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Distribution of electrical potentials over the surface of the heart, i.e., the epicardial potentials, is a 

valuable tool to understand whether there is a defect in the heart. However, it is not easy to detect 

these potentials non-invasively. Instead, body surface potentials, which occur as a result of the 

electrical activity of the heart, are measured to diagnose heart defects. However the source 

electrical signals loose some critical details because of the attenuation and smoothing they 

encounter due to body tissues such as lungs, fat, etc. Direct measurement of these epicardial 

potentials requires invasive procedures. Alternatively, one can reconstruct the epicardial 

potentials non-invasively from the body surface potentials; this method is called the inverse 

problem of electrocardiography (ECG).  The goal of this study is to solve the inverse problem of 

ECG using several well-known regularization methods and using their combinations with genetic 

algorihm (GA) and finally compare the performances of these methods. The results show that GA 

can be combined with the conventional regularization methods and their combination improves 

the regularization of ill-posed inverse ECG problem.  
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In several studies, the results show that their combination provide a good scheme for solving the 

ECG inverse problem and the performance of regularization methods can be improved further. 

We also suggest that GA can be initiated succesfully with a training set of epicardial potentials, 

and with the optimum, over- and under-regularized Tikhonov regularization solutions. 

 
Keywords: Electrocardiography, Inverse Problems, Inverse Problem of Electrocardiography, 

Regularization Methods, Genetic Algorithm 
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TERS ELEKTROKARDĐYOGRAFĐK PROBLEMLERĐN ÇÖZÜMÜ ĐÇĐN 
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GENETĐK ALGORĐTMALARIN BĐRLEŞTĐRĐLMESĐ 
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Kalp üzerindeki elektriksel potansiyellerinin (epikard potansiyelleri) dağılımı, kalpte bir sorun 

olup olmadığını anlamakta kullanılan değerli bir araçtır. Fakat bu potansiyelleri invaziv girişim 

yapmadan ölçmek kolay değildir. Bunun yerine kalpteki elektriksel aktivitelere bağlı olarak 

oluşan vücut yüzeyi potansiyelleri ölçülerek, kalp hastalıkları tespit etmekte kullanılır. Fakat 

kalpteki elektriksel sinyaller vücut yüzeyine ulaşana kadar, kalp etrafındaki dokular ya da 

organların, örneğin akciğer, yağ vs., sinyalleri yumuşatması yada zayıflatmasından dolayı bazı 

önemli detaylarını kaybederler. Kalp potansiyellerini doğrudan ölçmek için ise invaziv bir 

yöntem kullanılması gerekir. Alternatif olarak, vücut yüzeyinden ölçülen potansiyellerden kalp 

potansiyelleri invaziv olmayan bir şekilde kestirilebilirler, bu yöntem ters elektrokardiografi 

(EKG) olarak adlandırılır. Bu tezde, ters EKG probleminin bazı iyi bilinen düzenlileştirme 

yöntemleriyle ve bu yöntemlerin genetik algoritma ile birleştirilmesiyle çözülmesi, sonra da 

kullanılan çözüm yöntemlerinin başarımlarının karşılaştırılması amaçlanmıştır. Alınan sonuçlar 

genetik algoritmanın düzenlileştirme yöntemleri ile beraber ters problem çözümlerinde 

kullanılabileceğini ve uygulanan birleştirme yönteminin düzenlileştirmeyi iyileştirdiğini 

göstermiştir. Yapılan bazı çalışmalarda iki yöntemin birleştirilmesi ile genetik algoritmaların 

kötü konumlanmış EKG problemlerinin çözümünde düzenlileştirme yöntemlerine önemli katkısı 
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olacağı önerilmektedir. Biz bu çalışmalara ek olarak kalp potansiyel eğitim kümelerinin ve 

Tikhonov düzenlileştirmesi yönteminde optimum, fazla ve az düzenlileştirme kullanarak elde 

edilen çözümlerin GA için başlangıç popülasyonu olarak kullanılabileceğini ve böylece daha 

doğru çözümlerin elde edilebileceğini önermekteyiz. 

 

Anahtar Kelimeler: Elektrokardiografi, Ters Problemler, Elektrokardiografi Ters Problemi, 

Düzenlileştirme Metodları, Genetik Algoritma 
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CHAPTER 1 
 

 
 

INTRODUCTION 
 

 
 
1.1 Motivation 

Heart diseases are the main cause of death all over the world in modern society. For example, 

heart diseases accounted for approximately 30% of all deaths around the world in the year 2007 

[1]. Therefore it is very important to diagnose the heart related illnesses successfully. Such 

illnesses can be diagnosed from epicardial potential distributions. The electrocardiogram was 

recorded firstly by A. Waller [2] in 1887. After the appearance of the electrocardiogram, the 

researchers have been trying to understand the electrical activity of the heart by studying 

recorded potentials on the body surface by placing electrodes on the torso surface. It is very 

important to improve the understanding of the functioning of the heart, which allows a clinician 

to identify the defects occuring in the heart and therapy for it. Also, it reduces the time and costs 

to diagnose the defects. By locating electrodes on the body surface, the occurent potential 

difference between the electrodes gives an indication of the existance of electrical activities in the 

heart and these electrical activities can be displayed as an electrocardiogram using special 

instruments. The electrical potentials mesured from body surface vary continuously throughout 

each cardiac cycle. However, the tissue between the heart and the body surface attenuates and 

smooths the electrical potentials of the heart, and some important details may be lost in the body 

surface potential measurements. The aim of the inverse problem of Electrocardiography (ECG) is 

to reconstruct the electrical activity of the heart from body surface potentials in a non-invasive 

way, and hence capture the details lost in the body surface measurements. Inverse problems 

generally consider the reconstruction of the cause, i.e., the set of parameters, using the effects, 

i.e., the measurements as opposed to forward problems that deal with the prediction of these 

effects for a known cause.  

 

In this study we focused on the inverse problem of ECG with the epicardial potential 

distributions as the cardiac source models. Solving this kind of problem is difficult because of its 

ill-posed nature. One can reduce the effects of this ill-posedness by applying regularization on the 

solution; i.e., by imposing constraints on the solution.  
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The main aim of this study is to solve the inverse ECG problem by using some of the well-known 

regularization methods, and to combine these regularized solutions with genetic algorithm (GA). 

The results of conventional regularization methods (without GA) are compared among 

themselves and with the results that are obtained by combining these methods with the GA to see 

the contributions of GA to the regularization of the ill-posed inverse ECG problem. 

 
In literature, several regularization methods were proposed for solving inverse ECG problems 

such as Tikhonov Regularization, Truncated Singular Value Decomposition (TSVD), Truncated 

Generalized Singular Value Decomposition (TGSVD), Least Squares QR (LSQR), Bayesian 

Maximum a Posteriori (MAP) method, etc. Recently, several studies have been done to solve the 

inverse ECG problem by combining regularization methods and GA. In these studies, the results 

of the regularization methods were used as the initial population (IP) for the GA. In order to run 

the fitness function of the GA, they compared the iteration results with the known (exact) 

epicardial potentials. In this study, we solved the inverse problem of ECG with several 

regularization methods which were proposed in literature and we extended the combination of 

regularization methods with the GA. The contributions of thesis can be listed as follows: 

 

• We used the combination of the GA with two other regularization methods (TSVD and 

Bayesian MAP Estimation) different from literature studies, 

• We used training set of epicardial potentials as the IP for the GA, 

• We employed the GA to the results of regularization methods which chose regularization 

parameters in a range of optimum, under- and over-regularized value region, 

• We implemented a graphical user interface to run different regularization methods and 

also run the GA for different parameters (see Appendix A, C). 

