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ABSTRACT 

 

 

ANALYSIS OF SINGLE PHASE CONVECTIVE HEAT TRANSFER IN 
MICROCHANNELS WITH VARIABLE THERMAL CONDUCTIVITY 

AND VARIABLE VISCOSITY 
 

 

                            Gözükara, Arif Cem 

M.Sc. Department of Mechanical Engineering 

Supervisor: Asst. Prof. Dr. Almıla Güvenç Yazıcıoğlu 

Co-Supervisor:  Prof. Dr. Sadık Kakaç 

 

February 2010, 243 Pages 

 

 

In this study simultaneously developing single phase, laminar and incompressible 

flow in a micro gap between parallel plates is numerically analyzed by including 

the effect of variation in thermal conductivity and viscosity with temperature. 

Variable property solutions for continuity, momentum and energy equations are 

performed in a coupled manner, for air as a Newtonian fluid. In these analyses the 

rarefaction effect, which is important for the slip flow regime, is taken into 

account by imposing slip velocity and temperature jump boundary conditions to 

the wall boundaries. Mainly, the influence of viscous dissipation, axial 

conduction, geometric parameters and rarefaction on the property variation effect 

is aimed to be discussed in detail. Therefore, the effects of variable thermal 

conductivity and viscosity are investigated simultaneously with the effects of 

rarefaction, geometric parameters, viscous dissipation and axial conduction. The 

difference between constant and variable solutions in terms of heat transfer 

characteristics is related to the effects of viscous dissipation axial conduction and 

rarefaction. According to results, property variation is substantially effective in 



 

 v 

the entrance region where temperature and velocity gradients are high. On the 

other hand, property variation effects are not significant for fully developed air 

flows in microchannel. 

 

Keywords: Heat transfer, microchannel, thermal conductivity variation, viscosity 

variation, slip flow 
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ÖZ 
 

 

TEK FAZLI MİKROKANAL AKIŞINDA KONVEKSİYONEL ISI 
TRANSFERİNİN DEĞİŞKEN ISIL İLETKENLİK KATSAYISI VE 

DEĞİŞKEN VİSKOZİTE İLE İNCELENMESİ 
 

 

                            Gözükara, Arif Cem 

Yüksek Lisans Makine Mühendisliği 

Tez Yöneticisi: Yard. Doç. Dr. Almıla Güvenç Yazıcıoğlu 

Ortak Tez Yöneticisi: Prof. Dr. Sadık Kakaç 

 

Şubat 2010, 243 Sayfa 

 

 

Bu çalışmada hidrodinamik ve ısıl olarak gelişmekte olan, laminar, tek fazlı ve 

sıkıştırılamaz mikrokanal akışında değişken özniteliklerin etkisi incelenmiştir. 

Paralel plakalar arasındaki mikrokanallardaki akışın modellenmesinde sayısal 

yöntemlerden faydalanılmıştır. Kaygan akış rejiminin incelendiği çalışmada sabit 

duvar sıcaklığı sınır koşulu kullanılmıştır. Değişken özniteliklerin hesaba 

katılabilmesi amacıyla hareket ve enerji denklemleri birlikte çözülmüştür. 

Momentum ve enerji denklemlerinin birlikte çözümüne ek olarak, basınç ve hız 

değişkenlerinin de çözümü eşlenerek gerçekleştirilmiştir. Kaygan akış rejimi, 

duvar kayması ve sıcaklık sıçraması duvar sınır koşulları kullanılarak 

modellenmiştir. Seyrelme, sürtünme kaybı, eksen boyunca ısı iletiminin 

etkileriyle birlikte, değişken ısıl iletkenlik katsayısı ve viskozitenin akışkanın ısı 

transferi karakteristiğine etkileri detaylı olarak tartışılmıştır. Değişken ısıl 

iletkenlik katsayısı ve viskozitenin etkilerinin anlaşılabilmesi amacıyla hem 

değişken hem de sabit ısıl iletkenlik ve viskozite için çözümler 

gerçekleştirilmiştir. Elde edilen sonuçlar değerlendirildiğinde değişken ısıl 
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iletkenlik katsayısı ve viskozitenin giriş bölgesinde kayda değer bir farka sebep 

olduğu, fakat tam gelişmiş akış için sabit özniteliklerden ciddi bir fark 

göstermediği görülmüştür. 

 

Anahtar Kelimeler: Isı transferi, mikrokanal, değişken ısıl iletkenlik katsayısı, 

değişken viskozite, kaygan akış 
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NOMENCLATURE 

 
 
 
 
 
 
Br   Brinkman number, Br = µU / k (Ti-Tw) 

cp  constant pressure specific heat, J/kgK 

Dh  hydraulic diameter 

FM  tangential momentum accommodation factor 

FT  thermal accommodation factor 

H  half channel spacing 

h  convective heat transfer coefficient, W/m
2
K 

k  thermal conductivity, W/mK 

Kn  Knudsen number,  Kn = λ / L 

L  channel length, m  

Nu  Nusselt number 

P  pressure, Pa 

Pe  Péclet number, Pe = Re.Pr 

Pr  Prandtl number, Pr = µ cp / k 

Re  Reynolds number, Re = ρ U L / µ 

T  temperature, K 

u  velocity in axial direction, m/s 

us  slip velocity, m/s 

v  velocity in longitudinal direction 

x  axial coordinate axis 

y  vertical coordinate axis 
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vp  temperature variable thermophysical property  

cp  constant thermophysical  property 
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INTRODUCTION 

 
 

 

 

The need for maximizing the performance of micro mechanical systems and 

electronic components urges the minimization of dimensions. Minimized 

dimensions come along with a complex heat transfer and fluid flow problem 

within these devices and components. This newly introduced phenomenon is 

called “Microscale fluid flow and heat transfer” because of related dimensional 

magnitudes. It is important to point out that, fluid flow and heat transfer in 

microscale cannot be characterized by the macroscale approaches. For instance, 

the early transition from laminar to turbulent regime, friction factors a few times 

higher than expected, and higher heat transfer coefficients observed in the laminar 

rather than the turbulent regime, are some of the indications that conventional 

theories used in macroscale fluid flow and heat transfer become inadequate for 

modeling in microscale. An observation of the studies in the field and related 

reviews on the subject give the impression that every result obtained by the 

researchers was considered as surprising. Additionally, a small percentage of the 

results converge to a point where microflow is subjected to discussion. On the 

other hand, the miniaturization trend in manufacturing micro devices and 

electrical components increases every year. For a variety of fields in which these 

micro devices are used; such as, biomedical, micro fabrication, and optics, fluid 

flow and heat transfer need to be understood and modeled with an acceptable 

reliability. This urgent need for comprehending the mechanisms behind heat 

transfer and fluid flow phenomena in microscale canalized the researchers to the 
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issue. Since the fluid flow and heat transfer characteristics of microflow cannot be 

modeled with the conventional theoretical models, some new methods have been 

introduced by different researchers. In general, some extensions are made to 

conventional methods by including the scaling effects that become important for 

modeling microflows. On the other hand, some researchers prefer using models 

that are used for molecular gas flow, which are probabilistic and deterministic 

methods. The major effects that become important for microscale flow and 

usually negligible for macroscale flow can be listed as follows: 

 

- Surface roughness effect 

- Electrokinetic forces between fluid and wall boundaries-for liquids 

- Rarefaction effects-for gases 

 

By considering the dominance of these effects, it is possible to make a distinction 

between micro and macro flows. Unfortunately there is no existing common 

definition for "micro" scale. Therefore it is appropriate to follow the dimensional 

scale offered by Kandlikar and Grande [1] for classifying channel flows in micro 

scale. 

 

1 µm   < CD < 10 µm  : Transitional Microchannels 

10 µm   < CD < 200 µm  : Microchannels 

200 µm < CD < 3 mm  : Minichannels 

3 mm   < CD    : Conventional passages 

 

CD represents the minimum dimension of the microchannel. This classification is 

used for gaseous flows in channels, which is the main point of interest in this 

study. Numerous extensive studies in the field of micro scale fluid flow and heat 

transfer continue to move towards converging to common results as the time 

passes.  
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1.1 Modeling 

 

As stated by Gad-el-Hak [2] and as shown in Figure 1.1, the flow field can be 

modeled in two different ways. In the first one the flow field is treated as a 

collection of particles and this approach is named as molecular approach. The 

second one is continuum approach, in which the flow field is assumed to be 

infinitely divisible and continuous [2]. Macro scale flow problems are associated 

with the continuum model. In this model, the flow variables such as velocity, 

pressure, and density are defined for every point in space and time [2].  

 

 

 

 

Figure 1.1 Molecular and continuum flow models [2] 

 
 
Using the conservation principles, continuum can be modeled in terms of mass, 

momentum, and energy. Partial differential equations based on mass and 
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momentum conservation are named as Navier-Stokes equations. Likewise the 

partial differential form of the energy conservation equation is named as energy 

equation. The ease of handling these equations mathematically makes them a 

preferable tool for modeling flow fields, as long as the continuum approach is 

applicable. On the other hand, these equations disregard the molecular nature of 

gases and it is not possible to model dilute and rarefied gas flows, which are far 

from being a continuous media. Additionally, it should be noted here that the 

classical no-slip boundary condition between fluid-solid interfaces is likely to fail 

before the flow becomes free-molecular. Since the area of interest in this study is 

gases, discussions will be based on gaseous flows. 

 

To make a further distinction between continuous media and free-molecular flow, 

another parameter, "mean free path” is needed to be introduced. Mean free path 

represents the average distance traveled by gas molecules before they collide with 

each other.  However, a distinction cannot be made for the flow by just 

considering the mean free path. For this purpose this mean free path should be 

compared with the characteristic dimension of the flow. Continuum model can be 

valid when mean free path of the gas is much smaller than the characteristic 

dimension of the flow. The ratio of mean free path and characteristic dimension of 

the flow is defined as Knudsen number characterizing the flow. 

 

hD
Kn

λ
=                (1.1) 

 
Where λ is the mean free path and Dh is the characteristic dimension of the flow. 

Furthermore a classification of flow regimes based on Knudsen number is 

available in various resources. A scale proposed by Gad-el-Hak [3] is given in 

Figure 1.2. 
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Figure 1. 2 Knudsen number regimes [3] 

 

 

The region in which Knudsen number varies between 0.1 and 0.001 is named as 

slip-flow regime in Figure 1.2. The range of Knudsen number will be within these 

limits throughout this study, and therefore the area of interest will be the slip-flow 

regime. In this flow regime, the collisions between wall and fluid particles are not 

as frequent as the collisions taking place in continuum flow. The amount of 

collisions in slip-flow regime will not be enough to establish a thermodynamic 

equilibrium between wall and fluid particles. Thus, no-slip and no-temperature 

jump boundary conditions that are used in continuum regime, will no longer be 

valid in the absence of thermodynamic equilibrium. 

 

The reflection of fluid molecules from the wall after a collision may occur in two 

different ways. The first one is specular reflection, in which fluid molecules 

conserve their tangential momentum. The second one is diffuse reflection, which 

is completely random and uncorrelated. In the second type, for balancing the 

tangential momentum, a finite slip velocity will exist at the wall. Expression for 
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the slip velocity for Cartesian coordinates is given below. Background of the 

subject is discussed in detail by Larrode et al. [4]. 
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The σv is tangential momentum accommodation factor, λ is mean free path of the 

fluid, µ is dynamic viscosity and ρ is the density of the fluid in Equation 1.2. This 

equation is derived by Maxwell [5] for an isothermal wall based on the kinetic 

theory. The tangential momentum accommodation coefficient basically refers to 

the fraction of diffusely reflected molecules. This coefficient varies from 0 to 1 

for different solid-fluid combinations. This experimentally determined coefficient 

is usually taken as 1 for most of the applications [6]. Additionally the second term 

in the equation is named as thermal creep, which represents the portion of slip 

velocity in the direction opposite to the tangential heat flux. After non-

dimensionalization is applied to the slip velocity equation, the thermal creep term 

becomes a function of the second order of Knudsen number, which makes this 

term insignificant for small Knudsen numbers. Detailed explanation and 

formulation is given by Gad-el Hak [2]. A similar expression for the temperature 

jump boundary condition at the wall is proposed by von Smoluchowski [7]. 
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In Equation 1.3, σv is the thermal accommodation coefficient, the ratio of energy 

accommodated by the diffusely reflected molecules. This coefficient varies 

between 0 and 1. It is also determined experimentally and the value depends on 

the solid-fluid combination, surface roughness, and temperature difference at the 
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fluid-solid interface. According to various sources (e.g. [8] and [9]), thermal 

accommodation coefficients are taken as unity in most analyses. 

 

1.2 Scope of the study 

 

In addition to those mentioned in the previous section, there are some other effects 

usually neglected in the macroscale flows that may become significant for the 

microscale. One of these is the effect of axial heat conduction in the fluid, which 

is generally insignificant for the macro scale flows where effect of conductive 

heat transfer is relatively high. Since the Reynolds and Péclet numbers become 

smaller, axial conduction is significant in micro flows. Another term that is 

usually neglected in macro-flow modeling is the viscous dissipation. According to 

Shah and London [10], one of the cases where viscous dissipation becomes 

significant is the microscale duct flow with low flow velocities and low 

temperature differences at the wall-fluid interface. At this point Brinkman number 

needs to be introduced, which is a measure of the relative significance of the 

viscous dissipation in a flow [11]. Additionally Brinkman number can be related 

with the temperature-variable property effects on convective heat transfer [12]. 

The dimensionless numbers mentioned here will be discussed in detail in the 

following Chapters. 

 

In this study, the effects of temperature-variable viscosity and thermal 

conductivity will be investigated in two-dimensional rarefied microchannel flows. 

Therefore momentum equations will be solved fully coupled with the energy 

equation to include the effects of thermal conductivity and viscosity variation in 

the flow field and temperature field calculations. Additionally, axial conduction 

and viscous dissipation terms will be included in the numerical model, since these 

terms become significant for microscale heat transfer. Velocity and pressure 

variables will be solved in coupled manner, since flow is simultaneously 
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developing. An explicit method is preferred in numerical solution for being simple 

and not very costly in terms of computational load. 

 

In Chapter 2, previous studies related with microchannels will be summarized to 

comprehensively outline the issue. Analytical, numerical, and experimental 

studies will be discussed. The studies related to property variation microchannel 

flows available in the literature, will also be discussed in this part. Chapter 3 is 

dedicated to the formulation and numerical solution methods for parallel plate 

microchannels for both constant and variable thermophysical properties. Detailed 

explanation for the formulation and numerical modeling will be presented in this 

chapter. The results will include two different flow conditions, which are fluid 

heating and cooling. In Chapter 4 the obtained results for both flow conditions and 

the effects of rarefaction, viscous heating, and axial conduction on temperature-

variable properties, will be discussed in detail. Discussions will be made for both 

constant and variable property solutions in combination with the related 

parameters. Finally in Chapter 5, the study will be summarized and concluded 

with final remarks. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 9 

CHAPTER 2 
 
 
 
 

LITERATURE SURVEY 

 
 
 
 
 

Research on heat transfer in microchannels and microtubes is mainly driven by 

the developments in the electronics technology. The need for maximizing the 

performance of electronic components urges the minimization of dimensions. 

Minimized dimensions come along with a complex heat transfer problem. This 

newly introduced heat transfer phenomenon is called “microscale heat transfer” 

because of related dimensional magnitudes. It is important to point out that, fluid 

flow and heat transfer in microscale may not be characterized by the macroscale 

approach. The urgent need for comprehending the mechanisms behind the heat 

transfer and fluid flow behavior in microscale has forced researchers to focus on 

the issue. In this Chapter, mainly, previous studies related with microscale fluid 

flow and heat transfer will be reviewed. Available studies about variable property 

solution of fluid flow and heat transfer problems in microscale will also be 

discussed. It is possible to divide this chapter into four subsections regarding the 

subjects reviewed. In the first part, fundamental studies about microscale flow and 

property variation in macroscale will be reviewed briefly. In the second part, 

available studies about temperature variable property solutions in microscale will 

be discussed. The third part will be dedicated to studies related with the effects of 

viscous dissipation and rarefaction. In the final part studies combining 

experimental and numerical work about microscale flow will be discussed. 

 

One of the well known earliest studies related to microchannels was conducted by 

Tuckerman and Pease [13] who investigated the convective cooling of electronic 
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components by using microchannel heat sinks. A significant result that can be 

driven out from their study is the observation of higher heat transfer coefficients 

in laminar regime rather than turbulent. This result increased the interest for the 

investigation of laminar convection in microchannels. In the middle of the 1990’s 

Peng and Peterson [14] published the results of their experimental study about 

single phase convective heat transfer in microchannels. This study mainly focused 

on the classification of flow regimes in terms of Reynolds number and the 

investigation of the effect of geometry on fluid flow and heat transfer. It is stated 

that, laminar flow is observed for Reynolds numbers less than 400. In addition to 

these fundamental studies about microscale fluid flow and heat transfer, previous 

work on variable property solutions in both macro and microscale heat transfer 

problems should be mentioned. One of the earliest studies has been conducted by 

Deissler [15]. Fully developed laminar flow in tubes by considering the property 

variation along the radius was investigated in this study. A similar study was 

performed by Oskay and Kakaç [16] to examine the effect of viscosity variation 

with temperature in pipe flow.  

 

Various scientists have been involved with the property variation in macroscale 

heat transfer. It is possible to say that in macroscale, property variation is a well 

understood concept and methods and correlations have been developed to account 

for property variation such as the property ratio method. In recent years, with the 

increasing importance of microscale heat transfer, effect of property variation 

became a point of interest in this field. Li et al. [17] studied variable 

thermophysical property effect on a three dimensional microchannel model. A 

finite difference code utilizing Tri-Diagonal Matrix Algorithm was developed for 

solving temperature and velocity fields. In their study, hydrodynamically fully 

developed, thermally developing liquid flow was investigated by neglecting 

viscous dissipation effects. Average Nusselt numbers were taken as a reference 

for comparison of the results. When the results are examined, it is possible to see 
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that the variation in liquid thermophysical properties with temperature, 

significantly affects the flow and heat transfer.  

 

The effects of thermophysical property variation on heat transfer and fluid flow in 

microchannels has been comprehensively discussed by Gulhane and Mahulikar 

[18]. In this study, the researchers worked on a two-dimensional axisymmetrical 

numerical model. Two different cases were examined throughout the study, which 

are simultaneously developing flow and hydrodynamically fully developed, 

thermally developing pipe flow. In the modeling constant wall heat flux boundary 

condition is used with the laminar, incompressible flow assumptions. In addition 

to these assumptions, axisymmetric swirl terms in momentum equation, 

compressibility and viscous dissipation terms in energy equation are neglected. 

Variation of viscosity, density, specific heat, and thermal conductivity is taken as 

a function of temperature during the formulation. The role of each thermophysical 

property variation is discussed separately and in combination with each other for 

two different cases. The results of their study can be summarized in Figure 2.1. 

 

 

 

 

 

Figure 2.1 Effect of thermo physical property variation on flow and temperature 

field [18] 
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Another important study was performed by Peng et al. [12] who had investigated 

the variable property effect for hydrodynamically fully developed, thermally 

developing flow with a two dimensional model. In their model, Peng and his 

colleagues assumed that the flow is laminar and incompressible. Moreover, they 

assumed that specific heat of the fluid is constant. Viscosity and thermal 

conductivity are taken as single variable functions of temperature. In their 

mathematical formulation viscous dissipation terms in the energy equation are not 

neglected.  

 

Temperature dependent viscosity of liquid water is expressed by Peng et al. [12] 

as follows 
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In Equation (2.1) Tref is taken as 293 K, n 8.9, and B 4700. Similarly, the thermal 

conductivity of water is expressed as a cubic polynomial function of temperature, 

which is given as follows. 

 

2 3
0 1 2 3( )k T a a T a T a T= + + +                                               (2.2)

                 

Nusselt number increase and velocity profile change along the channel are 

discussed in detail. It is stated that the increase in Nusselt number resulting from 

variable property solution becomes significant for high heat flux values. 

Moreover, a formula is proposed for predicting Nusselt number obtained with the 

variable property solution. The formula presented is given below. 
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Another important research, closely related with the property variation in 

microchannels was conducted by Nonino et al. [19]. In their work Nonino and his 

colleagues investigated the effect of viscous dissipation and variable dynamic 

viscosity in microchannels with arbitrary cross-sections for simultaneously and 

thermally developing flows. They developed a finite element based numerical 

solver for solving Navier Stokes equations for three dimensional and 

axisymmetrical geometries. Constant wall temperature boundary condition was 

used in calculations. Dynamic viscosity variation with temperature was 

considered in a range, in which, the ratio of the viscosity value at the inlet 

temperature to the viscosity value at the wall temperature is between 2 and 0.5. 

The research focused on the variation of Nusselt number with viscosity variation 

and viscous dissipation. In addition to Nusselt number they also investigated 

pressure drop and friction coefficient variations with Brinkman number and 

viscosity variation.   
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Formerly a similar study was performed by Koo and Kleinstreuer [20]. They 

comprehensively investigated the significance of viscous dissipation in micro-

scale convective heat transfer, in addition to fluid property, geometrical, and flow 

regime effects. Their numerical model was capable of solving hydrodynamically 

fully developed and thermally developing incompressible laminar flow. Main 

point of discussion in their research was change in the significance of viscous 

dissipation with channel size, aspect ratio, Reynolds numbers and viscosity 

variation. The results of this study point out that the variation of viscosity has 

stronger effects on viscous dissipation for comparatively small channel size. In 

addition to this, they proposed that viscous dissipation strongly affects the friction 

factor calculations and should be accounted for in micro flows.  

 

Temperature dependent fluid properties in micro flows was investigated by 

Mahulikar et al. [21] by solving one dimensional numerical model for momentum 

and energy equations with variable thermophysical properties. They stated that it 

is possible to simulate the decrease in Nusselt number with increasing Reynolds 

number in microchannels with a one dimensional analysis by including the 

thermoproperty variation effect.. Based on this Herwig and Mahulikar [22] 

extended the scope of their investigation. In their work, the importance of variable 

property effects in micro-sized geometries was discussed by using an order of 

magnitude approach. Additionally numerical solutions were performed to 

visualize the effect of temperature variable thermophysical properties. There are 

four different models proposed in their study. The first is one is the constant 

property model, in which the property in consideration has a single value along 

the solution domain. The second is the quasi-constant properties model, in which 

the properties vary with the mean temperature of the fluid at a given axial 

position. The third model was named as weakly-variable property model. In this 

model, the property variation in radial/longitudinal direction is directly included 

and quasi-constant property model is used for the variation in axial direction. The 

last one is called as strongly-variable property model, which should be used when 
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property variations in both radial and axial directions is equally strong. It is stated 

that, for micro-sized geometries, axial temperature gradients are as large as the 

radial ones, so the fourth one is the most appropriate method for modeling 

property variation. The strongly-variable property model enforces the fully 

coupled solution of energy and momentum equations. The working fluid in their 

study was water and the variation of specific heat and density with temperature 

was negligible. Thus, only the variation of viscosity and thermal conductivity was 

accounted for. The authors solved laminar, incompressible, steady micro pipe 

flow by neglecting viscous dissipation, numerically. According to the results, 

Nusselt number differs up to %30 when property variation is included. This study 

is one of the most fundamental works that justifies the significance of variable 

property solution in microscale fluid flow heat transfer. 

