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GÖKDENİZ KARADAĞ
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ABSTRACT

SECURE COMMUNICATION CHANNEL MECHANISMS FOR ISOLATED
NETWORKS

Karadağ, Gökdeniz

M.S., Department of Computer Engineering

Supervisor : Dr. Attila Özgit

December 2009, 54 pages

Current network security solutions are consisted of a single host, with network interfaces of

the host connected to protected and external networks at the same time. This design ensures

security by restricting traffic flow to a single point, where it can be examined and acted on

by a set of rules. However, this design also has a flaw and a single point of failure, that being

the vulnerabilities in the security device itself. An adversary would have unhindered access

to protected networks if a vulnerability in the security device itself leads to its compromise.

To prevent this possibility, high-security networks are completely isolated from external net-

works, by prohibiting any network connection and constituting a so-called air gap in between.

But, data transfer needs do arise between external networks and high-security networks, and

in current technology this problem does not have a solution without human intervention. In

this theses, we propose a set of mechanisms that allows near-realtime data transfers between

high-security network and external networks, without requiring any human intervention. The

design consists of two hosts connected via a shared storage, transferring only application layer

data between networks. This prevents attacks targeting network stacks of the security device’s

OS, and confines a compromised security device to the network that it is already connected to.

In case of a compromise the amount of possible unwanted traffic to and from the high-security
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network is vastly reduced.

Keywords: network, security, isolation, secure communication
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ÖZ

YALITILMIŞ AĞLAR ARASINDAKİ GÜVENLİ İLETİŞİM KANALI
MEKANİZMALARI

Karadağ, Gökdeniz

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Dr. Attila Özgit

Aralık 2009, 54 sayfa

Mevcut Ağ güvenliği çözümleri, aynı anda hem korunan ağlara hem harici ağlara bağlı ağ

arayüzlerine sahip tek bir sunucudan oluşmaktadır. Bu tasarımda trafiğin akışı, incelenip üzer-

lerinde bir komutlar kümesi uygulanabilmesi amacıyla belirli noktalara sınırlanarak güvenlik

sağlanır. Ancak bu tasarımın zayıf noktası, güvenlik cihazının kendisinde ortaya çıkabilecek

güvenlik zafiyetleridir. Bu zafiyetlerden yararlanarak cihazı ele geçiren bir saldırgan, koru-

nan ağlara hiç bir engellemeyle karşılaşmadan erişebilir. Bu olasılığın önüne geçmek için

yüksek güvenlikli ağlar, herhangi bir ağ bağlantısına izin verilmeyerek yani bir “hava yastığı”

oluşturularak harici ağlardan tamamıyla ayrı tutulmaktadır. Ancak harici ağlar ile yüksek

güvenlikli ağlar arasında veri aktarımı ihtiyacı duyulmaktadır ve günümüzde kullanılan güven-

lik teknolojilerinde insan müdahalesi gerektirmeyen bir çözüm mevcut değildir. Bu tezde,

yüksek güvenlikli ağlarla harici ağlar arasında, insan müdahalesi gerektirmeksizin gerçek

zamanlıya yakın veri aktarımına izin veren bir grup mekanizma önerilmektedir. Tasarım,

paylaşılan bir veri depolama aygıtıyla birbirine bağlı iki sunucudan oluşmaktadır. Bu sunu-

cular sadece uygulama katmanındaki verileri aktarmaktadır. Bu sayede, güvenlik cihazının

işletim sistemini hedef alan saldırıların önüne geçilmekte, ele geçirilen güvenlik cihazları

halihazırda bağlı bulundukları ağla sınırlanmaktadır. Başarıya ulaşan bir saldırı durumunda,
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yüksek güvenlikli ağ ile harici ağlar arasında oluşabilecek istenmeyen trafik büyük oranda

azaltılmaktadır.

Anahtar Kelimeler: ağ, güvenlik, yalıtım, güvenli iletişim
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to Özgür Kaya and Can Eroğul for being wonderful roommates,

to Computer Engineering Dept. staff for their great company,

to Deniz Sevimli for easing life’s burdens, and providing new perspectives on every single

thing,
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CHAPTER 1

Introduction

Security is amongst the most important aspect of managing computer networks. Security sho-

uld have a priority in network requirements analysis phase, so that the design and implementa-

tion of a network or sub-network is completed with necessary and foreseen security measures

in place.

As with other computer security subtopics, network security is mostly dependent on the owner

organization’s policies. Policies are typically not technical in nature; they define what the

organization sees as valuable assets, what threats those assets can be subject to, and risk

analysis of possible threats. Based on the policies, procedures list the precautions against

threats, any emergency responses to an incident, and recovery after the incident.

Some organizations (like military, finance, high-tech research, etc.) have security policies so

strict, and risks of possible compromises so high, thus no connection to external networks is

acceptable from within the organization’s high-security internal network(s), or between inter-

nal networks themselves. Even then, some data transfer and/or online interaction needs arise

between the isolated high-security network and external networks. Employing a regular router

and/or firewall among those networks are not acceptable, manual data transfer is performed

via physical media. The process is similar to these steps; as an operator or a robot must con-

nect the media to one network, copy relevant data, disconnect it from the network, connect

it to the other network, and complete the data transfer. This imposes very long delays to the

data transfer compared to inter-network data transfer speed.

The aim of this study is to design and develop a secure communication channel solution by

providing trust mechanisms and a device protection mechanism to construct a complete end-

to-end trust chain. The channel is to be used when an organization needs both the security
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provided by the network isolation and non-delayed data transfer between networks.

1.1 Current Network Security Facilities

Current technologies for securing computer networks that are somewhat limited in alternati-

ves, are given below.

• Firewall software on router hardware

• Firewall software on off-the-shelf computer router

• Hardware firewalls

• Specialized application layer firewalls (XML firewalls, etc)

• Ethernet Bridges

• Intrusion Detection Systems & Intrusion Prevention Systems

For a network that requires only intermediate level of security, use of a firewall implementa-

tion on a chosen router can be satisfactorily enough. Application layer filtering can be perfor-

med on routers, in addition to stateless and stateful packet based filtering.

The router itself can be a hardware router, including optimized and specialized electronic cir-

cuits for routing network packets. They often run proprietary operating systems designed by

the router manufacturer, and thus they are limited to the capabilities provided by the manu-

facturer.

A similar alternative would be to use an off-the-shelf computer with multiple network inter-

faces as a router. A proprietary or free and open source operating system can be installed and

configured as a router. Common operating systems typically include firewall software; Linux

is bundled with Netfilter/iptables, Solaris is bundled with IPFilter, FreeBSD is bundled with

IPFilter, PF and IPFIREWALL (IPFW), OpenBSD is bundled with PF, Windows is bundled

with Windows Firewall.

These are stateful packet inspection firewalls, with limited application layer filtering capabi-

lities.

2



Application layer firewalls are focused on one or more application layer protocols, and pro-

vide validation of data, and implement signature based attack detection facilities.

Ethernet bridges are deployed as “invisible” firewalls, without introducing any changes into

the network topology. An ethernet bridge has two interfaces connected to the same network,

and operate similar to a network switch, storing and forwarding messages. When located in a

central location and configured for filtering the traffic that passes through it, an ethernet bridge

can introduce and enforce security policies transparently [1].

Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS) provide far greater

control on the network traffic. These systems check the traffic for a number of signatures, and

if a match is found they act on the traffic, which may range from rejecting traffic to modifying

the application layer content.

1.1.1 Shortcomings of Current Solutions

Currently used network security solutions all share a common design; the firewall has two or

more network interfaces directly connected to external and internal networks that are being

protected. A compromise of the firewall leads to complete exposure of protected networks,

the adversary or adversaries can access to all hosts within.

Even if the attackers achieve unprivileged code execution capabilities from a lesser security

vulnerability, it is sufficient to access other hosts within protected network. This can lead to

further exploitation of possible vulnerabilities on those hosts. Having firewalls activated on

all internal hosts may protect against these attacks; but this practice is not common because

of setting up firewalls on every host and keeping the configuration updated for user needs

is labor intensive. Also, the vulnerability that led to the compromise of the firewall may be

present on the internal hosts themselves, as well.

This weakness results in strict policies that prohibit any connection between the high-security

network and external networks, even in cases where a non-delayed connection is needed.
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1.2 Objectives

Objective of this study is to design a set of mechanisms to provide high security networks with

as much isolation as possible, while allowing near real-time network traffic to and from the

protected network. Security mechanisms providing trust between various system components

and a mechanism for protecting and controlling access to hardware devices is proposed.

Secure Communication Channel Mechanisms for Isolated Networks (SCCM) that are pro-

posed in this theses has been incorporated into a research prototype architecture, named as

“Virtual Air Gap (VAG)”. There has been national and international patents issued for VAG

[2].

VAG is a system including two hosts and a shared storage hardware. Protected network is

isolated from external networks by stripping out all physical, data link, network and transport

layer headers and trailers; transferring only the filtered application layer data over the system.

The operating system of the hosts are hardened using widely applied security measures. App-

lication layer data is checked and filtered to ensure any allowed traffic conforms to security

policies. Encryption and obfuscation are utilized to hinder any attempts at infiltrating, reverse

engineering and bypassing the security provided by the system.

