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ABSTRACT

IDENTIFICATION OF LOW ORDER VEHICLE HANDLING
MODELS FROM MULTIBODY VEHICLE DYNAMICS MODELS

Saglam, Ferhat
M.S., Department of Mechanical Engineering

Supervisor: Prof. Dr. Y. Samim Unliisoy

January 2010, 200 pages

Vehicle handling models are commonly used in the design and analysis of vehicle
dynamics. Especially, with the advances in vehicle control systems need for
accurate and simple vehicle handling models have increased. These models have
parameters, some of which are known or easily obtainable, yet some of which are
unknown or difficult to obtain. These parameters are obtained by system
identification, which is the study of building model from experimental data.

In this thesis, identification of vehicle handling models is based on data obtained
from the simulation of complex vehicle dynamics model from ADAMS
representing the real vehicle and a general methodology has been developed.
Identified vehicle handling models are the linear bicycle model and vehicle roll
models with different tire models. Changes of sensitivity of the model outputs to
model parameters with steering input frequency have been examined by sensitivity
analysis to design the test input. To show that unknown parameters of the model
can be identified uniquely, structural identifiability analysis has been performed.
Minimizing the difference between the data obtained from the simulation of
ADAMS vehicle model and the data obtained from the simulation of simple

handling models by mathematical optimization methods, unknown parameters have



been estimated and handling models have been identified. Estimation task has been
performed using MATLAB Simulink Parameter Estimation Toolbox. By model
validation it has been shown that identified handling models represent the vehicle

system successfully.

Keywords: Model Identification and Simplification, Parameter Estimation,

Identifiability Analysis, Sensitivity Analysis, Handling Model
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YOL ARACLARI BASITLESTIRILMIS DOGRULTU KONTROLU
MODELLERININ COKLU GOVDE DINAMIGI ARAC
MODELLERINDEN TANILANMASI

Saglam, Ferhat
Yiiksek Lisans, Makine Miihendisligi Boliimii

Tez Yoneticisi: Prof. Dr. Y. Samim Unliisoy
Ocak 2010, 200 sayfa

Arag dogrultu kontrolii modelleri araglarin tasarim ve dinamik analizinde
kullanilmaktadir. Ozellikle ara¢ kontrol sistemlerindeki gelismelerle birlikte dogru
ve basit ara¢ dogrultu kontrolii modellerine olan gereksinim artmistir. Bu
modellerin baz1 parametreleri bilinmekte ya da kolayca elde edilebilmektedir.
Ancak bazi parametrelerin elde edilmesi ya zor ya da pahalidir. Bu parametreler,

deneysel verilerden model olusturma olarak tanimlanan sistem tanilama yoluyla

elde edilebilir.

Bu tezde basitlestirilmis ara¢ dogrultu kontrolii modellerinin, bir ¢oklu govde
dinamigi programi olan ADAMS kullanilarak, karmasik ara¢ modellerinin
simulasyonundan elde edilen simulasyon verileriyle tanilanmasi i¢in genel bir
metodoloji gelistirilmistir. Degisik lastik modelleriyle olusturulan bisiklet modeli ve
yalpa modeli tanilanan ara¢ dogrultu kontrolii modelleridir. Model ¢iktilarinin
model parametrelerine olan duyarliliklarinin tekerlek doniis agisi frekanslariyla
degisimi incelenmis ve test girdisi tasarlanmistir. Bilinmeyen parametrelerin tek

olarak tanilanabilecegini goOstermek i¢in yapisal tanilanabilirlik caligmasi

Vi



gerceklestirilmigtir.  ADAMS ara¢ modelinin  ve basit ara¢ modellerinin
simulasyonundan elde edilen veriler arasindaki farkin, matematiksel optimizasyon
yontemleri kullanilarak en aza indirgemesiyle bilinmeyen model parametreleri
kestirilmis ve ara¢ modelleri tanilanmistir. Parametre kestirimi isleminde MATLAB
Simulink Parametre Kestirimi Aragkutusu kullanilmigtir. Model dogrulamasi
yoluyla tanilanan modellerin gergek ara¢ dinamigini basarili bir sekilde izledigi

gbzlenmistir.

Anahtar Kelimeler: Model Tanilama ve Basitlestirme, Parametre Kestirimi,

Tanilanabilme Analizi, Duyarlilik Analizi, Dogrultu Kontrolii Modeli
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CHAPTER 1

INTRODUCTION

The goal of this study is to identify low order vehicle handling models from
complex Multibody Dynamics (MBD) vehicle models. MBD vehicle models in the
MBD software ADAMS environment are simulated; input and output data are
recorded, and a previously determined handling model structures are identified from
this data. Differences between the simulation outputs of the ADAMS model and the
handling model are found and minimized by optimization. As a result of this
optimization, unknown parameters of the model are estimated. Some of the
parameters of handling models are easily obtainable or measurable, yet some of
them are difficult to obtain and so they are better estimated by means of system
identification. In particular, parameters of tire model and inertial parameters of the
vehicle handling models are not easily obtained or accessible so they are estimated
with system identification. ldentification of an entire vehicle model is of prime
importance for vehicle dynamics studies. Vehicle handling models are made use of
in a variety of applications including the design of control systems; on the whole in
the analysis and design of vehicles, vehicle components, and subsystems. Hence,
firstly an introduction to vehicle system identification will be presented and then

use of vehicle handling models in vehicle dynamics studies will be clarified.
1.1. VEHICLE HANDLING MODEL IDENTIFICATION

System identification can be defined as the building models of systems from
experiment. When the model used in the identification process is built, values of the

parameters in model are determined from the observed data by mathematical



methods and this can be defined as parameter estimation. To be able to identify the
model, data is required. This data must be informative enough to identify model
accurately. Thus prior to an experiment, an optimal input for use in the test must be
designed, considering previous knowledge about the system to be identified and the
aim of the identification. However, in some cases the designed input may not be
practical and so there is a tradeoff between optimality and practicality. After
determining the model structure, parameters of this model can be estimated.
Parameters are estimated by matching the data acquired from the experiment and
the data taken from the model. In general, parameters are estimated by minimization
of the difference between the simulation data and the test data. After the estimation
of the parameters, identified model is validated by examining whether the identified
model satisfies the requirements or not (model validation). Model validation is
performed by using a new data set or by using the portion of current data not used
in the system identification. If the identified model does not satisfy the
requirements, some part or parts of the identification is revised. Thus, selected

model may be changed or even experiments may be repeated to obtain new data.

Vehicle handling models are used to study vehicle handling dynamics which is
complex due to the large number of parts, joints, and particularly nonlinear behavior
of vehicle components. The handling model should be accurate enough to represent
the handling behavior of the real vehicle in a reasonably wide range of maneuvers.
Simplified low order vehicle models have certain parameters which do not directly
correspond to components in the real vehicle. Even if the correspondence can be
established, some of them may not be measured directly and practically, so they are
better estimated through system identification. Sometimes parameters of the model
and parameters of the vehicle may differ due to these simplifications even if they
are physical. When the nonlinear characteristic of the parts or systems of vehicles
exist, modeling becomes more intricate. By linearizing nonlinear behavior about
some operating point, handling models may be simplified; yet this allows the usage
of the model only within limited domains. A typical example is the cornering force
characteristics of pneumatic tires which are highly nonlinear, and thus they are



difficult to model if the whole range of possible slip angles and lateral accelerations
are to be considered. A characteristic can be linearized about some operating point
but this limits the operating range of the tire and of the vehicle. Therefore, model
parameters which cannot be measured or obtained easily and accurately are better

estimated.

Vehicle handling comprises lateral (y), longitudinal (x), yaw (y), and roll (¢)

primary motions as shown in the Figure 1.1.

Figure 1.1: Motion associated with vehicle handling [1]

To be able to identify handling models, vehicles are tested and the data are acquired
using some test hardware. Lateral, longitudinal, yaw, and, roll velocities and lateral
acceleration are the commonly used test outputs and the steering wheel angle is the
test input used in the identification. Longitudinal and lateral velocities are measured
by velocity sensors and rotational velocities and accelerations are measured by
inertial measurement units. Steering wheel input can be measured by steering wheel
measurement system and by means of steering robots desired steering inputs can be

applied. Also, there is need for other equipment such as data acquisition system, and



wheel speed measurement system. In this study, motion data is directly acquired
from the ADAMS; yet to become the realistic, responses which are obtainable in
real conditions are used. Using previously determined handling model structure, its
parameters are estimated by using input-output data sets. The simplest vehicle
handling model is the bicycle model which represents the in-plane dynamics of a
vehicle. Generally, longitudinal velocity of the bicycle model is kept constant and
treated as a model parameter, and two degree of freedom (DOF) bicycle model is
obtained. Bicycle model does not include the roll motion, yet in some cases,
particularly at high lateral accelerations, roll motion affects vehicle dynamics
significantly and thus it should be included in the model. Another commonly used
handling model is the vehicle roll model comprising the coupled in-plane and out-
of-plane (roll) dynamics. Tire is an important part of the vehicle and it affects the
performance of the vehicle considerably, thus it must be modeled accurately. The
most simple tire model used in the vehicle handling dynamics is the linear tire
model which is accurate in a limited operating region. Nonlinear tire models are
used to be able to represent the nonlinear characteristic of the tire, thus increasing
vehicle’s operating range. Physical tire models are not used in vehicle models, since
they are mathematically complicated and increase solution times considerably.
Instead empirical tire models are used widely by fitting curves to test data. By
combinations of the available tire and handling models, several different
combinations can be obtained. Note that the model used in the identification must
be simple for computational reasons and accurate enough to represent vehicle
dynamics. Tire parameters and some inertial parameters like yaw moment of inertia
are difficult to obtain, so they are better estimated. Other parameters like mass of
the vehicle, position of center of gravity can be measured accurately, so they are
assumed to be known in parameter estimation. In the estimation of parameters
mathematical methods such as least square parameter estimation method and
maximum likelihood parameter estimation method are commonly used.
Optimization algorithms like nonlinear least square and genetic algorithm
optimization are used within these methods. Each algorithm has its own advantages

and disadvantages and is appropriate for a specific problem. Among these methods



genetic algorithm has become popular recently, since it is a global optimization
method and it does not require differentiation. Details of these methods will be
given in chapter 3. After the parameters are estimated, model validation is
performed by another data set. To make the identification task easy, model may be
simplified but in this case accuracy may be lost. When the complexity of the model
IS increased, accuracy increases but the computational cost also increases. In
summary, vehicle system identification is a complex and difficult problem; in
particular identification of the tire model is a very difficult problem due to nonlinear

behavior of the tire.

In this study data used in the identification process is obtained from
ADAMS/Chassis simulation and accordingly various simulations with different
inputs can be performed, which is restricted in real tests. Steering input and the
longitudinal velocity are the inputs used in the simulations. These inputs are
determined according to the analysis and procedures explained in the following
chapters. In ADAMS/Chassis steering input can be defined by using various
mathematical functions which increases the flexibility of the simulations and by this
way various virtual test scenarios can be observed. To design steering input and to
determine the longitudinal velocity used in the simulation some a priori knowledge
about the vehicle system and the handling model structure to be identified is
necessary. The methods for generating optimal input design will be explained in
detail in chapter 3. After getting the data from ADAMS, parameters of the handling
models are estimated using mathematical tools by minimizing the difference
between model output and ADAMS output. After the handling model is identified,
it is validated by using another data set. Handling model identification algorithm is

summarized in Figure 1.2.
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Figure 1.2: Handling model identification diagram

In this study, MATLAB Simulink Parameter Estimation Toolbox is used for
parameter estimation. By this toolbox parameters of any model constructed in

Simulink environment can be identified and there is no necessity about the specific



model structure. Cost function to be minimized is formed directly by Simulink.
Acquired data from ADAMS is loaded in the MATLAB workspace and is called by
the blocks in the Simulink. Cost function is formed as the difference between the
acquired data and the simulation data by Simulink. This cost function is then
minimized by some conventional and advanced optimization algorithms which are
available in MATLAB. All these steps are performed in MATLAB’s graphical user
interface (GUI) which increases the practicality and usability of the toolbox. In
summary signal processing, model construction, parameter estimation, and model

validation steps are performed in this toolbox.
1.2. USAGE OF VEHICLE HANDLING MODELS

Model of a system can be defined by the relationship among the inputs and the
observed response signals of the system. Mathematical models are the most
commonly used model type in advanced applications of engineering and science.
They describe the relationships among the system variables by means of
mathematical tools, and they are used in simulation and prediction. Mathematical
models may be developed via two ways. One way is first to part the system into
subsystem and applying physical laws and well established relationship to these
subsystems, and then combining these subsystems mathematically. The other way is
building mathematical models based on the observations and experimentation

which is also called system identification [2].

Vehicle models are built by the combination of the two methods explained. By
using physical laws such as Newton’s second law, and well established relationship
such as tire force and slip angle relationships vehicle models can be built. However,
all of the parameter values of the constructed model may not be accessible and

accordingly they are estimated via system identification.

Mathematical vehicle handling models are used in the analysis of the vehicle
handling dynamics and the design of vehicle systems and vehicle system

components. They reinstate dangerous and expensive tests and experiment by easy,



flexible, and inexpensive simulations Usage of these models in the vehicle
dynamics studies can be explained below shortly.

1.2.1. ANALYSIS OF VEHICLE HANDLING DYNAMICS

Analysis of the vehicle handling dynamics can be fulfilled via tests. There are some
standard vehicle handling tests such as lane change test, step steer test and these
tests necessitate certain specifications. These specifications can be satisfied to some
extent considering the safety of the test pilot, safety of the car which is tested or the
test pilot cannot perform exactly the desired operations. To illustrate, while
performing step steer test, vehicle longitudinal velocity must be limited at some
value for safety. Nonetheless, when the vehicle models are simulated, these tests
specifications can be satisfied perfectly and extreme conditions which cannot be
reached during tests can be observed. For instance in ADAMS/Chassis there are
several vehicle handling tests which have certain objective to observe handling
dynamics. By using these models effects of the modification in the subsystem,
component, or change in the model parameters can be observed. As opposed to
models, performing real tests for observing those changes and modifications on the

handling are costly and sometimes unattainable.

1.2.2. DESIGN OF VEHICLE COMPONENTS AND VEHICLE
SUBSYSTEMS

The other common use of the vehicle handling models is in the design and
development of vehicle subsystems, vehicle components, and integration of these
subsystems and components to vehicle. In particular with the developments in the
electronic systems vehicle designers began to design electronic control systems to
improve safety, stability and performance of the vehicles. Antilock braking system
(ABS), electronic brake distribution system (EBD), traction control system (TCS),
and active yaw control system (AYC) are some examples for vehicle safety
systems. Vehicle handling models are used in development and design phase of
these control systems. Therefore, estimation of the unknown model parameters is of

primary importance for these applications.



An extensive discussion on the use of vehicle handling models in vehicle dynamics

can be found in the study of Arikan [3].

The linear bicycle model is a well known vehicle handling model and it is
commonly used in the analysis of the vehicle handling dynamics. It is a simple
model but it represents the planar dynamics of the vehicle successfully by providing
two important variables yaw velocity and lateral velocity. Linear bicycle model is
valid for low slip angle and low lateral accelerations. Validity of the bicycle model
can be extended by using nonlinear tire models and the so called nonlinear bicycle
model is obtained. Despite the improved accuracy of the nonlinear bicycle model
with respect to the linear bicycle model, increased number of parameters of the

nonlinear bicycle model is a disadvantage with respect to the linear one.

Another model commonly used in vehicle dynamics research is the vehicle roll
model. Bicycle model does not consider the roll motion, yet at high lateral
accelerations roll motion affects the planar motion by altering the generated tire
forces and also by directly affecting the planar dynamics due to coupled roll and
planar dynamics. There are various studies [4, 5] using vehicle roll model in the

design and integration of vehicle control system.

In summary, vehicle handling models are crucial for analysis and design of a
vehicle, vehicle subsystems, and vehicle components and thus they must be

thoroughly understood.
1.3. ADAMS/CHASSIS

ADAMS is the one of the world’s most widely used MBD mechanical simulation
software. With ADAMS various models of systems can be built, simulated,

improved, and their dynamic behavior can be examined in detail.



ADAMS/Chassis is one of the modules of ADAMS and it provides an analysis
environment for automotive applications by means of standard model types and two
analysis types which are full vehicle analysis and half vehicle analysis and post-
processing. ADAMS Chassis has four work modes which are build mode, test
mode, review mode, and improve mode. In build mode models can be edited and
system configuration can be changed. Subsystem and model types can be changed,
optional subsystems can be added or removed and the various parameters of the
vehicle model can be changed in build mode. In test mode vehicle models can be
built and simulated [6].

In test mode there are various standard vehicle tests such as [7];

- braking analysis,
- handling analysis,
- durability analysis,

- ride analysis.

In handling analysis there are also various standard simulations some of which are

[71;

- constant radius,
- cross wind,

- fish hook,

- step steer

- sweptsine

- lane change.

In addition to these standard vehicle tests, various vehicle tests can be built, and
appropriate control algorithms can be designed. In these simulations steering input
parameters which are steering frequency and steering amplitude and test variables
which are velocity and accelerations can be set easily in GUI. After the model is
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analyzed in test mode, analysis results can be visualized in review mode by using
ADAMS/Postprocessor. Analysis plots and animation can be seen by means of
ADAMS/Postprocessor. Models can be refined with the help of ADAMS/Insight in

the improve mode using some advanced optimization tools [6].

In this study, data is taken from the ADAMS/Chassis simulation and this data is
treated as a real test data. Full vehicle models of ADAMS/Chassis have nearly
hundred of degrees of freedom and they comprise the front and rear suspension
subsystems, steering subsystem, body subsystem, and tire subsystems. They have
also optional subsystems like loading, brake, and power train subsystems. In
ADAMS/Chassis there are various tire models with different complexity from Fiala
tire model to Magic Formula tire model. Among these tire models PAC 2002 [8]
tire model is one of the most complex tire model. This tire model is the extended
version of the Magic Formula tire model. Therefore, ADAMS/Chassis vehicle
models are the most representative model of the real vehicle and they can be used to
acquire simulation data instead of making tests with the actual vehicle to acquire

data. An example ADAMS/Chassis vehicle model is shown in Figure 1.3.

Figure 1.3: ADAMS/Chassis vehicle model [7]

11



1.4. OUTLINE

In chapter 2, literature survey about vehicle handling system identification is given.
Types of handling models to be identified, their level of complexity, identification
algorithms, data set, and model validation are steps to be examined in literature

survey.

In chapter 3, system identification and its steps are explained in detail. Firstly, the
design of the test input is explained and then the identification algorithms are given.
Linear and nonlinear optimization methods, their algorithms, advantages and

disadvantages are all explained in some detail.

In chapter 4, vehicle handling models and tire models are developed. Vehicle
models include 2 DOF bicycle model, 3 DOF linear roll model, 1 DOF roll model,
and finally 3 DOF nonlinear roll model. Linear tire model and Magic Formula tire
models are used with the vehicle model for identification purposes. 3 DOF

nonlinear roll model is used with the Magic Formula tire model.

