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ABSTRACT 
 

 

 

LARGE DEFORMATION ANALYSIS OF SHELLS 

UNDER IMPULSIVE LOADING 

 

Evcim, Mehmet 

M.S., Department of Mechanical Engineering 

Supervisor: Prof. Dr. Haluk Darendeliler 

 

 

February 2010, 101 Pages 

 

In this thesis large deformation behavior of shell structures under high intensity 

transient loading conditions is investigated by means of finite element method. 

For this purpose an explicit finite element program is developed with interactive 

user interface. The developed program deals with geometric and material 

nonlinearities which stem from large deformation elastic - plastic behavior.  

Results of the developed code are compared with the experimental data taken 

from the literature and simulation results of the commercial finite element 
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program Ls-Dyna. Moreover, sensitivity study is carried out for mesh size, 

element type and material model parameters. After the comparison and 

verification of the obtained results, it is concluded that converged and 

reasonable results are achieved. 

Keywords: Explicit finite element method, nonlinear formulation, impulsive 

loading, Ls-Dyna Simulation 
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ÖZ 
 

 

 

ANİ YÜKLEME ALTINDA BÜYÜK DEFORMASYONA UĞRAYAN  

KABUK YAPILARIN İNCELENMESİ 

 

Evcim, Mehmet 

Yüksek Lisans, Makine Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Haluk Darendeliler 

 

 

Şubat 2010, 101 Sayfa 

  

Bu tez çalışmasında kabuk yapıların yüksek miktarda ve kısa zaman aralığındaki 

yüklemeler karşısındaki davranışı sonlu elemanlar yöntemiyle incelenmiştir. Bu 

amaçla, açık zaman entegrasyonu yöntemini kullanan grafik ara yüzüne sahip bir 

sonlu elemanlar programı geliştirilmiştir. Geliştirilen program, büyük şekil 

değiştirme ve elastik-plastik malzeme özelliğinden kaynaklanan doğrusal 

olmayan davranışı hesaba katmaktadır. 
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Geliştirilen program ile elde edilen sonuçlar literatürde bulunan deney sonuçları 

ve ticari bir yazılım olan Ls-Dyna programı benzetimleri ile karşılaştırılmıştır. Elde 

edilen veriler incelendiğinde tutarlı sonuçlara ulaşıldığı değerlendirilmiştir. 

Anahtar Kelimeler: Açık zaman entegrasyonlu sonlu elemanlar yöntemi, doğrusal 

olmayan formülasyon, darbe yüklemesi Ls-Dyna benzetimi 
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      CHAPTER 1 

 

1. INTRODUCTION 
 

 

 

1.1 Impulsive Loading of Structures 

Dynamic events are in the area of interest for many disciplines. Although sources 

of impulsive load may differ, response of the structures to this kind of loading is 

similar. Behavior of the structure is characterized by the duration of loading 

(strain rate) and the physical properties of the materials (constitutive relation). 

Events including crash and impact procedures are characterized by transient 

response in terms of stress and strain states. The dominant factor is the duration 

of the impact event. With decreasing duration (increasing strain rate), response 

of materials diverge from the quasi – static behavior (Figure 1). With increasing 

the loading speeds inertial forces can`t be neglected. Therefore quasi – static 

solutions are not applicable for this kind of problems. 
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Figure 1: Change of the behavior of materials with increasing strain rate and 

related simulation method [1] 

Dynamic behavior of materials is different from that of quasi-static response. 

When the strain rate increases the material does not have sufficient time to 

deform. This results in both higher strength (Figure 2) and local deformation 

(Figure 2).  



3 
 

 

Figure 2: Variation of flow stress with strain rate for a titanium alloy [2] 

 

Figure 3: Global to local transition of response of a bar impacted by high speed 

projectile [1] 
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Typical duration of impact is on the order of seconds for car crash events, several 

milliseconds for ballistic impacts and microseconds for shaped charge jet 

impacts. With increasing impact velocities the pressure generated within the 

structure is increased. As a consequence the response of structures becomes 

strongly strain rate dependent. When higher strain rates are achieved, the 

evolution and propagation of shock waves take place. After this point solids 

behave in a compressible liquid-like (hydrodynamic) manner. Due this 

phenomenon finite element programs dealing with high speed impact events are 

called as “hydrocode” [3]. 

In order to solve high speed loading events by means of dynamic deformation 

and energy dissipation wave propagation phenomenon must be taken into 

account (Section 3.6.2). Therefore the system equations must be discretised in 

space and time [1].  

Duration of a blast load is on the order of milliseconds to microseconds. In 

addition these loads are ten times or higher than the structural design limits [4]. 

Possible types of impulsive loading are explained in Section 1.1.1.  

1.1.1 Sources of Impulsive Loading 

Impulsive loading of structures can be caused by many different factors. Most 

common areas of impulsive loading cases can be listed as follows: 

- Automotive 

- Crashworthiness & occupant protection 

- Airbag design 

- Defense  

- Ballistic protection and safety of armored vehicles 

- Development of lightweight body armor 

- Weapon development 
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- High explosives blast protection 

- Homeland security 

- Mining 

- Rock blasting 

- Aerospace  

- Bird  strike on aircraft structure and engine 

- Engine fan blade out 

- Micro - meteoroid impact on satellite shields 

- Meteoroid impact on planet surface 

- Manufacturing 

- Explosive welding 

- Metal forming 

- Forging 

- Stamping 

- General Consumables  

- Drop test 

- FSI applications  

- Atmosphere and water entry vehicles 

- Impact of liquid containers 

- Nuclear reactor safety 

1.1.2 Blast Loading Phenomenon and Simulation Methodologies 

When a high explosive detonates, a pressure front propagates into surrounding 

atmosphere introducing high levels of pressure waves which are called “blast 

waves”. Blast waves are studied in several disciplines including: 

- Development of missiles and rockets 

- Protection of armored and civilian vehicles from mine and warhead 

explosions 



6 
 

- Protection of buildings from terrorist attacks 

The blast wave is characterized by an instantaneous increase from ambient 

pressure to peak incident pressure (Figure 4). This strong incident shock wave is 

characterized by Friedlander equation (for positive phase): 

 
( ) max

0 0

1 expa at t t tP t P
t t

β
   − −

= − −   
      (1.1) 

 

There are three stages for blast loading of a structure (Figure 4): 

- Arrival Duration (ta): Duration from detonation up to reaching of the 

blast wave to the structure. Generally for numerical simplicity 

pressure rise time of the shock wave is assumed to be zero. 

- Positive Phase (t0): Application of the incident high pressure wave on 

the structure. The damage is mainly caused by the positive pressure 

load. 

- Negative Phase (t0
-): Contraction of the detonation products and the 

surrounding air after release of high pressure. Generally this phase 

does not have any significant effect. 
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Figure 4: Pressure versus time diagram of a generic blast wave [5] 

Fist studies on blast loading calculations are based on empirical models due to 

the complexity of modeling detonation and wave propagation in air. It was 

observed that the blast load from different amount of explosives at different 

distances show the same profile. This enables the computation of the structure 

blast loading are based on previous experiments as functions of the “scaled 

distance” Z: 

 
3

DZ
W

=   (1.2) 

where D is the distance to the charge and W is the charge’s mass. Pressure 

profile data is generated by using the scaled distance for incident and reflected 

waves. This methodology concerns only the positive phase of the blast wave [5]. 

However for large deformations which results in failure and fragmentation the 

above approach is not applicable and a fully coupled simulation is needed. Some 

techniques to simulate failure of the structure under blast load using coupling 

are; finite elements, mesh free particles and finite differences. In the case of 
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coupling both, the fluid dynamical and the structural dynamics regime need to 

be modeled carefully to cover all relevant effects. In addition, the interaction 

process may require a specific code module [3]. 

In a case of a uniformly distributed blast load, applied blast pressure is assumed 

to spread equally over the complete exposed area of the structure. This 

assumption is used for longer stand-off distances and far-field blasts. For close 

range detonations, the blast loading is usually considered localized. Thus 

nonuniform and concentrated pressure distribution must be considered for close 

range detonations. 

Moreover it is difficult to measure the loading and response of the structure as 

blast load produces high-intensity pressure waves, light flashes and a fireball. As 

a result of these difficulties, researchers use special instruments for calculating 

transient displacement or acceleration such as comb-like devices (Figure 19), 

accelerometers and displacement transducers with high speed data acquisition 

systems [4]. 

1.2 Scope of the Thesis 

The aim of this thesis is to investigate large deformation characteristics of thin 

structures under impulsive loading situations. A three dimensional nonlinear 

explicit finite element program is developed for this purpose. The developed 

program consists of triangular shell elements with five degrees of freedom per 

node. This element formulation is not implemented to any commercial software 

yet. Central difference scheme is applied for time integration. Corotational 

procedure is used with stress rate formulation. A bilinear elastic plastic model is 

applied to the developed program. 

Contents of the thesis study can be summaries as follows: 
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Chapter 1 explains the aim of the thesis and gives information about dynamic 

loading and high strain rate behavior of materials. In addition, sources of 

dynamic loading and characteristics of blast wave are discussed. 

In Chapter 2 information is presented about the past studies carried out 

regarding application of shell elements focusing on the explicit finite element 

method. 

Chapter 3 contains the theoretical information about the finite element method. 

Firstly types of nonlinearities in finite element method are given. Then large 

deformation treatment in finite element method is presented focusing on 

explicit time integration. Brief information about the most commonly used 

explicit finite element programs is also included.  

In Chapter 4 developed code is explained starting from the variational principle. 

Element formulation, treatment of large deformation and large rotation 

situation, stress update and plasticity phenomena are explained. Basic functions 

and the user interface are explained. 

In Chapter 5 results of the developed code is compared with the previous 

experimental data taken from literature and simulation results of Ls-Dyna 

program. Parametric study is carried out about mesh size, element type, number 

of through thickness integration point and material model in order observe the 

dependency of the solution on certain factors. 

Chapter 6 concludes the thesis study. Obtained results are discussed and 

recommendations for further studies are given. 
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CHAPTER 2 

 

2. LITERATURE SURVEY 
 

 

 

In this chapter previous studies on development of nonlinear finite element 

methods involving transient dynamic loading are discussed. Attention is focused 

on triangular shell elements only. To the best knowledge of the author, there is 

no study available regarding development of 3 dimensional nonlinear explicit 

finite element program in the national literature. 

Mackerle made a bibliographical research on the finite element method 

applications for static, dynamic, linear and nonlinear analysis including beam, 

bar, cable, membrane, plate, shell and solid elements. A list of published papers 

regarding the finite element method for structural analysis can be found in his 

study [6]. 

Shell elements have been extensively used for thin structures in many 

engineering problems such as automotive, aerospace, metal forming and high 

pressure vessels. Their superiority stems from high computational efficiency 

compared to solid elements.  

In the case of hydrocodes, shell elements have larger time step when compared 

to a solid element of the same thickness. As the through thickness direction is 

skipped in the calculation, the smallest dimension has no influence on the 

calculation of the time step. This leads to dramatic time step increases. 
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Computational efficiency is increased further by reduced integration scheme 

(which is mostly the case for hydrocodes) using a single Gaussian point [3]. 

Nevertheless shell elements have some disadvantages; they cannot transmit 

stress waves into the thickness direction. Reduced integration scheme may lead 

to zero energy modes and deformation patterns which are not associated with 

strain energy. As a result special numerical treatment (such as hourglass control) 

is required [7]. 

Two main options of the thin shell theory are implemented in the finite element 

codes. These are Kirchhoff-Love and Mindlin formulation shells. Kirchhoff-Love 

shells consider that a normal to midsurface remains straight and normal under 

deformation of the structure. This assumption does not allow transverse shear 

formation in the element. On the other hand Mindlin - Reissner shell theory 

considers normals to the midsurface remain straight but not necessarily normal. 

In this theory the transverse shear strains are constant throughout the thickness 

and consequently inconsistent since it is non zero at the free surfaces (bottom 

and top). This results in overestimation of shear energy. In order to overcome 

this drawback shear correction factors are used to reduce shear energy [7]. 

In practical applications, generally Kirchhoff – Love elements are more suitable to 

thin shells whereas Mindlin – Reissner elements are preferred for thick, sandwich 

or composite plates [3]. 

