

PERFORMANCE OF PARALLEL DECODABLE TURBO AND REPEAT
ACCUMULATE CODES IMPLEMENTED ON AN FPGA PLATFORM

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ENES ERḊIN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2009

Approval of the thesis:

PERFORMANCE OF PARALLEL DECODABLE TURBO AND REPEAT

ACCUMULATE CODES IMPLEMENTED ON AN FPGA PLATFORM

submitted byENES ERDİN in partial fulfillment of the requirements for the degree of
Master of Science in Electrical and Electronics Engineering Department, Middle
East Technical Universityby,

Prof. Dr. Canan̈OZGEN
Dean, Graduate School ofNatural and Applied Sciences

Prof. Dr. İsmet ERKMEN
Head of Department,Electrical and Electronics Engineering

Assoc. Prof. Dr. AliÖzg̈ur Yılmaz
Supervisor,Electrical and Electronics Engineering
Department, METU

Examining Committee Members:

Prof. Dr. Yalçın TANIK
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. AliÖzg̈ur YILMAZ
Electrical and Electronics Engineering Dept., METU

Asst. Prof. Dr. Behzat A. ŞAḢIN
Electrical and Electronics Engineering Dept., METU

Asst. Prof. Dr. Çăgatay CANDAN
Electrical and Electronics Engineering Dept., METU

Güzin KURNAZ, Ph.D.
Digital Design Engineer, T̈UBİTAK-SAGE

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: ENES ERDİN

Signature :

iii

ABSTRACT

PERFORMANCE OF PARALLEL DECODABLE TURBO AND REPEAT
ACCUMULATE CODES IMPLEMENTED ON AN FPGA PLATFORM

Erdin, Enes

M.S., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. AlïOzg̈ur Yılmaz

September 2009, 75 pages

In this thesis, we discuss the implementation of a low latency decoding algorithm

for turbo codes and repeat accumulate codes and compare the implementation results

in terms of maximum available clock speed, resource consumption, error correction

performance, and the data (information bit) rate. In order to decrease the latency a

parallelized decoder structure is introduced for these mentioned codes and the results

are obtained by implementing the decoders on a field programmable gate array. The

memory collision problem is avoided by using collision-free interleavers. Through

a proposed quantization scheme and normalization approximations, computational

issues are handled for overcoming the overflow and underflow issues in a fixed point

arithmetic. Also, the effect of different implementation styles are observed.

Keywords: Repeat-Accumulate Codes, Turbo Codes, Parallel Decoder, FPGA, Xil-

inx

iv

ÖZ

PARALELLEŞṪIRİLM İŞ TURBO VE TEKRARLA-ḂIRİKT İR KODLARININ
FPGA PLATFORMUÜZEṘINDE GERÇEKLENMEṠI VE BAŞARIMI

Erdin, Enes

Yüksek Lisans, Elektrik-Elektronik M̈uhendislĭgi Bölümü

Tez Yöneticisi : Doç. Dr. AliÖzg̈ur YILMAZ

Eylül 2009, 75 sayfa

Bu tezde turbo kodlar ve tekrarla-biriktir kodları için düş̈uk gecikmeli bir kod ç̈ozme

algoritmasının donanımsal tasarımı ve tasarım sonuçlarının saat hızı, kaynak tüketimi,

hata d̈uzeltme yetenĕgi ve veri hızı açısından incelmesi gerçekleştirilmiştir. Çözücüdeki

gecikmeyi azaltmak için paralelleştirilmiş çözücü mimarisiönerilmiş ve bahsi geçen

kodlar için sonuçlar, alan programlanabilir kapılar dizisinde (FPGA) incelenmiştir.

Hafıza çakışma problemi, çakışmasız karıştırıcılarkullanılarakönlenmiştir. Ayrıca

önerilen nicemleme ve düzgeleme yaklaşımlarıyla sabit noktalı hesaplamalarda oluşabilecek

alttaşma vëusttaşma sorunları da çözülmüşẗur.

Anahtar Kelimeler: Tekrarla biriktir kodlar, Turbo kodlar, Paralleştirilmiş Ç̈ozücü,

FPGA, Xilinx

v

To My Family,
To My Wife

vi

ACKNOWLEDGEMENTS

I am most thankful to my supervisor Assoc. Prof. Dr. AliÖzg̈ur Yılmaz for sharing

his invaluable ideas and experiences on the subject of my thesis. I learnt too much

from his innovative ideas. I feel myself privileged to have had him as a mentor.

I would like to extend my thanks to all lecturers at the Department of Electrical and

Electronics Engineering, who greatly helped me to store thebasic knowledge onto

which I have built my thesis.

I want to thank to Çăglar Kılcıoğlu who was a good friend in the laboratory. He had

done great job in writing our paper.

I would like to thank to Onur Dizdar for his patience in debugging the testbed envi-

ronment which took many hours of him.

I am very grateful to T̈UBİTAK-SAGE for providing tools and other facilities through-

out the production of my thesis.

I would like to forward my appreciation to all my friends and colleagues who con-

tributed to my thesis with their continuous encouragement.

I would like to express my deep gratitude to my family, who hasalways provided me

with constant support and help.

Special thanks to my wife for all her help and showing great patience during my

thesis.

vii

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . v

DEDICATON . vi

ACKNOWLEDGEMENTS . vii

TABLE OF CONTENTS . viii

LIST OF TABLES . xi

LIST OF FIGURES . xii

CHAPTERS

1 INTRODUCTION . 1

2 TURBO CONCEPT . 3

2.1 TURBO CODES . 5

2.1.1 Turbo Code Encoder Structure 5

2.1.2 Convolutional Encoding 6

2.1.3 Interleaving . 8

2.1.4 Turbo Code Decoder Structure 8

2.2 TURBO-LIKE CODES . 10

2.2.1 Low Density Parity Check Codes 10

2.2.2 Repeat Accumulate Codes 11

2.2.3 Repeat Accumulate Code Encoder Structure 11

2.2.4 Repeat Accumulate Code Decoder Structure 13

3 TESTBED SETUP . 16

3.1 ML-402 FPGA Evaluation Board 16

3.2 Software Used For Debugging and Implementation 20

viii

3.2.1 Xilinx ISE and XST 20

3.2.2 Implementation steps of an ISE project 21

3.2.2.1 Synthesis 21

3.2.2.2 Translate Process 21

3.2.2.3 Mapping Process 22

3.2.2.4 Place and Route Process 22

3.2.3 BitGen . 23

3.2.4 ChipScope Analyzer 23

3.2.5 MATLAB . 23

3.2.6 MODELSIM . 24

3.3 Overall System Setup . 26

3.3.1 System . 26

3.3.2 LFSR Noise Generator 27

3.3.3 Error Counter . 33

3.3.4 UART Module 33

4 IMPLEMENTATION ISSUES . 36

4.1 Channel Model . 36

4.2 BCJR Decoder . 37

4.3 FPGA Implementation of BCJR Decoder 41

4.3.1 Center to Top Algorithm 42

4.3.2 Observation Quantization 42

4.3.3 Addition and Subtraction Operations 46

4.3.4 Node (α, β) Metric Normalization 48

4.3.5 max∗ Approximation 49

4.4 Memory Collision Free Interleavers 50

4.5 Encoder/Decoder Design of Parallel Decodable Turbo Codes 53

4.5.1 Encoder Design 53

4.5.2 Decoder Design 54

4.6 Encoder/Decoder Design of Parallel Decodable Repeat Ac-
cumulate Codes . 56

ix

4.6.1 Encoder Design 56

4.6.2 Decoder Design 56

5 RESULTS FOR THE PERFORMANCE OF PARALLEL DECODERS 58

5.1 Implementation Results . 58

5.2 Simulation Results . 60

5.2.1 Bit Size (K) Selection 60

5.2.2 NormMaxSelection 61

5.2.3 Interleaver Size 64

5.2.4 Memory Complexity 67

5.2.4.1 PDTC memory structure 67

5.2.4.2 PDRAC memory structure 68

5.2.5 Transmission Bit Rate 68

6 CONCLUSIONS . 71

REFERENCES . 74

x

LIST OF TABLES

TABLES

Table 2.1 Rate, Threshold and Shannon threshold comparison for RA codes

[12] . 14

Table 3.1 Some LFSR generator polynomials with varying sizeof shift registers. 29

Table 3.2 The registers and their meaning in the design of theUART transmitter. 34

Table 3.3 The registers and their meaning in the design of theUART transmitter. 35

Table 4.1 Xilinx ISE synthesis report for parallel turbo encoder 54

Table 4.2 Xilinx ISE synthesis report for parallel turbo encoder 56

Table 5.1 Implementation results for PDTC decoder using log-MAP decoders 59

Table 5.2 Implementation results for PDTC decoder using max-log-MAP de-

coders . 59

Table 5.3 Implementation results for PDRAC decoder using log-MAP decoders 60

Table 5.4 Another approach to PDTC decoder implementation :Implementa-

tion results for PDTC decoder using log-MAP decoders [2] 60

Table 5.5 Another approach to PDTC decoder implementation :Implementa-

tion results for PDTC decoder using max-log-MAP decoders [2] 60

Table 5.6 Performance comparison of the proposed decoder structures 67

Table 5.7 Comparison of the proposed decoder structures 69

xi

LIST OF FIGURES

FIGURES

Figure 2.1 Encoder Structure of a Turbo Code 5

Figure 2.2 Parallelized Turbo Code Encoder Structure 6

Figure 2.3 A Rate 1/2 Convolutional Encoder 6

Figure 2.4 The FSM representation of the convolutional encoder shown in

Figure 2.3 each bit arrival(I) contributes to a state transition and reveals

two output bits (O) which are shown inI/OO format [9] 7

Figure 2.5 Trellis description of a convolutional encoder.The initial and the

final states are the all-zero state [9] 7

Figure 2.6 Turbo Decoder . 9

Figure 2.7 Parallelized Architecture for turbo code decoder 10

Figure 2.8 Repeat Accumulate code encoder 11

Figure 2.9 State transition and trellis diagram of the accumulator 12

Figure 2.10 Parallelized Repeat Accumulate Encoder 13

Figure 2.11 Iterative RA Code Decoder with APP algorithm 14

Figure 2.12 Parallelized Repeat Accumulate Decoder 15

Figure 3.1 The structure of a CLB in a Xilinx FPGA 17

Figure 3.2 The effect of dividing logic with flip-flops, pipelining 18

Figure 3.3 ML402 board used in the study 19

Figure 3.4 A generalized system model for testing the decoders 26

Figure 3.5 An LFSR with seed 0101100011001101 28

Figure 3.6 The 16th,14th,13th,10th bit are added and the result is forwarded to

the beginning of the register . 28

xii

Figure 3.7 With a clock trig the found result is registered asthe first bit of the

register, the content of the register is shifted once towards right 28

Figure 3.8 Normally distributed noise generation by LFSR 29

Figure 3.9 The hystogram of a pseudo-random Gaussian noise generator ob-

tained by collection of 10000 samples 31

Figure 3.10 A histogram of a noise sequence generated by MATLAB’s randn

function . 32

Figure 3.11 The bit alignment in a UART transmission 33

Figure 4.1 A general block diagram of a communication system. 36

Figure 4.2 Forward recursion in calculation ofα∗l+1(s) 40

Figure 4.3 Backward recursion in calculation ofβ∗l (s
′) 41

Figure 4.4 α andβ values are initialized initially at time 0 43

Figure 4.5 α andβ values are computed independently and in a recursive manner43

Figure 4.6 α andβ values first meet at time 10 and at this time all information

for computing the first LL values are ready 44

Figure 4.7 An illustration of how a memory collision may happen in an en-

coding process . 51

Figure 4.8 RCS-random interleaver is a good approach for memory collision

freee interleaver design including the good properties of S-random inter-

leavers [9]. 52

Figure 4.9 The interleaver operation taking place in the FPGA. Each address

request is decoded, the requested RAM and the corresponding location is

found and the requested data is forwarded to the demanding encoder. . . . 53

Figure 5.1 SNR vs BER for log-MAP based turbo decoder. 4 iterations for

2000 frames of 160 bits through 4 parallel MAP decoders. 61

Figure 5.2 SNR vs BER for max-log-MAP based turbo decoder. 4 iterations

for 2000 frames of 160 bits through 4 parallel MAP decoders. 62

Figure 5.3 SNR vs BER for PDRAC decoder. 8 iterations for 2000 frames of

160 bits through 4 parallel MAP decoders. 62

xiii

Figure 5.4 NormMaxvalues for log-MAP turbo code decoder for different

bit representations. The average of 6000 packets of 160 databits with 4

parallel decoders. 63

Figure 5.5 NormMaxvalues for max-log-MAP turbo code decoder for differ-

ent bit representations. The average of 6000 packets of 160 data bits with

4 parallel decoders. 63

Figure 5.6 NormMaxvalues for repeat accumulate codes for different bit rep-

resentations. The average of 6000 packets of 160 data bits with 4 parallel

decoders. 64

Figure 5.7 SNR vs BER for RA with 4 parallel sub-decoders decoding 1344

bits in total with 8 iterations. .65

Figure 5.8 SNR vs BER for turbo decoder with 4 parallel max-log-MAP de-

coders decoding 1344 bits in total with 4 iterations. 65

Figure 5.9 SNR vs BER for turbo decoder with 4 parallel log-MAPdecoders

decoding 1344 bits in total with 4 iterations. 66

xiv

CHAPTER 1

INTRODUCTION

In wireless communication systems channel coding is one of the most important tools.

By the help of strong channel codes the quality in communication can be highly

improved. By recent developments and improvements in communication systems

technology, reliable and high speed data transfer became animportant issue. From

satellite communications to wireless local area networks(WLAN), large bandwidth

and high speed transfers with a minimum error probability are desired.

Since Shannon determined the maximum achievable rates for AWGN channels,

many studies in channel coding have been conducted. One of the most significant

studies conducted in this area is the study of Gallager introducing low-density par-

ity check (LDPC) codes in 1963. However, LDPC codes were not popular due to

their iterative docoders were impractical at those times. The most important study

which ushered a new era in coding theory was introduced by Berrou et al. with the

name turbo codes [4]. Right after the introduction of the turbo structure, this idea

is applied to other coding schemes and this yielded to invention of many classes of

codes, broadly called turbo-like codes. The family of Repeat-Accumulate codes is a

well-known type of turbo-like codes [5].

Although turbo and repeat accumulate codes are efficient in terms of bit error ratio

(BER) vs. signal to noise ratio (SNR) performance, their decoders introduce large

decoding delays due to their iterative decoding scheme. As the number of iterations

are increased, a better error performance is usually obtained but the time of decoding

increases in proportion to the iteration number. In order todecrease such huge laten-

cies various ideas have been implemented like building manydecoders operating in

1

parallel which is a widely used technique in literature. This approach significantly

decreases the decoding delay with almost no loss in terms of BER [9]. For further

decrease in decoding latency, certain algorithms such as center to top algorithm are

also utilized inside the marginal a-posteriori (MAP) decoders [13].

