SECURE COMMUNICATION CHANNEL MECHANISMS FOR ISOLATED
NETWORKS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

GOKDENIZ KARADAG

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
COMPUTER ENGINEERING

DECEMBER 2009

Approval of the thesis:

SECURE COMMUNICATION CHANNEL MECHANISMS FOR ISOLATED
NETWORKS

submitted by GOKDENIZ KARADAG in partial fulfillment of the requirements for the deg-
ree of Master of Science in Computer Engineering Department, Middle East Technical
University by,

Prof. Dr. Canan Ozgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Miislim Bozyigit
Head of Department, Computer Engineering

Dr. Attila Ozgit
Supervisor, Computer Engineering Dept., METU

Examining Committee Members:

Prof. Dr. M. Ufuk Caglayan
Computer Engineering Dept., Bogazici University

Dr. Attila Ozgit
Computer Engineering Dept., METU

Assoc. Prof. Dr. Halit Oguztiiziin
Computer Engineering Dept., METU

Dr. Onur Tolga Sehitoglu
Computer Engineering Dept., METU

Dr. Cevat Sener
Computer Engineering Dept., METU

Date:

I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: GOKDENIiZ KARADAG

Signature

iii

ABSTRACT

SECURE COMMUNICATION CHANNEL MECHANISMS FOR ISOLATED
NETWORKS

Karadag, Gokdeniz
M.S., Department of Computer Engineering

Supervisor : Dr. Attila Ozgit

December 2009, [54] pages

Current network security solutions are consisted of a single host, with network interfaces of
the host connected to protected and external networks at the same time. This design ensures
security by restricting traffic flow to a single point, where it can be examined and acted on
by a set of rules. However, this design also has a flaw and a single point of failure, that being
the vulnerabilities in the security device itself. An adversary would have unhindered access
to protected networks if a vulnerability in the security device itself leads to its compromise.
To prevent this possibility, high-security networks are completely isolated from external net-
works, by prohibiting any network connection and constituting a so-called air gap in between.
But, data transfer needs do arise between external networks and high-security networks, and
in current technology this problem does not have a solution without human intervention. In
this theses, we propose a set of mechanisms that allows near-realtime data transfers between
high-security network and external networks, without requiring any human intervention. The
design consists of two hosts connected via a shared storage, transferring only application layer
data between networks. This prevents attacks targeting network stacks of the security device’s
OS, and confines a compromised security device to the network that it is already connected to.

In case of a compromise the amount of possible unwanted traffic to and from the high-security

v

network is vastly reduced.

Keywords: network, security, isolation, secure communication

0z

YALITILMIS AGLAR ARASINDAKI GUVENLI ILETISIM KANALI
MEKANIZMALARI

Karadag, Gokdeniz
Yiiksek Lisans, Bilgisayar Miihendisligi Boliimii
Tez Yoneticisi : Dr. Attila Ozgit

Aralik 2009, [54] sayfa

Mevcut Ag giivenligi ¢coziimleri, ayn1 anda hem korunan aglara hem harici aglara bagh ag
arayiizlerine sahip tek bir sunucudan olugmaktadir. Bu tasarimda trafigin akisi, incelenip lizer-
lerinde bir komutlar kiimesi uygulanabilmesi amaciyla belirli noktalara sinirlanarak giivenlik
saglanir. Ancak bu tasarimin zayif noktasi, giivenlik cihazinin kendisinde ortaya ¢ikabilecek
giivenlik zafiyetleridir. Bu zafiyetlerden yararlanarak cihazi ele gegiren bir saldirgan, koru-
nan aglara hi¢ bir engellemeyle karsilasmadan erigebilir. Bu olasilifin oniine ge¢mek icin
yiiksek giivenlikli aglar, herhangi bir ag baglantisina izin verilmeyerek yani bir “hava yastig1”
olusturularak harici aglardan tamamiyla ayr1 tutulmaktadir. Ancak harici aglar ile yiiksek
giivenlikli aglar arasinda veri aktarimi ihtiyaci duyulmaktadir ve glinlimiizde kullanilan giiven-
lik teknolojilerinde insan miidahalesi gerektirmeyen bir ¢6ziim mevcut degildir. Bu tezde,
yiiksek giivenlikli aglarla harici aglar arasinda, insan miidahalesi gerektirmeksizin gercek
zamanliya yakin veri aktarimina izin veren bir grup mekanizma Onerilmektedir. Tasarim,
paylasilan bir veri depolama aygitiyla birbirine bagl iki sunucudan olugmaktadir. Bu sunu-
cular sadece uygulama katmanindaki verileri aktarmaktadir. Bu sayede, giivenlik cihazinin
isletim sistemini hedef alan saldirilarin oniine gecilmekte, ele gegirilen giivenlik cihazlari

