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ABSTRACT 

 RECURSIVE PASSIVE LOCALIZATION METHODS 

USING TIME DIFFERENCE OF ARRIVAL 

 

Çamlıca, Sedat 

 

M.Sc., Department of Electrical and Electronics Engineering  

Supervisor : Prof. Dr. Yalçın Tanık 

 

September 2009, 114 pages 

 

In this thesis, the passive localization problem is studied. Robust and recursive 

solutions are presented by the use of Time Difference of Arrival (TDOA). The 

TDOA measurements are assumed to be gathered by moving sensors which makes 

the number of the sensors increase synthetically. 

First of all, a location estimator should be capable of processing the new 

measurements without omitting the past data. This task can be accomplished by 

updating the estimate recursively whenever new measurements are available. 

Convenient forms of the recursive filters, such as the Kalman filter, the Extended 

Kalman filter etc., can be applied. Recursive filter can be divided to two major 

groups: (a) The first type of recursive estimators process the TDOA measurements 

directly, and (b) the second type of the recursive estimators is the post processing 

estimators which process the TDOA indirectly, instead they fuse or smooth 
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available location estimates. In this sense, recursive passive localization methods 

are presented for both types. 

In practice, issues like being spatially distant from each other and/or a radar with a 

rotating narrow beam may prevent the sensors to receive the same pulse. In such a 

case, the sensors can not construct common TDOA measurements which means that 

they can not accomplish the location estimation procedure. Additionally, there may 

be more than one sensor group making TDOA measurements. An estimator should 

be capable of fusing the measurements from different sensor groups. A sensor 

group consists of sensors which are able to receive the same pulse. In this work, 

solutions of these tasks are also given. 

Performances of the presented methods are compared by simulation studies. The 

method having the best performance, which is based on the Kalman Filter, is also 

capable of estimating the track of a moving emitter by directly processing the 

TDOA measurements.  

Keywords :  Time Difference of Arrival, Kalman Filter, emitter localization,  

recursive estimators. 
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ÖZ 

VARIŞ ZAMANI FARKI KULLANARAK 

ÖZYİNELEMELİ PASİF KONUM BELİRLEME  

 

Çamlıca, Sedat 

 

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü 

Tez Yöneticisi : Prof. Dr. Yalçın Tanık 

 

Eylül 2009, 114 sayfa 

 

Bu tezde, pasif konum belirme problemi üzerine çalışılmıştır. Bu probleme Varış 

Zamanları Farkları (VZF) kullanılarak gürbüz ve özyinelemeli çözümler 

getirilmiştir. VZF ölçümleri hareketli sensorlar tarafından yapılmaktadır. 

Sensorların hareketli olması nedeniyle sensor sayısı yapay olarak artmaktadır. 

Konum kestirimi yapan bir yöntem eski ölçüm bilgisini ihmal etmeden, yeni 

ölçümleri kullanabilme yeteneğine sahip olmalıdır. Bu gerek, yeni ölçümler 

alındıkça konum kestirimini özyinelemeli bir şekilde güncelleyerek sağlanabilir. 

Kalman Süzgeci ve türevleri gibi uygun bir özyinelemli süzgeç yardımıyla bu işlem 

gerçekleştirilebilir. Özyinelemeli yöntemler iki ana grup altında toplanabilir: (a) 

Birinci gruptaki yöntemler VZF ölçümlerini doğrudan işleyebilme yeteneğine 

sahiptirler. (b) İkinci gruptaki yöntemler ise VZF ölçümlerini doğrudan işlemek 

yerine, önceden yapılmış konum kestirimlerini düzeltirler. Bu bağlamda, her iki 

grup için de yöntemler verilmiştir. 
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Pratikte, birbirinden konumsal olarak ayrı olmak ya da dar bir dönen huzmeye sahip 

bir radar sensorların aynı darbeyi almalarını engelleyebilir. Böyle bir durumda, 

sensorlar ortak VZF ölçümü oluşturamayıp, konum kestirimini gerçekleştiremezler. 

Ek olarak, ortamda VZF ölçümü yapan birden fazla sensor grubu olabilir. Bir 

konum kestirim yöntemi farklı sensor gruplarından alınan ölçümleri aynı anda 

işleyebilmelidir. Burada, aynı darbeyi alabilen sensorlar, bir sensor grubunu 

oluşturmaktadırlar. Bu çalışmada, yukarıda anlatılan gereklere de çözümler 

getirilmiştir. 

Verilen yöntemlerin performansları benzetim çalışmaları ile karşılaştırılmıştır. En 

iyi performansa sahip yöntem Kalman Süzgeci tabanlıdır ve VZF ölçümleri 

doğrudan işleyerek hareketli bir vericinin izini kestirebilmektedir. 

Anahtar Kelimeler : Varış Zamanları Farkları, Kalman Süzgeci, konum belirleme, 

özyinelemeli kestirim. 
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CHAPTER 1  

 

INTRODUCTION 

In Electronic Warfare (EW), determining Electronic Order of Battle (EOB) and 

staying undetected are some of the most critical issues. Since; EOB presents 

intelligence about environment and provides situational awareness. One of the most 

important requirements of constructing EOB is locating emitters of interest. In 

addition, staying undetected is vital to avoid engagement. In this context, 

monitoring environment via passive sensors becomes inevitable. It is a complicated 

task to locate an emitter which does not cooperate with the locator system, which is 

the usual case in EW. Location of an emitter can be estimated either by using Time 

Difference of Arrival (TDOA), Angle of Arrival (AOA) and/or Frequency 

Difference of Arrival measurements, or any other localization technique. For 

example, high resolution direction finding methods such as amplitude comparison, 

phase comparison or subspace techniques like Multiple Signal Classification 

(MUSIC) or Estimation of Signal Parameters via Rotational Invariance Techniques 

(ESPRIT) can be applied. On the other hand, these methods require proper antenna 

calibration which is not necessary with TDOA. This is one of the most important 

properties of TDOA. In addition, TDOA measurements are constructed by using 

arrival times of signals received by multiple passive sensors. So that, no knowledge 

about the waveform of the received signal is required. Because of the stated facts, 

emitter localization by TDOA is considered as one of the elegant localization 

methods and it is advantageous among other localization techniques. 
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In the open literature, there is plenty of work on estimating location of an emitter 

using TDOA measurements. Studies can be categorized into two major groups: (1) 

Memoriless and (2) Recursive estimators (with memory). (1) The most studied topic 

is memoriless TDOA location estimators. For example, the closed form estimators 

are in the type of the memoriless estimators [2, 5]. Most of the these estimators use 

only one set of TDOA measurements constructed from a single pulse. Data or 

measurement accumulation is not performed. Thus, the estimators are memoriless 

and this phenomenon is the most considerable drawback of this type. Moreover, 

several memoriless estimators which use Taylor series expansion have also been 

developed. They are capable of accumulating limited amount of data. However, 

convergence is not guaranteed [1, 26]. (2) The second type of the estimators is the 

recursive estimators. This type of estimators uses practically all of the past data. 

The estimate is updated when the new measurement is available without any 

information loss about past measurements. Thus, the recursive estimators have 

memory. The recursive estimators can also be divided into two major groups (a) 

The first type of recursive estimators process the TDOA measurements directly, and 

(b) the second type of the recursive estimators is the post processing estimators 

which process the TDOA indirectly. (a) There are examples of the first type [24, 

25]. On the other hand, despite these recursive estimators accumulate TDOA 

measurements; they may suffer from divergence problems [25]. There are also some 

examples of post processing estimators [14, 28]. A post processing estimator does 

not handle TDOA measurements directly, instead it smoothes location estimates. 

Thus, information loss about measurements is probable. 

In EW, emitter location estimation studies are mostly about radar localization 

applications. In the case of locating a pulsed radar, there is considerable amount of 

available data that is constructed by using consecutive radar pulses. In spite of good 

performance of memoriless estimators, ignoring past measurement data is not 

acceptable in the case of locating pulsed radar, since a lot of useful data is omitted. 

So, a recursion procedure is needed to process past data.  In addition, a recursive 

estimator should not suffer from divergence problems. From this point of view, 
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there is a need for a robust and recursive algorithm, which uses all of the past data 

and updates the location estimate when new measurement arrives. The goal of this 

thesis is to develop robust and recursive estimators which process all of the 

available data to estimate location of the emitter and update the location estimate 

when new data is measured. 

In this thesis, recursive emitter localization based on the TDOA is studied. In this 

context, two types of recursive estimators are presented: A Post-Processing 

estimator and a recursive estimator. Because of the importance of the context for 

our work, detailed derivation of a post processing estimator is given. Secondly, a 

recursive estimator is developed which updates the location estimate, using directly 

TDOA measurements. In addition, modifications are also proposed to improve the 

performance of a memoriless solution found in the literature. In all estimators, 

estimates are found under the assumption of fixed emitter location and 

measurements are taken from moving sensors which are on different moving 

platforms. 

1.1 Outline of the Thesis 

The following chapter presents the problem statement. Error sources of TDOA are 

mentioned. Effects of SNR and sensor location error on TDOA localization are also 

discussed. 

The derivation of a post-processing location estimator is given in Chapter 3. Inputs 

of the estimator are location estimates from other location estimators and error 

covariance matrices of these estimates. Then, Kalman Filter equivalent of the post-

processing algorithm is derived, expressing post-processor algorithm in recursive 

form. 

Chapter 4 starts with the derivation of a recursive location estimator. The recursive 

localization algorithm is first derived in Recursive Least Squares sense. Then, it is 
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extended to Kalman Filter form for only one reference sensor. Lastly, recursive 

localization algorithm is expressed in Kalman Filter form for general case. 

The location estimation in the maximum likelihood sense is given in Chapter 5. The 

estimator uses Taylor Series expansion. Some improvements are made such as pulse 

accumulation, and fusion of data from different groups of sensors to improve the 

accuracy of the estimate. 

Simulation scenarios are given in Chapter 6 and performance comparison of the 

methods are presented under these scenarios. 

Finally in Chapter 7, the conclusions are drawn and some future work is proposed. 
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CHAPTER 2  

 

PROBLEM STATEMENT 

The problem of estimating location of an emitter can be solved by processing 

relative arrival time measurements at three or more sensors [1]. Pulse arrival times 

are measured by the sensors. One of the sensors is chosen as the reference sensor 

and time of arrival of the pulses are expressed relative to the reference sensor. Thus, 

these measurements are named as Time Difference of Arrival (TDOA). Location 

estimators in this manner are regarded as TDOA location systems. In the absence of 

TDOA errors, the measurements limit possible locations of emitter to a 

hyperboloid. It can be considered that the emitter location is estimated using 

intersections of these hyperboloids. Therefore, TDOA localization is also called 

hyperbolic positioning. Note that, TDOA measurements form hyperboloids in three 

dimensions, and hyperbolas in two dimensions. 

TDOA localization techniques are advantageous because of two important 

properties of TDOA measurements. Location estimation can be realized effectively 

without any knowledge about received waveform of the signal. Since, all 

information about the location of the emitter is contained in relative arrival time 

measurements. Furthermore, no antenna calibration is needed. On the other hand, as 

a disadvantage, TDOA location estimation methods require accurate time 

synchronization between receiver stations. 
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In most scenarios, there may be more than one radar in the environment. So, radar 

pulses will be received in a time interleaved fashion. These pulses have to be 

deinterleaved before processing in the location estimator. If transmitters operate in 

different frequencies, deinterleaving is a trivial task. On the other hand, if operating 

frequency bands overlap, Pulse Repetition Interval and Pulse Width parameters of 

transmitters have to be considered along with frequency. Deinterleaving methods 

can be found in the literature [32] and the deinterleaving process is beyond the 

scope of this thesis. In this work, pulses are assumed to be deinterleaved. 

2.1 Formulation of TDOA Emitter Localization Problem 

Let the column vector p  ( 1×N ) represent location of the emitter, and column 

vector is   ( 1×N ) represent the location of the th
i  sensor where N  is the dimension 

of location parameters for Li ,,2,1 K= , where L  denotes number of sensors. 

Assume that, a pulse is transmitted at time instance 0t  from the emitter whose 

location is desired to be estimated. 

Distance from th
i  sensor to emitter ( id ) is found to be: 

 ( ) ( )i

T

iid spsp −−= . (2.1) 

Thus, the transmitted pulse is received by the th
i  sensor at time instance it  which is 

expressed by: 

 
c

d
tt i

i += 0 . (2.2) 

where c  is speed of light. 