Parallelization is a powerful tool for decreasing the decoding latency. While con-

structing a decoder structure operating in parallel memorycollision problems can

occur. Decoders operating in parallel attempt accessing information residing in the

same memory segment. Such problems can be avoided with the implementation of

suitable collision free interleavers as studied in the thesis.

In this thesis, our aim is observing the performance of parallelized encoder and

decoder structures for turbo and repeat accumulate codes implemented on an FPGA

platform and investigating the parameters which affect their operation. The perfor-

mances of the decoders will be evaluated in terms of BER performance, FPGA re-

source usage, maximum achievable FPGA clock speed, and datathroughput.

The outline of the thesis can be summarized as follows. In Chapter 2, a general

description on turbo and repeat accumulate codes is given. We explain the basic en-

coder and decoder structures for these codes and give a briefdescription for building

decoders and encoders operating in parallel. In Chapter 3, the environment in which

the implementations are carried on is described. In Chapter 4, we explain the im-

plementation steps for obtaining a MAP decoder that is laterused for constructing

parallelized decoders. In Chapter 5, we demonstrate the SNR vs. BER performances

of the proposed decoder architecture and discuss the implementation results. Also,

the maximum throughput of the decoders are calculated in this chapter. Finally in

Chapter 6, we conclude the thesis and provide suggestions forfuture work.

2

CHAPTER 2

TURBO CONCEPT

The noisy-channel coding theorem, stated by Claude Shannon in 1948 [16], opened

a new era in communications. The theorem basically states that, one can transmit

information reliably at information rates (R) smaller than a specific rate referred to

as the channel capacity (C). The theorem implies that information transmission with

arbitrarily small rate is possible with the conditonR< C. The theorem was the start-

ing point of the Information Theory. As the years passed, many studies for obtaining

the minimum available error rate over a noisy channel are conducted as attempts for

achieving the Shannon Limit.

In order to enjoy a reliable communcation for wireless systemsForward error cor-

rection (FEC)schemes are used. FEC codes are designed to improve the decisions

that the receiver makes by giving it enough information to correct some of the errors

that the channel introduced into the signal. The technique is adding redundancy to

the information by channel coding.

Channel coding can be thought as a process in which redundant bits are added

to a series of bits which are to be transmitted to some receivers. The aim in this

redundancy operation is to mitigate the effect of the noise on the transmitted signal.

Since these bits are processed by some rule, the receiver side is expected to correct

the erroneous bits as much as possible by the help of these redundant bits. There are

many different coding techniques for different kind of situations. Bursts of errors,

thermal noise or fading channel effects are some examples for these situations [19].

Channel codes can be broadly divided into two categories:

3

• Block Codes : Repetition codes, BCH codes, Reed Solomon codes are the

most well-known codes in this category. These codes operateunder fixed-size

bit blocks. The messages ofk bits are mapped to codewords of lengthn bits.

The code rate,R, for an (n, k) block code is then given by

R=
k
n
. (2.1)

Fork bits of information there existn− k bits of redundancy.

• Convolutional Codes: They can operate under varying size of blocks. Their

encoders and decoders are usually less complex compared to that of block

codes. This type of codes constitute the basis of this thesis.

After the genesis of Information theory, a number of capacity achieving codes have

been invented. The oldest of these codes as first introduced by Gallager in his doctoral

thesis in 1963 [8]. The class announced by Gallager was the low density parity check

(LDPC) codes, but these codes did not gain popularity up untilthe invention of turbo

codes. Berrou et al. introduced turbo codes [4] in 1993. Turbocodes attracted the

attention of the researchers with its good error performance. After these developments

a return to LDPC codes occured and people restarted studyingthem. The class of

repeat-accumulate codes introduced in [5] is the result of these efforts.

Turbo codes enjoyed a grand fame with its good error performance and reasonable

complexity. After a few years of its invention almost everyone in the area of coding

theory agreed that it is a pioneering achievement in the area. As a result, it is accepted

as among the coding techniques for next generation wirelesscommunication systems

such as Wideband CDMA (WCDMA) and 3rd Generation Partnership Project (3GPP)

for IMT-2000.

Another important class of codes are repeat-accumulate (RA)codes. RA codes

which is a special type of LDPC codes, is first introduced by Divsalar et al. in [5].

RA codes are known for their low complexity decoder and good error performance.

In this chapter brief information about turbo codes and repeat accumulate codes

will be given. The parallelization idea for the encoders andthe decoders of these

codes also will be explained. The parallel decoder and encoder structure under inves-

tigation will be presented.

4

Encoder1

Encoder2

u

d

p1

p2

Figure 2.1: Encoder Structure of a Turbo Code

2.1 TURBO CODES

2.1.1 Turbo Code Encoder Structure

In general the encoder structure of a turbo code is parallel concatenation of two en-

coders. Figure 2.1 depicts the structure of a turbo code encoder. The information bits,

a sequence of bitsu, are passed through encoders and bypassed.d is the bypassed ver-

sion ofuwhich is also called as the systematic part.p1 is the parity bit sequence which

is obtained by passingu through an encoder, a convolutional encoder in our case, and

calledparity bits throughout this thesis. The blockπ represents the interleaver block

by which the turbo codes gains its power.p2 represents the parity bits obtained by

encoding of “interleaved” data bits which is called theinterleaved parity bits. The

codes Berrou et al. used was convolutional codes and their scheme was called parallel

concetenated convolutional codes (PCCC).

For mitigating the encoding decoding latency parallelization of encoders and de-

coders are suggested in the literature. The parallelized form of the encoder structure

is not too much different from the usual form. The parallelized form of turbo en-

coders can be seen in Figure 2.2. At this point the most crucial subject is the design

of a collision-free interleaver block which will be handledin the preceding sections.

For ease of demonstrationu, p1, p2 andπ can be thought as matrices of size [n x N],

wheren is the codeword length passed through a single encoder.

5

Encoder1

EncoderN

Encoder1

EncoderN

U

d

p1

P2

Figure 2.2: Parallelized Turbo Code Encoder Structure

2.1.2 Convolutional Encoding

In convolutional encoding the output bit streams are generated with a state transition

matrix and an input bit stream. Their operation principle can be thought as a finite

state machine in whichn bits of input corresponds tok bits of output. k/n results

in the rate,R, of the encoder. Algorithmically there are two main parts ofa convo-

lutioanal encoder, a shift register and binary adder blocks. The number of locations

in the shift register is indicated bymi and the constraint length of the encoder is de-

fined as max(mi + 1) [19]. Another important parameter in convolutional codes is

minimum f ree distance, df ree, defined as the minimum Hamming distance between

any two output sequences. Figure 2.3 depicts a rate 1/2 convolutional encoder with

D+ D

+

+ c2

c1

u

Figure 2.3: A Rate 1/2 Convolutional Encoder

m1 = 2, with one information bitu and two coded output bitsc1 andc2. Since the

shift register is composed of 2 storing elements, this encoder has 22 = 4 states. Its

constraint length is 3 and minimum distance is 5. We already stated that the convo-

lutional encoders can be thought as finite state machines (FSM) Figure 2.4 explains

6

how they can be treated as state machines. Figure 2.5 shows the trellis diagram of

Figure 2.4: The FSM representation of the convolutional encoder shown in Figure
2.3 each bit arrival(I) contributes to a state transition and reveals two output bits (O)
which are shown inI/OO format [9]

the encoder and shows how the transitions may occur over time. The encoder used as

an example in Figures 2.3, 2.4 and 2.5 will be the default encoder in the encoder of

parallel decodable turbo codes (PDTC).

Figure 2.5: Trellis description of a convolutional encoder. The initial and the final
states are the all-zero state [9]

After the encoding of a frame is finished, the final state of theencoder can be

adjusted to be in a known state for getting a better performance in decoding, as shown

in Figure 2.5. In general both the initial and the final statesof the encoder is adjusted

to be the all-zero state where all of the shift registers are zero. If the final state is also

wanted to be controlled thentermination bitsmust be added to the frame. The length

of the termination bits must bemi at least.

7

Many convolutional encoders do not employ feedback, and thus can be thought

as finite impulse response (FIR) filters. Recursive convolutional encoders have a

feedback component which makes the encoder behave as a infinite impulse response

(IIR) filter. Our example is a recursive convolutional encoder with feedback.

2.1.3 Interleaving

Interleaving means changing the place of a bit in the sequence to a newer place such

that the initial and the final location of the bits are relatedto each other with some

rule. In wireless channels, transmission suffers from fading problems, which results

in bursts of errors. A well defined interleaver decreases theprobabability of error by

distributing the erroneous consecutive bits far from each other. So at the output of the

interleaver the errors seem to be independent of each other.Besides, interleaving en-

hances performances of turbo codes by reducing the number oflow weight codewords

[6].

TheS-randominterleaver will be the interleaver type to be used in the designs. The

steps for producing anS-randominterleaver can be given as follows [1]:

1. All the mappings occur randomly with equal chance of selection

2. The randomly selected order is accepted only if it is in a distance greater than

S for all of theSpreviously selected orders. Otherwise, it is not accepted and a

new random order is generated, until this condition is satisfied.

The parameterS is predetermined and usually satisfiesS ≤
√

K/2, whereK is

the interleaver size [6].S-randominterleavers have good spreading characteristics

compared to other interleavers and provide good BER performance when used with

convolutional codes.

2.1.4 Turbo Code Decoder Structure

In the original turbo code study the scientists used a modified version of the Bahl

et al. (known as BCJR [14]) algortihm [4]. The iterative turbo decoder can be seen

8

in Figure 2.6. The decoder given is the decoder for the turbo code generated from

SISO

Decoder

r

p1

SISO

Decoder
p2

-1

r

La1

Le1

La2

Le2

_

_

_

_

+

+

Figure 2.6: Turbo Decoder

recursive systematic convolutional (RSC) codes.r represents the channel observa-

tion corresponding to the systematic data,p1 corresponding the parity bit produced

by the use of systematic part andp2 to the parity bit produced by the use of the in-

terleaved version of the systematic data. The soft in soft out (SISO) decoders can be

any decoder. Soft output Viterbi algorithm (SOVA) decodersand the BCJR-MAP de-

coders are two commonly used decoders among many. In our study a MAP decoder

implemented by the BCJR algorithm will be used.

Decoding latency is a big issue in iterative decoding of turbo codes. In order to

decrease the latency, a parallelization of decoders may be proposed likewise in the

encoder part [9]. The parallelized decoder architecture for a turbo code is given in

Figure 2.7. The numberN of parallel processing SISO decoders decrease the decod-

ing latency approximatelyN-folds. Although there is a small performance loss asN

increases as observed in [9], the significant latency enhancement justifies paralleliza-

tion.

9

SISO

DecoderN

r

p1

p2

-1 r

La1

Le1

La2

Le2

_

_

_

_

+

+

SISO

Decoder1

S/P

P/S

S/P

SISO

DecoderN

SISO

Decoder1

P/S S/P

S/P

S/P

S/P

Figure 2.7: Parallelized Architecture for turbo code decoder

2.2 TURBO-LIKE CODES

In this section parallelization of the repeat accumulate codes are discussed. Repeat

accumulate (RA) codes are considered to be a sub-class of low density parity check

(LDPC) codes. Although there are studies on the parallelization of turbo codes, the

same can not be told for repeat accumulate codes.

2.2.1 Low Density Parity Check Codes

Low density parity check (LDPC) codes introduced by Gallager[8] are the first

known channel coding family that performs close to the Shannon limit. When Gal-

lager introduced this type of coding in 1960’s, researchersdid not give importance

to these codes because of its large decoding complexity. After the invention of turbo

codes a return to Gallager’s study occured. Nowadays, many studies on analysis of

LDPC codes of different variants are taking place.

10

2.2.2 Repeat Accumulate Codes

Repeat Accumulate codes are first introduced by Divsalar et al. in 1998 [5]. After the

introduction of turbo coding principle Divsalar used this concept and invented the RA

codes. An RA code can be decoded iteratively and its iterativedecoding performance

is considerably good despite its low complexity, whereas its coding is simple and the

decoder structure is suboptimal [12]. Additionally, RA codes achieve the ultimate

Shannon limit -1.592 dB as the code rate goes to zero on the AWGNchannel.

2.2.3 Repeat Accumulate Code Encoder Structure

The RA encoder consists of concatenation of a Z-times repeating repetition encoder

and an accumulator. If the information bits are transmitted, this type is called sys-

tematic RA code. Sometimes the repetition part works in an irregular way, that is, it

repeats each bitZi times whereZi is a variable parameter for each uncoded bit at time

i, on operation. Irregular repeat accumulate (IRA) codes are formed in this way. IRA

codes are actually better codes which excite the curiosity of the coding theorists.

The basic encoder structure of a non-systematic RA code can beseen in Figure 2.8.

The information bits are repeatedZ times and forwarded to an accumulator. Before

the accumulator there exists an interleaver which is one of the most important part in

the code since the existence of the interleaver brings the power of the RA codes, as in

turbo codes.

x

Accumulator

repetition

encoder

(Z)

D+u y

Figure 2.8: Repeat Accumulate code encoder

The accumulator is the part which makes the RA codes simpler compared to other

11

coding schemes like LDPC or Turbo codes. The accumulator, asit can be seen in

Figure 2.8, performs a modulo-2 adding operation. It sums upthe current bit with

the previous bit and produces what is called a parity bit. From one perspective it can

be thought as a 2-state convolutional encoder with transferfunction 1/(1+ D) whose

state transition diagram is given in Figure 2.9(a) and trellis diagram in Figure 2.9(b).

From another perspective it can be seen as a block code with inputs [x0, . . . , xn−1] and

0 1

1/1

0/1

1/00/0

(a) State diagram of the accumulator

s0

s1

s0

s1

s0

s1

s0 s00/0

1/1

1/0

0/1 0/1

1/0 1/0

0/0 0/0 0/0

1/1 1/1

(b) Trellis diagram of the accumulator

Figure 2.9: State transition and trellis diagram of the accumulator

outputs [y1, . . . , yn−1] whose equations can be given as

y0 = x0

y1 = x0 + x1

y2 = x0 + x1 + x2

...

yn−1 = x0 + x1 + x2 + . . . + xn−1.

The performance derivations of RA codes are done by using its block code behavior

but its opearating principle is easy to understand with its convolutional form.

One way for enabling parallelization at the receiver is by the parallelization of the

encoders. A parallelization scheme for the encoders can be seen in Figure 2.10. A

12

numberM of repeaters are processing in parallel and forwarding the results to an

interleaver. An accumulator cluster consisting ofN parallel processing accumulators

encodes the repeated bits.

