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ABSTRACT 

 

 

IDENTIFICATION OF LOW ORDER VEHICLE HANDLING 

MODELS FROM MULTIBODY VEHICLE DYNAMICS MODELS 

 

Sağlam, Ferhat 

M.S., Department of Mechanical Engineering 

Supervisor: Prof. Dr. Y. Samim Ünlüsoy 

 

January 2010, 200 pages 

 

Vehicle handling models are commonly used in the design and analysis of vehicle 

dynamics. Especially, with the advances in vehicle control systems need for 

accurate and simple vehicle handling models have increased. These models have 

parameters, some of which are known or easily obtainable, yet some of which are 

unknown or difficult to obtain. These parameters are obtained by system 

identification, which is the study of building model from experimental data. 

 

In this thesis, identification of vehicle handling models is based on data obtained 

from the simulation of complex vehicle dynamics model from ADAMS 

representing the real vehicle and a general methodology has been developed. 

Identified vehicle handling models are the linear bicycle model and vehicle roll 

models with different tire models. Changes of sensitivity of the model outputs to 

model parameters with steering input frequency have been examined by sensitivity 

analysis to design the test input. To show that unknown parameters of the model 

can be identified uniquely, structural identifiability analysis has been performed. 

Minimizing the difference between the data obtained from the simulation of 

ADAMS vehicle model and the data obtained from the simulation of simple 

handling models by mathematical optimization methods, unknown parameters have 



v 
 

been estimated and handling models have been identified. Estimation task has been 

performed using MATLAB Simulink Parameter Estimation Toolbox. By model 

validation it has been shown that identified handling models represent the vehicle 

system successfully. 

 

Keywords: Model Identification and Simplification, Parameter Estimation, 

Identifiability Analysis, Sensitivity Analysis, Handling Model 
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ÖZ 

 

 

YOL ARAÇLARI BASĠTLEġTĠRĠLMĠġ DOĞRULTU KONTROLÜ 

MODELLERĠNĠN ÇOKLU GÖVDE DĠNAMĠĞĠ ARAÇ 

MODELLERĠNDEN TANILANMASI  

 

Sağlam, Ferhat 

Yüksek Lisans, Makine Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Y. Samim Ünlüsoy 

 

Ocak 2010, 200 sayfa 

 

Araç doğrultu kontrolü modelleri araçların tasarım ve dinamik analizinde 

kullanılmaktadır. Özellikle araç kontrol sistemlerindeki geliĢmelerle birlikte doğru 

ve basit araç doğrultu kontrolü modellerine olan gereksinim artmıĢtır. Bu 

modellerin bazı parametreleri bilinmekte ya da kolayca elde edilebilmektedir.  

Ancak bazı parametrelerin elde edilmesi ya zor ya da pahalıdır. Bu parametreler, 

deneysel verilerden model oluĢturma olarak tanımlanan sistem tanılama yoluyla 

elde edilebilir. 

 

Bu tezde basitleĢtirilmiĢ araç doğrultu kontrolü modellerinin, bir çoklu gövde 

dinamiği programı olan ADAMS kullanılarak, karmaĢık araç modellerinin 

simulasyonundan elde edilen simulasyon verileriyle tanılanması için genel bir 

metodoloji geliĢtirilmiĢtir. DeğiĢik lastik modelleriyle oluĢturulan bisiklet modeli ve 

yalpa modeli tanılanan araç doğrultu kontrolü modelleridir. Model çıktılarının 

model parametrelerine olan duyarlılıklarının tekerlek dönüĢ açısı frekanslarıyla 

değiĢimi incelenmiĢ ve test girdisi tasarlanmıĢtır. Bilinmeyen parametrelerin tek 

olarak tanılanabileceğini göstermek için yapısal tanılanabilirlik çalıĢması 
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gerçekleĢtirilmiĢtir. ADAMS araç modelinin ve basit araç modellerinin 

simulasyonundan elde edilen veriler arasındaki farkın, matematiksel optimizasyon 

yöntemleri kullanılarak en aza indirgemesiyle bilinmeyen model parametreleri 

kestirilmiĢ ve araç modelleri tanılanmıĢtır. Parametre kestirimi iĢleminde MATLAB 

Simulink Parametre Kestirimi Araçkutusu kullanılmıĢtır. Model doğrulaması 

yoluyla tanılanan modellerin gerçek araç dinamiğini baĢarılı bir Ģekilde izlediği 

gözlenmiĢtir. 

 

Anahtar Kelimeler: Model Tanılama ve BasitleĢtirme, Parametre Kestirimi, 

Tanılanabilme Analizi, Duyarlılık Analizi, Doğrultu Kontrolü Modeli 
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CHAPTER 1 

 INTRODUCTION 

The goal of this study is to identify low order vehicle handling models from 

complex Multibody Dynamics (MBD) vehicle models. MBD vehicle models in the 

MBD software ADAMS environment are simulated; input and output data are 

recorded, and a previously determined handling model structures are identified from 

this data. Differences between the simulation outputs of the ADAMS model and the 

handling model are found and minimized by optimization. As a result of this 

optimization, unknown parameters of the model are estimated. Some of the 

parameters of handling models are easily obtainable or measurable, yet some of 

them are difficult to obtain and so they are better estimated by means of system 

identification. In particular, parameters of tire model and inertial parameters of the 

vehicle handling models are not easily obtained or accessible so they are estimated 

with system identification. Identification of an entire vehicle model is of prime 

importance for vehicle dynamics studies. Vehicle handling models are made use of 

in a variety of applications including the design of control systems; on the whole in 

the analysis and design of vehicles, vehicle components, and subsystems. Hence, 

firstly an introduction to vehicle system identification will be presented and then 

use of vehicle handling models in vehicle dynamics studies will be clarified. 

1.1. VEHICLE HANDLING MODEL IDENTIFICATION 

System identification can be defined as the building models of systems from 

experiment. When the model used in the identification process is built, values of the 

parameters in model are determined from the observed data by mathematical 
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methods and this can be defined as parameter estimation. To be able to identify the 

model, data is required. This data must be informative enough to identify model 

accurately. Thus prior to an experiment, an optimal input for use in the test must be 

designed, considering previous knowledge about the system to be identified and the 

aim of the identification. However, in some cases the designed input may not be 

practical and so there is a tradeoff between optimality and practicality. After 

determining the model structure, parameters of this model can be estimated. 

Parameters are estimated by matching the data acquired from the experiment and 

the data taken from the model. In general, parameters are estimated by minimization 

of the difference between the simulation data and the test data. After the estimation 

of the parameters, identified model is validated by examining whether the identified 

model satisfies the requirements or not (model validation). Model validation is 

performed by using a new data set or by using the portion of current data not used 

in the system identification. If the identified model does not satisfy the 

requirements, some part or parts of the identification is revised. Thus, selected 

model may be changed or even experiments may be repeated to obtain new data. 

 

Vehicle handling models are used to study vehicle handling dynamics which is 

complex due to the large number of parts, joints, and particularly nonlinear behavior 

of vehicle components. The handling model should be accurate enough to represent 

the handling behavior of the real vehicle in a reasonably wide range of maneuvers. 

Simplified low order vehicle models have certain parameters which do not directly 

correspond to components in the real vehicle. Even if the correspondence can be 

established, some of them may not be measured directly and practically, so they are 

better estimated through system identification. Sometimes parameters of the model 

and parameters of the vehicle may differ due to these simplifications even if they 

are physical. When the nonlinear characteristic of the parts or systems of vehicles 

exist, modeling becomes more intricate. By linearizing nonlinear behavior about 

some operating point, handling models may be simplified; yet this allows the usage 

of the model only within limited domains. A typical example is the cornering force 

characteristics of pneumatic tires which are highly nonlinear, and thus they are 
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difficult to model if the whole range of possible slip angles and lateral accelerations 

are to be considered. A characteristic can be linearized about some operating point 

but this limits the operating range of the tire and of the vehicle. Therefore, model 

parameters which cannot be measured or obtained easily and accurately are better 

estimated.  

 

Vehicle handling comprises lateral (y), longitudinal (x), yaw (ψ), and roll (φ) 

primary motions as shown in the Figure 1.1. 

 

 

Figure 1.1: Motion associated with vehicle handling [1] 

To be able to identify handling models, vehicles are tested and the data are acquired 

using some test hardware. Lateral, longitudinal, yaw, and, roll velocities and lateral 

acceleration are the commonly used test outputs and the steering wheel angle is the 

test input used in the identification. Longitudinal and lateral velocities are measured 

by velocity sensors and rotational velocities and accelerations are measured by 

inertial measurement units. Steering wheel input can be measured by steering wheel 

measurement system and by means of steering robots desired steering inputs can be 

applied. Also, there is need for other equipment such as data acquisition system, and 
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wheel speed measurement system. In this study, motion data is directly acquired 

from the ADAMS; yet to become the realistic, responses which are obtainable in 

real conditions are used. Using previously determined handling model structure, its 

parameters are estimated by using input-output data sets. The simplest vehicle 

handling model is the bicycle model which represents the in-plane dynamics of a 

vehicle. Generally, longitudinal velocity of the bicycle model is kept constant and 

treated as a model parameter, and two degree of freedom (DOF) bicycle model is 

obtained. Bicycle model does not include the roll motion, yet in some cases, 

particularly at high lateral accelerations, roll motion affects vehicle dynamics 

significantly and thus it should be included in the model. Another commonly used 

handling model is the vehicle roll model comprising the coupled in-plane and out-

of-plane (roll) dynamics. Tire is an important part of the vehicle and it affects the 

performance of the vehicle considerably, thus it must be modeled accurately. The 

most simple tire model used in the vehicle handling dynamics is the linear tire 

model which is accurate in a limited operating region. Nonlinear tire models are 

used to be able to represent the nonlinear characteristic of the tire, thus increasing 

vehicle‟s operating range. Physical tire models are not used in vehicle models, since 

they are mathematically complicated and increase solution times considerably. 

Instead empirical tire models are used widely by fitting curves to test data. By 

combinations of the available tire and handling models, several different 

combinations can be obtained. Note that the model used in the identification must 

be simple for computational reasons and accurate enough to represent vehicle 

dynamics. Tire parameters and some inertial parameters like yaw moment of inertia 

are difficult to obtain, so they are better estimated. Other parameters like mass of 

the vehicle, position of center of gravity can be measured accurately, so they are 

assumed to be known in parameter estimation. In the estimation of parameters 

mathematical methods such as least square parameter estimation method and 

maximum likelihood parameter estimation method are commonly used. 

Optimization algorithms like nonlinear least square and genetic algorithm 

optimization are used within these methods. Each algorithm has its own advantages 

and disadvantages and is appropriate for a specific problem. Among these methods 
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genetic algorithm has become popular recently, since it is a global optimization 

method and it does not require differentiation. Details of these methods will be 

given in chapter 3. After the parameters are estimated, model validation is 

performed by another data set. To make the identification task easy, model may be 

simplified but in this case accuracy may be lost. When the complexity of the model 

is increased, accuracy increases but the computational cost also increases. In 

summary, vehicle system identification is a complex and difficult problem; in 

particular identification of the tire model is a very difficult problem due to nonlinear 

behavior of the tire. 

 

In this study data used in the identification process is obtained from 

ADAMS/Chassis simulation and accordingly various simulations with different 

inputs can be performed, which is restricted in real tests. Steering input and the 

longitudinal velocity are the inputs used in the simulations. These inputs are 

determined according to the analysis and procedures explained in the following 

chapters. In ADAMS/Chassis steering input can be defined by using various 

mathematical functions which increases the flexibility of the simulations and by this 

way various virtual test scenarios can be observed. To design steering input and to 

determine the longitudinal velocity used in the simulation some a priori knowledge 

about the vehicle system and the handling model structure to be identified is 

necessary. The methods for generating optimal input design will be explained in 

detail in chapter 3. After getting the data from ADAMS, parameters of the handling 

models are estimated using mathematical tools by minimizing the difference 

between model output and ADAMS output. After the handling model is identified, 

it is validated by using another data set. Handling model identification algorithm is 

summarized in Figure 1.2. 
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Figure 1.2: Handling model identification diagram 

In this study, MATLAB Simulink Parameter Estimation Toolbox is used for 

parameter estimation. By this toolbox parameters of any model constructed in 

Simulink environment can be identified and there is no necessity about the specific 
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model structure. Cost function to be minimized is formed directly by Simulink. 

Acquired data from ADAMS is loaded in the MATLAB workspace and is called by 

the blocks in the Simulink. Cost function is formed as the difference between the 

acquired data and the simulation data by Simulink. This cost function is then 

minimized by some conventional and advanced optimization algorithms which are 

available in MATLAB. All these steps are performed in MATLAB‟s graphical user 

interface (GUI) which increases the practicality and usability of the toolbox. In 

summary signal processing, model construction, parameter estimation, and model 

validation steps are performed in this toolbox.  

1.2. USAGE OF VEHICLE HANDLING MODELS 

Model of a system can be defined by the relationship among the inputs and the 

observed response signals of the system. Mathematical models are the most 

commonly used model type in advanced applications of engineering and science. 

They describe the relationships among the system variables by means of 

mathematical tools, and they are used in simulation and prediction. Mathematical 

models may be developed via two ways. One way is first to part the system into 

subsystem and applying physical laws and well established relationship to these 

subsystems, and then combining these subsystems mathematically. The other way is 

building mathematical models based on the observations and experimentation 

which is also called system identification [2]. 

 

Vehicle models are built by the combination of the two methods explained. By 

using physical laws such as Newton‟s second law, and well established relationship 

such as tire force and slip angle relationships vehicle models can be built. However, 

all of the parameter values of the constructed model may not be accessible and 

accordingly they are estimated via system identification. 

 

Mathematical vehicle handling models are used in the analysis of the vehicle 

handling dynamics and the design of vehicle systems and vehicle system 

components. They reinstate dangerous and expensive tests and experiment by easy, 
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flexible, and inexpensive simulations Usage of these models in the vehicle 

dynamics studies can be explained below shortly. 

1.2.1. ANALYSIS OF VEHICLE HANDLING DYNAMICS 

Analysis of the vehicle handling dynamics can be fulfilled via tests. There are some 

standard vehicle handling tests such as lane change test, step steer test and these 

tests necessitate certain specifications. These specifications can be satisfied to some 

extent considering the safety of the test pilot, safety of the car which is tested or the 

test pilot cannot perform exactly the desired operations. To illustrate, while 

performing step steer test, vehicle longitudinal velocity must be limited at some 

value for safety. Nonetheless, when the vehicle models are simulated, these tests 

specifications can be satisfied perfectly and extreme conditions which cannot be 

reached during tests can be observed. For instance in ADAMS/Chassis there are 

several vehicle handling tests which have certain objective to observe handling 

dynamics. By using these models effects of the modification in the subsystem, 

component, or change in the model parameters can be observed. As opposed to 

models, performing real tests for observing those changes and modifications on the 

handling are costly and sometimes unattainable.  

1.2.2. DESIGN OF VEHICLE COMPONENTS AND VEHICLE 

SUBSYSTEMS 

The other common use of the vehicle handling models is in the design and 

development of vehicle subsystems, vehicle components, and integration of these 

subsystems and components to vehicle. In particular with the developments in the 

electronic systems vehicle designers began to design electronic control systems to 

improve safety, stability and performance of the vehicles. Antilock braking system 

(ABS), electronic brake distribution system (EBD), traction control system (TCS), 

and active yaw control system (AYC) are some examples for vehicle safety 

systems. Vehicle handling models are used in development and design phase of 

these control systems. Therefore, estimation of the unknown model parameters is of 

primary importance for these applications.  



9 
 

 

An extensive discussion on the use of vehicle handling models in vehicle dynamics 

can be found in the study of Arıkan [3]. 

 

The linear bicycle model is a well known vehicle handling model and it is 

commonly used in the analysis of the vehicle handling dynamics. It is a simple 

model but it represents the planar dynamics of the vehicle successfully by providing 

two important variables yaw velocity and lateral velocity. Linear bicycle model is 

valid for low slip angle and low lateral accelerations. Validity of the bicycle model 

can be extended by using nonlinear tire models and the so called nonlinear bicycle 

model is obtained. Despite the improved accuracy of the nonlinear bicycle model 

with respect to the linear bicycle model, increased number of parameters of the 

nonlinear bicycle model is a disadvantage with respect to the linear one. 

 

Another model commonly used in vehicle dynamics research is the vehicle roll 

model. Bicycle model does not consider the roll motion, yet at high lateral 

accelerations roll motion affects the planar motion by altering the generated tire 

forces and also by directly affecting the planar dynamics due to coupled roll and 

planar dynamics. There are various studies [4, 5] using vehicle roll model in the 

design and integration of vehicle control system.  

 

In summary, vehicle handling models are crucial for analysis and design of a 

vehicle, vehicle subsystems, and vehicle components and thus they must be 

thoroughly understood. 

1.3. ADAMS/CHASSIS 

ADAMS is the one of the world‟s most widely used MBD mechanical simulation 

software. With ADAMS various models of systems can be built, simulated, 

improved, and their dynamic behavior can be examined in detail. 
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ADAMS/Chassis is one of the modules of ADAMS and it provides an analysis 

environment for automotive applications by means of standard model types and two 

analysis types which are full vehicle analysis and half vehicle analysis and post-

processing. ADAMS Chassis has four work modes which are build mode, test 

mode, review mode, and improve mode. In build mode models can be edited and 

system configuration can be changed. Subsystem and model types can be changed, 

optional subsystems can be added or removed and the various parameters of the 

vehicle model can be changed in build mode. In test mode vehicle models can be 

built and simulated [6]. 

 

In test mode there are various standard vehicle tests such as [7]; 

 

- braking analysis,  

- handling analysis,  

- durability analysis, 

- ride analysis.  

 

In handling analysis there are also various standard simulations some of which are 

[7]; 

 

- constant radius, 

- cross wind,  

- fish hook,  

- step steer  

- swept sine 

- lane change. 

 

In addition to these standard vehicle tests, various vehicle tests can be built, and 

appropriate control algorithms can be designed. In these simulations steering input 

parameters which are steering frequency and steering amplitude and test variables 

which are velocity and accelerations can be set easily in GUI. After the model is 
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analyzed in test mode, analysis results can be visualized in review mode by using 

ADAMS/Postprocessor. Analysis plots and animation can be seen by means of 

ADAMS/Postprocessor. Models can be refined with the help of ADAMS/Insight in 

the improve mode using some advanced optimization tools [6]. 

 

In this study, data is taken from the ADAMS/Chassis simulation and this data is 

treated as a real test data. Full vehicle models of ADAMS/Chassis have nearly 

hundred of degrees of freedom and they comprise the front and rear suspension 

subsystems, steering subsystem, body subsystem, and tire subsystems. They have 

also optional subsystems like loading, brake, and power train subsystems. In 

ADAMS/Chassis there are various tire models with different complexity from Fiala 

tire model to Magic Formula tire model. Among these tire models PAC 2002 [8] 

tire model is one of the most complex tire model. This tire model is the extended 

version of the Magic Formula tire model. Therefore, ADAMS/Chassis vehicle 

models are the most representative model of the real vehicle and they can be used to 

acquire simulation data instead of making tests with the actual vehicle to acquire 

data. An example ADAMS/Chassis vehicle model is shown in Figure 1.3. 

