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ABSTRACT

ANALYSIS OF SINGLE PHASE CONVECTIVE HEAT TRANSFER IN
MICROCHANNELS WITH VARIABLE THERMAL CONDUCTIVITY
AND VARIABLE VISCOSITY

Gozikara, Arif Cem
M.Sc. Department of Mechanical Engineering
Supervisor: Asst. Prof. Dr. Almila Giiveng Yazicioglu

Co-Supervisor: Prof. Dr. Sadik Kakac

February 2010, 243 Pages

In this study simultaneously developing single phase, laminar and incompressible
flow in a micro gap between parallel plates is numerically analyzed by including
the effect of variation in thermal conductivity and viscosity with temperature.
Variable property solutions for continuity, momentum and energy equations are
performed in a coupled manner, for air as a Newtonian fluid. In these analyses the
rarefaction effect, which is important for the slip flow regime, is taken into
account by imposing slip velocity and temperature jump boundary conditions to
the wall boundaries. Mainly, the influence of viscous dissipation, axial
conduction, geometric parameters and rarefaction on the property variation effect
is aimed to be discussed in detail. Therefore, the effects of variable thermal
conductivity and viscosity are investigated simultaneously with the effects of
rarefaction, geometric parameters, viscous dissipation and axial conduction. The
difference between constant and variable solutions in terms of heat transfer
characteristics is related to the effects of viscous dissipation axial conduction and

rarefaction. According to results, property variation is substantially effective in

iv



the entrance region where temperature and velocity gradients are high. On the
other hand, property variation effects are not significant for fully developed air

flows in microchannel.

Keywords: Heat transfer, microchannel, thermal conductivity variation, viscosity

variation, slip flow
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TEK FAZLI MIKROKANAL AKISINDA KONVEKSiYONEL ISI
TRANSFERININ DEGIiSKEN ISIL iILETKENLIiK KATSAYISI VE
DEGISKEN ViSKOZITE iLE iNCELENMESI

Gozikara, Arif Cem
Yiiksek Lisans Makine Miihendisligi
Tez Yoneticisi: Yard. Dog. Dr. Almila Giiveng Yazicioglu
Ortak Tez Yoneticisi: Prof. Dr. Sadik Kakag

Subat 2010, 243 Sayfa

Bu calismada hidrodinamik ve 1s1l olarak gelismekte olan, laminar, tek fazli ve
sikistirllamaz mikrokanal akisinda degisken Ozniteliklerin etkisi incelenmistir.
Paralel plakalar arasindaki mikrokanallardaki akisin modellenmesinde sayisal
yontemlerden faydalanilmistir. Kaygan akis rejiminin incelendigi calismada sabit
duvar sicakligit smir kosulu kullanilmistir. Degisken Ozniteliklerin hesaba
katilabilmesi amaciyla hareket ve enerji denklemleri birlikte c¢oziilmiistiir.
Momentum ve enerji denklemlerinin birlikte ¢coziimiine ek olarak, basing ve hiz
degiskenlerinin de coziimii eslenerek gerceklestirilmistir. Kaygan akis rejimi,
duvar kaymasi ve sicaklik sigcramasi duvar simir kosullart kullanilarak
modellenmistir. Seyrelme, siirtinme kaybi, eksen boyunca 1s1 iletiminin
etkileriyle birlikte, degisken 1s1l iletkenlik katsayisi ve viskozitenin akigkanin 1s1
transferi karakteristigine etkileri detayli olarak tartistlmistir. Degisken 1s1l
iletkenlik katsayis1 ve viskozitenin etkilerinin anlagilabilmesi amaciyla hem
degisken hem de sabit 1s1l iletkenlik ve viskozite icin ¢Oziimler

gerceklestirilmistir. Elde edilen sonuclar degerlendirildiginde degisken 1s1l
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iletkenlik katsayisi ve viskozitenin giris bolgesinde kayda deger bir farka sebep
oldugu, fakat tam gelismis akis icin sabit Ozniteliklerden ciddi bir fark

gostermedigi goriilmiistiir.

Anahtar Kelimeler: Isi transferi, mikrokanal, degisken 1s1l iletkenlik katsayisi,

degisken viskozite, kaygan akis
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NOMENCLATURE

Brinkman number, Br = uU / k (T;-T,,)
constant pressure specific heat, J/kgK
hydraulic diameter

tangential momentum accommodation factor
thermal accommodation factor

half channel spacing

convective heat transfer coefficient, Wim’K
thermal conductivity, W/mK

Knudsen number, Kn =1/L

channel length, m

Nusselt number

pressure, Pa

Péclet number, Pe = Re.Pr

Prandtl number, Pr = uc,/k

Reynolds number, Re =p UL/ u
temperature, K

velocity in axial direction, m/s

slip velocity, m/s

velocity in longitudinal direction

axial coordinate axis

vertical coordinate axis
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Greek Symbols

a thermal diffusivity, m*/s

Y weighting factor

1) dynamic viscosity, kg/ms

p density, kg/m’

A mean free path, m

0 dimensionless temperature
T dimensionless time
Subscripts

i axial node values

Jj vertical node values

imax last axial node value

Jjmax last vertical node value
boundary values at the boundary
mean mean values

wall wall values

X local values

oo free stream parameter

vp temperature variable thermophysical property
cp constant thermophysical property
Superscripts

* Non-dimensional parameter
n time step
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CHAPTER 1

INTRODUCTION

The need for maximizing the performance of micro mechanical systems and
electronic components urges the minimization of dimensions. Minimized
dimensions come along with a complex heat transfer and fluid flow problem
within these devices and components. This newly introduced phenomenon is
called “Microscale fluid flow and heat transfer” because of related dimensional
magnitudes. It is important to point out that, fluid flow and heat transfer in
microscale cannot be characterized by the macroscale approaches. For instance,
the early transition from laminar to turbulent regime, friction factors a few times
higher than expected, and higher heat transfer coefficients observed in the laminar
rather than the turbulent regime, are some of the indications that conventional
theories used in macroscale fluid flow and heat transfer become inadequate for
modeling in microscale. An observation of the studies in the field and related
reviews on the subject give the impression that every result obtained by the
researchers was considered as surprising. Additionally, a small percentage of the
results converge to a point where microflow is subjected to discussion. On the
other hand, the miniaturization trend in manufacturing micro devices and
electrical components increases every year. For a variety of fields in which these
micro devices are used; such as, biomedical, micro fabrication, and optics, fluid
flow and heat transfer need to be understood and modeled with an acceptable
reliability. This urgent need for comprehending the mechanisms behind heat

transfer and fluid flow phenomena in microscale canalized the researchers to the



issue. Since the fluid flow and heat transfer characteristics of microflow cannot be
modeled with the conventional theoretical models, some new methods have been
introduced by different researchers. In general, some extensions are made to
conventional methods by including the scaling effects that become important for
modeling microflows. On the other hand, some researchers prefer using models
that are used for molecular gas flow, which are probabilistic and deterministic
methods. The major effects that become important for microscale flow and

usually negligible for macroscale flow can be listed as follows:

- Surface roughness effect
- Electrokinetic forces between fluid and wall boundaries-for liquids

- Rarefaction effects-for gases

By considering the dominance of these effects, it is possible to make a distinction
between micro and macro flows. Unfortunately there is no existing common
definition for "micro" scale. Therefore it is appropriate to follow the dimensional

scale offered by Kandlikar and Grande [1] for classifying channel flows in micro

scale.

lum <Cp<10um : Transitional Microchannels
10 pm < Cp <200 pm : Microchannels

200 um < Cp < 3 mm : Minichannels

3mm <Cp : Conventional passages

Cp represents the minimum dimension of the microchannel. This classification is
used for gaseous flows in channels, which is the main point of interest in this
study. Numerous extensive studies in the field of micro scale fluid flow and heat
transfer continue to move towards converging to common results as the time

passes.



1.1 Modeling

As stated by Gad-el-Hak [2] and as shown in Figure 1.1, the flow field can be
modeled in two different ways. In the first one the flow field is treated as a
collection of particles and this approach is named as molecular approach. The
second one is continuum approach, in which the flow field is assumed to be
infinitely divisible and continuous [2]. Macro scale flow problems are associated
with the continuum model. In this model, the flow variables such as velocity,

pressure, and density are defined for every point in space and time [2].

[Fluid Modeling j

Molecular Models Continuum Models
Statistical Navier—Stokes
~
~ + P

—
-~ | -

MD Liouville Chapman-Enskog
__________ J

Figure 1.1 Molecular and continuum flow models [2]

Deterministic

Using the conservation principles, continuum can be modeled in terms of mass,

momentum, and energy. Partial differential equations based on mass and



momentum conservation are named as Navier-Stokes equations. Likewise the
partial differential form of the energy conservation equation is named as energy
equation. The ease of handling these equations mathematically makes them a
preferable tool for modeling flow fields, as long as the continuum approach is
applicable. On the other hand, these equations disregard the molecular nature of
gases and it is not possible to model dilute and rarefied gas flows, which are far
from being a continuous media. Additionally, it should be noted here that the
classical no-slip boundary condition between fluid-solid interfaces is likely to fail
before the flow becomes free-molecular. Since the area of interest in this study is

gases, discussions will be based on gaseous flows.

To make a further distinction between continuous media and free-molecular flow,
another parameter, "mean free path” is needed to be introduced. Mean free path
represents the average distance traveled by gas molecules before they collide with
each other. However, a distinction cannot be made for the flow by just
considering the mean free path. For this purpose this mean free path should be
compared with the characteristic dimension of the flow. Continuum model can be
valid when mean free path of the gas is much smaller than the characteristic
dimension of the flow. The ratio of mean free path and characteristic dimension of

the flow is defined as Knudsen number characterizing the flow.

Kn=2 (1.1)
Dh

Where A is the mean free path and Dy, is the characteristic dimension of the flow.
Furthermore a classification of flow regimes based on Knudsen number is
available in various resources. A scale proposed by Gad-el-Hak [3] is given in

Figure 1.2.
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Figure 1. 2 Knudsen number regimes [3]

The region in which Knudsen number varies between 0.1 and 0.001 is named as
slip-flow regime in Figure 1.2. The range of Knudsen number will be within these
limits throughout this study, and therefore the area of interest will be the slip-flow
regime. In this flow regime, the collisions between wall and fluid particles are not
as frequent as the collisions taking place in continuum flow. The amount of
collisions in slip-flow regime will not be enough to establish a thermodynamic
equilibrium between wall and fluid particles. Thus, no-slip and no-temperature
jump boundary conditions that are used in continuum regime, will no longer be

valid in the absence of thermodynamic equilibrium.

The reflection of fluid molecules from the wall after a collision may occur in two
different ways. The first one is specular reflection, in which fluid molecules
conserve their tangential momentum. The second one is diffuse reflection, which
is completely random and uncorrelated. In the second type, for balancing the

tangential momentum, a finite slip velocity will exist at the wall. Expression for



the slip velocity for Cartesian coordinates is given below. Background of the

subject is discussed in detail by Larrode et al. [4].

u as _uwall = 2_O-V /1 a_u +§ ﬂ (a_uj (12)
& o dy ) 4pTl,\ox),

v gas

The o, is tangential momentum accommodation factor, A is mean free path of the
fluid, p is dynamic viscosity and p is the density of the fluid in Equation 1.2. This
equation is derived by Maxwell [5] for an isothermal wall based on the kinetic
theory. The tangential momentum accommodation coefficient basically refers to
the fraction of diffusely reflected molecules. This coefficient varies from O to 1
for different solid-fluid combinations. This experimentally determined coefficient
is usually taken as 1 for most of the applications [6]. Additionally the second term
in the equation is named as thermal creep, which represents the portion of slip
velocity in the direction opposite to the tangential heat flux. After non-
dimensionalization is applied to the slip velocity equation, the thermal creep term
becomes a function of the second order of Knudsen number, which makes this
term insignificant for small Knudsen numbers. Detailed explanation and
formulation is given by Gad-el Hak [2]. A similar expression for the temperature

jump boundary condition at the wall is proposed by von Smoluchowski [7].
T-T,., :2_;"[ 27 i B_T (1.3)
‘ o, |y+1|Pridy )

In Equation 1.3, o, is the thermal accommodation coefficient, the ratio of energy
accommodated by the diffusely reflected molecules. This coefficient varies
between 0 and 1. It is also determined experimentally and the value depends on

the solid-fluid combination, surface roughness, and temperature difference at the



fluid-solid interface. According to various sources (e.g. [8] and [9]), thermal

accommodation coefficients are taken as unity in most analyses.

1.2 Scope of the study

In addition to those mentioned in the previous section, there are some other effects
usually neglected in the macroscale flows that may become significant for the
microscale. One of these is the effect of axial heat conduction in the fluid, which
is generally insignificant for the macro scale flows where effect of conductive
heat transfer is relatively high. Since the Reynolds and Péclet numbers become
smaller, axial conduction is significant in micro flows. Another term that is
usually neglected in macro-flow modeling is the viscous dissipation. According to
Shah and London [10], one of the cases where viscous dissipation becomes
significant is the microscale duct flow with low flow velocities and low
temperature differences at the wall-fluid interface. At this point Brinkman number
needs to be introduced, which is a measure of the relative significance of the
viscous dissipation in a flow [11]. Additionally Brinkman number can be related
with the temperature-variable property effects on convective heat transfer [12].
The dimensionless numbers mentioned here will be discussed in detail in the

following Chapters.

In this study, the effects of temperature-variable viscosity and thermal
conductivity will be investigated in two-dimensional rarefied microchannel flows.
Therefore momentum equations will be solved fully coupled with the energy
equation to include the effects of thermal conductivity and viscosity variation in
the flow field and temperature field calculations. Additionally, axial conduction
and viscous dissipation terms will be included in the numerical model, since these
terms become significant for microscale heat transfer. Velocity and pressure

variables will be solved in coupled manner, since flow is simultaneously



developing. An explicit method is preferred in numerical solution for being simple

and not very costly in terms of computational load.

In Chapter 2, previous studies related with microchannels will be summarized to
comprehensively outline the issue. Analytical, numerical, and experimental
studies will be discussed. The studies related to property variation microchannel
flows available in the literature, will also be discussed in this part. Chapter 3 is
dedicated to the formulation and numerical solution methods for parallel plate
microchannels for both constant and variable thermophysical properties. Detailed
explanation for the formulation and numerical modeling will be presented in this
chapter. The results will include two different flow conditions, which are fluid
heating and cooling. In Chapter 4 the obtained results for both flow conditions and
the effects of rarefaction, viscous heating, and axial conduction on temperature-
variable properties, will be discussed in detail. Discussions will be made for both
constant and variable property solutions in combination with the related
parameters. Finally in Chapter 5, the study will be summarized and concluded

with final remarks.



CHAPTER 2

LITERATURE SURVEY

Research on heat transfer in microchannels and microtubes is mainly driven by
the developments in the electronics technology. The need for maximizing the
performance of electronic components urges the minimization of dimensions.
Minimized dimensions come along with a complex heat transfer problem. This
newly introduced heat transfer phenomenon is called “microscale heat transfer”
because of related dimensional magnitudes. It is important to point out that, fluid
flow and heat transfer in microscale may not be characterized by the macroscale
approach. The urgent need for comprehending the mechanisms behind the heat
transfer and fluid flow behavior in microscale has forced researchers to focus on
the issue. In this Chapter, mainly, previous studies related with microscale fluid
flow and heat transfer will be reviewed. Available studies about variable property
solution of fluid flow and heat transfer problems in microscale will also be
discussed. It is possible to divide this chapter into four subsections regarding the
subjects reviewed. In the first part, fundamental studies about microscale flow and
property variation in macroscale will be reviewed briefly. In the second part,
available studies about temperature variable property solutions in microscale will
be discussed. The third part will be dedicated to studies related with the effects of
viscous dissipation and rarefaction. In the final part studies combining

experimental and numerical work about microscale flow will be discussed.

One of the well known earliest studies related to microchannels was conducted by

Tuckerman and Pease [13] who investigated the convective cooling of electronic



components by using microchannel heat sinks. A significant result that can be
driven out from their study is the observation of higher heat transfer coefficients
in laminar regime rather than turbulent. This result increased the interest for the
investigation of laminar convection in microchannels. In the middle of the 1990’s
Peng and Peterson [14] published the results of their experimental study about
single phase convective heat transfer in microchannels. This study mainly focused
on the classification of flow regimes in terms of Reynolds number and the
investigation of the effect of geometry on fluid flow and heat transfer. It is stated
that, laminar flow is observed for Reynolds numbers less than 400. In addition to
these fundamental studies about microscale fluid flow and heat transfer, previous
work on variable property solutions in both macro and microscale heat transfer
problems should be mentioned. One of the earliest studies has been conducted by
Deissler [15]. Fully developed laminar flow in tubes by considering the property
variation along the radius was investigated in this study. A similar study was
performed by Oskay and Kakag [16] to examine the effect of viscosity variation

with temperature in pipe flow.

Various scientists have been involved with the property variation in macroscale
heat transfer. It is possible to say that in macroscale, property variation is a well
understood concept and methods and correlations have been developed to account
for property variation such as the property ratio method. In recent years, with the
increasing importance of microscale heat transfer, effect of property variation
became a point of interest in this field. Li et al. [17] studied variable
thermophysical property effect on a three dimensional microchannel model. A
finite difference code utilizing Tri-Diagonal Matrix Algorithm was developed for
solving temperature and velocity fields. In their study, hydrodynamically fully
developed, thermally developing liquid flow was investigated by neglecting
viscous dissipation effects. Average Nusselt numbers were taken as a reference

for comparison of the results. When the results are examined, it is possible to see
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that the variation in liquid thermophysical properties with temperature,

significantly affects the flow and heat transfer.

The effects of thermophysical property variation on heat transfer and fluid flow in
microchannels has been comprehensively discussed by Gulhane and Mahulikar
[18]. In this study, the researchers worked on a two-dimensional axisymmetrical
numerical model. Two different cases were examined throughout the study, which
are simultaneously developing flow and hydrodynamically fully developed,
thermally developing pipe flow. In the modeling constant wall heat flux boundary
condition is used with the laminar, incompressible flow assumptions. In addition
to these assumptions, axisymmetric swirl terms in momentum equation,
compressibility and viscous dissipation terms in energy equation are neglected.
Variation of viscosity, density, specific heat, and thermal conductivity is taken as
a function of temperature during the formulation. The role of each thermophysical
property variation is discussed separately and in combination with each other for

two different cases. The results of their study can be summarized in Figure 2.1.

Thermophysical Effect on

properties Velocity field Temperature field
Density (p) Direct effect. Flattens axial Direct effect (significant)
profile (significant)
Specific heat Indirect effect Direct effect. Reduces (T,,—T,,) at
(Go) (insignificant) high temperature (significant)
Viscosity (i) Direct effect. Sharpens Indirect effect (insignificant)
axial profile (significant)
Thermal Indirect effect. Flattens Direct effect. Flattens

conductivity (k) axial profile (significant)  temperature profile (significant)

Figure 2.1 Effect of thermo physical property variation on flow and temperature
field [18]
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Another important study was performed by Peng et al. [12] who had investigated
the variable property effect for hydrodynamically fully developed, thermally
developing flow with a two dimensional model. In their model, Peng and his
colleagues assumed that the flow is laminar and incompressible. Moreover, they
assumed that specific heat of the fluid is constant. Viscosity and thermal
conductivity are taken as single variable functions of temperature. In their
mathematical formulation viscous dissipation terms in the energy equation are not

neglected.

Temperature dependent viscosity of liquid water is expressed by Peng et al. [12]

as follows

WT) = U, )(TLJ exp[B(T " -7} )] @.1)
ref

In Equation (2.1) T is taken as 293 K, n 8.9, and B 4700. Similarly, the thermal

conductivity of water is expressed as a cubic polynomial function of temperature,

which is given as follows.
k(T)=a,+aT+a,T* +a,T’ (2.2)

Nusselt number increase and velocity profile change along the channel are
discussed in detail. It is stated that the increase in Nusselt number resulting from
variable property solution becomes significant for high heat flux values.
Moreover, a formula is proposed for predicting Nusselt number obtained with the

variable property solution. The formula presented is given below.
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Another important research, closely related with the property variation in
microchannels was conducted by Nonino et al. [19]. In their work Nonino and his
colleagues investigated the effect of viscous dissipation and variable dynamic
viscosity in microchannels with arbitrary cross-sections for simultaneously and
thermally developing flows. They developed a finite element based numerical
solver for solving Navier Stokes equations for three dimensional and
axisymmetrical geometries. Constant wall temperature boundary condition was
used in calculations. Dynamic viscosity variation with temperature was
considered in a range, in which, the ratio of the viscosity value at the inlet
temperature to the viscosity value at the wall temperature is between 2 and 0.5.
The research focused on the variation of Nusselt number with viscosity variation
and viscous dissipation. In addition to Nusselt number they also investigated
pressure drop and friction coefficient variations with Brinkman number and

viscosity variation.
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Formerly a similar study was performed by Koo and Kleinstreuer [20]. They
comprehensively investigated the significance of viscous dissipation in micro-
scale convective heat transfer, in addition to fluid property, geometrical, and flow
regime effects. Their numerical model was capable of solving hydrodynamically
fully developed and thermally developing incompressible laminar flow. Main
point of discussion in their research was change in the significance of viscous
dissipation with channel size, aspect ratio, Reynolds numbers and viscosity
variation. The results of this study point out that the variation of viscosity has
stronger effects on viscous dissipation for comparatively small channel size. In
addition to this, they proposed that viscous dissipation strongly affects the friction

factor calculations and should be accounted for in micro flows.