Batoz developed a triangular plate bending element with only displacement 

degrees of freedom at the corner nodes using Discrete Kirchhoff Theory (DKT) 

and a hybrid stress model (HSM) element and a selective reduced integration 

(SRI) element. He concluded that the most efficient and reliable three node plate 

bending elements are the DKT and HSM elements [8].  
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Belytschko and Hsiehs developed a finite element for the simulation of transient, 

large displacement and small strain problems including material nonlinearities. 

They employed the convected coordinate approach and a direct force calculation 

for nodes which increased the computational efficiency. They used constant 

strain triangular and Euler – Bernoulli beam elements. They figured out that the 

convected coordinate procedure not only simplifies the implementation of 

complex stress strain laws but also increases the stability and accuracy of the 

solution [9]. 

Belytschko et al. investigated the performance of various transient finite element 

methods and developed an efficient computer program for this type of 

problems. They stated that, when applying explicit time integration scheme to 

nonlinear problems, computing nodal forces through stiffness matrix does not 

give efficient computational performance (except for complex elements such as 

higher order isoparametric type). Direct calculation of nodal forces is made by 

using derivatives of shape functions. By omitting calculation of a total stiffness 

matrix they reduced computation and memory costs significantly which allows 

handling larger finite element models. Also this direct method eliminates the 

need for a tangential stiffness matrix [10]. 

Stolarski et al. developed a Mindlin plate element using linear fields for rotations 

and transverse deflections. They separated the displacements into bending and 

shear modes to achieve better results. This formulation requires single 

quadrature point for integration which makes it very suitable for the nonlinear 

explicit finite element method. They reported the accuracy of the element to be 

similar to the 4 node bilinear Mindlin plate [11]. 

Keulen and Booij developed a curved shell element which has 12 nodal degrees 

of freedom including corner node displacements and rotations about midsides. 

They focused on consistent finite rotations with considerable simplifications for 
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the governing equations which resulted in more efficient implementation of the 

element. Their formulation is based on the constant strain triangle (CST) and 

Morley`s element. This element gained significant improvements by additional 

terms for the membrane deformation. Additional terms can be included by 

considering elongations of the element sides and change of curvature. They 

carried out numerical study for sample problems including pulling out of a 

cylinder and pure bending of a strip [12]. 

Cheung and Zhang developed a nonconforming triangular plate/shell element for 

geometrically nonlinear analysis. Their formulation has its basis on 

nonconforming element method for geometric nonlinear analysis. They 

superimposed Allman’s triangular plane element with vertex degrees of freedom 

and the refined triangular plate-bending element. They reported quite high 

accuracy for geometric nonlinear analysis of plates and shells [13]. 

Carpenter et al. developed 18 degrees of freedom triangular shell element with 

improved membrane interpolation. They used DKT bending element to 

demonstrate the flexural behavior and a plane stress element with a with a new 

membrane stress formulation to demonstrate the membrane behavior. 

Membrane stress formulation is established on the basis of a degenerate linear 

strain triangular. They exploited in plane rotations at each node for this purpose. 

They concluded that this new element is relatively more efficient and passes 

plane stress patch test [14]. 

Most of the commercial and academic hydrocodes have the shell element 

formulation developed by Hughes and Liu. It was the first shell element 

implemented in Ls-Dyna program. It has objective stress formulation which 

allows handling large strain problems and was relatively simple and 

computationally efficient. The element formulation is based on the degenerated 

brick element which makes it compatible with solid elements [15,16]. 
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Sabourin and Brunet made an improved formulation of a rotation free triangular 

shell element for general purpose. The formulation is based on the Morley 

element which originally expresses the bending behavior with three bending 

angles only. However they defined the bending angles with rigid body rotations 

of the element and its neighbors. Membrane effects are approximated by 

constant strain triangular elements. They carried out several simulations with 

regular and irregular mesh patterns. They considered large deformations 

including crash and deep drawing. Deep drawing simulation results indicate that 

curvatures are captured better as they are imposed by means of translations. 

Good convergence and accuracy is reported when compared with DKT18 

element. The formulated element is implemented in the RADIOSS ® software and 

suggested for sheet forming simulations [17]. 

Onate et al. extended the rotation free basic shell triangle (BST) to nonlinear 

analysis of shell structures by explicit finite element method. They used 

combined finite element and finite volume formulation for the derivation of BST 

element. An updated Lagrangian scheme and a hypoelastic constitutive law are 

used for the treatment of nonlinearities.  A “control domain” approach is 

implemented for the formulation of an individual triangle. A constant curvatures 

field is computed over the triangle in terms of displacements of the six nodes 

belonging to the four elements patch formed by the central triangle and the 

three adjacent triangles. They made several benchmarks including large 

deformation elastoplastic analysis of a spherical dome, cylindrical panel, impact 

of two cylinders, stretch forming and deep drawing (square box and curved rail). 

They compared the obtained results with several types of elements such as 

Stolarski [11] and WHAMS-3D explicit finite element code. Good correlation 

between the results is reported [18]. 

Wu et al. used Discrete Kirchhoff Plate (DKT) element for nonlinear explicit 

analysis. They made several benchmarks including large twist and crash 
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simulations. It is stated that DKT element performs well by means of both 

accuracy and efficiency whereas the 3 node C0 element is too stiff. Therefore 

their formulation is used for the formulation of the element stiffness [19].  

This element is used for the development of the finite element program for the 

thesis study. Detailed information of this study will be presented in Chapter 4.  
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CHAPTER 3 

 

3. FINITE ELEMENT METHOD 
 

 

 

3.1 Non-Linear Finite Element Method 

There are several types of nonlinearities in structural mechanics such as 

geometric, material, force and kinematic nonlinearities [20,21].  Nonlinearities 

are handled more easily in explicit time integration procedure because of the 

nature of this method such as: 

- A sufficiently small time step is already selected because of the 

stability condition. Further time step decrease is not needed. 

- Inversion of stiffness matrix is not carried out. As a consequence large 

number of cycles is possible without significant computational cost. 

3.1.1 Geometric nonlinearities 

Due to large deformation or displacement the strain-displacement equations 

include higher order terms which produce nonlinear relationships. Strains are 

not adequately computed using first-order approximations. For strains on the 

order of 10-2, the error due to small displacement assumption is generally below 

1%. But nonlinearity arises for higher displacements [20]. 
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3.1.2 Material nonlinearities  

The constitutive equation which relates stresses to strains are nonlinear. Inelastic 

behavior arises from changes in stress-strain relations due to occurrence of 

plastic yielding. In addition certain materials (especially organic materials such as 

elastomers) have inherent nonlinear stress response to strain [20]. 

3.1.3 Other Types of Nonlinearity 

Other sources of nonlinearities include nonlinear equilibrium effects (i.e. fluid-

structure interaction) and contact effects (change in stiffness of the structure) 

[21]. 

3.2 Large Deformations  

For small deformations, the time derivative of the true strain is exactly the rate 

of deformation. However, in the case of large deformation, the true strain is no 

longer applicable. The existence of large deformations requires use of objective 

formulations for deformation terms in order to achieve reference frame 

independent stresses. Large rotations must be taken into account by rotating the 

stress tensor [7]. When standard time discretization methods are applied to rate 

constitutive equations in order to achieve objectivity, small time steps are 

required [22].  

Objectivity of a finite element formulation is an important issue from the 

material law point of view. Because the material model must not be dependent 

on the observer`s position and time. This is the requirement in order to achieve 

frame indifference to fulfill objectivity [22]. 

Total and updated Lagrangian formulations use different algorithms but the 

mechanics of the two formulations is same. In addition, total Lagrangian and 

updated Lagrangian expressions can be converted between each other [15].  
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The basic difference between the two formulations is in the reference point of 

view. Total Lagrangian formulation defines quantities with respect to the original 

configuration whereas updated Lagrangian formulation refers to the current 

configuration (deformed configuration). In addition, stress and deformation 

measures are treated in different ways. Total Lagrangian formulation adapts a 

total measure of strain, whereas the updated Lagrangian formulation often uses 

a rate measure of strain [7]. 

 

Figure 5: Current and initial configurations of an arbitrary body [7]. 

Since updated Lagrangian approach is more convenient for hydrocodes, 

attributes of this formulation will be discussed further in below. 

3.2.1.1 Updated Lagrangian Formulation 

In the updated Lagrangian formulation, the discrete equations are formulated in 

the current configuration. The stress is measured by the Cauchy (physical) stress.  

Deformed configuration can be explained by: 

( ),x f X t=  (3.1) 
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In this method, variables must be expressed in terms of the spatial coordinates x 

and the material coordinates X in different equations. The dependent variables 

are chosen to be the stress ( ),X tσ  and the velocity ( ),v X t . This choice differs 

from the total Lagrangian formulation, where the displacement ( ),u X t is used as 

the independent variable. This is not a major difference since the displacement 

and velocities are both computed in a numerical implementation. Equation (3.1) 

can be inverted to obtain: 

( )1 ,X f x t−=  (3.2) 

Any variable can then be expressed in terms of the Eulerian coordinates; for 

example ( ),X tσ
 

can be expressed as ( )( ), ,X x t tσ . While the inverse of a 

function can easily be written in symbolic form, in practice the construction of an 

inverse function in closed form is difficult or even impossible. Therefore the 

standard technique in finite elements is to express variables in terms of element 

coordinates, which are sometimes called natural coordinates. In Updated 

Lagrangian formulations, the strain measure is the rate of deformation given by 

the velocity gradient [7]. 

3.2.1.2 Corotational Formulation 

Another approach for overcoming difficulties encountered in large deformation 

problems is to embed a coordinate system in the element and to rotate with the 

element. This approach is called Corotational formulation. Embedding a 

coordinate system at each quadrature point and rotating it with material is valid 

for large strains and large rotations [23]. A key concept in corotational 

formulation is defining the rotation of the material. Velocity gradient is reported 

to perform best for explicit finite element method. The consequent formulation 

accurately represents the behavior of shells and other complex elements [22].  
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Figure 6: Corotational approach for a triangular element in two dimensions [7] 

Corotational formulation can be imposed in different ways: 

- Polar decomposition  

- Rotating the coordinate system referring to a material line in the element 

(Gives more accurate results than the first approach) 

- Rotating the coordinate system referring to a side of the element (Only 

valid for small strain case) [7]. 

3.2.2 Jaumann Stress Rate  

For an explicit scheme the constitutive equations for the strength of the material 

are expressed as differential equations which must also be integrated in time. 

1 1 1
2 2

n n n n
tσ σ σ+

+ +
= +

 
(3.3) 

 

To evaluate the stress rate at 1/2nt + , the strain rate must be known at that 

instance. The strain rate is the symmetric part of the velocity gradient ∂u/∂x 

(Equation(4.41) ). Although the velocity is known at 1/2nt + , the geometry is 

known only at nt  and 1nt + for the central difference method. A second order 

approximation to the midpoint geometry is given by the arithmetic average 

[24]: 
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( )1/2 1
1
2n n nX X X+ += +

 
(3.4) 

3.2.3 Stress Rate in Explicit Time Integration 

The procedure used in this section is adapted from [22] and [25].  The imposed 

features of the stress update procedure are as follows: 

- The formulation is independent of the constitutive model.  

- The rate equations are used in an incremental approach (this is also 

valid for most of the large deformations codes). 

- The algorithm is computationally efficient. 

- Constitutive models are based on Cauchy stress and defined according 

to the unrotated reference frame. 

- The same methodology can be applied to both three and two 

dimensions. 

The stresses are updated according to the following equations in each time step: 

1t t Jtσ σ σ+ = + ∆ 

 (3.5) 

( )1
T

t t t tt tCσ σ σ σ ε+ = + ∆ Ω + Ω + ∆ 



 (3.6) 

J JCCσ ε= 

 (3.7) 

Update procedure for displacement, velocity, acceleration, stress and stress 

rates in time marching scheme of an explicit time integration algorithm is 

summarized in Figure 7.
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Figure 7: Update procedure by means of time step [26] 

3.3 Plasticity in the Explicit Finite Element Method 

Because of the incremental behavior of the nonlinear explicit finite element 

method, the solution procedure for plasticity must be in an incremental (rate) 

form. An incremental elastic - plastic formulation is used to describe the 

nonlinear material response of metals in most of present finite element codes. 

