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ABSTRACT

ON THE NON-LINEAR VIBRATION AND MISTUNING
IDENTIFICATION OF BLADED DISKS

Yiimer, Mehmet Ersin
M.S., Department of Mechanical Engineering
Supervisor: Prof. Dr. H. Nevzat Ozgiiven
Co-Supervisor: Asst. Prof. Dr. Ender Cigeroglu

January 2010, 140 pages

Forced response analysis of bladed disk assemblies plays a vital role in
rotor blade design and has been drawing a great deal of attention both from
research community and engine industry for more than half a century.
However because of the phenomenon called ‘mistuning’, which destroys
the cyclic symmetry of a rotor, there have been several difficulties related to
forced response analysis ever since, two of which are addressed in this
thesis: efficient non-linear forced response analysis of mistuned bladed
disks and mistuning identification. On the nonlinear analysis side, a new
solution approach is proposed studying the combined effect of non-
linearity and mistuning, which is relatively recent in this research area and
generally conducted with methods whose convergence and accuracy
depend highly on the number of degrees of freedom where non-linear
elements are attached. The proposed approach predicts nonlinear forced
response of mistuned bladed disk assemblies considering any type of
nonlinearity. In this thesis, special attention is given to the friction contact
modeling of bladed disks which is the most common type of nonlinearity
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found in bladed disk assemblies. In the modeling of frictional contact a
friction element which enables normal load variation and separation of the
contact interface in three-dimensional space is utilized. Moreover, the
analysis is carried out in modal domain where the differential equations of
motions are converted to a set of non-linear algebraic equations using
harmonic balance method and modal superposition technique. Thus, the
number of non-linear equations to be solved is independent of the number
of non-linear elements used. On the mistuning identification side, a new
method is enclosed herein which makes use of neural networks to assess
unknown mistuning parameters of a given bladed disk assembly from its
assembly modes, thus being suitable for integrally bladed disks. The
method assumes that a tuned mathematical model of the rotor under
consideration is readily available, which is always the case for today’s
realistic bladed disk assemblies. A data set of selected mode shapes and
natural frequencies is created by a number of simulations performed by
mistuning the tuned mathematical model randomly. A neural network
created by considering the number of modes, is then trained with this data
set for being used to identify mistuning of the rotor from measured data.
On top of these, a new adaptive algorithm is developed for harmonic
balance method, several intentional mistuning patterns are investigated via
excessive Monte-Carlo simulations and a new approach to locate, classify

and parametrically identify structural non-linearities is introduced.

Keywords: Non-linear Vibration, Mistuning Identification, Friction
Damping, Forced Response Analysis in Modal Domain, Adaptive
Harmonic Balance Method, Monte-Carlo Simulation, Non-linearity

Identification, Model Identification, Neural Networks, Optimization



Oz

KANATCIKLI DISKLERIN DOGRUSAL OLMAYAN TiTRESIMi VE
DUZENSIZLIK COZUMLESI UZERINE

Yumer, Mehmet Ersin
Yiiksek Lisans, Makine Miihendisligi Boliimii
Tez ydneticisi: Prof. Dr. H. Nevzat Ozgiiven
Yardimci tez yoneticisi: Yrd. Dog. Dr. Ender Cigeroglu

Ocak 2010, 140 sayfa

Kanatgik tasariminda kritik bir rol oynayan kanatgikli disk biitiinlerinin
sistem cevab1 analizi yarim ytiizyili askin siiredir hem arastirma gruplari
hem de tiirbin endiistrisi tarafindan biiyiik ilgi gormektedir. Fakat disk-
kanatgik sistemlerinde sistem cevabi ¢oztimlerinde gevrimsel periyodikligin
kaybolmasina sebep olan ‘diizensizlik’ten kaynaklanan bir¢ok ©Onemli
problem ortaya c¢ikmaktadir. Bu problemlerden iki tanesi bu tezde
incelenmistir; disk-kanatgik sistemlerinin dogrusal olmayan titresim
cevabinin efektif ¢oziimii ve diizensizlik ¢oziimlemesi. Dogrusal olmayan
analiz kisminda diizensizlik ve dogrusal olmayan titresim etkilerini birlikte
inceleyen yeni bir yaklasim gelistirilmistir, ki bu arastirma alaninda
goreceli olarak yeni bir konu olmakla birlikte simdiye kadar genellikle
dogrulugu ve yakinsaklig1 kullanilan dogrusal olmayan eleman sayisina
dogrudan bagl olan metodlarla gerceklestirilmistir. Onerilen yaklagim
diizensiz disk-kanatcik sistemlerinin dogrusal olmayan titresim cevabini
dogrusalligi bozan her kaynaga uygun sekilde tahmin etmektedir. Bu tezde

ozellikle disk-kanatcgik yapilarinda siklikla karsilagilan siirtiinme temas:
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tizerinde durulmustur. Siirtlinmenin modellenmesinde ti¢ boyutlu uzayda
degisken dikey kuvvete ve temas ylizeyinin ayrilmasina izin veren bir
sturtinme elamani kullanilmistir. Buna ek olarak, analiz tiirevsel hareket
denklemlerinin harmonik denge metodu ve kip cakistirma teknigi ile
dogrusal olmayan cebirsel denklemlere donistiiriildiigli kip uzayinda
yapilmaktadir. Bu nedenle analizin dogrulugu ve yakinsaklig1 kullanilan
dogrusal olmayan elemanlarin sayisina baglh olmamaktadir. Diizensizlik
¢oziimlemesi bashig1 altinda ise, sinir aglar1 kullanilarak yeni bir ¢oziim
yontemi ortaya c¢ikarilmistir. Bu yontem sistem modlarmi kullanarak
sonuca gittigi icin biitiinlesik kanatgik-disk sistemlerinde kullanilmaya ¢ok
uygundur. Bahsedilen metod diizensizlik ¢oziimlemesi yapilmak istenen
disk-kanatcik sisteminin cevrimsel periyodik bir matematiksel modele
sahip oldugunu varsaymaktadir, ki gliniimiiziin biitiin gergek¢i disk-
kanatgik sistemleri i¢in bu gegerlidir. Bu matematiksel modeli rastgele
diizensiz hale getirerek bir grup mod sekli ve dogal frekans igin belli sayida
benzetim yapilmistir. Bu benzetim sonucu ortaya ¢ikan bilgi kiimesi sinir
aginin  egitiminde kullanulmistir. Bahsedilenlere ek olarak, yapisal
¢oztimlemelerde kullanilacak yeni bir “uyum saglayan harmonik denge
metodu” gelistirilmis, bir¢ok kasitli diizensizlik kalibi Monte-Carlo
benzetimleri ile incelenmistir ve dogrusalligi bozan yapisal kaynaklarin
yerinin, tipinin ve parametrelerinin saptanmasini saglayan yeni bir yontem

ileri stirtilm{stiir.

Anahtar kelimeler: Dogrusal Olmayan Titresimler, Diizensizlik
Coziimlemesi, Kip Uzayinda Titresim Analizi, Uyum Saglayan Harmonik
Denge Metodu, Monte-Carlo Benzetimi, Dogrusal Olmayan Coziimleme,

Model Coziimleme, Sinir Aglari, Optimizasyon
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CHAPTER 1

INTRODUCTION

The structural integrity of an aircraft engine highly depends on its rotary
parts. Since the ultimate goal of an engine manufacturer is to improve the
efficiency and thrust-to-weight ratio, the key enhancement is to design
lighter rotating equipment, which in turn requires well developed
structural dynamics tools to aid designers assess accurate component life

cycles driven by High-cycle fatigue (HCF).

HCF failures of rotary aero engine parts result from excessive blade
vibration cycles, as thousands of these accumulate rapidly due to high
engine rotation speeds. Aggravated by mistuning and aeromechanical
sources, blade vibrations caused HCF is responsible for a cost of over $400
million per year [1], being a major reason for top-tier engine manufacturers’

continuous interest in bladed disk assembly research.

This thesis, presenting new techniques and approaches for non-linear
forced response analysis, system identification and dynamic robustness
assessment, lies in the heart of structural dynamics subarea of the

aforementioned research work.



1.1 Scope of the Thesis

Throughout the research conducted which lead to this work, the ultimate
aim has been bringing new solutions to old problems, new ideas, and new

perspectives to several aspects of the blade vibrations.

There are three main topics in which the objectives can be summarized as

follows:

e Non-linear forced response analysis:

— Developing an analysis tool which is able to analyze mistuned
bladed disk assemblies in modal domain independent of the
number of degrees of freedom (DOF) where non-linear
elements are connected.

- Developing efficient methods to increase solution speed
without degrading accuracy.

- Implementing efficient solution procedures to trace unstable

regions.

e System identification:
- Developing reliable approaches for mistuning identification
using neural networks and optimization algorithms.
- Identifying non-linearities present in structural systems using

neural networks and optimization algorithms.

e Robustness assessment of bladed disk assemblies:



- Developing a stochastic frequency response function
interpretation to numerically evaluate the magnitude
amplification related to mistuning.

- Investigating the effectiveness of intentional mistuning

patterns.

Although the main focus has been on the dynamics of bladed disk
assemblies, any methodology developed has also been applied to other
common structural dynamics problems, such as model updating, whenever

possible throughout this thesis.

1.2 Qutline of the Thesis

The diagram presented in Figure 1.1 overviews the contents of this work.

Chapter 2 begins with preliminary information about mistuning, its
consequences, history and modeling. Then, comprehensive literature
review of several sub topics are presented in the order which they appear in

this thesis.

In Chapter 3, the emphasis is on mistuning modeling. The mathematical
models employed in the upcoming sections, namely; lumped parameter
modeling and component mode synthesis based reduced order modeling
are introduced and their advantages/disadvantages are discussed in this

section.
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Figure 1.1 — Thesis Overview

Chapter 4 is devoted to the non-linear forced response analysis of mistuned
bladed disks. For the application (demonstration) of the proposed method,
friction contact nonlinearity, which is the most common type of
nonlinearity in bladed disk systems, is used. Firstly, the contact model used
in the analysis is presented with extensions where necessary. Secondly, the
solution approach is formulated and exemplified with case studies. Thirdly,
a new harmonic balance method is introduced and discussed in the light of

case studies.

In Chapter 5, two methods developed for mistuning identification through
use of neural networks and optimization is presented, whose efficiency is

discussed throughout several case studies. These case studies investigate



the effect of noisy input data and missing modes to the effectiveness of the
methods developed. Applications to model updating and non-linearity

identification are also given in this chapter.

Chapter 6 is dedicated to discuss the robustness of mistuned bladed disk
assemblies. A new stochastic frequency response function (FRF)
representation is developed to serve as an evaluation tool. Then, the
robustness of intentional mistuning patterns is evaluated and compared

through intense Monte-Carlo simulations in this section.

Finally, Chapter 7 summarizes the work done throughout the above
mentioned research, and evaluates the outcomes and contributions to the
gas turbine industry and structural dynamics literature. In this chapter, a
broad discussion is also presented accompanied by suggestions for future

work.



CHAPTER 2

BACKGROUND

21 Mistuning Phenomenon

Throughout the history, vibration related problems of bladed disks have
been extensively studied for around half a century but it is still one of the
emerging areas in gas turbine design. The challenge here is mainly related
to a phenomenon called mistuning, which can be defined as random
deviations among the blades of a particular disk. These random deviations
are primarily caused by manufacturing tolerances, uneven material
properties and operational wear. Being unavoidable, mistuning cause mode
localization and forced response amplification, and likely resulting in the
failure of any bladed disk which is designed only considering the ideal

cyclically symmetric structure.

One of the very early works on mistuning is published by Tobias and
Arnold in 1957 [2]. They investigated the influence of dynamic
imperfections on the vibration of rotating discs. After Whitehead’s [3] and
Ewins’s [4] insightful work on the physics of mistuning, several researchers
have documented their work on the effect of mistuning on blade vibrations

since then, resulting in over 400 publications.



Rather than citing all of the mistuning related research in a chronological
order, several of them are mentioned in the upcoming parts of this section
considering their theme in the scope of this thesis. However the interested
reader is referred to the comprehensive review published by Srinivasan [5]
where he presents a substantial perception of the research issues in bladed

disks and mistuning.

2.2 Non-Linear Forced Response Analysis of Bladed Disks

In order to decrease HCF failures of bladed disk assemblies, dry friction
dampers are widely used by engine manufacturers. Therefore, bladed disk
assemblies that feature dry friction dampers have to be analyzed via
appropriate non-linear solution techniques in order to take the non-linear
forcing effects resulting from frictional contacts into account. One of the
efficient design features that introduce dry friction damping to the system
is the shroud element. In this thesis, a new approach is proposed to predict
forced response of frictionally damped mistuned bladed disk assemblies in

modal domain.