1.3 Organization of Theses

This manuscript is organized as follows. Previous studies related to thesis matter is presented

in Chapter 2. Chapter 3 elaborates on the general design of the system. In Chapter 4 the

implementation and deployment details of the system are introduced, then various evaluations

of the system are presented. Finally, Chapter 5 gives a summary of the theses and discusses

future directions.
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CHAPTER 2

Related Work and Literature Survey

As computer networking become ubiquitous, security implications of the computer networks

became much more evident. Expanding of Internet to most commercial companies, govern-

mental organizations and households resulted in a large volume of communications and tran-

sactions occurring on-line. Security weaknesses of network protocols and services became

evident not so long after their use [3]. Protecting sensitive information from leaking, preven-

ting monetary thefts and fraud, guarding the networked software from attacks became some

of the basic aims of a whole network security industry.

First products for protecting computer networks were packet filters. They provided a decision

mechanism based on source and destination addresses and ports, transport layer protocols,

flags and other network packet properties. Their shortcomings and possible improvements

were discussed and improvements have been suggested [4].

Packet filters provided some level of security, but for critical networks more security cove-

rage was needed. Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS)

provided far more traffic inspection capabilities, They also introduced wider possibilities of

action to be applied on the network traffic [5] [6].

Packet filters, IDS/IPS technology and application layer firewalls share a common design flaw

of being connected to both networks at the same time, as discussed in Section 1.1.1 (Page 3).

For high security networks where security is of paramount importance, the only ultimate so-

lution was cutting off all network connections. Without a network connection, remote attacks

are completely prevented, and local attacks can be prevented by physical security measures.

This solution does not allow non-delayed data transfer to and from the network.
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There had been a security device named “e-gap” in the industry, which provided physical

isolation between networks while allowing data transfer [7] [8]. The product has been discon-

tinued, there is no peer reviewed research done on the subject and viability of the solution.

e-gap is designed to run on specially designed proprietary hardware.

Providing trust between system components have been achieved by various means. One met-

hod is to use cryptographically signed executable files[9] [10] [11] [12]. The ELF executable

file format that is used on Unix systems has various fields that are used for describing details

of the executable. Signed executables contain a cryptographic signature in a custom field of

the ELF format. The operating system verifies the validity of the executable and the signa-

ture before execution. Common operating systems have a facility named IOCTL that provides

applications the ability to directly communicate with device drivers. This facility has previo-

usly been used to provide a channel for transferring cryptographic information to OS kernel

modules [13].

Asymmetric key cryptography [14] is a widely used cryptographic approach, where the com-

municating parties do not need to share a known secret. This approach eliminates the require-

ment of trusting the information exchange medium, or the corresponding party. Asymmetric

key cryptography is extensively used in Public-key Infrastructure (PKI) [15].

Key hopping [16] schemes provide protection against system compromises, by changing the

keys within reasonably small time intervals. Any attacker successful at recovering a key can

use the key only for the duration of the key hop. To completely compromise a key hopping

scheme, an attacker must completely identify the algorithm used for key hops.

The Secure Communication Channel Mechanisms (SCCM) for Isolated Networks is imple-

mented on a Linux system. Linux is an open source and free software Unix-like operating

system. Its main design structure and development process has been discussed in various pub-

lications [17] [18] [19].

The Virtual Air Gap project, which incorporates The Secure Communication Channel Mecha-

nisms for Isolated Networks proposed in this study, is designed to provide a security capability

resembling complete isolation to computer networks, without introducing significant delays.

It is designed and developed to accommodate security requirements of military networks. The

approach is different from most other security devices and methods, while carrying some si-
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milarity to “e-gap” commercial product. Previous academic literature does not define a similar

approach. Virtual Air Gap aims to be a complete security solution, addressing the needs of

high security organizations with minimized management and deployment costs.

2.1 Linux Security Modules

The Linux kernel implements various security hooks, to allow development of various security

related functionalities, which could implement a variety of computer security models. Linux

Security Modules, or LSM, is a generic security framework [20], which is mainly used for

implementing Role Based Access Control and Mandatory Access Control. LSM provides

security hooks within most kernel level operations; e.g., performing a system call, reading

or writing a file, spawning a child process. Before performing an operation, the operating

system’s kernel checks the security hooks, as depicted in Figure 2.1. The security hooks are

called after all other checks performed by the kernel, e.g. existence of a file, hardware errors,

and permission checks.

Checking of a security hook depends on its use by LSM modules. If a function is registered

for a security hook by a security module, that function is called before performing the kernel

level operation, the function gets relevant kernel structures as parameters to enable a security

decision. The security function analyzes the request, and then decides on an allow/deny result.

The decision is taken according to the details of the security module and the security policy

implemented by it.

The return value of the security function denotes the outcome of the kernel level operation.

If the security function allows the operation by returning zero, the operation is performed

normally and its result is returned to the requester of the operation. The security function can

prevent the execution of the operation by returning a non-zero error value.

From the process point of view, the security decision and the presence of the security function

does not affect the actual execution of the kernel level operation. As the security module is

consulted at the last step before execution of the requested operation, regular sanity and error

checking operations are not affected. If the kernel operation would result in an error, caused

by another external factor, the requester of the operation will get the error. If the operation

completes successfully, the requester will be notified of the success. From the viewpoint of
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Figure 2.1: Overview of LSM Functionality

the requester of the operation, the total process of the kernel operation is unmodified, if the

security module does not deny the operation. In that viewpoint, the operation has successfully

completed with all required side effects and return values, only the overhead of consulting the

security module is added to the whole process.

2.2 Security File System

The Linux Kernel includes various pseudo filesystem implementations. These pseudo filesys-

tems do not correspond to data storage hardware, but they are used as pseudo interfaces to

various kernel functions and structures. “proc” and “sys” filesystems are widely recognized

examples of pseudo filesystems, which provide access to information about processes and
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various kernel level settings.

The “securityfs” file system is such a pseudo file system designed to provide access to Linux

Security Modules components, from user space processes [21]. The securityfs is generally

mounted at the path /sys/kernel/security. Each LSM can register new files and directories under

the securityfs, using an API. The securityfs API is more flexible than other pseudo file system

APIs. The API is simple, with only three available function calls, which are summarized in

Table 2.1.

Table 2.1: Securityfs API functions

Function Name Parameters Description
securityfs create dir const char *name, st-

ruct dentry *parent
This function creates a directory in the
securityfs. Parent directory is defined by
“parent” parameter. To create a directory
directly under the root of the securityfs,
NULL is passed as “parent”.

securityfs create file const char *name,
mode t mode, struct
dentry *parent, void
*data, const struct
file operations *fops

This function creates a file in the se-
curityfs under the directory pointed by
“parent”. The file operations are defined
by the functions pointed from inside the
“fops” structure.

securityfs remove struct dentry *dentry This function removes a previously cre-
ated securityfs entity, supplied in the
“dentry” parameter.

The bulk of the securityfs interface of the LSM is handled by the functions passed to the

securityfs create file function inside the “fops” of the type struct file operations.

The structure contains pointers to functions for various file operations. The available file ope-

rations are all operations that the Linux kernel allows on files, including device special files.

The LSM can register handlers for all operations, including but not limited to; read, write,

ioctl, fsync, llseek operations. Figure 2.2 provides a general view on securityfs.

There are no restrictions for implementation of file operations in the LSM, thus the files on

the securityfs have maximum flexibility, and can be freely implemented to match particular

LSM design requirements.

Various LSM modules included in the Linux kernel can use the securityfs interface for secu-

rity policy setting and auditing. The user level processes responsible with the security policy

configuration can configure the LSM kernel module by accessing and modifying the files
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Figure 2.2: Overview of securityfs

under securityfs.

As of December 2009 there are three LSM modules in Linux Kernel; Selinux, Smack and

Tomoyo [22]. There are also security modules not included in main Linux Kernel, like Ap-

pArmor [23]. These LSM modules implement security and access control functionality, using

LSM infrastructure, each taking a different approach. Generally, the modules label the reso-

urces and entities in the Linux system; and at the time of hook checking, verify that the entity

requesting the resource has a compatible security label. Actual implementation details vary

among these modules.

Out of three LSM modules in Linux kernel, only Tomoyo uses securityfs. Selinux and Smack
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have their own file system implementations, named selinuxfs and smackfs, respectively. Ap-

pArmor, an LSM module not included in Linux kernel, uses the securityfs for policy setting

and auditing. As securityfs is generic and flexible enough, it can be assumed that modules

currently implementing their own file systems would migrate to securityfs over time.

There are also users of securityfs other than LSM modules. Runtime Integrity Measurement

Architecture (IMA) that is developed by The Trusted Computing Group (TCG) and included

in Linux kernel, provides integrity checking. It does not use the LSM infrastructure, but it

uses securityfs for input of policy changes and output of integrity reports.
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CHAPTER 3

Design of Secure Communication Channel Mechanisms for

Isolated Networks

As can be inferred from previous discussion, providing non-delayed access to and from high-

security protected networks is a major challenge. Some proposed solutions are either not

scalable or does not cover all requirements of organizations like isolation and non-delayed

access at the same time.

The proposed mechanisms an the overall design of VAG overcomes aforementioned shortco-

mings by employing a distinct host for both networks to be connected, and using a shared

storage in between, as the application layer data transfer medium.

The Secure Communication Channel Mechanisms (SCCM) proposed in this thesis provide

high security networks with complete network layer isolation from external networks. The

design only allows application layer data to cross network boundaries, all data link layer

and network layer data is stripped from the traffic thus shielding the protected network from

any unauthorized access that may result from attacks targeting the security device and/or the

operating system.

The usage of a shared data storage, with a unique data format and access mechanism increases

security by preventing an attacker to compromise hardware aspect of the SCCM. Having

the shared storage hardware as the sole data transfer medium, the SCCM requires minimal

permissive changes in the existing security policies of an organization.