The plasticity description for the explicit time integration method is based on the 

decomposition of the velocity - strain tensor, into elastic and plastic parts [3]. 
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The yield function expresses the yield stress in terms of equivalent plastic strain 

(Equation (3.10)). Equivalent plastic strain is accumulated from the equivalent 

plastic strain rates as described in the following equations: 

 
( )1 2, ,yield e yif I Jσ θ σ= −

  
(3.8) 

 

 
1 3

3/2
2

3 31 sin
3 2

J
J

θ −  −
=   

    
(3.9) 

 

where 2J  and 3J are second and third stress deviator invariants and 1I  is first 

stress invariant.  

Effective plastic strain can be defined in terms of effective plastic strain rate as 

follows: 

 ps ps psε δε ε= =∑ ∫ 

  
(3.10) 

 

where effective strain rate can be calculated by means of strain rate components 

for two dimensional case as: 

 

2
2 22

43
pxy

px py px py

τ
ε ε ε ε ε

 
= + + +  

 



    

  
(3.11) 

 

Hardening for isotropic materials can be introduced by simply changing the fixed 

yield stress to a variable flow stress [25]. Some examples of these functions are 

summarized in   
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Table 3.1 and visualized in Figure 8 and Figure 9. 

Table 3.1: Various yield criteria [25] 

Type  Definition   

Von Mises  23J   (3.12) 

Tresca  22cos Jθ   (3.13) 

Drucker - Prager  1 2DI J+   (3.14) 

Mohr - coulomb 
 ( )1

2
sin
3

I J Aϕ θ+   
(3.15) 

 

“A” term in Equation (3.15) can be expressed as: 

 
( ) sin sincos

3
A θ ϕθ θ = − 

    
(3.16) 

 

“D” term in Equation (3.14) is the material constant for Drucker-Prager 

yield function. ϕ  angle in Equation (3.15) is depicted in Figure 9. 
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Figure 8: Von Mises and Tresca yield functions [25] 

 

Figure 9: Drucker - Prager and Mohr-Coulomb yield functions [25] 

3.4 Shear Locking  

As a shell element becomes thinner, the shear stiffness term becomes dominant 

numerically and makes the solution to diverge from the expected thin plate 

solution. In order to overcome this problem selective reduced integration 

technique may be used with the standard displacement based elements. The 

phenomenology behind this method is to under-integrate the shear stiffness 

terms. For instance in the case of a four noded quad element, the bending 

stiffness term can be integrated using the 2x2 quadrature whereas the shear 

stiffness terms can be integrated by a 1x1 quadrature. However when using 

reduced integration enough integration points must be used in order to maintain 

additional rigid body modes [20]. 
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Another approach to eliminate shear locking is to approximate displacements by 

higher order polynomials than the rotations. For instance for an eight noded 

quad element, z displacement can be defined by eight node driven interpolation 

functions and for rotations Rx and Ry four node driven bilinear interpolation 

functions [20]. This methodology is chosen for the developed finite element 

code. 

3.5 Explicit Finite Element Codes 

As discussed in Section 1.1, finite element programs dealing with high speed 

impact and explosion events are called “hydrocodes” and “wave propagation 

codes”. The reason stems from the hydrodynamic behavior of materials under 

intense dynamic loading and formation/propagation of plastic and shock waves 

in the structure.  

First reported hydrocode study was conducted in Los Alamos National 

Laboratories (LASL) in 1944 for simulating the physical effects of nuclear 

weapons and it is still kept confidential. Due to very limited computing capacity, 

early hydrocodes were one dimensional shock tracking codes. Two dimensional 

codes emerged in the early 1960`s [27]. In the meantime Lawrence Livermore 

National Laboratories (LLNL) developed hydrocodes for investigating high speed 

contact – impact problems [28].  Three dimensional hydrocodes raised a decade 

later after a significant progress of the computer technology. 

In 1980`s hydrocodes become an important tool for crashworthiness and 

passenger safety simulations in automotive industry. With increasing demand for 

the computation efficiency, parallelization and domain decomposition 

procedures were developed and optimized [29]. 
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Today`s hydrocodes are capable of handling big finite element meshes (up to 

several million elements) with efficient domain decomposition algorithms. They 

can merge different kind of solvers in one problem. Most of the hydrocodes have 

adaptivity (remeshing) features. Many different material strength and equation 

of state models are implemented. Moreover some codes allow user defined 

material models. 

Some of the known hydrocodes are Ls-Dyna, Autodyn, MSC. Dytran, Abaqus, 

Alegra, Pronto, CTH, Epic, Hull, Mesa and Dysmas. A comparison of basic 

capabilities of the common hydrocodes is summarized in Figure 10. 

 

Figure 10:  Main features and application areas of common Hydrocodes [30] 
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3.6 Explicit Time Integration 

Detailed information regarding the explicit time integration method will be 

supplied in Chapter 4. 

3.6.1 Solution Procedure 

Solution scheme of an explicit time integration method for a hydrocode is as 

follows: 

1- Knowing the stress, pressure, hourglass forces, and shock viscosity at tn in 

each zone or element, the forces at the nodes are calculated. The 

accelerations of the nodes are calculated by dividing the nodal forces by 

the nodal masses. 

2- The acceleration is integrated to give the velocity at tn+1/2. 

3- The velocity is integrated to give the displacement at tn+1. 

4- The constitutive model for the strength of the material is integrated from 

tn to tn+1 now that the motion of the material is known. 

5- The artificial shock viscosity and hourglass viscosity are calculated from 

un+1/2. 

6- The internal energy is updated based on the work done between tn and 

tn+1. 

7- Based on the density and energy at tn+1, the pressure is calculated from 

the equation of state. 

8- A new time step size is calculated based on the speed of sound through 

each of the elements and their geometry. 

9- Advance the time and return to step 1. 
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3.6.2 Stability and Critical Time Step 

Uncoupling of the equations of motion is the major advantage of explicit 

integration procedures. No mass or stiffness matrices need be inverted or even 

assembled, as all the incremental calculations for each degree of freedom can be 

done independently at the local level. As a consequence nonlinearities are more 

easily treated in hydrocodes such as material, geometric and contact type. 

Although number of cycles is very high, computational time per cycle is quite low 

compared to implicit solution techniques such as Newmark method [3]. 

 The time – step is limited by the Courant criterion, i.e. the time it takes the 

stress waves to travel across one element. This limitation is consistent with the 

local, uncoupled integration of the equations of motion. If the time-step was 

larger than the Courant critical value, stress waves would travel across an 

element within one time - step, affecting the surrounding elements. The 

incremental behavior of that element would no longer be independent from the 

rest of the model. The central difference method is considered as the most 

convenient within the explicit class. 

For the explicit time integration, timestep must be sufficiently small in order to 

achieve numerical stability. Thus explicit time integration is “conditionally 

stable”. However implicit methods are stable even if time step is very large. For a 

stable time step investigation the system of linear equations of motion can be 

uncoupled into the modal equations. The detailed derivation can be found in 

[31]. Then the critical time step is calculated as: 

max

2t
ω

∆ ≤  (3.17) 

 

where ω  is the natural frequency. It is obvious that the time step is bounded by 

the largest natural frequency of the structure. However calculating natural 
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frequency for every single cycle is very costly by means of computational time. 

As a consequence, using Courant’s stability criterion, time step should be 

determined in a manner such that the information (stress wave) cannot pass 

over an entire element in one cycle. This critical time step for an element is 

defined as: 

c
c

Lt
c

∆ =  (3.18) 

 

where cL the characteristic length and c is the wave speed in the structure. 

Characteristic length for plate/shell elements can be determined in two ways 

[32]: 

c
AreaL

Longest sideof theelement
=  (3.19) 

 

c
AreaL

Longest diagonal of theelement
=  (3.20) 

  

The sound speed (velocity of the elastic stress wave) in shell elements can be 

expressed as: 

( )21
Ec
ν ρ

=
−

 
(3.21) 

This value is a function of both the element geometry and speed of sound within 

the material. For problems involving hypervelocity impact, the impact velocity 

may exceed the sound speed and smaller time steps must be used. The time step 

size may also be limited by the contact algorithm, the magnitude of the shock 

viscosity or an explosive burn [24]. 
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3.7 Equation of State Model 

In the elastic range, isotropic solids maintain linear pressure - volume change 

(dilatation) behavior which can be expressed by using bulk modulus as [33]:  

 
p K V= − ∆

  
(3.22) 

 

However by increasing the intensity of loading and decreasing loading duration 

the pressure - volume relation becomes nonlinear (Section 3.7.1.1). Formation of 

high levels of pressures that exceed the material strength generates shock waves 

in the structure. Shock waves play a dominant role in the deformation behavior. 

For the reasons mentioned above a decomposition of the volumetric and shear 

response is needed.  

Stress tensor [σ] can be divided into deviatoric [S] and pressure hydrostat [P] 

terms as follows: 

 
ij ij ijs pσ δ= +

  
(3.23) 

 

In Eq.(3.23), p is defined as: 

1
3 iip σ=

 (3.24) 

In matrix form: 

 
[ ] [ ]

11 12 13

12 22 23

13 32 33

0 0
0 0
0 0

p p
s p P p

p p

σ σ σ
σ σ σ
σ σ σ

−   
   = − =   
   −   

  
(3.25) 
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Figure 11: Decomposition of stress tensor into deviatoric and pressure parts 

This procedure can also be applied to strain tensor. Deviatoric strain and dilation 

tensors can be obtained in the same manner, which represent shape change and 

compression/expansion behavior respectively [1]. 

An equation of state defines the pressure in terms of state variables such as 

temperature, energy and volume. Shear strength is not considered in an 

equation of state model. Nonlinear character of response is captured by using 

equations of state to describe shock waves. In the absence of shock waves, the 

stress tensor can be described without decomposition [16,3]. 

If an equation of state is assigned, material model is used for the deviatoric part 

and the equation of state is used for the pressure term [3].  In this study, 

equation of state is used for Ls-Dyna simulations with Johnson – Cook material 

model. 

3.7.1.1 Mie – Gruneisen (Shock) Equation of State 

This equation of state has its bases on statistical thermodynamics which 

investigates the material behavior in macroscopic scale as a function of inter - 

atomic distance. In order to obtain the formulation; a reference state of known 

pressure, energy and density is used. These values can be obtained by either 

theoretical approach (i.e. calculation of energy at 0 Kelvin) or experimental data 

(Shock Hugoniots) [3]. 
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Mie-Gruneisen (also known as Shock) equation of state model is suitable for 

solids under high pressure loads. The pressure load may extend up to 100 kBar. 

This model describes the pressure in terms of volume and internal energy as: 

 

( )
( )

( )
2 20

0

02 3

1 2 3 2

1 1
2 2

1 1
1 1

ac
P E

s s s

γρ µ µ µ
γ αµ

µ µµ
µ µ

  + − −    = + +
 
− − − − 

+ +  

  (3.26) 

where  

 

:
:
:
:

P Pressure
Compression
Gruneisen Coefficient

E Internal Energy

µ
γ

   

  
The subscript “0” indicates the zero Kelvin status. Detailed information about 

Mie – Gruneisen EOS can be found in [3,16]. 

3.8 Material Models 

In this section, concise information regarding the material and equation of state 

models for Ls-Dyna simulations will be explained. These are Elastic – Plastic 

Material Model (with and without rate effects option) and Johnson Cook 

Material Model with Mie Gruneisen Equation of State Model. 

3.8.1.1 Elastic – Plastic Material Model 

This model is suitable for elastic-plastic material behavior with isotropic and/or 

kinematic hardening. Due to formulation simplicity it is very effective in terms of 

computational cost. Furthermore this model requires just a few inputs to 

characterize elastic-plastic behavior of isotropic materials. Strain rate effects can 

be considered by using Cowper-Symonds option. As a consequence this model is 

very popular for elastic-plastic deformation problems. 
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In the case of isotropic hardening, the center of yield surface is fixed but the 

radius is a function of the plastic strain. However in kinematic hardening, the 

radius of yield surface is fixed but the center translates in the direction of plastic 

strain. 

