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ABSTRACT

PERFORMANCE IMPROVEMENT OF VLSI CIRCUITS WITH CLOCK SCHEDULING

Kapucu, Kerem

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Murat Aşkar

December 2009, 87 pages

Clock scheduling is studied to improve the performance of synchronous sequential circuits.

The performance improvement covers the optimization of the clock frequency and the peak

power consumption, separately. For clock period minimization, cycle stealing method is uti-

lized, in which the redundant cycle time of fast combinational logic is transferred to slower

logic by proper clock skew adjustment of registers. The clock scheduling system determines

the minimum clock period that a synchronous sequential circuit can operate without hazards.

The timing of each register is adjusted for operation with the minimum clock period. The

dependence of the propagation delays of combinational gates on load capacitance values are

modeled in order to increase the accuracy of the clock period minimization algorithm. Simu-

lation results show up to 45% speed-up for circuits that are scheduled by the system. For peak

power minimization, the dependence of the switching currents of circuit elements on the load

capacitance values are modeled. A new method, namely the Shaped Pulse Approximation

Method (SPA), is proposed for the estimation of switching power dissipation of circuit ele-

ments for arbitrary capacitive loads. The switching current waves can accurately be estimated

by using the SPA method with less than 10% normalized rms error. The clock scheduling

algorithm of Takahashi for the reduction of the peak power consumption of synchronous se-

quential circuits is implemented using the SPA method. Up to 73% decrease in peak power
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dissipation is observed in simulation results when proper clock scheduling scheme is applied

to test circuits.

Keywords: vlsi, clock scheduling, peak power minimization, clock period minimization, vlsi

power estimation
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ÖZ

SAAT ZAMANLAMASI İLE VLSI TÜMDEVRELERDE BAŞARIMIN
İYİLEŞTİRİLMESİ

Kapucu, Kerem

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Murat Aşkar

Aralık 2009, 87 sayfa

Bu çalışmada, senkron devrelerin saat hızları ve tepe güç tüketimlerinin, saat zamanlaması

kullanılarak iyileştirilmesi amaçlanmıştır. Saat periyodunu küçültmek için, çevrim aşırma

yöntemi kullanılmıştır. Bu yöntemde, yazmaçların saat zamanlaması ayarlanarak, devrenin

hızlı birleşimsel bölümlerinden arta kalan zaman, daha yavaş birleşimsel bölümlere aktarıl-

maktadır. Saat zamanlaması sistemi, senkron devrelerin sorunsuzca çalışabileceği en düşük

saat periyodunu belirler. Devrenin, en düşük saat periyodu ile çalışması için, her bir yaz-

macın zamanlaması ayarlanır. Saat periyodu küçültme yönteminin kesinliğini artırmak için,

devre elemanlarının yayılma gecikmesinin sığal yük ile değişimi modellenmiştir. Benze-

tim sonuçlarına göre, saat zamanlaması sistem tarafından yapılan devrelerde %45’e varan

hızlanma gözlenmiştir. Tepe güç tüketiminin azaltılması için, devre elemanlarının anahtar-

lama akımlarının sığal yük ile değişimi modellenmiştir. Devre elemanlarının herhangi bir

sığal yük altındaki anahtarlama güç tüketimlerini tahmin etmeye yarayan, Biçimlendirilmiş

Atım Kestirimi (BAK) isimli yeni bir yöntem önerilmiştir. BAK yöntemi ile devre ele-

manlarının anahtarlama akımları %10’un altında normalize rms hata ile saptanabilmektedir.

Takahashi’nin senkron devrelerin tepe güç tüketimini düşürmeye yarayan saat zamanlaması

yöntemi, BAK yöntemi kullanılarak oluşturulmuştur. Bu yöntem ile saat zamanlaması yapılan
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devrelerin, tepe güç tüketimleri, %73’e varan oranlarda düşürülmüştür.

Anahtar Kelimeler: vlsi, saat zamanlaması, tepe güç azaltma, saat devri kisaltma, vlsi güç

tahmini
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CHAPTER 1

INTRODUCTION

The digital design is dominated by the synchronous approach, where the systems are com-

posed of finite state machines and synchronously clocked registers. The systematic approach

in designing the synchronous sequential circuits and the ease of verification have led to dra-

matic progress in the architectures of the systems and the productivity of the designers.

Owing to the advances in the semiconductor manufacturing technology, the number of ele-

ments in integrated circuits are increasing exponentially, following Moore’s Law [1]. The

scale, speed and power consumption of VLSI circuits has improved rapidly. However, shrink-

ing the feature sizes in VLSI circuits, has dramatically decreased the interconnect thickness;

which, in turn, increases resistance of the interconnects and the ratio of routing delay to propa-

gation delay. This puts a limit to the performance improvements in fully synchronous circuits,

where simultaneous switching of all the registers are assumed.

Power consumption and speed are among the major constraints in chip design. Power con-

sumption is identified to be in top three overall challenges in chip design for the last five years

[2]. For many consumer electronic applications, low average power dissipation is desirable.

Moreover, mobile applications such as portable personal communication systems and enter-

tainment devices usually require tight power dissipation constraints. The weight limitations

of portable devices arising from the consumer tendency towards smaller and lighter devices

put a limit on battery sizes, too. Thus, peak power consumption is as important as average

power consumption. Also, the trend towards system-on-chip modules has increased the im-

portance of low power consumption, because heat dissipation is a major problem at that level

of integration.

In sequential VLSI circuits, clock signal is generated at a clock source and distributed to the
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registers via a clock distribution network. The mismatches in resistance and capacitance of

the interconnects due to process variations result in differences in interconnect delays on the

clock distribution network. As a result, the clock signals do not arrive at all of the registers

at the same time. With the decrease of feature sizes in VLSI circuits, these differences are

not negligible anymore. Clock skew is the difference in the arrival times of clock edges to

different registers in a circuit due to the differences in the interconnect delays on the clock

distribution network.

In 1965, Cotten described a data race mechanism in which clock skew may cause a syn-

chronous circuit to fail [3]. Synchronous circuit designers have made a constant effort to

eliminate clock skew since then. Methods are proposed in order to achieve zero clock skew in

clock distribution networks and satisfying results are obtained for skew minimization [4]-[9].

In synchronous circuits, all the registers are clocked simultaneously. When a register is

clocked, its output signal starts to propagate through the combinational circuit to the input

of the next register. In order to eliminate a hazardous operation, this signal must arrive at

the input of the next register before the next clock edge. Hence, the minimum clock period

is bounded below by the maximum propagation delay between two consecutive registers in

the circuit. Taking clock skews into account, the minimum clock period of the circuit is cho-

sen to be larger than the sum of the maximum signal propagation delay and the maximum

clock skew to guarantee the correct function [10]. Thus, clock skew is usually perceived as

an undesirable phenomenon deteriorating circuit performance and efforts are made towards

its elimination.

Conservative design styles, such as those adopted for FPGAs, explicitly discourage “tamper-

ing with the clock” [11]. Another approach views clock skew as a “manageable resource than

a liability” and increases circuit performance by careful adjustment of clock skews of registers

with intentionally introduced delays [12]. In 1990, Fishburn suggested that clock skew can be

approached as a means of circuit performance improvement by carefully adjusting the clock

timings of each register [13]. Fishburn showed that, the clock period of a synchronous circuit

can be minimized by clock skew optimization while maximizing the safety margins against

clock hazards [13]. This is the introduction of the basic idea of semi-synchronous circuits,

where each register is clocked periodically but not necessarily simultaneously. The conditions

for a synchronous circuit to operate correctly with a clock period are given in terms of clock
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timings of registers and maximum and minimum propagation delays between registers [13].

The process of adjusting the clock timings of registers of a synchronous circuit for circuit

performance improvement is called clock scheduling [56].

The clock skew optimization problem is formulated by a linear program [13] and various

algorithms are proposed to minimize the clock period of synchronous circuits [14]-[19]. Since

the computation time to solve the linear program increases with larger circuits, methods to

reduce the size of the linear program are also developed [15], [19].

Exploiting the special form of the timing constraints, graph algorithms are proposed for clock

schedule optimization [20]. It is shown that, the clock skew optimization can efficiently be

done using directed, weighted graphs to represent setup and hold time constraints [10], [12],

[20]-[26]. The minimum feasible clock period is obtained by graph-theoretic approaches

with binary search. Bellman-Ford algorithm is used to determine whether a clock period is

feasible at each iteration of the binary search [12], [20]-[24]. Since this is a time consuming

method, negative cycle detection strategies are utilized in order to fasten the algorithms for

large circuits [25]. Graph-theoretic approaches without binary search are also proposed [10],

[26]. Clock scheduling algorithms aiming to schedule a circuit with minimum cost to a given

infeasible clock schedule are developed [25], [27].

The early works on clock scheduling aimed the minimization of clock period as the optimiza-

tion goal [13]-[24]. However, clock scheduling has been applied for a number of other quality

of circuit improvements, as well. Circuit reliability is improved using clock scheduling [10],

[26]-[30]. Clock scheduling is applied to increase the tolerance of synchronous sequential

circuits to clock jitter [28] and process variations [32], [33].

Peak current is a primary concern in the design of power distribution networks of VLSI cir-

cuits [34]. In order to account for the large current peaks observed in the synchronous digital

circuits, the power and ground lines are over-dimensioned [34]. The maximum voltage drop

and the probability of failure due to electromigration increases with large peak currents [35],

[36]. Demicheli et al. proposed the minimization of peak power supply current by clock

scheduling for the first time [34]. It is shown that the current peaks occurring due to the

simultaneous switching of the registers and the first stages of combinational circuits can be

minimized using clock scheduling without increasing the average power dissipation of the

circuit. Also, a clustering method for easy realization of the clock scheduling is given [34].
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The power dissipation of synchronous sequential circuits should accurately be estimated for

peak power reduction with clock scheduling. Methods are proposed for power estimation

of combinational and sequential circuits [37]-[42]. Current waveforms of digital circuits are

estimated using probabilistic methods [38], and means of worst-case power estimation are

developed [35], [39].The switching probabilities are estimated by calculating the transition

densities [37] and taking the effects of glitching into account [41], [42]. In [34] the power

consumption is estimated under the assumption that the switching timings of gates are fixed

and independent of the clock scheduling. Genetic Algorithm is used to obtain a feasible clock

schedule that reduces the peak power dissipation of a circuit. However, since the switching

times of the gates in a circuit depend heavily on the clock schedule, the power estimation and

the obtained clock schedule are not accurate. Moreover, as a characteristic property of the

Genetic Algorithm, the computation time of this method is very long.

Extending the methods in [34], power supply noise suppression [43], [44] and reduction of

leakage power is achieved [45]. In [43], the power consumption is estimated by assuming that

the switching times of gates depend on the minimum delay from a register and the switching

time of the register. However, the gates may switch due to a switching on a non-minimum

delay path from a register, which decreases the accuracy of this method. Again the clock

scheduling is obtained by a time consuming Genetic Algorithm based method.

Atsushi et al. proposed a fast and more accurate power estimation algorithm and a peak

power reduction algorithm based on that power estimation method [46]. In [46], the power

consumption of a circuit is modeled as the sum of register originated power consumptions.

The switching probabilities of gates are assumed independent of the inputs and calculated

iteratively. Clock scheduling for minimum peak power consumption is done by a fast two-

stage algorithm [46].

The clock scheduling algorithms are developed under the assumption that the desired clock

skews can be introduced to the clock tree. Methods have been proposed for clock routing

[7], clock tree synthesis and physical realization [47]-[51] in order to implement the clock

schedules efficiently. The minor increase in the power consumption of the clock tree due to

the introduction of the clock skews can be eliminated with special clock synthesis algorithms

[56].

The thesis study mainly consists of the application of clock scheduling to synchronous se-
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quential circuits in order to improve two performance metrics of the circuits: clock period and

peak power consumption. In complete-synchronous framework, all the registers are clocked

simultaneously and this results in two problems. The first problem is that the minimum clock

period of the circuit is determined by the longest combinational delay between two registers,

whereas faster combinational paths wait idle for the next clock edge although their outputs

are ready. The second problem arises from the simultaneous switching of all the registers in

a circuit. This results in a high peak power for a short duration after the clock edge, whereas

for the rest of the time the circuit dissipates relatively small static power. In this work, clock

scheduling is utilized as a solution to both problems. The clock period of a synchronous se-

quential circuit can be minimized by cycle stealing. The redundant time of fast combinational

paths are transferred to slower combinational paths by adjusting the skew of the registers. By

this way, each combinational path between registers is assigned the time it needs to generate

the outputs while increasing the overall speed of the circuit. The peak power of synchronous

sequential circuits can be minimized by clock scheduling. The power dissipation wave can be

suppressed and broadened without disturbing the proper operation of the circuit by carefully

adjusting the switching times of the registers. In the chapters that follow, these issues are

presented as follows:

The basics of clock scheduling is given in Chapter 2. The method for determining the mini-

mum feasible clock period of a synchronous sequential circuit is explained. Clock scheduling

algorithms for increasing the clock frequency of the circuit are discussed. The algorithms for

scheduling a circuit with minimum cost to an infeasible clock schedule are also presented.

Chapter 3 covers the algorithm for estimating the peak power consumption of a synchronous

sequential circuit. The newly proposed Shaped Pulse Approximation method for estimating

the switching current waveform of circuit elements is explained. This chapter also covers

how the clock scheduling is utilized to reduce the peak power consumption of a synchronous

sequential circuit.

In Chapter 4 the simulations and tests made for the evaluation of the algorithms are discussed.

The the delay and switching power characterization of gates and registers are explained in de-

tail. The simulation results showing the performance improvement of the benchmark circuits

are presented.

In Chapter 5 the thesis work is summarized, conclusions are drawn and suggestions are made
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for future improvements of the proposed power estimation method.
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CHAPTER 2

CLOCK SCHEDULING

Synchronous digital circuits can be examined in two frameworks [13, 46]: complete syn-

chronous framework (c-frame) and general synchronous framework (g-frame). In c-frame,

all registers are assumed to be simultaneously clocked; whereas, in g-frame registers are not

necessarily clocked simultaneously, provided that the periodicity of the clock signals are still

preserved. The circuits in which registers are clocked with more than one clock timing are

called semi-synchronous circuits [27]. G-frame offers a degree of freedom to the circuit de-

signer, which can be used to improve circuit performance metrics such as clock frequency,

peak power consumption, and etc. by adjusting the clock arrival times of registers. The pro-

cedure of determining the clock arrival timings of registers is called clock scheduling [56].

In order to illustrate how the clock period of a synchronous circuit can be minimized by clock

scheduling, consider the example circuit in Fig. 2.1. The circuit consists of three stages of

registers, u, v and w, with combinational parts in between. Let the propagation delays of

combinational parts C1 and C2 be 12 units and 4 units, respectively. The minimum clock

period for the fully-synchronous clocking scheme is 12 units for this circuit, assuming zero

clock skews among the registers. If there are clock skews, the minimum clock period is even

required to be larger. However, if a skew of 4 units is applied to the clock line of register v,

the circuit can operate with a minimum clock period of 8 units. The time that the output of

register v stays idle after propagating to the input of register w is stolen and given to register

u which has a longer propagation delay. Figures 2.2 and 2.3 show the signal waveforms for

the example circuit without and with clock scheduling respectively. This method, proposed

by Fishburn, is called cycle stealing or cycle borrowing.

This chapter starts with the basics of clock scheduling and general synchronous framework.
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clk_u

u C1

clk_v

v C2

clk_w

w

d(C1) = 12 d(C2) = 4

Figure 2.1: The example circuit for illustrating the clock period minimization by cycle steal-
ing method. The circuit consists of three stages of registers and combinational parts in be-
tween.

clk

uOUT

T=12

n n+1 n+2

n n+1 n+2

n+3

n-1vIN

n n+1

wIN

vOUT n-2 n-1

nn-2 n-1

d(C2)=4

d(C1)=12

n-1 nn-3 n-2wOUT

Figure 2.2: Input and output signal waveforms of the registers of the circuit in Fig 2.1 for
fully synchronous operation. All the registers are clocked by the same clock with a period of
12 units.
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clk_u

uOUT

T=8

n

vIN

n+1 n+2 n+3 n+4

clk_v

n-1 n n+1 n+2 n+3n-2

n-2 n-1 n n+1 n+2n-3vOUT

skew(clk_v)=4

clk_w

n-2 n-1 n

wIN

n-3n-4

n-2 n-1 n n+1n-3

wOUT

Figure 2.3: Input and output signal waveforms of the registers of the circuit in Fig 2.1 for semi
synchronous operation. With the application of 4 units of delay to the clock signal of register
v, the minimum clock period of the circuit is decreased from 12 units to 8 units. Circuit speed
improvement with cycle stealing is illustrated.