halihazirda bagli bulunduklar1 agla sinirlanmaktadir. Bagariya ulasan bir saldir1 durumunda,

vi

yiiksek giivenlikli ag ile harici aglar arasinda olusabilecek istenmeyen trafik biiyiik oranda

azaltilmaktadir.

Anahtar Kelimeler: ag, giivenlik, yalitim, giivenli iletisim

vii

to my family

viii

ACKNOWLEDGMENTS

I would like to thank to Kerem Hadimli, Korhan Giirler, Can Erogul, Ahmet Ketenci and

Serdar Dalgi¢ for their help with the implementation,

to Attila Ozgit and Onur Tolga Sehitoglu for their invaluable guidance,
to Ozgiir Kaya and Can Erogul for being wonderful roommates,

to Computer Engineering Dept. staff for their great company,

to Deniz Sevimli for easing life’s burdens, and providing new perspectives on every single

thing,

to my family, Giilhan & Naci Karadag, for their immense support, patience and for all their

efforts on me.

This study was supported by Graduate Study Scholarship of The Scientific & Technological

Research Council of Turkey (TUBITAK), and by Invicta Research and Development Ltd.

X

TABLE OF CONTENTS

ABSTRACTI. iv
OZ . . . vi
DEDICATON| o e viil
ACKNOWLEDGMENTS|. o ix
................................. X
.................................... xii
LIST OF FIGURES Xiv
1 Introduction| 1

1.1 Current Network Security Facilities| 2

[1.1.1 Shortcomings of Current Solutions|. 3

[1.2 Objectives| e e 4

(1.3 Organizationof Theses| 4

12 Related Work and Literature Survey| 5

2.1 Linux Security Modules| 7

[2.2 Security File System| 0 000 8

13 Design of Secure Communication Channel Mechanisms for Isolated Networks| 12

3.1 General Design of the Mechanisms| 13
[3.2 Main Components of The SCCM System| 16
[3.2.1 Application Layer|. 16
[3.2.2 MessageLayer] 18
3.2.3 Device Layer] 18
3.3 Network Isolation| 19

3.4 Rootof Trust Concept| 20

[3.5 Encryption and Trust Facilities| 20

3.5.1.1 Design Alternative 1: Stand-alone Processes| . 22

[3.5.1.2 Design Alternative 2: Central Management Pro- |

CeSSl ... 24

[3.5.2 Device Layer-Device Layer Trust 25

3.5.3 Application Layer—Application Layer Trustf 26

[3.6 Dynamic Key Hopping| 27
BT Alertsl. . . . oo 27
3.8 Other Security Features| 28
3.8.1 Packet Filterd. 29

[3.8.2 Application Layer Filter | 29

[3.8.3 Host and Network Intrusion Detection Systems| 30

[3.9 Modular Design| L. 31
[3.10 Management| 31
[3.11 Other Design Considerations| 31
Implementation, Evaluation and Security Assessment| 33
4.1 Message Layer|. 34
4.2 Device Layer|. 38
|4.3 Other Components|. 41
|4.3.1 Message Layer — Device Layer Interface|. 41