 

 

Figure 1.3: ADAMS/Chassis vehicle model [7] 
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1.4. OUTLINE 

In chapter 2, literature survey about vehicle handling system identification is given. 

Types of handling models to be identified, their level of complexity, identification 

algorithms, data set, and model validation are steps to be examined in literature 

survey. 

 

In chapter 3, system identification and its steps are explained in detail. Firstly, the 

design of the test input is explained and then the identification algorithms are given. 

Linear and nonlinear optimization methods, their algorithms, advantages and 

disadvantages are all explained in some detail. 

 

In chapter 4, vehicle handling models and tire models are developed. Vehicle 

models include 2 DOF bicycle model, 3 DOF linear roll model, 1 DOF roll model, 

and finally 3 DOF nonlinear roll model. Linear tire model and Magic Formula tire 

models are used with the vehicle model for identification purposes. 3 DOF 

nonlinear roll model is used with the Magic Formula tire model. 

 

In chapter 5, to examine how the model responses change with the unknown 

parameters, a detailed sensitivity analysis is performed in the frequency domain and 

the most appropriate frequency range of the steering input and the appropriate 

longitudinal velocity are found.  

 

In chapter 6, a detailed structural identifiability study is fulfilled. Data is obtained 

from the simulation of the model to be identified, and the model is identified 

starting with the nominal model parameters. According to the results local 

identifiability of the model is examined. Finally, the handling models are identified 

and using another data set from ADAMS/Chassis, identified models are validated. 

 

In chapter 7, discussion, conclusion, and future work are given. 
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CHAPTER 2 

 LITERATURE SURVEY 

2.1. INTRODUCTION 

Studies about identifications of vehicle handling models are vital in vehicle 

dynamics area owing to their extensive use in analysis and design of vehicle, and 

vehicle subsystem. Especially, with the developments in the electronic systems 

vehicle designers began to design electronic control systems to improve safety, 

stability, and performance of the vehicles and so necessity to vehicle handling 

models increased. Thus a large number of studies are reported in journal and 

conference articles and graduate thesis in literature about this topic. These studies 

were carried out due to a gap in handling model identification and thus those studies 

furnish valuable information with regard to the stages of the handling model 

identification starting from the data collection and ending with the model validation. 

 

In this chapter, general steps and procedure for handling model identification 

performed in vehicle dynamics area will be explained. Design of optimal test or 

simulation input, input-output data, vehicle handling model type, estimated 

parameters, and parameter estimation algorithms will be explained. To start system 

identification a priori knowledge is required to select a model structure. After the 

selection of the model structure data is required and then system identification starts 

with experiment to observe the variation of system variables. Since the model is 

identified from the data acquired from the experiment, quality of the data is very 

important and the input and output data must be selected carefully. In handling 

model identification, steering input is used as the test input and thus it must be 
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designed before the test. Estimation of the parameters of the selected model is then 

performed and with the model validation using different data sets or a different part 

of the data used in the identification, handling model identification ends. All these 

part are inspected in these papers in a detailed manner. 

 

In vehicle dynamics area there are several handling and tire models used. The 

simplest handling model is the bicycle model and the most simple tire model is the 

linear tire model. However, these models have limited use and to remove these 

limitations, vehicle roll models and nonlinear tire models are also used. As the 

complexity of the model increases, its accuracy also increases; yet computational 

effort to identify those models also increases. Therefore, there is a trade-off between 

model complexity and computational loads. The selected models should be the 

simple for the computational reasons and also should be complex enough to capture 

the real-life behavior of the vehicle.  

2.2. LITERATURE SURVEY 

Vehicle system identification comprises the parts which are data acquisition, model 

selection, parameter estimation, and model validation. In literature there are various 

specific methods and solutions to handling model identifications. Arikan [3] has 

studied the identification of bicycle model and three DOF handling model. Before 

making the vehicle test, a detailed structural identifiability analysis for different 

sensor and sensor set has been performed for the bicycle model and global 

identifiability of the model with certain parameter set has been determined. Then 

data have been acquired from the vehicle tests and unknown parameters of the 

bicycle model which are position of center of gravity, front and rear cornering 

stiffness, yaw moment of inertia, and sensor locations have been estimated with 

different sensor sets using genetic algorithm. Identified models have been validated 

by the data used in identification and also by another data set. Steering input with a 

wide frequency range has been used in the vehicle tests. After the identification of 

the bicycle model, three DOF vehicle roll model has been identified. Estimated 

parameters of the roll model have consisted of tire parameters, inertia parameters, 



15 
 

and distance parameters. Local structural identifiability of the model has been 

studied and the unknown parameters have been estimated from the simulated data. 

The main contribution of this study is that a detailed global identifiability of the 

bicycle model has been performed and parameter sets which can be identified 

uniquely from different sensor sets have been determined. 

 

Bolhasani et al. [9] has estimated the parameters of vehicle handling model using 

the genetic algorithm. Data used to estimate handling model parameters have been 

acquired from the simulation of a complex vehicle model in ADAMS. For 

simulation in ADAMS environment, a combined sinusoidal and step steering angle 

has been used as an input to attain both the transient and steady state responses of 

the vehicle. Simulation has been performed at the longitudinal velocity of 50 kph 

with a low frequency steering input. Three vehicle responses namely the lateral 

velocity, yaw velocity and roll angle together with the steering angle have been 

used in the identification. In this paper a three DOF vehicle handling model 

comprising lateral, yaw, and roll degrees of freedom, with Fiala tire model which 

calculates the cornering force as a function of slip angle and vertical load on the 

tires, has been used. Front and rear cornering stiffness of Fiala tire model, yaw 

moment of inertia, roll moment of inertia, roll damping, and roll stiffness are the 

unknown parameters. Identified model has been validated by using other two data 

sets. Validation data has been obtained from the slalom test and single lane change 

maneuver in ADAMS. In slalom test, the frequency of the steering angle is taken to 

be 0.1 Hz. The longitudinal velocity is assumed to be 50 kph and the longitudinal 

velocity in single lane change maneuver is set at 60 kph. In this study the steering 

input has a very low frequency which does not excite the vehicle motions 

appropriately. Also, friction coefficients between the tire and the road have been 

assumed to be known even though they may not be known easily. However, tire and 

vehicle model used in the identification represent the vehicle handling dynamics 

completely for a wide operating range. 
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Allaum et al. [10] have identified the parameters of the nonlinear vehicle handling 

model by using least square methods. They have used three DOF handling model 

comprising the longitudinal, lateral, and the yaw motions. Data used in the 

identification have been taken from the vehicle test in which firstly vehicle is 

accelerated to 5.5 m/s longitudinal velocity and then a constant wheel steering input 

of 6.4
o
 has been applied. Inputs of the test are the traction force and the wheel 

steering angle, and the outputs of the test are the forward speed and the yaw 

velocity. The identification process is started by sensitivity analysis based on first 

order standard sensitivity functions in time domain which allows the determination 

of the effects of the parameters on system variables. After sensitivity analysis, they 

have performed the identifiability study to show that estimated parameters are 

structurally globally identifiable. Errors between the observed data and the 

estimated data of the longitudinal velocity and the yaw velocity have been used to 

construct a quadratic objective function. Estimated parameters are mass and yaw 

moment of inertia of the vehicle, distance between the center of mass and the front 

and rear track, center of gravity height, front and rear cornering stiffness, and 

aerodynamics and rolling resistance ratio. Some assumptions which relate the 

vehicle parameters to each other have been made and then identifiability study has 

been performed. In this paper roll motions of the vehicle has not been included in 

the model and also linear tire model has been used and thus the used handling 

model has limited to low steering angle inputs. Also some parameters such as mass 

and the distances between center of mass and the track width have been treated as 

the unknown parameters to be estimated, even though they can be measured easily. 

However, since the model used in the identification comprises longitudinal 

dynamics, vehicle tests may be performed with a greater flexibility that is there is 

no need to keep the longitudinal velocity at a constant value  

 

Abdellatif et al. [11] have studied the nonlinear identification of vehicle‟s coupled 

lateral and roll dynamics in their study. Vehicle handling model coupling the lateral 

and roll dynamics and a linear non-stationary tire model have been used in the 

vehicle identification and thus conventional simplifications such as stationary tire 



17 
 

model and pure lateral dynamics model have been removed. Coupling the lateral 

and roll dynamics has been performed by adding the effects of the roll motion on 

the tire slip angles. However, by this way effects of the roll motion to the vertical 

load on the tires, and thus effect of roll motion to lateral dynamics have been 

disregarded to simplify the coupling. After building the model, identifiability study 

of the roll dynamics submodel and whole coupled model have been examined in 

this study. After these steps, the authors have studied the effects of the parameter 

and parameter changes on the response of the system by performing sensitivity 

analysis in the frequency domain. Accordingly, the optimal frequency range of the 

steering input, in which the parameter estimation has been performed, has been 

found as 0-2 Hz. After the sensitivity study, vehicle tests have been performed at 

different longitudinal vehicle speeds. A frequency sweep steering input covering 

frequencies up to 2.2 Hz has been used as the test input. Steering wheel angle, 

lateral acceleration, yaw velocity, and the roll angle have been used in the 

parameter estimation. Loss function have been formulated by taking the difference 

between the measured and the estimated data and using the nonlinear least square 

algorithm parameters have been estimated. In this study authors have indicated that 

as the interaction between vehicle‟s lateral and roll dynamics have been neglected, 

estimated parameters change with different operating points. To illustrate the 

authors have showed that estimated yaw moment of inertias are different for 

different vehicle longitudinal speeds for the non-coupled model. Conversely, those 

values are nearly the same for different longitudinal values for the coupled models. 

This observation is important for handling model identification. Moreover 

considering the transient effects in tire model is another contribution of the study 

which removes the steady state steering angle limitations.  

 

Massel et al. [12] have studied the identification of the cornering stiffness 

parameters. A linear static model derived from the one track model and vehicle side 

slip angle model together with the linear tire model has been used for identification. 

Online estimation of the cornering stiffness parameters have been performed by 

minimizing the quadratic error functions derived by taking the difference of the 
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measured data and model output data by linear least square approach. The method 

presented in this paper has been tested with the data taken from the one track model 

and from the simulation of the virtual vehicle model in CARSIM, a MBD software. 

Slalom drive simulations with a steering frequency of 0.2 Hz for one track model, 

0.5 Hz and 0.7 Hz for the CARSIM model at the longitudinal velocity of 60 kph for 

the one track model and 80 kph for the CARSIM model have been performed. 

Steering angle, yaw velocity, and lateral acceleration have been used in the 

identification as input-output data. The results have showed that the models which 

describe the lateral vehicle dynamics can be adapted by the identified cornering 

stiffness according to different driving conditions and the adapted model have given 

better response than the unadapted model. As shown in this paper, using an adaptive 

identification improves the estimation results. 

 

Peng et al. [13] have studied the cornering stiffness estimation based on the vehicle 

lateral dynamics. Bicycle model together with linear tire model has been used in the 

estimation process to estimate the front and rear cornering stiffness. Estimation 

process has been divided into two groups; the time domain methods which have 

four methods and, the frequency domain (i.e. transfer function) method. In the 

former the bicycle model equations have been used either directly or in a various 

combinational forms and the later has used the transfer function between yaw 

velocity and steering angle to estimate cornering stiffness values. In both methods 

vehicle parameters mass, distance between center of gravity and front and rear 

axles, and yaw moment inertia have been assumed to be known even though the 

yaw moment inertia may not be determined so easily. In the first method vehicle 

measurements, namely steering wheel angle, yaw, lateral, and longitudinal velocity 

together with the time derivative of lateral velocity and yaw velocity are required. 

In the second method the transfer function between the yaw velocity and the 

steering input is derived. Then a least square fit is applied to obtain the transfer 

function parameters. After the transfer function is obtained, cornering stiffness 

values can be calculated from the transfer function. The performance of the 

methods used in this study has been tested by using the data acquired from the 
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bicycle model with nonlinear tires and CARSIM software, and it has been shown 

that two methods have better performance and thus they have been used to identify 

cornering stiffness values from real test data. The results have no indication with 

regard to indicate which of the two methods is more accurate. To sum up, in this 

study five methods have been used to get cornering stiffness values and the two 

methods have been found to shown better performance than the rest. This study has 

proposed methods to obtain cornering stiffness values by easy and straightforward 

numerical methods. 

 

Wesemeier et al. [14] have studied the identification of vehicle parameters using 

stationary driving maneuvers. Using the static gain of the one track model, special 

combinations of the parameters have been identified. These parameter combinations 

include the front and rear cornering stiffness values, vehicle mass, and the distance 

between the center of gravity and the front and rear tracks. Firstly three static gains 

which are the lateral acceleration gain, yaw velocity gain, and the side slip gain 

have been found by using one track model and then parameters of the static gains 

have been estimated by using least square method from the test measurements. 

Certain physical parameter combinations which can be determined from these 

estimated static gain parameters have been determined. In this study lateral 

acceleration, yaw velocity, side slip velocity, longitudinal velocity, and the steering 

angle data have been used for identification. These data have been taken from the 

constant radius vehicle test which has been performed at different longitudinal 

vehicle speeds to be able to obtain a wider range of operating points. Then two 

parameter combinations have been used in the identification. One of them 

comprises two cornering stiffness values and the position of the center of gravity, 

and the other comprises only the two cornering stiffness values. One of the missing 

points of this study is that yaw moment of inertia cannot be estimated by the 

methods given in this study. However, yaw moment of inertia cannot be determined 

or measured easily and thus it is better estimated by parameter estimation. One of 

the main contributions of this study is that it does not require an excitation with 
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certain frequency range which is difficult in real life. However, this has the 

disadvantage that the input is not rich enough to identify a larger set of variables. 

 

Abdellatif et al. [15] have studied the modeling and identification of nonlinear 

lateral dynamics. Conventional simplifications have been removed by coupling 

lateral and roll dynamics and by using nonstationary and nonlinear tire model. 

Lateral and roll dynamics have been coupled by adding the effects of the roll 

motion on the slip angles and simplified Magic Formula tire model has been used as 

the nonlinear tire model. After the model construction, unknown physical 

parameters have been estimated by using nonlinear least square formulation. Cost 

function has been formulated using the lateral acceleration, yaw velocity, and the 

roll angle measurements. This study has examined the influences of the roll motion 

on the lateral dynamics. These influences are important especially for vehicles with 

high center of gravity and for all vehicles with low speed. An important 

examination given in this study is that the influence of roll motion on the lateral 

dynamics can be neglected for velocities above nearly 60 kph for mid-size and 

compact vehicles. For vehicles with high center of gravity and for vehicles at low 

speeds ignoring roll motions leads to estimated parameters to be velocity dependent. 

As a result general validity and the practicability of the proposed model have been 

proved by making tests with several vehicles in this study. 

 

Ryu [16] has studied the parameter estimation of the vehicle handling model in his 

study. Linear bicycle model and the one DOF vehicle roll models have been used in 

the estimation process. Vehicle states have been estimated from Global Positioning 

System/Inertial Navigation System method and these states have been used in the 

estimation. Firstly, bicycle model parameters have been estimated by using least 

square and total least square algorithms using the lateral velocity and yaw velocity 

responses together with the steering angle and then the roll model parameters have 

been estimated using least square algorithm using the roll rate, roll angle, and the 

lateral acceleration measurements. Different sets of parameters have been selected 

to be the unknown parameter sets of the bicycle model to be estimated. These are; 
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- front and rear cornering stiffness values, 

- front and rear cornering stiffness values, and position of center of gravity, 

- front and rear cornering stiffness, and yaw moment of inertia. 

 

In this study it has been observed that the estimation of the parameter sets 

consisting position of center of gravity and yaw moment of inertia necessities a 

sufficiently rich excitation. When the excitation is not adequate, estimated 

parameters fail to converge to correct values, yet understeer gradient has been 

estimated correctly regardless of excitation. After the bicycle model parameters 

have been identified, parameters of the one DOF roll model which are the roll 

stiffness and roll damping have been estimated. 

 

Bolzern et al. [17] have studied the estimation of nonlinear cornering forces from 

road tests. Two DOF bicycle model with the Magic Formula tire model has been 

used to estimate unknown parameters. To be able to use bicycle model some 

assumptions have been done. These are, 

 

- longitudinal slip and camber angle have been neglected, 

- roll dynamics has been neglected, and 

- cornering force is only a function of the slip angle.  

 

Unknown parameters to be estimated have been selected as the Magic Formula tire 

parameters like the peak value, curvature factor, and relaxation length; other 

parameters of the bicycle model have been treated as the known parameters. 

Extended Kalman filter has been used to estimate unknown parameters. Data used 

in the identification have been acquired from the road test performed at a 

longitudinal velocity of 100 kph and with 100 degree steering wheel angle which is 

severe enough to cover a wide range of operating points. Lateral acceleration, yaw 

velocity, side slip angle, and the steering wheel angle have been acquired during 

test. Using this data set, parameters of the tire model and the relaxation length have 
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been estimated. This study has used the nonlinear and transient tire model and thus 

wide operating points have been covered, yet it has not consider lateral load transfer 

which is required for proper use of Magic Formula tire model which limits the 

applicability of the handling model. Moreover, the yaw moment of inertia which is 

difficult to measure or calculate has been assumed to be known. 

 

Yu [18] has studied the parameter identification of buses in his study. Two DOF 

linear bicycle model has been used in the identification. Step steer responses of the 

test bus at 15 mph and 20 mph have been acquired to identify unknown bus model 

parameters which are the front and rear cornering stiffness values, and the yaw 

moment of inertia. Lateral acceleration of the bus has been kept below 0.2g to 

ensure linearity of the bicycle model. In this study, when the responses of the model 

and the responses of the identified model are compared, it has been observed that 

responses from the model are ahead of the experimental data for some time. The 

author thinks that this discrepancy is most probably due to neglecting tire lag in the 

vehicle model. 

 

Cabrera et al. [19] have developed a method to determine the Magic Formula tire 

model parameters by using genetic algorithms. The cost function has been formed 

as the sum of the squared difference between the tire test measurement data and the 

Magic Formula model data. Parameters of the Magic Formula tire model for the 

pure longitudinal and lateral slip conditions and for the combined slip conditions 

have been estimated from pure lateral and longitudinal forces and combined forces. 

In this study, initial value problem of the conventional optimization algorithms has 

been prevented by using evolutionary algorithms which has provided flexibility for 

parameter estimation. 