The constraints for proper operation of a synchronous circuit and the graph representation

of these constraints are discussed in the first section. The second section starts with a brief

explanation of systems of difference equations, that are used for representing the constraints

for a sequential circuit. The solution of such systems to be used in clock scheduling is also

explained. Then, the theory behind the algorithm for finding the minimum clock period is

discussed in detail. In the third section, the algorithm for finding the minimum clock period

of a semi-synchronous circuit and the algorithm for clock scheduling to operate the circuit

with the minimum clock period is explained. The fourth section covers the algorithms used

for scheduling a circuit with minimum cost to a given infeasible target clock schedule. Finally,

in the fifth section the clock scheduling engine that combines these algorithms into a complete
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u vComb.

Circ.

S(u) S(v)

clk_ref

delay elements

clk_u clk_v

Figure 2.4: Two registers with data path taken as a part of a synchronous circuit

clock scheduling system is discussed.

2.1 General Synchronous Framework

In semi-synchronous circuits the registers are not necessarily simultaneously clocked. The

time at which the clock edge arrives at a register v with respect to an arbitrarily chosen, maybe

hypothetical, reference register is called the clock timing of register v, and denoted by s(v).

The clock timings of all registers in a semi-synchronous circuit is called the clock schedule of

the circuit, S (v). Note that the clock timing of a register is not required to be a unique value;

rather, the clock timing can be determined as a range of values. The clock timing range of

register v denoted by r(v), is defined as the range of clock timings for that register [56] :

r(v) = [smin(v), smax(v)]. (2.1)

Clock scheduling is the procedure of determining the clock timings of registers of a semi-

synchronous circuit [56].

There are two data race mechanisms that may cause failure in synchronous systems [3]

such as the one shown in Figure 2.4. The two registers, u and v, are clocked with differ-

ent clock timings, S (u) and S (v), respectively, and the delay of the combinational path is d.

If s(u) + d < s(v), the output data of register u will be sampled twice by the same clock edge,

which is called double-clocking hazard. Furthermore, if s(u) + d > s(v) + T , where T is

the clock period, data will not be sampled at all, i.e. data will be lost, which is called zero-
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clk_ref

clk_u

clk_v

data_u

S(u)

S(v)
d
m
in (u
,v)

d
m
ax (u,v)

T

Figure 2.5: Timing diagram for setup and hold time constraints

clocking hazard. In other words, the output of register u should arrive at register v between

s(v) and s(v) + T for proper operation without hazards. (See Figure 2.5)

For proper register operation the data should be stable at the register input during the time

interval:

s(v) − setup(v) < t < s(v) + hold(v), (2.2)

where setup(v) is the setup time and hold(v) is the hold time of register v. If the output of

register u arrives at register v before s(v), it will be a violation of the setup-time constraint, if

it arrives later than s(v) + T , it will be a violation of the hold-time constraint.

In general, two types of constraints must be satisfied for each register pair with signal propa-

gation in order to eliminate the clocking hazards and assure the correct operation of a semi-

synchronous circuit [13, 25].

11



Hold (No Double-Clocking) Constraint:

s(v) − s(u) ≤ dmin(u, v), (2.3)

Setup (No Zero-Clocking) Constraint:

s(u) − s(v) ≤ T − dmax(u, v), (2.4)

where dmin(u, v) is the minimum propagation delay from register u to v, and dmax(u, v) is the

maximum propagation delay from register u to v along the combinational path between the

two registers. As more precisely defined in [25];

dmin(u, v) = d′min(u, v) − hold(v) − marginh(v), (2.5)

where d′min(u, v) (≥ 0) is the minimum propagation delay from register u to register v,

hold(v) (≥ 0) is the hold time of register v, marginh(v) (≥ 0) is the predefined timing margin.

Similarly;

dmax(u, v) = d′max(u, v) + setup(v) + margins(v), (2.6)

where d′max(u, v) (≥ 0) is the maximum propagation delay from register u to register v,

setup(v) (≥ 0) is the setup time of register v, margins(v) (≥ 0) is the predefined timing margin.

The timing margin is useful in practical aspects such as securing the feasibility in realizing the

clock-timing, securing the reliability of the circuit and providing more room for optimization

of circuit performance.

There may be timing constraints for the inputs and outputs of the circuit arising from the

interaction of the circuit with other circuits, modules, etc. In order to handle these types of

constraints, hypothetical registers outside the circuit with fixed clock timings are assumed to

be connected to the inputs and the outputs of the circuit [34]. In the constraint inequalities, the

constant input arrival time replaces s(u) for input constraints, and the constant output required

time replaces s(v) for output constraints.

A clock schedule is said to be feasible for some clock period T if all the constraints are satis-

fied by that clock schedule for that clock period [10], i.e. there are no hazards or setup/hold

time violations and the circuit operates properly.

In order to find a feasible clock schedule, all the constraints should be satisfied at the same

time, which requires solving many equations at once. A constraint graph G(V, E) is used to
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Figure 2.6: Example circuit [58]

represent these constraints [10], [25], [27], [46], [56]. A vertex v ∈ V in the graph corresponds

to a register in the circuit. If a group of registers in the circuit are constrained to be clocked

simultaneously, they should be represented by a single vertex in the constraint graph [10]. A

directed edge (u, v) ∈ E in the graph corresponds to either a setup or a hold constraint, named

as setup edge or hold edge respectively. The edge weight ω(u, v) is dmin for hold edges and

T − dmax for setup edges. Hence, in the constraint graph each directed edge represents the

constraint:

s(v) − s(u) ≤ ω(u, v). (2.7)

The constraint graph G for clock period T is denoted by GT , similarly the edge weight ω(u, v)

for clock period T is denoted by ωT (u, v). The slack of an edge is defined as:

∆T (u, v) = s(u) + ωT (u, v) − s(v). (2.8)

An edge (u, v) is legal if s(v) − s(u) ≤ ωT (u, v), i.e., ∆T (u, v) ≥ 0; and it is illegal

otherwise. An edge with zero slack is called critical edge. A clock schedule is feasible

for a clock period T if there is no illegal edge in the constraint graph [27], i.e. all constraints

are satisfied. A feasible clock schedule is not necessarily unique, since each register may have

a range of possible clock timings. A set of clock ranges is said to be consistent if a feasible

clock schedule is obtained for any clock timing, s(v), chosen within the clock timing range,

r(v), for each register v ∈ V [56].

An example circuit with corresponding constraint graph is given in Fig. 2.6 and Fig. 2.7,

respectively. Note that one vertex is assigned for the two inputs since the input timings are

assumed to be equal, and another vertex is assigned for the output since the output required
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Figure 2.7: Constraint graph of the example circuit

time is assumed to be different than the input timings. Also note that, a single host register

for representing the inputs and outputs is used if input and output timings are the same.

2.2 Systems of Difference Constraints

The constraints for a sequential circuit to operate without hazards for a given clock schedule

are presented in Section 2.1. These constraints are in the form of difference constraints.

Consider a set of m difference constraints, involving n unknowns, each being a simple linear

inequality in the form:

x j − xi ≤ bk, (2.9)

where, 1 ≤ i, j ≤ n and 1 ≤ k ≤ m. This is a system of difference constraints represented as:

Ax ≤ b, (2.10)

where A is an m × n matrix, which contains a single “1” and a single “−1” in each row with

all remaining entries being “0”; b is an m-vector and x is an n-vector, where xi’s are the

unknowns. In order to find the minimum feasible clock period of the circuit, the objective is

to find any feasible solution, x, that satisfies Ax ≤ b or to determine that no feasible solution

exists. As the following lemma suggests a feasible clock schedule is not unique.
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Lemma 2.2.1 Let x = (x1, x2, . . . , xn) be a solution to the system of difference constraints,

Ax ≤ b, and let d be any constant. Then x + d = (x1 + d, x2 + d, . . . , xn + d) is also a solution

to Ax ≤ b as well [59].

Proof. For each xi and x j:

(x j + d) − (xi + d) = x j − xi. (2.11)

Thus, if x satisfies Ax ≤ b, so does x + d [59]. �

It is practical to represent the systems of difference constraints with constraint graphs and in-

terpret them graph-theoretically [59]. The system Ax ≤ b with n unknowns and m inequalities

can be represented by a constraint graph G(V, E) with n vertices and m directed edges. Each

vertex vi in the graph corresponds to an unknown xi with 1 ≤ i ≤ n, and each directed edge

(xi, x j) with weight bk in the graph represents one of m inequalities in the form x j − xi ≤ bk.

More formally, given a system Ax ≤ b of difference constraints, corresponding constraint

graph G(V, E) is a weighted, directed graph with:

V = {v0, v1, . . . , vn}, (2.12)

and

E = {(vi, v j) : x j − xi ≤ bk is a constraint}
⋃
{(v0, v1), (v0, v2), . . . , (v0, vn)}. (2.13)

Note that, an additional vertex v0 is added to guarantee that every other vertex is reachable

from v0. This vertex is named as source or root. In the constraint graph, the weight of

directed edge (vi, v j) is ω(vi, v j) = bk corresponding to the constraint inequality x j − xi ≤ bk.

The weight of each edge, (v0, vi), leaving the source vertex is zero, that is:

ω(v0, vi) = 0 ∀vi ∈ V. (2.14)

The weight of a path is defined as the sum of the weights of all edges in the path. The

distance of a vertex from the source is defined as the weight of the shortest path among all

paths between the source and the vertex [25], [59]. The distance of vertex vi, from the source,

v0, is denoted by δ(v0, vi) or δ(vi). A cycle is a set of edges, where the source vertex of the first

edge and the target vertex of the last edge are the same, with no other mutual vertices among

edges. A cycle is called a critical cycle if the sum of the weights of the edges in the cycle is

zero [61].

15



Lemma 2.2.2 (Triangle Inequality) Let G(V, E) be a weighted, directed graph with weight

function w : E → < and source vertex s. If G contains no negative-weight cycle, then the

following inequality must be satisfied for all edges (u, v) ∈ E [59]:

δ(s, v) ≤ δ(s, u) + ω(u, v). (2.15)

Proof. Let p be a shortest path from source s to vertex v. Then, the weight of p is not more

than the weight of any other path from s to v. Specifically, the weight of path p, is not more

than the weight of the particular path that consists of the shortest path from source s to vertex

u and edge (u, v)[59]. �

The following theorem states that, utilizing shortest path algorithms on the constraint graph

determines the existence of a solution to the constraint system and finds a feasible solution, if

exists.

Theorem 2.2.3 Let G(V, E) be the corresponding constraint graph of a system of difference

constraints, Ax ≤ b. If G contains no negative-weight cycles, then a feasible solution for the

system is given by [59]:

x = ( δ(v0, v1), δ(v0, v2), δ(v0, v3), . . . , δ(v0, vn) ). (2.16)

Moreover, if G contains a negative-weight cycle, then there is no feasible solution for the

system [59].

Proof. Consider any edge (vi, v j) ∈ E of the constraint graph G. By the triangle inequality,

δ(v0, v j) ≤ δ(v0, vi) + ω(vi, v j), (2.17)

or equivalently,

δ(v0, v j) − δ(v0, vi) ≤ ω(vi, v j). (2.18)

Thus, letting xi = δ(v0, vi) and x j = δ(v0, v j) satisfies the difference constraint that corresponds

to edge (vi, vi): x j − xi ≤ ω(vi, v j). Hence, if the constraint graph contains no negative-weight

cycles, then (2.16) gives a feasible solution [59].

Suppose that the constraint graph G has a negative-weight cycle. Without loss of generality,

let the negative-weight cycle be C = 〈v1, v2, . . . , vk, v1〉. Note that, source vertex v0 can not
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be on the negative cycle, since it has no entering edges. The edges in cycle C represents the

following difference constraints:

x2 − x1 ≤ ω(v1, v2), (2.19)

x3 − x2 ≤ ω(v2, v3), (2.20)

x4 − x3 ≤ ω(v3, v4), (2.21)

...

xk − xk−1 ≤ ω(vk−1, vk), (2.22)

x1 − xk ≤ ω(vk, v1). (2.23)

Suppose that, there is a solution for x that satisfies each of the k inequalities. Then, this

solution must also satisfy the sum of these k inequalities:

x2− x1 + x3− x2 + · · ·+ xk − xk−1 + x1− xk ≤ ω(v1, v2) +ω(v2, v3) + · · ·+ω(vk−1, vk) +ω(vk, v1),

(2.24)

which reduces to:

0 ≤ ω(C), (2.25)

because on the left-hand side of the inequality each unknown is added once and subtracted

once. On the right-hand side of the inequality, the weights of all the edges in the cycle C are

summed up to be the weight of the cycle C. But since C is a negative-weight cycle,

ω(C) < 0, (2.26)

resulting in a contradiction:

0 ≤ ω(C) < 0. (2.27)

Thus, there is no feasible solution for a constraint system, if there is a negative-weight cycle

in the corresponding constraint graph. �

As shown by Theorem 2.2.3, shortest path algorithms such as Bellman-Ford Algorithm can

be used to solve systems of difference constraints. Note that Dijkstra’s Algorithm is useless

due to the existence of negative-weight edges in the constraint graph. The added source vertex

v0 guarantees that, any negative-weight cycle in the constraint graph is reachable from source

vertex v0, since there are out-edges from v0 to all the other vertices in the constraint graph.

Bellman-Ford Algorithm converges, i.e., the distances of all vertices are finite, if there is no

negative-weight cycle in the constraint graph. If Bellman-Ford Algorithm returns TRUE, the
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distance of each vertex to the source gives a feasible solution to the system of difference

constraints. If Bellman-Ford Algorithm returns FALSE, it means a feasible solution to the

system of difference constrains does not exist. The constraint graph G(V, E) for a system

of m difference constraints with n unknowns, has n + 1 vertices and n + m edges. Hence,

Bellman-Ford Algorithm solves the system in O((n + 1)(n + m)) = O(n2 + nm) time [59].

Lemma 2.2.4 A clock period T is feasible, if constraint graph GT for that clock period con-

tains no negative cycle [61].

Proof. Follows directly from Theorem 2.2.3. �

Lemma 2.2.5 If a clock period T is not feasible,then the clock period T ′ ≤ T is not feasible

[61].

Proof. If clock period T is not feasible, then there is a negative-weight cycle in the constraint

graph GT . Let C be the negative-weight cycle, consisting of hold-edges Ch and setup-edges

Cs, then:

ω(C) =
∑

eh∈Ch

dmin(u, v) +
∑

es∈Cs

T − dmax(u, v) ≤ 0, (2.28)

where eh = (u, v) is a hold edge and es = (u, v) is a setup edge of the negative-weight cycle.

For T ′ ≤ T : ∑
es∈Cs

T ′ − dmax(u, v) ≤
∑

es∈Cs

T − dmax(u, v), (2.29)

Hence;

∑
eh∈Ch

dmin(u, v) +
∑

es∈Cs

T ′ − dmax(u, v) ≤
∑

eh∈Ch

dmin(u, v) +
∑

es∈Cs

T − dmax(u, v) ≤ 0. (2.30)

Thus, C will be a negative-weight cycle for clock period T ′, thus T ′ is not feasible. �

Lemma 2.2.6 If a clock period T is feasible, then the clock period T ′ ≥ T is also feasible

[61].