S/P

Repetition

Encoder1 (Z)

Repetition

EncoderM (Z)

P/S S/P

Accumulator1

AccumulatorN

P/Su y

Figure 2.10: Parallelized Repeat Accumulate Encoder

2.2.4 Repeat Accumulate Code Decoder Structure

RA codes can be decoded using variable techniques [15]. Majority-logic (MLG) and

bit-flipping (BF) decoding are two examples for hard decisiondecoding. A poste-

riori probability (APP) decoding and iterative decoding based on belief propagation

(IDBP) which is also known as sum-product algorithm (SPA) aresoft decision decod-

ing techniques. Weighted BF decoding is a compromise betweenhard decision and

soft decision decoding. Techniques including hard decision decoding are out of our

scope since soft decision decoding algorithms usually provide better performance.

The SPA algorithm is the most widely used decoding techniquefor decoding of RA

codes. In the SPA decoding, Tanner graphs [18], introduced by Tanner, are used by

the information passing algorithm, generally known as belief propagation. In this

study we will focus on using APP decoding by using a BCJR-MAP decoder.

Theorem 3.2 stated in [12] says that ifZ goes to infinity then the SNR threshold

value,γZ, which is the lowest bit SNR value for error free transmission, approaches

log2, that is, RA codes achieve the Shannon limit for the AWGN channel. Table 2.1

shows a comparison betweenZ, the achievable SNR threshold value for error-free

communication and the corresponding Shannon limit for the related rate. Decoding

latency is again an issue for the iterative decoding of RA codes. In order to decrease

the effect of this inherent latency, a parallelized architecture for the decoder is pro-

13

SISO

 Decoder

Repetition

Decoder

Repeater

(Z)

-1

Extrinsic

Finder

y d

Figure 2.11: Iterative RA Code Decoder with APP algorithm

Table 2.1: Rate, Threshold and Shannon threshold comparisonfor RA codes [12]

Z R γZ (dB) Shannon (dB)
3 1/3 0.792 -0.495
4 1/4 -0.052 -0.764
5 1/5 -0.480 -0.963
6 1/6 -0.734 -1.071
...

...
...

...

∞ 0 -1.592 -1.592

posed. The decoder block can be seen in Figure 2.12.N SISO decoders operating

in parallel first decode the incoming data sequence since this part was encoded by

the accumulator in the transmitter. The likelihoods generated by SISO decoders are

passed through a deinterlaver and decoding continues with the M number of repeti-

tion decoders. If there are termination bits in the receivedsequence, which improves

the error performance of the codeN must be the same as that of in the encoder part

(as it can be remembered there wereN number of parallel encoders in the PDRAC

encoder). On the other hand,M has no need to be the same asM in the encoder part,

because only the repeated bits are related to each other. AsM increases the decoding

latency decreases significantly however, this time memory operations must be han-

dled carefully. For the subsequent iterations decoded bitstaken from the repetition

decoders are passed through repeaters and then an extrinsicfinder calculates the a

priori probabilities for the next iteration of the SISO decoders.

14

S/P

SISO

Decoder1

SISO

DecoderN

-1

P/S S/P

Repetetion

DecoderJ

Extrinsic

FinderJ

 S/P
Le

RepeaterJ

(Z)

LLr

Repetetion

Decoder1

P/S

P/S

Extrinsic

Finder1

Repeater1

(Z)

Figure 2.12: Parallelized Repeat Accumulate Decoder

15

CHAPTER 3

TESTBED SETUP

In this thesis the motivation was basically the hardware realization and comparison of

parallelized turbo and repeat accumulate decoders. Initially the study was a continua-

tion of a previous thesis [1]. In this previous study an integrated testbed environment

was implemented. However, because of some unresolvable andunexpected prob-

lems occured later on the testbed, the designs are carried ona stand-alone operating

environment. The characteristics of a real environment is simulated on the FPGA

platform.

3.1 ML-402 FPGA Evaluation Board

FPGAs arereconfigurable logic devicescomposed of smaller logic blocks. The build-

ing blocks of the FPGA are calledConfigurable Logic Blocks(CLB). A CLB (de-

nominated asSlicein Xilinx 1), shown in Figure 3.1, is the smallest building block of

a Xilinx FPGA and for all of Xilinx FPGAs the CLB structure is the same2. A slice

is composed of two four-input LUTs, six various size multiplexers, and two flip-flops

(FFs). Although the logic operations are done with gates in the schematic designs,

these gates are embedded into the LUTs in the hardware. When the inputs of the

LUTs are excited, the output yields a result which is adjusted to yield the same result

as the logic circuits would yield in the schematic design.

All of the logic blocks are connected to each other with programmable switches.

1 To get more information about the famous FPGA manufacturer visit www.xilinx.com
2 This structure will change after the not yet manufactured Virtex6 and Spartan6 products

16

Figure 3.1: The structure of a CLB in a Xilinx FPGA

If there is a relation between slices then these switches will be ON, else OFF. The

results of the LUTs can be multiplexed to the slice flip-flops in the case of a need for

storing the result. One other important role that flip-flops introduce to the design is

pipelining. Pipelining is the most powerful tool for obtaining a fast operating module.

Since FPGA is formed by transistors each transistor has a certain delay in response

to excitements. If large combinatorial logical blocks are used then these delays can

reach tremendeous levels. If these large logic cells are analyzed well and partitioned

into smaller blocks by placing flip-flops in between, these partitions will enhance the

operation speed of the design. Figure 3.2(a) and Figure 3.2(b) shows this situation. If

the large logical block is divided into smaller blocks A and B,with the necessity that

the block A does not need the result coming from block B instantaneously, delays will

decrease and maximum available clock speed will increase. In this case the output of

the design is postponed by one clock period.

Another important block that is available in FPGAs is the block RAM, shortly

BRAM. A BRAM in a Xilinx FPGA consists of 18x1024 bits3. By cascading these

RAMs in parallel or in serial one can obtain RAMs of different sizes. The advantage

3 This size of BRAMs are the same for all Xilinx FPGAs

17

Combinational LogicInput Output

(a) A heavily combinatorial logic

Input Output
Combinational

Logic A

Combinational

Logic B
Flip-Flop

(b) A heavily combinatorial logic divided into smaller pieces with FFs

Figure 3.2: The effect of dividing logic with flip-flops, pipelining

of RAMs is that they are cheaper compared to slices and for storing purposes they

provide a larger area. However, their operating speed is slower than that of slices.

Some FPGAs also include embedded microprocessors, for example, some Xilinx

FPGAs include PowerPC cores. By the help of well picked peripherals it is easy to

convert a microprocessor into a fully operating microcontroller. Besides, Xilinx Mi-

croBlaze and Picoblaze are available as soft processor blocks, for the FPGAs which

do not include PowerPC. As explained before, since FPGAs are very flexible devices

in terms of logical operations, a processor composed of slices can be easily embedded

into an FPGA. The advantage of such a solution is that, FPGAs without hard proces-

sors are cost effective. The disadvantage of it is, a soft core processor consumes some

of the resources of the FPGA so available number of logic blocks decreases.

FPGAs also include additional blocks such as clock management blocks which can

be used for multiplying/dividing clocks and/or mitigating the clock skews, dedicated

multi-gigabit input/output ports, input/output (I/O) buffers those are compatible with

many electrical standards such as LVTTL, LVDS, LVPECL etc., dedicated fast binary

multipliers and so on.

The board we used in designing the encoders and decoders was ML-402 Virtex4

18

Evaluation Board, shown in Figure 3.3. This board carries a Xilinx Virtex4 SX35

FPGA on it which can be thought to be an average capacity FPGA compared to others

in the industry. Besides containing an FPGA, the ML-402 boardcontains other chips

which can be used extensively for many different applications.

Figure 3.3: ML402 board used in the study

DDR SDRAM : The board includes an external 64 MB of DDR SDRAM using

two Infineon HYB25D256160BT-7 chips. Each chip has 16 bits widedata port and

two of them form a 32 bit data bus capable of running up to 266 MHz [11]. In the

presence of a microprocessor these RAMs can be used for external data storage in

stand-alone operations. Besides, these RAMs can be used as theprocessor memory

which includes instructions in the presence of a soft microprocessor core.

ZBT Synchronous SRAM : The board contains a 256K x 36 bit synchronous

ZBT RAM. The ZBT RAM provides a high speed low-latency external memory to

the FPGA. This RAM can also be used for temporary external storage.

10/100/1000 Tri-Speed Ethernet PHY : The board contains a Marvell Alaska

19

PHY device operating at 10/100/1000 Mbps. By the use of a small porocessor and

an ethernet controller the board can be reached through ethernet connection. One

application can be incorporating the device into a local area network and reaching to

it over ethernet connection.

Differential Clock Input And Output With SMA Connectors : High precision

clock signals can be fed to FPGA by the use of 50Ω SMA connectors. This function-

ality allows the FPGA to be fed by function generators. For example a demodulator

output can be connected to the board, hence, further decoding process can be applied.

RS-232 Port with Direct FPGA connection : The ML-402 board contains an

DB-9 serial port allowing the FPGA communicate with another device using serial

data. An interface chip changing the voltage-levels are also included. The RS-232

serial port is one of the most widely used communication protocol and is known for

its low-weight receiver/transmitter structure. In the thesis RS232 is commonly used

for simulation purposes. The FPGA communicated with a PC through this port and

the PC interpreted the results coming from the FPGA.

Compact Flash and System ACE:The board contains a Xilinx System ACE Com-

pact Flash (CF) configuration controller. Through the JTAG port both the hardware

and the software data can be downloaded to the CF. Maximum eight configuration

images on a single CF card can be supported by SystemACE controller. By the help

of switches available on the board, the address of each configuration can be selected

and then System ACE controller loads the FPGA with that configuration. Besides be-

ing used as a configuration storage, a CF can also be used as a FATfilesystem storage

device, i.e. harddrive.

3.2 Software Used For Debugging and Implementation

3.2.1 Xilinx ISE and XST

Xilinx ISE (Integrated Synthesis Environment) is the Integrated Development Envi-

ronment (IDE) designed by Xilinx as a graphical user interface (GUI) for synthe-

sizers. Xilinx synthesis tools (XST) is one of the synthesizers developed by Xilinx

20

for complete synthesis and implementation of an FPGA project. The free version of

ISE which is called the Webpack Edition supports a limited number of Xilinx FPGAs

which are generally small in size. The unlimited version supports all of the FPGAs

fabricated by Xilinx.

3.2.2 Implementation steps of an ISE project

The implementation steps of a Xilinx project is divided intosteps. Each step has

certain inputs and outputs.

3.2.2.1 Synthesis

By synthesis, “logic synthesis” is meant and it is an important step before implemen-

tation. Since FPGA design is a hardware process unlike compilers, these tools are

named as synthesizers. The Synthesis operation basically converts a hardware de-

scription language (HDL) into register transfer level (RTL) composed of logic blocks

like gates related to the design architecture. Another job done in the synthesis level is

the optimization of the design. Optimization is done in a waythat the synthesis tool

either wipes out unused signals and entity ports, or it reduces the number of gates if

two or more gates do exactly the same job. In XST, optimization of the design can be

limited by special built-in constraints. For example, a general issue about this topic

is that a two signal exactly created by the same logic will be optimized by XST by

deleting one of these signals. However, these two signals will survive by setting the

“remove equal logic” constraint accordingly.

3.2.2.2 Translate Process

Translate process is the first step in the implementation process. The translate process

produces a Xilinx native generic database (NGD) file which includes all of the netlists

and design constraint information for implementataion. A netlist is the combination

of the blocks such as counters, adders, multipliers, comparators so on and connections

between them. This process combines these pieces of information in a way that the

21

logic is mapped into the target FPGA.

3.2.2.3 Mapping Process

This step follows the translate process. The mapping process takes the previously

created NGD file, runs a design rule check (DRC) over this file andmaps the logic

into the FPGA-specific hardware blocks. If one or more of the constraints is not

applied properly, an error will pop up at this step and reportthat the constraint is not

applicable. For example, if a buffer compatible with low-voltage differential signaling

(usually called as LVDS buffer) is instantiated in an FPGA project its differential

ports must be tied accordingly since these ports are connected to deterministic pin

locations. However, if mistakenly the pin locations for that LVDS buffer is tied into

irrelevant pin locations the synthesis process will not issue any error since the LVDS

buffer instantiation is done in a correct way. Additionally, thetranslate process will

not issue an error too since synthesis is fine and the “declaration syntax” of the pin

locations are also correct. In the mapping process the software will check whether

the LVDS receiver input pins are suitably placed or not. Since the LVDS pins are

dedicated for each LVDS buffer, the mapping process will issue an error because of

the failure in the constraints of the location of the LVDS pins and the implementation

process will stop. The result of a successful map process will be written in a Xilinx

native circuit description (NCD) file.

3.2.2.4 Place and Route Process

The place and route (shortly called as PAR) process is executed after the mapping

process finishes and takes a mapped NCD file and places and routes the design. This

process can be thought as an auto-router like in a printed-circuit board design soft-

ware. Since the blocks and the constraints are known from theprevious mapping pro-

cess, it tries to connect all blocks in accordance with the netlist and the constraints.

This process places all of these FPGA blocks in such a way thatall limitations are

satisfied, all I/O pins are connected, and the design will not go into an erroneus state

with the specified clock speed. The output of this process is an NCD file suitable for

22

the operation of BitGen software.

3.2.3 BitGen

BitGen is a programming file generator for Xilinx FPGAs. Afterthe implementation

process finishes this software takes the NCD file and produces a.bit file which is

suitable for programming an FPGA. If the programming finishes successfully, the

FPGA will act in the way it is wanted by the HDL code.

3.2.4 ChipScope Analyzer

ChipScope is an advanced real-time debugging and verification tool designed by Xil-

inx. The ChipScope tool embeds special low-level soft core blocks into the design or

into the netlist of the FPGA in order to track the signal changes. After PAR finishes,

these blocks are ready to send data to the PC via a special portcalled the JTAG port.

These cores, can be adjusted by software to be triggered in real time at certain condi-

tions. When the set conditions are met, the states of the selected signals are examined

and stored for a period of time. When the desired number of samples are taken these

values are sent to the PC and the states of the signals are observed by the help of a

GUI.

BRAMs of the FPGA are used for storing the signals.A maximum of 255 signals

can be observed for a maximum of 16384 samples. Of course these are the achievable

maxima allowed by the software. If the FPGA is not a large one,large Chipscope

blocks are impossible to embed because of resource limitations.

3.2.5 MATLAB

MATLAB is used in various phases of the study. Since it provides a high level pro-

gramming environment, a code can be changed and tried in minutes by the help of

this software. It also provides a visual interface into the variables so that, by the help

of the naked eye most of the problems can be seen and solutionscan be produced.