In chapter 5, to examine how the model responses change with the unknown
parameters, a detailed sensitivity analysis is performed in the frequency domain and
the most appropriate frequency range of the steering input and the appropriate

longitudinal velocity are found.

In chapter 6, a detailed structural identifiability study is fulfilled. Data is obtained
from the simulation of the model to be identified, and the model is identified
starting with the nominal model parameters. According to the results local
identifiability of the model is examined. Finally, the handling models are identified
and using another data set from ADAMS/Chassis, identified models are validated.

In chapter 7, discussion, conclusion, and future work are given.
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CHAPTER 2

LITERATURE SURVEY

2.1. INTRODUCTION

Studies about identifications of vehicle handling models are vital in vehicle
dynamics area owing to their extensive use in analysis and design of vehicle, and
vehicle subsystem. Especially, with the developments in the electronic systems
vehicle designers began to design electronic control systems to improve safety,
stability, and performance of the vehicles and so necessity to vehicle handling
models increased. Thus a large number of studies are reported in journal and
conference articles and graduate thesis in literature about this topic. These studies
were carried out due to a gap in handling model identification and thus those studies
furnish valuable information with regard to the stages of the handling model

identification starting from the data collection and ending with the model validation.

In this chapter, general steps and procedure for handling model identification
performed in vehicle dynamics area will be explained. Design of optimal test or
simulation input, input-output data, vehicle handling model type, estimated
parameters, and parameter estimation algorithms will be explained. To start system
identification a priori knowledge is required to select a model structure. After the
selection of the model structure data is required and then system identification starts
with experiment to observe the variation of system variables. Since the model is
identified from the data acquired from the experiment, quality of the data is very
important and the input and output data must be selected carefully. In handling
model identification, steering input is used as the test input and thus it must be
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designed before the test. Estimation of the parameters of the selected model is then
performed and with the model validation using different data sets or a different part
of the data used in the identification, handling model identification ends. All these

part are inspected in these papers in a detailed manner.

In vehicle dynamics area there are several handling and tire models used. The
simplest handling model is the bicycle model and the most simple tire model is the
linear tire model. However, these models have limited use and to remove these
limitations, vehicle roll models and nonlinear tire models are also used. As the
complexity of the model increases, its accuracy also increases; yet computational
effort to identify those models also increases. Therefore, there is a trade-off between
model complexity and computational loads. The selected models should be the
simple for the computational reasons and also should be complex enough to capture
the real-life behavior of the vehicle.

2.2. LITERATURE SURVEY

Vehicle system identification comprises the parts which are data acquisition, model
selection, parameter estimation, and model validation. In literature there are various
specific methods and solutions to handling model identifications. Arikan [3] has
studied the identification of bicycle model and three DOF handling model. Before
making the vehicle test, a detailed structural identifiability analysis for different
sensor and sensor set has been performed for the bicycle model and global
identifiability of the model with certain parameter set has been determined. Then
data have been acquired from the vehicle tests and unknown parameters of the
bicycle model which are position of center of gravity, front and rear cornering
stiffness, yaw moment of inertia, and sensor locations have been estimated with
different sensor sets using genetic algorithm. Identified models have been validated
by the data used in identification and also by another data set. Steering input with a
wide frequency range has been used in the vehicle tests. After the identification of
the bicycle model, three DOF vehicle roll model has been identified. Estimated

parameters of the roll model have consisted of tire parameters, inertia parameters,
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and distance parameters. Local structural identifiability of the model has been
studied and the unknown parameters have been estimated from the simulated data.
The main contribution of this study is that a detailed global identifiability of the
bicycle model has been performed and parameter sets which can be identified

uniquely from different sensor sets have been determined.

Bolhasani et al. [9] has estimated the parameters of vehicle handling model using
the genetic algorithm. Data used to estimate handling model parameters have been
acquired from the simulation of a complex vehicle model in ADAMS. For
simulation in ADAMS environment, a combined sinusoidal and step steering angle
has been used as an input to attain both the transient and steady state responses of
the vehicle. Simulation has been performed at the longitudinal velocity of 50 kph
with a low frequency steering input. Three vehicle responses namely the lateral
velocity, yaw velocity and roll angle together with the steering angle have been
used in the identification. In this paper a three DOF vehicle handling model
comprising lateral, yaw, and roll degrees of freedom, with Fiala tire model which
calculates the cornering force as a function of slip angle and vertical load on the
tires, has been used. Front and rear cornering stiffness of Fiala tire model, yaw
moment of inertia, roll moment of inertia, roll damping, and roll stiffness are the
unknown parameters. Identified model has been validated by using other two data
sets. Validation data has been obtained from the slalom test and single lane change
maneuver in ADAMS. In slalom test, the frequency of the steering angle is taken to
be 0.1 Hz. The longitudinal velocity is assumed to be 50 kph and the longitudinal
velocity in single lane change maneuver is set at 60 kph. In this study the steering
input has a very low frequency which does not excite the vehicle motions
appropriately. Also, friction coefficients between the tire and the road have been
assumed to be known even though they may not be known easily. However, tire and
vehicle model used in the identification represent the vehicle handling dynamics

completely for a wide operating range.
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Allaum et al. [10] have identified the parameters of the nonlinear vehicle handling
model by using least square methods. They have used three DOF handling model
comprising the longitudinal, lateral, and the yaw motions. Data used in the
identification have been taken from the vehicle test in which firstly vehicle is
accelerated to 5.5 m/s longitudinal velocity and then a constant wheel steering input
of 6.4° has been applied. Inputs of the test are the traction force and the wheel
steering angle, and the outputs of the test are the forward speed and the yaw
velocity. The identification process is started by sensitivity analysis based on first
order standard sensitivity functions in time domain which allows the determination
of the effects of the parameters on system variables. After sensitivity analysis, they
have performed the identifiability study to show that estimated parameters are
structurally globally identifiable. Errors between the observed data and the
estimated data of the longitudinal velocity and the yaw velocity have been used to
construct a quadratic objective function. Estimated parameters are mass and yaw
moment of inertia of the vehicle, distance between the center of mass and the front
and rear track, center of gravity height, front and rear cornering stiffness, and
aerodynamics and rolling resistance ratio. Some assumptions which relate the
vehicle parameters to each other have been made and then identifiability study has
been performed. In this paper roll motions of the vehicle has not been included in
the model and also linear tire model has been used and thus the used handling
model has limited to low steering angle inputs. Also some parameters such as mass
and the distances between center of mass and the track width have been treated as
the unknown parameters to be estimated, even though they can be measured easily.
However, since the model used in the identification comprises longitudinal
dynamics, vehicle tests may be performed with a greater flexibility that is there is

no need to keep the longitudinal velocity at a constant value

Abdellatif et al. [11] have studied the nonlinear identification of vehicle’s coupled
lateral and roll dynamics in their study. Vehicle handling model coupling the lateral
and roll dynamics and a linear non-stationary tire model have been used in the

vehicle identification and thus conventional simplifications such as stationary tire
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model and pure lateral dynamics model have been removed. Coupling the lateral
and roll dynamics has been performed by adding the effects of the roll motion on
the tire slip angles. However, by this way effects of the roll motion to the vertical
load on the tires, and thus effect of roll motion to lateral dynamics have been
disregarded to simplify the coupling. After building the model, identifiability study
of the roll dynamics submodel and whole coupled model have been examined in
this study. After these steps, the authors have studied the effects of the parameter
and parameter changes on the response of the system by performing sensitivity
analysis in the frequency domain. Accordingly, the optimal frequency range of the
steering input, in which the parameter estimation has been performed, has been
found as 0-2 Hz. After the sensitivity study, vehicle tests have been performed at
different longitudinal vehicle speeds. A frequency sweep steering input covering
frequencies up to 2.2 Hz has been used as the test input. Steering wheel angle,
lateral acceleration, yaw velocity, and the roll angle have been used in the
parameter estimation. Loss function have been formulated by taking the difference
between the measured and the estimated data and using the nonlinear least square
algorithm parameters have been estimated. In this study authors have indicated that
as the interaction between vehicle’s lateral and roll dynamics have been neglected,
estimated parameters change with different operating points. To illustrate the
authors have showed that estimated yaw moment of inertias are different for
different vehicle longitudinal speeds for the non-coupled model. Conversely, those
values are nearly the same for different longitudinal values for the coupled models.
This observation is important for handling model identification. Moreover
considering the transient effects in tire model is another contribution of the study

which removes the steady state steering angle limitations.

Massel et al. [12] have studied the identification of the cornering stiffness
parameters. A linear static model derived from the one track model and vehicle side
slip angle model together with the linear tire model has been used for identification.
Online estimation of the cornering stiffness parameters have been performed by
minimizing the quadratic error functions derived by taking the difference of the
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measured data and model output data by linear least square approach. The method
presented in this paper has been tested with the data taken from the one track model
and from the simulation of the virtual vehicle model in CARSIM, a MBD software.
Slalom drive simulations with a steering frequency of 0.2 Hz for one track model,
0.5 Hz and 0.7 Hz for the CARSIM model at the longitudinal velocity of 60 kph for
the one track model and 80 kph for the CARSIM model have been performed.
Steering angle, yaw velocity, and lateral acceleration have been used in the
identification as input-output data. The results have showed that the models which
describe the lateral vehicle dynamics can be adapted by the identified cornering
stiffness according to different driving conditions and the adapted model have given
better response than the unadapted model. As shown in this paper, using an adaptive

identification improves the estimation results.

Peng et al. [13] have studied the cornering stiffness estimation based on the vehicle
lateral dynamics. Bicycle model together with linear tire model has been used in the
estimation process to estimate the front and rear cornering stiffness. Estimation
process has been divided into two groups; the time domain methods which have
four methods and, the frequency domain (i.e. transfer function) method. In the
former the bicycle model equations have been used either directly or in a various
combinational forms and the later has used the transfer function between yaw
velocity and steering angle to estimate cornering stiffness values. In both methods
vehicle parameters mass, distance between center of gravity and front and rear
axles, and yaw moment inertia have been assumed to be known even though the
yaw moment inertia may not be determined so easily. In the first method vehicle
measurements, namely steering wheel angle, yaw, lateral, and longitudinal velocity
together with the time derivative of lateral velocity and yaw velocity are required.
In the second method the transfer function between the yaw velocity and the
steering input is derived. Then a least square fit is applied to obtain the transfer
function parameters. After the transfer function is obtained, cornering stiffness
values can be calculated from the transfer function. The performance of the

methods used in this study has been tested by using the data acquired from the
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bicycle model with nonlinear tires and CARSIM software, and it has been shown
that two methods have better performance and thus they have been used to identify
cornering stiffness values from real test data. The results have no indication with
regard to indicate which of the two methods is more accurate. To sum up, in this
study five methods have been used to get cornering stiffness values and the two
methods have been found to shown better performance than the rest. This study has
proposed methods to obtain cornering stiffness values by easy and straightforward

numerical methods.

Wesemeier et al. [14] have studied the identification of vehicle parameters using
stationary driving maneuvers. Using the static gain of the one track model, special
combinations of the parameters have been identified. These parameter combinations
include the front and rear cornering stiffness values, vehicle mass, and the distance
between the center of gravity and the front and rear tracks. Firstly three static gains
which are the lateral acceleration gain, yaw velocity gain, and the side slip gain
have been found by using one track model and then parameters of the static gains
have been estimated by using least square method from the test measurements.
Certain physical parameter combinations which can be determined from these
estimated static gain parameters have been determined. In this study lateral
acceleration, yaw velocity, side slip velocity, longitudinal velocity, and the steering
angle data have been used for identification. These data have been taken from the
constant radius vehicle test which has been performed at different longitudinal
vehicle speeds to be able to obtain a wider range of operating points. Then two
parameter combinations have been used in the identification. One of them
comprises two cornering stiffness values and the position of the center of gravity,
and the other comprises only the two cornering stiffness values. One of the missing
points of this study is that yaw moment of inertia cannot be estimated by the
methods given in this study. However, yaw moment of inertia cannot be determined
or measured easily and thus it is better estimated by parameter estimation. One of

the main contributions of this study is that it does not require an excitation with
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certain frequency range which is difficult in real life. However, this has the
disadvantage that the input is not rich enough to identify a larger set of variables.

Abdellatif et al. [15] have studied the modeling and identification of nonlinear
lateral dynamics. Conventional simplifications have been removed by coupling
lateral and roll dynamics and by using nonstationary and nonlinear tire model.
Lateral and roll dynamics have been coupled by adding the effects of the roll
motion on the slip angles and simplified Magic Formula tire model has been used as
the nonlinear tire model. After the model construction, unknown physical
parameters have been estimated by using nonlinear least square formulation. Cost
function has been formulated using the lateral acceleration, yaw velocity, and the
roll angle measurements. This study has examined the influences of the roll motion
on the lateral dynamics. These influences are important especially for vehicles with
high center of gravity and for all vehicles with low speed. An important
examination given in this study is that the influence of roll motion on the lateral
dynamics can be neglected for velocities above nearly 60 kph for mid-size and
compact vehicles. For vehicles with high center of gravity and for vehicles at low
speeds ignoring roll motions leads to estimated parameters to be velocity dependent.
As a result general validity and the practicability of the proposed model have been

proved by making tests with several vehicles in this study.

Ryu [16] has studied the parameter estimation of the vehicle handling model in his
study. Linear bicycle model and the one DOF vehicle roll models have been used in
the estimation process. Vehicle states have been estimated from Global Positioning
System/Inertial Navigation System method and these states have been used in the
estimation. Firstly, bicycle model parameters have been estimated by using least
square and total least square algorithms using the lateral velocity and yaw velocity
responses together with the steering angle and then the roll model parameters have
been estimated using least square algorithm using the roll rate, roll angle, and the
lateral acceleration measurements. Different sets of parameters have been selected

to be the unknown parameter sets of the bicycle model to be estimated. These are;
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- front and rear cornering stiffness values,
- front and rear cornering stiffness values, and position of center of gravity,

- front and rear cornering stiffness, and yaw moment of inertia.

In this study it has been observed that the estimation of the parameter sets
consisting position of center of gravity and yaw moment of inertia necessities a
sufficiently rich excitation. When the excitation is not adequate, estimated
parameters fail to converge to correct values, yet understeer gradient has been
estimated correctly regardless of excitation. After the bicycle model parameters
have been identified, parameters of the one DOF roll model which are the roll

stiffness and roll damping have been estimated.

Bolzern et al. [17] have studied the estimation of nonlinear cornering forces from
road tests. Two DOF bicycle model with the Magic Formula tire model has been
used to estimate unknown parameters. To be able to use bicycle model some

assumptions have been done. These are,

- longitudinal slip and camber angle have been neglected,
- roll dynamics has been neglected, and

- cornering force is only a function of the slip angle.

Unknown parameters to be estimated have been selected as the Magic Formula tire
parameters like the peak value, curvature factor, and relaxation length; other
parameters of the bicycle model have been treated as the known parameters.
Extended Kalman filter has been used to estimate unknown parameters. Data used
in the identification have been acquired from the road test performed at a
longitudinal velocity of 100 kph and with 100 degree steering wheel angle which is
severe enough to cover a wide range of operating points. Lateral acceleration, yaw
velocity, side slip angle, and the steering wheel angle have been acquired during
test. Using this data set, parameters of the tire model and the relaxation length have
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been estimated. This study has used the nonlinear and transient tire model and thus
wide operating points have been covered, yet it has not consider lateral load transfer
which is required for proper use of Magic Formula tire model which limits the
applicability of the handling model. Moreover, the yaw moment of inertia which is

difficult to measure or calculate has been assumed to be known.

Yu [18] has studied the parameter identification of buses in his study. Two DOF
linear bicycle model has been used in the identification. Step steer responses of the
test bus at 15 mph and 20 mph have been acquired to identify unknown bus model
parameters which are the front and rear cornering stiffness values, and the yaw
moment of inertia. Lateral acceleration of the bus has been kept below 0.2g to
ensure linearity of the bicycle model. In this study, when the responses of the model
and the responses of the identified model are compared, it has been observed that
responses from the model are ahead of the experimental data for some time. The
author thinks that this discrepancy is most probably due to neglecting tire lag in the

vehicle model.

Cabrera et al. [19] have developed a method to determine the Magic Formula tire
model parameters by using genetic algorithms. The cost function has been formed
as the sum of the squared difference between the tire test measurement data and the
Magic Formula model data. Parameters of the Magic Formula tire model for the
pure longitudinal and lateral slip conditions and for the combined slip conditions
have been estimated from pure lateral and longitudinal forces and combined forces.
In this study, initial value problem of the conventional optimization algorithms has
been prevented by using evolutionary algorithms which has provided flexibility for

parameter estimation.

Oosten and Bakker [20] have studied the determination of the Magic Formula
parameters from the out of tire measurement data produced by the Delft tire
measurement trailer. Tire forces acting between tire and road have been measured

for different conditions. These measurements have been performed under pure
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cornering with slip angle from -20 deg to 20 deg for different vertical load and
camber angles, and under braking conditions from free rolling to total locking for
different side slip angles. Then regression techniques have been applied to
measurement data and the parameters of the Magic Formula tire model have been
estimated. The authors have shown that for pure slip conditions estimation of the
Magic Formula tire parameters is not difficult, yet for combined cornering and

braking it becomes difficult.

Cadiou et al. [21] have proposed two methods for the identification of Magic
Formula tire model parameters from vehicle tests. One of these methods is
estimation based on simulation and the other is the estimation based on observation.
Estimation based on simulation method uses the measured data to construct the cost
function with the unknown Magic Formula basic tire parameters by simulation. By
minimization of this cost function tire model parameters have been estimated.
Trajectory of the vehicle is used as the data in the system identification. Estimation
based on observer method uses an observer to reconstruct vehicle dynamics and
hence tire side forces have been estimated. Vehicle parameters other than tire
parameters have been assumed as the known. This study contributes to literature by
identifying the Magic Formula tire model.

In this thesis study different types of handling models starting from the simple
linear bicycle model and ending with three DOF nonlinear handling model using the
Magic Formula tire model have been identified. To determine whether the handling
model can be identified uniquely or not, a detailed structural identifiability analysis
has been performed. To show the variation of sensitivity of the system outputs to
unknown parameters with the steering frequency, a detailed sensitivity analysis has
been performed and the input frequency has been specified accordingly. For the
three DOF nonlinear handling model identification, sensitivity of the tire lateral
force to Magic Formula tire model parameters with tire slip angle has been obtained
and the practical identifiability of the Magic Formula tire model parameters has
been examined. By this way the vehicle maneuver appropriate for nonlinear
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handling model identification has been designed. Since data is taken from the
simulation of the ADAMS model, different type of maneuvers can be easily
acquired and maneuvers with different types of input parameters can be used and
compared in the estimation process. Moreover, identified cornering force of the
Magic Formula tire model has been compared with the real tire model of ADAMS
model and validity of the model has been shown.