 

El-Genk and Yang [23] numerically investigated the effects of viscous 

dissipation, slip wall boundary condition, and viscosity variation on pressure drop 

and friction factors in microchannel flow. In the study mainly, the effect of flow 

variables on fluid flow is discussed. However, energy equation is also solved for 

determining the effect of viscous dissipation and viscosity variation with 

temperature. Experimentally determined slip length values are used for imposing 

the slip wall boundary condition. Results of their study point out that it is 

important to include the effect of viscosity variation for accurately determining 

the friction factors in a thermally developing microchannel flow. A study related 

with the application was performed by Li et al. [24], about thermal property 

variations in rectangular microchannels. They proposed that conventional 

macroscale theories are capable of predicting the flow and heat transfer 

characteristics for the dimensions and Reynolds numbers used in their work. The 

hydraulic diameter of the channel used is 0.333 mm and Reynolds number 

changes between 101 and 1775. The results of their numerical work agree well 

with the Sieder and Tate correlation [25] and the results of experiments. 
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Unfortunately when Reynolds number range and dimensions are considered, the 

flow can be classified as a macro-sized flow. 

 

As is has been previously stated in the introduction, rarefaction is an important 

phenomenon for microscale flows. Wang and Yang [26]  investigated slip flow in 

microchannels by using lattice-Boltzmann method. The results of the study agree 

well with the results of modified Navier-Stokes solutions. Barron et al. [27] made 

an extension to the Graetz problem by including slip flow effects. Since viscous 

dissipation and axial conduction terms are neglected in the Graetz problem, they 

were neglected in their study as well. Some correlations relating Nusselt number 

with Graetz and Knudsen number were proposed in the study. A brief result that 

can be derived from the study is the increase of Nusselt number with increasing 

Knudsen number for a given Graetz number. Jeong and Jeong [28] investigated 

the effects of viscous dissipation and axial conduction in, hydrodynamically fully 

developed, thermally developing microscale flow analytically by using 

eigenfunction expansion. They worked on simple flow model in two dimensions 

for both constant wall heat flux and constant wall temperature cases. Considering 

their results, it is possible to say that Nusselt number decreases with increasing 

Knudsen and Brinkman numbers, while it increases with increasing Péclet 

number. 

 

Extended Graetz problem was also studied by Çetin et al. [29]. Eigenfunction 

expansion method was used for the analytical solution of the energy equation. The 

conclusion drawn from the study about the effects of Brinkman, Peclet and 

Knudsen number was same with the Jeong and Jeong's work. However in this 

study it was reported that thermal entrance length increases with decreasing Peclet 

number. An additional remark in this study is the reduction in the effect of 

Brinkman number on local Nusselt number with increasing rarefaction. A similar 

problem was also solved numerically by Çetin et al. later [30]. Most of the results 

were consistent with the results of their analytical work. The authors claimed that 
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the numerical model can be extended to more complex boundary conditions and 

solutions. In this study they overcame the instability problem introduced by the 

axial conduction terms in the thermally developing flow by extending the axial 

dimensionless length of solution domain from +∞ to -∞. For more information 

one may refer to [10]. 

 

Another important contribution in this area was made by Morini et al. [31] who 

investigated the effect of rarefaction on pressure drop and friction factor. They 

analyzed the rarefaction effect in trapezoidal, double trapezoidal, and rectangular 

silicon microchannels numerically and experimentally. Finite difference solution 

was made for incompressible flow with constant fluid properties. They concluded 

that friction factor reduction increases with increasing Knudsen numbers as 

expected. In addition to this, friction factor reduction increases with increasing 

aspect ratio for three different geometries. They stated that for gas flow in 

microchannels, the rarefaction effect can be analyzed separate from the 

compressibility effect, as long as the flow is incompressible. Similar results were 

obtained by Zhang et al. [32] who investigated slip flow characteristics of 

compressible gas flow. Zhang and his colleagues found out that compressibility 

effects become less significant and rarefaction effects become dominant for the 

low Reynolds number flows. According to the results of their study, slip velocity 

boundary condition defined at the walls makes the flow more incompressible than 

the no slip wall boundaries. Significance of compressibility effects for low 

Reynolds number flows are illustrated in Figure 2.2, where fRe is plotted versus 

the hydraulic diameter Dh (in µm) for Re = 10. 
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Figure 2.2 Variation of fRe with hydraulic diameter. Re =10 [32] 

 

 

Compressibility and slip flow effects are also discussed by Hong et al. [33]. The 

study is mainly dedicated to investigate the characteristics of gaseous parallel-

plate micro flows with no slip boundary condition, but they also presented the 

results of runs for slip wall boundary condition. Only constant wall heat flux case 

is studied by using ALE (Arbitrary Lagrangian-Eulerian) based numerical 

method. Similar to other studies, they proposed that as the flow velocity increases, 

slip flow effects become insignificant relative to compressibility effects. 

Moreover, velocity slip and temperature jump effects in microchannels were 

investigated in detail by Yu and Ameel [34]. They used an analytical model for 

solving the hydrodynamically fully developed, thermally developing flow by 

using integral transform technique. The main focus of their study was to 

investigate the effects of slip-flow parameters on heat transfer and fluid flow. 

Tunc and Bayazıtoğlu [35] studied the effect of aspect ratio and Knudsen number 

on heat transfer and fluid flow in rectangular microchannels. They made an 

analytical solution by using integral transform method. Only fully developed 
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conditions were considered in conjunction with constant wall heat flux boundary 

conditions in the study. 

 

The effects of rarefaction and viscous dissipation in compressible gaseous flows 

were studied by Rij et al. [36]. They included slip velocity and temperature jump 

boundary conditions in their numerical model. Both constant temperature and 

constant wall heat flux boundary conditions were used as different cases. Effects 

of aspect ratio, Brinkman number, Knudsen number, Péclet number, and 

momentum and thermal accommodation factors were discussed in simultaneously 

developing flow. It is stated that for simultaneously developing flow, viscous 

dissipation and axial conduction effects should be accounted for. Another 

remarkable study on simultaneously developing flow in microchannels belongs to 

Nizamand et al. [37]. They investigated simultaneously developing flow in 

trapezoidal microchannels with Reynolds numbers ranging between 0.1 and 1 and 

Knudsen number changing between 0 and 0.1. In their study, both friction and 

heat transfer coefficients are inversely proportional with the Knudsen number in 

fully developed flow sections. On the other hand, Nusselt and Poiseuelle number 

reaches an asymptotic value as a result of high levels of velocity slip and 

temperature jump at the entrance region of the trapezoidal channels. 

 

Tso and Mahulikar [11] aimed to explain the unusual behavior of convective heat 

transfer by understanding the effect of viscous dissipation. Throughout their study 

the main point of focus is to discuss physical meaning and significance of 

Brinkman number. They claimed that the unusual decrease in Nusselt number 

with increasing Reynolds number in laminar flow can be explained by the 

significance of viscous dissipation, thus with Brinkman number. In addition, the 

study includes correlations relating Brinkman number with the experimentally 

obtained Nusselt values. Simultaneously developing slip flow in rectangular 

microchannels was also discussed by Renskizbulut et al. [38]. They mainly 

focused on determining the effects of Reynolds number, aspect ratio, and 
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Knudsen number on simultaneously developing flow. In their study, only constant 

wall temperature boundary condition is used. Slip velocity at walls are modeled 

by Maxwell's [5] slip velocity theorem. The temperature jump boundary condition 

is defined by using the von Smoluchowski's [7] model. Constant fluid properties 

were used and viscous dissipation was neglected in numerical model. Throughout 

the study Reynolds numbers varied between 0.1 and 10. One of the interesting 

results they reached is the independence of Nusselt number from the geometry at 

the inlet section. This phenomenon can be seen in Fig. 2.3. Here, x* denotes the 

dimensionless axial distance, while α* denotes the channel aspect ratio.   

 

 

 

 

Figure 2.3 Axial variation of Nusselt number at Re=0.1 and Kn=0.1 for different 

aspect ratios [38]. 
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At the very beginning of the channel Nusselt numbers are very close to each other 

for all aspect ratios. However, as the aspect ratio decreases toward the parallel-

plate limit, dependence of Nusselt number on Knudsen number increases. Worek 

et al. [39] also investigated slip flow in rectangular microchannels. The study is 

based on a finite-volume numerical model. Mainly the variation of entrance 

length, friction coefficient, average fluid temperature, and Nusselt number with 

changing Knudsen and Péclet numbers, and aspect ratio is investigated. The flow 

is assumed to be steady, single phase, incompressible, and laminar. The fluid 

properties are assumed to be constant and viscous dissipation terms are neglected. 

Slip velocity and temperature jump at wall-fluid interface is accounted for in the 

model .They preferred solving an elliptic type momentum and energy equation. 

As a computational domain, quarter of a rectangular channel is used since 

boundaries are symmetrical. The slip velocity and temperature jump boundary 

conditions are imposed on the numerical model by using first order 

approximations. Pressure velocity coupling method is chosen as SIMPLE (by 

Patankar and Spalding [40]). They derived a correlation from the results of their 

analyses for fully developed friction factor as a function of Knudsen number and 

aspect ratio. The effect of Brinkman number and Prandtl number for slip flow 

regime in microtubes is studied by Sun et al. [41]. Their numerical model was 

validated with the analytical results of [35]. Hydrodynamically fully developed, 

thermally developing flow is analyzed for different Knudsen, Brinkman and 

Prandtl numbers. Three different wall boundary conditions are used in the study, 

which are constant wall temperature, constant wall heat flux and linearly varying 

wall temperature. They remarked that, temperature jump at wall boundary should 

be used together with the slip velocity boundary condition, for not overestimating 

heat transfer. The numerical solutions show that local Nusselt number decreases 

up to a point with the axial distance, and then it jumps to a final value. The 

phenomenon is related with the viscous dissipation, and this jump occurs earlier in 

the entrance region with increasing Brinkman number. The variation of Nusselt 

number with Brinkman number can be observed in Figure 2.4. 
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Figure 2.4 Variation of Nusselt number with Brinkman number in the thermal 

entrance region, with temperature jump boundary condition [41]. 

 

 

Effect of Prandtl number on heat transfer and Nusselt number is reported to be 

directly proportional. In the study it can be seen that, linearly varying temperature 

wall boundary condition yields nearly the same results with the constant wall heat 

flux boundary condition. 

 

Morini [42] investigated the effect of viscous heating in microchannels and tried 

to explain the results of experimental data. Basically, Morini developed a model 

to predict the viscous dissipation in microchannels. For this purpose, effects of 

viscous heating and consequent viscosity decrease imposed on the conventional 

Navier-Stokes equations. This approach provided an explanation for the 

experimental observations in which friction factor decreases with the increasing 

Reynolds number. Kroeker et al. [43] investigated the heat transfer and pressure 

drop of heat sinks with circular microchannels. In their analytical work, they used 

the continuum model and classical Navier-Stokes equations. The effects of 

geometrical parameters and material properties on heat transfer characteristics are 
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investigated. As a result of the comparison they made, they reported that the 

thermal resistance of heat sinks with rectangular channels is lower than the ones 

with circular channels. 

 

Mishan et al. [44] compared the experimental results of their microchannel test 

setup, by using Infrared (IR) imaging technology and numerical modeling. 

Infrared imaging technique is used for observing the temperature distribution in 

the test setup. The results obtained are compared with the results of CFD analysis. 

They validated the conventional theory proposed by Shah and London [10] after 

superimposition of entrance region effects for a microchannel with 410 µm 

hydraulic diameter. A study comparing the correlations, numerical analyses and 

experimental results is performed by Lee et al. [45]. They investigated the validity 

of conventional Navier-Stokes equations for predicting the thermal behavior of 

single phase flow through microchannels. In addition, the results of the 

experiment they have conducted are compared with both recent correlations and 

the numerical simulation results of commercial codes. Moreover, the importance 

of entrance and boundary conditions for more accurate numerical analyses is 

stressed. According to this study, numerical simulations carried out have a better 

agreement with the experimental results than the correlations. Wang and Zhixin 

[46] proposed that conventional computational fluid mechanics is deficient in 

modeling microscale fluid flow and heat transfer when continuum approach is no 

more valid. The deficiency of classical Navire-Stokes equations is also observed 

by Toh et al. [47], who also performed numerical analysis in microscale. 

 

Numerous, experimental research has also been conducted in the area of 

microscale heat transfer. One of the most extensive reviews on the comparison of 

theoretical and experimental studies in microscale heat transfer is prepared by 

Morini [48]. This study contains experimental setup data, the results obtained 

from experiments of different researchers, and the empirical correlations derived. 

The valuable work of Morini shows that experimental results are not converging 
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to a common point but with the improvements in the technology and measurement 

techniques, results are becoming more reliable. Another study focused on 

comparison of the conventional theory and the experiment results is performed by 

Hetsroni et al. [49]. They analyzed rectangular, trapezoidal, circular and triangular 

micro-channels with hydraulic diameters ranging from 60 µm and 2000 µm. They 

concluded that simple one-dimensional models have a significant discrepancy 

with the experimental results. Also they proposed that classical Navier-Stokes and 

energy equations are inadequate to explain the experimental results. They claim to 

explain experimental results by including axial conduction effects, non-adiabatic 

inlet and outlet boundary conditions, and viscous dissipation to their numerical 

model. Experimental data correlated fairly well by using this model. On the other 

hand, they stated that effect viscous dissipation is negligible due to the 

experimental results obtained. The study of Gamrat et al. [50] also contains both 

experimental and numerical work. In the experiments, they investigated high 

aspect ratio channels with spacing ranging between 0.1 and 0.3 mm. Reynolds 

number for water flow in the experiments changed between 200 and 3000. Their 

numerical model assumes that the flow is incompressible, steady, and laminar. 

Additionally, property variation and viscous dissipation is neglected in the 

numerical model. The researchers claimed that the main difference between 

experimentally and numerically estimated Nusselt numbers arose from neglecting 

viscous dissipation and property variation. Also they stated that for their case, 

results of two dimensional and three dimensional numerical models are in good 

agreement, so it would be more advantageous to use two dimensional numerical 

models when computation costs are considered. One of the important results they 

converged to is the dependence of entrance effects on Reynolds number and 

channel spacing separately, as it was not the case denoted by Shah and London 

[10]. Shah and London proposed that Poiseuelle number for different channel 

spacing is a function of Reynolds number. 
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Another experimental study was performed by Mokrani et al. [51] who 

investigated the convective heat transfer in rectangular microchannels with 

channel spacing varying in the 0.0001 to 1 mm range. According to the results of 

their study, they proposed that the conventional continuum mechanics laws and 

correlations are valid for the dimensions and Reynolds numbers that they 

examined. Celata et al. [52] performed an interesting study in which, viscous 

heating is used to predict the friction factors. They also discussed occurrence of 

viscous heating, its significance for micro flows, and verification of its presence 

experimentally. They prepared an analytical model relating viscous heating with 

friction factors and claimed to validate this model with the experimental results. 

In addition to this, they proposed a limit, beyond which viscous dissipation cannot 

be neglected. The expression for the limit is given in the equation below.  

 

*Re 1
Re

Ec
f L  ≥                (2.7)

  

The L* in Equation 2.4 represents dimensionless channel length. Ec is the Eckert 

number. 

       

Mala and Li [53] reported that predictions of conventional theory are incapable of 

defining micro-channel flows, as a result of their experimental work. As Reynolds 

number increases and micro tube diameter decreases, the experimentally found 

pressure drop and friction factors significantly deviate from the conventional 

theory. Researchers draw attention to two possible reasons of higher flow 

resistance than the conventionally estimated value. The first one may be an early 

transition from laminar to turbulent flow regime. The second may be the 

roughness effects. Therefore, they used roughness viscosity model for explaining 

the discrepancy between theoretical and experimental results. The results of 

roughness viscosity model and experiment were in good agreement. 
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CHAPTER 3 

 

 

SINGLE PHASE HEAT TRANSFER IN PARALLEL PLATE 

MICROCHANNELS WITH CONSTANT WALL TEMPERATURE 

 

 

 

 

3.1 Introduction 

 

Chapter 3 is dedicated to formulation, numerical model and results of single phase 

laminar flow and heat transfer in parallel plate microchannels with constant wall 

temperature. Flow inside the channel is assumed to be laminar and 

incompressible. The thermophysical properties are also assumed to be constant for 

the analyses in this chapter. Pressure and velocity are solved in a coupled manner 

for observing the entrance effects. The rarefaction effects are included in the 

model due to the investigated Knudsen number range. 

 

3.2 Variable Thermal Conductivity and Viscosity 

 

Main focal point of this study is the effect of viscosity and thermal conductivity 

variation with temperature. These variations can be modeled with different 

approaches. Two different approaches are commonly used. According to these 

approaches, modeling can be based on the empirical data or can be based on the 

theoretical derivation. Many researchers prefer using empirically produced data in 

their studies. However, in some cases this kind of approach may introduce certain 

errors and it may be incapable for predicting the property variation correctly. 

Actually, the characteristics of thermal conductivity and viscosity differ from the 
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empirical relations significantly for the “dilute gas” density range. Lemmon and 

Jacobsen [54] extensively summarized the literature and available data for the 

thermal conductivity and viscosity variation with temperature in dilute gases. For 

our study, fluid density is close to the range in which empirical data is produced. 

Therefore, especially thermal conductivity variation is modeled by using the 

empirical based correlation [55].  On the other hand, variation of viscosity is 

modeled by using the “Sutherlands law of viscosity” which is based on the kinetic 

theory of gases. [56] 

 

Sutherland’s formula for air can be written as follows, 

 

3

2
0

0 0

T ST

T T S

µ

µ

  +
=  

+ 
                   (3. 1) 

  

In Equation (3.1) the S is Sutherland’s constant which is equal to 111 K for air 

and T0 µ0 are the reference temperature and viscosity respectively. In this study 

reference temperature T0 is taken as 273 K and the reference viscosity µ0 is equal 

to 1.716E-5 N.s/m2. 

 

Both Gulhane and Mahulikar [18] and Herwig and Mahulikar [22], who had 

studied property variation effects in microchannels, used empirical based 

correlations. However, these researchers used water as working fluid. 

Additionally, researchers investigating the effects of property variation in air flow 

also used empirically produced data. The correlations used by Hernandez and 

Zamora [57], and Jaluria et al. [58] are given in Figure 3.1 in comparison with the 

empirical data taken from [55]. The data is non-dimensionalized by using the 

reference conductivity at 273 K.  
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Figure 3.1 Dimensionless thermal conductivity plotted against temperature, data 

taken from references [55],[57] and [58] 

 

 

The 6th degree polynomial fit, based on the empirical data of [63] can be 

expressed as follow, 

 

-18 6 -15 5 -12 4

-10 3 -6 2 -3 -3

k(T)  1.035 10 T  - 3.447 10 T  3.627 10 T -

1.071 10 T  - 2.985 10 T   4.178 10 T - 2.212 10

= ⋅ ⋅ + ⋅

⋅ ⋅ + ⋅ ⋅
             (3. 2) 

 

To be able to reduce the errors resulted from truncation; ten decimal places are 

used while expressing the coefficients of the polynomial function. The 

temperature scale used is Kelvin. 

 

Similar to Figure 3.1 also the viscosity values obtained from Sutherlands formula 

are given in comparison with the empirical data in Figure 3.2. The data is non-

dimensionalized by using reference viscosity value at 273K. 
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Figure 3.2 Dimensionless viscosity plotted against temperature, empirical data 

taken from [55] compared with Sutherlands Law 

 

 

As can be seen from Figure 3.2, the viscosity values estimated from Sutherlands 

Law are in good agreement with the empirical data.  

 

3.3 Formulation of the Problem 

 
Analyzed geometry and governing equations for the problem will be discussed in 

this section. Schematic view of the geometry is given in Figure 3.3. 
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Figure 3.3 Schematic view of the parallel plate microchannel 

 

 

Two dimensional flow and heat transfer problem will be expressed in terms of 

differential equations. The governing equations will be written for the Cartesian 

coordinates, for the given reference frame in Figure 3.3. The equations for the 

defined geometry and flow conditions will be as follows [59]. 

 

Continuity equation: 

 

0=
∂

∂
+

∂

∂

y

v

x

u
                          (3.3)

   

Momentum equations: 

x-momentum equation 

 

2( ) ( ) ( )
2

x

u u uv p u
V

t x y x x x

v u
f

y x y

ρ ρ ρ
λ µ

µ ρ

∂ ∂ ∂ ∂ ∂ ∂ 
+ + = − + ∇ ⋅ + + 

∂ ∂ ∂ ∂ ∂ ∂ 

  ∂ ∂ ∂
+ +  

∂ ∂ ∂  

r

                                (3.4) 
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y-momentum equation 

 

2( ) ( ) ( )

2 y

v uv v p v u

t x y x x y

v
V f

y y

ρ ρ ρ
µ

λ µ ρ

  ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + = − + + +  

∂ ∂ ∂ ∂ ∂ ∂ ∂  

 ∂ ∂
∇ ⋅ + + 

∂ ∂ 

r
                                     (3.5) 

 

Equations (3.3), (3.4) and (3.5) are the equations for flow field. Before continuing 

with the derivations, these equations are should be simplified and non-

dimensionalized. First of all, since the flow is incompressible, the divergence of 

velocity will be equal to zero. Moreover the body forces will be neglected 

throughout the analyses, and this will drop the last term from Equations (3.4) and 

(3.5). Simplified form of these equations can be written as follows. 

 

2( ) ( )
2

u u uv p u v u

t x y x x x y x y y
ρ µ µ µ
   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

⋅ + + = − + + +      
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂      

           (3.6) 
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Energy equation for Cartesian coordinates can be written as follows.  
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The left hand side of Equation (3.8) can be expressed as follows. 
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After subtracting Equation (3.9) from Equation (3.8) one will obtain a convenient 

expression for the energy equation in the form given below. 
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Since flow is incompressible, divergence of velocity will be zero. Additionally 

there will be no internal heat generation and body force in the flow. Also for an 

ideal gas enthalpy h can be expressed as h=cpT. Similarly viscous stress terms for 

a Newtonian fluid can be expressed in terms of velocity gradients. After making 

the mentioned simplifications, Equation (3.10) can be written as; 
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After simplification and rearrangement of the momentum and energy equations, 

they should be non-dimensionalized by using appropriate non-dimensional 

variables. In the non-dimensionalization following parameters will be used. 
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The non-dimensionalized x-momentum equation by the variables above can be 

written as follows. 
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Similarly the non-dimensional form of the y-momentum equation is given below. 
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Additionally, energy equation also needs to be non-dimensionalized. All of the 

non-dimensional variables defined above will be used in non-dimensionalization 

of energy equation except the non-dimensional pressure term defined in Equation 

(3.13) .In addition to the previously defined variables, some new variables will be 

introduced. These parameters are given below. 
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After non-dimensionalization energy equation takes the following form 
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                      (3.26) 

 

The spatial domain is chosen as a half of the channel as a result of symmetry. The 

boundary conditions and reference frame can be seen in Figure 3. 4. 

 

 

 

 

Figure 3. 4 Schematic representation of spatial solution domain and reference 

axes. 