To avoid estimating parameter 0t , which is impossible, relative arrival times ( ji ,τ ) 

are calculated: 
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=−=
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τ

 (2.3) 

 where i  and j  represents th
i  sensor and th

j  sensor respectively. Relative arrival 

time parameter ji ,τ   stands for TDOA measurement. 

The problem of emitter localization using TDOA measurements can be stated as 

solving desired parameter p  using non-linear quadratic equations which is not a 

trivial task. 

To illustrate the problem of emitter location estimation using TDOA better, 

consider scenario with four sensors as shown in Figure 2.1. The emitter is located at 

[ ]T2512  km., the sensors are located at [ ]T00 , [ ]T15 − , [ ]T110  and 

[ ]T5.015  km. respectively. The TDOA error free hyperbolas are plotted in the 

figure. 
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Figure 2.1: TDOA Scenario 

The reference sensor is the one located at the origin. Only emitter location related 

isochrones of hyperbolas are plotted for simplicity. As shown in Figure 2.1, there 

may be two intersection points with two hyperbolas.  So, there must be at least three 

hyperbolas for unambiguous estimate in two dimensions, which means there must 

be at least four sensors for unambiguous location estimation in two dimensions [2]. 

In general case, an unambiguous estimate requires at least )2( +N  sensors for N  

dimensional location estimate. 
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2.2 Bibliographical Notes 

In the open literature, there are numerous work on emitter location finding 

algorithms using TDOA. Closed-form (memoriless) estimators can be seen to be as 

the most studied topic [2, 7-9]. In [2], an approximate realization of Maximum 

Likelihood (ML) estimator is derived and it is shown that the variance approaches 

CRLB for small TDOA errors. In [7], an algebraic solution to location estimation 

problem using TDOA is presented. The solution suffers from the requirement for 

the symmetry in sensor locations.  

Frequency Difference of Arrival (FDOA) measurements are also used together with 

TDOA to estimate location when there is relative motion between source and 

receivers [12, 13, 15]. 

TDOA measurements are also combined with Angel of Arrival (AOA) 

measurements in location finding problems [17-19]. There are also location finding 

examples which use combination of TDOA, FDOA and AOA measurements all 

together [20]. 

TDOA emitter localization problem is also studied under Non-Line-of-Sight 

(NLOS) environments such as cellular mobile networks [18, 23]. In [23], 

combination of AOA and TDOA is used to estimate the location. In addition, signal 

strength parameter is used with AOA and TDOA to solve localization problem in 

[18]. 

There are works focusing on sensor location uncertainty as well. From this point of 

view, [8], [15] and [36] are some examples.  

As an example for TDOA localization applications, TDOA positioning systems are 

also used in search and rescue operations. In [16], TDOA measurements are used to 

locate 911 callers. 
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Optimality issues in the geometry must be studied, since the geometry is one of the 

major factors in TDOA geolocation accuracy. In [21] and [22] optimization of 

geometry of the sensors is investigated. In [21], relative geometries between the 

emitter and the sensors are examined to increase localization performance. In [22], 

Unmanned Aerial Vehicles (UAVs) are used as sensor platforms and automatic 

formation of UAVs is studied to optimize TDOA localization accuracy. 

Closed-form (memoriless) estimators process only one set of TDOA measurement. 

This phenomenon results in omitting excessive amount of data in the case of pulsed 

radar. On the other hand, there are closed-form estimators which use more than one 

set of TDOA measurement [10, 11]. These closed-form estimators are lack of 

recursion and process all of the data at a single step which may result in 

unacceptable increase in the process time. 

In [28] a post-processing method is proposed which smoothes location estimates of 

a moving source in Recursive Least Squares Filter sense. The consecutive location 

estimates are assumed to be pre-calculated by external estimators. Similarly, 

Kalman Filter is used as a post-processing smoother in [14]. 

Another topic studied in the literature is recursive estimators. A recursive estimator 

uses all of the past measurement data and updates location estimate when new 

measurement arrives. Unscented Kalman Filter (UKF) is studied in [24]. An UKF 

based emitter localization filter which TDOA measurements is developed. 

Furthermore, Extended Kalman Filtering (EKF) and (UKF) are also studied in [25]. 

Due to the fact that EKF and UKF are recursive filters; they suffer from divergence 

problems [25].  

Kalman Filter based estimators are also developed for cellular networks. For 

example, Kalman Filter based localization is studied for UMTS using TDOA in 

[35]. A similar method is investigated in [27] for non-line of sight situations. 

In addition to recursive filters, some memoriless methods which use Taylor series 

expansion have also been developed. This type of estimators updates location 
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estimate after each measurement. Using the past estimation as the starting point, 

they are capable of accumulating limited amount of data. Apart from this, past 

measurements are ignored. In [26], a memoriless localization algorithm is 

developed using Taylor-series approximation. This algorithm is capable of using 

TDOA, FDOA or AOA measurements at the same time. A similar algorithm was 

developed in [1]. It also uses Taylor-series approximation, but the estimator is 

derived in ML sense. Requirement of an initial point is a major disadvantage of 

these algorithms [26]. Another disadvantage is convergence is not guaranteed [26]. 

2.3 TDOA Error Sources 

Some of the most important error sources of TDOA emitter localization systems are 

listed as follows: 

1. The geometry formed by the sensors and the emitter location is one of the 

main characteristics that determine the performance [3, 5]. A bad geometry 

of sensors can result in ambiguous or even a false estimate. 

2. The sensor location uncertainties affect the accuracy of location estimate 

[3]. Therefore, the sensor position errors directly result in emitter position 

estimation errors.  The sensor positions can be determined using a GPS 

system. There are two kinds of sensor location errors due to GPS; a) All of 

the sensors may have the same position error mostly due to atmospheric 

effects, in such a case location estimate will be shifted relative to the amount 

of the error. b) The second type is the independent position errors on sensor 

locations which is called relative positioning errors. These types of errors 

are mostly caused by receiver characteristics, SNR, multipath effects etc. In 

this manner, relative positioning becomes important in the case of TDOA 

localization. Differential GPS or relative positioning methods can be used 

between sensor platforms [4]. In addition, maximum relative positioning 
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error is found to be approximately 20 cm. for a 10 km. distance between 

platforms in [4]. 

3. Time synchronization between sensors is one of the most important error 

sources. It directly affects the accuracy of the estimate. In order to build a 

successful TDOA localization system, the first and the most important 

requirement is to be able to calculate TDOA values very accurately. For 

example, TDOA measurement accuracy has to be better than several 

nanoseconds for a good location estimate. 

4. Accuracy of location estimate is also dependent on other factors such as 

receiver noise [3], frequency of the signal, received SNR and integration 

time which is used to estimate TDOA itself [6]. Increase in SNR, frequency 

of the signal and/or integration time result in better location estimates [6]. 

A simple and effective way to prevent noise effects on TDOA is averaging 

consecutive TDOA measurements. Note that; time interval, over which TDOA 

measurements are taken, must be short enough to avoid bias because sensors move 

together with their moving platforms. 

Another issue that has to be considered is the maximum distance between the 

sensors. The sensors have to receive same signal in order to construct TDOA 

measurements. For example, in order to locate a radar, the sensors have to stay in 

the beam of the radar at the same time to be able to receive same pulse. 

2.4 Effect of SNR, Signal Frequency and Integration Time on 

TDOA 

In [6], for a single pulse the Cramer Rao Lower Bound (CRLB) of estimation of 

TDOA measurements is evaluated under the assumption that both noise and signal 

have constant power spectral density over the bandwidth specified by 1f  and 2f  
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( 12 ff > ). Using this assumption, the Signal to Noise Ratio (SNR) is expressed as 

[6]: 

 
0

0

120

120

)(

)(

N

S

ffN

ffS
SNR =

−

−
= , (2.4)  

where 0S  and 0N  stand for signal and noise power spectral densities respectively. 

Furthermore, the noise power spectral densities are assumed to be identical for all of 

the sensors used to construct TDOA, and the same assumption also applies to the 

signal power spectral densities.  

For low SNR ( 1<<SNR ), CRLB of TDOA estimation is found by [6]: 

 
3

1
3

2

2

11

8

3

ffSNRT
TDOA

−
≥

π
σ , (2.5) 

where T is the integration time which is used in TDOA estimation. 

For high SNR ( 1>>SNR ), the CRLB is found by [6]: 

 
3

1
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2
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11
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3

ffSNRT
TDOA

−
≥

π
σ . (2.6) 

In Figure 2.2 and 2.3, effect of SNR, integration time and frequency of the signal is 

plotted for bandwidth specified by MHzf 90102 =  and MHzf 80901 = . Maximum 

limit of the integration time T  is sec50
1

12

max n
ff

T =
−

= . 

Results are plotted in Figure 2.2 for low SNR case: 



 

 

14 

 

Figure  2.2: Effect of SNR, integration time and frequency on TDOA estimation for 

low SNR case. 

Results are plotted in Figure 2.3 for high SNR case: 
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Figure  2.3: Effect of SNR, integration time and frequency on TDOA estimation for 

high SNR case. 

Because of the assumption of constant signal and noise power spectral density, 

evaluated CRLB expressions are only approximations. Indeed, they are useful tools 

to analyze effects of SNR, signal frequency and integration time on TDOA. 

2.5 Effect of Sensor Location Uncertainty in TDOA Emitter 

Localization 

In practice, there will be some uncertainty in sensor locations due to noise and other 

effects. That will directly affect emitter location estimation’s accuracy. Therefore, 
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effects of sensor location uncertainty on emitter localization must be analyzed 

before developing an estimator. 

Taking the measurement noise into account (2.2) becomes: 

 n
c

d
tt i

i ++= 0 , (2.7) 

where n is the noise. 

Letting 00 =t  for simplicity and expressing (2.7) in 2-dimensional Cartesian space 

yields: 
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where [ ]Tee yx=p , and [ ]Tiii yx=s .  

Sensor locations are also corrupted by noise, hence: 
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where, [ ]Tyixi nn  expresses sensor location error. 

Then, (2.8) can be expressed as: 

 ( )( ) ( )( ) ,
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),( 22
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c
f yiiexiiei ++−++−=sp   (2.10) 

Letting ),( ie xxx −=  and ie yyy −= , (2. 10) becomes: 
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When range-to-baseline ratio is large, if the bias in sensor locations is assumed to 

be small, the term 22
yixi nn +  in (2.11) can be omitted:   

 022 ≈+ yixi nn .   (2.12) 

Using (2.12) in (2.11) yields: 
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Using the fact that: 
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2
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d

d +≅+  when 1<<d ,  (2.14) 

with (2.14), ),( ispf  can be written in the following form: 
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For convenience, let 
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Rewriting (2.15) using (2.16) yields: 

 ( )( ) nBnAnyx
c

f yixii ++−+= 1
1

),( 22sp . (2.17) 
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Assume that xin , yin  and n  are independent. Moreover, xin  and yin  are biased 

which are defined as xixixi en µ+= , yiyiyi en µ+=  with means xiµ , yiµ  and 

variances 2
yiσ , 2

yiσ  respectively where 
xie  and yie  denote the independent noise 

components. 

Then, finding the expected value of (2.17) results in: 
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Notice that, the term ( )
yixi BA µµ +  in (2.18) results in bias, and it is assumed to be 

small in the derivation. 

Using (2.18), the variance of ( )
if sp,  is found to be: 
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Since, xin , yin  and n  are independent, expected values of the cross terms are zero. 

Thus, 
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Using (2.16) and rearranging the terms yields: 
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In (2.18) and (2.21), the terms 
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show the effect of sensor location uncertainty on TDOA emitter localization. Note 

that, (2.18) and (2.21) can easily be expended to three dimensional case. 

For unbiased sensor locations, (2.18) is found to be: 
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which is actually the value of the TOA itself at th
i  sensor. 

It can be seen that, because of parameters yx,  and id  in (2.18) and (2.21), the 

effect of sensor location uncertainty is dependent on geometry of sensors relative to 
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the emitter. It is an important fact that, bias in sensor locations is not a dominant 

error source in TDOA emitter localization performance. For low bias levels, the 

sensor location bias effects can be neglected which is shown in Chapter 6 by 

simulation studies. On the other hand, it is also shown that, independent noise in 

sensor locations is one of the major and dominant error sources. 

Equation (2.21) only states variance of TOA measurements. However, this result 

can be used to derive expected value and variance of the TDOA measurements. 