In the literature of vehicle handling model identification mostly bicycle models
have been studied and focus of general consideration has been the identification of
tire cornering forces. However, bicycle models have limited operating range due to
assumptions made in their derivation. At higher lateral acceleration and at higher
slip angles bicycle model cannot be used accurately. Lateral vehicle dynamics is
coupled with the roll dynamics and at high acceleration lateral dynamics is affected
by the roll motion considerably and therefore roll motion should also be modeled.
As will be explained in chapter four in detail, pneumatic tire has highly nonlinear
characteristic such that modeling of them is difficult. To be able to comprehend
complete vehicle handling dynamics for wide operating ranges, use of nonlinear tire
models is inevitable. Cornering force characteristic of the tire depends on the slip
angle and vertical load on it mainly and thus vertical load on tire should also be
included in the model. The identification of nonlinear tire models requires advanced
test setups which are very costly. However, with road tests vehicle structural
parameters and nonlinear tire parameters can be estimated to some extent using
commercially available sensors and devices. In the literature there are only a limited
number of studies about the identification of nonlinear roll model together with

nonlinear tire model and the full potential of the approach has not yet been utilized.

In this thesis study different handling models starting from the simplest bicycle
model and ending with nonlinear roll model with Magic Formula tire model have
been identified. In particular identification of different nonlinear tire models with
standard vehicle tests have been studied and Magic Formula tire model has been

identified with reasonable success.

24



CHAPTER 3

SYSTEM IDENTIFICATION AND PARAMETER
ESTIMATION

3.1. INTRODUCTION

The construction of model from experimental data that is system identification
involves three basic elements which are data, model set, and determination of the
best model. To be able to obtain data the designed experiment must be performed.
By using a priori knowledge, by modeling using some physical laws or well known
relationship, or by using standard model types, the model set used in the
identification is determined. Then the best model is selected according to some
criteria based on how the model reproduces the measured data. After these steps
selected model is validated to show whether it satisfies the requirements or not that
is whether it is good enough or not. A model cannot be defined as the final and true
representation of the system rather it can be accepted as good enough for certain
aspects one interested in. If the selected model does not satisfy validation tests some
parts of the system identification process are revised. The model may not pass
validation tests due to some reasons which can be summarized as: Numerical
procedure may fail, criterion may not be well determined, the model set may not be
appropriate to represent the system, or the data may not be informative enough to

select model [2].

The system identification loop is illustrated in Figure 3.1
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Prior Knowledge

Experiment
Design <
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Choose <
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v

OK! Use it

Figure 3.1: System identification loop [2]

The first step in the system identification is the experiment design performed by
using a priori knowledge about the system and the aim of study. Model sets used in
the identification are also selected based on the a priori knowledge, identification
task, and data gathered from experiment [22]. Equivalency of the model and the
system is commonly expressed in terms of a scalar cost function which quantifies

equivalency of the model output y and system output z [22]:

J=J(y,2) (3.1)
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and this equivalency is normally expressed as a weighted sum of the squared
differences between z and y. Generally, different model structures may be selected
which leads to problem complexity. Instead, models M" that have the same structure

but having different values of parameters 6 are selected [22]:
M™={M(6)} 3.2)

Optimum parameters of this model minimizing the cost function can be found by
optimization methods and thus system identification is reduced to parameter
estimation [22]. Now details of system identification process will be given starting
from the experiment design, first step of system identification.

3.2. EXPERIMENT DESIGN

Experiment design is the first task fulfilled in the system identification. It consists
of several tasks some of which are the determination of input and output signals,
their measurement, and designing input. Since models are identified based on the
data gathered from experiment, quality of these data are very crucial for accurate
identification. Therefore, experiment design should be conducted thoughtfully so as

to attain the informative data.

Before making an experiment input-output signals used in identification should be
determined so that required instrumentation is placed which means that sensors
which measures the input and output are placed on the experimental setup. Input
used in the experiment has a consequential influence on the output and thus on the
identification. Operating points, parts, and the modes of the system are excited by
the input and thus its characteristic such as frequency content, amplitude, shape, and
duration should be well determined. Inputs used in the experiment should be
informative enough that is it should excite the system modes completely. While
designing experiment practical constraints should also be considered to satisfy
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model assumptions. To illustrate, input amplitude and frequency may not be very

high, sensors may be limited, and so on [22].

In this study, simulation data taken from ADAMS vehicle model is treated as test
data and this data is used in identification, yet practical constraints faced during real
vehicle test will be considered while making ADAMS simulations to become
realistic.

Hardware Used in the Vehicle Handling Test

Sensors, data acquisition system, and some specialized equipment are used in the

vehicle tests.

- Data acquisition system: It is used to acquire data during experiments.

Figure 3.2: Data acquisition system [23]

- Velocity Sensors: Lateral velocity and longitudinal velocity are measured by

optical velocity sensors.
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Figure 3.3: Optical velocity sensor [24]

Inertial Measurement Units (IMU): Accelerations and rotational velocities are

measured by inertial measurement units
Steering Robot: Desired steering angle can be applied to the vehicle by steering

robot.

—
e
5

Figure 3.4: Steering robot [25]
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- Steering Wheel Measurement: Applied steering input is measured by steering

wheel angle measurement system.

Figure 3.5: Steering wheel measurement [26]

Input Design

Input used in the experiment has a consequential influence on the output and thus
on the identification. Inputs used in the experiment should be informative enough

that is it should excite the system modes completely.

Input used for system identification can be classified into three categories; first of
which is general purpose input, second of which is optimized input, and third of
which is advanced test input. General purpose input is designed assuming that there
is no a priori information about the system and so the objective is to excite the
system over a broad frequency range that is general purpose input has flat power
spectrum over a defined frequency range. Frequency sweeps, multisine, and

impulse inputs are used for this purpose. Design of optimized input is performed by
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using a priori information about the system. Square wave input used to excite the
system at its natural frequency is in this category. In advanced test input, not only
the test input is optimized but also its first and second derivative are also taken into

consideration [27].

Data information content of the input signals can be quantified by signal to noise
ratio, and for good identification signal to noise ratio must be high. Moreover, data
information content of the input signals can be determined by quantifying the
sensitivities of the model outputs to model parameters. The input that maximizes
these sensitivies is selected as the best input. When the sensitivities are high, small
changes in the model parameters bring about large changes in the outputs, and thus
correct parameter values can be estimated that minimizes the difference between the
model outputs and the measurement data. On the other hand, when the sensitivity
values are small, changes in the parameters will not cause considerable effects in
the outputs and thus different parameter values minimizing the difference between
the model outputs and the measured outputs can be estimated. For a multiple output

system the information content in the data can be quantified by a matrix which is

called the information matrix [22]. For a parameter vector 6 the information matrix
[M]is [22],

T

M]=3| 2| [R)Y| 2L (33)
=Ll 00 06

When [R] is the diagonal matrix, diagonal elements of [R]™ scales the output
sensitivities according to the inverse of the individual output measurement noise
variances and N is the number of data samples and y is the output. If the sensitivities
are large and are uncorrelated with each other, then outputs are strongly dependent
on each parameter distinctly and thus parameter values can be estimated accurately
by minimizing the difference between the model output and measured output. The

information matrix gives valuable information about the parameters [22]. Inverse of
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the information matrix is the theoretical lower limit which is also called Cramer-
Rao lower limit or the dispersion matrix for the estimated parameter covariance and

is given by [22],

M =03 9% | (R 2% gc:ov@ (3.4)
| 06 00

Calculations of the information matrix and dispersion matrix require a priori
knowledge about the system and model. There are also some practical constraints
on input design. Normally experiment with a longer time and large amplitude
produces more information yet due to practical reasons experiment time and input

amplitude are limited [22].

Swept sine input also called chirp sine input is a sine input frequency of which
increases or decreases with time. Mathematical representation of the linear swept

sine input is [22],

. . t
t)=Asin(ft)=A fo+(f —f,)—|t 3.5
u(t) = Asin( 1) sm([ﬁ(f O)ZTU (35)
where
A: amplitude,

fo: initial frequency
fi: final frequency

T: experiment duration

The main advantage of the frequency sweep input is that it covers a frequency band
so that data taken by this input is informative [22]. Figure 3.6 and Figure 3.7 show

frequency sweep input and its power spectrum respectively.
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Figure 3.6: Frequency sweep input

Power Spectral Density vs Frequency of Steering Input
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Figure 3.7: Power spectral density of frequency sweep input
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Another general purpose input is the multisine input which covers a set of sine
waves. Mathematical representation of this input is,

u(t):i/s, sin(ft+¢) (3.6)

where m is the number of inputs, f is the frequency, o is the phase, and A is the
amplitude. Similar to sweep sine input multisine input can excite the system over a
frequency band by determining the appropriate frequencies and amplitudes of the

sine wave according to a desired power spectral density [22].

In vehicle handling identification sinusoidal inputs are commonly used. However,
pure sinusoidal input cannot excite the system accurately when the frequency of it is
not close to natural frequency of the system. Using a priori information about the
system and the model, test input can be optimized such that the dispersion matrix is
minimum. While optimizing these parameters there are some constraints like
limited input and output amplitudes for validity of the model such as validity of the
linear tire model. However, for multiple parameters and multiple outputs system
this process is quite complex and difficult. Chirp and multisine inputs can excite the
system over a broad frequency range and desired power spectral densities can be
obtained. Therefore, these inputs can be used in vehicle handling identification. In
addition to designing the chirp input according to modes of the system, sensitivity
study can also give valuable information about the frequencies at which sensitivity
values are high. In this study detailed sensitivity analysis are performed to be able

to obtain the most appropriate frequency range of the input.
3.3. PARAMETER ESTIMATION

After the experiment is performed and the input output data is collected, the next
step is the parameter estimation. The parameters of the selected model structure is
determined in such a way that the selected model represents the system successfully

that is the data acquired from experiment is used to select proper parameter values
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of the determined model structure according to some criteria. One of them can be

selected as the model’s prediction aspect. The prediction error is given as [2],

e(t,0) = y(t) -yt

0) (3.7)

where

N=[y(1),u(1),y(2),u(2)....y(N),u(N)]: collected data,
N: number of data samples,

y(t): output data at time t,

u: input data

§/(t| 0) : predicted output at time t using the model with parameter 6.

According to this criterion a model is good when its prediction errors are small
when applied to the observed data; that is the model is good in terms of its
prediction performance. Therefore, prediction error is computed and the parameter
vector is selected at time t=N such that the prediction errors are as small as possible.
The criteria on prediction error can be qualified by two approaches. One of them is
to quantify the size of prediction error by using a scalar function of e and the other
one is to estimate the parameters such that the error is uncorrelated with the data

[2]. The scalar valued function of the model parameter & can be formed as [2],
V(0,2%)=3"f(e(t,0)) (3.8)
where f is the scalar valued function.

Thus, the function V (0, z" )for a given data Z" is a function of the parameter vector

@ and it is a measure of how the model represent the collected data. The estimate

of the parameter vector, éN is then determined by the minimization of the V.
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Parameter estimation by this way is named as prediction error identification
methods. Special cases of this method are built and named by changing some
properties of this method like the error function and the optimization methods.
Least square parameter estimation, the maximum likelihood estimation are some

special cases of prediction error system identification method [2].

In this study least square parameter estimation with different optimization
algorithms are used for parameter estimation and thus that topic will be explained in

more detail.
3.3.1. LEAST SQUARE ESTIMATION

Parameters of the model can be estimated by quantifying the error between the
model output and the collected data. This quantification is performed by
constructing the appropriate function of error. By using this error function, optimal
parameter set can be estimated; that is the parameter vector is selected such that the
model output approximates the measured output successfully. In other words
parameters are selected such that error is minimum. Error between the model and

the measured output is shown in Figure 3.8 and is given as,

e=y-y (3.9)

4 N\

» System y
\ J +

u e

e N -

»| Model, M(6) y
L J

Figure 3.8: Error between model and system outputs

36



where y is the system output and the y is the model output.

Error function in least square problem may be formed as the square of the function

of the difference between measured and the model outputs as [28],
—_ N —_
J(0) =) (i,0) (3.10)
i=1

When the error function is linear in parameters, linear least square problem is
formed; when the error function is nonlinear in parameters, nonlinear least square
problem is formed. In linear least square problem global solution is found in one

computation [28].
Derivation of the minimization algorithm for least square minimization given here
is taken from reference [28] and the details which are not given here can be found in

the same reference:

The cost function can be written in vector form as,
1(6)=7"F (3.11)

j™ component of gradient of the cost function is,

L) & ()
9= 2255 (312)

The gradient of cost function can be written as,
[9]=2[3] f (3.13)

37



where the Jacobian is,

o) of @) |

L= . . (3.14)
of (N) of (N)
o6, T a6, |

The entries of Hessian of loss function is calculated as the derivative of the

gradient,
_0%3(0) & (ef(iyor() .. 0°f()
H, _—aejae, _2;:( 58 08 +f(|)agla€j] (3.15)

Hessian of cost function is;
[H]-2[07 [31+23 1 (O[T (1] @19

where T(i) represents the entries of Hessian of the error function f(i).

Nonlinear least square problems are based on the Hessian to derive an algorithm,
and can be divided into two approaches according to calculation of the second term

of the Hessian matrix [28],

ZN:f(i)[T(i)] (3.17)

i=1
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First approach assumes that this second term is small and so it may be neglected.
This assumption is true for small f(i). According to the second approach that term is

not neglected and it is computed [28].

The first approach is the Gauss-Newton Method. In this approach Hessian is

approximated as,
[H]=2[3] [I] (3.18)

and so Gauss-Newton algorithm becomes,

-1 _. — -1 -
O =01 =1 [ H k—l] Oc1= 01— Tha ':‘];—1‘] k—l:l Jeafs (3.19)

The second approach is the use of Levenberg-Marquardt Method. Parameters are

calculated according to,

—

- -1 —
O =011 [JkT—l‘]k—l +oy | :' Jeafa (3.20)

where « is selected in different ways.

Difference between the estimated output and the measured output is called residual.
Investigation of the residuals gives valuable information about the model and the
estimation. When the residuals are random, model and the estimation process are
good; yet the residuals having deterministic components shows model deficiency
[22, 28].

3.3.2. NONLINEAR LOCAL OPTIMIZATION

When the loss function is nonlinear in parameters, the optimal parameters

minimizing the error can be found by nonlinear optimization methods. Nonlinear
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optimization problems have different local optimal points and as contrast to linear
optimization problem there is no analytical solution, an iterative algorithm is used
to find optimal points. Nonlinear optimization problem is difficult to solve since
there are many local optimal points. When the search is started at the initial point,
optimal solution is found generally at the neighborhood of initial point thus, global
optimum solution may not be obtained. To be able to find global optimal solution a
local search from many initial points should be started and then the best solution
among them may be taken or some global optimization algorithms can be used.
Also, selection of the initial values are very important since when the initial values
are selected well global optimal points can be obtained and also converge to that
solution may be fast. To select good initial points, a priori knowledge about the
parameters can be used. Especially, when the parameters are physical their initial
values can be selected properly. Nonlinear local optimization can be grouped into
two classes as indirect search methods and direct search methods. Indirect search
methods use derivative knowledge of the loss function to optimize loss function,
whilst direct search methods use only loss function to optimize it. In nonlinear local
optimization an initial point is selected and the optimal solution is found in the
neighborhood of this point. Nonlinear local optimization methods are classified as
direct search methods and general gradient-based methods [28].

Gradient-Based Methods

The most common and important nonlinear local optimization methods are the
gradient-based methods. In gradient based methods, gradient of the optimized
function with respect to parameters is required [28]. Derivation of the gradient
based methods given here is taken from reference [28] and more details can be

found in the same reference.

In all gradient-based methods, the aim is to change the parameter vector using

gradient knowledge as,

_ék = _ék-l MNeaPy With Py, = [Rk-l]gk-l (3.21)
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where,

g= Gl Q) : gradient of the loss function with respect to parameters,

M., Step size,
B, : direction vector

[R]: direction matrix

Gradient based algorithms can be classified according to different selection of

direction matrix and step size. When the direction matrix is set to identity matrix[I]

, steepest descent method is obtained as [28],
ék = ék—l /s P (3.22)

Steepest descent algorithm does not require the second order derivatives and it has

very slow convergence [28].

When the direction matrix is set to inverse of the Hessian matrix, [H, ,] atd, ,, the

Newton’s method is formed as [28],
L o
O =011 [ Hk—l] P} (3.23)

where the Hessian is the second derivative of the loss function with respect to

parameters, that is,

[H]=82J(§) (3.24)
06° '
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Thus in Newton’s method second order derivatives of the loss function has to be
found by analytically or by finite difference techniques and has to be inverted which
increases computational cost. The main advantage of the Newton’s method is that

its rate of convergence is very fast [28].

The main drawback of the Newton’s method is that it requires the Hessian matrix
and the inverse of the Hessian matrix. Even if the Hessian matrix is calculated
analytically or by finite difference techniques inverse of it increases the
computational load. This drawback can be eliminated by Quasi-Newton Methods

which replaces the Hessian matrix or inverse of it as [28];

R 1
0. =6.1-1 [Hk—l] Ok (3.25)

where,

['qk]il Z[HHT +[©ka (3.26)
or

[ J=[H]+[Qa] (3.27)

Approximating the inverse of the Hessian directly is very advantageous since there
IS no need to inverse it. In addition similar to Newton’s Method converge is very

fast [28].

Conjugate gradient methods are like Quasi-Newton methods yet it avoids a direct

approximation of the Hessian. These algorithms can be described by,
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6 =0_,—1n4Pa (3.28)

P = G — Ba Py (3.29)

where Bk_l is scalar and it distinguishes different conjugate gradient methods.
Conjugate gradient methods will require more iterations for converge as compared
with the Quasi-Newton methods. However, overall computation will be smaller and

so it is suitable for large problems [28].

Direct Search Methods

The optimization algorithms explained so far are the indirect search algorithms
which require derivatives of the loss function for the optimization. Direct search
algorithms do not require the derivative of loss function to optimize it; they only use
loss function for optimization. Especially when the calculation of the derivative of
the loss function is difficult or impossible direct search algorithms are used.
Moreover these methods can be used for smooth functions. These methods are easy

to implement yet their convergence is slow [28].

Some of these methods are [29]:

- Random Search Methods: In these methods random numbers are generated and
used in the optimization.

- Grid Search Methods: In this methods grid points are generated in the design
space and the functions are evaluated at these grid points. The point which
generates the minimum function value is selected as the optimal points. Grid
points can be generated by dividing the distance between maximum and

minimum design values into equal ranges and setting the grid points in these
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ranges. These methods require large number of function evaluations, yet they
can be used together with the other methods while selecting initial points.

- Simplex Methods: In simplex methods, a simplex, that is, a geometric figure
which is formed by n+1 points in a n dimensional space is generated. The value
of the loss function at n+1 vertices are calculated and then compared with each
other and so simplex moves according to this comparison to find optimal value.
Simplex moves by three operations, reflection, contraction, and expansion. The
vertex with the largest loss function value is reflected at the opposite face. If this
new vertex generated by reflection yields a minimum value, simplex is
expanded. On the other hand, if this new vertex generated by reflection yields a
value which is higher than values of other vertices except maximum value,
simplex is contracted. This procedure is continued until the minimum is found.