 

 

The channel length is denoted as L, and half channel width is denoted as H in the 

figure. Solution domain is surrounded by four different boundaries. The boundary 

conditions that will be used in the solution of momentum and energy equations 

can be written as follows. 
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In x and y-momentum equations, u and v velocity components at the boundaries 

will be defined as: 
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As the x-momentum equation, these boundary conditions should also be non-

dimensionalized before using with the non-dimensional equations. Then the non-

dimensional boundary conditions for momentum equations can be written as follows. 
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Knudsen number is the ratio of mean free path of fluid to the characteristic 

dimension of flow. The hydraulic diameter Dh for parallel plates will be the twice 

of the plate spacing (4H) which is used as characteristic dimension throughout this 

study. 
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Boundary conditions also need to be defined for the energy equation. The 

temperature values at boundaries can be expressed as: 
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Where 
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The boundary conditions should be written in non-dimensional form before using 

in solution of non-dimensional energy equation. 
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In the analyses, another frequently used dimensionless number is the Nusselt 

number. This dimensionless parameter is directly related with heat transfer 

coefficient. Before continuing with the expression of Nusselt number, first local 

heat transfer coefficient for the parallel plate geometry will be defined. The 

energy balance at the wall interface can be written as follows, 
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by rearranging Equation (3.52), it is possible to obtain the expression for  local 

heat transfer coefficient 
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By using the expression for local heat transfer coefficient, local Nusselt number 

can be written as, 
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Where, mean temperature of the flow is defined as a function of axial position, as 

follows: 
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Dh is taken as 4H which is the hydraulic diameter of parallel plates as mentioned 

above. As all other expressions it is possible to express the local Nusselt number 

in terms of non-dimensional parameters, for convenience. 
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Similarly, the mean temperature can be expressed non-dimensionally as, 
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Equations, non-dimensional parameters, boundary conditions and the 

dimensionless numbers that are used in the analyses for constant wall temperature 

case are defined above. Momentum and energy equations are rearranged and 

extended to account for the thermophysical property variation. Moreover, axial 

conduction, viscous dissipation terms and all convective terms are included in the 

mathematical model. Unfortunately it is not possible to solve these equations 

analytically, for this reason numerical methods will be utilized to approximate the 

solution. Before solving the equations numerically, equations must be discretized 

in spatial and time domain. The next subsection is dedicated to discretization of 

equations and numerical solution. 

 

3.4 Numerical Model 

 

Since the effect of thermophysical property variation is desired to be observed in 

this study, momentum equations (Equations (3.6), (3.7)) and the energy equation 

(Equation (3.11)) need to be solved in a coupled manner. As mentioned before, 

the analytical solution for these partial differential equations do not exist. 

Therefore solution of the momentum and energy equations will be approximated 

numerically [60].In this problem, solution domain is simple and uncomplicated. 

Boundaries lie parallel to the reference axes and this eliminates the need for 

transformation. In addition to the geometric conformity, momentum and energy 

equations are also expressed in transient form for the sake of mathematical 

simplicity and computational convenience. Actually the heat transfer and fluid 

flow problem subject to discussion is a steady state problem. However, steady 

state momentum and energy equations will be elliptical partial differential 

equations which require more sophisticated numerical methods for being solved. 
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On the other hand parabolic partial differential equations can be solved explicitly 

which is relatively simple and computationally straightforward. 

 

Implicit methods require simultaneous solution of the equations at the same 

solution step and this may require inversion of large matrices, additionally, the 

iterative procedure increases the computational cost. Nevertheless, implicit 

methods do not have a time step size limitation as a convergence criterion. On the 

other hand explicit methods needs a divergence free time step size. 

 

In the explicit solution procedure of the parabolic differential equation, each 

variable at a node is computed for the next time step by using the values obtained 

in the previous time step. However, transient solution converges to the steady 

state solution as the time goes to infinity.  

 

As it is stated above, chosen time step should satisfy the convergence criteria. 

This convergence criterion involves the flow variables and grid spacing, which is 

known as Courant-Friedrichs-Lewy (CFL) condition. Since an adaptive time 

stepping scheme is used for the solution of our problem, the time steps are chosen 

automatically to satisfy this condition. The details of this procedure can be found 

in [60] 

 

3.4.1 Geometry Discretization 

 

Numerical solution will be carried out on a finite number of grid points which will 

be called as mesh. Since our geometry conformed on Cartesian coordinates, it is 

possible to use uniformly distributed grid points for the solution. Also, symmetry 

of the problem geometry reduces the number of required grid points in solution 

domain. 
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Since pressure and velocity parameters will be coupled throughout the study, a 

staggered grid arrangement is used for the spatial discretization. Actually the 

method of using staggered grid for spatial discretization is based on the finite 

volume method. In finite volume method, mass balance is tried to be established 

for a cell by using the velocities defined at the cell boundaries. Similarly for the 

staggered grid used here, different unknown variables are defined at different grid 

points of a cell. Staggered grid and cell structure for a Cartesian grid is given in 

Figure 3.5. 

 

 

 

 

Figure 3.5 Schematic representation of staggered grid for Cartesian coordinates 

 

 

In a uniformly distributed staggered grid, a cell is a rectangular region, surrounded 

by velocity nodes. Each cell has a node at the center where pressure and 

temperature values of the cell are assigned. In a cell, horizontal velocity 
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components are located at the center of vertical cell edges and the vertical velocity 

components are defined for the nodes at the center of horizontal cell edges. Cells 

are defined with the corresponding index (i,j) where i stands for the horizontal 

coordinate of the cell and likewise j denotes the vertical coordinate. Thus, for the 

cell (i,j) coordinates of the center node can be expressed as ((i-0.5)δx,((j-0.5) δy) 

parametrically. It is possible to locate the node coordinates for horizontal and 

vertical velocity components as long as the cell index is known. 

 

Since the velocity and pressure values are defined at different locations on our 

staggered grid it can be said that there exist three separate cells which are shifted 

by half grid spacing, for these three different variables. 

 

On staggered grid, all nodes can not be aligned with the domain boundary, for this 

reason boundary condition implementation will be slightly complicated. To 

overcome this problem actual domain is encircled with an extra boundary strip 

made up of grid cells. The boundary strip around the problem domain can be seen 

in Figure 3.6. 
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Figure 3.6  Sketch of problem domain and boundary strip 

 

 

The cells in the boundary strip will be used for averaging the required values at 

the boundary of the problem domain. The details of this implementation will be 

discussed later. 

 

3.4.2 Equation Discretization 

 

Discretization is the process of conversion of partial differential equations into 

linear algebraic ones on the given solution domain. Energy and momentum 

equations are composed of both spatial and time derivatives of temperature, 

velocity, and pressure terms. Throughout the study, spatial and time derivatives 

will be separately discretized. The details of the discretization in spatial domain 

will be discussed in detail in the following part. 
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3.4.2.1 Discretization of Momentum Equations  

 

The momentum equation in x direction and the momentum equation in y direction 

will be discretized separately. In Figure 3.7 velocity nodes and the positions 

where equations will be discretized can be seen.  

 

 

 

 

 Figure 3.7 Velocity nodes and discretization locations  

 

 

The terms in the x momentum equation will be discretized at the midpoints of the 

vertical edges of each cell. These locations are where u velocities are located in 

Figure 3.7.  

 

Diffusive terms in the x momentum equation are given below, 
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These terms can be directly discretized by using central differencing, which is 

second order accurate O(δx
2
). Discretization of the terms in Equation (3.58) is as 

follows, 
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On the other hand, convective terms, which can be seen below, introduce some 

difficulties in spatial discretization.  

 

*

2* )(

x

u

∂

∂
,

*

** )(

y

vu

∂

∂
                       (3.61)

  

Since yuv ∂∂ /)(  will be discretized at the point where Ui,j is located in Figure 3.7. 

One will need to use the average values for v and u velocities at locations 3 and 4 

for being able to use central differencing method for the product uv. The locations 

3 and 4 can be seen in Figure 3.7. The discretized form of the yuv ∂∂ /)(  term will 

be in the following form, 
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Similarly, the xu ∂∂ /)( 2   term can be discretized in terms of averaged values at 

locations 3 and 4, by using central differencing with half mesh width. The 

discretized form of xu ∂∂ /)( 2 term can be expressed as follows, 
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Since, pure central differencing for the discretization of convective terms may 

cause problem in convergence where flow is reversed or rapidly changed 

direction, the convergence characteristics of the solution can be enhanced with the 

use of a different approach. However, using pure upwind differencing scheme in 

discretization may cause a diffusion problem for the convective terms which is 

also known as false diffusion. A more conservative form of the upwind 

differencing which is known as "donor cell" differencing scheme [60] will be 

utilized. In our problem, the variables are defined at different locations of a cell. 

Due to the need for relocating the parameters and derivatives, it would be 

appropriate to use donor cell differencing scheme. The conservative characteristic 

of donor cell discretization will slow down the convergence of solutions. 

Therefore, for the enhancement of convergence characteristics and stability of 

solution, convective terms are discretized with a weighted average of central 

differencing and donor cell differencing scheme. As mentioned above it is 

possible to relocate the variables by averaging in the donor cell discretization. For 

the discretization of the convective terms given in Equation (3.61) one of the two 

variables in the derivative should be defined at the interval midpoints. Thus, for 

the discretization of xu ∂∂ /)( 2  term donor cell variables will be the u velocity 

values averaged at location 3 and 4 defined in Figure 3.7. These donor cell 

variables will be in the following form, 
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Similarly for the discretization of yuv ∂∂ /)(  term in the x momentum equation, 

donor cell variables that are defined at location 3 and 4 will be as follows, 
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By using the weighted average of donor cell and central differencing schemes, 

discretization of xu ∂∂ /)( 2  will be,  
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In Equation (3.68) γ stands for the weighting factor which lies between 0 and 1. 

Likewise discretized yuv ∂∂ /)(  term can be written as, 
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The other terms in the x momentum equation will be discretized around the same 

grid point with the convective terms where Ui,j lies in Figure 3.7. The equations in 

the discretized form can be written as, 
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Viscosity terms are defined at the cell centers where temperature values are also 

defined. The discretization of the spatial derivatives of viscosity terms are written 

as follows. 
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Pressure values are defined at the cell centers and derivative of the pressure will 

be also discretized around the same grid point with the other terms. The 

discretized form of the pressure term is given below, 
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In addition to spatial derivatives, there is also a time derivative term in the x 

momentum equation. As mentioned earlier the time discretization is separate from 

spatial discretization. 
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In a similar manner the terms in the y momentum equation will also be 

discretized. These terms will be discretized for the cell (i,j) around the  node 
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where velocity Vi,j lies in Figure 3.7. Convective terms will be discretized 

similarly by using a weighted average of donor cell and central differencing 

schemes. The discretized terms for the y momentum equation can be expressed as 

follows, 
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Since viscosity terms in the y momentum equation cannot be discretized by using 

donor cell scheme, these terms are simply discretized by using central 

differencing which is again second order accurate. 
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The weighting factor in the discretized convective terms will be selected 

according to Hirt et al. [61] by using the given formula. 
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After discretization of the momentum equations, also boundary values for these 

equations should be defined. 

 

3.4.2.2 Discretization of Energy Equation 

 

In the discretization of energy equation, spatial derivatives of thermal 

conductivity and viscosity are also considered, since these variables are changing 

spatially in accordance with the temperature change. Similar to the momentum 

equations, the discretization of the convective terms is made by using the mixture 

of donor cell and central differencing schemes. Additionally the conductive terms 

in the equations will also be discretized by using the same method. Main 

advantage regarding this type of discretization for the conductive terms is the 

improved convergence characteristics as a result of averaged donor cell 

differencing scheme. This discretization method enables to use weighted average 

of central differencing with the forward or backward differencing schemes, 

according to the temperature gradient. The differencing scheme becomes a 

weighted average of central and backward differencing, where temperature 

gradient is negative, in other words if the temperature is decreasing in the positive 

direction then a backward differencing scheme will be employed. The mechanism 

for differencing is the inverse of this one for the positive temperature gradient 

case. 

 

Before presenting the discretized terms in the energy equation, it should be noted 

that the dimensionless temperature, thermal conductivity and the viscosity 

variables are defined at the cell center. Since viscosity and thermal conductivity 
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are directly related with temperature in our situation, defining these variables at 

the cell centers where temperature values are defined would be more convenient. 

 

Discretized terms in the energy equation can be written as follows, 
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The viscous dissipation terms in the energy equation required to be discrtetized at 

the cell centers where other terms of the energy equations are also discretized. The 

viscous terms are given below. 
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3.4.2.3 Boundary Values for Discretized Equations 

 

For being able to solve the discretized momentum equations, boundary values will 

be required for the unknowns. The velocity values on the domain boundaries in 

addition to the pressure and temperature values of the ghost cells will be required. 

The appropriate ghost cell values will be used for implementation of the desired 

values at the domain boundary. As mentioned above the values at the boundary of 

the problem domain will be defined by averaging the value of the ghost cells and 
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the adjacent fluid cells. The problem domain, ghost cells and the indexing of the 

cells are illustrated in Figure 3.8. There are four different type of boundary 

conditions used in this problem as stated above. These boundary conditions are; 

inlet, outlet, symmetry and wall with velocity slip and temperature jump. The 

details of the boundary conditions will be discussed in the following subsections. 

The positions and alignment of these boundaries in the computation domain can 

be seen in Figure 3.9. 

 

 

 

 

Figure 3.8 Problem domain ghost cells and the cell indexing 
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Figure 3.9 Boundary conditions and their alignment in the grid 

 
 
 
3.4.2.3.1 Inlet 

 

The required x velocity values for the channel inlet will be u1,j where j is ranging 

from 1 to jmax. Here jmax is standing as a placeholder for the number of cells in the 

longitudinal direction.  

 

The y direction velocity nodes are not lying on the inlet boundary so the ghost cell 

values that should be defined for the implementation of inlet boundary values are 

v1,j where j is ranging from 1 to jmax. As stated above, by averaging with the 

adjacent fluid cells, ghost cell values will be used for obtaining the desired values 

at the boundary. Schematic view of the cells and y direction velocity nodes around 

the inlet boundary can be seen in Figure 3.10. Ghost cells are out of our problem 

domain as it is stated before. Averaged boundary values, which lie halfway 

between two y velocity nodes, can be calculated as,  



 

 58 

 

2

*
,2

*
,1*

,

jj

jboundary

vv
v

+
=                      (3.100) 

 

in Equation (3.100) the j index is ranging from 1 to jmax. It is known that at the 

inlet boundary, vertical velocity component required to be set as zero. As a result, 

boundary condition for y velocity can be written as follows, 
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Figure 3.10 Schematic view of ghost cells of y velocity and inlet boundary 

 

 

Similarly pressure and temperature boundary conditions can be imposed on the 

inlet boundary by using the ghost cells. The schematic view of the temperature 

and pressure nodes around that boundary can be seen in Figure 3.11. As it had 



 

 59 

been shown above for the y-velocity values, temperature and pressure values at 

the boundary can be calculated by averaging the nodal values at both sides. 

Expressions for the pressure and temperature values at the inlet boundary can be 

written as follows. 
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Similar to Equation (3.101) in Equation (3.102) and (3.103) the index j varies 

from 1 to jmax, along the inlet boundary. 

 

On the inlet boundary after setting the required velocity values, zero pressure 

gradient condition is also required to be set [60]. The pressure gradient at the inlet 

boundary can be expressed by using the ghost cell and adjacent fluid cell pressure 

values. The finite difference representation for the pressure gradient at the inlet is 

given below, 
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Zero pressure gradient boundary condition is assured, by setting the appropriate 

values of the ghost cell nodes. Similarly desired temperature values at the inlet 

boundary are imposed by using ghost cells. 
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Figure 3.11 Schematic view of ghost cells for temperature and pressure at the 

inlet boundary 

 

 

The x velocity nodes directly lie on the inlet boundary, as a result it is possible to 

define x velocity boundary values without using ghost cell values and averaging. 

The schematic representation of the x velocity nodes on the inlet boundary can be 

seen in Figure 3.12. 
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Figure 3.12 Schematic view of x velocity nodes at the inlet boundary 

 

 

3.4.2.3.2 Wall 

 

Wall boundary condition is imposed by using ghost cell method for temperature, 

pressure and x velocity. Procedure for defining temperature and pressure values 

on the wall boundary is similar to the procedure used for the inlet boundary. 

Again ghost cells values will be averaged with the adjacent fluid cell values on the 

boundary. The schematic view of ghost cells, problem domain, and pressure and 

temperature nodes is given in Figure 3.13 
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Figure 3.13 Schematic view of pressure and temperature nodes around the wall 

boundary 

 

 

The index i will vary from 2 to imax, for velocity, temperature and pressure values 

at wall boundary. Here, parameter imax  is a placeholder for the number of nodes in 

the x direction of problem domain. Likewise, pressure values will be implemented 

by averaging the two adjacent nodes to the boundary. The expression for the 

pressure values at the wall boundary can be written as follows. 
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Transverse pressure gradient at the wall boundary assumed to be zero. The 

representation for the pressure gradient 
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below, by using central differencing with half mesh width. 
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Another important issue is to define slip velocity at the wall boundary. Non-

dimensional expression for the slip velocity after neglecting some of the terms can 

be written as follows, 
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Similarly the expression for the temperature jump at the wall boundary can be 

written in non-dimensionalized form after simplification as, 
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The temperature and velocity gradient given in Equation (3.107) and (3.108) can 

be represented in the following form by using the central differencing with half 

mesh width. 

 

*

*
1,

*
2,

,

*

*

y

uu

y

u ii

boundaryi
δ

−
=









∂

∂
                    (3.109) 

 

*

1,2,

,

*
yy

ii

boundaryi
δ

θθθ −
=









∂

∂
                    (3.110) 

 

By using Equation (3.109) and (3.110), slip velocity and the temperature jump at 

the wall boundary can be expressed in terms of the adjacent node values. The 
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expressions for slip velocity and temperature jump in terms of node values are as 

follows, 
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In addition to Equation (3.111) and (3.112), one more algebraic relation is 

required for being able to define ghost node values. The required relation is 

obtained by averaging the values of nodes adjacent to boundary.   
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The arrangement of the nodes for x velocity values can be seen in Figure 3.14. 
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Figure 3.14 Schematic view of x velocity nodes around the wall boundary 

 

 

By using the Equations (3.111), (3.112), (3.113), (3.114) it is possible to define 

the ghost cell values 1,iθ and *
1,iu . 

 

Since y velocity nodes lie on the wall boundary, values can be directly assigned to 

these nodes. The vertical component of velocity is equal to zero at the wall 

boundary. The schematic representation of y velocity node arrangement on the 

wall boundary is given in Figure 3.15. 
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Figure 3.15 Schematic view of y velocity nodes around the wall boundary 

 

 

3.4.2.3.3 Outlet 

 

In our case, outlet boundary condition is located at the end of the channel where, 

flow reaches fully developed state. Gradients of the flow variables converge to 

zero as the flow is fully developed. For this reason at the outlet boundary, 

gradients of flow variables are set equal to zero. As it is utilized while defining 

other boundary conditions, ghost cell method is used for the outlet boundary. The 

alignment of pressure and temperature nodes around the outlet boundary can be 

seen in Figure 3.16.  
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Figure 3.16 Schematic view of pressure and temperature nodes around the outlet 

boundary 

 

 

Finite difference equations for pressure and temperature gradients at the boundary 

are discretized with half mesh width and central differencing. Discretized form of 

the pressure and temperature gradients will be as follows, 
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The x velocity gradient in the axial direction will be equal to zero also. The 

gradient can be expressed in terms of adjacent nodes, by using finite difference 



 

 68 

method. The velocity gradient is discretized with central differencing and full 

mesh width around outlet boundary. The discretized boundary condition is written 

as follows. 

 

 0
2 *

*
,1max

*
,1max

,

*

*

=
−

=








∂

∂ −+

x

uu

x

u jiji

jboundary
δ

                  (3.117) 

 

The arrangement of x velocity cells around the outlet boundary can be seen in 

Figure 3.17. 

 

 

 

 

Figure 3.17 Schematic view of x velocity nodes around the outlet boundary 
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Similar to other flow variables also y velocity gradient will be equal to zero at the 

outlet boundary. The schematic view of y velocity nodes around the outlet 

boundary is given in Figure 3.18. The y velocity gradient at the boundary can 

discretized with half mesh width, as follows, 
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Figure 3.18 Schematic view of y velocity nodes around the outlet boundary 

 

 

3.4.2.3.4 Symmetry 

 

Since velocity and temperature profiles for the flowing fluid between parallel 

plates are symmetrical around the centerline, it would be convenient to use 
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symmetry boundary condition to reduce the computational domain size and 

computation time. Velocity temperature and pressure values are mirrored through 

the symmetry boundary. The alignment of pressure and temperature nodes around 

the symmetry boundary can be seen in Figure 3.19. 

 

 

 

 

Figure 3.19 Schematic view of pressure and temperature nodes around the 

symmetry boundary 

 

 

The ghost cell pressure and temperature values required to be set as follows, 

 

*
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*
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max,1max, jiji θθ =+                     (3.120)

  

Similar to pressure and temperature, x velocity values are also mirrored through 

symmetry boundary. Figure 3.20 shows the alignment of x velocity nodes around 

the symmetry boundary. 

 

 

 

 

Figure 3.20 Schematic view of x velocity nodes around the symmetry boundary 

 

 

The ghost cell values required to be set as follows, to assure symmetry boundary 

condition, 

 

*
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*
1max, jiji uu =+                      (3.121) 
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As it can be seen in Figure 3.21, y velocity nodes lie on the symmetry boundary, 

and it is known that at the symmetry point of flow, y velocity is equal to zero. 

Then y velocity values can be defined as zero, explicitly. 

 

0*
max, =jiv                       (3.122)

  

 

 

 

Figure 3.21 Schematic view of y velocity nodes on the symmetry boundary 

 

 

3.5 Solution Method 

 

Since the x momentum and y momentum equations are separate, sequential 

solution method is used throughout the study. In addition to x and y momentum 
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equation, to be able to solve pressure unknowns, continuity equation is also used. 

Additionally for analyzing heat transfer, energy equation is also employed. As 

stated earlier, investigation is focused on the effects of property variation on fluid 

flow and heat transfer. For this reason, beside continuity and momentum 

equations, energy equation is also required to be solved conjointly with both 

momentum and continuity equations. Due to the variation of viscosity with 

temperature, both temperature and velocity profile will be affected. In brief, 

momentum, continuity and energy equations are required to be solved at the same 

iteration.  

 

The discretized equations will be solved in a transient manner by the solver. The 

solution begins at time t*=0. The initial values for the unknowns are set for the 

beginning of time. The time is incremented by δt, and at each time step, values of 

unknowns are updated. This time stepping loop is continued until certain variables 

become fixed in a definite precision range. 

 

Before discussing the time stepping loop, procedure for solving velocity and 

pressure unknowns simultaneously, will be explained below. 

 

First, discretized momentum equations are rearranged as follows. The superscripts 

in the parentheses are denoting the time step that, variable is calculated. 
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For convenience, some of the terms in Equations (3.123) and (3.124) are grouped 

and renamed as A and B respectively; 
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By using the Equations (3.125) and (3.126), Equations (3.123) and (3.124) can be 

rearranged as, 
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All of the variables in Equations (3.127) and (3.128) are related to a time level. 