 
1.2 Scope of the Thesis 

This thesis is composed of seven main chapters and an Appendix. Brief contents are given below: 

Chapter 1 Introduction of the thesis. The objectives and outlines of the study is given in  

                this chapter. 

Chapter 2 The background information about ECG and the heart. The previous works on  

                 the ECG literature. 

Chapter 3 Theory, methods and approaches used in the study. 

Chapter 4 Contributions of GA to regularize ill-posed inverse ECG problem and  

                 combination of GA with conventional regularization methods. 

Chapter 5 Simulation results for comparison of the regularization methods and GA  

                results. The results are discussed at the end of this chapter. 

Chapter 6 A brief summary, and conclusions.  
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CHAPTER 2 
 

 

 

MEDICAL BACKGROUND 
 
 

 
There are many studies in literature about the heart diseases and how to get information about 

them without invasive operations to the heart. Also there are lots of information about the heart, 

its functioning, and its contributions to the body cardiovascular system. In this chapter we 

describe the heart anatomy and the elecrical activities occuring in the heart. 

 
2.1 The Heart Anatomy 

The human heart, center of cardiovascular system, is located in the chest between the lungs 

(Figure 2.1). Its weight is typically between 250 and 300 g [3].  

 

 

 
 

  Figure 2.1 The position of heart in human torso [3] 

 

 

The walls of the heart consist of cardiac muscle tissue which is called the myocardium. The 

function of the heart is to pump the blood through the body, thus enabling the transportation of 



 4 

nutrient materials as well as oxygen to the other organs of the body. The blood circulation system 

consists of two main parts.  

 

 

 
 

  Figure 2.2 The Heart Anatomy [3] 
 

 

The pulmonary circulation carries the blood, which is poor with oxygen, to the lungs to become 

rich it with oxygen. The systemic circulation is responsible for the transportation of blood 

saturated with oxygen throughout the body. In Figure 2.2, the heart anatomy is shown, which is a 

part of the circulation system [4]. There are four chambers in the heart whose walls are thick and 

muscular. Left and right ventricles are the two chambers of the heart which are located in the 

bottom part of the heart and their functions are to pump blood out of the heart. The remaning 

chambers located in the upper part of the heart are called the right and left atria. The functions of 

the atrias are to receive the blood into the heart. The left ventricle has a smaller volume than the 

right one [3].  
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The oxygen-poor blood is pumped by the right ventricle through the valve into the left and right 

arteries. These arteries carry the blood to the lungs to become it rich with oxygen. Then the blood 

is passing through the left atrium and reaches the left ventricle. The left ventricle has a relatively 

thick wall which produces a high pressure to pump the arterial blood which is rich with oxygen 

throughout the body. The atria are separated from the ventricles with the mitral and tricuspid 

valves, which prevent the flowing of the blood inversely. The pupillary muscles support these 

valves. The myocardium (ventricular) is supplied with blood by the coronary vessels. There is an 

oxygen deficiency if there is a defect in the myocardial tissue. It causes a blockage of the blood 

inflow and myocardial disease (infarction) [5]. 

 

2.2 Electrophysiology of the Heart 

A small pulse of electric current initiates a heart beat. This impulse (electricity) spreads in the 

different tissues of the heart quickly and causes a contraction in the heart muscle. The heart 

muscle produces and transfers the electrical excitation as well as those reacting on the excitation 

with contraction [6]. The electrical activaties in the heart are normally generated in the sinoatrial 

node (SA-node), afterwards the signals pass through both atria to the atrio-ventricular node (AV-

node).  

 

 

 
 

  Figure 2.3 Electrical impulse flowing in the heart [6] 
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The AV-node behaves an alternative to SA-node if it does not work properly or there is a 

blockage to its impulses. Then, the excitation is carried to the ventricular myocardium by the 

cardiovascular conduction system. The flow of electrical impulses throughout the heart is 

illustrated in Figure 2.3. The appearing of the excitation in the heart can be carried throughout the 

myocardium causing the contraction of the heart. The electrophysiology of myocardial cells is 

explained by their transmembrane voltage (TMV) [47], which means that the potential difference 

between the intra- and extra-cellular heart spaces and it can be defined as follows: 

eimV Φ−Φ=  (2.1) 

where mV  is the TMV and iΦ  and eΦ  are symbolized for the intra- and extra-celluar potentials, 

respectively. The TMV changes between the -80 mV (rest) and +20 mV (activation) (see more 

details in Appendix B for all information in this section).  

 

 

 
 

Figure 2.4 The ECG waveform [6] 
 

 

The activation propagation throughout the ventricles corresponds to the QRS-complex1 (Figure 

2.4) of ECG. After the depolarization follows the plateau phase, which means that the TMV stays 

more or less constant. During this phase the mechanical contraction of the heart takes place. 

Afterwards the repolarization phase comes, during which the TMV changes back to −80 mV. 

This phase is reproduced by the T-wave of ECG (Figure 2.4). After the electrical relaxation 

follows also the mechanical relaxation of the heart. In Figure 2.5, the membrane potential 

changes are shown phase by phase. The change in TMV after the activation of excitable cell is 

called action potential. Different tissues of the heart have different action potential curves. There 

                                                
1 The QRS complex is a recording of a single heartbeat on the ECG that corresponds to the 
depolarization of the right and left ventricles. 
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is a potential distribution measured from the body surface due to the action potentials. The 

summation of these potentials can be measured by electrodes from body surface, which can be 

shown in a graphical result called electrocardiography. In this graphical result, there are different 

waves (P,Q,R,S,T) which show the heart depolarization and repolarization phases. A short 

summary on the forms of action potentials as well as the sequence of cardiac activation is shown 

in Figure 2.6. 

 
 
 

 
 

Figure 2.5 Membrane potential changes in heart muscle (polarization-repolarization) [7] 
 

 

 
 
Figure 2.6 The source of ECG wave (summation of action potentials from different tissues of the 

heart) [7]. 
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CHAPTER 3 
 

 
 

FORWARD AND INVERSE PROBLEM OF 
ELECTROCARDIOGRAPHY  

 

 

 
The problem of the ECG can be broken into two distinct problems: the forward problem [8, 9, 

10] and the inverse problem [9, 10]. The main interest of inverse and the forward problems of 

ECG is to explain the connection between electrical activities occuring in the heart and the 

corresponding body surface potentials. The forward and the inverse ECG problems are illustrated 

in Figure 3.1. 

 

 

 

 
Figure 3.1 Forward and Inverse Problem of the ECG 

 

 

A forward problem can be defined such kind of problem which seeks to determine the resultant 

field that is produced from some source. Thus, the forward problem of ECG is used for obtaining 

the potentials on the body surface that result from a given epicardial source.   

 

Torso 
Parameters 
(geometry, 

conductivity, 
etc.) 

FORWARD  
SOLVER 

REGULARIZATION 

FORWARD ECG PROBLEM 

INVERSE ECG PROBLEM 

Epicardial 
Potentials (ΦE) 

Torso 
Potentials (ΦT) 

Transfer Matrix A 

Transfer Matrix  
A 

ΦT = AΦE 

ECG 
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The inverse problem of the ECG is a kind of ill-posed problems. Given the resultant body surface 

potential distribution, the inverse ECG is used for obtaining the epicardial potential distribution. 

The epicardial potential distribution is obtained non-ivasively in inverse ECG problem. However, 

due to the tissues in the throax, it is diffucult to obtain the epicardial potentials. Since, these 

tissues cause smoothing effects of the source cardiac potential until reaching the torso surface. 