Temperature dependent fluid properties in micro flows was investigated by
Mahulikar et al. [21] by solving one dimensional numerical model for momentum
and energy equations with variable thermophysical properties. They stated that it
is possible to simulate the decrease in Nusselt number with increasing Reynolds
number in microchannels with a one dimensional analysis by including the
thermoproperty variation effect.. Based on this Herwig and Mahulikar [22]
extended the scope of their investigation. In their work, the importance of variable
property effects in micro-sized geometries was discussed by using an order of
magnitude approach. Additionally numerical solutions were performed to
visualize the effect of temperature variable thermophysical properties. There are
four different models proposed in their study. The first is one is the constant
property model, in which the property in consideration has a single value along
the solution domain. The second is the quasi-constant properties model, in which
the properties vary with the mean temperature of the fluid at a given axial
position. The third model was named as weakly-variable property model. In this
model, the property variation in radial/longitudinal direction is directly included
and quasi-constant property model is used for the variation in axial direction. The

last one is called as strongly-variable property model, which should be used when
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property variations in both radial and axial directions is equally strong. It is stated
that, for micro-sized geometries, axial temperature gradients are as large as the
radial ones, so the fourth one is the most appropriate method for modeling
property variation. The strongly-variable property model enforces the fully
coupled solution of energy and momentum equations. The working fluid in their
study was water and the variation of specific heat and density with temperature
was negligible. Thus, only the variation of viscosity and thermal conductivity was
accounted for. The authors solved laminar, incompressible, steady micro pipe
flow by neglecting viscous dissipation, numerically. According to the results,
Nusselt number differs up to %30 when property variation is included. This study
is one of the most fundamental works that justifies the significance of variable

property solution in microscale fluid flow heat transfer.

El-Genk and Yang [23] numerically investigated the effects of viscous
dissipation, slip wall boundary condition, and viscosity variation on pressure drop
and friction factors in microchannel flow. In the study mainly, the effect of flow
variables on fluid flow is discussed. However, energy equation is also solved for
determining the effect of viscous dissipation and viscosity variation with
temperature. Experimentally determined slip length values are used for imposing
the slip wall boundary condition. Results of their study point out that it is
important to include the effect of viscosity variation for accurately determining
the friction factors in a thermally developing microchannel flow. A study related
with the application was performed by Li er al. [24], about thermal property
variations in rectangular microchannels. They proposed that conventional
macroscale theories are capable of predicting the flow and heat transfer
characteristics for the dimensions and Reynolds numbers used in their work. The
hydraulic diameter of the channel used is 0.333 mm and Reynolds number
changes between 101 and 1775. The results of their numerical work agree well

with the Sieder and Tate correlation [25] and the results of experiments.

15



Unfortunately when Reynolds number range and dimensions are considered, the

flow can be classified as a macro-sized flow.

As is has been previously stated in the introduction, rarefaction is an important
phenomenon for microscale flows. Wang and Yang [26] investigated slip flow in
microchannels by using lattice-Boltzmann method. The results of the study agree
well with the results of modified Navier-Stokes solutions. Barron et al. [27] made
an extension to the Graetz problem by including slip flow effects. Since viscous
dissipation and axial conduction terms are neglected in the Graetz problem, they
were neglected in their study as well. Some correlations relating Nusselt number
with Graetz and Knudsen number were proposed in the study. A brief result that
can be derived from the study is the increase of Nusselt number with increasing
Knudsen number for a given Graetz number. Jeong and Jeong [28] investigated
the effects of viscous dissipation and axial conduction in, hydrodynamically fully
developed, thermally developing microscale flow analytically by using
eigenfunction expansion. They worked on simple flow model in two dimensions
for both constant wall heat flux and constant wall temperature cases. Considering
their results, it is possible to say that Nusselt number decreases with increasing
Knudsen and Brinkman numbers, while it increases with increasing Péclet

number.

Extended Graetz problem was also studied by Cetin et al. [29]. Eigenfunction
expansion method was used for the analytical solution of the energy equation. The
conclusion drawn from the study about the effects of Brinkman, Peclet and
Knudsen number was same with the Jeong and Jeong's work. However in this
study it was reported that thermal entrance length increases with decreasing Peclet
number. An additional remark in this study is the reduction in the effect of
Brinkman number on local Nusselt number with increasing rarefaction. A similar
problem was also solved numerically by Cetin et al. later [30]. Most of the results

were consistent with the results of their analytical work. The authors claimed that
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the numerical model can be extended to more complex boundary conditions and
solutions. In this study they overcame the instability problem introduced by the
axial conduction terms in the thermally developing flow by extending the axial
dimensionless length of solution domain from +oo to -co. For more information

one may refer to [10].

Another important contribution in this area was made by Morini et al. [31] who
investigated the effect of rarefaction on pressure drop and friction factor. They
analyzed the rarefaction effect in trapezoidal, double trapezoidal, and rectangular
silicon microchannels numerically and experimentally. Finite difference solution
was made for incompressible flow with constant fluid properties. They concluded
that friction factor reduction increases with increasing Knudsen numbers as
expected. In addition to this, friction factor reduction increases with increasing
aspect ratio for three different geometries. They stated that for gas flow in
microchannels, the rarefaction effect can be analyzed separate from the
compressibility effect, as long as the flow is incompressible. Similar results were
obtained by Zhang et al. [32] who investigated slip flow characteristics of
compressible gas flow. Zhang and his colleagues found out that compressibility
effects become less significant and rarefaction effects become dominant for the
low Reynolds number flows. According to the results of their study, slip velocity
boundary condition defined at the walls makes the flow more incompressible than
the no slip wall boundaries. Significance of compressibility effects for low
Reynolds number flows are illustrated in Figure 2.2, where fRe is plotted versus

the hydraulic diameter Dy, (in pm) for Re = 10.
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Figure 2.2 Variation of fRe with hydraulic diameter. Re =10 [32]

Compressibility and slip flow effects are also discussed by Hong et al. [33]. The
study is mainly dedicated to investigate the characteristics of gaseous parallel-
plate micro flows with no slip boundary condition, but they also presented the
results of runs for slip wall boundary condition. Only constant wall heat flux case
is studied by using ALE (Arbitrary Lagrangian-Eulerian) based numerical
method. Similar to other studies, they proposed that as the flow velocity increases,
slip flow effects become insignificant relative to compressibility effects.
Moreover, velocity slip and temperature jump effects in microchannels were
investigated in detail by Yu and Ameel [34]. They used an analytical model for
solving the hydrodynamically fully developed, thermally developing flow by
using integral transform technique. The main focus of their study was to
investigate the effects of slip-flow parameters on heat transfer and fluid flow.
Tunc and Bayazitoglu [35] studied the effect of aspect ratio and Knudsen number
on heat transfer and fluid flow in rectangular microchannels. They made an

analytical solution by using integral transform method. Only fully developed
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conditions were considered in conjunction with constant wall heat flux boundary

conditions in the study.

The effects of rarefaction and viscous dissipation in compressible gaseous flows
were studied by Rij et al. [36]. They included slip velocity and temperature jump
boundary conditions in their numerical model. Both constant temperature and
constant wall heat flux boundary conditions were used as different cases. Effects
of aspect ratio, Brinkman number, Knudsen number, Péclet number, and
momentum and thermal accommodation factors were discussed in simultaneously
developing flow. It is stated that for simultaneously developing flow, viscous
dissipation and axial conduction effects should be accounted for. Another
remarkable study on simultaneously developing flow in microchannels belongs to
Nizamand et al. [37]. They investigated simultaneously developing flow in
trapezoidal microchannels with Reynolds numbers ranging between 0.1 and 1 and
Knudsen number changing between O and 0.1. In their study, both friction and
heat transfer coefficients are inversely proportional with the Knudsen number in
fully developed flow sections. On the other hand, Nusselt and Poiseuelle number
reaches an asymptotic value as a result of high levels of velocity slip and

temperature jump at the entrance region of the trapezoidal channels.

Tso and Mahulikar [11] aimed to explain the unusual behavior of convective heat
transfer by understanding the effect of viscous dissipation. Throughout their study
the main point of focus is to discuss physical meaning and significance of
Brinkman number. They claimed that the unusual decrease in Nusselt number
with increasing Reynolds number in laminar flow can be explained by the
significance of viscous dissipation, thus with Brinkman number. In addition, the
study includes correlations relating Brinkman number with the experimentally
obtained Nusselt values. Simultaneously developing slip flow in rectangular
microchannels was also discussed by Renskizbulut er al. [38]. They mainly

focused on determining the effects of Reynolds number, aspect ratio, and
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Knudsen number on simultaneously developing flow. In their study, only constant
wall temperature boundary condition is used. Slip velocity at walls are modeled
by Maxwell's [5] slip velocity theorem. The temperature jump boundary condition
is defined by using the von Smoluchowski's [7] model. Constant fluid properties
were used and viscous dissipation was neglected in numerical model. Throughout
the study Reynolds numbers varied between 0.1 and 10. One of the interesting
results they reached is the independence of Nusselt number from the geometry at
the inlet section. This phenomenon can be seen in Fig. 2.3. Here, x* denotes the

dimensionless axial distance, while a* denotes the channel aspect ratio.

sl Re=0.1,Kn=0.1

Nu
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Figure 2.3 Axial variation of Nusselt number at Re=0.1 and Kn=0.1 for different

aspect ratios [38].
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At the very beginning of the channel Nusselt numbers are very close to each other
for all aspect ratios. However, as the aspect ratio decreases toward the parallel-
plate limit, dependence of Nusselt number on Knudsen number increases. Worek
et al. [39] also investigated slip flow in rectangular microchannels. The study is
based on a finite-volume numerical model. Mainly the variation of entrance
length, friction coefficient, average fluid temperature, and Nusselt number with
changing Knudsen and Péclet numbers, and aspect ratio is investigated. The flow
is assumed to be steady, single phase, incompressible, and laminar. The fluid
properties are assumed to be constant and viscous dissipation terms are neglected.
Slip velocity and temperature jump at wall-fluid interface is accounted for in the
model .They preferred solving an elliptic type momentum and energy equation.
As a computational domain, quarter of a rectangular channel is used since
boundaries are symmetrical. The slip velocity and temperature jump boundary
conditions are imposed on the numerical model by using first order
approximations. Pressure velocity coupling method is chosen as SIMPLE (by
Patankar and Spalding [40]). They derived a correlation from the results of their
analyses for fully developed friction factor as a function of Knudsen number and
aspect ratio. The effect of Brinkman number and Prandtl number for slip flow
regime in microtubes is studied by Sun et al. [41]. Their numerical model was
validated with the analytical results of [35]. Hydrodynamically fully developed,
thermally developing flow is analyzed for different Knudsen, Brinkman and
Prandtl numbers. Three different wall boundary conditions are used in the study,
which are constant wall temperature, constant wall heat flux and linearly varying
wall temperature. They remarked that, temperature jump at wall boundary should
be used together with the slip velocity boundary condition, for not overestimating
heat transfer. The numerical solutions show that local Nusselt number decreases
up to a point with the axial distance, and then it jumps to a final value. The
phenomenon is related with the viscous dissipation, and this jump occurs earlier in
the entrance region with increasing Brinkman number. The variation of Nusselt

number with Brinkman number can be observed in Figure 2.4.
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Figure 2.4 Variation of Nusselt number with Brinkman number in the thermal

entrance region, with temperature jump boundary condition [41].

Effect of Prandtl number on heat transfer and Nusselt number is reported to be
directly proportional. In the study it can be seen that, linearly varying temperature
wall boundary condition yields nearly the same results with the constant wall heat

flux boundary condition.

Morini [42] investigated the effect of viscous heating in microchannels and tried
to explain the results of experimental data. Basically, Morini developed a model
to predict the viscous dissipation in microchannels. For this purpose, effects of
viscous heating and consequent viscosity decrease imposed on the conventional
Navier-Stokes equations. This approach provided an explanation for the
experimental observations in which friction factor decreases with the increasing
Reynolds number. Kroeker et al. [43] investigated the heat transfer and pressure
drop of heat sinks with circular microchannels. In their analytical work, they used
the continuum model and classical Navier-Stokes equations. The effects of

geometrical parameters and material properties on heat transfer characteristics are
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investigated. As a result of the comparison they made, they reported that the
thermal resistance of heat sinks with rectangular channels is lower than the ones

with circular channels.

Mishan et al. [44] compared the experimental results of their microchannel test
setup, by using Infrared (IR) imaging technology and numerical modeling.
Infrared imaging technique is used for observing the temperature distribution in
the test setup. The results obtained are compared with the results of CFD analysis.
They validated the conventional theory proposed by Shah and London [10] after
superimposition of entrance region effects for a microchannel with 410 pm
hydraulic diameter. A study comparing the correlations, numerical analyses and
experimental results is performed by Lee et al. [45]. They investigated the validity
of conventional Navier-Stokes equations for predicting the thermal behavior of
single phase flow through microchannels. In addition, the results of the
experiment they have conducted are compared with both recent correlations and
the numerical simulation results of commercial codes. Moreover, the importance
of entrance and boundary conditions for more accurate numerical analyses is
stressed. According to this study, numerical simulations carried out have a better
agreement with the experimental results than the correlations. Wang and Zhixin
[46] proposed that conventional computational fluid mechanics is deficient in
modeling microscale fluid flow and heat transfer when continuum approach is no
more valid. The deficiency of classical Navire-Stokes equations is also observed

by Toh et al. [47], who also performed numerical analysis in microscale.

Numerous, experimental research has also been conducted in the area of
microscale heat transfer. One of the most extensive reviews on the comparison of
theoretical and experimental studies in microscale heat transfer is prepared by
Morini [48]. This study contains experimental setup data, the results obtained
from experiments of different researchers, and the empirical correlations derived.

The valuable work of Morini shows that experimental results are not converging
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to a common point but with the improvements in the technology and measurement
techniques, results are becoming more reliable. Another study focused on
comparison of the conventional theory and the experiment results is performed by
Hetsroni et al. [49]. They analyzed rectangular, trapezoidal, circular and triangular
micro-channels with hydraulic diameters ranging from 60 pm and 2000 pum. They
concluded that simple one-dimensional models have a significant discrepancy
with the experimental results. Also they proposed that classical Navier-Stokes and
energy equations are inadequate to explain the experimental results. They claim to
explain experimental results by including axial conduction effects, non-adiabatic
inlet and outlet boundary conditions, and viscous dissipation to their numerical
model. Experimental data correlated fairly well by using this model. On the other
hand, they stated that effect viscous dissipation is negligible due to the
experimental results obtained. The study of Gamrat er al. [50] also contains both
experimental and numerical work. In the experiments, they investigated high
aspect ratio channels with spacing ranging between 0.1 and 0.3 mm. Reynolds
number for water flow in the experiments changed between 200 and 3000. Their
numerical model assumes that the flow is incompressible, steady, and laminar.
Additionally, property variation and viscous dissipation is neglected in the
numerical model. The researchers claimed that the main difference between
experimentally and numerically estimated Nusselt numbers arose from neglecting
viscous dissipation and property variation. Also they stated that for their case,
results of two dimensional and three dimensional numerical models are in good
agreement, so it would be more advantageous to use two dimensional numerical
models when computation costs are considered. One of the important results they
converged to is the dependence of entrance effects on Reynolds number and
channel spacing separately, as it was not the case denoted by Shah and London
[10]. Shah and London proposed that Poiseuelle number for different channel

spacing is a function of Reynolds number.
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Another experimental study was performed by Mokrani et al. [51] who
investigated the convective heat transfer in rectangular microchannels with
channel spacing varying in the 0.0001 to 1 mm range. According to the results of
their study, they proposed that the conventional continuum mechanics laws and
correlations are valid for the dimensions and Reynolds numbers that they
examined. Celata et al. [52] performed an interesting study in which, viscous
heating is used to predict the friction factors. They also discussed occurrence of
viscous heating, its significance for micro flows, and verification of its presence
experimentally. They prepared an analytical model relating viscous heating with
friction factors and claimed to validate this model with the experimental results.
In addition to this, they proposed a limit, beyond which viscous dissipation cannot

be neglected. The expression for the limit is given in the equation below.

Ec .

—| fReL |21 2.7
oL/ Rel] 2.7)

The L* in Equation 2.4 represents dimensionless channel length. Ec is the Eckert

number.

Mala and Li [53] reported that predictions of conventional theory are incapable of
defining micro-channel flows, as a result of their experimental work. As Reynolds
number increases and micro tube diameter decreases, the experimentally found
pressure drop and friction factors significantly deviate from the conventional
theory. Researchers draw attention to two possible reasons of higher flow
resistance than the conventionally estimated value. The first one may be an early
transition from laminar to turbulent flow regime. The second may be the
roughness effects. Therefore, they used roughness viscosity model for explaining
the discrepancy between theoretical and experimental results. The results of

roughness viscosity model and experiment were in good agreement.
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CHAPTER 3

SINGLE PHASE HEAT TRANSFER IN PARALLEL PLATE
MICROCHANNELS WITH CONSTANT WALL TEMPERATURE

3.1 Introduction

Chapter 3 is dedicated to formulation, numerical model and results of single phase
laminar flow and heat transfer in parallel plate microchannels with constant wall
temperature. Flow inside the channel is assumed to be laminar and
incompressible. The thermophysical properties are also assumed to be constant for
the analyses in this chapter. Pressure and velocity are solved in a coupled manner
for observing the entrance effects. The rarefaction effects are included in the

model due to the investigated Knudsen number range.

3.2 Variable Thermal Conductivity and Viscosity

Main focal point of this study is the effect of viscosity and thermal conductivity
variation with temperature. These variations can be modeled with different
approaches. Two different approaches are commonly used. According to these
approaches, modeling can be based on the empirical data or can be based on the
theoretical derivation. Many researchers prefer using empirically produced data in
their studies. However, in some cases this kind of approach may introduce certain
errors and it may be incapable for predicting the property variation correctly.

Actually, the characteristics of thermal conductivity and viscosity differ from the
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empirical relations significantly for the “dilute gas” density range. Lemmon and
Jacobsen [54] extensively summarized the literature and available data for the
thermal conductivity and viscosity variation with temperature in dilute gases. For
our study, fluid density is close to the range in which empirical data is produced.
Therefore, especially thermal conductivity variation is modeled by using the
empirical based correlation [55]. On the other hand, variation of viscosity is
modeled by using the “Sutherlands law of viscosity” which is based on the kinetic

theory of gases. [56]
Sutherland’s formula for air can be written as follows,

3

2
ﬁz(%j ?:5 3. 1)

0

In Equation (3.1) the S is Sutherland’s constant which is equal to 111 K for air
and Ty o are the reference temperature and viscosity respectively. In this study
reference temperature Ty is taken as 273 K and the reference viscosity L is equal

to 1.716E-5 N.s/m>.

Both Gulhane and Mahulikar [18] and Herwig and Mahulikar [22], who had
studied property variation effects in microchannels, used empirical based
correlations. However, these researchers used water as working fluid.
Additionally, researchers investigating the effects of property variation in air flow
also used empirically produced data. The correlations used by Hernandez and
Zamora [57], and Jaluria et al. [58] are given in Figure 3.1 in comparison with the
empirical data taken from [55]. The data is non-dimensionalized by using the

reference conductivity at 273 K.
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Figure 3.1 Dimensionless thermal conductivity plotted against temperature, data

taken from references [55],[57] and [58]

The 6th degree polynomial fit, based on the empirical data of [63] can be

expressed as follow,

kK(T)= 1.035-10"T° - 3.447-10°T° +3.627-10"°T*- 3.2)
1.071-10"°T° - 2.985-10°T* + 4.178-10°T -2.212-10"

To be able to reduce the errors resulted from truncation; ten decimal places are
used while expressing the coefficients of the polynomial function. The

temperature scale used is Kelvin.
Similar to Figure 3.1 also the viscosity values obtained from Sutherlands formula

are given in comparison with the empirical data in Figure 3.2. The data is non-

dimensionalized by using reference viscosity value at 273K.
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Figure 3.2 Dimensionless viscosity plotted against temperature, empirical data

taken from [55] compared with Sutherlands Law

As can be seen from Figure 3.2, the viscosity values estimated from Sutherlands

Law are in good agreement with the empirical data.

3.3 Formulation of the Problem

Analyzed geometry and governing equations for the problem will be discussed in

this section. Schematic view of the geometry is given in Figure 3.3.
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Figure 3.3 Schematic view of the parallel plate microchannel

Two dimensional flow and heat transfer problem will be expressed in terms of
differential equations. The governing equations will be written for the Cartesian
coordinates, for the given reference frame in Figure 3.3. The equations for the

defined geometry and flow conditions will be as follows [59].
Continuity equation:

Ju dv
ox dy -3)
Momentum equations:

X-momentum equation

9(pu) N d(pu’) N d(puy) _ _a_p+i[,1v v +2ﬂa—uj
ot ox dy dx  dx

g (3.4)
i a_v+a_u + f
dy H ox dy Pl
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y-momentum equation

A(pv) , Apuv) , (pv’) =_3_P+i{ﬂ(a_v+auﬂ+

o1 x P} dy ox|  lox oy 35)

%(ﬂv-v+2ﬂg—;j+pfy
Equations (3.3), (3.4) and (3.5) are the equations for flow field. Before continuing
with the derivations, these equations are should be simplified and non-
dimensionalized. First of all, since the flow is incompressible, the divergence of
velocity will be equal to zero. Moreover the body forces will be neglected
throughout the analyses, and this will drop the last term from Equations (3.4) and

(3.5). Simplified form of these equations can be written as follows.

ou ou®) Iuv) op 0 ( auj 0 ( avj o du
| S O T (7l AN PRl N il 3.6
p(aﬁ ox oy ) o alX ) e ) T My G0

v dwv) 9o(?) op 8( avj 0 du o ov
1 S P I i el i 3.7
p(aﬁ 8x+ayj RME T G R g e e B

Energy equation for Cartesian coordinates can be written as follows.

pﬂ(h+v_2j:pq+i(ka_Tj+i(ka_Tj_M_M+

Dt 2 ox\_ dx ) dy\ oy ox dy 3.8)
d(ut.) . o(ur,,) s o0v,,) s ovr,,) 7
ox dy ox dy

The left hand side of Equation (3.8) can be expressed as follows.
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2 2 a
Dh D(u vj: Dh_ dp va_pﬂ{ai fyijr

_ + _ —
P Dt P Dt Dt  ox Oy ox dy

ar aryy
ox dy

After subtracting Equation (3.9) from Equation (3.8) one will obtain a convenient

3.9

expression for the energy equation in the form given below.