Here A and B terms are associated with time level n while the terms 
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p

y
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∂
 

belongs to time level n+1. In other words spatial derivatives of pressure are 

calculated by using the updated values at same time step. On the other hand 

spatial derivatives in terms A and B are calculated by using the values obtained 

from previous time step. Namely, velocity field can be calculated for time level 

(n+1) once the pressure field is known at that time level. 

 

Using the Equations (3.123), (3.124) and the continuity equation which is written 

below, it is possible to derive Poisson equation for the pressure values at time 

level n+1. 
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Equation (3.129) is non-dimensionalized continuity equation for two dimensions 

in Cartesian coordinates. By substituting Equations (3.123) and (3.124) into 

continuity equation one can get, 

 

*( 1) *( 1) ( 1) 2 *( 1) ( 1) 2 *( 1)

* * * *2 * *2
0

n n n n n n
u v A p B p

t t
x y x x y y

δ δ
+ + + + + +∂ ∂ ∂ ∂ ∂ ∂

+ = − + − =
∂ ∂ ∂ ∂ ∂ ∂

               (3.130) 

 

After rearranging the expression in Equation (3.130) it is possible to obtain an 

expression for pressure values at time level n+1, in terms of spatial derivatives of 

velocity and other unknowns calculated at previous time level n. 
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The Equation (3.131) should be discretized before solution. As it is stated above 

pressure values and velocity values are assigned to different nodes on a cell. For 

this reason Equation (3.131) can be discretized by central differencing around the 

cell center as follows, 

 

( ) ( )

*( 1) *( 1) *( 1) *( 1) *( 1) *( 1)
1, , 1, , 1 , , 1

2 2

( ) ( ) ( ) ( )
, 1, , 1,

2 2

1

n n n n n n

i j i j i j i j i j i j

n n n n

i j i j i j i j

p p p p p p

x y

A A B B

t x y

δ δ

δ δ δ

+ + + + + +

+ − + +

− −

− + − +
+ =

 − −
+  

 

                (3.132) 

 

In Equation (3.132) i and j indices vary from 1 to imax and jmax respectively. By 

using the boundary values, it is possible to solve this system of equations for 

pressure unknowns. Pressure matrix for the nodes of problem domain is solved 

iteratively by using Gauss-Seidel iteration method combined with Successive 

Over Relaxation (SOR) method. Before applying this iterative method, pressure 

values are set as zero initially. Iterations for the solution of pressure matrix is 

terminated when least square of the residual matrix of pressure variables fallen 

below 0.001. This predetermined tolerance was enough to get desired solutions. 

 

First, pressure unknowns are iteratively solved for the (n+1)th time step by using 

the velocity and viscosity values of the (n)th time step. Then both x and y velocity 

values are calculated for the (n+1)th time step by using the pressure values. These 

updated values for velocities are used in the solution of energy equation. The 

procedure for updating velocity values with the obtained pressure values are given 

below. 

 

*( 1) *( 1) *( 1)
, , 1, ,( )n n n n

i j i j i j i j

t
u A p p

x

δ

δ
+ + +

+= − +                    (3.133) 
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*( 1) *( 1) *( 1)
, , , 1 ,( )n n n n

i j i j i j i j

t
v B p p

y

δ

δ
+ + +

+= − +                    (3.134) 

 

Since, pressure and velocity nodes are aligned in a staggered form it is possible to 

discretize the spatial derivative of pressure by using central differencing with half 

mesh width. 

 

After completing the calculation of new velocity and pressure values, the 

temperature variables will be solved. The rearranged form of the energy equation 

can be written as follows. 

 

* 2 * 2
* *

* * * *2 * * *2

2 2* * * *
* * *

* * * * * *

1

Re Pr

2
Re Pr

k k
k k

t x x x y y y

Br u v u v
u v

x y y x x y

θ θ θ θ θ

θ θ
µ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + + 

∂ ∂ ∂ ∂ ∂ ∂ ∂ 

       ∂ ∂ ∂ ∂ ∂ ∂
  + + + − −      ∂ ∂ ∂ ∂ ∂ ∂        

               (3.135) 

 

By using the calculated temperature variables in the previous time step, it is 

possible to update temperature values. 

 

When all temperature variables are updated, dimensionless viscosity and thermal 

conductivity can be calculated. These variables are algebraically related to 

dimensionless temperature as it is discussed above. The time stepping is continued 

until difference between local Nusselt values in two consecutive time steps fall 

below 10-3. This criterion is validated during validation studies. 

 

3.6 Code Validation  

 

Code is written in commercial software MATLAB®. Since the geometry is 

uncomplicated, no additional algorithm is used for mesh generation. However it is 
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possible to use less grid points by using mesh stretching. However, simple 

structured grid is used since it is very easy to transform the physical domain into 

computational domain. The number of nodes that will be used in longitudinal and 

transverse directions can be defined by using the user interface before starting 

solution. 

 

Code validation studies performed by using the analytical and numerical results 

given in references [28],[62] and [63]. Both velocity profiles and fully developed 

Nusselt values available in the references are used for comparison. Validation of 

the Nusselt values will give an idea about the accuracy of temperature distribution 

obtained from our numerical solver. The available solutions are made by 

neglecting the effect of axial conduction and transverse convection; for this reason 

additional runs are required for validation. Furthermore, as a result of the 

difference in Knudsen number definition, between this study and reference [62], 

the available results can be compared for Knudsen numbers 0.01, 0.02 and 0.04. 

In addition to the comparison mesh independence is also tested by making 

preliminary test runs for different numbers of vertical and longitudinal grid points. 

This mesh independence study is performed for Knudsen number 0.1 and 

Brinkman number equal to 0.001 by neglecting the effect of axial conduction. 

Obtained fully developed Nusselt values and x-velocity profile is compared with 

the references. As stated previously, in the study of Jeong and Jeong [28] the fully 

developed Nusselt values are obtained by making analytical solution. On the other 

hand, Çetin [62] obtained the same results numerically. The only difference in 

their study is the non-dimensionalization, of Knudsen numbers. 

 

The variation of Nusselt values for different mesh sizes are plotted against axial 

position in Figure 3.22. The results are obtained for 50 x 300, 80 x 480 and 100 x 

600, vertical and longitudinal grid points.  
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Figure 3.22 Variation of Nusselt number with axial position for different mesh 

sizes, obtained from constant property solutions by neglecting the axial 

conduction (Kn=0.01, Pe=1, Br=0.001) 

 

 

However the difference between results of different mesh sizes can not be clearly 

seen in Figure 3.22. The fully developed Nusselt values are tabulated in Table 3.1 

for different mesh sizes, by comparing them with the results of reference [28] 

which is also in agreement with the results of [63]. 
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Table 3.1 Fully developed Nusselt numbers, for thermally developing flow for 

various mesh sizes (Axial conduction is neglected) 

 

Kn=0.01 Nufd Nufd[28] % difference 

50x300 13,868 1,456 

80 x480 13,712 0,315 

100 x 600 13,660 

13,669 

-0,066 

 

 

In addition to the fully developed Nusselt values, also fully developed x-velocity 

values are compared with the analytically obtained results. The analytical 

derivation for the velocity profiles in a two dimensional half channel is as follows. 

First the flow is assumed to be fully developed and only function of y.  

 

 * ( )u f y=                       (3.136) 

 

Since the flow is fully developed, the vertical components will vanish. 

 

* 0v =                        (3.137) 

 

The dimensional x-momentum equation given below can be written again 

according to these assumptions and constant properties. 

 

2

2 2

2 2

( ) ( ) 1

2

u u uv p

t x y x

u u u v u

x y x x y x y y

ρ

µ µ µ µ

ρ

∂ ∂ ∂ ∂
+ + = − +

∂ ∂ ∂ ∂

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + + 

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂                            (3.138)
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The reduced x-momentum equation will take the following form, 

 
2

2

1 p u

x y

µ

ρ ρ

 ∂ ∂
=  

∂ ∂ 
                     (3.139) 

 
After simplification of y-momentum equation which is written below, 

 

2

2 2

2 2

( ) ( ) 1

2

v uv v p

t x y y

v v v v u

x y y y x x x y

ρ

µ µ µ µ

ρ

∂ ∂ ∂ ∂
+ + = − +

∂ ∂ ∂ ∂

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + + 

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂                                          (3.140) 

The reduced y-momentum equation will yields, 

1
0

p

yρ

∂
=

∂
                             (3.141) 

 

Then it is showed that pressure is only a function of x. In Equation (3.139) right 

hand side is only function of y while left hand side is only function of x. Then 

both right hand side and left hand side of Equation (3.139) should be equal to a 

constant. 

 

constant
p

x

∂
=

∂
                      (3.142) 

 

2

2
constant

u

y

∂
=

∂
                     (3.143)

          

Here assuming a pressure drop ∆p through finite tube length ∆x. It is possible to 

write the left hand side of Equation (3.139) as follows, 
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2

2

p u

x yµ

∆ ∂
=

∆ ∂
                      (3.144) 

 

By using the boundary conditions for the half channel used in the model given in 

Figure 3. 4. Ordinary differential equation (Equation (3.144)) can be solved. The 

boundary conditions are defined below, in dimensional form. 

 

0                                         
s

y u u= =                   (3.145) 

 

                                      y H u finite= =                                                         (3.146) 

 

Slip velocity us is defined earlier, and can be written as follows, 

 

0

s

y

u
u

y
λ

=

 ∂
=  

∂ 
                     (3.147) 

 

After integrating twice, Equation (3.144) can be written as, 

 

2
1 2( )

p
u y y c y c

xµ

∆
= + +

∆
                    (3.148) 

 

The c1 and c2 are constants of integration, which can be determined by using 

boundary conditions. 

 

2
2( ) 2 8

p pH pH
u y y y Kn

x x xµ µ µ

∆ ∆ ∆
= − −

∆ ∆ ∆
                  (3.149) 
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By using the definition of mean velocity, after integrating velocity field over the 

channel width,   

 

0

1
( )

H

U u y dy
H

∞ = ∫                                 (3.150) 

 

Integrated mean velocity is given below, 

 

2 22
12

3

pH pH
U Kn

x xµ µ
∞

 ∆ ∆
= − − 

∆ ∆ 
                   (3.151) 

 

Then dimensionless form of the x-velocity given in Equation (3.149) can be 

written as follows by using the non-dimensional parameters defined earlier, 

 

 

* * *2
* ( ) 3 (2 8 )

2 1 12

u y y y Kn
u

U Kn∞

− +
= =

+
                              (3.152) 

  

After obtaining the analytical representation for fully developed x-velocity, the 

analytical results can be compared with the numerical ones. The dimensionless x-

velocity profiles obtained by using different mesh sizes are plotted against 

dimensionless channel width in Figure 3.23. 
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Figure 3.23 Variation of fully developed x-velocity with channel width for 

different mesh sizes, obtained from constant property solutions (Kn=0.01, Pe=1) 

 

 

As can be seen from Figure 3.23 the difference between fully developed x-

velocity values are negligibly low for different mesh sizes and the plots are 

overlapped. Since velocity values are not different, the fully developed Nusselt 

results will be taken as a reference for comparison and 100 grid points used in 

vertical direction, while 600 grid points are used for the longitudinal direction. 

 

Another comparison is made with the Reference [62] in which fully developed 

Nusselt values are obtained by neglecting the effects of axial conduction and 

viscous dissipation. The results are given in comparison in Table 3.2. 
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Table 3.2 Fully developed Nusselt numbers, for thermally developing flow (Axial 

conduction and viscous dissipation is neglected) 

  

  Nufd Nufd[62] % Difference 

Kn 0.00 7.541 7.541 0.000 

Kn 0.01 6.921 6.925 0.058 

Kn 0.02 6.369 6.374 0.078 

Kn 0.04 5.441 5.445 0.073 

 

 

The fully developed Nusselt values obtained from solutions, in which viscous 

dissipation is included, are tabulated in Table 3.3. These results are compared 

with the reference [28] in which non-dimensional parameter definition is the same 

with this study. In these solutions axial conduction is neglected.  

 

 

Table 3.3 Fully developed Nusselt numbers, for thermally developing flow (Axial 

conduction is neglected) 

 

Kn Nufd Nufd[28] % difference 

0.01 13.660 13.690 0.219 

0.02 11.208 11.223 0.132 

0.04 8.227 8.230 0.042 

0.06 6.486 6.486 0.002 

0.08 5.348 5.347 -0.015 

0.1 4.547 4.547 -0.017 
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In addition to the slip flow regime also macro scale flow results are taken as a 

reference. As it is given in Table 3.2 for macro scale laminar flow without viscous 

dissipation, axial conduction and radial convection, fully developed Nusselt 

number converges to 7.541  

 

Moreover as mentioned above, fully developed x velocities also can be compared 

with the analytical solutions, to verify the accuracy of solver. For this purpose the 

non-dimensional velocity profiles are compared with the analytical results for 

different Knudsen numbers. The comparison of developed non-dimensional x 

velocity values are given in Figure 3.24. The dashed lines in the figure are 

representing the analytical velocity profiles while the solid lines are velocity 

profiles obtained from numerical solutions.  
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Figure 3.24 Dimensionless fully developed x velocity plotted against 

dimensionless channel width for various Knudsen numbers. (Analytical and 

numerical data is used) 

 
 
 
Mesh size is determined by trial and using the comparisons for Nusselt number 

and velocity profiles. In addition to mesh size, time step size also affects the 

convergence characteristics. To be able to increase the convergence rate, while 

decreasing the run times, adaptive time stepping algorithm is added into code. 

This algorithm selects the maximum time step size, satisfying the stability 

condition. The details of the stability criterion is given in [60] 
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CHAPTER 4 

 

 

RESULTS AND DISCUSSION 

 
 
 
 
 

In this chapter, results obtained from numerical analyses will be presented and 

discussed in detail. The velocity and temperature distribution is investigated in a 

micro channel with constant wall temperature. Simultaneously developing flow 

conditions are analyzed regarding the variation of viscosity and thermal 

conductivity. Numerical simulations are repeated for different Knudsen numbers, 

Brinkman numbers and Reynolds numbers in combination. Working fluid is 

chosen as air. Since air has a definite mean free path at room temperature, by 

defining the Knudsen number range subject to investigation, hydraulic diameter of 

the microchannels that will be analyzed is fixed. Another limitation in our 

analyses is related with the compressibility. The solutions are made by assuming 

that air is incompressible, for this reason maximum velocity of air is required to 

be lower than 0.3 Mach for the pressure and temperature range of the analyses. 

According to these limitations low Reynolds numbers are used in the analyses for 

the sake of being realistic, which also yield low Péclet numbers. The effect of 

Reynolds and Péclet number will be discussed in detail in the following sections. 

 

Knudsen numbers are chosen in the 0.1-0.001 range which is the limit values for 

the slip flow regime. Analyses are repeated for different Knudsen numbers to 

demonstrate the effect of rarefaction on property variation in slip flow. Similarly 

different Brinkman numbers are chosen to show the influence of viscous 

dissipation on property variation in slip flow. Additionally, for two different 
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Péclet numbers analyses are performed for visualizing the effect of axial 

conduction.  

 

Dimensionless numbers and expressions are frequently used while presenting the 

results. The effect of property variation on fluid flow and heat transfer will be 

expressed in terms of Nusselt number. Variation of heat transfer characteristics 

with the effects of viscous dissipation, rarefaction, geometric dimensions and 

axial conduction will be illustrated in terms of local and average Nusselt values. 

Regarding the non-dimensional momentum and energy equations given below 

effects of non-dimensional parameters can be analyzed. 
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Here, 
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PrRe=Pe                (4.5) 

 

 

4.1 Results for Simultaneously Developing Flow 

 

In this section, results will be presented for simultaneously developing flow, by 

considering both constant and variable thermophysical properties. The results are 

obtained for Knudsen numbers, 0.01, 0.02, 0.04, 0.06, 0.08, and 0.1. For all the 

Knudsen numbers analyses are repeated by changing the Brinkman number 

values. The Brinkman number values used are 0.001, 0.01, 0.1, -0.001, -0.01, 0.1. 

The analyses are repeated for six different Knudsen and six different Brinkman 

numbers, with a fixed Péclet number, which is 1. Then to be able to understand 

the effect of Reynolds and Péclet number, some of the analyses are conducted 

with a different Péclet number which is equal to 3.57. The plots are given for a 

few of the parameters used in the analyses for simplicity. Additional plots are 

available in Appendix A. 

 

The effect of rarefaction can be clearly seen from the velocity values at the wall 

boundary, which are shown on the vertical axis in Figure 4.1. As the Knudsen 

number increases, the effect of rarefaction and the slip velocities at the wall 

increase. Development of the x-velocity is also affected from the rarefaction. The 

development of x velocity can be seen in Figures 4.2, 4.3 and 4.4. In these figures 

dimensionless x velocity is plotted against the dimensionless channel width, for 

the vertical sections taken at different locations. The sections are taken from the 

positions where dimensionless channel length is equal to 0.8, 4 and 8. The 

velocity profiles are given for different Knudsen numbers and for the Brinkman 
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number equal to 0.001. Before investigating the effect of property variation, 

simultaneously developing flow with constant property will be demonstrated to 

become familiarized with the nature of simultaneously developing slip flow in 

microchannels. For this reason all of the given velocity profiles are obtained from 

constant property solutions. The velocity profiles obtained from variable property 

solution will be given in comparison with the constant property velocity profiles 

for various Knudsen, Brinkman and Péclet numbers in the Appendix A. 
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Figure 4.1 Dimensionless, developed x-velocity profile for different Knudsen 

numbers at the section x*=12, obtained from constant property solutions (Pe=1) 
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Figure 4.2 Dimensionless x-velocity profile for different Knudsen numbers at the 

section x*=0.8, obtained from constant property solutions (Pe=1) 
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Figure 4.3 Dimensionless x-velocity profile for different Knudsen numbers at the 

section x*=4, obtained from constant property solutions (Pe=1) 

 



 

 93 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.5 1 1.5 2

Dimensionless Width (y*)

D
im

e
n
s
io

n
le

s
s
 x

-V
e
lo

c
it
y
 (
u
*)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Kn0.01 Br 0.001-cp-x*=8 Kn0.02 Br 0.001-cp-x*=8 Kn0.04 Br 0.001-cp-x*=8

Kn0.06 Br 0.001-cp-x*=8 Kn0.08 Br 0.001-cp-x*=8 Kn0.1 Br 0.001-cp-x*=8

 

 

Figure 4.4 Dimensionless x-velocity profile for different Knudsen numbers at the 

section x*=8, obtained from constant property solutions (Pe=1) 

 

 

From the Figures 4.2 4.3 and 4.4 it can be understood that, even for the low 

Reynolds numbers, flow develops rapidly. In Figure 4.3, velocity profiles reach its 

final form at x*=4 and no further development is observed. As a result of this 

rapid development in flow, y velocities are equal to zero, for a wide portion of the 

flow field. The development of y velocities can be demonstrated by using the 

plots for the sections taken at different locations. The plots are given in Figures 

4.5, 4.6 and 4.7. The dimensionless y velocity values are plotted against 

dimensionless channel width for different Knudsen numbers and for Brinkman 

number equal to 0.001. As stated above, the velocity profiles are obtained from 

constant property solutions with a Péclet number of 1. 
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Figure 4.5  Dimensionless y-velocity profile for different Knudsen numbers at the 

section x*=0.4, obtained from constant property solutions (Pe=1) 
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Figure 4.6  Dimensionless y-velocity profile for different Knudsen numbers at the 

section x*=0.8, obtained from constant property solutions (Pe=1) 
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Figure 4.7  Dimensionless y-velocity profile for different Knudsen numbers at the 

section x*=1.2, obtained from constant property solutions (Pe=1) 

 

 

As can be seen in Figures 4.5, 4.6 and 4.7, y velocity values are reduced as the 

dimensionless channel length x* increases. The y velocity values reach zero when 

flow is developed. In addition to the velocity profiles, temperature profiles for 

different Knudsen numbers is obtained in the numerical simulations. Temperature 

profiles, plotted against dimensionless channel width are given at different 

sections in Figures 4.8, 4.9, 4.10 and 4.11 to visualize the thermal development. 

All dimensionless temperature profiles given in the figures are obtained from 

constant property solutions for Brinkman number equal to 0.001 and Péclet 

number equal to 1. 
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Figure 4.8  Dimensionless temperature profile for different Knudsen numbers at 

the section x*=0.8, obtained from constant property solutions (Pe=1) 
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Figure 4.9  Dimensionless temperature profile for different Knudsen numbers at 

the section x*=4, obtained from constant property solutions (Pe=1) 
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Figure 4.10  Dimensionless temperature profile for different Knudsen numbers at 

the section x*=8, obtained from constant property solutions (Pe=1) 
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Figure 4.11  Dimensionless temperature profile for different Knudsen numbers at 

the section x*=12, obtained from constant property solutions (Pe=1) 
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4.1.1 Constant Property Solutions 

 
The thermal development and variation of temperature profile with rarefaction 

effect can be seen from Figures 4.8-4.11. Effect of rarefaction is represented by 

Knudsen number in the non-dimensional solutions. As the Knudsen number 

increases, the temperature jump and velocity slip at the wall boundaries increases. 

This is an expected consequence of rarefaction effect. One other important 

dimensionless parameter is Nusselt number as stated above. Variation of Nusselt 

number with the axial position will provide detailed information about thermal 

development, and heat transfer characteristics of the flow. Plot of Nusselt number 

against the axial direction for constant property solution with Péclet number equal 

to 1 is given in Figure 4.12. In Figure 4.12 results are presented for different 

Knudsen numbers in combination with a positive Brinkman number and Péclet 

number is equal to 1. As it is clear from the definition in Equation (3.25), positive 

Brinkman numbers indicates a cooling process for the fluid. In other words, fluid 

enters the microchannel with a higher temperature than the wall has, and cools 

down. Conversely, negative Brinkman numbers refer to a heating process for the 

fluid. However, heating process in a microchannel has a singularity as a result of 

viscous heating. This singular point emerges where the wall and bulk fluid 

temperatures become equal. At this point there is no heat transfer between the 

wall and the fluid. Besides, at the downstream of this point, fluid temperature 

continues rising as a result of viscous heating. Thereafter, the bulk fluid 

temperature exceeds the wall temperature and cooling process takes place. In 

Figure 4.13 variation of Nusselt number with axial position, is plotted for a 

negative Brinkman number for constant property solutions with Péclet number 

equal to 1.  