This problem involves lessening the smoothing of the tissues between the heart and torso surface. 

The difficulty in the problem arises due to its non-uniqueness and ill-posed nature. For the 

inverse problems, this means that additional constraints have to be introduced into the 

formulation of the inverse ECG problem in order to reduce the instability of the solution. This 

instability can be got rid of using a routine, which is called regularization, means that introducing 

a constraint to the solution to reduce sensitivity contrary to perturbation.  The inverse problem is 

the more useful of the two ECG problems to diagnose the cardiac conditions due to the non-

invasive recordings of the electrical activities in practice. It is cheaper and easier to measure 

epicardial potentials than to measure the potentials invasively. 

 

3.1 Formulation of the Forward Problem 

The main aim of the forward problem of the ECG is to compute the body surface potentials (body 

surface measurements (BSPMs)) [12] (see Appendix B) resultant from a given epicardial 

potential distribution. The main results of the forward problem are: 

 

• Investigation of the influence of electrophysiological properties (such that geometry, 

conductivity, etc.) of different tissues on the resulting ECG, 

• Optimization of the ECG measurements (such that electrode locations, etc.), 

• Computation of the transfer matrix using forward solver (Figure 3.1) for the inverse 

problem of ECG. 

 

Due to the complicated geometry of the human throax, the direct computation is too diffucult to 

perform. In order to eliminate this diffuculty, two possible choices can be chosen. First, the 

geometry can be assumed as a primitive shape (e.g. eccentric spheres model [13]). Discretization 

of the geometry into homogenous geometry is the other approach to elimate the diffuculty,  the 

forward ECG problem solution methods are employed to solve the problem. The mathematical 

relation between the epicardial potential distribution and the body surface potential distribution 

can be defined as follows: 

,TEA Φ=Φ  (3.1) 

where A  Є mxn is the matrix describing the relationship between the epicardial potentials and 

body surface potentials, with m  being the number of body surface electrodes and n representing 
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the number of epicardial leads; EΦ Є nxp is the matrix of unknown epicardial potentials and 

TΦ Є mxp is the matrix of body surface potentials.  

 
3.2 Inverse Problem 

Inverse problems generally consider the reconstruction of the cause by its effects, as opposed to 

forward problems dealing with the prediction of effects for a known cause. The solution methods 

for this class of problems are used in many fields of science such as geophysics, optics, image 

processing, astronomy, etc.. The most common feature of many inverse problems is their ill-

posedness, which means that there is no unique solution for this kind of problem. This means that 

additional constraints have to be used for the formulation of the inverse problem in order to 

reduce the instability of the inverse problems. This instability can be removed using a procedure, 

called regularization. Currently, there is a wide usage of the inverse problem to determine the 

epicardial potential distribution from measured body surface potentials inversely. This problem is 

called inverse problem of ECG. Posing the problem in terms of reconstructed epicardial 

potentials, there is a unique determination of the problem, however ill-posedness still exists for 

the problem. It means that the existance of any perturbation (always exists practically), will be 

amplified in the solution in an out of control and unknown way. Regularization approaches to the 

solution of the inverse problem of ECG appeared in the late 60s [14, 15]. Then, in order to find 

find certain and stable inverse solutions, a particular effort has been shown.  At first, much of this 

effort was spent on researching the effects of different regularization constraints and the 

regularization parameter choice. It has now been realized that the importance of imposing some 

form of temporal constraint on the solutions was understood. Since, there are poor performances 

of algorithms which only regularize in the spatial domain and also the ability to make use of the 

temporal correlation of solutions at adjacent time steps. Recently, carefully prepared 

regularization techniques which combine both spatial and temporal constraints on the solutions 

have been proposed. In this thesis, we ignore the spatial and temporal constraints and solve the 

inverse problem of ECG at every time instant independently. It is called column sequential 

solution method. One of the main problems with a regularization technique is that there is no 

knowledge the regularization degree to apply for solving inverse ECG problem. With a known 

solution (exact epicardial potential distribution) , it is possible to obtain an optimal regularization 

parameter which will optimally reconstruct the desired solution. However, exact epicardial 

potential distribution is not known in practice, so many of the regularization techniques are based 

on mathematical approaches for ill-posed problems to find regularization parameters. 
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3.2.1 Formulation of the Inverse Problem  

The mathematical relation viewpoint between the epicardial potentials and the body surface 

potentials was given in (3.1). In the equation, due the ill-conditioned nature of A  matrix, small 

errors during measurement in the BSPMs or existance of geometrical errors in the volume 

conductor model used in the solution of inverse ECG problem cause large perturbations in the 

estimation of epicardial distrubitions [16]. This makes it impossible to employ a convential least 

squares error inverse, defined by the minimization of the residual norm as follows: 

,||||min 2TEA Φ−Φ  (3.2) 

where the symbol 2||.||  is the representation of the Euclidian norm [17]. If A  matrix is full-rank, 

then the solution for 3.1 can be given as follows; 

,)( 1
T

TT

E AAA Φ=Φ −  (3.3) 

However, the transfer matrix A  is ill-conditioned, therefore the regularization techniques should 

be used to solve the ill-posed ECG problems in order to lessen the effects of the inevitable 

perturbation by introducing constraints on the solution. 

 

3.3 Transfer Matrix 

A  (in equation 3.1) is the transfer matrix between heart and torso that depends on anatomic and 

electrical properties of heart-torso geometry. The computation of the transfer matrix A  is an 

important and rather time-consuming part of the inverse problem. This matrix contains the 

information about the conductivity and geometry of the volume conductor. Depending on the 

choice of equivalent cardiac sources, there exists different approaches to the computation of this 

matrix. To obtain the transfer matrix A , the well-known Boundary Element Method (BEM) 

[9,10] is used.  

 

3.4 Regularization Methods 

In measured data, the exact body surface potentials, 
EXACTTΦ , are perturbed by measurement 

errors. It can be assumed that  

E
EXACTTT +Φ=Φ , (3.4) 

where E  represents white Gaussian measurement noise. Due to ill-conditioned nature of the 

transfer matrix A , the measurement errors cause an amplification on the solution of epicardial 

potentials, therefore the estimated epicardial potentials will be useless with large errors. So, in 

order to solve the inverse ECG problem, special techniques (such as regularization methods) are 
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required. Regularization methods are divided into two groups such that direct regularization 

methods and iterative regularization methods. Tikhonov, TSVD and TGSVD are examples of 

direct regularization methods, Least Squares QR Method is an example of iterative regularization 

methods. The main diffuculty encountered with the problems, which have ill-posed nature ((3.1), 

(3.2)), is that they are essentially underdetermined due to the particular number of small singular 

values of A . Hence in order to reduce the instability of the problem, it must be incorporated 

additional constraints about the estimated solution and to obtain a useful and stable solution. This 

is the main aim of the regularization. In the following part of this chapter, we give information 

about the regularization methods which are proposed in literature and their usages to solve the 

inverse problem of the ECG. 