2.2.1 Contact Modeling

In accurately investigating frictionally constraint structures, friction
modeling is one of the key steps that require special attention since it is the
friction model that assigns the non-linear forcing related to the contact
points. In bladed disk designs, shrouds between the blades and under

platform wedge dampers are the primary source of frictional non-linearity.



There has been extensive research for more than a couple of decades on

friction contact modeling.

One of the early works is conducted by Griffin in 1980 [6], where the
relative motion was restricted to the contact plane, thus resulting in
constant normal load. Later Mengq et al. [7-8] studied the forced response of
shrouded fan stages where the authors also considered the effects of
microslip [9]. They also reported a comparison with the experimental
results [10]. Cameron et al. [11] presented a simplified analysis which

resulted in constant normal load friction interface.

Yang et al. [12] worked on stick-slip-separation analysis and they came up
with analytical rules that define transition angles. Authors also modeled
normal load variation in a comprehensive way. Yang and Menq [13] also
worked on normal load variation and they analyzed wedge dampers [14].
In the same year, Csaba [15] proposed a microslip friction model based on
[9] where he excluded the shear layer in [9] for simplicity. Chen et al. [16]
addressed the normal load variation concept and used it for three-
dimensional periodic motion. Petrov and Ewins [17] analytically
formulated friction elements based on similar rules defined by [12]; they
also presented friction models for time domain analysis [18]. Later, Koh et
al. [19] published their work on turbine blade friction dampers, where they

also verified some of the friction models experimentally.

In 2006, Cigeroglu and Ozgiiven formulated a two-slope macroslip friction
model which resembled microslip and still remained computationally

inexpensive [20]; Cigeroglu et al. also developed a one-dimensional



microslip friction model in the same year [21]. Cigeroglu et al. [22] later
developed another microslip friction model which took normal load
variation into account. They analyzed a bladed disk system with wedge
dampers and developed a contact stiffness prediction method [23] which is

also verified experimentally [24].

2.2.2 Non-Linear Analysis in Modal Domain

Modal domain methods have been used extensively by researchers to
predict forced response of mechanical structures. However, for non-linear
analysis, time-domain methods are generally established which require
much more computational power. In 1990, Budak and Ozgiiven [25] came

up with the following formulation for harmonic excitation:

[M &} + [CIx} + il H [} + [K )+ {f =} (2.1)
= [A]{x} (2.2)

In (2.2), [A] is the response dependent non-linearity matrix. Later,
Tanrikulu et al. [26] for the first time implemented describing function
method into multi-degree-of-freedom vibratory physical systems. Kuran
and Ozgiiven [27] worked on response calculation using modal
superposition and they also extended the work by Tanrikulu et al. [26] to
include multi harmonic solutions. Recently, Orbay and Ozgiiven [28]
introduced use of reduced order models in non-linear modal domain

solutions of bladed disk assemblies.



In this thesis, an approach to predict nonlinear forced response of mistuned
bladed disk assemblies in modal domain employing the modal
superposition method [27] is proposed. In the application of the proposed
method, friction contact nonlinearity is considered. In order to assess the
nonlinear force components resulting from contact, a modified version of
the macroslip friction model developed by Yang et al. [12] is utilized
together with the analytical transition angles for simple harmonic motion
given in [22] by taking normal load variation into account. The friction
model used is a simplified version of the one presented in [24], where the
in-plane motion is decomposed in the two major directions. For simplicity,
in this work, one friction element is utilized between contacting nodes and
the direction of it is adaptively rotated according to the major direction.
This friction model is employed due to the availability of analytical
transition angles, which increase the speed of the solution process

significantly.

Although the approach presented in this thesis is demonstrated using this
friction model; it is mathematically suitable to be used with any type of
friction model or non-linearity. The novel part of the approach proposed is
that it enables the analysis of a non-linear mistuned bladed disk system
without introducing reduced order modeling and yet leaving the number
of nonlinear equations independent from the number of degrees of freedom

in the model where nonlinear elements are attached.

The approach proposed in this study enables the non-linear analysis of a
mistuned bladed disk system without introducing reduced order modeling.

Application of reduced order modeling techniques is common in mistuned

10



bladed disk modeling. Sextro et al. [29] used a sub-structuring based
method for nonlinear analysis of mistuned bladed disks with
underplatform dampers. Petrov et al. [30] utilized a condensation method,
by which, the number of degrees of freedom (DOFs) are reduced to the
number of DOFs where non-linear elements are attached. For sub-
structuring methods the number of non-linear equations to be solved is also
at least as in the case of the mentioned condensation method. Thus, both of
these methods suffer from slow non-linear solution time in the case of
realistic bladed disk models. There are also other reduction techniques
where direct dependency of the non-linear equations to the number of
physical DOFs is eliminated. However, such models result in decreasing
accuracy. For example in Ref. [31], resonant frequencies of the mistuned
assembly shift considerably even for the linear response. The novel part of
the approach proposed in this work is that it leaves the number of
nonlinear equations independent from the number of DOFs in the
mistuned bladed disk model where nonlinear elements are attached;
hence, full finite element model is used which increases the accuracy

compared to the reduced order models.

2.3 Identification

2.3.1 Mistuning Identification

Since mistuning is random in nature, predicting forced response of bladed
disks is very complicated if mistuning is taken into consideration and it
generally needs statistical approaches to be implemented if the goal is to

broadly inspect the design under consideration.
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Nevertheless, another aspect of the issue is to analyze a particular disk,
which requires the identification of mistuning related to it. Until recently,
the majority of the bladed disk assemblies were encompassing separately
manufactured blades which are afterwards attached to the disk. It is
relatively easy to identify the mistuning related to these individual blades
since they can be cantilevered from their roots and tested [32-33]. This
approach, although neglecting the mistuning caused by the connection,

works to some extend for bladed disks whose blades are of detachable type.

However, for an integrally bladed disk (blisk), it is not possible to separate
the blades and test for mistuning identification separately. For this type of
bladed disks it is necessary to use a methodology which is capable of
extracting blade mistuning parameters from system parameters available
from system tests. Regarding this issue, prior work has been published by
Judge et al. [34-36] where the authors present an approach which makes use
of free response disk measurements to identify blade modal parameters in a
reduced-order model and they validate the method experimentally. Pichot
et al. [37] and Mingolet et al. [38] utilize lumped parameter modeling to
identify mistuning of blisks. One of the significant studies in this scope was
reported by Feiner et al. [39-40] in 2004, where the authors developed a
method for mistuning identification employing their reduced order model.
It is clear that increasing use of blisks in the industry pioneered several

other mistuning identification works [41-48] recently.
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2.3.2 Model Updating with Neural Networks

Model updating has been extensively studied and is an unavoidable tool
for verifying and correcting mathematical dynamic models to have accurate
and reliable representations. In recent years researchers started using

neural networks as a tool in model updating.

Regarding this subject, an early work published by Levin et al. [49] showed
that neural networks are working quite well with simple dynamic models
and even in the presence of noise. Chang et al. [50] proposed an adaptive
neural networks approach for model updating, and they developed a
training sample selection methodology [51]. Yong et al. [52] proposed a
two-level neural network approach which updates structural parameters in
the first level and damping ratios in the second. More recently, Zapico et al.
[53] reported their work on experimental validation and updating of a steel

frame using neural networks.

It should be noted that in the above mentioned model updating work,

neural networks are used as the stand alone tool, whereas in this thesis, it is

used in conjunction with optimization methods to broaden the capability.

2.3.3 Non-Linearity Identification with Neural Networks

Non-linearity identification have been one of the most important and yet

demanding subjects in structural systems. In this thesis, a new approach to

13



identify non-linear systems, where neural networks are playing the key role

is presented.

Although the identification capabilities of neural networks have been
drawing a great deal of attention from both of the control systems and
structural dynamics communities, there are relatively few works done on
structural non-linearity identification utilizing neural networks. One of the
early works is published by Chen et al. [54] in 1992. They have employed
several neural network configurations and used a one degree of freedom
simulated non-linear time series process to illustrate the outcomes. In 1993,
Masri et al. [55] used artificial neural networks for identification of a one

degree of freedom Duffing oscillator under deterministic excitation.

Demonstrating the non-linearity identification capabilities of neural
networks, the above stated works are yet restricted to relatively simple
systems and are not addressing common non-linearity types, for example
friction and cubic stiffness, encountered in typical structural dynamic
systems. However, the methodology developed in the context of this thesis
is not only capable of determining the type and location of the non-linearity
involved in the structure under consideration, but also is able to identify

the associated non-linearity parametrically.

A recent study whose aim is similar to the work presented here is
Gondhalekar et al. [56]. They employed a previously developed
methodology of Ozer et al. [57-58] to locate non-linearities in the structure,
and then used genetic algorithm optimization to determine the type and

parameters of the related non-linearity. However, the approach presented
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in [56] is short of being practical since it requires measurements taken from
all of the degrees of freedom where non-linearities are assumed to be in the
structure. On the other hand, the methodology presented in this thesis does
not restrict measurements to be taken from any degrees of freedom where
non-linearities are possibly present and yet, it is capable of locating and

identifying non-linearities in a given structure.

2.4 Intentional Mistuning

As stated earlier, mistuning is inevitable for any cyclically symmetric
bladed disk assembly since it is caused by manufacturing tolerances,
material properties and operational wear. Since reducing the level of
mistuning beyond certain limits is not possible with the current technology,
the attempts are rather made to reduce or control the forced response
magnification where intentional mistuning is an alternative. Intentional
mistuning is referred as the methodically controlled introduction of
variations in blade properties to obtain a preferred intensity of forced

response.

The advantageous effects of a prearranged deviation from the tuned
system, namely ‘detuning’, was demonstrated by Ewins [59]. Ewins [60]
also demonstrated the benefits of selecting the right packing configuration
of blades for response level reduction. Griffin et al. [61] investigated an
‘alternate mistuning” where low and high frequency blades are alternated
on the circumference of the rotor. With a lumped parameter model,
Castanier et al. [62] illustrated the maximum forced response reduction that

can be obtained by implementing a pseudo-harmonic intentional pattern.
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Castanier et al. [63] also investigated the combined effects of intentional
and random mistuning for the so-called sinusoidal pattern. Ayers et al. [64]
proposed that for the same intentional mistuning amplitudes, changing the
order of the blades around the rotor can reduce the magnification factor.
Nicolic et al. [65] developed large random mistuning tactics to reduce the
response amplification but the main drawback of this strategy is a widened
speed avoidance zone for the engine caused by the random spreading of

natural frequencies of the rotor.

Since some uncontrolled variation is still unavoidable although intentional
mistuning is applied on a particular rotor design, it is vital to evaluate any
intentional mistuning pattern together with a certain amount of random
mistuning. The aim of the analysis carried out in this thesis is to statistically
compare the robustness of intentional mistuning patterns such as harmonic,
linear and pseudo harmonic, with different levels of random mistuning
applied on top. Monte Carlo simulations with selected intentional and
random mistuning pairs are performed under different engine order
excitations to compare the performance of the intentional mistuning
patterns applied. This study differs from the previous ones with its deep
investigation in model, random mistuning and forcing dependency of

intentional mistuning patterns.
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CHAPTER 3

MATHEMATICAL MODELING

Other than standard 3D Finite Element Modeling (FEM), two types of
reduced order mathematical models are used in some of the case studies
throughout this thesis. In this chapter, a brief description of the models

used in thesis is provided.

Since modeling is not in the scope of the present work, additional attention
will not be paid on it; however, an inclusive survey on modeling issues in
bladed disk assemblies is presented by Castanier et al. [66]. He refers to
several lumped parameter and reduced order models (ROM) in the

literature.

In this thesis two models, other than standard finite element modeling,
which have different levels of complexity, are employed. The first one is a
relatively simple lumped parameter model with two different
configurations which enables non-linear and linear modeling. The second

one is a component mode synthesis [67] based reduced order model.
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3.1 Lumped Parameter Modeling

The lumped parameter model used in this work is a modified version of the

model of Dye et al. [68].
3.1.1 Model for Non-Linear Analysis

The schematic view of the lumped parameter model used in this work for

non-linear analysis is as depicted in Figure 3.1.
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Figure 3.1 — Non-Linear Lumped Parameter Model

In this model, m is the lumped mass representing the blade, M stands for
disk sector mass, K is the stiffness coupling between sectors, k' is the
stiffness connecting the disk to the ground and k is the stiffness connecting

the blade to the disk. {a} is the vector denoting contact element parameters.
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Theoretically, this modified version of the lumped parameter model is

available to be used with any point contact model.

For blade alone mistuning perturbation positive and negative Ak values are
used. This simple lumped parameter model is appropriate for the purpose
of investigating the applicability of the proposed method since it is based

on a cyclically symmetric nominal structure.

3.1.2 Model for Identification and Intentional Mistuning

The schematic view of the lumped parameter model used in this work for
mistuning identification and intentional mistuning is as shown in Figure
3.2. Note that it is the linear version of Figure 3.1, where non-linear contact

elements are omitted.
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Figure 3.2 — Linear Lumped Parameter Model
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In this model, parameters m, M, K, k', k, and Ak have the same definition as

given in section 3.1.1.