|4.3.2 Web Based Management Interface| 41

|4.3.3 Management Component| 42

|4.3.4 Application Layer Component| 43

|4.3.5 USB Key Component| 44

|4.3.6 Packaging and Installation| 44

4.4 Deployments|. 44
4.5 Performancel 45
4.5.1 Performance Measurements| 45

|4.6 Security Assessment| Lo 46

X1

[\

@61 DataFlow Throughthe SCCM] oo oo oo .. 46

|4.6.2 Security Comparison| 47

4.7 Other Deployment Schemes| 48

5 Conclusion and Future Directions| 50
NCES| . . . 53

Xii

LIST OF TABLES

TABLES

Table[2.1 Securityfs APl functions| 9
Tableld.1 Systems that VAG have been successfully deployedon| 44
Table|4.2 Performance results of test runs on two distinct systems|. 45
Table|4.3 Data flow path throughthe SCCM | 47
Table|d.4 Comparison of security features provided by three different systems| 48
Table|d.5 Comparison of speeds of various data transfer technologies|. 49

xiii

LIST OF FIGURES

FIGURES]

Figure[2.1 Overview of LSM Functionality| 8
Figure[2.2 Overview of securityfs|. 10
Figure[3.1 General system architecture| 14
Figure[3.2 View of SCCM Layer structure on a single host| 17
Figure|3.3 Overview of Design Alternative: Stand-alone Processes| 23
Figure[3.4 Overview of Design Alternative: Central Management Process| 25
Figure4.1 Overview of Message Layer processes and threads|. 37
Figure 4.2 Overview of Device Layer LSM Module Operation| 40
Figure4.3 Web Based Management Interface| 42

X1v

CHAPTER 1

Introduction

Security is amongst the most important aspect of managing computer networks. Security sho-
uld have a priority in network requirements analysis phase, so that the design and implementa-
tion of a network or sub-network is completed with necessary and foreseen security measures

in place.

As with other computer security subtopics, network security is mostly dependent on the owner
organization’s policies. Policies are typically not technical in nature; they define what the
organization sees as valuable assets, what threats those assets can be subject to, and risk
analysis of possible threats. Based on the policies, procedures list the precautions against

threats, any emergency responses to an incident, and recovery after the incident.

Some organizations (like military, finance, high-tech research, etc.) have security policies so
strict, and risks of possible compromises so high, thus no connection to external networks is
acceptable from within the organization’s high-security internal network(s), or between inter-
nal networks themselves. Even then, some data transfer and/or online interaction needs arise
between the isolated high-security network and external networks. Employing a regular router
and/or firewall among those networks are not acceptable, manual data transfer is performed
via physical media. The process is similar to these steps; as an operator or a robot must con-
nect the media to one network, copy relevant data, disconnect it from the network, connect
it to the other network, and complete the data transfer. This imposes very long delays to the

data transfer compared to inter-network data transfer speed.

The aim of this study is to design and develop a secure communication channel solution by
providing trust mechanisms and a device protection mechanism to construct a complete end-

to-end trust chain. The channel is to be used when an organization needs both the security

provided by the network isolation and non-delayed data transfer between networks.

1.1 Current Network Security Facilities

Current technologies for securing computer networks that are somewhat limited in alternati-

ves, are given below.

Firewall software on router hardware

Firewall software on off-the-shelf computer router

Hardware firewalls

Specialized application layer firewalls (XML firewalls, etc)

Ethernet Bridges

Intrusion Detection Systems & Intrusion Prevention Systems

For a network that requires only intermediate level of security, use of a firewall implementa-
tion on a chosen router can be satisfactorily enough. Application layer filtering can be perfor-

med on routers, in addition to stateless and stateful packet based filtering.

The router itself can be a hardware router, including optimized and specialized electronic cir-
cuits for routing network packets. They often run proprietary operating systems designed by
the router manufacturer, and thus they are limited to the capabilities provided by the manu-

facturer.

A similar alternative would be to use an off-the-shelf computer with multiple network inter-
faces as a router. A proprietary or free and open source operating system can be installed and
configured as a router. Common operating systems typically include firewall software; Linux
is bundled with Netfilter/iptables, Solaris is bundled with IPFilter, FreeBSD is bundled with
IPFilter, PF and IPFIREWALL (IPFW), OpenBSD is bundled with PF, Windows is bundled

with Windows Firewall.