 

Oosten and Bakker [20] have studied the determination of the Magic Formula 

parameters from the out of tire measurement data produced by the Delft tire 

measurement trailer. Tire forces acting between tire and road have been measured 

for different conditions. These measurements have been performed under pure 
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cornering with slip angle from -20 deg to 20 deg for different vertical load and 

camber angles, and under braking conditions from free rolling to total locking for 

different side slip angles. Then regression techniques have been applied to 

measurement data and the parameters of the Magic Formula tire model have been 

estimated. The authors have shown that for pure slip conditions estimation of the 

Magic Formula tire parameters is not difficult, yet for combined cornering and 

braking it becomes difficult. 

 

Cadiou et al. [21] have proposed two methods for the identification of Magic 

Formula tire model parameters from vehicle tests. One of these methods is 

estimation based on simulation and the other is the estimation based on observation. 

Estimation based on simulation method uses the measured data to construct the cost 

function with the unknown Magic Formula basic tire parameters by simulation. By 

minimization of this cost function tire model parameters have been estimated. 

Trajectory of the vehicle is used as the data in the system identification. Estimation 

based on observer method uses an observer to reconstruct vehicle dynamics and 

hence tire side forces have been estimated. Vehicle parameters other than tire 

parameters have been assumed as the known. This study contributes to literature by 

identifying the Magic Formula tire model. 

 

In this thesis study different types of handling models starting from the simple 

linear bicycle model and ending with three DOF nonlinear handling model using the 

Magic Formula tire model have been identified. To determine whether the handling 

model can be identified uniquely or not, a detailed structural identifiability analysis 

has been performed. To show the variation of sensitivity of the system outputs to 

unknown parameters with the steering frequency, a detailed sensitivity analysis has 

been performed and the input frequency has been specified accordingly. For the 

three DOF nonlinear handling model identification, sensitivity of the tire lateral 

force to Magic Formula tire model parameters with tire slip angle has been obtained 

and the practical identifiability of the Magic Formula tire model parameters has 

been examined. By this way the vehicle maneuver appropriate for nonlinear 
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handling model identification has been designed. Since data is taken from the 

simulation of the ADAMS model, different type of maneuvers can be easily 

acquired and maneuvers with different types of input parameters can be used and 

compared in the estimation process. Moreover, identified cornering force of the 

Magic Formula tire model has been compared with the real tire model of ADAMS 

model and validity of the model has been shown.  

 

In the literature of vehicle handling model identification mostly bicycle models 

have been studied and focus of general consideration has been the identification of 

tire cornering forces. However, bicycle models have limited operating range due to 

assumptions made in their derivation. At higher lateral acceleration and at higher 

slip angles bicycle model cannot be used accurately. Lateral vehicle dynamics is 

coupled with the roll dynamics and at high acceleration lateral dynamics is affected 

by the roll motion considerably and therefore roll motion should also be modeled. 

As will be explained in chapter four in detail, pneumatic tire has highly nonlinear 

characteristic such that modeling of them is difficult. To be able to comprehend 

complete vehicle handling dynamics for wide operating ranges, use of nonlinear tire 

models is inevitable. Cornering force characteristic of the tire depends on the slip 

angle and vertical load on it mainly and thus vertical load on tire should also be 

included in the model. The identification of nonlinear tire models requires advanced 

test setups which are very costly. However, with road tests vehicle structural 

parameters and nonlinear tire parameters can be estimated to some extent using 

commercially available sensors and devices. In the literature there are only a limited 

number of studies about the identification of nonlinear roll model together with 

nonlinear tire model and the full potential of the approach has not yet been utilized.  

 

In this thesis study different handling models starting from the simplest bicycle 

model and ending with nonlinear roll model with Magic Formula tire model have 

been identified. In particular identification of different nonlinear tire models with 

standard vehicle tests have been studied and Magic Formula tire model has been 

identified with reasonable success.  
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CHAPTER 3 

 SYSTEM IDENTIFICATION AND PARAMETER 

ESTIMATION 

3.1. INTRODUCTION 

The construction of model from experimental data that is system identification 

involves three basic elements which are data, model set, and determination of the 

best model. To be able to obtain data the designed experiment must be performed. 

By using a priori knowledge, by modeling using some physical laws or well known 

relationship, or by using standard model types, the model set used in the 

identification is determined. Then the best model is selected according to some 

criteria based on how the model reproduces the measured data. After these steps 

selected model is validated to show whether it satisfies the requirements or not that 

is whether it is good enough or not. A model cannot be defined as the final and true 

representation of the system rather it can be accepted as good enough for certain 

aspects one interested in. If the selected model does not satisfy validation tests some 

parts of the system identification process are revised. The model may not pass 

validation tests due to some reasons which can be summarized as: Numerical 

procedure may fail, criterion may not be well determined, the model set may not be 

appropriate to represent the system, or the data may not be informative enough to 

select model [2].  

 

The system identification loop is illustrated in Figure 3.1 
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Figure 3.1: System identification loop [2] 

The first step in the system identification is the experiment design performed by 

using a priori knowledge about the system and the aim of study. Model sets used in 

the identification are also selected based on the a priori knowledge, identification 

task, and data gathered from experiment [22]. Equivalency of the model and the 

system is commonly expressed in terms of a scalar cost function which quantifies 

equivalency of the model output y and system output z [22]: 

 

( , )J J y z  (3.1) 
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and this equivalency is normally expressed as a weighted sum of the squared 

differences between z and y. Generally, different model structures may be selected 

which leads to problem complexity. Instead, models M
*
 that have the same structure 

but having different values of parameters θ are selected [22]: 

 

 * ( )M M   (3.2) 

 

Optimum parameters of this model minimizing the cost function can be found by 

optimization methods and thus system identification is reduced to parameter 

estimation [22]. Now details of system identification process will be given starting 

from the experiment design, first step of system identification. 

3.2. EXPERIMENT DESIGN 

Experiment design is the first task fulfilled in the system identification. It consists 

of several tasks some of which are the determination of input and output signals, 

their measurement, and designing input. Since models are identified based on the 

data gathered from experiment, quality of these data are very crucial for accurate 

identification. Therefore, experiment design should be conducted thoughtfully so as 

to attain the informative data. 

 

Before making an experiment input-output signals used in identification should be 

determined so that required instrumentation is placed which means that sensors 

which measures the input and output are placed on the experimental setup. Input 

used in the experiment has a consequential influence on the output and thus on the 

identification. Operating points, parts, and the modes of the system are excited by 

the input and thus its characteristic such as frequency content, amplitude, shape, and 

duration should be well determined. Inputs used in the experiment should be 

informative enough that is it should excite the system modes completely. While 

designing experiment practical constraints should also be considered to satisfy 
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model assumptions. To illustrate, input amplitude and frequency may not be very 

high, sensors may be limited, and so on [22]. 

 

In this study, simulation data taken from ADAMS vehicle model is treated as test 

data and this data is used in identification, yet practical constraints faced during real 

vehicle test will be considered while making ADAMS simulations to become 

realistic.  

 

Hardware Used in the Vehicle Handling Test  

 

Sensors, data acquisition system, and some specialized equipment are used in the 

vehicle tests. 

 

- Data acquisition system: It is used to acquire data during experiments. 

 

 

Figure 3.2: Data acquisition system [23] 

- Velocity Sensors: Lateral velocity and longitudinal velocity are measured by 

optical velocity sensors. 
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Figure 3.3: Optical velocity sensor [24] 

- Inertial Measurement Units (IMU): Accelerations and rotational velocities are 

measured by inertial measurement units 

- Steering Robot: Desired steering angle can be applied to the vehicle by steering 

robot. 

 

 

Figure 3.4: Steering robot [25] 
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- Steering Wheel Measurement: Applied steering input is measured by steering 

wheel angle measurement system.  

 

 

Figure 3.5: Steering wheel measurement [26] 

Input Design 

 

Input used in the experiment has a consequential influence on the output and thus 

on the identification. Inputs used in the experiment should be informative enough 

that is it should excite the system modes completely. 

 

Input used for system identification can be classified into three categories; first of 

which is general purpose input, second of which is optimized input, and third of 

which is advanced test input. General purpose input is designed assuming that there 

is no a priori information about the system and so the objective is to excite the 

system over a broad frequency range that is general purpose input has flat power 

spectrum over a defined frequency range. Frequency sweeps, multisine, and 

impulse inputs are used for this purpose. Design of optimized input is performed by 



31 
 

using a priori information about the system. Square wave input used to excite the 

system at its natural frequency is in this category. In advanced test input, not only 

the test input is optimized but also its first and second derivative are also taken into 

consideration [27]. 

 

Data information content of the input signals can be quantified by signal to noise 

ratio, and for good identification signal to noise ratio must be high. Moreover, data 

information content of the input signals can be determined by quantifying the 

sensitivities of the model outputs to model parameters. The input that maximizes 

these sensitivies is selected as the best input. When the sensitivities are high, small 

changes in the model parameters bring about large changes in the outputs, and thus 

correct parameter values can be estimated that minimizes the difference between the 

model outputs and the measurement data. On the other hand, when the sensitivity 

values are small, changes in the parameters will not cause considerable effects in 

the outputs and thus different parameter values minimizing the difference between 

the model outputs and the measured outputs can be estimated. For a multiple output 

system the information content in the data can be quantified by a matrix which is 

called the information matrix [22]. For a parameter vector  the information matrix 

[M] is [22], 

 

   
1

1

T

N
i i

i

y y
M R

 

 



 


   
    
   
    

  (3.3) 

 

When [R] is the diagonal matrix, diagonal elements of [R]
-1

 scales the output 

sensitivities according to the inverse of the individual output measurement noise 

variances and N is the number of data samples and y is the output. If the sensitivities 

are large and are uncorrelated with each other, then outputs are strongly dependent 

on each parameter distinctly and thus parameter values can be estimated accurately 

by minimizing the difference between the model output and measured output. The 

information matrix gives valuable information about the parameters [22]. Inverse of 
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the information matrix is the theoretical lower limit which is also called Cramer-

Rao lower limit or the dispersion matrix for the estimated parameter covariance and 

is given by [22], 

 

   

1

1 1

1

T

N
i i

i

y y
M R Cov 

 


 


 

 


    
           
           

  (3.4) 

 

Calculations of the information matrix and dispersion matrix require a priori 

knowledge about the system and model. There are also some practical constraints 

on input design. Normally experiment with a longer time and large amplitude 

produces more information yet due to practical reasons experiment time and input 

amplitude are limited [22]. 

 

Swept sine input also called chirp sine input is a sine input frequency of which 

increases or decreases with time. Mathematical representation of the linear swept 

sine input is [22], 

 

 0 0( ) sin( ) sin
2

f

t
u t A f t A f f f t

T

  
     

  
 (3.5) 

 

where  

 

A: amplitude,  

f0: initial frequency 

ff: final frequency 

T: experiment duration 

 

The main advantage of the frequency sweep input is that it covers a frequency band 

so that data taken by this input is informative [22]. Figure 3.6 and Figure 3.7 show 

frequency sweep input and its power spectrum respectively. 
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Figure 3.6: Frequency sweep input 

 

Figure 3.7: Power spectral density of frequency sweep input 
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Another general purpose input is the multisine input which covers a set of sine 

waves. Mathematical representation of this input is, 

 

1

( ) sin( )
m

i i i

i

u t A f t 


   (3.6) 

 

where m is the number of inputs, f is the frequency, ø is the phase, and A is the 

amplitude. Similar to sweep sine input multisine input can excite the system over a 

frequency band by determining the appropriate frequencies and amplitudes of the 

sine wave according to a desired power spectral density [22]. 

 

In vehicle handling identification sinusoidal inputs are commonly used. However, 

pure sinusoidal input cannot excite the system accurately when the frequency of it is 

not close to natural frequency of the system. Using a priori information about the 

system and the model, test input can be optimized such that the dispersion matrix is 

minimum. While optimizing these parameters there are some constraints like 

limited input and output amplitudes for validity of the model such as validity of the 

linear tire model. However, for multiple parameters and multiple outputs system 

this process is quite complex and difficult. Chirp and multisine inputs can excite the 

system over a broad frequency range and desired power spectral densities can be 

obtained. Therefore, these inputs can be used in vehicle handling identification. In 

addition to designing the chirp input according to modes of the system, sensitivity 

study can also give valuable information about the frequencies at which sensitivity 

values are high. In this study detailed sensitivity analysis are performed to be able 

to obtain the most appropriate frequency range of the input. 

3.3. PARAMETER ESTIMATION 

After the experiment is performed and the input output data is collected, the next 

step is the parameter estimation. The parameters of the selected model structure is 

determined in such a way that the selected model represents the system successfully 

that is the data acquired from experiment is used to select proper parameter values 
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of the determined model structure according to some criteria. One of them can be 

selected as the model‟s prediction aspect. The prediction error is given as [2], 

 

ˆ( , ) ( ) ( )e t y t y t    (3.7) 

 

where  

 

z
N
=[y(1),u(1),y(2),u(2)…,y(N),u(N)]: collected data, 

N: number of data samples, 

y(t): output data at time t, 

u: input data 

ˆ( )y t  : predicted output at time t using the model with parameter . 

 

According to this criterion a model is good when its prediction errors are small 

when applied to the observed data; that is the model is good in terms of its 

prediction performance. Therefore, prediction error is computed and the parameter 

vector is selected at time t=N such that the prediction errors are as small as possible. 

The criteria on prediction error can be qualified by two approaches. One of them is 

to quantify the size of prediction error by using a scalar function of e and the other 

one is to estimate the parameters such that the error is uncorrelated with the data 

[2]. The scalar valued function of the model parameter   can be formed as [2], 

 

    , ,NV Z f e t   (3.8) 

 

where f is the scalar valued function. 

 

Thus, the function  , NV Z for a given data Z
N
 is a function of the parameter vector 

  and it is a measure of how the model represent the collected data. The estimate 

of the parameter vector, ˆ
N is then determined by the minimization of the V. 
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Parameter estimation by this way is named as prediction error identification 

methods. Special cases of this method are built and named by changing some 

properties of this method like the error function and the optimization methods. 

Least square parameter estimation, the maximum likelihood estimation are some 

special cases of prediction error system identification method [2]. 

 

In this study least square parameter estimation with different optimization 

algorithms are used for parameter estimation and thus that topic will be explained in 

more detail. 

3.3.1. LEAST SQUARE ESTIMATION 

Parameters of the model can be estimated by quantifying the error between the 

model output and the collected data. This quantification is performed by 

constructing the appropriate function of error. By using this error function, optimal 

parameter set can be estimated; that is the parameter vector is selected such that the 

model output approximates the measured output successfully. In other words 

parameters are selected such that error is minimum. Error between the model and 

the measured output is shown in Figure 3.8 and is given as, 

 

ˆ e y y  (3.9) 

 

 

 

 

 

 

 

Figure 3.8: Error between model and system outputs 
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where y is the system output and the ŷ  is the model output. 

 

Error function in least square problem may be formed as the square of the function 

of the difference between measured and the model outputs as [28], 

 

2

1

( ) ( , )
N

i

J f i 



 

 (3.10) 

 

When the error function is linear in parameters, linear least square problem is 

formed; when the error function is nonlinear in parameters, nonlinear least square 

problem is formed. In linear least square problem global solution is found in one 

computation [28]. 

 

Derivation of the minimization algorithm for least square minimization given here 

is taken from reference [28] and the details which are not given here can be found in 

the same reference: 

 

The cost function can be written in vector form as, 

 

  TJ f f 
 

 (3.11) 

 

j
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 component of gradient of the cost function is, 
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The gradient of cost function can be written as, 
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where the Jacobian is, 
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 (3.14) 

 

The entries of Hessian of loss function is calculated as the derivative of the 

gradient, 
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 (3.15) 

 

Hessian of cost function is; 

 

         
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where T(i) represents the entries of Hessian of the error function f(i). 

 

Nonlinear least square problems are based on the Hessian to derive an algorithm, 

and can be divided into two approaches according to calculation of the second term 

of the Hessian matrix [28], 
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First approach assumes that this second term is small and so it may be neglected. 

This assumption is true for small f(i). According to the second approach that term is 

not neglected and it is computed [28]. 

 

The first approach is the Gauss-Newton Method. In this approach Hessian is 

approximated as, 

 

     2
T

H J J  (3.18) 

 

and so Gauss-Newton algorithm becomes, 
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The second approach is the use of Levenberg-Marquardt Method. Parameters are 

calculated according to, 
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where  is selected in different ways. 

 

Difference between the estimated output and the measured output is called residual. 

Investigation of the residuals gives valuable information about the model and the 

estimation. When the residuals are random, model and the estimation process are 

good; yet the residuals having deterministic components shows model deficiency 

[22, 28]. 

3.3.2. NONLINEAR LOCAL OPTIMIZATION 

When the loss function is nonlinear in parameters, the optimal parameters 

minimizing the error can be found by nonlinear optimization methods. Nonlinear 
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optimization problems have different local optimal points and as contrast to linear 

optimization problem there is no analytical solution, an iterative algorithm is used 

to find optimal points. Nonlinear optimization problem is difficult to solve since 

there are many local optimal points. When the search is started at the initial point, 

optimal solution is found generally at the neighborhood of initial point thus, global 

optimum solution may not be obtained. To be able to find global optimal solution a 

local search from many initial points should be started and then the best solution 

among them may be taken or some global optimization algorithms can be used. 

Also, selection of the initial values are very important since when the initial values 

are selected well global optimal points can be obtained and also converge to that 

solution may be fast. To select good initial points, a priori knowledge about the 

parameters can be used. Especially, when the parameters are physical their initial 

values can be selected properly. Nonlinear local optimization can be grouped into 

two classes as indirect search methods and direct search methods. Indirect search 

methods use derivative knowledge of the loss function to optimize loss function, 

whilst direct search methods use only loss function to optimize it. In nonlinear local 

optimization an initial point is selected and the optimal solution is found in the 

neighborhood of this point. Nonlinear local optimization methods are classified as 

direct search methods and general gradient-based methods [28]. 

 

Gradient-Based Methods 

The most common and important nonlinear local optimization methods are the 

gradient-based methods. In gradient based methods, gradient of the optimized 

function with respect to parameters is required [28]. Derivation of the gradient 

based methods given here is taken from reference [28] and more details can be 

found in the same reference. 

 

In all gradient-based methods, the aim is to change the parameter vector using 

gradient knowledge as, 

 

 k k-1 k-1 k-1 k-1 k-1 k-1- p with p R g    
    

 (3.21) 
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where, 

 

( )J
g









: gradient of the loss function with respect to parameters, 

1k  : step size, 

1kp 


: direction vector 

 R : direction matrix 

 

Gradient based algorithms can be classified according to different selection of 

direction matrix and step size. When the direction matrix is set to identity matrix[ ]I

, steepest descent method is obtained as [28], 

 

1 1 1k k k kg     
  

 (3.22) 

 

Steepest descent algorithm does not require the second order derivatives and it has 

very slow convergence [28]. 