MATLAB is used firstly for the implementation of the encodersand the decoders. By

23

verifying that the results of the encoders and decoders are as desired, the discretized

(fixed-point rather than floating-point) versions of them are written and simulated.

After this step, the FPGA implementation and simulation is carried on in an easier

way. It must be noted that any HDL is low level compared to any of the program-

ming or scripting languages like C, C++, MATLAB since HDL deals with RTL. For

example, an algorithm designed in a programming language ina few hours can be

fully simulated on a HDL platform over weeks. The benefit of MATLAB can easily

be seen. Another situation MATLAB was used is the generationof look-up tables.

The approximations performed to decrease the complexity ofthe designs are also

simulated in MATLAB, so that, the designs continued in a more confident way. After

programming the FPGA with the implemented decoders, MATLABis also used for

to observe how the decoders operate on the FPGA. A controllermodule written in the

FPGA was listening the commands transmitted from MATLAB through RS232 and

was returning information such as the bit error rate, the frame error rate, the SNR,

and the number of decoded packets. Such received information were processed in

MATLAB, and illustrative results and plots were obtained.

3.2.6 MODELSIM

Modelsim is an advanced simulation and debugging tool for ASIC and FPGA projects

provided by Mentor Graphics which is one of the leaders in theelectronic design

automation (EDA) industry. ModelSim recently started supporting many hardware

description languages (HDL) including VHDL, Verilog HDL, SystemC, SystemVer-

ilog. ModelSim has 3 major distributions, ModelSim SE, ModelSim PE, and Mod-

elSim LE. Special distributions are also distributed for FPGA vendors. ModelSim

provides ModelSim XE (Xilinx edition) for Xilinx. ModelSimXE is distributed with

2 licenses, one is a free but limited license and a full license which must be purchased

from Xilinx. The full version is 100 times faster than the free version and the free

version also additionally slows down if the HDL code is more than 1000 lines. In

order to use ModelSim with ISE and a Xilinx FPGA a compiled form of the Xilinx

FPGA blocks (these blocks are FPGA specific blocks that only the FPGA vendor may

distribute the simulation models) must be available. Basically, ModelSim compiles a

HDL code into a form that is suitable for the operation of ModelSim. In order to use

24

the HDL code in consistence with the FPGA specific block, the compiled version of

the Xilinx blocks must be added to the library of the ModelSim.

ModelSim is a very helpful software for debugging a project with its well-designed

GUI. The best approach for debugging a code is simulating thedesign module by

module. Writing successful testbenches are important at this step. The integration of

modules to each other will be less painful after successful tests.

Simulations can be divided into two main parts. One is functional simulation and

the other is timing simulation.

A functional simulation simulates the behavior of the code.The timing in the

simulation will be perfect compared to the real world behavior. As the name implies,

this simulation simulates the functionality of the HDL code. No optimizations or

simplifications occur, you see what you write. This kind of simulation is the fastest

since no gate delays, IOB delays, clock skews, and setup-hold violations are observed.

A timing simulation (or equivalently “Post place and route simulation”) can be

done after the PAR process finishes. This simulation style isthe most reliable one.

If the post-PAR simulation is successfully applied, it is highly predictable that the

design will operate after it is loaded into the FPGA. The timing simulation is slower

compared to the functional one. In this simulation all of thecomponents and routings

used in the FPGA are replaced by its simulation models, so theskew and latency of a

signal can be easily observed. The setup and hold times of theflip-flops, gate delays,

and IOB delays are tracked and erroneus situations are reported by the simulator. In

this simulation it is highly predictable that the designer will not be able to see all of the

codes written. That is simply because all of the design is created after optimization

steps. So the designer must be aware that if the functional simulation results are not

alike the post-PAR one, the code must be rechecked. A synchronous design is the

most reliable design because most probably it will operate without timing failure.

ModelSim can also be used via a console. It supports TCL (Tool command lan-

guage) scripts so the software can be used without the need ofa graphical interface

and the simulations speed up.

25

3.3 Overall System Setup

In this section the setup that is used to implement and simulate the decoder perfor-

mance will be explained. The important step in this part is the realization of a channel

on the FPGA. Additionally how the FPGA get into contact with the outer world will

be dealt.

3.3.1 System

A general system model can be seen in Figure 3.4. The decoder block consists of a

decoder and some auxiliary modules for proper operation which will be described in

the upcoming sections.

LFSR Noise

Generator

Decoder

Block

UART

Receiver

Error

Counter

Encoder and

Pulse

generator

Enable

Generator

(Synchronizer)

UART

Transmitter

Figure 3.4: A generalized system model for testing the decoders

The “Enable Generator (Synchronizer)” block perodically produces an enable sig-

nal which triggers the encoder block. Because of the chain structure of the design and

the periodic behavior of this module, it can also be called the synchronizer. After the

encoder block receives an enable signal, it starts to produce the encoded version of

a known sequence. When the encoded sequence is ready, this module also produces

a ready signal to indicate that the sequence is ready for decoding. The encoded data

is scaled by a parameter received from the outer world via UART. This parameter is
√

Es which is the amplitude of the encoded data. Hence, the energyof each bit in the

sequence isEs. After the encoded data is produced and multiplied by
√

Es, a pseudo-

random noise is added to the sequence. The pseudo-random noise is generated by the

26

LFSR noise generator module. Afterwards, the noisy sequence is forwarded to the

decoder block. The information produced by the decoder block, which will also be

discussed in the upcoming sections, is transmitted to the outer world through UART

port.

3.3.2 LFSR Noise Generator

While testing the implemented decoders, varying inputs mustbe fed into the decoder

along with many different noise realizations for a proper test operation. In order to

generate a realistic environment in our study, random data generation algorithms are

used in the FPGA. In the random number generation procedure an initial state called

the seedis assumed, and the numbers are generated by the use of this seed. Since

the state of the generator can be known in any time because of its seed-based struc-

ture the numbers generated are actually pseudo-random in nature. Then we have the

chance to test the design for so many different inputs. By obtaining a gaussian like

distribution we also have the opportunity of creating an AWGNchannel in the FPGA.

Among various random number generator algorithms alinear feedback shift register

(LFSR) based one is chosen here because of its simple structure and wide usage. An

LFSR is called linear becaues it is composed of binary linearoperations, basically

xor (exclusive or). Besides, it has a feedback structure in whicha generated bit value

is fedback to the shift register again. The feedback operation is done under a spe-

cial characteristic equation. As the size of the shift register varies, the characteristic

equation changes. Table 3.3.2 shows some characteristic feedback polynomials and

corresponding register widths [3].

Figures 3.5, 3.6, and 3.7 shows the operation cycles of an LFSR composed of a 16

bit shift register. The shaded bit locations are called as taps which also demonstrates

the locations those are described in the characteristic polynomial, namely 16th, 14th,

13th, and 10th locations. The initial state of the LFSR is called the seed of the LFSR

and it can be any sequence of bits. As the name implies, the shift-register operates

with the existance of a trigger signal, generally a clock. When the clock triggers

the register, thexor-ed value is fed into the initial bit location and all of the bits are

shifted. The last bit is the result coming from the shift register. When a seed is

27

0 1 0 1 1 0 0 0 1 1 0 0 1 1 0 1

+ + +

output

Figure 3.5: An LFSR with seed 0101100011001101

0 1 0 1 1 0 0 0 1 1 0 0 1 1 0 1

+ + +

output

1110

1

Figure 3.6: The 16th,14th,13th,10th bit are added and the result is forwarded to the
beginning of the register

1 0 1 0 1 1 0 0 0 1 1 0 0 1 1 0

+ + +

Output

0101

1

Figure 3.7: With a clock trig the found result is registered as the first bit of the register,
the content of the register is shifted once towards right

28

Table 3.1: Some LFSR generator polynomials with varying size of shift registers.

Bits (n) Feedback polynomial Period 2n − 1
10 x10+ x7 + 1 1024
11 x11+ x9 + 1 2047
12 x12+ x11+ x10+ x4 + 1 4095
13 x13+ x12+ x11+ x8 + 1 8191
14 x14+ x13+ x12+ x2 + 1 16383
15 x15+ x14+ 1 32767
16 x16+ x14+ x13+ x11+ 1 65535
17 x17+ x14+ 1 131071
18 x18+ x11+ 1 262143
19 x19+ x18+ x17+ x14+ 1 524287

suitable to obtain all 2n − 1 numbers then this seed is called as the maximal.

If many LFSRs are implemented with different seeds4, then the output of each

LFSR will be independent of each other. If the outputs of these LFSRs are summed

up as shown in Figure 3.8 then by the Central Limit Theorem a pseudo-random noise

generator whose probability distribution is close to that of the Gaussian distrubiton

will be obtained.

LFSR1 b1

LFSR2 b2

LFSRreg_no-1 breg_no-1

LFSRreg_no breg_no

 x

Figure 3.8: Normally distributed noise generation by LFSR

The mean and the variance of the random noise generator can beevaluated through

some equations. Letx be a random variable that is obtained by the summation of the

4 Special care should be taken when assigning seeds to the LFSRs. A bad choice of seeds may lead to incorrect
results due to auto-correlation etc.

29

output bits ofreg−nonumber of LFSRs. The mean ofx is

E(x) = E

∑

reg−no

bi

 (3.1)

Since summation is a linear operation and eachbi is independent of each other the

expectation function can go into the summation and (3.1) yields

E(x) =
∑

reg−no

E(bi). (3.2)

The probability ofbi to be either 0 or 1 is equal, 1/2 so (3.2) can be calculated as

E(x) =
∑

reg−no

1
2
, (3.3)

E(x) =
reg−no

2
. (3.4)

The variance ofx is found by the well known variance equation that

Var(x) = E(x2) − E2(x),

= E

∑

reg−no

bi

2 −
(reg−no)2

4
. (3.5)

Here comes a square of a summation and this equation must alsobe put into a linear

form for ease of calculation. If the squared term is written in an open form it will be

seen that there will bereg−no number ofb2
i ’s and other terms will be in the form of

bibj. The variance ofx can be rewritten in the following form:

Var(x) = E

∑

reg−no

b2
i +

reg−no∑

i,i, j

reg−no∑

j

bibj

 −
(reg−no)2

4
(3.6)

=
∑

reg−no

E(b2
i) +

reg−no∑

i,i, j

reg−no∑

j

E(bi)E(bj) −
(reg−no)2

4
(3.7)

=
reg−no

2
+ (reg−no− 1)reg−no

1
4
− (reg−no)2

4
(3.8)

=
reg−no

2
+

reg−no2

4
− reg−no

4
− (reg−no)2

4
(3.9)

=
reg−no

4
. (3.10)

In the design of the pseudo-random gaussian noise generator40 LFSRs (reg−no=

40) of 16 bit locations with different seeds are generated5. At each rising edge of a
5 16 bit LFSR corresponds to 65536 cycles in period. For long tests, this period seems to be too small for noise

generation. However, if the length and the period of the generated transmitted data frames do not coincide with
the period of the LFSRs, this would not significantly affect the results here due to the use of highly randomized
turbo codes.

30

clock the usual LFSR operation is carried on. The outputs of the LFSRs are summed

up and the sum is taken as a normally distributed random variable. Since the produced

numbers are fairly uncorrelated from each other, summing upconsecutive results of

the generator results in a Gaussian distribution. Figure 3.9 shows the histogram of

the outputs of such a generator obtained by MATLAB simulation. On the other hand,

Figure 3.10 shows the histogram of a normal distribution obtained by MATLAB’s

randn function which has the same variance of that illustrated in Figure 3.9.

−30 −20 −10 0 10 20 30
0

100

200

300

400

500

600

700

Value

N
um

be
r

of
 g

en
er

at
ed

 v
al

ue
s

Figure 3.9: The hystogram of a pseudo-random Gaussian noisegenerator obtained by
collection of 10000 samples

The LFSR random noise generator VHDL code is as

process(clk4X)

begin

if rising_edge(clk4X) then

if rst = ’1’ then

for i in 1 to reg_no loop

seed(i) <= file_sonucu(i*16 downto (i-1)*16+1);

end loop;

else

for jj in 1 to reg_no loop

seed(jj) <= seed(jj)(14 downto 0) & (seed(jj)(10) xor

seed(jj)(12) xor seed(jj)(13) xor seed(jj)(15));

end loop;

31

−25 −20 −15 −10 −5 0 5 10 15 20 25
0

100

200

300

400

500

600

700

Value

N
um

be
r

of
 g

en
er

at
ed

 v
al

ue
s

Figure 3.10: A histogram of a noise sequence generated by MATLAB’s randn func-
tion

end if;

end if;

end process;

f ile−sonucuis an array of strings composed of 1’s and 0’s previously generated by

MATLAB and written into a text file. When the synthesis happens, the tool reads that

file and initializes all of the LFSRs with the desired seeds.reg−no is the number of

LFSRs taking place in the noise generator. It is 40 in our studies but it can be adjusted

with the necessity thatf ile−sonucumust also be renewed. Since there are 40 registers

the summation results a normal distribution with mean 20, hence in order to make the

mean of that random variable 0 a 20 is always subtracted from the summation result.

The variance of the sequence generated by this code is 10. Theprocess operates with

a clock 4 times faster than the usual operating clock (clk4x represents this notation).

The reason for this is that 4 consecutive random numbers are added up to obtain a

noise with a larger variance, that is, 4 times of a single sequence, so the variance of

the new distribution is 40. Since the LFSR clock is 4 times faster than the usual clock,

the generated random numbers are collected in a first in first out buffer (FIFO) and an

adder module at the normal clock side reads 4 of them and sums up the numbers.

32

3.3.3 Error Counter

The error counter module counts the number of errors occuredin a packet. As men-

tioned in Section 3.3.1 a known packet of data is encoded and transmitted. This

uncoded data sequence is also known by this module. Whenever the decoder block

starts to produce the bit estimates this module starts to check bit by bit whether the

estimation is correct or not and keeps the number of incorrect estimations. Besides

calculating the wrong bit decoding, it also counts how many packets are decoded in-

correctly. These numbers are fed to the UART transmitter module for reporting to the

PC.

3.3.4 UART Module

UART is the acronym for Universal Asynchronous Receiver Transmitter. In our de-

sign a full duplex UART is used in conjunction with RS232. A UART takes parallel

data and transmits it bit by bit in a sequential fashion. The receiver side understands

a new data coming and translates the bit by bit received sequence into a parallel form.

The conversion between serial to parallel or vice versa in the transmitter and receivers

is accomplished by the use of shift registers.

The protocol is called asynchronous because the transmitter does not send any

clock signal to the receiver side. The transmission processstarts whenever the trans-

mitter sends a start bit. After the transmission of the startbit the data is transmitted

from the least significant bit to the most significant. Optionally a parity bit for error

check can also be included after the transmission of the data. A stop bit finishes the

transmission of a byte. Figure 3.11 represents the alignment of these bits.