As the data is transferred without requiring any human intervention, the system does not

impose large delays on network traffic, and provides near real-time communication between

the protected network and the external network.
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Industry standard security measures is applied to both hosts of the system, increasing overall

system security. Various trust facilities between system components help preventing a possible

host compromise from reaching further into the system and the communication channel.

In a network where mandatory access control principles are required, data can be transferred

only from a lower security level to a higher security level; preventing any traffic to a lower

security level network to a higher security one guarantees that the mandatory access control

principles are always in effect. While this provides maximum level of compliance with the

policies, preventing all egress traffic from the protected network may not be feasible. The

client who initiates the connection will get no reply indicating the success of the data transfer.

Having the capability of bidirectional communication, the SCCM can also be configured as

unirectional channel, which allows replies and acknowledgments from reaching the client. In

this configuration, The SCCM would still prevent connections originating from the protected

network to a lower security network. In other scenarios where the protected network can

transfer data to external networks, a bidirectional configuration of the SCCM is possible.

Traffic in both directions is transferred, allowing connections being initiated by clients within

both the external and protected networks.

The modular design of the system allows implementation of various application layer proto-

cols, thus enabling transfer of virtually unlimited number of application layer protocols over

the implemented secure channel.

The design is assumed to be running on a Linux1 kernel, and the implementation is completed

on Linux. But the design concepts are generic enough to allow implementation on different

systems without modifying the design heavily.

In the following sections design of the system is discussed in detail.

3.1 General Design of the Mechanisms

The proposed mechanism consists of two hosts, both of which are connected to a shared

storage. The shared storage may be any storage solution that allows two simultaneous con-

nections over two distinct channels. Choosing a device with multiple disks allows the imple-

mentation to parallelize the traffic load and may improve performance. But a device with a
1 http://kernel.org
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single disk is equally usable with a small performance penalty.

The hosts must have access to shared storage over a well-known physical interface (e.g. SCSI

HBA, Fibre Channel). The hosts are not required to have multiple network interfaces; a single

interface connected to relevant network is sufficient.

The host connected to the high-security network is called internal host, and the host connec-

ted to the external network is called external host. Throughout this manuscript we will use

the terms internal and external to refer to this basic distinction of the hosts. During the com-

munication, the two hosts perform most operations symmetrically, but in reverse order. While

one hosts strips OS network communication headers, and adds SCCM headers needed for

data format on the shared storage, the other host strips SCCM headers and adds OS network

communication headers.

Figure 3.1: General system architecture

The SCCM can be configured as a unidirectional or bidirectional communication channel. In

the unidirectional configuration, the protected network may contain clients that send requests

to servers in the external network, or the protected network may contain servers that receive
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requests from clients in the external network. Figure 3.1 shows the general architecture of the

system, when it is configured as a unidirectional channel with clients in the protected network.

The shared storage access is encapsulated in a kernel module, to which the higher level com-

ponents connect using standard system calls and specially designed IOCTL calls. Integrating

the code into kernel increases the security of the system, by hiding the cryptographic keys in

kernel memory. Cryptographic keys are retrieved from external hardware (specialized hard-

ware or external disks) at system boot, and stored in random locations of kernel memory. The

external hardware is then manually removed and stored in a safe location, the system disables

any further access to external hardware.

This design choice requires an attacker to compromise an account with elevated privileges,

commonly known as root or administrator account, to be able to access kernel memory and

begin searching for the encryption keys. This reduces the visibility of the details of the com-

munication mechanisms against external adversaries, in case of a possible compromise.

The message exchange algorithm does not transfer the data over standard file systems. A

circular queue implementation uses all space allocated on the storage to queue up packets.

The internal structure on the disk is not published, as a result an attacker cannot trivially

access and read the messages on the disk, or inject messages into the disk without corrupting

the messages present on the disk. This protection is enhanced by the encryption and signing

of all messages on the storage, discussed at Section 3.5.2.

The designed security precautions can be considered security by obscurity precaution, which

are not sufficient to guarantee the security of the system when singled out. But the SCCM

integrates various detection mechanisms to detect and identify malicious activity. As soon

as malicious activity is detected, alerts are dispatched and communication over the secure

channel is suspended until further investigations. Presence of a maximally possible amount

of security precautions increases the time and effort the attacker must spend on the system,

thus increasing the probability of those actions triggering a detection mechanism. When a

detection occurs before the attacker identifies and circumvents all of the security precautions,

the SCCM changes its state to inactive until necessary investigations reveal the source of

the compromise is found and patched. As a result no malicious data is transferred into the

protected network.
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The system includes a management interface, allowing the system administrators to configure

and monitor the whole SCCM. It is located at the internal host, which is connected to inter-

nal protected network, to protect it from external access. The interface provides configuration

options enabling the administrator to configure components like the packet filter, application

layer filter, intrusion detection system, application layer modules, etc. The configurations can

be backed up and at any time the system settings can be restored from backed up configu-

rations. The interface also incorporates a monitoring system; displaying the status of various

components of the SCCM, having log management capability and alerting the system admi-

nistrators of any abnormal behavior anywhere within the SCCM.

In the following sections, prominent design aspects of the SCCM are discussed.

3.2 Main Components of The SCCM System

The SCCM system consists of components handling a variety of operational and management

tasks. The parts of the SCCM that are active in data transfer paths form three independent and

distinct layers; Application Layer, Message Layer and Device Layer. Each layer is connected

to the one below and above it, making use of various connection facilities.

While there are other distinct components of the SCCM system, its core functionality of data

transfer between isolated networks can be reduced to these three layers. Other components

exist either to further increase the security of the SCCM or to provide additional functionali-

ties, they also depend on the existence and operation of the main layers.

In this section, main layers of the SCCM; Application Layer, Message Layer and Device

Layer will be elaborated on.

3.2.1 Application Layer

The connection of the SCCM to the other hosts is provided by the Application Layer. The

Application Layers of the SCCM hosts handle the protocol level connections between the

clients and corresponding servers. The Layer works essentially as a proxy, complying with

the application level protocol, it enables transfer of protocol level data through itself. In a

traditional proxy, the connection would be routed over the proxy software and the payload
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Figure 3.2: View of SCCM Layer structure on a single host

would reach its destination without going through any further device or software.

In case of the SCCM Application Layer, traditional proxy behavior is not followed. It reroutes

the connection through the Message Layer to allow further processing and transfer through

Device Layer and shared storage hardware.

The Application Layer extracts the data payload from the connection, and transfers only the

payload through the secure channel. This feature completely isolates the networking stacks

of the SCCM hosts. Various headers and data related to the underlying network protocols are

handled at one host, and not passed to the other through the secure channel.

Each network protocol has different syntax, and complies to different sets of standards and

specifications. As such, for each network protocol that is to be transferred through the SCCM,

a separate Application Layer component would be necessary.

Ideally the application layer must validate the standards compliance of the data traffic passing

through it, and should not allow non-compliant requests and replies. Many network software

does not implement the standards fully or correctly, thus network proxy software must handle

many discrepancies in software behavior. This is also true for the SCCM Application Layer,

which may be used with various non-compliant server or client software. As a result, an ideal
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filtering is not possible; but the SCCM design compensates for this shortcoming by including

an Intrusion Detection System (IDS) as discussed in Chapter 3, Section 3.8.3.

3.2.2 Message Layer

The Message Layer of the SCCM design manages the connections transferred through the

secure channel. The Message Layer is an arbitrator between various Application Layer com-

ponents of the system, allowing each one to send and receive messages through the lower

layers of the SCCM and shared storage hardware.

Message Layer labels each protocol level connection with a unique protocol and connection

identifier, to guarantee correct delivery of application traffic to its destination in the Applica-

tion Layer. The connection identifiers are synchronized between internal and external Mes-

sage Layers, by using “control messages”, carrying information about the main data stream.

The Message Layer can accommodate infinitely many simultaneous connections, whereas the

restrictions of hardware, kernel parameters and programming language facilities would limit

the number of maximum simultaneous connections during operation.

In addition to main data transfer channels, identified by connection identifiers, the message

layer can utilize other specialized channels. The control messages are transported over such

a specialized and dedicated channel. The Management Component of the SCCM needs to

transfer data between hosts through the secure channel. The Message Layer provides a facility

for this requirement by dedicating a data channel for the use of Management Component.

The Message Layer can accommodate for other special channel needs by reserving more

connection identifiers for internal use.

3.2.3 Device Layer

The Device Layer of the SCCM is the layer managing the shared storage hardware. The

Device Layer provides controlled access to the hardware for the layers and components above

it. Maintaining the on-disk structure of the messages on the shared storage hardware is also

the responsibility of the Device Layer. The data on shared storage is stored in a uniquely

designed structure, so it is not possible to reconnect the hardware to a non-SCCM host and
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easily access the traffic data on the hardware.

The Message Layer connects to the Device Layer for the transfer of the messages that it

manages. The Device Layer is is neutral to the message types handled by the Message Layer.

The data coming through the message layer is encapsulated in headers specific the Device

Layer by chunks, and written on the shared storage hardware. The corresponding Device

Layer extracts each message, and the data contained within the message is moved to the

Message Layer for further handling.

The Device Layer is flexible enough that it is not limited to shared storage disks. If the parti-

cular implementation requires data transfer over a different medium, after necessary modifi-

cations, the Device Layer can handle the medium and transfer data over it.

3.3 Network Isolation

The system provides network isolation by removing all physical layer, data link layer, network

layer and transport layer headers and trailers from the transferred data packets. The application

layer payload of the traffic is inspected, then transferred to the other host via shared storage.