Assume that there are N sensors and first sensor is the reference sensor. Then, if 

relative arrival times are determined by subtracting the measured arrival times, then 

TDOA values are calculated as [1]: 
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In matrix form, (2.23) is found to be [1]: 

 tHτ ⋅= , (2.24) 

where τ  is 1)1( ×−L  dimensional TDOA measurement vector, H  is an LL ×− )1(   

dimensional matrix which implements subtractions and t  is an 1×L  dimensional 

TOA measurement vector. 
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Let t
~

 express noise corrupted TOA values. Then, the expected value and variance 

of TDOA measurements are calculated as follows: 
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Using (2.25) and (2.26) the variance of TDOA values is found as: 
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Define 2
iTOA−σ  as (see (2.21)): 
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Since, xin , yin  and n  are assumed to be independent: 
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Then, (2.27) becomes the following )1()1( −×− LL  dimensional TDOA covariance 

matrix [1]: 
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where off diagonal elements are equal to 2
1−TOAσ  (which is the variance of the TOA 

estimate of reference sensor), and th
i  diagonal element in (2.30) is equal to 

2
)1(

2
1 +−− + iTOATOA σσ . 
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In summary, the covariance matrix and expected values of the TDOA 

measurements are given as (2.26) and (2.30) respectively. (2.30) is valid for TDOA 

values which are calculated by subtracting TOA values. 

To demonstrate the effect of sensor location uncertainty, the following scenario was 

proposed: It is assumed that 
xσ  and yσ  are equal to Lσ  in (2.28) and they are the 

same for all sensors. Furthermore, the emitter and locations of first and second 

sensors from Figure 2.1 are used. The results are plotted in Figure 2.4. 

 

Figure  2.4: Effect of sensor location uncertainty on TDOA  

Examining Figure 2.4, it can be stated that, the sensor location uncertainty directly 

affects the accuracy of the TDOA localization. 
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CHAPTER 3  

 

EMITTER LOCATION ESTIMATION BY POST 

PROCESSING METHODS 

Derivation of a location estimator which uses post processing methods is given in 

this chapter. First, closed form of the post processing estimator is expressed. Then, 

recursive implementation of the method is given. 

Suppose that independent location estimates of an emitter are available. Fusion of 

these independent location estimates will probably result in a better estimate in 

return. Fusion will probably reduce the noise effects. This type of location 

estimators which fuse or smooth available estimates are called post-processing 

location estimators. The concept of post-processing localization is shown in Figure 

3.1, where ip̂  indicates successful estimate which is output of the th
i  estimator. 

TDOA measurements are used by individual estimators to produce location 

estimates. Then, these independent estimates are fused by the post-processor to get 

a better estimate. Thus, a post-processing estimator does not use TDOA 

measurements directly. 
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Figure  3.1: Concept of post-processing method 

Some examples of post-processing emitter localization methods are given in [14] 

and [28]. In [28], consecutive location estimates are smoothed in recursive least 

squares sense to determine the track of a moving source. Kalman filter is used as the 

post processor in [14]. However, the derivation is presented with no detail. Since 

the concept of the post-processing estimator is essential in localization problem, a 

detailed study is needed for further progress. Thus, we provide a detailed derivation 

of the work in [14] in the next section under the assumption of the fixed emitter 

location. First, a closed form estimator is derived in ML sense. Then, a recursive 

implementation of the solution is obtained. 

3.1 Derivation of Post-Processing Location Estimator 

Assume that location estimates ip̂  are available for Ki ,,2,1 K=  with covariance 

matrices iQ . ip̂  are assumed to be corrupted by independent Gaussian noise in  

where ( )ii N Q0n ,~  for Ki ,,2,1 K= . Hence: 

 .,,2,1,ˆ Kiii K=+= npp   (3.1) 
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As a result, ( )
ii N Qpp ,~ˆ  and are independent for Ki ,,2,1 K= . p  and ip̂  are 

1×D  dimensional column vectors, and 
iQ  are DD×  dimensional covariance 

matrices for Ki ,,2,1 K= . Under the assumption of stationary emitter location, the 

estimates 
ip̂  can be fused as follows.  

The joint conditional probability density function of ip̂  given p  for Ki ,,2,1 K=  is 

found as: 

 )|ˆ()|ˆ()|ˆ()|ˆ,,ˆ,ˆ( 2121 pppppppppp KK ffff LK = .  (3.2) 
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Rewriting (3.2) using (3.3) yields: 
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Taking natural logarithm of both sides: 
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Maximum Likelihood estimator of p  is defined as [29]: 

 ( ))|ˆ,,ˆ,ˆ(maxarg 21 ppppp
p

KML f K= . (3.6) 

Omitting terms unrelated of p  in (3.5), using (3.6) and rearranging terms results:  



 

 

26 

 ( )∑
=

−− −=
K

i

ii

T

i

T

ML

1

11 ˆ2minarg pQppQpp
p

. (3.7) 

Since p  is independent of sum operator index i , it can be taken outside of the sum. 

Hence: 
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Define A  and B  as: 
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To find the argument which minimizes (3.7), gradient of the expression in brackets 

is computed with respect to p : 

 ( ) BApBpAppp 222 −=−∇ TT . (3.10) 

Then, equation (3.10) is evaluated where it is equal to zero vector: 

 BAp0BAp 122 −=⇒=− . (3.11) 

Finally, using (3.11) Maximum Likelihood estimate of p  is found as: 
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(3.12) can be used to fuse location estimates of unrelated localization systems under 

the assumption of fixed emitter location. Note that, the inputs of the post processing 

estimator are the location estimates ip̂  and the covariance matrices ( iQ ) of the 

estimates. In the simplest sense, (3.12) can be regarded as a weighted average of the 

location estimates. Notice that the weighting coefficients are the covariance 

matrices. In practice, calculating the covariance matrices requires the knowledge of 
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the actual location of the emitter which is indeed desired to be estimated. So, there 

is a contradiction which makes (3.12) impossible to realize.  On the other hand, a 

similar problem is faced in [2], and the estimated location of the emitter is used 

instead of the actual one. The same procedure can be used in (3.12) and the 

estimated locations 
ip̂  can be used to calculate 

iQ  for Ki ,,2,1 K= .  Thus, 
iQ  

becomes an estimate itself resulting a suboptimal solution to (3.12) in return.  

3.2 Variance of the Post-Processing Estimator 

In order to conclude the maximum likelihood estimator’s derivation, the covariance 

of the estimate must be evaluated, which is found as: 

 .)|var(
1

1

1

−

=

− 







= ∑

K

i

iML Qpp  (3.13) 

The derivation of (3.13) is given in Appendix B. 

3.3 Recursive Implementation of Post-Processing Estimator 

(3.12) is a powerful tool to fuse location estimates. Indeed, it is a closed-form 

estimator, but it suffers from processing all of the data at once. It may be inefficient 

when the amount of the data keeps growing which results in processing redundancy. 

In short, a recursive procedure is required to compute (3.12) efficiently. In this 

section, a recursive implementation of (3.12) in Kalman Filter context will be 

derived. The only assumption in the derivation is the stationary emitter location. 

Let us define the estimate error covariance matrix as: 

 .
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K

i

iK QP  (3.14) 

For th
K )1( +  step, (3.14) becomes: 
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 ( ) .
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+

−
+ += KKK QPP  (3.15) 

Let the estimate at thK  step ML

K px = , then rewriting (3.12) using (3.15) yields: 
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Using the following matrix identity [30]: 

 ,)()( 11111 −−−−− +=+ CBBCBABABCAB TTTT  (3.17) 

where IB = , 1+= KQC  and KPA = , then (3.16) can be written as: 

 ( ).ˆ)( 1
1

1
1 K

KKKK

KK xpQPPxx −++= +
−

+
+  (3.18) 

Furthermore, using Matrix Inversion Lemma (3.15) can be written as [30]: 

 .))(( 1
11 KKKKK PQPPIP −

++ +−=  (3.19) 

Finally, recursive form of the (3.12) is expressed using (3.18) and (3.19) which are 

in fact Kalman Filter equations for stationary emitter location [30, 31, 37]. Note 

that, evaluating recursion process, the only assumption is made about location of the 

emitter and it is assumed to be fixed; there is no restriction about sensor geometry 

or movements etc. 

3.4 Application of Post Processing Algorithm: Tracking Moving 

Targets 

Kalman Filter equations (given in (3.18) and (3.19)) use fixed emitter location 

system model. These equations can be easily extended to fuse or smooth location 

estimates of moving targets using different system models. Detailed work about this 
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topic can be found in the target tracking literature e.g. [30, 31, 37] which is beyond 

the scope of this thesis.  

3.5 Discussion 

(3.18) is a powerful tool to fuse location estimates. On the other hand, optimality 

issues must be considered due to assumptions. First of all, consecutive location 

estimates are assumed to be corrupted by independent. Most probably, in practice, 

location estimate noise will be correlated, because of using similar equipment or 

operating in the nearby area etc. Secondly, iQ  are assumed to be perfectly known 

for Ki ,,2,1,0 K= . In most of the cases, exact location of the emitter and exact 

knowledge about estimation error is required to calculate iQ  which is impossible 

when estimating the unknown location. Instead, estimated values of these factors 

are used in calculating iQ , resulting that, iQ  itself becomes an estimate. Because 

of the stated facts, post-processing estimator (3.18) is suboptimal. Despite 

suboptimality issues, a powerful aspect of (3.18) is that it can take input from any 

type of location estimator as long as estimates and their covariances are provided. 



 

 

30 

CHAPTER 4  

 

A RECURSIVE ESTIMATOR  

In the case of locating a pulsed radar, there is plenty of available measurements 

from the abundant number of pulses. A simple and possible way to fuse these 

measurements is to use a post-processing estimator as described in the previous 

chapter. On the other hand, post processing results in suboptimal estimates. From 

this point of view, directly processing the measurements is a more effective and 

elegant way. An estimator is desired to update the estimate when the new 

measurements become available without any loss of the knowledge about the past 

data. A recursive estimator (with memory) can accomplish the task.  

In the open literature, there are various studies about recursive estimators. Some 

examples are given in the EKF and the UKF sense using TDOA in [24, 25]. On the 

other hand, these estimators suffer from divergence problems [24]. This issue 

makes the estimators unusable. Furthermore, a Kalman filter based solution is also 

given for cellular network applications in [35]. 

The aim of this chapter is to derive a recursive and robust location estimator which 

is capable of processing the TDOA measurements directly. The measurements are 

assumed to be collected by moving sensors (Thus, the number sensors increases 

artificially). The location estimate is updated using the new measurements without 

any loss of information about past data. For this reason, firstly, a simple closed-

form location estimator is derived using Law of Cosines which uses only one set of 
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TDOA measurement. After that, it is extended into a multi-pulse closed-form 

solution which is capable of processing multiple-set of TDOA measurements 

without recursion. Then, the multi-pulse location estimator is represented in 

recursive sense by the Kalman filter equations. Finally, a solution to the passively 

tracking of a moving emitter is presented. 

4.1 A Basic Closed-Form Solution to TDOA Localization Problem 

In [8], a simple closed-form solution to TDOA emitter localization problem is 

presented. Derivation of the solution is constructed using Law of Cosines. In this 

section, we review the derivation because it constitutes one of the basic concepts in 

the TDOA localization problem, and it is the origin of the recursive estimator. 

Consider the scenario shown in Figure 4.1 [8]; 

 

Figure  4.1: Example scenario 

where ( )GGG zyx ,,  denotes global coordinates, and 1,il  is the distance between 1s  
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at origin for simplicity. Then, the position vector of the emitter is denoted by 

[ ]T

eee zyx=p . Similarly, the position vector of th
i  sensor is denoted by 

[ ]Tiiii zyx=s  for Li ,,3,2,1 K= . id  is the distance between the emitter and the 

th
i  sensor. 

id  can be written in terms of 1d : 

 1,1 ii rdd += , (4.1) 

where 1,ir  accounts for Range Difference of Arrival (RDOA) measurement between 

the first and the th
i  sensors. RDOA values ( jir , ) can trivially expressed using 

TDOA measurements ( ji,τ ): 

 ,,, jiji cr τ=  (4.2) 

where c  is speed of light. 

