
 

 

 

 

 

 

 

FINITE STRIP WITH RIGID ENDS  

AND EDGE NOTCHES 

 

 

 

 

 

 

 

A THESIS SUBMITTED TO  

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 

MIDDLE EAST TECHNICAL UNIVERSITY 

 

 

 

 

BY 

 

 

 

DENİZ ERÖZKAN 

 

 

 

 

 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

FOR  

THE DEGREE OF MASTER OF SCIENCE  

IN 

ENGINEERING SCIENCES 

 

 

 

 

 

AUGUST 2009 

 

 



 

Approval of the thesis: 

 

FINITE STRIP WITH RIGID ENDS  

AND EDGE NOTCHES 

 

 

submitted by DENİZ ERÖZKAN in partial fulfillment of the requirements for 

the degree of Master of Science in Engineering Sciences Department, 

Middle East Technical University by, 

 

 

Prof. Dr. Canan Özgen 

Dean, Graduate School of Natural and Applied Sciences        

 

Prof. Dr. Turgut Tokdemir 

Head of Department, Engineering Sciences                                 

 

Prof. Dr. M. Ruşen Geçit 

Supervisor, Engineering Sciences Dept., METU                        

 

 

Examining Committee Members  

 

Prof. Dr. Turgut Tokdemir                                                 

Engineering Sciences Dept., METU 

 

Prof. Dr. M. Ruşen Geçit                                                   

Engineering Sciences Dept., METU 

 

Prof. Dr. Ahmet Nedim Eraslan                                       

Engineering Sciences Dept., METU 

 

Prof. Dr. M. Polat Saka                                              

Engineering Sciences Dept., METU 

 

Assoc. Prof. Dr. Serkan Dağ                                              

Mechanical Engineering Dept., METU 

 

 

Date:            26.08.2009 



 iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I hereby declare that all information in this document has been obtained 

and presented in accordance with academic rules and ethical conduct. I 

also declare that, as required by these rules and conduct, I have fully cited 

and referenced all material and results that are not original to this work. 

 

 

 

      Name, Last name: Deniz Erözkan 

  

 

Signature              : 

 

 

 

 

 

 

 

 

 

 

 



 iv 

ABSTRACT 

 

FINITE STRIP WITH RIGID ENDS  

AND EDGE NOTCHES 

 

 

 

Erözkan, Deniz 

M.S., Department of Engineering Sciences 

Supervisor       : Prof. Dr. M. Ruşen Geçit 

 

August 2009, 171 pages  

 

This study considers a symmetrical finite strip with a length of 2L and a width 

of 2h containing two collinear edge cracks located at the center of the strip. 

Each edge crack has a width h–a. Two ends of the finite strip are bonded to 

two rigid plates through which uniformly distributed axial tensile loads of 

intensity p0 are applied. The finite strip is assumed to be made of a linearly 

elastic and isotropic material. For the solution of the finite strip problem, an 

infinite strip of width 2h containing two internal cracks of width b–a at y=0 

and two rigid inclusions of width 2c at y=± L is considered. When the width of 

rigid inclusions approach the width of the strip, the portion of the infinite strip 

between the inclusions becomes identical with the finite strip problem. When 

the outer edges of the internal cracks approach the edge of the strip, they 

become edge cracks (notches). Governing equations are solved by using 

Fourier transform technique and these equations are reduced to a system of 

three singular integral equations. By using Gauss-Lobatto and Gauss-Jacobi 

integration formulas, these three  singular integral equations are converted to a 

system of linear algebraic equations which is solved numerically.  

 

 

Keywords: Finite Strip, Edge Crack, Rigid Inclusion, Stress Intensity Factor.  
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ÖZ 

 

RİJİT UÇLARI VE KENAR ÇENTİKLERİ OLAN  

SONLU UZUNLUKTAKİ ŞERİT  

 

 

Erözkan, Deniz 

Yüksek Lisans, Mühendislik Bilimleri Bölümü 

Tez Yöneticisi          : Prof. Dr. M. Ruşen Geçit 

 

Ağustos 2009, 171 sayfa  

 

Bu çalışma, ortasında iki kenar çatlağı (çentik) bulunan 2L uzunluğunda ve 2h 

genişliğinde simetrik, bir şeridi incelemektedir. Çentiklerin herbiri h–a 

genişliğindedir. Şeridin iki ucuna rijit levhalar yapıştırılmıştır. Bu levhalar 

vasıtasıyla, şeride, eksenel ve p0 şiddetinde düzgün yayılı çekme kuvveti 

uygulanmaktadır. Şeridin, lineer elastik ve izotrop bir malzemeden imal 

edildiği kabul edilmektedir. Sonlu uzunluktaki şerit problemi için,  y=0 

düzleminde b–a genişliğinde iki iç çatlak ve y=± L düzlemlerinde 2c 

genişliğinde iki rijit enklüzyonun bulunduğu, 2h genişliğinde sonsuz 

uzunluktaki bir şerit ele alınmaktadır. Rijit enklüzyonların genişliği şeridin 

genişliğine ulaştığında, enklüzyonlar arasında kalan şerit parçası sonlu 

uzunlukta bir şerit problemine dönüşmektedir. İç çatlakların dış kenarları 

şeridin kenarlarına ulaştğında da, iç çatlaklar kenar çatlak (çentik) halini 

almaktadır. Genel denklemler Fourier dönüşüm tekniği kullanılarak 

çözülmekte ve bu denklemler üç tekil integral denkleme indirgenmektedir. Bu 

üç integral denklem Gauss-Lobatto ve Gauss-Jacobi integrasyon formülleri 

kullanılarak bir lineer cebir denklem takımına çevrilmekte ve sayısal olarak 

çözülmektedir. 

 

Anahtar Sözcükler: Sonlu Şerit, Çentik, Rijit Enklüzyon, Gerilme Şiddeti 

Katsayısı. 
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CHAPTER I 

 

INTRODUCTION 

 

 

In the past, failures of engineering structures which mostly occured from the 

cracks situated in the structures revealed the necessity of evaluating the 

behavior of the cracks. Since the cracks can lower the strength of materials, it 

becomes mandatory to describe the growth of cracks for all cases according to 

types of material, loading or geometry. In the view of this observation, fracture 

mechanics which is concerned with the study of the formation and propagation 

of cracks in the structures was set forth by Griffith (1920). The Griffith theory 

explains the failure of brittle materials and has been applied extensively to the 

fracture of metals, plastics and composites.  

 

A vast and growing field of fracture mechanics provides methods to examine 

various problems related to cracks in a strip. In many studies the effects of 

material, loading and geometry on stress distributions and stress intensity 

factors have been investigated and especially plane cracks occured under 

tension are widely considered. From the viewpoint of type of the material, most 

common is the homogeneous and isotropic material. To solve these problems, 

particular methods are applied for both analytical and numerical calculations. 

In analytical solution, generally the methods of partial differential equations 

and singular integral equations are used. Aside from these methods, the 

principle of superposition which allows reduction of complex systems to 

simpler cases is used frequently for the solution of problems.  

 

Although a wide variety of strip problems have been studied in the past, a finite 

and an infinite strip containing two rigid inclusions and two collinear internal 

and edge cracks located on the center of the strips have not been solved by the 

method used in this study. 
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1.1 Literature Review 

 

Sneddon and Srivastav (1971) considered the problem of determining the 

distribution of stress in the vicinity of a Griffith crack in a two-dimensional 

elastic strip of finite width when pressure is applied to the faces of the crack. It 

was assumed that the strip is made of elastic material which is both isotropic 

and homogeneous. In this study, the crack is situated symmetrically at the 

center of the strip and the problem is reduced to solving a system of coupled 

equations. The stress intensity factor and the crack energy were determined by 

solving Fredholm integral equation of the second kind for the case of constant 

internal pressure. 

 

Cook and Erdoğan (1972) solved the problem of two elastic bonded half planes 

containing a crack perpendicular to the interface. First the solution of the semi-

infinite crack under concentrated wedge loading was obtained and then the 

problem of a finite crack fully imbedded in one of the half planes was 

considered. The case of the crack terminating at the interface was separately 

studied and to derive the integral equations, the Mellin transform in conjuction 

with dislocations was used. 

 

A semi-infinite strip with fixed end has been solved by Gupta (1973). An 

infinite strip in which a flat inclusion is situated centrally was reduced to semi-

infinite strip by extending the inclusion to the surfaces. Stress singularity at the 

strip corner was obtained from the singular integral equation by using integral 

transform technique and then was solved numerically. 

 

Gupta and Erdoğan (1974) investigated the elastostatic problem of an infinite 

strip with two collinear cracks perpendicular to its sides. The solution of the 

problem was obtained for various crack geometries and for uniaxial tension 

which is applied to the strip away from the crack region. The problem was 

reduced to a singular integral equation with the derivative of the crack surface 

displacement as the density function.  



 3 

Krenk (1975) presented a method to deal with an inclined crack in an elastic 

strip. The method contains the solutions for a cracked plane and an uncracked 

strip and results in two coupled singular equations with finite interval of 

integration. In the paper, results were presented for loads according to the 

technical beam theory. 

 

Gupta (1975) considered a finite strip compressed between two rigid stamps. A 

homogeneous and isotropic finite strip was analyzed and the problem was 

formulated in terms of a singular integral equation from which the proper stress 

singularities at the corners were determined. To determine the stresses along 

the fixed ends of the strip, the singular integral equation was solved 

numerically. In the study, the effect of material proporties and strip geometry 

on the stress intensity factor was presented graphically. 

 

Adams (1980) studied an isotropic, homogeneous semi-infinite elastic strip 

whose end is bonded to and pressed against an infinite elastic strip which is 

supported by a pair of symmetrically located, concentrated forces. The solution 

was reduced to a set of singular integral equations of the second kind by using 

integral transform techniques. The equations were solved numerically. In this 

paper, the results show the normal and shear stress distributions and also stress 

intensity factors for a range of support locations corresponding to various 

width ratios and material combinations. 

 

Civelek and Erdoğan (1982) examined the basic problem of multiple cracks for 

an infinite strip by using the method of singular integral equations. The cracks 

are perpendicular to the boundary. In this study two specific problems were 

considered. The first is to provide the solution of the interaction problem for 

multiple edge cracks in a plate or beam subjected to membrane loading or pure 

bending. The second is an analytical solution for a rectangular plate which is 

subjected to arbitrary crack surface tractions or concentrated forces.  
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Geçit (1984) considered the elastostatic antiplane shear problem of two half 

spaces bonded through an infinite layer all having transverse fatigue cracks. In 

this paper, the cases of three imbedded cracks, cracks terminating at the 

interfaces, completely broken layer, and a crack in the layer spreading into the 

half spaces were investigated. To formulate the problem the Fourier transform 

was used and by using the mixed type conditions on the crack plane, 

formulation was reduced to a system of singular integral equations with simple 

or generalized Cauchy kernels. Numerical results show stress intensity factors 

and crack opening displacements for material pairs of aluminum-epoxy and 

steel-aluminum. 

 

Turgut and Geçit (1988) made an analysis of a semi-infinite strip with free 

sides containing a transverse central crack. Short end of the strip is bonded to a 

rigid support and the far end is subjected to uniform tension. Solution was 

obtained by considering an infinite strip which contains a rigid inclusion at the 

middle and two symmetrical transverse cracks. In the limiting case when the 

rigid inclusion approaches the sides of the strip, one-half of the infinite strip 

becomes equivalent to the cracked semi-infinite strip. Formulation was reduced 

to a system of three singular integral equations and numerical results for 

stresses, stress intensity factors, probable cleavage angle and strain energy 

release rate were presented graphically. 

 

Geçit and Turgut (1988) studied the elastostatic plane problem of a finite strip. 

One end of the strip is bonded to a rigid support and the other is under the 

action of a uniform tensile load. In the paper, solution for the finite strip was 

obtained by considering an infinite strip containing a transverse rigid inclusion 

at the middle and two symmetrically located transverse cracks. When the rigid 

inclusion and the cracks approach the sides of the infinite strip, the region 

between one crack and the rigid inclusion becomes equivalent to the finite 

strip. By using the Fourier transforms, formulation of the problem was reduced 

to a system of three singular integral equations. Numerical results were 

presented for stresses and stress intensity factors in graphical form. 
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The elastostatic plane problem of a semi-infinite strip with free sides bonded to 

an infinite strip along its short end and subjected to a bending moment at its far 

end has been considered by Blaibel and Geçit (1989). The semi-infinite 

problem was solved by the superposition of a simple bending solution due to 

the load at infinity and a residual solution. Formulation of the problem was 

reduced to a system of three singular integral equations of the second kind and 

these integral equations were solved numerically. Numerical results of 

interface stress distributions and the stress intensity factors at the corners for 

various geometries and material combinations are presented in graphical form. 

 

Zhou, Bai and Zhang (1999) investigated the problem of determining the stress 

field in an elastic strip of finite width when the uniform tension is applied to 

the faces of two collinear symmetrical cracks which are situated within it. In 

this study Schmidt’s method which is suitable for solving the strip’s problem of 

arbitrary width was used. By using the Fourier transform, a mixed boundary 

value problem was reduced to a set of triple integral equations. For solving 

these triple integral equations, the crack surface displecement was expanded in 

a series using Jacobi’s polynomials and Schmidt’s method was applied.  