This simple lumped parameter model is appropriate for the purpose of
investigating robustness of intentional mistuning patterns and usefulness of
neural networks mistuning identification since its nominal base includes

basic features of a cyclically symmetric bladed disk structure.

3.2 Reduced Order Modeling (Craig-Bampton)

The reduced order model used in this study is formulated by Bladh et al.
[69] and utilized by Orbay and Ozgiiven [28] for non-linear forced response

analysis of bladed disks.

This reduced order model is based on component mode synthesis [67]
which is modified by Bladh et al. [69] making blade cantilever frequency
mistuning possible. The formulation of the stiffness and mass matrices for

this reduced order model is given below as derived in [69].

A.] 0] o]
[k ]=| o] [F. ]+ [@lk.,] [0] (3.1)
[o] [o] Bdiag| diag (1+ s, ]}

) 0
)=\ (g, T (i, J+ e le.,] [E] 0e ] (3.2)

o] e ] 1]
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In this formulation, where ® denotes the Kronecker product, [K < ] and
[M Cb] are the stiffness and mass matrices of the reduced assembly, [/N\ d] is
the modal stiffness matrix of the disk, [A,] is the modal stiffness matrix of
one blade, [I?w’ d] and [ﬁw’d] are the reduced stiffness and mass matrices of
connection degrees of freedom (DOF) on the disk, [ch,b_l and LuCC’bJ are the
reduced stiffness and mass matrices of connection DOF on one blade, 7, |
and [y, | are the reduced mass matrices between disk DOF and connection
DOF; and blade DOF and connection DOF, respectively. Moreover, [1 ] is
the identity matrix, [0] is the zero matrix, lﬁ' J is the Fourier expansion
matrix, Bdiag[ | and diag() are the block-diagonal and diagonal matrices
respectively, §¢ denotes the n” blade’s mistuning perturbation, N is the

number of blades and m, is the number of modes retained per blade.

The detailed description and derivation, which is not the subject of this
study, is available in [69]. It should be noted that this reduced order model
will speed up the training data generation step in mistuning identification
with neural networks and Monte-Carlo simulations in intentional
mistuning analysis since it allows easy manipulation of the blade alone

natural frequencies.
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CHAPTER 4

NON-LINEAR VIBRATION ANALYSIS

4.1 Contact Model

The friction model used to calculate contact forces in this thesis is a
modified version of the friction model developed by Yang et al. [12]. In
Figure 4.1, three-dimensional contact of two bodies is shown. The contact
surface on each body is represented by a number of contacting points. Each
of the red points in the figure represents a contact pair. The distributed

contact model is plotted for the i contact pair as shown in Figure 4.1.

Figure 4.1 - 3D Contact and Distributed Contact Model
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Every contact pair in such a distribution will have its separate local
coordinates such that the normal direction is perpendicular to the contact
surfaces in the vicinity of the pair under consideration. For example, for the
it pair represented in Figure 4.1, u and v are the tangential and normal
directions of the it local coordinate axis. 1y, ik, and i, are the normal force
and the contact stiffness values in tangential and normal directions,
respectively. For such a configuration, contact forces will be calculated for
each pair separately and then transformed to the global coordinates to be

included in the system solution.

| ng +k,v(0) (Slip — Stick)
n(6) = { 0 (Separation) (1)
0 (Separation)
£©O)=1  +m(©®) (Slip) 42)
k, [u(@)—u,]+ £, (Stick)

For harmonic motion, relative normal displacement, v, relative tangential
displacement, u, normal force, n, and friction force, f will be functions of
an angular variable in equations (4.1) and (4.2), say 6 =t [22]. Normal
force will be either zero, which is the separation case where friction force is
also zero, or it will be a non-zero value calculated according to (4.1).
Friction force will be calculated according to (4.2) considering stick, slip,
and separation states. While formulating the contact model for this study,
analytical stick-slip-separation transition angles are taken from [22]. In non-
linear contact dynamics where periodic forcing and response is assumed,
transition angles refer to those angles where the relative motion between

the contacting points change state. For more detail on this subject see Ref.
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[22]. For the separation case these angles yield the well defined 10 possible

sequences reported by Yang et al. [12].

The modification made over the formulation of Yang et al. [12] is the
introduction of adaptive determination of the friction coordinate axis at
each solution step according to the relative displacements between the two

nodes associated with the friction element.

In a 3D contact model, projection of the relative motion of contacting nodes
on to the contact plane will not necessarily lie on a straight line; in fact for
simple harmonic motion it will be an elliptic trajectory as depicted in Figure
4.2. For such a trajectory, generally a static axis is defined for the contact
element where the forcing of the relatively lower magnitude axis is ignored

[12].

Cigeroglu et al. [24] utilized two orthogonal friction elements between the
same nodes to account for the motion of the ignored axis, in order to
capture the relative motion in the minor axis also. However, since there is
no floating contact body such as a wedge damper in the case of shroud
contacts, the relative motion will generally be larger in one direction.
Therefore, in this study, one friction element is adaptively positioned at
each solution step so that the tangential direction of the element is on the

major axis of the friction path in the contact plane.
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Figure 4.2 — Relative Motion Path (....), Static Coordinate Axis (==) and

Adapted Coordinate Axis (==) in the Contact Plane

In Figure 4.3, examples of full-stick, stick-slip, and stick-slip-separation
cases calculated by the model proposed are presented with their
corresponding hysteresis curves. Note that, the analytically calculated
single harmonic representation of normal, n(6), and friction, f(0), forces are
also included. It is clear from Figure 4.3 that the proposed contact model is
able to represent the classical stick and stick-slip motions as well as the

possible separation of contacting points in the normal direction.

In Figure 4.3-(c), four transition angles are evident; stick-to-positive slip
(~0.5 rad), positive slip-to-stick (~1.8 rad), stick-to-negative slip (~3.0 rad)
and negative slip-to-stick (~4.4 rad). Also in Figure 4.3-(e), transition from
positive slip-to-separation (~1.4 rad) and separation-to-negative slip (~3.9

rad) are clearly exemplified.
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Slip (¢, d) and Stick-Slip-Separation (e, f). In (a, ¢, e); f(0) (=), un(0) (—), -
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4.2 Non-Linear Forced Response

4.2.1 Formulation

The equation of motion for a linear multi degree of freedom system, under

harmonic forcing, in time domain is

[M 145} +[Cl{x} + i H ] {x} + [K]{x} = {17} (4.3)

In equation (4.3), [M], [C], [H], and [K] represent the mass, viscous
damping, structural damping and stiffness matrices respectively; whereas
{x} and {f} are the response and external forcing vectors in time domain. If
any non-linearity is introduced, it can be represented as a non-linear forcing
vector, {fni}, which can be added to the left-hand side of equation (4.3),
representing the inter-structural forcing. The resulting non-linear equation

of motion is

[MJ{x} +[C1} +iLH J{x) + [K ]} + ) = {5 (4.4)

If the external forcing is harmonic and the response is assumed to be
harmonic, {x} and {f} in (4.4) can be replaced by (4.5) and (4.6) respectively

where § is the harmonic-number.

(x(n}= Im@{X}heMJ (4.5)
o}= Im(i{F}h e"’“‘”] (4.6)
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Moreover, since the response is assumed to be harmonic, the internal non-
linear forcing vector can also be assumed to be harmonic as stated by Kuran

and Ozgiiven [27], which can be expressed as follows:
{fNL (t)}: Im(z{FNL}heiha]t ) 4.7)
h=0

Substituting equations (4.5), (4.6) and (4.7) into equation (4.4), differential
equation of motion of the nonlinear system can be converted into a set of

algebraic equations as follows:
[~(ha)’ [M1+i(h@)[Cl+TH]+[KIN{X}, +{Fy.}, = {F},, (4.8)
[KHX Sy +{Fybo = {F5,. (4.9)

In equation (4.8), @ and h are corresponding to frequency and harmonic
number, respectively; whereas 0 in (4.9) stands for the bias component.
Using the formulation of non-linear forcing as stated by Budak and

Ozgiiven [25] nonlinear forcing vector in (4.8) and (4.9) can be written as
{Fyt=[a)xs. (4.10)

This representation allows (4.8) and (4.9) to be transformed via (4.11),
where 1 is the number of degrees of freedom, m is the number of modes
employed, [®] is the mass normalized modal matrix and {n} is the modal

coefficient vector, resulting in (4.12) and (4.13).

X0 =[P 17 (4.11)
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(Q1-(ho Y111+ i(ho)C+i{H o, +{Fy ), = (F3, (4.12)
[}y + (Fy o = {F}, (4.13)

In (4.12) and (4.13), [Q] is the diagonal matrix of squares of natural
frequencies, [I] is the identity matrix, [5 ], [ﬁ ], [FNL], and {F} are the
modal viscous damping matrix, modal structural damping matrix, modal
nonlinear forcing vector and modal forcing vector respectively and are

given as follows:

[Cl=ro1 I, (4.14)
[ ]= 107 11, (4.15)
{Fy}=[®]{Fy}, (4.16)
{F} =[®]"{F}. (4.17)

It should be noted that the number of modes, m, in equation (4.11) can be
selected accordingly to represent the dynamic response of the mistuned
bladed disk assembly considering the frequency range in which the
solution is sought. For a realistic finite element model the resulting number
of non-linear equations defined by (4.12) and (4.13) is a function of the
number of modes, m, and the number of harmonics used in the solution
process, and it is much less than the number of nonlinear equations defined

by equations (4.8) and (4.9).
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A residual vector combining equations (4.12) and (4.13) for all harmonics,

can be defined as follows:

[9]‘9”0_"‘ {FNL}O - {F}o B B
[0’ [1]+io|C |+ i[H |+[Q11n}, + {Fu} - {F},

R}, 0)) =

[—(p@)*[1]+i(po)[C |+ [H ]+ [Q117}, +{Fy}, —{F},

(4.18)

where p is the total number of harmonics involved. For the iterative

solution of this system of equations, Newton’s method can be employed.

Then the solution will be sought at{R({7},»)}=0, and iteration on modal

coefficients can be performed as;

O{R({1}, @)}

R({n} ;. @)}
o0 } {R(177} @)}

3y =113 {
Defining [l; (a))] and [c_z(a))]_1 as follows:

b)) =[] o]+ (o] o))

otn}
[Q]] [ [0]] H [0]
o] [Z@]" o
@@l =g o
o] - [o] 2],

where:

[@@)],! =[~(po)L11+i(pa)[C |+ i[H]+ Q1.
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Then the Jacobean in equation (4.19) can be represented as follows if

external forcing is independent of modal displacements:

[G{R;{;}}, w)}] _[a@1 +po] (4.23)

Note that in equation (4.23), [@(@)]" term is constant at each frequency step

so it has to be calculated once at the beginning of the iteration. To increase

calculation speed, [l; (a))] is considered as a modification to [cT(a))]f1 by
utilizing Ozgiiven’s matrix inversion method [70]. The author originally
developed the method for structural modifications but mathematically it is
available for being employed to any matrix inverse calculation that involves

summation of a constant and a modifying matrix.

Moreover, for numerical calculations of (4.23), the accuracy of [5 (a))] is
increased by employing Romberg’s method [71] which is based on
Richardson’s extrapolation methodology [72]. Details of this technique are
not presented herein, although a summary is presented in Appendix A, but
the interested reader is referred to Bauer et al. [73] for a survey which also
presents other similar methods and to Mysovskikh [74] for elementary
information on Romberg’s method. For the proposed approach, since the
non-linear forcing vector is calculated analytically as described in section 3,

only the derivative of non-linear forcing is calculated numerically.

To further enhance the capability of Newton-Raphson iteration approach
explained above, path-following [75] is implemented for unstable region
tracing and faster convergence. To be able to do so, the dependent variable
vector is changed from {7} to {q}= {{U}T w}T, and a new independent
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variable s is defined as arc-length. The solution is then sought on the multi

dimensional sphere defined by s ={Aq}/{Aq}, at k% solution point by

introducing a new residual equation as follows:
g} @) = {Agh, (Mg}, — 57 = 0. (4.24)

In equation (4.24), {Aq},is given by;

Agy, = Hab —laha ) (4.25)

where {g}, , correspond to the last converged solution. Adding the

additional residual equation defined by (4.24) to the residual vector

previously defined by (4.18), the new residual vector is defined as

{{R({n}i,wi )}T g({ny .0’ )}T and iterating on the dependent vector

{q} = {{U}T a)}T as follows:

oR(in}, @) R}, @) o
p_g | ol ow R(in}! @)
o{n} 0w
) o

k7 k

Note that by adding w to the vector of dependant variables and defining a
new independent variable, s, the continuation parameter for solution curve
becomes the arc-length, s, rather than the frequency, w, and thus will trace

the unstable regions.
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4.2.2 Case Studies

In this section 4 case studies are presented to verify and demonstrate the

capabilities of the method proposed.