Proof. Assume that T ′ is not feasible. Then, by Lemma 2.2.5, T ≤ T ′ is not feasible, which

is a contradiction. Hence, T ′ is feasible [60]. �
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Lemma 2.2.7 (Upper Bound on Clock Period) An upper bound, UT , on the clock period is

given by [25], [60]:

T ≤ UT = max
(u,v)∈ES

{
dmax(u, v)

}
< ∞. (2.31)

Proof. From the setup edge constraint given in 2.4, for zero clock skew condition, i.e., all

registers are scheduled at 0:

T ≤ dmax(u, v), (2.32)

which is a feasible clock period for even the zero clock skew case and an upper bound for the

minimum feasible clock period [25], [60]. �

Lemma 2.2.8 (Lower Bound on Clock Period) A lower bound, LT , on the clock period is

given by [25], [60]:

T ≥ LT = max
{

max
(u,u)∈Es

{dmax(u, u)} , max
(u,v)∈E

{
dmax(u, v) − dmin(u, v)

}}
≥ 0, (2.33)

where dmax(u, u) = 0 if there is no signal path from a register to the same register, and ES is

the set of all setup edges.

Proof. The propagation delay from a register to the same register is obviously a lower bound

on the clock period [25], [60].

For the second term, consider the setup and hold edge constraints given in (2.3) and (2.4)

respectively, which are satisfied for each register pair with signal propagation:

s(v) − s(u) ≤ dmin(u, v), (2.34)

s(u) − s(v) ≤ T − dmax(u, v). (2.35)

Summing both sides of the inequalities gives:

0 ≤ T − dmax(u, v) + dmin(u, v), (2.36)

Hence;

dmax(u, v) − dmin(u, v) ≤ T, (2.37)

for all (u, v), for a feasible clock period T , which also holds for minimum feasible clock period

Tmin:

dmax(u, v) − dmin(u, v) ≤ Tmin, (2.38)
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for all edges (u, v). Hence, a lower bound for minimum feasible clock period:

max
(u,v)∈E

{
dmax(u, v) − dmin(u, v)

}
≤ Tmin. (2.39)

Consequently, the lower bound is the maximum of the two terms. �

Theorem 2.2.9 A finite solution to the clock period minimization problem exists [60].

Proof. Following directly from Lemmas’ 2.2.7 and 2.2.8, the minimum feasible clock period

is bounded by:

0 ≤ LT ≤ T ≤ UT < ∞. (2.40)

�

For the sake of completeness, the following lemmas from [61] are given without proof.

Lemma 2.2.10 The constraint graph contains at least one critical cycle when the clock pe-

riod is the minimum feasible clock period [61].

Lemma 2.2.11 For the constraint graph with a feasible clock schedule; each directed edge

in the critical cycle is a critical edge [61].

2.3 Minimum Feasible Clock Period

Theorem 2.2.9 states that the minimum clock period of a given sequential circuit is finite and

bounded. Moreover, Theorem 2.2.3 states that shortest path algorithms such as Bellman-Ford

Algorithm can determine if a clock period is feasible or not. Thus a binary search can be

made to find the minimum feasible clock period [12], [25], [60]. The algorithm for finding

the minimum feasible clock period similar to those in [12], [12], [60], is given in Figure 2.8.

A binary search is made for the minimum feasible clock period in the interval bounded by the

upper and lower bounds given in Lemmas 2.2.7, and 2.2.8, where at each step the interval is

halved until the minimum feasible clock period is determined with an error less than ε. The

upper and lower bounds are checked before the binary search is initiated. If the lower bound

is feasible, then it is returned as the minimum feasible clock period. If the upper bound is not

feasible, the algorithm returns infinity, meaning that there is no feasible clock period.
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Procedure MinClock( G(V, E) )
Input: constraint graph G(V, E)
Output: minimum feasible clock period T

1: Lsel f := max(u,u)∈E dmax(u, u)
2: Ldi f f := max(u,v)∈E{dmax(u, u) − dmin(u, v)}
3: L := max{Lsel f , Ldi f f }

4: T := max(u,v)∈E dmax(u, v)
5: if IsNoNegCycle( G, L ) = “Yes” then
6: return L
7: end if
8: if IsNoNegCycle( G, T ) = “No” then
9: return ∞

10: end if
11: while T − L ≥ ε do
12: M := (T + L)/2
13: if IsNoNegCycle( G, T ) = “Yes” then
14: T := M
15: else
16: L := M
17: end if
18: end while
19: return T

Figure 2.8: Minimum feasible clock period algorithm.

At each step of the binary search, the feasibility of the clock period is checked using Bellman-

Ford Algorithm. If there is a negative-weight cycle in the graph, Bellman-Ford Algorithm

does not converge and the update procedure is repeated as many times as the number of ver-

tices. Hence, a negative-weight cycle detection method is needed to determine the existence

of a negative-weight cycle in the graph at early stages.

There are a number of negative-weight cycle detection strategies [57], one of which is the

“walk-to-the-root” method. In “walk-to-the-root” method, a negative-weight cycle is detected

by following parent pointers from a vertex. If source s is not reachable from a vertex, that

means there is a negative-weight cycle in the graph. In [57], the checking is made before the

labeling operation with respect to edge (u, v). If v is reached on the way from u to s, negative

cycle is detected since the labeling with respect to (u, v) will create a negative cycle. In [25],

a slightly modified walk-to-the-root method is proposed, where the checking is made after all

the labeling operations to the neighbors of u are finished. If these labeling operations create a

cycle, the path from u contains u. Also, labeling from u to r creates a negative cycle; which is
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Procedure IsNoNegCycle( G(V, E), T )
Input: constraint graph G(V, E), clock period T
Output: Yes or No

1: Construct GT , add source vertex s, add edges { (s, u) : ∀u ∈ V, ω(s, u) = 0 } // Init.
2: Q1 ← ∅, Q2 ← ∅ // Init.
3: for all v ∈ V do
4: δ(v) := ∞ // Initially all distances set to infinity
5: end for
6: δ(s) = 0, push s to Q1 // Init.
7: while Q1 is not empty do // Update Procedure (steps 7-21)
8: u← pop(Q1)
9: for all v adjacent to u in G do

10: if δ(v) ≥ δ(u) + ωT (u, v) then // Labeling operation (steps 10-16)
11: δ(v) := δ(u) + ωT (u, v)
12: set parent pointer from v to u
13: if v is not in Q2 then
14: push v to Q2
15: end if
16: end if
17: end for
18: if reach u by following parent pointer from u then // Negative-weight cycle exists!
19: return “No”
20: end if
21: end while
22: if Q2 is empty then // No negative-weight cycle
23: return “Yes”
24: end if
25: Q1 ← Q2, Q2 ← ∅

26: goto step 7

Figure 2.9: Negative cycle detection algorithm: Bellman-Ford Algorithm with modified walk-
to-the-root strategy.

also checked by the algorithm. Note that in [25], a root vertex r, is selected among the vertices

instead of adding to the constraint graph a source node s, with only out-edges. Hence, the

labeling from u to r needs to be checked as a part of walk-to-the-root method.

In this work, a slightly modified version of the approach in [25] is used. A source node s,

with only out edges is added to the constraint graph in the beginning and the negative-weight

cycle checking is made at a vertex after all labeling operations are made from that vertex. By

this way, the checking of labeling from u to s is eliminated since the source vertex does not

have any entering edges. The overhead of ”walk-to-the-root” method for constraint graphs is

less than 1% for graphs with no negative-weight cycles [25].

22



The accuracy of the algorithm depends on the determination of propagation delays of the

elements in the circuit. Neglecting the dependence of the propagation delay on the load

capacitance value or using coarsely tabulated values may cause errors in minimum clock

period calculation. In this work, the variation of the propagation delay of each gate type

with respect to the load capacitance value is modelled as discussed in Subsection 4.1.1. The

propagation delay of each gate according to the actual capacitive load of the gate in the circuit

is estimated by using the model and the constraint graph is constructed accordingly.

Let n be the number of vertices, m be the number of edges and k be the number of distinct

edges in a shortest trail. The time complexity of the initialization (steps 1-6) is O(n); the time

complexity of the labeling operation (steps 10-16) is O(1); the time complexity of walk-to-

the-root (steps 18-20) is O(k). Update procedure (steps 7-21) is repeated at most k times and

in each update, labeling is made at most m times and walk-to-the-root is done at most n times

[25]. Hence, the time complexity of the negative-weight cycle detection algorithm is:

O(n) + k ·
(
m · O(1) + n · O(k)

)
= O(km + kn2). (2.41)

The time complexity of the negative-weight cycle detection algorithm in this work is the same

as that in [25], which is better than that in [57] with a minor difference.

The time complexity of finding upper and lower bounds for the binary search algorithm are

O(m). Hence, the time complexity of the minimum-feasible clock period algorithm is:

O
(
γ(km + kn2)

)
, (2.42)

where γ is the number of repetitions [25]. Experimentally, k < 100 and γ < 20 are found for

most circuits.

2.4 Minimum Cost Scheduling

The cost of a clock schedule is defined as the sum of differences between the clock schedule S

and a target clock schedule O for all registers of a circuit [25], [27]. Minimum cost scheduling

algorithm finds a feasible clock schedule S of a circuit for a given clock period T , with

minimum cost from a given target clock schedule O. Obviously, if the target clock schedule

is feasible, this is an easy task. Hence, throughout the discussion in this section, the target

clock schedule is assumed to be infeasible.
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Figure 2.10 shows the minimum cost scheduling algorithm. Firstly, an initial feasible clock

schedule is found by using the Bellman-Ford algorithm as shown in Fig. 2.11. This algorithm

simply chooses a root vertex and calculates the distance of every node with respect to the

root. The distance of a register to the root δ(r, v), is assigned as the initial clock timing of

each register, i.e., s(v) = δ(v). Then, the clock timing s(v) of each register v is replaced

with s(v) − o(v), regarding the target clock timing of each register as zero. The initial clock

schedule is iteratively improved, by using TryDec and TryInc given in Figs. 2.12 and 2.13,

respectively. The iterations continue until no further improvement can be made on the initial

clock schedule. After all the iterations are finished, the clock timing s(v) of each register v is

replaced by s(v) + o(v).

FindCRD algorithm [27], finds a set of registers such that the overall cost can be reduced

by decreasing the clock timing of each register in the set by the same amount. The optimal

amount of decrease is calculated by TryDec. Similarly, FindCRI algorithm, finds a set of

registers such that the overall cost can be reduced by increasing the clock timing of each

register in the set by the same amount. The optimal amount of increase is calculated by

TryInc.

2.4.1 Finding the Optimal Amount of Clock Timing Adjustment

Let G(V, E) be a constraint graph of a circuit with a feasible clock schedule S and let R ⊆ V

be a set of registers of the circuit. Consider another clock schedule for the same circuit S ′

such that:

s′(v) =


s(v) − α, if v ∈ R

s(v), otherwise.
(2.43)

If vertices u and v are both in R or are both in V\R, the edge (u, v) is legal. The condition for

the edge (u, v) to be legal in S ′ when u ∈ R and v < R is:

s(v) −
(
s(u) − α

)
≤ ω(u, v). (2.44)

Hence;

α ≤ s(u) − s(v) + ω(u, v) = ∆(u, v). (2.45)
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Procedure MinCost( GT (V, ET ), O )
Input: Constraint graph GT (V, ET ), target clock timing of all registers, O = { o(v) : ∀v ∈ V }
Output: Clock schedule S = { s(v) : ∀v ∈ V}

1: FindInitialSchedule( GT (V, ET ) ) // Get an initial feasible clock-schedule
2: if s(v) = o(v) forall v ∈ V then
3: return S
4: end if
5: for all v ∈ V do
6: s(v) := s(v) − o(v)
7: end for
8: do
9: do

10: S := TryDec( GT , S )
11: while S is modified
12: do
13: S := TryInc( GT , S )
14: while S is modified
15: while S is modified
16: for all v ∈ V do
17: s(v) := s(v) + o(v)
18: end for
19: return S

Figure 2.10: Minimum cost scheduling algorithm.

Similarly the condition for the edge (u, v) to be legal in S ′ when u < R and v ∈ R is:

(
s(v) − α

)
− s(u) ≤ ω(u, v). (2.46)

Hence;

−∆(u, v) = s(u) − s(v) + ω(u, v) ≤ α. (2.47)

Thus, S ′ is feasible if and only if [25]:

LR ≤ α ≤ UR, (2.48)

where,

LR = max
u<R,v∈R

{
− ∆(u, v)

}
, (2.49)

UR = max
u∈R,v<R

{
∆(u, v)

}
. (2.50)

In order to minimize the cost of clock schedule S ′, clock timings of registers in R should be

changed by such an amount that, at the end the number of registers with positive clock timing
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Procedure FindInitialSchedule( G(V, E) )
Input: Constraint graph G(V, E)
Output: Clock schedule S = { s(v) : ∀v ∈ V}

1: Select a root node, r
2: Calculate the distance δ(r, v) of every node v ∈ V to the root r using Bellman-Ford Algo-

rithm
3: for all v ∈ V do
4: s(v) = δ(r, v)
5: end for
6: return S

Figure 2.11: Algorithm that finds an initial feasible clock schedule.

is equal to the number of registers in with negative clock timing. If such a clock schedule is

infeasible, then the difference between the number of registers with positive clock timing and

the number of registers with negative clock timing should be minimized [27].

As defined in [27]; let β be zero, if the number of registers in R is even and
⌊

n+1
2

⌋
-th largest

clock timing in R is non-negative in S and
⌈

n+1
2

⌉
-th largest clock-timing in R is non-positive in

S . Otherwise, let β be the
⌊

n+1
2

⌋
-th largest clock timing of registers in R in S . The following

lemma states the optimum amount of clock timing adjustment that minimizes the cost of the

clock scheduling, α, in terms of β.

Lemma 2.4.1 The optimal α, that minimizes the cost of S ′ is [27]:

αopt =


β, LR ≤ β ≤ UR

LR, β ≤ LR

UR, UR ≤ β

(2.51)

Obviously, if αopt is zero, the cost of the clock scheduling can not be changed by the set of

registers. For the set of registers to reduce the cost, αopt must be positive or negative. αopt is

negative if and only if both LR and β are negative, that is, there is no critical in-edge to R in

S , and the number of registers in R with negative clock timing in S is larger than the number

of registers in R with positive clock timing in S . Similarly, αopt is positive if and only if both

BR and β are positive, that is, there is no critical out-edge from R in S , and the number of

registers in R with positive clock timing in S is larger than the number of registers in R with
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Procedure TryDec( GT (V, ET ), S )
Input: Constraint graph GT (V, ET ), and current clock schedule S = {s(v) : ∀v ∈ V}
Output: TRUE or FALSE

1: R← ∅
2: β := 0, αopt := 0
3: R :=FindCRD( GT (V, ET ) )
4: if R is empty then
5: return FALSE
6: end if
7: UR := minu∈R,v<R(∆(u, v))
8: LR := maxu<R,v∈R(−∆(u, v))
9: if number of vertices in R is odd then

10: β :=
⌊

n+1
2

⌋
-th largest clock-timing in R

11: else if
⌊

n+1
2

⌋
-th largest clock-timing in R is non-negative and⌈

n+1
2

⌉
-th largest clock-timing in R is non-positive then

12: β := 0
13: end if
14: if LR ≤ β ≤ UR then
15: αopt := β

16: else if β < LR then
17: αopt := LR

18: else if UR < β then
19: αopt := UR

20: end if
21: for all v ∈ R do
22: s(v) := s(v) − αopt

23: end for
24: return TRUE

Figure 2.12: TryDec algorithm

negative clock timing in S . The methods of finding such sets of registers will be discussed in

the next subsection.