 

Yetmez and Geçit (2005) considered a symmetrical finite strip containing a 

transverse symmetrical crack at the midplane. Two rigid plates are bonded to 

the ends of the strip through which uniformly distributed axial tension is 

applied and both edges of the strip are free of stresses. The strip was assumed 

to be made of a linearly elastic and isotropic material. Solution for this finite 

strip problem was obtained by means of an infinite strip which contains a crack 

and two rigid inclusions and which is subjected to uniformly distributed axial 

tensile loads. By using the Fourier transform, the governing equations were 

solved and reduced to a system of three singular integral equations which were 

converted to a system of linear algebraic equations with the help of the Gauss-

Jacobi and the Gauss-Lobatto integration formulas. The system was solved 

numerically and the results of normal and shearing stress distributions and the 

stress intensity factors were presented in graphical and tabular forms. 
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1.2 A Brief Definition of the Problem and the Method of Solution 

 

A symmetrical finite strip containing two collinear internal cracks located at 

the center of the strip is considered. The length of the strip is assumed to be 2L 

and the width is 2h. Each internal crack has a width b–a. Two ends of the finite 

strip are bonded to two rigid plates through which uniformly distributed axial 

tensile loads of intensity p0 are applied. The finite strip is assumed to be made 

of a linearly elastic and isotropic material. For the solution of the finite strip 

problem, an infinite strip of width 2h containing two cracks of width b–a at 

y=0 and two rigid inclusions of width 2c at y=± L are taken into account. 

When the width of rigid inclusions approach the width of the strip, the portion 

of the infinite strip between the inclusions becomes identical with the finite 

strip problem. 

 

Formulation of the infinite strip problem is acquired from the superposition of 

two subproblems: (i) The uniform solution; an infinite strip subjected to 

uniform tensile axial loads of intensity p0 with no cracks or inclusions, and (ii) 

The perturbation solution; an infinite strip containing two internal cracks of 

width b–a at y=0 and two rigid inclusions of width 2c at y=± L with no load at 

infinity are considered. In problem (ii), the negative of the stresses obtained in 

problem (i) at the location of the cracks are applied to the surfaces of the cracks 

and the negative of the stresses again obtained in problem (i) at the locations of 

the inclusions are applied to the inclusions. 

 

Perturbation problem is formulated by assembling the general expressions of 

stresses and displacements for the the following three subproblems: (a) An 

infinite elastic medium symmetric in both x- and y-directions with no cracks or 

inclusions, (b) An infinite elastic medium symmetric in both x- and y-directions 

containing two central cracks of width b–a, (c) An infinite elastic medium 

symmetric in both x- and y-directions containing two rigid inclusions of width 

2c at y=± L. 
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For the solution of these subproblems Fourier transforms are used and 

expressions obtained by these tranforms are forced to satisfy the boundary 

conditions. Satisfying the homogeneous boundary conditions at the edges of 

the strip, the general expressions for an infinite medium become expressions 

for a strip with free edges. By the use of remaining conditions on the cracks 

and the inclusions, a system of three singular integral equations is obtained. To 

obtain numerical results from these integral equations, the system is converted 

to a system of linear algebraic equations and is solved with a Fortran program.  

 

 

 

 

Figure 1.1 Infinite strip yielding finite strip problem 
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CHAPTER II 

 

INFINITE STRIP PROBLEM 

 

2.1 Formulation of the Problem 

 

Consider a finite strip of length 2L and width 2h with two collinear 

symmetrical cracks: The ends of the strip are bonded to rigid plates through 

which uniformly distributed tensile loads are applied. In the problem, 

symmetry exists in both x- and y-directions. Formulation for the finite strip is 

obtained by considering an infinite strip which is assumed to be made from 

linearly elastic and isotropic material, containing two internal symmetrical 

cracks at y=0 and two rigid inclusions with negligible thickness at y=± L. Later 

on the width of the inclusions will approach the width of the strip (Figure 2.1). 

The infinite strip is loaded at y=± ∞. 

 

General expressions for the displacements and the stresses for this problem are 

obtained by superporsition of the following two problems (Figure 2.2): 

 

(i) Uniform solution: An infinite strip loaded at infinity with no cracks or 

inclusions, 

 

(ii) Perturbation problem: An infinite strip with two cracks and two inclusions. 

Crack surfaces are subjected to the negative of the stresses obtained in problem 

(i) at the location of the cracks. The inclusions are subjected to the negative of 

the displacements obtained in problem (i) at the location of the inclusions. 

 

To solve the perturbation problem, general solutions of the following three 

subproblems are added as shown in Figure 2.3: 

 

(a) An infinite elastic medium symmetric in both x- and y-directions with no 

cracks or inclusions, 
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(b) An infinite elastic medium symmetric in both x- and y-directions containing 

two central cracks of width b–a,  

 

(c) An infinite elastic medium symmetric in both x- and y-directions containing 

two rigid inclusions of width 2c at y=± L. 

 

The field equations may be listed in the following form for linearly elastic, 

isotropic and two-dimensional elasticity problems: 

 

Stress-displacement relations: 

 

( , ) ( 1) (3 )
1

x

u v
x y

x y


  



  
    

   
,     (2.1a) 

 

( , ) (3 ) ( 1)
1

y

u v
x y

x y


  



  
    

   
,               (2.1b) 

 

( , )xy

u v
x y

y x
 

  
  

  
.       (2.1c) 

 

Here, u, ν are the displacement components in x- and y-directions in 

rectangular coordinate system, µ is the modulus of rigidity, κ=3-4 ν for plane 

strain and κ=(3- ν)/(1+ ν) for plane stress, ν being the Poisson’s ratio, σ and τ 

denote the normal and shearing stresses. 

 

Equilibrium equations when the body forces are neglected: 

 

0,
xyx

x y

 
 

   

0.
xy y

x y

  
 

                 (2.2a,b) 
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    (i)        (ii) 

 

Figure 2.1 Superposition 

 

Navier equations (equilibrium equations in terms of the displacements) are 

expressed in the form: 

 

2 2 2

2 2
( 1) ( 1) 2 0

u u v

x y x y
 

  
    

   
,     (2.3a) 

 

2 2 2

2 2
2 ( 1) ( 1) 0

u v v

x y x y
 

  
    

   
.                (2.3b) 

 

when the body forces are negligible. 

 

For the infinite strip loaded at infinity, boundary conditions may be expressed 

in the form: 
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0( , )y x p   , ( x  < h) 

 

( ,0) 0y x  ,  (a < x  < b) 

 

( , ) 0x h y   ,  ( y  < ∞) 

 

( , ) 0xy h y   , ( y  < ∞) 

 

( , ) 0u x L  ,  ( x  < c) 

 

( , )v x L  constant. ( x  < c).             (2.4a–f) 

 

Note here that due to symmetry, one half of the problem (0 < y < ∞) will be 

solved. 

 

 

 (a)            (b)        (c) 

 

Figure 2.2 Schematic representation of general formulation. 
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2.1.1 Uniform Solution 

 

For uniform solution, the field equations are to be solved according to 

following boundary conditions regarding an infinite strip of width 2h: 

 

0( , )y x p   , 

 

( , ) 0x h y  , 

 

( , ) 0xy h y  .                (2.5a–c) 

 

Here, Eqs.(2.1) and Eqs.(2.3) become ordinary differential equations for the 

uniform, uniaxial loading: 

 

2

2
0

d u

dx
 , 

2

2
0

d v

dy
 , 

 

0x  ,    3 1
1

y

du dv

dx dy


  



 
    

  
, 

 

0xy  .                (2.6a–e) 

 

Solution of Eqs. (2.6) can be obtained easily with necessary symmetry 

considerations and can be expressed in the form: 

 

( )

0

3

8

iu p x





 , 

( )

0

1

8

iv p y





 , 

 

( ) 0i

x  ,  
( )

0

i

y p  ,            (2.7a–d) 
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( ) 0i

xy  ,                   (2.7e) 

 

in which the superscript (i) refers to the solution for problem (i) in Figure 2.1. 

 

 

2.1.2 Perturbation Solution 

 

For the perturbation solution, an infinite strip of width 2h having two internal 

symmetrical cracks of width (b–a) at y=0 and two rigid inclusions of width 2c 

at y=± L is considered. Eqs. (2.3) will be solved subject to the following 

boundary conditions: 

 

( , ) 0x h y  ,   ( , ) 0xy h y  ,             

 

( , ) 0y x   ,   ( , ) 0xy x   , 

 

0( ,0)y x p   ,  ( ,0) 0xy x  ,  (a < x  < b ) 

 

( ,0) 0v x  ,   (0 < x  < a,  b < x  < h) 

 

0

3
( , )

8
u x L p

x





 
 


, ( , ) 0v x L

x





. ( x  < c )         (2.8a–i) 

 

To satisfy all these boundary conditions, sufficient number of unknowns are 

needed in general expressions for the displacements and stresses. That is why, 

the general expressions containing required number of unknowns will be 

acquired by adding the general solutions of three subproblems given in the 

following three sections. 
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2.1.2.1 An Infinite Medium Subjected to Arbitrary Symmetric Loads 

 

Consider the problem shown in Figure 2.2a, Eq. (2.3a) and Eq. (2.3b) are 

solved by taking the Fourier cosine transform and Fourier sine transform, 

respectively, in y-direction. Coupled ordinary differential equations acquired 

from Fourier transforms of Eqs. (2.3) are solved and the inverse transforms are 

written as follows: 

 

,)cos()cosh()()sinh()(
2

1
)(

12
),(

0

)( dssysxsxsBsxsBsA
s

yxu a
















 
 





 

 

,)sin()sinh()()cosh()(
2

1
)(

12
),(

0

)( dssysxsxsBsxsBsA
s

yxv a
















 
 





 

        (2.9a,b) 

 



















 


0

)( ,)cos()sinh()()cosh()(
2

3
)(

2
),( dssysxsxsBsxsBsAyxu

dx

d a 


 

 

( )

0

2 3
( , ) ( ) ( ) sinh( ) ( ) cosh( ) sin( )

2

ad
v x y A s B s sx B s sx sx sy ds

dx






   

    
  

 , 

       (2.9c,d) 

 

for the displacements and using Eqs.(2.1) 

 

 



0

)(
,)cos()sinh()()cosh()(

4
),( dssysxsxsBsxsAyx

a

x



  

 

  



0

)(
,)cos()sinh()()cosh()(2)(

4
),( dssysxsxsBsxsBsAyx

a

y



  

      (2.10a,b) 
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  ( )

0

4
( , ) ( ) ( ) sinh( ) ( ) cosh( ) sin( )a

xy x y A s B s sx B s sx sx sy ds







   . 

                  (2.10c) 

 

for the stresses. Here A(s) and B(s) are still unknowns and the superscript (a) 

refers to the general solution for problem (a) shown in Figure 2.2. 

 

 

2.1.2.2 An Infinite Medium Having Two Collinear Cracks 

 

In this part, the infinite medium shown in Figure 2.2b is taken into 

consideration. Here, Fourier sine transform is applied to Eq. (2.3a) and Fourier 

cosine transform is applied to Eq. (2.3b) in x-direction to acquire the solutions 

of Eqs. (2.3) for the upper (1) and lower (2) half planes individually. The 

solutions are then combined at y=0 such that 

 

),0,()0,( 21   xx yy    (0 < x  < ∞ ),  

 

,0)0,()0,( 21   xx xyxy   (0 < x  < ∞ ), 

 

),0,()0,( 21   xuxu    (0 < x  < ∞ ), 

 

),0,()0,( 21   xvxv    (0 < x  < a , b < x  < ∞), 

 

,known)0,( xy   (a < x  < b ).          (2.11a–e) 

 

In the expressions given above, superscript 1 refers to the upper half plane of 

the strip where superscript 2 refers to the lower half plane. 

 

By using derivative of crack surface displacement m(x) 
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1 21
( ) ( ,0 ) ( ,0 )

2
m x v x v x

x

 
   

, (0 < x < ∞ )              (2.12) 

 

the stress and displacement expressions for the upper and lower half planes can 

be obtained in the form given below by taking m(x)=0 for (a < x  < b ) 

 

 ( 1)

0

8
( , ) 1 ( ) cos( )

( 1)

b y

x yx y M e x d
    

 



 
  , 

 

 ( 2)

0

8
( , ) 1 ( ) cos( )

( 1)

b y

x yx y M e x d
    

 



 
  , 

 

 ( 1)

0

8
( , ) 1 ( ) cos( )

( 1)

b y

y yx y M e x d
    

 



 
  ,        (2.13a–c) 

 

 ( 2)

0

8
( , ) 1 ( ) cos( )

( 1)

b y

y yx y M e x d
    

 



 
  , 

 

( 1)

0

8
( , ) ( ) sin( )

( 1)

b y

xy yx y M e x d
    

 




  , 

 

( 2)

0

8
( , ) ( ) sin( )

( 1)

b y

xy yx y M e x d
    

 




  ,         (2.13d–f) 

 

 

 ( 1)

0

2 1
( , ) 1 2 ( ) sin( )

( 1)

b yu x y y M e x d    
  



  
  , 

 

( 2)

0

2( 1) 1 2
( , ) ( ) sin( )

( 1) 1

b yy
u x y M e x d

  
   


  

  
  
 , 

      (2.14a,b) 
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 ( 1)

0

2 1
( , ) 1 2 ( ) cos( )

( 1)

b yv x y y M e x d    
  



   
  , 

 

 ( 2)

0

2 1
( , ) 1 2 ( ) cos( )

( 1)

b yv x y y M e x d    
  



  
  ,      (2.14c,d) 

 

where 

 

0

( ) ( )sin( )M m x x dx 


  ,                 (2.15) 

 

and the superscript (b) refers to the problem (b) given in Figure 2.2. 