This process is akin to copying a file to a removable disk attached to a host in the external

network, detaching the removable disk and reattaching it to a host in the protected network,

then sending the file to its destination in the protected network.

This isolation denies, without fail, all possible attacks targeting the networking stack of the

kernels of the hosts in the protected network. The crafted attack packets are either stripped

off from their headers and trailers by the external host and only the application layer payload

is transferred, or the attack succeeds at the external host. In both cases, the hosts in the high

security protected network are shielded from the networking stack attack by the Secure Com-

munication Channel Mechanisms (SCCM). The thesis proposes additional facilities within

the SCCM to limit the impact of the successful attack to the external host.

When a non-malicious packet arrives, its payload is transferred to the internal host over the

shared storage. The application layer payload is wrapped in fresh transport layer, network la-

yer, data link layer and physical layer headers and footers by various components of the secure

communication channel and the operating system. After the encapsulation of the application
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layer payload with necessary networking header and footers, the packet is sent to its destina-

tion in the protected network. At this stage, it is no different than a packet originating from

the protected network. Before reaching its destination, the packet can pass through routers,

packet filters, application layer filters and possibly other SCCM deployments.

A possible reply to the packet will follow the same course in reverse direction. The packet is

received by the internal host, which strips all headers and trailers leaving only the application

layer payload. The payload is transferred to the external host via shared storage, which wraps

the application layer data in headers and footers of other network layers. The newly formed

packet is sent to the client in the external network which initiated the connection.

3.4 Root of Trust Concept

The SCCM system is designed to operate under the assumption that the components of the

system are not modified. This includes the operating system kernel, programs, and the other

components of the SCCM.

The design is built upon the assumption that the system kernel is not previously modified by

a malicious entity, thus the system calls and the device layer in the kernel is assumed to be

operating as designed, without any external interference.

Other components of the SCCM are designed upon the same assumption that the components

they communicate with are not modified by malicious entities and operate as designed.

The design aims to establish a trust relation between components of the SCCM. The trust on

the operating system is strengthened by the use of various security features incorporated into

the design; use of Host and Network IDS, alerting the administrators upon suspicious activity.

Other possible methods for improving the root of trust concept are discussed at Chapter 5.

3.5 Encryption and Trust Facilities

Secure Communication Channel Mechanisms for Isolated Networks includes various facili-

ties providing trust between system components. In general, trust is provided by cryptograp-

hically verifiable signatures. The system uses the signatures and encryption to ensure correct
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implementation of various crucial assumptions.

• Components of the system are not modified

• Peer is the expected system component and not a malicious entity

• Traffic cannot be easily eavesdropped or modified while being transferred over the se-

cure channel

• Traffic cannot be easily injected into the secure channel

• Malicious activity can be detected and operators can be alerted

Performing encryption in the kernel space increases the security by further obfuscating the

encryption keys, and increase performance via optimized and hardware tailored cryptography

framework in Linux kernel.

In the design of the system, there is an inherent assumption that the whole host is secure

and trusted initially after boot. The trust mechanisms, for the most part, rely on the fact that

the system is composed of unmodified components at initialization. The very first processes

that are run as the part of the SCCM begin establishing a trust chain by utilizing various

methods; including cryptography and process tree structure of the operating system. A change

in the child processes are detected via OS signals and acted upon accordingly. The security

assessment of this aspect of the design is discussed in Chapter 4.

Some security measures of the system rely on this “secure at boot” assumption. But the

SCCM is not completely reliant on this assumption; there are precautions in the form of

cryptographic operations within the components, to verify the identity and integrity of the

system component that is being communicated with. In case of a substitution of a system

component with a malicious replacement; an adversary , to successfully impersonate a valid

system component, must have obtained the cryptographic keys beforehand as well.

In this section, details of the various trust facilities between different components will be

discussed.
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3.5.1 Process–Device Trust

The storage device layer is comprised of a kernel module. The module provides the device in-

terface to the shared storage for packets destined to the other side of the channel. The Message

Layer componens of the system connects to the device provided by the kernel module, and

sends the validated, encrypted and signed data. The protocol between kernel module and the

higher level components incorporate a trust facility. The facility is implemented via special

ioctl calls, transferring cryptographically signed messages to the device and kernel module.

As a result of this facility the kernel module assures that the connected component has neces-

sary cryptographic keys. This prevents trivially injecting messages into the secure channel, in

case of a host compromise.

IOCTL is a mechanism for providing out-of-band communication with the device driver. It

is complementary to read and write system calls. Main use of IOCTLs is to set device driver

parameters, possibly modifying the underlying hardware’s settings. IOCTLs are achieved by

performing the iotcl system call, passing the type of the ioctl as a parameter to the device

driver. Also, pointer to an arbitrary length data can be included as an argument to the ioctl

call. The cryptographic data, authenticating the process is included in this argument part.

3.5.1.1 Design Alternative 1: Stand-alone Processes

The kernel module component of the SCCM, which controls and manages the communication

over the shared storage hardware, is configured to accept a single ioctl call. The call carries a

data argument part, which is encrypted and signed by the calling process. The encrypted data

argument contains two commands targeting the storage layer component. These commands

are initialize and terminate, which enable and disable the data transfer capabilities of the

storage layer.

The initialize and terminate commands can also be implemented as two distinct ioctl calls.

This design choice would also require the caller to encrypt and sign a data argument, which

may be designated as a known string constant.

Before an initialize command is received by the kernel module, any read or write access to

and from the device fails. In addition, the kernel module assumes that connection to the device
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before a proper initialization message is possibly caused by an adversary, trying to bypass

security mechanisms. Thus, an alert is raised and dispatched to the management interface

at the internal host. Also, any further communication between the two hosts is inhibited to

prevent a possibly ongoing attack on the secure communication channel.

When a component of the system executes the ioctl call properly, the process which has per-

formed the ioctl is granted access to the device driver. The process can communicate with the

storage device layer via read and write system calls. It is possible to use higher level wrappers

around the rather primitive read and write system calls. The communication is expected to be

encrypted and signed for protection of the data, and verification of the identity and integrity

of the system component.

Any other process must perform the same initialization steps to be granted access to the de-

vice driver and the underlying data channel over shared storage hardware. After a properly

encrypted and signed initialization is verified and decrypted successfully, the caller process is

allowed access to the storage layer, as depicted in Figure 3.3

Figure 3.3: Overview of Design Alternative: Stand-alone Processes

Any unauthorized access attempt at any phase of the SCCM operation results in an alert to

warn the system operators of a possible security breach. When an alert condition is detected

at the storage layer, all communication to and from the shared storage is stopped to prevent
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adversaries from reaching the internal host, or injecting unauthorized or malicious data to

the communication channel. The only accepted traffic is a message from the internal host

prompting that proper operation is to be restored.

After receiving the alert, which warns of a possible security breach, the internal host also

stops accepting and sending any message from and to the shared storage device, until proper

operation is restored by the administrators. The only accepted traffic is outbound messages,

signaling the external host to restore proper operation.

3.5.1.2 Design Alternative 2: Central Management Process

This alternative design is similar to Stand-alone Processes design alternative for the most

parts. In this design, a central management process manages all other processes of the system,

and all communication is multiplexed and distributed by this central management process.

The management process is run as early in the boot sequence of the host as possible. This

takes advantage of the “secure at boot” assumption discussed at Chapter 3, Section 3.5. All

the other components of the system are spawned from this central management process, thus

forming a tree of processes with the management process at the root. Any unexpected pro-

cess termination, which may be indicative of an adversary’s attempt at replacing a system

component is detected via signal mechanism of the operating system. This would result in

the management process to take necessary precautions against possible further compromise

attempts, and to raise an alert, warning the human operators.

The central management process handles all communication to and from the storage layer. It

initializes the device driver at the storage layer as described at the Design alternative: Stand-

alone Processes section above. The device driver trusts the management process, and in turn,

its child processes which form various components of the SCCM. The initialization opera-

tion on the device driver establishes this trust, and cryptographic keys inside the device driver

are associated with the management process which always keeps the device open. All com-

munication coming from the userspace components via the now-trusted management process

is signed and encrypted before being written to the shared storage device, to provide device

layer–device layer trust mechanism defined at Section 3.5.2.

An attempt of replacing the central management process would be detected by the kernel
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Figure 3.4: Overview of Design Alternative: Central Management Process

module at the storage layer of the SCCM, as soon as the device is closed by the termina-

ted management process. The device driver is designed to raise the alert and prevent further

communication with the user space processes, when an attempt at replacing the management

process is detected.

This design alternative would increase the performance of the system by eliminating most

cryptographic operations between various components of the system, but by still maintaining

a trust between system components, relying on the “secure at boot” assumption and centrali-

zation at the management process.

3.5.2 Device Layer–Device Layer Trust

Each kernel module interfacing to the storage contains encryption keys in kernel memory,

retrieved from external sources, that being special cryptographic hardware or external disk.

Each message is encrypted and signed using the cryptographic keys, before being written to

the shared storage. Corresponding kernel module in the other host verifies the signature of the
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packets read from the shared storage, and decrypts the message contents. This process ensures

that the other peer behind the shared storage is in possession of approved cryptographic keys.

This validation prevents an attacker from directly accessing the shared storage and injecting

messages into the communication channel.

A possible scenario may involve locating the internal and external host in different physi-

cal locations, with the shared storage cables being the only physical link between locations.