Applying law of cosines to triangle constructed by 1s , is  and p  yields: 

 .cos2)( 1,1
2

1,
2

1
2

1,1 αiii lddrd −+=+ l  (4.3) 

It is a fact that [33]: 

 .cosαbaba =T  (4.4) 

Using (4.4), equation (4.3) becomes: 

 .2)( 2
1,

2
1

2
1,1 psT

iii drd −+=+ l  (4.5) 

Rearranging terms in (4.5) results in [8]: 

 .022 2
1,1,1

2
1, =−−− psT

iiii rrdl  (4.6) 
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Equation (4.6) is the key to the closed form estimator. On the other hand, sensor and 

emitter locations are expressed relative to the reference sensor location. This 

dependency must be avoided before proceeding further. Now, consider that 

reference sensor is not located at the origin, (4.6) simply becomes [10]: 
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 (4.7) 

In matrix form, for Li ,,3,2,1 K=  (4.7) becomes [10]: 

 bAx = ,  (4.8) 

where; 
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Since A  is not invertible, its pseudo inverse is used in order to find the Least 

Squares (LS) solution to (4.8), which is: 

 .)(ˆ 1 bAAAx TT −=  (4.10) 

(4.10) can be applied to a TDOA localization problem where TDOA measurements 

have identical noise variance. On the other hand, if TDOA measurements have 

different variances, a weighting procedure must be taken into account in (4.8). The 

Weighted Least Squares (WLS) solution to (4.10) is given as [10]: 

 ,)(ˆ 111 bNAANAx −−−= TT  (4.11) 

where N  is the to RDOA noise covariance matrix for large range-to-baseline 

situations [10] which is the case for the problem investigated in this work. 
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The equation given in (4.11) is a closed-form solution to the TDOA emitter 

localization problem. It uses only one set of TDOA measurements. On the other 

hand, there are plenty of available TDOA measurement sets in the case of locating a 

pulsed radar. Hence, there is a need for some methodology to process all of the 

available data. The following section describes a solution to this problem. 

4.2 WLS Localization Using Multiple TDOA Sets [10] 

In this section, the WLS solution [10] of the localization problem using multiple 

TDOA sets is derived. It is one of the major parts of the recursive estimator. 

Suppose that there are L  moving sensors which take TDOA measurements from a 

fixed location pulsed radar. When the th
k  pulse is received (4.8) becomes: 
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where k  is the time index of the th
k  pulse. )(1, kT

is  is defined as 

T

i

T

i kkk ))()(()( 11, sss −=  for Li ,,3,2 K= . Thus, A , x  and b  in (4.8) can be 

expressed as: 
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For convenience, we define the followings: 
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Then (4.12) becomes: 
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Since we are trying to accumulate TDOA measurements to get a better location 

estimate, suppose that consecutive measurements are stacked in equation (4.15), 

resulting in: 
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where C  is of size )2()1( +×−⋅ LLk  for 2 dimensional emitter localization. 

The WLS solution to (4.16) is given by: 

 ,)(ˆ 111 dWCCWCy −−−= TT  (4.17) 

where W  is a block diagonal matrix consisting of RDOA covariance matrices 

under the assumption of long range-to-baseline ratio: 
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It is assumed that noise is independent at different time instances. 

Examining (4.16), it can be stated that because of time varying parameter )(1 kd ,  

(4.17) suffers from dimension growth in y  when a new measurement arrives. As a 

result, computational complexity increases.  

A solution to this problem is to model the range variation with a constant velocity 

model which is given as: 

 ),()0()0()( 111 ktvdkd +=  (4.19) 

where )0(1d  and )0(1v  are initial range and rate of change in range respectively. In 

other words, )0(1v  is the velocity of the initial range, and )(kt  is the arrival time 

(TOA) of the th
k  pulse. Note that even if the sensors move with constant velocity, 

)0(1d  changes nonlinearly with )(kt . Thus, (4.19) is an approximation. 

Using (4.19), (4.16) becomes: 
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Then the WLS solution to the emitter localization using multiple TDOA sets is 

given by: 
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where kF , kd  and kW  are defined as: 
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and the subscript k  indicates being constructed when th
k  pulse is received. 

Finally, the WLS emitter localization using multiple TDOA sets is realized by 

(4.21). 

4.3 Recursive Estimator with Multiple TDOA Sets 

(4.21) is a useful estimator, since it is capable of processing multiple TDOA sets. 

On the hand, it is in the form of a closed-form estimator, which means it has 

drawbacks in processing data: All of the measurements have to be processed again 

when new measurement arrives. This phenomenon leads to an undesired increment 

in computational cost. A recursion process is needed to overcome this problem. 

Simply, a Recursive Least Squares (RLS) filter can be used to solve (4.21) 

iteratively [34]. (4.21) gives the WLS solution when th
k  pulse is received. On the 

other hand, when th
k )1( +   pulse arrives (4.21) becomes: 
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where 1+kf  is defined as: 

 [ ].)1()1()1()1(1 ++++=+ kktkkk rrSf  (4.24) 
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In order to realize a recursion process, let us try to express 1ˆ
+kz  in terms of kẑ  [30]: 
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In (4.25), it is assumed that noise is independent at distinct time instances. 

The estimate covariances have been found as [30, 31]: 
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Using (4.21), one obtains: 

 .ˆ 11
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Then, using (4.25), (4.26) and (4.27) 1ˆ
+kz  can be written as: 
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(4.26) and (4.28) yields a method of combining previous estimates and the new 

measurement to construct new updated estimate. 

Now, let us write equation (4.28) in the following form [30]: 
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Inserting definition of 1+kP  (4.26) into (4.29) yields: 
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Now, rearranging terms in (4.30) results in: 

 ( ).ˆ)1())1((ˆˆ 1
1
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+++ −+++=  (4.31) 

Equation (4.31) and 1+kP  (given in (4.26)) constitutes a recursive update process. 

In addition, using the Matrix Inversion Lemma, 1+kP  can be written in the following 

form [30] to increase computational efficiency: 
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In summary, recursive estimation of the emitter localization using multiple TDOA 

measurement sets is realized in the RLS sense by equations (4.31) and (4.32) under 

the assumption of fixed emitter location [34]. Derivation continues with expressing 

(4.31) and (4.32) in the Kalman Filter form to make the estimator more adaptable to 

the scenarios other than the stationary emitter location.. 

Define the Kalman Gain 1+kK  as [30]: 
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Using the following matrix identity: 

 ,)()( 11111 −−−−− +=+ CBBCBABABCAB TTTT  (4.34) 
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The gain can be written as [30]: 

 ( ) .)1(
1

1111

−

++++ ++= T

kkk

T

kkk k fPfNfPK  (4.35) 

Using (4.35), (4.32) turns into: 

 .111 kkkkk PfKPP +++ −=  (4.36) 

Similar to (4.36), equation (4.31) is expressed using (4.35) as: 

 ( ).ˆ)1(ˆˆ 111 kkkkk k zfbKzz +++ −++=  (4.37) 

At last, the expressions (4.35), (4.36) and (4.37) form the Kalman Filter equations 

of the estimator given in (4.31) [30, 34], where kẑ  is defined as the state, kP  is the 

state error covariance matrix and kK  is  the Kalman Gain at time step k [31]. 

4.3.1 Expressing Recursive Estimator in Kalman Filter Equations 

for General Case 

The recursive estimator (4.31) is advantageous since it can accumulate the data, and 

in addition, because of the RLS structure, obviously it can update the previous 

estimate when the new measurement arrives. On the other hand, it has some 

drawbacks due to the assumption of the constant range velocity model given in 

(4.19). First of all, only the reference sensor’s range variation is modeled. Under 

this assumption, the reference sensor can not be changed through the operation, the 

same sensor has to remain as the reference, which means if the reference sensor can 

not receive a pulse, then no measurement update can be accomplished. Furthermore, 

suppose that there are several groups of receivers which can not always measure the 

same pulse. In the case of using constant range-velocity model (4.19), these groups 

of receivers have to estimate the emitter location separately which results in wasting 

appropriate chance of fusing data to get a better estimate. Secondly, constant range 

velocity model restricts the sensors to perform maneuvers. This type of operation 
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can not be accepted in practice. Because of the stated problems, some modifications 

are necessary to (4.31). 

As the first step, the range-velocity model given in (4.19) will be modified. First of 

all and most importantly, initial range dependency must be avoided. For this 

purpose, let us write )(1 kd  and )1(1 −kd  using (4.19): 
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111
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+=

−+=−
 (4.38) 

If we subtract )1(1 −kd  from )(1 kd  we get: 

 )).1()()(0()1()( 111 −−=−− ktktvkdkd  (4.39) 

Rearranging terms in (4.39) yields: 

 )).1()()(0()1()( 111 −−+−= ktktvkdkd  (4.40) 

Deriving (4.40), initial range dependency is removed. Now, for generality, we 

substitute initial range velocity ( )0(1v ) with the current one ( )(1 kv ). Then (4.40) 

becomes: 

 )).1()()(()1()( 111 −−+−= ktktkvkdkd  (4.41) 

Equation (4.41) is the modified version of range-velocity model given in (4.19).  

After derivation of (4.41), recursive estimator expressions must be prepared in order 

to use proposed range-velocity model. 

The Kalman Filter equations (4.35), (4.36) and (4.37) have been derived under the 

assumptions of the fixed emitter location and constant range and range velocity. In 

other words, the state transition matrix (
kA ) is the identity matrix where the state is 

kẑ  itself. So, it is not specified particularly in the filter equations. From this point of 
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view, if the filter equations are rewritten especially indicating state transition 

matrix, (4.35), (4.36) and (4.37) becomes [30, 31]: 
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where [ ]0rSf )1()1(1 ++=+ kkk , the state vector kẑ  and the state transition 

matrix ( kA ) are defined as: 
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Using the range and range velocity model given in (4.41), under the assumption of 

two dimensional fixed emitter location where [ ]T

ee yx=p , (4.43) becomes: 

 



















=

)(

)(
ˆ

1

1

kv

kd

y

x

e

e

kz  and .

1000

100

0010

0001



















=
k

k
T

A   (4.44) 

where )).1()(( −−= ktktTk  

Using (4.44) along with (4.42) is the solution for the restriction of the single 

reference. Furthermore, (4.42) and (4.44) are also a solution for the sensor 

maneuvers. 

Similarly, for three dimensional localization kẑ  and kA  are given as: 
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Modeling the state variable (
kẑ ) with (4.45) leads to uncertainties in )(1 kd  and 

)(1 kv  which arises from maneuvers of the sensors. At this point, this uncertainty has 

to be considered. Furthermore, in tracking literature, this condition is handled by 

taking into account the process noise with covariance matrix ( kQ ) which is indeed 

used to encompass uncertainties in the state model. Using kQ , (4.42) is rewritten as 

[30, 31]: 

 
( )

( ).ˆ)1(ˆˆ

,)(

,)1(

),(

111

'
1111

1

1
'

111
'

11

'
1

kkkkkkk

kkkk

T

kkk

T

kkk

k

T

kkkk

k

k

zAfbKzAz

PfKIP

fPfNfPK

QAPAP

+++

++++

−

++++++

+

−++=

−=

++=

+=

 (4.46) 

where )1( +kb  is defined in (4.13). Note that the output equation of the system is 

obtained from (4.7) by considering ( 11
2
1,

2
1, )()(5.0 sss T

iii r −+−l  where 

Li ,,3,2 K= ) as the measurement. Expressions in (4.46) are the Kalman Filter 

form of the recursive estimator. 

For the stationary emitter case, kQ  is found to be: 

 ,2 T

Vk GGQ ⋅= σ  (4.47) 

where 2
Vσ  is process noise variance and defined as filter parameter. For two and 

three dimensional state variable kẑ  in (4.44) G  is respectively defined as:  
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Note that 
kQ  is used to model uncertainties in )(1 kd  and )(1 kv  as noise. G  is a 

simple but efficient model. Besides, more sophisticated models can be used as well. 

On the other hand, the target tracking concepts are out of the scope of this thesis 

and detailed information about the tracking methods can be found in the target 

tracking literature [30, 31, 37].  

To initialize the recursive estimator given in (4.46), first (4.21) is used to calculate 

initial values of the state vector and the state error covariance matrix which are 0ẑ  

and 0P  respectively. Then, updates are performed when new measurement arrives.  

4.3.2 Location Estimation of a Moving Emitter Using TDOA 

In passive localization systems, there are generally two methods to estimate location 

of moving emitters.  

1. This method uses location estimates as the inputs of a tracking filter as 

discussed in Chapter 3. These localization techniques are in the class of post 

processing methods. Several examples can be found in the literature [14, 

28]. Post-processing methods are suboptimal because they process 

information that was processed nonlinearly which suffers from the threshold 

effect.  

2. In concept of location estimation of moving emitters by passive sensors, this 

type uses the measurements directly as the inputs of the estimator. This class 

has the advantage of prossessing all the information involved in the 

measurements which post-processing methods can not attain. 
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(4.46) can be easily adopted to estimate the location of moving emitters. In order to 

achieve this goal, only slight modifications are required for the filter variables. 