4.2.2.1 Case Study I — Time Verification

To verify the solution methodology presented in section 4.2.1, a 6-bladed
Lumped Parameter bladed disk model is created as described in section
3.1.1. The model is mistuned with a random set of numbers which fit a
normal distribution with zero mean and 2% standard deviation. The
natural frequencies of the resulting mistuned assembly are given in Table

4.1.

Table 4.1 - Mistuned Assembly Natural Frequencies

Mode | Frequency | Mode | Frequency

1 25 Hz 7 7400 Hz
2 6280 Hz 8 15200 Hz
3 6345 Hz 9 15225 Hz
4 6425 Hz 10 25100 Hz
5 6500 Hz 11 25150 Hz
6 6555 Hz 12 30050 Hz

The analysis is carried out in the frequency range starting from 6000 Hz to

7000 Hz considering the high density of modes in that region.
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To emphasize the effect of the modes used in the analysis on the results,
two different models are prepared: the first one with the first 6 modes of
the assembly and the second one with the first 7 modes. Forced responses

of the tuned case with no frictional contact (free)are presented in Figure 4.4.
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0.025+-
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(0]
©
>
= 0.02-
o
€
<
0.015F Model w/ First 6-modes
Model w/ First 7-modes
e Time Domain lteration
0.01+-

| | | | | | | | | |
6360 6380 6400 6420 6440 6460 6480 6500 6520 6540
Frequency [rad/s]

Figure 4.4 — Free Response of Tuned Assembly

Free response of the mistuned assembly is given in Figure 4.5 and Figure
4.6. Whereas the fully stick forced response solution for it is plotted in

Figure 4.7 and Figure 4.8.
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Figure 4.6 — Free Response of Mistuned Assembly (Close-Up) - Model
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Integration (cc..)
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It is clearly seen from Figure 4.6 and Figure 4.8 that including the seventh
mode in the frequency domain model increased the accuracy of the
response significantly. Note that it is an expected result since the 7" mode is

close to the frequency range of interest.

In Figure 4.9 and Figure 4.10 non-linear forced response with a 1000 N

normal force is given.
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Figure 4.9 — Non-Linear Forced Response of Mistuned Assembly with no

=1000 N -Model with 7 Modes (—), Time Integration (.« .. )
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Comparing the forced response of the mistuned assembly for Free (Figure
4.6), Stick (Figure 4.8), and n0=1000 N (Figure 4.10), one can state that the
error in free and stick cases, there is no error as expected. The reason of this
discrepancy is the single harmonic representation of the nonlinear forces.
Nevertheless, results obtained from HBM are still in very good agreement
with the time integration solution; hence, single harmonic representation of
the nonlinear contact forces is acceptable. Forced responses for free,
n0=1000 N, and stick cases for the 7-mode model calculated in frequency
domain and in time domain are given in Figure 4.11 and Figure 4.12,
respectively. Both of these solutions are performed on the same computer
and for the nonlinear case for n0=1000 N, frequency domain solution noted
to be more than 100 times faster, compared to the same solutions in time
domain.
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Figure 4.11 — Forced Response of Mistuned Assembly of Frequency

Domain Model Constructed with 7-modes
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Figure 4.12 — Forced Response of Mistuned Assembly — Time Integration
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4.2.2.2 Case Study II - 12 Bladed Lumped Parameter Model

In this section the proposed approach is demonstrated with a 12-bladed
Lumped Parameter bladed disk model constructed as described in section
3.1.1. The model is mistuned with a random set of numbers generated to fit
a normal distribution with zero mean and 2% standard deviation on the
first cantilevered blade modes by altering Ak values. The contact model
presented in section 3 is used between the blades and the solution is carried
out with the solution procedure proposed in section 4.2.1. Forced response
solutions for both of the tuned and mistuned systems are performed with
different normal load values in order to observe the effect under 6% engine

order excitation.
In Table 4.2, magnification of the mistuned forced response with respect to

tuned free (linear) response in the frequency range of interest is tabulated

for all contact conditions considered in the solution.

Table 4.2 - Magnification Factor

Contact Condition | Factor
Free 1.27
n0 = 100N 1.19
n0 = 500N 0.98
n0 = 1000N 0.83
n0 = 2500N 0.94
Stick 1.22
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It is seen from Table 4.2 that among the different contact conditions where
normal force is altered, most efficient damping is obtained by no=1000N. If
further attention is paid on the tuned and mistuned forced response
solutions presented in Figure 4.13 and Figure 4.14, respectively, this fact

will be much clearly observed.

Furthermore, solution for all blades of tuned and mistuned systems are
given in Figure 4.15, Figure 4.16, and Figure 4.17 corresponding to the free,
stick and no=1000N cases, respectively. It should be noted that for different
normal load values, the blade that has the maximum response is also

different in each case.
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Figure 4.13 — Tuned Response - Free (—), no=100N (—), no= 500N (—),
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4.2.2.3 Case Study III — 24 Bladed FEM I

In this case study, to address a relatively more realistic problem, finite
element model (Figure 4.19) of a 24 bladed disk assembly (Figure 4.18) with
shrouds is created. A sector mesh of the assembly is depicted in Figure 4.20.
The full finite element model has 12672 degrees of freedom. Finite element

modeling is carried out with the commercial software package ANSYS.

Figure 4.18 — 24-Bladed Disk Assembly
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Figure 4.19 — 24-Bladed Disk Assembly Mesh

Figure 4.20 — 24-Bladed Disk Sector Mesh

Mistuning is applied through altering the elastic modulus of the blades
with a normal distribution of zero mean and 1.5% standard deviation on

cantilevered blade modes. In Figure 4.21, comparison of finite element
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model solution with the method proposed here is shown for the free case
with EO 12. In the analysis, 24 modes of the full finite element model are
used and it is clearly seen that the number of modes involved in the
analysis is sufficient to represent the system in the frequency range of

interest for the free contact mode.

Nonlinear analysis of the mistuned system is performed by introducing
contact elements between all nodes that intersect through the contact planes
defined by the neighboring shrouds. In this analysis contact parameters are

taken as identical for all contact surfaces.

In Figure 4.22 and Figure 4.23, results for all blades are depicted for

different normal loads.
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From the assembly response, Figure 4.22 and Figure 4.23, it is seen that
although ne=10N and n0=100N normal loads decrease the maximum
amplification, for no=1000N, system response is higher than the maximum
amplitude of free response. Amplification factors of the response compared
to the free tuned case are 1.47, 0.78, 0.93, 1.85 and 1.88 for free, no=10N,

no=100N, no=1000N and stick cases respectively.

For two of the blades from the assembly, all normal load cases are plotted
in Figure 4.24 and Figure 4.25. Note that for Blade B, no=10N and no=100N
suppress the vibratory response very efficiently but a higher normal load or

stick condition the maximum vibration amplitude rapidly increases.
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Figure 4.24 — Forced Response — Blade A
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Figure 4.25 — Forced Response — Blade B

4.3 A New Adaptive Harmonic Balance Method

In structural dynamics, harmonic balance method (HBM) is employed to
represent time dependent non-linear phenomena with several pure
harmonic oscillations [27] for obtaining steady-state response. As stated
earlier, Budak and Ozgiiven [25] made the representation of harmonic
balance method applicable in modal domain by introducing the non-

linearity matrix representation.

One of the major difficulties in the use of HBM is the determination of the
number of harmonics to be used in the analysis. The non-linear phenomena
under consideration should be examined carefully for the solution to yield

acceptable accuracy. In some cases, not only the non-linearity associated,
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but also the structure may demand more than single harmonic
representation. This is generally an iterative and case dependent process,
which can only be avoided by using an excessive number of harmonics thus
disregarding the needs of the problem in hand. However, the
computational power needed will increase with more than a linear slope,
degrading the efficiency and speed of the solution remarkably. In fact,
solving a large problem may even be impossible in an average work
station. Referring to equation (4.23), where [p(w)| and [a(w)]' are
represented by equations (4.20) and (4.21) respectively, which are reprinted
below as (4.27) and (4.28) for the sake of completeness, will support the

discussion mathematically.

[p(o))=[0] [A][@H@]T%ﬁ?[@]{n} @27)
[[Q]] [0]] H [o]

NG 0 [ﬁ(a)) ;l 0

[a(a))] = [0] [O] . [0] (4.28)
o] - 0] [@()],

Note that, the number of equations, n,, and the number of cells, n., in the

matrices defined by (4.27) and (4.28) can be represented by (4.29) and (4.30)

respectively.
ny; =n(l+p) (4.29)
ne =(n(+p))’ (4.30)

where 7 is the number of modal coefficients used to model the system and p

is the number of harmonics involved.
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From (4.29) and (4.30), it is evident that the number of additional equations
to be solved will increase by n for each harmonic added to the solution
space. Moreover, operations carried out on the elements of matrices, for

example matrix inversion, will result in larger performance degradation.

A new adaptive harmonic balance method (AHBM) approach is introduced
in order to overcome the difficulties in the determination of the number of

harmonics required for the analysis and the computation time spent.

4.3.1 Methodology

The term “Adaptive Harmonic Balance Method’ is previously used by both
fluid dynamics and circuit analysis communities. Maple et al. [76]
determined the number of harmonics required in each cell of a CFD mesh
based on the spectral power associated with the harmonics to solve a
supersonic/subsonic diverging nozzle which is subjected to unsteady
periodic flows. Whereas Zhu et al. [77] employed a similar approach to
separately resolve the number of harmonics required to force convergence
of the solution of a bipolar oscillator. Both of these approaches are
formulated for computational methods where element based harmonics
optimization is carried out. The method proposed here, on the contrary,
focuses on the accuracy of the solution based on the whole system
response. This will ensure that the response related with a higher harmonic
force component acting on a point to be captured at all points in the

structure.
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At each solution step, the non-linear forcing vector associated with each
nonlinear element is monitored. To guarantee automatic switching between

lower and higher number of harmonics, the following criterion is set:

et |+

i >a-(fi, £l+l)) @3

+ oo

+|i

+| s

+| /s

+o k| fr +| s

In (4.31), ¢ and s stands for the cosine and sine components of the non-
linear forcing vector respectively, k is the number of harmonics required for
the representation of the nonlinear forcing vector at the current solution
step, and r is the maximum number of harmonics allowed. Accuracy of the
solution is pre-defined by setting the accuracy constant a. A higher
accuracy constant will result in a relatively more accurate solution because
the solver will be forced to include more harmonics to the analysis, and vice

versa.

After determining the number of harmonics, &, required for each non-linear
element of nonlinear forcing vector, the highest one is selected as the global

number of harmonics for the current solution step of the system.
4.3.2 Case Studies
Two case studies are presented to demonstrate the capabilities of the

proposed system; a single degree of freedom oscillatory point mass, and a

12 bladed lumped parameter bladed disk model.
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4.3.2.1 Single Degree of Freedom Oscillator

The schematic view of the SDOF system employed in this case study is

presented in Figure 4.26.

Figure 4.26 — SDOF Oscillator with Gap Non-linearity

The gap element shown schematically in Figure 4.26 is formulated with the

following equation:

Jk(x—g) (x>g)
Fe (v)= { 0 (Otherwise) (4.32)

where g, I, and k, are the gap length, structural damping constant, and gap
stiffness, respectively. Multi-harmonic representation of the gap element
under consideration has been derived by many researchers and is not
included here. Interested readers are referred to Orbay [78], where he not
only derives HBM representation of gap element but also other non-linear

elements like macro-slip friction and cubic stiffness.
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The results (Figure 4.27) clearly show that AHBM captures the sub-
harmonic effects to an acceptable degree. The AHBM used for the solution
of this problem is limited to a maximum harmonic number of 10. In Figure
4.28, the number of harmonics used at each solution step is depicted. Note
that, the step size is not constant and gets relatively smaller near resonant
frequencies, which is achieved by the path-following solution technique.
AHBM solution has been 2.3 times faster than the 10 harmonics HBM

solution.

4.3.2.2 12-Bladed Lumped Parameter Model

In this section the proposed AHBM approach is demonstrated with a 12-
bladed Lumped Parameter bladed disk model constructed as described in
section 3.1.2, where a gap element is introduced between the two

neighboring blades representing a manufacturing imperfection.

The model is mistuned with a random set of numbers generated to fit a
normal distribution with zero mean and 2% standard deviation on the first

cantilevered blade modes by altering Ak values.

The solution is carried out with the solution procedure proposed in section

4.2.1.

In Figure 4.29 linear responses of the tuned and mistuned models are
depicted. The maximum amplification in this frequency range is recorded

as 1.74.
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Figure 4.29 — Free Response — Tuned (—), Mistuned (Colored)

For comparison purposes, solutions with single harmonic HBM, 11-
harmonics HBM, and Adaptive HBM with maximum harmonics of 11 are

performed.