For bilinear case, plastic strain is assumed to change linearly by increasing strain. 

This phenomenon is implemented by using a constant “plastic modulus” Ep (). 

 

Figure 12: Bilinear elastic plastic material model 

3.8.1.2 Johnson-Cook Material Model 

The Johnson – Cook model material model is a phenomenological model. It is 

one of the most used material models for metals. This model is applicable over a 

wide range of strain rate such as 310− to 3 110 s− . Recently developed “Modified 

Johnson Cook Model” can successfully predict material behavior having strain 

rates up to 5 110 s− . Typical applications include ballistics, high speed impact and 

explosive loading. 

 In this model equivalent von Mises flow stress is expressed as a function of 

strain hardening, strain rate and thermal softening (Eq. (3.27)). These three 
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affects are assumed to be independent of each other and are combined in a 

multiplicative manner. This makes Johnson – Cook model relatively easy to 

develop. By keeping the two parameters constant the other parameter can be 

determined separately. Johnson Cook model parameters are determined Taylor 

Impact Test and Split Hopkinson Pressure Bar (SPHB) experiments [34]. 

 

Figure 13: Johnson Cook model parameters plot for Al 356 [35] 

The flow stress can be expressed as a function of plastic strain, strain rate and 

temperature as follows: 
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 ( )( ) ( ), 1 ln 1n m
flow p eff h

Strain RateStrain Hardening Thermal Softening
Effects

A B C Tσ ε ε= + + −



 

  
(3.27) 

 

:Flow stress

:Initial yield stress
:Strain hardening constant
:Effective plastic strain

:Strain hardening exponent
:Strain rate constant
:Homologous temperature
: Thermal softening exponent

flow

p,eff

h

A
B

n
C
T
m

σ

ε
 

Homologous temperature is calculated by using Eq. (3.28) 

 
current room

h
melt room

T TT
T T

−
=

−   
(3.28) 

 

Thermal effects are ignored in this study. 

3.8.1.3 Cowper - Symonds Model 

Cowper and Symonds model is a rate-sensitive elastic–plastic material model 

which obeys the Von Mises yield criterion. This model scales the yield stress by a 

strain rate dependent factor as [16]: 

 
( )

1

0 ,1
p

flow p p effE
C
εσ σ β ε

   = + + 
   



  (3.29) 

C and p are user defined constants and ε  is defined as: 

 ij ijε ε ε=  

  
(3.30) 

 

Effective plastic strain is calculated by using the following equation [16]: 
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2
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t

p ij p ij dtε ε ε= ∫  

  
(3.31) 
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CHAPTER 4 

 

4. DEVELOPED EXPLICIT FINITE ELEMENT CODE 

 

 

 

In this chapter, developed explicit finite element code will be described in detail. 

Theoretical detail about the finite element formulation is presented in the 

previous chapter.  

The finite element program is developed by using “Microsoft Visual C# .NET 2008 

Express Edition” platform [36] and has about 1840 lines of code. For matrix 

operations including mathematical and file input output processes an open 

source mathematical library is used [37]. Flowchart of the program can be found 

in APPENDIX B. 

The program can handle large elastic – plastic deformations which occur under 

high intensity transient loading conditions. Several types of conditions can be 

imposed including time dependent pressure, nodal force, initial velocity and 

fixed displacements.  

4.1 Principle of Virtual Power 

Conservation of momentum over a continuum can be expressed as [7,38]: 
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, 0ij j i ib vσ ρ ρ+ − =
 

(4.1) 

 

The weak or variational form for the momentum equation is obtained by 

multiplying the momentum equation with the virtual velocity ivδ  and integrating 

over the current domain. This gives: 

( ), 0i ij j i iv b v dδ σ ρ ρ
Ω

+ − Ω =∫ 

 
(4.2) 

 

The first term in Equation (4.2) can be expanded using integration by parts as:  

( ), , ,i ij j i j ij i ij j
v d v d v dδ σ δ σ δ σ

Ω Ω Ω

Ω = − Ω+ Ω∫ ∫ ∫  
(4.3) 

 

The Gauss divergence theorem can be defined as:  

,ij j ij jA d A n d
Ω Γ

Ω = Γ∫ ∫  
(4.4) 

 

Then the last term in Equation (4.3) becomes: 

( )
,i ij i ij jj

v d v n dδ σ δ σ
Ω Γ

Ω = Γ∫ ∫
 

(4.5) 

 

Putting Equation (4.5) in (4.3) gives: 

, ,i ij j i j ij i ij jv d v d v n dδ σ δ σ δ σ
Ω Ω Γ

Ω = − Ω+ Γ∫ ∫ ∫
 

(4.6) 

 

Thus, Equation (4.2) can be expressed as: 

, 0i j ij i i i ij j i iv d v b d v n d v v dδ σ δ ρ δ σ δ ρ
Ω Ω Γ Ω

Ω− Ω− Γ + Ω =∫ ∫ ∫ ∫ 

 
(4.7) 

 

This expression is called “principle of virtual power”. It can be summarized as 

follows: 
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internal external inertialP P P Pδ δ δ δ= − +
 

(4.8) 

 

where P stands for power. 

Finite element interpolation for displacements can be defined as: 

j
i ij iu N u=

 
(4.9) 

 

or in terms of velocities: 

j
i ij iv N v=

 
(4.10) 

 

where ijN  is shape function and the superscript denotes node number. 

By dropping the variational degree of freedom vi and using Equation (4.10), the 

virtual power expression takes the form: 

external internalMv f f= −  
(4.11) 

 

where 

,

external i ij j

internal i j ij

i j

f b d n d

f N d

M N N d

ρ σ

σ

ρ

Ω Γ

Ω

Ω

= Ω+ Γ

= Ω

= Ω

∫ ∫

∫

∫

 
(4.12) 

 

After finding accelerations at a specified time “t” by solving Equation (4.11), 

velocity and displacement can be found as follows: 
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( )

( )

1 1

2

1 1 1

2

2

t
t t t t

t
t t t t t

tv v v v

t
u u t v v

− −

− − −

∆
= + +

∆
= + ∆ +

 



 (4.13) 

 

where t∆ is the time step. 

4.2 Mass Matrix of the Triangular Element 

Most of the explicit finite element codes use a lumped matrix which results in a 

diagonal matrix. This matrix is also called as “lumped mass matrix”. 

1
1

1

22
1

1

n

i
i

n

i
i

nxn

nn

ni
i

m
m

mm
M

m
m

=

=

=

 
 
   
   
   
   = =
   
   
     
 
 

∑

∑

∑

 
(4.14) 

 

Since the matrix is diagonal its inverse can be calculated by simply taking 

reciprocals of diagonal elements as: 

1

2
1

1

1

.
.

1
n

m

m
M

m

−

 
 
 
 
 =
 
 
 
 
 

 (4.15) 
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4.3 Area Coordinates 

Area coordinates are widely used when creating shape functions for triangular 

elements. The use of the area coordinates will directly result in shape functions 

for triangular elements. 

With respect to an arbitrary point P (x,y) in the triangle, area coordinates can be 

defined as follows: 

 

Figure 14: Area partitioning for a triangular element 

i
i

A
A

ζ =  (4.16) 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2 2 2 3 3 2 2 3 3 2

3 3

2 3 3 3 1 1 3 3 1 1 3

1 1

3 1 1 1 2 2 1 1 2 2 1

2 2

1
1 11
2 2

1

1
1 11
2 2

1

1
1 11
2 2

1

x y
A x y x y x y y y x x x y

x y

x y
A x y x y x y y y x x x y

x y

x y
A x y x y x y y y x x x y

x y

= = − + − + −  

= = − + − + −  

= = − + − + −  

 (4.17) 
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As a consequence of the above definition, Equation (4.17) is automatically 

satisfied: 

3

1 2 3
1

1i
i

A A ζ ζ ζ
=

= ⇒ + + =∑  
(4.18) 

 

Thus area coordinates have the unity property [39]. 

4.4 Natural Coordinates 

Natural coordinates are used to locate points within the element by using that 

element`s geometric properties. These coordinates are used for integration 

operation over the element area. The dimensionless local coordinates can be 

expressed as the ratio of the areas: 

1 231 1

1 23 1

0.5
0.5Total

s LA s
A h L h

= =
 

(4.19) 

 

From Equation (4.19), the value of natural coordinate must be between zero and 

one. Each point on the triangle can be defined by using natural coordinates.  

The x-y coordinates can be expressed in terms of natural coordinates as [20]:  

13 23 3

13 23 3

x x x x
y y y y

ξ η
ξ η

= + +
= + +  

(4.20) 
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Figure 15:  Local triangular coordinates 

4.5 Numerical Integration Using Gauss Quadrature 

Integrals in finite element formulations are generally complicated and it is not 

possible to evaluate the integrals in closed form. Thus numerical integration 

must be used for this purpose. Simple numerical integration rules such as the 

trapezoidal and Simpson`s rule does not perform well with finite element 

computation. The “Gauss Quadrature” (also called Gauss-Legendre Quadrature) 

is more suitable for finite element applications [20]. 

Numerical integration of an area integral over a triangular element can be found 

using three Gauss quadrature points for integration at the midsides. As the 

equation for the element shape functions has quadratic terms, a three point 

Gauss quadrature scheme is sufficient. The points and regarding weight factors 

for a three point Gauss quadrature are given in Table 4.1. 

. 
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Table 4.1: Gauss quadrature points and regarding weight factors 

Integration Point 
Number 

Coordinates Weight Factor 

1 
1 ,0
2

 
 
 

 1
3

 

2 
1 1,
2 2

 
 
 

 1
3

 

3 
10,
2

 
 
 

 1
3

 

4.6 Element Formulation 

The developed explicit finite element code uses a flat triangular shell element 

with 15 degrees of freedom. Plate bending (DKT) and membrane element 

(Constant Strain Triangle) formulations are superimposed. Detailed formulations 

can be found in the relevant references [8,19,14,40].  

A corotational approach is implemented with incremental stress rates. At each 

time step, velocity gradient is calculated. Then the stress increments are 

calculated from strain increments by the constitutive law. 

Displacement of a point in the shell is separated into two components which 

consist of midsurface part and contribution of rotation, similar to a Mindlin plate 

as follows: 

1 1 2

2 2 1

3 3

U u z
U u z
U u

θ
θ

= +
= −
=

 (4.21) 

where iθ is the rotation about the midsurface. Alternatively, Equation (4.21) can 

be expressed in terms of velocity as follows: 
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1 1 2

2 2 1

3 3

V v zw
V v zw
V v

= +
= −
=

 (4.22) 

where iw is the angular velocity. 

 

Figure 16: Velocity of a point depending on the distance from midsurface [19] 

Formulation of the constant strain triangle element is simple and well known. 

Nodes have only translational degrees of freedom in x and y directions for the in 

plane contribution. Shape functions to define midplane velocities, v1 and v2, are 

expressed as [41]: 

 

1

2

3

1ϕ ζ η
ϕ ζ
ϕ η

= − −
=
=

  
(4.23) 

 

Then 

 

1 1 1
1 1 1 2 2 3 3

2 2 2
2 1 1 2 2 3 3

v v v v
v v v v

ϕ ϕ ϕ

ϕ ϕ ϕ

= + +

= + +   
(4.24) 

 

Shape function formulation for the DKT plate bending element is based on the 

study of Batoz et al [8]. Shape functions for angular velocities 1w and 2w  can be 

expressed in terms of natural coordinates as follows: 
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( )( )
( )
( )

( )
( )

ψ ζ η ζ η

ψ ζ ζ

ψ η η

ψ ζη

ψ η ζ η

ψ ζ ζ η

= − − − −

= −

= −

=

= − −

= − −

1

2

3

4

5

6

2 1 1 2

2 1

2 1

4

4 1

4 1

 
(4.25) 

In order to calculate the transversal velocity 3 v , the element uses 2-node 

Hermite cubic interpolation along each side Figure 17.  