These are stateful packet inspection firewalls, with limited application layer filtering capabi-

lities.

Application layer firewalls are focused on one or more application layer protocols, and pro-

vide validation of data, and implement signature based attack detection facilities.

Ethernet bridges are deployed as “invisible” firewalls, without introducing any changes into
the network topology. An ethernet bridge has two interfaces connected to the same network,
and operate similar to a network switch, storing and forwarding messages. When located in a
central location and configured for filtering the traffic that passes through it, an ethernet bridge

can introduce and enforce security policies transparently [1]].

Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS) provide far greater
control on the network traffic. These systems check the traffic for a number of signatures, and
if a match is found they act on the traffic, which may range from rejecting traffic to modifying

the application layer content.

1.1.1 Shortcomings of Current Solutions

Currently used network security solutions all share a common design; the firewall has two or
more network interfaces directly connected to external and internal networks that are being
protected. A compromise of the firewall leads to complete exposure of protected networks,

the adversary or adversaries can access to all hosts within.

Even if the attackers achieve unprivileged code execution capabilities from a lesser security
vulnerability, it is sufficient to access other hosts within protected network. This can lead to
further exploitation of possible vulnerabilities on those hosts. Having firewalls activated on
all internal hosts may protect against these attacks; but this practice is not common because
of setting up firewalls on every host and keeping the configuration updated for user needs
is labor intensive. Also, the vulnerability that led to the compromise of the firewall may be

present on the internal hosts themselves, as well.

This weakness results in strict policies that prohibit any connection between the high-security

network and external networks, even in cases where a non-delayed connection is needed.

1.2 Objectives

Objective of this study is to design a set of mechanisms to provide high security networks with
as much isolation as possible, while allowing near real-time network traffic to and from the
protected network. Security mechanisms providing trust between various system components

and a mechanism for protecting and controlling access to hardware devices is proposed.

Secure Communication Channel Mechanisms for Isolated Networks (SCCM) that are pro-
posed in this theses has been incorporated into a research prototype architecture, named as

“Virtual Air Gap (VAG)”. There has been national and international patents issued for VAG
(2].

VAG is a system including two hosts and a shared storage hardware. Protected network is
isolated from external networks by stripping out all physical, data link, network and transport
layer headers and trailers; transferring only the filtered application layer data over the system.
The operating system of the hosts are hardened using widely applied security measures. App-
lication layer data is checked and filtered to ensure any allowed traffic conforms to security
policies. Encryption and obfuscation are utilized to hinder any attempts at infiltrating, reverse

engineering and bypassing the security provided by the system.

1.3 Organization of Theses

This manuscript is organized as follows. Previous studies related to thesis matter is presented
in Chapter 2] Chapter [3] elaborates on the general design of the system. In Chapter [F] the
implementation and deployment details of the system are introduced, then various evaluations
of the system are presented. Finally, Chapter 5 gives a summary of the theses and discusses

future directions.

CHAPTER 2

Related Work and Literature Survey

As computer networking become ubiquitous, security implications of the computer networks
became much more evident. Expanding of Internet to most commercial companies, govern-
mental organizations and households resulted in a large volume of communications and tran-
sactions occurring on-line. Security weaknesses of network protocols and services became
evident not so long after their use [3]]. Protecting sensitive information from leaking, preven-
ting monetary thefts and fraud, guarding the networked software from attacks became some

of the basic aims of a whole network security industry.

First products for protecting computer networks were packet filters. They provided a decision
mechanism based on source and destination addresses and ports, transport layer protocols,
flags and other network packet properties. Their shortcomings and possible improvements

were discussed and improvements have been suggested [4]].

Packet filters provided some level of security, but for critical networks more security cove-
rage was needed. Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS)
provided far more traffic inspection capabilities, They also introduced wider possibilities of

action to be applied on the network traffic [S] [6]].

Packet filters, IDS/IPS technology and application layer firewalls share a common design flaw
of being connected to both networks at the same time, as discussed in Section [I.1.T](Page [3).
For high security networks where security is of paramount importance, the only ultimate so-
lution was cutting off all network connections. Without a network connection, remote attacks
are completely prevented, and local attacks can be prevented by physical security measures.