Filter equations are simply extended to the moving target case. Information about 

the target motion models can be found the target tracking literature [30, 31, 37]. 

First and most importantly,  
kz  must include the information about the velocity of 

the emitter: 
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where )(kvx  and )(kvy  are the velocity components of the emitter in x  and y  

directions respectively.  

The initial value of kẑ  is: 
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where '
0ẑ  is calculated from (4.21). When only TDOA is used, there is no available 

priori information about the velocity of the emitter. So, the initial values of the 

velocity components of the emitter are set to zero. 

Then, the state transition matrix ( kA ) becomes: 
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Of course, 
kf  is also modified. Since, measurements do not include any information 

about the emitter’s velocity, we simply add zeros to relevant parts of kf : 

 [ ]000rSf )1()1(1 ++=+ kkk
. (4.52) 

Process noise covariance matrix takes the following form: 

 ,' T

k GQGQ ⋅⋅=  (4.53) 

where G  and 'Q  are defined as: 

 .

00

00

00

,

00

00

00

5.000

05.00

005.0

2
3

2
2

2
1

'
2

2

2

















=



























=

v

v

v

k

k

k

k

k

k

T

T

T

T

T

T

σ

σ

σ

QG  (4.54) 

Similar to (4.47), 'Q  is filter parameter. 

Notice that the state error covariance matrix kP  also has to be modified. Since, 

there is no prior knowledge about the target velocity; some artificial extension to 

initial value of kP  is required. Simply, zeros or some convenient noise variance can 

be added to relevant parts of 0P . 
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For example, following can be used as the initial value of the state error covariance 

matrix kP : 

 
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P . (4.55) 

Note that, "
0P  represents uncertainties in the velocity of the emitter. "

0P  must be 

chosen large enough to encompass those uncertainties, and it can be determined 

according to some priori statistics or knowledge about the emitter or simulation 

studies. 

Using (4.49), (4.51), (4.53) and (4.55) along with (4.46), moving emitter location 

estimation is accomplished. Consequently, recursive filter directly uses TDOA 

measurements as input. 

Notice that, emitter’s motion is modeled by a simple constant-velocity motion 

model. Other motion models can be used or kQ  can be altered as well. For 

example, Interacting Multiple Models (IMM) can be used with more sophisticated 

motion models to improve accuracy of the recursive filter. Multi Hypothesis 

Tracking (MHT) can also be used to get better location estimates. Detailed 

information about these methods can be found in the target tracking literature [30, 

31, 37]. Expressed tracking technique can be easily extended in to those more 

sophisticated ones. On the other hand, in order to not to exceed the scope of this 

thesis, possible extensions are not given here. 

4.3.3 Reference Sensor Shifting by Heuristic Methods 

In practice, all of the sensors may not always be capable of receiving the same 

pulse. For example, being spatially distant from each other and/or a radar with a 

rotating narrow beam, which occurs as a common case in radar location finding 

systems, may prevent the sensors to receive the same pulse. In such a case, the 
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sensors can not construct a common TDOA measurement which means that they 

can not accomplish the location estimation procedure. Using the unmodified version 

of the recursive estimator (4.31), each group of sensors have to perform the 

localization separately, unable to share data which can be very useful in increasing 

the estimator’s performance. Notice that; we refer to a sensor group that consists of 

sensors which are able to receive the same pulse. Besides, using (4.31), TDOA 

measurements have to be constructed according to the same reference sensor 

throughout all the operation. On the other hand, the reference sensor simply may 

not always receive the pulse. In such a case, the localization procedure can not be 

realized under the restriction of the same reference. 

In this section, a reference sensor shifting technique is proposed. Using this method 

spatially distant sensor groups are able to share and fuse location estimate 

knowledge resulting increase in estimator’s accuracy. The same procedure can be 

used by a group of sensors to alter the reference of the group in the case of a failure. 

Consider the scenario shown in Figure 4.2 where there are two groups of sensors 

somewhat spatially distant enough so as not to receive the same pulse. 
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Figure  4.2: Spatially distant sensor groups 

In Figure 4.2, M1 and M2 are the reference sensors of the first and the second 

groups, respectively. Miv
r

 is the velocity of the th
i  reference sensor for 2,1=i . Miθ  

is the angle between the emitter position and Miv
r

 for 2,1=i . 

Each sensor group has its own individual reference sensor which means range and 

range velocity components of state variable ( kẑ ) is different. Let 1,
ˆ

kz  and 2,
ˆ

kz  

denote state variables of the first and the second sensor groups, respectively. For 

moving emitter case, the state variables are given as: 
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In fact, only )(,1 kd i  and )(,1 kv i  must be processed to perform data fusion between 

the sensor groups or to alter the reference sensor in the same group. 

Suppose that the th
i  group performed localization ( ik ,ẑ  is available), and data fusion 

is desired to be performed with th
j  group. Then, using estimated emitter location by 

the th
i  sensor group, )(,1 kd j  and )(,1 kv j  are computed in the following way: 
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where ),( ,, jMjM yx  is the coordinate of the th
j  group’s reference sensor in Cartesian 

coordinate system. Note that )(,1 kv j  is the radial component of the th
j  reference 

sensor velocity ( jMv
r

), thus, it is independent from iMθ  where ji ≠ . 

Using (4.57) jk ,ẑ  is found as: 
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In summary, (4.58) implements of the reference sensor shifting mechanism. (4.58) 

defines the state variable jk ,ẑ  which can be used by the th
j  group in the 

localization. Remaining filter variable, the state error covariance matrix, kP  is used 

without any modification.  
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Spatially disjoint sensor groups can make data fusion using (4.58) resulting in better 

accuracy in the estimation. Furthermore, (4.58) can be used by the sensors which 

are in the same group in order to change the reference sensor. 

Having developed a heuristic reference sensor shifting procedure, a simple and 

effective solution is proposed to a subtle but relevant practical restriction. 

4.4 Cramer Rao Lower Bound 

In [2] CRLB for location estimation for single TDOA measurement set has been 

obtained for fixed emitter location. Here, an extension of the bound to multiple 

TDOA sets is derived. The derivation follows almost the same lines as that of [2]. 

For a single TDOA measurement set τ , the conditional probability density function 

of τ  given p  is 
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where 0r  is the noise free RDOA vector and is a function of p ; Q  is the TDOA 

noise covariance matrix. 

Now assume that the TDOA measurements ( iτ , ki ,...,2,1= ) are Gaussian and 

independent for different time instances i , ki ,...,2,1= . Then, the joint conditional 

probability density function of iτ , ki ,...,2,1=  given p  is expressed by 
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If the errors in the TDOA measurements are small enough so that the square of the 

bias is negligible as compared to the variance, the CRLB of the estimation of p  is 

given by; 
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where 0p  is the true location of the emitter. The gradient of ))|,...,,((ln 21 pτττ kf  

with respect to p  is; 
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Hence, the CRLB is given as 
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where ( )0
ii rG p∇=  is found by using the definition of p , which is given in [2] as 
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Finally, using (4.64) in (4.63) gives the Cramer Rao Lower Bound for the 

localization using multiple TDOA sets. 

4.5 CRLB with Erroneous Sensor Positions 

The CRLB expression (4.63) was obtained under the assumption of no sensor 

location uncertainty. On the other hand, erroneous sensor positions obviously affect 

the accuracy of the estimate. So, sensor location uncertainties have to be included in 

CRLB. In this sense, a CRLB derivation is given in [15] and [36] for a single 
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measurement set. In this section, the extension for multiple measurement sets is 

considered. 

To evaluate the CRLB, suppose that both the position of the emitter (p ) and the 

positions of the sensors are desired to be estimated. Let [ ]TT

L

TT sssK L21=   

be the vector that contains the positions of the sensors and define θ  as: 

 [ ]TTT Kpθ = , (4.65) 

which is desired to be estimated. 

Let [ ]T

iii Krv =  be the measurement vector which contains both the RDOA 

values and the erroneous sensor locations [ ]TT

L

TT

i iii )()()( 21 sssK L= . 

Assume that, both the RDOA measurements and the sensor locations are Gaussian 

distributed and independent from each other and also independent at different time 

instances i  for ki ,...,2,1= . Then, similar to single measurement case [15], the joint 

conditional probability density function of iv , ki ,...,2,1=  given θ  is expressed by  

 ∏
=

=
k

i

iik fff
1

21 )|()|()|,...,,( θKθrθvvv , (4.66) 

Where the subscript i denotes being constructed from the th
i  pulse. 

Using (4.66), ( ))|,...,,(ln 21 θvvv kf  is found as: 
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 (4.67) 

where ‘ 0 ’ denotes true value of a vector, D is dimension of the sensor locations, and 

i

rQ  is the RDOA noise covariance matrix 

 i

i
c QQr

2= , (4.68) 

c is the speed of light and iQ  is the TDOA covariance matrix for the time instance 

i . 

Then, similar to the single measurement case [15], for multiple measurements the 

CRLB can be found by: 

 ( ){ }[ ] ,)|,...,,(ln)(
1

021
2 −

=
∇−= θθθvvvθ θ kfECRLB  (4.69) 

where 0θ  denotes the noise free value of the vector θ . 

Then the )(θCRLB  is given by: 

 ,)(

1−









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ZY

YX
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T

CRLB  (4.70) 

where  
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Then using (4.67), X , Y  and Z  are calculated as [15, 36]: 
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)( 0,
ii rG p

pr ∇= , )( 0,
ii rG K

Kr ∇=  and )( 0,
ii KG K

KK ∇=  are given as [36]: 
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Using (4.72) and (4.73), (4.70) gives the CRLB for the emitter localization with the 

erroneous sensor locations. Notice that, the upper left DD×  dimensional submatrix 

of (4.70) gives the CRLB for the estimation p . 
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4.6 Discussion 

In this chapter, a Kalman Filter based recursive location estimator was developed. 

TDOA measurements are gathered by moving sensors and the method is capable of 

tracking a moving emitter. The estimator directly processes the TDOA 

measurements. Finally, a reference sensor shifting method was described. One of 

the most powerful aspects of the method is that filter structure does not lead to 

divergence which is the case in the Extended Kalman Filter and the Unscented 

Kalman Filter [25]. Additionally, no external initialization is required. 

Despite all of the capabilities of the estimator, it suffers from bias problems [10].  

The square operation on the TDOA measurements in (4.7) results in a bias, and its 

effects become more severe with high noise levels. A bias compensation method is 

proposed in [11]. On the other hand, the bias compensation method requires the 

post processing of all of the measurements which contradicts with recursion. 

Consequently, the bias compensation is not handled in this thesis and left as a future 

work. Fortunately, the bias becomes negligible after the processing of sufficient 

number of measurements. 

As stated in Section 4.3.2, in the case of the tracking a moving emitter, the velocity 

of the emitter is unobservable using only TDOA measurements. FDOA 

measurements can be used along with the TDOA to overcome this situation. 
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CHAPTER 5  

 

LOCATION ESTIMATION IN ML SENSE  

In this chapter, a location estimator is derived in Maximum Likelihood (ML) 

estimation sense using TDOA measurements.  Examining the ML solution is 

important and beneficial to fully cover the concept of the passive localization. In 

this context, after expressing the derivation given in [1], some modifications are 

given to improve the performance of the estimator. Although the same estimator is 

derived in a different manner in [26], this chapter follows [1] closely. The 

derivation uses Taylor Series expansion which requires an initial point. Thus, the 

ML solution is not in a closed form, it is iterative. The method updates the previous 

location estimate when a new measurement arrives. However, the measurement data 

are not stored. Hence, the solution is memoriless. 

Note that, the estimator given in [1] is regarded as one of the best passive 

localization algorithms [2, 3, 10]. 

5.1 Location Estimator in ML Sense 

Suppose that a set of L  measurements iq , for Li ,...,2,1=  are gathered at several 

locations where L  is the number sensors. When there is no measurement error, it is 

known that 
iq  equals to a known function )(pif  where p  is a 1×D  vector 
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denoting the emitter’s location which is desired to be estimated. When iq  is subject 

to additive noise, it is written as [1]: 

 iii nfq += )(p , for Li ,...,2,1= . (5.1) 

If we write L  equations as column vectors: 

 .)( npfq +=  (5.2) 

The measurement error n  is assumed to have a Gaussian distribution with zero 

mean and LL ×  dimensional covariance matrix N  [1]. 

If p  is regarded as an unknown but nonrandom vector, then the conditional 

probability density function of q  given p  is expressed as: 

 [ ] [ ]{ })()(5.0exp
)2(

1
)|( 1

2/
pfqNpfq

N
pq −−−= −T

k
p

π
,  (5.3) 

where N  is the determinant of the covariance matrix N [1]. 