2.4.2 Finding Cost Reducible Register Sets

A set of registers R is called cost reducible by decrease (CRD), if the cost of the clock schedule

can be reduced by decreasing the clock timing of each register in R by the same amount

without violating the setup and hold time constraints [25]. Similarly, a set of registers R is

called cost reducible by increase (CRI), if the cost of the clock schedule can be reduced by

increasing the clock timing of each register in R by the same amount without violating the
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Procedure TryInc( GT (V, ET ), S )
Input: Constraint graph GT (V, ET ), and current clock schedule S = {s(v) : ∀v ∈ V}
Output: TRUE or FALSE

1: R← ∅
2: β := 0, αopt := 0
3: R :=FindCRI( GT (V, ET ) )
4: if R is empty then
5: return FALSE
6: end if
7: UR := minu∈R,v<R(∆(u, v))
8: LR := maxu<R,v∈R(−∆(u, v))
9: if number of vertices in R is odd then

10: β :=
⌊

n+1
2

⌋
-th largest clock-timing in R

11: else if
⌊

n+1
2

⌋
-th largest clock-timing in R is non-negative and⌈

n+1
2

⌉
-th largest clock-timing in R is non-positive then

12: β := 0
13: end if
14: if LR ≤ β ≤ UR then
15: αopt := β

16: else if β < LR then
17: αopt := LR

18: else if UR < β then
19: αopt := UR

20: end if
21: for all v ∈ R do
22: s(v) := s(v) − αopt

23: end for
24: return TRUE

Figure 2.13: TryInc algorithm

setup and hold time constraints.

In order for a set of registers to be a cost reducible set, the optimum amount of adjustment,

αopt, of the registers must be non-zero. If αopt is negative, the set is a CRI set; if αopt is

positive, the set is a CRD set.

As Lemma 2.4.1 suggests, given a constraint graph G(V, E) with a clock schedule S ; a set of

registers R, is a CRD set if there is no critical out-edge from R in S and the number of registers

in R with positive clock timing in S is larger than the number of registers in R with negative

clock timing in S [25]. Considering the critical graph GC(V, EC), consisting of only the critical

edges of G(V, E), and labeling the registers with s(v) > 0 as “+” and the registers with s(v) ≤ 0
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Procedure FindCRD( GT (V, ET ), S )
Input: Constraint graph GT (V, ET ), and current clock schedule S = {s(v) : ∀v ∈ V}
Output: Set R of cost reducible by decrease vertices or empty set if no such vertex exist

1: R← ∅
2: R′ ← ∅
3: Construct critical graph GC(V, EC) that consists of only critical edges
4: Construct G′H(V, E′H), the transitive graph of GC(V, EC) using Warshall’s Algorithm
5: for all v ∈ V do
6: if s(v) > 0 then
7: Label: v← “+”
8: else if s(v) ≤ 0 then
9: Label: v← “-”

10: end if
11: end for
12: Construct GH(V, EH) from G′H(V, E′H) by deleting all edges in EH except edges going

from “+” to “-” vertices
13: Obtain a maximum matching of GH(V, EH) by using Hopcroft-Karp Algorithm, and re-

verse the matched edges to obtain G∗H(V, EH)
14: if all “+” vertices matched then
15: return R = ∅

16: end if
17: Select an unmatched “+” vertex, vS

18: R′ = {v ∈ V : v is reachable from vs in G∗H}
19: R = R′

⋃
{vertex v reachable from R′ in GC}

20: return R

Figure 2.14: Algorithm that finds cost reducible by decrease sets

as “–”; the definition can be re-stated as follows: Given a critical graph GC(V, EC), a set of

registers R, is a CRD set if there is no critical out-edge from R and the number of “+” registers

in R is larger than the number of “–” registers in R [25].

The algorithm to find a CRD set is given in Figure 2.14. The algorithm takes a constraint

graph GT (V, ET ) for a clock period T and the current clock schedule S of the circuit as input.

The output of the algorithm is the set R of cost reducible by decrease vertices. If the algorithm

returns an empty set, that means there is no set of CRD registers. The register set R, returned

by the algorithm has more “+” registers than “–” registers and there are no edges (u, v) in

GC with u ∈ R and v < R. The algorithm starts by constructing the critical graph GC(V, EC)

consisting of only critical edges. Then, the transitive graph G′H(V, E′H) is constructed using

Warshall’s Algorithm for transitive closure [59]. The vertices with timing greater than zero

(s(v) > 0) are labeled as “+” and the vertices with timing less than or equal to zero (s(v) ≤ 0)
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Warshall’s Algorithm for transitive closure
Input: Directed graph G(V, E)
Output: Transitive closure matrix T , such that T [u, v] = 1 if there is a path from u to v;
T [u, v] = 0 if there is no path from u to v

1: for all u ∈ V do
2: for all v ∈ V do
3: if u = v or (u, v) ∈ E then
4: T [u, v]← 1
5: else
6: T [u, v]← 0
7: end if
8: end for
9: end for

10: for all w ∈ V do
11: for all u ∈ V do
12: for all v ∈ V do
13: T [u, v]← T [u, v] ∨

(
T [u,w] ∧ T [w, v]

)
14: end for
15: end for
16: end for
17: return T

Figure 2.15: Algorithm that computes the transitive closure of a graph.

are labeled as “–”. After that, the graph GH(V, EH) is constructed from G′H(V, E′H), consisting

of only “+” to “–” edges. A maximum matching of GH(V, EH) is obtained using Hopcroft-

Karp Algorithm [62], [63], [64] and the matched edges are reversed to obtain G∗H(V, EH). At

this point, if all the “+” are matched, the algorithm returns an empty set, because no CRD set

of vertices exist. Else, an unmatched “+” vertex, vS , is selected and the set R′ is constructed

with all the vertices reachable from vS in G∗H(V, EH). Finally, the set R is constructed by

adding to R′ a vertex reachable from R′ in GC(V, EC).

The following theoretical discussion stated in [27] provides a theoretical basis for the Find-

CRD algorithm and shows the correctness of the FindCRD algorithm.

Theorem 2.4.2 There is no set of CRD vertices in the graph, if all “+” vertices are matched

in step 14 of FindCRD algorithm [27].

Proof. Assume that all “+” vertices are matched and there exists a CRD set of vertices P ⊆ V .

That is, there is no edge (u, v) in GC with u ∈ P and v < P and there are more “+” vertices

than “–” vertices in P. Since all “+” vertices are matched, there exists a “–” vertex v for

30



every “+” vertex u in P and there is a path from u to v in GC . Since P is a CRD set, there

can not be any out-edges in the critical graph for vertices in P.Therefore, vertex v is in P,

making the number of “+” vertices at least equal to the number “–” vertices in P. This results

in a contradiction, because for CRD sets, the number of “+” vertices than is greater than the

number of “–” vertices. �

Theorem 2.4.3 There is no edge (u, v) in GC , with u ∈ R and v < R, i.e., there is no out-edge

from R in GC [27].

Proof. Assume that an edge (u, v) in GC , with u ∈ R and v < R exists. In step 19 of FindCRD

algorithm, v is added to R, since v is reachable from u in GC . This contradicts the assumption

that v is not in R. �

Lemma 2.4.4 No unmatched vertex except vS exists in R′ obtained in step 18 of FindCRD

algorithm [27].

Proof. Assume that there exists a path from vS to an unmatched “–” vertex in G∗H(V, EH). This

path is an augmenting path of the matching. In step 13 of FindCRD algorithm, the maximum

matching is obtained. Hence, this is a contradiction and there can not exist a path from vS to

an unmatched “–” vertex.

In G∗H(V, EH), only the matched “+” vertices have in-edges, because the matched edges are

reversed in step 13 of FindCRD algorithm. The remaining “+” vertices have only out-edges.

Thus, no other unmatched “+” vertex is reachable from vS in G∗H(V, EH), i.e., no other un-

matched “+” vertex is contained in R′. �

Lemma 2.4.5 There are more “+” vertices in R′ than there are “–” vertices [27].

Proof. For every matched “+” vertex u in R′, there is a corresponding matched “–” vertex

v, because the only in-edge to u in G∗H(V, EH) is (v, u), which is the reversed matched edge

(u, v). Hence, the number of matched “+” and “–” vertices are equal. From Lemma 2.4.4,

there is one unmatched “+” vertex in R′. Thus, the number of “+” vertices in R′ is more than

the number of “–” vertices in R′. �
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Lemma 2.4.6 Only “+” vertices are added to R′ in step 19 of FindCRD algorithm [27].

Proof. Assume that the “–” vertex v < R′ is added to R′ in step 19 of FindCRD algorithm.

That is, the “–” vertex v is reachable from a vertex in R′ in GC . For each “–” vertex w in R′,

there exists a path (u,w) in GH(V, EH), such that u is a “+” vertex, since GH(V, EH) consists

of only “+” to “–” edges. That is every “–” vertex in R′ is reachable from a “+” vertex in

GC(V, EC). Since v is reachable from a vertex in R′ in GC(V, EC), v is reachable from a “+”

vertex in R′ in GC(V, EC). That is, there exists an edge (u, v) in GH(V, EH) and v is in R′. This

is a contradiction. �

Theorem 2.4.7 There are more “+” vertices in R than there are “–” vertices [27].

Proof. Directly from Lemmas 2.4.5 and 2.4.6, there are more “+” vertices in R′ than there are

“–” vertices and the vertices added to R′ in step 19 of FindCRD algorithm are “+” vertices.

Thus, the number of “+” vertices in R is more than the number of “–” vertices in R. �

Theorem 2.4.2 states that FindCRD algorithm detects the absence of cost reducible by de-

crease sets. That is, if FindCRD returns an empty set, it means that no CRD set exist in

the constraint graph. Moreover, Theorems 2.4.3 and 2.4.7 show that a set R returned by the

algorithm is a CRD a set, because no out-edge from R exists in GC and the number of “+”

vertices in R are larger than the number of “–” vertices in R. Hence, it is proven that FindCRD

algorithm finds a cost reducible by decrease set, if exists [27].

As Lemma 2.4.1 suggests, given a constraint graph G(V, E) with a clock schedule S ; a set of

registers R, is a CRI set if there is no critical in-edge to R in S and the number of registers in R

with negative clock timing in S is larger than the number of registers in R with positive clock

timing in S . Considering the critical graph GC(V, EC) consisting of only the critical edges of

G(V, E), and labeling the registers with s(v) > 0 as “-” and the registers with s(v) ≥ 0 as “+”;

the definition can be re-stated as follows: Given a critical graph GC(V, EC), a set of registers

R, is a CRI set if there is no critical in-edge to R and the number of “–” registers in R is larger

than the number of “+” registers in R.

The details of the algorithm to find a CRI set is not given in the literature, because it is very

similar to FindCRD algorithm. Hence, the FindCRI algorithm is implemented based on the

FindCRD algorithm description in [25] with the required modifications. The theoretical basis
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of the algorithm is formed similar to that of the FindCRD and the correctness of the FindCRI

algorithm is shown.

The algorithm to find a CRI set is given in Figure 2.16. The algorithm takes a constraint

graph GT (V, ET ) for a clock period T and the current clock schedule S of the circuit as input.

The output of the algorithm is the set R of cost reducible by increase vertices.If the algorithm

returns an empty set, then there is no set of CRI registers. The register set R, returned by the

algorithm has more “–” registers than “+” registers and there are no edges (u, v) in GC with

u < R and v ∈ R. Firstly, the algorithm constructs the critical graph GC(V, EC) consisting

of only critical edges. Then, the transitive graph G′H(V, E′H) is constructed using Warshall’s

Algorithm for transitive closure [59]. The vertices with timing less than zero (s(v) < 0)

are labeled as “–” and the vertices with timing greater than or equal to zero (s(v ≥ 0)) are

labeled as “+”. After that, the graph GH(V, EH) is constructed from G′H(V, E′H), by deleting

all edges except those from “+” to “–” vertices. Hopcroft-Karp Algorithm is used to obtain

a maximum matching of GH(V, EH) [62], [63], [64] and the matched edges are reversed to

obtain G∗H(V, EH). At this point, the algorithm returns an empty set if all the “–” are matched,

because no CRI set of vertices exist. Else, an unmatched “–” vertex, vS , is selected and the set

R′ is constructed with all the vertices from which vS is reachable from in G∗H(V, EH). Finally,

a vertex from which R′ is reachable in GC(V, EC) is added to R′ and the resulting set R, is

returned as output.

The following theorem is based on Theorem 2.4.2 and states that the FindCRI algorithm

detects the absence of cost reducible by increase sets.

Theorem 2.4.8 There is no set of CRI vertices in the graph, if all “-” vertices are matched in

step 14 of FindCRI algorithm.

Proof. Assume that all the “–” are matched and there exists a CRI set of vertices P ⊆ V . That

is, there is no edge (u, v) in GC with u < P and v ∈ P and there are more “–” vertices than

“+” vertices in P. Since all “–” vertices are matched, there exists a “+” vertex u for every

“–” vertex v in P and there is a path from u to v in GC . Since P is a CRI set, there can not

be any in-edges in the critical graph to vertices in P. Therefore hence vertex u is in P making

the number of “+” vertices at least equal to the number of “–” vertices in P. This results in a

contradiction, because for CRI sets, the number of “–” vertices is greater than the number of
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Procedure FindCRI( GT (V, ET ), S )
Input: Constraint graph GT (V, ET ), and current clock schedule S = {s(v) : ∀v ∈ V}
Output: Set R of cost reducible by increase vertices or empty set if no such vertex exist

1: R← ∅
2: R′ ← ∅
3: Construct critical graph GC(V, EC) that consists of only critical edges
4: Construct G′H(V, E′H), the transitive graph of GC(V, EC) using Warshall’s Algorithm
5: for all v ∈ V do
6: if s(v) < 0 then
7: Label: v← “-”
8: else if s(v) ≥ 0 then
9: Label: v← “+”

10: end if
11: end for
12: Construct GH(V, EH) from G′H(V, E′H) by deleting all edges in EH except edges going

from “+” to “-” vertices
13: Obtain a maximum matching of GH(V, EH) by using Hopcroft-Karp Algorithm, and re-

verse the matched edges to obtain G∗H(V, EH)
14: if all “-” vertices matched then
15: return R = ∅

16: end if
17: Select an unmatched “-” vertex, vS

18: R′ = {v ∈ V : vs is reachable from v in G∗H}
19: R = R′

⋃
{a vertex v, from which R′ is reachable in GC}

20: return R

Figure 2.16: Algorithm that finds cost reducible by increase sets

“+” vertices. �

The following theorem is similar to Theorem 2.4.3 and states that there is no critical in edge

on the critical graph to the register set returned by the algorithm.

Theorem 2.4.9 There is no edge (u, v) in GC , with u < R and v ∈ R, i.e., there is no in-edge

to R in GC .

Proof. Assume that an edge (u, v) in GC , with u < R and v ∈ R exists. In step 19 of FindCRI

algorithm, u is added to R, since v is reachable from u in GC . This contradicts the assumption

that u is not in R. �

The Lemmas 2.4.10, 2.4.11, and 2.4.12 are based on Lemmas 2.4.4, 2.4.5, and 2.4.6, respec-

tively.

34



Lemma 2.4.10 No unmatched vertex except vS exists in R′ obtained in step 18 of FindCRI

algorithm.

Proof. Assume that there exists a path from an unmatched “+” vertex to vS in G∗H(V, EH). This

path is an augmenting path of the matching. In step 13 of FindCRI algorithm, the maximum

matching is obtained. Hence, this is a contradiction and there can not exist a path from an

unmatched “+” vertex to vS .

In G∗H(V, EH), only the matched “–” vertices have out-edges, because the matched edges are

reversed in step 13 of FindCRI algorithm. The remaining “–” vertices have only in-edges.

Thus, vS is reachable from no other unmatched “–” vertex in G∗H(V, EH), i.e., no other un-

matched “–” vertex is contained in R′. �

Lemma 2.4.11 There are more “–” vertices in R′ than there are “+” vertices.

Proof. For every matched “–” vertex v in R′, there is a corresponding matched “+” vertex

u, because the only in-edge to u in G∗H(V, EH) is (v, u), which is the reversed matched edge

(u, v). Hence, the number of matched “–” and “+” vertices are equal. From Lemma 2.4.10,

there is one unmatched “-” vertex in R′. Thus, the number of “–” vertices in R′ is more than

the number of “+” vertices in R′. �

Lemma 2.4.12 Only “-” vertices are added to R′ in step 19 of FindCRI algorithm.