Dh —i[ka—Tj o (JF a—u+ﬁ +7 a—u+r i+
Por Dt =P ox\  ox ay 8y ax dy *

ou v
Tyx a— + a—
)y  ox

Since flow is incompressible, divergence of velocity will be zero. Additionally

(3.10)

there will be no internal heat generation and body force in the flow. Also for an
ideal gas enthalpy h can be expressed as h=c,T. Similarly viscous stress terms for
a Newtonian fluid can be expressed in terms of velocity gradients. After making

the mentioned simplifications, Equation (3.10) can be written as;
oT aT BT 0(.odT 8 oT
—+u— k— k—
ot ax ay T ox\ ox ay ay

pc,
(3.11)
au av ou v
+| —+—
{ {ax ayj (ay axjﬂ

After simplification and rearrangement of the momentum and energy equations,
they should be non-dimensionalized by using appropriate non-dimensional

variables. In the non-dimensionalization following parameters will be used.
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H (3.12)

o PP
2

PU (3.13)
* X
X =—

H (3.14)
.y
y' ==

I (3.15)
* u
u =—-

U. (3.16)
I Vv
vV o=—

U. (3.17)
u

He (3.18)
Re:—p“U“’H

M, (3.19)

The non-dimensionalized x-momentum equation by the variables above can be

written as follows.
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*

du +8(u‘ )+8(u 1/ ):_ap

~ -+
al‘* ax* ay ax*
e L
Re| ox™® 9y” ox dx dy dx dy dy

Similarly the non-dimensional form of the y-momentum equation is given below.

*

+

av*+a(uf)+a(v*):_ap*
ot ox dy ady

2 x 2 * * * * * * *
1(av O o v’ ou v ou auJ

— +
Re| ox™? ody” dy" dy"  ox ox  ox 9y

(3.21)

Additionally, energy equation also needs to be non-dimensionalized. All of the
non-dimensional variables defined above will be used in non-dimensionalization
of energy equation except the non-dimensional pressure term defined in Equation
(3.13) .In addition to the previously defined variables, some new variables will be

introduced. These parameters are given below.

e (3.22)
K= é (3.23)
Pr= C’Zj - (3.24)
Br= kj;—(ii“ (3.25)
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After non-dimensionalization energy equation takes the following form

00 .d6 .0d0 1 (k" 06 .0°6 ok 26
st =V o =—— | otk st
ot ox dy RePr{dx ox ox* 9y dy

2 2 . . (3.26)
. 0%6 Br | [ ou ov ou Jv
dy RePr ox dy dy dx

The spatial domain is chosen as a half of the channel as a result of symmetry. The

boundary conditions and reference frame can be seen in Figure 3. 4.

SYMMETRY AXIS

INFLOW | y outFLow | H

////;///////////////////

WALL

Figure 3. 4 Schematic representation of spatial solution domain and reference

axes.

The channel length is denoted as L, and half channel width is denoted as H in the
figure. Solution domain is surrounded by four different boundaries. The boundary

conditions that will be used in the solution of momentum and energy equations

can be written as follows.
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In x and y-momentum equations, u and v velocity components at the boundaries

will be defined as:

y=0
y=0
y=H
y=H
x=0
x=0
x=L
x=L

ou
M_o
o0x

o

Yo
o0x

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

As the x-momentum equation, these boundary conditions should also be non-

dimensionalized before using with the non-dimensional equations. Then the non-

dimensional boundary conditions for momentum equations can be written as follows.
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Knudsen number is the ratio of mean free path of fluid to the characteristic
dimension of flow. The hydraulic diameter Dy, for parallel plates will be the twice

of the plate spacing (4H) which is used as characteristic dimension throughout this

study.

y' =0 v =0 (3.36)
y =1 3; =0 (3.37)
y' =1 v =0 (3.38)
x =0 u =1 (3.39)
x'=0 v =0 (3.40)
X = % g’; =0 (3.41)
X = % S; =0 (3.42)

Boundary conditions also need to be defined for the energy equation. The

temperature values at boundaries can be expressed as:

y:() T:TS :&(a_TJ (343)
Kk 9y )
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Where x = PI‘(7—+1)

2y
oT
=H —=0
y %
x=0 T=T,
oT
x=L —=0
ox

(3.44)

(3.45)

(3.46)

(3.47)

The boundary conditions should be written in non-dimensional form before using

in solution of non-dimensional energy equation.

j y =0

y =0 0=26
y =1 86:
dy
x =0 =0
x*z£ 86:20
H ox

_4Kn

(3.48)

(3.49)

(3.50)

(3.51)

In the analyses, another frequently used dimensionless number is the Nusselt

number. This dimensionless parameter is directly related with heat transfer

coefficient. Before continuing with the expression of Nusselt number, first local

heat transfer coefficient for the parallel plate geometry will be defined. The

energy balance at the wall interface can be written as follows,
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hx (Tmean - Twall ) = _k(a_TJ (352)
ady 0

by rearranging Equation (3.52), it is possible to obtain the expression for local

heat transfer coefficient

h, = ——k(B_TJ (3.53)
(Tmean - Twall ) ay y=0

By using the expression for local heat transfer coefficient, local Nusselt number

can be written as,

Nu, =—="h = —4H (a—TJ (3.54)
k (T _Twall) ay y=0

mean

Where, mean temperature of the flow is defined as a function of axial position, as

follows:
H

Tmean (x) = Il/l(x, y)T(x9 )’)dy (355)
0

Dy is taken as 4H which is the hydraulic diameter of parallel plates as mentioned
above. As all other expressions it is possible to express the local Nusselt number

in terms of non-dimensional parameters, for convenience.

45
N )

Ny = (3.56)

X

mean

Similarly, the mean temperature can be expressed non-dimensionally as,
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1
B () = [ (6", 3O, 3y’ (3.57)
0

Equations, non-dimensional parameters, boundary conditions and the
dimensionless numbers that are used in the analyses for constant wall temperature
case are defined above. Momentum and energy equations are rearranged and
extended to account for the thermophysical property variation. Moreover, axial
conduction, viscous dissipation terms and all convective terms are included in the
mathematical model. Unfortunately it is not possible to solve these equations
analytically, for this reason numerical methods will be utilized to approximate the
solution. Before solving the equations numerically, equations must be discretized
in spatial and time domain. The next subsection is dedicated to discretization of

equations and numerical solution.
3.4 Numerical Model

Since the effect of thermophysical property variation is desired to be observed in
this study, momentum equations (Equations (3.6), (3.7)) and the energy equation
(Equation (3.11)) need to be solved in a coupled manner. As mentioned before,
the analytical solution for these partial differential equations do not exist.
Therefore solution of the momentum and energy equations will be approximated
numerically [60].In this problem, solution domain is simple and uncomplicated.
Boundaries lie parallel to the reference axes and this eliminates the need for
transformation. In addition to the geometric conformity, momentum and energy
equations are also expressed in transient form for the sake of mathematical
simplicity and computational convenience. Actually the heat transfer and fluid
flow problem subject to discussion is a steady state problem. However, steady
state. momentum and energy equations will be elliptical partial differential

equations which require more sophisticated numerical methods for being solved.
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On the other hand parabolic partial differential equations can be solved explicitly

which is relatively simple and computationally straightforward.

Implicit methods require simultaneous solution of the equations at the same
solution step and this may require inversion of large matrices, additionally, the
iterative procedure increases the computational cost. Nevertheless, implicit
methods do not have a time step size limitation as a convergence criterion. On the

other hand explicit methods needs a divergence free time step size.

In the explicit solution procedure of the parabolic differential equation, each
variable at a node is computed for the next time step by using the values obtained
in the previous time step. However, transient solution converges to the steady

state solution as the time goes to infinity.

As it is stated above, chosen time step should satisfy the convergence criteria.
This convergence criterion involves the flow variables and grid spacing, which is
known as Courant-Friedrichs-Lewy (CFL) condition. Since an adaptive time
stepping scheme is used for the solution of our problem, the time steps are chosen
automatically to satisfy this condition. The details of this procedure can be found

in [60]

3.4.1 Geometry Discretization

Numerical solution will be carried out on a finite number of grid points which will
be called as mesh. Since our geometry conformed on Cartesian coordinates, it is
possible to use uniformly distributed grid points for the solution. Also, symmetry
of the problem geometry reduces the number of required grid points in solution

domain.
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Since pressure and velocity parameters will be coupled throughout the study, a
staggered grid arrangement is used for the spatial discretization. Actually the
method of using staggered grid for spatial discretization is based on the finite
volume method. In finite volume method, mass balance is tried to be established
for a cell by using the velocities defined at the cell boundaries. Similarly for the
staggered grid used here, different unknown variables are defined at different grid
points of a cell. Staggered grid and cell structure for a Cartesian grid is given in

Figure 3.5.
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Figure 3.5 Schematic representation of staggered grid for Cartesian coordinates

In a uniformly distributed staggered grid, a cell is a rectangular region, surrounded
by velocity nodes. Each cell has a node at the center where pressure and

temperature values of the cell are assigned. In a cell, horizontal velocity
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components are located at the center of vertical cell edges and the vertical velocity
components are defined for the nodes at the center of horizontal cell edges. Cells
are defined with the corresponding index (i,j) where i stands for the horizontal
coordinate of the cell and likewise j denotes the vertical coordinate. Thus, for the
cell (i,j) coordinates of the center node can be expressed as ((i-0.5)ox,((j-0.5) dy)
parametrically. It is possible to locate the node coordinates for horizontal and

vertical velocity components as long as the cell index is known.

Since the velocity and pressure values are defined at different locations on our
staggered grid it can be said that there exist three separate cells which are shifted

by half grid spacing, for these three different variables.

On staggered grid, all nodes can not be aligned with the domain boundary, for this
reason boundary condition implementation will be slightly complicated. To
overcome this problem actual domain is encircled with an extra boundary strip
made up of grid cells. The boundary strip around the problem domain can be seen

in Figure 3.6.
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Figure 3.6 Sketch of problem domain and boundary strip

The cells in the boundary strip will be used for averaging the required values at
the boundary of the problem domain. The details of this implementation will be

discussed later.

3.4.2 Equation Discretization

Discretization is the process of conversion of partial differential equations into
linear algebraic ones on the given solution domain. Energy and momentum
equations are composed of both spatial and time derivatives of temperature,
velocity, and pressure terms. Throughout the study, spatial and time derivatives
will be separately discretized. The details of the discretization in spatial domain

will be discussed in detail in the following part.
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3.4.2.1 Discretization of Momentum Equations
The momentum equation in x direction and the momentum equation in y direction

will be discretized separately. In Figure 3.7 velocity nodes and the positions

where equations will be discretized can be seen.
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Figure 3.7 Velocity nodes and discretization locations

The terms in the x momentum equation will be discretized at the midpoints of the
vertical edges of each cell. These locations are where u velocities are located in

Figure 3.7.

Diffusive terms in the X momentum equation are given below,
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o’u d’u
—_—, — 3.58
ox*> 9y’ (358)

These terms can be directly discretized by using central differencing, which is

second order accurate O( ox’ ). Discretization of the terms in Equation (3.58) is as

follows,
o’u” Wi =2 ij+u i)

_ = ’ ’ 3.59
L)x'z } [ (@) 5
{aZL::i| :[M*H—l,j —2u1i,,'2+u*i—1,jj (3.60)

ay |, (6 )

On the other hand, convective terms, which can be seen below, introduce some

difficulties in spatial discretization.

ow™) ou'v’)

3.61
ox dy (3-61)

Since d(uv)/dy will be discretized at the point where U ;is located in Figure 3.7.

One will need to use the average values for v and u velocities at locations 3 and 4
for being able to use central differencing method for the product uv. The locations

3 and 4 can be seen in Figure 3.7. The discretized form of the d(uv)/dy term will

be in the following form,

dy" 2 2

* * * *
Vij-1+V i1 ) \U ij-1 —U ij j

{a(ukv*)} _ 1 ((V*i,j+V*i+1,j)(u*i,j—u*i+1,j)
o & (3.62)

2 2
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Similarly, the d(u”*)/0x term can be discretized in terms of averaged values at
locations 3 and 4, by using central differencing with half mesh width. The

discretized form of d(u*)/dx term can be expressed as follows,

ou” 1 e ) g rut )
(u*) S R e I R N ) (3.63)
ox o o 2 2

Since, pure central differencing for the discretization of convective terms may

cause problem in convergence where flow is reversed or rapidly changed
direction, the convergence characteristics of the solution can be enhanced with the
use of a different approach. However, using pure upwind differencing scheme in
discretization may cause a diffusion problem for the convective terms which is
also known as false diffusion. A more conservative form of the upwind
differencing which is known as "donor cell" differencing scheme [60] will be
utilized. In our problem, the variables are defined at different locations of a cell.
Due to the need for relocating the parameters and derivatives, it would be
appropriate to use donor cell differencing scheme. The conservative characteristic
of donor cell discretization will slow down the convergence of solutions.
Therefore, for the enhancement of convergence characteristics and stability of
solution, convective terms are discretized with a weighted average of central
differencing and donor cell differencing scheme. As mentioned above it is
possible to relocate the variables by averaging in the donor cell discretization. For
the discretization of the convective terms given in Equation (3.61) one of the two

variables in the derivative should be defined at the interval midpoints. Thus, for
the discretization of d(u”)/dx term donor cell variables will be the u velocity

values averaged at location 3 and 4 defined in Figure 3.7. These donor cell

variables will be in the following form,
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donor — cell — variable, = W—% (3.64)

donor — cell — variable, = % (3.65)

Similarly for the discretization of d(uv)/dy term in the X momentum equation,

donor cell variables that are defined at location 3 and 4 will be as follows,

donor — cell - variable, = V’J“% (3.66)

* *
Voij-1+V i+l j-1

donor — cell — variable, = 5 (3.67)

By using the weighted average of donor cell and central differencing schemes,

discretization of d(u*)/dx will be,

*) * * 2 * * 2
o(u”) 1 wijtu i | Ui U +
GRS 2 2

7 1 ‘M ijtu l+1,j‘ (l/l ij—u i+1,j) ‘I/t i-1,j +u l,j‘ (u -1 —U i,j)
&*

(3.68)

2 2 2 2

In Equation (3.68) vy stands for the weighting factor which lies between 0 and 1.

Likewise discretized d(uv)/dy term can be written as,
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" oy

[a(u*v*)} _ 1 ((V*i,j +v*i+l,j) (u*i,j _u*Hl,j)_
i,j

(V*i,j—l + v*i+1,j—1) (u*i,j—l - u*i,j) 1 ‘v*i,j + v*i+1,j‘
: e~ (3.69)

s ¢ ® * ¢ ¢
(” iU i+1,j) Viaty i+1,j—1‘ (” ij-1 U i,j)

2 2 2

The other terms in the X momentum equation will be discretized around the same
grid point with the convective terms where U;; lies in Figure 3.7. The equations in

the discretized form can be written as,

o’u’ Wi =2 ij+u i
— ’ ’ ’ 3.70
Sl [ om
{azu*i| _(Lt*m,j —2u'i; +M*i1,jj (3.71)
7 | &) |

Viscosity terms are defined at the cell centers where temperature values are also

defined. The discretization of the spatial derivatives of viscosity terms are written

as follows.
W | (M= (3.72)
ox” y o
du' | (uliy —ui (3.73)
ox" y 20¢
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(ﬂ*m,m + [ j B (,U*m,j—l + j
{aﬂ } ) 5 ) (3.74)

260y

268

(V*m,/‘ + V*i+1,j—1 j_ (V*i,j + V*i,j—l j
{8\1 } 2 2 (3.75)
ij

{au*} :£u*i,,~+1 —M*i,jlj (3.76)

Pressure values are defined at the cell centers and derivative of the pressure will
be also discretized around the same grid point with the other terms. The

discretized form of the pressure term is given below,

op | _(Pmi=pls (3.77)
ox’ y o

In addition to spatial derivatives, there is also a time derivative term in the X

momentum equation. As mentioned earlier the time discretization is separate from

spatial discretization.

a & T (n+l) *(n+1)_ %N
e [ (3.78)
ot o

In a similar manner the terms in the y momentum equation will also be

discretized. These terms will be discretized for the cell (i,j) around the node
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where velocity V;; lies in Figure 3.7. Convective terms will be discretized

similarly by using a weighted average of donor cell and central differencing

schemes. The discretized terms for the y momentum equation can be expressed as

follows,

ox ox 2 2

{8(u*v*)} _ 1 {(”*i.f"”*i.m)(V*i,z_"*m,/)_

* * * * * *
(” i Tu z>1,j+1) (V -1 VY i,j) Ly 1 ‘” i T
3
)

2 2 y 2
(V*i,j _v*i+1,j ) B ‘M*H,/‘ + u*i—l,jﬂ (V*i—l,j _V*i,j )
2 2 2

*) i i 2 i i 2
ov™?) 1 Vijtvigs | [ VitV +
dy” g ' 2 2

7/ 1 ‘V ij TV oij+l (v ij—V i,j+1) Vij-1+V l,j‘ (v ij-1—V i,j)
O 2 2 2

azv* _ V*i+l,j - 2\/*1',,' + V*i—l,j
x| (&)’

{azv*i| _(V*m,/‘ -0 +V*il,jj
dy” iy ()

{Ew*} _ (u*f,m —ﬂ*i,j]
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(3.80)

(3.81)

(3.82)
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av* _ Vi, j+l —1/ i,j-1 (3.84)
dy i 20y

(,U*Hl,j + ,U*i+1,j+1 J _ (,U*i—l,j + ,U*i—l,./'+1 J
ow | _ 2 * 2 (3.85)
ox |, ; 20
av* _ V*i+1,j —V*i—l,j (3 86)
ox’ y 20¢

(M*i+1,j+1 + M*i,j+1 J _ (u*m,/’ + M*i—l,./' j
{au* } _ 2 * 2 (3.87)
dy iy oy

Since viscosity terms in the y momentum equation cannot be discretized by using
donor cell scheme, these terms are simply discretized by using central

differencing which is again second order accurate.

{ap*} :[p*i,jﬂ —p*i,j] (3.88)
ay* y —@}*

a & T (n+l) *(n+1)_ %
LA [ [ a— (3.89)
ot o

The weighting factor in the discretized convective terms will be selected

according to Hirt et al. [61] by using the given formula.
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ij
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4 max( 5

2

] (3.90)

After discretization of the momentum equations, also boundary values for these

equations should be defined.
3.4.2.2 Discretization of Energy Equation

In the discretization of energy equation, spatial derivatives of thermal
conductivity and viscosity are also considered, since these variables are changing
spatially in accordance with the temperature change. Similar to the momentum
equations, the discretization of the convective terms is made by using the mixture
of donor cell and central differencing schemes. Additionally the conductive terms
in the equations will also be discretized by using the same method. Main
advantage regarding this type of discretization for the conductive terms is the
improved convergence characteristics as a result of averaged donor cell
differencing scheme. This discretization method enables to use weighted average
of central differencing with the forward or backward differencing schemes,
according to the temperature gradient. The differencing scheme becomes a
weighted average of central and backward differencing, where temperature
gradient is negative, in other words if the temperature is decreasing in the positive
direction then a backward differencing scheme will be employed. The mechanism
for differencing is the inverse of this one for the positive temperature gradient

case.
Before presenting the discretized terms in the energy equation, it should be noted

that the dimensionless temperature, thermal conductivity and the viscosity

variables are defined at the cell center. Since viscosity and thermal conductivity
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are directly related with temperature in our situation, defining these variables at

the cell centers where temperature values are defined would be more convenient.

Discretized terms in the energy equation can be written as follows,

o(u"8) :L e (ei,j _9i+1,j)_u*'_l ' (01‘—1,/‘ _ai,j) "
x y o e A S

|, 2 2 (3.91)
L ‘u*”‘(ﬁ.j—ﬁmj)_‘u*' “(6—1,j_6i,j) .
y&* L 2 =L 2
a(V 0) L *(6” 6”1)—\/*“ (0/—1_0/) "
S P 2 v 2
j (3.92)
1 ‘v ‘(aj 6[,j+1)_‘v* ‘(9 -l 9/)
y@)* J > 1 2
i(k* B_QJ} _ 1 (k*i,j +k*i+1,j)(9i+1,j _Hi,j)_
ox” ox” i & 2 o
(k*i,j +k*i—1,j)(0i,j - ?i—l,j )]+ y 1* (k*i,f _k*”l’f 0i+1~f :0"~f|_ (3.93)
2 S & 2 | & |
kiioij—k i, |0i,j _ei—1’1|
2| & |
i e 8_6 _ 1 (k*i,j +k*i,j+l)(0i,j+l _Hi,j)_
S 2 23
(ks +k*i,j—1)(9i,j _?i,j—l )j+ y 1* (k*i,j —kijn |Bijn —*91.,_,.|_ (3.94)
2 S & 2 | & |
k 71,—k j|9i,j_6i,jl|j
2 |y
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The viscous dissipation terms in the energy equation required to be discrtetized at
the cell centers where other terms of the energy equations are also discretized. The

viscous terms are given below.

