

T ab = (ρ + ρΠ + p)ϑaϑb + pgab. (5.3)

T ab is the stress tensor for the perfect fluid, ρ is the rest mass energy density, Π is

the internal energy density, p is the isotropic pressure and ϑ is the four-velocity of the

fluid.

In the PPN analysis, order is a crucial point. We take ρ ∼ Π ∼ p/ρ ∼ (ϑi)2 ∼ O(1).

If a quantity’s order is X, after taking its time derivative its order becomes X + 1/2.

For the metric perturbations hab we assume, h00 ∼ O(1) + O(2), hij ∼ O(1), h0i ∼
O(1, 5).

The following relations are useful for later use

∇2Φ1 = −4πρGNϑ2,

∇2Φ2 = −4πρGNφ,

∇2Φ3 = −4πρGNΠ,

∇2Φ4 = −4πpGN . (5.4)

The explicit definitions of functions Φ1,Φ2, Φ3 and Φ4, are given in ( [1],section 4.1).

We define the ‘Superpotential’ χ(x, t) as

χ(x, t) = −GN

∫
d3x′ρ(x′, t)|x− x′|, (5.5)

which satisfies

χ,ii = −2φ. (5.6)

We also use the relation,

χ,0i = Vi −Wi, (5.7)

where

Vi =
∫

d3x′
ρ(x′, t)ϑ′i
|x− x′| ,

Wi =
∫

d3x′
ρ(x′, t)v′ · (x− x′)(x− x′)i

|x− x′|3 .
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These potentials are the results of the work for a general, reasonable and simple post-

Newtonian metric [15],

g00 = − 1− 2φ + 2βφ2 + 2ξΦW − (2γ + 2 + α3 + ζ1 − 2ξ)Φ1

− 2(3γ − 2β + 1 + ζ2 + ξ)Φ2 − 2(1 + ζ3)Φ3

− 2(3γ + 3ζ4 − 2ξ)Φ4 + (ζ1 − 2ξ)A,

g0i =
1
2
(4γ + 3 + α1 − α2 + ζ1 − 2ξ)Vi +

1
2
(1 + α2 + ζ1 + 2ξ)Wi,

gij = (1− 2γφ)δij . (5.8)

The solving procedure involves 6 steps:

1. u0 to O(1)

We solve the constraint equation(2.9) for u0 to O(1),

u0 = 1 +
1
2
h00

and also we have

u0 = g00u
0 = −1 +

1
2
h00,

ui = uagai = −ui + h0i = ni + h0i,

where

ni = ui − h0i. (5.9)

From the constraint equation(2.9),

g00u
0u0 = −1,

we obtain the covariant derivative of u0 as

∇au0 = 0, (5.10)

to O(2).

Also to O(2) we calculate

∇0ui = ∂0ui − 1
2
gab(∂igb0 + ∂0gbi − ∂bgi0)ua

= ∂0ui − 1
2
(∂ihb0 + ∂0hbi − ∂bhi0)ub

= ui,0 − 1
2
(∂ih00 + ∂0h0i − ∂0hi0)u0, (5.11)
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where ui,0 = ∂0ui. It simplifies to

∇0ui = ∂0ui − 1
2
h00,i(1 +

1
2
h00)

= ni,0 + h0i,0 − 1
2
h00,i(1 +

1
2
h00), (5.12)

and

u̇i = ua∇aui = u0∇0ui = (1 +
1
2
h00)[ni,0 + h0i,0 − 1

2
h00,i(1 +

1
2
h00)]

= ni,0 + h0i,0 − 1
2
h00,i(1 +

1
2
h00)2

= ni,0 + h0i,0 − 1
2
h00,i(1 + h00). (5.13)

To O(1.5),we calculate

∇jui = ui,j − Γk
ijuk

= ui,j − 1
2
(h0j,i + h0i,j − hij,0)

= ni,j +
1
2
hij,0 + h0[i,j]. (5.14)

2. g00 to O(1)

Time-time component of Ricci tensor at O(2) is [1]

R00 =
1
2
(−h00,ii−(hii,00−2hi0,i0)+h00,j(hji,i− 1

2
hii,j)− 1

2
h00,ih00,i+hijh00,ij). (5.15)

At O(1) it reduces to

R00 = −1
2
h00,ii.

Also, to O(1), we evaluate

T00 = ρϑ2
0 = ρ(1− 2φ + ϑ2) = ρ,

Tij = 0.

To compute the S00 term we need to evaluate

∇m(J m
0 u0) = u0(∂iJ

i
0 + Γi

aiJ
a

0 − Γa
0iJ

i
a

= u0∂iJ
i

0

=
c14

2
h00,ii, (5.16)

and then to O(1) ,

S00 = −∇m(J m
0 u0) = −c14

2
h00,ii,
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and simply

Sij = 0.

Then Eq.(5.2) becomes,

2R00 − S00 = 8πG∗ρ,

(
−1 +

c14

2

)
h00,ii = 8πG∗ρ, (5.17)

∇2φ = 4πG∗ρ
(
1− c14

2

)−1
,

giving the Newton’s constant as

GN =
(
1− c14

2

)−1
G∗, (5.18)

which is in agreement with Eq.(4.14).

