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ABSTRACT

PERFORMANCE OF PARALLEL DECODABLE TURBO AND REPEAT
ACCUMULATE CODES IMPLEMENTED ON AN FPGA PLATFORM

Erdin, Enes
M.S., Department of Electrical and Electronics Enginegrin

Supervisor : Assoc. Prof. Dr. Abzgir Yilmaz

September 2009, 75 pages

In this thesis, we discuss the implementation of a low latesecoding algorithm
for turbo codes and repeat accumulate codes and comparaplementation results
in terms of maximum available clock speed, resource consomperror correction
performance, and the data (information bit) rate. In ordeddcrease the latency a
parallelized decoder structure is introduced for thesetimead codes and the results
are obtained by implementing the decoders on a field progetstergate array. The
memory collision problem is avoided by using collisiondriaiterleavers. Through
a proposed quantization scheme and normalization appatixins, computational
issues are handled for overcoming the overflow and underfisuess in a fixed point

arithmetic. Also, the fect of diferent implementation styles are observed.

Keywords: Repeat-Accumulate Codes, Turbo Codes, Paralledd2ecFPGA, Xil-

inx
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PARALELLESTIRILMIS TURBO VE TEKRARLA-BIRIKTIR KODLARININ
FPGA PLATFORMUUZERINDE GERCEKLENMES VE BASARIMI

Erdin, Enes
Y Uiksek Lisans, Elektrik-Elektronik Mhendislgi Bolumi

Tez Yoneticisi : Dog. Dr. AliOzgir YILMAZ

Eylul 2009, 75 sayfa

Bu tezde turbo kodlar ve tekrarla-biriktir kodlari iciiglk gecikmeli bir kod ¢zme
algoritmasinin donanimsal tasarimi ve tasarim sonuagtesaat hizi, kaynakiketimi,

hata dizeltme yeten@ ve veri hizi agcisindan incelmesi gerceklestiriltiniC o ziicideki
gecikmeyi azaltmak i¢in paralellestiriimi$ziici mimarisionerilmis ve bahsi gegen
kodlar icin sonugclar, alan programlanabilir kapilarisizde (FPGA) incelenmistir.
Hafiza cakisma problemi, cakismasiz karistirididaltanilarakonlenmistir. Ayrica
onerilen nicemleme velzgeleme yaklasimlariyla sabit noktall hesaplamalaiggabilecek

alttasma vaisttasma sorunlari dézilmustir.

Anahtar Kelimeler: Tekrarla biriktir kodlar, Turbo kodaParallestiriimis ©zudi,
FPGA, Xilinx
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CHAPTER 1

INTRODUCTION

In wireless communication systems channel coding is oneeaitost important tools.
By the help of strong channel codes the quality in commuracatan be highly
improved. By recent developments and improvements in congation systems
technology, reliable and high speed data transfer becanma@ortant issue. From
satellite communications to wireless local area netwdHis{N), large bandwidth

and high speed transfers with a minimum error probabiligydesired.

Since Shannon determined the maximum achievable ratesVit@®M channels,
many studies in channel coding have been conducted. Ones ohtist significant
studies conducted in this area is the study of Gallagerdoiztmg low-density par-
ity check (LDPC) codes in 1963. However, LDPC codes were npulas due to
their iterative docoders were impractical at those timeke most important study
which ushered a new era in coding theory was introduced byoBest al. with the
name turbo codes [4]. Right after the introduction of the duskructure, this idea
is applied to other coding schemes and this yielded to imverdf many classes of
codes, broadly called turbo-like codes. The family of Regeatumulate codes is a
well-known type of turbo-like codes [5].

Although turbo and repeat accumulate codes fireient in terms of bit error ratio
(BER) vs. signal to noise ratio (SNR) performance, their derodgroduce large
decoding delays due to their iterative decoding schemehdsitimber of iterations
are increased, a better error performance is usually aatdat the time of decoding
increases in proportion to the iteration number. In ordetdorease such huge laten-

cies various ideas have been implemented like building nadeepders operating in



parallel which is a widely used technique in literature. sTApproach significantly
decreases the decoding delay with almost no loss in terms Bf [BE For further
decrease in decoding latency, certain algorithms suchraerce top algorithm are

also utilized inside the marginal a-posteriori (MAP) deexsd[13].

Parallelization is a powerful tool for decreasing the decgdatency. While con-
structing a decoder structure operating in parallel menoatiision problems can
occur. Decoders operating in parallel attempt accessifognration residing in the
same memory segment. Such problems can be avoided with glenmantation of

suitable collision free interleavers as studied in theithes

In this thesis, our aim is observing the performance of pelizéd encoder and
decoder structures for turbo and repeat accumulate cogdsrimented on an FPGA
platform and investigating the parameters whicfeet their operation. The perfor-
mances of the decoders will be evaluated in terms of BER pednce, FPGA re-

source usage, maximum achievable FPGA clock speed, anthdatghput.

The outline of the thesis can be summarized as follows. In @h&) a general
description on turbo and repeat accumulate codes is giveneXplain the basic en-
coder and decoder structures for these codes and give albsefiption for building
decoders and encoders operating in parallel. In Chaptee&rhironment in which
the implementations are carried on is described. In Chapteredexplain the im-
plementation steps for obtaining a MAP decoder that is lased for constructing
parallelized decoders. In Chapter 5, we demonstrate the SNRER performances
of the proposed decoder architecture and discuss the ireplation results. Also,
the maximum throughput of the decoders are calculated sndhapter. Finally in

Chapter 6, we conclude the thesis and provide suggestiofistéme work.



CHAPTER 2

TURBO CONCEPT

The noisy-channel coding theorem, stated by Claude Shamnd®4i8 [16], opened
a new era in communications. The theorem basically statds dime can transmit
information reliably at information rate&] smaller than a specific rate referred to
as the channel capacit¢€). The theorem implies that information transmission with
arbitrarily small rate is possible with the conditB C. The theorem was the start-
ing point of the Information Theory. As the years passed,ynsindies for obtaining
the minimum available error rate over a noisy channel arelgctied as attempts for

achieving the Shannon Limit.

In order to enjoy a reliable communcation for wireless sysiBorward error cor-
rection (FEC)schemes are used. FEC codes are designed to improve thmaecis
that the receiver makes by giving it enough information to@ct some of the errors
that the channel introduced into the signal. The techniguedding redundancy to
the information by channel coding.

Channel coding can be thought as a process in which redundardarb added
to a series of bits which are to be transmitted to some rexeiv€he aim in this
redundancy operation is to mitigate thigéeet of the noise on the transmitted signal.
Since these bits are processed by some rule, the receieeissikpected to correct
the erroneous bits as much as possible by the help of thesedant bits. There are
many diferent coding techniques forftiérent kind of situations. Bursts of errors,
thermal noise or fading channefects are some examples for these situations [19].

Channel codes can be broadly divided into two categories:



e Block Codes: Repetition codes, BCH codes, Reed Solomon codes are the
most well-known codes in this category. These codes oparater fixed-size
bit blocks. The messages kibits are mapped to codewords of lengthits.

The code rateR, for an (, k) block code is then given by

Kk

For k bits of information there exist — k bits of redundancy.

e Convolutional Codes: They can operate under varying size of blocks. Their
encoders and decoders are usually less complex comparéattoft block
codes. This type of codes constitute the basis of this thesis

After the genesis of Information theory, a number of cayaaihieving codes have
been invented. The oldest of these codes as first introdyc&alager in his doctoral
thesis in 1963 [8]. The class announced by Gallager was thdémsity parity check
(LDPC) codes, but these codes did not gain popularity up thailnvention of turbo
codes. Berrou et al. introduced turbo codes [4] in 1993. Twudmtes attracted the
attention of the researchers with its good error perforraaAdter these developments
a return to LDPC codes occured and people restarted studlygmy. The class of

repeat-accumulate codes introduced in [5] is the resuliede &orts.

Turbo codes enjoyed a grand fame with its good error perfooc@and reasonable
complexity. After a few years of its invention almost evamgan the area of coding
theory agreed that it is a pioneering achievement in the &®a result, it is accepted
as among the coding techniques for next generation wiretessnunication systems
such as Wideband CDMA (WCDMA) and®3Generation Partnership Project (3GPP)
for IMT-2000.

Another important class of codes are repeat-accumulate (RA¢s. RA codes
which is a special type of LDPC codes, is first introduced bysBiar et al. in [5].

RA codes are known for their low complexity decoder and gooorgrerformance.

In this chapter brief information about turbo codes and a¢pecumulate codes
will be given. The parallelization idea for the encoders #mel decoders of these
codes also will be explained. The parallel decoder and esrcsiducture under inves-

tigation will be presented.
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Figure 2.1: Encoder Structure of a Turbo Code

2.1 TURBO CODES

2.1.1 Turbo Code Encoder Structure

In general the encoder structure of a turbo code is paralletatenation of two en-
coders. Figure 2.1 depicts the structure of a turbo codedamc®he information bits,

a sequence of bitg are passed through encoders and bypasksedhe bypassed ver-
sion ofuwhich is also called as the systematic pgktis the parity bit sequence which

is obtained by passingthrough an encoder, a convolutional encoder in our case, and
called parity bitsthroughout this thesis. The bloakrepresents the interleaver block
by which the turbo codes gains its powegx, represents the parity bits obtained by
encoding of “interleaved” data bits which is called ihéerleaved parity bits The
codes Berrou et al. used was convolutional codes and thainseiwvas called parallel

concetenated convolutional codes (PCCC).

For mitigating the encoding decoding latency paralleiazabf encoders and de-
coders are suggested in the literature. The parallelized & the encoder structure
is not too much dferent from the usual form. The parallelized form of turbo en-
coders can be seen in Figure 2.2. At this point the most drsalgect is the design
of a collision-free interleaver block which will be handledthe preceding sections.
For ease of demonstratian p;, p, andsr can be thought as matrices of size N],

wheren is the codeword length passed through a single encoder.

5
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Encoder;
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Figure 2.2: Parallelized Turbo Code Encoder Structure

2.1.2 Convolutional Encoding

In convolutional encoding the output bit streams are geadraith a state transition
matrix and an input bit stream. Their operation principle b& thought as a finite
state machine in which bits of input corresponds tk bits of output. k/n results

in the rate R, of the encoder. Algorithmically there are two main partaafonvo-
lutioanal encoder, a shift register and binary adder blodkse number of locations

in the shift register is indicated by and the constraint length of the encoder is de-
fined as maxty + 1) [19]. Another important parameter in convolutional cede
minimum free distancals.e, defined as the minimum Hamming distance between

any two output sequences. Figure 2.3 depicts a r&2ec@nvolutional encoder with

»

C2

Figure 2.3: A Rate 12 Convolutional Encoder

m, = 2, with one information biu and two coded output bits; andc,. Since the
shift register is composed of 2 storing elements, this eacbds 2 = 4 states. Its
constraint length is 3 and minimum distance is 5. We alreaalgd that the convo-

lutional encoders can be thought as finite state machindd)Fg&ure 2.4 explains

6



how they can be treated as state machines. Figure 2.5 shewreliis diagram of

Figure 2.4: The FSM representation of the convolutionalbéec shown in Figure
2.3 each bit arrival( contributes to a state transition and reveals two outgdst(0)
which are shown in/OO format [9]

the encoder and shows how the transitions may occur over fimeencoder used as
an example in Figures 2.3, 2.4 and 2.5 will be the default dec the encoder of

parallel decodable turbo codes (PDTC).

Figure 2.5: Trellis description of a convolutional encod&he initial and the final
states are the all-zero state [9]

After the encoding of a frame is finished, the final state of éneoder can be
adjusted to be in a known state for getting a better perfoomandecoding, as shown
in Figure 2.5. In general both the initial and the final statiethe encoder is adjusted
to be the all-zero state where all of the shift registers are.af the final state is also
wanted to be controlled thaarmination bitsmust be added to the frame. The length

of the termination bits must b® at least.

7



Many convolutional encoders do not employ feedback, and tan be thought
as finite impulse response (FIR) filters. Recursive convahaliencoders have a
feedback component which makes the encoder behave as eimnfpulse response

(IIR) filter. Our example is a recursive convolutional encodéh feedback.