 
3.4.1 Singular Value Decomposition 

Some regularization methods, such as Tikhonov Regularization, TSVD and TGSVD, need 

singular value decomposition (SVD) to solve inverse problems, therefore we first give a brief 

summary of SVD before describing the regularization methods. Let us consider the SVD of the 

mxn  transfer matrix A , converting n  (lead number) epicardial potentials to m  (electrode 

number) body surface potentials ( nm > ), defined as follows: 

,
1
∑

=

=Σ=
n

i

T

iii

T
vuVUA σ  

 

(3.5) 

where  mxm

m RuuuU ∈= }...,,{ ,21  and nxn

n
RvvvV ∈= },...,,{ 21 , the colums of U  and V  

are orthonormal eigenvectors of T
AA  and AA

T , respectively, and ),...,( 1 ndiag σσ=Σ  is a 

diagonal matrix containing the eigenvalues of A . The diagonal terms are ordered in a 

descending way as follows:  

,0...... 121 ===>≥≥≥ + nrr σσσσσ  (3.6) 

where )(Arankr = . The iσ  elements are known singular values of A . Using this singular 

value decomposition of A , the least squares error solution given by (3.1) can be written as 

follows: 

,T

T

E UV ΦΣ=Φ +  (3.7) 

where +Σ  is the psuedoinverse of Σ . The psuedoinverse can be defined as follows: 

.)( 1 TT ΣΣΣ=Σ −+  (3.8) 

The matrix +Σ  is an nxm  matrix whose non-diagonal elements are zero and the diagonal 

elements are given by: 
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(3.9) 

The pseudoinverse 
+

A of the matrix A  can be calculated as follows (if A  is full rank matrix): 

,
1)(

1
∑

=

+ =
Arank

i

i

i

T

i vuA
σ

 
(3.10) 

∑
=

+ Φ
=Φ=Φ

)(

1

Arank

i

i

i

TT

iTE vuA
σ

 
(3.11) 
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Figure 3.2: Singular values of the transfer matrix A  

 

 

The singular values ( iσ ) of the transfer matrix are usually in a decreasing order (Figure 3.2). The 

number of zero-crossings of eigenvectors iu and iv  is growing with increasing i  [18, 19]. If 

there is a measurement error, the solution gets unstable. 

 

3.4.2 Truncated Singular Value Decomposition 

Truncated singular value decomposition (TSVD) is a well-known method for solving ill-posed 

inverse problem. In practise, there exists noise E  (geometrical or measurement) on body surface 
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potential distribution and the matrix A  is ill-conditioned, so small singular values of iσ  will 

magnify the value of the corresponding coefficients EuT

i  in the last summation. 

,
1
∑

=

=Σ=
n

i

T

iii

T
vuVUA σ  

(3.12) 

∑ ∑ ∑ ∑
= = = =

+
Φ

=
+Φ

=
Φ

=Φ
n

i

n

i

n

i

n

i

i

i

T

i

i

i

T

T

i

i

i

T

T

i

i

i

T

T

i

E v
Eu

v
u

v
Eu

v
u

EXACTEXACTnoised

EST

1 1 1 1

)(

σσσσ
 
(3.13) 

The SVD and filter factors are used to eliminate the influence of perturbation in the TSVD 

regularization for solving inverse ECG problem. The regularized TSVD solution 
TSVDEΦ  is 

obtained by first replacing the ill-conditioned matrix A  with the rank- k  matrix, kA , defined as 

follows: 

∑
=

=Σ=
k

i

T

iii

T

kk vuVUA
1

,σ  
(3.14) 

which means that small singular values of the treansfer matrix are ignored, since they make the 

solution unstable . We define filtering factors, if , as follows: 





>

≤
=

,,0

,,1

ki

ki
f i

, 
(3.15) 

where )(Arankrk =≤ , to eliminate the small singular vaues of the A  matrix by this method 

the noise of the data is eliminated and get the minimized error data. The filtered solution of 

TSVD is defined by the following equation; 

∑
=

Φ
=Φ

n

i

i

i

T

T

i

iE v
u

f
TSVD

1 σ
. 

(3.16) 

The parameter k  is the regularization parameter chosen from regularization parameter finding 

procedures which will be introduced in the following sections. 

 

3.4.3 Tikhonov Regularization Method 

Tikhonov Regularization [20] is the most commonly used method of regularization of ill-posed 

problems. It introduces a regularization term into the formulation (3.2).  The minimization 

problem can defined as follows:  

{ } ,||||||||min 2
2

22
2 ETE LA Φ+Φ−Φ λ  (3.17) 
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where λ  is regularization parameter, a positive scalar, that controls the weight given to 

minimization of the residual norm or solution norm (detailed information in section 3.6). The 

regularization term ELΦ  incorporates the a priori information about the solution EΦ .  

There are two important alternative formulations of the problem (3.17): 

 

T

TTT ALLAA Φ=+ )( 2λ , (3.18) 

2||
0

||minarg 
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
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
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Φ

T

EE
L

A

E λλ
 

 
(3.19) 

 

Thus, if there is an intersection between the null spaces of A  and L  matrix trivially such as the 

coefficient matrix has a full rank property, then there is a unique Tikhonov solution, and it can be 

given as follows; 

T

TTT

E ALLAA
TIKJHONOV

Φ+=Φ −12 )( λ . (3.20) 

 
If matrix L  is the identity matrix )( IL = , the method is referred to as Tikhonov 0-order, else if 

L  is a surface gradient operator, then the method is the first order regularization and for second 

order regularization L  is a surface Laplacian operator. In terms of TSVD, the Tikhonov 

regularization is equivalent to the introduction of filtering factors into (3.11), reducing the effects 

of the high-frequency components of the solution: 
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(3.21) 

 
where filter factors are used for ignoring the small singular values, in this case, the filter factors 

are defined for the Tikhonov regularization method. 

 

i

i

T

T

i
n

i i

i

i

n

i i

T

T

ii

ETIKHONOV
υ

σ

µ

λσ

σ
υ

λσ

µσ Φ

+
=

+

Φ
=Φ ∑∑

== 1
22

2

1
22

, 

                                             
i

i

T

T

i
n

i

if υ
σ

µ Φ
=∑

=1

. 

 
 

 

(3.22) 

 

 
3.4.4 Least Squares QR Method 

The least squares QR (LSQR) method is one of the iterative regularization method based on 

Lanczos bidiagonalization (LBD) [21, 22] and QR Factorization [23]. The LSQR method is more 

efficient than the well-known conventional regularization methods such that Tikhonov and 
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TSVD which require SVD procedure, which is an expensive operation in computationally when 

the transfer matrix A  has a large dimension and ill-conditioned nature. The run-time costs of two 

decomposition methods are given in Table 3.1. 

 

 

Table 3.1 The run-time costs of two decomposition methods. 
 

Method Time (seconds) 
SVD 2.48 
QR 0.79 

 

 

Due to iterative properties of LSQR method, we need a stopping point to finalize the iteration. 

The k th matrix )(k

EΦ  is the regularization solution (optimal) which is obtained after k  

iterations. If iteration of the regularization is not stopped, this method may converge to noise 

corrupted worse solution with a high relative error (RE). Consider the matrix A  Є ℝmxn, the 

LBD computes the factorizations. Vectors, ∈jµ ℝm, jv  Є ℝn and scalars jα  and jβ , which 

meets k

T BAVU = . We choose an iteration number k , and then the method computes three 

matrices, a lower bidiagonal matrix kB  and two matrices 1+kU  and kV  related by 

,11111 eU
kT +==Φ βµβ  (3.23) 

,1 kkk BUAV +=  (3.24) 

.1111
T

kkk

T

kkk

T
evBVUA ++++ += α  

(3.25) 

 

Here, the bases 1+kU  Є ℝm(k+1) and kV  Є ℝmxk have orthonormal columns, ie  is the unit vector 

and the matrix kB  Є ℝ(k+1)xk is lower bidiagonal: 

 

 
 

(3.26) 

∈= ++ ),...,,,( 13211 kk uuuuU ℝmx(k+1), 111 +++ =
kk

T

k
IUU , ∈= ),...,,,( 321 kk vvvvV ℝmxk and 

kk

T

k IVV = . 