 

When the direction matrix is set to inverse of the Hessian matrix,  
1

1kH


 at 1k 


, the 

Newton‟s method is formed as [28], 

 

 
1

1 1 1 1k k k k kH g  


    
  

 (3.23) 

 

where the Hessian is the second derivative of the loss function with respect to 

parameters, that is, 

 

 
 2

2

J
H












 (3.24) 
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Thus in Newton‟s method second order derivatives of the loss function has to be 

found by analytically or by finite difference techniques and has to be inverted which 

increases computational cost. The main advantage of the Newton‟s method is that 

its rate of convergence is very fast [28]. 

 

The main drawback of the Newton‟s method is that it requires the Hessian matrix 

and the inverse of the Hessian matrix. Even if the Hessian matrix is calculated 

analytically or by finite difference techniques inverse of it increases the 

computational load. This drawback can be eliminated by Quasi-Newton Methods 

which replaces the Hessian matrix or inverse of it as [28]; 

 

1

1 1 1 1
ˆ

k k k k kH g  


   
  
 

  
 (3.25) 

 

where, 

 

1 1

1 1
ˆ ˆ

k k kH H Q
 

 
           

  (3.26) 

 

or 

 

 1 1
ˆ ˆ

k k kH H Q 
    
   

 (3.27) 

 

Approximating the inverse of the Hessian directly is very advantageous since there 

is no need to inverse it. In addition similar to Newton‟s Method converge is very 

fast [28]. 

 

Conjugate gradient methods are like Quasi-Newton methods yet it avoids a direct 

approximation of the Hessian. These algorithms can be described by, 
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1 1 1k k k kp     
  

 (3.28) 

 

with  

 

1 1 1 2k k k kp g p    
  

 (3.29) 

 

where 1k 


is scalar and it distinguishes different conjugate gradient methods. 

Conjugate gradient methods will require more iterations for converge as compared 

with the Quasi-Newton methods. However, overall computation will be smaller and 

so it is suitable for large problems [28]. 

 

Direct Search Methods 

The optimization algorithms explained so far are the indirect search algorithms 

which require derivatives of the loss function for the optimization. Direct search 

algorithms do not require the derivative of loss function to optimize it; they only use 

loss function for optimization. Especially when the calculation of the derivative of 

the loss function is difficult or impossible direct search algorithms are used. 

Moreover these methods can be used for smooth functions. These methods are easy 

to implement yet their convergence is slow [28]. 

 

Some of these methods are [29]: 

- Random Search Methods: In these methods random numbers are generated and 

used in the optimization. 

- Grid Search Methods: In this methods grid points are generated in the design 

space and the functions are evaluated at these grid points. The point which 

generates the minimum function value is selected as the optimal points. Grid 

points can be generated by dividing the distance between maximum and 

minimum design values into equal ranges and setting the grid points in these 
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ranges. These methods require large number of function evaluations, yet they 

can be used together with the other methods while selecting initial points. 

- Simplex Methods: In simplex methods, a simplex, that is, a geometric figure 

which is formed by n+1 points in a n dimensional space is generated. The value 

of the loss function at n+1 vertices are calculated and then compared with each 

other and so simplex moves according to this comparison to find optimal value. 

Simplex moves by three operations, reflection, contraction, and expansion. The 

vertex with the largest loss function value is reflected at the opposite face. If this 

new vertex generated by reflection yields a minimum value, simplex is 

expanded. On the other hand, if this new vertex generated by reflection yields a 

value which is higher than values of other vertices except maximum value, 

simplex is contracted. This procedure is continued until the minimum is found. 

At the minimum the centroid of the latest vertex is taken as the optimal points  

3.3.3. CONSTRAINED NONLINEAR OPTIMIZATION 

In constrained nonlinear optimization, in addition to the loss function there are 

constraints. Constraints help to optimization by minimizing the parameter space in 

which the optimal solution is found. However they result in problem complexity 

since constraints may not be incorporated into problem easily. The general 

constrained optimization problem is given as [28], 

 

Minimize ( )J 


 

 

subject to 
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This constraint optimization problem can be solved by constructing Lagrangian 

[28], 

 

       
1 1

,
m l

i i j m j

i j

J g h      

 

   
    

  (3.30) 

 

One of the most commonly used algorithm for constrained nonlinear optimization 

problem is the Sequential Quadratic Programming (SQP). 

3.3.4. NONLINEAR GLOBAL OPTIMIZATION 

In the previous part nonlinear local optimization methods have been examined. 

Solutions of the nonlinear local optimization problems start from an initial point and 

search within the neighborhoods of the initial point in the design space and thus 

these approaches result in solutions which are close to initial point and the optimal 

solution is generally local, not the global. In this part, global nonlinear optimization 

methods are examined. One of the basic strategies for nonlinear global optimization 

is to start local optimization from many points. In this method the solution is started 

with many different initial points and local optimization method is applied for each 

initial point. The best solution among these local optimizations is selected. One of 

these solutions may be the global solution since global solution may not be known. 

Moreover there are some specific global optimization methods. These methods are 

applied when there is a need to find a global optimum or a satisfactory local 

optimum and when the function to be minimized is non-smooth or the 

computational loads for taking the derivative of the function is high. The main 

drawback of the global optimization is that the computational loads are very high 

since the entire design space must be searched for global solution and thus the 

convergence to solution is very slow. Global optimization methods are used to 

eliminate the drawback of the local optimization methods which is the selection of 

the initial points. Evolutionary algorithms are inspired from the natural evolution 

process. These types of algorithms start with the population of individuals which 

evolves in generations. These evolutions are due to mutation and crossover and new 



46 
 

individuals are created after them. These individuals are evaluated and the ones 

showing better performance that is having more fitness are selected. Evolutionary 

algorithms are classified according to type of selection procedure, type of genetic 

operation etc. as evolution strategies, genetic algorithms, genetic programming etc 

[28]. 

 

Genetic algorithms are the most popular one of the evolutionary algorithms. Firstly, 

initial populations are selected. Then, fitness of the individuals is evaluated and 

according to this fitness selection of individuals are performed. After that crossover 

and mutation operations are applied on these selected individuals and the new 

generations are formed. These subsequent genetic operations continue until some 

termination criteria are reached and the final generations are the optimal solution 

[28, 30].  

 

Genetic algorithm can be summarized as [30], 

 

1) Form the initial population P0; 

2) Evaluate Pk; 

3) If stopping criterion is satisfied then stop otherwise go to step 4; 

4) Perform selection Psel from Pk; 

5) Apply genetic operations(crossover and mutation) to evolve Pk+1 from Psel; 

6) Continue iterations, k=k+1. 

 

In this thesis study different methods of optimization which are simplex search, 

nonlinear least square method, grid search method, and genetic algorithm method 

are used according to the aim of study and problem complexity. Sometimes hybrid 
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algorithms are used to get rid of the disadvantages and to exploit advantage of the 

specific algorithm. 

 

3.4.  SIMULINK PARAMETER ESTIMATION SOFTWARE 

Simulink Parameter Estimation Software is a Simulink-based product of MATLAB 

which is used for estimation of model parameters from experimental data. It 

supports the estimation of model parameters, estimation of the initial conditions of 

the states and the estimation of the values in the adaptive lookup tables from 

experimental data. This software works with the MATLAB technical computing 

software, Simulink software and Optimization Toolbox and thus they are required 

softwares. To be able to use this software firstly model is built on the Simulink 

environment and the parameters to be estimated are specified. After that 

experimental data is imported and it is processed if necessary that is input-output 

data can be filtered, outliers can be removed etc. Then the parameters and the initial 

state to be estimated are selected and the estimation process is started. Trajectory of 

the estimated parameters and the plots of the simulated and the experimental data 

can be seen during estimation. After the estimation model validation can be 

performed by acquiring another data set and comparing this with the estimated 

models. To estimate the parameters, experimental data is imported into this 

software. If there is multiple output data, they can be weighted according to their 

importance or order of magnitude. Parameters to be estimated are selected and their 

initial values, typical values, upper and lower bounds are determined. Typical 

values of the parameters are the average order of magnitude of them. Specifying the 

upper and lower bounds for parameters simplify the estimation progress since the 

search space can be decreased. In particular if the parameters have physical 

meaning these bounds should be used. Estimation process can be performed by 

different user selected cost functions and different solvers. Estimation results can be 

seen from plots of the cost function, measured and simulated output, parameter 

trajectory, and sensitivity of cost function to parameters In Simulink Parameter 
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Optimization Software different optimization methods and different cost functions 

are available [31]. 

 

Optimization algorithms: [31]; 

- Gradient Descent: This choice uses gradient type optimization methods and 

MATLAB optimization function „fmincon‟ is used. 

- Nonlinear Least Squares: This choice uses nonlinear least square optimization 

methods and MATLAB optimization function „lsqnonlin‟. 

- Pattern Search: This choice uses advanced pattern search algorithms and it 

requires Genetic Algorithms and Direct Search Toolbox. 

- Simplex Search: This choice uses one of the derivative free optimization 

methods, simplex methods, and it uses MATLAB optimization function, 

„fminsearch‟. 

 

Furthermore, there are two options for cost functions which are [31]; 

- SSE(sum of squared error) 

- SAE(sum of absolute error) 

- Use robust cost: Optimizer is more robust to cost function especially when the 

experimental data is noisy.  



49 
 

 

CHAPTER 4 

 VEHICLE HANDLING MODELS 

4.1. INTRODUCTION 

In this chapter, vehicle and tire models will be derived and built in Simulink 

environment.  

 

Some parameters of ADAMS/Chassis vehicle model corresponding to handling 

model are known previously, and so estimated parameters will be simply compared 

with parameters of ADAMS model, that is, estimated parameters will be compared 

with their nominal values. Also cornering force data is taken from ADAMS to be 

able to compare it with the estimated cornering force characteristic of Magic 

Formula tire model. 

 

Parameters of the ADAMS/Chassis vehicle model can be obtained either directly 

from model or from some specific simulations. Static Vehicle Characteristic (SVC) 

is a set of ADAMS subroutines and it computes vehicle characteristic at static 

equilibrium. By SVC both half and full vehicles can be analyzed, suspension 

parameters like roll center position and full vehicle parameters like mass and 

inertias of vehicle can be obtained [6]. Some of these parameters can be measured 

easily from the real vehicle like mass and wheelbase, yet some of them, as in the 

case of moment of inertias of the vehicle body, cannot be calculated accurately or 

difficult to measure. Parameters of ADAMS/Chassis vehicle model is given in 

Table 4.1. 
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Table 4.1: Parameters of ADAMS/Chassis vehicle model 

Parameter Value    Unit 

Total Mass, m 1040 kg 

Front Ground Reaction 6036 N 

Rear Ground Reaction 4179 N 

Total Roll Inertia 365 kgm2 

Total Yaw Inertia 1724 kgm2 

Sprung Mass 926 kg 

Sprung Roll Inertia 297 kgm2 

Sprung Yaw Inertia 1472 kgm2 

Total Center of Gravity Height 546 mm 

Sprung Mass Center of Gravity Height 576 mm 

Wheelbase 2611 mm 

   

Front Unsprung Mass 62 kg 

Front Roll Center Height 114 mm 

Front Track Width 1489 mm 

Axle Distance from Center of Gravity 1068 mm 

   

Rear Unsprung Mass 53 kg 

Front Roll Center Height 197 mm 

Front Track Width 1483 mm 

Axle Distance from Center of Gravity 1543 mm 

 

4.2. TIRE AND VEHICLE HANDLING MODELS 

In this part various handling and tire models used in the identification are 

constructed. The simplest vehicle handling model is the bicycle model. The bicycle 

model represents the vehicle planar dynamics successfully, yet it has limited range 
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of validity around operating points. Vehicle roll model comprises the coupling 

between the vehicle planar and roll motion and thus is a more accurate model.  

 

Tires are the most important parts of the vehicle handling since the vehicle interacts 

with road by means of tires. Therefore, modeling of the tire is important for an 

accurate vehicle handling model. However, characteristics of tires are highly 

nonlinear and difficult to model. Even if they are modeled adequately, determining 

the parameter values is extremely difficult. The simplest tire model is the linear tire 

model in which the lateral force changes linearly with the slip angle. There are other 

models such as Magic Formula tire model which explain lateral force of tires as a 

function of several variables such as normal load on tires, lateral slip, and several 

other parameters. In this study, linear tire model is used only for identification 

purposes, and Magic Formula tire models are used for both identification and 

ADAMS/Chassis simulation. 

4.2.1. BICYCLE MODEL 

Bicycle model is a vehicle handling model commonly used in vehicle handling 

studies. Bicycle model is a simple model, yet it comprises important vehicle 

handling dynamics; lateral dynamics and yaw dynamics. Equation of motion for the 

bicycle model can be derived by using the Newton‟s second law as shown in Figure 

4.1. 
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Figure 4.1: Bicycle model 

Equation of Motion 

 

Equation of motion for longitudinal direction is obtained by summing forces in 

longitudinal direction: 

 

   cos sinx x xr xf yfM a F F F F        (4.1) 

 

where longitudinal acceleration is; 

 

xa U v r    (4.2) 

 

Equation of motion for lateral direction is obtained by summing forces in lateral 

direction: 

 

   cos siny y yr yf xfM a F F F F       (4.3) 
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where lateral acceleration is; 

 

ya v U r    (4.4) 

 

Equation of motion for yaw direction is obtained by summing moment of forces 

about center of gravity: 

 

   cos sin       
z yf xf yrJ r M a F F b F   (4.5) 

 

where, 

 

M: vehicle mass 

J: yaw moment of inertia 

a: distance between center of gravity and front axle 

b: distance between center of gravity and rear axle 

Fyf: Front axle cornering force 

Fyr: Rear axle cornering force 

U: longitudinal velocity 

v: lateral velocity 

r: yaw velocity 

δ: steering angle 

 

While deriving bicycle model some assumptions are done: Since steer angle is 

small, cos(δ)~1 and sin(δ)~0 and the term „vr‟ is small so it can be neglected. 

Moreover, longitudinal velocity can be kept constant so it becomes a parameter 

rather than state. Therefore, lateral and yaw motions can be uncoupled from 

longitudinal motion and two DOF bicycle model is obtained. 

 

With this assumption equations of motion become: 
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y y yr yfM a F F F     (4.6) 

 

     
z yf yrJ r M a F b F  (4.7) 

 

Cornering force can be calculated according to selected tire model. When the linear 

tire model is used cornering force becomes, 

 

cF C    (4.8) 

 

where Cα is the cornering stiffness and the α is the slip angle which is defined for 

front and rear axles as, 

 

f

v a r

U
 

 
   (4.9)

 
r

v b r

U


 
  (4.10) 

By combining linear tire model with bicycle model equations, two DOF linear 

bicycle model can be obtained as, 
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v a r v b r
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
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I r a C b C

U U


     
      

   
  (4.12) 

 

Then state space form of linear bicycle model is obtained as, 

 

       x A x B u   (4.13) 

       y C x D u   (4.14) 
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where  x is the state vector,  u is the input vector,  y is the output vector;  A is 

the system matrix,  B is the input matrix and  C is the output matrix. In bicycle 

model lateral velocity v and yaw velocity r are the state variables,  is the steering 

input at the front tires. Output vector of the model can be constructed according to 

the variables to be selected as outputs Therefore; 

 

 
v

x
r

 
  
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 (4.15) 
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 (4.17) 

 u   (4.18) 

 

When the lateral velocity and yaw velocity are the outputs  C and  D matrices 

become, 

 

 
1 0

0 1
C

 
  
 

 (4.19) 

 
0

0
D

 
  
 

 (4.20) 

 

Note that linear bicycle model is valid for small slip angle nearly below 4 degree 

and for low lateral acceleration nearly below 0.3g. These limitations are due to the 

linear tire model which states that cornering force is linearly dependent on slip 

angle for low slip angles. However, when the slip angles increase, this linear 
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relationship becomes nonlinear and linear tire model is no longer valid. Also 

cornering force characteristic of the tires changes with the vertical load on it. When 

the lateral acceleration is below nearly 0.3g, lateral load transfer is small and thus 

vertical load on the tire does not change much. However, when the lateral 

acceleration increases above 0.3g lateral load transfer changes the vertical load on 

the tires and so cornering force changes. These limitations can be removed by using 

more complex tire models. In this study, Magic Formula tire model which considers 

the nonlinear changes of cornering force with slip angle and vertical load are used 

and thus vehicle model having wider operating points is obtained. 

4.2.2. THREE DEGREE OF FREEDOM ROLL MODEL 

Three degree of freedom vehicle roll model considers the plane motion of the 

vehicle together with the roll motion. Roll motion is coupled with the plane motion 

of the vehicle directly and also it is coupled indirectly by means of tire dynamics. In 

other words roll motion affects the load transfer and so the normal loads on the 

tires, and in turn the tire forces change. Therefore, a more accurate model is 

obtained. Since the bicycle model does not include the roll motion, lateral load 

transfer cannot be included in the model. Especially, for high lateral acceleration, 

load transfer becomes important and the tire dynamics are affected considerably. 

 

In the roll model, masses of the parts of the vehicles can be lumped as the sprung 

mass and the front and rear unsprung masses. Sprung mass and unsprung masses are 

connected via the suspension. Sprung mass rolls about the roll axis defined by the 

front and the rear roll centers which are the characteristics of the suspensions. 

Moments of the spring and the damper of the suspension about the roll axis form 

the roll stiffness and the roll damping which are assumed to be constant during the 

roll motion. Further, since roll centers are defined by the geometry of the 

suspensions and since the suspension geometry may change with the roll motion, 

position of the front and rear roll centers may also change during the roll motion. 

However, in here roll centers and so the roll axis is assumed to be stationary. 