Start

Bit

Data

0

Data

1

Data

2

Data

3

Data

4

Data

5

Data

6

Data

7
Stop Bit

Figure 3.11: The bit alignment in a UART transmission

The transmission of data from FPGA to PC and from PC to FPGA is handled by

33

a protocol. In the PC to FPGA part a register map mode is used. In this mode some

numbers are protected. If these special characters are sent, the next character will be

the content of that register. That is, if initially byte A is transmitted and then byte B

is transmitted the receiver module on the FPGA checks whether byte A is the address

of a register. If it is then the content of register addressedby A is changed by B.

If a value is wanted to be assigned to a register, this value cannot be the address of

the registers, equivalently, B can not be protected numbers. This check is done in the

MATLAB module that if B somehow enters to the forbidden zone the MATLAB code

does not send this value and issues an error to the user. The register scheme is shown

in Table 3.3.4.

Table 3.2: The registers and their meaning in the design of the UART transmitter.

Register Address Register Name Description
(Decimal)
171 Es The amplitude value defined in Section 3.3.1
172 Iteration Number of iterations that the decoders will

run for. This parameter will be discussed in
the next sections

173 Paket−Ust High byte of a 16 bit register (Paketregister)
which determines the number of packets to be
transmitted during the simulation

174 Paket−Alt Low byte of the 16 bitPaketregister
175 NormMax NormMaxvalue which will be defined in the

next sections

The reception of a byte starts with the coming of a start bit. Up to that time the

receiver always checks the signal level at the receiver pin.When a start bit is received

the clock gets synchronized with the received data bit sequence. A counter counts for

the number of bits received in parallel with the baud rate andafter a word is received

a check of the stop bit occurs. If all of the control bits are received correctly the byte

value is processed.

There is a buffer in the transmitter part. After the buffer is filled in, a command

signal is activated to warn the transmitter that the buffer memory is available for

transmission. A module starts to read the memory addresses one by one and puts the

output of the memory in a shift register. At each baud rate period the contents of this

34

shift register is shifted towards the LSB and the LSB is sent through the transmit pin

of RS232 transmit pin.

In the FPGA to PC part the PC expects to get the values shown in Table 3.3.4. BER
6 is the total number of errors up to the last decoded packet. PER 7 is the number of

erroneus packets up to the last packet and Paket is the numberof packets that are

decoded upto these information are produced.

Mostly counters are used in the UART VHDL code . The sampling counters run-

ning in both the transmitter and the receiver is obtained by generic parameters. For

the receiver there are two generic parameters. One of them isthe clock frequency and

the other is the baud rate. The counters are formed by using these variables.

Table 3.3: The registers and their meaning in the design of the UART transmitter.

Value Description
(Decimal)
BER Total number of erroneus bits
PER Number of erroneus packets
Paket Number of processed packets

6 Here, accept BER as a register name for preventing misunderstandings. Since the decoded number of packets
are known dividing BER to number of packets and number of bits in a packet gives the real BER value

7 The same definition as BER is applicable

35

CHAPTER 4

IMPLEMENTATION ISSUES

In this chapter, implementation of the parallelized turbo and repeat accumulate en-

coder/decoder on the FPGA will be discussed. The implementation steps, the param-

eters which may affect the performance of the designs and the algorithms that are

used will be interpreted.

4.1 Channel Model

A general communication system can be depicted as in Figure 4.1. In this system

an encoder encodes the uncoded information and passes the result to a modulator.

The modulator modulates the signals and the transmit antenna transmits the packet.

In the wireless channel the transmitted signals are distorted and the recieve antenna

Modulator Demodulator DecoderEncoder

Transmit

Antenna

Receive

Antenna

Figure 4.1: A general block diagram of a communication system

receives a distorted version of signals. In this study the channel is assumed to be

an additive white Gaussian noise (AWGN) channel, the modulation is assumed to be

bipolar phase shift keying (BPSK). The encoder and the decoder blocks will be either

36

PDTC encodor/decoder or PDRAC encoder/decoder. The generalized channel model

is

yk = hkxk + nk (4.1)

wherehk is the channel gain,xk is the transmitted signal,nk is the complex AWGN

term with powerN0, andyk is the received signal. A significant amount of sections in

this chapter are borrowed from a submitted paper [7].

4.2 BCJR Decoder

SISO decoders were the building blocks in the parallelized decoder structures pre-

sented in Chapter 2. These SISO decoders areMarginal A Posteriori (MAP) De-

codersin this study. Another famous decoding technique isMaximum Likelihood

(ML) decoding for which the Viterbi algorithm is a good example. After receiving a

codewordr , a codeword̂v is found corresponding to a transmitted codeword in ML

decodingv. The algorithm tries to find the best approximation by minimizing the

probabilityP(v̂ , v | r). Hence ML is minimizes theword error probability(Pw). In

MAP decoding, estimation for bits included inr is performed. For every transmitted

bit ul, a ûl is estimated. That is, the algorithm tries to minimizePb = P(ûl , ul | r),

hence it is abit error probabilityminimizing algorithm. When the data bits are a pri-

ori equally likely, the performance of ML and MAP decoders are usually very similar.

However, when this probability is not the same then MAP, which is computationally

more complex than ML, is observed to be superior to ML. A good example where the

bit probabilities are not equally likely is iterative decoding. Since at each iteration

the bit probabilities are updated by the information from the previous iteration, the

probabilities of the bits do change.

The BCJR algorithm [14] is the most popular MAP decoding algorithm, which was

also used by Berrou et al. in their famous study on turbo codes [4]. It aims at mini-

mizing the bit error ratio (BER) by maximizing the marginal a posteriori probabilities.

In practice, the BCJR algorithm usually calculatesa posteriori log-likelihood ratio(a

posteriori L-value) of an information bit. The reason of working in the log-domain

will be clarified later in this section.

37

The log-likelihood ratio (LL) of an information bitul can be calculated as

LL(ul) = ln

[
p(ul = +1|r)
p(ul = −1|r)

]
, (4.2)

for a received signal sequencer . Using this a posteriori L-value, a hard decision

corresponding toul can be found by

ûl =

+1, LL(ul) > 0

−1, LL(ul) < 0
. (4.3)

In the remaining part of this section the BCJR decoding algorithm steps will be ex-

plained without derivation. Detailed derivations can be found in [15].

Theforward metric, denoted byα, at timel is defined as the probability of being at

states′ at timel and having a received sequencer t<l up to timel. Hence, theαmetric

is given as

αl = p(sl = s′, r t<l), (4.4)

wheresl is the state at timel.

Similarly, thebackward metric, denoted byβ, at timel is defined as the probability

of receiving a sequencer t>l after timel given that the state at timel is s,

βl = p(r t>l |sl = s). (4.5)

As the third metric, thebranch metricat timel is the probability of having a state

transition from states′ to s at timel. It is denoted byγ and defined as

γl = p(sl+1 = s, r l |sl = s′). (4.6)

As a result of a few steps on the definitions ofα andβ, it can be seen thatα values

are updated by a forward recursion, whereasβ values are updated by a backward

recursion as given by

αl+1(s) =
∑

s′∈σl

γl(s
′, s)αl(s

′), (4.7)

βl(s
′) =

∑

s∈σl+1

γl(s
′, s)βl+1(s), (4.8)

38

with initial conditions,

α0(s) =

1, s= 0

0, s, 0
, (4.9a)

βN(s) =

1, s= 0

0, s, 0
. (4.9b)

In (4.9b), N stands for the length of the input sequence1. In (4.7) and (4.8),σl

denotes the set of all possible states from which a transition is possible at timel and

σl+1 denotes the set of all possible states to which a transition is possible at timel +1.

After having the initial conditions,α andβ values can be calculated for the whole

packet with the knowledge ofγ values.

In an AWGN channel, branch metrics can be written as [15]

γl(s
′, s) = eul La(ul)/2e(Lc/2)(r l ·vl), (4.10)

whereLa(ul) is the a priori bit probability2, Lc is the channel reliability factor which is

equal to 4Es/N0, andvl denotes the output vector consisting of data and parity obser-

vations for transition from states′ to s. The dot product (r l · vl) gives the correlation

between the hypothesized transmitted and received vectors. Scaling this distance with

Lc means that the observations are more reliable when SNR is high and a priori values

are trusted more when SNR is low.

In order to perform the calculations given in (4.7), (4.8), and (4.10) in an easier

way, these operations are usually realized in the logarithmic domain. The log-domain

metric values are given as follows:

γ∗l (s
′, s) = ln γl(s

′, s) = ul
La(ul)

2
+

Lc

2
(r l · vl), (4.11)

α∗l+1(s) = lnαl+1(s) = ln
∑

s′∈σl

e[γ∗l (s′,s)+α∗l (s′)] , (4.12)

β∗l (s
′) = ln βl(s

′) = ln
∑

s∈σl+1

e[γ∗l (s′,s)+β∗l+1(s)] . (4.13)

It can easily be seen that both forward and backward metric calculations can be

1 It is assumed herein that termination bits are added at the end of each packet in the encoder side. So, the
final state is known to be the zero-state.

2 It must be noted that theLa values for the termination bits are always 0.

39

simplified more by defining amax∗ operation

max∗(x, y) = ln(ex + ey) = max(x, y) + ln(1+ e−|x−y|), (4.14)

where the second term is usually called thecorrection term.

By using the multiple argument form of themax∗ operation, (4.12) and (4.13) can

be simplified as

α∗l+1(s) = max∗s′∈σl

[
γ∗l (s

′, s) + α∗l (s
′)
]
, (4.15)

β∗l (s
′) = max∗s∈σl+1

[
γ∗l (s

′, s) + β∗l+1(s)
]

(4.16)

with the initial conditions,

α∗0(s) =

0, s= 0

−∞, s, 0
, (4.17a)

β∗N(s) =

0, s= 0

−∞, s, 0
. (4.17b)

Figures 4.2 and 4.3 illustrate the use ofmax∗ operation inα andβ computations,

respectively.

)(
*

il s

)(
*

jl s

),(
*

ssil

),(
*

ss jl

))),()(()),,()(((max)(

1
sssssss jljlilill

Figure 4.2: Forward recursion in calculation ofα∗l+1(s)

By skipping the intermediate steps, the log-likelihood formula in (4.2) can be

rewritten using the formulas described above as [15]

LL(ul) = ln

∑

(s′,s)∈Σ+l

e[α∗l (s′)+γ∗l (s′,s)+β∗l+1(s)]

− ln

∑

(s′,s)∈Σ−l

e[α∗l (s′)+γ∗l (s′,s)+β∗l+1(s)]

(4.18)

40

)(
*

1 il s

)(
*

1 jl s

),(
*

il ss

),(
*

jl ss

))),()(()),,()(((max)(
**

1

**

1

**

jljlilill sssssss

Figure 4.3: Backward recursion in calculation ofβ∗l (s
′)

whereΣ+l andΣ−l are the sets of transitions with the information bit is 0 and 1, respec-

tively.

4.3 FPGA Implementation of BCJR Decoder

FPGA’s are very flexible programmable devices. Since all of the programmable de-

vices from microcontrollers to DSP processors are producedby the help of transis-

tors and boolean operators, one can build everything on FPGA’s from scratch. In our

design there are too many arithmetic operations from usual addition to square root

operation each of which must be handled carefully. We could design the decoder in

such a way that all of the numbers were represented by floatingpoint numbers and

the operations could be handled in floating point form. This implementation would

give us the ability of using a large interval among the real numbers. For example,

with a single precision floating point we can represent all numbers between 2−128 to

2127. But this approach will cause huge latencies in operations hence the achievable

bit rate will drastically decrease and consume too many resources. For these reasons,

we have to implement the algorithms on a fixed point arithmetic basis. This approach

will increase the speed of the decoders tremendously however this time we will face

some problems because of the fixed-point arithmetic. Those problems can be divided

into two subgroups, outer problems and inner problems. Outer problems are mainly

due to the resolution order of the receiver, that is, trying to fix the number of bits,K,

41

in fixed point representation in such a way that the information loss in the decoder

will not be so much. Inner problems are due to the fixed point arithmetic used in

the decoder. Those are overflowing and underflowing of summation and subtraction

operations, division, and square-root operations in fixed point arithmetic. Besides

these problems some additional optimizations need to be performed to increase the

computation speed of the decoder.

4.3.1 Center to Top Algorithm

This algorithm is basically for optimization purpose. When the metric calculations

in α∗ andβ∗ are considered, it can be seen that the two operations are independent

of each other. This gives the ability to calculateα∗ andβ∗ metrics simultaneously

assuming that all of the received values are available for branch metric calculations.

This assumption is valid for the iterative decoding schemes(like of turbo codes as

in our case) since decoding process can begin after receiving the whole packet. By

this algorithm, the decoding time can be halved. Consider a decoder running on 20

information bits. At time 0 the metric values are initialized as defined in (4.17a)

and (4.17b) and shown in Figure 4.4. As shown in Figure 4.5α∗ andβ∗ values are

calculated without computing any LL value up to time 10. At time 10, both ofα∗10, β
∗
11

andα∗9, β
∗
9 values are available together with the branch metrics for the time,γ∗10 and

γ∗9. So,LL(u10) andLL(u9) are computed and given out as in Figure 4.6. That process,

starting from the center of the frame, continues to the end and simultaneously to the

beginning of the frame. That is why this algorithm is named as“center to top” [13]. It

must be noted thatα andβmetric values do not have to be written to memory after the

midpoint, sinceLL values are calculated simultaneously. So, not only the decoding

time but also the memory usage is halved by this algorithm.

4.3.2 Observation Quantization

In addition to being an optimization process, this process is basically an outer prob-

lem. Although the MAP decoder will be repeated many times andput into parallelized

form, the observations will directly be fed to these decoders so the observations are

42

 0

... ... !20

Mid Point

Figure 4.4:α andβ values are initialized initially at time 0

 0 1

... ... !20!19

Mid Point

Figure 4.5:α andβ values are computed independently and in a recursive manner

also important for the BCJR decoder. In the conventional mathematical model, a

+1 or−1 is assumed to be transmitted for BPSK, an appropriate noise is added and

calculations are carried on with these assignments. An AWGN channel for BPSK

modulation can be modeled as

yk = hkxk + nk (4.19)

for any time instantk whereyk is the received symbol,hk is the channel gain (
√

Es

in an AWGN channel withEs being the symbol energy),xk is the transmitted bit

(xk = ±1) andnk is a circularly symmetric complex Gaussian random variablewith

mean 0 and varianceN0.

The conditional probability of a received symbolyk can be expressed as

f (yk|hk, x) =
1
πN0

e−
|yk−hkx|2

N0 (4.20)

The logarithmic form of (4.20) is

ln(f (yk|hk, x)) = − ln(πN0) −
|yk|2
N0
− |hk|2|xk|2

N0
+

2
N0
ℜ{ykh

∗
kx∗k} (4.21)

= C +
2
N0
ℜ{ykh

∗
kx∗k} (4.22)

43

 0 1 ... 9 10 ...