 

Considering Figure 4.12 and Figure 4.13, it is possible to see that heat transfer in 

microchannel reduces with increasing Knudsen number. In other words 
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rarefaction has a negative effect in heat transfer for both heating and cooling 

processes. 
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Figure 4.12  Variation of Nusselt number with axial position for different 

Knudsen and positive Brinkman numbers, obtained from constant property 

solutions (Pe=1) 
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Figure 4.13  Variation of Nusselt number with axial position for different 

Knudsen and negative Brinkman numbers, obtained from constant property 

solutions (Pe=1) 

 

 

The fully developed Nusselt numbers for the constant property solutions with a 

Péclet number of 1 is given in Table 4.1. The results are tabulated for various 

Knudsen and Brinkman numbers. Due to the results in Table 4.1 it is possible to 

say that for both positive and negative Brinkman numbers; fully developed 

Nusselt numbers converges to the same value. It is possible to say that viscous 

dissipation has a limited influence on the fully developed region for constant 

property solutions.  
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Table 4.1 Fully developed Nusselt numbers, for various Knudsen and Brinkman 

numbers, obtained from constant property solution (Pe=1) 

 

Br 
Kn 

0.001 0.010 0.100 -0.001 -0.010 -0.100 

0.010 13.660 13.660 13.660 13.660 13.660 13.660 

0.020 11.208 11.208 11.208 11.208 11.208 11.208 

0.040 8.227 8.227 8.227 8.227 8.227 8.227 

0.060 6.486 6.486 6.486 6.486 6.486 6.486 

0.080 5.348 5.349 5.349 5.349 5.349 5.349 

0.100 4.547 4.548 4.548 4.549 4.548 4.548 

 

 

If the channel has a finite length, in addition to the fully developed Nusselt 

numbers, also average Nusselt number for the channel become important. In this 

case channel length is 12 times the channel spacing, for this reason channel 

averaged Nusselt numbers should also be considered while investigating heat 

transfer characteristics. Average Nusselt number values for various Knudsen and 

Brinkman numbers are tabulated in Table 4.2 for constant property solutions with 

a Péclet number of 1.  

 

As expected, with increasing Knudsen number, in other words with increasing 

rarefaction effect, channel averaged heat transfer coefficient and Nusselt number 

will decrease. 

 

For the positive Brinkman numbers, where the fluid is cooled by the wall, local 

Nusselt number experiences a jump, as it is illustrated in Figure 4.12. This jump is 
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mainly caused by viscous dissipation. In the beginning of entrance region, as a 

result of cooling, the bulk fluid temperature starts to decrease. As the bulk 

temperature of the fluid decreases, the heat transfer rate reduces. The decrease in 

heat transfer rate together with the viscous heat generation causes a rapid increase 

in the bulk fluid temperature. This rapid increase in bulk fluid temperature yields 

higher heat transfer rate which creates a jump in Nusselt value. If the viscous 

dissipation increases, the jump point will move in the upstream direction. The 

shift in jump point position for Knudsen number 0.01 can be seen in Figure 4.14 

for constant property solutions with a Péclet number of 1. The detailed plots for 

different Knudsen numbers of variable and constant property solutions are 

available in Appendix A.  

 

The reason for the migration of jump point is the higher heat generation that 

increases the bulk fluid temperature earlier and more rapidly. For this reason with 

the increasing viscous dissipation, thermal entry length reduces. As it can be seen 

from Figure 4.12 and Figure 4.14, entrance region Nusselt numbers are lower than 

the fully developed Nusselt numbers for positive Brinkman numbers. Therefore as 

the Brinkman numbers increases, channel averaged Nusselt numbers will be 

increased and approximated the fully developed values. This increase in averaged 

Nusselt values mainly stems from the shortened entrance length. The variation of 

channel averaged Nusselt numbers can be seen in Table 4.2. 
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Table 4.2 Channel averaged Nusselt numbers, for various Knudsen and Brinkman 

numbers, obtained from constant property solution (Pe=1) 

 

Br 
Kn 

0.001 0.010 0.100 -0.001 -0.010 -0.100 

0.010 11.820 12.476 13.145 10.262 10.477 13.281 

0.020 9.779 10.280 10.784 11.344 10.253 13.270 

0.040 7.278 7.602 7.926 7.535 7.910 8.197 

0.060 5.798 6.028 6.257 5.803 6.879 6.036 

0.080 4.819 4.993 5.166 5.273 5.131 5.168 

0.100 4.123 4.260 4.396 3.889 4.561 3.899 
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Figure 4.14  Variation of Nusselt number with axial position for different positive 

Brinkman numbers, obtained from constant property solutions (Kn=0.01, Pe=1) 
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The channel averaged Nusselt values obtained from analyses of negative 

Brinkman numbers, are also given in Table 4.2. Unfortunately, the variation of 

channel averaged Nusselt numbers can not be directly related with the viscous 

dissipation by using these data. Virtually high heat transfer rates, in the vicinity of 

singular point create unrealistic channel averages. Therefore, considering channel 

averaged Nusselt values for negative Brinkman numbers will not be presented 

beyond this point.  

 

Moreover, from Figure 4.13, it is possible to see the variation of the axial position 

of the singularity point with Knudsen numbers. Additionally the variation of local 

Nusselt numbers and the axial position of singularity point with the effect of 

viscous dissipation can be seen in Figure 4.15 for constant property solutions. As 

stated above the detailed plots for both constant and variable properties are 

available in Appendix A.  
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Figure 4.15  Variation of Nusselt number with axial position for different positive 

Brinkman numbers, obtained from constant property solutions (Kn=0.01, Pe=1) 
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With increasing Knudsen number, the point of singularity moves in the 

downstream direction, due to increasing rarefaction and reduced heat transfer rate. 

On the other hand as the viscous dissipation increases, the bulk fluid temperature 

will increase more rapidly and will be equalized to the wall temperature earlier. 

This phenomenon will move the singularity point towards upstream direction as 

mentioned above. One other parameter that will be discussed is the Péclet number. 

This dimensionless quantity represents the relative importance of axial conduction 

in the energy equation. Actually Péclet number is the product of Reynolds and 

Prandtl number, and Prandtl number is fixed for a definite fluid. Therefore, 

changing Péclet number for a fluid refers to changing the Reynolds number. The 

effect of Péclet number, in combination with Knudsen and positive Brinkman 

number can be seen in Figure 4.16  
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Figure 4.16  Variation of Nusselt number with axial position for various Knudsen 

numbers, obtained from constant property solutions 

(Br=0.001, Pe=1, Pe=3.57) 
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Mainly, the increase in Reynolds number causes an increase in the entrance 

length. For the positive Brinkman numbers, in other words for the fluid heating 

process, axial position of the jump in local Nusselt values will move in to the 

downstream direction with increasing Reynolds number.  

 

For same Knudsen number, fully developed Nusselt numbers, converge to almost 

same value, regardless of Brinkman Reynolds and Péclet number as expected. 

Fully developed Nusselt numbers for various Knudsen, Brinkman and two 

different Péclet numbers are tabulated in Table 4.3. Even though the effect of 

axial conduction is not obviously decreased with the increase of Péclet number; 

the small differences observed in fully developed Nusselt values are thought to be 

caused by the reduced significance of axial conduction term. Effect of Brinkman 

number in combination with the increased Péclet number can be seen in Figure 

4.17. 
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Figure 4.17  Variation of Nusselt number with axial position for various 

Brinkman numbers, obtained from constant property solutions  

(Kn=0.01, Pe=1, Pe=3.57) 
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The channel averaged Nusselt number for two different Péclet and positive 

Brinkman numbers are also given in Table 4.4. Due to the results of analyses for 

positive Brinkman numbers, increasing Reynolds number and entrance length 

causes a substantial decrease in the channel averaged Nusselt values. This 

decrease is a result of finite channel length and shift in position of jump in Nusselt 

values.  

 

 

Table 4.3 Fully developed Nusselt numbers, for various Knudsen and Brinkman 

numbers, obtained from constant property solution (Pe=1, Pe=3.57) 

 

 Br 

 

Kn 
0.001 0.100 -0.001 -0.100 

0.010 13.660 13.660 13.660 13.660 

0.040 8.227 8.227 8.227 8.227 

P
e=

1 

0.100 4.547 4.548 4.549 4.548 

0.010 13.676 13.676 13.676 13.676 

0.040 8.260 8.260 8.260 8.260 

P
e=

3.
57

 

0.100 4.603 4.603 4.603 4.603 

 

 

 

 
 
 
 
 
 
 
 
 
 



 

 108 

 
 
Table 4.4 Channel averaged Nusselt numbers, for various Knudsen and positive 

Brinkman numbers, obtained from constant property solution   

(Pe=1, Pe=3.57) 

 

  Br 

  
Kn 

0.001 0.100 

0.010 11.820 12.476 

0.040 7.278 7.602 

P
e=

1 

0.100 4.123 4.260 

0.010 9.683 12.200 

0.040 6.424 7.454 

P
e=

3.
57

 

0.100 3.915 4.229 

 

 

The variation of Nusselt number is plotted against axial position in Figure 4.18 for 

various Knudsen number and two different Péclet number. Similarly, for the 

negative Brinkman numbers, effect of axial conduction will not be easily 

understood, with the slight change in Péclet number from 1 to 3.57. However, it is 

possible to say that increased Reynolds number causes an increase in the entrance 

length, due to delayed development of the flow. The fully developed Nusselt 

numbers converge to the same value for the same Knudsen number regardless of 

the Brinkman and Péclet numbers. The effect of negative Brinkman number in 

combination with Péclet number can be seen in Figure 4.19. As discussed earlier, 

increased viscous heating will shift the position of singular point toward upstream 

direction. Additionally with the increase of Reynolds number, the influence of 

Brinkman number will become more significant. 
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Figure 4.18  Variation of Nusselt number with axial position for various Knudsen 

numbers, obtained from constant property solutions 

(Br=-0.001,Pe=1, Pe=3.57) 
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Figure 4.19  Variation of Nusselt number with axial position for various 

Brinkman numbers, obtained from constant property solutions 

(Kn=0.01, Pe=1, Pe=3.57) 
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4.1.2 Variable Property Solutions 

 
After completing the overview about simultaneously developing flow with 

constant thermophysical properties, in the slip flow regime, property variation 

effect can be discussed in detail in the following part. 

 

First of all, the effect of rarefaction will be discussed in comparison with the 

property variation. Then, for each Knudsen number, relative significance of axial 

conduction and viscous dissipation will be investigated.  

 

In the variable property analyses, the dimensional temperature values for inlet and 

wall temperature should be defined to non-dimensionalize the thermal 

conductivity and viscosity. Hence for the fluid heating where Brinkman numbers 

are positive, the inlet temperature is taken as 444 K and the wall temperature is 

taken as 296 K. For the second case in which fluid is heated by the wall, wall 

temperature is taken as 394 K and inlet temperature is taken as 296 K. By using 

these dimensional values, the property variation range of air is defined. 

 

The axial variation of Nusselt numbers, for various Knudsen numbers, and 

positive Brinkman numbers obtained from variable and constant property 

solutions are plotted in Figure 4.22 .The solid lines in the graph denotes the results 

obtained from constant property solution and a suffix "cp" is added to their labels. 

The dashed lines in the plots stand for the results of variable property solutions 

and "vp" is added as a suffix to their label.  

 

In the following parts, the percent difference in local Nusselt values between 

constant and variable property solutions will be demonstrated frequently. The 

term will be denoted as “%∆ Nu” and expressed as follows, 
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% 100vp cp

cp

Nu Nu
Nu x

Nu

−
∆ =                  (4.6) 
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Figure 4.20  Variation of Nusselt number with axial position for various Knudsen 

numbers, obtained from constant and variable property solutions 

 (Br=0.001, Pe=1) 

 

 

The difference between variable and constant property solution local Nusselt 

numbers decreases with increasing Knudsen number as it can be seen in Figure 

4.20. Furthermore, the difference is visualized in Figure 4.21 more clearly. In 

Figure 4.21, the difference between variable and constant property local Nusselt 

numbers is plotted against axial position.  

 

Basically, the difference between constant and variable property solutions is 

strongly related to the temperature gradients. For this reason as the rarefaction 
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increases, the temperature and velocity gradients will be decreased. The decrease 

in temperature gradients can also be seen from the flattened temperature profiles 

with increasing Knudsen number in Figures 4.8-4.11.  

 

As can be seen from Figure 4.21, the difference also has a peak value at an axial 

position, which varies with Knudsen and Brinkman number. The peak value is 

decreased with increasing rarefaction as a result of reduced temperature gradients. 

Additionally, the axial position of the peak value, move in to downstream with 

increasing Knudsen number as a result of retarded decrease of heat transfer rate in 

the entrance region.  

 

The viscous heat generation and reduced heat transfer rate increases the bulk fluid 

temperature which yields a jump in heat transfer rates and temperature gradient. 

Consequently with the variation of Knudsen number, the location of the jump in 

Nusselt number and peak value for the difference moves to the downstream. Since 

the fluid cools down, both viscosity and thermal conductivity values will be 

decreased, which causes a reduced conductive heat transfer and viscous heating. 

The conductive heat transfer and viscous dissipation are acting in the same way 

for the bulk temperature rise in the downstream. For this reason variable property 

solution will experience a delayed jump in local Nusselt values due to reduced 

viscosity and thermal conductivity.  
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Figure 4.21  Variation of percent difference in Nusselt number between constant 

and variable property solutions with axial position for various Knudsen numbers 

(Br=0.001, Pe=1, Pe=3.57) 

 

 

As can be seen from Figure 4.21 the difference between constant and variable 

property local Nusselt values may reach 15 %. However the difference reduces to 

zero for the fully developed flow conditions. Thus it is possible to say that 

property variation effect is not significant for the fully developed flow. The fully 

developed Nusselt values are tabulated in Table 4.5 for constant and variable 

property solutions of various Knudsen and Brinkman numbers. The main reason 

for the negligible differences between variable and constant property solutions in 

the fully developed flow can be stated as reduced temperature gradients. 
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Table 4.5 Fully developed Nusselt numbers, for various Knudsen and Brinkman 

numbers, obtained from constant and variable property solutions (Pe=1) 

 

  Br 

cp vp cp vp cp vp 
Kn 

0.001 0.001 0.010 0.010 0.100 0.100 

0.010 13.660 13.661 13.660 13.675 13.660 13.810 

0.020 11.208 11.209 11.208 11.217 11.208 11.289 

0.040 8.227 8.227 8.227 8.230 8.227 8.256 

0.060 6.486 6.486 6.486 6.488 6.486 6.500 

0.080 5.348 5.348 5.349 5.350 5.349 5.356 

0.100 4.547 4.548 4.548 4.549 4.548 4.553 

 

 

 

In addition to the fully developed Nusselt numbers, channel averaged Nusselt 

values for variable and constant property solutions are tabulated in Table 4.6.  

When both Table 4.6 and Figure 4.21 are considered together it can be said that 

the difference between constant and variable property solutions may be locally 

significant but, the positive difference in the early entrance region and negative 

difference observed in the downstream of entrance region will compensate each 

other and the average difference become very low. By considering the channel 

averaged Nusselt values in Table 4.6, it is possible to say that the difference 

increases with increasing Brinkman numbers. This phenomenon will be discussed 

in detail in the following parts. 
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Table 4.6 Channel averaged Nusselt numbers, for various Knudsen and Brinkman 

numbers, obtained from variable and constant property solutions (Pe=1) 

 

 
Br 

cp vp cp vp cp vp 
Kn 

0.001 0.001 0.010 0.010 0.100 0.100 

0.010 11.820 11.529 12.476 12.318 13.145 13.237 

0.020 9.779 9.544 10.280 10.147 10.784 10.815 

0.040 7.278 7.115 7.602 7.505 7.926 7.918 

0.060 5.798 5.679 6.028 5.954 6.257 6.241 

0.080 4.819 4.730 4.993 4.933 5.166 5.148 

0.100 4.123 4.059 4.260 4.212 4.396 4.379 

 

 

The Nusselt values are plotted against axial position for variable and constant 

property solutions of negative Brinkman numbers in Figure 4.22. The plots of 

Nusselt number for various Knudsen numbers are given in comparison with the 

property variation effect. Since it is not easy to follow the difference between 

constant and variable property results from the plot in Figure 4.22, the variation of 

difference with axial position is given in Figure 4.23. The position of singularity 

in local Nusselt values changes with the property variation. Moreover percent 

difference plots are not clear due to the shift in singularity position. For this 

reason, the peak value of the difference between variable and constant property 

solutions become infinitely high and has no significance. However, by looking at 

the Figures 4.22 and 4.23, it is possible to say that, effect of property variation 

will shifts the position of singular point towards upstream. The main reason for 

this shift may be the increased bulk fluid temperature as a result of heating. The 

increase in fluid temperature results in increased thermal conductivity and 

viscosity. Due to the increased thermal conductivity and viscosity, both 
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conductive heat transfer rate and viscous heating will be increased. Consequently, 

the fluid will reach the wall temperature more rapidly than the constant property 

solution. 

 

Another remarkable point of Figure 4.22 is the variation of the difference between 

variable and constant property solutions with increasing rarefaction effect. The 

increased rarefaction effect causes an increase in the difference. The reason for the 

increased difference may be the decreased convective heat transfer rate with 

increasing rarefaction. Moreover, as a result of increased thermal conductivity, the 

conductive heat transfer rate will also be increased, because for the fluid heating 

case, convective and conductive heat transfer mechanism are counteracting. In 

other words, heat is diffused to the upstream while fluid is flowing downstream. 

As a result, with increasing rarefaction, relative significance of conductive heat 

transfer will be increased while the relative significance of convective heat 

transfer is decreased. Due to the increase in thermal conductivity, the property 

variation effect will be emphasized more for high Knudsen numbers. 

 

Similar to the positive Brinkman number analyses results, the fully developed 

Nusselt numbers for both variable and constant property solutions converge to the 

same value. The fully developed local Nusselt values for various Knudsen and 

negative Brinkman numbers are given in Table 4.7 for constant and variable 

property solutions. As stated above the difference becomes negligible for the fully 

developed flow as a result of lower temperature gradients. 
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Figure 4.22  Variation of Nusselt number with axial position for various Knudsen 

numbers, and negative Brinkman numbers, obtained from constant and variable 

property solutions (Br=-0.001,Pe=1) 
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Figure 4.23  Variation of percent difference in Nusselt number between constant 

and variable property solutions with axial position for various Knudsen numbers 

(Br=-0.001,Pe=1) 
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Table 4.7 Fully developed Nusselt numbers, for various Knudsen and Brinkman 

numbers, obtained from constant and variable property solution (Pe=1) 

 

  Br 

cp vp cp vp cp vp 
Kn 

-0.001 -0.001 -0.010 -0.010 -0.100 -0.100 

0.010 13.660 13.661 13.660 13.668 13.660 13.742 

0.020 11.208 11.209 11.208 11.213 11.208 11.253 

0.040 8.227 8.227 8.227 8.228 8.227 8.243 

0.060 6.486 6.486 6.486 6.487 6.486 6.494 

0.080 5.349 5.349 5.349 5.349 5.349 5.352 

0.100 4.549 4.548 4.548 4.548 4.548 4.550 

 

 

As stated previously the channel averaged Nusselt values will not be presented for 

the negative Brinkman number analyses results, due to singular points. 

 

The variable property effect will be discussed in comparison with viscous 

dissipation by varying the Brinkman number while Knudsen number and Péclet 

numbers are fixed. In  Figure 4.24,  the variation of Nusselt number with axial 

position is plotted for various positive Brinkman numbers while Knudsen number 

equal to 0.01 and Péclet number equal to 1. With increasing Brinkman number, 

length of thermal entrance region increases meanwhile, the position of the jump in 

Nusselt value, moves towards. The reasons for this shift was discussed in detail, in 

the previous sections.  The difference between variable and constant property 

solutions can be seen in Figure 4.24. The percent difference in local Nusselt 

values are plotted against axial position in Figure 4.25Figure 4.27, however they 

are not so clear and comprehensible. 
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Figure 4.24  Variation of Nusselt number with axial position for various positive 

Brinkman numbers, obtained from constant and variable property solutions 

(Kn=0.01, Pe=1) 

 

 

As it can be seen in Figure 4.25 the positive difference between constant and 

variable local Nusselt values, in the early entrance region is approximately the 

same for all the Brinkman numbers. Hence, in the early entrance region; the 

temperature gradients are inherently independent from the effect of viscous 

dissipation. On the other hand, in the downstream of entrance region, where the 

difference between variable property solutions are negative, viscous dissipation is 

effective. Increasing viscous dissipation has a negative effect on the peak value of 

the difference between variable and constant property local Nusselt numbers. On 

the contrary the difference in channel averaged Nusselt values are increasing with 

increased viscous dissipation. As the fluid enters the channel, the viscosity and 

thermal conductivity decreases with the decreasing temperature. Additionally, the 

conductive heat transfer rate is reduced with the reduced thermal conductivity. In 

the fluid cooling case, the conductive heat transfer assists the convective one. 
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Hence, the assistance of conductive heat transfer will be weaker for reduced 

viscous heat generation due to the retarded increase in thermal conductivity. 

Consequently, the variable property solution experiences a slower development as 

a result of reduced heat transfer rate and reduced heat generation. For this reason 

the difference between variable and constant property solutions are increasing 

with decreased positive Brinkman number. The position of this peak shifts to the 

downstream with decreasing Brinkman number, which results from the shift in the 

position of the jump in local Nusselt values. The reason of the shift in jump point 

position is discussed in previous parts. Since the difference between variable and 

constant property solutions converges to zero for Brinkman number equal to 0.001 

and 0.01 in the fully developed region, there is still a finite difference for the 

Brinkman number 0.1. The order of difference is 1 % which may be resulted from 

increased viscous dissipation effect or numerical instability introduced. 
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Figure 4.25  Variation of percent difference in Nusselt numbers between constant 

and variable property solutions with axial position for various positive Brinkman 

numbers (Kn=0.01, Pe=1) 
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In the Figure 4.26 the Nusselt values for both variable and constant property 

solutions for different positive Brinkman numbers with a  Knudsen number of 

0.04 and Péclet number of 1 is plotted against the axial position. Additionally the 

percent difference in Nusselt numbers are also plotted against axial position in 

Figure 4.27. Mainly the curves have the same characteristics with the previous 

ones in which Knudsen number is equal to 0.01. The dependence of variable 

property effect on Knudsen number was also discussed in detail previously. 
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Figure 4.26  Variation of Nusselt number with axial position for various positive 

Brinkman numbers, obtained from constant and variable property solutions 

(Kn=0.04, Pe=1) 
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Figure 4.27  Variation of percent difference in Nusselt numbers between constant 

and variable property solutions with axial position for various positive Brinkman 

numbers (Kn=0.04, Pe=1) 

 
 
Similarly the variation of Nusselt values and percent difference is plotted against 

the axial position in Figure 4.28 and Figure 4.29 respectively. The only difference 

between previous plots is the values of local Nusselt numbers and the percent 

differences. 
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Figure 4.28  Variation of Nusselt number with axial position for various positive 

Brinkman numbers, obtained from constant and variable property solutions 

(Kn=0.1, Pe=1) 
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Figure 4.29  Variation of percent difference in Nusselt numbers between constant 

and variable property solutions with axial position for various positive Brinkman 

numbers (Kn=0.1, Pe=1) 
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In addition to the effects of Brinkman and Knudsen number, also Péclet number 

has an effect on the property variation. In Figure 4.30 the variation of Nusselt 

values for various Knudsen numbers and two different Péclet number is plotted 

against axial position. Extra plots covering variation of Nusselt number with axial 

position for different Knudsen values is available in Appendix A. 

 

As it can be seen from Figure 4.30, increased Péclet number increases the 

entrance length. Additionally the axial location of the jump in Nusselt values 

shifted to the downstream direction, as a result of delayed development in velocity 

and temperature profiles. 