 

If one uses formulae involving definite integrals in Appendix A by taking Eq. 

(2.15) into consideration, the expressions of (2.13a–f) and (2.14a–d) are 

converted into the form  
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     (2.17a–d) 

 

The fact that m(x) is odd can be used to write the expressions given above in 

more compact form  

 

2 3 2 3
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.            (2.19b) 

 

for the upper half. 

 

 

2.1.2.3 An Infinite Medium Having Two Rigid Inclusions 

 

Here, the infinite medium is divided into three sections: A horizontal strip of 

width 2L placed in the middle of the medium called section (1) and two half 

planes on either side of this strip called section (2) separately. For solving the 

middle strip and the half planes individually, Navier equations given in (2.3a,b) 

will be used and the solutions will be matched at y=± L such that: 

 

1 2

1 2( , ) ( , 0)u x y L u x y    , 

 

1 2

1 2( , ) ( , 0)v x y L v x y    .           (2.20a,b) 

 

( , ) 0u x L  ,  ( x  < c ) 

 

( , )v x L  constant. ( x  < c )           (2.21a,b) 

 

Eq. (2.3a) and Eq. (2.3b) are solved by taking the Fourier sine and cosine 

tranforms in x- direction respectively and the solutions of Eqs. (2.3) for the 

strip and the half planes can be connected at y=± L with the help of Eqs. (2.20) 

and  
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2 1

2 1 1( , 0) ( , ) ( )xy xyx y x y L p x      , 

 

2 1

2 1 2( , 0) ( , ) ( )y yx y x y L p x      ,          (2.22a,b) 

 

in which p1 and p2 are the jumps in the stresses through the rigid inclusions 

with negligible thickness and  

 

1 2( ) ( ) 0,p x p x  (|x|> c).                 (2.23) 

 

The stress and displacement expressions for the strip and the half planes can 

then be written in the form 
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     , 

     (2.24a–d) 
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( 2) 2 2
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where 
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0
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the superscript (c) refers to the problem (c) in Figure 2.2 and the expressions of 

SL
k
ij(γ,yi), ST

k
ij(γ,yi), SS

k
ij(γ,yi), DL

k
ij(γ,yi) and DT

k
ij(γ,yi) (i,j,k=1,2) are given in 

Appendix B. The stress and the displacement expressions can be obtained by 

substituting Eqs. (2.26) in Eqs. (2.25) with the help of similar manipulations 

done in 2.1.2.2 and may be expressed as follows: 
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( ) ( )

L y r x r x

L y r x

      


    
2 3

1

2
2 2

1

( 5)( ) ( ) ( 1)( )

( ) ( )

L y r x r x

L y r x
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2 3

1
12

2 2

1

( 5)( ) ( ) ( 1)( )
( )

( ) ( )

L y r x r x
p r

L y r x

 


      
 

      

3 2

1 1

2
2 2

1

( 3)( ) ( 1)( ) ( )

( ) ( )

L y r x L y

L y r x

 

      


     

3 2

1 1

2
2 2

1

( 3)( ) ( 1)( ) ( )

( ) ( )

L y r x L y

L y r x

       


    
3 2

1 1

2
2 2

1

( 3)( ) ( 1)( ) ( )

( ) ( )

L y r x L y

L y r x

       


    

3 2

1 1
22

2 2

1

( 3)( ) ( 1)( ) ( )
( )

( ) ( )

L y r x L y
p r dr

L y r x

 


         
       

,          (2.27b) 

 

3 2
( 1) 1 1

1 2
2 2

0 1

(1 )( ) ( 3)( )( )1
( , )

2 ( 1) ( ) ( )

c

c

xy

L y L y r x
x y

L y r x

 


 


      

      



3 2

1 1

2
2 2

1

( 1)( ) ( 3)( )( )

( ) ( )

L y L y r x

L y r x

      


    
3 2

1 1

2
2 2

1

( 1)( ) ( 3)( )( )

( ) ( )

L y L y r x

L y r x

      


    

3 2

1 1
12

2 2

1

(1 )( ) ( 3)( )( )
( )

( ) ( )

L y L y r x
p r

L y r x

 


      
 

      

2 3

1

2
2 2

1

( 3)( ) ( ) ( 1)( )

( ) ( )

L y r x r x

L y r x

 


     


     
2 3

1

2
2 2

1

( 3)( ) ( ) (1 )( )

( ) ( )

L y r x r x

L y r x

       


    
2 3

1

2
2 2

1

( 3)( ) ( ) (1 )( )

( ) ( )

L y r x r x

L y r x

       


    

2 3

1
22

2 2

1

( 3)( ) ( ) ( 1)( )
( )

( ) ( )

L y r x r x
p r dr

L y r x

 


        
       

,           (2.27c) 
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2 3
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2 3

2

2
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(1 ) ( ) ( 3)( )
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y r x r x

y r x

     


   

2 3
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2 2

2

(1 ) ( ) ( 3)( )
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y r x r x
p r

y r x

 


     
 

     

3 2

2 2

2
2 2

2

( 1)(2 ) ( 5)( ) (2 )

(2 ) ( )

L y r x L y

L y r x

 


     


     
3 2

2 2

2
2 2

2

( 1)(2 ) ( 5)( ) (2 )

(2 ) ( )

L y r x L y

L y r x

      


    

3 2

2 2

2
2 2

2

(1 ) (5 ) ( )

( )

y y r x

y r x

    


   

3 2

2 2
22

2 2

2

(1 ) (5 ) ( )
( ) ,

( )

y y r x
p r dr

y r x

 


      
      

 

(2.27d) 
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0 2

( 5)(2 ) ( ) ( 1)( )1
( , )

2 ( 1) (2 ) ( )
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y
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2
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2 3
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y r x r x
p r
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3 2

2 2

2
2 2

2

( 3)(2 ) ( 1)(2 )( )

(2 ) ( )

L y L y r x

L y r x
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3 2

2 2
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2 2
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( 3)(2 ) ( 1)(2 )( )

(2 ) ( )

L y L y r x

L y r x

       


    

3 2 3 2

2 2 2 2
22 2

2 2 2 2

2 2

( 3) ( 1) ( ) ( 3) ( 1) ( )
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( ) ( )

y y r x y y r x
p r dr
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         (2.27e) 
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2 3

2
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2
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y r x r x
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. 

          (2.27f) 
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3 2 3 2

1 1 1 1
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2 2 2 2

1 1
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L y r x L y L y r x L y
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3 2 3 2
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, 

(2.28a) 
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(2.28b) 
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3 2 3 2
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,           (2.28c) 
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2 3 2 3
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( 2) ( ) ( ) ( 2) ( ) ( )
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( ) ( )

y r x r x y r x r x
p r dr

y r x y r x

   


            
            

 

         (2.28d) 

 

These expressions can be rewritten in the more compact form for the middle 

portion |y|<L owing to reason that p1(x) is odd and p2(x) is even: 

 

 
 



















c

c

c

x

rxyL

rxrxyL
yx

222

32
)(

)()(

))(3()())(1(

)1(2

1
),(






2 3

12
2 2

( 1)( ) ( ) ( 3)( )
( )

( ) ( )

L y x r x r
p r

L y x r

 


      
 

      

 










222

23

)()(

)())(5())(1(

rxyL

yLrxyL 

3 2

22
2 2

( 1)( ) ( 5)( ) ( )
( )

( ) ( )

L y x r L y
p r dr

L y x r

 


        
       

,           (2.29a) 
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,           (2.29b) 
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,           (2.29c) 

 

2 3
( )

2
2 2

1 ( 2)( ) ( ) ( )
( , )

2 ( 1) ( ) ( )

c

c

c

L y x r x r
u x y

x L y x r

 

 



      

       



2 3

12
2 2

( 2)( ) ( ) ( )
( )

( ) ( )

L y x r x r
p r

L y x r
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, 

(2.30a) 
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.           (2.30b) 

 

 

2.1.2.4 General Expressions for Perturbation Problem 

 

To get general expressions for the perturbation problem (ii) indicated in Figure 

2.1, general solutions of problems (a), (b) and (c) are to be summed up: 

 

( ) ( ) ( ) ( )( , ) ( , ) ( , ) ( , )ii a b c

x x x xx y x y x y x y      , 

 

( ) ( ) ( ) ( )( , ) ( , ) ( , ) ( , )ii a b c

y y y yx y x y x y x y      , 

 

( ) ( ) ( ) ( )( , ) ( , ) ( , ) ( , )ii a b c

xy xy xy xyx y x y x y x y      ,          (2.31a–c) 

 

 

( ) ( ) ( ) ( )( , ) ( , ) ( , ) ( , )ii a b cu x y u x y u x y u x y
x x x x

   
  

   
, 

 

( ) ( ) ( ) ( )( , ) ( , ) ( , ) ( , )ii a b cv x y v x y v x y v x y
x x x x

   
  

   
.        (2.32a,b) 
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2.1.3 Infinite Strip Problem (Superposition) 

 

General expressions for the infinite strip are acquired by the superposition of 

the uniform solution and the general expressions for the pertubration problem 

stemmed from 2.1.2.4: 

 

( ) ( )i ii

x x x    , 

 

( ) ( )i ii

y y y    , 

 

( ) ( )i ii

xy xy xy    ,             (2.33a–c) 

 

 

( ) ( )i iiu
u u

x x x

  
 

  
, 

 

( ) ( )i iiv
v v

x x x

  
 

  
.             (2.34a,b) 

 

In these expressions being consisted of superposition of the uniform and 

pertubration solutions, 5 unknowns such as A, B, m, p1, p2 exist. It should also 

be noted that expressions given in Eqs. (2.31) and Eqs. (2.32) are valid for one 

quarter of the medium, 0 < x < ∞ and 0 < y <L. 

 

To obtain the edges of the strip stress-free, following two boundary conditions 

must be satisfied: 

 

( , ) 0x h y  , 

 

( , ) 0xy h y  .              (2.35a,b) 
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By substituting Eqs. (2.33a–c) in Eqs. (2.35) and taking integration formulas 

into account shown in Appendix C, two equations given below can be 

obtained: 

 

 ( ) ( )1
( )cosh( ) ( ) sin( ) ( ) ( ) ( )

1

b

s h t s h t

a

A s sh B s sh sh s h t e s h t e m t dt


       
 

  ( )

1

1
2 ( ) 1 cos( ) ( )

4 ( 1)

c

s h r

c

s h r sL e p r dr
 

 




   

 


  ( )

22 ( ) 1 sin( ) ( )

c

s h r

c

s h r sL e p r dr  




    


 ,            (2.36a) 

 

 

    ( )1
( )sinh( ) ( ) sin( ) cosh( ) 1 ( )

1

b

s h t

a

A s sh B s sh sh sh s h t e


 
    

   

  ( )( ) 1 ( )s h ts h t e m t dt   

  ( )

1

1
2 ( ) 1 cos( ) ( )

4 ( 1)

c

s h r

c

s h r sL e p r dr
 

 




    

 
  

  ( )

22 ( ) 1 sin( ) ( )

c

s h r

c

s h r sL e p r dr  




     


 .            (2.36b) 

 

When these two equations are solved together, unknowns A and B can be 

written in terms of the rest of the unkowns functions that are m, p1, p2: 

 

 ( ) 21
( ) ( ) ( ) 2 (1 2 ) (2 ) 2

1

b

s h t sh sh

a

A s m t f s e e st sh sh e st


  


        
  

 ( ) 22 (1 2 ) (2 ) 2s h t sh she e st sh sh e st dt          

( ) 2

1

1
( ) ( ) (1 2 )(1 2 ) (2 )

2

c

s h r sh

c

p r f s e e sh sr sh


 



      

 1 2 cos( )she sr sL dr    
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( ) 2

2

1
( ) ( ) (1 2 )(1 2 ) (2 )

2

c

s h r sh

c

p r f s e e sh sr sh


 



      

 1 2 sin( )she sr sL dr   


, 

 

  ( )1
( ) ( ) ( ) 4 ( ) 2 2

1

b

s h t sh sh

a

B s m t f s e e s h t e


  


   
 

  

  ( ) 4 ( ) 2 2s h t sh she e s h t e dt        

  ( )

1

1
( ) ( ) 2 4 ( ) 2 cos( )

2

c

s h r sh sh

c

p r f s e e s h r e sL dr


  



     

  ( )

2

1
( ) ( ) 2 4 ( ) 2 sin( )

2

c

s h r sh sh

c

p r f s e e s h r e sL dr


  




    


 ,       (2.37a,b) 

 

in which 

 

f(s) = –1/[4sh + e
2sh 

– e
–2sh

].                 (2.38) 

 

The following expressions for the infinite strip problem can be obtained by 

substituting Eqs. (2.37) in Eqs. (2.33) and Eqs. (2.34) and then rearranging the 

resulting expressions: 

 

2 3

2
2 2

2 2 ( ) 2( )
( , ) ( )

( 1) ( )

b

x

a

y x t x t
x y m t

y x t




 


  

 
     



2 3

12
2 2

2 ( ) 2( )
( , , )

( )

y x t x t
A t x y dt

y x t


    

  
     

 

2 3

1 2
2 2

1 ( 1)( ) ( ) ( 3)( )
( )

2 ( 1) ( ) ( )

c

c

L y x r x r
p r

L y x r

 

 



     

 
      

  

2 3

12
2 2

( 1)( ) ( ) ( 3)( )
( , , )

( ) ( )

L y x r x r
B r x y dr

L y x r
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3 2

2 2
2 2

1 ( 1)( ) ( 5)( ) ( )
( )