This solution does not allow non-delayed data transfer to and from the network.

There had been a security device named “e-gap” in the industry, which provided physical
isolation between networks while allowing data transfer [7]] [8]. The product has been discon-
tinued, there is no peer reviewed research done on the subject and viability of the solution.

e-gap is designed to run on specially designed proprietary hardware.

Providing trust between system components have been achieved by various means. One met-
hod is to use cryptographically signed executable files[9] [10] [11] [12]]. The ELF executable
file format that is used on Unix systems has various fields that are used for describing details
of the executable. Signed executables contain a cryptographic signature in a custom field of
the ELF format. The operating system verifies the validity of the executable and the signa-
ture before execution. Common operating systems have a facility named /OCTL that provides
applications the ability to directly communicate with device drivers. This facility has previo-
usly been used to provide a channel for transferring cryptographic information to OS kernel

modules [[13].

Asymmetric key cryptography [[14] is a widely used cryptographic approach, where the com-
municating parties do not need to share a known secret. This approach eliminates the require-
ment of trusting the information exchange medium, or the corresponding party. Asymmetric

key cryptography is extensively used in Public-key Infrastructure (PKI) [15]].

Key hopping [16]] schemes provide protection against system compromises, by changing the
keys within reasonably small time intervals. Any attacker successful at recovering a key can
use the key only for the duration of the key hop. To completely compromise a key hopping

scheme, an attacker must completely identify the algorithm used for key hops.

The Secure Communication Channel Mechanisms (SCCM) for Isolated Networks is imple-
mented on a Linux system. Linux is an open source and free software Unix-like operating
system. Its main design structure and development process has been discussed in various pub-

lications [[17]] [[18] [[19]].

The Virtual Air Gap project, which incorporates The Secure Communication Channel Mecha-
nisms for Isolated Networks proposed in this study, is designed to provide a security capability
resembling complete isolation to computer networks, without introducing significant delays.
It is designed and developed to accommodate security requirements of military networks. The

approach is different from most other security devices and methods, while carrying some si-

milarity to “e-gap” commercial product. Previous academic literature does not define a similar
approach. Virtual Air Gap aims to be a complete security solution, addressing the needs of

high security organizations with minimized management and deployment costs.

2.1 Linux Security Modules

The Linux kernel implements various security hooks, to allow development of various security
related functionalities, which could implement a variety of computer security models. Linux
Security Modules, or LSM, is a generic security framework [20], which is mainly used for
implementing Role Based Access Control and Mandatory Access Control. LSM provides
security hooks within most kernel level operations; e.g., performing a system call, reading
or writing a file, spawning a child process. Before performing an operation, the operating
system’s kernel checks the security hooks, as depicted in Figure The security hooks are
called after all other checks performed by the kernel, e.g. existence of a file, hardware errors,

and permission checks.

Checking of a security hook depends on its use by LSM modules. If a function is registered
for a security hook by a security module, that function is called before performing the kernel
level operation, the function gets relevant kernel structures as parameters to enable a security
decision. The security function analyzes the request, and then decides on an allow/deny result.
The decision is taken according to the details of the security module and the security policy

implemented by it.

The return value of the security function denotes the outcome of the kernel level operation.
If the security function allows the operation by returning zero, the operation is performed
normally and its result is returned to the requester of the operation. The security function can

prevent the execution of the operation by returning a non-zero error value.

From the process point of view, the security decision and the presence of the security function
does not affect the actual execution of the kernel level operation. As the security module is
consulted at the last step before execution of the requested operation, regular sanity and error
checking operations are not affected. If the kernel operation would result in an error, caused
by another external factor, the requester of the operation will get the error. If the operation

completes successfully, the requester will be notified of the success. From the viewpoint of

Check Security
Infrastructure

System Call

Continue
Processing

Linux Kernel

Figure 2.1: Overview of LSM Functionality

the requester of the operation, the total process of the kernel operation is unmodified, if the
security module does not deny the operation. In that viewpoint, the operation has successfully
completed with all required side effects and return values, only the overhead of consulting the

security module is added to the whole process.