2.1.3 Interleaving

Interleaving means changing the place of a bit in the sequena newer place such
that the initial and the final location of the bits are relatecach other with some
rule. In wireless channels, transmissiorifets from fading problems, which results
in bursts of errors. A well defined interleaver decreaseptbbabability of error by
distributing the erroneous consecutive bits far from eabkro So at the output of the
interleaver the errors seem to be independent of each &ksides, interleaving en-

hances performances of turbo codes by reducing the numhbmev @feight codewords

[6].

TheS-randominterleaver will be the interleaver type to be used in thegles The

steps for producing a8-randominterleaver can be given as follows [1]:

1. All the mappings occur randomly with equal chance of selac

2. The randomly selected order is accepted only if it is instiattice greater than
Sfor all of the Spreviously selected orders. Otherwise, it is not accepelcba

new random order is generated, until this condition is Batls

The paramete§ is predetermined and usually satisfies< +K/2, whereK is
the interleaver size [6].S-randominterleavers have good spreading characteristics
compared to other interleavers and provide good BER perfoceavhen used with

convolutional codes.

2.1.4 Turbo Code Decoder Structure

In the original turbo code study the scientists used a mabifeysion of the Bahl
et al. (known as BCJR [14]) algortihm [4]. The iterative turbecdder can be seen

8



in Figure 2.6. The decoder given is the decoder for the tudute generated from

__» -
"] siso + 1
P1 Decoder Le,
—— _
La1
Laz
Ny + siso [ e,
Le, | Decoder
- — P2

Figure 2.6: Turbo Decoder

recursive systematic convolutional (RSC) codesepresents the channel observa-
tion corresponding to the systematic dgba,corresponding the parity bit produced
by the use of systematic part apgl to the parity bit produced by the use of the in-
terleaved version of the systematic data. The soft in saf{f®i$0) decoders can be
any decoder. Soft output Viterbi algorithm (SOVA) decodand the BCIR-MAP de-
coders are two commonly used decoders among many. In ouyr ativtAP decoder

implemented by the BCJR algorithm will be used.

Decoding latency is a big issue in iterative decoding of daucbdes. In order to
decrease the latency, a parallelization of decoders maydpoged likewise in the
encoder part [9]. The parallelized decoder architectureafturbo code is given in
Figure 2.7. The numbeM of parallel processing SISO decoders decrease the decod-
ing latency approximateliN-folds. Although there is a small performance losdNas
increases as observed in [9], the significant latency erdmeant justifies paralleliza-

tion.
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Figure 2.7: Parallelized Architecture for turbo code dexod

2.2 TURBO-LIKE CODES

In this section parallelization of the repeat accumulatgescare discussed. Repeat
accumulate (RA) codes are considered to be a sub-class ofdosity parity check
(LDPC) codes. Although there are studies on the parallezaif turbo codes, the

same can not be told for repeat accumulate codes.

2.2.1 Low Density Parity Check Codes

Low density parity check (LDPC) codes introduced by Gallaf@rare the first
known channel coding family that performs close to the Sbarimit. When Gal-
lager introduced this type of coding in 1960’s, researcligisnot give importance
to these codes because of its large decoding complexitgr &fe invention of turbo
codes a return to Gallager’s study occured. Nowadays, nmamjes on analysis of

LDPC codes of dferent variants are taking place.
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2.2.2 Repeat Accumulate Codes

Repeat Accumulate codes are first introduced by Divsalar &t 4B98 [5]. After the
introduction of turbo coding principle Divsalar used thiscept and invented the RA
codes. An RA code can be decoded iteratively and its iterdge®ding performance
is considerably good despite its low complexity, wheressdtding is simple and the
decoder structure is suboptimal [12]. Additionally, RA cedehieve the ultimate
Shannon limit -1.592 dB as the code rate goes to zero on the AlaNnel.

2.2.3 Repeat Accumulate Code Encoder Structure

The RA encoder consists of concatenation of a Z-times rempatipetition encoder
and an accumulator. If the information bits are transmjttad type is called sys-
tematic RA code. Sometimes the repetition part works in agurdar way, that is, it
repeats each b#; times wheréZ; is a variable parameter for each uncoded bit at time
i, on operation. Irregular repeat accumulate (IRA) codesa@radd in this way. IRA
codes are actually better codes which excite the curio$itiyeocoding theorists.

The basic encoder structure of a non-systematic RA code ceedrein Figure 2.8.
The information bits are repeat&dtimes and forwarded to an accumulator. Before
the accumulator there exists an interleaver which is onkeftost important part in
the code since the existence of the interleaver brings thvepof the RA codes, as in

turbo codes.

——e—— —— —

repetition
u—>» encoder

)
I Accumulator
I |

D

A 4
3

Figure 2.8: Repeat Accumulate code encoder

The accumulator is the part which makes the RA codes simptapaced to other

11



coding schemes like LDPC or Turbo codes. The accumulatdt, @ be seen in
Figure 2.8, performs a modulo-2 adding operation. It sumshepcurrent bit with
the previous bit and produces what is called a parity bitnFome perspective it can
be thought as a 2-state convolutional encoder with trarfigfetion 1/(1 + D) whose
state transition diagram is given in Figure 2.9(a) andigréliagram in Figure 2.9(b).

From another perspective it can be seen as a block code \pititsiifxo, . . ., X,_1] and

7

011

(a) State diagram of the accumulator

(b) Trellis diagram of the accumulator

Figure 2.9: State transition and trellis diagram of the anglator

outputs ¥4, ..., Yn1] whose equations can be given as

Yo = Xo
Y1 = Xo+ X1

Yo =X+ X+ X

Yno1=Xo+ X+ Xo+ ...+ Xno1.

The performance derivations of RA codes are done by usindatklzode behavior

but its opearating principle is easy to understand withatsvolutional form.

One way for enabling parallelization at the receiver is gy/parallelization of the

encoders. A parallelization scheme for the encoders cardr is Figure 2.10. A

12



numberM of repeaters are processing in parallel and forwarding ¢selts to an
interleaver. An accumulator cluster consisting\oparallel processing accumulators

encodes the repeated bits.

Repetition
Encoder, (Z) Accumulator,
u—» S/P . PIS —» m ¥ SIP . PIS >y
Repetition
Encodery (Z) Accumulatory

Figure 2.10: Parallelized Repeat Accumulate Encoder

2.2.4 Repeat Accumulate Code Decoder Structure

RA codes can be decoded using variable techniques [15]. Mg]ogic (MLG) and
bit-flipping (BF) decoding are two examples for hard decisi@eoding. A poste-
riori probability (APP) decoding and iterative decodingéd on belief propagation
(IDBP) which is also known as sum-product algorithm (SPA)sarie decision decod-
ing techniques. Weighted BF decoding is a compromise betlwashdecision and
soft decision decoding. Techniques including hard degidiecoding are out of our
scope since soft decision decoding algorithms usually igeotetter performance.
The SPA algorithm is the most widely used decoding technfqudecoding of RA
codes. In the SPA decoding, Tanner graphs [18], introdugetiabner, are used by
the information passing algorithm, generally known asdigbropagation. In this
study we will focus on using APP decoding by using a BCJR-MAP deco

Theorem 3.2 stated in [12] says thatZifgoes to infinity then the SNR threshold
value,yz, which is the lowest bit SNR value for error free transmissi@pproaches
log2, that is, RA codes achieve the Shannon limit for the AWGN ckanfable 2.1
shows a comparison betwe@n the achievable SNR threshold value for error-free
communication and the corresponding Shannon limit for éiated rate. Decoding
latency is again an issue for the iterative decoding of RA sotieorder to decrease

the dfect of this inherent latency, a parallelized architectanetifie decoder is pro-
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Figure 2.11: Iterative RA Code Decoder with APP algorithm

Table 2.1: Rate, Threshold and Shannon threshold compdas®A codes [12]

Z R vyz(dB) Shannon (dB)
3 13 0.792 -0.495
4 1/4 -0.052 -0.764
5 15 -0.480 -0.963
6 16 -0.734 -1.071
o 0 -1592  -1.592

posed. The decoder block can be seen in Figure 2\L3ISO decoders operating
in parallel first decode the incoming data sequence sinseptit was encoded by
the accumulator in the transmitter. The likelihoods geteerdy SISO decoders are
passed through a deinterlaver and decoding continues ethltnumber of repeti-
tion decoders. If there are termination bits in the reces&guence, which improves
the error performance of the coliemust be the same as that of in the encoder part
(as it can be remembered there wdkrewumber of parallel encoders in the PDRAC
encoder). On the other hanl, has no need to be the samelMasn the encoder part,
because only the repeated bits are related to each oth®f. iAsreases the decoding
latency decreases significantly however, this time memepegrations must be han-
dled carefully. For the subsequent iterations decodedtdisn from the repetition
decoders are passed through repeaters and then an exfimdgic calculates the a

priori probabilities for the next iteration of the SISO ddeos.
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CHAPTER 3

TESTBED SETUP

In this thesis the motivation was basically the hardwaréza&i@on and comparison of
parallelized turbo and repeat accumulate decoders. linitiee study was a continua-
tion of a previous thesis [1]. In this previous study an indégd testbed environment
was implemented. However, because of some unresolvableir@dgected prob-
lems occured later on the testbed, the designs are carriacdstand-alone operating
environment. The characteristics of a real environmeninmisted on the FPGA

platform.

3.1 ML-402 FPGA Evaluation Board

FPGAs areeconfigurable logic devicesomposed of smaller logic blocks. The build-
ing blocks of the FPGA are calle@onfigurable Logic Block¢CLB). A CLB (de-
nominated a$licein Xilinx ), shown in Figure 3.1, is the smallest building block of
a Xilinx FPGA and for all of Xilinx FPGAs the CLB structure isgtsamé’. A slice

is composed of two four-input LUTS, six various size mukix#rs, and two flip-flops
(FFs). Although the logic operations are done with gatet©véndchematic designs,
these gates are embedded into the LUTs in the hardware. Wkenghts of the
LUTs are excited, the output yields a result which is adgisteyield the same result

as the logic circuits would yield in the schematic design.

All of the logic blocks are connected to each other with paogmable switches.

! To get more information about the famous FPGA manufacturer visit wilimx.com
2 This structure will change after the not yet manufactured Virtex6 aat&ps products
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Figure 3.1: The structure of a CLB in a Xilinx FPGA

If there is a relation between slices then these switchdsb&ilON, else OFF. The
results of the LUTs can be multiplexed to the slice flip-flopshie case of a need for
storing the result. One other important role that flip-flopsaduce to the design is
pipelining. Pipelining is the most powerful tool for obtaig a fast operating module.
Since FPGA is formed by transistors each transistor hastaiceatelay in response
to excitements. If large combinatorial logical blocks ased then these delays can
reach tremendeous levels. If these large logic cells arlyzatwell and partitioned
into smaller blocks by placing flip-flops in between, theseipans will enhance the
operation speed of the design. Figure 3.2(a) and Figure3shpws this situation. If
the large logical block is divided into smaller blocks A andmth the necessity that
the block A does not need the result coming from block B insta@ously, delays will
decrease and maximum available clock speed will increasid case the output of

the design is postponed by one clock period.

Another important block that is available in FPGAs is theckl®RAM, shortly
BRAM. A BRAM in a Xilinx FPGA consists of 18x1024 bits By cascading these

RAMs in parallel or in serial one can obtain RAMs offérent sizes. The advantage

3 This size of BRAMSs are the same for all Xilinx FPGAs
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(b) A heavily combinatorial logic divided into smaller pieces with FFs

Figure 3.2: The fect of dividing logic with flip-flops, pipelining

of RAMs is that they are cheaper compared to slices and fomgt@urposes they

provide a larger area. However, their operating speed vgeslthan that of slices.

Some FPGAs also include embedded microprocessors, forpeasome Xilinx
FPGAs include PowerPC cores. By the help of well picked perigls it is easy to
convert a microprocessor into a fully operating microcolhr. Besides, Xilinx Mi-
croBlaze and Picoblaze are available as soft processordlémkthe FPGAs which
do not include PowerPC. As explained before, since FPGAseaefiexible devices
in terms of logical operations, a processor composed @sbtan be easily embedded
into an FPGA. The advantage of such a solution is that, FPG#®ut hard proces-
sors are costfiective. The disadvantage of itis, a soft core processonucnas some

of the resources of the FPGA so available number of logicksl@iecreases.