_a_u* _ Wi —U i, (3.95)
_ax* i,j &*
_a_V*} - (—V*w‘ Vi j (3.96)
Ly, &
‘ (l/t*i,j+1 + u*i—l,j+1 ) _ (l/l*i,j—l + u*i—l,j—l)
au* _ 2 . 2 (3.97)
ay |, 20y
(V*i—l,j + V*i—l,j—l ) _ (V*H—l,jl + V*i+l,j—l)
av* _ 2 i 2 (3.98)
ox g 20x

(n+1) (ntl) _ pn
[a_ﬂ |8 (3.99)
ot o

3.4.2.3 Boundary Values for Discretized Equations

For being able to solve the discretized momentum equations, boundary values will
be required for the unknowns. The velocity values on the domain boundaries in
addition to the pressure and temperature values of the ghost cells will be required.
The appropriate ghost cell values will be used for implementation of the desired
values at the domain boundary. As mentioned above the values at the boundary of

the problem domain will be defined by averaging the value of the ghost cells and
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the adjacent fluid cells. The problem domain, ghost cells and the indexing of the
cells are illustrated in Figure 3.8. There are four different type of boundary
conditions used in this problem as stated above. These boundary conditions are;
inlet, outlet, symmetry and wall with velocity slip and temperature jump. The
details of the boundary conditions will be discussed in the following subsections.
The positions and alignment of these boundaries in the computation domain can

be seen in Figure 3.9.

j=imax+1
. Problem Domain
j=jmax /
. . /
(i) (i+1.j) k
L ] [ ]
(ij-1) | (+1j-1)
=2 =~
Ghost
Cells
=1
i=1 i=2 i=imax i=imax+1

Figure 3.8 Problem domain ghost cells and the cell indexing
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Figure 3.9 Boundary conditions and their alignment in the grid

3.4.2.3.1 Inlet

The required x velocity values for the channel inlet will be u;; where j is ranging
from 1 to j... Here juq 1s standing as a placeholder for the number of cells in the

longitudinal direction.

The y direction velocity nodes are not lying on the inlet boundary so the ghost cell
values that should be defined for the implementation of inlet boundary values are
v;; where j is ranging from 1 to ju... As stated above, by averaging with the
adjacent fluid cells, ghost cell values will be used for obtaining the desired values
at the boundary. Schematic view of the cells and y direction velocity nodes around
the inlet boundary can be seen in Figure 3.10. Ghost cells are out of our problem
domain as it is stated before. Averaged boundary values, which lie halfway

between two y velocity nodes, can be calculated as,
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v+,
=l 2 (3.100)

*
Vv .
boundary, j 2

in Equation (3.100) the j index is ranging from 1 to j.. It is known that at the
inlet boundary, vertical velocity component required to be set as zero. As a result,

boundary condition for y velocity can be written as follows,

VitV 0 3.101
Vhoundary, j 2 - ( . )
& ¥ 3 L L 4
V1Jmax szma:
Vhoundary,1
& & & @ ®
ghost
cells ® ® ® * "
Viz Vboundary2 Vas |
® @ » @ &
\\/ problem
_\/ domain
inlet
boundary

Figure 3.10 Schematic view of ghost cells of y velocity and inlet boundary

Similarly pressure and temperature boundary conditions can be imposed on the
inlet boundary by using the ghost cells. The schematic view of the temperature

and pressure nodes around that boundary can be seen in Figure 3.11. As it had
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been shown above for the y-velocity values, temperature and pressure values at
the boundary can be calculated by averaging the nodal values at both sides.
Expressions for the pressure and temperature values at the inlet boundary can be

written as follows.

. P+ p, .
pboundary,j = LJTZJ (3102)
6,.+0,.
gboundary,j = % (3103)

Similar to Equation (3.101) in Equation (3.102) and (3.103) the index j varies

from 1 to jju,, along the inlet boundary.

On the inlet boundary after setting the required velocity values, zero pressure
gradient condition is also required to be set [60]. The pressure gradient at the inlet
boundary can be expressed by using the ghost cell and adjacent fluid cell pressure
values. The finite difference representation for the pressure gradient at the inlet is

given below,

ap* _ P2 —*pLj (3.104)
o) T &
oundary, j

Zero pressure gradient boundary condition is assured, by setting the appropriate
values of the ghost cell nodes. Similarly desired temperature values at the inlet

boundary are imposed by using ghost cells.
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Figure 3.11 Schematic view of ghost cells for temperature and pressure at the

inlet boundary

The x velocity nodes directly lie on the inlet boundary, as a result it is possible to
define x velocity boundary values without using ghost cell values and averaging.
The schematic representation of the x velocity nodes on the inlet boundary can be

seen in Figure 3.12.
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Figure 3.12 Schematic view of x velocity nodes at the inlet boundary

3.4.23.2 Wall

Wall boundary condition is imposed by using ghost cell method for temperature,
pressure and x velocity. Procedure for defining temperature and pressure values
on the wall boundary is similar to the procedure used for the inlet boundary.
Again ghost cells values will be averaged with the adjacent fluid cell values on the

boundary. The schematic view of ghost cells, problem domain, and pressure and
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temperature nodes is given in Figure 3.13
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Figure 3.13 Schematic view of pressure and temperature nodes around the wall

boundary

The index i will vary from 2 to iy, for velocity, temperature and pressure values
at wall boundary. Here, parameter i,,,, is a placeholder for the number of nodes in
the x direction of problem domain. Likewise, pressure values will be implemented
by averaging the two adjacent nodes to the boundary. The expression for the

pressure values at the wall boundary can be written as follows.

_ Py TP,

*
Pi ,boundary 2

(3.105)

Transverse pressure gradient at the wall boundary assumed to be zero. The

*

op
y *

representation for the pressure gradient ( ] can be expressed as written
i,boundaary

below, by using central differencing with half mesh width.
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(Ej _ piz _p:,l (3.106)
ay'k i,boundary 5-)]*

Another important issue is to define slip velocity at the wall boundary. Non-
dimensional expression for the slip velocity after neglecting some of the terms can

be written as follows,

u=u =4Kn(au J (3.107)
y'=0

Similarly the expression for the temperature jump at the wall boundary can be

written in non-dimensionalized form after simplification as,

0=0 = 4K”(a6:j (3.108)
K \dy Vo

The temperature and velocity gradient given in Equation (3.107) and (3.108) can

be represented in the following form by using the central differencing with half

mesh width.
(BLJ _ 2t (3.109)
ay ' i,boundary §y*
6. -0
( 89* J =1 = (3.110)
ay i,boundary dy

By using Equation (3.109) and (3.110), slip velocity and the temperature jump at

the wall boundary can be expressed in terms of the adjacent node values. The
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expressions for slip velocity and temperature jump in terms of node values are as

follows,
iy =i, = 4K 27 3111
ui,houndary =u, = n 5)7* ( . )
4Kn(6.,-6,
gi,houndary = gs = T( 5))* (31 12)

In addition to Equation (3.111) and (3.112), one more algebraic relation is
required for being able to define ghost node values. The required relation is

obtained by averaging the values of nodes adjacent to boundary.

\ u;, +u,,
ui,boundary = 2 (31 13)
01' 1 + 6[ 2
gi,boundary =— 2 : (31 14)

The arrangement of the nodes for x velocity values can be seen in Figure 3.14.
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Figure 3.14 Schematic view of x velocity nodes around the wall boundary

By using the Equations (3.111), (3.112), (3.113), (3.114) it is possible to define

the ghost cell values 6, andu,, .

Since y velocity nodes lie on the wall boundary, values can be directly assigned to
these nodes. The vertical component of velocity is equal to zero at the wall
boundary. The schematic representation of y velocity node arrangement on the

wall boundary is given in Figure 3.15.
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Figure 3.15 Schematic view of y velocity nodes around the wall boundary

3.4.2.3.3 Outlet

In our case, outlet boundary condition is located at the end of the channel where,
flow reaches fully developed state. Gradients of the flow variables converge to
zero as the flow is fully developed. For this reason at the outlet boundary,
gradients of flow variables are set equal to zero. As it is utilized while defining
other boundary conditions, ghost cell method is used for the outlet boundary. The
alignment of pressure and temperature nodes around the outlet boundary can be

seen in Figure 3.16.
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Figure 3.16 Schematic view of pressure and temperature nodes around the outlet

boundary

Finite difference equations for pressure and temperature gradients at the boundary
are discretized with half mesh width and central differencing. Discretized form of

the pressure and temperature gradients will be as follows,

(ap%j _ Pimax+1,j :pmaxi,j —0 (3.115)
ax boundary, j éx

6. -0 .
( 861) — imax+1,j . max i, j — 0 (3116)
a'x boundary, j &

The x velocity gradient in the axial direction will be equal to zero also. The

gradient can be expressed in terms of adjacent nodes, by using finite difference
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method. The velocity gradient is discretized with central differencing and full
mesh width around outlet boundary. The discretized boundary condition is written

as follows.

* u o
au* — imax+l,j _ max i—1, j — 0 (31 17)
ox ), .. 20x

oundary, j

The arrangement of x velocity cells around the outlet boundary can be seen in

Figure 3.17.
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Figure 3.17 Schematic view of x velocity nodes around the outlet boundary
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Similar to other flow variables also y velocity gradient will be equal to zero at the
outlet boundary. The schematic view of y velocity nodes around the outlet
boundary is given in Figure 3.18. The y velocity gradient at the boundary can

discretized with half mesh width, as follows,

av* v;k ax+l,j v*'Xi j
( * = Yimacts ~ Vi _ g (3.118)
a'x boundary, j &
* ¢ * ——mf
: ! ] Vimea jmax Vboundary jmax | Vimaxt jmax
@ Y ® '
: | : : P ghost
______ A O R A T O s
i i I i Vimfﬂ,2 i Vboundary.z EVimaxH,Z
o ® #® & o

problem outlet
domain boundary

Figure 3.18 Schematic view of y velocity nodes around the outlet boundary

3.4.2.3.4 Symmetry

Since velocity and temperature profiles for the flowing fluid between parallel

plates are symmetrical around the centerline, it would be convenient to use
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symmetry boundary condition to reduce the computational domain size and
computation time. Velocity temperature and pressure values are mirrored through
the symmetry boundary. The alignment of pressure and temperature nodes around

the symmetry boundary can be seen in Figure 3.19.
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Figure 3.19 Schematic view of pressure and temperature nodes around the

symmetry boundary

The ghost cell pressure and temperature values required to be set as follows,

*

Pi jmast = Pijmas (3.119)
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i,jmax+1

=6

i, jmax (3120)
Similar to pressure and temperature, X velocity values are also mirrored through
symmetry boundary. Figure 3.20 shows the alignment of x velocity nodes around

the symmetry boundary.
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Figure 3.20 Schematic view of x velocity nodes around the symmetry boundary

The ghost cell values required to be set as follows, to assure symmetry boundary

condition,

(3.121)
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As it can be seen in Figure 3.21, y velocity nodes lie on the symmetry boundary,
and it is known that at the symmetry point of flow, y velocity is equal to zero.

Then y velocity values can be defined as zero, explicitly.

Vi jmax =0 (3.122)
ghost
cells
J
symmetry ® . Py ® o
boundary Vazinas Vit
% % % & &
® &

problem
domain

Figure 3.21 Schematic view of y velocity nodes on the symmetry boundary

3.5 Solution Method

Since the x momentum and y momentum equations are separate, sequential

solution method is used throughout the study. In addition to x and y momentum
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equation, to be able to solve pressure unknowns, continuity equation is also used.
Additionally for analyzing heat transfer, energy equation is also employed. As
stated earlier, investigation is focused on the effects of property variation on fluid
flow and heat transfer. For this reason, beside continuity and momentum
equations, energy equation is also required to be solved conjointly with both
momentum and continuity equations. Due to the variation of viscosity with
temperature, both temperature and velocity profile will be affected. In brief,
momentum, continuity and energy equations are required to be solved at the same

iteration.

The discretized equations will be solved in a transient manner by the solver. The
solution begins at time t*=0. The initial values for the unknowns are set for the
beginning of time. The time is incremented by d¢, and at each time step, values of
unknowns are updated. This time stepping loop is continued until certain variables

become fixed in a definite precision range.

Before discussing the time stepping loop, procedure for solving velocity and

pressure unknowns simultaneously, will be explained below.

First, discretized momentum equations are rearranged as follows. The superscripts

in the parentheses are denoting the time step that, variable is calculated.

ow?) duv) op N

ox’ oy ox’
1 (d b*tz +8 b:z +28,u* au* +a,u* 8v* +a,u* au*
Rel dx~* 9y dx dx dy ox dy dy

u Y =" 4 St {—

(3.123)
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_a(u*v*) B ov?) B op’ N
ox’ dy’ ay

1 (3% 9% _ou' v ou v ou o G129

Rel dx~ dy dy dy ox dx dx dy

v*(n+l) :v*(rH—I) +5t|:

For convenience, some of the terms in Equations (3.123) and (3.124) are grouped

and renamed as A and B respectively;

mf%_am%%+
ox oy
1 (azu O'u’  ,Ou ' I v’ ou du H

A" =y 4 5{—

Rel( dx~ 9dy dx dx dy ox dy Ody

ouv) B o(v?) N
ox’ dy’

1 (0% %" _ou ov ou ov ou ou (3120

R_e(ax*2 i dy”’ 2 dy" oy +¥$+ ox ady’ H

5= v -

By using the Equations (3.125) and (3.126), Equations (3.123) and (3.124) can be

rearranged as,

*(n+l)
o = g _ 5P (3.127)

ox

#(n+1)
P — _&ap_* (3.128)

dy
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All of the variables in Equations (3.127) and (3.128) are related to a time level.
op’ op

Here A and B terms are associated with time level n while the terms L* and >
X y

belongs to time level n+1. In other words spatial derivatives of pressure are
calculated by using the updated values at same time step. On the other hand
spatial derivatives in terms A and B are calculated by using the values obtained
from previous time step. Namely, velocity field can be calculated for time level

(n+1) once the pressure field is known at that time level.

Using the Equations (3.123), (3.124) and the continuity equation which is written
below, it is possible to derive Poisson equation for the pressure values at time

level n+1.

ou’ v
T
ox dy

=0 (3.129)

Equation (3.129) is non-dimensionalized continuity equation for two dimensions
in Cartesian coordinates. By substituting Equations (3.123) and (3.124) into

continuity equation one can get,

a *(n+1) a *(n+1) aA(rH—l) az *(n+1) aB(;ﬁ—l) az *(n+1)
u 4 % = Ot p — —— P -
ox dy ox ox dy dy

=0 (3.130)

After rearranging the expression in Equation (3.130) it is possible to obtain an
expression for pressure values at time level n+1, in terms of spatial derivatives of

velocity and other unknowns calculated at previous time level n.

2 __*(n+l) 2 __*(n+l) (n+l) (n+1)
9’p 9%p 1(8A OB j G.131)

ox dy or\ ox dy
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The Equation (3.131) should be discretized before solution. As it is stated above
pressure values and velocity values are assigned to different nodes on a cell. For
this reason Equation (3.131) can be discretized by central differencing around the

cell center as follows,

P =20 |l =20
(6x)° (6y)
(3.132)
i( Ai(,l;) — Al.(ff,j + Bi(,? _ Bi(—nl>,1 ]
ot ox oy

In Equation (3.132) i and j indices vary from 1 to iy, and j,.. respectively. By
using the boundary values, it is possible to solve this system of equations for
pressure unknowns. Pressure matrix for the nodes of problem domain is solved
iteratively by using Gauss-Seidel iteration method combined with Successive
Over Relaxation (SOR) method. Before applying this iterative method, pressure
values are set as zero initially. Iterations for the solution of pressure matrix is
terminated when least square of the residual matrix of pressure variables fallen

below 0.001. This predetermined tolerance was enough to get desired solutions.

First, pressure unknowns are iteratively solved for the (n+1)th time step by using
the velocity and viscosity values of the (n)th time step. Then both x and y velocity
values are calculated for the (n+1)th time step by using the pressure values. These
updated values for velocities are used in the solution of energy equation. The
procedure for updating velocity values with the obtained pressure values are given

below.

*(n+ n §t *(n+ *(n+
iy = Al ===+ P ) (3.133)
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Since, pressure and velocity nodes are aligned in a staggered form it is possible to
discretize the spatial derivative of pressure by using central differencing with half

mesh width.

After completing the calculation of new velocity and pressure values, the
temperature variables will be solved. The rearranged form of the energy equation

can be written as follows.

= ootk stttk S |t
ot RePr| dx ox dx~ dy dy dy
i (3.135)
Br «|  ou ov ou dv .00 .00
2u ol B el B Bl Bl e A
RePr ox dy dy Ox ox dy

By using the calculated temperature variables in the previous time step, it is

00 1(ak*ae ,0°0 ok’ 06 *azej

possible to update temperature values.

When all temperature variables are updated, dimensionless viscosity and thermal
conductivity can be calculated. These variables are algebraically related to
dimensionless temperature as it is discussed above. The time stepping is continued
until difference between local Nusselt values in two consecutive time steps fall

below 10™. This criterion is validated during validation studies.

3.6 Code Validation

Code is written in commercial software MATLAB®. Since the geometry is

uncomplicated, no additional algorithm is used for mesh generation. However it is
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possible to use less grid points by using mesh stretching. However, simple
structured grid is used since it is very easy to transform the physical domain into
computational domain. The number of nodes that will be used in longitudinal and
transverse directions can be defined by using the user interface before starting

solution.

Code validation studies performed by using the analytical and numerical results
given in references [28],[62] and [63]. Both velocity profiles and fully developed
Nusselt values available in the references are used for comparison. Validation of
the Nusselt values will give an idea about the accuracy of temperature distribution
obtained from our numerical solver. The available solutions are made by
neglecting the effect of axial conduction and transverse convection; for this reason
additional runs are required for validation. Furthermore, as a result of the
difference in Knudsen number definition, between this study and reference [62],
the available results can be compared for Knudsen numbers 0.01, 0.02 and 0.04.
In addition to the comparison mesh independence is also tested by making
preliminary test runs for different numbers of vertical and longitudinal grid points.
This mesh independence study is performed for Knudsen number 0.1 and
Brinkman number equal to 0.001 by neglecting the effect of axial conduction.
Obtained fully developed Nusselt values and x-velocity profile is compared with
the references. As stated previously, in the study of Jeong and Jeong [28] the fully
developed Nusselt values are obtained by making analytical solution. On the other
hand, Cetin [62] obtained the same results numerically. The only difference in

their study is the non-dimensionalization, of Knudsen numbers.
The variation of Nusselt values for different mesh sizes are plotted against axial

position in Figure 3.22. The results are obtained for 50 x 300, 80 x 480 and 100 x
600, vertical and longitudinal grid points.

78



18*‘ - 18
16 - 16
14 4 — 14
12 Pe=1 + 12
210 F1o
3 / Le
6 r 6
41 -4
21 H2
0 T T T T 0
0 5 10 15 20

Dimensionless Length (x*)

—50x300 — 80x480 100x600

Figure 3.22 Variation of Nusselt number with axial position for different mesh
sizes, obtained from constant property solutions by neglecting the axial

conduction (Kn=0.01, Pe=1, Br=0.001)

However the difference between results of different mesh sizes can not be clearly
seen in Figure 3.22. The fully developed Nusselt values are tabulated in Table 3.1
for different mesh sizes, by comparing them with the results of reference [28]

which is also in agreement with the results of [63].
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Table 3.1 Fully developed Nusselt numbers, for thermally developing flow for

various mesh sizes (Axial conduction is neglected)

Kn=0.01 Nug Nugy[28] % difference
50x300 13,868 1,456
80 x480 13,712 13,669 0,315
100 x 600 13,660 -0,066

In addition to the fully developed Nusselt values, also fully developed x-velocity
values are compared with the analytically obtained results. The analytical
derivation for the velocity profiles in a two dimensional half channel is as follows.

First the flow is assumed to be fully developed and only function of y.

u =1 (3.136)

Since the flow is fully developed, the vertical components will vanish.
v =0 (3.137)

The dimensional x-momentum equation given below can be written again

according to these assumptions and constant properties.

2
Ou o) ow)__10dp,
or  ox dy p ox
U(’u u _ouou Oudv O du
plar o P avar ayar oy ay
p\ox*  dy y y dy (3.138)
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The reduced x-momentum equation will take the following form,

19 0’
22

After simplification of y-momentum equation which is written below,

2
v Owy) o) __19dp
ot ox dy p dy
2 2
ﬁ(a v, a_ﬂ@ﬁ_ﬂa_ua_ﬂa_uj

pw W dy dy Ox dx Jx dy

(3.140)
The reduced y-momentum equation will yields,
Lop = (3.141)
p 9y

Then it is showed that pressure is only a function of x. In Equation (3.139) right
hand side is only function of y while left hand side is only function of x. Then

both right hand side and left hand side of Equation (3.139) should be equal to a

constant.

g_]? = constant (3.142)
X
2

g—yl: = constant (3.143)

Here assuming a pressure drop Ap through finite tube length Ax. It is possible to

write the left hand side of Equation (3.139) as follows,
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Ap du

;zAx_a_y2

(3.144)

By using the boundary conditions for the half channel used in the model given in

Figure 3. 4. Ordinary differential equation (Equation (3.144)) can be solved. The

boundary conditions are defined below, in dimensional form.