Figure 17: Geometry definition at the side [19] 

For instance by taking “s” between 0 and 1 through side 1 with nodes 1 and 2, 

the transversal velocity can be found from the following relations: 

 

( ) ( )
1

1 21 2 1 1
3| 3 1 3 2 3, 1 3, 2

2 3
1

2 3
2

1 3 2
3 2

side s sv v v v v

s s
s s

χ χ χ χ

χ

χ

= + + +

= − +

= −
  (4.26) 

 

( )
( )

1 2 3
1

1 2 3
2

2s s s L

s s L

χ

χ

= − +

= − +   (4.27) 

Thus angular velocity can be expressed by taking L as the side length: 
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3 3 at 0,0.5,1n

v vw s
l L s

∂ ∂
= = =
∂ ∂   

(4.28) 

 

Taking the tangential component of angular velocity at mid-side node equal to 

the average angular velocity of the end nodes such as: 

 
( )1 2

6

2
s s

s

w w
w

+
=   

(4.29) 

 

A transformation procedure is introduced because of the orientation of the 

element (Figure 17). 

 

( )

( )

1 2

2 1

2 1

ˆ ˆ ˆsin cos

 - 
sin =

cos =

ne e e

y y
L

x x
L

α α

α

α

= −

−

 

(4.30) 
 

By inserting Equation (4.30) into (4.28), angular velocities of the mid sides can be 

eliminated from the unknowns. Therefore the quadratic interpolations for the 

angular velocities can be condensed as: 

 

( )

( )

6 9 6

1 1 1
1 1 1

6 9 6

2 2 2
1 1 1

,

,

j kj
j k j

j k j

j kj
j k j

j k j

w H

w H

ω ψ ζ η β

ω ψ ζ η β

= = =

= = =

= = Φ

= = Φ

∑ ∑∑

∑ ∑∑
  

(4.31) 

 

where Φ and β are defined as: 
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[ ]1 2 3 4 5 6

1 2 3 1 2 3 1 2 3
1 1 1 2 2 2 3 3 3

T

w w w w w w v v v

ϕ ϕ ϕ ψ ψ ψ

β

Φ =

 =  
  

(4.32) 

 

Explicit form of the H1 and H2 matrices can be found in the following equations:  

 

 

( ) ( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )
( ) ( )

2 3

1 3

1 2

2 3

1 1 3

1 2

2 2 3 3

1 1 3 3

1 1 2 2

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 , ,
0 0 0 , 0 ,
0 0 0 , , 0

ss a ss a
ss a ss a
ss a ss a

sc a sc a
H sc a sc a

sc a sc a
sl a l sl a l

sl a l sl a l
sl a l sl a l

 − −
 − − 
 − −
 
 
 =
 
 
 − 

− 
 − 

  
(4.33) 

 

 

( ) ( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )
( ) ( )

2 3

1 3

1 2

2 3

2 1 3

1 2

2 2 3 3

1 1 3 3

1 1 2 2

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 , ,
0 0 0 , 0 ,
0 0 0 , , 0

sc a sc a
sc a sc a
sc a sc a

cc a cc a
H cc a cc a

cc a cc a
cl a l cl a l

cl a l cl a l
cl a l cl a l

 
 
 
 
 

− − 
 = − −
 

− − 
 − 

− 
 − 

  (4.34) 

where ia  is the angle between the ith side of the triangle and axis; il is the length 

of ith side. Other expressions in Equations (4.33) and (4.34) are defined as 

follows: 
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( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( )

0.75sin sin

0.75sin cos

0.75cos cos

, 1.5sin /

, 1.5cos /

i i i

i i i

i i i

i i i i

i i i i

ss a a a

sc a a a

cc a a a

sl a l a l

cl a l a l

=

=

=

=

=

  (4.35) 

To sum up, velocities can be expressed in terms of nodal degrees of freedoms as: 

 [ ]

1

2
1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

3 1 2 3 1 2 1 2 3 1 2 1 2 3 1 25x15

1

2

T

V
V
V N v v v w w v v v w w v v v w w
W
W

 
 
 
   =   
 
  

  
(4.36) 

 

 

The total shape function “N” can be expressed in terms of natural and area 

coordinates as follows: 



51 
 

 

11 12 13

21 22 23

31 32 33

41 42 43

51 52 53

61 62 63

71 72 73

81 82 83

91 92 93

1 0 0 0 0
0 1 0 0 0
0 0
0 0
0 0

0 0 0 0
0 0 0 0
0 0
0 0
0 0

0 0 0 0
0 0 0 0
0 0
0 0
0 0

T

N N N
N N N
N N N

N N NN
N N N
N N N

N N N
N N N
N N N

ξ η
ξ η

ξ
ξ

η
η

− − 
 − − 
 
 
 
 
 
 
 
 

=  
 
 
 
 
 
 
 
 
 
 
  

  

(4.37) 

 

where ijN is defined as follows:  

( )
( ) ( )
( ) ( )
( )
( ) ( )
( ) ( )
( )

2
11 1 1 1 2 3

2
21 1 12 2 31 3 12 31 1 2 3

2
31 1 21 2 13 3 21 13 1 2 3

2
41 2 2 1 2 3

2
51 2 23 3 12 1 23 12 1 2 3

2
61 2 32 3 21 1 32 21 1 2 3

2
71 3 3 1 2 3

2
81 3 31 1

3 2 2

3 2 2

3 2 2

N

N y y y y

N x x x x

N

N y y y y

N x x x x

N

N y

ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ

ζ ζ

= − +

= − + −

= − + −

= − +

= − + −

= − + −

= − +

= ( ) ( )
( ) ( )

23 2 31 23 1 2 3

2
91 3 13 1 32 2 13 32 1 2 3

y y y

N x x x x

ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ

− + −

= − + −

 (4.38) 
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( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2 2
21 2 1

2 2
22 2 3

2 2
23 3 1

24 2 2 1 1

2
25 2 2 3

26 3 3 1 1

2

3 1 sin 3 sin

1 3 1 sin 3 1 sin

3 1 sin 3 sin

3 1 sin cos 3 sin cos

3 1 sin cos sin

3 1 sin cos 3 sin cos

N a a

N a a

N a a

N a a a a

N a a a

N a a a a

N

η η ξ η ξη

ξ η η ξ η ξ ξ η

ξ ζ ξ η ξη

η ξ η ξη

ξ η η ξ

ξ ξ η ξη

= − − − −

= − − − − − − − −

= − − − −

= − − +

 = − − + 
= − − +

( ) ( ) ( )
( ) ( )( ) ( )( )
( ) ( ) ( )

7 2 2 1 1

28 2 2 3 3

29 3 3 1 1

6 1 sin / 6 sin /

6 1 sin / sin /

6 1 sin / 6 sin /

a l a l

N a l a l

N a l a l

η ξ η ηξ

ξ η η ξ

ξ ξ η ηξ

= − − +

 = − − − 
= − − −

 (4.39) 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( )

31 2 2 1 1

32 2 2 3 3

33 3 3 1 1

2 2
34 2 1

2 2
35 2 3

2 2
36 3

3 1 sin cos 3 sin cos

1 3 1 cos sin 3 1 sin cos

3 1 sin cos 3 sin cos

3 1 cos 3 cos

3 1 cos cos

3 1 cos 3 cos

N a a a a

N a a a a

N a a a a

N a a

N a a

N a

η η ξ η ξη

ξ η η ξ η ξ ξ η

ξ ξ ξ η ξη

η ξ η ξη

ξ η η ξ

ξ ξ η ξη

= − − − +

= − − − − − − − −

= + − − +

= − − +

 = − − + 
= − − + ( )

( ) ( ) ( )
( ) ( )( ) ( )( )
( ) ( ) ( )

1

37 2 2 1 1

38 2 2 3 3

39 3 3 1 1

6 1 cos / 6 cos /

6 1 cos / cos /

6 1 cos / 6 cos /

a

N a l a l

N a l a l

N a l a l

η ξ η ηξ

ξ η η ξ

ξ ξ η ηξ

= − − +

 = − − − 
= − − −

  

 

(4.40) 

For calculating internal force vectors, one point quadrature for membrane part 

and 2 or more point quadrature for bending part are adapted. Therefore internal 

force vectors can be calculated by taking the following integrals [42]: 
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( )

( )

( )

( )

( )

1 2

2 1

1 2

2 1

1 2

xI I x I xy
V

yI I y I xy
V

zI I xz I yz
V

xI I y I xy I yz
V

yI I x I xy I xz
V

f B B dV

f B B dV

f B B dV

m B z B z dV

m B z B z dV

σ σ

σ σ

σ σ

σ σ σ

σ σ σ

= +

= +

= +

= − + +Φ

= + +Φ

∫

∫

∫

∫

∫

  
(4.41) 

 

By referring to Equation (4.11), internal force vectors are sufficient to calculate 

stresses. Therefore no stiffness matrix formation is needed for the calculations. 

4.6.1 Velocity Gradient 

To express large deformations in dynamic transient problems velocity gradient is 

used [25]: 

1 1 1

1 2 3

2 2 2

1 2 3

3 3 3

1 2 3

v v v
X X X
v v vL
X X X
v v v
X X X

 ∂ ∂ ∂
 ∂ ∂ ∂ 
 ∂ ∂ ∂

=  ∂ ∂ ∂ 
 ∂ ∂ ∂
 
∂ ∂ ∂ 

 (4.42) 

Velocity gradient can be decomposed into rate of deformation and spin tensors 

as follows: 

 
L D= +Ω

  
(4.43) 

 

Rate of deformation (strain rate) can be defined in terms of deformation 

gradient as: 



54 
 

 ( )11
2

T TD F FFFε − −= = + 





  
(4.44) 

 

The spin can be calculated as follows: 

 ( )11
2

T TF FFF − −Ω = − 

  
(4.45) 

 

Therefore the rotation can be found from: 

 
R I= +Ω

  
(4.46) 

 

where I is the identity matrix. 

4.6.2 Jacobian Matrix 

Jacobian matrix is used in terms of natural coordinates for the calculations which 

can be defined as: 

J

x y z
x

x y z
y

x y z
z

ξ ξ ξ ξ

η η η η

ς ς ς ς

   ∂ ∂ ∂ ∂  ∂
     ∂ ∂ ∂ ∂ ∂     
   ∂ ∂ ∂ ∂ ∂ =     ∂ ∂ ∂ ∂ ∂     
   ∂ ∂ ∂ ∂ ∂ 
     ∂ ∂ ∂ ∂ ∂    



 
(4.47) 

 

2 3 2 1 3 3

3 1 3 1 2 2

x x y y
J

x x y y
γ β
γ β

− − −   
= =   − − −    (4.48) 

Inverse of the Jacobian can be obtained by using the following relation: 

2 31

2 3

1
det

J
J

β β
γ γ

−  
=  

   
(4.49) 
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4.6.3 Stress Update Procedure 

The numerical algorithm for a single time step follows the procedure described 

below: 

1- Calculate D and W 

2- Compute 

i ijk jm mkz e D V=
 

(4.50) 

 

1Tw IV V zω
−

 = + −   
(4.51) 

 

ij ikj ke ωΩ =
 

(4.52) 

 

3- Calculate t tR +∆  

( ) ( )1 1
2 2t t tI t R I t R+∆− ∆ Ω = + ∆ Ω

 
(4.53) 

 

4- Calculate velocity gradient 

( )L D W V V= + − Ω
 

(4.54) 

 

5- Update velocity 

t t t tV V tV+∆ ∆= + ∆ 

 
(4.55) 

 

6- Compute 

td R DR=  
(4.56) 

 

7- Integrate stress 
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( ),f dσ σ=
 

(4.57) 

 

8- Compute 

tT R Rσ=  
(4.58) 

 

4.6.4 Plasticity for the Developed Code 

In the case of yielding, application of the update algorithm is as follows [26]: 

1- The stress σ  is updated elastically. 

2- Yield condition is checked: 

 

( ) ( ) ( ) ( )

2

2 2 2 2 2 2

3

1 6
2

y

xx yy yy zz zz xx xy yz zx y

f J σ

σ σ σ σ σ σ τ τ τ σ

= −

= − + − + − + + + −

  
(4.59) 

 

3- If no yielding occurs (f ≤  0), stresses are calculated by elastic update as 

described in Section 3.2.3. 