 

The difference between variable and constant property solutions is increased with 

increased Péclet number as a result of increased temperature gradients. The 

difference for different Péclet numbers and Knudsen numbers are plotted against 

axial position in Figure 4.31. Where, the peak value of the difference increases 

with increasing Péclet number. Moreover it moves to the downstream due to the 

shifted Nusselt value jump position.  

 

The fully developed Nusselt values for Péclet numbers, 1 and 3.57 are tabulated in 

Table 4.8. The fully developed values are approximately the same for variable and 

constant property solutions of different Péclet numbers, whereas there is very little 

difference due to the decreased axial conduction or increased numerical errors 

with increasing Péclet number.  

 

According to the results given in Table 4.8, effect of Brinkman number on 

property variation is emphasized with increasing Péclet number. This increased 

influence of Brinkman number is a result of increased velocity gradients with 

increasing Péclet number. On the other hand, as the rarefaction increases, the 

property variation effect becomes less severe with increasing Péclet number. The 

reason for reduced effect of property variation is the decreased gradients due to 
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increased rarefaction. One other reason for the reduced effect of property variation 

may be the decreased thermal conductivity with decreasing temperature. 

 

 As the Péclet number increases, the relative significance of axial conduction 

decreases, in addition to the decrease in thermal conductivity, the assistance of 

conductive heat transfer will be also reduced. Both reduced conductive and 

convective heat transfer will compensate the effect of increased temperature 

gradients with increased Péclet number. Consequently the property variation 

effect becomes less emphasized with increased Péclet numbers for high Knudsen 

values. 
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Figure 4.30  Variation of Nusselt number with axial position for various positive 

Knudsen numbers, obtained from constant and variable property solutions 

(Br=0.001, Pe=1, Pe=3.57) 
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Figure 4.31  Variation of percent difference in Nusselt number between constant 

and variable property solutions with axial position for various Knudsen numbers 

(Br=0.001, Pe=1, Pe=3.57) 

 

 

Table 4.8 Fully developed Nusselt numbers, for various Knudsen and Brinkman 

numbers, obtained from constant and variable property solutions  

 

  Br 

 cp vp cp vp 

 
Kn 

0.001 0.001 0.100 0.100 

0.010 13.660 13.661 13.660 13.810 

0.040 8.227 8.227 8.227 8.256 

P
e=

1 

0.100 4.547 4.548 4.548 4.553 

0.010 13.676 13.760 13.676 13.900 

0.040 8.260 8.359 8.260 8.380 

P
e=

3.
57

 

0.100 4.603 4.691 4.603 4.690 
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In addition to the effect of Knudsen number, the effect of Brinkman number on 

property variation will also be discussed in combination with Péclet number. In 

Figure 4.32, the Nusselt numbers for different Péclet and Brinkman numbers are 

plotted against the axial position while Knudsen number is equal to 0.01. As 

previously discussed, the thermal entrance region is elongated with decreased 

positive Brinkman number, due to the reduced viscous heat generation. On the 

contrary, the difference between variable and constant property solutions is 

increased with decreasing Brinkman number. The details of this phenomenon are 

discussed above.  

 

The difference between variable and constant property solutions are plotted 

against axial position in Figure 4.33 for convenience. As stated above the 

difference increases with increasing Péclet number, and shifts to the downstream 

due to the delayed flow development. Detailed plots for different Knudsen and 

Brinkman numbers are available in Appendix A. 
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Figure 4.32  Variation of Nusselt number with axial position for various positive 

Brinkman numbers, obtained from constant and variable property solutions 

(Kn=0.01, Pe=1, Pe=3.57) 
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Figure 4.33  Variation of percent difference in Nusselt number between constant 

and variable property solutions with axial position for various positive Brinkman 

numbers (Kn=0.01, Pe=1, Pe=3.57) 
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Effect of variable viscosity and thermal conductivity is discussed above in 

combination with the effects of Brinkman, Knudsen and Péclet number. In 

addition to this, Nusselt values and percent difference between variable and 

constant property solutions are plotted against axial position for various Knudsen, 

positive Brinkman and Péclet numbers in combination below. The fully developed 

Nusselt values, for Péclet number 3.57 may differ from the constant properties 

solution made with a Péclet number of 1. The difference in fully developed 

Nusselt values is increased with increasing Péclet number for higher Knudsen 

numbers. For this reason, the difference is thought to be resulting from decreased 

significance of axial conduction. Moreover the fully developed Nusselt values are 

higher for the increased Péclet number which can be a consequence of increased 

convective heat transfer rate. 
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Figure 4.34  Variation of Nusselt number with axial position for various positive 

Brinkman numbers, obtained from constant and variable property solutions 

(Kn=0.04, Pe=1, Pe=3.57) 
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Figure 4.35  Variation of percent difference in Nusselt number between constant 

and variable property solutions with axial position for various positive Brinkman 

numbers (Kn=0.04, Pe=1, Pe=3.57) 

 
 
 
The reasons of decreasing difference between constant and variable property local 

Nusselt values with increasing viscous dissipation have been discussed in the 

previous parts. As a result, only the combined effects of Péclet and Brinkman 

numbers will be discussed in this part.  

 

Increased Péclet number will cause an increase in the effect of viscous heating as 

a result of increased velocity gradients. Additionally, as the fluid is cooled in the 

channel, the viscosity will be reduced which will decrease the effect of viscous 

dissipation in variable property solutions. Therefore the difference in variable and 

constant property local Nusselt numbers will not be significantly increased with 

increasing Péclet number while Brinkman number is held constant.  

 



 

 131 

3

4

5

6

7

0 4 8 12 16 20 24

Dimensionless Length(x*)

N
u

3

4

5

6

7

Kn 0.1 Br 0.001-vp-Pe1 Kn 0.1 Br 0.1-vp-Pe1

Kn 0.1 Br 0.1-vp-Pe3.57 Kn 0.1 Br 0.001-cp-Pe1

Kn 0.1 Br 0.1-cp-Pe1 Kn 0.1 Br 0.001-cp-Pe3.57

Kn 0.1 Br 0.1-cp-Pe3.57 Kn 0.1 Br 0.001-vp-Pe3.57  

 

Figure 4.36  Variation of Nusselt number with axial position for various positive 

Brinkman numbers, obtained from constant and variable property solutions 

(Kn=0.1, Pe=1,Pe=3.57) 

 

 

-8

-6

-4

-2

0

2

4

6

0 4 8 12 16 20 24

Dimensionless Length(x*)

%
 ∆

N
u

-8

-6

-4

-2

0

2

4

6

Kn 0.1 Br 0.001  Pe=1 Kn 0.1 Br 0.1 Pe=1

Kn 0.1 Br 0.1 Pe=3.57 Kn 0.1 Br 0.001 Pe=3.57  

 

Figure 4.37  Variation of percent difference in Nusselt number between constant 

and variable property solutions with axial position for positive Brinkman 

numbers, (Kn=0.1, Pe=1, Pe=3.57) 
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After completing the discussion about the combined effects of Brinkman, Péclet 

and Knudsen number on property variation in fluid heating process, the effects of 

same parameters will be discussed for fluid cooling process. Rarefaction, viscous 

dissipation and property variation will be discussed in combination, to be able to 

understand their influence on heat transfer characteristics. The Nusselt numbers 

obtained from variable and constant property solutions are plotted against axial 

dimension in Figure 4.38 for negative Brinkman numbers for a fixed Knudsen 

number. As it can be seen in Figure 4.38, the position of the singular point in 

variable property solutions is moved to the upstream. Main reason for the shift in 

position of the singular point is increase in viscosity and thermal conductivity of 

air with increasing temperature after it enters the channel. The increase in 

viscosity causes an increase in viscous heating, while the increase in thermal 

conductivity increases the conductive heat transfer. The conductive heat transfer 

is heating the upstream of the flow. Due to the increased conductive heat transfer, 

the fluid temperature reaches the wall temperature faster and earlier with the 

increased viscous dissipation.  

 

Moreover, the effect of viscous dissipation on property variation can be seen by 

looking at Figure 4.38. The difference between variable and constant property 

solutions are decreased with decreasing negative Brinkman number. When 

viscous dissipation is increased, the fluid is heated more and this will increase the 

viscosity and thermal conductivity. The increased viscous dissipation due to 

increased viscosity and increased conductive heat transfer due to increased 

thermal conductivity will act in opposite directions. As a result of these 

counteracting mechanisms the difference will be reduced with increasing viscous 

dissipation. In Figure 4.39 the percent difference between constant and variable 

property Nusselt values are plotted against the axial position. This plot is not so 

clear, but it is possible to see the shift in singularity point by looking this plot. 
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Figure 4.38  Variation of Nusselt number with axial position for various negative 

Brinkman numbers, obtained from constant and variable property solutions 

(Kn=0.01, Pe=1) 
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Figure 4.39  Variation of Nusselt difference in Nusselt number between constant 

and variable property solutions with axial position for negative Brinkman 

numbers, (Kn=0.1, Pe=1) 
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In addition to the effect of Brinkman number, also combined effects of Brinkman 

and Knudsen numbers, on property variation needs to be discussed for heating 

process. Therefore, both variable and constant property Nusselt numbers are 

plotted for a Knudsen number of 0.04 and various negative Brinkman numbers, 

with a Péclet number equal to 1 in Figures 4.40 and 4.41. 

 

By considering Figure 4.40 and Figure 4.41 it is possible to see that the effect of 

viscous heating on property variation decreases with increased rarefaction. Since 

the viscous heating is decreasing with increased rarefaction effect, the property 

variation will be less dependent on viscous dissipation. Furthermore, the viscous 

dissipation and convective heat transfer rate will be reduced with increased 

rarefaction and as a result, effect of property variation will be more emphasized, 

due to increased significance of conductive heat transfer. 
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Figure 4.40  Variation of Nusselt number with axial position for various negative 

Brinkman numbers, obtained from constant and variable property solutions 

(Kn=0.01, Pe=1) 
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Figure 4.41  Variation of percent difference in Nusselt number between constant 

and variable property solutions with axial position for negative Brinkman 

numbers, (Kn=0.04, Pe=1) 

 

 

Similarly the difference between variable and constant property solutions can be 

seen in Figure 4.42 and Figure 4.43 for Knudsen number 0.1 and various negative 

Brinkman numbers with a Péclet number of 1. 
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Figure 4.42  Variation of Nusselt number with axial position for various negative 

Brinkman numbers, obtained from constant and variable property solutions 

(Kn=0.1, Pe=1) 
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Figure 4.43  Variation of percent difference in Nusselt number between constant 

and variable property solutions with axial position for negative Brinkman 

numbers, (Kn=0.1, Pe=1) 
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After completing the discussions about the combined effects of Knudsen and 

negative Brinkman numbers on the property variation, the effect of Péclet number 

will be discussed in detail in the following section.  

 

The variation of Nusselt values for constant and variable property solutions are 

plotted against the axial position for two different Péclet numbers which are 1, 

and 3.57. 

 

As discussed before and can be seen from Figure 4.44, the singular point shifts to 

the downstream with increasing Reynolds number. Similar to the positive 

Brinkman number cases, with increasing Péclet number, the difference between 

variable and constant property solutions will be increased. However this is valid 

for the low Knudsen number flows. Different from the positive Brinkman number 

case, increasing Péclet number will reduce the difference between constant and 

variable property solutions with increasing rarefaction for Brinkman number -

0.001. As discussed above, the thermal conductivity will be increasing with the 

heating of the fluid. Moreover, the significance of conductive heat transfer will be 

reduced with the increased Péclet number. The low viscous dissipation combined 

with increased Péclet number will reduce the difference resulted from increased 

conductive heat transfer in variable property solutions. Consequently the 

difference between Nusselt numbers of variable and constant property solutions 

will be reduced with increasing Péclet and Knudsen number for low Brinkman 

numbers. The percent difference is plotted against axial position in Figure 4.45. 

The shift in position of singular point can also be seen from Figure 4.45. 

 

In brief, Péclet and Knudsen numbers have counteracting effects on the shift in 

position of singular point, for variable property solutions. Increased rarefaction 

will retards the heating of fluid by reducing the effect of viscous heating while 

increased Péclet number will increase effect of viscous dissipation.  
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Figure 4.44  Variation of Nusselt number with axial position for various negative 

Brinkman numbers, obtained from constant and variable property solutions 

(Kn=0.01, Pe=1, Pe=3.57) 
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Figure 4.45  Variation of Nusselt difference in Nusselt number between constant 

and variable property solutions with axial position for negative Brinkman 

numbers, (Kn=0.1, Pe=1, Pe=3.57) 
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Fully developed Nusselt numbers will converge to the same values with very little 

differences for different Péclet numbers. Main reason for these small differences 

possibly result from increased axial conduction effect. The fully developed 

Nusselt numbers are tabulated in Table 4.9. 

 

 

Table 4.9 Fully developed Nusselt numbers, for various Knudsen and Brinkman 

numbers, obtained from constant and variable property solutions (Pe=1) 

 

  Br 

 cp vp cp vp 

 
Kn 

-0.001 -0.001 -0.100 -0.100 

0.010 13.660 13.661 13.660 13.742 

0.040 8.227 8.227 8.227 8.243 

P
e=

1 

0.100 4.549 4.548 4.548 4.550 

0.010 13.676 13.664 13.676 13.745 

0.040 8.260 8.238 8.260 8.254 

P
e=

3.
57

 

0.100 4.603 4.691 4.603 4.690 

 

 

As can be seen from Table 4.9, the difference in fully developed Nusselt values in 

variable property solutions are increased with the increasing viscous dissipation 

for the low Knudsen numbers. On the other hand the difference in fully developed 

Nusselt values due to property variation is decreased with increasing viscous 

dissipation for higher Knudsen numbers. It is possible to observe the combined 

effect of Brinkman and Péclet numbers by varying the Péclet and Brinkman 

numbers while Knudsen number is fixed. In Figure 4.46 the variation of Nusselt 

values with axial position is plotted for Knudsen equal to 0.01.  
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The difference between constant and variable property solutions is increased for 

increasing negative Brinkman number when Knudsen number is equal to 0.01. 

The reason for the increased difference between constant and variable local 

Nusselt numbers with decreasing negative Brinkman number is explained above. 

The difference between variable and constant property solutions are plotted 

against axial position in Figure 4.47.  
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Figure 4.46  Variation of Nusselt number with axial position for various negative 

Brinkman numbers, obtained from constant and variable property solutions 

(Kn=0.01, Pe=1, Pe=3.57) 
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Figure 4.47  Variation of  percent difference in Nusselt number between constant 

and variable property solutions with axial position for negative Brinkman 

numbers, (Kn=0.1, Pe=1, Pe=3.57) 

 

 

The local Nusselt values of variable and constant properties are plotted for 

Knudsen number of 0.04 in Figure 4.48 .With the increase of rarefaction, the 

relative significance of convective heat transfer is reduced. For this reason, as the 

viscous dissipation is increased, the difference between constant and variable 

property solutions will be increased.  As stated above, with increased viscous 

heating the temperature and the thermal conductivity and will be increased. In 

addition to the increase in conductive heat transfer, the decrease in convective 

heat transfer will results in a higher drop in heat transfer coefficients. The 

differences are plotted against axial position in Figure 4.49. Similar results are 

obtained for Knudsen number 0.1. The increased viscous heating will cause a 

higher drop in local Nusselt values of variable property solutions with the 

increased rarefaction. However, the decrease in convective heat transfer combined 

with low viscous dissipation will result in small differences between constant and 
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variable property solutions. The plots of Nusselt values and percent difference are 

given in Figure 4.50 and Figure 4.51 respectively. 
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Figure 4.48  Variation of Nusselt number with axial position for various negative 

Brinkman numbers, obtained from constant and variable property solutions 

(Kn=0.04, Pe=1, Pe =3.57) 
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Figure 4.49  Variation of percent difference in Nusselt number between constant 

and variable property solutions with axial position for negative Brinkman 

numbers, (Kn=0.1, Pe=1, Pe=3.57) 
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Figure 4.50  Variation of Nusselt number with axial position for various negative 

Brinkman numbers, obtained from constant and variable property solutions 

(Kn=0.01, Pe=1, Pe=3.57) 
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Figure 4.51  Variation of percent difference in Nusselt number between constant 

and variable property solutions with axial position for negative Brinkman 

numbers, (Kn=0.1, Pe=1, Pe=3.57) 

 
 
4.1.3 Entry Length Variations 

 

Both thermal and hydrodynamic entry lengths can be calculated from analyses 

results. Basically the flow assumed to be hydrodynamically fully developed when 

centerline axial velocity reaches 0.999 of the fully developed value. Similarly the 

flow is assumed to be thermally fully developed when dimensionless temperature 

reaches 0.999 of the fully developed value.  The non-dimensional hydrodynamic 

entry length and thermal entry length values obtained from constant property 

solutions are tabulated for positive Brinkman numbers and Péclet number equal to 

1 in Table 4.10. 
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Table 4.10 Variation of hydrodynamic and thermal entry length  with varying 

Knudsen numbers and positive Brinkman numbers obtained from constant 

property solution (Pe=1) 

 

  Br 0.001 Br 0.01 Br 0.1 

Hydrodynamic entry length 1.39 1.39 1.39 
Kn 0.01 

Thermal entry length 13.62 11.22 8.70 

Hydrodynamic entry length 1.44 1.44 1.44 
Kn 0.02 

Thermal entry length 15.06 12.46 9.82 

Hydrodynamic entry length 1.48 1.48 1.48 
Kn 0.04 

Thermal entry length 16.86 13.94 10.90 

Hydrodynamic entry length 1.50 1.50 1.50 
Kn 0.06 

Thermal entry length 18.50 15.26 11.9 

Hydrodynamic entry length 1.52 1.52 1.52 
Kn 0.08 

Thermal entry length 20.78 17.42 13.78 

Hydrodynamic entry length 1.52 1.52 1.52 
Kn 0.1 

Thermal entry length 22.30 18.94 15.14 

 

 

Increasing rarefaction effect with increasing Knudsen numbers will result in a 

slightly increased hydrodynamic entry length. However, hydrodynamic entry 

length is not affected from viscous dissipation effect. For this reason the 

hydrodynamic entry length does not change for different Brinkman numbers in 

constant property solutions. 

 

On the other hand thermal entry length depends  on both Knudsen and Brinkman 

numbers. The thermal entry length increases with increasing rarefaction effect as 

it was discussed earlier, and it decreases with increasing Brinkman numbers. 

These phenomena were discussed in detail in the previous sections. 
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In addition to the fluid cooling case in which Brinkman numbers are positive, 

thermal and hydrodynamic entry length is tabulated for fluid heating case. The 

non-dimensional thermal and hydrodynamic entry length values are tabulated for 

various Knudsen and negative Brinkman numbers in Table 4.11. 

 

 

Table 4.11 Variation of hydrodynamic and thermal entry length with varying 

Knudsen numbers and negative Brinkman numbers obtained from constant 

property solution (Pe=1) 

 

  Br- 0.001 Br -0.01 Br -0.1 

Hydrodynamic entry length 1.39 1.39 1.39 
Kn 0.01 

Thermal entry length 14.86 12.46 10.14 

Hydrodynamic entry length 1.44 1.44 1.44 
Kn 0.02 

Thermal entry length 15.38 12.78 10.30 

Hydrodynamic entry length 1.48 1.48 1.48 
Kn 0.04 

Thermal entry length 16.42 14.1 11.26 

Hydrodynamic entry length 1.50 1.50 1.50 
Kn 0.06 

Thermal entry length 18.98 15.78 12.62 

Hydrodynamic entry length 1.52 1.52 1.52 
Kn 0.08 

Thermal entry length 20.46 17.1 13.66 

Hydrodynamic entry length 1.52 1.52 1.52 
Kn 0.1 

Thermal entry length 22.14 18.78 15.18 

 

 

For the constant property solution, the hydrodynamic entry length does not change 

with Brinkman number; the values are the same with the positive Brinkman 

number case. However, thermal entry length values are increasing with increased 

rarefaction and reduced viscous dissipation effects as discussed above. 
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Additionally the entry length values for variable property solutions are also 

calculated. The non-dimensional hydrodynamic and thermal entry length values 

obtained from variable property solutions are tabulated for various positive 

Brinkman numbers in Table 4.12. 

 
 
 

Table 4.12 Variation of hydrodynamic and thermal entry length with varying 

Knudsen numbers and negative Brinkman numbers obtained from variable 

property solution(Pe=1) 

 

  Br 0.001 Br 0.01 Br 0.1 

Hydrodynamic entry length 1.60 1.60 1.60 
Kn 0.01 

Thermal entry length 15.94 12.98 10.66 

Hydrodynamic entry length 1.64 1.64 1.64 
Kn 0.02 

Thermal entry length 17.58 14.46 12.82 

Hydrodynamic entry length 1.68 1.68 1.68 
Kn 0.04 

Thermal entry length 19.42 16.18 14.02 

Hydrodynamic entry length 1.68 1.68 1.68 
Kn 0.06 

Thermal entry length 20.74 17.58 14.86 

Hydrodynamic entry length 1.68 1.68 1.68 
Kn 0.08 

Thermal entry length 22.18 19.26 17.22 

Hydrodynamic entry length 1.68 1.68 1.68 
Kn 0.1 

Thermal entry length 22.9 21.78 17.9 

 
 

 

When both Table 4.10 and Table 4.12 considered together it is possible to see 

that, variation in viscosity with temperature slightly increases the hydrodynamic 

entry length. However, the increase in hydrodynamic entry length is not affected 

from variation in viscous dissipation. The hydrodynamic entry length values are 

the same for a Knudsen number regardless of Brinkman numbers. On the other 
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hand thermal entry length is increased slightly for variable property solutions. As 

discussed above, the property variation effect will delay the thermal development 

for positive Brinkman numbers which will result in higher thermal entry length 

values. On the contrary for the negative Brinkman numbers, the variation of 

thermal and hydrodynamic entry length will be different than the fluid cooling 

case. The variable property results for fluid heating case are tabulated in Table 

4.13 for Péclet number equal to 1. 

 

Table 4.13 Variation of hydrodynamic and thermal entry length with varying 

Knudsen numbers and negative Brinkman numbers obtained from variable 

property solution(Pe=1) 

 
  Br- 0.001 Br -0.01 Br -0.1 

Hydrodynamic entry length 1.28 1.28 1.28 Kn 0.01 

Thermal entry length 13.58 11.50 7.90 

Hydrodynamic entry length 1.32 1.32 1.32 Kn 0.02 

Thermal entry length 14.02 11.74 10.42 

Hydrodynamic entry length 1.36 1.36 1.36 Kn 0.04 

Thermal entry length 15.46 12.82 10.62 

Hydrodynamic entry length 1.40 1.40 1.40 Kn 0.06 

Thermal entry length 17.26 14.30 11.74 

Hydrodynamic entry length 1.42 1.42 1.42 Kn 0.08 

Thermal entry length 18.74 15.54 12.54 

Hydrodynamic entry length 1.42 1.42 1.42 Kn 0.1 

Thermal entry length 20.58 17.14 13.86 

 

 

Regarding the values given in Table 4.13, it can be seen that both hydrodynamic 

and thermal entry length are decreased for variable property solutions. The 

reasons for this early development are discussed in detail in the previous sections. 