Vertical motion and the pitch motion of the vehicle are not included in the model. 
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In the derivation of the equation of the motion of the model Newton‟s second law is 

used. The body fixed coordinate frame located at the mass center is used and for 

this coordinate system SAE (Society of Automotive Engineering) convention is 

used. SAE reference frame is shown in the Figure 4.2. 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: SAE reference frame 
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Figure 4.3: Vehicle plane model 
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Figure 4.4: Vehicle roll model 

Equations of motion 

 

Vehicle roll model comprises degrees of freedom which are lateral, yaw, roll, and 

longitudinal motion. Schematic of the vehicle plane motion and vehicle roll motion 

are shown in Figure 4.3 and Figure 4.4 respectively. 
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Equation of motion for longitudinal direction: 

Equation of motion for longitudinal direction is obtained by summing forces in 

longitudinal direction: 

 

       cos sinx x xrl xrr xfl xfr yfl yfrM a F F F F F F F          (4.21) 

 

where longitudinal acceleration ax is given in (4.2) 

 

Equation of motion for lateral direction: 

Equation of motion for lateral direction is obtained by summing forces in lateral 

direction: 

 

   2cos siny s s s s yM a M h M h F               (4.22) 

 

       cos siny yfl yfr yrl yrr xfl xfrF F F F F F F          (4.23) 

 

where lateral acceleration ay is given in (4.4) 

 

Equation of motion for yaw motion: 

Equation of motion for yaw direction is obtained by summing moment of forces 

about center of gravity: 

 

zz zI r M   (4.24) 

 

         

         

cos sin

cos sin
2 2

z yfl yfr xfl xfr yrl yrr

f r
xfl xfr yfl yfr xrl xrr

M a F F F F b F F

t t
F F F F F F

 

 

      
 

       
 


 (4.25) 
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Equation of motion for roll motion: 

Equation of motion for roll direction is obtained by summing moment of forces 

about roll axis: 

 

( ) cos( ) sin( ) - -xx s s s sI M h v r U M g h K C                   (4.26) 

f rK K K    (4.27) 

f rC C C     (4.28) 

 

where, 

 

M: total vehicle mass, 

Ms: sprung mass 

Muf: front unsprung mass 

Mur: rear unsprung mass 

Fxfl: front left longitudinal tire force 

Fxfr: front right longitudinal tire force 

Fxrl: rear left longitudinal tire force 

Fxrr: rear right longitudinal tire force 

Fyfl: front left lateral tire force 

Fyfr: front right lateral tire force 

Fyrl: rear left lateral tire force 

Fyrr: rear right lateral tire force 

hf: front roll center height 

hr: rear roll center height 

hs: vertical distance between roll axis and center of gravity 

Kφ: total roll stiffness 

Kf: front roll stiffness 

Kr: rear roll stiffness 

Cφ: total roll damping 

Cfφ: front roll damping 
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Crφ: rear roll damping 

Ixx: roll moment of inertia about x axis 

Izz: yaw moment of inertia about z axis 

φ: roll angle 

tf: front track width 

tr: rear track width 

 

Longitudinal velocity is assumed as a parameter rather than variable by keeping it at 

a constant value. Moreover since in this study aim is to identify handling models 

without longitudinal dynamics, longitudinal motion is not included in the roll 

model. Note that the term „vr‟ in the longitudinal acceleration expression is very 

small so it can be neglected. By this way longitudinal motion can be decoupled 

from roll model. Similarly, in the lateral equation of motion the term

 2 sins sM h     is small so it can be neglected. Also when the mass symmetry in 

x-y plane is considered product inertia term Ixz are relatively small as compared to 

Ixx and Izz and so it is neglected in the derivation of equation of motion. With all 

these assumptions roll model is simplified to three degree of freedom roll model as: 

 

 ( ) cos( ) cos( )s s y yfl yfr yrl yrrM v r U M h F F F F F              (4.29) 

 

   cos( )zz z yfl yfr yrl yrrI r M a F F b F F       (4.30) 

 

( ) cos( ) sin( ) - -xx s s s sI M h v r U M g h K C                   (4.31) 
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Lateral Load Transfer 

 

Lateral load transfer is calculated since vertical load in each tire is used for the 

calculation of the lateral force produced by the tire. Lateral load on each tire is 

calculated as follows: 

 

 

 
 

,
2

s y s f

zfl f

f

M a h h bM g b
F F

a b t a b


     
  

 


 (4.32) 

 

 
 

,
2

s y s f

zfr f

f

M a h h bM g b
F F

a b t a b


     
  

 


 (4.33) 

 

 
 

,
2

s y s r

zrl r

r

M a h h aM g a
F F

a b t a b


     
  

 


 (4.34) 

 

 
 

,
2

s y s r

zrr r

r

M a h h aM g a
F F

a b t a b


     
  

 


 (4.35) 

 

where, 

 

,

f f

f

f

K C
F

t





   



 (4.36) 

,

r r

r

r

K C
F

t





   



 (4.37) 

 

The first term on the vertical load equations accounts for the static load distribution 

for each tire. The second term accounts for the load transfer due to lateral 

acceleration and the third term accounts for the load transfer due to roll motion. 

Note that while calculating vertical loads on the tires, load transfer due to unsprung 

masses are not taken into account due to the fact that they are small as compared 

with the other effects. 
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Tire Slip Angle 

To be able to calculate the lateral tire forces, tire slip angles are also needed. Tire 

slip angles are, 

 

1tan

2

fl
f

v ar

t
U r

 

 
 

  
 
 

 (4.38) 

1tan

2

fr
f

v ar

t
U r

 

 
 

  
 
 

 (4.39) 

1tan

2

rl
r

v br

t
U r

 

 
 

 
 
 

 (4.40) 

1tan

2

rr
r

v br

t
U r

 

 
 

 
 
 

 (4.41) 

 

Now the effect of the suspension on the steering characteristic of the vehicle is also 

taken into account. When the suspension deflects tires are steered, which is called 

roll steer effect. 

 

f f w       (4.42) 

 

r r     (4.43) 

 

where, 

 

f :front steering angle, 

r : rear steering angle, 

w : steering angle due to steering wheel rotation 
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f : front roll steer coefficient 

r : rear roll steer coefficient 

 

Three DOF roll model may be linear and nonlinear depending on the tire model. 

According to nonlinear tire model such as Magic Formula tire models cornering 

force depends on vertical load on the tire and the slip angle nonlinearly. On the 

other hand according to linear tire model there is a linear relationship between 

cornering force and slip angle. Therefore, nonlinear tire models are more accurate 

and have a wider operating range as compared to the linear tire model. However the 

more accurate roll model has more computational load than the linear roll model. In 

this study both linear and nonlinear roll models are used. 

4.2.3. ONE DEGREE OF FREEDOM ROLL MODEL 

One DOF roll model is a simple roll model and it can be used in vehicle roll 

dynamics studies. Using this model basic roll dynamics parameters may be 

estimated easily. One DOF roll model considers only the roll motion of vehicle. 

Vehicle roll motion is caused by the lateral acceleration and so lateral acceleration 

is considered as the input, and the roll velocity is considered as the output. 

 

Equation of motion: 

Equation of motion for one DOF roll model can be obtained from equation (4.31) 

by assuming that cos(φ)~1 and sin(φ)~φ for small φ. 

 

( ) - -xx s s s sI M h v r U M g h K C                 (4.44) 

 

In state space form equation of motion becomes, 

 

1 1

2 2
01 0

s s s s

xx yxx xx

C K M g h M h

I aI I

 
 

 

      
       

       
         




 (4.45) 
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where, 

 

1    (4.46) 

2   (4.47) 

 

Transfer function representation of the one DOF roll model is obtained to study the 

identifiability of this model as, 

 

 

  2

s s

xx

s sy

xx xx

M h

s I

C K M h ga s
s s

I I

 







  
 

 (4.48) 

 

4.2.4. THREE DEGREE OF FREEDOM LINEAR ROLL MODEL 

For small steering angle δ and roll angle φ, cos(δ)~1; cos(φ)~1 and sin(φ)~φ, With 

this assumptions equations of motion for linear three DOF linear roll model can be 

derived from the roll model equations and linear tire model equation. With these 

assumptions equations of motion for roll become; 

 

( ) s s y yfl yfr yrl yrrM v r U M h F F F F F           (4.49) 

 

   zz z yfl yfr yrl yrrI r M a F F b F F       (4.50) 

 

( ) - -xx s s s sI M h v r U M g h K C                 (4.51) 

 

Then equations of motions for linear three DOF roll model are derived by inserting 

(4.8), (4.9), and (4.10) into (4.49), (4.50), and (4.51) as: 
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( ) s s y f f r rM v r U M h F C C             (4.52) 

 

zz z f f r rI r M a C b C          (4.53) 

 

( ) - -xx s s s sI M h v r U M g h K C                 (4.54) 

 

State space representation of the three DOF linear roll model is, 

 

11 12 13 14 1
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41 42 43 442 2 4
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             









 (4.55) 

 

where, 1  and 2 are given in (4.46) and (4.47). 

 

and, 

 11
xx
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A U
 


 (4.56) 

 12
xxI

a a Cf b Cr U
A U

    
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 (4.57) 
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s sM h C
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A

 
  (4.58) 

2 2
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s ss s
M h KM h g

a
A A

  
    (4.59) 
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f r
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a C b C
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U I

  



 (4.60) 

2 2

22

f r

zz

a C b C
a

U I

  



 (4.61) 

23 0a   (4.62) 
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24 0a   (4.63) 

 31
s s

f r

M h
a C C

A U


  


 (4.64) 

 32
s s

f r

M h
a a C b C

A U


    


 (4.65) 

33

M C
a

A


   (4.66) 

 
34

s sM M g h K
a

A

  
  (4.67) 

41 0a   (4.68) 

42 0a   (4.69) 

43 1a   (4.70) 

44 0a   (4.71) 

1

xx fI C
b

A


   (4.72) 

2

f

zz

a C
b

I


   (4.73) 

3

s s fM h C
b

A

 
  (4.74) 

4 0b   (4.75) 

 

and 

 

2 2

xx s sA M I M h     (4.76) 

4.2.5. TIRE MODELING 

Modeling of the tire accurately is important for vehicle dynamics studies since it 

provides the connection of vehicle with the road. Dynamics of the tire is very 

complex, and thus modeling of the dynamics of the tire is difficult. In the literature 
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there are plenty of studies about modeling of the tire some of which are physical 

and some of them are empirical. 

 

At small slip angle cornering forces produced by the tire are linearly related to slip 

angles and a linear tire model can be used. However, when the slip angle increases 

the linear tire characteristics start to saturate and the tire forces depend on various 

parameters and slip angle nonlinearly. In this case, nonlinear tire models are used 

and operating range of the tires widens. In this study two tire models which are 

linear tire model and Magic Formula tire model are used for identification purposes, 

and an advanced version of the Magic Formula tire model in ADAMS tire models 

(PAC 2002 [8]) is used for simulations in ADAMS/Chassis. 

 

Linear tire model is the most simple tire model. This tire does not consider the 

effects of the variation of cornering force with the load on the tire and this model 

assumes linear relationship between slip angle and cornering force. This model is 

valid for small slip angle. 

4.2.5.1. MAGIC FORMULA TIRE MODEL 

Magic Formula tire model is a semi empirical tire model which is used to generate 

steady state tire force and moment characteristic. Magic formula tire model 

produces force and moment characteristic at pure slip conditions; that is pure 

cornering and pure traction or braking. By an extension to pure slip conditions, 

combined force characteristic can be obtained. According to Magic Formula tire 

model the cornering force is given by the expression [32], 

 

( ) sin[ arctan{ - ( -arctan( ))}]y x D C B x E B x B x       (4.77) 

 

where, 

 

( ) ( ) vY X y x S   (4.78) 
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hx X S   (4.79) 

 

The formula produces characteristic of the tire for cornering force Fy, longitudinal 

force Fx and aligning force Mz as a function of the longitudinal slip and lateral slip.  

 

Meaning of the some factors used in formula for lateral tire force can be explained 

as: 

 

D: peak factor, 

E: curvature factor, 

BCD: slope at the origin, 

C: shape factor, 

B: stiffness factor, 

Sv: horizontal shift, 

Sh: vertical shift, 

 

These parameters are dependent on the vertical force Fz and the camber angle . For 

lateral force and slip angles these parameters are, 

 

0C a  (4.80) 

2

1 2z zD a F a F     (4.81) 

3 4 5sin(2 arctan( / ))(1 )zBCD a F a a       (4.82) 

6 7zE a F a    (4.83) 

9 10 8h zS a F a a       (4.84) 

11 12 13v z zS a F a F a       (4.85) 
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4.2.5.2. DYNAMIC TIRE MODEL 

Magic Formula tire model and linear tire model explained in previous sections are 

valid for steady state conditions. However, when the maneuver is transient or when 

the steering input is transient, transient properties of the tire has important effect on 

the outputs of the tire and static tire model cannot produce the correct force 

characteristic of the tire. Therefore, transient properties of the tire must be modeled. 

A typical dynamic model for lateral tire force dynamics is first order and is given as 

[33], [34]; 

 

, ,y lag y lag yF F F     (4.86) 

 

where, Fy is the tire lateral force obtained from the steady state tire model, 
,y lagF  is 

the dynamic force and τ is the relaxation time constant. Relaxation time constant 

can be approximated as, 

 

C

U K

 


 (4.87) 

 

where K is the tire lateral stiffness, C is the cornering stiffness and U is the 

longitudinal velocity and this tire model is not valid for low longitudinal velocities 

[35]. 
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CHAPTER 5 

 SENSITIVITY ANALYSIS 

To determine the effects of the parameters on the vehicle dynamics system 

response, sensitivity analysis should be performed. By sensitivity analysis, synthesis 

and the identification of the mechanical system can be improved [36]. Information 

related to where and how the parameters affect the system response is crucial for 

identification studies since the domain of the identification can be determined by 

sensitivity analysis. Therefore sensitivity analysis must be performed prior to 

identification. 

 

Sensitivity analysis can be performed in time and in frequency domain. In time 

domain, sensitivity of the state variables to parameters is the aim and in the 

frequency domain sensitivity of the transfer function to parameters is aimed. 

Generally in the frequency domain sensitivity of the amplitude and phase of the 

transfer function to parameters are examined instead of complex valued transfer 

function directly. Sensitivity analysis in time domain is difficult since it depends on 

the type and the shape of the excitation [36]. 

 

In this study sensitivity analysis is performed in frequency domain to be able to 

determine the frequencies or frequency ranges at which the system responses are 

most sensitive. In this study, sensitivities of the amplitudes of the lateral velocity 

transfer function and yaw velocity transfer function to bicycle model parameters are 

obtained. Then sensitivity analysis will be performed for three DOF linear roll 
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model. Sensitivities of the yaw, lateral, and the roll velocities to roll model 

parameters are calculated.  

 

Logarithmic sensitivity of the variable v to parameter θ can be calculated as [36], 

 

,v p

v
S

v









 (5.1) 

 

Logarithmic sensitivity function is dimensionless and thus influence of various 

parameters on the variables can be found easily. However, it gives the sensitivity of 

the absolute value of the variable to parameter rather than the real value. That is 

when the sensitivity value is negative, an increase in the parameter value results in a 

decrease in the absolute value of the variable. When the sensitivity value is positive, 

an increase in the parameter value results in an increase in the absolute value of the 

variables. Also as can be understood from Equation 5.1, when value v approaches 

zero, sensitivity value may become too large [36]. 

 

In this study sensitivities of the amplitude of the transfer function with respect to 

parameters are examined and sensitivity analysis is performed for bicycle model 

and three DOF linear roll model in frequency domain. Transfer function of this 

model can be obtained from their state space model as, 

 

            
1

( )T s C s I A B D


    (5.2) 

 

Explicit form of the bicycle model and roll model transfer function are obtained 

from the MATLAB Symbolic Toolbox using (5.2). 

5.1. BICYCLE MODEL SENSITIVITY ANALYSIS 

In the two DOF bicycle model, there are two states which are lateral velocity and 

yaw velocity. Sensitivities of the lateral and yaw velocities to bicycle model 
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parameters are calculated as a function of the frequency and longitudinal velocity 

and the results are given in Figure 5.1 to Figure 5.6. Sensitivity of lateral and yaw 

velocity to other bicycle model parameters are given in Appendix A. 

 

 

Figure 5.1: Sensitivity of lateral velocity to Cf  
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Figure 5.2: Sensitivity of lateral velocity to Cr 

 

Figure 5.3: Sensitivity of lateral velocity to J 
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As observed from Figure 5.3 sensitivity of the lateral velocity to yaw moment of 

inertia increases starting from 0 Hz and decreases after nearly 2 Hz, and it reaches a 

peak around 1 Hz. Sensitivity of the lateral velocity to front cornering stiffness is 

high nearly at all frequencies and slightly decreases around 1 Hz. Sensitivity of 

lateral velocity to rear cornering stiffness is high between 0 and 1 Hz. Moreover, as 

observed from Figure 5.7 amplitude of the lateral velocity has a peak value between 

0 and 2 Hz. Also longitudinal velocity has an important effect on the sensitivity 

values and lateral velocity amplitude and when it is increased, amplitude of the 

lateral velocity increases. 

 

 

Figure 5.4: Sensitivity of yaw velocity to Cf 
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Figure 5.5: Sensitivity of yaw velocity to Cr  

 

Figure 5.6: Sensitivity of yaw velocity to J 
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When Figure 5.4 is examined it is seen that yaw velocity is sensitive to front 

cornering stiffness nearly at all frequencies. When Figure 5.5 is examined, it can be 

seen that again yaw velocity is more sensitive to rear cornering stiffness below 

nearly 2 Hz. However, sensitivity of the yaw velocity to yaw moment of inertia 

increases starting from the 1 Hz. Also, similar to lateral velocity data, amplitude of 

the yaw velocity increases with increasing longitudinal velocity and is high between 

0 and 2 Hz as can be seen from Figure 5.8. 

 

 

Figure 5.7: Amplitude of the lateral velocity  
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Figure 5.8: Amplitude of the yaw velocity 

5.2.  THREE DEGREE OF FREEDOM ROLL MODEL SENSITIVITY 

ANALYSIS 

In the three DOF roll model sensitivities of the lateral, yaw, and the roll velocities 

to roll model parameters are calculated as a function of the frequency and 

longitudinal velocity and the results are given in Figure 5.9 to Figure 5.26. 

Sensitivity of lateral, yaw and roll velocity to other roll model parameters are given 

in Appendix A. 

 

10
00

20

40
1

2

3

4

5

6

7

Frequency [Hz]

Amplitude of Yaw Velocity vs Frequency, Longitudinal Velocity

Longitudinal Velocity [m/s]

A
m

p
li
tu

d
e



80 
 

 

Figure 5.9: Sensitivity of lateral velocity to Cf 

 

Figure 5.10: Sensitivity of lateral velocity to Cr 

0

10

20

30

0

2

4

6

8
0

0.5

1

1.5

Longitudinal Velocity [m/s]

Sensitivity of Lateral Velocity to Cf vs Frequency, Longitudinal Velocity

Frequency [Hz]

S
e
n
s
it
iv

it
y

0

10

20

30

0

2

4

6

8
-4

-3

-2

-1

0

1

2

Longitudinal Velocity [m/s(k)]

Sensitivity of Lateral Velocity to Cr vs Frequency, Longitudinal Velocity

Frequency [Hz]

S
e
n
s
it
iv

it
y



81 
 

 

Figure 5.11: Sensitivity of lateral velocity to Izz 

 

Figure 5.12: Sensitivity of lateral velocity Ixx 
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Figure 5.13: Sensitivity of lateral velocity to Kφ 

 

Figure 5.14: Sensitivity of lateral velocity to Cφ 
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Figure 5.15: Sensitivity of yaw velocity to Cf,  

 

Figure 5.16: Sensitivity of yaw velocity to Cr 
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Figure 5.17: Sensitivity of yaw velocity to Izz 

 

Figure 5.18: Sensitivity of yaw velocity Ixx 
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Figure 5.19: Sensitivity of yaw velocity to Kφ 

 

Figure 5.20: Sensitivity of yaw velocity to Cφ 
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Figure 5.21: Sensitivity of roll velocity to Cf 

 

Figure 5.22: Sensitivity of roll velocity to Cr 
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Figure 5.23: Sensitivity of roll velocity to Izz 

 

Figure 5.24: Sensitivity of roll velocity Ixx 
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Figure 5.25: Sensitivity of roll velocity to Kφ 

 

Figure 5.26: Sensitivity of roll velocity to Cφ 
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Figure 5.27: Amplitude of lateral velocity  

 

Figure 5.28: Amplitude of yaw velocity  
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Figure 5.29: Amplitude of roll velocity  
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stiffness is high below 1 Hz. As opposed to lateral velocity and yaw velocity, roll 

velocity are highly sensitive to nearly all parameters. Sensitivities of the roll 
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of inertia and roll moment of inertia are high between nearly 0 and 3 Hz and. Also, 

amplitude of the lateral, yaw and roll velocities decrease after 2 Hz and increase 

with longitudinal velocity. As can be seen from the sensitivity plots, longitudinal 

velocity is highly effective on the sensitivities and generally an increase in velocity 

results in an increase in the sensitivity values. 