2 ( 1) ( ) ( )

c

c

L y x r L y
p r

L y x r

 

 



     

 
      

  

3 2

12
2 2

( 1)( ) ( 5)( ) ( )
( , , )

( ) ( )

L y x r L y
C r x y dr

L y x r

 


      
  

      

,           (2.39a) 

 

2 3

0 2
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2 6 ( ) 2( )
( , ) ( )

( 1) ( )

b

y

a

y x t x t
x y p m t

y x t




 


  

  
     



2 3

22
2 2

6 ( ) 2( )
( , , )

( )

y x t x t
A t x y dt

y x t


    

  
     

 

2 3

1 2
2 2

1 (5 )( ) ( ) (1 )( )
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2 ( 1) ( ) ( )

c

c

L y x r x r
p r

L y x r

 

 



     

 
      

  

2 3

22
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( ) ( )

L y x r x r
B r x y dr

L y x r

 


      
  

      

 

3 2

2 2
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1 ( 3)( ) ( 1)( ) ( )
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c

c

L y x r L y
p r

L y x r

 

 



      

 
      

  

3 2
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,           (2.39b) 

 

3 2 3 2
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2 2 2 2

2 2 2 ( ) 2 2 ( )
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L y x r

 

 



     

 
      

  

2 3

32
2 2

( 3)( ) ( ) ( 1)( )
( , , )

( ) ( )

L y x r x r
C r x y dr

L y x r

 


       
  

      

,           (2.39c) 

 

2 3

0 2
2 2

3 1 (5 ) ( ) (1 )( )
( , ) ( )

8 ( 1) ( )

b

a

y x t x t
u x y p m t

x y x t

  

  


       

  
      

  

2 3

42
2 2

(5 ) ( ) (1 )( )
( , , )

( )

y x t x t
A t x y dt

y x t

 


     
  

     

 

2 3

1 2
2 2

1 ( 2)( ) ( ) ( )
( )

2 ( 1) ( ) ( )

c

c

L y x r x r
p r
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( , , )

( ) ( )

L y x r x r
B r x y dr

L y x r

 


     
  

      

 

3 2

2 2
2 2

1 ( ) ( )( )
( )

2 ( 1) ( ) ( )

c

c

L y L y x r
p r

L y x r 



   

 
      



3 2

42
2 2

( ) ( )( )
( , , )

( ) ( )

L y L y x r
C r x y dr

L y x r


    

  
      

,             (2.40a) 

 

2 3

2
2 2

1 ( 1) ( ) ( 3)
( , ) ( )

( 1) ( )

b

a

y x t y
v x y m t

x y x t

 

 


    

 
      

  

2 3

52
2 2

( 1) ( ) ( 3)
( , , )

( )

y x t y
A t x y dt

y x t
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2 3

1 2
2 2

1 ( )( ) ( )
( )

2 ( 1) ( ) ( )

c

c

L y x r L y
p r

L y x r 



   

 
      



2 3

52
2 2

( )( ) ( )
( , , )

( ) ( )

L y x r L y
B r x y dr

L y x r


    

  
      

 

3 2

2 2
2 2

1 ( ) ( 2)( )( )
( )

2 ( 1) ( ) ( )

c

c

x r x r L y
p r

L y x r

 

 



     

 
      

  

3 2

52
2 2

( ) ( 2)( )( )
( , , )

( ) ( )

x r x r L y
C r x y dr

L y x r

 


     
  

      

,           (2.40b) 

 

in which Ai, Bi and Ci, (i=1–5), are defined in Appendix D. 

 

In these expressions there are still 3 unknowns which are m, the crack surface 

displacement derivative, and p1 and p2, the jumps in the shearing and normal 

stresses through the rigid inclusions. 

 

To satisfy the requirements of crack surfaces being free of stresses and the 

displacements such that the inclusions are rigid, following 3 boundary 

conditions are added to solution:  

 

( , ) 0u x L
x





, (|x| < c), 

 

( , ) 0v x L
x





, (|x| < c), 

 

( ,0) 0y x  ,   (a< |x| < b).           (2.41a–c) 
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CHAPTER III 

 

INTEGRAL EQUATIONS 

 

3.1 Derivation of Integral Equations 

 

In this section, the boundary conditions of Eqs. (2.41a–c) are applied to Eqs. 

(2.40a,b) and (2.39b) and accordingly, three singular integral equations are 

obtained as given below: 

 

2 3

1 112
2 2

4( 2) ( ) ( )
( ) ( , )

4 ( )

c

c

L x r x r
p r k x r dr

x r L x r

  



 
    

  
      

  

3 2

2 122
2 2

8 2 ( )
( ) ( , )

4 ( )

c

c

L L x r
p r k x r dr

L x r

 
  

  
     

  

2 3

2
2 2

(5 ) ( ) (1 )( )
2 ( )

( )

b

a

L x t x t
m t

L x t

 



     

 
    



2 3

132
2 2

(5 ) ( ) (1 )( )
( , )

( )

L x t x t
k x t dt

L x t

 


     
  

     

 

0(1 )(3 )
4

p


    ,     (– c < x < c)  (3.1a) 

 

2 3

1 212
2 2

2 ( ) 8
( ) ( , )

4 ( )

c

c

L x r L
p r k x r dr

L x r

 
  

 
     

  

3 2

2 222
2 2

( ) 4( 2) ( )
( ) ( , )

4 ( )

c

c

x r L x r
p r k x r dr

x r L x r
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2 3

2
2 2

( 1) ( ) ( 3)
2 ( )

( )

b

a

L x t L
m t

L x t

 



   

 
    



2 3

232
2 2

( 1) ( ) ( 3)
( , ) 0

( )

L x t L
k x t dt

L x t

 


     
  

     

,   (– c < x < c) 

 

2 3

1 312
2 2

( 5) ( ) ( 1)( )
( ) ( , )

( )

c

c

L x r x r
p r k x r dr

L x r

 



 
     

 
     

  

3 2

2 322
2 2

( 3) ( 1) ( )
( ) ( , )

( )

c

c

L L x r
p r k x r dr

L x r

 



 
    

  
     

  

33 0

2 2
2 ( ) ( , ) (1 )

b

a

m t k x t dt p
x t x t

  
 

     
  

 ,   (a < x < b)

                 (3.1b,c) 

 

where the kernels kij (i, j = 1 – 3) are given by 

 

0

( , ) ( , , )ij ijk x r K x r s ds



  ,   (j = 1,2) 

 

3 3

0

( , ) ( , , )i ik x t K x t s ds



  ,   (i = 1 – 3)             (3.2a–i) 

 

in which 

 

 (2 ) 2

11( , , ) 2 2 ( ) 2s h r x shK x r s e s r x e      


   2 ( ) 2 ( ) 2 1s h r s h x        

 (2 ) 22 2 ( ) 2s h r x she s r x e      

    22 ( ) 2 ( ) 2 1 cos ( ) ( )s h r s h x sL F s            

(3.3a) 
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 (2 ) 2

12 ( , , ) 2 2 ( )s h r x shK x r s e s r x e     


 

   2 ( ) 2 ( ) 2 1s h r s h x          

 (2 ) 22 2 ( )s h r x she s r x e     

   2 ( ) 2 ( ) 2 1 sin(2 ) ( )s h r s h x sL F s            

 

 (2 ) 2

13( , , ) 2 ( ) 3s h t x shK x t s e s t x e       


 

   1 2 ( ) 2 ( ) 2 1s h t s h x         

 (2 ) 22 ( ) 3s h t x she s t x e       

   1 2 ( ) 2 ( ) 2 1s h t s h x       

 (2 ) 22 ( ) 3s h t x she s t x e        

   1 2 ( ) 2 ( ) 2 1s h t s h x        

 (2 ) 22 ( ) 3s h t x she s t x e      

   1 2 ( ) 2 ( ) 2 1 cos( ) ( )s h t s h x sL F s          

 

 (2 ) 2

21( , , ) 2 ( ) 2s h r x shK x r s e s r x e     


 

   2 ( ) 2 ( ) 2 1s h r s h x          

 (2 ) 22 ( ) 2s h r x she s r x e      

   2 ( ) 2 ( ) 2 1 sin(2 ) 2 ( )s h r s h x sL F s           

 

 (2 ) 2

22 ( , , ) 2 2 ( ) 2s h r x shK x r s e s r x e       


   2 ( ) 2 ( ) 2 1s h r s h x        

 (2 ) 22 2 ( ) 2s h r x she s r x e      

    22 ( ) 2 ( ) 2 1 sin ( ) ( )s h r s h x sL F s           

       (3.3b–e) 
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 (2 ) 2

23( , , ) 2 ( ) 3s h t x shK x t s e s t x e       


 

   1 2 ( ) 2 ( ) 2 1s h t s h x         

 (2 ) 22 ( ) 3s h t x she s t x e        

   1 2 ( ) 2 ( ) 2 1s h t s h x          

 (2 ) 22 ( ) 3s h t x she s t x e        

   1 2 ( ) 2 ( ) 2 1s h t s h x        

 (2 ) 22 ( ) 3s h t x she s t x e       

   1 2 ( ) 2 ( ) 2 1 sin( ) ( )s h t s h x sL F s           

 

 (2 ) 2

31( , , ) 2 ( ) 3s h r x shK x r s e s r x e      


 

   2 ( ) 3 2 ( ) 1s h r s h x       

 (2 ) 22 ( ) 3s h r x she s r x e      

   2 ( ) 3 2 ( ) 1 cos( ) ( )s h r s h x sL F s         

 

 (2 ) 2

32 ( , , ) 2 ( ) 3s h r x shK x r s e s r x e      


 

   2 ( ) 3 2 ( ) 1s h r s h x       

 (2 ) 22 ( ) 3s h r x she s r x e      

   2 ( ) 3 2 ( ) 1 sin( ) ( )s h r s h x sL F s         

       (3.3f–h) 

 

 (2 ) 2

33( , , ) 4 2 ( )s h t x shK x t s e s t x e     
  

   1 2 ( ) 3 2 ( ) 1s h t s h x     
 

 (2 ) 24 2 ( )s h t x she s t x e     
 

   1 2 ( ) 3 2 ( ) 1s h t s h x     
 

 (2 ) 24 2 ( )s h t x she s t x e      
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   1 2 ( ) 3 2 ( ) 1s h t s h x        

 (2 ) 24 2 ( )s h t x she s t x e      

   1 2 ( ) 3 2 ( ) 1 / ( )s h t s h x F s                      (3.3i)
 

and 

 

F(s) = 1+4she
–2sh 

– e
–4sh

.
         

(3.4) 

 

These three singular integral equations, Eqs. (3.1a–c), are to be solved by 

satisfying the equilibrium conditions for the inclusions and the single-

valuedness condition for the crack given below: 

 

1( ) 0

c

c

p r dr


 , 

 

2( ) 0

c

c

p r dr


 , 

 

( ) 0

b

a

m t dt  .                (3.5a–c) 

 

Here, it should be mentioned that the solution for the finite strip problem is 

obtained from the infinite strip problem by considering the limiting case when 

c→h. In that case, the portion of the infinite strip between two inclusions 

become a finite strip of length 2L. When the kernels of the integral equations, 

Eqs. (3.1) are examined, one can see that there are singular terms in kij (i,j=1–

3). These singular terms are due to behavior of Kij (i,j=1–3) when s→∞. If b < 

h and c < h, simple Cauchy kernels of types 1/(t–x) and 1/(r–x) are the only 

singular terms. But if b = h or c = h, additional singular terms again due to 

behavior of Kij (i,j=1–3) exist. These terms can be detected by giving 

consideration to the non-vanishing portions of Kij (i,j=1–3) as s→∞: 
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Let 

 

limij ij
s

K K


    (i,j=1–3)      (3.6) 

and 

 

ijb ij ijK K K   .  (i,j=1–3)      (3.7) 

 

By integrating the expressions of Kij∞, following expressions are obtained 

which are given in Appendix E: 

 

0

ijs ijk K ds



     (i,j=1–3)      (3.8) 

 

One has to examine the integrands around s = 0 in addition to singularities in 

the kernels owing to the non-vanishing integrands in the condition of s→∞. If 

integrands around s = 0 are examined, one may point out that k13(x,t) and 

k31(x,r) need to be calculated carefully. For instance consider K13(x,t,s): 

 

13
13 2 4

( , , )cos
( , , )

1 4 sh sh

R s t x sL
K x t s

she e 


 
       (3.9) 

 

According to Adams and Bogy (1975), the integral of K13(x,t,s) can be 

separated into two parts such as one from 0 to 1 and another from 1 to ∞: 

 

1

13 13 13

2 4 2 4 2 4

0 0 1

( , , )cos ( , , )cos ( , , )cos

1 4 1 4 1 4sh sh sh sh sh sh

R s t x sL R s t x sL R s t x sL
ds ds ds

she e she e she e

 

     
 

        . 

                    (3.10) 

 

The behavior of R13 around s = 0 is as: 

 

 13 13
0

lim 2 3
s

R 


    .                 (3.11) 
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Due to Eq. (3.11), in the first right hand side expression of Eq. (3.10), R13 is 

rewritten as R13 – Φ13 that becomes then unbounded: 

 

1 1 1

13 13 13
132 4 2 4 2 4

0 0 0

( , , )cos ( , , ) cos
cos

1 4 1 4 1 4sh sh sh sh sh sh

R x t s sL R x t s sL
ds sLds ds

she e she e she e     


 

       

                    (3.12) 

 

Although the last integral of Eq. (3.12) is unbounded, this integral is multiplied 

by  

 

( )

b

a

m t dt                    (3.13) 

 

in Eq. (3.1a) which is equal to zero according to Eq. (3.5c). This means that the 

singularity at s = 0 will be eliminated. 