 
)()( k

k

k

E yv=Φ , (3.27) 

)()( k

ET

k Ar Φ−Φ= , (3.28) 
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(3.31) 

)()( k

k

k

E yv=Φ ,   kkk fyR = , (3.32) 

kkk

k

E fRv
1)( −=Φ . (3.33) 

 

The iteration stopping point is calculated by the L-curve method, using norm of each iteration 

solution 2
)( |||| k

EΦ , on the ordinate versus the norm of residual 2
)( |||| T

k

EA Φ−Φ on the 

abscissa, with k  as a parameter which is located corner of the resulting curve generally.  

 

3.4.5 Bayesian Maximum a Posteriori (MAP) Estimation 

The regularization method of Bayesian MAP employs a statistical basis of a priori estimations of 

the inverse problem solutions, and chooses the best solution fitting the given observation 

NOISEDTΦ  out of it. This approach is based on the theory developed by Foster [24]. 

 

The problem in (3.4) can be expressed as follows: 

EA
EXACTET +Φ=Φ , (3.34) 

where E  is random measurement errors, assumed to have exact and zero mean covariances [25]. 

The goal is to construct a matrix operator ΓЄ ℝnxm such that the averages 

TEEST
ΓΦ=Φ  (3.35) 

is the solution of (3.34). Combining (3.34) and (3.35) we obtain: 

EA
EXACTEST EE Γ+ΦΓ=Φ . (3.36) 

Let’s represent AR Γ= then (3.36) can be represented as follows: 

ER
EXACTEST EE Γ+Φ=Φ , (3.37) 

where the rows of R matrix represent a set of filters transforming the exact solution 
EXACTEΦ to 

our estimation 
ESTEΦ  minus some random errors. If the exact solution 

EXACTEΦ  is subtracted 

from both sides of equation (3.35), the estimation error can be obtained: 
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EIA
EXACTEXACTEST EEE Γ+Φ−Γ=Φ−Φ )(  (3.38) 

The first summation at the right side of (3.38) is generally defined as a resolving error, whereas 

the the other term referred to random error. If 
ESTEΦ  provides a reasonable estimation of 

EXACTEΦ , both of these terms must be small. For the variability of 
EXACTEΦ , a statistical 

description is given, can be defined in the form of covariance matrix xC , and the errors in an 

estimation may be assumed as independent in statistically on the data errors E , the estimation 

errors of the covariance 
EXACTEST EE Φ−Φ can be defined as follows: 

.)()( T

e

T

x CIACIAC ΓΓ+−Γ−Γ=  (3.39) 

The first summation on the right is the resolving errors for the covariance, the second term on the 

right defines the random errors of the covariance. The estimator which minimizes the diagonal 

elements C in (3.39) is  

,)( 1−+=Γ e

T

x

T

x CAACAC
 

(3.40) 

which is widely known as the minimal variance estimator. This equation was originally derived 

in [26] as linear estimator which is the best when EΦ  is a production of a second-order random 

process of Gaussian. The distribution of Gaussian assumption is still not needed, the estimation 

errors variance can be minimized by (3.40) no consideration of the form of a probability density 

of EΦ . In this way an estimate of EΦ  can be obtained by as follows: 

,)( 1
Te

T

x

T

xE CAACAC
EST

Φ+=Φ −

 
(3.41) 

which is used as the solution of the inverse problem. A new methodology was introduced 

recently which was based on the Bayesian MAP estimation to solve the inverse problem of ECG 

[27, 28]. 

 
3.5 Choice of Regularization Parameter 

Regularization parameter, a positive scalar, balances the tendency given to minimization of the 

solution norm versus minimization of the residual norm. It is represented by the symbol λ  or k  

generally, according to the regularization methods. An optimum regularization parameter should 

supply a fair balance between the regularization error and the perturbation error in the solution of 

regularization. If λ  is chosen to be too small, the high frequency components of (3.11) might be 

selected, carrying no useful information about the cardiac sources. This is called under-

regularization. Also, if λ  is choosen too large, the useful high-frequency components of the 

signals can be suppressed. It causes a smoothing effect on the solution, it is called as over-

regularization.  
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Thus selection of the optimum regularization parameter is extremely important for the solution of 

the inverse problem of ECG. In Literature, several methods were suggested to find the optimal 

value of λ  such as L-curve, composite residual and smoothing operator (CRESO), optimal 

criterion and generalized cross validation (GCV). 

 

3.5.1 L-curve 

The L-curve is well-known method which is used to determine the optimal value of 

regularization parameter after the works of Hansen [29, 30]. In terms of the Tikhonov 

regularization, the L-curve is a parametric plot with points defined by the norm of the residual 

2|||| TEA Φ−Φ
λ

 and the norm of the regularization term  2||||
λELΦ  for different values of 

the regularization parameter λ : 

)||(|||||| 22 TEE AfL Φ−Φ=Φ
λλ . 

(3.42) 

 

This plot is usually built for λ  changing within the range between the minimal and maximal 

eigenvalues of A . A typical L-curve for the case of measured signals 
ESTTΦ  corrupted with 

noise is shown in Figure 3.3.   

 

 

 
 

Figure 3.3: Sample L-curves resulting from the solution of a typical inverse problem of the ECG 
[31]. 
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The optimal value of λ  is found at the point of the maximal curvature of the L-curve, where its 

second derivative has its maximum. This point is referred to the corner of the curve. Moving the 

chosen λ  along the curve towards the significant increase of the residual norm leads to over-

regularization, whereas the movement of λ  towards the increasing 2|||| EΦ  leads to under-

regularization of the solution [31]. 

 

3.5.2 Creso 

The composite residual and smoothing opeartor (CRESO) [29] is the other well-known method 

for choosing regularization parameter. In Figure 3.4, we see a sample CRESO curve. The 

CRESO method depends on the localization of the maximum of the following function: 

 

2
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(3.43) 

 

If the SVD of A  matrix is known, then the computation of C( λ ) can be done as follows: 
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(3.44) 

 

 

 
 

Figure 3.4 A sample CRESO curve [32]. 
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3.5.3 Optimal Criterion 

The optimal regularization parameter [29] is obtained by estimating epicardial potentials which 

minimizes the RE compared to the known epicardial potentials. The value of optimal criterion 

can be defined as:  

,
||||

||||

EXACT

EXACTEST

E

EE
RE

Φ

Φ−Φ
=  

(3.45) 

where 
EXACTEΦ  denotes the known epicardial potential distribution and 

ESTEΦ  stands for the 

computed one.  

 
3.5.4 Generalized Cross Validation 

Generalized Cross Validation (GCV) [29] is based on the principle that if any arbitrary element is 

left out, then the corresponding regularized solution should predict this observation. Then, it 

yields for choosing a regularization parameter which minimizes the GCV function  

,
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||||
2
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AAItrace
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G EST

−

Φ−Φ
=  

 

(3.46) 

where I
A  is the matrix which produces the regularized solution 

ESTEΦ  when multiplied by TΦ . 

In the calculation of the cross validation method, there is a major diffuculty due to the calculation 

of the inverse matrix trace.  
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CHAPTER 4 
 

 
 

CONTRIBUTIONS OF GENETIC ALGORITHMS FOR 
SOLVING INVERSE PROBLEM OF 

ELECTROCARDIOGRAPHY  
 

 

 
4.1 Genetic Algorithms 

Genetic algorithms (Gas) are stochastic search techniques used to find solutions to optimization 

problems which are quite hard to solve by conventional methods. Genetic algorithms are a 

particular class of evolutionary algorithms which are based on the simulation of natural 

evolutionary process of human beings. The working processes of evolution suit well for some of 

the huge computational problems for many fields. These problems require searching through a 

huge number of possible solutions. The rules depend on the natural selection in evolutionary 

computation [33]. The solutions vary due to the GA operators such that crossover or mutation. 