Proof. Assume that the “+” vertex u < R′ is added to R′ in step 19 of FindCRI algorithm. That

is, a vertex in R′ is reachable from the “+” vertex u in GC . For each “+” vertex w in R′, there

exists a path (w, v) in GH(V, EH), such that v is a “–” vertex, since GH(V, EH) consists of only

“+” to “–” edges. That is, every “–” vertex in R′ is reachable from a “+” vertex in GC(V, EC).

Since a vertex in R′ is reachable from u in GC(V, EC), a “–” vertex in R′ is reachable from

u in GC(V, EC). That is, there exists an edge (u, v) in GH(V, EH) and u is in R′. This is a

contradiction. �

The following theorem based on Theorem 2.4.7 completes the proof of the correctness of

FindCRI algorithm, by stating that the set returned by the FindCRI algorithm contains more

‘–” vertices than “+” vertices.
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Theorem 2.4.13 There are more “–” vertices in R than there are “+” vertices.

Proof. Directly from Lemmas 2.4.11 and 2.4.12, there are more “–” vertices in R′ than there

are “+” vertices and the vertices added to R′ in step 19 of FindCRI algorithm are “–” vertices.

Thus, the number of “–” vertices in R is more than the number of “+” vertices in R. �

Theorem 2.4.8 states that FindCRI algorithm detects the absence of cost reducible by increase

sets. That is, if FindCRI returns an empty set, it means that there is no CRI in the constraint

graph. Moreover, Theorems 2.4.9 and 2.4.13 show that a set R returned by the algorithm is a

CRI a set, because no in-edge to R exists in GC and the number of “–” vertices in R are larger

than the number of “+” vertices in R. Hence, it is proven that FindCRI algorithm finds a cost

reducible by increase set, if exists.

The following theorem states that the minimum cost scheduling algorithm returns the mini-

mum cost schedule to a given objective clock schedule.

Theorem 2.4.14 MinCost algorithm outputs the minimum cost clock schedule [25], [27].

Proof. Let s be the output clock schedule of MinCost algorithm. Assume that there exists

another clock schedule s′ with less cost than s, such that:

∑
v∈V

∣∣∣s′(v)
∣∣∣ < ∑

v∈V

∣∣∣s(v)
∣∣∣. (2.52)

Let δ(v) = s(v) − s′(v), and let (u, v) be a critical edge in s. Since s is feasible and (u, v) is

critical:

s(v) − s(u) = ω(u, v). (2.53)

Since s′ is feasible:

s′(v) − s′(u) ≤ ω(u, v). (2.54)

Hence,

s′(v) − s′(u) ≤ s(v) − s(u), (2.55)

and,

0 ≤
(
s(v) − s′(v)

)
−

(
s(u) − s′(u)

)
. (2.56)
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Thus,

δ(u) ≤ δ(v). (2.57)

Let the set V be partitioned into three subsets: V+, V−, and V0, such that:

V+ =
{
v | δ(v) > 0

}
, (2.58)

V− =
{
v | δ(v) < 0

}
, (2.59)

V0 =
{
v | δ(v) = 0

}
. (2.60)

Further, let the set V+ be partitioned into V1,V2, . . . ,Vm as follows: for any vertex u and v

in Vi(1 ≤ i ≤ m), δ(u) = δ(v) = δi and for any vertex u ∈ Vi and v ∈ V j (1 ≤ i < j ≤ m),

δ(u) > δ(v).

Let,

fi(x) =
∑

v∈V1∪V2∪...∪Vi

∣∣∣s(v) − x
∣∣∣. (2.61)

Since clock schedule s is the output of MinCost algorithm, all the cost reducible sets are found

and there is no cost reducible set for clock schedule s. Hence,

fi(x) ≥ fi(x′), ∀x > x′ ≥ 0. (2.62)

Note the relation,

f1(δ1) =
∑
v∈V1

∣∣∣s(v) − δ1
∣∣∣ (2.63)

f2(δ2) =
∑
v∈V1

∣∣∣s(v) − δ2
∣∣∣ +

∑
v∈V2

∣∣∣s(v) − δ2
∣∣∣ (2.64)

= f1(δ2) +
∑
v∈V2

∣∣∣s(v) − δ2
∣∣∣ (2.65)

...

fm(δm) = fm−1(δm) +
∑
v∈Vm

∣∣∣s(v) − δm
∣∣∣ (2.66)

Hence, ∑
v∈Vk

∣∣∣s(v) − δk
∣∣∣ = fk(δk) − fk−1(δk), ∀k, 0 < k ≤ m. (2.67)
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Procedure ClockSchedule( N, T , O )
Input: Circuit netlist N, target clock period T , target clock schedule O
Output: Clock period T , clock schedule S = { s(v) : ∀v ∈ V},
clock timing range R = { (smin(v), smax(v)) : smin(v) ≤ s(v) ≤ smax(v),∀v ∈ V}

1: Construct the circuit graph Gcir(Vcir, Ecir) from the netlist N
2: Determine the capacitive load of each gate and calculate the propagation delay of each

gate using the model
3: Construct the constraint graph G(V, E) from the the circuit graph Gcir(Vcir, Ecir) and the

estimated propagation delay of gates
4: if constraints are infeasible then
5: return Infeasible
6: end if
7: if target clock period is not given then
8: T := MinClock( G )
9: end if

10: S := MinCost( GT , O )
11: R := MaxRange( GT , S )
12: return T , S and R

Figure 2.17: Clock scheduling system.

Note that, there is no critical out-edge from {V1,V2, . . . ,Vi}, and fi(x) is a convex function.

Then,∑
v∈V+

∣∣∣s′(v)
∣∣∣ =

∑
v∈V+

∣∣∣s(v) − δ(v)
∣∣∣

=
∑
v∈V1

∣∣∣s(v) − δ1
∣∣∣ +

∑
v∈V2

∣∣∣s(v) − δ2
∣∣∣ + · · · +

∑
v∈Vm

∣∣∣s(v) − δm
∣∣∣

= f1(δ1) + f2(δ2) − f1(δ2) + f3(δ3) − f2(δ3) + · · · + fm(δm) − fm−1(δm)

≥ fm(δ0) =
∑
v∈V+

∣∣∣s(v)
∣∣∣

(2.68)

Note that since δk−1 > δk, fk−1(δk−1) ≥ fk−1(δk) for all 0 < k ≤ m.

Similarly, ∑
v∈V−

∣∣∣s′(v)
∣∣∣ ≥ ∑

v∈V−

∣∣∣s(v)
∣∣∣. (2.69)

Therefore, ∑
v∈V

∣∣∣s′(v)
∣∣∣ ≥∑

v∈V

∣∣∣s(v)
∣∣∣, (2.70)

which is a contradiction to the initial assumption. �
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Procedure MaxRange( GT (V, ET ), S )
Input: Constraint graph GT (V, ET ), feasible clock schedule S
Output: Consistent set of clock ranges of all registers:

R = { (smin(v), smax(v)) : smin(v) ≤ s(v) ≤ smax(v),∀v ∈ V}

1: for all v ∈ V do
2: r(v) :=

[
s(v) − 1

2 min(v,u)∈ET ∆T (v, u) , s(v) + 1
2 min(u,v)∈ET ∆T (u, v)

]
3: end for
4: return R

Figure 2.18: Algorithm that determines the clock schedule ranges of all registers.

2.5 Clock Scheduling System

The algorithms discussed in the previous sections of this chapter are combined into a clock

scheduling system with a number of additional algorithms, such as; the algorithm to parse the

circuit netlists and generate the graph representation of the circuit, the algorithm to estimate

the propagation delays of the gates for the actual load capacitances in the circuit, and the

algorithm to construct the constraint graph of the circuit.

The clock scheduling system takes a circuit in netlist format as an input and constructs the

circuit graph Gcir(Vcir, Ecir), where each vertex represents a circuit element (an input, an out-

put, a gate or a register) and each edge represents a connection between the elements. The

setup and hold time information of the registers are supplied as an input to the system. The

actual capacitive load of each gate in the circuit is determined using the tabulated input ca-

pacitance values of each gate type. Then the propagation delay of each gate is calculated

using the model relating the propagation delay to the load capacitance. All the paths between

every register pair with signal propagation is determined using a recursive function. Then, the

minimum and maximum propagation delays are calculated for every register pair with signal

propagation. This information is used to construct the constraint graph G(V, E), of the circuit.

Other inputs of the clock scheduling system are the target clock period T , and target clock

schedule O(v) ∀v ∈ V . If the target clock period is not supplied as an input, the minimum

feasible clock period calculated using MinClock algorithm is used as the target clock period.

Figure 2.17 shows the pseudo-code of the clock scheduling system. After the minimum cost

scheduling is done, the system widens the clock timing range of every register by using the

MaxRange algorithm [56]. The pseudo-code of MaxRange algorithm is given in Fig. 2.18.
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The output of the clock scheduling system is a consistent set of clock timing ranges for all the

registers.
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CHAPTER 3

PEAK POWER MINIMIZATION

In the complete synchronous framework all the registers in a synchronous circuit are clocked

at the same time. Hence, the switching of all the registers and the gates at the output cones

of the registers take place in a short time period right after the clock edge. This results in a

narrow pulse with a high peak value in the supply current of the circuit. The current pulse

takes place in relatively small portion of the clock period, whereas for the rest of the clock

period the supply current is at a lower value corresponding to the static power dissipation of

the elements in the circuit. Hence, a power supply with a high current output capability is

needed, although the peak value of the current is used for a relatively short time.

Peak power dissipation of a synchronous sequential circuit can be reduced in general syn-

chronous framework, where synchronous clocking requirement of all the registers is released.

The different clock timings for the registers mean that the switchings occur at different times

in one clock period. Therefore, the supply current wave of the circuit is suppressed and broad-

ened.

In the first section of this chapter, the estimation of the peak power consumption of a syn-

chronous sequential circuit is discussed. The peak power consumption of the circuit is ex-

pressed as the sum of register originated power dissipations. The calculation of the switching

probabilities is explained. A new method for estimating the switching power of circuit ele-

ments for different load capacitances is proposed. The first section ends with the explanation

of the peak power estimation algorithm.

In the second section, the clock scheduling algorithm for peak power minimization is dis-

cussed. The algorithm is a two stage algorithm in which the result of an initial scheduling

obtained from the first stage is greedily modified by the second stage until the objective of
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peak power dissipation is minimized.

3.1 Estimation Of Peak Power Consumption

In this section, a fast power consumption estimation method for sequential circuits similar to

that in [46] is discussed. The power consumption of a circuit is modeled as the sum the of

power consumptions of gates and registers that switch. A switching event starts at a register

when a clock edge arrives at the register and the input of the register is changed relative

to the previous state. The time at which the clock edge arrives at a register is determined

by the clock schedule, so as the emerging time of a switching event. The switching event

propagates through the combinational circuit at the output of the register, if not blocked at a

gate due to the other inputs of that gate. Thus, a combinational gate, to which a switching

event reaches, switches with some probability [46]. The arrival time of a switching event

at a combinational gate depends on the clock schedule, delays of previous gates and routing

delays between the gates. The power consumption of a circuit can be expressed as the sum of

the register originated power consumptions, due to the fact that each switching event emerges

at a register [46].

Obviously, the actual power consumption of a circuit depends on the input vectors applied to

the circuit, and the power wave of the circuit changes at each clock period. In order to save

computation time in expense of accuracy, a probability based approach is used in peak power

estimation as in [46]. The clock period is divided into relatively small time units and the peak

power consumption of the circuit is calculated at each time unit in a discrete fashion.

After the switching event reaches an element in the circuit, the power consumption of that

element continues for some time depending on the slew rate of the switching and the number

of fan-outs of the element [46]. In the estimation, the simulated power wave of the elements

are used. In [46], each gate is simulated by connecting n NAND gates to the output, where n

is the number of fan-outs of the gate, and the resulting power wave is used in the peak power

estimation. However, the power wave depends strongly on the load that is driven by the gate,

i.e., the fan-out of the gate. In order to increase the accuracy, a new approach exploiting the

dependence of the duration and peak value of the power wave on load capacitance is utilized in

this work. In this method, the power consumption of a gate is obtained initially by simulating
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the gate with a unit capacitive load. Then, the actual load of the gate in the circuit is calculated

according to the number and type of the fan-outs of the gate in the circuit. Then, the power

wave of the gate for the actual load capacitance in the circuit is estimated by reshaping the

power wave for the unit load using the dependence of the shape of the power wave to the load

capacitance.

The register originated power consumption is defined as the power consumption caused by a

switching event that is emerged at a register. The register originated power consumption of a

register includes the power consumption of the register and the sum of power consumptions

of the gates at the output cone of the register that switch with a probability.

The actual register originated power consumption wave, depends on both the clock schedule

and the input vectors applied to the circuit. The propagation of a switching event which is

not blocked at a gate in a clock schedule may be blocked in another clock schedule because

the register outputs may change according to the clock schedule. Moreover, a switching

event which is not blocked at a gate for an input vector may be blocked for another input

vector. However, in the estimation method of [46], the register originated power consumption

is assumed to be independent of both the clock schedule and the input vectors, and estimated

probabilistically. In this way, the computation time can substantially be reduced.

3.1.1 Calculation of Switching Probabilities

The switching probability calculation method proposed in [46], is used in the peak power

estimation algorithm in this work. The condition probability, ca(v) of a gate v is defined as

the probability of the output of gate v to be a [46]. Table 3.1 shows the condition probability

of gates with respect to the number of inputs n. Note that, the condition probability of NOT

gate (inverter) is not given in Table 3.1 since it only depends on the input of the NOT gate:

c0(v) = c1(v′), (3.1)

c1(v) = c0(v′), (3.2)

where v′ is the fan-in gate of the NOT gate v.

The switching probability, p(r, v, t), of an element v, is defined as the probability that the

output of the element v, changes at time t, due to the switching event emerged at register r
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Table 3.1: The condition probabilities of n input gates to be a

a ca(NAND) ca(NOR) ca(AND) ca(OR)

0 1
2n

2n−1
2n

2n−1
2n

1
2n

1 2n−1
2n

1
2n

1
2n

2n−1
2n

at time t = 0 [46]. Actual switching probability of an element depends on both the clock

scheduling and the input vector supplied to the circuit.

In order for a gate output to switch, some inputs of the gate should switch while the other

inputs do not prevent the switching. The switching of a NOT gate occurs when its input

switches, since it has no other input to prevent the switching. For the NAND and AND gates,

the switching of the output occurs, when a group of inputs switch in the same direction and

the rest of the inputs are fixed at logical “1”. For the NOR and OR gates, the switching of the

output occurs when a group of inputs switch in the same direction and the rest of the inputs

are fixed at logical “0”. Note that, the case of inputs simultaneously switching in opposite

directions that results in glitches at the output are not considered in this analysis.

Let I(v) be a set of fan-in gates of gate v, X be a subset of fan-in gates of v and d(v) be the

delay of v. The switching probability of the NAND and AND gates is given by [?]:

p(r, v, t) =
∑

X⊆I(v)

{ ∏
v′∈I(v)\X

c1(v′) ·
(
1 − p(r, v′, t − d(v))

)
·
( ∏

v′∈X

c1(v′) +
∏
v′∈X

c0(v′)
)
·
∏
v′∈X

(
1 − p(r, v′, t − d(v))

)}
.

(3.3)

Similarly, the switching probability of the NOR and OR gates is given by:

p(r, v, t) =
∑

X⊆I(v)

{ ∏
v′∈I(v)\X

c0(v′) ·
(
1 − p(r, v′, t − d(v))

)
·
( ∏

v′∈X

c1(v′) +
∏
v′∈X

c0(v′)
)
·
∏
v′∈X

(
1 − p(r, v′, t − d(v))

)}
.

(3.4)

Finally, the switching probability of the NOT gate is given by:

p(r, v, t) = p(r, v′, t − d(v)). (3.5)

The output of a gate may switch more than once in a clock period, if some inputs switch more

than once with others not blocking the switching. For the fan-in gate of a register, the gate
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output just before the arrival time of the clock edge to the register is important, i.e., whether

the output of the gate just before the arrival time of the next clock edge to the register is

different from the output of the gate just before the arrival time of the previous clock period.