 

In addition to specifying appropriate steering input frequency and vehicle 

longitudinal velocity, practical aspects of the identifiability can be interpreted. That 

is to say some responses may become insensitive to parameters and thus this 

parameter may not be identified from that response accurately. As can be observed 

from Figure 5.18, Figure 5.19, and Figure 5.20 sensitivity of the yaw velocity to roll 

10
0

0

10

20

30
0

2

4

6

Frequency [Hz]

Amplitude of Roll Velocity vs Frequency, Longitudinal Velocity

Longitudinal Velocity [m/s]

A
m

p
lit

u
d
e



91 
 

stiffness, roll damping, and roll moment of inertia are very low, which means that 

the dependence of yaw velocity to those parameters is not significant. 

 

In summary, it is possible to specify the parameter set which can be estimated, and 

the appropriate frequency or frequency interval and longitudinal velocity are 

selected. For instance in the three DOF linear roll model, roll stiffness cannot be 

estimated from yaw velocity data accurately since sensitivities of the yaw velocity 

to roll stiffness is low. As another example, in the bicycle model sensitivity of the 

lateral velocity to rear cornering stiffness is high for the frequency range of 0-2 Hz 

nearly and thus input should cover this frequency interval for accurate estimation. 

In this study, frequency range of the steering input is taken as the 0-2 Hz and the 

longitudinal velocity of the vehicle is taken as 20 m/s. For the nonlinear roll model, 

ADAMS model is simulated at 15 m/s longitudinal velocity to obtain appropriate 

slip angle characteristic. These values change with the nominal values of the test 

vehicle, yet the general shape of the sensitivity curves and the approximate 

sensitivity values give valuable information. As a result, it is possible to specify 

handling model parameters which can be identified practically and the 

characteristics of the test input can be determined. 
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CHAPTER 6 

 IDENTIFIABILITY STUDY AND VEHICLE IDENTIFICATION 

Identifiability problem is related to the model structure and it investigates whether 

the model parameters can be estimated uniquely from the noise free data. It is 

important for system identification and it should be performed prior to experiments 

and according to the result of the identifiability study, experiment design and model 

selection processes are performed. For model structures that cannot be identified, 

experiments can be redesigned and extra data can be acquired to make the model 

identifiable. Additional inputs and/or outputs can be acquired or places of the 

sensors can be changed. Structural identifiability method used in this study is 

adapted from the study of Walter and Pronzato [37] and can be summarized as: 

 

- Parameter θi is structurally globally identifiable (s.g.i) if, 

 

* *ˆ ˆ( ) ( ) i iM M     
 

 (6.1) 

 

If all parameters of the model structure are s.g.i, then the model structure M is s.g.i. 

 

- The parameter θi is structurally locally identifiable (s.l.i) if there is a 

neighborhood such that 
* *ˆ ˆ( ) ( ) i iM M     

 
 

 

If all parameters of the model structure are s.l.i, then the model structure is s.l.i 
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- The parameter θi is structurally unidentifiable (s.u.i) if there is no neighborhood 

of θ
*
 such that 

* *ˆ ˆ( ) ( ) i iM M     
 

 

If at least one parameter of the model structure is s.u.i, then the model structure is 

s.u.i. 

 

where ̂ is the estimate of parameter θ, θ
*
 is the true value of parameter θ and M is 

the model structure. 

 

Identifiability study must be performed prior to experiment and the experiment 

should be designed according to result of it. Model identifiability is a prerequisite 

for system identification, yet it does not guarantee accurate parameter estimation. 

However, even if the model is unidentifiable, error between acquired and estimated 

data may become small and in different identification different parameter sets may 

be identified. 

 

There are various methods for checking model identifiability and some of these 

methods are specified for certain types of model structures. Analytical 

identifiability techniques are difficult to perform when the model is nonlinear and it 

contains a large number of parameters. In this study, identifiability of the handling 

models are examined by Numerical Local Approach adapted from [37]. Moreover, 

identifiability of the model can also be examined as stated in [38]: Firstly model to 

be identified is simulated with nominal parameters and the simulation data is treated 

as actual test data. Then model is identified by using initial parameter values which 

are slightly different than nominal values. If the model is identifiable convergence 

is achieved in a few iterations. If the convergence is not satisfied or if the number of 

iterations is high, model may be unidentifiable. Numerical Local Approach was also 

used in the study [11] to examine the coupled roll and lateral dynamics. 
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Numerical Local Approach [37] 

There are various approaches [37] for checking structural identifiability. In these 

approaches, algebraic ones require high computational power and so they are 

difficult. Numerical Local Approach can be used to check model identifiability at 

least locally. Application steps of this method are [37]; 

 

- Produce fictitious data by simulating model M(θ0) with nominal parameter value 

θ0. 

- Estimate parameter θ from simulated fictitious data by minimizing the quadratic 

cost function between acquired simulation data and output of model to be 

identified. This minimization is performed by second order optimization 

methods such as Gauss-Newton method. Set initial parameter values used in 

estimation to nominal parameter values, θ0. 

- If the estimated parameters remains stable at θ0 then model M is s.l.i, if 

estimator remains unstable then model M is s.u.i. or θ0 is close to a hyper 

surface so the matrices inverted during the optimization is singular. For this 

another parameter θ0 is used to generate fictitious data and the other steps are 

repeated and a conclusion about identifiability of the model is reached. 

 

Note that as specified in [37] Levenberg-Marquardt approach cannot be used for 

this method since it includes regularization. 

 

In this study identifiability of the model structure is examined by these two 

approaches. Schematic of the Numerical Local Approach for handling model 

identification is shown in Figure 6.1. 
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Figure 6.1: Numerical Local Approach for handling model identification 

In this study test data is obtained from the simulation of the Simulink vehicle 

models M(θ0) with nominal parameters θ0. Cost function for the estimation process 

is obtained from the Simulink. Optimization process is performed by MATLAB 

function „lsqnonlin‟ with Gauss-Newton algorithm nested in MATLAB M-File. 

Therefore, optimization is performed by interaction of Simulink model and 

MATLAB M-File.  

 

Simulation data for the bicycle model, one DOF roll model, and the three DOF 

linear roll model are acquired with the nominal parameters listed in Table 6.1. 

Nominal parameter values used in the simulation for nonlinear roll model are given 

in Table 6.2. 

Table 6.1: Nominal parameter values used in the simulation of linear models 

for structural identifiability study 

Cf=-80000 N/rad Cr=-70000 N/rad Izz=1700 kgm
2
 Ixx=400 kgm

2
 

Cφ=3000 Nms Kφ=40000 Nm τ=0.025 s   

 

Vehicle Simulator 

 

Simulink Model 

M(θ0) 

Test Data 
Estimator 

 

Initial Parameter θ0 

Gauss- Newton 

Method 

If Stable 

M is s.l.i 

If not Stable 
Try with 

another θ0 
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Table 6.2: Nominal parameter values used in the simulation of nonlinear 

models for structural identifiability study 

Izz=1700 kgm
2
 Ixx=400 kgm

2
 Cφ=3000 Nms Kφ=40000 Nm τ=0.025s 

          

a0=1.3 a1=-50 a2=900  a3=40000 a4=3 

a6=-0.70 a7=-0.30 δfφ= 0.1 δrφ=0.1   

 

6.1. IDENTIFIABILITY OF THE BICYCLE MODEL WITH A STEADY 

STATE TIRE MODEL 

Identifiability of the bicycle model with a steady state tire model is examined 

separately for different output sets; namely lateral velocity, yaw velocity, and both 

lateral and yaw velocity. 

 

- Identifiability with lateral velocity 

According to result of Numerical Local Approach, bicycle model with parameters 

Cf, Cr, and Izz is s.l.i with the lateral velocity output. Estimated parameters converge 

to their nominal values. Output of the estimation is given in Figure 6.2. 
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Figure 6.2: Output of the bicycle model identifiability study with parameters 

Cf, Cr, and Izz with lateral velocity 

- Identifiability with yaw velocity 

Similar to identifiability of the bicycle model with lateral velocity bicycle model 

with parameters Cf, Cr, and Izz is s.l.i with yaw velocity output. 

 

- Identifiability with lateral and yaw velocity 

The bicycle model with parameters Cf, Cr, and Izz is s.l.i with lateral velocity and 

yaw velocity separately; it is also s.l.i with both outputs. That is analytically one of 

the output can be used to identify three parameter (Cf, Cr, and Izz). However, this 

does not guarantee accurate parameter estimation as will be shown in parameter 

estimation section. 

 

When the mass of the vehicle is also assumed to be among the unknown parameters 

to be estimated, estimator is unstable and estimated parameters converge to other 
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values. Instability of the estimator is specified with the term „ill-conditioned‟. In 

other words matrix cannot be inverted in the Gauss-Newton algorithm. Thus, 

optimization algorithm is automatically changed to Levenberg Marquardt algorithm 

which regularizes ill-conditioned matrix. Identifiability result is given in Figure 6.3. 

Therefore, bicycle model with parameters Cf, Cr, Izz, and M is structurally 

unidentifiable (s.u.i). 

 

Figure 6.3: Output of the bicycle model identifiability study with parameters 

Cf, Cr, Izz, and M with lateral velocity and yaw velocity data. 

6.2. IDENTIFIABILITY OF THE BICYCLE MODEL WITH TRANSIENT 

TIRE MODEL 

Similar to the bicycle model with the steady state tire model, identifiability of the 

bicycle model with the transient tire model with parameters Cf, Cr, Izz, and τ can be 
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examined by using output lateral velocity, yaw velocity, and both lateral and yaw 

velocity.  

 

The bicycle model with parameters Cf, Cr, Izz, and τ is s.l.i with lateral velocity, yaw 

velocity and both lateral and yaw velocity. 

6.3. IDENTIFIABILITY OF THE ONE DEGREE OF FREEDOM ROLL 

MODEL 

One DOF roll model has three parameters to be identified which are Kφ, Cφ, and Ixx. 

According to the result of the identifiability analysis, one DOF linear roll model is 

s.l.i. Result is given in Figure 6.4.  

 

 

Figure 6.4: Output of the one DOF roll model identifiability study with 

parameters Ixx, Cφ, and Kφ. 
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When parameters hs is also assumed to be unknown, estimator is unstable and 

estimated parameters converge to values other than nominal values and thus one 

DOF roll model with parameters Ixx, Cφ, Kφ, and hs is s.u.i. Result of the 

identifiability is shown in Figure 6.5. The same result for this identifiability study 

can also be obtained by Laplace Transform Approach [37]: 

 

 

 
1

2
2 2 3

s s

xx

s sy

xx xx

M h

s I a

C K M h ga s s a s a
s s

I I

 




 
  

 

 (6.2) 

 

where 

 

1
s s

xx

M h
a

I
   (6.3) 

2

xx

C
a

I


  (6.4) 

3

s s

xx

K M h g
a

I

 
  (6.5) 

 

From equations (6.5), (6.6), and (6.7) parameters Cφ, Kφ, and Ixx can be identified 

uniquely. 

 

In study [11] it was shown that one DOF roll model with unknown parameters, Cφ, 

Kφ, and Ixx is structurally globally identifiable. 

 



101 
 

 

Figure 6.5: Output of the one DOF roll model identifiability study with 

parameters Ixx, Cφ, Kφ, and hs 

As shown in Figure 6.5, iteration matrix is ill-conditioned and the optimization 

algorithm is switched to Levenberg Marquardt algorithm and estimated parameters 

converge to values different than nominal parameters. 

6.4. IDENTIFIABILITY OF THE THREE DEGREE OF FREEDOM 

LINEAR ROLL MODEL 

In the three DOF linear roll model the unknown parameters are Cf, Cr, Izz, Ixx, Cφ, 

Kφ, and τ. Identifiability of this model is examined with lateral velocity, yaw 

velocity and roll velocity outputs. According to result of identifiability study which 

is shown in Figure 6.6, estimator is stable, parameters converge to their nominal 

values and three DOF linear roll model is s.l.i. 
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Figure 6.6: Output of the three DOF linear roll model identifiability study with 

parameters Cf, Cr, Izz, Ixx, Cφ, Kφ, and τ 



103 
 

6.5. IDENTIFIABILITY OF THE THREE DEGREE OF FREEDOM 

NONLINEAR ROLL MODEL 

Finally identifiability of the three DOF nonlinear roll model with the parameters Kφ, 

Cφ, Ixx, Izz, τ, a1, a2, a3, a4, a6, a7, δφf, and δφr with lateral, yaw, and roll velocities is 

examined. Result of the identifiability analysis is given in Figure 6.7. As can be 

understood from Figure 6.7 estimator is stable and estimated parameters converge 

to their nominal values and thus three DOF nonlinear roll model is s.l.i. 

 

The same information on the identifiability of the model can be obtained with the 

other approach [38] that involves the simulation of the model with nominal 

parameters and then estimation of parameter values by using different initial 

parameter values than nominal parameters. If the estimation process is performed 

with a few iterations, model may be identifiable.  

 

Identifiability study is important and it should be done before the experiment and 

according to result of it experiment configuration can be changed or it may be 

redesigned. Numerical Local Approach is easier to apply when it compared with the 

analytical identifiability method. 

 



104 
 

 

Figure 6.7:Output of the three DOF nonlinear roll model identifiability study 

with parameters Kφ, Cφ, Ixx, Izz, τ, a1, a2, a3, a4, a6, a7, δφf, and δφr 
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6.6. PARAMETER ESTIMATION 

After examining the sensitivity and the identifiability of the handling models, 

parameter values are to be estimated. Data used for identification are obtained from 

the simulations of the ADAMS model and the parameters are estimated using 

Simulink Parameter Estimation Toolbox.  

 

As can be seen from the sensitivity analysis, sensitivities of the lateral velocity, yaw 

velocity, and roll velocity to parameters are high at a range of frequencies. To cover 

these frequencies, sine chirp input with 0-2 Hz frequency range is used  

 

Data used for identification is taken from the simulation of the ADAMS vehicle 

model with a transient PAC 2002 [8] tire model. This tire model is an advanced 

form of the Magic Formula tire model and it calculates the combined lateral and 

longitudinal tire forces by considering the transient properties of the tire. Basic 

handling response data namely lateral, yaw and roll velocity, lateral acceleration 

and the steering wheel input are acquired as the measured response set. Linear 

bicycle model, one DOF roll model, three DOF linear and nonlinear roll models are 

identified from this measured response sets. 

 

For linear models low amplitude steering input is used for acquiring data from 

ADAMS to satisfy the low lateral acceleration and low slip angle assumption. 

 

For acquiring data following sensors and instruments are assumed to be used: 

 

- Lateral and longitudinal velocity sensor 

- Gyro for yaw and roll velocity  

- Accelerometer for lateral acceleration 

- Steering wheel angle measurement system 

- Steering wheel robot 
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Steering wheel input with the responses lateral, longitudinal, yaw, and roll 

velocities and lateral acceleration are given in Figure 6.9 to Figure 6.14 and 

calculated front and rear axle slip angles are given in Figure 6.15 and Figure 6.16. 

Amplitude of the steering wheel input is 20 degree and frequency range of steering 

input is 0-2 Hz which covers high sensitivity regions of the outputs to parameters 

and natural frequencies of the outputs. Longitudinal velocity used in the simulation 

is 20 m/s. Identified models are validated by using the data taken from the double 

lane change simulation of the ADAMS model at 20 m/s longitudinal velocity. 

Steering wheel input and responses acquired from the double lane change analysis 

are given in Figure 6.17 to Figure 6.22 and calculated front and rear axle slip angles 

are given in Figure 6.23 and Figure 6.24. Schematic of double lane change analysis 

is shown in Figure 6.8. 

 

 

Figure 6.8: Double lane change maneuver [7] 
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Figure 6.9: Steering wheel input for the estimation process 

 

Figure 6.10: Lateral velocity response for the estimation process 
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Figure 6.11: Longitudinal velocity response for the estimation process 

 

Figure 6.12: Yaw velocity response for the estimation process 
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Figure 6.13: Roll velocity response for the estimation process 

 

Figure 6.14: Lateral acceleration response for the estimation process 
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Figure 6.15: Front axle slip angle for estimation process 

 

Figure 6.16: Rear axle slip angle for estimation process 
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Figure 6.17: Steering wheel input for validation process 

 

Figure 6.18: Lateral velocity response for validation process 
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Figure 6.19: Longitudinal velocity response for validation process 

 

Figure 6.20: Yaw velocity response for validation process 
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Figure 6.21: Roll velocity response for validation process 

 

Figure 6.22: Lateral acceleration response for validation process 
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Figure 6.23: Front axle slip angle for validation process 

 

Figure 6.24: Rear axle slip angle for validation process 
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To be able to compare the estimated cornering stiffness values, the cornering 

stiffness values of ADAMS/Chassis vehicle model can be estimated from PAC2002 

[8] tire model file as [7, 8, 39]; 

 

Nominal tire load, Fz0=3800N 

a3=-12.536 

a4=1.3856 

Front tire vertical load: Fzf=3022N 

Rear tire vertical load: Fzr=2092N 

1

3 0

4 0

sin 2 tan 41130 N/rad
zf

f z

z

F
C a F

a F

 
     

 
 (6.6) 

1

3 0

4 0

sin 2 tan 32690 N/radzr
r z

z

F
C a F

a F

 
     

 
 (6.7) 

6.6.1. THE BICYCLE MODEL WITH STEADY STATE TIRE MODEL 

PARAMETER ESTIMATION 

The linear bicycle model has two limitations which are small slip angle and low 

lateral acceleration. The bicycle model has seven parameters and three of these are 

treated as unknowns which are front and rear cornering stiffness values and the yaw 

moment of inertia. Parameters of the bicycle model are estimated using only lateral 

velocity, only yaw velocity, and both lateral velocity and yaw velocity. 

 

Unknown parameters: {Cf, Cr, J} 

 

Simulink model of the two DOF linear bicycle model used in identification is given 

in Figure 6.25. 
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Figure 6.25: Simulink model of the two DOF linear bicycle model. 

As can be seen from Figure 6.14, the lateral acceleration is lower than 0.3g and 

front and rear slip angles are lower than 4 degrees as shown in Figure 6.15 and 

Figure 6.16, so linear bicycle model assumption is valid. 