Cells are the basic structures of all living organisms, and they contain one or more small 

structures called chromosomes. The chromosomes can be defined as DNA strings [33]. These 

structures are used for the identification of the living organism. A chromosome is a squence of 

genes. The genes can be exprerssed as a definition for a property, like hair, eye colour, etc. For 

the natural selection fitness functionality is the other important concept for a living organism [33, 

34]. The probability of the survival of the organism is the defitinon of the fitness functionality. 

The fittest indivual has the biggest chance to survive. 

 

In order to start the GA process, a randomly initialized population is selected, then a 

probabilistic, parallel search in the solution space are performed to form a new population of 

candidate solutions. The population undergoes a simulated evolution process. At each generation 

the fittest solutions are reproduced, while the other solutions are ignored. In the end, the last 

generation has the fittest chromosomes through all generations. The conceptual algorithm of the 

GA is shown in Figure 4.1. 

 

4.2 Genetic Algorithm Operators 

Three basic GA operations are performed on these chromosomes of the current generation to 

produce child generations that become fitter in the simulated evolution process. These three basic 
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operations are selection, crossover, mutation [33, 34, 35] (Figure 4.1, 4.2). The GA operators are 

explanied in the following sections. (the subtitles of these operators are explained in details in 

Appendix C). 

 

 

 
 

Figure 4.1 – The GA Work Flow 
 

 

• Selection 

The selection operation has several similarities with the Darwin’s natural selection process which 

is explained as evolution theory [33]. During the selection process, a group of chromosomes from 

the current generation is chosen for reproduction. This selection is based on the fitness values of 

the chromosomes of the population and improvement of the average quality of the population is 

the aim of this operation. Due to the selection process, the individuals of higher fitness will have 

a higher probability of being copied their characteristics to produce new individuals of the next 

generation. Since the selection depends on the fitness value of the individuals. 

 

• Crossover 

Once the chromosomes are selected, new chromosomes of the child generation are formed using 

the crossover operation. Crossover is one of the most important operation in GA. It merges two 

chromosomes from current generation to create two offspring for the child generation. 

Individuals from current generation are picked in pairs from the selected chromosomes to 
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become parents with a specified ratio of crossover probability. By this operation new born 

chromosomes (childs) carry on their characteristics of parents according to the probability value. 

 

• Mutation 

The mutation operator modifies a chromosome in current generation. The main goal of the 

operator is to hinder the GA population from converging to a local minimum and to put some 

new candidate solutions to the population. It yields a variety in the current generation. One of the 

properties (gene values) of a chromosome is changed during the mutation process with a 

specified probability. The probability of mutation is generally chosen to be very small. 

Otherwise, the big rate of the mutation probability tends to destroy valuable information which is 

important for the chromosomes to have higher fitting value. The crossover and mutation rate are 

determined in an experimental way. This operation provides maintaining variety in the 

population by pushing the algorithm searching in different regions of the decision place. 

Applying the GA operations (selection, crossover and mutation) repeatedly, the IP is translated 

into new populations in an iterative manner, which will tend to contain better individuals and will 

generally converge to an optimal population. 

 

 

 
 

Figure 4.2 The GA Operators [35] 
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4.3 Combination of GA and Regularization Methods in Literature 

Due to the big rate of death, caused by the heart illnesses, many researches have been done to 

learn about the electrical activity of the heart. Obtaning epicardial potential distribution is a key 

point to learn the defects of the heart without invasive operation. Computation of epicardial 

potential distribution without invasive operation is a diffucult process since the electrical signal 

looses some properties in throax until reaching the body surface. However, the regularization 

methods, commonly known in literature, provide us with estimation of epicardial potentials from 

body surface potential distribution. The conventional regularization methods reconstruct 

epicardial potentials from body surface potentials by smoothing or truncating the noise. Recently, 

the stochastic search technique, called the GA, is combined with regularization methods to solve 

the inverse ECG problem. Tikhonov Regularization Method and LSQR method were combined 

with GA in literature [36, 37]. According to the results proposed, GAs can improve the 

regularization of inverse ECG problem when combined with regularization methods or additional 

constraints about solutions. The GA is an efficient optimization technique for improving the 

solution of the ill-posed inverse ECG problems.  

 

4.4 New Approaches to the Usage of GA for Solving the Inverse 

Problem of ECG 

In this study, we employed several regularization methods to reconstruct the epicardial potentials 

from the simulated noisy torso potentials. We used the regularized epicardial potentials to 

employ the GA to improve the regularization. The regularization methods’ solutions were used as 

the additional information to construct the IPs for GA. Addition to literature studies, we 

combined two other regularization methods, such as TSVD and Bayesian MAP Estimation, with 

GA. In order to optimize the estimated epicardial potentials by applying GAs, we considered 

float number encoding GA which used selection (roulette selection, tournament selection, etc.), 

crossover (scattered, custom, etc.), mutation (Uniform, Gaussian, etc.) and elitist selection. To 

run the regularization methods, regularization parameter obtaning methods, GA parameters and 

the comparison of the results, we have implemented a graphical user interface which is explained 

in Appendix A. 

 

The GA operators and the parameters used for the GAs can be chosen from the GUI as follows: 

 

• Population size npop = N ,  

• Crossover type, crossover rate rCcr = , 
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• Selection such as, Tournament selection where tournament size Kk = , tournament 

probability as tPpt = , 

• Mutation such as, Uniform mutation where mutation rate mr Pm = , 

• Elitism, number of elitist chromosome chosen without applying any GA operations 

ENne = . 

 

By using the GA operators and the parameters listed above, the new offspring is produced from 

the current population. Next, the current population and the newly produced children population 

are merged and N individuals are selected using one of the selection types (see Appendix C) to 

obtain the next generation. The inverse ECG problem which is the form of (3.1) considered in 

this thesis were reformulated as a problem of optimization by minimizing the fitness function, 

such as the formulation of (3.2). The generation number for a typical GA is in the range 50-300, 

but more generations can be required. Discrepancy principle is a kind of process to determine the 

number of generations required [36]. The individuals of the initial population are generated 

randomly. Therefore, in the early stages of the GA process the global optimum of the problem 

was unstable and non-converging solution could appear in the population. It causes the GA to be 

stationary from optimum point of the problem. However, the regularized solution is not the 

optimum of the object function for ill-posed problems but a solution to fullfill the balance 

between the fitting and smoothness to the data. Therefore, if additional constraints to the solution 

of the inverse ECG problem were available, then the constraints should be added to the GA phase 

to avoid unstable solutions. Afterwards, the GA could be successfully applied to find the global 

optimum of the inverse ECG problem and would get good solution with low RE and high CC.  

 

4.4.1 Theory 

In addition to the literature, we proposed two new approcaches to optimize the epicardial 

potential distribution.  

 

1. Several regularization methods solved the inverse ECG problem by using additional 

constraints like regularization parameter. The L-curve is the well-known method to 

obtain the regularization parameter. Generally, the corner of the L-curve is the optimum 

regularization parameter. If we apply this parameter to the regularization methods we 

expect the optimum value of epicardial potentials and it is true in practice. However, the 

pretty localized potential features are lost because of the smoothing or truncating effects 

of the regularization methods. In this case, we did experiments to solve the 

regularization method not only for the optimum value of regularization parameter but for 

the regularization parameters around the optimum regularization parameter. By this way, 
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we obtained optimum, under- and over-regularized epicardial potentials. These 

potentials were the IP for GA. Then the GA started to process to optimize these 

epicardial potentials. We proposed that the GA could recover the some good properties 

of the epicardial potentials which are lost when solving by using only the optimum λ  

and the regularization methods. 