Overall error between the 11-harmonics HBM and Adaptive HBM is noted
to be less than 0.01% on the magnitude of displacement for all blades. For
one of the two blades where the gap element was connected, the results are
as shown in Figure 4.30 and Figure 4.31. For this analysis, AHBM solution

has been 2.7 times faster than the 11-harmonics HBM solution.
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CHAPTER 5

MISTUNING IDENTIFICATION

From the mathematical point of view, mistuning identification problem is
the same as model updating problem and any model updating method
should fit the mistuning identification problem. However, this is not the
case in real applications. The difference primarily arises from the relatively
small deviations seen in mistuning and cyclic symmetry of a gas turbine
rotor. These two differences sum up and result in high modal density
regions in the frequency response of bladed disk assemblies, such that
several closely spaced modes block others from being observed in test
results. Moreover, the small deviations causing the mistuning phenomenon
are generally at levels that would be considered as noise by most of the

model updating methods.

In this chapter, to identify mistuning, neural networks are utilized.
Moreover, the performance of the proposed approach is enhanced by post-
neural networks optimization. It is believed that the study encompassed
herein will enrich the literature of not only mistuning identification but also
model updating since it proposes a means of improving the neural
networks usage in system identification. To prove so, the methodology
developed here is also applied to model updating and non-linearity

identification.
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5.1 Neural Networks Identification (NetID)

In this section, the methodology to identify mistuning of bladed disk
assemblies from system response by employing neural networks is
explained. The proposed approach is also tested with a lumped parameter
model.

5.1.1 The Network

The pattern of the neural network used in this study is a two layer feed-

forward back-propagation configuration given in Figure 5.1.
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Figure 5.1 — Neural Network Configuration
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In this network a hidden layer of neurons, where a nonlinear function and
bias components are utilized, is receiving information from the input
parameters. The second layer, which is named as output layer, receives
information from the hidden layer, then via a linear function and bias
components calculate the outputs. In Figure 5.1, w; is the weighting factor
vector and b; is the bias component of i neuron. With this type of neural
networks, the number of neurons in the output layer is fixed by the number
of outputs. However, the number of neurons employed in the hidden layer
depends on the needs of the problem since with increasing number of
neurons utilized in the hidden layer enhances the capability of the network

to some extend [79].

A neural network has to be fitted to the problem by a process called
‘training’. In the training process, the network is fed by a data set of inputs
and corresponding outputs and with back propagation; fitting of the
network is accomplished. During the network fitting process, weights and
bias components of each of the neurons are adjusted in order to fit the
training data. In this study, Levenberg-Marquardt (L-M) algorithm is used
for training purposes, whereas the error function utilized is the mean

square error (MSE).

5.1.2 Methodology and Data Selection

In any identification problem, the known parameters are generally the
outputs of the system and the unknown factors are some physical
parameters that are used to formulate the system under consideration. In

this work, the system is a blisk, the known parameters are some
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combination of results coming from a modal test, and the unknown
parameters are the blade cantilever natural frequency mistuning
percentages. In other words, the aim is to obtain the mistuning parameters
from system response. To serve this requirement, the input {x} and output

{y} vectors in (5.1) are used in the training step.

=1 =1 (5.1)

{u},
{u .}i +1

In (5.1), @, and {u}, are the natural frequency and mode shape of i" mode
of the blisk respectively, and p, are the blade cantilever natural frequency

mistuning of the j blade. The mode shapes considered are formed by the
blade tip displacements in the dominant direction of the mode family

considered.

5.2 Neural Networks and Optimization Identification (OptID)

In this section, the methodology to identify mistuning of bladed disk
assemblies from system response by employing neural networks and

optimization is explained. The proposed approach is also tested with a

component synthesis based reduced order model (ROM).

61



5.2.1 Methodology

NetID provides efficient means of mistuning identification, which will be
adequate for many applications, but there may be demanding situations
where more accurate results are needed. Moreover, the input from test
results may be limited (i.e. incomplete mode families and/or mode shapes)
which may decrease the performance of the pure neural networks

approach, namely NetID.

For such situations, an optimization routine is proposed which takes the
result of NetID as an initial point and seeks the optimum solution within
the domain specified. NetID not only provides the starting point of the
optimization problem, but also supplies information to narrow the lower
and upper bounds of optimization parameters, which are the blade

cantilever frequency mistuning percentages for the case of this study.

In Figure 5.2, the flowchart of NetID and OptID is depicted where a specific
optimization function is not employed because theoretically any
optimization routine which allows setting parameter bounds would fit in
OptID. One can decide on which optimization function to use according to
the lower and upper bounds of the optimization parameters set by
considering the performance of the trained network. An example
illustrating this process is provided in one of the case studies later in this

section.
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Figure 5.2 — Flowchart of NetID and OptID

It should be noted that there is no restriction which requires the actual
results to lie within the lower and upper bounds selected. Several
optimization routines can be applied in an iterative way where the gradient
of the objective function is monitored. If although the objective function

gradient reaches to a specified tolerance but the objective function tolerance
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is not reached yet, then the next optimization routine shall start for which
the lower and upper boundaries are set again according to the last step of

the previous optimization routine.

5.3 Case Studies

Three case studies are presented herein to illustrate the efficiency,
applicability and robustness of NetID and OptID for mistuning

identification.

5.3.1 NetID - Standard Training

In this section the performance of NetID is demonstrated with a training
procedure where a data set of noise free input-output pairs are used. A 12-
bladed lumped parameter model constructed according to the model
presented in section 3.1.2. The model is mistuned with a random set of
numbers generated to fit a normal distribution with zero mean and 1.5%
standard deviation on the first cantilever mode of each blade altering Ak
values. A fleet of 15000 mistuned assemblies are formed accordingly and
solved for the first 12 modes where only natural frequencies and blade tip
mode shapes are recorded. The recorded mode vectors are used as the
input vector set, and the mistuning parameter vectors are used as the

output vector set according to (5.1).

A network is created according to Figure 5.1 with 12 neurons in the output
layer and 24 neurons in the hidden layer. Afterwards, it is trained with the

data set created as explained above.
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The data set is divided between training, validation and test sets as 75%,
15%, 10% respectively. The validation set is used to monitor the network
performance during the training iterations and to stop training accordingly.
The test set is used to check the overall performance of the network when
the training process is finished. The resulting linear regression between
actual mistuning parameters and network outputs (identification values)
are 0.945 for training set, 0.944 for validation set, and 0.942 for test set;
which shows very high correlation on a 0 to 1 scale. In Figure 5.3, the mean

squared error (MSE) progress during network epochs (iterations) is plotted.

Best Validation Performance is 4.345e-005 at epoch 1000
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Test
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10° :
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Figure 5.3 - Mean Square Error Progress
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MSE is a way of quantifying the difference between estimation and the
actual value which is being estimated. MSE is the second moment of error,

which is defined as follows:

1 &,
MSE=— :
SE= 26l (5.2)
where
{e} = {x }ACTUAL - {x }IDENT[FIED ) (5.3)

where {x} .5, is the vector of actual mistuning parameters and {x},,,ymzp

is the identified mistuning parameters written in a vector form. Note that,
since the square of each of the elements in the error vector is utilized in
(5.2), MSE accounts for both variance and bias of the error [80]. The best
performance attained in this case study at epoch 1000, 4.345x10°5, clearly

shows that the network training process was successful.

A typical identification performed with the trained network results in the
identified mistuning and mode shapes shown in Figure 5.4, and Figure 5.5
respectively. The trained network is first fed with a noise free natural
frequency and mode shape vector and the resulting identification is
recorded. Then the same natural frequency and mode shape vector is
polluted with random noise having normal distribution with zero mean

and 2.5% standard deviation for each element of the mode shapes.

The mode shapes are also compared via Modal Assurance Constant (MAC)

which is a quantitative way of comparing two vectors of same length [81].
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MAC takes a value between 0 and 1 where 1 denotes that the compared
vectors are identical. Considering {U}, and {U}; as the actual and
identified mode shape vectors, respectively, for a particular mode MAC

value is calculated as follows:

oy s, [
(wiiwy, woyws,)

(5.4)

The MAC value comparison for this case study is given in Table 5.1. As
clearly seen, NetID is able to identify the mistuning to an acceptable degree

for both cases.

Table 5.1 - MAC Comparison for Mode Shapes

MAC between MAC between

Mode No Actual and Noise Actual and Noisy

Free Identified Model Identified Model
1 1.00 1.00
2 1.00 0.99
3 1.00 0.99
4 0.99 0.99
5 0.99 0.98
6 0.98 0.93
7 0.98 0.84
8 0.99 0.93
9 1.00 0.90
10 1.00 0.97
11 1.00 0.99
12 1.00 1.00
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5.3.2 NetID - Injection Training

To increase the robustness of NetID with noisy inputs, a training
methodology named ‘Noise Injection” is applied in the training step. The
input data of the network (which is the output of simulations as natural
frequencies and mode shapes), is polluted with error but the corresponding
network output (mistuning parameters) is not changed. With this
procedure, a network formed again according to the same structure and
neurons explained in section 5.3.1, is trained with input data polluted with
random noise having normal distribution with zero mean and 2.5%

standard deviation for each element of the mode shapes.

Best Validation Performance is 5.634e-005 at epoch 1000
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Figure 5.6 — Mean Square Error Progress
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The resulting linear regression between actual mistuning parameters and
network outputs are 0.931 for the training set, 0.926 for the validation set,
and 0.927 for the test set; which again shows very high correlation on a 0 to
1 scale. In Figure 5.6, the MSE progress during network epochs is plotted.
The best performance attained at epoch 1000, 5.634x10. A comparison of
the identification performance of the network trained with noise injected
data (Network-IN]J) and the network trained in section 5.3.1 (Network-STD)
under noisy input data is done. Both of the networks are fed with a
particular set of input vector which is polluted randomly having normal
distribution with zero mean and 5% standard deviation. The resulting
mistuning identification performance is as shown in Figure 5.7 and Figure

5.8. MAC value comparison for the mode shapes is given in Table 5.2.

Comparison of Actual & Identified Mistuning
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Figure 5.7 — Comparison of Actual and Identified Mistuning
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Considering these results, NetID performs better if the training data is
modified with noise injection under noisy input. Since we assume that the
network input is coming from modal tests, it is very likely that mode
shapes will be noisy to some extend even if the natural frequencies are
more accurate. Moreover, the network created with Noise injection training
is also tested with a noise free data set formed by simulating a fleet of 3000
disks with the same random parameters for mistuning, and the resulting
regression between actual and identified values was 0.938, which also
shows that for noise free data NetID performs equally well with both

standard training and noise injection training.

Mode Shape: 1 Mode Shape: 2 Mode Shape: 3
YW W N
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Figure 5.8 — Actual (==), identified with Network-STD (==), identified

with Network-INJ (==) mode shapes
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Table 5.2 - MAC Comparison for Mode Shapes

MAC between MAC between
Mode No Actual and Identified | Actual and Identified
Model (NetID-STD) Model (NetID-INJ)
1 1.00 1.00
2 0.59 0.99
3 0.59 0.99
4 0.98 0.99
5 0.96 0.99
6 0.89 0.86
7 0.86 0.87
8 0.85 0.75
9 0.68 0.69
10 0.79 0.92
11 0.91 1.00
12 0.99 0.99

5.3.3 OptID - Genetic Optimization

In this case study, to address a relatively more realistic problem, a 24
bladed blisk finite element model is created, a sector of which is given in
Figure 5.9, and its ROM is structured according to the component mode
synthesis presented in section 3.2. 10 modes for each blade and for each
nodal diameter of the disk for the first mode-family are involved in the
ROM. The resulting number of degrees of freedom is 658 in the ROM;

whereas for the full finite element model it is 10368.
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Figure 5.9 — Sector Mesh of the 24-bladed Blisk

Mistuning is applied through blade cantilever natural frequency

perturbations, 5;‘ in section 3.2, and a fleet of 45000 disks are simulated

with random mistuning using normal distribution with zero mean and
1.5% standard deviation. The simulation output was the first 24 natural
frequencies and corresponding blade tip mode shapes. Only 23 modes are
assumed to be measured in the test, resulting in a largely incomplete set of

modes considering 658 degrees of freedom in the reduced order model.