At the minimum the centroid of the latest vertex is taken as the optimal points

3.3.3. CONSTRAINED NONLINEAR OPTIMIZATION

In constrained nonlinear optimization, in addition to the loss function there are
constraints. Constraints help to optimization by minimizing the parameter space in
which the optimal solution is found. However they result in problem complexity
since constraints may not be incorporated into problem easily. The general

constrained optimization problem is given as [28],

Minimize J(6)

subject to
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This constraint optimization problem can be solved by constructing Lagrangian
[28],

e(é,1)=3(9)+iﬂ,,gi (é)+_'sz+mhj @ (3.30)

i=l

One of the most commonly used algorithm for constrained nonlinear optimization

problem is the Sequential Quadratic Programming (SQP).
3.3.4. NONLINEAR GLOBAL OPTIMIZATION

In the previous part nonlinear local optimization methods have been examined.
Solutions of the nonlinear local optimization problems start from an initial point and
search within the neighborhoods of the initial point in the design space and thus
these approaches result in solutions which are close to initial point and the optimal
solution is generally local, not the global. In this part, global nonlinear optimization
methods are examined. One of the basic strategies for nonlinear global optimization
is to start local optimization from many points. In this method the solution is started
with many different initial points and local optimization method is applied for each
initial point. The best solution among these local optimizations is selected. One of
these solutions may be the global solution since global solution may not be known.
Moreover there are some specific global optimization methods. These methods are
applied when there is a need to find a global optimum or a satisfactory local
optimum and when the function to be minimized is non-smooth or the
computational loads for taking the derivative of the function is high. The main
drawback of the global optimization is that the computational loads are very high
since the entire design space must be searched for global solution and thus the
convergence to solution is very slow. Global optimization methods are used to
eliminate the drawback of the local optimization methods which is the selection of
the initial points. Evolutionary algorithms are inspired from the natural evolution
process. These types of algorithms start with the population of individuals which

evolves in generations. These evolutions are due to mutation and crossover and new
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individuals are created after them. These individuals are evaluated and the ones
showing better performance that is having more fitness are selected. Evolutionary
algorithms are classified according to type of selection procedure, type of genetic
operation etc. as evolution strategies, genetic algorithms, genetic programming etc
[28].

Genetic algorithms are the most popular one of the evolutionary algorithms. Firstly,
initial populations are selected. Then, fitness of the individuals is evaluated and
according to this fitness selection of individuals are performed. After that crossover
and mutation operations are applied on these selected individuals and the new
generations are formed. These subsequent genetic operations continue until some
termination criteria are reached and the final generations are the optimal solution
[28, 30].

Genetic algorithm can be summarized as [30],

1) Form the initial population Py;
2) Evaluate Py;
3) If stopping criterion is satisfied then stop otherwise go to step 4;
4) Perform selection Py from Py;
5) Apply genetic operations(crossover and mutation) to evolve Py from Peg;
6) Continue iterations, k=k+1.
In this thesis study different methods of optimization which are simplex search,

nonlinear least square method, grid search method, and genetic algorithm method

are used according to the aim of study and problem complexity. Sometimes hybrid
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algorithms are used to get rid of the disadvantages and to exploit advantage of the

specific algorithm.

3.4. SIMULINK PARAMETER ESTIMATION SOFTWARE

Simulink Parameter Estimation Software is a Simulink-based product of MATLAB
which is used for estimation of model parameters from experimental data. It
supports the estimation of model parameters, estimation of the initial conditions of
the states and the estimation of the values in the adaptive lookup tables from
experimental data. This software works with the MATLAB technical computing
software, Simulink software and Optimization Toolbox and thus they are required
softwares. To be able to use this software firstly model is built on the Simulink
environment and the parameters to be estimated are specified. After that
experimental data is imported and it is processed if necessary that is input-output
data can be filtered, outliers can be removed etc. Then the parameters and the initial
state to be estimated are selected and the estimation process is started. Trajectory of
the estimated parameters and the plots of the simulated and the experimental data
can be seen during estimation. After the estimation model validation can be
performed by acquiring another data set and comparing this with the estimated
models. To estimate the parameters, experimental data is imported into this
software. If there is multiple output data, they can be weighted according to their
importance or order of magnitude. Parameters to be estimated are selected and their
initial values, typical values, upper and lower bounds are determined. Typical
values of the parameters are the average order of magnitude of them. Specifying the
upper and lower bounds for parameters simplify the estimation progress since the
search space can be decreased. In particular if the parameters have physical
meaning these bounds should be used. Estimation process can be performed by
different user selected cost functions and different solvers. Estimation results can be
seen from plots of the cost function, measured and simulated output, parameter

trajectory, and sensitivity of cost function to parameters In Simulink Parameter
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Optimization Software different optimization methods and different cost functions
are available [31].
Optimization algorithms: [31];

- Gradient Descent: This choice uses gradient type optimization methods and

MATLAB optimization function ‘fmincon’ is used.

- Nonlinear Least Squares: This choice uses nonlinear least square optimization

methods and MATLAB optimization function ‘Isqnonlin’.

- Pattern Search: This choice uses advanced pattern search algorithms and it

requires Genetic Algorithms and Direct Search Toolbox.

- Simplex Search: This choice uses one of the derivative free optimization
methods, simplex methods, and it uses MATLAB optimization function,
‘fminsearch’.

Furthermore, there are two options for cost functions which are [31];

- SSE(sum of squared error)

- SAE(sum of absolute error)

- Use robust cost: Optimizer is more robust to cost function especially when the

experimental data is noisy.
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CHAPTER 4

VEHICLE HANDLING MODELS

4.1. INTRODUCTION

In this chapter, vehicle and tire models will be derived and built in Simulink

environment.

Some parameters of ADAMS/Chassis vehicle model corresponding to handling
model are known previously, and so estimated parameters will be simply compared
with parameters of ADAMS model, that is, estimated parameters will be compared
with their nominal values. Also cornering force data is taken from ADAMS to be
able to compare it with the estimated cornering force characteristic of Magic

Formula tire model.

Parameters of the ADAMS/Chassis vehicle model can be obtained either directly
from model or from some specific simulations. Static Vehicle Characteristic (SVC)
is a set of ADAMS subroutines and it computes vehicle characteristic at static
equilibrium. By SVC both half and full vehicles can be analyzed, suspension
parameters like roll center position and full vehicle parameters like mass and
inertias of vehicle can be obtained [6]. Some of these parameters can be measured
easily from the real vehicle like mass and wheelbase, yet some of them, as in the
case of moment of inertias of the vehicle body, cannot be calculated accurately or
difficult to measure. Parameters of ADAMS/Chassis vehicle model is given in
Table 4.1.
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Table 4.1: Parameters of ADAMS/Chassis vehicle model

Parameter Value Unit
Total Mass, m 1040 kg
Front Ground Reaction 6036 N
Rear Ground Reaction 4179 N
Total Roll Inertia 365 kgm?
Total Yaw Inertia 1724 kgm?
Sprung Mass 926 kg
Sprung Roll Inertia 297 kgm?
Sprung Yaw Inertia 1472 kgm?
Total Center of Gravity Height 546 mm
Sprung Mass Center of Gravity Height 576 mm
Wheelbase 2611 mm
Front Unsprung Mass 62 kg
Front Roll Center Height 114 mm
Front Track Width 1489 mm
Axle Distance from Center of Gravity 1068 mm
Rear Unsprung Mass 53 kg
Front Roll Center Height 197 mm
Front Track Width 1483 mm
Axle Distance from Center of Gravity 1543 mm

4.2. TIRE AND VEHICLE HANDLING MODELS

In this part various handling and tire models used in the identification are
constructed. The simplest vehicle handling model is the bicycle model. The bicycle

model represents the vehicle planar dynamics successfully, yet it has limited range
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of validity around operating points. Vehicle roll model comprises the coupling

between the vehicle planar and roll motion and thus is a more accurate model.

Tires are the most important parts of the vehicle handling since the vehicle interacts
with road by means of tires. Therefore, modeling of the tire is important for an
accurate vehicle handling model. However, characteristics of tires are highly
nonlinear and difficult to model. Even if they are modeled adequately, determining
the parameter values is extremely difficult. The simplest tire model is the linear tire
model in which the lateral force changes linearly with the slip angle. There are other
models such as Magic Formula tire model which explain lateral force of tires as a
function of several variables such as normal load on tires, lateral slip, and several
other parameters. In this study, linear tire model is used only for identification
purposes, and Magic Formula tire models are used for both identification and
ADAMS/Chassis simulation.

4.2.1. BICYCLE MODEL

Bicycle model is a vehicle handling model commonly used in vehicle handling
studies. Bicycle model is a simple model, yet it comprises important vehicle
handling dynamics; lateral dynamics and yaw dynamics. Equation of motion for the
bicycle model can be derived by using the Newton’s second law as shown in Figure

4.1.
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Figure 4.1: Bicycle model

Equation of Motion

Equation of motion for longitudinal direction is obtained by summing forces in
longitudinal direction:

M-a, =Y F =F,+F, cos(6)-F, sin(s) (4.1)

where longitudinal acceleration is;

a =U-v-r 4.2)

Equation of motion for lateral direction is obtained by summing forces in lateral
direction:

M-a,=> F =F,+F, cos(5)+F,sin(s) 4.3)
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where lateral acceleration is;
ayz\'/-|-U.r (44)

Equation of motion for yaw direction is obtained by summing moment of forces

about center of gravity:
J-t=3"M, =a[F, cos(5)+F,sin(5) |-b-F, (4.5)

where,

M: vehicle mass

J: yaw moment of inertia

a: distance between center of gravity and front axle
b: distance between center of gravity and rear axle
Fyi: Front axle cornering force

Fyr: Rear axle cornering force

U: longitudinal velocity

v: lateral velocity

r: yaw velocity

o: steering angle

While deriving bicycle model some assumptions are done: Since steer angle is
small, cos(@)~1 and sin(9)~0 and the term ‘vr’ is small so it can be neglected.
Moreover, longitudinal velocity can be kept constant so it becomes a parameter
rather than state. Therefore, lateral and yaw motions can be uncoupled from
longitudinal motion and two DOF bicycle model is obtained.

With this assumption equations of motion become:
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M-a,=>F =F,+F, (4.6)
J-t=>M,=a-F,-b-F, 4.7

Cornering force can be calculated according to selected tire model. When the linear

tire model is used cornering force becomes,

F=C, -a (4.8)

c a

where C, is the cornering stiffness and the « is the slip angle which is defined for

front and rear axles as,

v+a-r
o = 0 -0 (4.9)
v-b-r
= 4,10
@ =" (4.10)

By combining linear tire model with bicycle model equations, two DOF linear

bicycle model can be obtained as,

|v|(\'/+u~r)=cf(“a'r-ajmr(v'b'rj (4.11)

U U

|Zz~r'=a~cf(”a'r-a]-b-cr(v'b'rj (4.12)
U U

Then state space form of linear bicycle model is obtained as,

U4 =[Al{x} +[B]{u} (4.13)
typ=[Cl{xj+[D]iu} (4.14)
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where {x} is the state vector, {u}is the input vector, {y} is the output vector; [ A]is

the system matrix, [B]is the input matrix and [C]is the output matrix. In bicycle

model lateral velocity v and yaw velocity r are the state variables, & is the steering
input at the front tires. Output vector of the model can be constructed according to

the variables to be selected as outputs Therefore;

(X} = {\r'} (4.15)
C,+C,  aC,-b-C |
M -U M -U
Al= 4.16
[A] a-C,-b-C. a’-C,+b*.C, (4.16)
30 J-U
el
[B]= af\’(': (4.17)
f
J
{up=¢ (4.18)

When the lateral velocity and yaw velocity are the outputs [C]and [D]matrices

become,

10
[C]{O J (4.19)
[D]=m (4.20)

Note that linear bicycle model is valid for small slip angle nearly below 4 degree
and for low lateral acceleration nearly below 0.3g. These limitations are due to the
linear tire model which states that cornering force is linearly dependent on slip

angle for low slip angles. However, when the slip angles increase, this linear
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relationship becomes nonlinear and linear tire model is no longer valid. Also
cornering force characteristic of the tires changes with the vertical load on it. When
the lateral acceleration is below nearly 0.3g, lateral load transfer is small and thus
vertical load on the tire does not change much. However, when the lateral
acceleration increases above 0.3g lateral load transfer changes the vertical load on
the tires and so cornering force changes. These limitations can be removed by using
more complex tire models. In this study, Magic Formula tire model which considers
the nonlinear changes of cornering force with slip angle and vertical load are used

and thus vehicle model having wider operating points is obtained.
4.2.2. THREE DEGREE OF FREEDOM ROLL MODEL

Three degree of freedom vehicle roll model considers the plane motion of the
vehicle together with the roll motion. Roll motion is coupled with the plane motion
of the vehicle directly and also it is coupled indirectly by means of tire dynamics. In
other words roll motion affects the load transfer and so the normal loads on the
tires, and in turn the tire forces change. Therefore, a more accurate model is
obtained. Since the bicycle model does not include the roll motion, lateral load
transfer cannot be included in the model. Especially, for high lateral acceleration,
load transfer becomes important and the tire dynamics are affected considerably.

In the roll model, masses of the parts of the vehicles can be lumped as the sprung
mass and the front and rear unsprung masses. Sprung mass and unsprung masses are
connected via the suspension. Sprung mass rolls about the roll axis defined by the
front and the rear roll centers which are the characteristics of the suspensions.
Moments of the spring and the damper of the suspension about the roll axis form
the roll stiffness and the roll damping which are assumed to be constant during the
roll motion. Further, since roll centers are defined by the geometry of the
suspensions and since the suspension geometry may change with the roll motion,
position of the front and rear roll centers may also change during the roll motion.
However, in here roll centers and so the roll axis is assumed to be stationary.

Vertical motion and the pitch motion of the vehicle are not included in the model.
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In the derivation of the equation of the motion of the model Newton’s second law is
used. The body fixed coordinate frame located at the mass center is used and for
this coordinate system SAE (Society of Automotive Engineering) convention is

used. SAE reference frame is shown in the Figure 4.2.

¢

-® // '_/

v
Y z

Figure 4.2: SAE reference frame
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Figure 4.3: Vehicle plane model
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tire

Figure 4.4: Vehicle roll model

Equations of motion

Vehicle roll model comprises degrees of freedom which are lateral, yaw, roll, and
longitudinal motion. Schematic of the vehicle plane motion and vehicle roll motion

are shown in Figure 4.3 and Figure 4.4 respectively.

59



Equation of motion for longitudinal direction:
Equation of motion for longitudinal direction is obtained by summing forces in

longitudinal direction:

M-a, =>F =F

o+ Fur +(F + Fr ) c0s(8) —(Fyy + Fyy, )sin () (4.21)

where longitudinal acceleration a is given in (4.2)

Equation of motion for lateral direction:

Equation of motion for lateral direction is obtained by summing forces in lateral

direction:
M3, M, h, -005()-M, -, sin(¢) = S F, u22)
ZFV Z(Fyﬂ + er)'cos(5)+ Fyn +Fye +(Fxfl + Fxfr)'Sin(5) (4.23)

where lateral acceleration ay is given in (4.4)
Equation of motion for yaw motion:

Equation of motion for yaw direction is obtained by summing moment of forces

about center of gravity:

I, 1=>M, (4.24)

DM, =a| (Fy + Fy )cos(8)+(Fq +Fy )sin(8) |-b(Fyq + F,p, )

t _ . (4.25)
+?[( Fg —Fy )C08(8)+(~F + Fy )sin (5)]+5’(Fm ~F..)
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Equation of motion for roll motion:
Equation of motion for roll direction is obtained by summing moment of forces

about roll axis:

Ly $+M,-h (V+r-U)-cos(¢) =M, -g-h, -sin(g)-K,-¢-C, -4 (4.26)
K, =K, +K, (4.27)
C,=C,,+C, (4.28)
where,

M: total vehicle mass,

Ms: sprung mass

Mys: front unsprung mass

My,: rear unsprung mass

Fxn: front left longitudinal tire force
Fyr: front right longitudinal tire force
Fxri: rear left longitudinal tire force
Fxrr: rear right longitudinal tire force
Fya: front left lateral tire force

Fysr: front right lateral tire force

Fyn: rear left lateral tire force

Fyre: rear right lateral tire force

h¢: front roll center height

h,: rear roll center height

hs: vertical distance between roll axis and center of gravity
K,: total roll stiffness

Ks: front roll stiffness

K:: rear roll stiffness

C,: total roll damping

Cy,: front roll damping
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C,,: rear roll damping

I« roll moment of inertia about x axis
I.,: yaw moment of inertia about z axis
@: roll angle

ti: front track width

t,: rear track width

Longitudinal velocity is assumed as a parameter rather than variable by keeping it at
a constant value. Moreover since in this study aim is to identify handling models
without longitudinal dynamics, longitudinal motion is not included in the roll
model. Note that the term ‘vr’ in the longitudinal acceleration expression is very
small so it can be neglected. By this way longitudinal motion can be decoupled

from roll model. Similarly, in the lateral equation of motion the term
M, -h, v -sin(¢) is small so it can be neglected. Also when the mass symmetry in
x-y plane is considered product inertia term Iy, are relatively small as compared to

I« and I, and so it is neglected in the derivation of equation of motion. With all

these assumptions roll model is simplified to three degree of freedom roll model as:

MU+r-U)+M-h,-§-cos(g) =D F, =(Fy +Fy )cos() + Fyy +F,, (4.29)
-t =M, =a(F, +F, )cos(5)-b(F,, +F,) (4.30)
Ly - #+M, -h (V+r-U)-cos(g) =M, -g-h, -sin(g)-K,-¢-C, -4 (4.31)
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Lateral Load Transfer

Lateral load transfer is calculated since vertical load in each tire is used for the

calculation of the lateral force produced by the tire. Lateral load on each tire is

calculated as follows:

_M-gb M (a,+h,-¢)-h, b @32
" 2(a+b) t, (a+b) ot
.q- M_-(a,+h -¢)-h. -b
szr—;vl gb Mo (2+hd)h +F,, (4.33)
(a+h) t, (a+b)
.q-a M;-(a,+h h -a
Fzrl _IZVI g 2 : ( : ° ¢) ’ _F¢,r (434)
(a+b t.(a+b)
_Moga M(a+hd)ha (4.35)
" 2(a+b) t (a+b) o
where,
K, -¢+C,,-¢
Fq,,f=—f 3 w (4.36)
K, -$+C,,-$
F,, = n ¢ T (4.37)

r

The first term on the vertical load equations accounts for the static load distribution
for each tire. The second term accounts for the load transfer due to lateral
acceleration and the third term accounts for the load transfer due to roll motion.
Note that while calculating vertical loads on the tires, load transfer due to unsprung
masses are not taken into account due to the fact that they are small as compared
with the other effects.
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Tire Slip Angle
To be able to calculate the lateral tire forces, tire slip angles are also needed. Tire

slip angles are,

a,=tant| |5 (4.38)

tf
U+4r

a, =tan™ VA s (4.39)

t;
U—gr

o, = tant| =P (4.40)