Physical security weaknesses may lead to a security compromise. For further exploitation of

the system the attacker may disconnect shared storage cables, e.g. for purposes of off-line

analysis, inserting a malicious device between shared storage and hosts. When a cable dis-

connection is detected by the Device Layer, any trust of the other host and the hardware is

revoked. Thus the system prevents injection of hostile traffic into the channel. If the cable dis-

connection is not caused by an adversary, the operators of the SCCM can choose to continue

transferring data over the channel.

Another advantage of the device layer–device layer trust is that the messages written to the

shared storage are signed and encrypted. In case of a physical compromise of the shared

storage, custom designed and unpublished structure of the storage prevents and attacker to

trivially access and inject messages to the shared storage. After an analysis of the storage,

the attacker can reverse engineer the data structures and become capable of extracting and

injecting messages. Having the data encrypted, the attacker must extract decryption keys from

the storage kernel module which resides in the kernel memory to be able to read a message. To

inject a message that would be correctly decrypted and verified by the other host, the attacker

must encrypt and sign it with the cryptographic keys of the host that was compromised. As

with reading of messages, injecting messages would also require finding and extracting the

keys from kernel memory of the storage kernel module. During this process, probability of

the attacker being detected by one of the security measures increases with each action and the

time the attacker spends within the system.

3.5.3 Application Layer–Application Layer Trust

Similar to device layer–device layer trust discussed in Section 3.5.2, the application layer–

application layer trust facility includes encryption and signing of messages at the application

layer components of the SCCM. The corresponding application layer component of the host

26



at the other side of the channel, verifies the signature and decrypts packets, assuring that they

were sent by a peer having valid cryptographic keys. Once again, this may correspond to a

valid and unmodified component of the system, but it may correspond to an attacker who has

obtained the cryptographic keys.

As the application layer component runs on user space, an adversary can obtain the keys

used with relative ease, compared to the keys hidden and protected in kernel memory. A

privileged account is not needed, compromising only the valid user account of the application

layer component is enough to begin analyzing process memory for key extraction. This is a

perceived security weakness in the design, it is amended by requiring the application layer

component perform various IOCTL system calls to the storage kernel module. Complicating

the path the attacker must follow, increasing the probability that detection mechanisms can

identify the attack.

3.6 Dynamic Key Hopping

The storage layer of the SCCM changes cryptographic keys with a reasonable frequency to

provide an extra layer of obfuscation and security. By changing keys frequently, the system

limits the capabilities of an attacker who may have obtained the keys used in device layer.

The keys obtained by the attacker are not used by the device layers of both hosts after a small

time interval, leaving the attacker a small time window to decrypt or inject messages. For

a complete compromise of the channel, the attacker must reverse engineer the key hopping

algorithm used in the storage kernel modules; thus increasing the time the attacker needs to

spend on the system, increasing the probability of detection like other components.

3.7 Alerts

Various components of the SCCM are designed to present an attacker with complicated de-

fensive mechanisms, increasing the time the attacker must spend at analyzing and reverse

engineering the system. This significantly increases the probability of the attacker being de-

tected by various detection facilities within the SCCM. When a detection takes place, an alert

is generated and sent through the secure communication channel to the management interface.

According to the severity of the alert, SCCM facilities may interrupt all communications. The
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alert is displayed prominently in the management console. After an investigation and analysis

process by the administrators, it can be determined that if the alert is result of a successful

or unsuccessful attack, or if it is a false positive. After taking necessary precaution, the alert

condition is cleared and regular system operation is resumed.

There is an inherent assumption that alerts can reach from external host to internal host, so that

system administrators can be warned about a possible attack. If an attacker can garble the data

transfer through shared storage, the attacker can prevent alerts from reaching their destination.

This would require flooding the shared storage with bogus data, or generating large amount

of traffic. However, implementing quality of service and providing a high priority to alert

messages can prevent a successful blocking of alerts by flooding.

The device layer at the internal host generates an alert upon receiving bogus data from shared

storage, and shuts down all communication through the channel. This alert may indicate a

hardware problem, an encryption key mismatch or an attacker trying to garble the secure

communication channel to prevent alerts. All of these cases requires a human to intervene

and analyze the possible causes before continuing. After ruling out hardware and software

error possibilities, the administrators can conclude that the alert was caused by an attacker,

and perform necessary security audits on the system.

3.8 Other Security Features

In addition to main issues providing various levels of security, the design of SCCM integrates

industry standard practices for securing hosts. The operating system contains minimal number

of software components, only the software that are required for a functional barebone system

and the SCCM itself are installed.The systems run absolute minimum of services, reducing the

area of attack on the host. Only ports that are open to the network are the absolute requirement

of the application layer protocols that are being transferred.

Minimizing the network and security footprint of the system is a widely accepted practice

of securing a host. An undiscovered vulnerability in software packages could transform into

a security hazard; however, by keeping the minimum number of packages installed on the

system, the risk of compromise is reduced.
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In case of a limited system compromise, availability of only a minimal set of software com-

ponents hinders abilities of the attacker. The attacker may not easily use many ready made

attack programs, as ready made programs require various libraries, language interpreters or

compilers. This property of the system forces the attacker to design and implement custom

attacks, increasing the skill barrier and at the same time increasing the time required for a

complete system compromise without being detected.

Having a minimal number of packages also eases management of the system, as unnecessary

packages are not required to be configured and updated. This results in a better managed

system, with less distractions on the system administrators, they are expected to be more

receptive of possible anomalies in the system.

3.8.1 Packet Filter

The hosts comprising the Secure Communication Channel Mechanisms are protected using

a stateful packet filter. The rules are maximally restrictive, all traffic is checked by a default-

deny ruleset. Both inbound and outbound traffic is checked and restricted. Only the ports re-

quired for the operation of SCCM are allowed, and they are open only to selected hosts which

require access according to security policies. Any unauthorized access attempt is logged and

displayed on the management interface as alerts.

3.8.2 Application Layer Filter

By inspecting the traffic and taking necessary actions, components of the SCCM eliminate

or hinder most attacks targeting the system programs, the operating system or low level ne-

tworking layers. But application layer data is not checked or modified in lower layers of the

SCCM. Still, many contemporary attacks could be targeting the application layer.

Also, while the SCCM protects the internal network from most attacks to some degree as

discussed above, if the attacker targets the protected hosts at the application layer, security

of the protected network can be compromised. As such, having strong protection measures at

the application layer is mandatory to provide an in-depth defense.

The SCCM integrates application layer filter, with rulesets preventing most common attack
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forms targeting the application layer. The rules are customizable by the administrator, allo-

wing flexibility to design and implement rules tailored for the specific operational environ-

ment.

The application layer filter raises an alert upon detecting data that matches the filter rules.

The alert is shown at the management interface to allow the system administrators further

investigate the situation. The non-conforming packet is prevented from reaching lower layers

of the SCCM and to the protected network via the secure communication channel.

3.8.3 Host and Network Intrusion Detection Systems

One of the main aims of the SCCM is to complicate the process of compromising whole

of the secure communication channel, to allow detection of an attack by various facilities.

Each component of the SCCM implements necessary precautions for attack detection. Also,

general purpose Intrusion Detection System (IDS) is integrated to aid in attack detection.

The two main class of Intrusion Detection Systems are Host IDS and Network IDS, and both

approaches are utilized in the SCCM. Host IDS is used to secure the internals of a computer

system. This is achieved by analyzing behavior of software programs, applying checksum to

system files and detecting any change of the files, detecting hidden processes and rootkits,

analyzing system logs for any unusual behavior.

Network IDS is used to secure the system against threats from both networks. This is achieved

by using signatures to detect network packets that are part of an intrusion or denial of service

attack. Malicious data payload in application layer traffic, like shellcodes or SQL injection

patterns, is also detected by signatures and various heuristics.

The Host and Network IDS can detect a large number of anomalous conditions, which are

most likely indicative of an attack taking place. The alerts generated by the Host and Network

IDS are treated as SCCM alerts, and reported to system administrators.
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3.9 Modular Design

Design of the SCCM is modular, allowing many application layer protocols to be implemen-

ted as protocol components. Each protocol component contains a proxy service capable of

understanding the application layer protocol. The component extracts the application layer

payload from the traffic and performs bidirectional transfers between the protected network,

via the shared storage hardware. The protocol component needs to connect to the message

layer of the SCCM, thus is required to implement all necessary security measures for com-

munication with storage kernel module through the message layer.

3.10 Management

The management component is distinct from the protocol components. It is possible to ma-

nage all different protocol and SCCM components from the management interface, in addition

to the various configurable aspects of each protocol component.

The user interface subcomponent of the management component is distinct from the main

management subcomponent responsible of handling actual management. This enables imple-

menting a set of management capabilities in the main management component, by employing

a modular design approach.

Actual user interface exposing the management capabilities can be chosen according to users’

needs. A web based, command line based or desktop application based user interface can be

employed. A combination of these approaches can also be employed, accommodating a wide

range of user needs.

3.11 Other Design Considerations

As main goal of the SCCM is to provide secure communication between isolated networks,

the components of the SCCM must be sufficiently secure. While the general design prevents

or hinders many types of attacks, introducing SCCM into a network should not increase the

possibility of a compromise in hosts or the network. Each component of the SCCM is desig-

ned to provide maximum reliability and security. Combined with an implementation that is
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sufficiently secure, the proposed SCCM system should achieve its ultimate goals.

Introducing many layers of different security precautions is a design consideration in the

SCCM. Accomplishing a successful and undetected attack against the SCCM must be highly

improbable to protect the security of the protected network. Preventing analysis of the system

is a priority to achieve this goal, which can make use of binary compression and obfuscation,

trace protection by use of LSM infrastructure.