FPGAs also include additional blocks such as clock managebhiecks which can
be used for multiplyingividing clocks angbr mitigating the clock skews, dedicated
multi-gigabit inpufoutput ports, inpubutput (JO) buters those are compatible with
many electrical standards such as LVTTL, LVDS, LVPECL etedidated fast binary

multipliers and so on.
The board we used in designing the encoders and decoders xd92Virtex4
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Evaluation Board, shown in Figure 3.3. This board carries lamXVNirtex4 SX35
FPGA on it which can be thought to be an average capacity FR@#ared to others
in the industry. Besides containing an FPGA, the ML-402 beartains other chips
which can be used extensively for manytdient applications.

|

-
B
2
£
)
=
o
=
o
; B

Figure 3.3: ML402 board used in the study

DDR SDRAM : The board includes an external 64 MB of DDR SDRAM using
two Infineon HYB25D256160BT-7 chips. Each chip has 16 bits vddta port and
two of them form a 32 bit data bus capable of running up to 266zNIH ]. In the
presence of a microprocessor these RAMs can be used for alktiata storage in
stand-alone operations. Besides, these RAMs can be used p®d@ssor memory

which includes instructions in the presence of a soft migyopssor core.

ZBT Synchronous SRAM : The board contains a 256K x 36 bit synchronous
ZBT RAM. The ZBT RAM provides a high speed low-latency externahmoey to
the FPGA. This RAM can also be used for temporary externahgtar

1(/10Q'1000 Tri-Speed Ethernet PHY :The board contains a Marvell Alaska
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PHY device operating at 10002000 Mbps. By the use of a small porocessor and
an ethernet controller the board can be reached throughnetheonnection. One
application can be incorporating the device into a locaharetwork and reaching to

it over ethernet connection.

Differential Clock Input And Output With SMA Connectors : High precision
clock signals can be fed to FPGA by the use of 58 MA connectors. This function-
ality allows the FPGA to be fed by function generators. Famngle a demodulator

output can be connected to the board, hence, further degpditess can be applied.

RS-232 Port with Direct FPGA connection : The ML-402 board contains an
DB-9 serial port allowing the FPGA communicate with anothevide using serial
data. An interface chip changing the voltage-levels are msluded. The RS-232
serial port is one of the most widely used communicationquottand is known for
its low-weight receivegtransmitter structure. In the thesis RS232 is commonly used
for simulation purposes. The FPGA communicated with a PGuipin this port and

the PC interpreted the results coming from the FPGA.

Compact Flash and System ACEThe board contains a Xilinx System ACE Com-
pact Flash (CF) configuration controller. Through the JTA@& poth the hardware
and the software data can be downloaded to the CF. Maximunt eagiiguration
images on a single CF card can be supported by SystemACE dent®y the help
of switches available on the board, the address of each cwafign can be selected
and then System ACE controller loads the FPGA with that cordion. Besides be-
ing used as a configuration storage, a CF can also be used aditeB§dtem storage

device, i.e. harddrive.

3.2 Software Used For Debugging and Implementation

3.2.1 Xilinx ISE and XST

Xilinx ISE (Integrated Synthesis Environment) is the Instgd Development Envi-
ronment (IDE) designed by Xilinx as a graphical user intesfdGUI) for synthe-

sizers. Xilinx synthesis tools (XST) is one of the synthesszdeveloped by Xilinx
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for complete synthesis and implementation of an FPGA ptojElee free version of
ISE which is called the Webpack Edition supports a limitethbar of Xilinx FPGAs
which are generally small in size. The unlimited versiongargs all of the FPGAs

fabricated by Xilinx.

3.2.2 Implementation steps of an ISE project

The implementation steps of a Xilinx project is divided irgtieps. Each step has

certain inputs and outputs.

3.2.2.1 Synthesis

By synthesis, “logic synthesis” is meant and it is an impdrttep before implemen-
tation. Since FPGA design is a hardware process unlike derspithese tools are
named as synthesizers. The Synthesis operation basicailets a hardware de-
scription language (HDL) into register transfer level (REomposed of logic blocks
like gates related to the design architecture. Another @iedn the synthesis level is
the optimization of the design. Optimization is done in a W@t the synthesis tool
either wipes out unused signals and entity ports, or it regitice number of gates if
two or more gates do exactly the same job. In XST, optimipaticthe design can be
limited by special built-in constraints. For example, agmhissue about this topic
is that a two signal exactly created by the same logic will pgnoized by XST by

deleting one of these signals. However, these two signdiswiive by setting the

“remove equal logic” constraint accordingly.

3.2.2.2 Translate Process

Translate process is the first step in the implementatioogg® The translate process
produces a Xilinx native generic database (NGD) file whiduides all of the netlists
and design constraint information for implementataion. edlist is the combination
of the blocks such as counters, adders, multipliers, coatpesso on and connections

between them. This process combines these pieces of intionria a way that the
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logic is mapped into the target FPGA.

3.2.2.3 Mapping Process

This step follows the translate process. The mapping psotz®s the previously
created NGD file, runs a design rule check (DRC) over this fileraags the logic
into the FPGA-specific hardware blocks. If one or more of thastraints is not
applied properly, an error will pop up at this step and refiwat the constraint is not
applicable. For example, if a Bier compatible with low-voltage fferential signaling
(usually called as LVDS Hier) is instantiated in an FPGA project itsfférential
ports must be tied accordingly since these ports are coediéotdeterministic pin
locations. However, if mistakenly the pin locations fortth®DS buffer is tied into
irrelevant pin locations the synthesis process will naiésany error since the LVDS
buffer instantiation is done in a correct way. Additionally, thenslate process will
not issue an error too since synthesis is fine and the “ddidarayntax” of the pin
locations are also correct. In the mapping process the acdtwill check whether
the LVDS receiver input pins are suitably placed or not. 8itiee LVDS pins are
dedicated for each LVDS Ifiier, the mapping process will issue an error because of
the failure in the constraints of the location of the LVDSgand the implementation
process will stop. The result of a successful map procesdevivritten in a Xilinx

native circuit description (NCD) file.

3.2.2.4 Place and Route Process

The place and route (shortly called as PAR) process is ex¢aiter the mapping
process finishes and takes a mapped NCD file and places and toeitgesign. This
process can be thought as an auto-router like in a printeditboard design soft-
ware. Since the blocks and the constraints are known fromprén@ous mapping pro-
cess, it tries to connect all blocks in accordance with théshand the constraints.
This process places all of these FPGA blocks in such a wayathAmitations are

satisfied, all /O pins are connected, and the design will not go into an eu®state

with the specified clock speed. The output of this procesa N@D file suitable for
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the operation of BitGen software.

3.2.3 BitGen

BitGen is a programming file generator for Xilinx FPGAs. Aftee implementation
process finishes this software takes the NCD file and producks fle which is
suitable for programming an FPGA. If the programming fingslseccessfully, the
FPGA will act in the way it is wanted by the HDL code.

3.2.4 ChipScope Analyzer

ChipScope is an advanced real-time debugging and verificaim designed by Xil-
inx. The ChipScope tool embeds special low-level soft cooeld into the design or
into the netlist of the FPGA in order to track the signal chesigAfter PAR finishes,
these blocks are ready to send data to the PC via a speciaged the JTAG port.
These cores, can be adjusted by software to be triggeredlitime at certain condi-
tions. When the set conditions are met, the states of thetedlsignals are examined
and stored for a period of time. When the desired number of ksnape taken these
values are sent to the PC and the states of the signals anvethds the help of a
GUL.

BRAMs of the FPGA are used for storing the signals.A maximum&# gignals
can be observed for a maximum of 16384 samples. Of course éineshe achievable
maxima allowed by the software. If the FPGA is not a large dame Chipscope

blocks are impossible to embed because of resource liontati

3.2.5 MATLAB

MATLAB is used in various phases of the study. Since it pregié high level pro-
gramming environment, a code can be changed and tried intesiftny the help of
this software. It also provides a visual interface into tagables so that, by the help
of the naked eye most of the problems can be seen and solatonise produced.

MATLAB is used firstly for the implementation of the encodargl the decoders. By
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verifying that the results of the encoders and decoderssadesired, the discretized
(fixed-point rather than floating-point) versions of there aritten and simulated.
After this step, the FPGA implementation and simulationdsiied on in an easier
way. It must be noted that any HDL is low level compared to ahthe program-
ming or scripting languages like C+@, MATLAB since HDL deals with RTL. For
example, an algorithm designed in a programming languagef@w hours can be
fully simulated on a HDL platform over weeks. The benefit of MAB can easily
be seen. Another situation MATLAB was used is the generatiolook-up tables.
The approximations performed to decrease the complexithefdesigns are also
simulated in MATLAB, so that, the designs continued in a maneficlent way. After
programming the FPGA with the implemented decoders, MATLiARIso used for
to observe how the decoders operate on the FPGA. A controbidule written in the
FPGA was listening the commands transmitted from MATLABothlgh RS232 and
was returning information such as the bit error rate, then&arror rate, the SNR,
and the number of decoded packets. Such received informatwe processed in

MATLAB, and illustrative results and plots were obtained.

3.2.6 MODELSIM

Modelsim is an advanced simulation and debugging tool fdiCA&hd FPGA projects
provided by Mentor Graphics which is one of the leaders indleetronic design
automation (EDA) industry. ModelSim recently started supipg many hardware
description languages (HDL) including VHDL, Verilog HDLySemC, SystemVer-
ilog. ModelSim has 3 major distributions, ModelSim SE, Mi&im PE, and Mod-
elSim LE. Special distributions are also distributed foilGAPvendors. ModelSim
provides ModelSim XE (Xilinx edition) for Xilinx. ModelSinXE is distributed with
2 licenses, one is a free but limited license and a full lieemkich must be purchased
from Xilinx. The full version is 100 times faster than thedreersion and the free
version also additionally slows down if the HDL code is mdnart 1000 lines. In
order to use ModelSim with ISE and a Xilinx FPGA a compilednficof the Xilinx
FPGA blocks (these blocks are FPGA specific blocks that ¢cndyPGA vendor may
distribute the simulation models) must be available. BdlgiddodelSim compiles a

HDL code into a form that is suitable for the operation of Mi&im. In order to use
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the HDL code in consistence with the FPGA specific block, v giled version of
the Xilinx blocks must be added to the library of the ModelSim

ModelSim is a very helpful software for debugging a projeithvts well-designed
GUI. The best approach for debugging a code is simulatingdésgn module by
module. Writing successful testbenches are important astep. The integration of

modules to each other will be less painful after succesefibt

Simulations can be divided into two main parts. One is fun@l simulation and

the other is timing simulation.

A functional simulation simulates the behavior of the codéhe timing in the
simulation will be perfect compared to the real world bebavAs the name implies,
this simulation simulates the functionality of the HDL codBo optimizations or
simplifications occur, you see what you write. This kind ahslation is the fastest

since no gate delays, IOB delays, clock skews, and setupvimhtions are observed.

A timing simulation (or equivalently “Post place and routmslation”) can be
done after the PAR process finishes. This simulation styteasmnost reliable one.
If the post-PAR simulation is successfully applied, it igliy predictable that the
design will operate after it is loaded into the FPGA. The tighsimulation is slower
compared to the functional one. In this simulation all of tbenponents and routings
used in the FPGA are replaced by its simulation models, sekéw and latency of a
signal can be easily observed. The setup and hold times d@igkéops, gate delays,
and 10B delays are tracked and erroneus situations areteeploy the simulator. In
this simulation itis highly predictable that the designdl mot be able to see all of the
codes written. That is simply because all of the design iateckafter optimization
steps. So the designer must be aware that if the functiomailation results are not
alike the post-PAR one, the code must be rechecked. A synchsodesign is the

most reliable design because most probably it will operatieout timing failure.

ModelSim can also be used via a console. It supports TCL (Towincand lan-
guage) scripts so the software can be used without the nesdj@phical interface

and the simulations speed up.
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3.3 Overall System Setup

In this section the setup that is used to implement and sietttee decoder perfor-
mance will be explained. The important step in this partésrtalization of a channel
on the FPGA. Additionally how the FPGA get into contact witle outer world will
be dealt.

3.3.1 System

A general system model can be seen in Figure 3.4. The dectmi donsists of a
decoder and some auxiliary modules for proper operatiochwwill be described in

the upcoming sections.