U+t%r

o —tan| BT (4.41)

U—%r

Now the effect of the suspension on the steering characteristic of the vehicle is also

taken into account. When the suspension deflects tires are steered, which is called

roll steer effect.

oy =5f¢ -Pp+0, (4.42)
5, =8, ¢ (4.43)
where,

o, ‘front steering angle,
o, : rear steering angle,

o, : steering angle due to steering wheel rotation
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5., front roll steer coefficient

s,, - rear roll steer coefficient

Three DOF roll model may be linear and nonlinear depending on the tire model.
According to nonlinear tire model such as Magic Formula tire models cornering
force depends on vertical load on the tire and the slip angle nonlinearly. On the
other hand according to linear tire model there is a linear relationship between
cornering force and slip angle. Therefore, nonlinear tire models are more accurate
and have a wider operating range as compared to the linear tire model. However the
more accurate roll model has more computational load than the linear roll model. In

this study both linear and nonlinear roll models are used.
4.2.3. ONE DEGREE OF FREEDOM ROLL MODEL

One DOF roll model is a simple roll model and it can be used in vehicle roll
dynamics studies. Using this model basic roll dynamics parameters may be
estimated easily. One DOF roll model considers only the roll motion of vehicle.
Vehicle roll motion is caused by the lateral acceleration and so lateral acceleration

is considered as the input, and the roll velocity is considered as the output.
Equation of motion:

Equation of motion for one DOF roll model can be obtained from equation (4.31)

by assuming that cos(p)~1 and sin(p)~¢ for small .
Ly #+M-h(V+r-U)=M,-g-h-$-K,-¢-C,-¢ (4.44)
In state space form equation of motion becomes,

C, K,—M,-g-h M, -h

{",’1}: N I {V’l}Jr RS (4.45)
v, 1 0 v,
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where,

v, =¢ (4.46)

v, = ¢ (4.47)

Transfer function representation of the one DOF roll model is obtained to study the
identifiability of this model as,

4.48
a,(s) o C, K,—M,-h g (4.48)

4.2.4. THREE DEGREE OF FREEDOM LINEAR ROLL MODEL

For small steering angle ¢ and roll angle ¢, cos(0)~1; cos(p)~1 and sin(p)~p, With
this assumptions equations of motion for linear three DOF linear roll model can be
derived from the roll model equations and linear tire model equation. With these
assumptions equations of motion for roll become;

ME+r-U)+M,-h-§=>F =F,+F, +F, +F, (4.49)
l,-t=YM,=a(F,+F,)-b(F,+F,) (4.50)
Ly #+M,-h(V+r-U)=M,-g-h -¢-K, - ¢-C,-¢ (4.51)

Then equations of motions for linear three DOF roll model are derived by inserting
(4.8), (4.9), and (4.10) into (4.49), (4.50), and (4.51) as:
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MV+r-U)+M,-h -¢=>F =C  a,+C, ¢
[, 'l‘:ZMZ =a-C,-a,-b-C, -,
L+ M -h+r-U)=M, g h-§-K,-¢-C,-¢

State space representation of the three DOF linear roll model is,

where, v, and ,are given in (4.46) and (4.47).

and,

|
8 =525(C, +C,)

I
=—* (a.Cf —b-Cr)-U
8, =5 )
_MS-hS-C¢
Q5 = A
2. n?. M. -h.-K
a14:_Ms hs g+ s s [
A A
. _a-C;-b-C
21 U'IZZ
a*-C, +b*.C,
a,, =
u-l,
a,, =0
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(4.52)

(4.53)

(4.54)

(4.55)

(4.56)

(4.57)

(4.58)

(4.59)

(4.60)

(4.61)

(4.62)



a,, =0 (4.63)
M, -h,
B =5 (c,+C,) (4.64)
M, -h,
B =5 (-a-C,+b-C,) (4.65)
M-C,
8=~ (4.66)
M(M,-g-h —K
8y, = ( x ) (4.67)
a41 =0 (468)
a, =0 (4.69)
a,=1 (4.70)
a, =0 (4.71)
b =—-2 C (4.72)
= ,
.C
b, =—aI ! (4.73)
Ms 'hs 'Cf
i = (4.74)
b, =0 (4.75)
and
A=M-1 —M2-h? (4.76)

4.2.5. TIRE MODELING

Modeling of the tire accurately is important for vehicle dynamics studies since it
provides the connection of vehicle with the road. Dynamics of the tire is very
complex, and thus modeling of the dynamics of the tire is difficult. In the literature
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there are plenty of studies about modeling of the tire some of which are physical

and some of them are empirical.

At small slip angle cornering forces produced by the tire are linearly related to slip
angles and a linear tire model can be used. However, when the slip angle increases
the linear tire characteristics start to saturate and the tire forces depend on various
parameters and slip angle nonlinearly. In this case, nonlinear tire models are used
and operating range of the tires widens. In this study two tire models which are
linear tire model and Magic Formula tire model are used for identification purposes,
and an advanced version of the Magic Formula tire model in ADAMS tire models
(PAC 2002 [8]) is used for simulations in ADAMS/Chassis.

Linear tire model is the most simple tire model. This tire does not consider the
effects of the variation of cornering force with the load on the tire and this model
assumes linear relationship between slip angle and cornering force. This model is

valid for small slip angle.
4.25.1. MAGIC FORMULA TIRE MODEL

Magic Formula tire model is a semi empirical tire model which is used to generate
steady state tire force and moment characteristic. Magic formula tire model
produces force and moment characteristic at pure slip conditions; that is pure
cornering and pure traction or braking. By an extension to pure slip conditions,
combined force characteristic can be obtained. According to Magic Formula tire
model the cornering force is given by the expression [32],

y(x) =D-sin[C-arctan{B - x- E(B- x -arctan(B - x))}] (4.77)
where,
Y(X)=y(x)+S, (4.78)
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X=X+, (4.79)

The formula produces characteristic of the tire for cornering force Fy, longitudinal

force F, and aligning force M; as a function of the longitudinal slip and lateral slip.

Meaning of the some factors used in formula for lateral tire force can be explained

as:

D: peak factor,

E: curvature factor,
BCD: slope at the origin,
C: shape factor,

B: stiffness factor,

S: horizontal shift,

Sk: vertical shift,

These parameters are dependent on the vertical force F, and the camber angle y . For

lateral force and slip angles these parameters are,

C=a, (4.80)
Dea F’ia, -F (4.81)
BCD =a,-sin(2-arctan(F, /a,))(1-a; - |7) (4.82)
E=a,-F +a, (4.83)
S,=a,-F +a,+a,y (4.84)
S,=a,-Fy+a,-F +a, (4.85)
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4.25.2. DYNAMIC TIRE MODEL

Magic Formula tire model and linear tire model explained in previous sections are
valid for steady state conditions. However, when the maneuver is transient or when
the steering input is transient, transient properties of the tire has important effect on
the outputs of the tire and static tire model cannot produce the correct force
characteristic of the tire. Therefore, transient properties of the tire must be modeled.
A typical dynamic model for lateral tire force dynamics is first order and is given as
[33], [34];

F

y,lag

+F

ylag —

F, (4.86)

where, Fy is the tire lateral force obtained from the steady state tire model, F .  is

the dynamic force and 7 is the relaxation time constant. Relaxation time constant

can be approximated as,

T=—H%= (4.87)

where K is the tire lateral stiffness, C,is the cornering stiffness and U is the

longitudinal velocity and this tire model is not valid for low longitudinal velocities
[35].
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CHAPTER S5

SENSITIVITY ANALYSIS

To determine the effects of the parameters on the vehicle dynamics system
response, sensitivity analysis should be performed. By sensitivity analysis, synthesis
and the identification of the mechanical system can be improved [36]. Information
related to where and how the parameters affect the system response is crucial for
identification studies since the domain of the identification can be determined by
sensitivity analysis. Therefore sensitivity analysis must be performed prior to
identification.

Sensitivity analysis can be performed in time and in frequency domain. In time
domain, sensitivity of the state variables to parameters is the aim and in the
frequency domain sensitivity of the transfer function to parameters is aimed.
Generally in the frequency domain sensitivity of the amplitude and phase of the
transfer function to parameters are examined instead of complex valued transfer
function directly. Sensitivity analysis in time domain is difficult since it depends on
the type and the shape of the excitation [36].

In this study sensitivity analysis is performed in frequency domain to be able to
determine the frequencies or frequency ranges at which the system responses are
most sensitive. In this study, sensitivities of the amplitudes of the lateral velocity
transfer function and yaw velocity transfer function to bicycle model parameters are

obtained. Then sensitivity analysis will be performed for three DOF linear roll
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model. Sensitivities of the yaw, lateral, and the roll velocities to roll model

parameters are calculated.
Logarithmic sensitivity of the variable v to parameter 6 can be calculated as [36],

=350 61
Logarithmic sensitivity function is dimensionless and thus influence of various
parameters on the variables can be found easily. However, it gives the sensitivity of
the absolute value of the variable to parameter rather than the real value. That is
when the sensitivity value is negative, an increase in the parameter value results in a
decrease in the absolute value of the variable. When the sensitivity value is positive,
an increase in the parameter value results in an increase in the absolute value of the
variables. Also as can be understood from Equation 5.1, when value v approaches

zero, sensitivity value may become too large [36].

In this study sensitivities of the amplitude of the transfer function with respect to
parameters are examined and sensitivity analysis is performed for bicycle model
and three DOF linear roll model in frequency domain. Transfer function of this

model can be obtained from their state space model as,
[T(8)]=[C](s[1]-[A]) "[B]+[D] (5.2)

Explicit form of the bicycle model and roll model transfer function are obtained
from the MATLAB Symbolic Toolbox using (5.2).

5.1. BICYCLE MODEL SENSITIVITY ANALYSIS

In the two DOF bicycle model, there are two states which are lateral velocity and

yaw velocity. Sensitivities of the lateral and yaw velocities to bicycle model
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parameters are calculated as a function of the frequency and longitudinal velocity

and the results are given in Figure 5.1 to Figure 5.6. Sensitivity of lateral and yaw
velocity to other bicycle model parameters are given in Appendix A.

Sensitivity of Lateral Velocity to Cf vs Frequency, Longitudinal Velocity

Sensitivity

Frequency [Hz] 0 o

Longitudinal Velocity [m/s]

Figure 5.1: Sensitivity of lateral velocity to C¢
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Sensitivity of Lateral Velocity to Cr vs Frequency, Longitudinal Velocity

>~

Sensitivity

Frequency [HZ] 0 0

Longitudinal Velocity [m/s]

Figure 5.2: Sensitivity of lateral velocity to C,

Sensitivity of Lateral Velocity to J vs Frequency, Longitudinal Velocity

Sensitivity

Frequency [Hz] 0 o0

Longitudinal Velocity [m/s]

Figure 5.3: Sensitivity of lateral velocity to J
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As observed from Figure 5.3 sensitivity of the lateral velocity to yaw moment of
inertia increases starting from 0 Hz and decreases after nearly 2 Hz, and it reaches a
peak around 1 Hz. Sensitivity of the lateral velocity to front cornering stiffness is
high nearly at all frequencies and slightly decreases around 1 Hz. Sensitivity of
lateral velocity to rear cornering stiffness is high between 0 and 1 Hz. Moreover, as
observed from Figure 5.7 amplitude of the lateral velocity has a peak value between
0 and 2 Hz. Also longitudinal velocity has an important effect on the sensitivity
values and lateral velocity amplitude and when it is increased, amplitude of the

lateral velocity increases.

Sensitivity of Yaw Velocity to Cf vs Frequency, Longitudinal Velocity

Sensitivity

Frequency [Hz] 0 o0

Longitudinal Velocity [m/s]

Figure 5.4: Sensitivity of yaw velocity to C¢
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Sensitivity of Yaw Velocity to Cr vs Frequency, Longitudinal Velocity
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Figure 5.5: Sensitivity of yaw velocity to C,
Sensitivity of Yaw Velocity to J vs Frequency, Longitudinal Velocity
05 \
z 0y
s
i)
&
n -05
-1
8
. 30
. 20
10
Frequency [Hz] 0 o

Longitudinal Velocity [m/s]

Figure 5.6: Sensitivity of yaw velocity to J
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When Figure 5.4 is examined it is seen that yaw velocity is sensitive to front
cornering stiffness nearly at all frequencies. When Figure 5.5 is examined, it can be
seen that again yaw velocity is more sensitive to rear cornering stiffness below
nearly 2 Hz. However, sensitivity of the yaw velocity to yaw moment of inertia
increases starting from the 1 Hz. Also, similar to lateral velocity data, amplitude of
the yaw velocity increases with increasing longitudinal velocity and is high between

0 and 2 Hz as can be seen from Figure 5.8.

Amplitude of Lateral Velocity vs Frequency, Longitudinal Velocity

20

15

10

Amplitude

Longitudinal Velocity [m/s] 5 10

Frequency [Hz]

Figure 5.7: Amplitude of the lateral velocity
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Amplitude of Yaw Velocity vs Frequency, Longitudinal Velocity

Amplitude

Longitudinal Velocity [m/s] Frequency [Hz]

Figure 5.8: Amplitude of the yaw velocity

5.2. THREE DEGREE OF FREEDOM ROLL MODEL SENSITIVITY
ANALYSIS

In the three DOF roll model sensitivities of the lateral, yaw, and the roll velocities
to roll model parameters are calculated as a function of the frequency and
longitudinal velocity and the results are given in Figure 5.9 to Figure 5.26.
Sensitivity of lateral, yaw and roll velocity to other roll model parameters are given

in Appendix A.
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Sensitivity

Sensitivity of Lateral Velocity to Cf vs Frequency, Longitudinal Velocity
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2N

Frequency [HZ] Longitudinal Velocity [m/s]

Figure 5.9: Sensitivity of lateral velocity to C¢

Sensitivity of Lateral Velocity to Cr vs Frequency, Longitudinal Velocity

oh O N R O P, N

0 o

Frequency [HZ] Longitudinal Velocity [m/s(k

Figure 5.10: Sensitivity of lateral velocity to C,
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Sensitivity

Sensitivity

Sensitivity of Lateral Velocity to Izz vs Frequency, Longitudinal Velocity

Frequency [HZ]

Longitudinal Velocity [m/s]

Figure 5.11: Sensitivity of lateral velocity to |,

Sensitivity of Lateral Velocity to Ixx vs Frequency, Longitudinal Velocity
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Figure 5.12: Sensitivity of lateral velocity I
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Sensitivity

Sensitivity of Lateral Velocity to Kphi vs Frequency, Longitudinal Velocity

Sensitivity
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5 Longitudinal Veloc
Frequency [HZ]

Figure 5.13: Sensitivity of lateral velocity to K,

Sensitivity of Lateral Velocity to Cphi vs Frequency, Longitudinal Velocity
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Figure 5.14: Sensitivity of lateral velocity to C,,
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Sensitivity
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Sensitivity

Sensitivity of Yaw Velocity to Cf vs Frequency, Longitudinal Velocity

15,
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Figure 5.15: Sensitivity of yaw velocity to Cy,

Sensitivity of Yaw Velocity to Cr vs Frequency, Longitudinal Velocity
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Figure 5.16: Sensitivity of yaw velocity to C,
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Sensitivity

Sensitivity

Sensitivity of Yaw Velocity to 1zz vs Frequency, Longitudinal Velocity

30
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Frequency [HZ] 0 0 Longitudinal Velocity [m/s]

Figure 5.17: Sensitivity of yaw velocity to I,

Sensitivity of Yaw Velocity to Ixx vs Frequency, Longitudinal Velocity
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Figure 5.18: Sensitivity of yaw velocity 1,
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Sensitivity

Sensitivity

Sensitivity of Yaw Velocity to Kphi vs Frequency, Longitudinal Velocity
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Figure 5.19: Sensitivity of yaw velocity to K,

Sensitivity of Yaw Velocity to Cphi vs Frequency, Longitudinal Velocity
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Figure 5.20: Sensitivity of yaw velocity to C,
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Sensitivity

Sensitivity

Sensitivity of Roll Velocity to Cf vs Frequency, Longitudinal Velocity
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Figure 5.21: Sensitivity of roll velocity to C;

Sensitivity of Roll Velocity to Cr vs Frequency, Longitudinal Velocity
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Figure 5.22: Sensitivity of roll velocity to C,

86



Sensitivity

Sensitivity

Sensitivity of Roll Velocity to Izz vs Frequency, Longitudinal Velocity
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Figure 5.23: Sensitivity of roll velocity to I,

Sensitivity of Roll Velocity to Ixx vs Frequency, Longitudinal Velocity
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Figure 5.24: Sensitivity of roll velocity 1,
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Sensitivity

Sensitivity

Sensitivity of Roll Velocity to Kphi vs Frequency, Longitudinal Velocity
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Figure 5.25: Sensitivity of roll velocity to K,

Sensitivity of Roll Velocity to Cphi vs Frequency, Longitudinal Velocity
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Figure 5.26: Sensitivity of roll velocity to C,
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Amplitude of Lateral Velocity vs Frequency, Longitudinal Velocity
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Figure 5.27: Amplitude of lateral velocity

Amplitude of Yaw Velocity vs Frequency, Longitudinal VVelocity

Amplitude
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Longitudinal Velocity [m/s] Frequency [HZ]

Figure 5.28: Amplitude of yaw velocity
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Amplitude of Roll Velocity vs Frequency, Longitudinal Velocity

Amplitude

0

10
Longitudinal Velocity [m/s] Frequency [Hz]

Figure 5.29: Amplitude of roll velocity

For the three DOF roll model, sensitivity of lateral velocity to rear cornering
stiffness is high below 1 Hz. As opposed to lateral velocity and yaw velocity, roll
velocity are highly sensitive to nearly all parameters. Sensitivities of the roll
velocity to cornering stiffness values, roll stiffness, roll damping, and yaw moment
of inertia and roll moment of inertia are high between nearly 0 and 3 Hz and. Also,
amplitude of the lateral, yaw and roll velocities decrease after 2 Hz and increase
with longitudinal velocity. As can be seen from the sensitivity plots, longitudinal
velocity is highly effective on the sensitivities and generally an increase in velocity

results in an increase in the sensitivity values.

In addition to specifying appropriate steering input frequency and vehicle
longitudinal velocity, practical aspects of the identifiability can be interpreted. That
is to say some responses may become insensitive to parameters and thus this
parameter may not be identified from that response accurately. As can be observed

from Figure 5.18, Figure 5.19, and Figure 5.20 sensitivity of the yaw velocity to roll
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stiffness, roll damping, and roll moment of inertia are very low, which means that

the dependence of yaw velocity to those parameters is not significant.