In other words, if the fan-in gate of a register switches odd number of times within one clock

period, the register switches. The clock edge is divided into n unit time intervals for the

probability calculation. Let p1, p2, . . . , pn be the switching probabilities of the fan-in gate of

register r in one clock period. Then the switching probability of r is given by [46]:

p(r, r, 0) = p1(1 − p2)(1 − p3) · · · (1 − pn)

+ (1 − p1)p2(1 − p3) · · · (1 − pn)

...

+ (1 − p1)(1 − p3) · · · (1 − pn−1)pn

+ p1 p2 p3(1 − p4)(1 − p5) · · · (1 − pn)

+ p1 p2(1 − p3)p4(1 − p5) · · · (1 − pn)

...

=
(
1 − (1 − 2p1)(1 − 2p2) · · · (1 − 2pn)

)/
2

(3.6)

The switching probability of a register depends on the switching probability of the fan-in gate

of the register and the switching probability of a gate depends on the switching probabilities

of registers [46]. Hence, the switching probability calculations are done iteratively until the

probabilities converge. Note that, initially, the switching probability of all the registers and

inputs are set to 1, so that maximum number of switchings occur and the peak power can be

estimated more accurately.

3.1.2 Calculation of Peak Power Consumption

The probabilistic peak power estimation method proposed in [46] is used in this work. In

this method, the peak power of the circuit is estimated probabilistically by assuming that the

power consumption is independent from the input vectors applied to the circuit. The power

consumption of a circuit can be stated as the sum of register originated power consumptions.

Hence, the power consumption of a circuit, W(t), is given by:

W(t) =
∑
r∈R

W(r, t), (3.7)
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where W(r, t) is the register originated power consumption of register r ∈ R at time t due to

the clock inputted to r at time t = 0. The power consumption of a circuit depends on the

clock schedule S of the circuit. The register originated power consumption of each register

is shifted in time according to the clock timing of the register. Let WS (r, t) be the register

originated power consumption of register r ∈ R at time t due to the clock inputted to r at time

t = s(r), where s(r) is the clock timing of register r. WS (r, t) is given by:

WS (r, t) = W(r, t − s(r)). (3.8)

Thus, power consumption of a circuit for a clock schedule S , WS (t), is given by:

WS (t) =
∑
r∈R

WS (r, t). (3.9)

The switching of a register r due to a clock input, starts a series of switching events at the

fan-out gates of the register. The switching gates trigger the switching of their fan-out gates.

The propagation of this switching wave continues until a gate driving a register is switched,

if not blocked by side inputs of the gates. The largest set of gates that can switch due to a

switching event emerged at a register r is called output cone of the register r and is denoted

by O(r). Note that in finding the gates at the output cone, all the side inputs of the gates are

assumed to be suitable for gate switching. In other words, the output cone of a register is the

set of gates that are on any path from the output of a register to the input of another register.

The register originated power consumption of a register r, consists of the static power con-

sumption of the register r and the dynamic power consumption of register r and the gates at

the output cone of r. The static power consumption of the register, is the power consumed by

the register at each clock arrival that is independent of the switching event, i.e., static power is

consumed whether the register switches or not. The static power consumption of the register

r, at time t for a clock inputted to the register at time t = 0 is denoted by Wc(r, t). The dynamic

power consumption of the register and the gates at the output cone of the register is the sum

of the switching powers of the register and the gates. The dynamic power consumption of the

register r, at time t for a clock inputted to the register at time t = 0 is denoted by Wg(r, t).

Thus, the register originated power consumption of register r is given by:

W(r, t) = Wc(r, t) + Wg(r, t). (3.10)

The dynamic power consumption of the register r and the gates at the output cone O(r) of
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register r is estimated by:

Wg(r, t) =
∑

v∈O(r)

∑
0≤i<T

p(r, v, t − i) · wg(v, i), (3.11)

where wg(v, i) is the switching power consumption of a gate at time t, where the switching

of v occurs at t = 0; p(r, v, t) is the switching probability of gate v, due to the switching of

register r at time t = 0; and T is the clock period [46].

3.1.3 Switching Power Estimation

The switching power waves of gates and registers should be estimated fast and accurately

for the register originated power calculation. There has been a number of approaches for

the estimation of power consumption of gates and registers [34], [43], [44], [46]-[54]. The

switching power wave of a circuit element depends strongly on the slew of the input signal

and the output load. In [52], the gates are characterized by simulations for a range of fan-in

and fan-out conditions. The characterization results are tabulated in look-up tables to be later

used in power estimation of circuits. Since there is a trade-off between the size of the look-up

table and the level of discretion, the probability of the actual fan-in and fan-out to be in the

look-up table is very small. Hence, the accuracy of this approach is impaired.

In [34], [43] and [44], the switching power wave of gates and registers are assumed to be tri-

angular. In [34], the sequential elements and combinational parts of the circuits are simulated

separately using the event driven simulator described in [53] and [54], and the simulation re-

sults are used in peak power estimation. However, since the supply currents are approximated

by triangular waves, the estimation is not accurate at all. Moreover, the number of simulations

to be done for a circuit increases with the size of the circuit.

In [46], the power waves of the circuit elements are obtained empirically. An element with n

fan-outs is simulated with n NAND gates as output load and the power wave data is used by

the power estimation algorithm. This approach has two flaws. Firstly, the input capacitances

of circuit elements vary from type to type; thus, assuming that all the fan-outs are NAND

gates, leads to an error in output load calculation. Secondly, acquiring all the power waves

empirically reduces the practicality of the method since all the elements need to be simulated

for the actual number of fan-outs in the circuits. This results in a large number of simulations

to be performed and large amount of data to be stored.
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Figure 3.1: Switching current wave of a 2-input AND gate for output transition from low to
high. The parameters for characterizing the current waveform are also shown.

In this study, a new method, namely the Shaped Pulse Approximation Method (SPA), is pro-

posed for estimating the supply current waves of circuit elements. This method approaches

the triangular approximation from a new direction. The triangular approximation is exploited

to characterize the relation between the supply current waves for different loads, rather than

estimating the current wave itself. The gates and registers are simulated with a range of ca-

pacitive loads and the variation of the triangular approximation parameters with respect to the

load capacitance is modeled. The actual load capacitance of the circuit elements are extracted

from the circuit graph using the tabulated input capacitance values for all types of gates and

registers. Then, the current wave for an actual load capacitance is constructed from the cur-

rent wave for a unit load using the modeled relation between the triangular parameters of the

waves. The supply current waves for an arbitrary load can be approximated accurately by

storing only one tabulated wave data for each element type.

Consider the switching current wave of a 2-input AND gate given in Fig. 3.1 for output tran-

sition from low to high. The current waveform can be characterized by four parameters. Let

Ipeak denote the peak value of the current and tpeak denote the time at which the current is at

its peak value. Let tstart and t f inish be the times at which the current is at 10% of its peak value

before and after the peak value is reached, respectively.
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Figure 3.2: The switching current waves of a 2-input AND gate for output switching from
low to high. The waves are plotted for various capacitive loads ranging from 1 fF to 100 fF.

Define three additional parameters, namely rise time (tr), fall time (t f ) and pulse width (tw) as

follows:

tr = tpeak − tstart, (3.12)

t f = t f inish − tpeak, (3.13)

tw = t f inish − tstart. (3.14)

The switching current of a gate depends on the number and type of the fan-outs of the gate,

i.e., the value of the capacitive load at the output of the gate. In order to illustrate this, consider

the switching current waves of a 2-input AND gate for varying load capacitances as shown in

Fig. 3.2. Note that, the portion of the switching current corresponding to the output transition

from high to low do not change significantly with the value of the load capacitance. Hence,

only the portion of the switching current corresponding to the output transition from low to

high is considered as the switching current in this work.

The peak value of the switching current and the width of the current pulse increase as the

value of the load capacitance increases. Fig. 3.3 shows the variation of the peak value of the
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switching current of the 2-input AND gate with respect to load capacitance. The peak current

can be fitted by a logarithmic curve but a polynomial curve results in less error. Fig. 3.4 shows

the variation of the switching current pulse width of the 2-input AND gate with respect to the

load capacitance. The pulse width is a linear function of the load capacitance. However, since

the switching current pulse is not symmetric with respect to tpeak, it is necessary to treat rise

and fall times separately. Otherwise, the shape of the pulse is distorted, which increases the

total error in the estimation. Fig. 3.5 shows the variation of the rise and fall time of the 2-

input AND gate with respect to the load capacitance. The rise time variation is best fitted by a

polynomial function, whereas the fall time variation is best fitted by a linear function. These

observations are the motivation behind the current estimation method discussed in this work:

if the variations of the peak current, rise time and fall time with respect to the load capacitance

can be determined, the switching current wave for an arbitrary load can be estimated by using

the switching current wave for a unit load. The switching current wave for a unit load can

be processed to estimate the switching current wave of any load capacitance. This is a three

step process. In the first step, the magnitude of each point in the unit wave is multiplied by a

magnitude correction factor. In the second step, the rising portion of the unit wave, i.e., the

portion of the wave from tstart to tpeak, is stretched in time by a time correction factor. Finally,

in the third step the falling portion of the unit wave, i.e., the portion of the wave from tpeak on

is stretched in time by another time correction factor.

In order to formulate the process, let w(v, t,C) be the switching power wave of element v for

load capacitance C at time t. Then, w(v, t,C) can be stated as:

w(v, t,C) =


w1(v, t,C), if tstart ≤ t ≤ tpeak

w2(v, t,C), if t > tpeak,

(3.15)

where w1(v, t,C) is the first part (rising part) of the switching power wave and w2(v, t,C) is the

second part (falling part) of the switching power wave. The two parts of the switching power

wave of a circuit element for an arbitrary load can be represented in terms of the switching

power wave of the element with unit load capacitance w(v, t,Cunit) as:

w1(v, t,C) = M(C) · w1(v,K1(C) · t,Cunit), (3.16)

w2(v, t,C) = M(C) · w2(v,K2(C) · t,Cunit), (3.17)
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Figure 3.3: The variation of the peak value of the switching current of 2-input AND gate with
respect to load capacitance. The curve can be fitted with a logarithmic function but a 6th order
polynomial gives a better fitting with less error.
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Figure 3.4: The variation of the switching current pulse width of the 2-input AND gate with
respect to load capacitance. The pulse width is measured from tstart to tstop.
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Figure 3.5: The variation of rise and fall times of the switching power wave of 2-input AND
gate with respect to load capacitance. Rise time curve can be fitted with a 3rd order polyno-
mial function. Fall time curve can be fitted with a linear function.

where M(C) is the magnitude correction factor defined as:

M(C) =
Ipeak(C)

Ipeak(Cunit)
, (3.18)

and K1(C) and K2(C) are the time correction factors for the first and second parts of the

switching power pulse respectively. K1(C) and K2(C) are defined as:

K1(C) =
tr(C)

tr(Cunit)
, (3.19)

K2(C) =
t f (C)

t f (Cunit)
. (3.20)

In order to evaluate the performance of the estimation method, the following normalized rms

error function, E, is defined:

E =

√∑
0≤t<T (west − worg)2√∑

0≤t<T (worg)2
, (3.21)

where west is the estimated value of switching power wave at time t, and worg is the value of

the actual switching power wave at time t.
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Figure 3.6: Estimation error for 2-input AND and 2-input NAND gates. The switching current
wave for 5 fF capacitance is used as the unit wave, and the switching current waves for
capacitive loads in 6 fF - 100 fF range are estimated using the method. The estimated waves
are compared with simulation results and the estimation error is calculated using (3.21).

The estimation error for 2-input AND and 2-input NAND gates with respect to load capaci-

tance are given in Fig. 3.6. Table 3.2 summarizes the maximum error for each type of gate.

The rms error calculations are made for 1600 ps period. The switching current wave for 5

fF load is used as unit wave and the switching current waves for load capacitances in 6 fF -

100 fF range are estimated. The switching current waves of gates can be estimated with rms

error less than 10% for 1600 ps period. The details of the simulations are given in Chapter 4.

Figure 3.7 shows the switching current wave of a 2-input NAND gate for 100 fF load and the

estimated switching current wave. The estimation is done by using the tabulated simulation

data of the 2-input NAND gate for 5 fF load. The normalized rms error is 5.7% for this case.

3.1.4 Power Estimation Algorithm

The methods discussed in the previous subsections of this section are combined in a power

estimation algorithm which estimates the register oriented power consumptions of the regis-

ters of a sequential circuit. The algorithm consists of two parts. In the first part, the switching

probabilities of the gates and registers of the circuit are calculated. In the second part, the reg-
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Figure 3.7: The switching current wave of 2-input NAND gate for 5 fF and 100 fF load
capacitances shown with the estimated current wave for 100 fF load using the data for 5 fF
load. The normalized rms error is 5.7%.

Table 3.2: The Normalized Rms Estimation Error For Gates

Gate Type Maximum Estimation Error (%)

INV 8.09

AND2 8.82

AND3 7.44

AND4 6.54

NAND2 6.15

NAND3 8.55

NAND4 6.14

NOR2 9.12

NOR3 9.39

NOR4 8.56

OR2 9.18

OR3 9.85

OR4 9.91
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ister originated power consumption is estimated for each register using the probability data

from the first part. The inputs of the power estimation algorithm are the netlist of the cir-

cuit, the clock period, the propagation delays of gates and the switching power consumption

data of the gates and registers. The output of the algorithm is the register originated power

consumptions of the registers in the circuit. In addition to that, the algorithm computes the

peak power consumption of the circuit for one clock period with zero clock timings for all

registers, i.e., with fully synchronous clock. This data is used for comparison with the output

of the peak power minimization algorithm. Figure 3.8 shows the power estimation algorithm.

The first part of the algorithm starts by parsing the netlist of the circuit, in order to construct

a circuit graph Gcir(Vcir, Ecir). In the circuit graph, each vertex represents an element (an

input, an output, a gate or a register) in the circuit and each edge represents a connection

between the elements. The output cones are determined for each register and the set of fan-

in gates are determined for each gate. Then, the iterative switching probability calculation

starts by assuming that every input and every register of the circuit switches at time t = 0. At

each iteration, the switching probabilities of the gates are calculated first, using the switching

probability values of registers from the previous iteration. When the switching probabilities

are calculated for all gates, the switching probabilities of the registers are updated for that it-

eration. The algorithm compares the results of the present iteration with the previous iteration

and decides to stop if the differences are smaller than ε for every register, i.e., the probability

calculation converges. ε is chosen as 0.001 for experiments. The calculation of the switching

probability of a gate requires the determination of all the subsets of the set of fan-in gates for

that gate. This is done efficiently using the lexicographic ordering [65] since the number of

inputs for the gates are limited to four.

The second part of the algorithm estimates the capacitive load of each element according

to the number and type of the fan-outs gates of each element. This information is used in

estimating the switching power wave of each gate utilizing the SPA method discussed in sub-

section 3.1.3. Then, the register originated power consumption of each register is calculated

using the switching probability and the power wave of each gate. The peak power consump-

tion of the circuit for fully synchronous clock is calculated. Finally, the algorithm terminates

by writing the peak power data for fully synchronous clock to a file.
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Procedure EstimatePower( N, T , Dp, wg(r, t) )
Input: Circuit netlist N, clock period T , the propagation delay of gates, Dp(v) ∀v ∈ Vg,
the switching power consumption of gates and registers wg(v, t) ∀v ∈ V
Output: The register originated power consumptions W(r, t) ∀r ∈ Vr

1: Construct the circuit graph Gcir(Vcir, Ecir) from the netlist N
2: Determine output cones O(r), of each register r ∈ Vr

3: Determine the set of fan-in gates I(v), of each gate v ∈ Vg

4: repeat
5: Calculate p(r, v, t) for all gates using (3.3), (3.4) and (3.5)
6: Calculate p(r, r, 0) for all registers using (3.6)
7: until the switching probabilities of all the registers converge
8: Estimate the capacitive load and switching power of all the elements
9: Calculate the register originated power consumption of the registers using (3.11)

10: Output the peak power consumption of the circuit without clock scheduling to a file
11: return W(r, t) ∀r ∈ Vr

Figure 3.8: The algorithm to estimate the register originated power consumptions of the reg-
isters of a circuit.