Enable
Generator
(Synchronizer)

}

Encoder and Decoder Error UART
Pulse »

Block “| Counter 7| Transmitter
generator

A

A 4

A

LFSR Noise

Generator UART

Receiver

Figure 3.4: A generalized system model for testing the dexsod

The “Enable Generator (Synchronizer)” block perodicallgduces an enable sig-
nal which triggers the encoder block. Because of the chauetstre of the design and
the periodic behavior of this module, it can also be calledsynchronizer. After the
encoder block receives an enable signal, it starts to pethe encoded version of
a known sequence. When the encoded sequence is ready, thitenatsb produces
a ready signal to indicate that the sequence is ready fordilegoThe encoded data
is scaled by a parameter received from the outer world via UARIs parameter is
vEs which is the amplitude of the encoded data. Hence, the ermdrggch bit in the
sequence i€s. After the encoded data is produced and multipliecdy¥ys, a pseudo-

random noise is added to the sequence. The pseudo-randseisigenerated by the
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LFSR noise generator module. Afterwards, the noisy sequenforwarded to the
decoder block. The information produced by the decoderkhlatich will also be
discussed in the upcoming sections, is transmitted to tker evorld through UART

port.

3.3.2 LFSR Noise Generator

While testing the implemented decoders, varying inputs rneged into the decoder
along with many dterent noise realizations for a proper test operation. Ieota
generate a realistic environment in our study, random dategtion algorithms are
used in the FPGA. In the random number generation proceduratel state called
the seedis assumed, and the numbers are generated by the use ofdHis Sece
the state of the generator can be known in any time because séed-based struc-
ture the numbers generated are actually pseudo-randonturend hen we have the
chance to test the design for so manffatient inputs. By obtaining a gaussian like
distribution we also have the opportunity of creating an AWE&GTdnnel in the FPGA.
Among various random number generator algorithrfisear feedback shift register
(LFSR) based one is chosen here because of its simple sewstdrwide usage. An
LFSR is called linear becaues it is composed of binary lirgrrations, basically
xor (exclusive or). Besides, it has a feedback structure in waiganerated bit value
is fedback to the shift register again. The feedback opmras done under a spe-
cial characteristic equation. As the size of the shift regisaries, the characteristic
equation changes. Table 3.3.2 shows some characteristdbdek polynomials and

corresponding register widths [3].

Figures 3.5, 3.6, and 3.7 shows the operation cycles of afRldé®posed of a 16
bit shift register. The shaded bit locations are called ps tehich also demonstrates
the locations those are described in the characteristimpatial, namely 16th, 14th,
13th, and 10th locations. The initial state of the LFSR isechthe seed of the LFSR
and it can be any sequence of bits. As the name implies, tifieregister operates
with the existance of a trigger signal, generally a clock. Whwe clock triggers
the register, thexor-ed value is fed into the initial bit location and all of thésbare

shifted. The last bit is the result coming from the shift stgi. When a seed is
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0 1 0 1 1 0 0 0 1 1 0 0 1 1 0 1. ——output—p

Figure 3.5: An LFSR with seed 0101100011001101

0 1 0 1 1 0 0 0 1 1 0 0 1 1 0 1. ——output—p

Figure 3.6: The 18,14",13",10" bit are added and the result is forwarded to the
beginning of the register

1 0 1 0 1 1 0 0 0 1 1 0 0 1 1 0 +—Output—p 1

Figure 3.7: With a clock trig the found result is registeredtee first bit of the register,
the content of the register is shifted once towards right
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Table 3.1: Some LFSR generator polynomials with varying sizshift registers.

Bits (n) | Feedback polynomial | Period 2 — 1
10 x0+x"+1 1024
11 xH+x+1 2047
12 xP 4+ x2 x4 x*+1 | 4095
13 xBrxPexTex@+1 | 8191
14 x4+ xBrxP+x>+1 | 16383
15 x® iy x¥i1 32767
16 x® 4+ x4+ xB 4+ x11+ 1] 65535
17 X+ x4 1 131071
18 xBx+1 262143
19 x4+ xB 4 x4+ x1%+1 ] 524287

suitable to obtain all2— 1 numbers then this seed is called as the maximal.

If many LFSRs are implemented withftirent seeds then the output of each
LFSR will be independent of each other. If the outputs of ¢heSSRs are summed
up as shown in Figure 3.8 then by the Central Limit Theorem agise€andom noise
generator whose probability distribution is close to thiathe Gaussian distrubiton

will be obtained.

LFSR, H» by
LFSR; H» b,
X
LFSRreg_no-1 _> breg_no-1
LFSRregino > bregino

Figure 3.8: Normally distributed noise generation by LFSR

The mean and the variance of the random noise generator eakb@ated through

some equations. Letbe a random variable that is obtained by the summation of the

4 Special care should be taken when assigning seeds to the LFSRs. Adieel af seeds may lead to incorrect
results due to auto-correlation etc.
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output bits ofreg_no number of LFSRs. The mean giis

E(X) = E[ > bi] (3.1)

reg_no

Since summation is a linear operation and ebcis independent of each other the
expectation function can go into the summation and (3.1Yigie

E(X) = Z E(b). (3.2)
reg-no
The probability ofty; to be either 0 or 1 is equal/2 so (3.2) can be calculated as
1
EQ= ), 5 (3:3)
reg-no
E(x) = reg;no_ (3.4)

The variance ok is found by the well known variance equation that

Var(x) = E(x?) - E3(x),

2
B _ (reg_no)?
_ E[[ Z b,] ]— — (3.5)

reg-no

Here comes a square of a summation and this equation musia|sat into a linear
form for ease of calculation. If the squared term is writterain open form it will be

seen that there will beeg_no number ofb?’s and other terms will be in the form of
bib;. The variance ok can be rewritten in the following form:

reg_noreg-no (re n0)2
Var(x) = E[Z YD bibj]—g— (3.6)
reg-no iLi#] j 4
reg_noreg.no 2
_ . e (reg.no)
= D EO)+ ) > E@E®D) - —— (37
reg_no ii#] i
2
= reg;no + (reg_-no-— 1)regno%L - @ (3.8)
_regno regno® regno (regno)’
> + 7 4 7 (3.9)
_ rei‘no. (3.10)

In the design of the pseudo-random gaussian noise gendfatdftSRs feg no =
40) of 16 bit locations with dierent seeds are generafedAt each rising edge of a

5 16 bit LFSR corresponds to 65536 cycles in period. For long tests, thmeems to be too small for noise
generation. However, if the length and the period of the generated titterbihata frames do not coincide with

the period of the LFSRs, this would not significantljezt the results here due to the use of highly randomized
turbo codes.
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clock the usual LFSR operation is carried on. The outpute®l+SRs are summed
up and the sum is taken as a normally distributed randomblari&ince the produced
numbers are fairly uncorrelated from each other, summingamsecutive results of
the generator results in a Gaussian distribution. Figu@esBows the histogram of
the outputs of such a generator obtained by MATLAB simufatiOn the other hand,
Figure 3.10 shows the histogram of a normal distributioramigtd by MATLAB’s

randn function which has the same variance of that illusttat Figure 3.9.

700

w B [ [o2]
o o o o
o o o o

Number of generated values
N
o
o

100

Value

Figure 3.9: The hystogram of a pseudo-random Gaussian gersator obtained by
collection of 10000 samples

The LFSR random noise generator VHDL code is as

process(clk4X)
begin
if rising_edge(clk4X) then
if rst = '1’ then
for i in 1 to reg_no loop
seed(i) <= file_sonucu(i*16 downto (i-1)*16+1);
end loop;
else
for jj in 1 to reg_no loop
seed(jj) <= seed(jj) (14 downto 0) & (seed(jj)(10) xor
seed(jj) (12) xor seed(jj)(13) xor seed(jj)(15));
end loop;
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Figure 3.10: A histogram of a noise sequence generated bylLMBE randn func-
tion

end if;
end if;

end process;

file_sonucuis an array of strings composed of 1's and 0’s previously geerd by
MATLAB and written into a text file. When the synthesis happéehs tool reads that
file and initializes all of the LFSRs with the desired seeds) no is the number of
LFSRs taking place in the noise generator. It is 40 in our swdut it can be adjusted
with the necessity thdtile_sonucumust also be renewed. Since there are 40 registers
the summation results a normal distribution with mean 2@¢cken order to make the
mean of that random variable 0 a 20 is always subtracted fnens@mmation result.
The variance of the sequence generated by this code is 1(prdbess operates with
a clock 4 times faster than the usual operating clock (clleprasents this notation).
The reason for this is that 4 consecutive random numbersdaledaup to obtain a
noise with a larger variance, that is, 4 times of a single eege, so the variance of
the new distribution is 40. Since the LFSR clock is 4 timesgiathan the usual clock,
the generated random numbers are collected in a first in titsiufer (FIFO) and an

adder module at the normal clock side reads 4 of them and spreeunumbers.
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3.3.3 Error Counter

The error counter module counts the number of errors ocdaragacket. As men-

tioned in Section 3.3.1 a known packet of data is encoded @amdritted. This

uncoded data sequence is also known by this module. Whereyeletoder block

starts to produce the bit estimates this module starts tokchbie by bit whether the

estimation is correct or not and keeps the number of incbastimations. Besides
calculating the wrong bit decoding, it also counts how maagkets are decoded in-
correctly. These numbers are fed to the UART transmitterutefdr reporting to the

PC.

3.3.4 UART Module

UART is the acronym for Universal Asynchronous Receiver $raitter. In our de-
sign a full duplex UART is used in conjunction with RS232. A URRakes parallel
data and transmits it bit by bit in a sequential fashion. Téeeiver side understands
a new data coming and translates the bit by bit received seguato a parallel form.
The conversion between serial to parallel or vice versaarrdmsmitter and receivers

is accomplished by the use of shift registers.

The protocol is called asynchronous because the transrdibies not send any
clock signal to the receiver side. The transmission prosests whenever the trans-
mitter sends a start bit. After the transmission of the diarthe data is transmitted
from the least significant bit to the most significant. Optilyia parity bit for error
check can also be included after the transmission of the dastiop bit finishes the

transmission of a byte. Figure 3.11 represents the alighofehese bits.

Start | Data | Data | Data | Data | Data | Data | Data | Data

Bit | 0 1 2 3 4 5 6 7 | StopBit

Figure 3.11: The bit alignment in a UART transmission

The transmission of data from FPGA to PC and from PC to FPGAuislled by
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a protocol. In the PC to FPGA part a register map mode is usethid mode some
numbers are protected. If these special characters arglsemext character will be
the content of that register. That is, if initially byte A imbhsmitted and then byte B
is transmitted the receiver module on the FPGA checks wheéifie A is the address
of a register. If it is then the content of register addredsgd is changed by B.
If a value is wanted to be assigned to a register, this valneatebe the address of
the registers, equivalently, B can not be protected num@érs check is done in the
MATLAB module that if B somehow enters to the forbidden zome MATLAB code
does not send this value and issues an error to the user. giseerescheme is shown
in Table 3.3.4.

Table 3.2: The registers and their meaning in the designeoUthRT transmitter.

Register Address Register Name Description

(Decimal)
171 Es The amplitude value defined in Section 3.3]1
172 [teration Number of iterations that the decoders will

run for. This parameter will be discussed in
the next sections

173 Paket Ust High byte of a 16 bit registelRaketregister)
which determines the number of packets to|be
transmitted during the simulation

174 Paket Alt Low byte of the 16 bitPaketregister

175 NormMax NormMaxvalue which will be defined in the
next sections

The reception of a byte starts with the coming of a start bip. tbthat time the
receiver always checks the signal level at the receivenfiimen a start bit is received
the clock gets synchronized with the received data bit secpieA counter counts for
the number of bits received in parallel with the baud rateaftet a word is received
a check of the stop bit occurs. If all of the control bits areetreed correctly the byte

value is processed.

There is a bffer in the transmitter part. After the tiar is filled in, a command
signal is activated to warn the transmitter that théfdsumemory is available for
transmission. A module starts to read the memory addresselsyoone and puts the

output of the memory in a shift register. At each baud rateopehe contents of this
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shift register is shifted towards the LSB and the LSB is serdugh the transmit pin
of RS232 transmit pin.

In the FPGA to PC part the PC expects to get the values showatile B.3.4. BER
6 is the total number of errors up to the last decoded packeR ‘A& the number of
erroneus packets up to the last packet and Paket is the nwhpeackets that are

decoded upto these information are produced.

Mostly counters are used in the UART VHDL code . The sampliognters run-
ning in both the transmitter and the receiver is obtained dayegic parameters. For
the receiver there are two generic parameters. One of théra @ock frequency and

the other is the baud rate. The counters are formed by usasg tariables.