2.2 Security File System

The Linux Kernel includes various pseudo filesystem implementations. These pseudo filesys-
tems do not correspond to data storage hardware, but they are used as pseudo interfaces to
various kernel functions and structures. “proc” and “sys” filesystems are widely recognized

examples of pseudo filesystems, which provide access to information about processes and

various kernel level settings.

The “securityfs” file system is such a pseudo file system designed to provide access to Linux
Security Modules components, from user space processes [21]. The securityfs is generally
mounted at the path /sys/kernel/security. Each LSM can register new files and directories under
the securityfs, using an API. The securityfs API is more flexible than other pseudo file system

APIs. The API is simple, with only three available function calls, which are summarized in

Table 211

Table 2.1: Securityfs API functions

Function Name

Parameters

Description

securityfs_create_dir

const char *name, st-
ruct dentry *parent

This function creates a directory in the
securityfs. Parent directory is defined by
“parent” parameter. To create a directory
directly under the root of the securityfs,
NULL is passed as “parent”.

securityfs_create_file

const char *name,
mode_t mode, struct
dentry *parent, void
*data, const struct
file_operations *fops

This function creates a file in the se-
curityfs under the directory pointed by
“parent”. The file operations are defined
by the functions pointed from inside the
“fops” structure.

securityfs_remove

struct dentry *dentry

This function removes a previously cre-

ated securityfs entity, supplied in the
“dentry” parameter.

The bulk of the securityfs interface of the LSM is handled by the functions passed to the
securityfs_create_file function inside the “fops” of the type struct file_operations.
The structure contains pointers to functions for various file operations. The available file ope-
rations are all operations that the Linux kernel allows on files, including device special files.
The LSM can register handlers for all operations, including but not limited to; read, write,

ioctl, fsync, llseek operations. Figure 2.2] provides a general view on securityfs.

There are no restrictions for implementation of file operations in the LSM, thus the files on
the securityfs have maximum flexibility, and can be freely implemented to match particular

LSM design requirements.

Various LSM modules included in the Linux kernel can use the securityfs interface for secu-
rity policy setting and auditing. The user level processes responsible with the security policy

configuration can configure the LSM kernel module by accessing and modifying the files

— File/Directory

T Register
File/Directory

: : : H Read Handler

! Security FS | [Write Handler
; Euuu-------------------------E ; Str'uct ﬁlE_UpEratlUnS
LSM Infrastructure LSM Module

Linux Kernel

Figure 2.2: Overview of securityfs

under securityfs.

As of December 2009 there are three LSM modules in Linux Kernel; Selinux, Smack and
Tomoyo [22]. There are also security modules not included in main Linux Kernel, like Ap-
pArmor [23]]. These LSM modules implement security and access control functionality, using
LSM infrastructure, each taking a different approach. Generally, the modules label the reso-
urces and entities in the Linux system; and at the time of hook checking, verify that the entity
requesting the resource has a compatible security label. Actual implementation details vary

among these modules.

Out of three LSM modules in Linux kernel, only Tomoyo uses securityfs. Selinux and Smack

10

have their own file system implementations, named selinuxfs and smackfs, respectively. Ap-
pArmor, an LSM module not included in Linux kernel, uses the securityfs for policy setting
and auditing. As securityfs is generic and flexible enough, it can be assumed that modules

currently implementing their own file systems would migrate to securityfs over time.

There are also users of securityfs other than LSM modules. Runtime Integrity Measurement
Architecture (IMA) that is developed by The Trusted Computing Group (TCG) and included
in Linux kernel, provides integrity checking. It does not use the LSM infrastructure, but it

uses securityfs for input of policy changes and output of integrity reports.

11

CHAPTER 3

Design of Secure Communication Channel Mechanisms for

Isolated Networks

As can be inferred from previous discussion, providing non-delayed access to and from high-
security protected networks is a major challenge. Some proposed solutions are either not
scalable or does not cover all requirements of organizations like isolation and non-delayed

access at the same time.