<
Il
)
S
I
=

y=H u = finite

Slip velocity u,is defined earlier, and can be written as follows,

After integrating twice, Equation (3.144) can be written as,

Ap
u(y) Zm)’z toyta

(3.145)

(3.146)

(3.147)

(3.148)

The c¢; and c; are constants of integration, which can be determined by using

boundary conditions.

ApH?

A ApH
u(y)=—2y? 2P

——y—8Kn
HAx HAx
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By using the definition of mean velocity, after integrating velocity field over the

channel width,

1 H
U. :Eju(y)dy (3.150)

0

Integrated mean velocity is given below,

2 2
UW:E(—APH —12KnApHJ (3.151)
3 MAX MAx

Then dimensionless form of the x-velocity given in Equation (3.149) can be

written as follows by using the non-dimensional parameters defined earlier,

M) 32y —y” +8Kn)
U_ 2 1+12Kn

(3.152)

After obtaining the analytical representation for fully developed x-velocity, the
analytical results can be compared with the numerical ones. The dimensionless x-
velocity profiles obtained by using different mesh sizes are plotted against

dimensionless channel width in Figure 3.23.
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Figure 3.23 Variation of fully developed x-velocity with channel width for

different mesh sizes, obtained from constant property solutions (Kn=0.01, Pe=1)

As can be seen from Figure 3.23 the difference between fully developed x-
velocity values are negligibly low for different mesh sizes and the plots are
overlapped. Since velocity values are not different, the fully developed Nusselt
results will be taken as a reference for comparison and 100 grid points used in

vertical direction, while 600 grid points are used for the longitudinal direction.
Another comparison is made with the Reference [62] in which fully developed

Nusselt values are obtained by neglecting the effects of axial conduction and

viscous dissipation. The results are given in comparison in Table 3.2.
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Table 3.2 Fully developed Nusselt numbers, for thermally developing flow (Axial

conduction and viscous dissipation is neglected)

Nugg Nugy[62] % Difference
Kn 0.00 7.541 7.541 0.000
Kn 0.01 6.921 6.925 0.058
Kn 0.02 6.369 6.374 0.078
Kn 0.04 5.441 5.445 0.073

The fully developed Nusselt values obtained from solutions, in which viscous
dissipation is included, are tabulated in Table 3.3. These results are compared
with the reference [28] in which non-dimensional parameter definition is the same

with this study. In these solutions axial conduction is neglected.

Table 3.3 Fully developed Nusselt numbers, for thermally developing flow (Axial

conduction is neglected)

Kn Nugg Nugy[28] % difference
0.01 13.660 13.690 0.219
0.02 11.208 11.223 0.132
0.04 8.227 8.230 0.042
0.06 6.486 6.486 0.002
0.08 5.348 5.347 -0.015
0.1 4.547 4.547 -0.017
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In addition to the slip flow regime also macro scale flow results are taken as a
reference. As it is given in Table 3.2 for macro scale laminar flow without viscous
dissipation, axial conduction and radial convection, fully developed Nusselt

number converges to 7.541

Moreover as mentioned above, fully developed x velocities also can be compared
with the analytical solutions, to verify the accuracy of solver. For this purpose the
non-dimensional velocity profiles are compared with the analytical results for
different Knudsen numbers. The comparison of developed non-dimensional x
velocity values are given in Figure 3.24. The dashed lines in the figure are
representing the analytical velocity profiles while the solid lines are velocity

profiles obtained from numerical solutions.
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Figure 3.24 Dimensionless fully developed x velocity plotted against
dimensionless channel width for various Knudsen numbers. (Analytical and

numerical data is used)

Mesh size is determined by trial and using the comparisons for Nusselt number
and velocity profiles. In addition to mesh size, time step size also affects the
convergence characteristics. To be able to increase the convergence rate, while
decreasing the run times, adaptive time stepping algorithm is added into code.
This algorithm selects the maximum time step size, satisfying the stability

condition. The details of the stability criterion is given in [60]
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CHAPTER 4

RESULTS AND DISCUSSION

In this chapter, results obtained from numerical analyses will be presented and
discussed in detail. The velocity and temperature distribution is investigated in a
micro channel with constant wall temperature. Simultaneously developing flow
conditions are analyzed regarding the variation of viscosity and thermal
conductivity. Numerical simulations are repeated for different Knudsen numbers,
Brinkman numbers and Reynolds numbers in combination. Working fluid is
chosen as air. Since air has a definite mean free path at room temperature, by
defining the Knudsen number range subject to investigation, hydraulic diameter of
the microchannels that will be analyzed is fixed. Another limitation in our
analyses is related with the compressibility. The solutions are made by assuming
that air is incompressible, for this reason maximum velocity of air is required to
be lower than 0.3 Mach for the pressure and temperature range of the analyses.
According to these limitations low Reynolds numbers are used in the analyses for
the sake of being realistic, which also yield low Péclet numbers. The effect of

Reynolds and Péclet number will be discussed in detail in the following sections.

Knudsen numbers are chosen in the 0.1-0.001 range which is the limit values for
the slip flow regime. Analyses are repeated for different Knudsen numbers to
demonstrate the effect of rarefaction on property variation in slip flow. Similarly
different Brinkman numbers are chosen to show the influence of viscous

dissipation on property variation in slip flow. Additionally, for two different
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Péclet numbers analyses are performed for visualizing the effect of axial

conduction.

Dimensionless numbers and expressions are frequently used while presenting the
results. The effect of property variation on fluid flow and heat transfer will be
expressed in terms of Nusselt number. Variation of heat transfer characteristics
with the effects of viscous dissipation, rarefaction, geometric dimensions and
axial conduction will be illustrated in terms of local and average Nusselt values.
Regarding the non-dimensional momentum and energy equations given below

effects of non-dimensional parameters can be analyzed.

*
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2
pr=—t=Us (4.4)
k. (T, -T,)

Pe =RePr 4.5)

4.1 Results for Simultaneously Developing Flow

In this section, results will be presented for simultaneously developing flow, by
considering both constant and variable thermophysical properties. The results are
obtained for Knudsen numbers, 0.01, 0.02, 0.04, 0.06, 0.08, and 0.1. For all the
Knudsen numbers analyses are repeated by changing the Brinkman number
values. The Brinkman number values used are 0.001, 0.01, 0.1, -0.001, -0.01, O.1.
The analyses are repeated for six different Knudsen and six different Brinkman
numbers, with a fixed Péclet number, which is 1. Then to be able to understand
the effect of Reynolds and Péclet number, some of the analyses are conducted
with a different Péclet number which is equal to 3.57. The plots are given for a
few of the parameters used in the analyses for simplicity. Additional plots are

available in Appendix A.

The effect of rarefaction can be clearly seen from the velocity values at the wall
boundary, which are shown on the vertical axis in Figure 4.1. As the Knudsen
number increases, the effect of rarefaction and the slip velocities at the wall
increase. Development of the x-velocity is also affected from the rarefaction. The
development of x velocity can be seen in Figures 4.2, 4.3 and 4.4. In these figures
dimensionless x velocity is plotted against the dimensionless channel width, for
the vertical sections taken at different locations. The sections are taken from the
positions where dimensionless channel length is equal to 0.8, 4 and 8. The

velocity profiles are given for different Knudsen numbers and for the Brinkman
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number equal to 0.001. Before investigating the effect of property variation,
simultaneously developing flow with constant property will be demonstrated to
become familiarized with the nature of simultaneously developing slip flow in
microchannels. For this reason all of the given velocity profiles are obtained from
constant property solutions. The velocity profiles obtained from variable property
solution will be given in comparison with the constant property velocity profiles

for various Knudsen, Brinkman and Péclet numbers in the Appendix A.
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Figure 4.1 Dimensionless, developed x-velocity profile for different Knudsen

numbers at the section x*=12, obtained from constant property solutions (Pe=1)
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Figure 4.2 Dimensionless x-velocity profile for different Knudsen numbers at the

section x*=0.8, obtained from constant property solutions (Pe=1)
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Figure 4.3 Dimensionless x-velocity profile for different Knudsen numbers at the

section x*=4, obtained from constant property solutions (Pe=1)
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Figure 4.4 Dimensionless x-velocity profile for different Knudsen numbers at the

section x*=8, obtained from constant property solutions (Pe=1)

From the Figures 4.2 4.3 and 4.4 it can be understood that, even for the low
Reynolds numbers, flow develops rapidly. In Figure 4.3, velocity profiles reach its
final form at x*=4 and no further development is observed. As a result of this
rapid development in flow, y velocities are equal to zero, for a wide portion of the
flow field. The development of y velocities can be demonstrated by using the
plots for the sections taken at different locations. The plots are given in Figures
4.5, 4.6 and 4.7. The dimensionless y velocity values are plotted against
dimensionless channel width for different Knudsen numbers and for Brinkman
number equal to 0.001. As stated above, the velocity profiles are obtained from

constant property solutions with a Péclet number of 1.
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Figure 4.5 Dimensionless y-velocity profile for different Knudsen numbers at the

section x*=0.4, obtained from constant property solutions (Pe=1)
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Figure 4.6 Dimensionless y-velocity profile for different Knudsen numbers at the

section x*=0.8, obtained from constant property solutions (Pe=1)
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Figure 4.7 Dimensionless y-velocity profile for different Knudsen numbers at the

section x*=1.2, obtained from constant property solutions (Pe=1)

As can be seen in Figures 4.5, 4.6 and 4.7, y velocity values are reduced as the
dimensionless channel length x* increases. The y velocity values reach zero when
flow is developed. In addition to the velocity profiles, temperature profiles for
different Knudsen numbers is obtained in the numerical simulations. Temperature
profiles, plotted against dimensionless channel width are given at different
sections in Figures 4.8, 4.9, 4.10 and 4.11 to visualize the thermal development.
All dimensionless temperature profiles given in the figures are obtained from
constant property solutions for Brinkman number equal to 0.001 and Péclet

number equal to 1.
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Figure 4.8 Dimensionless temperature profile for different Knudsen numbers at

the section x*=(0.8, obtained from constant property solutions (Pe=1)
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Figure 4.9 Dimensionless temperature profile for different Knudsen numbers at

the section x*=4, obtained from constant property solutions (Pe=1)
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the section x*=8, obtained from constant property solutions (Pe=1)
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the section x*=12, obtained from constant property solutions (Pe=1)
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4.1.1 Constant Property Solutions

The thermal development and variation of temperature profile with rarefaction
effect can be seen from Figures 4.8-4.11. Effect of rarefaction is represented by
Knudsen number in the non-dimensional solutions. As the Knudsen number
increases, the temperature jump and velocity slip at the wall boundaries increases.
This is an expected consequence of rarefaction effect. One other important
dimensionless parameter is Nusselt number as stated above. Variation of Nusselt
number with the axial position will provide detailed information about thermal
development, and heat transfer characteristics of the flow. Plot of Nusselt number
against the axial direction for constant property solution with Péclet number equal
to 1 is given in Figure 4.12. In Figure 4.12 results are presented for different
Knudsen numbers in combination with a positive Brinkman number and Péclet
number is equal to 1. As it is clear from the definition in Equation (3.25), positive
Brinkman numbers indicates a cooling process for the fluid. In other words, fluid
enters the microchannel with a higher temperature than the wall has, and cools
down. Conversely, negative Brinkman numbers refer to a heating process for the
fluid. However, heating process in a microchannel has a singularity as a result of
viscous heating. This singular point emerges where the wall and bulk fluid
temperatures become equal. At this point there is no heat transfer between the
wall and the fluid. Besides, at the downstream of this point, fluid temperature
continues rising as a result of viscous heating. Thereafter, the bulk fluid
temperature exceeds the wall temperature and cooling process takes place. In
Figure 4.13 variation of Nusselt number with axial position, is plotted for a
negative Brinkman number for constant property solutions with Péclet number

equal to 1.

Considering Figure 4.12 and Figure 4.13, it is possible to see that heat transfer in

microchannel reduces with increasing Knudsen number. In other words
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rarefaction has a negative effect in heat transfer for both heating and cooling

processes.
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Figure 4.12 Variation of Nusselt number with axial position for different
Knudsen and positive Brinkman numbers, obtained from constant property

solutions (Pe=1)
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Figure 4.13 Variation of Nusselt number with axial position for different
Knudsen and negative Brinkman numbers, obtained from constant property

solutions (Pe=1)

The fully developed Nusselt numbers for the constant property solutions with a
Péclet number of 1 is given in Table 4.1. The results are tabulated for various
Knudsen and Brinkman numbers. Due to the results in Table 4.1 it is possible to
say that for both positive and negative Brinkman numbers; fully developed
Nusselt numbers converges to the same value. It is possible to say that viscous
dissipation has a limited influence on the fully developed region for constant

property solutions.
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Table 4.1 Fully developed Nusselt numbers, for various Knudsen and Brinkman

numbers, obtained from constant property solution (Pe=1)

Br

0.001 0.010 0.100 -0.001 -0.010 -0.100

0.010 13.660 | 13.660 | 13.660 | 13.660 | 13.660 | 13.660

0.020 11.208 11.208 11.208 11.208 11.208 11.208

0.040 8.227 8.227 8.227 8.227 8.227 8.227

0.060 6.486 6.486 6.486 6.486 6.486 6.486

0.080 5.348 5.349 5.349 5.349 5.349 5.349

0.100 4.547 4.548 4.548 4.549 4.548 4.548

If the channel has a finite length, in addition to the fully developed Nusselt
numbers, also average Nusselt number for the channel become important. In this
case channel length is 12 times the channel spacing, for this reason channel
averaged Nusselt numbers should also be considered while investigating heat
transfer characteristics. Average Nusselt number values for various Knudsen and
Brinkman numbers are tabulated in Table 4.2 for constant property solutions with

a Péclet number of 1.

As expected, with increasing Knudsen number, in other words with increasing
rarefaction effect, channel averaged heat transfer coefficient and Nusselt number

will decrease.

For the positive Brinkman numbers, where the fluid is cooled by the wall, local

Nusselt number experiences a jump, as it is illustrated in Figure 4.12. This jump is
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mainly caused by viscous dissipation. In the beginning of entrance region, as a
result of cooling, the bulk fluid temperature starts to decrease. As the bulk
temperature of the fluid decreases, the heat transfer rate reduces. The decrease in
heat transfer rate together with the viscous heat generation causes a rapid increase
in the bulk fluid temperature. This rapid increase in bulk fluid temperature yields
higher heat transfer rate which creates a jump in Nusselt value. If the viscous
dissipation increases, the jump point will move in the upstream direction. The
shift in jump point position for Knudsen number 0.01 can be seen in Figure 4.14
for constant property solutions with a Péclet number of 1. The detailed plots for
different Knudsen numbers of variable and constant property solutions are

available in Appendix A.

The reason for the migration of jump point is the higher heat generation that
increases the bulk fluid temperature earlier and more rapidly. For this reason with
the increasing viscous dissipation, thermal entry length reduces. As it can be seen
from Figure 4.12 and Figure 4.14, entrance region Nusselt numbers are lower than
the fully developed Nusselt numbers for positive Brinkman numbers. Therefore as
the Brinkman numbers increases, channel averaged Nusselt numbers will be
increased and approximated the fully developed values. This increase in averaged
Nusselt values mainly stems from the shortened entrance length. The variation of

channel averaged Nusselt numbers can be seen in Table 4.2.
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Table 4.2 Channel averaged Nusselt numbers, for various Knudsen and Brinkman

numbers, obtained from constant property solution (Pe=1)

Br
0.001 0.010 | 0.100 | -0.001 | -0.010 | -0.100
0.010 | 11.820 | 12.476 | 13.145 | 10.262 | 10.477 | 13.281
0.020 | 9.779 | 10.280 | 10.784 | 11.344 | 10.253 | 13.270
0.040 | 7.278 | 7.602 | 7.926 | 7.535 7.910 8.197
0.060 | 5.798 | 6.028 | 6.257 | 5.803 6.879 6.036
0.080 | 4.819 | 4993 | 5.166 | 5.273 5.131 5.168
0.100 | 4.123 | 4260 | 4.396 | 3.889 4.561 3.899

Kn
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Figure 4.14 Variation of Nusselt number with axial position for different positive

Brinkman numbers, obtained from constant property solutions (Kn=0.01, Pe=1)

103



The channel averaged Nusselt values obtained from analyses of negative
Brinkman numbers, are also given in Table 4.2. Unfortunately, the variation of
channel averaged Nusselt numbers can not be directly related with the viscous
dissipation by using these data. Virtually high heat transfer rates, in the vicinity of
singular point create unrealistic channel averages. Therefore, considering channel
averaged Nusselt values for negative Brinkman numbers will not be presented

beyond this point.

Moreover, from Figure 4.13, it is possible to see the variation of the axial position
of the singularity point with Knudsen numbers. Additionally the variation of local
Nusselt numbers and the axial position of singularity point with the effect of
viscous dissipation can be seen in Figure 4.15 for constant property solutions. As

stated above the detailed plots for both constant and variable properties are

available in Appendix A.
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Figure 4.15 Variation of Nusselt number with axial position for different positive

Brinkman numbers, obtained from constant property solutions (Kn=0.01, Pe=1)
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With increasing Knudsen number, the point of singularity moves in the
downstream direction, due to increasing rarefaction and reduced heat transfer rate.
On the other hand as the viscous dissipation increases, the bulk fluid temperature
will increase more rapidly and will be equalized to the wall temperature earlier.
This phenomenon will move the singularity point towards upstream direction as
mentioned above. One other parameter that will be discussed is the Péclet number.
This dimensionless quantity represents the relative importance of axial conduction
in the energy equation. Actually Péclet number is the product of Reynolds and
Prandtl number, and Prandtl number is fixed for a definite fluid. Therefore,
changing Péclet number for a fluid refers to changing the Reynolds number. The
effect of Péclet number, in combination with Knudsen and positive Brinkman

number can be seen in Figure 4.16
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—Kn 0.1 Br 0.001-cp-Pe3.57 —Kn 0.04 Br 0.001-cp-Pe3.57

Figure 4.16 Variation of Nusselt number with axial position for various Knudsen
numbers, obtained from constant property solutions

(Br=0.001, Pe=1, Pe=3.57)
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Mainly, the increase in Reynolds number causes an increase in the entrance
length. For the positive Brinkman numbers, in other words for the fluid heating
process, axial position of the jump in local Nusselt values will move in to the

downstream direction with increasing Reynolds number.

For same Knudsen number, fully developed Nusselt numbers, converge to almost
same value, regardless of Brinkman Reynolds and Péclet number as expected.
Fully developed Nusselt numbers for various Knudsen, Brinkman and two
different Péclet numbers are tabulated in Table 4.3. Even though the effect of
axial conduction is not obviously decreased with the increase of Péclet number;
the small differences observed in fully developed Nusselt values are thought to be
caused by the reduced significance of axial conduction term. Effect of Brinkman
number in combination with the increased Péclet number can be seen in Figure

4.17.
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Figure 4.17 Variation of Nusselt number with axial position for various
Brinkman numbers, obtained from constant property solutions

(Kn=0.01, Pe=1, Pe=3.57)
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The channel averaged Nusselt number for two different Péclet and positive
Brinkman numbers are also given in Table 4.4. Due to the results of analyses for
positive Brinkman numbers, increasing Reynolds number and entrance length
causes a substantial decrease in the channel averaged Nusselt values. This
decrease is a result of finite channel length and shift in position of jump in Nusselt

values.

Table 4.3 Fully developed Nusselt numbers, for various Knudsen and Brinkman

numbers, obtained from constant property solution (Pe=1, Pe=3.57)

Br
Kn

0.001 0.100 -0.001 -0.100

0.010 13.660 13.660 13.660 13.660

E 0.040 8.227 8.227 8.227 8.227
0.100 4.547 4.548 4.549 4.548

~ 0.010 13.676 13.676 13.676 13.676
% 0.040 8.260 8.260 8.260 8.260
= 0.100 4.603 4.603 4.603 4.603
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Table 4.4 Channel averaged Nusselt numbers, for various Knudsen and positive
Brinkman numbers, obtained from constant property solution

(Pe=1, Pe=3.57)

Br
Kn

0.001 0.100

0.010 11820 | 12476

E') 0.040 7.278 7.602
0.100 4123 4.260

. 0.010 9.683 12.200
ﬁ 0.040 6.424 7.454
= 0.100 3915 4229

The variation of Nusselt number is plotted against axial position in Figure 4.18 for
various Knudsen number and two different Péclet number. Similarly, for the
negative Brinkman numbers, effect of axial conduction will not be easily
understood, with the slight change in Péclet number from 1 to 3.57. However, it is
possible to say that increased Reynolds number causes an increase in the entrance
length, due to delayed development of the flow. The fully developed Nusselt
numbers converge to the same value for the same Knudsen number regardless of
the Brinkman and Péclet numbers. The effect of negative Brinkman number in
combination with Péclet number can be seen in Figure 4.19. As discussed earlier,
increased viscous heating will shift the position of singular point toward upstream
direction. Additionally with the increase of Reynolds number, the influence of

Brinkman number will become more significant.
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Figure 4.18 Variation of Nusselt number with axial position for various Knudsen
numbers, obtained from constant property solutions

(Br=-0.001,Pe=1, Pe=3.57)
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Figure 4.19 Variation of Nusselt number with axial position for various
Brinkman numbers, obtained from constant property solutions

(Kn=0.01, Pe=1, Pe=3.57)
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4.1.2 Variable Property Solutions

After completing the overview about simultaneously developing flow with
constant thermophysical properties, in the slip flow regime, property variation

effect can be discussed in detail in the following part.