The SCCM aims to provide non-delayed network traffic, meaning that the system does not

impose a delay unacceptable from a computer network. The usage of shared storage hardware

imposes a certain delay in communications. The SCCM design aims for minimum possible

delay in networking traffic, thus providing the users of the secure communication channel

with fast communications.

The SCCM is designed to run on off-the-shelf (OTS) hardware, thus increasing platform cho-

ice and reducing the entry barrier of using the system. Backup and high-availability configu-

rations can easily be provided because of the use of off-the-shelf hardware components in the

design, instead of the use of proprietary hardware.
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CHAPTER 4

Implementation, Evaluation and Security Assessment

The design of the system detailed in Chapter 3 was implemented and tested on live systems.

This chapter elaborates on the implementation of the design, various deployment environ-

ments and security assessment of the system.

The implementation was run on Debian operating system, version lenny, with Linux kernel.

The choice of implementation language for both the message layer and the device layer was

C programming language. The choice of programming language for the kernel module was

dictated by the choice of Linux kernel as the platform. As the Linux kernel is written mostly

in C and Assembly language, kernel modules have been developed also in C language. The

choice of C language for the message layer had a few supporting points; ability to program in

a lower level than most other languages, potential to improve performance by exploiting the

advantages a lower level language provides, and the author’s experience with the C language.

Various external libraries and programs were incorporated into the implementation. These

include;

• OpenSSL cryptography library1 was used for encryption, decryption, signing and vali-

dation operations at the message layer.

• Web based management interface was implemented using qooxdoo JavaScript library2

• The CGI backend for the management was implemented using jsoncpp3 and cgicc4

libraries.
1 http://openssl.org
2 http://qooxdoo.org
3 http://jsoncpp.sourceforge.net/
4 http://www.gnu.org/software/cgicc/
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The implementation of the SCCM was accomplished as part of a research project work, as

a team. The author of this study implemented the messaging layer and the kernel module

providing access to the shared storage. The cryptography capabilities of the message layer

and on-disk data management part of the device layer were implemented by other members

of the team.

4.1 Message Layer

The message layer of the SCCM is responsible for managing the traffic flow over the Secure

Communication Channel. It can be thought of as a layer between the Application Layer and

the Device Layer.

In a communication scenario involving clients inside the protected network and servers in the

external network, the Message Layer on the internal host collects requests coming from the

clients via the Application Layer. The message layer inspects the incoming traffic to determine

if there is a new connection or a new traffic packet in a previously established connection is

received. If the connection is new, the message layer assigns a new connection identifier,

creates internal sub-structures for accommodating the new connection and creates necessary

processes and threads that will handle the new connection for the rest of its lifetime.

After connection initialization operations, the Message Layers sends the requests further to-

wards the shared storage. As a reply arrives to the Message Layer from the shared storage,

the Message Layer delivers it to the Application Layer, which sends the reply to the client.

The Message Layer on the external host waits for requests arriving through the shared storage,

when a new request arrives it initiates a new network connection to the target server via the

Application Layer. When a reply from the target server is received through the Application

Layer, the message layer sends it to the shared storage to follow the same path in reverse.

One directional operation of the SCCM dictates that legitimate connections are first enco-

untered by the components at the internal host. This leads to a natural design decision that

assigning connection identifiers are to be done at the internal host. The state of a connection

is determined by “control messages” which are transferred over a separate control connec-

tion. The internal Message Layer sends control messages stating that a new connection is to
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be handled, and the control message includes the connection identifier of the new connec-

tion. When the a control message informing of the new connection is received at the external

host, the message layer at the external host replicates the operations of internal message layer.

The operations are; initialization of accommodating structures, handler process and thread

creation. Then the handler process and its threads handle the connection for the rest of its

lifetime.

As there is only one side assigning connection identifiers to connections, the possibility of

conflict is eliminated. The internal message layer keeps track of the connections flowing th-

rough the secure channel, and it does not assign duplicate connection identifiers to different

connections. The external message layer uses the identifiers assigned by the internal side.

The Message Layer presents a socket interface to the Application Layer components. The

application layer connects to the message layer through standard Unix domain sockets. During

the life time of the connection between the client and the server, the application layers keep the

connection open to message layers. This allows continued transfer of data traffic, keep-alive

requests and other necessary facilities of the application layer protocol.

Message layer itself is an agnostic protocol, it can be used with many application layer com-

ponents. This provides the SCCM with the ability to transfer a wide variety of application

level protocols’ data.

Communication between the Message Layer and the Device Layer can occur directly, but

in the current implementation of the SCCM, there exists a small layer, called the “Message

Layer – Device Layer Interface”. This layer handles the multiplexing of multiple connections,

and maintains the structure of data on shared storage hardware. In the absence of this layer,

the Device Layer would handle both tasks.

While running, the message layer maintains a number of processes and threads. For each live

connection, Message Layer maintains one process, consisting of two threads. One thread is

responsible for the “downstream” data path, that is the flow of data starting from the applica-

tion layer and continuing to the device layer. The other thread is responsible for the reverse

path, i.e. the “upstream” path.

A limited communication facility betwen the upstream and downstream threads is present for

informing the other thread of a connection termination. This makes use of the socket bet-
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ween Application Layer and Message Layer, as well as the communication channel over the

shared storage. No direct communication facility, like an Inter-Process Communication (IPC)

mechanism, is required between the upstream and downstream threads of each connection

process. This simplifies the implementation of the Message Layer and reduces the need for

complex message passing, locking and synchronizing operations.

During the normal operation of the Message Layer, the upstream thread pushes data traffic

from the shared storage towards the Application Layer, and downstream thread operates in

the reverse direction.

When a communication is closed by the client or the server, the Application Layer compo-

nent closes the socket of the Message Layer. The downstream thread of the Message Layer

sends a “connection closed” message through shared storage, to the Message Layer on the

other host. After sending the message, downstream thread exits, while the upstream thread

is still running. When the Message Layer on the other host receives the “connection closed”

message, its upstream thread shuts down the socket between Message Layer and Application

Layer and then exits. The socket shut down event causes the Application Layer component

to initiate proper routines for closing the connection between the component and its peer.

This shut down event can be detected by the downstream thread. Before exiting itself, the do-

wnstream thread sends a “connection closed” message targeting the other host’s still running

the upstream thread. Exit conditions of both threads are detected by their parent process, by

which they were spawned at the beginning of the connection; and the parent process exits.

After final “connection closed” message is received by the corresponding upstream thread at

the other host, it exists. This event causes the parent process of the connection to exit. This

event sequence is designed such that expensive locks and other signaling mechanisms are not

required, improving the reliability and performance of the implementation [24].

Under normal operating conditions, the described shutdown sequence is sufficient enough to

clean up all processes and threads involved with the connection. It also does not leave any orp-

haned messages on the shared storage hardware. The upstream thread consumes all traffic data

from the shared storage until “connection closed” message, coming from the corresponding

Message Layer thread.

The Message Layer is designed in such a way such that it never discards data when the data

path to transfer it is still available. For the thread that is connected to the peer that is closing
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the connection, the Application Layer socket is unavailable for write operations. Thus the

data that arrives between socket closure and receiving of the “connection closed” message is

discarded. On the other side of the connection, the application level peer may still be waiting

for data from the peer that closed the connection. The Message Layer of the SCCM sends

any remaining data on the storage hardware channel, that was sent by the closer peer to the

waiting peer. The transfer continues until the “connection closed” message is received, which

was generated when the peer closed the connection. After this condition, there remains no

data that the peer would wait for in case of an unfiltered, errorless connection. The Message

Layer processes exit after having completed transferring entire connection data.

Figure 4.1: Overview of Message Layer processes and threads

The Message Layer maintains a dedicated channel for Management Component. It exposes a

separate socket, bound to this dedicated channel, solely for the use of Management Compo-

nent. This allows for possible prioritization of management commands over the ordinary data

traffic passing through the secure channel.
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The Message Layer implementation includes accommodating structures for keeping track of

connections and processes/threads responsible for each connection. An independent process

management thread is implemented to keep track of terminating connection processes, and to

guarantee clean shutdown of connections in case of an unexpected operation. The connection

closing mechanism is designed on a coordinated shutdown event among four threads on dif-

ferent machines. A problem with the operating system (e.g. Linux “Out of Memory Killer”

kills an SCCM process after the system runs out of memory), or a coding error in the imp-

lementation may prevent occurence of a required event. These kinds of errors would prevent

the sending of “close connection” message, and would leave orphaned data on the shared

storage hardware. In case of a premature termination of a connection process, the process ma-

nagement thread takes control of the affected communication channel. It sends a “connection

closed” message through the secure channel to start the shutdown procedure on the other host.

The process management thread also ensures that all data packets belonging to the connec-

tion are cleaned from the storage hardware; it reads and discards data packets of the closed

connection, until the “connection closed” message comes from the other host.

4.2 Device Layer

The Device Layer of the SCCM is responsible for providing controlled access to the shared

storage hardware. In the design presented at Chapter 3, the Device Layer is a single entity

handling the access control of the storage hardware as well as maintaining the structure of

data traffic on the shared storage hardware.

In the implementation, this monolithic design was split to favor manageability. The access

control responsibility is implemented as a kernel module, using the LSM infrastructure dis-

cussed at Chapter 2. The management of the on-hardware data structures are implemented in

a separate user space program which is described at Chapter 4, Section 4.3.1. The rest of this

section will elaborate on the LSM kernel module part of the Device Layer.