... !10 !11 ... !20!19

Mid Point

Corresponds to

 calculation of

LL(u9)

Corresponds to

 calculation of

LL(u10)

Figure 4.6:α andβ values first meet at time 10 and at this time all information for
computing the first LL values are ready

whereC is a constant and has no effect on the MAP calculations. Hence, the function

can be redefined as

ln(f (yk|hk, x)) �
2
N0
ℜ{ykh

∗
kx∗}, (4.23)

where� denotes equality with a constant.

As we use fixed-point arithmetic, the metric values in the BCJR algorithm are

represented by a fixed number of bits,K. However, the decoder is not guaranteed to

work properly with this representation unless the channel observations (input of the

decoder) are carefully quantized. For that reason, we need to quantize observations by

a quantization factor,q, such that the represented observations lay in a setS smaller

than the set of numbers represented byK bits. After that, the quantized observation

probability forx = 1 is used in decoding with

Qk = Q(ln(f (yk|hk, x = 1))) =

⌊
2/N0ℜykh∗k

q

⌋
(4.24)

If we apply the AWGN channel model given in (4.19) on (4.24) fora BPSK modula-

tion we get,

Qk =

⌊
2
√

Es/N0ℜ{yk}
q

⌋
(4.25)

=

⌊
2
√

Es/N0ℜ{(
√

Es+ nk)}
q

⌋
(4.26)

=

⌊
2Es

N0q
+

2
√

Es

N0q
nI

⌋
(4.27)

44

wherenI is the real part of the complex Gaussian noise with mean 0 and variance

N0/2.

Recalling that a finite number of bits are used in representingnumbers, the ques-

tion is how to chooseq. If q is chosen to be very small,Qk’s will be large and

the many equations will blow up due to overflow. Ifq is chosen to be very large,

then the difference in noise values of the observations will not be properly passed

to the decoder and then soft decoding will suffer. We resolve the problem above

by the compromise that the packet is normalized with respectto its absolute max-

imum symbol value,ObsMax. If we represent that value with a predefined value,

NormMax(absolute maximum value after the quantization is performed) then we get

a setS = {−NormMax,−NormMax+ 1, ...,NormMax− 1,NormMax} for decoder’s

input sequence. This information can be combined with a wellknown property of the

Gaussian distribution that, in a normally distributed set with meanν and varianceσ2,

obtaining a numberp such that|p| > ν + 3σ has a probability of about 1/1000. To be

able to apply that property, we need to identify the mean and variance of the random

variable

A =
2Es

N0q
+

2
√

Es

N0q
nI

E{A} = 2Es

N0q
(4.28)

σA =
2
√

Es

N0q
σnI =

2
√

Es

N0q

√
N0√
2

(4.29)

=

√
2Es

N0q
1√
q

(4.30)

=

√
E{A}√

q
(4.31)

After the quantization of the packet, it is known that symbols greater than+NormMax

or smaller than−NormMaxcan occur in the packet with a small probability. If we

neglect the small probability of 1/1000, we can defineNormMaxas

NormMax= E{A} + 3σA (4.32)

= E{A} + 3

√
E{A}√

q
(4.33)

45

By replacing (4.28) in (4.33), we get

NormMax=
2Es

N0q
+ 3

√
2Es

N0q
1√
q

(4.34)

By solving this equation,q can be calculated as

q =

2Es

N0
+ 3

√
2Es

N0

NormMax
(4.35)

As it is obvious in (4.35),q is a function of theS NR(Es/N0) for a selectedNormMax

value. Instead of calculating theq value for each packet, a look-up table (LUT) can

be used. In our design, we have used a relatively largeLUT that stores theq values

in 8 bits, 3 for integer part and 5 for the decimal part. That gives a precision of 1/25

and yields a satisfactory performance.

4.3.3 Addition and Subtraction Operations

Addition (by the term “Addition” also “Subtraction” is alsoassumed) is the first prob-

lematic operation in decoder structure, because at almost every step of the algorithm

there exists an addition operation. Since the bits are represented by limited number

of bits, K, an overflow can easily be observed if the addition of two numbers passes

2K−1 (Since the observations are represented byK bits in two’s complement maximum

positive number can be 2K−1). For this kind of erroneus situation a new addition and

subtraction operations must be defined. The new defined addition operatin is named

as,clipsumand the new subtraction operation is named asclipsubtract.

clipsumfunction,represented by⊕ can be defined as

a⊕ b =

MaxIn f if a ≥ MaxIn f,

MinIn f else ifa ≤ MinIn f ,

MaxIn f else ifb ≥ MinIn f ,

MinIn f else ifb ≤ MinIn f ,

MaxIn f else ifa+ b ≥ MaxIn f,

MinIn f else ifa+ b ≤ MinIn f ,

a+ b else

(4.36)

46

whereMaxIn f=2K−1 andMinIn f=−2K−1. The new function basically adds a clipping

capability to usual summation. Similarly theclipsubtractfunction, represented by⊖
can be defined as

a⊖ b =

MaxIn f if a ≥ MaxIn f,

MinIn f else ifa ≤ MinIn f ,

MinIn f else ifb ≥ MinIn f ,

MaxIn f else ifb ≤ MinIn f ,

MaxIn f else ifa− b ≥ MaxIn f,

MinIn f else ifa− b ≤ MinIn f ,

a− b else

(4.37)

Drawback of these operations is that ifK is chosen to be too small then the algo-
rithms can get into saturation, to eitherMaxIn f or MinIn f values, so value ofK is
of significant importance. The clipsum function is realisedin the FPGA as follows:

procedure sum(A,B : in std_logic_vector;C : out std_logic_vector)is

variable summ : std_logic_vector;

begin

summ := (A(A’high)&A)+(B(B’high)&B);

if A >= max_inf then

C:= max_inf;

elsif A <= min_inf then

C:= min_inf;

elsif B >= max_inf then

C:= max_inf;

elsif B <= min_inf then

C:= min_inf;

elsif summ >= max_inf then

C:= max_inf;

elsif summ <= min_inf then

C:= min_inf;

else

C:= summ;

end if;

end sum;

The usage of this procedure is as

sum(a,b,a_variable);

c <= a_variable;

47

where the operation definesc = a ⊕ b. It must be noted that since the procedure

returns to a variable, this function is not a synchronous operation. We base on aim

in using the function in a combinatorial logic. Since there are recursive operations

taking place in the algorithm, in order to use a result at the next clock cycle it must

be ready before the operation clock. In our case this defines acombinatorial logic.

4.3.4 Node (α, β) Metric Normalization

In (4.16) and (4.15) it has been shown thatα∗ and β∗ values are updated in a re-

cursive manner. As the computations go further, these metric values may overflow

(> MaxIn f) or underflow (< MinIn f). To solve this problem,α∗ andβ∗ values are

normalized at each trellis step. After each forward recursion, the maximum of the

newly generated forward metric values is subtracted from these values andα∗ met-

rics are updated with these normalized values. The same is applied to theβ∗ metrics.

After the normalization process, we get a maximum value of 0 for α∗ andβ∗ metrics

at each time instant and prevent underflow and overflow cases.Another approach to

node metric normalization can be found in [21].

The algortihm can be written as follows. LetAl(s) be all of the calculatedα∗ values

at timel then we define a new variableα∗max such that

α∗max= maxsAl(s) (4.38)

Then the new definedα∗ values,α′∗, are

α′∗ = α∗ ⊖ α∗max (4.39)

The same approach can be applied toβ∗ metrics. The VHDL code forα∗ normal-
ization is divided into two sections. Firstlyα∗max is found in a process description, the
code is for a 2-state trellis,

process(alfa)

begin

if alfa(1) > alfa(2) then

alfa_max <= alfa(1);

else

alfa_max <= alfa(2);

end if;

end process;

48

where “alfa” is an array of std−logic−vector. It must be noted that this process is
not a synchronous logic operation. The reason to do this in combinatorial is that
the normalized form ofα∗’s must be ready at the next clock cycle for the recursive
operation. New alfa values are calculated as

process(...)

...

subtract(alfa(1),alfa_max,alfa_new_var(1));

alfa_new(1) <= alfa_new_var(1);

...

It is obvious that the logic is fully combinatorial.

4.3.5 max∗ Approximation

The correction term inmax∗ operation poses a trouble when it is needed to be ex-

pressed in fixed-point arithmetic. It is not possible to easily realize the ln function

fully in such a system. For that reason, some approximationsmust be made to im-

plement themax∗ operation. There are basically two approximations in the literature.

These two different approaches result in log-MAP with tables and max-log-MAP.

If the decoder is a log-MAP decoder thenmax∗ calculation is a more difficult sub-

ject, because the correction term, ln(1+ e(−|x−y|)), should be calculated. Since the

hardware implementation of such a function is complicated,this term is handled by

construction of aLUT in practice. As described in the previous part, the observations

are in quantized form, thereforeLUT values also have to be quantized accordingly.

That is, if the inputs to themax∗ function are in a quantized fashion, the other terms

generated in the function also should be quantized in parallel with the inputs. The

LUT construction function is,

LUT(i) =

⌊
ln(1+ e−iq)

q

⌋
(4.40)

wherei is the absolute value of the difference of the inputs of themax∗ function. The

LUT sizes are usually quite small (around 5-6 entries) with reasonableNormMax

values.

In a max-log-MAP decoder, the correction term is neglected,that ismax∗ operation

is the same with ordinary max operation. So, the quantization term,q, is useless for

49

this method. In other words, it can be said that decoder does not need an exact SNR

estimation to operate properly. Studies in [20] and [17] have shown that max-log-

MAP decoders work without any need on SNR estimation.

4.4 Memory Collision Free Interleavers

The interleaver is the most crucial part in turbo and turbo-like code structures. When

parallelization is in effect the interleaver is evenmore important since each sub-encoder

and sub-decoder must operate coherently. The importance comes from its structure

which must be collision free. For an exemplification of the importance of a colli-

sion free interleaver let us assume the operation of a parallelized encoder structure

for a turbo code in this section. The encoder under observation consists ofN = 4

sub-encoders each of which encodesn number of uncoded data bits.

The uncoded data bits are saved in RAMs. An FPGA RAM is not reachable

through more than two ports at a time. For that reason, the uncoded data must be

stored inN number of distinct RAMs in parallelized encoder structure. The inter-

leaver must be mapping these distinct data RAMs to sub-encoders accordingly. An

uncarefully designed interleaver shows how a collision happens in Figure 4.7. In

the figure, everything seems fine. All the sub-encoders are accessing to different bit

locations hence all of the bits and encoders are one-to-one matched. However, the

problem here is thatencoder1 tries to reach a bit which is located at 1 at a time in-

stant, where 1 is accessible byencoder1 among locations{1,5,9,13}. At the same

time instant,encoder2 tries to reach a bit at location 2,encoder3 to bit location 3 and

encoder4 to bit location 4. When these locations are tried to be mapped with that

interleaver design, it is seen that all of these 4 locations are mapped to RAM1. Since

RAM1 is not able to serve to 4 different requests, a collision will happen and the sub-

encoders will not function properly. Besides functioning, the implementation of such

a system is impossible without adding more latency.

For preventing such a collision, a new interleaver scheme has to be defined. The

interleaver structure used in this study is therow-coloumn S-random(RCS-random)

interleaver which is a subclass ofS-randominterleavers [10]. RCS-randominter-

50

1

5

9

13

2

6

10

14

3

7

11

15

4

8

12

16

encoder1

encoder3

encoder4

encoder2

1

5

9

13

2

6

10

14

3

7

11

15

4

8

12

16

RAM4

RAM3

RAM2

RAM1

Figure 4.7: An illustration of how a memory collision may happen in an encoding
process

leaver can be thought as the combination of too many smallS-randominterleavers

designed in a fashion to prevent memory collisions. In this study it means 4 distinct

S-randominterleavers each of which is of sizen. This interleaver is prepared by

such an algorithm that the data location numbers are alignedinto ann -by- N matrix.

Firstly, the data in each RAM are permuted, which means the interleaving of the rows

of the matrix. Next, the “RAMs” are permuted in anS-randomfashion for all RAM

addresses which means the independent interleaving of columns. The operations are

depicted in Figure 4.8. Such an interleaving will obviouslycreate a new interleaver

table free of memory collisions. The proof can be done in sucha way that, if all of

the N encoders have independent RAMs, each sub-encoder will reachto only one

RAM, that is,encoder1 only reaches to RAM1,encoder2 only reaches to RAM2 and

so on, there will be no memory collision. That corresponds toaddress permutation,

which is row interleaving. If the addresses are distributedin a collision free fashion,

distributing the RAMs will not cause any problems. This is true because if the RAMs

are distributed, locations will interchange between RAMs, e.g. if encoder1 is reach-

ing to the locationx at RAM1 now it will reach to the locationx at RAM2 but this

51

time encoder2 will not reach to locationy in RAM2 but it will reach to locationy at

RAM1 and so on.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

2 1 4 3

8 7 6 5

11 9 10 12

13 16 14 15

2 1 4 3

8 7 6 5

11 9 10 12

13 16 14 15

Rows are interleaved

by independent

S-random interleavers

Coloumns are interleaved

 by independent

 S-random interleavers

Encoder1

Encoder2

Encoder3

Encoder4

Figure 4.8: RCS-random interleaver is a good approach for memory collision freee
interleaver design including the good properties of S-random interleavers [9].

In the construction of a realn by N interleaver MATLAB is used. FirstN (in the

designsN is chosen to be 4) distinct S-random interleavers of sizen are formed. In

the second stepn distinct S-randominterleavers of sizeN are formed. Then these

numbers are converted to binary form for storing them in the FPGA RAMs. This

conversion is done in a comprehensible way such that twoS-randominterleaver num-

bers are combined giving a single number. The first bits, MSB portion, of this new

constructed number gives the RAM numbers. It must be noted that the number of

these bits are⌈log2 N⌉. Remaining bits, LSB portion, gives the address of the selected

RAM to be read/written. Also this LSB portion is in the order of⌈log2 n⌉. Since

interleaver table numbers are only used for reading after once they are stored, these

RAMs are nominated as read-only memories (ROM) in FPGA. The operation taking

place in FPGA is shown in Figure 4.9.

52

Interleaver ROM1

14

12

8

9

Interleaver ROM2

10

15

2

1

Interleaver ROM3

6

3

13

16

Interleaver ROM4

4

5

11

7

Data Ram 1

1

2

3

4

Data Ram 2

1

2

3

4

Data Ram 3

1

2

3

4

Data Ram 4

1

2

3

4

encoder1

encoder2

encoder3

encoder4

Address Request

Address Request

Address Request

Address Request

Uncoded data to be encoded

Uncoded data to be encoded

Uncoded data to be encoded

Uncoded data to be encoded

Figure 4.9: The interleaver operation taking place in the FPGA. Each address re-
quest is decoded, the requested RAM and the corresponding location is found and the
requested data is forwarded to the demanding encoder.