The proposed mechanisms an the overall design of VAG overcomes aforementioned shortco-
mings by employing a distinct host for both networks to be connected, and using a shared

storage in between, as the application layer data transfer medium.

The Secure Communication Channel Mechanisms (SCCM) proposed in this thesis provide
high security networks with complete network layer isolation from external networks. The
design only allows application layer data to cross network boundaries, all data link layer
and network layer data is stripped from the traffic thus shielding the protected network from
any unauthorized access that may result from attacks targeting the security device and/or the

operating system.

The usage of a shared data storage, with a unique data format and access mechanism increases
security by preventing an attacker to compromise hardware aspect of the SCCM. Having
the shared storage hardware as the sole data transfer medium, the SCCM requires minimal

permissive changes in the existing security policies of an organization.

As the data is transferred without requiring any human intervention, the system does not
impose large delays on network traffic, and provides near real-time communication between

the protected network and the external network.

12

Industry standard security measures is applied to both hosts of the system, increasing overall
system security. Various trust facilities between system components help preventing a possible

host compromise from reaching further into the system and the communication channel.

In a network where mandatory access control principles are required, data can be transferred
only from a lower security level to a higher security level; preventing any traffic to a lower
security level network to a higher security one guarantees that the mandatory access control
principles are always in effect. While this provides maximum level of compliance with the
policies, preventing all egress traffic from the protected network may not be feasible. The
client who initiates the connection will get no reply indicating the success of the data transfer.
Having the capability of bidirectional communication, the SCCM can also be configured as
unirectional channel, which allows replies and acknowledgments from reaching the client. In
this configuration, The SCCM would still prevent connections originating from the protected
network to a lower security network. In other scenarios where the protected network can
transfer data to external networks, a bidirectional configuration of the SCCM is possible.
Traffic in both directions is transferred, allowing connections being initiated by clients within

both the external and protected networks.

The modular design of the system allows implementation of various application layer proto-
cols, thus enabling transfer of virtually unlimited number of application layer protocols over

the implemented secure channel.

The design is assumed to be running on a LinuxE] kernel, and the implementation is completed
on Linux. But the design concepts are generic enough to allow implementation on different

systems without modifying the design heavily.

In the following sections design of the system is discussed in detail.

3.1 General Design of the Mechanisms

The proposed mechanism consists of two hosts, both of which are connected to a shared
storage. The shared storage may be any storage solution that allows two simultaneous con-
nections over two distinct channels. Choosing a device with multiple disks allows the imple-

mentation to parallelize the traffic load and may improve performance. But a device with a

! http://kernel.org

13

single disk is equally usable with a small performance penalty.

The hosts must have access to shared storage over a well-known physical interface (e.g. SCSI
HBA, Fibre Channel). The hosts are not required to have multiple network interfaces; a single

interface connected to relevant network is sufficient.

The host connected to the high-security network is called infernal host, and the host connec-
ted to the external network is called external host. Throughout this manuscript we will use
the terms internal and external to refer to this basic distinction of the hosts. During the com-
munication, the two hosts perform most operations symmetrically, but in reverse order. While
one hosts strips OS network communication headers, and adds SCCM headers needed for
data format on the shared storage, the other host strips SCCM headers and adds OS network

communication headers.

! Internal | { | External

Host Host

M

Shared Storage
Hardware

Protected Network Secure Commumc_atlon External Network
Channel Mechanisms

Figure 3.1: General system architecture

The SCCM can be configured as a unidirectional or bidirectional communication channel. In
the unidirectional configuration, the protected network may contain clients that send requests

to servers in the external network, or the protected network may contain servers that receive

14

requests from clients in the external network. Figure [3.1|shows the general architecture of the

system, when it is configured as a unidirectional channel with clients in the protected network.

The shared storage access is encapsulated in a kernel module, to which the higher level com-
ponents connect using standard system calls and specially designed IOCTL calls. Integrating
the code into kernel increases the security of the system, by hiding the cryptographic keys in
kernel memory. Cryptographic keys are retrieved from external hardware (specialized hard-
ware or external disks) at system boot, and stored in random locations of kernel memory. The
external hardware is then manually removed and stored in a safe location, the system disables

any further access to external hardware.