2. We had a training set which had eight different epicardial potentials. They were 

measured from a dog heart. We bypassed the “regularization by using regularization 

methods” part and applied GA to the training set directly to see whether the GA could 

improve to regularize the epicardial potentials. According to the results (in Chapter 5) 

the GA could succeed to optimize the training set and gave us improved epicardial 

potentials. 

 

In both cases we used the form (3.2) as the fitness function to fit the chromosomes in the GA 

phase. The results showed that there was a decrease in RE and an increase in the CC compared to 

the other solution methods. The GA also contributed to the optimization of reconstructed 

epicardial potentials which were obtained from conventional regularization methods.  
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CHAPTER 5 
 

 
 

RESULTS AND DISCUSSIONS 
 

 

 
In this thesis, we used simulated torso potential measurements to test our solution approaches. 

The epicardial potentials used to simulate the torso potential measurements in this study have 

been recorded by Dr. Robert S. MacLeod and his coworkers at the University of Utah, Nora 

Eccles Harrison Cardiovascular Research and Training Institute (CVRTI) from a dog heart that 

was placed in a realistic torso tank [38].  

 

In these simulations, epicardial potential measurements from 490 points were used and the torso 

potential measurements were simulated at 771 points. In general torso potential distributions 

include measurement noise. These noisy torso potentials were obtained by multiplying the 

epicardial potentials by a transfer matrix obtained from a realistic human torso model using the 

BEM, and adding white Gaussian noise: the noise level is defined by the input parameter in 

decibels (dB) (Figure 5.1).  

 

 

 

 

Figure 5.1 Obtaining noisy torso potentials 

 

In our simulations, we added 30 dB Gaussian noise to the calculated torso potentials to simulate 

the real life cases. Thus, we had: 

,E
EXACTTT +Φ=Φ  (5.1) 

 

ΦE 

A 

White Gaussian Noise (SNR) 

ΦTnoised ΦTexact 
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where TΦ  Є ℝ771x97 was the matrix of torso potential measurements, E  Є ℝ771x97 was the 

matrix which stands for the noise and EΦ  Є ℝ490x97 was the unknown epicardial potential 

matrix. Each column in these matrices corresponded to a single time instant. Each row of EΦ  

corresponded to a node on the heart, whereas each row of TΦ  and E  correspond to a node on 

the body surface. At each time t the epicaridal potential was found at that time. In that case the 

equation (5.1) above became as follows: 

 

,)()()( tEtAt ET +Φ=Φ  (5.2) 

so )(tTΦ  Є ℝ771x1 , )(tE  Є ℝ771x1  , A  Є ℝ771x490. 

 

We display the measured epicardial, and calculated torso potential distributions respectively at 

three different time instants, using a visualization software called the Map3d [39] in Figure 5.2 

and Figure 5.3. Note that the lungs were removed from the model to calculate the transfer matrix 

used in the inverse solution. 

 

 

  
 

(a) (b) (c) 
                                                                    

Figure 5.2 The map3d visualization of data of the original epicardial potentials. a) 1st time 
instant, b) 68th time instant, c) the last time (97th) instant. 

 

 

  
 

(a) (b) (c) 
                                                                   

Figure 5.3 The map3d visualization of the torso potentials calculated from measured epicardial 
potentials. a) 1st time, b) 68th time, c) the last time (97th) instant. 
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5.1 Simulations 

We applied the conventional regularization methods to solve ill-posed ECG problem and 

combined the regularization methods with the GA. We got improved regularized epicardial 

potentials with low RE. In this section of this thesis, we give the solution of the inverse problem 

of ECG using the following approaches: 

 

1. Single Tikhonov Regularization Method, 

2. Single TSVD Method, 

3. Single LSQR Method, 

4. Single Bayesian MAP Estimation Method, 

5. Combination of the GA with 

 

• Tikhonov Regularization Method,  

• TSVD Method, 

• LSQR Method, 

• Bayesian MAP Estimation Method. 

 

6. Apply the GA to an IP which consisted of eight epicardial potentials (training set). In 

this study, test and training data are different QRS beats obtained from the same heart, 

but the initial stimulus sites are different for all beats; the stimulus sites of the training 

set beats are within the second-order neighborhood of the test beat stimulus site, 

7. Apply the GA to an IP which consists of a mixture of optimum, over- and under-

regularized Tikhonov Regularization solutions. 

 

We used the L-curve and the GCV to obtain the regularization parameter for Tikhonov 

regularization, TSVD and the LSQR methods. In Bayesian MAP estimation, the covariance 

matrix was obtained by using the training set. The solution procedure of the conventional 

regularization methods for inverse ECG problem is given in Figure 5.4. 

 

Figure 5.5 summarizes the solution of inverse problem of ECG with the combination of 

regularization methods and the GA. In this approach, first, we  simulated noisy torso potential 

measurements by adding white Gaussian noise vectors with different seeds to the exact torso 

potentials (calculated from the multiplication of transfer matrix and the known epicardial 

potentials) in order to obtain simulated torso potentials. This gave us many realizations of torso 

potential measurements corresponding to the same source distribution. Then we applied the 

conventional regularization methods to reconstruct noise eliminated epicardial potentials.  
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These estimated epicardial potentials corresponding to n different realizations of the same noise-

free torso potential measurements are then used as the IP for the GA process. After finishing 

regularization step, the GA phase started. In this case there was a fitness function to decide 

whether newly produced chromosomes, fit the data or not. We defined fitness function in two 

ways. If we know the exact epicardial potentials then the RE (5.3) can be used as a fitness 

function. However, in clinical applications, the epicardial potentials are not known. Therefore, 

we used the expression in equation 3.2 as an alternative fitness function. In both cases, the 

solutions that yield the lowest values of the fitness functions are passed to the next generation. 

Then in GA phase, we calculated the torso potentials from optimized epicardial potentials to 

compare the simulated torso potentials. We tried to fit the potential values. We employed all 

regularization methods mentioned in this thesis, then we combined them with the GA. We 

implemented a graphical user interface (see Appendix A) to run all of the cases and got the 

regularization and the GA results. The GA is an iterative algorithm and it requires a stopping 

criteria. In our study, we used three stopping criteria as follows; 

 

a. RE value, 

b. Maximum iteration number, 

c. After each iteration, searching whether the GA continues to improve to get better 

results over a specified value according to the previous generations, if not stop iteration. 

 

Finally, we compared the results of GA and the regularization methods to decide whether the GA 

contributed to improve the regularization of the epicardial potentials.  

 

There are four criteria to compare the reconstructed epicardial potential results. These are: 

• Relative Error, 

• Correlation Coefficient, 

• Root Mean Square (RMS) Error 

• Map3d visualization: 

 

2

2

||)(||

||)()(||
)(

tE

tEtESTtRE
Φ

Φ−Φ
= , 

 
(5.3) 

2

_

2

_

1

__

||||.||||

)()(.)()(

)(

EEESTEST

n

t

tEtEtESTtEST

tCC

Φ−ΦΦ−Φ









Φ−Φ








Φ−Φ

=
∑

= , 

 
 

(5.4) 

))((

||)()(||
)( 2

tE

tEtEST

length
tRMS

Φ

Φ−Φ
= , 

 
(5.5) 



 32 

where t  denotes the time instant, 
E

Φ  denotes the known epicardial distribution, and 
EST

Φ  the 

computed one. The quantities 
_

Φ and EST

_

Φ  are respectively the mean values of EΦ  and ESTΦ  

over the epicardial sites.  