 

On the other hand, for K31(x,r,s) 

 

 31 31
0

lim 4 1
s

R 


                     (3.14) 

 

is noted. In a similar way given for K13(x,t,s), the unbounded integral will be 

eliminated as a result of multiplying the unbounded integral in the singular 

integral equation (3.1c) by 

 

1( )

h

h

p r dr


                    (3.15) 

 

which is zero according to Eq. (3.5a). 

 

The unknown functions p1, p2 are expected to be singular at the ends x = ±c 

where the other unknown function m is expected to be singular at the ends 

x=±a, ±b. To determine the singularities of these unknown functions, the 
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singular integral equations (3.1) can be examined around the end points 

mentioned above by applying the complex technique given in Muskhelishvili 

(1953). For this purpose, write  

 

2 2( ) ( ) ( )i ip r p r c r   ,  (i=1,2,   c < h)  0 < Re(α) < 1 

 

2 2( ) ( ) ( )i ip r p r h r   ,  (i=1,2,   c = h)  0 < Re(α) < 1 

 

( ) ( ) ( ) ( )m t m t b t t a
   ,  0 < Re(γ, β) < 1        (3.16a–c) 

 

Here, α, γ and β are unknown constants and 
1 ( )p r , 

2 ( )p r  and ( )m t  are 

Hölder-continuous functions in the respective intervals [-c, c] and [a, b]. 

 

Muskhelishvili’s (1953) technique is applied for evaluating the integrals 

containing singular terms near the end points: 

 

   
1

( ) ( )cot ( )cot1
( )

2 ( ) 2 ( )

c

i i i
i

c

p r p c p c
dr p x

r x c x c c x c
 

 



 





  

  
   (i=1,2) 

 

   
1

( ) ( )cot ( )cot1
( )

2 ( ) 2 ( )

h

i i i
i

h

p r p h p h
dr p x

r x h x h h x h
 

 



 





  

  
 ,  (i=1,2) 

 

2

1 ( ) ( ) 1
( )

(2 ) (2 ) sin ( )

h

i i
i

h

p r p h
dr p x

r h x h h x  







 

   ,  (i=1,2) 

 

3

1 ( ) ( ) 1
( )

(2 ) (2 ) sin ( )

h

i i
i

h

p r p h
dr p x

r h x h h x  







 

   ,  (i=1,2)  

              (3.17a–d) 

 

1 ( ) ( )cot ( )cot
( )

( ) ( ) ( ) ( )

b

a

m t m a m b
dt m x

t x b a x a b a b x   

 



 
  

                  (3.18) 
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In the equations above, pij
*
(x) (i=1,2; j=1–3) and ( )m x  are all bounded 

everywhere excluding the end points. In the situation of substituting these three 

equations in Eqs. (2.34), the following characteristic equations for α and β are 

deduced from the complex function technique outlined in Muskhelishvili 

(1953) and the procedure described in Cook and Erdogan (1972): 

 

cot 0  ,      ( c < h) 

 

2 22 cos 4( 1) 1 0        ,   (c = h) 

 

cot 0  ,      (0 < a) 

 

cot 0  ,      ( b < h) 

 

22(1 ) 1 cos 0     .    (b = h)        (3.19a–e) 

 

Eq. (3.19a) gives α = 1/2 for the tip of an internal rigid inclusion. Eqs. 

(3.19c,d) give β = 1/2, γ = 1/2 for the tips of an internal crack. Eq. (3.19e) gives 

γ = 1 which is unacceptable. Therefore, m(x) does not have a power singularity 

at the end x = h (at the corner of an edge crack with a free boundary). Note here 

that Eqs. (3.19a–e) are in agreement with the previous results Gupta (1973, 

1975), Gecit and Turgut (1988), Artem and Gecit (2002), Yetmez and Gecit 

(2005), Toygar and Gecit (2006), Kaman and Gecit (2006). 

 

It should also be considered that the following relations are used when 

obtaining Eqs. (3.19). 

 

 
2

1
( )

22

h x d
h x

dx h r xh r x

  
    

   
,             (3.20a) 
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2 2
2

3 2

2( ) 1
( )

22

h x d
h x

dx h r xh r x

  
   

   
.             (3.20b) 

 

The system of equations shown in Eqs. (3.1) can be put into the form of the 

following singular integral equations: 

 

1 11 11

0

1 1
( ) ( , ) ( , , )

c

s b

c

p r k r x K s r x ds dr
r x





 
  

 
 

 

2 12 12

0

1
( ) ( , ) ( , , )

c

s b

c

p r k r x K s r x ds dr






 
  

 
 

 

13 13 0

0

1 ( 1)( 3)
4 ( ) ( , ) ( , , )

4

b

s b

a

m t k t x K s t x ds dt p
 


 

   
   

 
  ,  (|x| < c)

 

 

1 21 21

0

1
( ) ( , ) ( , , )

c

s b

c

p r k r x K s r x ds dr






 
 

 
 

 

2 22 22

0

1 1
( ) ( , ) ( , , )

c

s b

c

p r k r x K s r x ds dr
r x





 
   

 
   

23 23

0

1
4 ( ) ( , ) ( , , ) 0

b

s b

a

m t k t x K s t x ds dt


 
   

 
  ,   (|x| < c) 

 

1 31 31

0

1
( ) ( , ) ( , , )

c

s b

c

p r k r x K s r x ds dr






 
 

 
   

2 32 32

0

1
( ) ( , ) ( , , )

c

s b

c

p r k r x K s r x ds dr






 
  

 
   

33 33 0

0

1 1 1
4 ( ) ( , ) ( , , ) ( 1)

b

s b

a

m t k t x K s t x ds dt P
t x t x

 


 
       

  
  ,   (a < x < b) 

      (3.21a–c) 

 

for an infinite strip with two rigid inclusions at y=± L and two collinear cracks 

at y=0. 
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As it is mentioned before, kernels of Eqs. (3.21), kijs and Kijb (i, j=1–3) are 

defined in Appendix E. 
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CHAPTER IV 

 

SOLUTION OF INTEGRAL EQUATIONS 

 

4.1 Infinite Strip Having Two Internal Cracks and Two Internal Rigid 

Inclusions 

 

Consider an infinite strip having two internal collinear and symmetrical cracks 

which are located on x-axis, from a to b and from –a to –b. The infinite strip 

contains also two rigid inclusions at y=± L and each of them has a width of 2c. 

Both ends of this infinite strip are subjected to uniformly distributed axial 

tensile loads of intensity p0 shown in Figure 4.1. 

 

 

 

 

Figure 4.1 Geometry of an infinite strip with two internal collinear cracks and 

two rigid inclusions. 

 

Non-dimensional variables for the cracks   and   are defined as 
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2 2

b a b a
x 

 
  ,  (a < x < b, –1 < η < 1) 

 

2 2

b a b a
t 

 
  ,  (a < t < b, –1 < ρ < 1)           (4.1a,b) 

 

and the non-dimensional variables for the inclusions   and   are defined as 

 

x c ,    (–c < x < c, –1 < ξ < 1) 

 

r c .    (–c < r < c, –1 < υ < 1)          (4.2a,b) 

 

Then, the system of three singular integral equations, Eqs.(3.21a–c), becomes: 

 

1 1

11 121 2

1 1

1 1 1
( ) ( , ) ( ) ( , )P k d P k d       

   
 

 
  

 
 

 

1

13

1

1 ( 1)( 3)
( ) ( , )

4
m k d

 
   

 


 
  ,    (–1 < ξ < 1) 

 

1 1

21 221 2

1 1

1 1 1
( ) ( , ) ( ) ( , )P k d P k d       

   
 

 
  

 
   

1

23

1

1
( ) ( , ) 0m k d   




  ,      (–1 < ξ < 1)

 

 

1 1

31 321 2

1 1

1 1
( ) ( , ) ( ) ( , )P k d P k d       

 
 

   

1

33

1

1 1 1
( ) ( , ) ( 1)

2
m k d

g f
    

    


 
      

   
 ,  (–1 < η < 1) 

        (4.3a–c) 

 

for the non-dimensional unknown functions  
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0( ) ( )i iP p c p  ,  (i = 1, 2) 

 

0( ) 4 ( )
2 2

b a b a
m m p  

 
  .             (4.4a–c) 

 

All terms appearing in Eqs.(4.3) are defined in Appendix F and 

 

R L h , 

 

( ) 2f b a h  , 

 

( ) 2g b a h  , 

 

w sh , 

 

j c h .                 (4.5a–e) 

 

Writing 

 

2( ) ( ) 1i iP G    ,  (i = 1, 2;  –1 < υ < 1) 

 

2( ) ( ) 1m Y    ,  (–1 < ρ < 1)           (4.6a–c) 

 

where G1(υ), G2(υ) and Y(ρ) are Hölder-continuous functions by the aid of 

Eqs.(3.19a,c,d). Eqs.(4.3) can be written as: 
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1 1

1 2
11 12

2 2
1 1

( ) ( )1 1 1
( , ) ( , )

1 1

G G
k d k d

 
     

     

 
  

  
 

 

1

13
2

1

1 ( ) ( 1)( 3)
( , )

41

Y
k d

  
  

 

 
 


 ,    (–1 < ξ < 1)

 

 

1 1

1 2
21 22

2 2
1 1

1 ( ) 1 ( ) 1
( , ) ( , )

1 1

G G
k d k d

 
     

     

 
  

   
   

1

23
2

1

1 ( )
( , ) 0

1

Y
k d


  

 

 


 ,      (–1 < ξ < 1) 

 

1 1

1 2
31 32

2 2
1 1

( ) ( )1 1
( , ) ( , )

1 1

G G
k d k d

 
     

   


 

 
 

1

33
2

1

1 ( ) 1 1
( , ) ( 1)

21

Y
k d

g f


   

    

 
      

    
 , (–1 < η < 1) 

        (4.7a–c) 

 

As suggested by Krenk (1975), these expressions can be transformed to the 

following algebraic equations by applying the Gauss-Lobatto integration 

formula: 

 

11 121 2

1

1
( , ) ( ) ( , ) ( )

N

k m k k m k k

k k m

C k G k G     
 

 
  

 


 

13

( 1)( 3)
( , ) ( )

4
m k kk Y

 
  



 
 

,    ( 1,..., 1)m N 

 

 

21 22 231 2

1

1
( , ) ( ) ( , ) ( ) ( , ) ( ) 0

N

k m k k m k k m k k

k k m

C k G k G k Y        
 

  
     

  
 , 

        ( 1,..., 1)m N 

 
        (4.8a,b) 
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31 321 2

1

( , ) ( ) ( , ) ( )
N

k m k k m k k

k

C k G k G     


   

33

1 1
( , ) ( ) ( 1)

2
m k k

k m k m

k Y
g f

   
   

 
       

    

,         ( 1,..., 1)m N   

           (4.8c) 

 

in which integration and collocation points are 

 

 cos ( 1) ( 1)k k k N      ,   ( 1,2,..., )k N  

 cos (2 1) (2 2)m m m N      ,   ( 1,2,..., 1)m N   

               (4.9a–d) 

 

and the weighting constants of the Lobatto polynomials are 

 

1 1 2( 1)NC C N   , 1 ( 1)kC N  .  ( 2,..., 1)k N   

              (4.10a,b) 

 

The system of Eqs.(4.8) contains 3(N–1) equations for the 3N unknowns which 

are G1(υk), G2(υk) and Y(ρk) (k=1,2,…,N). Therefore, to complete the number 

of equations to 3N, the equilibrium and single-valuedness conditions, Eqs.(3.5) 

are added to the system after being converted to the following linear algebraic 

equations: 

 

1

1

( ) 0
N

k k

k

C G 


 , 

 

2

1

( ) 0
N

k k

k

C G 


 ,  

 

1

( ) 0
N

k k

k

C Y 


 .             (4.11a–c) 
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Determining the unknowns, G1(υk), G2(υk) and Y(ρk) (k=1,2,…,N) requires 

computation of the infinite integrals in Fredholm kernels numerically which are 

given in Appendix F. For this computing process, Laguerre quadrature 

(Abramowitz and Stegun (1965)) is used and the infinite integrals are 

computed for every 
k , 

k , 
m  and 

m  combination. Then the field quantities 

can be calculated numerically by determining these unknowns. Behavior of 

these unknown functions is characterized by the so-called “stress intensity 

factor” at the edges of the inclusions, 1    and at the crack tips, 1   .  

 

 

4.2 Infinite Strip Having Two Internal Rigid Inclusions (without Cracks) 

 

Consider an infinite strip of width 2h containing two rigid inclusions at y=± L. 

The strip is loaded at infinity with uniformly distributed tensile loads (Figure 

4.2). In the Section 4.1, Eqs. (4.7a,b) are written for the inclusions where Eq. 

(4.7c) is written for the cracks.  

 

Therefore the system of algebraic equations Eqs. (4.8a–c), resulting from Eqs. 

(4.7a–c) will reduce to 
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      (4.12a,b) 

 

Here, 2(N–1) equations exist for the 2N unknowns, G1(υk) and G2(υk) 

(k=1,2,..,N) and to complete the system of equations, two following algebraic 

equations are added: 
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1

1

( ) 0
N

k k

k

C G 


 , 

 

2

1

( ) 0
N

k k

k

C G 


 .             (4.11a,b) 

 

 

 

Figure 4.2 Geometry of an infinite strip having two rigid inclusions. 