Table 3.3: The registers and their meaning in the designeoUhRT transmitter.

Value Description

(Decimal)

BER Total number of erroneus bits
PER Number of erroneus packets
Paket Number of processed packets

6 Here, accept BER as a register name for preventing misunderstan@inge the decoded number of packets
are known dividing BER to number of packets and number of bits in agiayi%es the real BER value
” The same definition as BER is applicable
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CHAPTER 4

IMPLEMENTATION ISSUES

In this chapter, implementation of the parallelized turlod aepeat accumulate en-
codeydecoder on the FPGA will be discussed. The implementatepssthe param-
eters which may féect the performance of the designs and the algorithms tleat ar

used will be interpreted.

4.1 Channel Model

A general communication system can be depicted as in Figdrela this system
an encoder encodes the uncoded information and passesstiietcea modulator.
The modulator modulates the signals and the transmit aateansmits the packet.
In the wireless channel the transmitted signals are deslaxhd the recieve antenna

Transmit Receive
Antenna Antenna

Encoder |—— Modulator J LDemoduIator —  Decoder

Figure 4.1: A general block diagram of a communication syste

receives a distorted version of signals. In this study thenokl is assumed to be
an additive white Gaussian noise (AWGN) channel, the modulas assumed to be
bipolar phase shift keying (BPSK). The encoder and the dedadeks will be either
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PDTC encodgdecoder or PDRAC encoddecoder. The generalized channel model

IS

Y = hiXic + N (4.1)

wherehy is the channel gain is the transmitted signaty is the complex AWGN
term with powerNy, andy is the received signal. A significant amount of sections in

this chapter are borrowed from a submitted paper [7].

4.2 BCJR Decoder

SISO decoders were the building blocks in the parallelizecbder structures pre-
sented in Chapter 2. These SISO decodersMagginal A Posteriori (MAP) De-
codersin this study. Another famous decoding techniqudviaximum Likelihood
(ML) decoding for which the Viterbi algorithm is a good exaepAfter receiving a
codewordr, a codeword’ is found corresponding to a transmitted codeword in ML
decodingv. The algorithm tries to find the best approximation by mirimg the
probability P(V # v | r). Hence ML is minimizes thevord error probability (P,,). In
MAP decoding, estimation for bits includediins performed. For every transmitted
bit u;, au is estimated. That is, the algorithm tries to minimRg= P(G, # u, | r),
hence it is ait error probability minimizing algorithm. When the data bits are a pri-
ori equally likely, the performance of ML and MAP decoders asually very similar.
However, when this probability is not the same then MAP, Wwhgccomputationally
more complex than ML, is observed to be superior to ML. A goxaheple where the
bit probabilities are not equally likely is iterative de@ogl. Since at each iteration
the bit probabilities are updated by the information frora girevious iteration, the
probabilities of the bits do change.

The BCJR algorithm [14] is the most popular MAP decoding athoni which was
also used by Berrou et al. in their famous study on turbo cotledt/aims at mini-
mizing the bit error ratio (BER) by maximizing the marginal af@yiori probabilities.
In practice, the BCJR algorithm usually calculagégsosteriori log-likelihood ratiqa
posteriori L-valug of an information bit. The reason of working in the log-doma

will be clarified later in this section.
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The log-likelihood ratio [LL) of an information bity; can be calculated as

p(u = +1r)
p(u = —1r)

for a received signal sequence Using this a posteriori L-value, a hard decision

uwo:m[ , (4.2)

corresponding toy can be found by

(4.3)

[+ Lwy>o
-1, LL(u) <0’

In the remaining part of this section the BCJR decoding algoristeps will be ex-

plained without derivation. Detailed derivations can berfd in [15].

Theforward metric denoted by, at timel is defined as the probability of being at
states’ at timel and having a received sequemngg up to timel. Hence, ther metric
is given as

a = p(s =S, rw), (4.4)

wheres is the state at time

Similarly, thebackward metricdenoted byg, at timel is defined as the probability

of receiving a sequenag,; after timel given that the state at tinas s,

Bi=p(reils =9). (4.5)

As the third metric, thdranch metricat timel is the probability of having a state

transition from state’ to sat timel. It is denoted by and defined as

Y = pP(ss1=8r1s =9). (4.6)

As a result of a few steps on the definitionsaofndp, it can be seen that values
are updated by a forward recursion, whergaglues are updated by a backward

recursion as given by

aa(® = ) n(s,Ja(s), 4.7)
AS) = > n(S, 9B, (4.8)
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with initial conditions,

1, s=0

ao(s) = , (4.9a)
0, s#0
1, s=0

Bn(s) = . (4.9b)
0, s#0

In (4.9b), N stands for the length of the input sequehcén (4.7) and (4.8) o
denotes the set of all possible states from which a transigipossible at timéand
o141 denotes the set of all possible states to which a transgipossible at timé+ 1.
After having the initial conditionsg andg values can be calculated for the whole
packet with the knowledge ofvalues.

In an AWGN channel, branch metrics can be written as [15]
(s, s) = e La(u|)/2e(Lc/2)(r|-V|), (4.10)

wherelL,(u) is the a priori bit probability, L. is the channel reliability factor which is
equal to £5/Np, andv; denotes the output vector consisting of data and parityrebse
vations for transition from stat€ to s. The dot productr( - v;) gives the correlation
between the hypothesized transmitted and received ve&oading this distance with
L. means that the observations are more reliable when SNRhsanig)a priori values
are trusted more when SNR is low.

In order to perform the calculations given in (4.7), (4.8)d44.10) in an easier
way, these operations are usually realized in the logar@tid@main. The log-domain

metric values are given as follows:

V(.9 = (.9 =ur Loy, (4.11)

aia(9) = Inap(s) =In ) ebiwei], (4.12)
Seo

() = Inp(s)=In ) il (4.13)

It can easily be seen that both forward and backward metiauledions can be

1 It is assumed herein that termination bits are added at the end of edat pathe encoder side. So, the
final state is known to be the zero-state.
2 1t must be noted that thie, values for the termination bits are always 0.
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simplified more by defining enax operation
max (x,y) = In(€* + &) = max(x,y) + In(1 + e * ), (4.14)
where the second term is usually called tloerection term

By using the multiple argument form of timeax operation, (4.12) and (4.13) can
be simplified as

a;1(S) = maXe, [%(s,9) +ai(s)], (4.15)
Bi(s) = max.,, [%(s.9) +B1(9] (4.16)
with the initial conditions,
{ 0, s=0
ay(s) = , (4.17a)
-0, S#0
0, s=0
Bu(S) = { ) (4.17b)
—o0, S#0

Figures 4.2 and 4.3 illustrate the usermfx operation ina and computations,

respectively.

a, (s))

., () =max (@, (s))+7, (s, ), (e, () +7,(57,9)))

Figure 4.2: Forward recursion in calculationaf, (s)

By skipping the intermediate steps, the log-likelihood fafanin (4.2) can be

rewritten using the formulas described above as [15]

LL(u) = In Z el )+ (E945,9] L _|n Z el )+ (8.9+45],1(9)] (4.18)
(s.9¢ex;

(8.9¢€xf
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Bra(s)

B (s =max" (B, (s)+7, (s s)). (B (s ) +7,(s'.5,))

ﬂ[i—l (Sj)

Figure 4.3: Backward recursion in calculationa(s’)

whereX andX are the sets of transitions with the information bit is 0 ance$pec-

tively.

4.3 FPGA Implementation of BCJR Decoder

FPGA's are very flexible programmable devices. Since alhefirogrammable de-
vices from microcontrollers to DSP processors are prodigetthe help of transis-
tors and boolean operators, one can build everything on FHf@n scratch. In our
design there are too many arithmetic operations from usiditian to square root
operation each of which must be handled carefully. We coekigh the decoder in
such a way that all of the numbers were represented by floptimg numbers and
the operations could be handled in floating point form. Thiplementation would
give us the ability of using a large interval among the reahbars. For example,
with a single precision floating point we can represent athbars between228 to
2127 But this approach will cause huge latencies in operationsééhe achievable
bit rate will drastically decrease and consume too manyuregs. For these reasons,
we have to implement the algorithms on a fixed point arithoiegisis. This approach
will increase the speed of the decoders tremendously howlgtime we will face
some problems because of the fixed-point arithmetic. Thostglgms can be divided
into two subgroups, outer problems and inner problems. IQuitdolems are mainly

due to the resolution order of the receiver, that is, trym§x the number of bitsK,
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in fixed point representation in such a way that the infororatoss in the decoder
will not be so much. Inner problems are due to the fixed poiithm@etic used in

the decoder. Those are overflowing and underflowing of summaind subtraction
operations, division, and square-root operations in fixeitparithmetic. Besides
these problems some additional optimizations need to erpeed to increase the

computation speed of the decoder.

4.3.1 Centerto Top Algorithm

This algorithm is basically for optimization purpose. Whée tetric calculations

in " andB* are considered, it can be seen that the two operations aegpendent

of each other. This gives the ability to calculateandg* metrics simultaneously
assuming that all of the received values are available fandir metric calculations.
This assumption is valid for the iterative decoding scheflike of turbo codes as

in our case) since decoding process can begin after regeivenwhole packet. By
this algorithm, the decoding time can be halved. Considercadtr running on 20
information bits. At time O the metric values are initializas defined in (4.17a)
and (4.17b) and shown in Figure 4.4. As shown in Figurea4.2ndg* values are
calculated without computing any LL value up to time 10. At¢i 10, both ot} ,, 57,
anday, By values are available together with the branch metrics #®tithe,y;, and

Ys- S0,LL(u1g) andLL(ug) are computed and given out as in Figure 4.6. That process,
starting from the center of the frame, continues to the entbdsamultaneously to the
beginning of the frame. That is why this algorithm is namettaster to top” [13]. It
must be noted that andg metric values do not have to be written to memory after the
midpoint, sinceLL values are calculated simultaneously. So, not only thediago

time but also the memory usage is halved by this algorithm.

4.3.2 Observation Quantization

In addition to being an optimization process, this procedsasically an outer prob-
lem. Although the MAP decoder will be repeated many timespartdinto parallelized

form, the observations will directly be fed to these decedsr the observations are
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Mid Point

o] [ | | || | 1 [ ]
L] | || | 1 []

Figure 4.4:« andp values are initialized initially at time 0

Mid Point

Lo o] | | | L L[]
T T T - T 1T~ T Inn

Figure 4.5:« andg values are computed independently and in a recursive manner

also important for the BCJR decoder. In the conventional nmasitieal model, a
+1 or—1 is assumed to be transmitted for BPSK, an appropriate neigdded and
calculations are carried on with these assignments. An AWG&hieel for BPSK
modulation can be modeled as

Yi = hieXie + Ng (4.19)

for any time instank whereyy is the received symbohy is the channel gainyEs
in an AWGN channel withEg being the symbol energyk, is the transmitted bit
(X% = £1) andn, is a circularly symmetric complex Gaussian random variabta
mean 0 and variands.

The conditional probability of a received symbglcan be expressed as

=i

1 i~
f(yulhe, X) = ﬂ—Noe No (4.20)

The logarithmic form of (4.20) is

W _ x| 2
No No No

2
= C+ RIWNX) (4.22)
0

In(f (YN, X)) = = In(7No) —

Riyhex) (4.21)
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Corresponds to
calculation of
LL(uo)

\/Iid Point

Lo fo] | NI | 1]
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Corresponds to
calculation of
LL(u10)

Figure 4.6:« andp values first meet at time 10 and at this time all information fo
computing the first LL values are ready

whereC is a constant and has nfiect on the MAP calculations. Hence, the function

can be redefined as
2 .
In(f (yilhi, X)) = WO%{ykh;X*}, (4.23)

where= denotes equality with a constant.

As we use fixed-point arithmetic, the metric values in the BCliforghm are
represented by a fixed number of biks, However, the decoder is not guaranteed to
work properly with this representation unless the chanbskovations (input of the
decoder) are carefully quantized. For that reason, we megubntize observations by
a gquantization factoug, such that the represented observations lay in & sshaller
than the set of numbers representedkbiits. After that, the quantized observation
probability forx = 1 is used in decoding with
2/NoRyihy
=
If we apply the AWGN channel model given in (4.19) on (4.24)ddPSK modula-

Qc = QUIN(f (idhe x = 1))) = { (4.24)

tion we get,
Q. = | 2YES N‘m id | (4.25)
|2, 2VE
- _Noq Nog | @20
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wheren, is the real part of the complex Gaussian noise with mean 0 andnce
No/2.