3.2 Clock Scheduling For Peak Power Consumption Reduction

The clock scheduling algorithm used for peak power minimization in this work is a two-stage

algorithm based on those proposed in [44] and [46]. This method is selected due to its speed

and ease of implementation among several other approaches such as genetic algorithm [34],

[43] and linear programming [45]. The SPA method is used as the switching power estimation

method in calculation of the register originated power consumptions that are supplied as inputs

to the peak power minimization algorithm.

The first stage of the algorithm shown in Fig. 3.9 starts with an initial feasible clock schedule

obtained from the ClockSchedule Algorithm shown in Fig. 2.17. Then, starting with the regis-

ter with the largest peak register originated power consumption, all the registers are scheduled

one by one with the aim of minimizing the total peak power consumption. Everytime a reg-

ister is selected for scheduling, its timing range is maximized without changing the timing of

other registers and without disturbing the proper operation of the circuit. In this way a better

minimization can be obtained while having a feasible output clock schedule. The algorithm

stops when all the registers are placed within their timing ranges with minimum total peak

power.

The first stage of the clock scheduling depends on the initial clock schedule and the order
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Procedure MinPeak1( R, T , D(r1, r2), W(r, t) )
Input: Set of registers R, clock period T , the delay between registers, D(r1, r2) ∀r1, r2 ∈ R,
the register originated power consumptions W(r, t) ∀r ∈ R
Output: Clock schedule S minimizing the peak power consumption

1: Find an initial feasible clock schedule using ClockSchedule Algorithm
2: Set the timing of each register to the middle of its clock timing range determined by the

ClockSchedule algorithm
3: Ru := R, WS (t) := 0 (0 ≤ t < T )
4: while Ru , ∅ do
5: Choose the register rt in Ru with the largest peak register originated power consump-

tion: Wpeak(rt) = maxr∈Ru Wpeak(r)
6: Maximize the clock timing range of rt without changing the clock timings of other

registers
7: Set the clock timing of rt within its clock timing range, so that WS (t) + WS (rt, t) is

minimized
8: WS (t) := WS (t) + WS (rt, t), Ru := Ru\rt

9: end while
10: return S

Figure 3.9: First stage of the two stage algorithm that minimizes the peak power consumption
of a circuit with clock scheduling.

Procedure MinPeak2( R, T , D(r1, r2), W(r, t), S , WS (t) )
Input: Set of registers R, clock period T , the delay between registers, D(r1, r2) ∀r1, r2 ∈ R,
the register originated power consumptions, W(r, t) ∀r ∈ R, the clock schedule output, S , of
MinPeak1 Algorithm, the power consumption of the circuit, WS (r, t) ∀r ∈ R (0 ≤ t < T )
Output: Clock schedule S , minimizing the peak power consumption

1: Ru := R
2: while Ru , ∅ do
3: Choose the time tmax (0 ≤ tmax < T ) when the power consumption of the circuit is

maximum, that is, WS (tmax) = max0≤t<T WS (t)
4: Choose the register rt ∈ Ru with largest register originated power consumption at time

tmax, that is, WS (rt, tmax) is maximum for rt

5: Maximize the clock timing range of rt without changing the clock timings of other
registers

6: Set the clock timing of rt within its clock timing range, so that WS (t) is minimized
7: if the clock timing of rt is changed then
8: Ru := R
9: else

10: Ru := Ru\rt

11: end if
12: end while
13: return S

Figure 3.10: Second stage of the two stage algorithm that greedily minimizes the peak power
consumption of a circuit with clock scheduling.
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of the register processed [46], so the output of the first stage of the algorithm is greedily

modified in the second stage of the algorithm. The second stage of the algorithm shown

in Fig. 3.10 starts by finding the time tmax when the power consumption of the circuit is at

maximum. Then, the register with the largest register originated power consumption at tmax

is selected and its timing range is maximized without changing the timings of other registers

and without disturbing the proper operation of the circuit. The clock timing of this register is

set in its timing range so that the peak power consumption of the circuit is minimized. Since

the algorithm is greedy, the register is removed from the set of registers to be processed, only

if the timing of the selected register can not be changed any more to reduce the objective. The

algorithm outputs the final clock schedule when there is no register left to be processed.
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CHAPTER 4

SIMULATIONS AND TESTS

The clock scheduling algorithms discussed in the previous chapters require the delay and

the switching power information of the gates and the registers. The propagation delays of the

gates need to be known for the clock period minimization algorithm. Since the performance of

the clock period minimization algorithm depends heavily on the accuracy of the gate delays,

the dependence of the gate delay with respect to the load capacitance is modeled. Also, the

setup time and hold time of the D flip-flop, which is used as the register in the circuits, is

measured. The peak power reduction algorithm uses the switching power data of the gates

and the D flip-flop. The dependence of the switching current waves of gates and the D flip-flop

on the load capacitance is modeled by simulations.

In order to verify the correct operation and evaluate the performance of the clock scheduling

algorithms, selected test circuits from the ISCAS’89 benchmark suite are used. The outputs

of the clock period minimization algorithm and the peak power minimization algorithm are

tested with simulations of the benchmark circuits.

This chapter begins with the details of the simulations for the delay modeling and power

characterization of the gates. The second section covers the setup time and hold time mea-

surements and the switching power characterization of the D flip-flop. The performance eval-

uation of the clock scheduling algorithms is covered in the third section. The implementation

details are given along with the information on the test circuits. The simulation results are

presented and the performance of the algorithms are discussed.
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4.1 Gate Characterization

The test circuits that are used for the evaluation of the clock scheduling algorithms consists of

inverters (NOTs), 2,3 and 4-input ANDs, NANDs, ORs, NORs and D Flip-Flops. The gates

in Alcatel-Mietec MTC45000 0.35µm standard cell library are used for implementing the test

circuits. The delay and power characterization of the gates are done in order to be used in the

clock scheduling algorithms. All the simulations are done with SpectreSTMAnalog Simulator

of CadenceTMDesign Environment.

4.1.1 Gate Propagation Delay Modeling

Propagation delay is defined as the time it takes for the output of a gate to reach 50% of its

peak value after the input reaches 50% of its peak value [66]. The propagation delays of

the gates are measured by simulations. Figure 4.1 shows the delay simulation circuit of a

4-input AND gate as an example. The circuit schematics for other types of gates are omitted

due to the similarity. The square wave through five inverters is given to the gate in order to

create a more realistic input with low slew rate. A capacitive load is used at the output of the

gate. The delay simulation is done in two phases. In the first phase, simulations for every

possible combination of switching inputs are done with a fixed load capacitance in order to

determine which combination of switching inputs creates the longest propagation delay. Then,

this switching scheme is simulated with capacitive loads ranging from 1 fF to 250 fF in 1 fF

steps, in order to determine the relation of the propagation delay with the load capacitance

value. The inputs that do not switch for a switching input combination are fixed to logic “1”

for AND and NAND gates; to logic “0” for OR and NOR gates. Table 4.1 shows the result

of the first phase of delay simulation for 4-input AND gate. Since the longest propagation

delay is observed for the case when only the input D is switching, in the second phase of the

simulation only input D is switched while other inputs are kept at logic “1”. The average of

propagation delays for inputs switching from logic “0” to logic “1”, and from logic “0” to

logic “1” are used as the final propagation delay values of the gates. The measurements are

done with 1 ps precision, which is more than enough since the time precision of the clock

scheduling algorithm is selected as 10 ps. Figure 4.2 shows the variation of propagation delay

of 4-input AND gate with respect to the load capacitance value ranging from 1 fF to 250 fF in

1 fF steps. The dependence of the propagation delay of each gate type on the load capacitance
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Table 4.1: The propagation delays of the 4-input AND gate for 15 different combinations of
switching inputs, as the result of the first phase of delay simulation. The propagation delay
values for the input signal switching in two directions are measured and the average of the
two values are also shown. The inputs that do not switch are fixed to logic “1” for AND gate.
The unit of the values is picoseconds and the measurements are done with 1 ps precision.

Input Signal

Switching Input(s) Falling Rising Average

A 172 145 159

B 229 179 204

C 277 204 241

D 315 219 267

AB 132 181 157

AC 130 174 152

AD 129 170 150

BC 162 209 186

BD 159 203 181

CD 183 231 207

ABC 123 211 167

ABD 122 297 210

ACD 121 203 162

BCD 142 235 189

ABCD 121 240 181

value is modeled by fitting linear curves to the measurement results using a spreadsheet. The

fitted equations are used by the clock scheduling system in creating the constraint graph of a

circuit.

4.1.2 Gate Switching Current Modeling

The switching current of the gates are characterized by simulating the gates with capacitive

loads ranging from 1 fF to 100 fF in 1 fF steps and recording the supply current of the gates.

The supply currents for every possible input combination that results in a switching at the

output of the gate are simulated. The average of the simulation results for all the input combi-
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Figure 4.1: The circuit used in the propagation delay measurement of the 4-input AND gate.
The case when the inputs A and C are fixed, and the inputs B and D are switched is shown.

 

200

400

600

800

1000

0 50 100 150 200 250

Pr
op

ag
at

io
n 

D
el

ay
 (p

s)

Load Capacitance (fF)

Delay (ps)

Linear Fitting

Figure 4.2: Variation of the propagation delay of the 4-input AND gate with respect to the
load capacitance value. The fitted linear curve is also shown.
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nations are used in the power estimation algorithm of the clock scheduling system. Figure 4.3

shows the switching power simulation circuit of the 2-input AND gate. The 2n − 1 different

input combinations that causes switching at the output of an n-input gate, are considered by

simulating 2n − 1 gates at once. The total power dissipation of the 2n − 1 gates are divided by

2n − 1 to find the average switching power dissipation.

The square wave from the ideal voltage source is passed through five inverters in order to have

a more realistic input signal with low slew rate. The outputs are recorded in 1 ps steps and the

data is used in determining the relation of the switching power current of a gate with respect

to the value of the load capacitance. The current wave for the switching of the output from

logic “0” to logic “1”, i.e., charging the output capacitance, changes with load capacitance.

However, the current wave for the switching of the output from logic “1” to logic “0”, i.e.,

discharging the output capacitance, does not depend on the value of the load capacitance.

A computer program is written for analyzing the simulation data output and determining

the four parameters used in characterization of the switching power wave as discussed in

Subsection 3.1.3. The computer program extracts from the simulation output data, the peak

value of the current (Ipeak), and the time at which the current is at its peak value (tpeak), the

times at which the current is at 10% of its peak value before and after the peak value is reached

(tstart and t f inish) for each gate type and for each load capacitance value. Then, the computer

program calculates the rise time (tr) and fall time (t f ).

The curve fitting is done using a spreadsheet. The clock scheduling algorithm estimates the

switching current wave for charging the actual load capacitance of the gate in the circuit using

the relation as described in Subsection 3.1.3. The average of the calculated switching current

for charging and the tabulated switching current for discharging the output capacitance is used

for peak power estimation of the circuit.

4.2 Register Characterization

The test circuits are implemented with D flip-flops as registers. For simulations, the low power

D flip-flop with positive edge triggered clock in Alcatel-Mietec MTC45000 0.35 µm standard

cell library is used. Figure 4.5 shows the gate level schematics of the D flip-flop. The setup

and hold times and the switching power of the D flip-flop are characterized with simulations.
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Figure 4.3: The circuit used in switching current measurement of the 2-input AND gate. All
three switching input combinations that causes switching at the output are simulated at once.
The total supply current of the three AND gates are divided by 3 to find the average switching
power of the 2-input AND gate.

4.2.1 Register Setup and Hold Time Measurements

The time that the input of a register has to be stable before the clock edge is defined as the

setup time of the register. Similarly, the time that the input of the register has to remain stable

after the clock edge is defined as the hold time of the register [66]. Figure 4.4 shows the

circuit used in setup time and hold time measurements of the D flip-flop.

For setup time measurement, two square wave signals with slightly different frequencies are

applied to the data and clock input pins of the register. The clock signal is at 100 MHz

whereas the input signal is at 100.2 MHz. As time passes, the input signal leads the clock

wave more. The time between the clock and input waves when the output switches from logic
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Figure 4.4: The circuit used in setup time and hold time measurements of the D flip-flop.
Clock and input signals with slightly different frequencies are applied to the D flip-flop.

CLK
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Figure 4.5: The gate level schematics of the D flip-flop that is used in the test circuits.

“0” to logic “1” for the first time is the setup time of the register. Figure 4.6 shows the input,

clock and output signals from the simulation output when the setup time is measured. The

high level input voltage (VIH) is given as 0.8 · VDD for the process technology that is used for

simulations, and the high level output voltage (VOH) is given as 0.85 · VDD ∼ 0.9 · VDD [67].

Hence, the difference between the times when the clock and input signals are at VIH , at the

clock edge when the output reaches VOH value is measured. The setup time of the D flip-flop

is measured to be 160 ps.

For hold time measurement, a method similar to setup time measurement method is used. The

clock signal is a square wave at 100 MHz with 50% duty-cycle, whereas the input signal is at
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Figure 4.6: The input, clock and output signals from the simulation output when the setup
time is measured.
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Figure 4.7: The input, clock and output signals from the simulation output when the hold time
is measured.
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Figure 4.8: The circuit used in switching power measurement of the D flip-flop.

200.2 Mhz with 25% duty-cycle. The reason to use a double-frequency input signal with half

the duty cycle is to reset the output of the register to logic “0” every other clock edge. As time

passes, the input pulses lead the clock edge. At some clock edge, the output of the register

can not reach VOH , since the input falls from logic “1” to logic “0” before the hold-time. At

this clock edge, the difference between the time when the clock is at VIH and the time when

the input is at VIL is measured as the hold-time of the register. The hold time of the flip-flop

is measured to be -187 ps. Figure 4.7 shows the input, clock and output signals from the

simulation output when the hold time is measured.

4.2.2 Register Switching Power Measurements

The register is simulated using the circuit shown in Fig. 4.8. The input signal and the clock

signal are both square wave signals. The frequency of the input signal is the half the frequency

of the clock signal in order to observe the switching of the output in both directions. The

clock signal is delayed by setup time with respect to the input signal for proper flip-flop

operation. The average of the switching current waves for output switching in both directions

are recorded. The variation of the shape of the switching current wave with respect to the load

capacitance value is determined similar to gates.
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4.3 Performance Evaluation of the Algorithms

4.3.1 Implementation of the Algorithms

The various clock scheduling algorithms and auxiliary algorithms that are used in the scope of

this work are implemented in C++. Microsoft R© Visual C++ R© Express Edition 2008 is used

as the development environment. The graph data type of LEDA1 Library is used for graph

representation.

4.3.2 Test Circuits

Selected circuits from the ISCAS’89 benchmark suite are used for the evaluation of the al-

gorithms. The benchmark suite is chosen because it offers a wide collection of synchronous

sequential circuits and the prior utilization of the benchmark suite in similar works provides

a comparison opportunity. The benchmark suite consists of synchronous sequential circuits

that are composed of inverters (NOTs); 2,3 and 4-input ANDs, NANDs, ORs, NORs; and

D flip-flops. The benchmark suite consists of a number of circuits ranging wide in size and

function. Table 4.2 shows the information about the circuits in the benchmark. Although all

the circuits are taken from actual industrial designs, only the function of a very limited num-

ber of circuits are known [68]. Reverse engineering efforts in order to determine the functions

of the benchmark circuits are reported [69].

The circuits in the ISCAS’89 benchmark suite are supplied in a netlist format not supported

by Cadence. Hence, a computer program is written to generate the gate level descriptions in

Verilog Hardware Description Language (HDL). The gate level HDL descriptions are mapped

to the gates in Alcatel-Mietec MTC45000 0.35µm standard cell library and the gate level

schematics are imported to Cadence environment. The resulting schematics are simulated in

SpectreS Analog Simulator.