First of all, the effect of rarefaction will be discussed in comparison with the
property variation. Then, for each Knudsen number, relative significance of axial

conduction and viscous dissipation will be investigated.

In the variable property analyses, the dimensional temperature values for inlet and
wall temperature should be defined to non-dimensionalize the thermal
conductivity and viscosity. Hence for the fluid heating where Brinkman numbers
are positive, the inlet temperature is taken as 444 K and the wall temperature is
taken as 296 K. For the second case in which fluid is heated by the wall, wall
temperature is taken as 394 K and inlet temperature is taken as 296 K. By using

these dimensional values, the property variation range of air is defined.

The axial variation of Nusselt numbers, for various Knudsen numbers, and
positive Brinkman numbers obtained from variable and constant property
solutions are plotted in Figure 4.22 .The solid lines in the graph denotes the results
obtained from constant property solution and a suffix "cp" is added to their labels.
The dashed lines in the plots stand for the results of variable property solutions

and "vp" is added as a suffix to their label.
In the following parts, the percent difference in local Nusselt values between

constant and variable property solutions will be demonstrated frequently. The

term will be denoted as “%A Nu” and expressed as follows,
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Nu, —Nu,
%ANu = —=2— x100 (4.6)
ucp
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Figure 4.20 Variation of Nusselt number with axial position for various Knudsen
numbers, obtained from constant and variable property solutions

(Br=0.001, Pe=1)

The difference between variable and constant property solution local Nusselt
numbers decreases with increasing Knudsen number as it can be seen in Figure
4.20. Furthermore, the difference is visualized in Figure 4.21 more clearly. In
Figure 4.21, the difference between variable and constant property local Nusselt

numbers is plotted against axial position.

Basically, the difference between constant and variable property solutions is

strongly related to the temperature gradients. For this reason as the rarefaction
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increases, the temperature and velocity gradients will be decreased. The decrease
in temperature gradients can also be seen from the flattened temperature profiles

with increasing Knudsen number in Figures 4.8-4.11.

As can be seen from Figure 4.21, the difference also has a peak value at an axial
position, which varies with Knudsen and Brinkman number. The peak value is
decreased with increasing rarefaction as a result of reduced temperature gradients.
Additionally, the axial position of the peak value, move in to downstream with
increasing Knudsen number as a result of retarded decrease of heat transfer rate in

the entrance region.

The viscous heat generation and reduced heat transfer rate increases the bulk fluid
temperature which yields a jump in heat transfer rates and temperature gradient.
Consequently with the variation of Knudsen number, the location of the jump in
Nusselt number and peak value for the difference moves to the downstream. Since
the fluid cools down, both viscosity and thermal conductivity values will be
decreased, which causes a reduced conductive heat transfer and viscous heating.
The conductive heat transfer and viscous dissipation are acting in the same way
for the bulk temperature rise in the downstream. For this reason variable property
solution will experience a delayed jump in local Nusselt values due to reduced

viscosity and thermal conductivity.
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Figure 4.21 Variation of percent difference in Nusselt number between constant
and variable property solutions with axial position for various Knudsen numbers

(Br=0.001, Pe=1, Pe=3.57)

As can be seen from Figure 4.21 the difference between constant and variable
property local Nusselt values may reach 15 %. However the difference reduces to
zero for the fully developed flow conditions. Thus it is possible to say that
property variation effect is not significant for the fully developed flow. The fully
developed Nusselt values are tabulated in Table 4.5 for constant and variable
property solutions of various Knudsen and Brinkman numbers. The main reason
for the negligible differences between variable and constant property solutions in

the fully developed flow can be stated as reduced temperature gradients.
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Table 4.5 Fully developed Nusselt numbers, for various Knudsen and Brinkman

numbers, obtained from constant and variable property solutions (Pe=1)

Br

cp vp cp vp cp vp
0.001 0.001 0.010 0.010 0.100 0.100
0.010 | 13.660 | 13.661 | 13.660 | 13.675 | 13.660 | 13.810
0.020 | 11.208 | 11.209 | 11.208 | 11.217 | 11.208 | 11.289
0.040 8.227 8.227 8.227 8.230 8.227 8.256
0.060 6.486 6.486 6.486 6.488 6.486 6.500
0.080 5.348 5.348 5.349 5.350 5.349 5.356
0.100 4.547 4.548 4.548 4.549 4.548 4.553

Kn

In addition to the fully developed Nusselt numbers, channel averaged Nusselt
values for variable and constant property solutions are tabulated in Table 4.6.
When both Table 4.6 and Figure 4.21 are considered together it can be said that
the difference between constant and variable property solutions may be locally
significant but, the positive difference in the early entrance region and negative
difference observed in the downstream of entrance region will compensate each
other and the average difference become very low. By considering the channel
averaged Nusselt values in Table 4.6, it is possible to say that the difference
increases with increasing Brinkman numbers. This phenomenon will be discussed

in detail in the following parts.
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Table 4.6 Channel averaged Nusselt numbers, for various Knudsen and Brinkman

numbers, obtained from variable and constant property solutions (Pe=1)

Br

cp vp cp vp cp vp
0.001 0.001 0.010 0.010 0.100 0.100

0.010 11.820 | 11.529 12.476 | 12.318 13.145 13.237
0.020 9.779 9.544 10.280 | 10.147 10.784 10.815
0.040 7.278 7.115 7.602 7.505 7.926 7918
0.060 5.798 5.679 6.028 5.954 6.257 6.241
0.080 4.819 4.730 4.993 4.933 5.166 5.148
0.100 4.123 4.059 4.260 4.212 4.396 4.379

The Nusselt values are plotted against axial position for variable and constant
property solutions of negative Brinkman numbers in Figure 4.22. The plots of
Nusselt number for various Knudsen numbers are given in comparison with the
property variation effect. Since it is not easy to follow the difference between
constant and variable property results from the plot in Figure 4.22, the variation of
difference with axial position is given in Figure 4.23. The position of singularity
in local Nusselt values changes with the property variation. Moreover percent
difference plots are not clear due to the shift in singularity position. For this
reason, the peak value of the difference between variable and constant property
solutions become infinitely high and has no significance. However, by looking at
the Figures 4.22 and 4.23, it is possible to say that, effect of property variation
will shifts the position of singular point towards upstream. The main reason for
this shift may be the increased bulk fluid temperature as a result of heating. The
increase in fluid temperature results in increased thermal conductivity and

viscosity. Due to the increased thermal conductivity and viscosity, both
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conductive heat transfer rate and viscous heating will be increased. Consequently,
the fluid will reach the wall temperature more rapidly than the constant property

solution.

Another remarkable point of Figure 4.22 is the variation of the difference between
variable and constant property solutions with increasing rarefaction effect. The
increased rarefaction effect causes an increase in the difference. The reason for the
increased difference may be the decreased convective heat transfer rate with
increasing rarefaction. Moreover, as a result of increased thermal conductivity, the
conductive heat transfer rate will also be increased, because for the fluid heating
case, convective and conductive heat transfer mechanism are counteracting. In
other words, heat is diffused to the upstream while fluid is flowing downstream.
As a result, with increasing rarefaction, relative significance of conductive heat
transfer will be increased while the relative significance of convective heat
transfer is decreased. Due to the increase in thermal conductivity, the property

variation effect will be emphasized more for high Knudsen numbers.

Similar to the positive Brinkman number analyses results, the fully developed
Nusselt numbers for both variable and constant property solutions converge to the
same value. The fully developed local Nusselt values for various Knudsen and
negative Brinkman numbers are given in Table 4.7 for constant and variable
property solutions. As stated above the difference becomes negligible for the fully

developed flow as a result of lower temperature gradients.
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Figure 4.22 Variation of Nusselt number with axial position for various Knudsen
numbers, and negative Brinkman numbers, obtained from constant and variable

property solutions (Br=-0.001,Pe=1)
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Figure 4.23 Variation of percent difference in Nusselt number between constant
and variable property solutions with axial position for various Knudsen numbers
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Table 4.7 Fully developed Nusselt numbers, for various Knudsen and Brinkman

numbers, obtained from constant and variable property solution (Pe=1)

Br

cp vp cp vp cp vp
Kn

-0.001 | -0.001 | -0.010 | -0.010 | -0.100 | -0.100

0.010 13.660 | 13.661 | 13.660 | 13.668 | 13.660 | 13.742

0.020 11.208 | 11.209 | 11.208 | 11.213 | 11.208 | 11.253

0.040 8.227 8.227 8.227 8.228 8.227 8.243

0.060 6.486 6.486 6.486 6.487 6.486 6.494

0.080 5.349 5.349 5.349 5.349 5.349 5.352

0.100 4.549 4.548 4.548 4.548 4.548 4.550

As stated previously the channel averaged Nusselt values will not be presented for

the negative Brinkman number analyses results, due to singular points.

The variable property effect will be discussed in comparison with viscous
dissipation by varying the Brinkman number while Knudsen number and Péclet
numbers are fixed. In Figure 4.24, the variation of Nusselt number with axial
position is plotted for various positive Brinkman numbers while Knudsen number
equal to 0.01 and Péclet number equal to 1. With increasing Brinkman number,
length of thermal entrance region increases meanwhile, the position of the jump in
Nusselt value, moves towards. The reasons for this shift was discussed in detail, in
the previous sections. The difference between variable and constant property
solutions can be seen in Figure 4.24. The percent difference in local Nusselt
values are plotted against axial position in Figure 4.25Figure 4.27, however they

are not so clear and comprehensible.
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Figure 4.24 Variation of Nusselt number with axial position for various positive
Brinkman numbers, obtained from constant and variable property solutions

(Kn=0.01, Pe=1)

As it can be seen in Figure 4.25 the positive difference between constant and
variable local Nusselt values, in the early entrance region is approximately the
same for all the Brinkman numbers. Hence, in the early entrance region; the
temperature gradients are inherently independent from the effect of viscous
dissipation. On the other hand, in the downstream of entrance region, where the
difference between variable property solutions are negative, viscous dissipation is
effective. Increasing viscous dissipation has a negative effect on the peak value of
the difference between variable and constant property local Nusselt numbers. On
the contrary the difference in channel averaged Nusselt values are increasing with
increased viscous dissipation. As the fluid enters the channel, the viscosity and
thermal conductivity decreases with the decreasing temperature. Additionally, the
conductive heat transfer rate is reduced with the reduced thermal conductivity. In

the fluid cooling case, the conductive heat transfer assists the convective one.

119



Hence, the assistance of conductive heat transfer will be weaker for reduced
viscous heat generation due to the retarded increase in thermal conductivity.
Consequently, the variable property solution experiences a slower development as
a result of reduced heat transfer rate and reduced heat generation. For this reason
the difference between variable and constant property solutions are increasing
with decreased positive Brinkman number. The position of this peak shifts to the
downstream with decreasing Brinkman number, which results from the shift in the
position of the jump in local Nusselt values. The reason of the shift in jump point
position is discussed in previous parts. Since the difference between variable and
constant property solutions converges to zero for Brinkman number equal to 0.001
and 0.01 in the fully developed region, there is still a finite difference for the
Brinkman number 0.1. The order of difference is 1 % which may be resulted from

increased viscous dissipation effect or numerical instability introduced.

% ANu

-20 -20
Dimensionless Length(x*)

‘ —Kn 0.01 Br0.01 —Kn 0.01 Br0.1 Kn 0.01 Br 0.001 ‘

Figure 4.25 Variation of percent difference in Nusselt numbers between constant
and variable property solutions with axial position for various positive Brinkman

numbers (Kn=0.01, Pe=1)
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In the Figure 4.26 the Nusselt values for both variable and constant property
solutions for different positive Brinkman numbers with a Knudsen number of
0.04 and Péclet number of 1 is plotted against the axial position. Additionally the
percent difference in Nusselt numbers are also plotted against axial position in
Figure 4.27. Mainly the curves have the same characteristics with the previous
ones in which Knudsen number is equal to 0.01. The dependence of variable

property effect on Knudsen number was also discussed in detail previously.
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Figure 4.26 Variation of Nusselt number with axial position for various positive
Brinkman numbers, obtained from constant and variable property solutions

(Kn=0.04, Pe=1)
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Figure 4.27 Variation of percent difference in Nusselt numbers between constant
and variable property solutions with axial position for various positive Brinkman

numbers (Kn=0.04, Pe=1)

Similarly the variation of Nusselt values and percent difference is plotted against
the axial position in Figure 4.28 and Figure 4.29 respectively. The only difference

between previous plots is the values of local Nusselt numbers and the percent

differences.
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Figure 4.28 Variation of Nusselt number with axial position for various positive
Brinkman numbers, obtained from constant and variable property solutions

(Kn=0.1, Pe=1)
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Figure 4.29 Variation of percent difference in Nusselt numbers between constant
and variable property solutions with axial position for various positive Brinkman

numbers (Kn=0.1, Pe=1)
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In addition to the effects of Brinkman and Knudsen number, also Péclet number
has an effect on the property variation. In Figure 4.30 the variation of Nusselt
values for various Knudsen numbers and two different Péclet number is plotted
against axial position. Extra plots covering variation of Nusselt number with axial

position for different Knudsen values is available in Appendix A.

As it can be seen from Figure 4.30, increased Péclet number increases the
entrance length. Additionally the axial location of the jump in Nusselt values
shifted to the downstream direction, as a result of delayed development in velocity

and temperature profiles.

The difference between variable and constant property solutions is increased with
increased Péclet number as a result of increased temperature gradients. The
difference for different Péclet numbers and Knudsen numbers are plotted against
axial position in Figure 4.31. Where, the peak value of the difference increases
with increasing Péclet number. Moreover it moves to the downstream due to the

shifted Nusselt value jump position.

The fully developed Nusselt values for Péclet numbers, 1 and 3.57 are tabulated in
Table 4.8. The fully developed values are approximately the same for variable and
constant property solutions of different Péclet numbers, whereas there is very little
difference due to the decreased axial conduction or increased numerical errors

with increasing Péclet number.

According to the results given in Table 4.8, effect of Brinkman number on
property variation is emphasized with increasing Péclet number. This increased
influence of Brinkman number is a result of increased velocity gradients with
increasing Péclet number. On the other hand, as the rarefaction increases, the
property variation effect becomes less severe with increasing Péclet number. The

reason for reduced effect of property variation is the decreased gradients due to
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increased rarefaction. One other reason for the reduced effect of property variation

may be the decreased thermal conductivity with decreasing temperature.

As the Péclet number increases, the relative significance of axial conduction
decreases, in addition to the decrease in thermal conductivity, the assistance of
conductive heat transfer will be also reduced. Both reduced conductive and
convective heat transfer will compensate the effect of increased temperature
gradients with increased Péclet number. Consequently the property variation
effect becomes less emphasized with increased Péclet numbers for high Knudsen

values.
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Figure 4.30 Variation of Nusselt number with axial position for various positive
Knudsen numbers, obtained from constant and variable property solutions

(Br=0.001, Pe=1, Pe=3.57)
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Figure 4.31 Variation of percent difference in Nusselt number between constant
and variable property solutions with axial position for various Knudsen numbers

(Br=0.001, Pe=1, Pe=3.57)

Table 4.8 Fully developed Nusselt numbers, for various Knudsen and Brinkman

numbers, obtained from constant and variable property solutions

Br
cp vp cp vp
Kn

0.001 0.001 0.100 0.100

0.010 13.660 13.661 13.660 13.810

E 0.040 8.227 8.227 8.227 8.256
0.100 4.547 4.548 4.548 4.553

~ 0.010 13.676 13.760 13.676 13.900
% 0.040 8.260 8.359 8.260 8.380
= 0.100 4.603 4.691 4.603 4.690
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In addition to the effect of Knudsen number, the effect of Brinkman number on
property variation will also be discussed in combination with Péclet number. In
Figure 4.32, the Nusselt numbers for different Péclet and Brinkman numbers are
plotted against the axial position while Knudsen number is equal to 0.01. As
previously discussed, the thermal entrance region is elongated with decreased
positive Brinkman number, due to the reduced viscous heat generation. On the
contrary, the difference between variable and constant property solutions is
increased with decreasing Brinkman number. The details of this phenomenon are

discussed above.

The difference between variable and constant property solutions are plotted
against axial position in Figure 4.33 for convenience. As stated above the
difference increases with increasing Péclet number, and shifts to the downstream
due to the delayed flow development. Detailed plots for different Knudsen and

Brinkman numbers are available in Appendix A.
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Figure 4.32 Variation of Nusselt number with axial position for various positive
Brinkman numbers, obtained from constant and variable property solutions
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Figure 4.33 Variation of percent difference in Nusselt number between constant
and variable property solutions with axial position for various positive Brinkman

numbers (Kn=0.01, Pe=1, Pe=3.57)
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Effect of variable viscosity and thermal conductivity is discussed above in
combination with the effects of Brinkman, Knudsen and Péclet number. In
addition to this, Nusselt values and percent difference between variable and
constant property solutions are plotted against axial position for various Knudsen,
positive Brinkman and Péclet numbers in combination below. The fully developed
Nusselt values, for Péclet number 3.57 may differ from the constant properties
solution made with a Péclet number of 1. The difference in fully developed
Nusselt values is increased with increasing Péclet number for higher Knudsen
numbers. For this reason, the difference is thought to be resulting from decreased
significance of axial conduction. Moreover the fully developed Nusselt values are
higher for the increased Péclet number which can be a consequence of increased

convective heat transfer rate.
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Figure 4.34 Variation of Nusselt number with axial position for various positive
Brinkman numbers, obtained from constant and variable property solutions

(Kn=0.04, Pe=1, Pe=3.57)
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Figure 4.35 Variation of percent difference in Nusselt number between constant
and variable property solutions with axial position for various positive Brinkman

numbers (Kn=0.04, Pe=1, Pe=3.57)

The reasons of decreasing difference between constant and variable property local
Nusselt values with increasing viscous dissipation have been discussed in the
previous parts. As a result, only the combined effects of Péclet and Brinkman

numbers will be discussed in this part.

Increased Péclet number will cause an increase in the effect of viscous heating as
a result of increased velocity gradients. Additionally, as the fluid is cooled in the
channel, the viscosity will be reduced which will decrease the effect of viscous
dissipation in variable property solutions. Therefore the difference in variable and
constant property local Nusselt numbers will not be significantly increased with

increasing Péclet number while Brinkman number is held constant.
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Figure 4.37 Variation of percent difference in Nusselt number between constant
and variable property solutions with axial position for positive Brinkman

numbers, (Kn=0.1, Pe=1, Pe=3.57)
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After completing the discussion about the combined effects of Brinkman, Péclet
and Knudsen number on property variation in fluid heating process, the effects of
same parameters will be discussed for fluid cooling process. Rarefaction, viscous
dissipation and property variation will be discussed in combination, to be able to
understand their influence on heat transfer characteristics. The Nusselt numbers
obtained from variable and constant property solutions are plotted against axial
dimension in Figure 4.38 for negative Brinkman numbers for a fixed Knudsen
number. As it can be seen in Figure 4.38, the position of the singular point in
variable property solutions is moved to the upstream. Main reason for the shift in
position of the singular point is increase in viscosity and thermal conductivity of
air with increasing temperature after it enters the channel. The increase in
viscosity causes an increase in viscous heating, while the increase in thermal
conductivity increases the conductive heat transfer. The conductive heat transfer
is heating the upstream of the flow. Due to the increased conductive heat transfer,
the fluid temperature reaches the wall temperature faster and earlier with the

increased viscous dissipation.

Moreover, the effect of viscous dissipation on property variation can be seen by
looking at Figure 4.38. The difference between variable and constant property
solutions are decreased with decreasing negative Brinkman number. When
viscous dissipation is increased, the fluid is heated more and this will increase the
viscosity and thermal conductivity. The increased viscous dissipation due to
increased viscosity and increased conductive heat transfer due to increased
thermal conductivity will act in opposite directions. As a result of these
counteracting mechanisms the difference will be reduced with increasing viscous
dissipation. In Figure 4.39 the percent difference between constant and variable
property Nusselt values are plotted against the axial position. This plot is not so

clear, but it is possible to see the shift in singularity point by looking this plot.
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Figure 4.39 Variation of Nusselt difference in Nusselt number between constant
and variable property solutions with axial position for negative Brinkman

numbers, (Kn=0.1, Pe=1)

133



In addition to the effect of Brinkman number, also combined effects of Brinkman
and Knudsen numbers, on property variation needs to be discussed for heating
process. Therefore, both variable and constant property Nusselt numbers are
plotted for a Knudsen number of 0.04 and various negative Brinkman numbers,

with a Péclet number equal to 1 in Figures 4.40 and 4.41.