Recalling that a finite number of bits are used in represemtingbers, the ques-
tion is how to choose). If g is chosen to be very smalQ’s will be large and
the many equations will blow up due to overflow. dfis chosen to be very large,
then the diference in noise values of the observations will not be pitgpessed
to the decoder and then soft decoding wilffeu We resolve the problem above
by the compromise that the packet is normalized with resgeits absolute max-
imum symbol valueObsMax If we represent that value with a predefined value,
NormMax(absolute maximum value after the quantization is perfanigen we get
asetS = {(—-NormMax -NormMax+ 1, ..., NormMax— 1, NormMax for decoder’s
input sequence. This information can be combined with a kvedlvn property of the
Gaussian distribution that, in a normally distributed sghwneany and variance-?,
obtaining a numbep such thatp| > v + 30~ has a probability of about/1000. To be

able to apply that property, we need to identify the mean amirce of the random

variable
A= ZES + ZVEFH
Nog  Noq
2E;
E{A} = 4.28
{A} Nod (4.28)
o= 2VEs _ 2VEs Yo (4.29)

Noq on Nog +2

/ 2Es 1

_ VEA
v (4.31)

After the quantization of the packet, it is known that synshieater tham NormMax
or smaller than-NormMaxcan occur in the packet with a small probability. If we

neglect the small probability 0f/1000, we can definllormMaxas

NormMax= E{A} + 3oa (4.32)
E{A}

= E{A} +3 4.33

A+ 7 (4.33)
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By replacing (4.28) in (4.33), we get

2E, 2Es 1
NormMax= +3 — 4.34
Noq \/ Nod /0 (4:34)

By solving this equationg can be calculated as

S S 4.
NormMax (4.35)

As itis obvious in (4.35)q is a function of theS NR(Es/No) for a selectedNormMax
value. Instead of calculating tligvalue for each packet, a look-up tableT) can
be used. In our design, we have used a relatively lakgé that stores theg values
in 8 bits, 3 for integer part and 5 for the decimal part. Thaegia precision of /2°

and yields a satisfactory performance.

4.3.3 Addition and Subtraction Operations

Addition (by the term “Addition” also “Subtraction” is alssssumed) is the first prob-
lematic operation in decoder structure, because at almesy step of the algorithm
there exists an addition operation. Since the bits are septed by limited number
of bits, K, an overflow can easily be observed if the addition of two nerslpasses
2K-1 (Since the observations are representeH lmjts in two’s complement maximum
positive number can be‘2). For this kind of erroneus situation a new addition and
subtraction operations must be defined. The new definediaddiperatin is named

as,clipsumand the new subtraction operation is namedlgssubtract
clipsumfunction,represented by can be defined as

MaxInf if a> MaxInf,

MinIinf  elseifa < MinInf,

MaxInf elseifb > MinInf,

a®b={MinInf elseifb < MinInf, (4.36)
MaxInf elseifa+b > Maxinf,

Mininf elseifa+ b < Mininf,

a+b else
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whereMaxIn f=2%-1 andMinIn f=—2X-1. The new function basically adds a clipping
capability to usual summation. Similarly tie&psubtractfunction, represented by
can be defined as

MaxInf if a> MaxInf,

MinIinf elseifa < MinInf,

MinIinf else ifb > MinInf,

aeb={MaxInf elseifb < MinInf, (4.37)
MaxInf elseifa—b > MaxInf,

MinInf elseifa—b < MinInf,

a-b else

Drawback of these operations is thatkifis chosen to be too small then the algo-
rithms can get into saturation, to eithiglaxinf or MinInf values, so value oK is
of significant importance. The clipsum function is realisethe FPGA as follows:

procedure sum(A,B : in std_logic_vector;C : out std_logic_vector)is
variable summ : std_logic_vector;
begin
summ := (ACA’high)&A)+(B(B’high)&B);
if A >= max_inf then
C:= max_inf;
elsif A <= min_inf then
C:= min_inf;
elsif B >= max_inf then
C:= max_inf;
elsif B <= min_inf then
C:= min_inf;
elsif summ >= max_inf then
C:= max_inf;
elsif summ <= min_inf then
C:= min_inf;
else
C:= summ;
end if;

end sum;
The usage of this procedure is as

sum(a,b,a_variable);

Cc <= a_variable;
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where the operation defines= a @ b. It must be noted that since the procedure
returns to a variable, this function is not a synchronougatpm. We base on aim
in using the function in a combinatorial logic. Since there gecursive operations
taking place in the algorithm, in order to use a result at e olock cycle it must

be ready before the operation clock. In our case this deficeswinatorial logic.

4.3.4 Node &, B) Metric Normalization

In (4.16) and (4.15) it has been shown tlhdtand g* values are updated in a re-
cursive manner. As the computations go further, these omeditues may overflow
(> MaxInf) or underflow & Mininf). To solve this problemg* andg* values are
normalized at each trellis step. After each forward reaummsthe maximum of the
newly generated forward metric values is subtracted froesehvalues ana* met-
rics are updated with these normalized values. The samei®djo thes* metrics.
After the normalization process, we get a maximum value afr@f andg* metrics
at each time instant and prevent underflow and overflow casssther approach to

node metric normalization can be found in [21].

The algortihm can be written as follows. L&{(s) be all of the calculated* values

at timel then we define a new variabi€ ., such that
Umax = MaXA(S) (4.38)

Then the new defined* values’*, are

’

" =a" O anay (4.39)

The same approach can be appliegtonetrics. The VHDL code foe* normal-
ization is divided into two sections. Firstly, ., is found in a process description, the
code is for a 2-state trellis,

process(alfa)
begin
if alfa(l) > alfa(2) then
alfa_max <= alfa(l);
else
alfa_max <= alfa(2);
end if;

end process;
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where “alfa” is an array of stdogic_vector. It must be noted that this process is
not a synchronous logic operation. The reason to do this mbawatorial is that
the normalized form of*’s must be ready at the next clock cycle for the recursive
operation. New alfa values are calculated as

process(...)

subtract(alfa(l),alfa_max,alfa_new_var(l));

alfa_new(1) <= alfa_new_var(l);

It is obvious that the logic is fully combinatorial.

4.3.5 max Approximation

The correction term irmax operation poses a trouble when it is needed to be ex-
pressed in fixed-point arithmetic. It is not possible to lyasalize the In function
fully in such a system. For that reason, some approximationst be made to im-
plement themax operation. There are basically two approximations in ttesdiure.
These two dterent approaches result in log-MAP with tables and maxNzgR.

If the decoder is a log-MAP decoder tharax calculation is a more éicult sub-
ject, because the correction term, In{lel=*), should be calculated. Since the
hardware implementation of such a function is complicateid, term is handled by
construction of A UT in practice. As described in the previous part, the obsienmnst
are in quantized form, therefotéJ T values also have to be quantized accordingly.
That is, if the inputs to thenax function are in a quantized fashion, the other terms
generated in the function also should be quantized in ghnaith the inputs. The
LUT construction function is,

Lot - [P (4.40)

wherei is the absolute value of theftkrence of the inputs of thmax function. The
LUT sizes are usually quite small (around 5-6 entries) wahsonabléNormMax
values.

In a max-log-MAP decoder, the correction term is negledteat,ismax operation

is the same with ordinary max operation. So, the quantiaagom,q, is useless for
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this method. In other words, it can be said that decoder doesaed an exact SNR
estimation to operate properly. Studies in [20] and [17]ehgliown that max-log-

MAP decoders work without any need on SNR estimation.

4.4 Memory Collision Free Interleavers

The interleaver is the most crucial part in turbo and tuike-tode structures. When
parallelization is in &ect the interleaver is evenmore important since each sobeken

and sub-decoder must operate coherently. The importamoesérom its structure
which must be collision free. For an exemplification of thegportance of a colli-

sion free interleaver let us assume the operation of a piraltl encoder structure
for a turbo code in this section. The encoder under observainsists oN = 4

sub-encoders each of which encodasimber of uncoded data bits.

The uncoded data bits are saved in RAMs. An FPGA RAM is not rddeha
through more than two ports at a time. For that reason, thedet data must be
stored inN number of distinct RAMs in parallelized encoder structurdne inter-
leaver must be mapping these distinct data RAMSs to sub-ens@aeordingly. An
uncarefully designed interleaver shows how a collisionpess in Figure 4.7. In
the figure, everything seems fine. All the sub-encoders aresamng to dterent bit
locations hence all of the bits and encoders are one-to-atehed. However, the
problem here is tha@éncodey tries to reach a bit which is located at 1 at a time in-
stant, where 1 is accessible bypcoder among location$l,5,9,13}. At the same
time instantencodes tries to reach a bit at location 2ncodes to bit location 3 and
encodej to bit location 4. When these locations are tried to be mappéu tat
interleaver design, it is seen that all of these 4 locatisas@apped to RAM1. Since
RAM1 is not able to serve to 4 filerent requests, a collision will happen and the sub-
encoders will not function properly. Besides functionirtgge tmplementation of such

a system is impossible without adding more latency.

For preventing such a collision, a new interleaver schensettide defined. The
interleaver structure used in this study is the/-coloumn S-randorfRCS-random)

interleaver which is a subclass 8trandominterleavers [10]. RCS-randoninter-
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Figure 4.7: An illustration of how a memory collision may Ip@n in an encoding
process

leaver can be thought as the combination of too many s8waéindominterleavers
designed in a fashion to prevent memory collisions. In thislg it means 4 distinct
S-randominterleavers each of which is of size This interleaver is prepared by
such an algorithm that the data location numbers are aligriecnn -by- N matrix.
Firstly, the data in each RAM are permuted, which means tleel@sving of the rows
of the matrix. Next, the “RAMSs” are permuted in &randomfashion for all RAM
addresses which means the independent interleaving ahosluThe operations are
depicted in Figure 4.8. Such an interleaving will obvioustgate a new interleaver
table free of memory collisions. The proof can be done in suglay that, if all of
the N encoders have independent RAMs, each sub-encoder will teagchly one
RAM, that is,encodet only reaches to RAMIlencodes only reaches to RAM2 and
so on, there will be no memory collision. That correspondaddress permutation,
which is row interleaving. If the addresses are distribuiea collision free fashion,
distributing the RAMs will not cause any problems. This iethecause if the RAMs
are distributed, locations will interchange between RAMg, & encodey is reach-

ing to the locationx at RAM1 now it will reach to the locatiox at RAM2 but this
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time encodes will not reach to locatiory in RAM2 but it will reach to locatiory at
RAM1 and so on.

1 2 3 4 2 1 4 3
5 6 7 8 Rows are interleaved 8 7 6 5
by independent —p
9 10 | 11 | 12 S-random interleavers 1" 9 10 | 12
13 |1 14 | 15 | 16 13 1 16 | 14 | 15
Coloumns are interleaved
by independent
S-random interleavers
Encodery ————p{ 2 1 4 3

Encoder, ——— | 8 7 6 5

Encodery; ——— p 11 9 10 12

Encodery, ———— | 13 16 14 15

Figure 4.8: RCS-random interleaver is a good approach for mepuallision freee
interleaver design including the good properties of S-caméhterleavers [9].

In the construction of a rea by N interleaver MATLAB is used. FirsN (in the
designsN is chosen to be 4) distinct S-random interleavers of siaee formed. In
the second step distinct S-randominterleavers of sizé\ are formed. Then these
numbers are converted to binary form for storing them in tR&R RAMs. This
conversion is done in a comprehensible way such thaBwandomninterleaver num-
bers are combined giving a single number. The first bits, M8Bign, of this new
constructed number gives the RAM numbers. It must be notedhleanumber of
these bits arflog, N1. Remaining bits, LSB portion, gives the address of the sedect
RAM to be reagdwritten. Also this LSB portion is in the order ¢fog, n]. Since
interleaver table numbers are only used for reading aftee diney are stored, these
RAMs are nominated as read-only memories (ROM) in FPGA. Tlezaion taking
place in FPGA is shown in Figure 4.9.
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Figure 4.9: The interleaver operation taking place in th&RPEach address re-
guest is decoded, the requested RAM and the correspondiatgdondgs found and the
requested data is forwarded to the demanding encoder.