6.6.1.1. ESTIMATION WITH LATERAL VELOCITY DATA 

In this part, estimation process is performed using only lateral velocity response. 

Table 6.3 summarizes the estimation result: 

Table 6.3: Estimated and measured parameter values for the bicycle model 

with steady state tire model using only lateral velocity response 

Estimated Cf=141240 N/rad Cr=75724 N/rad J=1613 kgm
2
 

Actual Cf=82260 N/rad Cr=65380 N/rad J=1724 kgm
2
 

Error [%] 71.7 15.8 -6.4 

 

Measured and estimated responses are given in Figure 6.26 and Figure 6.27. 
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Figure 6.26: Lateral velocity responses - estimated using lateral velocity data. 

 

Figure 6.27: Yaw velocity responses - estimated from lateral velocity data 

0 5 10 15
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
Lateral Velocity vs Time

Time [s]

L
a

te
ra

l 
V

e
lo

c
it
y
 [
m

/s
]

 

 

Measured

Simulated

0 5 10 15
-10

-5

0

5

10

15
Yaw Velocity vs Time

Time [s]

Y
a

w
 V

e
lo

c
it
y
 [
d

e
g

/s
]

 

 

Measured

Simulated



118 
 

Measured and estimated responses for model validation are given in Figure 6.28 to 

Figure 6.29. 

 

 

Figure 6.28: Lateral velocity responses - estimated from lateral velocity for 

model validation 
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Figure 6.29: Yaw velocity responses - estimated from lateral velocity for model 

validation. 

As shown in Figure 6.26 to Figure 6.28, only the lateral velocity is estimated 

accurately so using only lateral velocity response for estimation may not produce 

accurate results. 

6.6.1.2. ESTIMATION WITH YAW VELOCITY DATA 

In this part, linear bicycle model is estimated using only yaw velocity data. Table 

6.4 summarizes the estimation result: 
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Table 6.4: Estimated and measured parameter values for the bicycle model 

with steady state tire model using only yaw velocity data 

Estimated Cf=53794 N/rad Cr=48628 N/rad J=1274 kgm
2
 

Actual Cf=82260 N/rad Cr=65380 N/rad J=1724 kgm
2
 

Error [%] -34.6 -25.6 -26 

 

Measured and estimated responses are given in Figure 6.30 and Figure 6.31. 

 

 

Figure 6.30: Lateral velocity responses - estimated using yaw velocity data. 
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Figure 6.31: Yaw velocity responses - estimated using lateral velocity data. 

Estimated and measured responses are given in Figure 6.32 and Figure 6.33. 

 

 

Figure 6.32: Lateral velocity responses - estimated from yaw velocity data for 

model validation  
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Figure 6.33: Yaw velocity responses - estimated from yaw velocity data for 

model validation 

From the estimation results, it can be seen that even though identified model 

predicts the yaw velocity response quite well, it does not represent the lateral 

velocity response adequately and thus using only yaw velocity for estimation may 

not produce accurate results. 

6.6.1.3. ESTIMATION WITH LATERAL VELOCITY AND YAW 

VELOCITY DATA 

Since estimation with only lateral and only yaw velocity data may not produce 

accurate results, the parameters are now estimated from both lateral and yaw 

velocity data. Estimation result is given in Table 6.5 
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Table 6.5: Estimated and measured parameter values for bicycle model with 

steady state tire model using lateral velocity and yaw velocity data 

Estimated Cf=79636 N/rad Cr=64852 N/rad J=1634 kgm
2
 

Actual: Cf=82260 N/rad Cr=65380 N/rad J=1724 kgm
2
 

Error [%] -3.2 -0.8 -5.2 

 

Measured and simulated responses are given in Figure 6.34 and Figure 6.35. 

 

 

Figure 6.34: Lateral velocity responses - estimated using both lateral and yaw 

velocity data. 
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Figure 6.35: Yaw velocity responses - estimated using both lateral and yaw 

velocity data. 

Estimated and measured responses for model validation are given in Figure 6.36 

and Figure 6.37. 
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Figure 6.36: Lateral velocity responses - estimated using both lateral and yaw 

velocity 

 

Figure 6.37: Yaw velocity responses - estimated using both lateral and yaw 

velocity 
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When the lateral velocity and yaw velocity are used for identification, identified 

model produced both lateral and yaw velocity successfully as can be seen from the 

responses. When using both data for identification, appropriate weighting factors 

are given to lateral velocity and yaw velocity data to add each response in 

estimation equally or according to aim of the study. 

 

Parameters of the bicycle model can be estimated from the lateral velocity, yaw 

velocity, and both lateral and yaw velocity. When these parameters are estimated 

from both lateral and yaw velocity, these responses can be tracked successfully and 

estimated parameters are close to their real values obtained from the ADAMS 

model. However, there are still some small differences between the estimated and 

the simulated data. When these differences are examined, their periodic 

characteristics which show the model deficiency can be observed. When the 

parameters are estimated from yaw velocity, estimation result is not so accurate for 

the lateral velocity, and only yaw velocity can be reconstructed well. Similarly 

when the parameters are estimated from lateral velocity, only lateral velocity can be 

reconstructed well. When both lateral and yaw velocity are used together with 

appropriate weighting factor for test data, both lateral velocity and yaw velocity can 

be estimated successfully. Also, since cornering force changes with slip angle 

nonlinearly for high slip angles, steering input used should be low to obtain tire 

linearity. 

 

Bicycle model with linear tire model can be improved by modeling transient 

properties of the tire. Since a highly transient input, chirp input, is used in 

identification transient characteristic of the tires affect the system responses. This 

effect can be observed by comparing the simulation of the ADAMS/Chassis model 

with transient and steady state tire models. Characteristic of the ADAMS tire model 

such as steady state and transient, combined-uncombined cornering and braking, 

parking and comfort etc. can be changed easily, that is, in the ADAMS tire file 

different tire models can be obtained by changing these characteristic. 
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Figure 6.38: Lateral velocity responses of ADAMS model with transient and 

steady state tire models 

 

Figure 6.39: Yaw velocity responses of ADAMS model with transient and 

steady state tire models 
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Figure 6.40: Roll velocity responses of ADAMS model with transient and 

steady state tire models 

Figure 6.38 to Figure 6.40 show the differences between lateral, yaw, and roll 

velocities of steady state and transient tire models. Since these responses are taken 

from the ADAMS simulation with low amplitude steering input, differences are 

small; yet when the steering input amplitude is increased these differences increase. 

Even if they are small, they may still affect the estimated parameters. Thus, 

unmodeled system response can be compensated by the change in estimated 

parameters. 

 

Using three DOF nonlinear roll model with Magic Formula tire model, effects of 

tire dynamics on vehicle responses can be shown in Figure 6.41 to Figure 6.43. 
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Figure 6.41: Effect of tire dynamics on lateral velocity for different relaxation 

time constant 

 

Figure 6.42: Effect of tire dynamics on yaw velocity for different relaxation 

time constant 
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Figure 6.43: Effect of tire dynamics on roll velocity for different relaxation 

time constant. 

As can be seen from Figure 6.41, Figure 6.42, and Figure 6.43, tire dynamics are 

effective on the transient responses of the vehicle as expected, and thus for 

nonlinear roll model identification which requires high input amplitude it must be 

included in the model. 

6.6.2. BICYCLE MODEL WITH TRANSIENT TIRE MODEL PARAMETER 

ESTIMATION 

Linear bicycle model with transient tire dynamics can be constructed in Simulink 

environment simply by adding the transient tire model to bicycle model as shown in 

Figure 6.44. 
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Figure 6.44: Simulink model of the two DOF bicycle model with transient tire. 

Similar to the bicycle model with the steady state tire model, the bicycle model with 

the transient tire model are estimated from only lateral velocity, only yaw velocity, 

and from both lateral and yaw velocity data. In addition to front and rear cornering 

stiffness values and yaw moment of inertia, another tire parameter, relaxation time 

constant is also estimated. Since front and rear cornering stiffness values are close 

to each other and all tires are the same, the same tire relaxation time constant may 

be used for all tires. 

 

Unknown parameters: {Cf, Cr, Izz, τ} 

 

The bicycle model parameters are estimated from both lateral and yaw velocity 

data, and the estimation results are given in Table 6.6. When the identification is 

from one set of data only, results are similar to the bicycle model with steady state 

tire model, that is only yaw or lateral velocity response is identified successfully 

and those results are given in Appendix B. 
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Table 6.6: Estimated and measured parameter values for bicycle model with 

transient tire model using both lateral velocity and yaw velocity data 

Estimated Cf=80437 N/rad Cr=66310 N/rad J=1750 kgm
2
 τ=0.026s 

Actual Cf=82260 N/rad Cr=65380 N/rad J=1724 kgm
2
 - 

Error [%] -2.2 1.4 1.5 - 

 

 

Estimated and measured responses are given in Figure 6.45 and Figure 6.46. 

 

 

Figure 6.45: Lateral velocity responses - estimated from both lateral and yaw 

velocity data. 
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Figure 6.46: Yaw velocity responses - estimated from both lateral and yaw 

velocity data. 

Estimated and measured responses for model validation are given in Figure 6.47 

and Figure 6.48. 
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Figure 6.47: Lateral velocity responses - estimated from both lateral and yaw 

velocity data for validation process 

 

Figure 6.48: Yaw velocity responses - estimated from both lateral and yaw 

velocity data for validation process for validation process. 
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As in the case of the bicycle model with the steady state tire model, when the 

parameters are estimated from both lateral and yaw velocity data estimation results 

are successful and both responses can be tracked quite well by the identified model. 

6.6.3. ONE DEGREE OF FREEDOM ROLL MODEL PARAMETER 

ESTIMATION 

In the previous parts parameters of the bicycle model were estimated. However, as 

explained before to be able to explain the dynamics of the vehicle handling 

completely, roll motion should also be considered. Adding the roll degree of 

freedom to planar dynamics increases the accuracy of the model, yet it has its own 

disadvantage; adding the roll degree of freedom also increases the complexity of 

model and in turn the complexity of estimation process.  

 

The most simple roll model is the one DOF vehicle roll model which has three 

parameters to be identified; namely the roll stiffness, roll damping and the roll 

moment of inertia. Calculations or measurements of these parameters are difficult 

so they are better estimated.  

 

In the one DOF roll model, lateral acceleration can be assumed as the model input 

and the roll velocity can be assumed as the model output. State space model 

constructed in Simulink is shown in Figure 6.49.  

 

Unknown parameters: {Cø, Kø, Ixx} 
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Figure 6.49: One DOF vehicle roll model. 

Estimated parameters are given in Table 6.7. 

 

 

Table 6.7: Estimated parameters for one degree of freedom roll model 

Estimated Cφ=2535 Nms Kφ=37759 Nm Ixx=384 kgm
2
 

 

Estimated and measured responses are given in Figure 6.50. 
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Figure 6.50: Roll velocity responses for estimation process 

Estimated and measured responses for model validation are given in Figure 6.51. 

 

 

Figure 6.51: Roll velocity responses for validation process 
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Roll velocity is highly sensitive to distance between roll axis and center of gravity 

and thus accurate knowledge of this value is vital for correct parameter estimation. 

However, position of the roll center changes as suspension moves during maneuver 

and so the distance between roll axis and center of gravity will change and this will 

affect the estimated parameters. 

6.6.4. THREE DEGREE OF FREEDOM LINEAR ROLL MODEL 

PARAMETER ESTIMATION 

The bicycle model represents only plane dynamics of vehicles and it does not 

comprise the roll degree of freedom. However, roll motion and lateral motion of the 

vehicles are coupled and thus roll motion has effects on the lateral motion. When 

the measured and estimated responses of the bicycle model are compared it can be 

observed that there is error which shows periodic characteristic which means that 

the identified model has model deficiency. This deficiency can be decreased by 

increasing the model order and more accurate results can be obtained. However, an 

increase in model order brings its own disadvantages. Number of parameters to be 

estimated increases and thus numerical calculations becomes more difficult. 

 

Three DOF roll model considers the coupled planar and roll degrees of freedom and 

now the parameters of the more accurate vehicle model are estimated. 

 

Simulink model of the three DOF linear roll model is given in Figure 6.52. 
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Figure 6.52: Linear three DOF roll model 

Unknown parameters: {Cf, Cr, Kø, Cø, Ixx, Izz,τ} 

 

The data are taken from the simulation of the ADAMS model and it is the same as 

the one used for the bicycle model identification.  

 

Result of the estimation process is given in Table 6.8. 
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Table 6.8: Estimated and measured parameter values for three degree of 

freedom linear roll model 

Parameter Estimated Actual 
Error 

[%] 

Cf [N/rad] 74618 82260 -9.3 

Cr [N/rad] 66542 65380 1.8 

Izz [kgm
2
] 1766 1724 2.4 

Ixx [kgm
2
] 363 - - 

Kφ [Nm] 41330 - - 

Cφ [Nms] 2409 - - 

τ [s] 0.017 - - 

 

Measured and estimated responses are given in Figure 6.53 to Figure 6.55. 

 

 

Figure 6.53: Lateral velocity responses for identification process. 
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Figure 6.54: Yaw velocity responses for identification process 

 

Figure 6.55: Roll velocity responses for identification process 
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Estimated and measured responses for model validation are given in Figure 6.56 to 

Figure 6.58. 

 

 

Figure 6.56: Lateral velocity responses for validation process  

 

Figure 6.57: Yaw velocity responses for validation process  
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Figure 6.58: Roll velocity responses for validation process. 

Using lateral velocity, yaw velocity, and roll velocity three DOF linear roll model 

can be identified. As can be seen from measured and estimated responses estimated 

responses track the measured responses successfully. When the results of the linear 

bicycle model and the linear roll model are compared, it can be seen that 

considering the effect of the roll motion on the lateral motion, more accurate 

estimate is obtained. As can be seen in Figure 6.59 and Figure 6.60 the error 

between measured and estimated responses of the roll model is smaller than the 

error between measured and estimated responses of the bicycle model. 
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Figure 6.59: Error between measured and estimated lateral velocities of bicycle 

and roll model. 

 

Figure 6.60: Error between measured and estimated yaw velocities of bicycle 

and roll model. 
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Till now, linear handling models have been identified and their identifications have 

been relatively straight forward. When the bicycle model is identified by using two 

vehicle output data; namely lateral velocity and yaw velocity, two states of the 

bicycle model, identification results are successful. On the other hand, even if one 

set of response data is sufficient for the identification of the bicycle model (for a 

specified parameter set) from the structural identifiability point of view, only one 

output set used in the identification is identified successfully. To illustrate, when the 

bicycle model is identified by using only lateral velocity data, only lateral velocity 

is identified successfully. This may be due to the fact that unmodeled part of the 

vehicle may affect the estimated parameters for the specified output. Since the input 

used in the identification is sine chirp input which covers a certain frequency range, 

transient properties of the tire should also be modeled. Three DOF linear roll model 

tracks the measured responses successfully in the linear operating region of the 

vehicle, and it may be used for the control applications effectively.  

 

Handling models can also be identified by firstly identifying state space or transfer 

function parameters and then by identifying physical parameters from these 

parameters. However, to be able to identify physical parameters from state space or 

transfer function parameters, a nonlinear set of equations must be solved; and this is 

not easy. Since in vehicle handling identification, aim is to estimate physical 

parameters rather than model parameters, estimation of physical parameters directly 

is easier. When the physical parameters are estimated from model parameters by 

equation solving or by optimization methods, constraints cannot be imposed 

directly on physical parameters so estimation process may become difficult. 

 

However, for more severe maneuvers, that is, when the slip angles and lateral 

acceleration are high, linear models cannot be used since tire behavior changes 

nonlinearly with tire inputs like slip angle and vertical tire load. Therefore, tire 

should be modeled such that those nonlinearities can also be included in the 

analysis. Consequently, more advanced and more complex vehicle handling models 
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are required. Thus, the identification of a nonlinear handling model with Magic 

Formula tire model is attempted. 

6.6.5. THREE DEGREE OF FREEDOM NONLINEAR ROLL MODEL 

PARAMETER ESTIMATION 

In this section three DOF nonlinear roll model is used with the Magic Formula tire 

model. Data used in the identification is taken from the simulation of the ADAMS 

vehicle. PAC2002 [8] tire model which calculates combined cornering and 

braking/traction tire forces by considering dynamic tire characteristics is used with 

ADAMS model. First order transient tire model is used in the model to be 

identified. 

 

When the slip angle of the tire is higher than approximately 4 degree, linear tire 

model which relates the cornering force to slip angle linearly cannot be used; and 

more advanced and complex nonlinear tire models should be used. These nonlinear 

models calculate the tire cornering force as a function of various inputs like slip 

angle and vertical tire load, and they can be used for wider operating conditions. 

When the combined cornering and braking tire characteristic is also considered 

more accurate tire models with a better representation of the real tire behavior is 

obtained, yet determining the values of the high number of unknown parameters 

pose a difficulty. There are various nonlinear tire models, each one of which has its 

own specific advantages and disadvantages. Some of these are Fiala tire model, 

look-up table model, Allen tire model, and Magic Formula tire model.  

 

Detailed comparison of Fiala tire model and Magic Formula tire model have been 

given in [40]. In Magic Formula tire model, cornering stiffness changes with 

vertical tire load and camber angle, yet in Fiala tire model cornering stiffness does 

not change with vertical load on it and camber angle. On the other hand, Fiala tire 

model Formula calculates tire forces with a lower number of parameters as 

compared with the Magic Formula tire model, which is the advantage of the Fiala 

tire model [40]. 
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In this study various nonlinear tire models including, Fiala tire model, lookup table 

tire model, polynomial tire model, and Magic Formula tire model have been 

examined and among these the best estimation results have been obtained with 

Magic Formula tire model. In vehicle tests with a high amplitude transient steering 

input stimulating tires highly, lateral load on tires change so cornering stiffness of 

the tires changes. Since Fiala tire model assumes constant cornering stiffness, this 

model may be used up to some slip angle. When the lookup table tire model is used, 

increased number of parameters may pose a problem and also shape of the 

estimated tire forces may not be correspond to measured tire forces. In polynomial 

tire model estimation results are good, that is, estimated responses track the 

measured responses well, yet these models can only be used for the slip angle which 

is obtained in test; at higher slip angle nonphysical tire behavior may result due to 

certain characteristics of the polynomials as also indicated in [39]. Therefore, the 

Magic Formula tire model is used in the nonlinear roll model due to its proved 

accuracy and applicability in vehicle handling dynamics. 

 

Magic Formula tire model has various parameters and estimations of all of them are 

a difficult task with simple vehicle tests. More advanced test routines are needed to 

estimate the parameters. As explained in chapter 2, tires are tested with some 

specialized test setup to measure forces acting between the tire and the road. Then 

Magic Formula tire parameters are estimated from those test data. With this test, 

combined and pure braking and cornering tire force measurement can be performed 

and Magic Formula tire model parameters can be estimated. However, these 

parameters may also be estimated from vehicle handling tests. Estimation is 

performed for the coefficients of the Magic Formula tire models which are; a0, a1, 

a2, a3, a4, a6, a7. These parameters are the basic parameters of the Magic Formula 

tire model and they are not dependent on the vertical loads or other variables. Since 

in the estimation model vertical load in each tire is modeled, estimation of these 

parameters produces more reliable results.  