First, a network created according to Figure 5.1, in which hidden layer and
output layer consist of 24 neurons. The network is then trained over 1000
epochs with the dataset created, after polluting it by noise injection as
explained in section 3.4. The dataset is divided between training, validation
and test sets with 75%, 15% and 10% respectively. The resulting regression
between identified and actual values for training, validation and test sets
were 0.802, 0.794 and 0.787 which may be sufficient for many applications

but is considered unsatisfactory for the scope of this work.
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Afterwards, the neurons in the hidden layer are increased to 120 and the
network is trained with the same data set again. The resulting regression
for training, validation and test sets are 0.923, 0.905, and 0.908. Best
validation MSE is 7.2793x10°, the progress of which through 1000 epochs is
plotted in Figure 5.10. Error is calculated as the difference of actual and
identified values of blade cantilever percentage mistuning from the 45000
simulated disks for each blade. The cumulative probability density function
(CDF) of the absolute error, is given in Figure 5.11. As it is clearly seen,
more than 90% of the blades have an error between actual and identified
frequency percentage mistuning less than 1.25%. This value is used for
setting the lower and upper bounds of the optimization process as -0.0125
and +0.0125 respectively. To illustrate, for a disk, for which the actual
values are calculated with the full scale finite element model, network

identification and the set bounds are plotted in Figure 5.12.

Best Validation Perdarmance is 7.2793e-005 at epoch 1000
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Figure 5.10 — Mean Square Error Progress
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Since the selected lower and upper bounds are not quite narrow, in the
optimization routine multi objective genetic algorithm is used. As the
objective functions, MSE on each of the mode shapes are utilized.
Multiobjective genetic algorithm is programmed according to the

parameters given in Table 5.3, via MATLAB's optimization toolbox.

Neither the terminology of genetic algorithms nor the selection of these
parameters is included here since it is out of the scope of this work.
However, interested readers are referred to the works of Fonseca et al. [82-
83] and the Optimization Toolbox User’s Guide of MATLAB [84] for further
information about multiobjective optimization, genetic algorithms, related

terminology and parameter selection.

Table 5.3 — Genetic Optimization Parameters

Population Size 480

Tournament Size 20

Crossover Function 0.85

Mutation Function Adaptive feasible
Crossover Function Random
Migration Direction Forward
Migration Fraction 0.15

Migration Interval 15

Pareto Front Pop. Fraction | 0.3
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The optimization routine is run starting from the initial point set by the
network identification subject to upper and lower bounds presented in
Figure 5.12, with the above specified parameters. After around 7000
iterations the relative error tolerance is reached. The resulting natural
frequency mistuning percentages identified are given in Figure 5.13, with
the corresponding mode shapes in Figure 5.14. Mode shapes are compared

with Modal Assurance Constant (MAC) in Table 5.4.
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Table 5.4 - MAC Comparison for Mode Shapes

MAC between Actual | MAC between Actual
Mode No
and NetID-Identified | and OptID-Identified
1 1.00 1.00
2 0.99 1.00
3 0.99 1.00
4 1.00 1.00
5 1.00 1.00
6 0.86 1.00
7 0.86 1.00
8 0.98 1.00
9 0.97 1.00
10 0.96 0.99
11 0.75 0.99
12 0.77 0.99
13 0.93 0.99
14 0.00 0.99
15 0.01 0.99
16 0.21 1.00
17 0.28 0.99
18 0.00 1.00
19 0.01 1.00
20 0.00 0.99
21 0.74 1.00
22 0.83 1.00
23 1.00 1.00
24 0.90 1.00
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The results of this case study show that OptID is very effective in
identifying mistuning of a realistic blisk design for which only incomplete

and noisy data is available from assembly modal tests.

5.4 OptID - Application to Model Updating Problems

In this section, the capability of OptID is explored in the area of model
updating. For this purpose, real test data taken from a benchmark structure
designed to simulate the dynamics of an aircraft structure, namely
GARTEUR SM-AG 19, is used. For the test bed employed in this study
(Figure 5.15); the wing-fuselage, fuselage-vertical stabilizer and vertical
stabilizer-horizontal stabilizer are joined by welding, instead of bolts which
are used in the original GARTEUR model [85-87]. The test data taken from
this test-bed has also been used by Kozak et al. [88].

Figure 5.15 - GARTEUR Test Bed
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The modal tests were conducted by using accelerometers, a modal hammer
and a modal sledge hammer. A total of 12 accelerometers, 36 impact points

and 66 impact degrees of freedom were used throughout the tests.

A Finite Element (FE) model, which is shown in Figure 5.16, is constructed
by using 6-DOF beam, 2-DOF spring and rigid elements. To overcome the
discontinuities in the mating junctions of the model, which is caused by the
differences in the positions of the neutral axes of the beam elements, rigid
multi point constraints (MPC) are used. The first 10 natural frequencies of

this initial FE model and the experimental results are given in Table 5.5.

Figure 5.16 - GARTEUR Beam Model
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Table 5.5 — Natural Frequencies from Test and Initial FE Model

Test Mode | Test Nat. |Initial FEM |Initial FEM Nat. | Error in Natural
No Freq. (Hz) | Mode No Freq. (Hz) Frequency (%)
1 5.65 1 5.66 0.2
2 15.73 2 16.52 5.0
3 36.79 5 37.02 0.6
4 37.51 3 30.82 -17.8
5 37.65 4 30.91 -17.9
6 43.73 6 43.21 -1.2
7 50.32 7 50.25 -0.1
8 55.00 8 54.68 -0.6
9 60.66 10 72.41 19.4
10 68.23 9 63.97 -6.2

As it is clear from Table 5.5, 4%, 5% 9% and 10" modes are most poorly
represented ones by the initial FE model. An investigation of the test mode
shapes reveal that 4" and 5% modes are dominated by the torsional
movement of the wings, where as 9% and 10% are controlled by the torsional
and bending movements of the vertical stabilizer. As a result, to achieve a
minimum parameter updating model, 4 parameters are selected. The
thicknesses of the two elements which model the vertical stabilizer, a
torsional stiffness (modeling two torsional springs each between the
fuselage-wing joint and a wing end), and another torsional stiffness which
models a torsional spring placed between the fuselage-vertical stabilizer

joint and vertical stabilizer-horizontal stabilizer joint.
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A data set of 20000 samples is generated where the 4 updating parameters
are modeled with random numbers taken from 4 different uniform random
distributions. First two distributions, used for the thickness parameters,
have minimum and maximum bounds as 5 mm and 20 mm. Bounds of the
third distribution corresponding to the vertical stabilizer are 50 Nm/rad
and 4000 Nm/rad. The last distribution which is used for the torsional
stiffness of wings has bounds of 50 Nm/rad and 2000 Nm/rad. Samples of
the data set is solved for modal response and the recorded mode shape
vectors (corresponding to test DOFs) and natural frequencies of the modes
corresponding to the ones in the test results are used as the input vector set
for the network, where the updating parameter vectors are used as the

output vector set according to (5.1).

A network is created according to Figure 5.1 with 4 neurons
(Corresponding to the updating parameters) in the output layer and 76
neurons in the hidden layer. Afterwards, it is trained with the data set
created as explained above but the input vectors are polluted with random
noise picked from a pool of uniform random distribution with bounds -5%
and 5%. The data set is divided between training, validation and test sets as

75%, 15%, 10% respectively.

The resulting linear regression between actual updating parameters and
network outputs are 0.931 for training set, 0.932 for validation set, and 0.928
for test set; which shows very high correlation on a 0 to 1 scale. The
network is then used to update the initial FE model with real test data. A
second updating starting with the network updated FE model is performed

with genetic optimization where the parameters are set according to Table
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5.3. The boundaries are not limited in the optimization problem. After 1652
iterations the relative error tolerance is reached and the optimization is
stopped. The resulting natural frequencies are given in Table 5.6, with the

corresponding mode shapes in Figure 5.17.

Note that the order of the modes is corrected and the error associated is

reduced remarkably compared to the initial FE model. Moreover the mode

shapes are consistent with the test results.

Table 5.6 — Natural Frequencies from Test and Final Updated FE Model

Test Mode | Test Nat. |Final FEM | Final FEM Nat. | Error in Natural
No Freq. (Hz) | Mode No Freq. (Hz) Frequency (%)
1 5.65 1 5.66 0.2
2 15.73 2 16.86 7.2
3 36.79 3 36.43 -0.9
4 37.51 4 37.57 0.2
5 37.65 5 37.65 0
6 43.73 6 43.22 -1.2
7 50.32 7 49.81 -1.0
8 55.00 8 54.71 -0.5
9 60.66 9 60.96 0.5
10 68.23 10 68.30 0.1
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Figure 5.17 — Test (=m), and Updated FE Model (=) Mode Shapes
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Finally, to quantitatively analyze the improvement from the initial FE
model to the network updated FE model and from the network updated FE
model to the optimization updated (final) FE model, error on the natural

frequencies of the first 10 modes are plotted in Figure 5.18.
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Figure 5.18 — Percent Error on Natural Frequencies

5.5 Non-linearity Classification and Identification with Neural Nets

Modeling non-linearities such as dry friction, cubic stiffness, and gap-
interface in structural dynamics is generally a cumbersome and fictitious
process if it is not accompanied with identification of real test data.
Because, it is the micro-level surface and/or interface conditions which

drive the dry friction contact conditions and without test data, having a
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well representative non-linear model is not easy. Likewise, materials

modeled with cubic stiffness should be tested for accurate modeling.

In some certain cases, even the non-linearity type associated with a
structure is not obvious and moreover, the exact location of the non-

linearity within the structure can be undetermined.

In this section, a new approach which employs neural networks and
optimization algorithms to locate, classify and parametrically identify any
non-linearity in a given structure via means of dynamic response of the

structure is enclosed.

5.5.1 The Approach

In this study, two different types of neural networks are used in a sequence.
The first one is a parametric identification configuration constructed
according to the network introduced in section 5.1.1. The second one is a
classification network formed by modifying the first such that rather than a
linear function, tangent function is used in the output layer. As an optional
third step, to improve the performance of the method in complex systems,
optimization routine can be wused. This procedure is explained

schematically in Figure 5.19.

Note that, any optimization algorithm is applicable with the method

sketched by the flowchart given in Figure 5.19.
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5.5.2 Case Studies

Two case studies are presented here to demonstrate the approach presented
in section 5.5.1. Throughout the case studies, two different non-linearities

are considered; macro-slip dry friction and cubic stiffness.

Assuming a sinusoidal displacement expression as follows:

x(8)= X cos(8) (5.5)
Then, for a macroslip friction element, the force-displacement relationship

is shown in Figure 5.20, where £, is the tangential contact stiffness, X is the

response amplitude and F,,, is the maximum friction force that can occur.

F(x)
Fmax %

'F max

Figure 5.20 — Macro-slip Friction Model
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The force expression for this macro-slip friction element is then written as

follows:
k. Xcos(O)+F, , —k X 0<bO<a)
~Fp (a<0<n)
F, (9) = (5.6)
k Xcos(O)-F , +k X (r<O0<rm+a)
nax (r+a<60<2nx)
where
X - 2(Fmax /k)
= arccos| ———— "%~
o [ 5% j (5.7)
Enax = /u : nO (58)

In (5.8), i is the friction coefficient and #ny is the normal force between the

contacting surfaces.

To model the cubic stiffness element, which creates a force proportional to
its extension to the third power, following force expression can be
employed:

F, =kx’ (5.9)

cs

where k. is the coefficient of cubic stiffness and x is the extension of the

cubic stiffness element.
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Since it is not in the scope of this work, for harmonic inputs, Fourier
representations of these non-linearities, namely macro-slip friction and

cubic stiffness, can be found in Orbay [78].

5.5.2.1 Case Study I - SDOF Non-Linear System

In this case study, a single degree of freedom system with an unknown
non-linearity is identified. First, a classification network is trained to
determine the type of the non-linearity, where two possible types are
implemented: macro-slip dry friction and cubic stiffness (Figure 5.21),
which are modeled with the formulations given before in this section. In
Figure 5.21, h, k, m and k. are the structural damping, stiffness, mass, and
cubic stiffness constants respectively. It is assumed that the normal force
parameter of the macro-slip friction element and stiffness constant of the

cubic stiffness element are the selected unknowns.

Figure 5.21 — SDOF Non-Linear System: Macro-Slip Configuration (Left),
Cubic Stiffness Configuration (Right)
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To detect the type of the non-linearity associated with the SDOF system, a
classification network formed according section 5.5.1, in which the hidden
and output layers are constructed by 41 and 2 neurons respectively.
Network input is the frequency response of the system under a constant
amplitude force formed as a vector corresponding to a predefined
frequency interval. On the other side, the output is a vector of two binary
variables where {1, 0}" represents a cubic-stiffness non-linearity and {0, 1}"

represents a macro-slip friction non-linearity.

In the training step, a set of 2000 samples are used, half of which is
constituted by systems with cubic-stiffness and the other half being systems
with macro-slip friction element (Figure 5.22). 70% of the samples are used
for training, 15% used for validation and the rest are used for testing.
Figure 5.23 presents the confusion matrix after 9 iterations, which clearly

shows that classification performance of the network is 100%.