4.5 EncodeyDecoder Design of Parallel Decodable Turbo Codes

4.5.1 Encoder Design

The parallelization of the encoders was introduced in Chghtd he design can be
summarized as follows. Uncoded data sequence is fed intoadlglezed convolu-

tional encoders. This part forms the systematic data angahgy bits of the system-
atic part. At the same time by the use of interleaver a smalirotler interleaves the
uncoded data. The interleaved data part are also fed intoadlglaencoders so that
the second parity terms are obtained. Since termination ith® scene, the last two

bits of the interleaved data is also included in the sequératas to be transmitted.
The sub-encoders are obtained by the help of a finite statbimeacEach one of
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the sub-encoders starts with an initial state chosen to daltizero state and the
state of the encoder changes with each arrival of an uncaoitledt® coded bits are
stored in a btfer. Whenn bits are encoded, the sub-encoder adds termination bits to
the coded sequence and warns the outer world that the emgcpbioess is done. A
small controller, which is responsible for the initializat of the encoders and for the
interlaver control, senses that the sub-encoders filledtfters. When the hters

are full, the encoder transmits the coded data sequence toettt block such as a

modulator.

If the number of parallel encodershsand the interleaver block size Bsthen total

encoding latency for this encoder scheme is
B
Tenc = N + 3 + 2 (4.41)

+3 comes from the fact that the interleavers reach to the memwith 3 clock cycle

constant latency+2 comes from the termination bits.

The ISE synthesis report for the defined parallel encodevengn Table 4.1. The
table shows that encoder does not consume much of the Idiaxs of the device.
However, by the use of the interleavers and additional mgrworstoring the results

of the parallel encoders more BRAMSs are occupied.

Table 4.1: Xilinx ISE synthesis report for parallel turbaceder

Unit Name Usage count and percantage
Slices 670 (4 %)
BRAM 7 (3 %)
| Max. clock frequency 178.396 MHz \

4.5.2 Decoder Design

Decoder design is more challenging compared to encodegridedihe decoder is
complex because there are memory yeaite operations, summations, subtractions,
assertions and all of them are taking place at the same tine. PDTC decoder
block diagram was given in Figure 2.7 of Chapter 2. The opamatf the PDTC

decoder can be summarized as follows. First, by the recemtica sequence an
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FSM starts operating, which can be considered as a smaliatientin the decoder.
In the initial states all of the received data are writtero idedicated memories for
proper operation of decoding. After the received data argemrinto the memories
an assertion for the MAP decoders (sub-decoders) hapdéng te the sub-decoders
that a decoding process will start. Since all of the paraléstoders are in the idle
state, they get ready for the reception of bits for decodinghle assertion of that
start signal. All of the MAP decoders are fed by the contralleaccordance with
the CT algorithm. When the sub-decoders decofe number of bits they assert
to the controller that first decoded bits are being produddte controller starts to
write these decoded bit probabilities to dedicated mersoki¢hen all of the bits are
decoded the next step starts. In this step the interleaveesdo the scene. This time
the interleaved versions of the received bits are fed to thé¢°Mecoders with the
information from the previous step.When this step finishastexation is said to be

over. The performance of the PDTC decoder will be discuss#ok next chapter.

One important parameter in the operation of the decodersdnfy the a priori
probabilities, [;), for the next operation cycle in each iteration. A prioropabil-
ities in the PDTC decoder is the interleved or deinterleaxadion of the extrinsic
probabilities,Le. Le values are calculated in the MAP-decoders and its general fo
mula is [15]

Le=LL—r - L4 (4.42)

whereLL is the log-likelihood of the decoded bitsis the channel observation prob-
ability in the log domain which corresponds to interlegdethterleaved systematic
data, and_, is the a priori log-likelihoods that is processed in the gielboders. This
subtraction operation is for preventing a feed-forward Ina@tsm that may destabilize
decoding. If a feed-forward occurs in the decoder, the djgeravill not be reliable.
For example, for an iteration of 20will accumulate 20 times and it will be dominant

in LL, which will cause decreasing the performance of the decd@denatically.
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4.6 EncodeyDecoder Design of Parallel Decodable Repeat Accumulate Cesl

4.6.1 Encoder Design

The encoder of the PDRAC is composed of two parts. The firstyaarthe repetition
encoders and the second part has the accumulators. In impleEm the repetition
part, each bit is suspended for an amount of time by the hedgsofall counter. If the
repetition is to be done 3 times, thatds= 3, then a counter counting up to 3 controls
the repetition of the bits. The accumulator part is almoststlime as that of the turbo
encoder. As explained before, an accumulator is a simpkeydatd add operator

in modulo-2. However, in order to control the terminatiotskof the encoders, an
FSM is extracted and used in the accumulator, that is, aclatonus acting as a
convolutional encoder. As th& x n of bits are encoded then the accumulator adds a
termination bit to the sequence and forwards to the tratsmithe implementation

results of the PDRAC encoder is given in Table 4.2

Table 4.2: Xilinx ISE synthesis report for parallel turbaceder

Unit Name Usage count and percantage
Slices 550 (3 %)
BRAM 7 (3 %)
| Max. clock frequency 192.433 MHz |

4.6.2 Decoder Design

The decoder design of the PDRAC is similar to the decoder oP&C. The difer-
ences between them is firstly the MAP decoders in the firstenlase BCJR decoders
of a two-state convolutional code. Secondly, in the sectuster a repetition decoder
is introduced in place of the MAP decoders. The repetitiartoders work in a fashion
that they sum ufZ-consecutive log-likelihoods for the final decision of thesbThe
lack of the second MAP decoder cluster and introduction efrépetition decoders

drastically decreases the logic consumption of this decode
Calculation of the a priori likelihood.,.,, is an important concern in PDRAC de-
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coder and it is derived frorhe, the extrinsic information. Calculation &f is slightly
different than that done in PDTC decoder and it is done in the Méd¢dders. The

equation for calculatingie in the MAP-decoders is
Le=LL-Lg (4.43)

wherelLL is the log-likelihood and., is the apriori-likelihood. There is not anin
this equation since the repeat-accumulate code we usedas-aystematic repeat
accumulate code. Thie, Calculated by this equation is the extrinsic log-likelihood
information of each “repeated bit". Ilf is deinterleaved, obtaininDe_L., it yields

a new sequence that, every consecufiveumber of values give the extrinsic likeli-
hoods for the repeated bits. The summation of these liketlkan a cross manner
yields the deinterleaved a priori likelihoods. Interleaydeinterleaved a priori likeli-
hoods yields a priori likelihoodg,,, for the next iteration. Let us visualize the “cross
summation” term with an example. L&tbe 3 and deinterleaved version of extrinsic
likelihoods for the first bity,, beLl

o, LY, LL. Now, the deinterleaved a priori likeli-

hood for the first repetition aof; will be L., + L., that is the summation of the second
and the third values of the extrinsic likelihood. Similadiginterleaved a priori like-
lihood for the second repetition of will be LY, + L, that is the summation of the
first and the third values of the extrinsic likelihood and so @hese calculation are
done in the FPGA by tha priori-finder module. The performance of the PDRAC

decoder will be conducted in the next chapter.
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CHAPTER 5

RESULTS FOR THE PERFORMANCE OF PARALLEL
DECODERS

This chapter discusses the FPGA results of the PDTC and tRARRIecoders im-
plemented on the Xilinx Virtex4-SX35 FPGA. The floating pogimulation results
will be given in addition to fixed point simulation resultstivivarying block lengths.
Unless a dferent situation is indicated, the number of parallel brasachill be 4 for
both PDTC decoder and PDRAC decoders. The number of remestiioo the PDRAC

operation is chosen to be 3.

5.1 Implementation Results

The PDTC and PDRAC decoders are implemented for varying nuofiiat repre-

sentation of the observations. The PDTC decoder is symg$or two kinds. One
is log-MAP based PDTC decoder and the other is the max-log?Mased PDTC de-
coder. PDRAC decoder is synthesized by only using log-MARdec The reason

for this is not to face performance loss in PDRAC decoder.

In Table 5.1 the synthesis results for log-MAP based pdizdie turbo decoder,
in Table 5.2 the synthesis results for max-log-MAP basebddwtecoder are given.
Additionally, in Table 5.3 the synthesis result for PDRAC iga.

The distinct diference between log-MAP and max-log-MAP algorithms is that t
former uses a LUT. As described in Chapter 4, LUT is generayacsing theg value

of the quantization. LUT insertion in decoders introducearesource usage. These
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Table 5.1: Implementation results for PDTC decoder usiggNtAP decoders

K Slice Slice usage Maximum achievable
(number of bits)| usage| Percentage (%) Clock Frequency (MHz
5 8663 56 65.557
6 10595 68 60.070
7 10807 70 55.491

Table 5.2: Implementation results for PDTC decoder using-tag-MAP decoders

K Slice Slice usage Maximum achievable
(number of bits)| usage| Percentage (%) Clock Frequency (MHz
4 6347 41 87.253
5 6501 42 86.963
6 6994 45 86.949
7 7537 49 85.704

extra resources, i.e. slices, are included in the resuweagn Tables 5.1 and 5.3.

It is obvious that LUT insertion degrades the design peréoroe in terms of both
resource usage and maximum clock speed. The reason of thaecexplained as
follows. LUT can be thought as a large multiplexer which istrolled by theq value
and the inputs of thenax operation. Additionally the results of the LUT have to be
added in theanax operation in order thahax result can be ready at the next clock
cycle, that is, a combinatorially operating large multqyge degrades the resource
usage and combinatorial addition degrades the maximunatperfrequency. Also,
it must be noted that the slice usage increases almostlyn&dh icreasing number

of parallel sub-decodersl.

Another important tool that can be used in FPGA implemeoietis pipelining.
As described in Chapter 3 pipelining provides conveniencénitreasing the clock
speed of the design. A recent log-MAP and max-log-MAP PDTEbder conducted
in [2] shows how pipelining can be an enhancement for perdoee. In this design
all of the computations were carried right after an inforioraivas fetched. However
in our design independent blocks were divided into groupshieyuse of flip-flops.
The sysnthesis results for the aforesaid PDTC implememtatie given in Tables 5.4
and 5.5.
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Table 5.3: Implementation results for PDRAC decoder usigg\MtAP decoders

K Slice Slice usage Maximum achievable
(number of bits)| usage| Percentage (%) Clock Frequency (MHz
5 5109 32 68.755
6 6046 39 68.180
7 6219 40 64.218

Table 5.4: Another approach to PDTC decoder implementatitmplementation

results for PDTC decoder using log-MAP decoders [2]

K Slice Slice usage Maximum achievable
(number of bits)| usage| Percentage (%) Clock Frequency (MHz
5 8179 53 36.288
6 10628 69 31.522
7 11309 73 31.352

5.2 Simulation Results

5.2.1 Bit Size K) Selection

The bit size representatiok, for the observations is an important issue. The de-
coders can operate on a broader number of skt@ets larger. The available number
set for decoder ig-2K"1 + 1, -2kt 4+ 2 . -2K-1_2 _2K-1_ 1} The BER per-
formance with respect ti for the log-MAP based PDTC is demonstrated in Figure
5.1 and max-log-MAP based PDTC decoder in Figure 5.2 in enidib floating-
point simulation which is done on MATLAB. The BER results for RBC decoder

is presented in Figure 5.3. In these figures the performahtdeed®DTC decoders
were examined for 4 iterations over 2000 frames where eachdrconsists of 160

information bits. However, the PDRAC decoder performancs alzserved for 8 it-

Table 5.5: Another approach to PDTC decoder implementatitmplementation
results for PDTC decoder using max-log-MAP decoders [2]

K Slice Slice usage Maximum achievable
(number of bits)| usage| Percentage (%) Clock Frequency (MHz
5 6104 39 49.873
6 6570 42 47.645
7 7174 46 43.841
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erations with the same frame properties of PDTC decodersm Fhe figures it is
understood that as numblkrincreases, the fixed-point performance of the decoders
approaches that of the floating-point. The FPGA results bt@med by choosing the

most suitableéNormMaxvalue, which will be conducted in the upcoming section.
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Figure 5.1: SNR vs BER for log-MAP based turbo decoder. 4 timna for 2000
frames of 160 bits through 4 parallel MAP decoders.