 

 

4.3 Infinite Strip Having Two Internal Cracks (without Inclusions) 

 

Now consider an infinite strip of width 2h containing two internal 

symmetrically located cracks at y=0 shown in Figure 4.3. Again both ends of 

the strip are subjected to axial tensile loads of uniform intensity p0 and there is 

no inclusion in the strip. As mentioned before, the non-dimensional unknown 

functions related to non-existent parts of the strip will be eliminated which are 

1( )P   and 
2( )P   here. So, Eqs. (4.7a,b) and the parts of Eq. (4.7c) containing 

1( )G   and 
2 ( )G  will be dismissed.  
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Remaining equation of Eq. (4.8c), resulting from Eq. (4.7c) will be such that 
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( 1,2,..., 1)m N   

           (4.13) 

 

for the infinite strip having just two internal symmetyrical cracks. 

 

 

 

Figure 4.3 Geometry of an infinite strip with two internal symmetrical cracks. 

 

In this case, the following equation will be added to complete the system of 

(N–1) equations for the N unknowns, Y(ρk) (k=1,2,…,N): 
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k k

k
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 .                (4.11a) 

 

 

 

 



 55 

4.4 Infinite Strip Having Edge Cracks and Two Internal Rigid Inclusions 

 

In this section, an infinite strip of width 2h containing two edge cracks at y=0 

and two rigid inclusions at y=± L shown in Figure 4.4 is considered. Again 

both ends of the strip are subjected to axial tensile loads of uniform intensity 

p0. In this case, non-dimensional variables of edge cracks are defined as: 

 

( )x h a h   ,   (a < x < h, –1 < η < 0) 

 

( )t h a h   .   (a < t < h, –1 < ρ < 0)        (4.14a,b) 

 

Instead of Eqs. (4.1), so that the edge crack is modeled as if there is a crack of 

length 2(h–a) the other half of which is imagined to extend into the space 

beyond the free edge of the strip at x = h. Rearranging Eqs. (4.8) for this case, 

one can write 
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      (4.15a,b) 
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where now N is to be chosen odd. 

 

The system of linear algebraic equations, Eqs. (4.15) contain (5N–1)/2–2 

equations for (5N–1)/2 unknowns, Gi(υk), (i=1,2;  k=1,2,…N) and Y(ρk), 

(k=1,2,… (N–1)/2). In other words, two additional independent equations are 

necessary and Eqs. (4.11a,b) will complement the system to (5N–1)/2 

equations. 

 

 

 

Figure 4.4 Geometry of an infinite strip with two edge cracks and rigid 

inclusions 
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4.5 Finite Strip Having Two Internal Cracks 

 

When the width of inclusions in infinite strip given in Section 4.1 approaches 

the width of the strip (c→h), the portion of the infinite strip between the two 

rigid inclusions becomes a finite strip of length 2L. The portion between 

inclusions is subjected to axial tension of uniform intensity at y=± L through 

rigid plates bonded to the strip.  

 

 

 

 

Figure 4.5 Geometry of a finite strip with two internal symmetrical cracks and 

rigid inclusions. 

 

In this case Eqs. (4.2a,b), (4.4a,b), (4.5e) and (4.6a,b) of Section 4.1 must be 

replaced by 

 

x h ,    (–h < x < h, –1 < ξ < 1) 

 

r h ,    (–h < r < h, –1 < υ < 1)        (4.16a,b) 
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0( ) ( )i iP p h p  ,  (i = 1, 2)          (4.17a,b) 

 

j=1                    (4.18) 

 

2( ) ( ) (1 )i iP G     , (i = 1, 2)          (4.19a,b) 

 

respectively, where α is supposed to be calculated from Eq. (3.19b). Then, 

instead of Eqs. (4.7a–c), one can write  
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      (4.20a–c) 

 

By using the Gauss-Jacobi (Erdogan, Gupta and Cook (1973)) and the Gauss-

Lobatto integration formulas, the following system of algebraic equations are 

obtained: 
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      (4.21a–c) 

 

In this system, m  and 
k  are the roots of Jacobi polynomials 

 

( , ) ( ) 0N kP      ,     ( 1,2,..., )k N  

 

(1 ,1 )

1 ( ) 0N mP    

  ,     ( 1,2,..., 1)m N   

              (4.22a,b) 

 

and k  and 
m  are still determined from Eqs. (4.9b,d) and Wk are the 

weighting constants of the Jacobi polynomials. Ck are the weighting constants 

of the Lobatto polynomials given in Eq.(4.10). 

 

Similarly, as in Section 4.1, 3(N–1) equations are to be completed for 3N 

unknowns, G1(υk), G2(υk) and Y(ρk) (k=1,2,…N) by adding the following 

equations: 
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 .             (4.23a–c) 

 

 

4.6 Finite Strip Having Edge Cracks 

 

Here, a finite strip having a length of 2L and a width of 2h is considered. In the 

finite strip, there are two edge cracks and both ends of the strip subjected to 

axial tensile loads of uniform intensity p0 (Figure 4.6). In this case, non-

dimensional variables of edge cracks, η and ρ are determined from Eqs. (4.14) 

whereas non-dimensional variables of rigid inclusions, ξ and υ are determined 

from Eqs.(4.16). 

 

 

 

Figure 4.6 Geometry of a finite strip with two edge cracks and rigid inclusions 

 



 61 

By using the Gauss-Jacobi and the Gauss-Lobatto integration formulas, Eqs. 

(4.20) will be converted into the following system of algebraic equations: 
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      (4.24a–c) 

 

where N is to be chosen odd again. 

 

The roots of Jacobi polynomials, m  and 
k , are determined from Eqs. (4.22) 

and k  and 
m  are still determined from Eqs. (4.9b,d). 

 

Similarly, as in Section 4.4, there are (5N–1)/2–2 equations for (5N–1)/2 

unknowns, Gi(υk), (i=1,2;  k=1,2,..,N) and Y(ρk), (k=1,2,…,(N–1)/2) in Eqs. 

(4.24). Therefore, two additional independent equations, Eqs. (4.23a,b), will 

complement the system to (5N–1)/2 equations. 
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CHAPTER V 

 

STRESS INTENSITY FACTORS 

 

 

Stress intensity factors have great significance from the fracture mechanics 

point of view. Stresses become infinite at the edges of the cracks and the 

inclusions. In this case, stress state around these points can be expressed in 

terms of the so-called stress intensity factors.  

 

 

5.1 Stress Intensity Factors at the Edges of the Crack 

 

Mode-I stress intensity factors at the edges of the crack may be written as  

 

1 lim 2( ) ( ,0)a y
x a

K a x x


  , 

 

1 lim 2( ) ( ,0)b y
x b

K x b x


  ,              (5.1a,b) 

 

in which ( ,0)y x  may be expressed from Eq.(2.39b) in the form 
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.      (5.2) 

 

The bounded part ( ,0)yb x  is such that: 
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( )m t  is expressed as: 
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     (5.4) 

 

and the integral of the sectionally holomorphic function in Eq. (5.2) is to be 

calculated by the method given in Muskhelishvili (1953): 
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where, ( )M x  is bounded for a < x < b. 

 

When Eq. (5.5) is reorganized, the following expression is obtained: 
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If Eq. (5.6) is substituted in Eq. (5.2), ( ,0)y x  becomes: 
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One may get relations between stress intensity factors and ( )m a  and ( )m b  by 

substituting Eq. (5.7) in Eqs. (5.1): 
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.              (5.8a,b) 
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Following relations can be obtained by comparing Eq. (4.4c) and Eq. (4.6c) 

with Eq. (5.4): 
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   , 

 

0( ) ( ) ( 1)
8
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    , 

 

0( ) ( ) (1)
8

p
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   .              (5.9a–c) 

 

Substituting Eqs. (5.9b,c) in Eqs. (5.8), the stress intensity factors can be 

obtained as: 

 

0
1 ( 1)

1 2
a

p b a
K Y




 


, 

 

0
1 (1)

1 2
b

p b a
K Y




 


,            (5.10a,b) 

 

and normalized stress intensity factors may be defined as: 
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Note here that when b → h, the stresses at a 90° wedge corner with free edges 

are finite and 
1bK  would be meaningless. 
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5.2 Stress Intensity Factors at the Edges of the Rigid Inclusions and  

at the Corners of the Finite Strip 

 

Mode I and II stress intensity factors, 
1cK  and 

2cK  at the edges of the rigid 

inclusions when c < h are defined and calculated as: 

 

1 1 2 0

1 1
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2 1 2 0

1 1
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2 1
c xy
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.       (5.12a,b) 

 

These stress intensity factors may be normalized as follows: 

 

0ic ick K p c ,  (i=1,2)           (5.13a,b) 

 

In the situation of finite strip, which means c → h, Mode I and II stress 

intensity factors, 
1hK  and 

2hK  are defined as: 

 

1 lim 2( ) ( , )h y
x h

K h x x L


  , 

 

2 lim 2( ) ( , )h xy
x h

K h x x L


  ,            (5.14a,b) 

 

in which α is found from Eq. (3.19a). 

 

From Eqs. (2.39b,c), the following expressions can be written 

 

( , ) ( , ) ( , )y ys ybx L x L x L    , 

 

( , ) ( , ) ( , )xy xys xybx L x L x L    ,           (5.15a,b) 
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in which subscripts s and b refer to the singular and the bounded parts of 

respective stresses. 

 

By using Eqs. (G.1)−(G.3), in Appendix G, the singular parts can be expressed 

in the form 
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or more precisely, in the form 
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According to Appendix A, definite improper integrals can be calculated and 
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or 
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           (5.19) 

can be written. 

 

Eq. (5.19) can be converted into the form given in Eqs. (3.17): 
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                               (5.20) 

 

Stress intensity factor of Mode I can be determined by substituting Eq. (5.20) 

in Eq. (5.14a): 
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                    (5.21) 

 

With the help of Eqs. (3.16), (4.4) and (4.6) and the definition of 

 

0ih ihK K h p ,   (i=1,2)          (5.22a,b) 
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normalized stress intensity factor at the rigid corner of the finite strip, 1hk  

becomes 

 

21 2
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           (5.23) 

 

Mode II stress intensity factor can be determined in a similar way such that: 
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CHAPTER VI 

 

RESULTS AND CONCLUSIONS 

 

6.1 Numerical Results 

 

The system of linear algebraic equations is solved numerically for the values of 

unknown functions, G1(υk), G2(υk) and Y(ρk) (k=1,2,…N) at discrete 

collocation points. The numerical solutions are obtained according to the 

particular problems defined in Chapter 4. Once the values of unknown 

functions, G1(υk), G2(υk) and Y(ρk) (k=1,2,…,N) are determined, the stress 

distributions and stress intensity factors at the edges of the cracks and at the 

corners of the strip can be calculated numerically. 

 

In this thesis, geometry of the strip is described by geometrical parameters 2a; 

distance between inner edges of the cracks, 2b; distance between outer edges of 

the cracks, 2c; width of the rigid inclusions, 2h; width of the strip and 2L; 

distance between the rigid inclusions. The material of the strip is described by 

μ; modulus of rigidity and ν; Poisson’s ratio. The loading is described by p0; 

uniform intensity of the axial tension. On the other hand, for the sake of 

generalization of the numerical results, dimensionless geometrical parameters 

a/h, b/h, c/h, L/h normalized by the width of the strip are used. Particular 

numerical values are not selected for μ and p0 in the analysis of the problems 

since the normalized stress distributions and normalized stress intensity factors 

are used. Here, only Poisson’s ratio ν is used to describe the material. Some 

representative calculated results are shown in Figs. 6.1–6.59. 

 

 

6.1.1 Infinite Strip Problem 

 

6.1.1.1 Two Internal Cracks and Internal Inclusions in an Infinite Strip 
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Consider the problem shown in Fig. 4.1. In this case, the system of equations, 

Eqs. (4.8) and (4.11) must be solved for the unknown functions G1(υk), G2(υk) 

and Y(ρk) (k=1,2,…N). Figures 6.1–6.4 show the normalized Mode I stress 

intensity factor  1ak  at the inner edge of the crack. Figure 6.1 shows variation 

of 1ak  with a/h when b/h = 0.9, L/h = 0.5 and c/h = 0.5 for several values of ν. 

In Figure 6.1, it is seen that 1ak  decreases with increasing a/h. In Figure 6.2, 

variation of 1ak  with b/h when a/h = 0.1, L/h = 0.5 and c/h = 0.5 is given for 

same values of ν shown in Fig. 6.1. Here, 1ak  increases with increasing b/h. 

Figures 6.1 and 6.2 show that 1ak  decreases with decreasing crack width. 

 

Figure 6.3 shows variation of 1ak  with c/h when a/h = 0.1, b/h = 0.9 and L/h = 

0.5 for several values of ν. Here, 1ak  decreases with increasing c/h which 

means when the edge of the rigid inclusion gets away from a, the value of 1ak  

becomes smaller. It is also noted that larger value of ν has a significant role in 

decrease of 1ak .  

 

Figure 6.4 shows again variation of 1ak  with c/h when a/h = 0.1, b/h = 0.9 and 

ν = 0.3 for several values of L/h. 1ak  decreases significantly with increasing c/h 

especially for smaller values of L/h which means the inclusion has a great role 

in decrease of 1ak  when it becomes closer to the crack. 

 

Figures 6.5–6.8 show the normalized Mode I stress intensity factor 1bk  at the 

outer edge of the crack and have behavior similar to 1ak  as given in Figures 

6.1–6.4.  