The kernel module has the ability of controlling access to any part of the system, through the

hooks provided by the LSM infrastructure. Although in the scope of this study the access to a

single entity, the shared storage hardware is controlled.

The module creates a directory under the securityfs pseudo file system, using the securityfs -
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create dir API call. A single securityfs file named “checkpath” is created under that di-

rectory. The securityfs API call used for the operation is securityfs create file, and a

struct file operations is passed to the call, registering the file operation handlers for

the “checkpath” file.

The checkpath file is used for communication the device path of the shared storage hardware.

As the hosts of the SCCM system has internal disks for system use beside the shared storage

hardware for communication channel, the kernel module cannot reliably determine the exact

device path of shared storage hardware. The checkpath file on the securityfs is utilized by the

user space components of the SCCM to inform the kernel module of the correct device path

to protect. After the checkpath file is opened, and the correct device path is written into it, the

LSM kernel module stores the path to use in further operations. The LSM can be configured

to accept the path through “checkfile” only one time, preventing alterations of the protected

device’s path by possible adversary activity further into the operation of the SCCM. During

implementation process, kernel module can be configured to accept the protection path as

many times as desired.

After the device path to be protected is given to the LSM kernel module, the module resolves

the path to an inode pointer. Inodes are structures representing files within the file systems

subsystem of the Linux kernel, they mainly correspond to on-disk inode structures of various

file systems. Having the inode of the protected device path ready, the kernel module can

control access of a file operation with high performance.

The LSM infrastructure provides a pointer to a struct file structure to the function in the

LSM module that is registered into the file permission security hook. The access control

function must perform all checking operations based on the provided struct file structure.

Each file open operation results in a new file structure being created. While this structure

includes many fields related to files, the LSM kernel module implementation uses only two

fields within the structure. The inode of the file that is to be checked can be accessed through

several indirections of C structures within the file structure. The exact C expression yielding

the inode from a struct file pointer called file is; file->f path.dentry->d inode.

The other field used inside the struct file structure is the private data, which is used

to store current authorization status of the open file.

LSM infrastructure provides the file ioctl hook for controlling ioctl operations. The De-
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Figure 4.2: Overview of Device Layer LSM Module Operation

vice Layer kernel module registers a function for this hook. The LSM infrastructure provides

the ioctl command as an integer, and ioctl argument as a void pointer to user space memory, as

well as the file structure pointer for the target device of the ioctl operation. When an ioctl ope-

ration to the protected device, the kernel module checks the ioctl command and its arguments.

In the SCCM design, these checks include cryptographical operations with key pairs, further

strengthening the identity of the serviced SCCM component. In the implemented version of

the device layer, cryptographic functions are not called. Access control is based upon known

shared secrets. After a legitimate and expected ioctl call, the kernel module authenticates the

caller process, storing the authenticated status inside the private data field of the file struc-

ture. The private data field cannot be modified by user space applications in any way, only

kernel level code can manipulate the field. As the system is based on a trust rooted concept,

all the kernel code is assumed to be valid and not malicious, so under this assumption storing

authentication data within the file structure’s private data field is feasible.
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For checking file operations, the file permission hook handler function checks the con-

tents of private data structure, if it matches the authenticated status data used by the

file ioctl hook handler, file access is allowed. This corresponds to the case where the

process opened the device, performed a valid ioctl on it and then attempted read and write

operations.

If read and write operations are performed before a valid ioctl call, the operations are denied

access to the device. In this case alerts can be sent through the Management Component which

continuously monitors kernel log files for possible alerts.

This implementation satisfies the general design requirements detailed in Chapter 3.

4.3 Other Components

The finished SCCM system incorporates various other components, which are completed by

other members of the project team. As a whole, the system provides most of the capabilities

proposed in the design at Chapter 3.

4.3.1 Message Layer – Device Layer Interface

An interface between message layer and device layer enqueues and dequeues the messages,

and manages the internal structure on the shared storage hardware. It implements a behavior

similar to a circular queue, with necessary extra information in headers. Also synchronization

of the messages on disk are handled by this layer, which checks a special area for updates

and locations of newly inserted messages, then retrieves the messages and uses the message

layer to deliver the traffic to relevant application layer component. This interface was also

implemented in C language.

4.3.2 Web Based Management Interface

A cross-platform and cross-browser Web based management interface was implemented in

JavaScript language. The management interface exposes various configurable aspects of the

system to the administrators, provides access to alerts generated by both hosts, and allows

41



facilities to stop all traffic on the SCCM in case of an emergency. In figure 4.3, a screenshot

from the web based management interface can be seen.

Figure 4.3: Web Based Management Interface

4.3.3 Management Component

Web based management interface relies on two distinct components, the Management Com-

ponent and the CGI interface between Web based management interface and the management

component.

The management component handles all management tasks of the system. It can modify

manageable parts of the whole SCCM. It is responsible for collecting alerts from various

components of the SCCM and the system log files, and transferring all alerts to the internal
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management component, where they can be seen by system administrators.

The main management component exposes a socket based communication channel for mana-

gement commands. It is possible to manage the system using a command line program con-

necting to this socket. In this scenario, the administrator must type management commands

into the command line.

This separation between the main management component and the web based interface allows

possible future implementation of other management interfaces, which may run on the admi-

nistrators’ computers and connect to the main management component directly. Because of

this separation a Common Gateway Interface (CGI) backend for the Web based management

interface was implemented.

CGI backend provides two-directional communication between the web interface and the

main management component. It does not perform any significant operation on the manage-

ment traffic. It collects the data received from the web based interface via a web server, then

passes it to the main management component over the socket. When management compo-

nent sends data over the socket, the CGI backend reads the data, encapsulates it in a JSON

response, and sends it to the web interface via the web server.

4.3.4 Application Layer Component

The design of the SCCM allows for various application layer protocols to be transferred over

the SCCM system. The current implementation supports transferring HTTP traffic over the

secure communication channel.

The implementation incorporated a modified version of the tinyproxy5 proxy. The proxy is

utilized in two roles within the SCCM. First role is for parsing the HTTP requests and ma-

naging connections between the HTTP clients and the SCCM. Then the modifications on it

send the parsed contents to the messaging layer via its socket. Second role is for initiating a

connection to a HTTP server. The modifications allow the proxy to listen a socket for inco-

ming connections from the message layer, then the contents of the traffic is encapsulated in

standards-compliant HTTP headers and sent to the target web server. The proxy manages the

connection between HTTP servers and the SCCM.

5 http://tinyproxy.banu.com/
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4.3.5 USB Key Component

The system requires the presence of a specially prepared USB key before starting operation.

When instructed by the USB Key Component, the key must be connected to one of the USB

ports of both hosts at boot time. This guarantees that an authorized person carrying the key

is physically present by the internal and external hosts. The USB key can be used to securely

store the cryptographic keys used in various components. After the key is removed, only

remaining copy of the cryptographic keys would be the ones in process, this would enhance

the secrecy of keys, as an adversary will not have immediate access to the keys and will

have to extract it from process memory. This operation requires elevated privileges, and also

requires a long analysis of the process memory, which result in an alert to be triggered as a

consequence of adversary activities, resulting in detection of the adversary.

4.3.6 Packaging and Installation

The SCCM components are packaged into .deb packages that can be installed on Debian

Linux systems. The packages contain the binaries of system components, configuration files

and other necessary files for component operations.

4.4 Deployments

The system was deployed on two disjoint sets of hardware, their details can be seen in Table

4.1.

Table 4.1: Systems that VAG have been successfully deployed on

System Host Hardware Storage Interface on
Hosts

Shared Storage System

1 Intel Core 2 Quad
CPU, 1 GB RAM

Adaptec AHA-
2940U/UW/D /

AIC-7881U SCSI
HBA

IBM EXP 400 storage
enclosure with 6×148 GB
U320 SCSI disks

2 Intel Core 2 Quad
CPU, 2 GB RAM

QLogic 2500 Fiber
Channel HBA

EMC storage with 12×300
GB SAS disks

This shows that the proposed mechanisms are able to run on a variety of hardware configura-
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tions, using off-the-shelf components.

4.5 Performance

As the system aims for near real time operation, performance of the system was a key concern

during implementation. All code involving payload data transfer was written in low level C

language, while keeping the overhead imposed by the system at a minimum. Use of external

libraries is also limited to prevent performance implications from external sources.

4.5.1 Performance Measurements

The following measurements were obtained on systems listed on Table 4.1, using a dedicated

disk for each direction of traffic. A total of 10 test runs for each configuration was performed

and averaged. The test runs consisted of downloading of a 5 MB file and a 100 MB file over

the network, using wget HTTP client program.

To compare the performance penalty of deploying the SCCM systems, the download speeds

on the same network, without any SCCM components, are included.

Tests results can be found at Table 4.2. The results point out that there is a significant per-

formance loss when SCCM is deployed, this result is understandable as the speed of the data

transfer is limited to speed of shared storage used in the SCCM. Also, the results show that

the performance of the system is highly dependent on the choice of storage system, disks and

storage interface.

Table 4.2: Performance results of test runs on two distinct systems

Configuration Average speed of 10
runs (5MB file)

Average speed of 10 runs
(100MB file)

Unfiltered Network 7.91 MB/s 7.72 MB/s
System 1 133 KB/s 129 KB/s
System 2 2210 KB/s 2100 KB/s
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4.6 Security Assessment

Compete compromise of external host does not bring grave security implications to high-

security network. Thanks to the setup of the deployed example system, if the attacker finds out

the architecture of the system after analyzing, the attacker can only begin sending application

level queries to the high security network.