The computer program takes the circuit graph as the input and outputs two gate level Verilog

HDL descriptions of the circuit. The first output is for fully synchronous framework, with

a single clock connected to all the flip-flops. The second output is for the semi synchronous

1 In this work, the free edition of LEDA that contains no algorithms is used. LEDA is available from Algo-
rithmic Solutions Software GmbH. See http://www.algorithmic-solutions.com.
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Table 4.2: The characteristics of benchmark circuits.

Circuit Name # of Inputs # of Outputs # of D Flip-Flops # of Gates

s208 11 2 8 96

s298 3 6 14 119

s344 9 11 15 160

s382 3 6 21 158

s386 7 7 6 159

s400 3 6 21 162

s444 3 6 21 181

s510 19 7 6 211

s526 3 6 21 193

s641 35 24 19 379

s713 35 23 19 393

s820 18 19 5 289

s832 18 19 5 287

s838 35 2 32 390

s953 16 23 29 395

s1196 14 14 18 529

s1238 14 14 18 508

s1423 17 5 74 657

s5378 35 49 179 2779
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framework, with separate clock inputs for each flip-flop. A sample circuit and the correspond-

ing two gate level HDL descriptions are given in Appendix A for illustrative purposes.

4.3.3 Clock Period Minimization

The clock period minimization algorithm determines the minimum feasible clock period that

a sequential circuit can operate without hazards and adjusts the clock timing of each register

for operation with the minimum clock period. The precision of the algorithm is 1 ps. Table 4.3

shows the speed-up of the test circuits. In order to verify the operation of the algorithm the

test circuits are simulated twice: once with fully synchronous clock and once with the clock

schedule generated by the clock period minimization algorithm. The outputs of the circuits

for the two simulations are recorded and compared with the each other. Comparison results

show that, all the circuits operate properly with the minimum clock period. The circuits are

simulated with random inputs because of the absence of information on the functions of all

the circuits. However, the circuits whose functions are known are also simulated with realistic

inputs. The details on the random input generation is explained in Appendix B. The clock

period of all the test circuits are shortened by up to 45.37% except for one test circuit (s386).

4.3.4 Peak Power Minimization

The peak power minimization algorithm adjusts the clock timing of the registers in the cir-

cuit with the aim of minimizing the peak power consumption of the circuit. As discussed in

Subsection 3.1.4, this is a two step process. The clock schedule outputs of the two steps are

recorded and test circuits are simulated with both clock schedules. Test circuits are also sim-

ulated with fully synchronous clock for measuring the amount of peak power minimization.

The test circuits are simulated with the minimum feasible clock period for fully synchronous

operation in each case. In order to show that the peak power minimization does not disturb

the proper operation of the circuit, the outputs for both cases are recorded and compared

with the output of the simulation with fully synchronous clock. The comparisons show that

the peak power minimization does not have a negative impact on the proper operation of the

circuit, i.e., does not introduce timing hazards. The test circuits are simulated with random

inputs. Moreover, the circuits whose functions are known are also simulated with realistic

inputs. The unit time for the peak power estimation and the clock timing is selected as 10

71



Table 4.3: The speed-up of test circuits.

Circuit Name
Clock Period # Clock Period

% Speed-Up
without Scheduling (ps) with Scheduling (ps)

s208 1606 1119 30.32%

s298 1416 933 34.11%

s344 2212 1688 23.69%

s382 2112 1195 43.42%

s386 2227 2227 0.00%

s400 2266 1238 45.37%

s420 2979 2181 26.79%

s444 2188 1207 44.84%

s510 1679 1524 9.23%

s526 1553 1277 17.77%

s641 7160 6631 7.39%

s713 7523 6917 8.06%

s820 2643 2616 1.02%

s832 2686 2660 0.97%

s838 5287 4358 17.57%

s953 1951 1618 17.07%

s1196 3248 2581 20.54%

s1238 3356 2689 19.87%

s1423 9901 8415 15.01%

s5378 3431 2637 23.14%
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ps, which is limited by the available computer memory. The simulation durations are limited

by the available disk space and thus varies with the size of the circuits. Table 4.4 shows the

duration of the simulations. A computer program is written in order to analyze the simulation

outputs. The computer program determines the maximum power consumption among all the

clock cycles for each time unit in the clock period.

Table 4.5 summarizes the results of the simulations. The algorithm decreases the peak power

dissipation by up to 72.68%. Despite for several circuits, in which the second step of the

algorithm resulted in larger peak power than the first step, the second step of the algorithm

proved to be useful. Of course, the algorithm always estimates the peak power consumption

after the second step to be lower than that after the first step. However, due to the nature of

the probabilistic peak power estimation there are errors and this may result in faulty clock

schedules for some circuits. Although in some cases the second step resulted in slightly

larger peak power, the peak power consuption of the circuits are significantly decreased by

the algorithm.

Comparing the peak power minimization results of test circuits s1238, s1423 and s5378 to

those presented in [46] shows a similar result for s5378 (73.32%), whereas better peak power

minimization is achieved in [46] for s1238 (63.51%) and s1423 (56.88%). However, the speed

of the SPA algorithm is expected to outperform the method in [46] in terms of speed, because

SPA eliminates the need for running a simulation for each gate in the circuit.
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Table 4.4: The simulation durations of the test circuits.

Circuit
Sim Duration

(# of clock periods)

s208 1000

s298 1000

s344 1000

s382 1000

s386 300

s400 300

s420 300

s444 300

s510 300

s526 300

s641 300

s713 300

s820 300

s832 300

s838 300

s953 300

s1196 300

s1238 300

s1423 200

s5378 16
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Table 4.5: The peak power minimization of test circuits.

Circuit Name

Peak Supply Peak Supply

% Decrease

Peak Supply

% Decrease
Current without Current with Current with

Scheduling (A) Scheduling Scheduling

Step 1 (A) Step 2 (A)

s208 0.00678688 0.00435648 35.81% 0.00296034 56.38%

s298 0.0105936 0.00752192 29.00% 0.00806976 23.82%

s344 0.0178092 0.010167 42.91% 0.0100087 43.80%

s382 0.0178843 0.0083895 53.09% 0.00624071 65.11%

s386 0.0117345 0.00828416 29.40% 0.00846497 27.86%

s400 0.0159057 0.00686901 56.81% 0.00666514 58.10%

s420 0.0116429 0.00351301 69.83% 0.00352633 69.71%

s444 0.0168731 0.00668501 60.38% 0.00658724 60.96%

s510 0.0177533 0.00776628 56.25% 0.00689052 61.19%

s526 0.0135858 0.0082219 39.48% 0.0081779 39.81%

s641 0.0127367 0.00991737 22.14% 0.0099204 22.11%

s713 0.0120846 0.00865432 28.39% 0.00863658 28.53%

s820 0.0260013 0.0230006 11.54% 0.0215027 17.30%

s832 0.0262672 0.025251 3.87% 0.0193233 26.44%

s838 0.0147442 0.00550152 62.69% 0.00469743 68.14%

s953 0.0326145 0.0152455 53.26% 0.0152448 53.26%

s1196 0.0363944 0.0265775 26.97% 0.0265528 27.04%

s1238 0.0360493 0.028551 20.80% 0.0288205 20.05%

s1423 0.0259821 0.0200997 22.64% 0.0207246 20.24%

s5378 0.123983 0.033876 72.68% 0.0346984 72.01%
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CHAPTER 5

CONCLUSION

Clock scheduling is applied to synchronous sequential circuits in order to improve two per-

formance metrics of the circuits: clock period and peak power consumption. Graph theoretic

approach of [25] is used for clock period minimization. In this approach, a binary search is

made on the constraint graph, in which Bellman-Ford Algorithm is used to check if the clock

schedule is feasible at each step. A negative weight cycle detection strategy, namely ”mod-

ified walk-to-the-root”, is utilized in order to determine the existence of the negative weight

cycle at early steps of the Bellman-Ford Algorithm.

The accuracy of the clock scheduling algorithm for clock period minimization relies heavily

on the determination of the propagation delays of gates used in the circuit. The propagation

delay of a gate changes with the load capacitance value. Thus, the relation between the prop-

agation delay and the load capacitance value should be well determined for the algorithm to

produce accurate results. All the gate types used in the test circuits, namely: inverters, 2,3

and 4-input ANDs, NANDs, ORs and NORs, are simulated with varying load capacitances.

Using the output data of these simulations, a model defining the propagation delay in terms of

load capacitance is generated. This model is used in the algorithm to estimate the actual prop-

agation delay of a gate in a circuit. Using only clock scheduling with no other modifications,

up to 45.37% speed-up is observed in simulations of selected test circuits from ISCAS’89

benchmark suite. In order to verify that the proper operation of the circuits are not disturbed

with the speed-up, the simulation outputs with and without clock scheduling are recorded and

compared. It is shown that the test circuits operate properly at higher clock frequencies.

For peak power reduction, the two-stage clock scheduling algorithm of Takahashi given in

[46] is implemented. The performance of this algorithm relies on the accuracy of the switch-
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ing power estimation of gates and registers. In this work, a new method, namely the Shaped

Pulse Approximation Method (SPA) is proposed for switching power estimation of gates and

registers. The SPA method exploits the triangular approximation of supply current waves for

determining the change in the shape of the current wave for different load values. The varia-

tions of the triangular approximation parameters of all the gate types used in the test circuits,

namely: inverters, 2,3 and 4-input ANDs, NANDs, ORs and NORs, are modeled by simu-

lations for a range of load capacitance values. The SPA method utilizes the model for the

estimation of the supply currents of the gates for actual load capacitances by modifying the

shape of a tabulated unit current wave, i.e., the magnitude of the unit current wave is adjusted

with a magnitude correction factor and the wave is stretched in the time with two time correc-

tion factors. The SPA method outperforms the previous methods in the literature in terms of

speed and memory storage requirement while offering high accuracy. The switching power

dissipation of gates and registers for the actual load capacitance in the circuit can be estimated

with less than 10% normalized rms error.

The peak power reduction algorithm is verified by simulating the selected test circuits from

ISCAS’89 benchmark suite. The peak power reduction is done separately from the clock pe-

riod minimization in order to have more room for optimization, since the clock timing ranges

of the registers are wider for the nominal clock period. However, the algorithms can be ap-

plied simultaneously for minimizing the peak power and the clock period at the same time.

Obviously, there will be a trade-off between the two metrics for this case. With the application

of the clock scheduling for peak power reduction to the test circuits, up to 72.68% decrease in

peak power consumption is observed in simulations. The simulation outputs with and without

clock scheduling are recorded and compared in order to verify that the peak power minimiza-

tion does not disturb the proper operation of the circuits. It is shown that the test circuits

operate properly with lower peak power values. The electromagnetic radiation emission of a

circuit is expected to be lower when scheduled for peak power reduction, because the supply

current is not modulated by the clock period, i.e., the current peaks are distributed in time,

and the peak values are lower [70].

The clock scheduling algorithms in this work are implemented with the assumption that the

clock timings of all the registers can be adjusted. The methods for clock tree synthesis and

clock delay adjustment are beyond the scope of this research. The unit time of clock schedul-

ing can be adjusted in the clock scheduling system considering the precision of the delay
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generation in the clock tree synthesis.

The power consumption of the clock distribution network of a circuit may increase with the

introduction of the delays. However, there are methods in the literature for low-power clock

tree synthesis such as [56], so that the overall peak power of the circuit can be minimized

without extra power overhead of the clock distribution network. Hence, the power dissipation

of the clock distribution network is not considered within the scope of this work.

Although major research objectives are accomplished by realizing a complete clock schedul-

ing system and proposing a new power estimation method, there is still need for further re-

search for improving the performance of the algorithms. Firstly, the memory usage of the

peak power reduction algorithm could be optimized enabling it to handle larger circuits and

smaller unit times. Secondly, the estimation error of the proposed switching power estimation

algorithm could be further reduced by taking into consideration the effect of the input slew

rate on the power dissipation of circuit elements. Finally, the clock scheduling system could

be integrated into the available synthesis tools for more user friendly operation.

In conclusion, the major achievement of this research is the development of a new power

estimation method for circuit elements to be used in the clock scheduling algorithm aiming

at peak power reduction. With the help of the implemented clock scheduling system, the

performance of synchronous sequential circuits can be improved in speed and peak power

consumption. It is believed that the theoretical background and test results provided in this

study would be helpful to the development of even better power estimation algorithms and

clock scheduling systems.
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Appendix A

HDL GENERATOR

Figure A.1 shows an example circuit. The gate level Verilog HDL description of this circuit

generated by the computer program for fully synchronous framework is listed below:

module circ(CLK,G0,G1,G6);

input CLK,G0,G1;

output G6;

wire G10,G11,G12,G13,G14,G15,G2,G3,G4,G5;

wire G7,G8,G9;

FD1QM DFF_1(.Q(G13),.D(G12),.CP(CLK));

FD1QM DFF_2(.Q(G4),.D(G3),.CP(CLK));

FD1QM DFF_3(.Q(G6),.D(G5),.CP(CLK));
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2 2

2 2 2 2 2
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Figure A.1: Example circuit [58]
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FD1QM DFF_4(.Q(G11),.D(G10),.CP(CLK));

IV IV_1(.Z(G12),.A(G11));

IV IV_2(.Z(G14),.A(G13));

IV IV_3(.Z(G7),.A(G6));

IV IV_4(.Z(G8),.A(G7));

IV IV_5(.Z(G9),.A(G8));

IV IV_6(.Z(G10),.A(G9));

AN2 AN_1(.Z(G2),.A(G1),.B(G13));

AN2 AN_2(.Z(G15),.A(G0),.B(G14));

AN2 AN_3(.Z(G5),.A(G1),.B(G4));

ND2 ND_1(.Z(G3),.A(G15),.B(G2));

endmodule

The Verilog HDL description of the same circuit for semi-synchronous framework is listed

below:

module circ_SC(CLK_1,CLK_2,CLK_3,CLK_4,G0,G1,G6);

input CLK_1,CLK_2,CLK_3,CLK_4,G0,G1;

output G6;

wire G10,G11,G12,G13,G14,G15,G2,G3,G4,G5;

wire G7,G8,G9;

FD1QM DFF_1(.Q(G13),.D(G12),.CP(CLK_1));

FD1QM DFF_2(.Q(G4),.D(G3),.CP(CLK_2));

FD1QM DFF_3(.Q(G6),.D(G5),.CP(CLK_3));

FD1QM DFF_4(.Q(G11),.D(G10),.CP(CLK_4));

IV IV_1(.Z(G12),.A(G11));

IV IV_2(.Z(G14),.A(G13));

IV IV_3(.Z(G7),.A(G6));

IV IV_4(.Z(G8),.A(G7));
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IV IV_5(.Z(G9),.A(G8));

IV IV_6(.Z(G10),.A(G9));

AN2 AN_1(.Z(G2),.A(G1),.B(G13));

AN2 AN_2(.Z(G15),.A(G0),.B(G14));

AN2 AN_3(.Z(G5),.A(G1),.B(G4));

ND2 ND_1(.Z(G3),.A(G15),.B(G2));

endmodule
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Appendix B

RANDOM INPUT GENERATOR

The Random Input Generator, generates input vectors for the simulations of the test circuits.

The program is implemented in C++, and uses the pseudo-random number sequence genera-

tor function rand() of the C programming language. The second of the clock is used as the

seed of the pseudo-random sequence. The inputs of the program are the number of inputs of

the circuit, the clock period and the simulation duration. One text file for each input is gen-

erated as the outputs of the program, which are in a format recognized by SpectreS Analog

Simulator of Cadence. In order to prevent the metastability issues due to the simultaneous

change in the clock signal and the input signals, the inputs change at the falling edges of the

clock whereas the flip-flops in the circuits are rising edge triggered. Figure B.1 shows a tim-

ing diagram of example input signals with the clock signal. For each negative clock edge the

program generates two random numbers and compares them. If the second one is larger, then

the input is logic “0”, else the input is logic “1”.

CLK

IN1

IN2

Figure B.1: Timing diagram showing the clock signal and two example input signals. The
input signals change with the falling edges of the clock in order to eliminate metastability
issues.
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