5.2.2 NormMaxSelection

Selection ofNormMaxis another important figure in PDTC and PDRAC decoder
performance. INormMaxis chosen to be small then most of the information in the
observations will be cropped and the decoder will not fuorcgatisfactorily. On the
other hand, a largBlormMaxwill cause the decoder perform around the saturation
values. Hence the selection NformMaxmust be done carefully. Figure 5.4 and
Figure 5.5 shows thefect of NormMax on the performance of PDTC and Figure 5.6
show the &ect of NormMaxon PDRAC decoder.
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Figure 5.2: SNR vs BER for max-log-MAP based turbo decodderétions for 2000
frames of 160 bits through 4 parallel MAP decoders.
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Figure 5.3: SNR vs BER for PDRAC decoder. 8 iterations for 20@@nes of 160
bits through 4 parallel MAP decoders.
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Figure 5.4:NormMaxvalues for log-MAP turbo code decoder fofférent bit repre-
sentations. The average of 6000 packets of 160 data bitsivp#rallel decoders.
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Figure 5.5:NormMaxvalues for max-log-MAP turbo code decoder fofferent bit
representations. The average of 6000 packets of 160 dataitht4 parallel decoders.
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Figure 5.6:NormMaxvalues for repeat accumulate codes fdfaient bit representa-
tions. The average of 6000 packets of 160 data bits with 4lpbd&coders.

5.2.3 Interleaver Size

As the interleaver size increases the performance of thedges gets better. This
phenomena is called tHaterleaver Gainin literature. In Figures 5.7, 5.8, and 5.9
the BER performances of the PDRAC and PDTC decoders are depintéable 5.6

these performance results are given for comparison puspdsethese figures and

table it must be noted that the SNR curves are approximatidinear interpolation.
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Figure 5.7: SNR vs BER for RA with 4 parallel sub-decoders dewpd344 bits in
total with 8 iterations.
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Figure 5.8: SNR vs BER for turbo decoder with 4 parallel may-MAP decoders
decoding 1344 bits in total with 4 iterations.

65



T
—#—K=5

L —6—K=6
r —a—K=7
[ —— floating—point|]
107 E
107 4
o
W 10°E 4
m
10k -
107 4
-6
10 | | |
-3 -2 -1 1 2 Y3

0
E,/N, (dB)

Figure 5.9: SNR vs BER for turbo decoder with 4 parallel log-Rdecoders decod-
ing 1344 bits in total with 4 iterations.
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Table 5.6: Performance comparison of the proposed dectdetiges

En/No (dB)
1.3 2.6
Interleaver Size
Decoder Type K 160 1344 160 1344

Infinite | 1x102 | 4x10% | 11x10% | 15x10°

max-log-MAP 7 12x107% | 3x10° | 17x10%| 3x10°
PDTC decoder| 6 13x102|32x10°%|19x10%|6.1x10°
5 25%x1072 | 97x10°%|39x10% | 14x10°

Infinite | 9.9x10° | 2x10* [33x10°| 1x10°

log-MAP 7 1x102 | 12x10%|53%x10°%| 3x10°
PDTC decoder 6 1x102 | 12x103|78x10° | 45x10°
5 12x102|31x10%|23x10%| 1.3x10°

Infinite | 21x 1072 | 23x 102 | 92x10% | 2x10°
PDRAC decodel 7 37x102%| 3x102 [11x10°%|41x10°
6 39x102|29%x102|14x103|56x10°
5 46x 1072 |28x102|25%x103%|25%x10*

5.2.4 Memory Complexity

The parallel decoder structure requires the observatmbe stored in multiple mem-

ory segments. We useftkrent memory structures for PDTC and PDRAC decoders.

5.2.4.1 PDTC memory structure

In PDTC we useN MAP decoders operating in parallel. Thededecoders neebll
memory blocks for data bit observatiortsfOr decoders in Chapter 2). Accordingly,
N memory blocks are used for parity observations Bihchemory blocks for inter-
leaved parity observationp{ andp, for decoders in Chapter 2). In addition to these,
N memory blocks are also defined for interleaver (memorysioli-free interleavers)

tables.
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5.2.4.2 PDRAC memory structure

For N parallel MAP decoders, the observations are stored tmemory blocks.
Different than the PDTC case, there are no data observationfarSionthe PDTC

case N memory blocks are used to store the interleaver tables.

Log-likelihood values are stored in RAMs, too. Each decodsrds an a priori
probability (L;) and generates log-likelihood ratibl() andextrinsic informatior(Lg),
where in our desigh.'s are calculated within the MAP decoder. ThdseandL,
notations are eligible for the decoders running in the fitgtter. In the second cluster,
decoders usk, values ad_; and generates tHe, values which will be used ds; in
the next iteration. The word “cluster” is used just for iliegion which defines half
of an iteration. In fact, decoders only change their stagaitch the input and output
log-likelihood ratios [, andL). SincelLL values are final results, they are updated
(overwritten) after eachlusterrun. That structure brings out a memory usagehdf 3
memory blocks for log-likelihood ratio storage in both PD&a@d PDRAC decoders.

Summing up all yields a usage dNfumber of memory blocks for PDTC decoder
and 5\ for PDRAC decoder.

5.2.5 Transmission Bit Rate

Large decoding latencies in turbo and turbo-like codesadetd be the drawback of
these algorithms. By making them operate in parallel, a @serén their decoding
latencies is expected. To observe that decrease, decadangies are better given
in a formula. The decoding latency, for our parallel decodable turbo code decoder
stucture (both log-MAP and max-log-MAP) is

T:(%m)zl, (5.1)

where D is the number of information (data) bits in the packidtis the number
of parallel decoders in a cluster ahds the iteration number. Thﬁ term is the
decoding latency of a BCJR decoder operating with the CTT dlgariThe addition
of 6 in (5.1) is the result of the latency in BCJR (4) and inter&astructure (2)
due to pipelining. The reason of multiplying by B that in each iteration the BCJR
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decoders run twice, one for the uninterleaved form of datkome for the interleaved.

Similarly for PDRAC decoder the decoding latency can be esqwé as

D D
T o= (m*m*a)' (52)
3D

whereR is the code rate. The ten& in (5.2) is the latency introduced by the BCJR
decoders and the tergﬁ—R is the latency introduced by the accumulate decoders.

During the decoding latency calculations, it assumed tipeth@pongbuffer struc-
ture is used in the receiver side. While a packet is being vedethe observations
are stored in memory in a quantized form. After thaihjg memories are filled as
described in Section 5.2.4 fak, p, and p, observations and decoders begin to run.
During the decoding process if another packet arrivesdihg and p, observations
are stored irpongmemories. In this case, the decoding process isflietted by the
reception of the new packet. When the decoders finish thejitlay operate on the
pongmemories and this time th@ng memories are free for another packet storage.

This structure doubles the memory usage in the system fongtobservations.

Table 5.7: Comparison of the proposed decoder structures

Decoder N |1 K | Clockspeed SNR for | BitRate

(bits) (MHz) BER= 102 | (Mbps)
PDTC with max-log-MAP| 8 |4 | 6 80 ~2.2dB 61.54
PDTC with log-MAP 6 |4| 6 60 ~2.0dB 36.73
PDRAC with log-MAP | 10| 8 7 60 ~2.7dB 15.4

At this point, we can make a final comparison between all to@@sed structures
in terms of maximum available data rates. If we denote tha date byv, we can

formulate it as,

U= , (5.4)

where f is the maximum available frequency ands the decoding latecy. To find
the exact data rate, we need to decide on the architectuneberuof data bits in
a packet D), metric representation widtlK{, iteration numberl(), the number of

constituent decoders in a clusté&t)( and the code ratdRj. In data rate calculation,
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the f value can be obtained by checking the Tables 5.2, 5.1, arfdi53 selected&
value. Similarly,r value can be obtained from (5.1), or (5.3) for the decidastsire.
After observing the BER performances and FPGA resource ygagdecided to use
K = 6 for log-MAP and max-log-MAP PDTC decoders aKd= 7 for PDRAC
decoder. Herein we used packets containing 160 data atsisth = 160. Using the
Tables 5.1, 5.2, 5.3 and Figures 5.1, 5.2, 5.3 with the desdigites listed above, we
can generate Table 5.7 that gives all the information andpemisons needed. The
table is constructed with an assumption that the numberrallply processing sub-
decoders are increased in such a way that the FPGA becamstdlitho The clock

speeds are also adjusted for matching the clock speeds¢hatailable in industry.
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CHAPTER 6

CONCLUSIONS

Iterative decoding is one of the moslextive techniques for obtaining low error rates.
However, as the number of iterations increase there will beertatency in decoding
which will reduce its applicability. In order to increaseetecoding speed of such
decoders, parallelization of many decoders is one of the mgmortant ideas in lit-
erature. While constructing the thesis work, two iterajivacodable code types are
utilized, turbo codes (TC) (known as, parallelly concatedatonvolutional codes,
PCCC) and repeat-accumulate (RA) codes. In order to decreasatehey at de-
coding of these codes to reasonable levels, we appliedigi@alion which yielded
to parallel decodable turbo codes (PDTC) and parallel ddstedapeat-accumulate
codes (PDRAC) respectively. In this thesis work, the perforcea of the PDTC and
the PDRAC decoders are investigated and compared by imptergeghem on an
FPGA.

Marginal a posteriori (MAP) decoders are utilized as sofsaft out (SISO) sub-
decoders. The algorithm used for the MAP decoder was the Badil ealgorithm
(BCJR) which is renowned for optimal performance. We have egjhe a posteriori
probability (APP) decoding in the decoder of PDRAC for obgeguts performance
asin PDTC.

The parallelization idea causes new problems mainly inledger design. Besides
the complexity of building an interleaver which supportsgbel processing, due to
limited access to memory blocks available in the FPGA the orgrrollision problem
was the most crucial one. In order to build collision free affdctive interleavers,

row-columnS-randomninterleaver design technique was used.
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In the thesis, the aim was observing the performance of séoecodes under
AWGN channel. The channel was created in the hardware by piroglypseudo-
random Gaussian noise components through applying lireaiblick shift register
approximation. The distribution of generated random Vdeis was quite similar to

that of random Gaussian noise.

A reasonable way for designing low-latency decoders in aBA®as using an
integer based approximation by representing numbeis bits in FPGA. However,
integer based operations came with some consequences.rfttdrdiwvback was the
limited set of numbers for operations. The set defined at thebthe decoder can
be numbers from-co to +c0. So this large set is modified by using normalization
techniques for proper usage of observations in decodinyt#igns. Since the max-
imum and minimum available numbers in operations are defayad, overflows or
underflows are highly predicted to happen in addition andraation operations. So,
addition and subtraction operations are redefined for nagndhese kinds of situa-
tions. Next, the implementation of a log-MAP decoder hasesdime details which
includescorrection term The correction term is composed of a logarithmic function
and its implementation heavily decreases the performaiite alecoders in terms of
both latency and resource allocation. In order to overcdrisesituation an, accord-

ingly defined look-up table is used.

In terms of SNR vs BER performance log-MAP based PDTC decodstithe best
operating decoder, but its resource utilization was thgelsit max-log-MAP based
PDTC decoder’s performance is observed to be about 0.2 dBaiban the log-MAP
based one. However, its both clock speed and resource ttloegas better than log-
MAP. If this small performance loss is neglected, max-log®based PDTC decoder
seems to be the best match for high-speed communications. pg&tiormance of
PDRAC decoder was the worst among inspected decoder atcingsc The FPGA
used in this study is a moderate sized FPGA. For such an FPGRARDdecoder
is not a good choice and it is about 0.5 dB worse than max-lég?Ndased PDTC
decoder. In small-sized FPGAs like FPGAs those containab®&k slices, PDRAC

decoder can be used unless communications speed more tiiopsds needed.

After this study some future work can be recounted. RA codearne famous for
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their good BER performance. If the BER performance of theses@improved they
can be competitive in terms of resource allocation. A supdpct algorithm (SPA)
based decoder can be constructed, put into parallelized, fand be implemented.
The performance of the provided SPA decoder can be compatkdttof the PDRAC
decoder. Additionally, after invention of RA codes new RA+4@so0des appeared.
Irregular Repeat Accumulate Codes (IRA), Accumulate Repeatimulate (ARA)
codes Accumulate Accumulate Repeat Accumulate (ARA#RJAccumulate Repeat
Accumulate Accumulate (ARA&9)des are variants of it. The BER performance of

these codes can also be observed by implementation.
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