4- If stresses exceed the elastic limit (f > 0), plastic strain increment is 

evaluated as: 

 
evm y

pl
plasticE

σ σ
ε

−
∆ =

  (4.60) 

5- Effective plastic strain effε is updated as: 

 
1

, ,
n n

eff pl eff pl plε ε ε+ = + ∆
  

(4.61) 

 

6- New flow stress is calculated as: 
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1n n

y y pl plEσ σ ε+ = + ∆
  

(4.62) 

 

7- Proceed to next step 

4.7 Mass Matrix for the Triangular Element 

As stated in Section 3.6, lumped mass matrix of an element can be calculated by 

simply dividing the mass of the element into three: 

 
[ ] 2

2

1
1

1
1
3

12

12

M At t

t

ρ

 
 
 
 
 =  
 
 
 
  

  
(4.63) 

 

4.8 Constitutive Relation 

The constitutive relation for the shell element in three dimensions is as follows: 

 [ ] ( )
( )( ) ( )
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1 0 0 0
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1 0 0 0
1
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C vv v

v
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v
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 
 − 
 
 −
 −−  = − + −  − 
 −
 

− 
 − 

  
(4.64) 

 

If the flow stress is exceeded, C is replaced by Cp as described in Section 3.3. 
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4.9 Input Parameters and Solution Controls 

Graphical user interface of the program is shown in Appendix A. Input and 

solution control parameters are entered through this user interface. These 

controls include: 

- Elastic modulus 

- Plastic modulus 

- Poisson`s ratio 

- Thickness of plate 

- Density 

- Number of through thickness integration points (≤ 5) 

- Scale factor for critical timestep (recommended value: ≤0.9) 

- Termination time 

- Output interval 

- Output node & element number 
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CHAPTER 5 

 

5. RESULTS AND DISCUSSION 

 

 

 

In this chapter, several benchmark studies are carried out in order to evaluate 

the performance of the developed code considering blast loading. Blast load 

input is taken in the form of pressure time history data. The results are 

compared with the experimental data taken from literature and simulation 

results of Ls-Dyna program. Six different experimental configurations are 

simulated. Furthermore parameter sensitivity study is carried out by means of 

mesh sensitivity, material model and number of through thickness integration 

points. After observing convergent and reliable results for the mentioned 

parameters for the first configuration, remaining configurations are simulated by 

using these parameters. The results of both programs are compared and 

discussed.  

5.1 Experimental Data 

In order to correlate the finite element simulation results a comparison with the 

experimental data is needed. The test data is taken from the original work of 

Neuberger et al. [43] which investigated dynamic behavior of Rolled 

Homogenous Armor (RHA) steel disks under blast loads. A spherical charge of 

TNT was detonated above the center point at a specified distance (Figure 18). 
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Maximum deformation is measured by using a comb-like device (Figure 19). Test 

configurations and results are summarized in Table 5.1. 

 

Figure 18: Schematic diagram of test setup [43] 

 

Figure 19: Permanent deformation of the plate and measuring comb [43] 
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Table 5.1: Configurations and results for the tests of Neuberger et al. [43] 

Case No Thickness 
(mm) 

Diameter of 
RHA (mm) 

TNT Mass 
(kg) 

Distance of 
Charge (mm) 

Maximum 
Deflection (mm) 

1 20 1000 3.750 200 54 

2 10 500 0.468 100 26 

3 20 1000 8.750 200 107 

4 10 500 1.094 100 48.5 

5 20 1000 8.750 130 165 

6 10 500 1.094 65 74.5 

 

The material data is given by considering three different material models for the 

RHA plates used in the experiments. These are: 

i. Johnson - Cook Material Model (Equation (3.27)) with Mie 

Gruneisen Equation of State (Equation (3.26)) 

ii. Cowper – Symonds Material Model (Equation (3.29)) 

iii. Bilinear Elastic Plastic Material Model (Figure 12) 

The values used for the above material models are given in the following tables: 

Table 5.2: Johnson-Cook material model constants for RHA [43] 

Young`s 
Modulus 

Yield 
Strength 

Strain 
Hardening 
Constant 

Strain Hardening 
Exponent 

Strain Rate 
Constant 

E (GPa) A (MPa) B (MPa) n (MPa) C 

210 900 545 0.26 0.014 
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Table 5.3: Bilinear elastic-plastic material model constants for RHA [43] 

Young`s 
Modulus 

Plastic 
Modulus 

Yield 
Strength 

E (GPa) Ep (GPa) σy (MPa) 

210 2 1000 

Table 5.4: Cowper - Symons material model constants for RHA [43] 

Young`s 
Modulus 

Yield 
Strength 

Plastic 
Modulus 

Strain Rate 
Parameter 

Strain Rate 
Parameter 

E (GPa) σy (MPa) Ep (GPa) D*(s-1) q 

210 1200 6.5 300 5 

5.2 Finite Element Simulations by a Commercial Code 

Since the RHA plate is heavily clamped, it is assumed as fully constrained around 

the periphery (all degrees of freedom are fixed at the periphery). One fourth 

symmetric model is used for reducing the computational cost. Geometry and 

finite element mesh used in all 10 mm triangular element cases are presented in 

(Figure 20).  

For all simulations blast load is determined by using the Ls-Dyna program as a 

function of time for each individual element. The default hourglass control 

method for shell elements (viscous form) is chosen for Ls-Dyna simulations. 
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Figure 20: Finite element model used in the simulations 

5.2.1 Case I 

In this case, the first set-up of the experimental study (Table 5.1) is simulated. 

Plate thickness is taken as 20 mm with a diameter of 1000 mm. Total mass of 

TNT is 3.75 kg which is detonated at 200 mm distance to the midpoint of RHA 

plate. Maximum deformation is reported as 54 mm [43]. 

Finite element simulation performance can be affected by various factors such as 

material model, element type, mesh size and number of integration points (NIP) 

through the thickness of element. Thus a parameter sensitivity study must be 

conducted in order to investigate of these parameters on the results. 
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For Ls-Dyna simulations; parameter study is carried out for material model, 

element type, mesh size and number of integration points through the thickness 

of element. Detailed information about element types can be found in [16]. 

Calculated time of arrival for the blast wave is 34.98 micro seconds with a peak 

pressure of 278.47 MPa. 

5.2.1.1 Parameter Study for Element Type 

For simulations of Case I, 4 different element types are used: 

1. Quadrilateral 

2. Triangular (Collapsed Quad) 

3. Triangular (Element Formulation 3) 

4. Triangular (Element Formulation 4) 

By default Ls-Dyna uses quadrilateral element treatment for shells. Triangular 

elements are treated as collapsed quad element if it is not specified otherwise. 

 Obtained results are summarized in Table 5.5 (NIP: Number of thorough 

thickness integration points, Z max: Maximum deflection of the RHA plate). 

Table 5.5: Parameter study for element type 

Elm Type 
Mesh 
(mm) 

Material 
Model 

NIP 
Z max 
(mm) 

TEST 
(mm) 

Difference 
(%) 

Quad 

10 Elastic Plastic 4 

58.31 

54.0 

7.98 
Tria 58.06 7.52 

Tria – ELF3 66.00 22.23 
Tria – ELF 4 58.30 7.97 

 

Two sample deformed configurations with contours of z axis displacement are 

presented in the following figures: 
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Figure 21: Deformation contour plot for 10 mm quad mesh with Elastic – Plastic 

material model and 4 through thickness integration points 

 

Figure 22: Deformation contour plot for 10 mm triangular mesh with Elastic – 

Plastic material model and 4 through thickness integration points 

When the obtained results are discussed, it is concluded that default 

quadrilateral, collapsed quadrilateral and triangular element with formulation 

option 4 are suitable for this kind of study. Since this thesis study focuses on 

triangular elements, best performing triangular element is chosen to be with the 

4th formulation option according to Table 5.5. 
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5.2.1.2 Parameter Study for Mesh Size 

Effect of mesh size on the results is investigated by using triangular element with 

4th formulation as summarized in Table 5.6. 

Table 5.6: Parameter study for mesh size 

Elm Type Mesh (mm) Material 
Model NIP 

Z max 
TEST (mm) Difference 

 (%) (mm) 

Tria - ELF 4 

5 

Elastic 
Plastic 3 

58.3 

54 

8.03 

10 58.3 7.97 

20 58.3 7.61 

 

Mesh sensitivity study gave very close results for 5, 10 and 20 mm element sizes. 

Thus 10 mm is preferred for the remaining study from the point of accuracy and 

computational cost. 

5.2.1.3 Parameter Study for Material Model 

Three different material models are used including Elastic – Plastic, Johnson Cook 

and Cowper Symonds while keeping other parameters constant. Comparison of 

the parameter sensitivity study for material model is summarized in the 

following table for triangular element (4th formulation) with 10 mm mesh size 

and 4 integration points through thickness: 
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Table 5.7: Parameter study for material models 

Elm Type Mesh 
(mm) Material Model NIP Z max 

(mm) 
TEST 
(mm) 

Difference  
(%) 

Tria – ELF4 10 

Elastic Plastic 4 58.3 

54 

7.97 

Johnson Cook + Shock 4 56.92 5.41 

Cowper Symonds 4 42.28 21.7 

 

When the results are investigated it is observed that, Elastic - Plastic and Johnson 

Cook material models can capture the deformation behavior in good agreement 

with the test results. On the other hand, Cowper Symonds model gave relatively 

higher differences. 

5.2.1.4 Parameter Study for Number of Integration Points 

Another important parameter is the number of integration points through the 

element thickness which has influence on transverse shear and bending behavior 

of the element. Parameter study is conducted by using 10 mm triangular 

elements with elastic plastic material model. The results are summarized in Table 

5.8. 

Results of this study showed that even one integration point seems to give closer 

results; main issue is not to “shoot” the real data but to obtain a stable and 

repeatable result. A generic example is presented in Figure 23. The closest result 

seems to happen when number of integration points is equal to 1. However for 

repeatability and stability of the solution, the results must be independent of 

that parameter, therefore 4 integration points will be more appropriate. 
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Table 5.8: Parameter study for number of through thickness integration points 

Elm Type Mesh 
(mm) MAT NIP 

Z max TEST Difference 
 (%) 

(mm) (mm) 

Tria 10 Elastic Plastic 

1 56.04 

54 

3.78 

2 60.9 12.78 

3 55.8 3.33 

4 58.06 7.52 

5 5.82 7.78 

6 5.723 5.98 

 

 Because of the points mentioned above, 4 integration points appear most 

applicable in terms of accuracy and efficiency. 

 

Figure 23: Generic simulation trend and an exact result 
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5.2.2 Case 2 

In this case, the second set up of the experimental study (Table 5.1) is simulated. 

Plate thickness is taken as 10 mm with a diameter of 500 mm. Total mass of TNT 

is 468 g which is detonated at 100 mm distance to the midpoint of RHA plate. 

Maximum deformation is reported as 26 mm [43]. 

As the parameter sensitivity study is carried out in the previous section, finite 

element simulation will be done by fixed model parameters for the rest of 

configurations. The only reported variable for the tests is maximum deflection. 

Thus results of the finite element study are verified for the displacement 

regarding configuration 1.  

For Ls-Dyna simulation, 10 mm triangular element with 4th formulation is 

selected. 4 through thickness integration points are assigned. Time of arrival of 

the blast wave is 17.40 microseconds with a pressure of 278.65 MPa. Maximum 

deformation occurs around 730 microseconds. Result of the simulation is 

presented in Table 5.9: 

Table 5.9: Maximum deformation for Case 2 (Ls-Dyna simulation) 

Elm Type 
Mesh 

mm 
MAT NIP 

Z max  

(mm) 

Test 

(mm) 

Difference 

(%) 

Tria - ELF 

4 
10 Elastic Plastic 4 29.07 26.0 11.81 

5.2.3 Case 3 

In this case, the third set up of the experimental study (Table 5.1) is simulated. 

Plate thickness is taken as 20 mm with a diameter of 1000 mm. Total mass of 

TNT is 8.75 kg which is detonated at 200 mm distance to the midpoint of RHA 
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plate. Maximum deformation is reported as 107 mm [43]. Result of the 

simulation is presented in Table 5.9: 

Table 5.10: Maximum deformation for Case 3 (Ls-Dyna simulation) 

Elm Type 
Mesh 

mm 
MAT NIP 

Z max  

(mm) 

Test 

(mm) 

Difference 

(%) 

Tria - ELF 

4 
10 Elastic Plastic 4 131.67 107.0 23.06 

 

5.2.4 Case 4 

In this case, the fourth set up of the experimental study (Table 5.1) is simulated. 