This design choice requires an attacker to compromise an account with elevated privileges,
commonly known as root or administrator account, to be able to access kernel memory and
begin searching for the encryption keys. This reduces the visibility of the details of the com-

munication mechanisms against external adversaries, in case of a possible compromise.

The message exchange algorithm does not transfer the data over standard file systems. A
circular queue implementation uses all space allocated on the storage to queue up packets.
The internal structure on the disk is not published, as a result an attacker cannot trivially
access and read the messages on the disk, or inject messages into the disk without corrupting
the messages present on the disk. This protection is enhanced by the encryption and signing

of all messages on the storage, discussed at Section[3.5.2]

The designed security precautions can be considered security by obscurity precaution, which
are not sufficient to guarantee the security of the system when singled out. But the SCCM
integrates various detection mechanisms to detect and identify malicious activity. As soon
as malicious activity is detected, alerts are dispatched and communication over the secure
channel is suspended until further investigations. Presence of a maximally possible amount
of security precautions increases the time and effort the attacker must spend on the system,
thus increasing the probability of those actions triggering a detection mechanism. When a
detection occurs before the attacker identifies and circumvents all of the security precautions,
the SCCM changes its state to inactive until necessary investigations reveal the source of
the compromise is found and patched. As a result no malicious data is transferred into the

protected network.

15

The system includes a management interface, allowing the system administrators to configure
and monitor the whole SCCM. It is located at the internal host, which is connected to inter-
nal protected network, to protect it from external access. The interface provides configuration
options enabling the administrator to configure components like the packet filter, application
layer filter, intrusion detection system, application layer modules, etc. The configurations can
be backed up and at any time the system settings can be restored from backed up configu-
rations. The interface also incorporates a monitoring system; displaying the status of various
components of the SCCM, having log management capability and alerting the system admi-

nistrators of any abnormal behavior anywhere within the SCCM.

In the following sections, prominent design aspects of the SCCM are discussed.

3.2 Main Components of The SCCM System

The SCCM system consists of components handling a variety of operational and management
tasks. The parts of the SCCM that are active in data transfer paths form three independent and
distinct layers; Application Layer, Message Layer and Device Layer. Each layer is connected

to the one below and above it, making use of various connection facilities.

While there are other distinct components of the SCCM system, its core functionality of data
transfer between isolated networks can be reduced to these three layers. Other components
exist either to further increase the security of the SCCM or to provide additional functionali-

ties, they also depend on the existence and operation of the main layers.

In this section, main layers of the SCCM; Application Layer, Message Layer and Device

Layer will be elaborated on.

3.2.1 Application Layer

The connection of the SCCM to the other hosts is provided by the Application Layer. The
Application Layers of the SCCM hosts handle the protocol level connections between the
clients and corresponding servers. The Layer works essentially as a proxy, complying with
the application level protocol, it enables transfer of protocol level data through itself. In a

traditional proxy, the connection would be routed over the proxy software and the payload

16

Application Layer

s
A

*, Client or Server

Message Layer

A

— Device Layer

Shared
Storage
Hardware

Kernel

SCCM Host

Figure 3.2: View of SCCM Layer structure on a single host

would reach its destination without going through any further device or software.

In case of the SCCM Application Layer, traditional proxy behavior is not followed. It reroutes
the connection through the Message Layer to allow further processing and transfer through

Device Layer and shared storage hardware.

The Application Layer extracts the data payload from the connection, and transfers only the
payload through the secure channel. This feature completely isolates the networking stacks
of the SCCM hosts. Various headers and data related to the underlying network protocols are

handled at one host, and not passed to the other through the secure channel.

Each network protocol has different syntax, and complies to different sets of standards and
specifications. As such, for each network protocol that is to be transferred through the SCCM,

a separate Application Layer component would be necessary.

Ideally the application layer must validate the standards compliance of the data traffic passing
through it, and should not allow non-compliant requests and replies. Many network software
does not implement the standards fully or correctly, thus network proxy software must handle
many discrepancies in software behavior. This is also true for the SCCM Application Layer,

which may be used with various non-compliant