3. gij to O(1)

Space-space component of Ricci tensor at O(1) is [1]

Rij =
1
2
(−hij,kk + h00,ij − hkk,ij + hki,kj + hkj,ki).

Imposing the gauge condition

hij,j = −1
2
(h00,i − hjj,i), (5.19)

we have

Rij = −1
2
hij,kk.

Also from Eq.(5.2) we can write

Rij = −4πGNρδij , (5.20)

where we have used Eq.(5.17) and (5.18).

Then Eq.(5.20) becomes

hij,kk = 8πGNρδij .

4. ui to O(1,5)

We solve the space components of the aether field Eq.(2.11) for ui to O(1,5).

∇aJ
a
i = ∂aJ

a
i = 0.

∂0J0i − ∂jJji = 0. (5.21)
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To O(1.5) we have

∂0J0i = c14∂0(∇0ui) = −c14

2
h00,0i = −c14

2
χ,0ijj , (5.22)

and

∂jJji = c1∂j(∇jui) + c2∂i(∇kuk) + c3∂j(∇iuj).

Making use of Eq.(5.14), gauge condition(5.19), we have

∂jJji = c1ni,jj + c23nj,ji + (c1 − c3)h0[i,j]j +
(

c13

2
+

3c2

2

)
χ,0ikk.

The aether field equation(5.21) then becomes
(

c1ni +
c−
2

h0i +
1
2
(2c1 + 3c2 + c3 + c4)χ,i0

)

,jj

−
(c−

2
h0j,j − c23nj,j

)
,i

= 0. (5.23)

where c− = c1 − c3.

Taking the spatial divergence of (5.23), we obtain

c1ni,ijj +
1
2
(2c1 + 3c2 + c34)χ,0iijj + c23nj,jii = 0.

This can be further written as

ni,ijj = Cχ,0iijj , (5.24)

here

C = −2c1 + 3c2 + c34

2c123
.

Using Eq.(5.24) and gauge condition

hoi,i = −3U,0 + θni,i (5.25)

Eq.(5.23) can be written as

ni = − 1
2c1

(c−h0i − (2c1C + c−(3/2 + Cθ))χ,0i) (5.26)

where θ is an arbitrary parameter.

5. g0i to O(1,5)

We solve the time-space components of Eq.(5.2) for g0i to O(1, 5).

We have [1]

R0i = −1
2
(h0i,kk − hk0,ik + hkk,0i − hki,0k), (5.27)
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to O(1, 5).

Using Eq.(5.19), (5.24) and, (5.25) we obtain

R0i = −1
2

(
h0i +

1
2
(1− 2θC)χ,0i

)

,kk

(5.28)

and

T0i = −ρϑi,

S0i = J0i,0 − 1
2
(−Jij,j + Jji,j).

Using Eq.(5.21), we have

S0i =
1
2
(J0i,0 + Jij,j).

Jij,j = (c1∇iuj + c2δij∇kuk + c3∇jui),j

= c12nj,ji + c3ni,jj +
1
2
(c13hij,0j + c2hjj,0i + 2c−h0[j,i]j). (5.29)

Using Eq.(5.26) we have

Jij,j = − c−c+

2c1
h0i,jj +

(−c12c−
2c1

+
c−
2

)
h0j,ij

+
(

C +
c−
2c1

(
3
2

+ Cθ)
)

(c12 + c3)χ,0ijj

− (c+ + 3c2)φ,0i,

where c+ = c13.

Using the gauge condition(5.25) and Eq.(5.24) we obtain

Jij,j =
(
−c−c+

2c1
h0i + (

c14

2
− C∗)χ,0i

)

,jj

, (5.30)

where

C∗ =
1

4c1
(c2

1 + 3c2
3 + 4c1c4 − 2c−c+Cθ).

Combining with Eq.(5.22) we can write

S0i = −
(

c−c+

4c1
h0i +

C∗

2
χ,0i

)

,jj

.

Then, field equation becomes

R0i = S0i + 8πGT0i,

(
h0i +

1
2
(1− 2θC)χ,0i

)

,kk

=
(
−c−c+

2c1
h0i − C∗χ,0i

)

,kk

+ 16πGρϑi,
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(
1− c−c+

2c1

)
h0i,kk = 16πGρϑi −

(
C∗ + θC − 1

2

)
χ0i,kk

giving

h0i =
(

1− c−c+

2c1

)−1 (
(C∗ + θC − 1

2
)χ,0i + 4(1− c14

2
)Vi

)
,

where we have used [15],

Vi,jj = −4πGNρϑi.

6. g00 to O(2)

We solve the time-time component of Eq.(5.2) for g00 to O(2). From Eq.(5.15), we

have

R00 =
1
2

(
h̃00 + 2φ− 2φ2 + 8Φ2 + 2Cθχ,00

)
,ii

, (5.31)

where we have defined h̃00 = g00 + 1 + 2φ and used Eq.(5.19), (5.24), (5.25) and rela-

tion [1]

|∇φ|2 = ∇2

(
1
2
φ2 − Φ2

)
.