Amplitude [m]

L L
1 1.5 2 25 3 3.5 4 4.5 5
Frequency [rad/s]

Figure 5.22 — Cubic Stiffness (==), and Macro-Slip (==) Training Samples
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Figure 5.23 — Classification Network Confusion Matrices

Afterwards, two different identification networks are created according to
section 5.1.1, in both of which the hidden and output layers are formed by
41 and 1 neurons respectively. One of the networks is trained to identify
cubic stiffness systems, so the input vector set is composed of the 1000
samples (Figure 5.22) corresponding to the cubic stiffness non-linear
systems and the output is the stiffness constant. The other network is
trained to identify macro-slip systems, so the input vector set is composed
of the 1000 samples (Figure 5.22) corresponding to the macro-slip non-

linear systems and the output is the normal force.
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For both of the identification networks, training, validation and test set
regressions between actual parameter value and network output are 1,
which imply that the networks are able to identify unknown cubic stiffness
constant or macro-slip normal force, which are the assumed unknowns.
Typical re-constructed forced responses of cubic stiffness and macro-slip

systems identified with the proposed methodology is given in Figure 5.24.
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Figure 5.24 — Actual ( ), and Identified (= ««.) Cubic Stiffness (Left),

and Macro-Slip (Right) System Response

5.5.2.2 Case Study II - MDOF Non-Linear System

In this case study, it is aimed to demonstrate the capabilities of the
proposed system which can be listed as; the ability to locate non-linear
degrees of freedom, classify the non-linearity found, and identify the
parameters associated with it in a multi degree of freedom system. The
most remarkable feature of the proposed method, which is the ability of
determining non-linearities in a system without taking measurements from

the non-linear degrees of freedom, is also exhibited herein.
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The system used here for non-linear identification purposes is a 3 degree of
freedom oscillatory mass-spring system. It is known that the first degree of
freedom does not have any non-linearity associated with it. However, there
is no information about the linearity state of the second and third degrees

of freedom (Figure 5.25).

k4 k2 k3 K4

L, x, L x, L x,

Figure 5.25 — 3-DOF Non-Linear System Schematic View

It is assumed that each one of second and third degrees of freedom either
does not have a non-linear element associated with it, or there is friction or
cubic stiffness non-linearity related to that degree of freedom. In such a
setting, there will be 8 possible system configurations as given in Table 5.7
with their corresponding classification network outputs. The fully linear
case is not included in the identification process since its determination is

easier via applying several different amplitude forcing vectors.
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Table 5.7 — Possible 3-DOF System Configurations and Corresponding

Classification Network Outputs

Conf. No D.O.F. 2 D.O.F.3 | Binary Network Output
1 Cubic Stiff. Linear {1,0,0,0,0,0,0, 0}T
2 Linear Cubic Stiff. {0,1,0,0,0,0, 0, 0}*
3 Macro-Slip Linear {0,0,1,0,0,0,0, 0}T
4 Linear Macro-Slip {0,0,0,1,0,0,0,0}T
5 Cubic Stiff. | Cubic Stiff. {0,0,0,0,1,0,0, 0}T
6 Macro-Slip | Macro-Slip {0,0,0,0,0,1,0,0}T
7 Cubic Stiff. | Macro-Slip {0,0,0,0,0,0,1, 0}T
8 Macro-Slip | Cubic Stiff. {0,0,0,0,0,0,0, 1}T

A classification network, whose output and hidden layer are constructed by
8 and 142 neurons respectively. The output of the network is a binary
vector of 8 elements which yields the 8 possible configurations given in
Table 5.7. Data sets with around 1500 samples corresponding to each of the
configurations are created where the stiffness constant and normal force is
considered as unknowns. Stiffness constant sets are created by a uniform
random distribution with minimum and maximum bounds of 100 N/m and
30000 N/m. Normal force sets are created by a uniform random distribution
with bounds of 1 N and 40 N. The input vector of the network is
constructed as the frequency response of the 1%t degree of freedom under
constant amplitude loading applied to the 1%t degree of freedom only, in a
pre-defined frequency range. This means that, no measurements taken from
the “possible” non-linear degrees of freedom are used in the classification

and identification process.
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The eight data sets created in this manner are then used together to train
the classification network in which 70% of the samples are separated for
training, 15% for validation and the rest for testing the network. Figure 5.26
presents the confusion matrix after 72 iterations, which clearly shows that
classification performance of the network is 100%. This concludes that the
trained network is capable of locating and classifying any non-linearity in
the system under consideration without using measurements taken from

the non-linear degrees of freedom.

Training Confusion Matrix Yalidation Canfusion Matrix

Output Class
Output Class

1 2 3 4 g 5 7 g
Target Class Target Class

Test Confusion Matrix All Confusion Matrix

Output Class
Output Class

1 2 3 4 g 5 7 g
Target Class Target Class

Figure 5.26 — Classification Network Confusion Matrices
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Afterwards, eight different identification networks are created according to
section 5.1.1, in four of which the hidden and output layers are formed by
142 and 1 neurons respectively since these networks are used to identify the
unknown parameter associated with the first four configurations given in
Table 5.7. The other four networks are created with 2 neurons in the output
layer each corresponding to the unknown parameter associated with 2" or
3 degree of freedom’s non-linearity since these networks are used to
identify the unknown parameters associated with last four configurations
given in Table 5.7. Then, the constructed networks are trained with their
corresponding data set created beforehand for the classification network,

considering its configuration (Table 5.7).

For the six of the identification networks (which correspond to the first six
configurations), training, validation and test set regressions between actual
value and network output are 1, which imply that the networks are able to
identify unknown cubic stiffness constant and/or macro-slip normal force
exactly. However, the regression between actual parameter value and

network output for the 7t and 8™ networks are as given in Table 5.8.

Table 5.8 — Regression between Actual Parameter Value and Network

Output for 7" and 8 Configurations

Training Set Validation Set Test Set
Configuration 7 0.917 0.912 0.920
Configuration 8 0.951 0.949 0.948
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Considering the network performances for the 7% and 8% networks,
optimization identification is formulated according to Figure 5.19 with a
genetic algorithm. To demonstrate the capabilities, only the results for the
7% configuration, whose network performance is lower from the 8%, are

presented here.

Bounds of the two unknown parameters, namely stiffness constant of the
cubic stiffness element connected to the second degree of freedom and the
normal force of the macro-slip element connected to the third degree of
freedom are determined from the cumulative distributions of
corresponding absolute errors resulting from the network outputs (Figure

5.27 and Figure 5.28).
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For retaining at least a 90% probability to have the actual solution within
the optimization bounds, kc is limited to + 1000 N/m and n0 is limited to + 1
N. The initial point of the optimization routine is set to the network
identified parameters, and after 120 runs the optimization is stopped
because of the fulfillment relative error tolerance. The frequency response
of the optimization identified system together with the network identified
and actual systems is given in Figure 5.29 for the 1 degree of freedom.
From this result, it is concluded that the proposed approach successfully
identifies the parameters of the non-linearities, which are also located and

classified beforehand.
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Figure 5.29 — Actual ( ), Network Identified (), and

Optimization Identified (- - - .) MDOF System Response
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CHAPTER 6

ROBUSTNESS OF MISTUNING

As stated previously, mistuning causes forced response amplification in
bladed disks and it cannot be avoided since it is resulting from
manufacturing tolerances and operational wear. At this stage, industry has

been looking for answers, mainly to two different questions:

e What are the reliable techniques to assess the robustness of any
bladed disk design?
e Are there any approaches that can be used to leverage the robustness

of a particular bladed disk?

To address the first question, a new stochastic frequency response function
(SFRF) is developed in this thesis. The SFRF employed in this study enables
interpretation of the forced response of a randomly distorted structure,
such as a mistuned bladed disk, in a qualitative and quantitative way. The

approach is explicated in section 6.1.
The second question stated above is addressed by many researchers using

different techniques such as finding the best order for pre-manufactured

blades to be mounted on disks, and intentional mistuning.
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The first one works only for assembly type designs, in which case it is
possible to mount the blades after all of them are produced. However, with
this type of approach, the design space is limited with the readily
manufactured and tested blades which significantly reduce the efficiency
and reproducibility of the design. Moreover, for integrally bladed disks
(blisks) this method is not applicable.

On the other hand intentional mistuning can be applied both to assembly
type and integral type bladed disk designs. Nevertheless, intentional
mistuning has also some drawbacks. First of all, rather than designing one
blade for a disk, several slightly different blades has to be produced.
Secondly, not all of the intentional mistuning patterns developed so far
work well with every bladed disk design efficiently. There are several
parameters including but not limited to manufacturing tolerances, disk
design, blade design, and assembling method. Section 6.2 is dedicated to
the investigation of several intentional mistuning patterns with the aim of

assessing robustness of these patterns.

6.1 A New Stochastic Frequency Response Function

In normal cases, a frequency response function (FRF) of a dynamic system
under certain loading conditions is enough to comment on the response of
that system. However, for systems which enclose small or large uncertain
deviations, a specific FRF will not be sufficient to analyze the system. For
example, bladed disk assemblies, whose nominal design is cyclically
symmetric, undergo a considerable amount of forced response

amplification and mode localization because of the mistuning phenomenon
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as described earlier. Moreover, depending on the mistuning pattern
associated with a particular disk coming out of the manufacturing line, its
response will not match any other disk of the same design since mistuning

of the second will be different.

Therefore, to enable a reliable analysis of a bladed disk design, a relatively
more data-enclosing frequency response function is needed. The
methodology to construct one, which is called SFRF is explained in section

6.1.1 and exemplified in section 6.1.2.

6.1.1 Methodology

To construct a Stochastic Frequency Response Function (SFRF), the problem
has to be defined in a probabilistic approach. First, the parameter, whose
deviation’s effect on the response of the system is sought, is assigned a
random distribution. It is important to decide on this random distribution
considering the nature of the problem, so that the results are compatible
with actual conditions. Afterwards, a dataset of systems is constructed with
the defined distribution. Then, a Monte-Carlo simulation is performed
where each element of the dataset is solved for the forced response in the
desired frequency range of interest. Last but not least, for each frequency

step in the solution, the distribution of the amplitudes is calculated.

This procedure is illustrated with a single degree of freedom system whose

system parameters are given in Table 6.1.
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Table 6.1 - SDOF System Parameters

Parameter Factor
K [N/m] 25

M [kg] 1

C [Ns/m] 3

Loss factor 0.1

A random deviation with zero mean and a standard deviation of 3 (Figure

6.1) is applied to stiffness, K, of the SDOF system.
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Figure 6.1 — Probability Distribution of 6K

A Monte-Carlo simulation of 1000 solutions is carried out which resulted in
the FRFs plotted in Figure 6.2. The corresponding SFRF is given in Figure
6.3.
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Figure 6.3 — SFRF of 1000 Simulations (Color Scale: Probability)
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Note that plotting all of the FRFs in the same plot gives only the boundaries
but calculating and plotting an SFRF enables interpretation of the
probability of amplitudes related with each frequency step. For example, at

3.2 Hz in Figure 6.3, the amplitude distribution is as depicted in Figure 6.4.
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Figure 6.4 — Probability Distribution of Amplitude at 3.2 Hz

6.1.2 Case Study
A 12-bladed lumped parameter model constructed according to section

3.1.2 whose mistuning is defined with a zero mean and 2% random

mistuning. A Monte-Carlo simulation with 20000 samples is performed.
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The resulting stochastic frequency responses of blades 1 to 4 are given in

Figure 6.5 to

Amplitude [m]

Figure 6.8, respectively.
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Figure 6.5 — Stochastic Forced Response of Blade 1
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Figure 6.6 — Stochastic Forced Response of Blade 2
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Figure 6.8 — Stochastic Forced Response of Blade 4

As it is clear from Figure 6.5 to Figure 6.8, the stochastic forced response of

every blade is the same with small differences, which in turn would mean
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that one SFRF for a bladed disk assembly is sufficient to analyze a bladed

disk design.

6.2 Investigation of Intentional Mistuning Patterns

‘Intentional Mistuning’ is to mistune a cyclically symmetric bladed disk
with a pre-defined pattern. However, because of the fact that some
uncontrolled variation is still unavoidable, it is vital to evaluate any
intentional mistuning pattern together with a certain amount of random

mistuning.

In this section it is aimed to statistically compare the robustness of
intentional mistuning patterns such as harmonic, linear and pseudo
harmonic, with different levels of random mistuning applied on top, so
that, intentional mistuning patterns will be evaluated without omitting the

effect of uncertainties already present in the system.

Two sample bladed disks are used to gather information on disk
dependence. Reduced order models of the sample bladed disks are built for

this study to reduce computation time.
Monte Carlo simulations with selected intentional and random mistuning

pairs are then performed under different engine order excitations to

compare the performance of the intentional mistuning patterns applied.
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6.2.1 Intentional Mistuning Patterns Applied

The three intentional mistuning patterns used in this study namely; linear,
harmonic, and pseudo harmonic patterns can be formulated as follows

respectively:

Ay = Ao(z(” D _ 1) 6.1)
N

(6.2)

. (2mh(n—-1)
AHarmnnic = AO Sln(Tj

A if n<N/2
APseudo—[-[armonic = { ’ (63)

— 4, if n>N/2
where 4, is the maximum amplitude of intentional mistuning, » is the
current blade, N is the number of blades in the assembly and # is harmonic

number.