4.5 Encoder/Decoder Design of Parallel Decodable Turbo Codes

4.5.1 Encoder Design

The parallelization of the encoders was introduced in Chapter 2. The design can be

summarized as follows. Uncoded data sequence is fed into 4 parallelized convolu-

tional encoders. This part forms the systematic data and theparity bits of the system-

atic part. At the same time by the use of interleaver a small controller interleaves the

uncoded data. The interleaved data part are also fed into 4 parallel encoders so that

the second parity terms are obtained. Since termination is on the scene, the last two

bits of the interleaved data is also included in the sequencethat is to be transmitted.

The sub-encoders are obtained by the help of a finite state machine. Each one of

53

the sub-encoders starts with an initial state chosen to be the all-zero state and the

state of the encoder changes with each arrival of an uncoded bit. The coded bits are

stored in a buffer. Whenn bits are encoded, the sub-encoder adds termination bits to

the coded sequence and warns the outer world that the encoding process is done. A

small controller, which is responsible for the initialization of the encoders and for the

interlaver control, senses that the sub-encoders filled thebuffers. When the buffers

are full, the encoder transmits the coded data sequence to the next block such as a

modulator.

If the number of parallel encoders isN and the interleaver block size isB then total

encoding latency for this encoder scheme is

τenc=
B
N
+ 3+ 2 (4.41)

+3 comes from the fact that the interleavers reach to the memories with 3 clock cycle

constant latency.+2 comes from the termination bits.

The ISE synthesis report for the defined parallel encoder is given in Table 4.1. The

table shows that encoder does not consume much of the logicalblocks of the device.

However, by the use of the interleavers and additional memory for storing the results

of the parallel encoders more BRAMs are occupied.

Table 4.1: Xilinx ISE synthesis report for parallel turbo encoder

Unit Name Usage count and percantage
Slices 670 (4 %)
BRAM 7 (3 %)

Max. clock frequency 178.396 MHz

4.5.2 Decoder Design

Decoder design is more challenging compared to encoder design. The decoder is

complex because there are memory read/write operations, summations, subtractions,

assertions and all of them are taking place at the same time. The PDTC decoder

block diagram was given in Figure 2.7 of Chapter 2. The operation of the PDTC

decoder can be summarized as follows. First, by the reception of a sequence an

54

FSM starts operating, which can be considered as a small controller in the decoder.

In the initial states all of the received data are written into dedicated memories for

proper operation of decoding. After the received data are written into the memories

an assertion for the MAP decoders (sub-decoders) happens telling to the sub-decoders

that a decoding process will start. Since all of the paralleldecoders are in the idle

state, they get ready for the reception of bits for decoding by the assertion of that

start signal. All of the MAP decoders are fed by the controller in accordance with

the CT algorithm. When the sub-decoders decoden/2 number of bits they assert

to the controller that first decoded bits are being produced.The controller starts to

write these decoded bit probabilities to dedicated memories. When all of the bits are

decoded the next step starts. In this step the interleaver comes to the scene. This time

the interleaved versions of the received bits are fed to the MAP decoders with the

information from the previous step.When this step finishes, an iteration is said to be

over. The performance of the PDTC decoder will be discussed in the next chapter.

One important parameter in the operation of the decoders is finding the a priori

probabilities, (La), for the next operation cycle in each iteration. A priori probabil-

ities in the PDTC decoder is the interleved or deinterleavedversion of the extrinsic

probabilities,Le. Le values are calculated in the MAP-decoders and its general for-

mula is [15]

Le = LL − r − La (4.42)

whereLL is the log-likelihood of the decoded bits,r is the channel observation prob-

ability in the log domain which corresponds to interleaved/deinterleaved systematic

data, andLa is the a priori log-likelihoods that is processed in the sub-decoders. This

subtraction operation is for preventing a feed-forward mechanism that may destabilize

decoding. If a feed-forward occurs in the decoder, the operation will not be reliable.

For example, for an iteration of 20,r will accumulate 20 times and it will be dominant

in LL, which will cause decreasing the performance of the decoderdramatically.

55

4.6 Encoder/Decoder Design of Parallel Decodable Repeat Accumulate Codes

4.6.1 Encoder Design

The encoder of the PDRAC is composed of two parts. The first parthas the repetition

encoders and the second part has the accumulators. In implementing the repetition

part, each bit is suspended for an amount of time by the help ofa small counter. If the

repetition is to be done 3 times, that isZ = 3, then a counter counting up to 3 controls

the repetition of the bits. The accumulator part is almost the same as that of the turbo

encoder. As explained before, an accumulator is a simple delay and add operator

in modulo-2. However, in order to control the termination bits of the encoders, an

FSM is extracted and used in the accumulator, that is, accumulator is acting as a

convolutional encoder. As theZ × n of bits are encoded then the accumulator adds a

termination bit to the sequence and forwards to the transmitter. The implementation

results of the PDRAC encoder is given in Table 4.2

Table 4.2: Xilinx ISE synthesis report for parallel turbo encoder

Unit Name Usage count and percantage
Slices 550 (3 %)
BRAM 7 (3 %)

Max. clock frequency 192.433 MHz

4.6.2 Decoder Design

The decoder design of the PDRAC is similar to the decoder of thePDTC. The differ-

ences between them is firstly the MAP decoders in the first cluster are BCJR decoders

of a two-state convolutional code. Secondly, in the second cluster a repetition decoder

is introduced in place of the MAP decoders. The repetition decoders work in a fashion

that they sum upZ-consecutive log-likelihoods for the final decision of the bits. The

lack of the second MAP decoder cluster and introduction of the repetition decoders

drastically decreases the logic consumption of this decoder.

Calculation of the a priori likelihood,La, is an important concern in PDRAC de-

56

coder and it is derived fromLe, the extrinsic information. Calculation ofLe is slightly

different than that done in PDTC decoder and it is done in the MAP-decoders. The

equation for calculatingLe in the MAP-decoders is

Le = LL − La (4.43)

whereLL is the log-likelihood andLa is the apriori-likelihood. There is not anr in

this equation since the repeat-accumulate code we used is a non-systematic repeat

accumulate code. TheLe Calculated by this equation is the extrinsic log-likelihood

information of each “repeated bit”. IfLe is deinterleaved, obtainingDe−Le, it yields

a new sequence that, every consecutiveZ number of values give the extrinsic likeli-

hoods for the repeated bits. The summation of these likelihoods in a cross manner

yields the deinterleaved a priori likelihoods. Interleaving deinterleaved a priori likeli-

hoods yields a priori likelihoods,La, for the next iteration. Let us visualize the “cross

summation” term with an example. LetZ be 3 and deinterleaved version of extrinsic

likelihoods for the first bit,u1, beL1
e1, L1

e2, L1
e3. Now, the deinterleaved a priori likeli-

hood for the first repetition ofu1 will be L1
e2+L1

e3, that is the summation of the second

and the third values of the extrinsic likelihood. Similarly, deinterleaved a priori like-

lihood for the second repetition ofu1 will be L1
e1 + L1

e3, that is the summation of the

first and the third values of the extrinsic likelihood and so on. These calculation are

done in the FPGA by thea priori-finder module. The performance of the PDRAC

decoder will be conducted in the next chapter.

57

CHAPTER 5

RESULTS FOR THE PERFORMANCE OF PARALLEL

DECODERS

This chapter discusses the FPGA results of the PDTC and the PDRAC decoders im-

plemented on the Xilinx Virtex4-SX35 FPGA. The floating point simulation results

will be given in addition to fixed point simulation results with varying block lengths.

Unless a different situation is indicated, the number of parallel branches will be 4 for

both PDTC decoder and PDRAC decoders. The number of repetitions for the PDRAC

operation is chosen to be 3.

5.1 Implementation Results

The PDTC and PDRAC decoders are implemented for varying number of bit repre-

sentation of the observations. The PDTC decoder is synthesized for two kinds. One

is log-MAP based PDTC decoder and the other is the max-log-MAP based PDTC de-

coder. PDRAC decoder is synthesized by only using log-MAP decoder. The reason

for this is not to face performance loss in PDRAC decoder.

In Table 5.1 the synthesis results for log-MAP based parallelized turbo decoder,

in Table 5.2 the synthesis results for max-log-MAP based turbo decoder are given.

Additionally, in Table 5.3 the synthesis result for PDRAC is given.

The distinct difference between log-MAP and max-log-MAP algorithms is that the

former uses a LUT. As described in Chapter 4, LUT is generated by using theq value

of the quantization. LUT insertion in decoders introduce extra resource usage. These

58

Table 5.1: Implementation results for PDTC decoder using log-MAP decoders

K Slice Slice usage Maximum achievable
(number of bits) usage Percentage (%) Clock Frequency (MHz)

5 8663 56 65.557
6 10595 68 60.070
7 10807 70 55.491

Table 5.2: Implementation results for PDTC decoder using max-log-MAP decoders

K Slice Slice usage Maximum achievable
(number of bits) usage Percentage (%) Clock Frequency (MHz)

4 6347 41 87.253
5 6501 42 86.963
6 6994 45 86.949
7 7537 49 85.704

extra resources, i.e. slices, are included in the results given in Tables 5.1 and 5.3.

It is obvious that LUT insertion degrades the design performance in terms of both

resource usage and maximum clock speed. The reason of that can be explained as

follows. LUT can be thought as a large multiplexer which is controlled by theq value

and the inputs of themax∗ operation. Additionally the results of the LUT have to be

added in themax∗ operation in order thatmax∗ result can be ready at the next clock

cycle, that is, a combinatorially operating large multiplexer degrades the resource

usage and combinatorial addition degrades the maximum operating frequency. Also,

it must be noted that the slice usage increases almost linearly with icreasing number

of parallel sub-decoders,N.

Another important tool that can be used in FPGA implementations is pipelining.

As described in Chapter 3 pipelining provides convenience for increasing the clock

speed of the design. A recent log-MAP and max-log-MAP PDTC decoder conducted

in [2] shows how pipelining can be an enhancement for performance. In this design

all of the computations were carried right after an information was fetched. However

in our design independent blocks were divided into groups bythe use of flip-flops.

The sysnthesis results for the aforesaid PDTC implementation are given in Tables 5.4

and 5.5.

59

Table 5.3: Implementation results for PDRAC decoder using log-MAP decoders

K Slice Slice usage Maximum achievable
(number of bits) usage Percentage (%) Clock Frequency (MHz)

5 5109 32 68.755
6 6046 39 68.180
7 6219 40 64.218

Table 5.4: Another approach to PDTC decoder implementation: Implementation
results for PDTC decoder using log-MAP decoders [2]

K Slice Slice usage Maximum achievable
(number of bits) usage Percentage (%) Clock Frequency (MHz)

5 8179 53 36.288
6 10628 69 31.522
7 11309 73 31.352

5.2 Simulation Results

5.2.1 Bit Size (K) Selection

The bit size representation,K, for the observations is an important issue. The de-

coders can operate on a broader number of set asK gets larger. The available number

set for decoder is{−2K−1 + 1,−2K−1 + 2, . . . ,−2K−1 − 2,−2K−1 − 1}. The BER per-

formance with respect toK for the log-MAP based PDTC is demonstrated in Figure

5.1 and max-log-MAP based PDTC decoder in Figure 5.2 in addition to floating-

point simulation which is done on MATLAB. The BER results for PDRAC decoder

is presented in Figure 5.3. In these figures the performance of the PDTC decoders

were examined for 4 iterations over 2000 frames where each frame consists of 160

information bits. However, the PDRAC decoder performance was observed for 8 it-

Table 5.5: Another approach to PDTC decoder implementation: Implementation
results for PDTC decoder using max-log-MAP decoders [2]

K Slice Slice usage Maximum achievable
(number of bits) usage Percentage (%) Clock Frequency (MHz)

5 6104 39 49.873
6 6570 42 47.645
7 7174 46 43.841

60

erations with the same frame properties of PDTC decoders. From the figures it is

understood that as numberK increases, the fixed-point performance of the decoders

approaches that of the floating-point. The FPGA results are obtained by choosing the

most suitableNormMaxvalue, which will be conducted in the upcoming section.

−3 −2 −1 0 1 2 3
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

o
 (dB)

K=4
K=5
K=6
K=7
floating−point

Figure 5.1: SNR vs BER for log-MAP based turbo decoder. 4 iterations for 2000
frames of 160 bits through 4 parallel MAP decoders.

5.2.2 NormMaxSelection

Selection ofNormMax is another important figure in PDTC and PDRAC decoder

performance. IfNormMaxis chosen to be small then most of the information in the

observations will be cropped and the decoder will not function satisfactorily. On the

other hand, a largeNormMaxwill cause the decoder perform around the saturation

values. Hence the selection ofNormMaxmust be done carefully. Figure 5.4 and

Figure 5.5 shows the effect of NormMax on the performance of PDTC and Figure 5.6

show the effect ofNormMaxon PDRAC decoder.

61

−3 −2 −1 0 1 2 3
10

−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
E

R

K=4
K=5
K=6
K=7
floating−point

Figure 5.2: SNR vs BER for max-log-MAP based turbo decoder. 4 iterations for 2000
frames of 160 bits through 4 parallel MAP decoders.

−3 −2 −1 0 1 2 3
10

−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

o
 (dB)

K=5
K=6
K=7
floating−point

Figure 5.3: SNR vs BER for PDRAC decoder. 8 iterations for 2000 frames of 160
bits through 4 parallel MAP decoders.

62

0 5 10 15 20 25
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

NormMax values for E
b
/N

o
 = 2.6423 dB

K=4
K=5
K=6
K=7

Figure 5.4:NormMaxvalues for log-MAP turbo code decoder for different bit repre-
sentations. The average of 6000 packets of 160 data bits with4 parallel decoders.

0 5 10 15 20 25
10

−4

10
−3

10
−2

10
−1

10
0

B
E

R

NormMax values for E
b
/N

o
 = 2.6423 dB

K=7
K=6
K=5
K=4

Figure 5.5:NormMaxvalues for max-log-MAP turbo code decoder for different bit
representations. The average of 6000 packets of 160 data bits with 4 parallel decoders.

63

0 5 10 15 20 25
10

−3

10
−2

10
−1

10
0

B
E

R

NormMax values for E
b
/N

o
 = 2.6423 dB

K=7
K=6
K=5

Figure 5.6:NormMaxvalues for repeat accumulate codes for different bit representa-
tions. The average of 6000 packets of 160 data bits with 4 parallel decoders.