 

Figures 6.9–6.12 show the normalized Mode I stress intensity factor 1ck  at the 

edge of the internal inclusion. Figure 6.9 shows variation of 1ck  with a/h when 

b/h = 0.9, L/h = 0.5 and c/h = 0.5 for several values of ν. 1ck  decreases as a/h 

increases until ~ 0.3. After this value of a/h, 1ck  increases. 
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Figure 6.10 shows variation of 1ck  with b/h when a/h = 0.1, L/h = 0.5 and c/h = 

0.5. Here, 1ck  increases with increasing b/h until ~ 0.5. After this value of b/h, 

1ck  decreases. 

 

Figure 6.11 shows variation of 1ck  with c/h when a/h = 0.1, b/h = 0.9 and L/h = 

0.5 for several values of ν. Here, 1ck  decreases with increasing c/h until ~ 0.3. 

After this value of c/h, 1ck  increases until ~ 0.9 and then decreases again.  

 
 

Figure 6.12 shows the effect of L/h on the variation of 1ck  with c/h when a/h = 

0.1, b/h = 0.9 and ν = 0.3. Here, it is seen that when L/h = 1 and 2, 1ck  

decreases smoothly as the inclusion gets larger. When the inclusions are closer 

to the cracks on the other hand, e.g., when L/h = 0.5 or 0.75, 1ck  first decreases 

with increasing c/h and after some particular value of c/h it starts to increase 

and then decreases again. 

 

Figures 6.13–6.16 show the normalized Mode II stress intensity factor 2ck  at 

the edge of the internal inclusion. In Figure 6.13, 2ck  increases with increasing 

a/h when b/h = 0.9, L/h = 0.5 and c/h = 0.5. After the value of a/h = 0.5, 2ck  

decreases slightly. 

 

Figure 6.14 shows variation of 2ck  with b/h when a/h = 0.1, L/h = 0.5 and c/h 

= 0.5. In this case, 2ck  decreases very little with increasing b/h and then starts 

to increase smoothly after some particular value of b/h. 

 

Figure  6.15  shows  variation  of  2ck
 
 with  c/h  when  a/h = 0.1,  b/h = 0.9  

and L/h = 0.5 for several values of ν. Here, 2ck  decreases with increasing  c/h, 

variation being magnified for  larger values of ν. 

 

Figure 6.16 shows the effect of L/h on the variation of 2ck  with  c/h when  a/h 

= 0.1, b/h = 0.9 and  ν = 0.3. In  this  figure, 2ck  decreases with increasing  c/h 
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and when inclusion is closer to the crack, the magnitude of 2ck  has a 

remarkable change. 

 

 

6.1.1.2 Edge Cracks and Internal Inclusions in an Infinite Strip 

 

Consider the problem shown in Fig. 4.4. In this case, the system in, Eqs.(4.15) 

and (4.11a,b) must be solved for the unknown functions G1(υk), G2(υk) and 

Y(ρk) (k=1,2,…N). Figures 6.17 and 6.18 show the normalized Mode I stress 

intensity factor 1ak  for the edge crack. Figure 6.17 shows variation of 1ak  with 

a/h when L/h = 0.5 and c/h = 0.5 for several values of ν. Here, 1ak  decreases 

with increasing a/h. After the value of a/h = 0.2, the slope of the 1ak  

diminishes remarkably for all ν values.  

 

In Figure 6.18, 1ak  decreases with increasing c/h when a/h = 0.5 and L/h = 0.5. 

As the value of ν increases, relatively larger decrease of 1ak  is observed. 

 

Figures 6.19 and 6.20 show the normalized Mode I stress intensity factor 1ck  at 

the edge of the inclusion. In Figure 6.19, 1ck  increases with increasing a/h 

when L/h = 0.5 and c/h = 0.5.  

 

Figure 6.20 shows variation of 1ck  with c/h when a/h = 0.5 and L/h = 0.5. As 

can be seen from this figure, 1ck  decreases with increasing c/h until ~ 0.7. After 

this value of c/h, 1ck  increases as the inclusion gets larger. 

 

Figures 6.21 and 6.22 show the normalized Mode II stress intensity factor 2ck  

at the edge of the inclusion. In Figure 6.21, 2ck  increases slightly until some 

particular value of a/h and then decreases smoothly with increasing a/h in the 

case of L/h = 0.5 and c/h = 0.5. 
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Figure 6.22 shows variation of 2ck  with c/h when a/h = 0.5 and L/h = 0.5. 

Here, 2ck  increases slightly first, and then decreases with further increase in 

c/h. 

 

 

6.1.2 Finite Strip Problem 

 

6.1.2.1 Two Internal Cracks in a Finite Strip 

 

When the width of rigid inclusions approach the width of the strip, c→h, the 

portion of the infinite strip between the inclusions becomes identical with the 

finite strip problem. For this problem Eqs. (4.21) and (4.23) must be solved for 

the unknown functions G1(υk), G2(υk) and Y(ρk) (k=1,2,…N). 

 

Figures 6.23–6.27 show the normalized Mode I stress intensity factor 1ak  at the 

inner edge of the crack. Figure 6.23 shows variation of 1ak  with a/h when b/h = 

0.9 and L/h = 1 for several values of ν. In this figure, 1ak  decreases with 

increasing a/h. 

 

Figure 6.24 shows variation of 1ak  with a/h when b/h = 0.9 and L/h =0.5. Here, 

1ak  again decreases with increasing a/h. As can be seen in these figures, 1ak  

has close ranges of values in both cases which means that the interaction 

between the rigid inclusions and the cracks has a similar effect on 1ak  at the 

levels of L/h =0.5 and 1.  

 

In Figure 6.25, 1ak  increases with increasing b/h when a/h = 0,1 and L/h =0.5. 

At b/h = 1 which means the internal crack becomes edge crack, 1ak  shows a 

remarkable increase for all values of ν.  
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Figure 6.26 shows the effect of L/h on the variation of 1ak  with a/h when b/h = 

0.9 and ν = 0.3. Here, 1ak  decreases with increasing a/h. 

 

Figure 6.27 shows the effect of L/h on the variation of 1ak  with b/h when a/h = 

0.1 and ν = 0.3. As expected 1ak  increases with increasing b/h. 

 

Figures 6.28–6.32 show the normalized Mode I stress intensity factor 1bk  at the 

outer edge of the crack which has similar behavior as 1ak  given in Figures 

6.23–6.27.  

 

Figures 6.33–6.38 show the normalized Mode I stress intensity factor 1hk  at the 

corner of the finite strip. Figure 6.33 shows variation of 1hk  with b/h when a/h 

= 0.1 and L/h = 1 for several values of ν. Here, no significant variation with b/h 

is observed until the point of b/h = ~ 0.6. After this point 1hk  decreases while it 

first increases slightly. It should be also noted that 1hk  starts to decrease 

dramatically as b → h. 

 

In Figure 6.34, 1hk  first decreases with increasing a/h when b/h = 0.9 and L/h 

=1 and then increases slightly. 

 

Figure 6.35 shows variation of 1hk  with a/h when b/h = 0.9 and L/h = 0.5 for 

several values of ν. Similar to behavior in Fig. 6.34, 1hk  first decreases with 

increasing a/h and then increases slightly. 

 

Figure 6.36 shows variation of 1hk  with b/h when a/h = 0.1 and L/h = 0.5 for 

several values of ν. Here, 1hk  first increases with increasing b/h, experiences a 

maximum around b/h = 0.7 and then decreases. It is also seen that 1hk  shows a 

remarkable decrease as b → h. 
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Figure 6.37 shows the effect of L/h on the variation of 1hk  with a/h when b/h = 

0.9 and ν = 0.3. As can be realized from this figure, when the rigid inclusions 

go away from the cracks, L/h = 2, 1hk  first increases and then starts to decrease. 

On the other hand, in the cases of L/h = 0.5 and L/h = 1, 1hk  first decreases and 

then increases with increasing a/h . It should be also noted that when the 

inclusions are close to the cracks, the variation of 1hk  becomes considerably 

significant. 

 

Figure 6.38 shows the effect of L/h on the variation of 1hk  with b/h when a/h = 

0.1 and ν = 0.3. Compared to Figure 6.37, Figure 6.38 shows reverse behavior 

for the same values of L/h. This time 1hk  first increases and then starts to 

decrease for L/h = 0.5 and L/h = 1 where it first decreases and then increases 

for L/h = 2. 

 

Figures 6.39–6.44 show the normalized Mode II stress intensity factor 2hk  at 

the corner of the finite strip. Figure 6.39 shows variation of 2hk  with b/h when 

a/h = 0.1 and L/h = 1. Here, no significant variation with b/h is observed except 

when b → h. As the value of ν decreases, the magnitude of the 2hk  decreases. 

 

In Figures 6.40 and 6.41, variation of 2hk  with a/h is given when L/h = 1 and 

L/h = 0.5, respectively. In both Figures, b/h= 0.9 and 2hk  first decreases and 

then increases slightly with increasing a/h. 

 

Figure 6.42 shows variation of 2hk  with b/h when a/h = 0.1 and L/h = 0.5. 

Similar to the behavior in Fig. 6.36, 2hk  first increases with increasing b/h and 

then starts to decrease and contrary to Fig. 6.36, the magnitude of the 2hk  

decreases as the value of ν decreases. 

 

Figure 6.43 shows variation of 2hk  with a/h in the case of b/h= 0.9 and ν = 0.3 

whereas Figure 6.44 shows variation of 2hk  with b/h in the case of a/h= 0.1 
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and ν = 0.3 for several values of L/h. Both figures show similar behavior as in 

Figs. 6.37 and 6.38.  

 

 

6.1.2.2 Edge Cracks in a Finite Strip 

 

Consider the problem shown in Fig. 4.6. In this case, the system of equations, 

Eqs.(4.24) and (4.23a,b) must be solved for the unknown functions G1(υk), 

G2(υk) and Y(ρk) (k=1,2,…,N).  

 

Figures 6.45–6.51 show the normalized Mode I stress intensity factor 1ak  for 

the edge crack in the finite strip. In Figures 6.45 and 6.46, variation of 1ak  with 

a/h is given when L/h = 1 and L/h = 2, respectively. Both cases show decrease 

in 1ak  with increasing a/h.  

 

In Figures 6.47 and 6.48, variation of 1ak  with a/h is given when ν = 0.3 and ν 

= 0.45, respectively. In both figures, 1ak  decreases with increasing a/h for 

particular values of L/h. It is seen that as the rigid inclusions go away from the 

cracks, the magnitude of 1ak  increases. 

 

Figure 6.49 shows variation of 1ak  with L/h when ν = 0.3 for several values of 

a/h. Here, in general 1ak  increases with increasing L/h. 

 

In Figures 6.50 and 6.51, variation of 1ak  with L/h is given when a/h = 0.1 and 

a/h = 0.5, respectively. In both cases, 1ak  decreases with increasing L/h until  

L/h = ~ 0.35 and then starts increasing smoothly. 

 

Figures 6.52–6.55 show the normalized Mode I stress intensity factor 1hk  at the 

corner of the finite strip. Figure 52 shows variation of 1hk  with a/h when L/h = 
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0.5. 1hk  increases with increasing a/h and then becomes stationary after a/h =~ 

0.95 for fixed values of ν.  

 

In Figure 6.53 variation of 1hk  with a/h is given when ν = 0.3. For L/h = 0.5 

and L/h = 1, 1hk  increases with increasing a/h and then becomes stationary for 

a/h > ~0.95. However, for L/h = 2, 1hk  decreases slightly and then becomes 

stationary for the same range of a/h.  

 

Figure 6.54 shows variation of 1hk  with L/h when ν = 0.3 for several values of 

a/h. In this figure, 1hk  increases with increasing L/h and after L/h = ~1.4, the 

values of 1hk  become almost constant for all fixed values of a/h, 0.1−0.9. 

Figure 6.55 shows variation of 1hk  with L/h when a/h = 0.5 for several values 

of ν. Here, 1hk  increases with increasing L/h and then decreases slightly. 

 

Figures 6.56–6.59 show the normalized Mode II stress intensity factor 2hk  at 

the corner of the finite strip. Figure 6.56 shows variation of 2hk  with a/h when 

L/h = 0.5. 2hk  increases with increasing a/h. As can be realized from the figure 

the magnitude of 2hk  increases with increasing ν also. 

 

Figures 6.57–6.59 show similar behavior as in Figs. 6.53–6.55 for variations of 

2hk . 

 

 

6.2 Conclusions 

 

This study considers the analysis of a symmetrical finite strip containing two 

symmetrical collinear edge cracks (notches) located at the middle of the strip. 

Two ends of the finite strip are bonded to two rigid plates and both ends are 

subjected to axial tension. The material of the strip is assumed to be linearly 

elastic and isotropic. 



 78 

For the solution of the finite strip problem, an infinite strip of width 2h 

containing two internal cracks of width b–a at y=0 and two rigid inclusions of 

width 2c at y=± L is considered. When the width of rigid inclusions approach 

the width of the strip, the portion of the infinite strip between the inclusions 

becomes identical with the finite strip problem. When the outer edges of the 

internal cracks approach the edge of the strip, they become edge cracks. 

Therefore, the results for internal cracks and/or internal rigid inclusions are 

also given. 

 

General expressions of stresses and displacements for the perturbation problem 

are obtained by solving Navier equations using Fourier transforms and these 

expressions are forced to satisfy the boundary conditions. Satisfying the 

homogeneous boundary conditions at the edges of the strip, the general 

expressions for an infinite medium become expressions for a strip with free 

edges. By the use of remaining conditions on the cracks and the inclusions, a 

system of three singular integral equations is obtained. By using Gauss-Lobatto 

and Gauss-Jacobi integration formulas, these three singular integral equations 

are converted into a system of linear algebraic equations. To obtain numerical 

results, the system of linear algebraic equations is solved with a Fortran 

program. 