Taking natural logarithm of both sides in (5.3) yields: 

 ( ) [ ] [ ])()(5.0
)2(

1
ln)|(ln 1

2/
pfqNpfq

N
pq −−−














= −T

k
p

π
. (5.4) 

The maximum likelihood estimator of p  is the value that maximizes (5.4). 

Equivalently, the maximum likelihood estimator minimizes the following quadratic 

equation [1]: 

 [ ] [ ].)()()( 1 pfqNpfqp −−= −T
Q  (5.5) 

In case of emitter localization using TDOA, it is clear that )(pf  is a nonlinear 

function. However, derivation of an estimator can be accomplished by linearizing 

)(pf  using Taylor series expansion about a reference point 0p . If only the first two 

terms of Taylor series are used, then )(pf  can be expressed as: 
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 )()()( 00 ppGpfpf −+≅ , (5.6) 

where G  is the DL ×  sized matrix which contains derivatives evaluated at 0p  [1]: 
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The initial point 0p  can be estimated using a closed form estimator or it can be an 

estimate of p  from a previous iteration. It is assumed that 0p  is sufficiently close to 

p , so that (5.6) is an adequate approximation. 

For convenience, let 1q  be defined as: 

 ,)( 001 Gppfqq +−=  (5.8) 

and using (5.8), let us combine (5.5) and (5.6): 

 [ ] [ ].)( 1
1

1 GpqNGpqp −−= −T
Q  (5.9) 

To find the estimate ( p̂ ) which minimizes )(pQ , first gradient of )(pQ  is 

calculated, then it is solved for 0)( =∇ ppQ  where the gradient of )(pQ  is 

expressed as: 
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To evaluate its gradient, let us expand (5.9): 

 .)( 11
11

1
1

1
1 GpNGpGpNqqNGpqNqp −−−− +−−= TTTTTT

Q  (5.11) 
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The gradient of )(pQ  at pp ˆ=  is 

 .2ˆ2)( 1
11

ˆ
qNGpGNGp

ppp
−−

=
−=∇ TT

Q  (5.12) 

Now, if we solve (5.12) for 0p
ppp =∇

= ˆ
)(Q , we get: 
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Inserting the definition of 1q  (5.8) into (5.13) and rearranging terms yields: 
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where p̂  is the estimate which minimizes quadratic equation (5.5) [1].  

Using (5.2), (5.14) can be written as: 

 ).)()(()(ˆ
0

111
0 npfpfNGGNGpp +−+= −−− TT  (5.15) 

Now, since n  is assumed to have zero mean, expected value of the estimate is given 

by: 

 { } )).()(()(ˆ
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E  (5.16) 

Using (5.15) and (5.16) the covariance of the estimate is found as [1]: 
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Note that, the expression of the covariance of the estimator is included as a term in 

estimator itself. Hence, no extra effort is necessary to calculate the covariance. 

The estimator in (5.14) is capable of taking AOA, TDOA and/or FDOA 

measurements as input. Of course, individual matrix expressions differ for different 

measurement types. In the next section, estimator expressions for TDOA location 

estimation are derived. 

5.2 Estimator Expressions for TDOA Measurements 

Suppose that there are L sensors which collect TDOA measurements, and recall 

from Chapter 2 that, the time of arrival of the signal at the th
i  sensor is given as: 

 i

i

i n
c

d
tt ++= 0  for Li ,...,2,1= , (5.18) 

and id  is as the distance between the th
i  sensor and the emitter: 

 ( ) ( )i

T

iid spsp −−=  for Li ,...,2,1= , (5.19) 

where p  and is  are size of ( 1×D ) and denote location of the emitter and the th
i  

sensor respectively, and c  denotes the speed of light. If we write (5.18) in matrix 

form, we get: 

 ,0 n
d

tt ++=
c

 (5.20) 

where t , d  and n  are ( 1×L ) sized column vectors with components it , id  and in  

for Li ,...,2,1=  respectively. 0t  is also ( 1×L ) sized column vector whose all 

components are equal to 0t . 
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Now suppose that both 0t  and p  are desired to be estimated. If we define ),( 0 pf t  

as: 
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,),(
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tpf
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t

 (5.21) 

then the gradient matrix G′  is found as: 
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Clearly, 
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f

=
∂

∂

= '
00

0 tt
t

, (5.23) 

where 1  is a column vector of ones. 

Moreover, define )(' pif  as: 
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Now, taking the gradient of )(' pif  where 0pp =  yields: 
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where 0p  is the reference point which the Taylor Series expansion is applied. 

Using (5.19), (5.25) can be expressed as: 
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and 0
id  is the distance between the th

i  sensor and the reference point 0p . 

Finally, using (5.23) and (5.26) the gradient matrix G′  in (5.22) is found to be [1]: 
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where F  is a ( DL × )  matrix with components which are defined in (5.26) [1]: 
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In TDOA localization systems, it is practically impossible to estimate 0t  and 

obviously TDOA measurements are used instead. Hence, 0t  is eliminated: 

 ,1
1 i

ii

ii e
c

dd
tt +

−
=− +

+  for ,1,...,2,1 −= Li  (5.29) 

where ie  is the TDOA measurement error. In matrix form (5.29) becomes: 

 ,
1

eHdHt +=
c

 (5.30) 

where e  is the vector containing the noise components and the LL ×− )1(  matrix 

H  is defined as [1]: 
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Since, it is our goal to estimate emitter location p , (5.30) is written in the form of 

(5.2): 

 Htq = , and eHdpf +=
c

1
)( . (5.32) 

Then, using (5.32) the gradient matrix G  of )(pf  is expressed as [1]: 
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pfG
ppp

c
=

∇=
=

 (5.33) 

Using (5.14) and (5.33), the estimate p̂  is found as: 

 ),()(ˆ 0111
0

c
c e

TT

e

TT Hd
HtNHFHFNHFpp −+= −−−  (5.34) 

where 0d  is the vector d  in (5.20) which is constructed using the reference point 

0p . 

In (5.34), eN  is the covariance matrix of the TDOA measurement errors. If the 

TDOA values are calculated by subtracting the TOA values using (5.29), then ie  is 

found as: 

 ,1+−= iii nne  for 1,...,2,1 −= Li . (5.35) 

Moreover, expressing (5.35) in matrix form yields: 

 Hne = , (5.36) 
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Hence, 
eN  is found as [1]: 

 T

e HNHN = . (5.37) 

Finally, if (5.37) is taken into account, then covariance of p̂  in the case TDOA 

measurements is given as: 

 .)()ˆvar( 112 −−= HFNHFp e

TT
c  (5.38) 

The expressions (5.34) and (5.38) are the location estimator and its covariance 

respectively. In fact, (5.34) is TDOA measurement form of (5.15). However, 

equation (5.34) covers only one set of TDOA. It can be improved to process more 

than one set of TDOA measurements. This operation will increase the immunity of 

the filter against noise. 

5.3 Fusion of TDOA Measurements 

Suppose that, there are k  set of TDOA measurements. Let us define the following 

matrices: 

 
iH , 

iF , i

0d , 
it  and 

iN  for ki ,...,2,1= . (5.39) 

The matrices in (5.39) are in the form of those defined in Section 5.2 (previous 

section), for the th
i  TDOA measurement. 

Using definitions in (5.39), we define the global matrix expressions as follows: 
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 (5.40) 

where superscript G  stands for global. In fact, fusion of different set of TDOA 

measurements is completed with the definition of (5.40). Remaining matter is only 

to draw the usage of (5.40), which is indeed defined in (5.34).  

Modifying (5.34), the fusion of different TDOA sets can be accomplished by: 
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Similar to (5.38), the covariance of (5.41) is found as: 
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Notice that, dimension of matrices grows with increasing k . This issue has the 

potential of making implementation of the estimator very difficult. Fortunately, 

recursive least squares algorithm can be used to overcome this problem. A similar 

derivation was also given in Chapter 4. In this case, only the second term on the 

right hand side of the equation (5.41) will be expressed using RLS. 

Now, express p̂  in the following way: 

 ,ˆ
0 kzpp +=  (5.43) 

where kz  is defined by: 



 

 

67 

 )()()())()((
,

01,11,

c
c

GkG

kG

k

G

k

Ge

k

TG

k

G

k

G

k

G

k

Ge

k

TG

k

G

kk

dH
tHNFHFHNFHz −= −−− . (5.44) 

We try to express 1+kz  in terms of kz  recursively in order to avoid dimension 

growth. Let us define following matrices: 
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In (5.45), if we let 0HH =G

k , then kP  becomes ( DD × ) dimensional. 

Using (5.45) 1+kz  can be written as [30]: 
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where 1+kP  is defined as [30]: 
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Expressions (5.46) and (5.47) give a solution to the dimension growth problem in 

(5.41). The initial values 1P  and 1z  are given as: 
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Notice that, updating kz  does not affect 0p  in (5.43). Dependent on the scenario, 

0p  can be updated by replacing with the calculated p̂  after gathering sufficient 

number of measurements. Then, the new kz  is constructed when the new 

measurements arrive. 

It is an important fact that the measurement fusion is developed for general case. It 

can be either used for fusing consecutive TDOA sets which are taken by a single 
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sensor group, or the same procedure can be applied to fuse the measurement sets 

from different group of sensors. There is no need for an additional process. This 

result is one of the most powerful properties of the estimator (5.34). 

5.4 Discussion 

As mentioned before, the estimator (5.14) is regarded as one of the best location 

estimators [2, 3, 10]. It has the basic advantages [1, 26]: 

1. Multiple types of measurements can be used at the same time; such as AOA, 

TDOA and/or FDOA. 

2. Multiple measurement sets can be fused easily without a need for extra 

operation. 

3. Estimation is realized by reasonable computational complexity. 

However, several practical issues have to be considered [26]: 

1. The method is iterative and requires an initial condition. 

2. Its convergence is not guaranteed.  

In summary, noting the stated problems, although the estimator in (5.14) is a 

powerful localization tool, it has to be used with caution. 

 

 

 

 

 



 

 

69 

CHAPTER 6  

 

SIMULATIONS  

In this chapter, the simulation studies of the estimators which are described in the 

previous chapters are presented. First, the recursive estimator in Chapter 4 is 

examined in detail. The simulation results are given for the cases of  maneuvering 

sensors, shifting the reference sensor and for estimating location of a moving 

source. Then, the performance of the estimator in Chapter 5 is examined with data 

fusion. Since it is capable of accumulating limited amount of data, for convenience 

this estimator will be referred as the pseudo recursive estimator for the remaining 

part of the text. Finally, performance comparison simulation results for all of the 

estimators including the post-processing, the recursive and the pseudo recursive 

types are presented.  

Other than the stated cases, by the simulation studies the effects of the following 

factors on the performance of the estimators are also examined: 

1. The sensor and the emitter geometry, 

2. The measurement noise level, 

3. The sensor location uncertainty. 
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6.1 Assumptions 

First of all, the simulations are performed for two dimensional localization for 

simplicity. Besides, the emitter is assumed to be a search radar having a rotating 

antenna with scanning period of 2 sec., 3 dB beam width of °3  and pulse repetition 

interval (PRI) of 1 msec. Since, the emitter has a rotating beam; the sensors do not 

receive pulse continuously. Consequently, the number of received pulses in each 

antenna scanning period is assumed to be 10. Measurements are constructed from 

these pulses, and then the TDOAs which are taken in the same antenna scanning 

period are averaged to result in an improved TDOA estimate. Furthermore, as 

described in equation (2.22), the TDOA measurements are constructed from the 

TOA measurements which are assumed to be corrupted by additive zero mean 

Gaussian noise with a standard deviation of TOAσ  which is adjusted according to the 

current scenario. All of the other error sources, such as the multi-path effects, the 

path loss effects or the hardware effects, are ignored.  

The geometry of the simulation scenarios are given in Figure 6.1. The figure is not 

scaled for ease in drawing.  
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Figure  6.1: The geometry of the simulation scenarios. 

In all scenarios, the distance of the emitter is about 100 km. There are 4 sensors 

which are located at four flying platforms separate from each other at a maximum 

distance of 3.5km. which permits all of the sensors stay in 3 dB beam width of the 

radar at the same time. Initial sensor locations are [ ]T011 =s , [ ]T302 =s , 

[ ]T5.123 =s  and [ ]T5.114 −−=s  km., respectively. The sensors move along the 

x-axis with a velocity of 50 meters per second for 120 seconds. Unless stated 

otherwise, sensor locations are assumed to be known perfectly. 