We also evaluate the components of matter energy momentum tensor

T00 = (ρ + ρΠ + p)ϑ 2
0 + pg00

= (ρ + ρΠ + p)(1 + ϑ2 − 2φ) + p(−1− 2φ)

= ρ(1 + Π + ϑ2 − 2φ), (5.32)

Tij = ρϑiϑj + pδij ,

to O(2) and,

T00 − 1
2
g00(Tabg

ab) =
1
2
(T00 + Tii)

=
1
2
ρ(1 + Π + 2(ϑ2 − φ)) +

3
2
p

= −(1− c14/2)
8πG

(φ + 2Φ1 − 2Φ2 + Φ3 + 3Φ4),ii, (5.33)

where we have used the equations (5.4).

Before beginning to compute the S tensor we see that

∇iui = ui,i − 1
2
(2hmi,i − hii,m)um

= ui,i − 1
2
(2h0i,i − hii,0),
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to O(2). Using Eq.(5.9) we have

∇iui =
(

3
2

+ C

)
χ,0ii, (5.34)

and from Eq.(5.12) we calculate

(∇0ui),i = −1
2
h00,ii − 1

4
h00,iih00 − 1

4
h00,ih00,i + h0i,0i + ni,0i

= φ,ii − φφ,ii − φ,iφ,i +
3
2
χ,00ii + (θ + 1)ni,0i

=
(

φ− 1
2
φ2

)

,ii

+
(

3
2

+ (θ + 1)C
)

χ,00ii

= −1
2

[
−2φ + φ2 + h̃00 − 2

(
3
2

+ (θ + 1)C
)

χ,00

]

,ii

. (5.35)

Then we obtain

S00 =
c14

2

(
2φ + h̃00 − 5

2
φ2 + 9Φ2

)

,ii

+ c14

(
3
2

+ (θ + 1)C
)

χ,00ii, (5.36)

and

Sii =
1
2
c14

(
1
2
φ2 − Φ2

)

,ii

+ (c+ + 3c2)
(

3
2

+ C

)
χ,00ii. (5.37)

Then we have

S00 − 1
2
g00Sabg

ab =
c14

4
(2φ + h̃00 − 2φ2 + 8Φ2),ii

+
1
2

((
3
2

+ C

)
(2c1 + 3c2 + c3 + c4) + c14θC

)
χ,00ii.(5.38)

Solving the field equation we have

h̃00 = 2φ2 − 4Φ1 − 4Φ2 − 2Φ3 − 6Φ4 −Qχ,00,

where

Q =
(
1− c14

2

)−1
((2− c14)θ + (c1 + 2c3 − c4))C. (5.39)

Using the standard gauge Q vanishes and gives θ as,

θ0 = −c1 + 2c3 − c4

2− c14
.

Now, we write the metric components as

g00 = −1− 2φ + 2φ2 − 4Φ1 − 4Φ2 − 2Φ3 − 6Φ4,

with θ = θ0.

gij = (1− 2φ)δij ,
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gi0 =
(

1− c−c+

2c1

)−1 (
(C∗ + θC − 1

2
)χ,0i + 4(1− c14

2
)Vi

)

=
2c1

2c1 − c2
1 + c2

3

(
(C∗ + θC − 1

2
+ 2(2− c14))Vi − (C∗ + θC − 1

2
)Wi

)

where we have used the relation given in Eq.( 5.7).

Comparing with the Post-Newtonian metric (5.8) we can determine the parameters

as

γ ≡ β = 1,

ξ ≡ ζ1 ≡ ζ2 ≡ ζ3 ≡ ζ4 ≡ α3 = 0,

α1 =
−8(c2

3 + c1c4)
2c1 − c2

1 + c2
3

,

α2 =
2(−2θ0Cc1 + Cθ0c

2
1 − 2c1c4 − 2c2

3 − Cθ0c
2
3)

2c1 − c2
1 + c2

3

.

We notice that all the PPN parameters of Einstein-aether theory agree with those of

general relativity except the preferred frame parameters α1 and α2.
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CHAPTER 6

CONCLUSION

In this thesis, we have derived the field equations of the Einstein-aether theory from the

action principle. We have obtained the observational constraints on the parameters

of this theory by using the parametrized post-Newtonian approximation. We have

also shown that Gödel-type metrics with constant uk(and u0 = 1) are exact solutions

of this theory. It would be worth studying to seek whether Gödel-type metrics with

non-constant uk(and u0 6= 1) provide exact solutions to the theory.

The Einstein-aether theory is an extension of the general relativity with a preferred

frame. This frame is described by a dynamical unit timelike vector. As previously

mentioned in [8], it would be interesting to analyze the theory with a dynamical

null vector instead of a timelike vector. In that case, one would try to seek whether

Kerr-Schild metrics provide solutions to the theory.

Finally, even though we have not discussed this in the thesis, one might further study

the relation of this theory to the scalar-tensor theories. One might speculate that this

theory will play a role in the solution of some fundamental problems such as dark

energy and quantum gravity [5, 15].
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