In summary, it is possible to specify the parameter set which can be estimated, and
the appropriate frequency or frequency interval and longitudinal velocity are
selected. For instance in the three DOF linear roll model, roll stiffness cannot be
estimated from yaw velocity data accurately since sensitivities of the yaw velocity
to roll stiffness is low. As another example, in the bicycle model sensitivity of the
lateral velocity to rear cornering stiffness is high for the frequency range of 0-2 Hz
nearly and thus input should cover this frequency interval for accurate estimation.
In this study, frequency range of the steering input is taken as the 0-2 Hz and the
longitudinal velocity of the vehicle is taken as 20 m/s. For the nonlinear roll model,
ADAMS model is simulated at 15 m/s longitudinal velocity to obtain appropriate
slip angle characteristic. These values change with the nominal values of the test
vehicle, yet the general shape of the sensitivity curves and the approximate
sensitivity values give valuable information. As a result, it is possible to specify
handling model parameters which can be identified practically and the
characteristics of the test input can be determined.

91



CHAPTER 6

IDENTIFIABILITY STUDY AND VEHICLE IDENTIFICATION

Identifiability problem is related to the model structure and it investigates whether
the model parameters can be estimated uniquely from the noise free data. It is
important for system identification and it should be performed prior to experiments
and according to the result of the identifiability study, experiment design and model
selection processes are performed. For model structures that cannot be identified,
experiments can be redesigned and extra data can be acquired to make the model
identifiable. Additional inputs and/or outputs can be acquired or places of the
sensors can be changed. Structural identifiability method used in this study is

adapted from the study of Walter and Pronzato [37] and can be summarized as:

- Parameter 6, is structurally globally identifiable (s.g.i) if,
M(@) =M (@) =0 =" 6.1)

If all parameters of the model structure are s.g.i, then the model structure M is s.g.i.

- The parameter #; is structurally locally identifiable (s.l.i) if there is a

neighborhood such that M (6) =M (6" ) =8 =6,

If all parameters of the model structure are s.L.i, then the model structure is s.l.i
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- The parameter 6 is structurally unidentifiable (s.u.i) if there is no neighborhood
of ¢" such that M(8) =M (6") =6, =¥,

If at least one parameter of the model structure is s.u.i, then the model structure is

S.uU.i.

where dis the estimate of parameter 6, 6" is the true value of parameter 6 and M is

the model structure.

Identifiability study must be performed prior to experiment and the experiment
should be designed according to result of it. Model identifiability is a prerequisite
for system identification, yet it does not guarantee accurate parameter estimation.
However, even if the model is unidentifiable, error between acquired and estimated
data may become small and in different identification different parameter sets may
be identified.

There are various methods for checking model identifiability and some of these
methods are specified for certain types of model structures. Analytical
identifiability techniques are difficult to perform when the model is nonlinear and it
contains a large number of parameters. In this study, identifiability of the handling
models are examined by Numerical Local Approach adapted from [37]. Moreover,
identifiability of the model can also be examined as stated in [38]: Firstly model to
be identified is simulated with nominal parameters and the simulation data is treated
as actual test data. Then model is identified by using initial parameter values which
are slightly different than nominal values. If the model is identifiable convergence
is achieved in a few iterations. If the convergence is not satisfied or if the number of
iterations is high, model may be unidentifiable. Numerical Local Approach was also

used in the study [11] to examine the coupled roll and lateral dynamics.
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Numerical Local Approach [37]

There are various approaches [37] for checking structural identifiability. In these
approaches, algebraic ones require high computational power and so they are
difficult. Numerical Local Approach can be used to check model identifiability at

least locally. Application steps of this method are [37];

- Produce fictitious data by simulating model M(&,) with nominal parameter value
6.

- Estimate parameter ¢ from simulated fictitious data by minimizing the quadratic
cost function between acquired simulation data and output of model to be
identified. This minimization is performed by second order optimization
methods such as Gauss-Newton method. Set initial parameter values used in
estimation to nominal parameter values, 6.

- If the estimated parameters remains stable at 6, then model M is s.Li, if
estimator remains unstable then model M is s.u.i. or 6, is close to a hyper
surface so the matrices inverted during the optimization is singular. For this
another parameter 6y is used to generate fictitious data and the other steps are
repeated and a conclusion about identifiability of the model is reached.

Note that as specified in [37] Levenberg-Marquardt approach cannot be used for

this method since it includes regularization.
In this study identifiability of the model structure is examined by these two

approaches. Schematic of the Numerical Local Approach for handling model

identification is shown in Figure 6.1.
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Figure 6.1: Numerical Local Approach for handling model identification

In this study test data is obtained from the simulation of the Simulink vehicle
models M(6,) with nominal parameters 6y. Cost function for the estimation process
is obtained from the Simulink. Optimization process is performed by MATLAB
function ‘Isqnonlin’ with Gauss-Newton algorithm nested in MATLAB M-File.
Therefore, optimization is performed by interaction of Simulink model and
MATLAB M-File.

Simulation data for the bicycle model, one DOF roll model, and the three DOF
linear roll model are acquired with the nominal parameters listed in Table 6.1.
Nominal parameter values used in the simulation for nonlinear roll model are given
in Table 6.2.

Table 6.1: Nominal parameter values used in the simulation of linear models

for structural identifiability study

C=-80000 N/rad | C,=-70000 N/rad | 1,,=1700 kgm* | 1,=400 kgm*
C,=3000 Nms |K,=40000 Nm |7=0.025s
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Table 6.2: Nominal parameter values used in the simulation of nonlinear

models for structural identifiability study

,,=1700 kgm® | 1,,=400 kgm* | C,=3000 Nms | K,=40000 Nm | 7=0.025s
a=1.3 a;=-50 2,=900 a;=40000 a,=3
ag=-0.70 a;=-0.30 5ﬁp: 0.1 5,(0:0.1

6.1. IDENTIFIABILITY OF THE BICYCLE MODEL WITH A STEADY
STATE TIRE MODEL

Identifiability of the bicycle model with a steady state tire model is examined
separately for different output sets; namely lateral velocity, yaw velocity, and both

lateral and yaw velocity.

- Identifiability with lateral velocity
According to result of Numerical Local Approach, bicycle model with parameters
Cs, Cr, and 1 is s.l.i with the lateral velocity output. Estimated parameters converge

to their nominal values. Output of the estimation is given in Figure 6.2.
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Directional

ITteration Func-count Residual Step-size derivative
0 4 1.27785e-006

1 11 1.24e-006 1 2.2e-01¢6

Optimization terminated: directional derivative along
search direction less than TolFun and infinity-norm of
gradient less than 10* (TolFun+TolX).

Cf =
-7.89993=e+004
-6.9998e+004

Izz =

1.7001e+003

>

Figure 6.2: Output of the bicycle model identifiability study with parameters
Cs, Cy, and I, with lateral velocity

Identifiability with yaw velocity
Similar to identifiability of the bicycle model with lateral velocity bicycle model

with parameters Cs, C, and | is s.l.i with yaw velocity output.

Identifiability with lateral and yaw velocity

The bicycle model with parameters Cs, C,, and I is s.l.i with lateral velocity and
yaw velocity separately; it is also s.l.i with both outputs. That is analytically one of
the output can be used to identify three parameter (Cs, C,, and 1,;). However, this
does not guarantee accurate parameter estimation as will be shown in parameter

estimation section.

When the mass of the vehicle is also assumed to be among the unknown parameters

to be estimated, estimator is unstable and estimated parameters converge to other
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values. Instability of the estimator is specified with the term ‘ill-conditioned’. In
other words matrix cannot be inverted in the Gauss-Newton algorithm. Thus,
optimization algorithm is automatically changed to Levenberg Marquardt algorithm
which regularizes ill-conditioned matrix. Identifiability result is given in Figure 6.3.
Therefore, bicycle model with parameters C; C;, I and M is structurally
unidentifiable (s.u.i).

Directional
Iteration Func-count Residual Step-size derivative
0 5 0.00115456
1 14 0.00113962 81 4.46e-015
Tteration matrix ill-conditioned - Switching to LM method.
2 50 0.00113948 1.4%e+007 -1.24e-008
Optimization terminated: directional derivative along
search direction less than TolFun and infinity-norm of
gradient less than 10* (TolFun+TolX).
-f =
-9.1862e+013
1379%9e+013
Izz =
1.9521e+012
M =
1.1965e+012
>

Figure 6.3: Output of the bicycle model identifiability study with parameters

Cs, Cy, Iz, and M with lateral velocity and yaw velocity data.

6.2. IDENTIFIABILITY OF THE BICYCLE MODEL WITH TRANSIENT
TIRE MODEL

Similar to the bicycle model with the steady state tire model, identifiability of the

bicycle model with the transient tire model with parameters Cs, C,, I, and 7 can be
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examined by using output lateral velocity, yaw velocity, and both lateral and yaw
velocity.

The bicycle model with parameters Cs, C;, Iz, and 7 is s.l.i with lateral velocity, yaw

velocity and both lateral and yaw velocity.

6.3. IDENTIFIABILITY OF THE ONE DEGREE OF FREEDOM ROLL
MODEL

One DOF roll model has three parameters to be identified which are K,,, C,, and Iy.
According to the result of the identifiability analysis, one DOF linear roll model is
s.L.i. Result is given in Figure 6.4.

Iteration Func-count Fesidual Step-size t
0 4 0.0977398
1 11 0.0122843 0.999
2 18 0.0122843 0
3 25 0.0122843 0.057¢
Cptimization terminated: directiconal derivative along

search direction less than TolFun and infinity-norm of
gradient less than 10* (TolFun+TolX).

Ixx =

399.7829

“phi =
9978+ 3
Ephi =
3.9981e+004
>

Figure 6.4: Output of the one DOF roll model identifiability study with
parameters Iy, C,, and K.

99



When parameters hs is also assumed to be unknown, estimator is unstable and
estimated parameters converge to values other than nominal values and thus one
DOF roll model with parameters Iy, C, K, and hs is s.u.i. Result of the
identifiability is shown in Figure 6.5. The same result for this identifiability study
can also be obtained by Laplace Transform Approach [37]:

_Mshs
_ 2 '

aY(S) SZ+(:¢5+|<¢IIVISth S +a‘28+a3
where

M.h
——IS =a, (6.3)
C
I—*”:a2 (6.4)
K,—M.hg
559 6.5

| % (6.5)

From equations (6.5), (6.6), and (6.7) parameters C,, K,, and I, can be identified
uniquely.

In study [11] it was shown that one DOF roll model with unknown parameters, C,,
K,, and Iy is structurally globally identifiable.
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Directicnal

Step-size derivative
( 0.097
1 13 0.0166842 1 1.28e-010
Iteration matriz ill-conditioned - Switching to LM method.
2 42 0.01lee772 3.232+005 4.24e-006

Optimization terminated: directional derivative along

search direction less than TolFun and infinity-norm of
gradient less than 10* (TolFun+TolX).

Txx =
2.0854e+011
Cphi =
1.5641e+012
Kphi =
2.0854e+013
hs =
2.17e0e+008
>

Figure 6.5: Output of the one DOF roll model identifiability study with
parameters Iy, Cy, Ko, and h;

As shown in Figure 6.5, iteration matrix is ill-conditioned and the optimization

algorithm is switched to Levenberg Marquardt algorithm and estimated parameters

converge to values different than nominal parameters.

6.4. IDENTIFIABILITY OF THE THREE DEGREE OF FREEDOM

LINEAR ROLL MODEL

In the three DOF linear roll model the unknown parameters are Cy, Cy, I, I, C,,
K,, and 7. Identifiability of this model is examined with lateral velocity, yaw
velocity and roll velocity outputs. According to result of identifiability study which

is shown in Figure 6.6, estimator is stable, parameters converge to their nominal

values and three DOF linear roll model is s.l.i.
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Figure 6.6: Output of the three DOF linear roll model identifiability study with

parameters Cy, Cy, 12z, lx, Cy, Ky, and 7
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6.5. IDENTIFIABILITY OF THE THREE DEGREE OF FREEDOM
NONLINEAR ROLL MODEL

Finally identifiability of the three DOF nonlinear roll model with the parameters K,
Copr b lzzy 7, @1, @2, @3, &4, 6, &7, J,; and J,,- With lateral, yaw, and roll velocities is
examined. Result of the identifiability analysis is given in Figure 6.7. As can be
understood from Figure 6.7 estimator is stable and estimated parameters converge

to their nominal values and thus three DOF nonlinear roll model is s.l.i.

The same information on the identifiability of the model can be obtained with the
other approach [38] that involves the simulation of the model with nominal
parameters and then estimation of parameter values by using different initial
parameter values than nominal parameters. If the estimation process is performed

with a few iterations, model may be identifiable.

Identifiability study is important and it should be done before the experiment and
according to result of it experiment configuration can be changed or it may be
redesigned. Numerical Local Approach is easier to apply when it compared with the
analytical identifiability method.
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Directicnal

Iteration Func-count Residual Step-size derivative

] 14 9.138

Optimization terminated: dire

search direction less than TclFun and infinity-norm of
gradient less than 10¥% (TolFun+TolX).

e-023
icnal derivative alcng

al =

ai =

ad4 =

3000

Fphi =

=

Figure 6.7:Output of the three DOF nonlinear roll model identifiability study

with parameters Ko, Cy, Ixx, 122, T, a1, @2, @3, a4, 8, a7, O¢f, and J¢r
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6.6. PARAMETER ESTIMATION

After examining the sensitivity and the identifiability of the handling models,
parameter values are to be estimated. Data used for identification are obtained from
the simulations of the ADAMS model and the parameters are estimated using

Simulink Parameter Estimation Toolbox.

As can be seen from the sensitivity analysis, sensitivities of the lateral velocity, yaw
velocity, and roll velocity to parameters are high at a range of frequencies. To cover

these frequencies, sine chirp input with 0-2 Hz frequency range is used

Data used for identification is taken from the simulation of the ADAMS vehicle
model with a transient PAC 2002 [8] tire model. This tire model is an advanced
form of the Magic Formula tire model and it calculates the combined lateral and
longitudinal tire forces by considering the transient properties of the tire. Basic
handling response data namely lateral, yaw and roll velocity, lateral acceleration
and the steering wheel input are acquired as the measured response set. Linear
bicycle model, one DOF roll model, three DOF linear and nonlinear roll models are
identified from this measured response sets.

For linear models low amplitude steering input is used for acquiring data from

ADAMS to satisfy the low lateral acceleration and low slip angle assumption.

For acquiring data following sensors and instruments are assumed to be used:

- Lateral and longitudinal velocity sensor

- Gyro for yaw and roll velocity

- Accelerometer for lateral acceleration

- Steering wheel angle measurement system

- Steering wheel robot
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Steering wheel input with the responses lateral, longitudinal, yaw, and roll
velocities and lateral acceleration are given in Figure 6.9 to Figure 6.14 and
calculated front and rear axle slip angles are given in Figure 6.15 and Figure 6.16.
Amplitude of the steering wheel input is 20 degree and frequency range of steering
input is 0-2 Hz which covers high sensitivity regions of the outputs to parameters
and natural frequencies of the outputs. Longitudinal velocity used in the simulation
is 20 m/s. Identified models are validated by using the data taken from the double
lane change simulation of the ADAMS model at 20 m/s longitudinal velocity.
Steering wheel input and responses acquired from the double lane change analysis
are given in Figure 6.17 to Figure 6.22 and calculated front and rear axle slip angles
are given in Figure 6.23 and Figure 6.24. Schematic of double lane change analysis

is shown in Figure 6.8.

2™ Trans Dist 2™ Long. Dist |, 1°' Trane. Dist

N

——
— /%\, . *'Long. Dist
S S
- : L
—— 2™ Lane Crfset 1! Lane Cffset ——

Figure 6.8: Double lane change maneuver [7]
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Figure 6.9: Steering wheel input for the estimation process
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Figure 6.10: Lateral velocity response for the estimation process
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Figure 6.11: Longitudinal velocity response for the estimation process

Figure 6.12: Yaw velocity response for the estimation process
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Figure 6.13: Roll velocity response for the estimation process
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Figure 6.14: Lateral acceleration response for the estimation process
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Figure 6.15: Front axle slip angle for estimation process

Rear Axle Slip Angle vs Time
0.8 /\
0.6 n [
// \\ |
0.2

\
-0.2 \
fMAWMH.L

T

-0.8

Time [s]

Figure 6.16: Rear axle slip angle for estimation process
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Figure 6.17: Steering wheel input for validation process
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Figure 6.18: Lateral velocity response for validation process
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Figure 6.19: Longitudinal velocity response for validation process
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Figure 6.20: Yaw velocity response for validation process
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4 N
oA )
0 /\/\/\/m
_2 \ [\

Roll Velocity [deg/s]

0 2 4 6 8 10
Time [s]

Figure 6.21: Roll velocity response for validation process
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Figure 6.22: Lateral acceleration response for validation process
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Figure 6.23: Front axle slip angle for validation process
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Figure 6.24: Rear axle slip angle for validation process
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To be able to compare the estimated cornering stiffness values, the cornering
stiffness values of ADAMS/Chassis vehicle model can be estimated from PAC2002
[8] tire model file as [7, 8, 39];

Nominal tire load, F,;=3800N
as=-12.536

a4=1.3856

Front tire vertical load: F;=3022N
Rear tire vertical load: F,,=2092N

F
C, :ag-on-sin{Z-tanl al }:41130 N/rad (6.6)

3.4' 20

C,=a,-F,-sin {2 -tan™ L} = 32690 N/rad (6.7)
8,y

6.6.1. THE BICYCLE MODEL WITH STEADY STATE TIRE MODEL

PARAMETER ESTIMATION

The linear bicycle model has two limitations which are small slip angle and low
lateral acceleration. The bicycle model has seven parameters and three of these are
treated as unknowns which are front and rear cornering stiffness values and the yaw
moment of inertia. Parameters of the bicycle model are estimated using only lateral

velocity, only yaw velocity, and both lateral velocity and yaw velocity.
Unknown parameters: {Cs, C,, J}

Simulink model of the two DOF linear bicycle model used in identification is given
in Figure 6.25.
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Linear Two Degree of Freedom Bicycle Model

>
®' = Ax+Bu
y=Cx+Du Lateral \Velocity
Gain 2

Steering Angle

State -Space

Yaw Velocity

Figure 6.25: Simulink model of the two DOF linear bicycle model.

As can be seen from Figure 6.14, the lateral acceleration is lower than 0.3g and
front and rear slip angles are lower than 4 degrees as shown in Figure 6.15 and
Figure 6.16, so linear bicycle model assumption is valid.

6.6.1.1. ESTIMATION WITH LATERAL VELOCITY DATA

In this part, estimation process is performed using only lateral velocity response.
Table 6.3 summarizes the estimation result:

Table 6.3: Estimated and measured parameter values for the bicycle model

with steady state tire model using only lateral velocity response

Estimated | C;=141240 N/rad | C,=75724 N/rad | J=1613 kgm*
Actual | C=82260 N/rad |C,=65380 N/rad |J=1724 kgm*
Error [%] 71.7 15.8 -6.4

Measured and estimated responses are given in Figure 6.26 and Figure 6.27.
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Figure 6.26: Lateral velocity responses - estimated using lateral velocity data.
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Figure 6.27: Yaw velocity responses - estimated from lateral velocity data
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Measured and estimated responses for model validation are given in Figure 6.28 to

Figure 6.29.
Lateral Velocity vs Time
0.25 \
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Figure 6.28: Lateral velocity responses - estimated from lateral velocity for

model validation
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Yaw Velocity vs Time
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Figure 6.29:

validation.