Exploiting application level vulnerabilities is a possibility. As the protection of the application

level traffic is achieved by integrating industry standard IDS software, weak points of the

software may allow some application layer attacks into the protected network.

It is a possibility that internal host can be compromised by exploiting vulnerabilities in the

code of various modules of the secure communication mechanisms. The implementation was

completed with giving security utmost importance. Standard software engineering practices

of code reviews, thorough bound and error checking were followed. Security audits were

performed on the code paths involved with network traffic. As a result of these activities the

mechanisms were found to be sufficiently secure, allowing deployment in military networks.

The currently deployed configuration (“System 2” in Table 4.1) is tested for possible security

issues by a team at National Research Institute of Electronics and Cryptology (UEKAE), an

affiliate of the Scientific and Technological Research Council of Turkey (TÜBİTAK). As a

result of this test, set of mechanisms proposed in this theses are found to be secure to a degree

that allows them to be deployed on military networks.

4.6.1 Data Flow Through the SCCM

The complete SCCM system consists of a number of components. The data flow path that is

followed throughout the system is listed at Table 4.3.

The data flow path represents flow of data from one network to another. It begins by receiving

of the packet on one hosts interface, follows the SCCM components until the data is written

to shared storage. Then, the path of the data at the other host is followed, until the complete

network packet leaves the host’s network interface.

Various protection mechanisms that are previously discussed are related to the points at the
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data flow, where the protection is applied.

Table 4.3: Data flow path through the SCCM

Event Protection provided by SCCM
Network packet is received at the network
interface

Firewall and NIDS detect and block
known and possibly unknown attacks.

Data arrives at application layer listener All lower layers are stripped, leaving only
application layer data

Message layer handles and multiplexes
messages, then dispatches to Device La-
yer

Message Layer – Device Layer trust via
IOCTL provides protection of Device La-
yer

Device layer writes the data to shared sto-
rage

Data is encrypted & signed before being
written to prevent unauthorized access

The data crosses shared storage hardware,
reaches other host

–

Device layer reads the data from shared
storage

The data is decrypted and its signature is
validated to ensure operation over a non-
compromised channel

Message layer fetches data from Device
layer, and after multiplexing sends it to
application layer component

Message Layer – Device Layer trust via
IOCTL provides protection of Device La-
yer

Application Layer component encapsula-
tes data with protocol headers & trailers.

–

Network packet is sent through the net-
work interface

Firewall and NIDS detect and block
known and possibly unknown attacks.

4.6.2 Security Comparison

The security benefits of SCCM have been discussed throughout this study. In this section,

comparison of SCCM system with a basic, and an advanced security device will be conducted.

The basic security device is defined as a firewall product integrated into the operating system,

which does not contain advanced security features. The host running the firewall is assumed

to be running some network services that are to be protected from the external network.

The advanced security device is defined as a stand alone security hardware, including appli-

cation level filtering, Intrusion Detection Systems and other advanced security features.

While the actual security levels provided by a security system depends heavily on the configu-

ration of the device, for the following comparison it is assumed that each system is configured

optimally to provide maximum security.
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The comparison is detailed in Table 4.4. As can be seen from the table, SCCM has distinct

advantages that are not provided by other current systems.

Table 4.4: Comparison of security features provided by three different systems

Security Consideration Basic Secu-
rity Device

Advanced
Security
Device

The SCCM
System

Protection from unauthorized incoming con-
nections

+ + +

Protection from unauthorized outgoing con-
nections

+ + +

Protection from application layer attacks - + +

Providing alerts for security incidents - + +

Minimum network performance overhead + - -
Prevent direct compromise of network services
in case of a security device compromise

- + +

Continue protecting internal network in case of
a security device compromise

- - +

Complete networking stack isolation between
networks

- - +

Complies with network seperation policies of
high security organizations

- - +

4.7 Other Deployment Schemes

The design of the mechanisms is flexible enough that deployment schemes other than the

one described in this chapter are possible. According to needs, requirements and restrictions

of the organization that intends to use the system, the components that constitute the secure

communication channel mechanisms can be realized and deployed in different variations.

If cost is a limiting factor in a deployment, it is possible to run the proposed set of mechanisms

on a single host, using virtualization technologies. In this configuration, internal and external

hosts manifest as virtual machines. Two distinct network interfaces on the physical machine

are each dedicated to one and only one virtual host. The shared storage is simulated by a

single virtual disk simultaneously connected to both virtual machines.

Obviously, use of virtual machines leads to a different consideration in security, namely the

security of the virtual machine engine used. In case of a compromise of a –now virtual–

host, possible security vulnerabilities in virtual machine engine are open to exploitation by
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adversaries. It can be said that the virtual machines, and as a corollary, the networks are

isolated as much as the virtual machine engine succeeds in isolating them.

Other deployment schemes may involve replacing the shared disk storage system. To achieve

a faster data transfer rate the storage may be replaced with a single connection that transfers

the application level payload directly. This reduces the psychological network isolation effect

that is elicited by the revolving disks. Various data transfer technologies can be employed,

with their speeds listed at Table 4.5 [25] [26] [27] [28].

Table 4.5: Comparison of speeds of various data transfer technologies

Technology Data transfer speed
USB 2.0 60 MB/s
Ultra-320 SCSI 320 MB/s
Fibre Channel 8GFC 1600 MB/s
Infiniband 4X QDR 4000 MB/s
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CHAPTER 5

Conclusion and Future Directions

In this theses work, a set of mechanisms that allow network traffic to and from high security

networks are designed and implemented. The mechanisms do not require human intervention

for data transfer. The design is proved to be realizable on a variety of off-the-shelf hardware.

The security implications of the mechanisms are elaborated on. The proposed mechanisms

provide an alternative to complete network isolation vs. single control point for network traf-

fic.

Having the networks completely isolated is the most secure method, but if external communi-

cation without human intervention is a requirement, the proposed communication mechanism

can be considered more secure than traditional security devices (router and firewall combina-

tion). Also the mechanisms can be regarded as an improvement over current network security

devices and software.

Compete compromise of external host does not bring grave security implications to high-

security network. Thanks to the setup of the deployed example system, if the attacker finds

out the architecture of the system after analyzing, the attacker can only send application level

queries to the high security network.

The complete set of mechanisms proposed in this theses introduces a long chain of security

measures against attacks. Some of the protection measures introduced require a large time

frame to circumvent. By increasing the time required before a successful penetration, proba-

bility to detect the attack is increased.

Possible usage areas of these secure communication mechanisms are numerous; military ne-

tworks where security is of utmost importance, companies and governmental organizations
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in need of high-security networks for classified data. Also, mission-critical systems on ships,

planes, space vessels would benefit from the isolation provided by the proposed mechanisms.

Deployments that are being used in real world scenarios will provide valuable feedback on

future directions of the SCCM.

Implementation of other application layer protocols as modules can increase the real world

application areas of the mechanisms.

Providing Quality of Service (QOS) facilities can allow prioritizing some application layer

protocols, some connections between selected ends or alerts. This capability may be imple-

mented in software as a whole, or a dedicated set of disks may be reserved for different QOS

levels.

The root of trust concept can be strengthened further. One approach would be to store the

critical SCCM system binaries in the USB Key, which is required to be present at boot time.

This would reduce the risks of executing a maliciously modified binary file instead of the

genuine binary file. The USB Key component would extract the binary from USB Key, which

contains the binary in an obfuscated form, then execute the binary. After the disconnection of

the USB key, a malicious attacker would not be able to modify SCCM system binaries directly.

A method of attack at this scheme would involve the modification of USB Key Component

first, changing it such that it modifies the binary in the time frame between reading from USB

key and executing it.

Another approach for strengthening the trusted root concept would be introducing networ-

ked boot servers. Two boot servers would be connected to SCCM hosts, one for each hosts.

The connections would be on dedicated network interfaces, with a single cable, such that no

external access is present between SCCM host and the boot server. The SCCM host would

be configured to boot from network, which is viable through Preboot Execution Environment

(PXE) facilities of modern hardware. The boot server would include a Dynamic Host Con-

figuration Protocol (DHCP) server for assigning an IP address to SCCM host, and a Trivial

File Transfer Protocol (TFTP) server to transfer the operating system kernel to the SCCM

host. Booting this server supplied kernel would increase confidence in executing an unmodi-

fied kernel. To further enhance this approach, an organizational security policy can rule that

the boot servers should be connected to SCCM hosts only during the system boot, and no
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other network connection is allowed to and from boot servers. This approach would deny an

attacker to replace the operating system kernel remotely.

The Linux Security Modules (LSM) infrastructure, which is used in the kernel layer, can be

exploited further. As LSM is a flexible infrastructure, it exposes many security hooks within

kernel operations. These hooks can be utilized to control access to and from various connec-

tion points between layers of the system, these include sockets and message queue facilities.

The LSM facility at the kernel layer can also be used for disallowing the modification of

SCCM binaries, strengthening the trusted root concept.

Another approach in using LSM facility for increased security would be to disallow analyzing

of process execution and process memory. A probable weak point of the SCCM is, if the

adversary gains elevated privileges on the system, cryptographic keys can be collected by

analyzing process memory, details and inner workings of the system may be identified by

tracing processes. As the system aims to hide internal details as much as possible, to increase

the probability of an alert being generated after malicious activity, depriving the adversary of

detailed knowledge about the system is valuable. The LSM infrastructure can be facilitated

to prevent analysis of system components, mitigating a possible weak point in the system

design.
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