 



148 
 

In ADAMS vehicle model used in this study, four wheels of the vehicle are the 

same and since tire model coefficients (a0, a1..) to be estimated are independent of 

the other variables like the vertical load on the tires, only one tire model parameter 

set is treated as the unknown tire parameter set.  

 

To be able to estimate the parameters of the Magic Formula tire parameters, wide 

operating points should be covered and thus ADAMS vehicle model is disturbed 

with steering wheel input at high amplitude. 

 

To be able to determine the effects of the tire parameters to cornering force, 

sensitivity study is first performed. With this study, change of sensitivities of the 

cornering force to tire parameters with tire slip angle at different vertical tire load is 

studied and the required tire slip angle is found. According to the results, as can be 

seen from Figure 6.61 to Figure 6.63, sensitivities of cornering force to tire 

parameters related with cornering stiffness are high at low slip angle. On the other 

hand, sensitivities of the cornering force to tire parameters related with maximum 

force are high at high slip angles. Sensitivities of the cornering force to tire 

parameters related with curvature factor are not so high. Therefore to be able to 

estimate tire model parameters high slip angles are required. 
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Figure 6.61: Sensitivity of cornering force to Magic Formula tire parameters at 

2 kN vertical tire load 

 

Figure 6.62: Sensitivity of cornering force to Magic Formula tire parameters at 

3 kN vertical tire load 
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Figure 6.63: Sensitivity of cornering force to Magic Formula tire parameters at 

4 kN vertical tire load 

Shape factor of the Magic Formula tire model a0 is usually fixed to value of 1.3 and 

so in the identification it is assumed to be 1.3. Further total roll stiffness is the sum 

of front and rear roll stiffness and roll damping is the sum of the front and rear roll 

damping. However, to decrease the number of parameters it is assumed that front 

and rear roll stiffness values as well as front and rear roll damping are equal to each 

other. 

 

Unknown parameter set becomes: {Izz, Ixx, Cφ, Kφ, τ, a0, a1, a2, a3, a4, a6, a7, δφf, δφr} 

 

Simulink model of the three DOF nonlinear roll model is shown in Figure 6.64. 
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Figure 6.64: Simulink model of three DOF nonlinear roll model 

To be able to excite the system over a wide operating point, data set is taken from 

simulation of ADAMS/Chassis model with high amplitude steering input. Vehicle 

longitudinal velocity used in the ADAMS simulation is fixed to 15 m/s. At 20m/s 

vehicle longitudinal velocity very high slip angles are observed at the first 2-3 

second of the maneuver and then slip angles drops to low values rapidly. At 15m/s 

longitudinal velocity, smoother slip angle responses are obtained and therefore 

more accurate estimation is obtained. Data set used in the identification is given in 

Figure 6.65 to Figure 6.70 and estimated slip angles with vertical tire loads are 

given in Figure 6.71 to Figure 6.78. 
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Figure 6.65: Steering wheel input for estimation process  

 

Figure 6.66: Lateral velocity response for estimation process 
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Figure 6.67: Longitudinal velocity response for estimation process 

 

Figure 6.68: Yaw velocity response for estimation process  
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Figure 6.69: Roll velocity response for estimation process 

 

Figure 6.70: Lateral acceleration response for estimation process 
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Figure 6.71: Front left tire slip angle 

 

Figure 6.72: Front right tire slip angle 
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Figure 6.73: Rear left tire slip angle  

 

Figure 6.74: Rear right tire slip angle 
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Figure 6.75: Front left tire vertical load 

 

Figure 6.76: Front right tire vertical load 
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Figure 6.77: Rear left tire vertical load 

 

Figure 6.78: Rear right tire vertical load 
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As can be seen from slip angle versus time graphs, and vertical load versus time 

graphs, slip angle and load transfer are high enough to estimate tire model 

parameters; that is the vehicle maneuver stimulates the system such that Magic 

Formula tire can be identified. 

 

To validate the identified system another data set is taken and is given in Figure 

6.79 to Figure 6.84. To excite the vehicle in a wider operating range, a steering 

input with a wide range of frequencies together with high amplitude, shown in 

Figure 6.79, is used. 

 

 

Figure 6.79. Steering wheel input for validation process 
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Figure 6.80: Lateral velocity response for validation process 

 

Figure 6.81: Longitudinal velocity response for validation process 
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Figure 6.82: Yaw velocity response for validation process 

 

Figure 6.83: Roll velocity response for validation process 
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Figure 6.84: Lateral acceleration response for validation process 

When the estimated and measured responses are compared from the estimation and 

validation processes, it can be seen that identified model track the actual responses 

satisfactorily. Tire forces taken from the ADAMS/Chassis model and the identified 

model are also compared in Figure 6.89 to Figure 6.92. From these figures it is seen 

that characteristic of the measured and identified tire forces are similar. 

 

To simplify the estimation process upper and lower parameters constrained are 

inserted so that the parameter space to be searched is constrained. Also appropriate 

weighting factors are given to different responses according to result of the 

estimation. Estimated parameters are given in Table 6.9. Typical weighting factors 

used in the estimation for lateral, yaw, and roll velocities are 70, 1.2, and 1.6 

respectively and these are determined according to aim of identification, order of 

magnitude of the responses, practical problems in experimentation etc. 
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Table 6.9: Estimated parameter values for the three DOF nonlinear roll model 

Izz=2051 kgm
2
 Ixx=398 kgm

2
 Cφ=2520 Nms Kφ=37905 Nm τ=0.026 s 

          

a0=1.3 a1=-47 a2=1291  a3=67327 a4=7.81 

a6=0.59 a7=-1.97 δfφ=0.29  δrφ=0.01   

 

 

When the estimated parameters are examined, it can be seen that front roll steer 

coefficient, δfφ, is large. This may due to the effect of the unmodeled part of the 

vehicle on the estimated parameter. It can be avoided by lowering the upper 

constraint on the roll steer coefficient, but in this case quality of the estimate 

decrease slightly. However, when the estimated and measured tire cornering forces 

are compared, it can be seen that estimation process is successful. Moreover, when 

the severity of the maneuver is increased, from the sensitivity analysis, it is 

expected to obtain more accurate result, yet due to nonlinearities of the vehicle, 

estimation process becomes more difficult. Other studies using different lower and 

upper constraints on parameters have been performed and sometimes slightly 

different Magic Formula tire model parameters have been estimated. This can be 

due to lack in the modeling or estimation of tire inputs such as vertical load and slip 

angle with low accuracy, or due to optimization algorithms, etc.  

 

Cornering force characteristics of the identified tire model is given Figure 6.85. 
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Figure 6.85: Cornering force characteristic of identified tire model 

Estimated and measured responses are given in Figure 6.86 to Figure 6.88. 

 

 

Figure 6.86: Estimated and measured lateral velocity responses 
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Figure 6.87: Estimated and measured yaw velocity responses 

 

Figure 6.88: Estimated and measured roll velocity responses 
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Figure 6.89: Estimated and veasured front right tire cornering force 

 

Figure 6.90: Estimated and measured front left tire cornering force 
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Figure 6.91: Estimated and measured rear left tire cornering force 

 

Figure 6.92: Estimated and measured rear right tire cornering force 
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Estimated and validated responses for model validation are given in Figure 6.93 to 

Figure 6.95. 

 

 

Figure 6.93: Estimated and measured lateral velocity responses for validation 

process 
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Figure 6.94: Estimated and measured yaw velocity responses for validation 

process 

 

Figure 6.95: Estimated and measured roll velocity responses for validation 

process 
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Though the ADAMS vehicle model with PAC2002 [8] tire model are quite complex 

(it has more than 100 parameters), their handling response characteristics can be 

predicted successfully even for highly severe maneuvers. Tire system is highly 

nonlinear and complex, and there are uncertainties in it; thus modeling of the tire is 

a difficult process especially for wide operating ranges. As shown in this study, 

Magic Formula tire parameters together with vehicle parameters can be estimated 

such that the estimated vehicle responses track actual responses successfully. 

However, estimated parameters may not correspond to their actual values, since 

these parameters may compensate the unmodeled part of the system in the simple 

handling model. To ease the estimation and to guarantee estimate, physical 

parameters upper and lower parameter constrained are imposed on the parameters 

for estimation process. 
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CHAPTER 7 

 DISCUSSION AND CONCLUSION 

The objective of this study was the identification of handling models from 

multibody dynamics vehicle model. In particular, identification of Magic Formula 

tire model parameters was studied in some detail. 

 

In this study, a methodology was given for identification of low order vehicle 

handling model from Multibody dynamics vehicle models. Simple handling models 

which are two DOF linear bicycle model and one DOF roll model, and more 

complex vehicle handling models which are three DOF linear and nonlinear roll 

model were identified form the test data acquired from the simulation of 

ADAMS/Chassis vehicle model. Three DOF nonlinear roll model was constructed 

with the well known and commonly used Magic Formula tire model with transient 

characteristics. ADAMS/Chassis vehicle model has subsystems which are front and 

rear suspension subsystems, steering subsystem, chassis subsystem and front and 

rear tire subsystems and it has nearly 100 degrees of freedom. Tire model used in 

the ADAMS/Chassis vehicle model is a version of the Magic Formula tire model 

which calculates combined braking/traction and cornering force considering 

transient characteristic of tire. Therefore, ADAMS/Chassis vehicle model is 

assumed to represent real vehicle dynamics completely. 

 

In this study four vehicle models; namely the bicycle model with steady state and 

transient tire models, one DOF roll model, three DOF linear roll model, and three 

DOF nonlinear roll model with Magic Formula tire model were used. At small slip 

angles tire cornering force is linearly proportional to slip angles and thus at linear 
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operating range of the vehicle linear tire model can be used. However at high slip 

angle tire cornering force changes nonlinearly with slip angle and thus Magic 

Formula tire model was used. To use Magic Formula vertical load on each tire is 

required so in the three DOF nonlinear roll model lateral load transfer were also 

modeled. Transient property of the tire alters cornering forces thus it was also 

included. These models were constructed in Simulink environment and the cost 

function was formed directly by the Simulink Parameter Estimation Toolbox. 

 

To determine the effects of parameters on the model responses and to determine 

frequency range of test input, a detailed sensitivity analysis was performed in 

frequency domain for bicycle model and three DOF roll model for different 

longitudinal velocities. Sensitivities of the lateral, yaw, and roll velocities to model 

parameters were calculated. According to these results, frequency ranges at which 

sensitivity values are high and natural frequencies of the model are included were 

selected as the steering input parameters. Sine chirp input with the determined 

frequency range was used as the steering input. 

 

To determine whether the model to be identified is unique or not, structural 

identifiability analysis for each model with different outputs and output set were 

performed. For structural identifiability analysis there are various methods. 

Algebraic methods are sometimes very difficult to apply especially for the nonlinear 

models with large number of parameters. In this thesis, Numerical Local Approach 

is used for identifiability analysis. According to this method data is acquired from 

the simulation of the model with nominal parameter values. Then using these 

nominal parameters values as the initial values at estimation, quadratic cost function 

is optimized with a second order optimization method like Gauss-Newton. If the 

estimator is stable, then model is s.l.i and estimated parameters converge to their 

nominal values. According to result of this method, the bicycle model with steady 

state and transient tire models with the selected unknown parameters are 

identifiable for only lateral velocity, for only yaw velocity, and for both lateral and 

yaw velocities. That is by using only one output bicycle model can be identified. 
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However, structural identifiability analysis does not guarantee accurate 

identification. As shown in the parameter estimation chapter, identification using 

lateral and yaw velocity responses produce more accurate results. After the bicycle 

model, identifiability of the one DOF roll model with specified parameters was 

shown. Finally, it was shown that linear and nonlinear roll model with lateral 

velocity, yaw velocity, and roll velocity outputs with specified parameters are 

structurally locally identifiable. 

 

After identifiability and sensitivity analysis, handling models were identified. 

Optimization process was performed by nonlinear least square, simplex search and 

genetic algorithms and sometimes with combination of these. The bicycle model 

with steady state and transient tire model was identified by using only lateral 

velocity, only yaw velocity, and both lateral and yaw velocity. According to 

identification results using both responses improves identification results. One DOF 

roll model requires lateral acceleration and roll velocity. Three DOF linear roll 

model was identified by using lateral velocity, yaw velocity, and roll velocity. For 

vehicle maneuvers performed in linear operating ranges, identification process is 

relatively easy, and estimated responses track the measured responses accurately.  

 

Identified linear models were validated by data taken from the double lane change 

simulation. Result of the validation process showed the validity of the identified 

model. Three DOF nonlinear roll model was constructed with Magic Formula tire 

model and it included lateral load transfer to calculate vertical load on tire. 

According to sensitivity analysis, high slip angles are required to identify tire 

model. Therefore, identification data is taken from the simulation with a high 

amplitude steering input to cover a high slip angle region. With this dataset, 

parameters of the tire and vehicle were identified from the lateral velocity, yaw 

velocity, and roll velocity data. It was shown that estimated responses track the 

measured responses successfully. Tire cornering forces taken from the ADAMS and 

from the identified model were also compared and it was observed that they 

correspond to each other well. To validate the identified model another data set was 
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taken and the identified model was successfully validated. More accurate results of 

the Magic Formula tire model identification are obtained from advanced tire test 

setups. The tire to be identified is tested under different loading and operating 

conditions like different camber angles, vertical loads, slip angles and combined 

braking and cornering, and thus tire characteristics are identified experimentally. 

However, by making vehicle tests and using standard sensor sets, cornering force 

characteristic of the Magic Formula tire model was identified in this study, together 

with suspension parameters and inertial vehicle parameters. Large number of 

unknown vehicle parameters brings about its own disadvantage such that different 

parameters even unphysical parameters can be estimated. Constraining the 

parameter values may solve this problem, yet to do this a priori knowledge about 

vehicle is required. Nonetheless, constraining parameters may decrease the 

accuracy of the estimation. Therefore there is a trade off and according to the aim of 

the study desired precautions may be taken. In literature on vehicle handling 

identification there are a limited number of studies about nonlinear vehicle handling 

identification especially related with Magic Formula tire model. Work towards the 

identification of the Magic Formula parameters given in this study is believed to be 

a contribution to the limited amount of investigation available in the literature. 

 

As a future study more complicated vehicle handling models comprising 

longitudinal motion may be identified. Also while identifying nonlinear roll model, 

front and rear tire may be modeled separately and thus a more general model can be 

obtained. In addition, in this study practical difficulties like noise in data, signal to 

noise ratio, or placement of sensor, steering robot, etc. are not considered; yet in 

future studies these issues can also be taken into account for a more realistic study. 
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APPENDIX A 

 SENSITIVITY ANALYSIS 

A.1. BICYCLE MODEL SENSITIVITY ANALYSIS 

 

 

Figure A.1: Sensitivity of lateral velocity to a 
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Figure A.2: Sensitivity of lateral velocity to b 

 

Figure A.3: Sensitivity of lateral velocity to M 
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Figure A.4: Sensitivity of lateral velocity to U  

 

Figure A.5: Sensitivity of yaw velocity to a 
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Figure A.6: Sensitivity of yaw velocity to b 

 

Figure A.7: Sensitivity of yaw velocity to M 
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Figure A.8: Sensitivity of yaw velocity to U 

A.2. ROLL MODEL SENSITIVITY ANALYSIS 

 

 

Figure A.9: Sensitivity of lateral velocity to a 
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Figure A.10: Sensitivity of lateral velocity to b 

 

Figure A.11: Sensitivity of lateral velocity to M 
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Figure A.12: Sensitivity of lateral velocity hs  

 

Figure A.13: Sensitivity of lateral velocity U  
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Figure A.14: Sensitivity of lateral velocity Ms  

 

Figure A.15: Sensitivity of yaw velocity to a 
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Figure A.16: Sensitivity of yaw velocity to b 

 

Figure A.17: Sensitivity of yaw velocity to M 
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Figure A.18: Sensitivity of yaw velocity to U 

 

Figure A.19: Sensitivity of yaw velocity to hs 
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Figure A.20: Sensitivity of yaw velocity to Ms 

 

Figure A.21: Sensitivity of roll velocity to a 
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Figure A.22: Sensitivity of roll velocity to b 

 

Figure A.23: Sensitivity of roll velocity to M 
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Figure A.24: Sensitivity of roll velocity to U 

 

Figure A.25: Sensitivity of roll velocity to hs 
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Figure A.26: Sensitivity of roll velocity to Ms 
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APPENDIX B 

 IDENTIFICATION OF BICYCLE MODEL WITH TRANSIENT 

TIRE MODEL 

B.1. IDENTIFICATION WITH LATERAL VELOCITY 

In this case, the bicycle model is identified from only lateral velocity. Estimation 

result is given in Table B.1. 

Table B.1: Estimated and measured parameter values for the bicycle model 

with transient tire model using only lateral velocity 

Estimated Cf=119810 N/rad Cr=74218 N/rad J=1840kgm
2
 τ=0.028 s  

Actual: Cf=82260 N/rad Cr=65380 N/rad J=1724 kgm
2
 - 

Error [%] 45.6 13.5 6.7 - 

 

Estimated and measured responses are given in Figure B.1 and Figure B.2. 
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Figure B.1: Lateral velocity responses - estimated from lateral velocity data. 

 

Figure B.2: Yaw velocity responses estimated from lateral velocity. 
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Estimated and validated responses for model validation are given in Figure B.3 and 

Figure B.4. 

 

 

Figure B.3: Lateral velocity responses - estimated from lateral velocity for 

validation process. 
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Figure B.4: Yaw velocity responses - estimated from lateral velocity for 

validation process. 

B.2. IDENTIFICATION WITH YAW VELOCITY DATA 

In this case bicycle model is identified by using only yaw velocity data, estimated 

parameters are given in Table B.2. 

Table B.2: Estimated and measured parameter values for bicycle model with 

transient tire model using only yaw velocity 

Estimated Cf=71940 N/rad Cr=74578 N/rad J=1721 kgm
2
 τ=0.017 s 

Actual: Cf=82260 N/rad Cr=65380 N/rad J=1724 kgm
2
 - 

Error [%] -12.5 14 -0.2 - 

 

Estimated and validated responses are given in Figure B.5 and Figure B.6. 
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Figure B.5: Lateral velocity responses - estimated from yaw velocity data. 

 

Figure B.6: Yaw velocity responses - estimated from yaw velocity data. 
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Estimated and measured responses for model validation are given in Figure B.7 and 

Figure B.8. 

 

 

Figure B.7: Lateral velocity responses - estimated from yaw velocity data for 

validation process. 
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Figure B.8: Yaw velocity responses - estimated from yaw velocity data for 

validation process. 
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