As shown in Figure 6.26 to Figure 6.28, only the lateral velocity is estimated

accurately so using only lateral velocity response for estimation may not produce

accurate results.

6.6.1.2. ESTIMATION WITH YAW VELOCITY DATA

In this part, linear bicycle model is estimated using only yaw velocity data. Table

6.4 summarizes the estimation result:
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Table 6.4: Estimated and measured parameter values for the bicycle model

with steady state tire model using only yaw velocity data

Estimated | C=53794 N/rad | C,=48628 N/rad | J=1274 kgm*
Actual |C=82260 N/rad | C,=65380 N/rad | J=1724 kgm*
Error [%] -34.6 -25.6 -26

Measured and estimated responses are given in Figure 6.30 and Figure 6.31.
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Figure 6.30: Lateral velocity responses - estimated using yaw velocity data.
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Figure 6.31: Yaw velocity responses - estimated using lateral velocity data.

Estimated and measured responses are given in Figure 6.32 and Figure 6.33.
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Figure 6.32: Lateral velocity responses - estimated from yaw velocity data for

model validation

121



Yaw Velocity vs Time
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Figure 6.33: Yaw velocity responses - estimated from yaw velocity data for

model validation

From the estimation results, it can be seen that even though identified model
predicts the yaw velocity response quite well, it does not represent the lateral
velocity response adequately and thus using only yaw velocity for estimation may

not produce accurate results.

6.6.1.3. ESTIMATION WITH LATERAL VELOCITY AND YAW
VELOCITY DATA

Since estimation with only lateral and only yaw velocity data may not produce
accurate results, the parameters are now estimated from both lateral and yaw

velocity data. Estimation result is given in Table 6.5
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Table 6.5: Estimated and measured parameter values for bicycle model with

steady state tire model using lateral velocity and yaw velocity data

Estimated

C#=79636 N/rad

C,=64852 N/rad

J=1634 kgm®

Actual:

C=82260 N/rad

C,=65380 N/rad

J=1724 kgm®

Error [%]

-3.2

-0.8

-5.2

Measured and simulated responses are given in Figure 6.34 and Figure 6.35.
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Figure 6.34: Lateral velocity responses - estimated using both lateral and yaw

velocity data.

123



Yaw Velocity vs Time
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Figure 6.35: Yaw velocity responses - estimated using both lateral and yaw

velocity data.

Estimated and measured responses for model validation are given in Figure 6.36
and Figure 6.37.
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Figure 6.36: Lateral velocity responses - estimated using both lateral and yaw

velocity
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Figure 6.37: Yaw velocity responses - estimated using both lateral and yaw

velocity
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When the lateral velocity and yaw velocity are used for identification, identified
model produced both lateral and yaw velocity successfully as can be seen from the
responses. When using both data for identification, appropriate weighting factors
are given to lateral velocity and yaw velocity data to add each response in

estimation equally or according to aim of the study.

Parameters of the bicycle model can be estimated from the lateral velocity, yaw
velocity, and both lateral and yaw velocity. When these parameters are estimated
from both lateral and yaw velocity, these responses can be tracked successfully and
estimated parameters are close to their real values obtained from the ADAMS
model. However, there are still some small differences between the estimated and
the simulated data. When these differences are examined, their periodic
characteristics which show the model deficiency can be observed. When the
parameters are estimated from yaw velocity, estimation result is not so accurate for
the lateral velocity, and only yaw velocity can be reconstructed well. Similarly
when the parameters are estimated from lateral velocity, only lateral velocity can be
reconstructed well. When both lateral and yaw velocity are used together with
appropriate weighting factor for test data, both lateral velocity and yaw velocity can
be estimated successfully. Also, since cornering force changes with slip angle
nonlinearly for high slip angles, steering input used should be low to obtain tire

linearity.

Bicycle model with linear tire model can be improved by modeling transient
properties of the tire. Since a highly transient input, chirp input, is used in
identification transient characteristic of the tires affect the system responses. This
effect can be observed by comparing the simulation of the ADAMS/Chassis model
with transient and steady state tire models. Characteristic of the ADAMS tire model
such as steady state and transient, combined-uncombined cornering and braking,
parking and comfort etc. can be changed easily, that is, in the ADAMS tire file
different tire models can be obtained by changing these characteristic.
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Figure 6.38: Lateral velocity responses of ADAMS model with transient and

steady state tire models
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Figure 6.39: Yaw velocity responses of ADAMS model with transient and

steady state tire models

127



Roll Velocity vs Time
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Figure 6.40: Roll velocity responses of ADAMS model with transient and

steady state tire models

Figure 6.38 to Figure 6.40 show the differences between lateral, yaw, and roll
velocities of steady state and transient tire models. Since these responses are taken
from the ADAMS simulation with low amplitude steering input, differences are
small; yet when the steering input amplitude is increased these differences increase.
Even if they are small, they may still affect the estimated parameters. Thus,
unmodeled system response can be compensated by the change in estimated

parameters.

Using three DOF nonlinear roll model with Magic Formula tire model, effects of

tire dynamics on vehicle responses can be shown in Figure 6.41 to Figure 6.43.
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Figure 6.41: Effect of tire dynamics on lateral velocity for different relaxation

time constant
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Figure 6.42: Effect of tire dynamics on yaw velocity for different relaxation

time constant
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Roll Velocity vs Time
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Figure 6.43: Effect of tire dynamics on roll velocity for different relaxation

time constant.

As can be seen from Figure 6.41, Figure 6.42, and Figure 6.43, tire dynamics are
effective on the transient responses of the vehicle as expected, and thus for
nonlinear roll model identification which requires high input amplitude it must be

included in the model.

6.6.2. BICYCLE MODEL WITH TRANSIENT TIRE MODEL PARAMETER
ESTIMATION

Linear bicycle model with transient tire dynamics can be constructed in Simulink
environment simply by adding the transient tire model to bicycle model as shown in
Figure 6.44.
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LinearTwo Degree of Freedom Bicycle Model with Transient Tire Dynamics
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Figure 6.44: Simulink model of the two DOF bicycle model with transient tire.

Similar to the bicycle model with the steady state tire model, the bicycle model with
the transient tire model are estimated from only lateral velocity, only yaw velocity,
and from both lateral and yaw velocity data. In addition to front and rear cornering
stiffness values and yaw moment of inertia, another tire parameter, relaxation time
constant is also estimated. Since front and rear cornering stiffness values are close
to each other and all tires are the same, the same tire relaxation time constant may
be used for all tires.

Unknown parameters: {Cs, Cy, I, 7}

The bicycle model parameters are estimated from both lateral and yaw velocity
data, and the estimation results are given in Table 6.6. When the identification is
from one set of data only, results are similar to the bicycle model with steady state
tire model, that is only yaw or lateral velocity response is identified successfully
and those results are given in Appendix B.
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Table 6.6: Estimated and measured parameter values for bicycle model with

transient tire model using both lateral velocity and yaw velocity data

Estimated

C#=80437 N/rad

C,=66310 N/rad

J=1750 kgm*

7=0.026s

Actual

C=82260 N/rad

C,=65380 N/rad

J=1724 kgm® -

Error [%]

-2.2

1.4

1.5 -

Estimated and measured responses are given in Figure 6.45 and Figure 6.46.
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Figure 6.45: Lateral velocity responses - estimated from both lateral and yaw
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Figure 6.46: Yaw velocity responses - estimated from both lateral and yaw

velocity data.

Estimated and measured responses for model validation are given in Figure 6.47
and Figure 6.48.
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Figure 6.47: Lateral velocity responses - estimated from both lateral and yaw

velocity data for validation process
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velocity data for validation process for validation process.

134



As in the case of the bicycle model with the steady state tire model, when the
parameters are estimated from both lateral and yaw velocity data estimation results

are successful and both responses can be tracked quite well by the identified model.

6.6.3. ONE DEGREE OF FREEDOM ROLL MODEL PARAMETER
ESTIMATION

In the previous parts parameters of the bicycle model were estimated. However, as
explained before to be able to explain the dynamics of the vehicle handling
completely, roll motion should also be considered. Adding the roll degree of
freedom to planar dynamics increases the accuracy of the model, yet it has its own
disadvantage; adding the roll degree of freedom also increases the complexity of

model and in turn the complexity of estimation process.

The most simple roll model is the one DOF vehicle roll model which has three
parameters to be identified; namely the roll stiffness, roll damping and the roll
moment of inertia. Calculations or measurements of these parameters are difficult

so they are better estimated.
In the one DOF roll model, lateral acceleration can be assumed as the model input
and the roll velocity can be assumed as the model output. State space model

constructed in Simulink is shown in Figure 6.49.

Unknown parameters: {C,, K,, I}
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Lateral Acceleration

One Degree of Freedom Vehicle Roll Model

State -Space 1

Figure 6.49: One DOF vehicle roll model.

Estimated parameters are given in Table 6.7.

Roll Velocity

Table 6.7: Estimated parameters for one degree of freedom roll model

Estimated

C,=2535 Nms

K,=37759 Nm

l,=384 kgm*

Estimated and measured responses are given in Figure 6.50.
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Figure 6.50: Roll velocity responses for estimation process

Estimated and measured responses for model validation are given in Figure 6.51.
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Figure 6.51: Roll velocity responses for validation process
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Roll velocity is highly sensitive to distance between roll axis and center of gravity
and thus accurate knowledge of this value is vital for correct parameter estimation.
However, position of the roll center changes as suspension moves during maneuver
and so the distance between roll axis and center of gravity will change and this will

affect the estimated parameters.

6.6.4. THREE DEGREE OF FREEDOM LINEAR ROLL MODEL
PARAMETER ESTIMATION

The bicycle model represents only plane dynamics of vehicles and it does not
comprise the roll degree of freedom. However, roll motion and lateral motion of the
vehicles are coupled and thus roll motion has effects on the lateral motion. When
the measured and estimated responses of the bicycle model are compared it can be
observed that there is error which shows periodic characteristic which means that
the identified model has model deficiency. This deficiency can be decreased by
increasing the model order and more accurate results can be obtained. However, an
increase in model order brings its own disadvantages. Number of parameters to be

estimated increases and thus numerical calculations becomes more difficult.

Three DOF roll model considers the coupled planar and roll degrees of freedom and

now the parameters of the more accurate vehicle model are estimated.

Simulink model of the three DOF linear roll model is given in Figure 6.52.
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THREE DEGREE OF FREEDOM LINEAR ROLL MODEL
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Figure 6.52: Linear three DOF roll model

Unknown parameters: {C;, Cr, K,, C,, Ixx, 12,7}

The data are taken from the simulation of the ADAMS model and it is the same as

the one used for the bicycle model identification.

Result of the estimation process is given in Table 6.8.
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Table 6.8: Estimated and measured parameter values for three degree of

Measured and estimated responses are given in Figure 6.53 to Figure 6.55.

Lateral Velocity [m/s]

Figure 6.53: Lateral velocity responses for identification process.
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Parameter | Estimated | Actual Error
[%]
C¢[N/rad] | 74618 |82260| -9.3
Cr[N/rad]| 66542 |65380| 1.8
I, [kgm“] | 1766 | 1724 | 2.4
I [kgm?] | 363 - -
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Figure 6.54: Yaw velocity responses for identification process

Figure 6.55: Roll velocity responses for identification process
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Estimated and measured responses for model validation are given in Figure 6.56 to

Figure 6.58.
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Figure 6.56: Lateral velocity responses for validation process
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Figure 6.57: Yaw velocity responses for validation process
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Figure 6.58: Roll velocity responses for validation process.

Using lateral velocity, yaw velocity, and roll velocity three DOF linear roll model
can be identified. As can be seen from measured and estimated responses estimated
responses track the measured responses successfully. When the results of the linear
bicycle model and the linear roll model are compared, it can be seen that
considering the effect of the roll motion on the lateral motion, more accurate
estimate is obtained. As can be seen in Figure 6.59 and Figure 6.60 the error
between measured and estimated responses of the roll model is smaller than the

error between measured and estimated responses of the bicycle model.
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Figure 6.59: Error between measured and estimated lateral velocities of bicycle

and roll model.
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Till now, linear handling models have been identified and their identifications have
been relatively straight forward. When the bicycle model is identified by using two
vehicle output data; namely lateral velocity and yaw velocity, two states of the
bicycle model, identification results are successful. On the other hand, even if one
set of response data is sufficient for the identification of the bicycle model (for a
specified parameter set) from the structural identifiability point of view, only one
output set used in the identification is identified successfully. To illustrate, when the
bicycle model is identified by using only lateral velocity data, only lateral velocity
is identified successfully. This may be due to the fact that unmodeled part of the
vehicle may affect the estimated parameters for the specified output. Since the input
used in the identification is sine chirp input which covers a certain frequency range,
transient properties of the tire should also be modeled. Three DOF linear roll model
tracks the measured responses successfully in the linear operating region of the
vehicle, and it may be used for the control applications effectively.

Handling models can also be identified by firstly identifying state space or transfer
function parameters and then by identifying physical parameters from these
parameters. However, to be able to identify physical parameters from state space or
transfer function parameters, a nonlinear set of equations must be solved; and this is
not easy. Since in vehicle handling identification, aim is to estimate physical
parameters rather than model parameters, estimation of physical parameters directly
is easier. When the physical parameters are estimated from model parameters by
equation solving or by optimization methods, constraints cannot be imposed

directly on physical parameters so estimation process may become difficult.

However, for more severe maneuvers, that is, when the slip angles and lateral
acceleration are high, linear models cannot be used since tire behavior changes
nonlinearly with tire inputs like slip angle and vertical tire load. Therefore, tire
should be modeled such that those nonlinearities can also be included in the

analysis. Consequently, more advanced and more complex vehicle handling models
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are required. Thus, the identification of a nonlinear handling model with Magic
Formula tire model is attempted.

6.6.5. THREE DEGREE OF FREEDOM NONLINEAR ROLL MODEL
PARAMETER ESTIMATION

In this section three DOF nonlinear roll model is used with the Magic Formula tire
model. Data used in the identification is taken from the simulation of the ADAMS
vehicle. PAC2002 [8] tire model which calculates combined cornering and
braking/traction tire forces by considering dynamic tire characteristics is used with
ADAMS model. First order transient tire model is used in the model to be
identified.

When the slip angle of the tire is higher than approximately 4 degree, linear tire
model which relates the cornering force to slip angle linearly cannot be used; and
more advanced and complex nonlinear tire models should be used. These nonlinear
models calculate the tire cornering force as a function of various inputs like slip
angle and vertical tire load, and they can be used for wider operating conditions.
When the combined cornering and braking tire characteristic is also considered
more accurate tire models with a better representation of the real tire behavior is
obtained, yet determining the values of the high number of unknown parameters
pose a difficulty. There are various nonlinear tire models, each one of which has its
own specific advantages and disadvantages. Some of these are Fiala tire model,

look-up table model, Allen tire model, and Magic Formula tire model.

Detailed comparison of Fiala tire model and Magic Formula tire model have been
given in [40]. In Magic Formula tire model, cornering stiffness changes with
vertical tire load and camber angle, yet in Fiala tire model cornering stiffness does
not change with vertical load on it and camber angle. On the other hand, Fiala tire
model Formula calculates tire forces with a lower number of parameters as
compared with the Magic Formula tire model, which is the advantage of the Fiala
tire model [40].
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In this study various nonlinear tire models including, Fiala tire model, lookup table
tire model, polynomial tire model, and Magic Formula tire model have been
examined and among these the best estimation results have been obtained with
Magic Formula tire model. In vehicle tests with a high amplitude transient steering
input stimulating tires highly, lateral load on tires change so cornering stiffness of
the tires changes. Since Fiala tire model assumes constant cornering stiffness, this
model may be used up to some slip angle. When the lookup table tire model is used,
increased number of parameters may pose a problem and also shape of the
estimated tire forces may not be correspond to measured tire forces. In polynomial
tire model estimation results are good, that is, estimated responses track the
measured responses well, yet these models can only be used for the slip angle which
is obtained in test; at higher slip angle nonphysical tire behavior may result due to
certain characteristics of the polynomials as also indicated in [39]. Therefore, the
Magic Formula tire model is used in the nonlinear roll model due to its proved

accuracy and applicability in vehicle handling dynamics.

Magic Formula tire model has various parameters and estimations of all of them are
a difficult task with simple vehicle tests. More advanced test routines are needed to
estimate the parameters. As explained in chapter 2, tires are tested with some
specialized test setup to measure forces acting between the tire and the road. Then
Magic Formula tire parameters are estimated from those test data. With this test,
combined and pure braking and cornering tire force measurement can be performed
and Magic Formula tire model parameters can be estimated. However, these
parameters may also be estimated from vehicle handling tests. Estimation is
performed for the coefficients of the Magic Formula tire models which are; ayp, ai,
ay, as, a4, as, a7. These parameters are the basic parameters of the Magic Formula
tire model and they are not dependent on the vertical loads or other variables. Since
in the estimation model vertical load in each tire is modeled, estimation of these

parameters produces more reliable results.
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In ADAMS vehicle model used in this study, four wheels of the vehicle are the
same and since tire model coefficients (ap, a;..) to be estimated are independent of
the other variables like the vertical load on the tires, only one tire model parameter

set is treated as the unknown tire parameter set.

To be able to estimate the parameters of the Magic Formula tire parameters, wide
operating points should be covered and thus ADAMS vehicle model is disturbed

with steering wheel input at high amplitude.

To be able to determine the effects of the tire parameters to cornering force,
sensitivity study is first performed. With this study, change of sensitivities of the
cornering force to tire parameters with tire slip angle at different vertical tire load is
studied and the required tire slip angle is found. According to the results, as can be
seen from Figure 6.61 to Figure 6.63, sensitivities of cornering force to tire
parameters related with cornering stiffness are high at low slip angle. On the other
hand, sensitivities of the cornering force to tire parameters related with maximum
force are high at high slip angles. Sensitivities of the cornering force to tire
parameters related with curvature factor are not so high. Therefore to be able to
estimate tire model parameters high slip angles are required.
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Figure 6.61: Sensitivity of cornering force to Magic Formula tire parameters at
2 kN vertical tire load
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Figure 6.62: Sensitivity of cornering force to Magic Formula tire parameters at

3 kN vertical tire load
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Sensitivity of Cornering Force to
Magic Formula Parameters vs Slip Angle
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Figure 6.63: Sensitivity of cornering force to Magic Formula tire parameters at
4 kN vertical tire load

Shape factor of the Magic Formula tire model ay is usually fixed to value of 1.3 and
so in the identification it is assumed to be 1.3. Further total roll stiffness is the sum
of front and rear roll stiffness and roll damping is the sum of the front and rear roll
damping. However, to decrease the number of parameters it is assumed that front
and rear roll stiffness values as well as front and rear roll damping are equal to each

other.