 

The normalized Mode I stress intensity factors 1ak  and 1bk , at the edges of the 

cracks and the normalized Mode I and II stress intensity factors, 1ck  and 2ck , at 

the edge of the inclusion and at the corner of the finite strip are presented in 

graphical form in Figs. 6.1–6.59. From the formulation and the presented 

figures, following conclusions may be deduced: 

 

1. There is considerable interaction between the cracks and the rigid 

inclusions when inclusions become closer to the cracks. 

2. As the value of ν increases, the effect of ν on 1ak  and 1bk  increases in 

the case of infinite strip. 
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3. In finite strip, 1bk  increases dramatically when the outer edges of 

internal cracks tend to open. 

4. No remarkable variations are observed for 2hk  when L/h = 1 for all 

values of ν. 

5. In finite strip in the case of edge crack, 1ak  has close values for all ν 

values when L/h = 2. 

 

 

6.3 Suggestion for Further Studies 

 

Results and methods used in this study can be applied in many engineering 

problems by considering various applications:  

 

1. Thermal loads can be added to finite and infinite problems. 

2. The material of the strip may be assumed to be composite. 
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Figure 6.1 Normalized Mode I stress intensity factor 1ak  at inner edge of crack when b/h = 0.9 L/h = 0.5 c/h = 0.5 (Plane strain). 
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Figure 6.2 Normalized Mode I stress intensity factor 1ak  at inner edge of crack when a/h = 0.1 L/h = 0.5 c/h = 0.5 (Plane strain). 
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Figure 6.3 Normalized Mode I stress intensity factor 1ak  at inner edge of crack when a/h = 0.1 b/h = 0.9 L/h = 0.5 (Plane strain). 
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Figure 6.4 Normalized Mode I stress intensity factor 1ak  at inner edge of crack when a/h = 0.1 b/h = 0.9 ν = 0.3 (Plane strain). 



8
4

 

 

0.50

0.70

0.90

1.10

1.30

1.50

1.70

1.90

2.10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

a/h

ν=0.1

0.3

0.45

bk1

 

Figure 6.5 Normalized Mode I stress intensity factor 1bk  at outer edge of crack when b/h = 0.9 L/h = 0.5 c/h = 0.5 (Plane strain). 
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Figure 6.6 Normalized Mode I stress intensity factor 1bk  at outer edge of crack when a/h = 0.1 L/h = 0.5 c/h = 0.5 (Plane strain). 
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Figure 6.7 Normalized Mode I stress intensity factor 1bk  at outer edge of crack when a/h = 0.1 b/h = 0.9 L/h = 0.5 (Plane strain). 
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Figure 6.8 Normalized Mode I stress intensity factor 1bk  at outer edge of crack when a/h = 0.1 b/h = 0.9 ν = 0.3 (Plane strain). 
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Figure 6.9 Normalized Mode I stress intensity factor 1ck  at edge of inclusion when b/h = 0.9 L/h = 0.5 c/h = 0.5 (Plane strain). 



8
9

 

 

-0.11

-0.09

-0.07

-0.05

-0.03

-0.01

0.01

0.03

0.05

0.07

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

v=0.3

0.1

0.45

ck1

b/h  

Figure 6.10 Normalized Mode I stress intensity factor 1ck  at edge of inclusion when a/h = 0.1 L/h = 0.5 c/h = 0.5 (Plane strain). 
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Figure 6.11 Normalized Mode I stress intensity factor 1ck  at edge of inclusion when a/h = 0.1 b/h = 0.9 L/h = 0.5 (Plane strain). 
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Figure 6.12 Normalized Mode I stress intensity factor 1ck  at edge of inclusion when a/h = 0.1 b/h = 0.9 ν = 0.3 (Plane strain). 
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Figure 6.13 Normalized Mode II stress intensity factor 2ck  at edge of inclusion when b/h = 0.9 L/h = 0.5 c/h = 0.5 (Plane strain). 
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Figure 6.14 Normalized Mode II stress intensity factor 2ck  at edge of inclusion when a/h = 0.1 L/h = 0.5 c/h = 0.5 (Plane strain). 
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Figure 6.15 Normalized Mode II stress intensity factor 2ck  at edge of inclusion when a/h = 0.1 b/h = 0.9 L/h = 0.5 (Plane strain). 



9
5

 

 

0.05

0.10

0.15

0.20

0.25

0.30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

L/h=0.5

0.75

2

1

ck2

c/h
 

Figure 6.16 Normalized Mode II stress intensity factor 2ck  at edge of inclusion when a/h = 0.1 b/h = 0.9 ν = 0.3 (Plane strain). 
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Figure 6.17 Normalized Mode I stress intensity factor 1ak  for edge crack when L/h = 0.5 and c/h = 0.5 (Plane strain). 
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Figure 6.18 Normalized Mode I stress intensity factor 1ak  for edge crack when a/h = 0.5 and L/h = 0.5 (Plane strain). 
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Figure 6.19 Normalized Mode I stress intensity factor 1ck  at edge of inclusion when L/h = 0.5 and c/h = 0.5 (Plane strain). 
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Figure 6.20 Normalized Mode I stress intensity factor 1ck  at edge of inclusion when a/h = 0.5 and L/h = 0.5 (Plane strain). 
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Figure 6.21 Normalized Mode II stress intensity factor 2ck  at edge of inclusion when L/h = 0.5 and c/h = 0.5 (Plane strain). 
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Figure 6.22 Normalized Mode II stress intensity factor 2ck  at edge of inclusion when a/h = 0.5 and L/h = 0.5 (Plane strain). 
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Figure 6.23 Normalized Mode I stress intensity factor 1ak  at inner edge of crack in finite strip when b/h = 0.9 and L/h = 1 (Plane strain). 
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Figure 6.24 Normalized Mode I stress intensity factor 1ak  at inner edge of crack in finite strip  

when b/h = 0.9 and L/h = 0.5 (Plane strain). 



1
0
4

 

 

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

2.60

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

b/h

ν=0.1

0.3

0.45

ak1

 

Figure 6.25 Normalized Mode I stress intensity factor 1ak  at inner edge of crack in finite strip  

when a/h = 0.1 and L/h = 0.5 (Plane strain). 
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Figure 6.26 Normalized Mode I stress intensity factor 1ak  at inner edge of crack in finite strip when b/h = 0.9 and ν = 0.3 (Plane strain). 



1
0
6

 

 

0.70

0.90

1.10

1.30

1.50

1.70

1.90

2.10

2.30

2.50

2.70

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

b/h

L/h=2

1

0.5

ak1

 

Figure 6.27 Normalized Mode I stress intensity factor 1ak  at inner edge of crack in finite strip when a/h = 0.1 and ν = 0.3 (Plane strain). 



1
0
7

 

 

0.60

0.90

1.20

1.50

1.80

2.10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
a/h

ν=0.1

0.3

0.45

bk1

 

Figure 6.28 Normalized Mode I stress intensity factor 1bk  at outer edge of crack in finite strip when b/h = 0.9 and L/h = 1 (Plane strain). 
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Figure 6.29 Normalized Mode I stress intensity factor 1bk  at outer edge of crack in finite strip  

when b/h = 0.9 and L/h = 0.5 (Plane strain). 
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Figure 6.30 Normalized Mode I stress intensity factor 1bk  at outer edge of crack in finite strip  

when a/h = 0.1 and L/h = 0.5 (Plane strain). 
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Figure 6.31 Normalized Mode I stress intensity factor 1bk  at outer edge of crack in finite strip when b/h = 0.9 and ν = 0.3 (Plane strain). 
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Figure 6.32 Normalized Mode I stress intensity factor 1bk  at outer edge of crack in finite strip when a/h = 0.1 and ν = 0.3 (Plane strain). 
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Figure 6.33 Normalized Mode I stress intensity factor 1hk  at corner of finite strip when a/h = 0.1 and L/h = 1 (Plane strain). 
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Figure 6.34 Normalized Mode I stress intensity factor 1hk  at corner of finite strip when b/h = 0.9 and L/h = 1 (Plane strain). 
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Figure 6.35 Normalized Mode I stress intensity factor 1hk  at corner of finite strip when b/h = 0.9 and L/h = 0.5 (Plane strain). 
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Figure 6.36 Normalized Mode I stress intensity factor 1hk  at corner of finite strip when a/h = 0.1 and L/h = 0.5 (Plane strain). 
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Figure 6.37 Normalized Mode I stress intensity factor 1hk  at corner of finite strip when b/h = 0.9 and ν= 0.3 (Plane strain). 
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Figure 6.38 Normalized Mode I stress intensity factor 1hk  at corner of finite strip when a/h = 0.1 and ν= 0.3 (Plane strain). 



1
1
8

 

 

0.08

0.13

0.18

0.23

0.28

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
b/h

ν=0.45

0.3

0.1

2hk

 

Figure 6.39 Normalized Mode II stress intensity factor 2hk  at corner of finite strip when a/h = 0.1 and L/h = 1 (Plane strain). 
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Figure 6.40 Normalized Mode II stress intensity factor 2hk  at corner of finite strip when b/h = 0.9 and L/h = 1 (Plane strain). 
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Figure 6.41 Normalized Mode II stress intensity factor 2hk  at corner of finite strip when b/h = 0.9 and L/h = 0.5 (Plane strain). 
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Figure 6.42 Normalized Mode II stress intensity factor 2hk  at corner of finite strip when a/h = 0.1 and L/h = 0.5 (Plane strain). 



1
2
2

 

 

0.18

0.19

0.20

0.21

0.22

0.23

0.24

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
a/h

L/h=0.5

1

2

2hk

 

Figure 6.43 Normalized Mode II stress intensity factor 2hk  at corner of finite strip when b/h = 0.9 and ν = 0.3 (Plane strain). 
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Figure 6.44 Normalized Mode II stress intensity factor 2hk  at corner of finite strip when a/h = 0.1 and ν = 0.3 (Plane strain). 
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Figure 6.45 Normalized Mode I stress intensity factor 1ak  for edge crack in finite strip when L/h = 1 (Plane strain). 
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Figure 6.46 Normalized Mode I stress intensity factor 1ak  for edge crack in finite strip when L/h = 2 (Plane strain). 
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Figure 6.47 Normalized Mode I stress intensity factor 1ak  for edge crack in finite strip when ν = 0.3 (Plane strain). 
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Figure 6.48 Normalized Mode I stress intensity factor 1ak  for edge crack in finite strip when ν = 0.45 (Plane strain). 
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Figure 6.49 Normalized Mode I stress intensity factor 1ak  for edge crack in finite strip when ν = 0.3 (Plane strain). 
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Figure 6.50 Normalized Mode I stress intensity factor 1ak  for edge crack in finite strip when a/h = 0.1 (Plane strain). 
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Figure 6.51 Normalized Mode I stress intensity factor 1ak  for edge crack in finite strip when a/h = 0.5 (Plane strain). 



1
3
1

 

 

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

a/h

ν=0.1

0.3

0.45

1hk

 

Figure 6.52 Normalized Mode I stress intensity factor 1hk  at corner of finite strip when L/h = 0.5 (Plane strain). 
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Figure 6.53 Normalized Mode I stress intensity factor 1hk  at corner of finite strip when ν = 0.3 (Plane strain). 
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Figure 6.54 Normalized Mode I stress intensity factor 1hk  at corner of finite strip when ν = 0.3 (Plane strain). 
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Figure 6.55 Normalized Mode I stress intensity factor 1hk  at corner of finite strip when a/h = 0.5 (Plane strain). 
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Figure 6.56 Normalized Mode II stress intensity factor 2hk  at corner of finite strip when L/h = 0.5 (Plane strain). 
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Figure 6.57 Normalized Mode II stress intensity factor 2hk  at corner of finite strip when ν = 0.3 (Plane strain). 
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Figure 6.58 Normalized Mode II stress intensity factor 2hk  at corner of finite strip when ν = 0.3 (Plane strain). 
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Figure 6.59 Normalized Mode II stress intensity factor 2hk  at corner of finite strip when a/h = 0.5 (Plane strain). 
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APPENDIX A 

 

FORMULAE INVOLVING DEFINITE INTEGRALS 

 

Evaluation of some definite integrals from Erdelyi and Magnus (1953): 
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APPENDIX B 

 

DEFINITIONS APPEARING IN EQS. (2.24) AND (2.25) 
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APPENDIX C 

 

INTEGRATION FORMULAS FOR FOURIER TRANSFORMATION 

 

Evaluation of some definite integrals for Fourier transformation from 

Oberhettinger (1957): 
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APPENDIX D 

 

TERMS FOR EQS. (2.39) AND (2.40) 
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a , 

           1)(21)(21)(2 2

12   xhsthsextsZ sh
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APPENDIX E 

 

SINGULAR KERNELS OF EQS. (3.6)−(3.8) 

 

Kij∞, Kijb, kijs (i, j = 1–3) appearing Eqs. (3.6)–(3.8): 
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APPENDIX F 

 

NON-DIMENSIONAL KERNELS OF EQS. (4.3) 
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APPENDIX G 

 

LIMITS OF CERTAIN INTEGRALS 

 

Evaluation of the limits of certain integrals from Erdogan (1968): 

 

Let ( )f t  be continuous and satisfying Hölder condition in the relevant interval, 

then 
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