By considering Figure 4.40 and Figure 4.41 it is possible to see that the effect of
viscous heating on property variation decreases with increased rarefaction. Since
the viscous heating is decreasing with increased rarefaction effect, the property
variation will be less dependent on viscous dissipation. Furthermore, the viscous
dissipation and convective heat transfer rate will be reduced with increased
rarefaction and as a result, effect of property variation will be more emphasized,

due to increased significance of conductive heat transfer.
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Figure 4.40 Variation of Nusselt number with axial position for various negative
Brinkman numbers, obtained from constant and variable property solutions

(Kn=0.01, Pe=1)
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Figure 4.41 Variation of percent difference in Nusselt number between constant
and variable property solutions with axial position for negative Brinkman

numbers, (Kn=0.04, Pe=1)

Similarly the difference between variable and constant property solutions can be
seen in Figure 4.42 and Figure 4.43 for Knudsen number 0.1 and various negative

Brinkman numbers with a Péclet number of 1.
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Figure 4.43 Variation of percent difference in Nusselt number between constant
and variable property solutions with axial position for negative Brinkman

numbers, (Kn=0.1, Pe=1)
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After completing the discussions about the combined effects of Knudsen and
negative Brinkman numbers on the property variation, the effect of Péclet number

will be discussed in detail in the following section.

The variation of Nusselt values for constant and variable property solutions are
plotted against the axial position for two different Péclet numbers which are 1,

and 3.57.

As discussed before and can be seen from Figure 4.44, the singular point shifts to
the downstream with increasing Reynolds number. Similar to the positive
Brinkman number cases, with increasing Péclet number, the difference between
variable and constant property solutions will be increased. However this is valid
for the low Knudsen number flows. Different from the positive Brinkman number
case, increasing Péclet number will reduce the difference between constant and
variable property solutions with increasing rarefaction for Brinkman number -
0.001. As discussed above, the thermal conductivity will be increasing with the
heating of the fluid. Moreover, the significance of conductive heat transfer will be
reduced with the increased Péclet number. The low viscous dissipation combined
with increased Péclet number will reduce the difference resulted from increased
conductive heat transfer in variable property solutions. Consequently the
difference between Nusselt numbers of variable and constant property solutions
will be reduced with increasing Péclet and Knudsen number for low Brinkman
numbers. The percent difference is plotted against axial position in Figure 4.45.

The shift in position of singular point can also be seen from Figure 4.45.

In brief, Péclet and Knudsen numbers have counteracting effects on the shift in
position of singular point, for variable property solutions. Increased rarefaction
will retards the heating of fluid by reducing the effect of viscous heating while

increased Péclet number will increase effect of viscous dissipation.
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Fully developed Nusselt numbers will converge to the same values with very little
differences for different Péclet numbers. Main reason for these small differences
possibly result from increased axial conduction effect. The fully developed

Nusselt numbers are tabulated in Table 4.9.

Table 4.9 Fully developed Nusselt numbers, for various Knudsen and Brinkman

numbers, obtained from constant and variable property solutions (Pe=1)

Br
cp vp cp vp
Kn

0.001 | -0.001 | -0.100 | -0.100

0010 | 13.660 | 13.661 | 13.660 | 13.742

E 0040 | 8227 | 8227 | 8227 | 8243
0.100 | 4549 | 4548 | 4548 | 4550

. 0010 | 13.676 | 13.664 | 13.676 | 13.745
ﬁ 0.040 | 8260 | 8238 | 8260 | 8.254
= 0.100 | 4603 | 4691 | 4603 | 4.690

As can be seen from Table 4.9, the difference in fully developed Nusselt values in
variable property solutions are increased with the increasing viscous dissipation
for the low Knudsen numbers. On the other hand the difference in fully developed
Nusselt values due to property variation is decreased with increasing viscous
dissipation for higher Knudsen numbers. It is possible to observe the combined
effect of Brinkman and Péclet numbers by varying the Péclet and Brinkman
numbers while Knudsen number is fixed. In Figure 4.46 the variation of Nusselt

values with axial position is plotted for Knudsen equal to 0.01.
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The difference between constant and variable property solutions is increased for

increasing negative Brinkman number when Knudsen number is equal to 0.01.

The reason for the increased difference between constant and variable local

Nusselt numbers with decreasing negative Brinkman number is explained above.

The difference between variable and constant property solutions are plotted

against axial position in Figure 4.47.
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Figure 4.46 Variation of Nusselt number with axial position for various negative

Brinkman numbers, obtained from constant and variable property solutions

(Kn=0.01, Pe=1, Pe=3.57)
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Figure 4.47 Variation of percent difference in Nusselt number between constant
and variable property solutions with axial position for negative Brinkman

numbers, (Kn=0.1, Pe=1, Pe=3.57)

The local Nusselt values of variable and constant properties are plotted for
Knudsen number of 0.04 in Figure 4.48 .With the increase of rarefaction, the
relative significance of convective heat transfer is reduced. For this reason, as the
viscous dissipation is increased, the difference between constant and variable
property solutions will be increased. As stated above, with increased viscous
heating the temperature and the thermal conductivity and will be increased. In
addition to the increase in conductive heat transfer, the decrease in convective
heat transfer will results in a higher drop in heat transfer coefficients. The
differences are plotted against axial position in Figure 4.49. Similar results are
obtained for Knudsen number 0.1. The increased viscous heating will cause a
higher drop in local Nusselt values of variable property solutions with the
increased rarefaction. However, the decrease in convective heat transfer combined

with low viscous dissipation will result in small differences between constant and
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variable property solutions. The plots of Nusselt values and percent difference are

given in Figure 4.50 and Figure 4.51 respectively.

. 15
] 113
', + 11
"\ +9
+7
+5
13
+1
3 20 a1
+-3
-5
Dimensionless Length(x*)
- - - Kn 0.04 Br 0.001-vp-Pe1 - = = Kn 0.04 Br 0.1-vp-Pe1
- - - Kn 0.04 Br 0.1-vp-Pe3.57 Kn 0.04 Br 0.001-cp-Pe1
Kn 0.04 Br 0.1-cp-Pel Kn 0.04 Br 0.001-cp-Pe3.57
Kn 0.04 Br 0.1-cp-Pe3.57 - - - Kn 0.04 Br0.001-vp-Pe3.57

Figure 4.48 Variation of Nusselt number with axial position for various negative
Brinkman numbers, obtained from constant and variable property solutions

(Kn=0.04, Pe=1, Pe =3.57)
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Figure 4.51 Variation of percent difference in Nusselt number between constant
and variable property solutions with axial position for negative Brinkman

numbers, (Kn=0.1, Pe=1, Pe=3.57)

4.1.3 Entry Length Variations

Both thermal and hydrodynamic entry lengths can be calculated from analyses
results. Basically the flow assumed to be hydrodynamically fully developed when
centerline axial velocity reaches 0.999 of the fully developed value. Similarly the
flow is assumed to be thermally fully developed when dimensionless temperature
reaches 0.999 of the fully developed value. The non-dimensional hydrodynamic
entry length and thermal entry length values obtained from constant property
solutions are tabulated for positive Brinkman numbers and Péclet number equal to

1 in Table 4.10.
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Table 4.10 Variation of hydrodynamic and thermal entry length with varying
Knudsen numbers and positive Brinkman numbers obtained from constant

property solution (Pe=1)

Br0.001 | Br0.01 | Br0.1
Hydrodynamic entry length 1.39 1.39 1.39
Kn 0.01
Thermal entry length 13.62 11.22 8.70
K0 0.02 Hydrodynamic entry length 1.44 1.44 1.44
Thermal entry length 15.06 12.46 9.82
K 0.04 Hydrodynamic entry length 1.48 1.48 1.48
Thermal entry length 16.86 13.94 10.90
K1 0.06 Hydrodynamic entry length 1.50 1.50 1.50
Thermal entry length 18.50 15.26 11.9
Hydrodynamic entry length 1.52 1.52 1.52
Kn 0.08 Y Y Y e
Thermal entry length 20.78 17.42 13.78
Kn 0.1 Hydrodynamic entry length 1.52 1.52 1.52
n 0.
Thermal entry length 22.30 18.94 15.14

Increasing rarefaction effect with increasing Knudsen numbers will result in a
slightly increased hydrodynamic entry length. However, hydrodynamic entry
length is not affected from viscous dissipation effect. For this reason the
hydrodynamic entry length does not change for different Brinkman numbers in

constant property solutions.

On the other hand thermal entry length depends on both Knudsen and Brinkman
numbers. The thermal entry length increases with increasing rarefaction effect as
it was discussed earlier, and it decreases with increasing Brinkman numbers.

These phenomena were discussed in detail in the previous sections.
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In addition to the fluid cooling case in which Brinkman numbers are positive,
thermal and hydrodynamic entry length is tabulated for fluid heating case. The
non-dimensional thermal and hydrodynamic entry length values are tabulated for

various Knudsen and negative Brinkman numbers in Table 4.11.

Table 4.11 Variation of hydrodynamic and thermal entry length with varying
Knudsen numbers and negative Brinkman numbers obtained from constant

property solution (Pe=1)

Br- 0.001 | Br-0.01 | Br-0.1
Kn 0.01 Hydrodynamic entry length 1.39 1.39 1.39
Thermal entry length 14.86 1246 | 10.14
Hydrodynamic entry length 1.44 1.44 1.44
Kn 0.02
Thermal entry length 15.38 12.78 | 10.30
K 0.04 Hydrodynamic entry length 1.48 1.48 1.48
Thermal entry length 16.42 14.1 11.26
Hydrodynamic entry length 1.50 1.50 1.50
Kn 0.06
Thermal entry length 18.98 1578 | 12.62
Hydrodynamic entry length 1.52 1.52 1.52
Kn 0.08 Y Y y e
Thermal entry length 20.46 17.1 13.66
Kn 0.1 Hydrodynamic entry length 1.52 1.52 1.52
‘ Thermal entry length 22.14 18.78 | 15.18

For the constant property solution, the hydrodynamic entry length does not change
with Brinkman number; the values are the same with the positive Brinkman
number case. However, thermal entry length values are increasing with increased

rarefaction and reduced viscous dissipation effects as discussed above.
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Additionally the entry length values for variable property solutions are also
calculated. The non-dimensional hydrodynamic and thermal entry length values
obtained from variable property solutions are tabulated for various positive

Brinkman numbers in Table 4.12.

Table 4.12 Variation of hydrodynamic and thermal entry length with varying
Knudsen numbers and negative Brinkman numbers obtained from variable

property solution(Pe=1)

Br0.001 | Br0.01 | BrO.1

Kn 0.01 Hydrodynamic entry length 1.60 1.60 1.60
Thermal entry length 15.94 12.98 10.66

K 0.02 Hydrodynamic entry length 1.64 1.64 1.64
Thermal entry length 17.58 14.46 12.82

Kn 0.04 Hydrodynamic entry length 1.68 1.68 1.68
Thermal entry length 19.42 16.18 14.02

K 0.06 Hydrodynamic entry length 1.68 1.68 1.68
Thermal entry length 20.74 17.58 14.86
Hydrodynamic entry length 1.68 1.68 1.68

Kn 0.08 e yene

Thermal entry length 22.18 19.26 17.22

Kn 0.1 Hydrodynamic entry length 1.68 1.68 1.68
‘ Thermal entry length 22.9 21.78 17.9

When both Table 4.10 and Table 4.12 considered together it is possible to see
that, variation in viscosity with temperature slightly increases the hydrodynamic
entry length. However, the increase in hydrodynamic entry length is not affected
from variation in viscous dissipation. The hydrodynamic entry length values are

the same for a Knudsen number regardless of Brinkman numbers. On the other

147



hand thermal entry length is increased slightly for variable property solutions. As
discussed above, the property variation effect will delay the thermal development
for positive Brinkman numbers which will result in higher thermal entry length
values. On the contrary for the negative Brinkman numbers, the variation of
thermal and hydrodynamic entry length will be different than the fluid cooling
case. The variable property results for fluid heating case are tabulated in Table

4.13 for Péclet number equal to 1.

Table 4.13 Variation of hydrodynamic and thermal entry length with varying
Knudsen numbers and negative Brinkman numbers obtained from variable

property solution(Pe=1)

Br- 0.001 | Br-0.01 | Br-0.1

Kn 0.01 Hydrodynamic entry length 1.28 1.28 1.28

Thermal entry length 13.58 11.50 7.90

Kn0.02| Hydrodynamic entry length 1.32 1.32 1.32
Thermal entry length 14.02 11.74 | 1042

Kn0.04| Hydrodynamic entry length 1.36 1.36 1.36
Thermal entry length 15.46 12.82 | 10.62

Kn0.06 | Hydrodynamic entry length 1.40 1.40 1.40
Thermal entry length 17.26 1430 | 11.74

Kn 0.08 Hydrodynamic entry length 1.42 1.42 1.42
Thermal entry length 18.74 15.54 | 12.54

Kn 0.1 Hydrodynamic entry length 1.42 1.42 1.42
Thermal entry length 20.58 17.14 | 13.86

Regarding the values given in Table 4.13, it can be seen that both hydrodynamic
and thermal entry length are decreased for variable property solutions. The
reasons for this early development are discussed in detail in the previous sections.

Moreover, by considering the data available in Table 4.14, it is possible to say that
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thermal entry length is affected from variation of Knudsen and Brinkman
numbers. In addition to Brinkman and Knudsen numbers also Péclet number has
significant effect on hydrodynamic and thermal entry length. The non-
dimensional hydrodynamic and thermal entry length values are tabulated in Table
4.14 for different Knudsen and positive Brinkman numbers. The results are given
for both constant and variable property solutions obtained for Péclet number equal

to 3.57.

Table 4.14 Variation of hydrodynamic and thermal entry length with varying
Knudsen numbers and positive Brinkman numbers obtained from variable

property solution (Pe=3.57)

Constant Property | Variable Property
Br0.001 | Br0.1 | Br0.001 | Br0.1

Hydrodynamic entry

Kn 0.01 length
Thermal entry length | 18.74 12.9 19.18 14.86

Hydrodynamic entry

1.72 1.72 2.44 2.32

1.88 1.88 248 2.38

Kn 0.04 length
Thermal entry length| 19.34 14.86 19.20 15.76
Hydrodynamicentry | - » 3y | 500 | 234 | 232
Kn 0.1 length

Thermal entry length| 20.02 16.46 19.46 16.66

As mentioned above increase in Péclet number increases both thermal and
hydrodynamic entry length values. Additionally as discussed earlier the effect of
viscosity and thermal conductivity variations become more emphasized with
increasing entry length. As can be seen in Table 4.14 the increase in

hydrodynamic and thermal entry length due to property variation is increased with
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decreasing Brinkman number. Moreover, the difference in entry lengths will be

decreased with increasing rarefaction effect as discussed earlier.

Similarly the variation of non-dimensional entry length values are tabulated in

Table 4.15 for constant and variable property solutions of fluid heating case.

Table 4.15 Variation of hydrodynamic and thermal entry length with varying
Knudsen numbers and negative Brinkman numbers obtained from variable

property solution (Pe=3.57)

Constant Property Variable Property
Br-0.001 | Br-0.1 | Br-0.001 | Br-0.1
Hydrodynamic 172 1.72 1.51 1.50
entry length
Kn 0.01 Th Lent
ermal entry 18.84 13.24 17.99 11.27
length
Hydrodynamic 1.88 1.88 1.66 1.66
entry length
Kn 0.04 Th Lent
ermal entry 194 15.02 19.26 13.88
length
Hydrodynamic 2.00 2.00 1.80 1.80
entry length
Kn 0.1 Th Tent
ermal entry 20.06 16.58 20.06 16.58
length

As discussed earlier, the entry length will be decreased for variable property
solutions in case of fluid heating. Moreover by considering the data available in
Table 4.15, it can be said that effect of Brinkman number is less severe on the

hydrodynamic entry length than thermal entry length.
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4.2 Effect of Flow Parameters on Heat Transfer

Regarding the non-dimensional momentum and energy equations given

previously, effects of non-dimensional parameters can be analyzed.

4.2.1 Fluid Cooling Case

For the fluid cooling case in which Brinkman numbers are positive and fluid is
cooled by the wall, the thermal conductivity and the viscosity values are
decreasing as the fluid proceeds in the channel. For this reason the axial
conductive flux will be positive and the transverse conductive flux will be
negative. Similarly the axial convective flux will be negative as a result of flow
direction and temperature change. On the contrary the transverse convective flux
will be positive. Additionally the viscous dissipation terms will be inherently
positive as a result of positive Brinkman number. Overall conductive flux will be
negative since transverse convective flux is the dominating one. Likewise the
overall convective flux will be negative. In this case the right hand side of the
Equation (4.3) will be positive as a result of positive viscous dissipation terms.
The magnitudes will change with the Brinkman and Péclet numbers; however
signs of the terms will remain unchanged. With decreasing temperature in the
channel, the decreased thermal conductivity will yield, lower conductive flux in
both axial and vertical directions. This will reduce the overall heat transfer rate.
The increased Péclet number will reduce the magnitude of the right hand side of
Equation (4.3). At the steady state the convective terms will also be reduced. The
velocity profile will be changed less than the temperature field, so the temperature
gradients will be lowered in axial direction mainly, which results in a later
development and elongated entrance length. However the increase of Brinkman
number will increase the magnitude of the second term on the right hand side of
the Equation (4.3). This will increase the axial gradients and shorten the entrance

length. The significance of convective terms will be reduced due to increased slip
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velocity and temperature jump at the wall boundaries. The reduced significance of

the convective terms will also results in, increased entrance length.

4.2.1.1 The Effect of Thermal Conductivity Variation

The variation of non-dimensional conductivity at an arbitrary crossection is given

in Figure 4.52.
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Figure 4.52 Variation of dimensionless thermal conductivity on vertical axis at

an arbitrary crossection (Kn=0.01, Pe=1, Br=0.001)

As can be seen, the thermal conductivity is increasing in the positive vertical
direction and the dimensionless thermal conductivity values are less than 1 at all
locations. As a result, the vertical conductive flux of variable property solution

will be less than the constant property solution. Considering the axial variation of
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thermal conductivity which is plotted in Figure 4.53, it is possible to say that axial
conductive flux of variable property solution will also be reduced as fluid proceed
in to downstream. This difference basically results from dimensionless
conductivity values which are less than 1. In fluid cooling the axial conductive
flux is assisting the axial convective flux as mentioned earlier. For this reason the

reduced thermal conductivity will reduce this assistance.
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Figure 4.53 Variation of dimensionless thermal conductivity on axial position

(Kn=0.01, Pe=1, Br=0.001)

4.2.1.2 The Effect of Viscosity Variation

The variation of dimensionless viscosity with vertical position is plotted in Figure
4.54. Moreover, the variation of dimensionless viscosity with axial position is

given in Figure 4.55.
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crossection (Kn=0.01, Pe=1, Br=0.001)

When both Figure 4.54 and Figure 4.55 considered together, it can be seen that
viscosity values are both less than 1 in axial and vertical directions. However, the
viscosity is increasing in vertical direction while it decreases in the downstream
direction. This reduced viscosity values will yield, lower viscous dissipation
which will results in reduced viscous dissipation. The reduced viscous dissipation
causes a later development of flow. Additionally, the vertical variation of
viscosity will cause a distortion in axial velocity profile. For the cooling case,
vertical variation of viscosity also induces a vertical velocity which increases the
transverse convection. However the effect of viscosity variation is less significant

on heat transfer and temperature profile.
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4.2.2 Fluid Heating Case

For the fluid heating case in which fluid is heated by the wall, and the thermal
conductivity and viscosity increase as the fluid proceeds in the channel. The axial
conductive flux will be negative while vertical conductive flux is positive. On the
other hand axial convective flux will be negative and vertical convective flux will
be positive. Since axial convective flux and conductive flux are opposite signed,
the increase in thermal conductivity will reduce the effect of convective heat
transfer. Additionally with increasing Péclet number the magnitudes will be
reduced and the effect of conductive heat flux will be reduced. Similarly the effect
of viscous heating will be decreased. Due to the decreased significance of viscous
dissipation, heating of the fluid and the thermal development will be retarded. As

a result of retarded heating the gradients will be lower and the conductive flux

155



will be lowered for variable property solution. Likewise, the decrease in
Brinkman number will also retard the thermal development of flow and reduce the
heat transfer for variable property solution.

4.2.2.1 The Effect of Thermal Conductivity Variation

Variation of thermal conductivity in fluid heating case can be seen in Figure 4.56.
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Figure 4.56 Variation of dimensionless thermal conductivity on vertical axis at

an arbitrary crossection (Kn=0.01, Pe=1, Br=0.001)

As it can be seen in the plot, the dimensionless thermal conductivity values are
higher than 1. The values are decreasing with positive vertical position. Both
temperature and thermal conductivity gradients will be negative in positive y

direction while these terms will be positive in axial direction. Due to the
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dimensionless thermal conductivity values, it can be said that the conductive flux
is higher than constant property solution. However, the negative axial conductive
flux will have a counteracting effect on overall heat transfer. The axial variation
of thermal conductivity is given in Figure 4.57. An as can be seen thermal
conductivity is increasing with axial position. Therefore the axial conductive flux

will be increased with axial position.
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Figure 4.57 Variation of dimensionless thermal conductivity on axial position
(Kn=0.01, Pe=1, Br=0.001)
4.2.2.2 The Effect of Viscosity Variation
The variation of dimensionless viscosity with vertical position is plotted in Figure

4.58 for fluid heating case. Moreover, the variation of dimensionless viscosity

with axial position is given in Figure 4.59.
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Since all of the viscosity values are higher than 1, this will increase the effect of
viscous dissipation. Increased viscous heating will increase the thermal
development rate and heating of the fluid. The increase in viscous dissipation will
decrease the difference between constant and variable property solutions by
reducing the conduction resistance of fluid. Moreover, decreasing viscosity in
vertical direction creates an induced vertical velocity component in negative

vertical direction. This induced velocity will reduce the transverse convection.
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4.2.3 Effect of Knudsen number

With increased Knudsen numbers, the slip velocity and the temperature jump at
wall boundaries will be increased. Due to the increase in rarefaction effect, both
temperature and velocity gradients will be reduced. This will cause a decrease in
viscous heat dissipation, conductive and convective heat transfer. Since the
gradients will reduce with increasing rarefaction, the property variation effects
will be less significant. Therefore, for fluid cooling case, the difference between
constant and variable heat transfer coefficients will be decreasing with increasing

rarefaction. However, the difference will be increased for the fluid heating case.
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4.2.4 Effect of Péclet number

Péclet number is basically related with the significance of conductive terms and
viscous dissipation terms. Increasing Péclet number will reduce the significance
of conducive and viscous dissipation terms. The Péclet number is a function of
Reynolds number as given in Equation (4.5) and increases only with increasing
Reynolds number. The Reynolds increase will reduce the effect of viscous
dissipation which causes a delay in the thermal development. Due to the reduced
effect of viscous dissipation together with the viscosity and thermal conductivity
variation, flow will be developed more slowly for the variable property solution.
As a result with increasing Péclet number, the shift in local heat transfer
coefficients and Nusselt values will be increased. This increase in shift results
from, decreased induced velocity due to decreased conductive flux and viscous

dissipation.