Unknown parameter set becomes: {1, Iy, C,, K, 7, @0, @1, @2, a3, a4, &, @7, gy, g}

Simulink model of the three DOF nonlinear roll model is shown in Figure 6.64.
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Figure 6.64: Simulink model of three DOF nonlinear roll model

To be able to excite the system over a wide operating point, data set is taken from
simulation of ADAMS/Chassis model with high amplitude steering input. Vehicle
longitudinal velocity used in the ADAMS simulation is fixed to 15 m/s. At 20m/s
vehicle longitudinal velocity very high slip angles are observed at the first 2-3
second of the maneuver and then slip angles drops to low values rapidly. At 15m/s
longitudinal velocity, smoother slip angle responses are obtained and therefore
more accurate estimation is obtained. Data set used in the identification is given in
Figure 6.65 to Figure 6.70 and estimated slip angles with vertical tire loads are
given in Figure 6.71 to Figure 6.78.
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Figure 6.65: Steering wheel input for estimation process
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Figure 6.66: Lateral velocity response for estimation process
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Figure 6.67: Longitudinal velocity response for estimation process
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Figure 6.68: Yaw velocity response for estimation process

153



Roll Velocity vs Time
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Figure 6.69: Roll velocity response for estimation process
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Figure 6.70: Lateral acceleration response for estimation process
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Figure 6.72: Front right tire slip angle
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Rear Left Tire Slip Angle vs Time
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Figure 6.73: Rear left tire slip angle
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Figure 6.74: Rear right tire slip angle
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Figure 6.75: Front left tire vertical load
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Figure 6.76: Front right tire vertical load
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Figure 6.78: Rear right tire vertical load
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As can be seen from slip angle versus time graphs, and vertical load versus time
graphs, slip angle and load transfer are high enough to estimate tire model
parameters; that is the vehicle maneuver stimulates the system such that Magic

Formula tire can be identified.

To validate the identified system another data set is taken and is given in Figure
6.79 to Figure 6.84. To excite the vehicle in a wider operating range, a steering
input with a wide range of frequencies together with high amplitude, shown in

Figure 6.79, is used.
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Figure 6.79. Steering wheel input for validation process
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Figure 6.80: Lateral velocity response for validation process
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Figure 6.81: Longitudinal velocity response for validation process
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Yaw Velocity vs Time
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Figure 6.82: Yaw velocity response for validation process
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Figure 6.83: Roll velocity response for validation process
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Figure 6.84: Lateral acceleration response for validation process

When the estimated and measured responses are compared from the estimation and
validation processes, it can be seen that identified model track the actual responses
satisfactorily. Tire forces taken from the ADAMS/Chassis model and the identified
model are also compared in Figure 6.89 to Figure 6.92. From these figures it is seen

that characteristic of the measured and identified tire forces are similar.

To simplify the estimation process upper and lower parameters constrained are
inserted so that the parameter space to be searched is constrained. Also appropriate
weighting factors are given to different responses according to result of the
estimation. Estimated parameters are given in Table 6.9. Typical weighting factors
used in the estimation for lateral, yaw, and roll velocities are 70, 1.2, and 1.6
respectively and these are determined according to aim of identification, order of

magnitude of the responses, practical problems in experimentation etc.
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Table 6.9: Estimated parameter values for the three DOF nonlinear roll model

1,,=2051 kgm? [ 1,=398 kgm? | C,=2520 Nms | K,=37905 Nm [ r=0.026 s
=13 a,=-47 a,=1291 a3=67327 | a,=7.81
2,=0.59 a;=-1.97 5,=0.29 6,=0.01

When the estimated parameters are examined, it can be seen that front roll steer
coefficient, &y, is large. This may due to the effect of the unmodeled part of the
vehicle on the estimated parameter. It can be avoided by lowering the upper
constraint on the roll steer coefficient, but in this case quality of the estimate
decrease slightly. However, when the estimated and measured tire cornering forces
are compared, it can be seen that estimation process is successful. Moreover, when
the severity of the maneuver is increased, from the sensitivity analysis, it is
expected to obtain more accurate result, yet due to nonlinearities of the vehicle,
estimation process becomes more difficult. Other studies using different lower and
upper constraints on parameters have been performed and sometimes slightly
different Magic Formula tire model parameters have been estimated. This can be
due to lack in the modeling or estimation of tire inputs such as vertical load and slip

angle with low accuracy, or due to optimization algorithms, etc.

Cornering force characteristics of the identified tire model is given Figure 6.85.
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Cornering Force vs Slip Angle
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Figure 6.85: Cornering force characteristic of identified tire model

Estimated and measured responses are given in Figure 6.86 to Figure 6.88.
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Figure 6.86: Estimated and measured lateral velocity responses
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Figure 6.87: Estimated and measured yaw velocity responses
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Figure 6.88: Estimated and measured roll velocity responses

Measured and estimated tire lateral forces are given in Figure 6.89 to Figure 6.92.

165



3000

2000

1000

-1000

Cornering Force [N]

-2000

-3000

-4000

Front Right Tire Cornering Force vs Time

et ==

— Simulated

Measured L

H(

T

)
L)
P

10

Time [s]

Figure 6.89: Estimated and veasured front right tire cornering force

4000

3000

2000

1000

-1000

Cornering Force [N]
o

-2000

-3000

Front Left Tire Cornering Force vs Time

A

a

Measured
Simulated H

/

K

-4000

10

Time [s]

15

Figure 6.90: Estimated and measured front left tire cornering force

166



Rear Left Tire Cornering Force vs Time
2000 1

y | === Measured
ﬂ A — Simulated

it

1000 A

m
——_
“'u-

-1000

Cornering Force [N]

-2000

')

-3000 N —

g =
"
[
—_——
-

-4000

Time [s]

Figure 6.91: Estimated and measured rear left tire cornering force
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Figure 6.92: Estimated and measured rear right tire cornering force
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Estimated and validated responses for model validation are given in Figure 6.93 to
Figure 6.95.
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Figure 6.93: Estimated and measured lateral velocity responses for validation

process
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Figure 6.94: Estimated and measured yaw velocity responses for validation

process
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Figure 6.95: Estimated and measured roll velocity responses for validation

process
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Though the ADAMS vehicle model with PAC2002 [8] tire model are quite complex
(it has more than 100 parameters), their handling response characteristics can be
predicted successfully even for highly severe maneuvers. Tire system is highly
nonlinear and complex, and there are uncertainties in it; thus modeling of the tire is
a difficult process especially for wide operating ranges. As shown in this study,
Magic Formula tire parameters together with vehicle parameters can be estimated
such that the estimated vehicle responses track actual responses successfully.
However, estimated parameters may not correspond to their actual values, since
these parameters may compensate the unmodeled part of the system in the simple
handling model. To ease the estimation and to guarantee estimate, physical
parameters upper and lower parameter constrained are imposed on the parameters

for estimation process.
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CHAPTER 7

DISCUSSION AND CONCLUSION

The objective of this study was the identification of handling models from
multibody dynamics vehicle model. In particular, identification of Magic Formula

tire model parameters was studied in some detail.

In this study, a methodology was given for identification of low order vehicle
handling model from Multibody dynamics vehicle models. Simple handling models
which are two DOF linear bicycle model and one DOF roll model, and more
complex vehicle handling models which are three DOF linear and nonlinear roll
model were identified form the test data acquired from the simulation of
ADAMS/Chassis vehicle model. Three DOF nonlinear roll model was constructed
with the well known and commonly used Magic Formula tire model with transient
characteristics. ADAMS/Chassis vehicle model has subsystems which are front and
rear suspension subsystems, steering subsystem, chassis subsystem and front and
rear tire subsystems and it has nearly 100 degrees of freedom. Tire model used in
the ADAMS/Chassis vehicle model is a version of the Magic Formula tire model
which calculates combined braking/traction and cornering force considering
transient characteristic of tire. Therefore, ADAMS/Chassis vehicle model is
assumed to represent real vehicle dynamics completely.

In this study four vehicle models; namely the bicycle model with steady state and
transient tire models, one DOF roll model, three DOF linear roll model, and three
DOF nonlinear roll model with Magic Formula tire model were used. At small slip

angles tire cornering force is linearly proportional to slip angles and thus at linear
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operating range of the vehicle linear tire model can be used. However at high slip
angle tire cornering force changes nonlinearly with slip angle and thus Magic
Formula tire model was used. To use Magic Formula vertical load on each tire is
required so in the three DOF nonlinear roll model lateral load transfer were also
modeled. Transient property of the tire alters cornering forces thus it was also
included. These models were constructed in Simulink environment and the cost

function was formed directly by the Simulink Parameter Estimation Toolbox.

To determine the effects of parameters on the model responses and to determine
frequency range of test input, a detailed sensitivity analysis was performed in
frequency domain for bicycle model and three DOF roll model for different
longitudinal velocities. Sensitivities of the lateral, yaw, and roll velocities to model
parameters were calculated. According to these results, frequency ranges at which
sensitivity values are high and natural frequencies of the model are included were
selected as the steering input parameters. Sine chirp input with the determined

frequency range was used as the steering input.

To determine whether the model to be identified is unique or not, structural
identifiability analysis for each model with different outputs and output set were
performed. For structural identifiability analysis there are various methods.
Algebraic methods are sometimes very difficult to apply especially for the nonlinear
models with large number of parameters. In this thesis, Numerical Local Approach
is used for identifiability analysis. According to this method data is acquired from
the simulation of the model with nominal parameter values. Then using these
nominal parameters values as the initial values at estimation, quadratic cost function
is optimized with a second order optimization method like Gauss-Newton. If the
estimator is stable, then model is s.l.i and estimated parameters converge to their
nominal values. According to result of this method, the bicycle model with steady
state and transient tire models with the selected unknown parameters are
identifiable for only lateral velocity, for only yaw velocity, and for both lateral and
yaw velocities. That is by using only one output bicycle model can be identified.
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However, structural identifiability analysis does not guarantee accurate
identification. As shown in the parameter estimation chapter, identification using
lateral and yaw velocity responses produce more accurate results. After the bicycle
model, identifiability of the one DOF roll model with specified parameters was
shown. Finally, it was shown that linear and nonlinear roll model with lateral
velocity, yaw velocity, and roll velocity outputs with specified parameters are

structurally locally identifiable.

After identifiability and sensitivity analysis, handling models were identified.
Optimization process was performed by nonlinear least square, simplex search and
genetic algorithms and sometimes with combination of these. The bicycle model
with steady state and transient tire model was identified by using only lateral
velocity, only yaw velocity, and both lateral and yaw velocity. According to
identification results using both responses improves identification results. One DOF
roll model requires lateral acceleration and roll velocity. Three DOF linear roll
model was identified by using lateral velocity, yaw velocity, and roll velocity. For
vehicle maneuvers performed in linear operating ranges, identification process is

relatively easy, and estimated responses track the measured responses accurately.

Identified linear models were validated by data taken from the double lane change
simulation. Result of the validation process showed the validity of the identified
model. Three DOF nonlinear roll model was constructed with Magic Formula tire
model and it included lateral load transfer to calculate vertical load on tire.
According to sensitivity analysis, high slip angles are required to identify tire
model. Therefore, identification data is taken from the simulation with a high
amplitude steering input to cover a high slip angle region. With this dataset,
parameters of the tire and vehicle were identified from the lateral velocity, yaw
velocity, and roll velocity data. It was shown that estimated responses track the
measured responses successfully. Tire cornering forces taken from the ADAMS and
from the identified model were also compared and it was observed that they
correspond to each other well. To validate the identified model another data set was
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taken and the identified model was successfully validated. More accurate results of
the Magic Formula tire model identification are obtained from advanced tire test
setups. The tire to be identified is tested under different loading and operating
conditions like different camber angles, vertical loads, slip angles and combined
braking and cornering, and thus tire characteristics are identified experimentally.
However, by making vehicle tests and using standard sensor sets, cornering force
characteristic of the Magic Formula tire model was identified in this study, together
with suspension parameters and inertial vehicle parameters. Large number of
unknown vehicle parameters brings about its own disadvantage such that different
parameters even unphysical parameters can be estimated. Constraining the
parameter values may solve this problem, yet to do this a priori knowledge about
vehicle is required. Nonetheless, constraining parameters may decrease the
accuracy of the estimation. Therefore there is a trade off and according to the aim of
the study desired precautions may be taken. In literature on vehicle handling
identification there are a limited number of studies about nonlinear vehicle handling
identification especially related with Magic Formula tire model. Work towards the
identification of the Magic Formula parameters given in this study is believed to be

a contribution to the limited amount of investigation available in the literature.

As a future study more complicated vehicle handling models comprising
longitudinal motion may be identified. Also while identifying nonlinear roll model,
front and rear tire may be modeled separately and thus a more general model can be
obtained. In addition, in this study practical difficulties like noise in data, signal to
noise ratio, or placement of sensor, steering robot, etc. are not considered; yet in

future studies these issues can also be taken into account for a more realistic study.
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APPENDIX A

SENSITIVITY ANALYSIS

A.1l. BICYCLE MODEL SENSITIVITY ANALYSIS

Sensitivity of Lateral Velocity to a vs Frequency, Longitudinal Velocity
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Figure A.1: Sensitivity of lateral velocity to a
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Sensitivity of Lateral Velocity to b vs Frequency, Longitudinal Velocity
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Figure A.2: Sensitivity of lateral velocity to b

Sensitivity of Lateral Velocity to M vs Frequency, Longitudinal Velocity
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Figure A.3: Sensitivity of lateral velocity to M
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Sensitivity

Sensitivity of Lateral Velocity to U vs Frequency, Longitudinal Velocity
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Figure A.4: Sensitivity of lateral velocity to U

Sensitivity of Yaw Velocity to a vs Frequency, Longitudinal Velocity
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Figure A.5: Sensitivity of yaw velocity to a

182



Sensitivity

Sensitivity

Sensitivity of Yaw Velocity to b vs Frequency, Longitudinal Velocity
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Figure A.6: Sensitivity of yaw velocity to b

Sensitivity of Yaw Velocity to M vs Frequency, Longitudinal Velocity

- 30
. 20
10

Frequency [HZ] 0o Longitudinal Velocity [m/s]

Figure A.7: Sensitivity of yaw velocity to M
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Sensitivity of Yaw Velocity to U vs Frequency, Longitudinal Velocity
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Figure A.8: Sensitivity of yaw velocity to U

A.2. ROLL MODEL SENSITIVITY ANALYSIS

Sensitivity of Lateral Velocity to a vs Frequency, Longitudinal Velocity
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Frequency [HZ] 0 0 Longitudinal Velocity [m/s]
Figure A.9: Sensitivity of lateral velocity to a
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Sensitivity of Lateral Velocity to b vs Frequency, Longitudinal Velocity
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Figure A.10: Sensitivity of lateral velocity to b

Sensitivity of Lateral Velocity to M vs Frequency, Longitudinal Velocity
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Figure A.11: Sensitivity of lateral velocity to M
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Sensitivity

Sensitivity

Sensitivity of Lateral Velocity to hs vs Frequency, Longitudinal Velocity
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Figure A.12: Sensitivity of lateral velocity hs

Sensitivity of Lateral Velocity to U vs Frequency, Longitudinal Velocity
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Figure A.13: Sensitivity of lateral velocity U
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Sensitivity of Lateral Velocity to Ms vs Frequency, Longitudinal Velocity
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Figure A.14: Sensitivity of lateral velocity M

Sensitivity of Yaw Velocity to a vs Frequency, Longitudinal Velocity
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Figure A.15: Sensitivity of yaw velocity to a
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Sensitivity

Sensitivity

Sensitivity of Yaw Velocity to b vs Frequency, Longitudinal Velocity
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Figure A.16: Sensitivity of yaw velocity to b

Sensitivity of Yaw Velocity to M vs Frequency, Longitudinal Velocity
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Figure A.17: Sensitivity of yaw velocity to M
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Sensitivity

Sensitivity of Yaw Velocity to U vs Frequency, Longitudinal Velocity
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Figure A.18: Sensitivity of yaw velocity to U
Sensitivity of Yaw Velocity to hs vs Frequency, Longitudinal Velocity
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Figure A.19: Sensitivity of yaw velocity to hg
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Sensitivity

Sensitivity

Sensitivity of Yaw Velocity to Ms vs Frequency, Longitudinal Velocity
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Figure A.20: Sensitivity of yaw velocity to M,

Sensitivity of Roll Velocity to a vs Frequency, Longitudinal Velocity

05+

30
20
10

Frequency [H] 00 Longitudinal Velocity [m/s]

Figure A.21: Sensitivity of roll velocity to a
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Sensitivity
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Figure A.22: Sensitivity of roll velocity to b

Sensitivity of Roll Velocity to M vs Frequency, Longitudinal Velocity
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Figure A.23: Sensitivity of roll velocity to M
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Sensitivity

Sensitivity

Sensitivity of Roll Velocity to U vs Frequency, Longitudinal Velocity
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Figure A.24: Sensitivity of roll velocity to U

Sensitivity of Roll Velocity to hs vs Frequency, Longitudinal Velocity
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Figure A.25: Sensitivity of roll velocity to hs
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Sensitivity

Sensitivity of Roll Velocity to Ms vs Frequency, Longitudinal Velocity
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Figure A.26: Sensitivity of roll velocity to Mg
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IDENTIFICATION OF BICYCLE MODEL WITH TRANSIENT

APPENDIX B

TIRE MODEL

B.1. IDENTIFICATION WITH LATERAL VELOCITY

In this case, the bicycle model is identified from only lateral velocity. Estimation

result is given in Table B.1.

Table B.1: Estimated and measured parameter values for the bicycle model

with transient tire model using only lateral velocity

Estimated

C:=119810 N/rad

C,=74218 N/rad

J=1840kgm*

7=0.028 s

Actual:

C=82260 N/rad

C,=65380 N/rad

J=1724 kgm®

Error [%)]

45.6

13.5

6.7

Estimated and measured responses are given in Figure B.1 and Figure B.2.
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Figure B.1: Lateral velocity responses - estimated from lateral velocity data.
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Figure B.2: Yaw velocity responses estimated from lateral velocity.
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Estimated and validated responses for model validation are given in Figure B.3 and
Figure B.4.
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Figure B.3: Lateral velocity responses - estimated from lateral velocity for

validation process.
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Figure B.4: Yaw velocity responses - estimated from lateral velocity for

validation process.

B.2. IDENTIFICATION WITH YAW VELOCITY DATA

In this case bicycle model is identified by using only yaw velocity data, estimated

parameters are given in Table B.2.

Table B.2: Estimated and measured parameter values for bicycle model with

transient tire model using only yaw velocity

Estimated

C#=71940 N/rad

C,=74578 N/rad

J=1721 kgm*

7=0.017 s

Actual:

C=82260 N/rad

C,=65380 N/rad

J=1724 kgm®

Error [%]

-12.5

14

-0.2

Estimated and validated responses are given in Figure B.5 and Figure B.6.
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Figure B.5: Lateral velocity responses - estimated from yaw velocity data.
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Figure B.6: Yaw velocity responses - estimated from yaw velocity data.
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Estimated and measured responses for model validation are given in Figure B.7 and

Figure B.8.
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Figure B.7: Lateral velocity responses - estimated from yaw velocity data for

validation process.
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