5.2.3 Interleaver Size

As the interleaver size increases the performance of the decoders gets better. This

phenomena is called theInterleaver Gainin literature. In Figures 5.7, 5.8, and 5.9

the BER performances of the PDRAC and PDTC decoders are depicted. In Table 5.6

these performance results are given for comparison purposes. In these figures and

table it must be noted that the SNR curves are approximated with linear interpolation.

64

−3 −2 −1 0 1 2 3
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

o
 (dB)

K=5
K=6
K=7
floating−point

Figure 5.7: SNR vs BER for RA with 4 parallel sub-decoders decoding 1344 bits in
total with 8 iterations.

−3 −2 −1 0 1 2 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

o
 (dB)

K=5
K=6
K=7
floating−point

Figure 5.8: SNR vs BER for turbo decoder with 4 parallel max-log-MAP decoders
decoding 1344 bits in total with 4 iterations.

65

−3 −2 −1 0 1 2 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

o
 (dB)

K=5
K=6
K=7
floating−point

Figure 5.9: SNR vs BER for turbo decoder with 4 parallel log-MAP decoders decod-
ing 1344 bits in total with 4 iterations.

66

Table 5.6: Performance comparison of the proposed decoder structures

Eb/N0 (dB)

1.3 2.6

Interleaver Size

Decoder Type K 160 1344 160 1344

Infinite 1× 10−2 4× 10−4 1.1× 10−4 1.5× 10−6

max-log-MAP 7 1.2× 10−2 3× 10−3 1.7× 10−4 3× 10−6

PDTC decoder 6 1.3× 10−2 3.2× 10−3 1.9× 10−4 6.1× 10−6

5 2.5× 10−2 9.7× 10−3 3.9× 10−4 1.4× 10−5

Infinite 9.9× 10−3 2× 10−4 3.3× 10−5 1× 10−6

log-MAP 7 1× 10−2 1.2× 10−3 5.3× 10−5 3× 10−6

PDTC decoder 6 1× 10−2 1.2× 10−3 7.8× 10−5 4.5× 10−6

5 1.2× 10−2 3.1× 10−3 2.3× 10−4 1.3× 10−5

PDRAC decoder

Infinite 2.1× 10−2 2.3× 10−2 9.2× 10−4 2× 10−5

7 3.7× 10−2 3× 10−2 1.1× 10−3 4.1× 10−5

6 3.9× 10−2 2.9× 10−2 1.4× 10−3 5.6× 10−5

5 4.6× 10−2 2.8× 10−2 2.5× 10−3 2.5× 10−4

5.2.4 Memory Complexity

The parallel decoder structure requires the observations to be stored in multiple mem-

ory segments. We use different memory structures for PDTC and PDRAC decoders.

5.2.4.1 PDTC memory structure

In PDTC we useN MAP decoders operating in parallel. TheseN decoders needN

memory blocks for data bit observations (d for decoders in Chapter 2). Accordingly,

N memory blocks are used for parity observations andN memory blocks for inter-

leaved parity observations (p1 andp2 for decoders in Chapter 2). In addition to these,

N memory blocks are also defined for interleaver (memory collision-free interleavers)

tables.

67

5.2.4.2 PDRAC memory structure

For N parallel MAP decoders, the observations are stored intoN memory blocks.

Different than the PDTC case, there are no data observations. Similar to the PDTC

case,N memory blocks are used to store the interleaver tables.

Log-likelihood values are stored in RAMs, too. Each decoder needs an a priori

probability (La) and generates log-likelihood ratio (LL) andextrinsic information(Le),

where in our designLe’s are calculated within the MAP decoder. TheseLe andLa

notations are eligible for the decoders running in the first cluster. In the second cluster,

decoders useLe values asLa and generates theLe values which will be used asLa in

the next iteration. The word “cluster” is used just for illustration which defines half

of an iteration. In fact, decoders only change their state toswitch the input and output

log-likelihood ratios (La andLe). SinceLL values are final results, they are updated

(overwritten) after eachclusterrun. That structure brings out a memory usage of 3N

memory blocks for log-likelihood ratio storage in both PDTCand PDRAC decoders.

Summing up all yields a usage of 7N number of memory blocks for PDTC decoder

and 5N for PDRAC decoder.

5.2.5 Transmission Bit Rate

Large decoding latencies in turbo and turbo-like codes are told to be the drawback of

these algorithms. By making them operate in parallel, a decrease in their decoding

latencies is expected. To observe that decrease, decoding latencies are better given

in a formula. The decoding latency,τ, for our parallel decodable turbo code decoder

stucture (both log-MAP and max-log-MAP) is

τ =

(D
N
+ 6

)
2I , (5.1)

whereD is the number of information (data) bits in the packet,N is the number

of parallel decoders in a cluster andI is the iteration number. TheDN term is the

decoding latency of a BCJR decoder operating with the CTT algorithm. The addition

of 6 in (5.1) is the result of the latency in BCJR (4) and interleaver structure (2)

due to pipelining. The reason of multiplying by 2I is that in each iteration the BCJR

68

decoders run twice, one for the uninterleaved form of data and one for the interleaved.

Similarly for PDRAC decoder the decoding latency can be expressed as

τ =

(D
NR
+

D
2NR

+ 6
)

I (5.2)

=

(
3D

2NR
+ 6

)
I (5.3)

whereR is the code rate. The termD
NR in (5.2) is the latency introduced by the BCJR

decoders and the termD
2NR is the latency introduced by the accumulate decoders.

During the decoding latency calculations, it assumed that aping-pongbuffer struc-

ture is used in the receiver side. While a packet is being received, the observations

are stored in memory in a quantized form. After that,ping memories are filled as

described in Section 5.2.4 ford, p1 and p2 observations and decoders begin to run.

During the decoding process if another packet arrives, thed, p1 andp2 observations

are stored inpongmemories. In this case, the decoding process is not affected by the

reception of the new packet. When the decoders finish their job, they operate on the

pongmemories and this time theping memories are free for another packet storage.

This structure doubles the memory usage in the system for storing observations.

Table 5.7: Comparison of the proposed decoder structures

Decoder N I K Clock speed SNR for Bit Rate

(bits) (MHz) BER= 10−3 (Mbps)

PDTC with max-log-MAP 8 4 6 80 ∼2.2 dB 61.54

PDTC with log-MAP 6 4 6 60 ∼2.0 dB 36.73

PDRAC with log-MAP 10 8 7 60 ∼2.7 dB 15.4

At this point, we can make a final comparison between all the proposed structures

in terms of maximum available data rates. If we denote the data rate byυ, we can

formulate it as,

υ =
D x f
τ
, (5.4)

where f is the maximum available frequency andτ is the decoding latecy. To find

the exact data rate, we need to decide on the architecture, number of data bits in

a packet (D), metric representation width (K), iteration number (I), the number of

constituent decoders in a cluster (N), and the code rate (R). In data rate calculation,

69

the f value can be obtained by checking the Tables 5.2, 5.1, and 5.3for the selectedK

value. Similarly,τ value can be obtained from (5.1), or (5.3) for the decided structure.

After observing the BER performances and FPGA resource usage, it is decided to use

K = 6 for log-MAP and max-log-MAP PDTC decoders andK = 7 for PDRAC

decoder. Herein we used packets containing 160 data bits, that isD = 160. Using the

Tables 5.1, 5.2, 5.3 and Figures 5.1, 5.2, 5.3 with the designchoices listed above, we

can generate Table 5.7 that gives all the information and comparisons needed. The

table is constructed with an assumption that the number of parallelly processing sub-

decoders are increased in such a way that the FPGA became almost full. The clock

speeds are also adjusted for matching the clock speeds that are available in industry.

70

CHAPTER 6

CONCLUSIONS

Iterative decoding is one of the most effective techniques for obtaining low error rates.

However, as the number of iterations increase there will be more latency in decoding

which will reduce its applicability. In order to increase the decoding speed of such

decoders, parallelization of many decoders is one of the most important ideas in lit-

erature. While constructing the thesis work, two iteratively decodable code types are

utilized, turbo codes (TC) (known as, parallelly concatenated convolutional codes,

PCCC) and repeat-accumulate (RA) codes. In order to decrease thelatency at de-

coding of these codes to reasonable levels, we applied parallelization which yielded

to parallel decodable turbo codes (PDTC) and parallel decodable repeat-accumulate

codes (PDRAC) respectively. In this thesis work, the performances of the PDTC and

the PDRAC decoders are investigated and compared by implementing them on an

FPGA.

Marginal a posteriori (MAP) decoders are utilized as soft insoft out (SISO) sub-

decoders. The algorithm used for the MAP decoder was the Bahl et al. algorithm

(BCJR) which is renowned for optimal performance. We have applied the a posteriori

probability (APP) decoding in the decoder of PDRAC for observing its performance

as in PDTC.

The parallelization idea causes new problems mainly in interleaver design. Besides

the complexity of building an interleaver which supports parallel processing, due to

limited access to memory blocks available in the FPGA the memory collision problem

was the most crucial one. In order to build collision free andeffective interleavers,

row-columnS-randominterleaver design technique was used.

71

In the thesis, the aim was observing the performance of aforesaid codes under

AWGN channel. The channel was created in the hardware by producing pseudo-

random Gaussian noise components through applying linear feedback shift register

approximation. The distribution of generated random variables was quite similar to

that of random Gaussian noise.

A reasonable way for designing low-latency decoders in an FPGA was using an

integer based approximation by representing numbers byK bits in FPGA. However,

integer based operations came with some consequences. The first drawback was the

limited set of numbers for operations. The set defined at the out of the decoder can

be numbers from−∞ to +∞. So this large set is modified by using normalization

techniques for proper usage of observations in decoding algortihms. Since the max-

imum and minimum available numbers in operations are definedby K, overflows or

underflows are highly predicted to happen in addition and subtraction operations. So,

addition and subtraction operations are redefined for handling these kinds of situa-

tions. Next, the implementation of a log-MAP decoder has some fine details which

includescorrection term. The correction term is composed of a logarithmic function

and its implementation heavily decreases the performance of the decoders in terms of

both latency and resource allocation. In order to overcome this situation an, accord-

ingly defined look-up table is used.

In terms of SNR vs BER performance log-MAP based PDTC decoder was the best

operating decoder, but its resource utilization was the largest. max-log-MAP based

PDTC decoder’s performance is observed to be about 0.2 dB worse than the log-MAP

based one. However, its both clock speed and resource allocation was better than log-

MAP. If this small performance loss is neglected, max-log-MAP based PDTC decoder

seems to be the best match for high-speed communications. The performance of

PDRAC decoder was the worst among inspected decoder architectures. The FPGA

used in this study is a moderate sized FPGA. For such an FPGA PDRAC decoder

is not a good choice and it is about 0.5 dB worse than max-log-MAP based PDTC

decoder. In small-sized FPGAs like FPGAs those contain about 7-8k slices, PDRAC

decoder can be used unless communications speed more than 10Mbps is needed.

After this study some future work can be recounted. RA codes became famous for

72

their good BER performance. If the BER performance of these codes is improved they

can be competitive in terms of resource allocation. A sum-product algorithm (SPA)

based decoder can be constructed, put into parallelized form, and be implemented.

The performance of the provided SPA decoder can be compared to that of the PDRAC

decoder. Additionally, after invention of RA codes new RA-based codes appeared.

Irregular Repeat Accumulate Codes (IRA), Accumulate RepeatAccumulate (ARA)

codes, Accumulate Accumulate Repeat Accumulate (ARAA), andAccumulate Repeat

Accumulate Accumulate (ARAA)codes are variants of it. The BER performance of

these codes can also be observed by implementation.

73

REFERENCES

[1] Tuğcan Aktaş. Parellel decodable channel coding implemented on a MIMO
testbed. Master’s thesis, Middle East Technical University, August 2007.

[2] Çağlar Kılcıoğlu. FPGA implementation of jointly operating channel estima-
tor and parallelized decoder. Master’s thesis, Submitted to Graduate School of
Natural and Applied Science for approval, METU, September 2009.

[3] Peter Alfke. Efficient shift registers, LFSR counters, and long pseudo-random
sequence generators.Xilinx Application Notes No 52, 1996.

[4] C. Berrou, A. Glavieux, and P. Thitimajshima. Near Shannonlimit error-
correcting coding and decoding: Turbo-codes.in Proc. ICC’93, pages 1064–
1070, 1993.

[5] Dariush Divsalar, Hui Jin, and Robert J. McEliece. Coding theorems for turbo-
like codes. in Proc. 36th Annual Allerton Conference on Communications,
1998.

[6] S. Dolinar and D. Divsalar. Weight distribution for turbo codes using random
and nonrandom permutations.JPL Progress Report 42-122, pages 56–65, 1995.

[7] Enes Erdin, Çăglar Kılcıoğlu, and AliÖzg̈ur Yılmaz. An implementation-based
comparison of parallelized turbo decoders.An article submitted to IET Commu-
nications, 2009.

[8] R. Gallager. Low-density parity-check codes.IRE Transactions on Information
Theory, 1962.

[9] Orhan Gazi.Parallelized Architectures for Low Latency Turbo Structures. PhD
thesis, Middle East Technical University, January 2007.

[10] Orhan Gazi and AliÖzg̈ur Yılmaz. Collision free row-coloumn S-random in-
terleaver.IEEE Communications Letters, 13(4), April 2009.

[11] Xilinx User Guide. ML-402 board user guide.Xilinx, 2008.

[12] Hui Jin. Analysis and design of turbo-like codes. PhD thesis, California Insti-
tute of Technology, 2001.

[13] J. Jung, I. Lee, D. Choi, J. Jeong, K. Kim, E. Choi, and D. Oh.Design and
architecture of low-latency high-speed turbo decoder.ETRI Journal, 27(5):525–
532, October 2005.

[14] L.Bahl, J.Cocke, F.Jelinek, and J.Raviv. Optimal decoding of linear codes for
minimizing symbol error rate. March 1974.

74

[15] Shu Lin and Daniel Costello.Error control coding. Pearson Education Interna-
tional, 2004.

[16] Claude E. Shannon. A mathematical model of communication. Bell System
Technical Journal, 27:379–423, 1948.

[17] T. A. Summers and S. G. Wilson. SNR mismatch and online estimation in turbo
decoding.IEEE Transaction on Communications, 46(4):421–423, April 1998.

[18] R. Michael Tanner. A recursive approach to low-density codes.IEEE Transac-
tions on Information Theory, 1981.

[19] Stephan B. Wicker.Error Control Systems for Digital Communication and Stor-
age. January 1995.

[20] A. Worm and P. Hoeher. Turbo-decoding without SNR estimation. IEEE Com-
munications Letters, 4(6):193–195, June 2000.

[21] Peter H.-Y. Wu and S. M. Pisuk. Implementation of a low complexity, low
power, integer-based turbo decoder.Global Telecommunications Conference,
pages 946–951, 2001.

75