There are two emitters which are located at [ ]T1009  (Emitter #1) and [ ]T8065  

(Emitter #2) km. respectively. Unless it is stated otherwise, the emitter locations are 

fixed in all simulations.  
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All scenarios are simulated for 1000 Monte-Carlo runs, and the distance RMS of the 

location error is plotted.  

For the recursive estimator, the process noise standard deviation ( Vσ ) is chosen as 

cmV 30=σ  in all scenarios unless it is stated otherwise. Recall from the expression 

(4.46) that Vσ  is used to model the uncertainties only in the range and its rate of 

change. It must be chosen according to the sensor and/or the emitter dynamics. 

Some priori knowledge about these is required to determine the appropriate value of 

Vσ  which is out of the scope of this thesis. Here, it is chosen according to the 

experimental simulation results with sufficiently good performance. Any other 

value, which would give similar results, can be chosen as well. 

 

6.2 Simulation Results for the Recursive Method 

In this section, the behavior of the recursive estimator developed in Chapter 4 is 

examined through simulations that include the reference sensor shifting and the 

maneuvering sensors. In all the scenarios, the recursive estimator is initialized using 

the first 4 TDOA measurement sets. In addition, 
TOAσ  is taken as 1 nano second in 

all scenarios. 

6.2.1  

6.2.2 Non-maneuvering Sensor Movement Case 

In this scenario, performances of the original version of the recursive estimator in 

equation (4.31) and the modified version in (4.46) are compared. Remember that, 

the estimator in (4.46) is immune to sensor maneuvers. The simulation results for 

Emitter #1 and #2 are plotted in Figure 6.2 and Figure 6.3 respectively; 
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Figure  6.2: The RMS location error for non manoeuvring case for Emitter #1. 

In this scenario, the sensors do not have any maneuver. In such a case, there is no 

significant difference in the estimators’ performance. Clearly, examining Figure 6.2 

and Figure 6.3, it can be stated that original and modified versions have almost 

identical performance. Notice that, the average RMS error is larger in Figure 6.3. 

This increase in error is due to the unfavorable geometry of the sensors relative to 

the emitter. 
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Figure  6.3: The RMS location error for non-manoeuvring case for Emitter #2. 

 

6.2.3 Maneuvering Sensor Case 

In this scenario, the sensors move with a velocity of 50 meters per second in x 

direction for the first 120 seconds, and then they turn backwards and move with the 

same velocity in negative x direction for another 120 seconds. Under this scenario, 

RMS location errors of the original and the modified versions of the estimator are 

plotted in Figure 6.4 and Figure 6.5. 
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Figure  6.4: The RMS location error for the manoeuvring case for Emitter #1. 

For the maneuvering case, the RMS location error performance of the modified 

estimator is similar to non-maneuvering case. On the other hand, there occurs a 

dramatic increase in the RMS location error of the original version of the estimator 

when the sensors are maneuvering. Along with the effect of the sensor-emitter 

geometry, this performance degradation becomes more severe as shown in Figure 

6.5. As a result, it is obvious that, the original version of the recursive estimator can 

not be used when the sensors are maneuvering which is unacceptable in practice.  
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Figure  6.5: The RMS location error for manoeuvring sensor case for Emitter #2. 

 

6.2.4 Reference Sensor Shifting 

In this subsection, the effect of the reference sensor shifting is studied on the 

localization performance. For this purpose, assume that there are two groups of 

sensors. The first group’s initial sensor locations are [ ]T011
1 =s , [ ]T301

2 =s , 

[ ]T5.121
3 =s  and [ ]T5.111

4 −−=s  km.,  and the second group’s initial locations 

are [ ]T0102
1 =s , [ ]T182

2 =s , [ ]T5.092
3 −=s  and [ ]T5.1112

4 −=s  km., 

respectively, where the superscript indicates the sensor group number. The two 

sensor groups both have a velocity of 50 meters per second in the positive x 
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direction. Suppose that the sensors from different groups can not receive the same 

pulse at the same time and the reference sensor shifting mechanism, which is 

described in Section 4.3.3, is used in order to improve the localization performance. 

The scenario steps of the reference sensor shifting simulation are described below: 

A. Initialization: 

1. One of the sensor groups performs the first location estimation. There is no 

past measurement or priori location estimate at this step. Suppose that first 

sensor group receives a pulse and estimates the location. Let the sensor 

group indices be 1=i  and 2=j . 

B. Reference Sensor Shifting: Recall the assumption that the sensors from different 

groups can not receive the same pulse.  

2. At this step, the th
j  sensor group receives a pulse and is able to construct a 

TDOA measurement set while the thi  sensor group can not receive the pulse. 

3. The th
j  sensor group performs the reference sensor shifting as described in 

Section 4.3.3 and updates the location estimate using the measured TDOA 

set. 

4. The sensor group indices are swapped at this step. For example, j  becomes 

1 and i  becomes 2 for the values given in the step 1. Then, the scenario 

continues with the step 2. 

 In Figure 6.6 and Figure 6.7, the results of this scenario are plotted. 
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Figure  6.6: The RMS location error with the Reference Sensor Shifting for Emitter 

#1. 

Notice that, in non reference sensor shifting case, only the first sensor group is 

performing localization. Examining Figures 6.6 and 6.7, it can be figured out that; 

the reference sensor shifting results in notable performance increase. Of course, this 

situation is a result of the fusion of the measurements which are taken from more 

than one group of sensors. The fusion of measurements brings more information 

about the location of the emitter. 



 

 

79 

 

Figure  6.7: The RMS location error with the Reference Sensor Shifting for Emitter 

#2. 

 

6.2.5 Estimating the Track of a Moving Emitter 

In this subsection, the performance of the estimator in Section 4.3.2 is studied. 

Track estimation of a moving emitter with constant velocity is simulated for 

different velocity values and the results are plotted. The simulation studies are 

performed for the emitter velocities of [ ]040− , [ ]020− , [ ]030 , [ ]060 , 

[ ]090 , [ ]300 , [ ]500 , [ ]300 −  m/sec. respectively where [ ]
yx vv  denote the 

emitter’s velocity vector in x and y directions. In addition the sensor velocities are 

chosen as [ ]050  m/sec.  
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Furthermore, filter parameter 'Q  (defined in Section 4.3.2) is chosen as: 

 


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900
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009
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Note that, (6.1) is dependent on the dynamics of the sensors and the emitter. Here, it 

was chosen according to the experimental simulation results.  

 

Figure  6.8: The track estimation of a moving source for Emitter #1. 

Examining Figures 6.8 and 6.9, it can be stated that the estimator is in general 

capable of estimating the track of a moving emitter. On the other hand, the error 

performance is low compared to the estimating fixed location. Moreover, the 
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localization error grows when the relative velocity between the emitter and the 

sensors is high. Including the effects of the relative sensor geometry, the location 

error is considerable high in the beginning of the scenario which is shown in Figure 

6.9. Fortunately, the location error decreases and reaches reasonable levels after 

sufficiently many measurements are processed. Remember that the method is only a 

basic solution of the estimating the track of a moving source. For example, FDOA 

measurements can be used to achieve better results, since they carry information 

about the velocity of the emitter which is unobservable by TDOA measurements. 

Furthermore, the performance of the method can probably be improved by using 

different tracking filters which can be found in the tracking literature [30, 31, 37]. 
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Figure  6.9: The track estimation of a moving source for Emitter #2. 

 

6.3 Simulation Results for the Pseudo Recursive Estimator 

In this section, the simulation results of the pseudo recursive method in Chapter 5 

are presented. Performances of the original method and the measurement fusion 

integrated version are compared. In other words, the effect of data accumulation is 

studied. As in Section 6.2, 
TOAσ  is taken as 1 nano second.  

In practice, the initial point of the iteration can be found by using a closed form 

estimator which will probably result in many different initial points. This will 

mislead the results. On the other hand, in order to realize a controlled experiment, 
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the initial point is given a constant value of [ ]Tee yx 40004000 ++  m., where 

[ ]Tee yx  is the true coordinates of the emitter. 

The simulations are performed for no fusion, fusion of 5, 10 and 20 measurements 

cases, respectively. 

The results are plotted in Figures 6.10 and 6.11; 

 

Figure  6.10: The simulation results for Emitter #1. 

Localization performance increases when more number of measurements are fused, 

while, convergence is delayed at the same time. The localization performance is 

better for Emitter #1. Notice that in Figure 6.10, for the no fusion measurement 
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case, which is the most vulnerable one to noise, the estimator tends to diverge from 

the true location. This is because of the iterative approach of the estimator; 

convergence is not guaranteed [26]. On the contrary, the measurement fusion makes 

the estimation process more robust to noise; which can be seen in Figures 6.11 and 

6.12. 

 

 

Figure  6.11: The simulation results for Emitter #2. 

Although the no measurement fusion case tends to diverge for Emitter #1, it is in 

convergence behavior for Emitter #2; despite the overall location error is larger. 

This behavior arises from the different changes of the relative geometry between the 

sensors and the emitter. 
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In practice, convergence delay is probably desired to be avoided. For this purpose, 

one can use a method with no fusion for a short interval, and then switch to the 

measurement fusion operation. The same scenario is simulated to demonstrate the 

use of this approach, first 5 measurements are processed without fusion to get a 

faster convergence, and after that the fusion process is activated. The results are 

given in Figures 6.12 and 6.13. 

 

Figure  6.12: Convergence delay avoidance study for Emitter #1. 

From Figures 6.13 and 6.14, it can be seen that the proposed procedure brings 

shorter convergence times.  
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Figure  6.13: Convergence delay avoidance study for Emitter #2. 

 

6.4 Comparative Simulations 

In this section, comparative simulation results on the post processing, the recursive 

and the pseudo recursive estimators are presented for the fixed emitter localization. 

The simulations are performed under the two cases of (1) the increasing TOA noise 

with no sensor location error and (2) the increasing sensor location error with 

constant TOA noise. Remember that, the post processing method requires location 

estimates to fuse. In this sense, the closed form estimator in [2] is used (The 

derivation of the used closed form method is given in Appendix A). The appropriate 

Cramer Rao Lower Bound, mentioned in Section 4.4 and 4.5 is also calculated for 

each time step. The square root of the sum of the first two diagonal elements of the 
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CRLB is plotted. Note that, the first two elements are related to the coordinates of 

the emitter. 

The RMS of the location error is plotted for the estimators for each case. In the 

pseudo recursive estimator, the fusion of 20 measurements is used. 

6.4.1 Case 1: Increasing the TOA Noise with No Sensor Location 

Uncertainty 

In this simulation scenario, the TOA measurements are corrupted with independent 

and identically distributed zero mean Gaussian noise with TOAσ  standard deviation. 

Then, using these TOA measurements, the TDOA sets are constructed. 
TOAσ  is 

selected as 1, 5 and 10 nano seconds, respectively. 

For 1 nano second standard deviation in TOA measurements, results are drawn in 

Figures 6.14 and 6.15, in order to emphasize RMS location error more clearly. 
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Figure  6.14: Simulation results with 1 nsec standard deviation for Emitter #1.  

Notice that, the location RMS of the post processing and recursive methods are very 

close to the CRLB (The post processing method has greater performance for 

Emitter #2 in the beginning of the scenario). Clearly, the post processing and the 

recursive methods have both better performances than the pseudo recursive method. 
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Figure  6.15: Simulation results with 1 nsec standard deviation for Emitter #2. 

The results for 5 and 10 nsec TOA noise standard deviations cases are shown in 

Figures 6.16 and 6.17 for Emitter #1 and #2, respectively. 

The pseudo recursive method has diverged for 5 and 10 nsec TOA noise standard 

deviations for both of the emitters. Moreover, nearly half of the simulation runs 

have diverged for 10 nsec noise standard deviation. 
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Figure  6.16: Simulation results with 5 and 10 nsec TOA noise standard deviation 

for Emitter #1. 

Examining Figures 6.14, 6.15, 6.16 and 6.17, it can be seen that the difference 

between the CRLB and the simulated methods becomes more distinguishable when 

the noise variance increases. Notice that, although the post processing method has 

better performance for 1 nsec noise standard deviation, the recursive method 

becomes superior with higher the noise levels. From this point of view, it can be 

stated that, data or measurement accumulation results in more immunity to noise. 
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Figure  6.17: Simulation results with 5 and 10 nsec TOA noise standard deviation 

for Emitter #2. 

The results for the last time step of 120 seconds are given in Table 1, 
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Table 1: Simulation results for the last time step of 120 seconds. 