Moreover, by considering the data available in Table 4.14, it is possible to say that 
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thermal entry length is affected from variation of Knudsen and Brinkman 

numbers. In addition to Brinkman and Knudsen numbers also Péclet number has 

significant effect on hydrodynamic and thermal entry length. The non-

dimensional hydrodynamic and thermal entry length values are tabulated in Table 

4.14 for different Knudsen and positive Brinkman numbers. The results are given 

for both constant and variable property solutions obtained for Péclet number equal 

to 3.57. 

 

 

Table 4.14 Variation of hydrodynamic and thermal entry length with varying 

Knudsen numbers and positive Brinkman numbers obtained from variable 

property solution (Pe=3.57) 

 

  Constant Property Variable Property 

  Br 0.001 Br 0.1 Br 0.001 Br 0.1 

Hydrodynamic entry 
length 

1.72 1.72 2.44 2.32 
Kn 0.01 

Thermal entry length 18.74 12.9 19.18 14.86 

Hydrodynamic entry 
length 

1.88 1.88 2.48 2.38 
Kn 0.04 

Thermal entry length 19.34 14.86 19.20 15.76 

Hydrodynamic entry 
length 

2.00 2.00 2.34 2.32 
Kn 0.1 

Thermal entry length 20.02 16.46 19.46 16.66 

 

 

As mentioned above increase in Péclet number increases both thermal and 

hydrodynamic entry length values. Additionally as discussed earlier the effect of 

viscosity and thermal conductivity variations become more emphasized with 

increasing entry length. As can be seen in Table 4.14 the increase in 

hydrodynamic and thermal entry length due to property variation is increased with 
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decreasing Brinkman number. Moreover, the difference in entry lengths will be 

decreased with increasing rarefaction effect as discussed earlier. 

 

Similarly the variation of non-dimensional entry length values are tabulated in 

Table 4.15 for constant and variable property solutions of fluid heating case.  

 

 

Table 4.15 Variation of hydrodynamic and thermal entry length with varying 

Knudsen numbers and negative Brinkman numbers obtained from variable 

property solution (Pe=3.57) 

 

  Constant Property Variable Property 

  Br -0.001 Br -0.1 Br -0.001 Br -0.1 

Hydrodynamic 
entry length 

1.72 1.72 1.51 1.50 
Kn 0.01 

Thermal entry 
length 

18.84 13.24 17.99 11.27 

Hydrodynamic 
entry length 

1.88 1.88 1.66 1.66 
Kn 0.04 

Thermal entry 
length 

19.4 15.02 19.26 13.88 

Hydrodynamic 
entry length 

2.00 2.00 1.80 1.80 
Kn 0.1 

Thermal entry 
length 

20.06 16.58 20.06 16.58 

 
 
 

As discussed earlier, the entry length will be decreased for variable property 

solutions in case of fluid heating. Moreover by considering the data available in 

Table 4.15, it can be said that effect of Brinkman number is less severe on the 

hydrodynamic entry length than thermal entry length. 
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4.2 Effect of Flow Parameters on Heat Transfer  

 

Regarding the non-dimensional momentum and energy equations given 

previously, effects of non-dimensional parameters can be analyzed. 

 
4.2.1 Fluid Cooling Case 

 

For the fluid cooling case in which Brinkman numbers are positive and fluid is 

cooled by the wall, the thermal conductivity and the viscosity values are 

decreasing as the fluid proceeds in the channel. For this reason the axial 

conductive flux will be positive and the transverse conductive flux will be 

negative. Similarly the axial convective flux will be negative as a result of flow 

direction and temperature change. On the contrary the transverse convective flux 

will be positive. Additionally the viscous dissipation terms will be inherently 

positive as a result of positive Brinkman number. Overall conductive flux will be 

negative since transverse convective flux is the dominating one. Likewise the 

overall convective flux will be negative. In this case the right hand side of the 

Equation (4.3) will be positive as a result of positive viscous dissipation terms. 

The magnitudes will change with the Brinkman and Péclet numbers; however 

signs of the terms will remain unchanged. With decreasing temperature in the 

channel, the decreased thermal conductivity will yield, lower conductive flux in 

both axial and vertical directions. This will reduce the overall heat transfer rate. 

The increased Péclet number will reduce the magnitude of the right hand side of 

Equation (4.3). At the steady state the convective terms will also be reduced. The 

velocity profile will be changed less than the temperature field, so the temperature 

gradients will be lowered in axial direction mainly, which results in a later 

development and elongated entrance length. However the increase of Brinkman 

number will increase the magnitude of the second term on the right hand side of 

the Equation (4.3). This will increase the axial gradients and shorten the entrance 

length. The significance of convective terms will be reduced due to increased slip 
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velocity and temperature jump at the wall boundaries. The reduced significance of 

the convective terms will also results in, increased entrance length.  

 

4.2.1.1 The Effect of Thermal Conductivity Variation 

 

The variation of non-dimensional conductivity at an arbitrary crossection is given 

in Figure 4.52.  
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Figure 4.52  Variation of dimensionless thermal conductivity on vertical axis at 

an arbitrary crossection (Kn=0.01, Pe=1, Br=0.001) 

 

 

As can be seen, the thermal conductivity is increasing in the positive vertical 

direction and the dimensionless thermal conductivity values are less than 1 at all 

locations. As a result, the vertical conductive flux of variable property solution 

will be less than the constant property solution. Considering the axial variation of 
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thermal conductivity which is plotted in Figure 4.53, it is possible to say that axial 

conductive flux of variable property solution will also be reduced as fluid proceed 

in to downstream. This difference basically results from dimensionless 

conductivity values which are less than 1. In fluid cooling the axial conductive 

flux is assisting the axial convective flux as mentioned earlier. For this reason the 

reduced thermal conductivity will reduce this assistance. 
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Figure 4.53  Variation of dimensionless thermal conductivity on axial position 

(Kn=0.01, Pe=1, Br=0.001) 

 

 

4.2.1.2 The Effect of Viscosity Variation  

 

The variation of dimensionless viscosity with vertical position is plotted in Figure 

4.54. Moreover, the variation of dimensionless viscosity with axial position is 

given in Figure 4.55.  
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Figure 4.54  Variation of dimensionless viscosity on vertical axis at an arbitrary 

crossection (Kn=0.01, Pe=1, Br=0.001) 

 

 

When both Figure 4.54 and Figure 4.55 considered together, it can be seen that 

viscosity values are both less than 1 in axial and vertical directions. However, the 

viscosity is increasing in vertical direction while it decreases in the downstream 

direction. This reduced viscosity values will yield, lower viscous dissipation 

which will results in reduced viscous dissipation. The reduced viscous dissipation 

causes a later development of flow. Additionally, the vertical variation of 

viscosity will cause a distortion in axial velocity profile. For the cooling case, 

vertical variation of viscosity also induces a vertical velocity which increases the 

transverse convection. However the effect of viscosity variation is less significant 

on heat transfer and temperature profile. 
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Figure 4.55  Variation of dimensionless viscosity on axial position  

(Kn=0.01, Pe=1, Br=0.001) 

 

 

4.2.2 Fluid Heating Case 

 

For the fluid heating case in which fluid is heated by the wall, and the thermal 

conductivity and viscosity increase as the fluid proceeds in the channel. The axial 

conductive flux will be negative while vertical conductive flux is positive. On the 

other hand axial convective flux will be negative and vertical convective flux will 

be positive. Since axial convective flux and conductive flux are opposite signed, 

the increase in thermal conductivity will reduce the effect of convective heat 

transfer. Additionally with increasing Péclet number the magnitudes will be 

reduced and the effect of conductive heat flux will be reduced. Similarly the effect 

of viscous heating will be decreased. Due to the decreased significance of viscous 

dissipation, heating of the fluid and the thermal development will be retarded. As 

a result of retarded heating the gradients will be lower and the conductive flux 
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will be lowered for variable property solution. Likewise, the decrease in 

Brinkman number will also retard the thermal development of flow and reduce the 

heat transfer for variable property solution. 

 

4.2.2.1 The Effect of Thermal Conductivity Variation  

 

Variation of thermal conductivity in fluid heating case can be seen in Figure 4.56.  
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Figure 4.56  Variation of dimensionless thermal conductivity on vertical axis at 

an arbitrary crossection (Kn=0.01, Pe=1, Br=0.001) 

 

 

As it can be seen in the plot, the dimensionless thermal conductivity values are 

higher than 1. The values are decreasing with positive vertical position. Both 

temperature and thermal conductivity gradients will be negative in positive y 

direction while these terms will be positive in axial direction. Due to the 
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dimensionless thermal conductivity values, it can be said that the conductive flux 

is higher than constant property solution. However, the negative axial conductive 

flux will have a counteracting effect on overall heat transfer. The axial variation 

of thermal conductivity is given in Figure 4.57. An as can be seen thermal 

conductivity is increasing with axial position. Therefore the axial conductive flux 

will be increased with axial position. 
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Figure 4.57  Variation of dimensionless thermal conductivity on axial position 

(Kn=0.01, Pe=1, Br=0.001) 

 

 

4.2.2.2 The Effect of Viscosity Variation  

 

The variation of dimensionless viscosity with vertical position is plotted in Figure 

4.58 for fluid heating case. Moreover, the variation of dimensionless viscosity 

with axial position is given in Figure 4.59.  
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Figure 4.58  Variation of dimensionless viscosity on vertical axis at an arbitrary 

crossection (Kn=0.01, Pe=1, Br=0.001) 

 

 

Since all of the viscosity values are higher than 1, this will increase the effect of 

viscous dissipation. Increased viscous heating will increase the thermal 

development rate and heating of the fluid. The increase in viscous dissipation will 

decrease the difference between constant and variable property solutions by 

reducing the conduction resistance of fluid. Moreover, decreasing viscosity in 

vertical direction creates an induced vertical velocity component in negative 

vertical direction. This induced velocity will reduce the transverse convection.  
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Figure 4.59  Variation of dimensionless viscosity on axial position  

(Kn=0.01, Pe=1, Br=0.001) 

 

 

4.2.3 Effect of Knudsen number 

 

With increased Knudsen numbers, the slip velocity and the temperature jump at 

wall boundaries will be increased. Due to the increase in rarefaction effect, both 

temperature and velocity gradients will be reduced. This will cause a decrease in 

viscous heat dissipation, conductive and convective heat transfer. Since the 

gradients will reduce with increasing rarefaction, the property variation effects 

will be less significant. Therefore, for fluid cooling case, the difference between 

constant and variable heat transfer coefficients will be decreasing with increasing 

rarefaction. However, the difference will be increased for the fluid heating case. 
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4.2.4 Effect of Péclet number 

 

Péclet number is basically related with the significance of conductive terms and 

viscous dissipation terms. Increasing Péclet number will reduce the significance 

of conducive and viscous dissipation terms. The Péclet number is a function of 

Reynolds number as given in Equation (4.5) and increases only with increasing 

Reynolds number. The Reynolds increase will reduce the effect of viscous 

dissipation which causes a delay in the thermal development. Due to the reduced 

effect of viscous dissipation together with the viscosity and thermal conductivity 

variation, flow will be developed more slowly for the variable property solution. 

As a result with increasing Péclet number, the shift in local heat transfer 

coefficients and Nusselt values will be increased. This increase in shift results 

from, decreased induced velocity due to decreased conductive flux and viscous 

dissipation. 

 

4.2.5 Effect of Brinkman number 

 

This dimensionless group defined in Equation (4.4) is only related with the 

significance of viscous dissipation terms as can be seen from Equation (4.3). 

Increasing Brinkman number in both heating and cooling flow conditions will 

reduce the entrance length by decreasing the conduction resistance of the fluid 

[11]. As a result of increased conductive flux, the entrance length will be reduced. 

Additionally the significance of Brinkman number will decrease, with increasing 

Reynolds and Péclet, due to increased channel dimension. 

 

4.3 Dimensionless Groups Related with Typical Applications 

 

In many analyses in the literature, often arbitrary and unrealistic parameters are 

used to observe the effects of viscous dissipation, axial conduction and 
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rarefaction. Thus Knudsen, Brinkman and Péclet numbers used in such analyses 

are rarely encountered in real cases.  

 

The Knudsen numbers used in current the analyses are in the range 0.01 and 0.1. 

These are theoretically in the slip flow range, however, this Knudsen numbered 

flows of air will have a characteristic dimension Dh. in the range 6.8µm and 

0.68µm meters because the mean free path of air in ambient pressure is 68nm. 

Even tough these dimensions are smaller than conventional micro channels in heat 

sinks, they are theoretically applicable. 

 

As an example, an electronic cooling application with micro-heat sink can be 

considered. In this case the temperature difference can not be higher than 60º C, 

due to the limits of operation. Moreover, the flow speed of a commercial axial fan 

that can be used in an electronics cooling application will be in the range of 20 

m/s. Also one other constraint for the flow speed is the incompressibility 

assumption. Therefore the flow speed can not exceed 0.1 Mach for ambient 

pressure and temperature. Mach = 0.1 corresponds to 34 m/s approximately.  

 

Regarding the hydraulic diameter, temperature difference and flow speed given 

here, it is possible to calculate Reynolds, Brinkman and Péclet numbers by using 

the thermophysical properties of air [55]. 

 

The thermophysical properties of air is given below for ambient temperature 296 

K, 

 

smkg /10.31.18 6−=µ                                             (4.7) 

 

3/19226.1 mkg=ρ               (4.8) 
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mKWk /025862.0=               (4.9) 

 

7127.0Pr =                         (4.10) 

 

mDm h

66 10.68.010.8.6 −− ≤≤                      (4.11) 

 

Here 

 

µ

ρ hDU ∞=Re                         (4.12) 

 

The Reynolds number can be expressed in terms of inlet velocity as follows, 

 

∞∞ ≤≤ UU .4427.0Re.04427.0                      (4.13) 

 

For the average velocity of 25 m/s the Reynolds number values will be, 

 

11Re1.1 ≤≤                         (4.14) 

 

Since Péclet number is product of Reynolds and Prandtl numbers, it will be in the 

range 

 

89.7789.0 ≤≤ Pe                        (4.15) 

 

The upper limit for Péclet number under incompressible fluid assumption and the 

Knudsen range subject to discussion can be expressed as, 

 

3431551.0 ⋅≤Pe                        (4.16) 
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10≤Pe                         (4.17) 

 

Additionally for the given conditions, the realistic Brinkman values can be 

calculated as follows, by using the thermophysical properties given above, 

 

)(

2

wi TTk

U
Br

−
= ∞µ

                       (4.18) 

 

60025862.0

1031.18 26

⋅

⋅
≤ ∞

− U
Br                        (4.19) 

 

Here maximum inlet velocity should be less than 0.1 Mach which is equal to 34 

m/s approximately. For this reason upper limit of Brinkman number will be, 

 

01.0≤Br                         (4.20) 

 

In the analyses some of the Péclet and Brinkman values are taken beyond these 

limits to show the effect of these numbers on heat transfer characteristics. 

Additionally, these numbers are chosen to simulate the extreme conditions 
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CHAPTER 5 

 

 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

 

 

 

 

Effect of variable thermal conductivity and viscosity in single phase flow in 

microchannels with a constant wall temperature boundary condition is 

investigated in this study. Microchannel dimensions are chosen to simulate the 

slip flow regime for air. For this purpose, two-dimensional parallel plate geometry 

is analyzed. Throughout the analyses, flow is assumed to be laminar and 

incompressible, while both viscosity and thermal conductivity are assumed to be 

functions of temperature only. Variation of density and specific heat with 

temperature is not taken into account in the study. Numerical analyses are 

performed for variable thermal conductivity and viscosity as well as constant 

thermal conductivity and viscosity, to be able to understand the difference.  

 

Simultaneously developing flow between parallel plates is investigated 

numerically by solving pressure and velocity in a coupled manner. Numerical 

solutions are performed by using finite difference method, due to the simplicity of 

the geometry. Since our main area of interest is slip flow regime, classical Navier-

Stokes equations are solved by imposing slip velocity boundary condition for 

defining the flow field. Similarly, energy equation is solved by imposing 

temperature jump boundary condition for defining the temperature field. Besides 

the pressure velocity coupling, momentum and energy equations are also solved in 

a coupled manner to be able to take variable thermophysical property effects into 

account. 
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Both axial conduction and all terms of viscous dissipation are taken into account 

while solving the energy equation. The numerical solutions are performed by 

using the computer code written in MATLAB. Momentum and energy equations 

are solved in transient form for convenience. The Poisson equation is solved 

implicitly in each time step to define the pressure field, while all other variables 

are solved explicitly. The results obtained for velocity field are compared with the 

analytical solutions, while temperature field is verified by using the analytically 

calculated Nusselt values for simple cases. 

 

In the analyses, dimensionless variables are varied to be able to observe the 

effects of viscous dissipation, rarefaction, geometry and axial conduction.  The 

effect of rarefaction is represented non-dimensionally by Knudsen number. The 

relative significance of viscous dissipation and axial conduction are non-

dimensionally represented by Brinkman and Péclet numbers respectively. The 

non-dimensional parameters used in the analyses are as follows. 

 

- Knudsen numbers: 0.01, 0.02, 0.04, 0.06, 0.08, 0.1 

- Brinkman numbers: 0.001, 0.01, 0.1, -0.001, -0.01, -0.1 

- Péclet numbers: 1 and 3.57 

 

Since working fluid is air, Prandtl number can not be changed arbitrarily, for this 

reason Péclet number is varied with Reynolds number. As stated in the previous 

parts, to be able to non-dimensionalize the variation of viscosity and thermal 

conductivity with temperature, dimensional inlet and wall temperature values are 

used. Therefore, for the fluid heating case where Brinkman numbers are negative, 

wall temperature is taken as 296 K while inlet temperature taken as 394 K. 

Likewise for the fluid cooling case, inlet temperature is taken as 444 K. Main 

point of interest of the study is the effect of variable viscosity and thermal 

conductivity on heat transfer. The conclusions obtained from both constant and 

variable property solutions, can be summarized as follows,  



 

 166 

- As a result of increasing rarefaction, both slip velocity and temperature 

jump at the wall increases.  Due to increased temperature jump and slip 

velocity, total heat transfer decreases with increasing rarefaction. 

- When Nusselt values are plotted against axial position, it is possible to see 

the jump in Nusselt values for fluid cooling case, resulting from viscous 

heat dissipation. 

- Similarly, Nusselt plots against axial position have a singular point for the 

fluid heating case which stems from viscous heating. 

- This jump and singularity point moves toward downstream with increasing 

rarefaction, since the effect of viscous dissipation is reduced with 

increased Knudsen number. 

- Increasing positive Brinkman number shifts the jump point position 

towards upstream while decreasing negative Brinkman number causes a 

shift in position of singular point towards upstream. 

- Constant property solutions converge to the same Nusselt value for fully 

developed flow regardless of Brinkman number. 

- Channel averaged Nusselt values increase with decreasing Knudsen and 

increasing positive Brinkman numbers. As stated above, total heat transfer 

will be increased with decreasing rarefaction. Moreover, the channel 

averaged Nusselt values will be increased with increasing viscous 

dissipation as a result of early jump in Nusselt values. 

- Channel averaged Nusselt values for positive Brinkman numbers, reduce 

with increasing Péclet number, because of increased entrance length and 

delayed jump in Nusselt values. 

- The difference between constant and variable property solutions decreases 

with increasing rarefaction for the fluid cooling case. 

- The effect of property variation is more emphasized with increasing 

rarefaction in fluid heating case. Since conductive heat transfer is acting in 

opposite direction with the convective one in this case, the effect of 

variable properties become more significant when rarefaction is increased. 
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- Decreasing negative Brinkman number will reduce the property variation 

effect, due to increased viscous heating. As stated before, increasing 

viscous heating increases the conductive heat transfer due to increased 

thermal conductivity. The effect of increased viscosity will compensate the 

effect of increased thermal conductivity on heat transfer.  

- The difference between constant and variable property solutions are 

increased with increasing Péclet number except for high Knudsen and low 

negative Brinkman numbers. On the contrary the difference between 

constant property and variable property solutions are reduced with 

increasing Péclet number with for high Knudsen numbers, where 

Brinkman number is -0.001. This phenomenon is thought to be a result of 

adverse effect of increased Péclet and Knudsen number on viscous 

heating. 

- The difference between variable and constant property solutions is very 

little in the fully developed region for both heating and cooling processes. 

Consequently it is possible to say that, property variation effect is 

negligible for fully developed flows. 

- Effect of property variation is less severe for the flow field than the 

temperature field. 

 

Air is one of the most common working fluids in single phase heat transfer 

applications. The temperature differences used in these analyses are higher 

than the limits of electronics cooling applications, however, these differences 

can be encountered in different micro applications, such as micro reactors and 

micro fabrication. It is possible to see from the results that the property 

variation effect is not substantial for the working fluid and flow conditions 

that are subjected to investigation, though these results may be used as a guide 

for validation of the constant property assumptions in slip flow regime. 

 



 

 168 

With the light of the information included in this study it is possible to decide 

upon the severity of property variation in air flow through microchannels, 

since it is feasible to make constant property solutions when property variation 

effect is not significant. This will create an advantage when computation times 

and complexity of the solution algorithm is considered. It is possible to say 

that constant property solutions will yield satisfactory results for long channels 

in which entrance length is small compared to the overall length. Moreover, 

for shorter channels, which has an overall length comparable with the entrance 

length for the defined flow conditions, the property variation effect should not 

be disregarded, especially for low Knudsen numbers. However, constant 

property assumption may yield satisfactory results for high Knudsen 

numbered channels. Another important point is the effect of viscous 

dissipation; the viscous dissipation terms should be included while making 

variable property solutions, because the effect of viscous heating on property 

variation is non-negligible and not easily predictable.  

 

Unfortunately variable property effects of air in the slip flow regime are not 

commonly investigated. For these reasons, comparison of the obtained results 

with the available literature is limited. However, when obtained results are 

compared with the variable property solutions of liquid flow in microchannels; 

it is possible to say that, property variation effect is less significant for the 

gases. Additionally, the effect of variation in thermal conductivity and 

viscosity on heat transfer and fluid flow are not contradicting with the 

available literature in terms of variation of Nusselt values. Furthermore, 

various studies are available in the literature for the comparison of constant 

property results. The results are in good agreement with the literature for 

constant property solutions.  

 

It should be noted that obtaining variable property solutions for different 

geometry and working fluid combinations for different temperature ranges 
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would be tedious and time consuming. For this reason, such studies are limited 

with the flow conditions they are solved for. 