Plate thickness is taken as 10 mm with a diameter of 500 mm. Total mass of TNT 

is 1.09 kg which is detonated at 100 mm distance to the midpoint of RHA plate. 

Maximum deformation is reported as 48.5 mm [43]. Result of the simulation is 

presented in Table 5.9: 

Table 5.11: Maximum deformation for Case 4 (Ls-Dyna simulation) 

Elm Type Mesh 
mm MAT NIP Z max  

(mm) 
Test 

(mm) 
Difference 

(%) 

Tria - ELF 
4 10 Elastic Plastic 4 61.57 48.5 26.95 

 

5.2.5 Case 5 

In this case, the fifth set up of the experimental study (Table 5.1) is simulated. 

Plate thickness is taken as 20 mm with a diameter of 1000 mm. Total mass of 
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TNT is 8.75 kg which is detonated at 130 mm distance to the midpoint of RHA 

plate. Maximum deformation is reported as 165 mm [43]. Result of the 

simulation is presented in Table 5.9: 

Table 5.12: Maximum deformation for Case 5 (Ls-Dyna simulation) 

Elm Type 
Mesh 

mm 
MAT NIP 

Z max  

(mm) 

Test 

(mm) 

Difference 

(%) 

Tria - ELF 4 10 Elastic Plastic 4 168.47 165.0 2.07  

 

5.2.6 Case 6 

In this case, the sixth set up of the experimental study (Table 5.1) is simulated. 

Plate thickness is taken as 10 mm with a diameter of 500 mm. Total mass of TNT 

is 1.094 kg which is detonated at 65 mm distance to the midpoint of RHA plate. 

Maximum deformation is reported as 74.5 mm [43]. Result of the simulation is 

presented in Table 5.9: 

Table 5.13: Maximum deformation for Case 6 (Ls-Dyna simulation) 

Elm Type 
Mesh 

mm 
MAT NIP 

Z max  

(mm) 

Test 

(mm) 

Difference 

(%) 

Tria - ELF 

4 
10 Elastic Plastic 4 84.22 74.5 13.05 
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5.3 Developed Code Simulations 

Since the developed code uses a pre defined element formulation and material 

model, parameter study is carried out for mesh size and number of integration 

points through the thickness. 

5.3.1 Case I 

The experimental set up is the same as in the Ls-Dyna simulations (5.2.1). Also 

the same finite element model is used (Figure 20) for compatibility of pressure 

data. Since the material model and element type is fixed in the developed code, 

parameter study is carried out mesh size and number of integration points. 

5.3.1.1 Parameter Study for Mesh Size 

Sensitivity study results for element size parameter are summarized in Table 

5.14. The results showed that 5, 10 and 20 mm meshes give very close results as 

in the case of Ls-Dyna simulations. Therefore 10 mm mesh size is chosen as an 

optimum value. 

Table 5.14: Parameter study for element size 

Element 
Mesh 
mm 

MAT NIP 
Z max  
(mm) 

Test 
(mm) 

Difference 
(%) 

Developed 
Code 

5 
Elastic Plastic 4 

58.34 
54.0 

8,84 
8.05 
7.78 

10 58.35 
20 58.20 

 

5.3.1.2 Parameter Study for Integration Points 

The developed code allows up to 5 integration points through the thickness. 

Therefore effect of number of integration points is also investigated. Obtained 
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results are listed in Table 5.15. It shows that for a converged result 4 integration 

points can be chosen. 

According to the results of integration point sensitivity study, it is concluded that 

4 integration points in the thickness is appropriate for converged and stable 

deformation behavior. 

Table 5.15: Parameter study for element number of integration points 

Elm Type Mesh 
(mm) MAT NIP Z max  

(mm) 
Test 

(mm) 
Difference 

(%) 

Developed 
Code 10 Elastic Plastic 

1 54.00 
 

0.00 

13.50 

3.70 

8.05 

8.35 

2 61.29 
 

3 56.00 54.0 

4 58.35 
 

5 58.51 
 

 

5.3.2 Case 2 

Details of the second experimental configuration are presented in Section 5.2.2. 

As the parameter sensitivity study is carried out in the previous section, finite 

element simulation will be done by fixed model parameters for the second 

configuration.  

For developed code simulations, 10 mm triangular element with 4 integration 

points is selected. The same finite element mesh is used for the developed code 

and Ls-Dyna. Maximum deformation value of the simulation is given in Table 

5.16. 
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Table 5.16: Maximum deformation for Case 2 (Developed code simulation) 

Elm Type Mesh 
mm MAT NIP Z max  

(mm) 
Test 

(mm) 
Difference 

(%) 

Developed 
Code 10 Elastic Plastic 4 29.10 26.0 11.92 

 

5.3.3 Case 3 

Details of the second experimental configuration are presented in Section 5.2.3. 

Maximum deformation value of the simulation is given in  Table 5.17. 

 Table 5.17: Maximum deformation for Case 3 (Developed code simulation) 

Elm Type Mesh 
mm MAT NIP Z max  

(mm) 
Test 

(mm) 
Difference 

(%) 

Tria - ELF 
4 10 Elastic Plastic 4 131.69 107.0 23.07 

5.3.4 Case 4 

Details of the second experimental configuration are presented in Section 5.2.4. 

Maximum deformation value of the simulation is given in Table 5.18. 

Table 5.18: Maximum deformation for Case 4 (Developed code simulation) 

Elm Type Mesh 
mm MAT NIP Z max  

(mm) 
Test 

(mm) 
Difference 

(%) 

Tria - ELF 
4 10 Elastic Plastic 4 61.59 48.5 27.00 
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5.3.5 Case 5 

Details of the second experimental configuration are presented in Section 5.2.5. 

Maximum deformation value of the simulation is given in Table 5.19. 

Table 5.19: Maximum deformation for Case 5 (Developed code simulation) 

Elm Type Mesh 
mm MAT NIP Z max  

(mm) 
Test 

(mm) 
Difference 

(%) 

Tria - ELF 
4 10 Elastic Plastic 4 168.37 165.0 2.04 

5.3.6 Case 6 

Details of the second experimental configuration are presented in Section 5.2.6. 

Maximum deformation value of the simulation is given in Table 5.20. 

Table 5.20: Maximum deformation for Case 6 (Developed code simulation) 

Elm Type Mesh 
mm MAT NIP Z max  

(mm) 
Test 

(mm) 
Difference 

(%) 

Tria - ELF 
4 10 Elastic Plastic 4 84.20 74.5 13.02 

5.4 Comparison of Results 

In this section, overall results of the finite element simulations and previous 

experimental data are compared. 

5.4.1 Case 1 

Finite element simulation results are compared with the experimental data for 

the first experimental case as follows:  
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Table 5.21: Comparison of maximum deformation results for Case 1   

Code Elm Type Mesh 
(mm) MAT NIP Z max  

(mm) 

Test 
(mm) 

Difference 
(%) 

Developed 
Code 

Tria 5 Elastic Plastic 4 58.34 

54.0 

8.04 
Tria 10 Elastic Plastic 4 58.35 8.05 
Tria 20 Elastic Plastic 4 58.20 7.78 
Tria 10 Elastic Plastic 1 54.00 0.00 
Tria 10 Elastic Plastic 2 61.29 13.50 
Tria 10 Elastic Plastic 3 56.00 3.70 
Tria 10 Elastic Plastic 5 58.51 8.35 

Ls-Dyna 

Quad 10 Elastic Plastic 5 58.41 

54.0 

8.17 
Quad 10 Johnson Cook 5 56.98 5.52 
Quad 10 Elastic Plastic 1 54.00 0.00 
Quad 10 Elastic Plastic 2 61.15 13.24 
Quad 10 Elastic Plastic 3 55.98 3.66 
Quad 10 Elastic Plastic 4 58.31 7.98 
Quad 10 Elastic Plastic 10 58.09 7.56 
Quad 5 Elastic Plastic 10 58.17 7.72 
Quad 5 Elastic Plastic 4 58.41 8.17 
Tria 10 Elastic Plastic 4 58.06 7.52 
Tria 5 Elastic Plastic 4 58.26 7.89 
Tria 10 Johnson Cook 4 56.92 5.41 
Tria 10 Cowper Symons 4 42.28 21.70 
Tria 10 Cowper Symons 5 56.67 4.94 
Tria 10 Elastic Plastic 1 56.04 3.78 
Tria 10 Elastic Plastic 2 60.90 12.78 
Tria 10 Elastic Plastic 3 55.80 3.33 
Tria 10 Elastic Plastic 4 58.06 7.52 
Tria 10 Elastic Plastic 5 58.20 7.78 
Tria 10 Elastic Plastic 6 57.23 5.98 

Tria - ELF 3 10 Elastic Plastic 4 66.00 22.23 
Tria - ELF 3 20 Elastic Plastic 4 57.84 7.11 
Tria - ELF 4 5 Elastic Plastic 4 58.34 8.03 
Tria - ELF 4 10 Elastic Plastic 4 58.30 7.97 
Tria - ELF 4 20 Elastic Plastic 4 58.11 7.61 
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After the comparison of overall results for the first experimental configuration, it 

is decided to use 10 mm triangular elements with 4th element formulation option 

for Ls-Dyna and 10 mm elements for the developed code simulations.  Since 

finite element simulations with both Ls-Dyna and the developed code are 

validated for the first experimental case, results of the two programs can be 

compared directly. For this purpose, five different points are taken with 100 mm 

interval from the centerline of the plate. Comparison of maximum deformation, 

Von Mises stress and effective plastic strain is given below. When the results of 

two programs are investigated it can be concluded that they gave very close 

results. 

Table 5.22: Comparison of maximum deformation results for Case 1   

 
R(0) R(100) R(200) R(300) R(400) 

 
Displacement (mm) 

Ls-Dyna 58.30 47.93 36.59 25.11 11.16 

Developed Code 58.35 47.94 36.67 25.22 11.25 

Difference (mm) 0.05 0.01 0.08 0.11 0.09 

 
Equivalent Von Mises Stress (MPa) 

Ls-Dyna 1146.63 1018.64 976.96 341.25 333.38 

Developed Code 1217.86 1023.44 1000.09 348.87 339.53 

Difference (MPa) 71.23 4.80 23.13 7.62 6.15 

 Effective Plastic Strain (%) 

Ls-Dyna 12.61 3.13 1.41 0.91 0.01 

Developed Code 13.28 3.33 1.52 0.94 0.01 

Difference 0.67 0.20 0.11 0.03 0.00 
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5.4.2 Case 2 

Results of the finite element simulations are compared with the experimental 

data in the following table: 

Table 5.23: Comparison of maximum deformation results for Case 2   

Program Elm Type Mesh 
(mm) MAT NIP Z max  

(mm) 
Test 

(mm) 
Difference 

(%) 

Ls-Dyna Tria - ELF 4 

10 Elastic Plastic 4 

29.07 

26.0 

11.81 

Developed 
Code Tria 29.10 11.92 

 

Five different points are taken with 50 mm interval from the centerline of the 

plate. Comparison of maximum deformation, Von Mises stress and effective 

plastic strain is given below.  