The graphical representations of linear, harmonic and pseudo-harmonic
patterns are given in Figure 6.9, Figure 6.10, and Figure 6.11 respectively for
a 12-bladed disk. Note that in the aforementioned figures, maximum
amplitude, 4, is selected as 10%. Moreover, the harmonic number, 4, is

equal to 1 for the harmonic pattern depicted in Figure 6.10.
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Figure 6.9 — Linear Intentional Mistuning Pattern
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Figure 6.10 — Harmonic Intentional Mistuning Pattern
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Figure 6.11 — Pseudo Harmonic Intentional Mistuning Pattern
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6.2.2 Case Studies

Two case studies are presented here for which, the above described
intentional mistuning patterns are applied together with three different
random mistuning sets of Gaussian distribution with zero mean and 2%,
5% and 8% standard deviations. For each of these random mistuning
patterns four different data sets each containing 2000 bladed disk
assemblies are created which correspond to pure random, linear intentional
mistuning with random mistuning, harmonic intentional mistuning with
random mistuning, and pseudo-random intentional mistuning with
random mistuning. Intentional mistuning patterns are applied with

maximum amplitude of 10%.

For decreasing the computation time, reduced order modeling, which is

presented in section 3.1.2, is employed.

6.2.2.1 Case Study I - 12-Bladed Disk

The finite element model of a sector of the 12-bladed disk used in this study
is given in Figure 6.12. Finite element analysis is carried out in ANSYS, and
8-noded brick elements are used, which resulted in 216 nodes, to model the
sector. To increase computation speed, reduced order modeling described
in section 3.2 is utilized. To construct the reduced order model, 70 modes
(10 modes for each nodal diameter) for the disk and 10 modes for each
blade are used. The frequency range of interest, where the amplification
factors are calculated, is selected according to the excited modes with the 3

engine order forcing applied.
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Figure 6.12 — 12-Bladed Disk Sector

The results for 2%, 5% and 8% random mistuning patterns are given in
Figure 6.13, Figure 6.14, and Figure 6.15, respectively, via cumulative
probability plots of amplification factor. Note that the amplification factor is

calculated with respect to the tuned assembly.
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Figure 6.13 — Cumulative Probability of Amplification Factor for All
Blades in 2000 Bladed Disk Assemblies with 2% Random Mistuning
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Figure 6.15 — Cumulative Probability of Amplification Factor for All

Blades in 2000 Bladed Disk Assemblies with 8% Random Mistuning
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From Figure 6.13 and Figure 6.14, it is clearly seen that linear intentional
mistuning pattern works better than the others for relatively low random
mistuning cases. However it is obvious from Figure 6.15 that, pseudo-
harmonic intentional mistuning pattern performed as good as the linear
one in terms of the maximum amplification seen among the 2000 bladed
disk forced response solutions for relatively high random mistuning. Also,
it should be noted that with increasing random mistuning the performance
of intentional mistuning patterns decrease with respect to the pure random

mistuning case.

6.2.2.2 Case Study II — 17-Bladed Disk

The finite element model of a sector of the 17-bladed disk used in this study
is given in Figure 6.16. Finite element work is carried out in ANSYS, and 8-
noded brick elements are used, which resulted in 304 nodes, to model the
sector. To increase computation speed, reduced order modeling described
in section 3.2 as it's done with the 12-bladed disk in case study I. To
construct the reduced order model, 100 modes for the disk and 10 modes

for each blade are used.
The frequency range of interest, where the amplification factors are

calculated, is selected according to the excited modes with the 4% engine

order forcing applied.
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Figure 6.16 — 17-Bladed Disk Sector

The results for 2%, 5% and 8% random mistuning patterns are given in
Figure 6.17, Figure 6.18, and Figure 6.19, respectively, via cumulative
probability plots of amplification factor. Note that the amplification factor is

calculated with respect to the tuned assembly.
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Figure 6.17 — Cumulative Probability of Amplification Factor for All
Blades in 2000 Bladed Disk Assemblies with 2% Random Mistuning
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Figure 6.18 — Cumulative Probability of Amplification Factor for All

Blades in 2000 Bladed Disk Assemblies with 5% Random Mistuning
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Figure 6.19 — Cumulative Probability of Amplification Factor for All

Blades in 2000 Bladed Disk Assemblies with 8% Random Mistuning
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For the 17-bladed disk, as it was for the 12-bladed one, linear intentional
mistuning pattern works better than the others for relatively low random
mistuning cases. However Figure 6.19 shows that, pseudo-harmonic
intentional mistuning pattern is much better for high random mistuning
cases than the linear one for the 17-bladed disk. Also, it is clear that with
increasing number of blades maximum amplitude magnification increases

as expected.
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CHAPTER 7

CONCLUSIONS AND DISCUSSION

In this chapter, concluding remarks on the subjects included in the research,
are presented in the order they appear in this thesis. Then, contributions to
the literature are discussed, and some comments are made for the future

studies.

7.1 Non-Linear Forced Response Analysis

In this thesis a new approach is introduced to predict forced response of
mistuned bladed disk assemblies with non-linearities. The proposed
approach eliminates the direct dependency of the number of non-linear
equations to be solved to the number of degrees of freedom related with
non-linear elements. This is especially important for the analysis of
mistuned bladed disk systems, where a small increase in the number of
nonlinear elements between adjacent blades results in a considerable
increase in the number of degrees of freedom related with non-linear
elements in the whole assembly. However in the method suggested, even if
large number of nonlinear elements is used in the model, it is possible to

keep the number of unknowns significantly low.

Three case studies are presented to demonstrate the application of the

approach proposed for the non-linear forced response analysis of mistuned
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bladed disks. In the first case study, the methodology is verified with a
time-domain solution comparison, whereas in the second one a lumped
parameter model is used to represent a 12-bladed mistuned bladed disk
assembly and analysis of the system with different contact normal loads are
carried out. Lastly, a realistic finite element model is constructed and the
modes extracted from the finite element analysis are used to solve the

nonlinear system with the proposed approach.

In addition to the new solution methodology proposed for mistuned
assembly non-linear analysis, a new adaptive harmonic balance method is
developed. The method, via adaptively changing the number of harmonics
used in each solution step, enables non-linear analysis to be carried out

much faster without decreasing the accuracy.

The methodology proposed is based on continuously monitoring the non-
linear forcing vector and including the harmonics which contribute

significantly to the non-linear forcing.

7.2 Mistuning Identification

In this thesis, two new tools are provided for mistuning identification
where neural networks are utilized; NetID and OptID. NetID is the pure
neural network approach to the mistuning identification problem, whereas
OptID combines NetID with an optimization routine to further enhance the

capabilities.
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Two case studies are presented herein to demonstrate the performance of
NetID, one of which employs noise injection training procedure to increase
the robustness of the proposed method under noisy input. The second case
study proves the effectiveness of OptID where a fully featured disk design
is identified through utilization of a component mode synthesis based
ROM. Moreover, it also shows that OptID and NetID are capable of

identifying mistuning even if only incomplete and noisy data is available.

OptID is also applied to a model updating problem where real test data
taken from a GARTEUR test bed is employed. It is verified that OptID is
efficiently able to update a finite element model based on the modal test

results taken from the real structure.

With regard to the utilization of neural networks and optimization in
structural dynamics, the last contribution of this thesis is a methodology for
non-linearity identification. Using pattern recognition capabilities of neural
networks, an approach is developed to identify the location and type of
non-linearities in a given structure without restricting the measurements to
be taken from non-linear degrees of freedom. Afterwards, another neural
network is employed for identifying the recognized non-linearity
parametrically. Lastly, with the aid of optimization algorithms the

performance of the procedure is increased.
The proposed method is superior to most of the alternatives presented in

the literature, since it does not require the test data taken from the points in

the structure where non-linearities are assumed to be.
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7.3 Robustness of Mistuning

Because of the random nature of the mistuning phenomena, it is possible to
encounter dynamically very different bladed disk assemblies in terms of
forced response. In this thesis, a new stochastic frequency response function
representation is developed in order to enable a single plot contain the
information of a structure which has one or more parameters represented
by a random distribution. With the aid of this stochastic frequency response
function, it is shown that the response of a bladed disk can be represented

by only the response of one of its blades.

Intentional mistuning patterns, which are used for suppressing the
amplitude magnification resulting from random mistuning, are
investigated in a probabilistic study in this thesis via Monte Carlo
simulations. From the results of two case studies it is clear that linear
intentional mistuning pattern is better than the other two patterns
employed in the case studies for relatively low random mistuning.
However, it should be noted that applying linear intentional mistuning
pattern to a rotor design has some drawbacks. The most important one is
that there has to be different blade designs equal to the number of blades in
the assembly, which brings additional cost and engineering effort in the
design step. Another drawback of this pattern is the spreading of resonant
frequencies to a wider span compared to a purely random mistuned
assembly. This will bring a wider speed avoidance span when operational
speed of the engine is being determined. To avoid the burden of additional
design effort and cost, one can choose the pseudo-harmonic intentional

mistuning pattern. For implementing this type of intentional mistuning,
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there will be only two different blades in the assembly, and the operational
speed zones will not be affected as they will be in the case of linear

intentional mistuning.

7.4 Contributions to the Literature

The aim of this thesis has always been focused in two main topics:

e Bringing new solutions to dynamics related problems in bladed disk
design,
e Contributing to the structural dynamics community via introducing

new tools.

In the view of the first, the most important achievements have been the new
non-linear modal domain forced response solution procedure developed

for mistuned bladed disks, and two new mistuning identification methods

[89].

For structural dynamics related research carried out around the world, it is
believed that, the new adaptive harmonics balance method will be quite
useful in lieu of the classical harmonic balance method since it enables

faster solution of non-linear systems with a comparable accuracy.

Moreover, the new non-linearity identification method developed will find
a broad application area, since it encapsulates a long desired property:
locating, classifying and identifying non-linearities without taking

measurements from the non-linear degrees of freedom.
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Lastly, the new stochastic frequency response representation is believed to
be another useful tool for analyzing dynamic systems which entail
uncertain parameters, for example in gear dynamics to model the random

deviations caused by the teeth of the same gear.

7.5 Future Work

It should be noted that there are still several aspects of bladed disk

dynamics that need further improvement and investigation.

One of these potential areas is mistuning modeling. In section 6, a new
stochastic frequency response function is developed and introduced for the
analysis of imprecisely-defined structures. The uncertain parameters are
modeled with classical random distributions. However, in author’s opinion,
‘Fuzzy Sets” [90] can also be utilized for mistuning modeling. There are
recent studies carried out on vibration and finite element analysis of
structures [91-92] which are based on fuzzy modeling. In the light of these
publications it is believed that the analysis time associated with mistuned

bladed disk design can be improved.

Secondly, sub-structuring techniques can be applied for altering the
mistuning associated with a nominal bladed disk design in order to
improve computation time in a Monte Carlo simulation of non-linear
analysis series. Note that in order to apply the approach proposed in
Chapter 4, modal analysis of a full dimensioned mistuned bladed disk

model is required. The approach, as it is, is appropriate for analyzing a
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particular design and also can be used for Monte Carlo analysis with the
increasing computational power available in the industry. However,
implementing sub-structuring techniques will increase the computation
time for such probabilistic approaches that require rigorous computation

since the modal analysis of the full structure will be eliminated.
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APPENDIX A. RICHARDSON - ROMBERG EXTRAPOLATION

Richardson-Romberg extrapolation enables calculating high accuracy
function estimates through employing multiple low-accuracy evaluations by
eliminating error modes on a function F with an estimation of that depends
on a positive step size 4, that can be defined as F (/). We require that the error

for this estimation be as follows;
F—F(h)= foh"" +f1hk‘ +f2h"2 4. (A.1)

where f, are unknown, and &, are known constants such that h% > ' So

that the exact value of F'is given as

F=F(h)+ f,h" + f,n" + f,n" +--. (A.2)
which can simply be represented by

F=F(h)+ f,i* +0(n" ) (A.3)

By employing equation (A.3), following two are the representation of the

same F’ with different step sizes, namely 4 and 4/f for an arbitrary ¢.
F'= F'(h)+ fuh" +0(n" ) (A.4)

F= Fv(ﬁj n f{ﬁjko +o(n") (A.5)

t t
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Subtracting (A.4) from * times (A.5) and solving for F’ gives
g g g

tk"F'(hj —F'(h)
F= t]fo S oln*) (A.6)

As it is clear from (A.6), a better estimation of F’ is achieved since the
largest error term, O(hk" ), is eliminated. To increase the accuracy, one can

simply repeat this process to eliminate more error terms.
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