 

One other aspect of investigation of single phase flow in microchannels may 

be the effect of geometry, which requires three dimensional numerical 

solutions. Moreover, the variation of density and specific heat with 

temperature may be taken into account in the numerical solutions. The effect 

of compressibility should also be discussed in the slip flow regime in 

combination with the previously discussed issues. Furthermore, the moving 

boundaries can be imposed to the slip flow analyses and another way of 

expanding this study may be the inclusion of different type of wall boundaries, 

such as heat pulse and sinusoidal temperature profile. 
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APPENDIX A 
 

 
 

GRAPHS 

 
 
 
 
 
 
The figures which are not presented in Chapter 4 is given here. 
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Figure A.1 Variation of dimensionless y-velocity with dimensionless width of the 

channel (Kn=0.01, Br = 0.001, Pe=1) 
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Figure A.2 Variation of dimensionless y-velocity with dimensionless width of the 

channel (Kn=0.01, Br = 0.01, Pe=1) 
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Figure A.3 Variation of dimensionless y-velocity with dimensionless width of the 

channel (Kn=0.01, Br = 0.1, Pe=1) 
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Figure A.4 Variation of dimensionless x-velocity with dimensionless width of the 

channel (Kn=0.01, Br = 0.001, Pe=1) 
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Figure A.5 Variation of dimensionless x-velocity with dimensionless width of the 

channel (Kn=0.01, Br = 0.01, Pe=1) 
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Figure A.6 Variation of dimensionless x-velocity with dimensionless width of the 

channel (Kn=0.01, Br = 0.1, Pe=1) 
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Figure A.7 Variation of dimensionless temperature with dimensionless width of 

the channel at crossection x*=0.8 for various positive Brinkman numbers 

(Kn=0.001, Pe=1) 
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Figure A.8 Variation of dimensionless temperature with dimensionless width of 

the channel at crossection x*=4 for various positive Brinkman numbers (Kn=0.01, 

Pe=1) 
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Figure A.9 Variation of dimensionless temperature with dimensionless width of 

the channel at crossection x*=8 for various positive Brinkman numbers (Kn=0.01, 

Pe=1) 
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Figure A.10 Variation of dimensionless temperature with dimensionless width of 

the channel at crossection x*=12 for various positive Brinkman numbers 

(Kn=0.01, Pe=1) 
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Figure A.11 Variation of dimensionless y-velocity with dimensionless width of 

the channel (Kn=0.02, Br = 0.001, Pe=1) 
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Figure A.12 Variation of dimensionless y-velocity with dimensionless width of 

the channel (Kn=0.02, Br = 0.01, Pe=1) 
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Figure A.13 Variation of dimensionless y-velocity with dimensionless width of 

the channel (Kn=0.02, Br = 0.1, Pe=1) 
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Figure A.14 Variation of dimensionless x-velocity with dimensionless width of 

the channel (Kn=0.02, Br = 0.001, Pe=1) 
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Figure A.15 Variation of dimensionless x-velocity with dimensionless width of 

the channel (Kn=0.02, Br = 0.01, Pe=1) 
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Figure A.16 Variation of dimensionless x-velocity with dimensionless width of 

the channel (Kn=0.02, Br = 0.1, Pe=1) 
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Figure A.17 Variation of dimensionless temperature with dimensionless width of 

the channel at crossection x*=0.8 for various positive Brinkman numbers 

(Kn=0.02, Pe=1) 
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Figure A.18 Variation of dimensionless temperature with dimensionless width of 

the channel at crossection x*=4 for various positive Brinkman numbers (Kn=0.02, 

Pe=1) 
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Figure A.19 Variation of dimensionless temperature with dimensionless width of 

the channel at crossection x*=8 for various positive Brinkman numbers (Kn=0.02, 

Pe=1) 
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Figure A.20 Variation of dimensionless temperature with dimensionless width of 

the channel at crossection x*=12 for various positive Brinkman numbers 

(Kn=0.02, Pe=1) 

 
 

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 0.5 1 1.5 2

Dimensionless Width (y*)

D
im

e
n

s
io

n
le

s
s

 y
-V

e
lo

c
it

y
 (

v
*)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Kn0.04 Br 0.001-cp-x*=0.4 Kn0.04 Br 0.001-cp-x*=0.8

Kn0.04 Br 0.001-cp-x*=1.2 Kn0.04 Br 0.001-cp-x*=12

Kn0.04 Br 0.001-vp-x*=0.4 Kn0.04 Br 0.001-vp-x*=0.8

Kn0.04 Br 0.001-vp-x*=1.2 Kn0.04 Br 0.001-vp-x*=12

 

 

Figure A.21 Variation of dimensionless y-velocity with dimensionless width of 

the channel (Kn=0.04, Br = 0.001, Pe=1) 
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Figure A.22 Variation of dimensionless y-velocity with dimensionless width of 

the channel (Kn=0.04, Br = 0.01, Pe=1) 
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Figure A.23 Variation of dimensionless y-velocity with dimensionless width of 

the channel (Kn=0.04, Br = 0.1, Pe=1) 
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Figure A.24 Variation of dimensionless x-velocity with dimensionless width of 

the channel (Kn=0.04, Br = 0.001, Pe=1) 
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Figure A.25 Variation of dimensionless x-velocity with dimensionless width of 

the channel (Kn=0.04, Br = 0.01, Pe=1) 
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Figure A.26 Variation of dimensionless x-velocity with dimensionless width of 

the channel (Kn=0.04, Br = 0.1, Pe=1) 
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Figure A.27 Variation of dimensionless temperature with dimensionless width of 

the channel at crossection x*=0.8 for various positive Brinkman numbers 

(Kn=0.04, Pe=1) 
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Figure A.28 Variation of dimensionless temperature with dimensionless width of 

the channel at crossection x*=4 for various positive Brinkman numbers (Kn=0.04, 

Pe=1) 
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Figure A.29 Variation of dimensionless temperature with dimensionless width of 

the channel at crossection x*=8 for various positive Brinkman numbers (Kn=0.04, 

Pe=1) 
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Figure A.30 Variation of dimensionless temperature with dimensionless width of 

the channel at crossection x*=12 for various positive Brinkman numbers 

(Kn=0.04, Pe=1) 
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Figure A.31 Variation of dimensionless y-velocity with dimensionless width of 

the channel (Kn=0.04, Br = 0.001, Pe=1) 
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Figure A.32 Variation of dimensionless y-velocity with dimensionless width of 

the channel (Kn=0.06, Br = 0.01, Pe=1) 
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Figure A.33 Variation of dimensionless y-velocity with dimensionless width of 

the channel (Kn=0.06, Br = 0.1, Pe=1) 
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Figure A.34 Variation of dimensionless x-velocity with dimensionless width of 

the channel (Kn=0.06, Br = 0.001, Pe=1) 
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Figure A.35 Variation of dimensionless x-velocity with dimensionless width of 

the channel (Kn=0.06, Br = 0.01, Pe=1) 
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Figure A.36 Variation of dimensionless x-velocity with dimensionless width of 

the channel (Kn=0.06, Br = 0.1, Pe=1) 
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Figure A.37 Variation of dimensionless temperature with dimensionless width of 

the channel at crossection x*=0.8 for various positive Brinkman numbers 

(Kn=0.06, Pe=1) 
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Figure A.38 Variation of dimensionless temperature with dimensionless width of 

the channel at crossection x*=4 for various positive Brinkman numbers (Kn=0.06, 

Pe=1) 
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Figure A.39 Variation of dimensionless temperature with dimensionless width of 

the channel at crossection x*=8 for various positive Brinkman numbers (Kn=0.06, 

Pe=1) 
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Figure A.40 Variation of dimensionless temperature with dimensionless width of 

the channel at crossection x*=12 for various positive Brinkman numbers 

(Kn=0.06, Pe=1) 
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Figure A.41 Variation of dimensionless y-velocity with dimensionless width of 

the channel (Kn=0.08, Br = 0.001, Pe=1) 
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Figure A.42 Variation of dimensionless y-velocity with dimensionless width of 

the channel (Kn=0.08, Br = 0.01, Pe=1) 
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Figure A.43 Variation of dimensionless y-velocity with dimensionless width of 

the channel (Kn=0.08, Br = 0.1, Pe=1) 
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Figure A.44 Variation of dimensionless x-velocity with dimensionless width of 

the channel (Kn=0.08, Br = 0.001, Pe=1) 
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Figure A.45 Variation of dimensionless x-velocity with dimensionless width of 

the channel (Kn=0.08, Br = 0.01, Pe=1) 
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Figure A.46 Variation of dimensionless x-velocity with dimensionless width of 

the channel (Kn=0.08, Br = 0.1, Pe=1) 
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Figure A.47 Variation of dimensionless temperature with dimensionless width of 

the channel at crossection x*=0.8 for various positive Brinkman numbers 

(Kn=0.08, Pe=1) 
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Figure A.48 Variation of dimensionless temperature with dimensionless width of 

the channel at crossection x*=4 for various positive Brinkman numbers (Kn=0.08, 

Pe=1) 

 

 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 0.5 1 1.5 2

Dimensionless Width (y*)

D
im

e
n

s
io

n
le

s
s

 T
e

m
p

e
ra

tu
re

 (
θ
) 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Kn0.08 Br 0.001-cp-x*=8 Kn0.08 Br 0.01-cp-x*=8

Kn0.08 Br 0.1-cp-x*=8 Kn0.08 Br 0.001-vp-x*=8

Kn0.08 Br 0.01-vp-x*=8 Kn0.08 Br 0.1-vp-x*=8
 

 

Figure A.49 Variation of dimensionless temperature with dimensionless width of 

the channel at crossection x*=8 for various positive Brinkman numbers (Kn=0.08, 

Pe=1) 
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Figure A.50 Variation of dimensionless temperature with dimensionless width of 

the channel at crossection x*=12 for various positive Brinkman numbers 

(Kn=0.08, Pe=1) 
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Figure A.51 Variation of dimensionless y-velocity with dimensionless width of 

the channel (Kn=0.1, Br = 0.001, Pe=1) 
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Figure A.52 Variation of dimensionless y-velocity with dimensionless width of 

the channel (Kn=0.1, Br = 0.01, Pe=1) 
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Figure A.53 Variation of dimensionless y-velocity with dimensionless width of 

the channel (Kn=0.1, Br = 0.1, Pe=1) 
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Figure A.54 Variation of dimensionless x-velocity with dimensionless width of 

the channel (Kn=0.1, Br = 0.001, Pe=1) 
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Figure A.55 Variation of dimensionless x-velocity with dimensionless width of 

the channel (Kn=0.1, Br = 0.01, Pe=1) 
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Figure A.56 Variation of dimensionless x-velocity with dimensionless width of 

the channel (Kn=0.1, Br = 0.1, Pe=1) 
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Figure A.57 Variation of dimensionless temperature with dimensionless width of 

the channel at crossection x*=0.8 for various positive Brinkman numbers 

(Kn=0.1, Pe=1) 
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Figure A.58 Variation of dimensionless temperature with dimensionless width of 

the channel at crossection x*=4 for various positive Brinkman numbers (Kn=0.1, 

Pe=1) 
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Figure A.59 Variation of dimensionless temperature with dimensionless width of 

the channel at crossection x*=8 for various positive Brinkman numbers (Kn=0.1, 

Pe=1) 
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Figure A.60 Variation of dimensionless temperature with dimensionless width of 

the channel at crossection x*=12 for various positive Brinkman numbers (Kn=0.1, 

Pe=1) 
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Figure A.61 Variation of dimensionless y-velocity with dimensionless width of 

the channel (Kn=0.01, Br = -0.001, Pe=1) 
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Figure A.62 Variation of dimensionless y-velocity with dimensionless width of 

the channel (Kn=0.01, Br = -0.01, Pe=1) 
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Figure A.63 Variation of dimensionless y-velocity with dimensionless width of 

the channel (Kn=0.01, Br = -0.1, Pe=1) 
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Figure A.64 Variation of dimensionless x-velocity with dimensionless width of 

the channel (Kn=0.01, Br = -0.001, Pe=1) 
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Figure A.65 Variation of dimensionless x-velocity with dimensionless width of 

the channel (Kn=0.01, Br = -0.01, Pe=1) 
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Figure A.66 Variation of dimensionless x-velocity with dimensionless width of 

the channel (Kn=0.01, Br = -0.1, Pe=1) 
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Figure A.67 Variation of dimensionless temperature with dimensionless width of 

the channel at crossection x*=0.8 for various negative Brinkman numbers 

(Kn=0.01, Pe=1) 
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Figure A.68 Variation of dimensionless temperature with dimensionless width of 

the channel at crossection x*=4 for various negative Brinkman numbers 

(Kn=0.01, Pe=1) 
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Figure A.69 Variation of dimensionless temperature with dimensionless width of 

the channel at crossection x*=8 for various negative Brinkman numbers 

(Kn=0.01, Pe=1) 
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Figure A.70 Variation of dimensionless temperature with dimensionless width of 

the channel at crossection x*=12 for various negative Brinkman numbers 

(Kn=0.01, Pe=1) 
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Figure A.71 Variation of dimensionless y-velocity with dimensionless width of 

the channel (Kn=0.02, Br = -0.001, Pe=1) 
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Figure A.72 Variation of dimensionless y-velocity with dimensionless width of 

the channel (Kn=0.02, Br = -0.01, Pe=1) 
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Figure A.73 Variation of dimensionless y-velocity with dimensionless width of 

the channel (Kn=0.02, Br = -0.1, Pe=1) 
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Figure A.74 Variation of dimensionless x-velocity with dimensionless width of 

the channel (Kn=0.02, Br = -0.001, Pe=1) 
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Figure A.75 Variation of dimensionless x-velocity with dimensionless width of 

the channel (Kn=0.02, Br = -0.01, Pe=1) 
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Figure A.76 Variation of dimensionless x-velocity with dimensionless width of 

the channel (Kn=0.02, Br = -0.1, Pe=1) 
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Figure A.77 Variation of dimensionless temperature with dimensionless width of 

the channel at crossection x*=0.8 for various negative Brinkman numbers 

(Kn=0.02, Pe=1) 



 

 218 

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0 0.5 1 1.5 2

Dimensionless Width (y*)

D
im

e
n

s
io

n
le

s
s
 T

e
m

p
e
ra

tu
re

 (
θ
) 

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Kn0.02 Br -0.001-cp-x*=4 Kn0.02 Br -0.01-cp-x*=4

Kn0.02 Br -0.1-cp-x*=4 Kn0.02 Br -0.001-vp-x*=4

Kn0.02 Br -0.01-vp-x*=4 Kn0.02 Br -0.1-vp-x*=4  

 

Figure A.78 Variation of dimensionless temperature with dimensionless width of 

the channel at crossection x*=4 for various negative Brinkman numbers 

(Kn=0.02, Pe=1) 
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Figure A.79 Variation of dimensionless temperature with dimensionless width of 

the channel at crossection x*=8 for various negative Brinkman numbers 

(Kn=0.02, Pe=1) 
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Figure A.80 Variation of dimensionless temperature with dimensionless width of 

the channel at crossection x*=12 for various negative Brinkman numbers 

(Kn=0.02, Pe=1) 
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Figure A.81 Variation of dimensionless y-velocity with dimensionless width of 

the channel (Kn=0.04, Br = -0.001, Pe=1) 
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Figure A.82 Variation of dimensionless y-velocity with dimensionless width of 

the channel (Kn=0.04, Br = -0.01, Pe=1) 
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Figure A.83 Variation of dimensionless y-velocity with dimensionless width of 

the channel (Kn=0.04, Br = -0. 1, Pe=1) 
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Figure A.84 Variation of dimensionless x-velocity with dimensionless width of 

the channel (Kn=0.04, Br = -0.001, Pe=1) 
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Figure A.85 Variation of dimensionless x-velocity with dimensionless width of 

the channel (Kn=0.04, Br = -0.01, Pe=1) 
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Figure A.86 Variation of dimensionless x-velocity with dimensionless width of 

the channel (Kn=0.04, Br = -0.1, Pe=1) 
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Figure A.87 Variation of dimensionless temperature with dimensionless width of 

the channel at crossection x*=0.8 for various negative Brinkman numbers 

(Kn=0.04, Pe=1) 
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Figure A.88 Variation of dimensionless temperature with dimensionless width of 

the channel at crossection x*=4 for various negative Brinkman numbers 

(Kn=0.04, Pe=1) 
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Figure A.89 Variation of dimensionless temperature with dimensionless width of 

the channel at crossection x*=8 for various negative Brinkman numbers 

(Kn=0.04, Pe=1) 
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Figure A.90 Variation of dimensionless temperature with dimensionless width of 

the channel at crossection x*=12 for various negative Brinkman numbers 

(Kn=0.04, Pe=1) 
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Figure A.91 Variation of dimensionless y-velocity with dimensionless width of 

the channel (Kn=0.06, Br = -0.001, Pe=1) 
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Figure A.92 Variation of dimensionless y-velocity with dimensionless width of 

the channel (Kn=0.06, Br = -0.01, Pe=1) 
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Figure A.93 Variation of dimensionless y-velocity with dimensionless width of 

the channel (Kn=0.06, Br = -0.1, Pe=1) 



 

 226 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2

Dimensionless Width (y*)

D
im

e
n

s
io

n
le

s
s
 x

-V
e
lo

c
it

y
 (

u
*)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Kn0.06 Br -0.001-vp-x*=0.8 Kn0.06 Br -0.001-cp-x*=4
Kn0.06 Br -0.001-cp-x*=8 Kn0.06 Br -0.001-cp-x*=12
Kn0.06 Br -0.001-cp-x*=0.8 Kn0.06 Br -0.001-vp-x*=4
Kn0.06 Br -0.001-vp-x*=8 Kn0.06 Br -0.001-vp-x*=12

 

 

Figure A.94 Variation of dimensionless x-velocity with dimensionless width of 

the channel (Kn=0.06, Br = -0.001, Pe=1) 
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Figure A.95 Variation of dimensionless x-velocity with dimensionless width of 

the channel (Kn=0.06, Br = -0.01, Pe=1) 
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Figure A.96 Variation of dimensionless x-velocity with dimensionless width of 

the channel (Kn=0.06, Br = -0.1, Pe=1) 
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Figure A.97 Variation of dimensionless temperature with dimensionless width of 

the channel at crossection x*=0.8 for various negative Brinkman numbers 

(Kn=0.06, Pe=1) 
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Figure A.98 Variation of dimensionless temperature with dimensionless width of 

the channel at crossection x*=4 for various negative Brinkman numbers 

(Kn=0.06, Pe=1) 
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Figure A.99 Variation of dimensionless temperature with dimensionless width of 

the channel at crossection x*=8 for various negative Brinkman numbers 

(Kn=0.06, Pe=1) 
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Figure A.100 Variation of dimensionless temperature with dimensionless width 

of the channel at crossection x*=12 for various negative Brinkman numbers 

(Kn=0.06, Pe=1) 
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Figure A.101 Variation of dimensionless y-velocity with dimensionless width of 

the channel (Kn=0.08, Br = -0.001, Pe=1) 
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Figure A.102 Variation of dimensionless y-velocity with dimensionless width of 

the channel (Kn=0.08, Br = -0.01, Pe=1) 

 

 

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 0.5 1 1.5 2

Dimensionless Width (y*)

D
im

e
n

s
io

n
le

s
s
 y

-V
e
lo

c
it

y
 (

v
*)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Kn0.08 Br -0.1-cp-x*=0.4 Kn0.08 Br -0.1-cp-x*=0.8

Kn0.08 Br -0.1-cp-x*=1.2 Kn0.08 Br -0.1-cp-x*=12

Kn0.08 Br -0.1-vp-x*=0.4 Kn0.08 Br -0.1-vp-x*=0.8

Kn0.08 Br -0.1-vp-x*=1.2 Kn0.08 Br -0.1-vp-x*=12

 

 

Figure A.103 Variation of dimensionless y-velocity with dimensionless width of 

the channel (Kn=0.08, Br = -0.1, Pe=1) 
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Figure A.104 Variation of dimensionless x-velocity with dimensionless width of 

the channel (Kn=0.08, Br = -0.001, Pe=1) 
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Figure A.105 Variation of dimensionless x-velocity with dimensionless width of 

the channel (Kn=0.08, Br = -0.01, Pe=1) 
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Figure A.106 Variation of dimensionless x-velocity with dimensionless width of 

the channel (Kn=0.08, Br = -0.1, Pe=1) 
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Figure A.107 Variation of dimensionless temperature with dimensionless width 

of the channel at crossection x*=0.8 for various negative Brinkman numbers 

(Kn=0.08, Pe=1) 
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Figure A.108 Variation of dimensionless temperature with dimensionless width 

of the channel at crossection x*=4 for various negative Brinkman numbers 

(Kn=0.08, Pe=1) 
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Figure A.109 Variation of dimensionless temperature with dimensionless width 

of the channel at crossection x*=8 for various negative Brinkman numbers 

(Kn=0.08, Pe=1) 
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Figure A.110 Variation of dimensionless temperature with dimensionless width 

of the channel at crossection x*=12 for various negative Brinkman numbers 

(Kn=0.08, Pe=1) 
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Figure A.111 Variation of dimensionless y-velocity with dimensionless width of 

the channel (Kn=0.1, Br = -0.001, Pe=1) 
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Figure A.112 Variation of dimensionless y-velocity with dimensionless width of 

the channel (Kn=0.1, Br = -0.01, Pe=1) 
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Figure A.113 Variation of dimensionless y-velocity with dimensionless width of 

the channel (Kn=0.1, Br = -0.1, Pe=1) 
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Figure A.114 Variation of dimensionless x-velocity with dimensionless width of 

the channel (Kn=0.1, Br = -0.001, Pe=1) 
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Figure A.115 Variation of dimensionless x-velocity with dimensionless width of 

the channel (Kn=0.1, Br = -0.01, Pe=1) 
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Figure A.116 Variation of dimensionless x-velocity with dimensionless width of 

the channel (Kn=0.1, Br = -0.1, Pe=1) 
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Figure A.117 Variation of dimensionless temperature with dimensionless width 

of the channel at crossection x*=0.8 for various negative Brinkman numbers 

(Kn=0.1, Pe=1) 
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Figure A.118 Variation of dimensionless temperature with dimensionless width 

of the channel at crossection x*=4 for various negative Brinkman numbers 

(Kn=0.1, Pe=1) 
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Figure A.119 Variation of dimensionless temperature with dimensionless width 

of the channel at crossection x*=8 for various negative Brinkman numbers 

(Kn=0.1, Pe=1) 
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Figure A.120 Variation of dimensionless temperature with dimensionless width 

of the channel at crossection x*=12 for various negative Brinkman numbers 

(Kn=0.1, Pe=1) 
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Figure A.121 Variation of Nusselt number with axial position for various positive 

Brinkman numbers, obtained from constant and variable property solutions 

(Kn=0.02, Pe=1) 
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Figure A.122 Variation of percent difference in Nusselt numbers between 

constant and variable property solutions with axial position for various positive 

Brinkman numbers (Kn=0.02, Pe=1) 
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Figure A.123 Variation of Nusselt number with axial position for various positive 

Brinkman numbers, obtained from constant and variable property solutions 

(Kn=0.06, Pe=1) 
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Figure A.124 Variation of percent difference in Nusselt numbers between 

constant and variable property solutions with axial position for various positive 

Brinkman numbers (Kn=0.06, Pe=1) 
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Figure A.125 Variation of Nusselt number with axial position for various positive 

Brinkman numbers, obtained from constant and variable property solutions 

(Kn=0.08, Pe=1) 
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Figure A.126 Variation of percent difference in Nusselt numbers between 

constant and variable property solutions with axial position for various positive 

Brinkman numbers (Kn=0.08, Pe=1) 
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Figure A.127 Variation of Nusselt number with axial position for various 

negative Brinkman numbers, obtained from constant and variable property 

solutions (Kn=0.02, Pe=1) 
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Figure A.128 Variation of Nusselt number with axial position for various 

negative Brinkman numbers, obtained from constant and variable property 

solutions (Kn=0.06, Pe=1) 
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Figure A.129 Variation of Nusselt number with axial position for various 

negative Brinkman numbers, obtained from constant and variable property 

solutions (Kn=0.08, Pe=1) 