Table 5.24: Comparison of simulation results at different locations for Case 2 

 
R(0) R(50) R(100) R(150) R(200) 

 
Displacement (mm) 

Ls-Dyna 29.07 23.90 18.25 12.53 5.57 

Developed Code 29.10 23.90 18.30 12.59 5.62 

Difference (mm) 0.03 0.00 0.05 0.06 0.05 
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 Equivalent Von Mises Stress (MPa) 

Ls-Dyna 1217.14 1045.58 1022.83 1018.49 1018.30 

Developed Code 1208.28 1042.34 998.69 975.25 937.71 

Difference (MPa) 8.86 3.24 24.14 43.24 80.59 

 Effective Plastic Strain (%) 

Ls-Dyna 13.23 3.31 1.50 0.94 0.94 

Developed Code 13.13 3.30 1.47 0.90 0.86 

Difference 0.10 0.01 0.03 0.04 0.08 

 

5.4.3 Case 3 

Results of the finite element simulations are compared with the experimental 

data in the following table: 

Table 5.25: Comparison of maximum deformation results for Case 3   

Program Elm Type Mesh (mm) MAT NIP Z max  
(mm) Test (mm) Difference (%) 

Ls-Dyna Tria - ELF 4 
10 Elastic Plastic 4 

131.67 
107.0 

23.06 

Developed Code Tria 131.69 23.07 

 

Five different points are taken with 100 mm interval from the centerline of the 

plate. Comparison of maximum deformation, Von Mises stress and effective 

plastic strain is given below.  
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Table 5.26: Comparison of simulation results at different locations for Case 3 

 
R(0) R(100) R(200) R(300) R(400) 

 
Displacement (mm) 

Ls-Dyna 131.67 117.37 81.45 41.16 12.52 

Developed Code 131.69 117.40 81.50 41.19 12.52 

Difference (mm) 0.02 0.03 0.05 0.03 0.00 

 
Equivalent Von Mises Stress (MPa) 

Ls-Dyna 1402.40 1193.18 560.48 446.89 350.37 

Developed Code 1400.27 1051.28 467.47 397.72 284.50 

Difference (MPa) 2.13 141.90 93.01 49.17 65.87 

 Effective Plastic Strain (%) 

Ls-Dyna 20.88 17.01 10.01 2.60 0.00 

Developed Code 20.85 16.97 9.95 2.58 0.00 

Difference 0.03 0.04 0.06 0.02 0.00 

 

5.4.4 Case 4 

Results of the finite element simulations are compared with the experimental 

data in the following table: 

Table 5.27: Comparison of maximum deformation results for Case 4   

Program Elm Type Mesh 
(mm) MAT NIP Z max  

(mm) 
Test 

(mm) 
Difference 

(%) 

Ls-Dyna Tria - ELF 4 

10 Elastic Plastic 4 

61.57 

48.5 

26.95 

Developed 
Code Tria 61.59 27.00 
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Five different points are taken with 50 mm interval from the centerline of the 

plate. Comparison of maximum deformation, Von Mises stress and effective 

plastic strain is given below.  

Table 5.28: Comparison of simulation results at different locations for Case 4 

 
R(0) R(50) R(100) R(150) R(200) 

 
Displacement (mm) 

Ls-Dyna 61.57 53.07 32.62 13.23 3.08 

Developed Code 61.59 53.08 32.62 13.29 3.07 

Difference (mm) 0.02 0.01 0.00 0.06 0.01 

 
Equivalent Von Mises Stress (MPa) 

Ls-Dyna 1399.11 1163.59 446.91 337.19 258.48 

Developed Code 1394.57 1161.40 446.91 321.90 250.09 

Difference (MPa) 4.54 2.19 0.00 15.29 8.39 

 Effective Plastic Strain (%) 

Ls-Dyna 19.77 17.02 8.56 0.62 0.00 

Developed Code 19.70 16.98 8.56 0.59 0.00 

Difference 0.07 0.04 0.00 0.03 0.00 

 

5.4.5 Case 5 

Results of the finite element simulations are compared with the experimental 

data in the following table: 
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Table 5.29: Comparison of maximum deformation results for Case 5   

Program Elm Type Mesh 
(mm) MAT NIP Z max  

(mm) 
Test 

(mm) 
Difference 

(%) 

Ls-Dyna Tria - ELF 4 

10 Elastic Plastic 4 

168.42 

165.0 

2.07 

Developed 
Code Tria 168.37 2.04 

 

Five different points are taken with 50 mm interval from the centerline of the 

plate. Comparison of maximum deformation, Von Mises stress and effective 

plastic strain is given below.  

Table 5.30: Comparison of simulation results at different locations for Case 5 

 
R(0) R(100) R(200) R(300) R(400) 

 
Displacement (mm) 

Ls-Dyna 168.42 152.13 116.31 81.41 41.17 

Developed Code 168.37 152.10 116.30 81.46 41.23 

Difference (mm) 0.05 0.03 0.01 0.05 0.06 

 
Equivalent Von Mises Stress (MPa) 

Ls-Dyna 1446.12 1396.48 1286.92 1169.33 1123.47 

Developed Code 1441.83 1284.76 1261.18 1134.25 1067.30 

Difference (MPa) 4.29 111.72 25.74 35.08 56.17 

 Effective Plastic Strain (%) 

Ls-Dyna 18.09 7.78 0.40 0.00 0.00 

Developed Code 17.03 7.39 0.38 0.00 0.00 

Difference 1.06 0.39 0.02 0.00 0.00 
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5.4.6 Case 6 

Results of the finite element simulations are compared with the experimental 

data in the following table: 

Table 5.31: Comparison of maximum deformation results for Case 6   

Program Elm Type Mesh 
(mm) MAT NIP Z max  

(mm) 
Test 

(mm) 
Difference 

(%) 

Ls-Dyna Tria - ELF 4 

10 Elastic Plastic 4 

84.22 

74.5 

13.05 

Developed 
Code Tria 84.20 13.02 

 

Five different points are taken with 50 mm interval from the centerline of the 

plate. Comparison of maximum deformation, Von Mises stress and effective 

plastic strain is given below.  

Table 5.32: Comparison of simulation results at different locations for Case 6 

 
R(0) R(50) R(100) R(150) R(200) 

 
Displacement (mm) 

Ls-Dyna 84.22 76.08 58.17 40.71 20.59 

Developed Code 84.20 76.06 58.16 40.74 20.62 

Difference (mm) 0.02 0.02 0.01 0.03 0.03 

 
Equivalent Von Mises Stress (MPa) 

Ls-Dyna 1446.22 1396.35 1287.02 1169.35 1123.53 

Developed Code 1442.44 1284.76 1261.18 1134.25 1067.30 

Difference (MPa) 3.78 111.59 25.84 35.10 56.23 
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 Effective Plastic Strain (%) 

Ls-Dyna 24.46 21.42 15.92 9.53 6.72 

Developed Code 24.39 21.37 15.91 9.47 6.61 

Difference 0.07 0.05 0.01 0.06 0.11 
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      CHAPTER 6 

 

6. CONCLUSION 

 

 

 

In this study, a nonlinear explicit finite element program is developed for the 

purpose of investigating large deformation elastic plastic response of shell 

structures under impulsive loading. Results of the developed code are compared 

with Ls-Dyna program simulations and previous experimental study taken from 

literature. As an outcome of this study following results are concluded: 

1. Parametric study showed that bilinear elastic plastic model can capture 

the deformation behavior accurately.  

2. Since the developed code uses predefined blast pressure history as input, 

numerical errors of calculated pressure history have influence on the 

developed code results.  

3. Material properties may be different between the one used in the 

experiments and the one used in the simulations which can cause 

deviation from the test results. In addition, there may be errors in the 

experiment which stem from measurement errors which are frequently 

encountered in the high intensity loading conditions. 
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4. When the outcomes of parameter study for element types are 

investigated it is concluded that different types of elements including 

quadrilateral, default triangular (collapsed quadrilateral), triangular with 

3rd formulation and triangular with 4th formulation gave similar results. !!! 

5. As a result of parameter study, it can be stated that 10 mm element size 

is sufficient for accuracy without high computational cost for this 

particular problem. 

6. It is observed that 4 integration points through the thickness is sufficient. 

7. The average difference between simulations and experimental data is 

about %10. Finite element simulations over predicted the deformations 

for the six cases. 

8. When the results of the developed code are compared with the 

experimental data it is concluded that the simulation results are in good 

agreement with the test results. 

For the future study; quadrilateral elements can be implemented in the 

developed program for more flexibility, more sophisticated plasticity formulation 

can be implemented, material models considering strain rate effects can be 

added, blast loading routine can be directly employed to the program to 

eliminate the dependence on Ls-Dyna software and element failure and erosion 

can be added. 
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APPENDIX A 

 

 GRAPHICAL USER INTERFACE OF THE DEVELOPED CODE 

 

 

Graphical user interface contains four major parts (Figure A1): 

- Input parameters and solution controls 

- Mesh display screen 

- Uniform pressure application interface (Figure A2) 

- Output messages screen  

 

Figure A1: Main window of the developed code 
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Figure A2: Pressure application interface 
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APPENDIX B 

 

 

 FLOWCHART OF THE DEVELOPED CODE 
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Figure B1: Flowchart of the developed code 
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APPENDIX C 

 

 INPUT FILE FORMAT OF THE DEVELOPED CODE 
 

 

 

  

Figure C1: Nodal definitions 

 

Figure C2: Definition of element connectivity 
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Figure C3: Pressure data taken as time  history from Ls-Dyna   
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APPENDIX D 

 

 SAMPLE LS-DYNA KEYWORD FILE 

 

 

 

Sample Ls-Dyna input file for second experimental configuration is given below. 

Nodal data, connectivity and set definitions are removed for simplicity. 

 

  

*KEYWORD   
*TITLE 
ELFORM 4 mesh 10 mm                                                           
*CONTROL_TERMINATION 
$#  endtim    endcyc     dtmin    endeng    endmas 
 2000.0000         0     0.000     0.000     0.000 
*DATABASE_BINARY_BLSTFOR 
$#      dt      lcdt      beam     npltc    psetid 
  1.000000         0         0         0         0 
*DATABASE_BINARY_D3PLOT 
$#      dt      lcdt      beam     npltc    psetid 
 10000.000         0         0         0         0 
$#   ioopt 
         0 
*DATABASE_HISTORY_NODE 
*BOUNDARY_SPC_NODE 
$#     nid       cid      dofx      dofy      dofz     dofrx     
dofry     dofrz 
 
*LOAD_BLAST_ENHANCED 
         1 468.00000     0.000     0.000 100.00000     0.000         
4         2 
     0.000     0.000     0.000     0.000         01.0000E+20 
*LOAD_BLAST_SEGMENT_SET 
$#     bid      ssid    alepid 
         1         1         0 
*PART 
$#     pid     secid       mid     eosid      hgid      grav    
adpopt      tmid 
         1         1         2         0         0         0          
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*SECTION_SHELL 
$#   secid    elform      shrf       nip     propt   qr/irid     
icomp     setyp 
         1         4     0.000         4         1         0         
0         1 
$#      t1        t2        t3        t4      nloc     marea      
idof    edgset 
  1.000000  1.000000  1.000000  1.000000     0.000     0.000     
0.000         0 
 
*BOUNDARY_SPC_NODE 
$#     nid       cid      dofx      dofy      dofz     dofrx     
dofry     dofrz 
 
*LOAD_BLAST_ENHANCED 
$#     bid         m       xbo       ybo       zbo       tbo      
unit     blast 
         1 468.00000     0.000     0.000 100.00000     0.000         
4         2 
$#     cfm       cfl       cft       cfp     nidbo     death 
     0.000     0.000     0.000     0.000         01.0000E+20 
*LOAD_BLAST_SEGMENT_SET 
$#     bid      ssid    alepid 
         1         1         0 
*PART 
$# title 
Part number 1                                                                    
$#     pid     secid       mid     eosid      hgid      grav    
adpopt      tmid 
         1         1         2         0         0         0         
0         0 
*SECTION_SHELL 
$#   secid    elform      shrf       nip     propt   qr/irid     
icomp     setyp 
         1         4     0.000         4         1         0         
0         1 
$#      t1        t2        t3        t4      nloc     marea      
idof    edgset 
  1.000000  1.000000  1.000000  1.000000     0.000     0.000     
0.000         0 
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1-  

 

 

 

 

 

 

 

 

 

 

 

2- Last page 

 

*MAT_PLASTIC_KINEMATIC_TITLE 
RHA_bilinear 
$#     mid        ro         e        pr      sigy      etan      
beta 
         2  7.800000  2.100000  0.300000  0.010000  0.020000     
0.000 
$#     src       srp        fs        vp 
     0.000     0.000     0.000     0.000 
*DEFINE_CURVE 
$#   lcid     sidr      sfa      sfo     offa     offo    
dattyp 
 
*SET_SEGMENT 
$#     sid       da1       da2       da3       da4 
         1     0.000     0.000     0.000     0.000 
$#     n1       n2       n3       n4       a1       a2       
a3       a4 
*ELEMENT_SHELL 
*NODE 
*END 
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