 

  
RMS Location Error (m) 

for Emitter #1 

RMS Location Error (m) 

for Emitter #2  

TOA 

noise Std. 

Dev. 

σ =1 ns σ =5 ns 
σ =10 

ns 
σ =1 ns σ =5 ns 

σ =10 

ns 

Pseudo 

Recursive 
169 874 1703 202 1023 2046 

Recursive 33 176 359 46 229 484 

Post 

Processing 
32 185 483 43 365 4654 

CRLB 32 160 319 41 206 413 

 

6.4.2 Case 2: Increasing Sensor Location Error with Constant TOA 

Noise Level 

In this subsection, the effects of the sensor location uncertainty are studied. The 

simulations are performed for the different sensor location noise levels while the 

TOA noise standard deviation is constant.  
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x  and y  components of the sensor locations are assumed to be corrupted by 

additive independent identically distributed zero mean Gaussian noise. Moreover, 

the sensor location noise is assumed to be i.i.d. for the different time instances. In 

the simulations, sensor location noise standard deviations of 0.1, 0.75 and 1.5 m are 

used, respectively. The TOA noise standard deviation is chosen as 1 nsec. The 

CRLB is also plotted. 

The results for the sensor location noise standard deviation of 0.1 m. are given in 

Figures 6.18 and 6.19 for emitters #1 and #2, respectively. 

 

Figure  6.18: RMS Location Error with sensor location uncertainty of standard 

deviation 0.1 m. for Emitter #1. 
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Figure  6.19: RMS Location Error with sensor location uncertainty of standard 

deviation 0.1 m. for Emitter #2. 

Figures 6.20 and 6.21 show the results for the sensor location noise standard 

deviations of 0.75 and 1.5 m. for emitters #1 and #2, respectively. 
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Figure  6.20: RMS Location Error with sensor location uncertainty of standard 

deviations 0.75 and 1.5 m. for Emitter #1. 

From Figures 6.20 and 6.21, it is clear that there is a dramatic performance 

degradation with increasing sensor location uncertainty. On the other hand, the 

recursive method again becomes superior with high noise levels. Meanwhile, there 

is a slight difference, which is not distinguishable in the figures, between the 

Cramer Rao Lower Bounds for the standard deviations of 0.75 and 1.5 m for both 

emitters #1 and #2. 

Robustness of the recursive method to the sensor location uncertainties comes from 

data accumulation. Since the data accumulation is not used in the closed form 

estimator which is used prior to the post processing method, it becomes more 
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sensitive to noise. As a result, degradation in performance occurs for post the 

processing method. 

It must be emphasized that the purpose of the simulations for the post processing 

method is to show its capability to improve accuracy of the location estimates. 

Performance of the post processing method is directly related and dependent on the 

prior location estimator which supplies the location estimates to be fused. Besides, 

the post processing method is proven to be able to improve accuracy of the location 

estimate as long as there are successive location estimates to be fused.  

Combining the results, it can be stated that similar to measurement noise case, 

recursion procedure again provides a certain level of immunity to the sensor 

location noise. 
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Figure  6.21: RMS Location Error with sensor location uncertainty of standard 

deviations 0.75 and 1.5 m. for Emitter #2. 

The results for the last time step of 120 seconds are given in Table 2, 
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Table 2: Simulation results for the last time step of 120 seconds. 

 

  
RMS Location Error (m) 

for Emitter #1 

RMS Location Error (m) 

for Emitter #2 

Sensor 

location 

Std. Dev. 

σ = 0.1 

m 

σ = 

0.75 m 

σ = 1.5 

m 

σ = 0.1 

m 

σ = 

0.75 m 

σ = 1.5 

m 

Pseudo 

Recursive 
247 1378 2705 300 1681 3316 

Recursive 49 261 579 61.2 357 853 

Post 

Processing 
47 342 1099 66 1535 17060 

CRLB 32.3 33.3 35.2 41.7 42.6 44 

 

6.4.3 Case 3: Biased Sensor Location Error 

In this subsection, the effects of the biased sensor location errors on the TDOA 

localization are studied. The simulations are performed under different sensor 

location error bias levels with a constant TOA noise standard deviation of 1 nsec. 

The independent noise components of the sensor location errors are assumed to be 

non-existent for simplicity. 
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x and y components of the locations of the sensors are affected by the same amount 

of bias. The bias levels of the sensor locations are chosen as 5, 20 and 50 m., 

respectively. The results are plotted in the figures 6.22 and 6.23. 

 

Figure  6.22: The simulation results for biased sensor locations for Emitter #1. 

Examining the figures 6.22 and 6.23, the bias levels of 5 and 20 m. result tolerable 

error levels on the location estimate. On the other hand, the errors caused by the 

bias level of 50 m. are more distinguishable, yet they can also be regarded as 

tolerable.  
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Comparing the results of the simulations of the biased and the independent sensor 

location errors (see Section 6.4.2), it can be stated that the bias on the sensor 

locations is a minor error source on the TDOA localization. 

 

Figure  6.23: The simulation results for biased sensor locations for Emitter #2. 

 

6.5 Discussion 

First of all, the recursive method in Chapter 4 was examined. It was seen to provide 

sufficient emitter localization accuracy when the sensors are maneuvering. 

Furthermore, the reference sensor shifting mechanism was also seen to improve the 

accuracy of the estimate considerably. It was observed that, the recursive method 

approaches the CRLB for low noise levels. The track estimation of a moving source 
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is also simulated. Examining the results, for the moving emitter case, there is some 

degradation in the localization accuracy compared to the estimating fixed location. 

There are two main causes of this problem: (1) The data accumulation is not so 

effective compared to the fixed location case, since there is not much data about an 

individual state of the emitter’s location (because it is moving). (2) The velocity of 

the emitter is unobservable with using only the TDOA measurements. FDOA 

measurements can be used along with the TDOA to overcome this issue and yield 

more accurate location estimates. 

Examining the simulation results, the measurement accumulation procedure for the 

pseudo recursive method is also proved to improve the accuracy of the estimates. 

However, it must be noted that the pseudo recursive method has divergence 

problems dependent on the conditions of measurement noise, the sensor location 

uncertainty and the geometry. 

The post processing method is seen to accomplish its mission; improving the 

accuracy of the estimates. On the other hand, the accuracy of the post processing 

estimator is highly dependent on the accuracy of the prior location estimator. 

The performance comparative simulation studies for all of the three methods have 

also been presented. From the simulation results, it is seen that the accuracy of the 

estimation is highly dependent on the measurement noise, the independent sensor 

location errors and the relative geometry between the sensors and the emitter. The 

bias on the sensor locations is also an error source, but it is a minor one. Note that, 

the recursive method generally has better performance than the others. It is also 

shown that the recursion structure provides a certain level of immunity to noise both 

in the measurements and the sensor locations. 
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CHAPTER 7  

 

SUMMARY AND CONCLUSIONS 

In this thesis, robust and recursive solutions have been developed for the emitter 

localization problem by the use of TDOA measurements provided by groups of 

moving sensors. In this context, a post processing estimator and a recursive 

estimator were developed. Maximum likelihood approach of the emitter localization 

has also been explored. 

The structure of the recursive estimator is based on 

i. A basic localization algorithm to start with, 

ii. Developing an algorithm which updates the location estimate as a new set 

of measurements is made. 

We have used the simple closed form solution (equation (4.11)) and the multi-pulse 

closed form solution (equation (4.21)) as the basic localization algorithms and 

developed a recursive update method as given in equation (4.46). Note that, the 

estimator processes directly the TDOA measurements. The simulation results show 

that the method yields a performance very near to the CRLB. However, as the 

inaccuracy of the measurements or the sensor locations become bigger, the 

estimation error becomes quite larger than the CRLB, especially in the initial 

periods of the recursion. It is thought that the sufficiently large amount of data is not 

yet accumulated in the initial periods, resulting in considerable estimation errors. It 
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is also observed that the recursive estimator suffers from bias problem, it is thought 

that the bias is caused by the square operation on the measurements (see equation 

(4.7)) and using an approximate model in the range and its rate of change (see 

equation (4.41)). The recursive estimator also has been extended to estimate the 

track of a moving source. On the other hand, there occurs performance degradation 

when the emitter is moving. This problem has two main causes:  

1. Sufficient amount of data of an individual state of the emitter can not be 

accumulated, since the emitter is moving, 

2. The velocity of the emitter is unobservable using only the TDOA. 

A heuristic reference sensor shifting mechanism is also proposed to the recursive 

estimator, and it is observed to improve the accuracy of the location estimates by 

simulation results. Finally, by comparative simulation results, the recursive 

estimator has performed better in general, and the recursion structure provides a 

certain level of immunity to noise both in the measurements and the sensor 

locations. 

A post-processing estimator has also been presented. The method does not process 

the TDOA measurements, instead smoothes the location estimates. First, it is given 

in closed-form, and then implemented recursively. By simulation results, the post 

processing estimator is seen to improve the accuracy of the location estimate.  

Maximum likelihood approach of the emitter localization problem by passive 

sensors has also been explored. Because of the nonlinear structure of the problem, 

the maximum likelihood solution can not be expressed in a closed-form. The 

solution requires Taylor Series expansion about an initial point, and hence becomes 

iterative. A data accumulation method is proposed, and by simulation results it is 

shown to perform quite well. On the other hand, because of being a local correction 

procedure, divergence may occur. 
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The Cramer Rao Lower Bound of the emitter localization by using multiple TDOA 

measurement sets is also derived for the measurement noise and the erroneous 

sensor locations, and it was compared with the performance of the stated 

algorithms.  

As future work, 

• The recursive estimator can be extended to use FDOA and/or AOA along 

with TDOA to improve the accuracy, 

• Target tracking algorithms such as IMM or MHT can be used to improve 

performance of the recursive estimator for estimating the track of a moving 

source, 

• Bias compensation methods can be investigated to have better location 

estimates by the recursive estimator, 

• Sensor placement strategies can be studied to avoid degrading effects of 

relative geometry between the emitter and the sensors. 
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APPENDIX A  

 

A CLOSED FORM ESTIMATOR 

In [2], a closed form estimator for TDOA localization problem has been proposed. 

It is stated in [1] that; the proposed solution is an approximate realization of the 

maximum likelihood estimator. For small TDOA errors, it is shown that the 

estimator approaches the CRLB [1]. The closed form estimator [1] is summarized 

here for large range-to-baseline ratios and the two dimensional localization. 

The derivation begins with a priori location estimate 
az , which is given by: 
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where h  and 
aG  are defined as: 
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where the position vector of the th
i  sensor is denoted by [ ]Tiiii zyx=s  for 

Li ,,3,2,1 K= , ijr ,  is the RDOA measurement between the th
i  and the th

j  sensors 

respectively.  N  is the RDOA measurement covariance matrix. 

Using az , the posteriori location estimate '
az  is calculated: 
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where the quantities in (A-3) are: 
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where ia,z  denotes the th
i  component. 

Then using A-3, the final location estimate pz  is given by: 
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where [ ]Tyx 11  denotes the location of the reference sensor and the sqrt() operator 

stands for  the element wise square root operation. The value of pz , which lies in 

the region of interest, is selected as the solution. 

In addition, the covariance of pz  is given as: 
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where 0
aG  is the aG  matrix which is constructed using the noise free RDOAs. "B  

and B  are given as: 
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where [ ]Tyx
00  denotes the true position of the emitter and 0

il  is the true distance 

between the th
i  sensor and the emitter. 
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Note that, the expressions in the covariance of the estimator require the knowledge 

of the emitter’s true location. In practice, the estimated location of the emitter can 

be used to calculate the covariance. As a result, the calculated covariance becomes 

an estimate of the true variance itself. 
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APPENDIX B 

  

THE COVARIANCE OF THE POST PROCESSING 

ESTIMATOR 

In the following, the expected value and the covariance of (3.12) is evaluated. 

Using (3.12), the expected value of the estimate is found to be: 
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Since, the expected value of the estimator is equal to p  itself, (3.12) is an unbiased 

estimator. 

The covariance of the estimate in (3.12) can be calculated in the following way. 

Using (3.1), (3.12) can be expressed as: 
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Define η  as: 
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Since, summation with a constant does not affect statistical characteristics, the first 

term on the right hand side in (B.2) can be omitted. As a result, covariance of MLp  

is equal to covariance of η . Expected value of η  is found as: 
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Then, covariance of η  is equal to: 
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Since in  are assumed to be (i.i.d) for Ki ,,2,1,0 K= , cross terms are equal to zero 

when ji ≠  in (B-5). Hence: 
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Using (B-6), covariance of (3.12) is found as: 
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