4.2.5 Effect of Brinkman number

This dimensionless group defined in Equation (4.4) is only related with the
significance of viscous dissipation terms as can be seen from Equation (4.3).
Increasing Brinkman number in both heating and cooling flow conditions will
reduce the entrance length by decreasing the conduction resistance of the fluid
[11]. As a result of increased conductive flux, the entrance length will be reduced.
Additionally the significance of Brinkman number will decrease, with increasing

Reynolds and Péclet, due to increased channel dimension.

4.3 Dimensionless Groups Related with Typical Applications

In many analyses in the literature, often arbitrary and unrealistic parameters are

used to observe the effects of viscous dissipation, axial conduction and
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rarefaction. Thus Knudsen, Brinkman and Péclet numbers used in such analyses

are rarely encountered in real cases.

The Knudsen numbers used in current the analyses are in the range 0.01 and 0.1.
These are theoretically in the slip flow range, however, this Knudsen numbered
flows of air will have a characteristic dimension Dy. in the range 6.8um and
0.68um meters because the mean free path of air in ambient pressure is 68nm.
Even tough these dimensions are smaller than conventional micro channels in heat

sinks, they are theoretically applicable.

As an example, an electronic cooling application with micro-heat sink can be
considered. In this case the temperature difference can not be higher than 60° C,
due to the limits of operation. Moreover, the flow speed of a commercial axial fan
that can be used in an electronics cooling application will be in the range of 20
m/s. Also one other constraint for the flow speed is the incompressibility
assumption. Therefore the flow speed can not exceed 0.1 Mach for ambient

pressure and temperature. Mach = 0.1 corresponds to 34 m/s approximately.
Regarding the hydraulic diameter, temperature difference and flow speed given
here, it is possible to calculate Reynolds, Brinkman and Péclet numbers by using

the thermophysical properties of air [55].

The thermophysical properties of air is given below for ambient temperature 296

K,

1 =18.31.10"kg / sm 4.7

p =1.19226kg I m’ (4.8)
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k = 0.025862W / mK (4.9)

Pr=0.7127 (4.10)

6.8.10°m< D, <0.68.10°m 4.11)

Here

Re = PY=Ds 4.12)
U

The Reynolds number can be expressed in terms of inlet velocity as follows,

0.04427U_, <Re<0.4427.U (4.13)

For the average velocity of 25 m/s the Reynolds number values will be,

[.1<Re<11 (4.14)

Since Péclet number is product of Reynolds and Prandtl numbers, it will be in the

range

0.789 < Pe <7.89 (4.15)

The upper limit for Péclet number under incompressible fluid assumption and the

Knudsen range subject to discussion can be expressed as,

Pe <0.31551-34 (4.16)
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Pe <10 4.17)

Additionally for the given conditions, the realistic Brinkman values can be

calculated as follows, by using the thermophysical properties given above,

2
Br= % (4.18)

6772
< 18.31-10°U 2

r<— — (4.19)
0.025862 - 60

Here maximum inlet velocity should be less than 0.1 Mach which is equal to 34

m/s approximately. For this reason upper limit of Brinkman number will be,
Br<0.01 (4.20)
In the analyses some of the Péclet and Brinkman values are taken beyond these

limits to show the effect of these numbers on heat transfer characteristics.

Additionally, these numbers are chosen to simulate the extreme conditions
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

Effect of variable thermal conductivity and viscosity in single phase flow in
microchannels with a constant wall temperature boundary condition is
investigated in this study. Microchannel dimensions are chosen to simulate the
slip flow regime for air. For this purpose, two-dimensional parallel plate geometry
is analyzed. Throughout the analyses, flow is assumed to be laminar and
incompressible, while both viscosity and thermal conductivity are assumed to be
functions of temperature only. Variation of density and specific heat with
temperature is not taken into account in the study. Numerical analyses are
performed for variable thermal conductivity and viscosity as well as constant

thermal conductivity and viscosity, to be able to understand the difference.

Simultaneously developing flow between parallel plates is investigated
numerically by solving pressure and velocity in a coupled manner. Numerical
solutions are performed by using finite difference method, due to the simplicity of
the geometry. Since our main area of interest is slip flow regime, classical Navier-
Stokes equations are solved by imposing slip velocity boundary condition for
defining the flow field. Similarly, energy equation is solved by imposing
temperature jump boundary condition for defining the temperature field. Besides
the pressure velocity coupling, momentum and energy equations are also solved in
a coupled manner to be able to take variable thermophysical property effects into

account.
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Both axial conduction and all terms of viscous dissipation are taken into account
while solving the energy equation. The numerical solutions are performed by
using the computer code written in MATLAB. Momentum and energy equations
are solved in transient form for convenience. The Poisson equation is solved
implicitly in each time step to define the pressure field, while all other variables
are solved explicitly. The results obtained for velocity field are compared with the
analytical solutions, while temperature field is verified by using the analytically

calculated Nusselt values for simple cases.

In the analyses, dimensionless variables are varied to be able to observe the
effects of viscous dissipation, rarefaction, geometry and axial conduction. The
effect of rarefaction is represented non-dimensionally by Knudsen number. The
relative significance of viscous dissipation and axial conduction are non-
dimensionally represented by Brinkman and Péclet numbers respectively. The

non-dimensional parameters used in the analyses are as follows.

- Knudsen numbers: 0.01, 0.02, 0.04, 0.06, 0.08, 0.1
- Brinkman numbers: 0.001, 0.01, 0.1, -0.001, -0.01, -0.1

- Péclet numbers: 1 and 3.57

Since working fluid is air, Prandtl number can not be changed arbitrarily, for this
reason Péclet number is varied with Reynolds number. As stated in the previous
parts, to be able to non-dimensionalize the variation of viscosity and thermal
conductivity with temperature, dimensional inlet and wall temperature values are
used. Therefore, for the fluid heating case where Brinkman numbers are negative,
wall temperature is taken as 296 K while inlet temperature taken as 394 K.
Likewise for the fluid cooling case, inlet temperature is taken as 444 K. Main
point of interest of the study is the effect of variable viscosity and thermal
conductivity on heat transfer. The conclusions obtained from both constant and

variable property solutions, can be summarized as follows,
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As a result of increasing rarefaction, both slip velocity and temperature
jump at the wall increases. Due to increased temperature jump and slip
velocity, total heat transfer decreases with increasing rarefaction.

When Nusselt values are plotted against axial position, it is possible to see
the jump in Nusselt values for fluid cooling case, resulting from viscous
heat dissipation.

Similarly, Nusselt plots against axial position have a singular point for the
fluid heating case which stems from viscous heating.

This jump and singularity point moves toward downstream with increasing
rarefaction, since the effect of viscous dissipation is reduced with
increased Knudsen number.

Increasing positive Brinkman number shifts the jump point position
towards upstream while decreasing negative Brinkman number causes a
shift in position of singular point towards upstream.

Constant property solutions converge to the same Nusselt value for fully
developed flow regardless of Brinkman number.

Channel averaged Nusselt values increase with decreasing Knudsen and
increasing positive Brinkman numbers. As stated above, total heat transfer
will be increased with decreasing rarefaction. Moreover, the channel
averaged Nusselt values will be increased with increasing viscous
dissipation as a result of early jump in Nusselt values.

Channel averaged Nusselt values for positive Brinkman numbers, reduce
with increasing Péclet number, because of increased entrance length and
delayed jump in Nusselt values.

The difference between constant and variable property solutions decreases
with increasing rarefaction for the fluid cooling case.

The effect of property variation is more emphasized with increasing
rarefaction in fluid heating case. Since conductive heat transfer is acting in
opposite direction with the convective one in this case, the effect of

variable properties become more significant when rarefaction is increased.
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- Decreasing negative Brinkman number will reduce the property variation
effect, due to increased viscous heating. As stated before, increasing
viscous heating increases the conductive heat transfer due to increased
thermal conductivity. The effect of increased viscosity will compensate the
effect of increased thermal conductivity on heat transfer.

- The difference between constant and variable property solutions are
increased with increasing Péclet number except for high Knudsen and low
negative Brinkman numbers. On the contrary the difference between
constant property and variable property solutions are reduced with
increasing Péclet number with for high Knudsen numbers, where
Brinkman number is -0.001. This phenomenon is thought to be a result of
adverse effect of increased Péclet and Knudsen number on viscous
heating.

- The difference between variable and constant property solutions is very
little in the fully developed region for both heating and cooling processes.
Consequently it is possible to say that, property variation effect is
negligible for fully developed flows.

- Effect of property variation is less severe for the flow field than the

temperature field.

Air is one of the most common working fluids in single phase heat transfer
applications. The temperature differences used in these analyses are higher
than the limits of electronics cooling applications, however, these differences
can be encountered in different micro applications, such as micro reactors and
micro fabrication. It is possible to see from the results that the property
variation effect is not substantial for the working fluid and flow conditions
that are subjected to investigation, though these results may be used as a guide

for validation of the constant property assumptions in slip flow regime.
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With the light of the information included in this study it is possible to decide
upon the severity of property variation in air flow through microchannels,
since it is feasible to make constant property solutions when property variation
effect is not significant. This will create an advantage when computation times
and complexity of the solution algorithm is considered. It is possible to say
that constant property solutions will yield satisfactory results for long channels
in which entrance length is small compared to the overall length. Moreover,
for shorter channels, which has an overall length comparable with the entrance
length for the defined flow conditions, the property variation effect should not
be disregarded, especially for low Knudsen numbers. However, constant
property assumption may yield satisfactory results for high Knudsen
numbered channels. Another important point is the effect of viscous
dissipation; the viscous dissipation terms should be included while making
variable property solutions, because the effect of viscous heating on property

variation is non-negligible and not easily predictable.

Unfortunately variable property effects of air in the slip flow regime are not
commonly investigated. For these reasons, comparison of the obtained results
with the available literature is limited. However, when obtained results are
compared with the variable property solutions of liquid flow in microchannels;
it is possible to say that, property variation effect is less significant for the
gases. Additionally, the effect of variation in thermal conductivity and
viscosity on heat transfer and fluid flow are not contradicting with the
available literature in terms of variation of Nusselt values. Furthermore,
various studies are available in the literature for the comparison of constant
property results. The results are in good agreement with the literature for

constant property solutions.

It should be noted that obtaining variable property solutions for different

geometry and working fluid combinations for different temperature ranges
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would be tedious and time consuming. For this reason, such studies are limited

with the flow conditions they are solved for.

One other aspect of investigation of single phase flow in microchannels may
be the effect of geometry, which requires three dimensional numerical
solutions. Moreover, the variation of density and specific heat with
temperature may be taken into account in the numerical solutions. The effect
of compressibility should also be discussed in the slip flow regime in
combination with the previously discussed issues. Furthermore, the moving
boundaries can be imposed to the slip flow analyses and another way of
expanding this study may be the inclusion of different type of wall boundaries,

such as heat pulse and sinusoidal temperature profile.
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APPENDIX A

GRAPHS

The figures which are not presented in Chapter 4 is given here.
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Figure A.1 Variation of dimensionless y-velocity with dimensionless width of the

channel (Kn=0.01, Br = 0.001, Pe=1)
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Figure A.24 Variation of dimensionless x-velocity with dimensionless width of

the channel (Kn=0.04, Br = 0.001, Pe=1)
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Figure A.25 Variation of dimensionless x-velocity with dimensionless width of
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Figure A.28 Variation of dimensionless temperature with dimensionless width of

the channel at crossection x*=4 for various positive Brinkman numbers (Kn=0.04,

Pe=1)
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Figure A.29 Variation of dimensionless temperature with dimensionless width of
the channel at crossection x*=8 for various positive Brinkman numbers (Kn=0.04,

Pe=1)

193



0.09 0.09

& 0.08 - 1 0.08
(]
5 0.07 - 1 0.07
s
g 0.06 | 1 0.06
E, 0.05 1 {005
ﬁ 0.04 i 0.04
5 0.03 1 0.03
[7]
E’ 0.02 1 {002
& 0.01 1 0.01

"’f \

0 : ‘ ‘ 0
0 05 1 15 2

Dimensionless Width (y*)

——Kn0.04 Br 0.001-cp-x*=12 ——Kn0.04 Br 0.01-cp-x*=12
Kn0.04 Br 0.1-cp-x*=12 - = - Kn0.04 Br 0.001-vp-x*=12
- - - Kn0.04 Br 0.01-vp-x*=12 Kn0.04 Br 0.1-vp-x*=12

Figure A.30 Variation of dimensionless temperature with dimensionless width of
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Figure A.34 Variation of dimensionless x-velocity with dimensionless width of

the channel (Kn=0.06, Br = 0.001, Pe=1)
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Figure A.37 Variation of dimensionless temperature with dimensionless width of
the channel at crossection x*=0.8 for various positive Brinkman numbers
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201



1.4

- 0.6

1 1.5

Dimensionless Width (y*)

5

2

‘©

<}

°

% 0.8

3

2

o 0.6

c

0

2044

@

£

A 0.2

0 .
0 0.5
——Kn0.08 Br 0.1-vp-x*=0.8
Kn0.08 Br 0.1-cp-x*=8
- - - Kn0.08 Br 0.1-cp-x*=0.8
Kn0.08 Br 0.1-vp-x*=8

——Kn0.08 Br 0.1-cp-x*=4
——Kn0.08 Br 0.1-cp-x*=12
- - - Kn0.08 Br 0.1-vp-x*=4
- - = Kn0.08 Br 0.1-vp-x*=12
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Figure A.48 Variation of dimensionless temperature with dimensionless width of
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Figure A.60 Variation of dimensionless temperature with dimensionless width of
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Figure A.64 Variation of dimensionless x-velocity with dimensionless width of

the channel (Kn=0.01, Br =-0.001, Pe=1)
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Figure A.74 Variation of dimensionless x-velocity with dimensionless width of

the channel (Kn=0.02, Br =-0.001, Pe=1)
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Figure A.75 Variation of dimensionless x-velocity with dimensionless width of

the channel (Kn=0.02, Br =-0.01, Pe=1)

216



Dimensionless x-Velocity (u*)

0 T T T 0
0 0.5 1 1.5 2

Dimensionless Width (y*)

——Kn0.02 Br -0.1-vp-x*=0.8 ——Kn0.02 Br -0.1-cp-x*=4
Kn0.02 Br -0.1-cp-x*=8 ——Kn0.02 Br -0.1-cp-x*=12

- = Kn0.02 Br -0.1-cp-x*=0.8 = = = Kn0.02 Br -0.1-vp-x"=4
Kn0.02 Br -0.1-vp-x*=8 - = = Kn0.02 Br -0.1-vp-x*=12

Figure A.76 Variation of dimensionless x-velocity with dimensionless width of

the channel (Kn=0.02, Br =-0.1, Pe=1)

0.7 0.7

Dimensionless Temperature (8)

0 \ T \ 0
0 0.5 1 1.5 2

Dimensionless Width (y*)

——Kn0.02 Br -0.001-cp-x*=0.8 ——Kn0.02 Br -0.01-cp-x*=0.8
Kn0.02 Br -0.1-cp-x*=0.8 - - = Kn0.02 Br -0.001-vp-x*=0.8
- - = Kn0.02 Br -0.01-vp-x*=0.8 Kn0.02 Br -0.1-vp-x*=0.8

Figure A.77 Variation of dimensionless temperature with dimensionless width of
the channel at crossection x*=0.8 for various negative Brinkman numbers

(Kn=0.02, Pe=1)

217



0.25 0.25

S 0.2 H0.2
g
2 0151 L 0.15
]
o
E 011 0.1
[
@
@ 0.05 - + 0.05
s |
o T L f e e m s s LIS
D 0 s : : : )
g 0.5 1 15 p
& -0.05 - T -0.05
-0.1 -0.1
Dimensionless Width (y*)
——Kn0.02 Br-0.001-cp-x*=4 ~ ——Kn0.02 Br -0.01-cp-x*=4
Kn0.02 Br -0.1-cp-x*=4 - - - Kn0.02 Br -0.001-vp-x*=4
- - - Kn0.02 Br-0.01-vp-x*=4 Kn0.02 Br -0.1-vp-x*=4

Figure A.78 Variation of dimensionless temperature with dimensionless width of
the channel at crossection x*=4 for various negative Brinkman numbers

(Kn=0.02, Pe=1)

0.1 0.1

~. 0.08 - +0.08

e

o 0.06 - +0.06

2

& 0.04 +0.04

[}

g 0021 1 0.02

@

= 0 T T u ———=0

[

8 002 05 1 15 2 oo

c

g _0_04, T -0.04

g

g -0.06 +-0.06

8 .0.08 T -0.08
-0.1 -0.1

Dimensionless Width (y*)

——Kno0.02 Br -0.001-cp-x*=8 ——Kn0.02 Br -0.01-cp-x*=8
Kn0.02 Br -0.1-cp-x*=8 - - - Kn0.02 Br -0.001-vp-x*=8
- - - Kn0.02 Br -0.01-vp-x*=8 Kn0.02 Br -0.1-vp-x*=8

Figure A.79 Variation of dimensionless temperature with dimensionless width of
the channel at crossection x*=8 for various negative Brinkman numbers

(Kn=0.02, Pe=1)

218



0.09 0.09
& 0.07 A + 0.07
Q i 4
5 0.05 0.05
©
% 0.03 4 + 0.03
o
£ 0011 + 0.01
[
1]
8 001 0.5 1 15 2 0.01
S -0.03 4 -0.03
2
@ -0.05 -+ -0.05
E
Q8 .0.07 A +-0.07

-0.09 -0.09

Dimensionless Width (y*)
——Kn0.02 Br -0.001-cp-x*=12 ——Kn0.02 Br -0.01-cp-x*=12
Kn0.02 Br -0.1-cp-x*=12 - - - Kn0.02 Br -0.001-vp-x*=12
= = =Kn0.02 Br -0.01-vp-x*=12 Kn0.02 Br -0.1-vp-x*=12
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Figure A.86 Variation of dimensionless x-velocity with dimensionless width of
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Figure A.106 Variation of dimensionless x-velocity with dimensionless width of
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Figure A.117 Variation of dimensionless temperature with dimensionless width

of the channel at crossection x*=0.8 for various negative Brinkman numbers

(Kn=0.1, Pe=1)
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Figure A.118 Variation of dimensionless temperature with dimensionless width

of the channel at crossection x*=4 for various negative Brinkman numbers

(Kn=0.1, Pe=1)
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Figure A.119 Variation of dimensionless temperature with dimensionless width

of the channel at crossection x*=8 for various negative Brinkman numbers

(Kn=0.1, Pe=1)
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Figure A.120 Variation of dimensionless temperature with dimensionless width
of the channel at crossection x*=12 for various negative Brinkman numbers

(Kn=0.1, Pe=1)
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Figure A.121 Variation of Nusselt number with axial position for various positive
Brinkman numbers, obtained from constant and variable property solutions

(Kn=0.02, Pe=1)
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Figure A.122 Variation of percent difference in Nusselt numbers between
constant and variable property solutions with axial position for various positive

Brinkman numbers (Kn=0.02, Pe=1)
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Figure A.123 Variation of Nusselt number with axial position for various positive
Brinkman numbers, obtained from constant and variable property solutions

(Kn=0.06, Pe=1)
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Figure A.124 Variation of percent difference in Nusselt numbers between
constant and variable property solutions with axial position for various positive

Brinkman numbers (Kn=0.06, Pe=1)
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Figure A.125 Variation of Nusselt number with axial position for various positive
Brinkman numbers, obtained from constant and variable property solutions

(Kn=0.08, Pe=1)
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Figure A.126 Variation of percent difference in Nusselt numbers between
constant and variable property solutions with axial position for various positive

Brinkman numbers (Kn=0.08, Pe=1)
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Figure A.127 Variation of Nusselt number with axial position for various
negative Brinkman numbers, obtained from constant and variable property

solutions (Kn=0.02, Pe=1)
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Figure A.128 Variation of Nusselt number with axial position for various
negative Brinkman numbers, obtained from constant and variable property

solutions (Kn=0.06, Pe=1)
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Figure A.129 Variation of Nusselt number with axial position for various
negative Brinkman numbers, obtained from constant and variable property

solutions (Kn=0.08, Pe=1)
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