 

 

 
 

Figure 5.4 Solution phases of the conventional regularization methods for solving inverse ECG 
problem 
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Figure 5.5 Solution for Inverse problem of ECG using combination of regularization methods 
with genetic algoritm, n: number of SNR values with different seeds (chromosome count in 

population), ""ε : improvement rate 
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5.2 Results 

In this section, we give comparison results of our study. In section 5.3.1, we give the results of 

conventional regularization methods which chooses regularization parameter from L-curve and 

GCV seperately. We plot the L-curve and GCV graphs for each case. Then we compare the 

results using the visualiation tool Map3d, RE, CC and RMS Error.  In section 5.3.2, we give the 

results of combination of regularization methods with the GA. Each regularization methods are 

combined with the GA then the results of each combination are compared among themselves. 

The results of the GA combined regularization methods are also compared in section 5.3.2.5 to 

decide which methods respond to GA rapidly and improve the regularization results effectively. 

Also, in seciton 5.3.2.6 we applied GA directly to the training set of epicardial potentials. We 

compare the results of Bayesian MAP Estimation and Tikhonov Regularization Methods. We 

solved Tikhonov Regularization by using not only optimum regularization parameter but also, a 

range from under-regularized to over-regularized regularization parameter values. We compare 

the results of the GA combined results of Tikhonov Regularization method uses these λ  ranges 

in section 5.3.2.7. In 3D surface plots with the Map3d software of each result are given in 

figures, blue regions represent the already activated (negative) areas and the red regions are the 

areas of cells which are not activated (positive) yet. The transition between two regions is called 

the wavefront. 

 

5.2.1 Comparison of Conventional Regularization Methods 

Figure 5.6 and 5.7 show the epicardial potential distrubution in Map3d, recovered inversely from 

the body surface potentials. The results are displayed at three different time instants. Four 

regularization methods, Tikhonov regularization, TSVD, LSQR and Bayesian MAP estimation, 

were employed and the results were compared with the measured epicardial potentials and with 

each other. Bayesian MAP estimation gives the best regularized epicardial potential disribution 

estimation due to the usage of training set properties, LSQR method gives the second best 

regularized epicardial potential distribution estimation. The LSQR method runs as an iterative 

algorithm. Therefore, it needs an optimum iteration number, which we obtained from the L-

curve. Estimated epicardial potentials, that were obtained using Tikhonov regularization and 

TSVD, had similar potential maps. We used L-curve for choosing regularization parameters in 

Figure 5.8 and GCV for regularization parameters in Figure 5.10. The results are compared in 

three different time instants (t=39, 58, 67 seconds). 
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Figure 5.6 The comparison of the estimated epicardial potentials resulted for the four different 
conventional regularization methods at three different time instants, t=39, t=58, t=67 seconds 

(regularization parameters chosen from L-curve). 
 

 

The perfomances of four regularization methods, which choose regularization parameters from 

L-curve, are given in Figure 5.6, 5.12, 5.13, 5.14 and Table 5.1. The performances of 

regularization methods, that chose their regularization parameters using the GCV, are given in 

Figure 5.7, 5.15, 5.16 and Table 5.2. It can be seen that Bayesian MAP estimation method always 

leads to a lower RE and higher CC compared with those of other methods.  
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Figure 5.7 Comparing the known epicardial potentials with the estimated epicardial potentials 
resulted from four different regularization methods at three different time instants, t=39, t=58, 

t=67 seconds (regularization parameters chosen from GCV). 
 

 

 

Table 5.1 RE and CC rate comparison of four regularization methods when using L-curve 
method 

 
 Avg. RE ± std. Avg. CC ± std. 

Tikhonov 0.577±0.002 0.801±0.002 
TSVD 0.601±0.002 0.788±0.004 
LSQR 0.539±0.003 0.812±0.001 
Bayesian MAP 0.523±0.003 0.841±0.002 
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Figure 5.8 Regularization parameter chosen from GCV method for Tikhonov Regularization at 
time intance t=47 

 

 

 

 

Figure 5.9 L-curve for choosing the regularization parameter for Tikhonov Regularization 
Method 

 

 



 38 

 

 

Figure 5.10 L-curve for choosing the iteration count for LSQR method (the optimum iteration is 
14 which is the corner of the L-curve in this case). 

 

 

 
 

Figure 5.11 Regularization parameter chosen from GCV method for TSVD Regularization at 

time intance t=47 (the value of the chosen regularization parameter k =25 in this case). 
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Figure 5.12 Comparison of the RE rate for three regularization methods (regularization parameter 
is chosen from L-curve method for Tikhonov Regularization and LSQR Method). 
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Figure 5.13 Comparison of the CC for three regularization methods, regularization parameter is 
chosen from L-curve method for Tikhonov Regularization and LSQR Method 
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Figure 5.14 Comparison of the Root Mean Square(RMS) Error for three regularization methods, 
regularization parameter is chosen from L-curve method for Tikhonov Regularization and LSQR 

Method. 
 

 

0 20 40 60 80 100
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time(t)

R
e
la

ti
v
e
 E

rr
o
r(

R
E

)

Relative Error vs. Time

 

 

Tikhonov Regularization

LSQR Method

Bayesian MAP

TSVD Method

 
 

Figure 5.15 Comparison of the RE rate for four regularization methods, regularization parameter 
is chosen from GCV method for Tikhonov Regularization, TSVD and LSQR Method 
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The Tikhonov and TSVD Regularization solutions reflect the wavefront propagation pattern of 

the exact epicardial potential maps in general; however, they cannot follow the wavefront on the 

epicardium as well as the Bayesian solutions do. In Figure 5.12, 5.13 and 5.14 we see that 

Bayesian MAP Estimation method shows a better performance than Tikhonov Regularization and 

LSQR method with respective to smaller RE and higher CC. The LSQR method shows better 

performance than Tikhonov Regularization in early time instants; later it shows similar 

performance with Tikhonov Regularization. In Figure 5.15, we see that TSVD regularization 

method has bigger RE for some time instants because TSVD chose some bad regularization 

parameters using the GCV method. In order to see the RE of regularization methods clearly, we 

omited the RE results of TSVD then we plotted RE graph of three other regularization methods 

in Figure 5.16. 
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Figure 5.16 Comparison of the RE rate for three regularization methods, regularization parameter 
is chosen from GCV method for Tikhonov Regularization and LSQR Method. 

 

 

Table 5.2 RE and CC rate comparison of four regularization methods when using GCV method 
 

 Avg. RE ± std. Avg. CC ± std. 
Tikhonov 0.611±0.004 0.776±0.002 
TSVD 0.748±0.004 0.701±0.002 
LSQR 0.549±0.004 0.807±0.002 
Bayesian MAP 0.524±0.003 0.839±0.002 
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Regularization methods behaved similar to the L-curve case when the regularization parameters 

which were chosen from GCV method in Figure 5.16 and in Table 5.2. 

 

5.2.2 Comparison of Conventional Regularization Methods  

Combined with GA 

In this section of this study, we give the simulation results of solution of inverse problem of ECG 

using regularization methods combined with GA. The simulation of the combination of 

conventional regularization methods and the GA is shown in Figure 5.17. And then we give the 

visual results of epicardial potentials using the tool Map3d and the comparison results of the 

obtained potentials and the initial epicardial potentials. The results of each regularization method 

are compared with exact epicardial potentials and with the results of regularization methods 

combined with GA. We compared them in two different cases. We used the minimization of 

equation 3.2 as the fitness function for GA in the first case. In the second case we had exact 

epicardial potentials and employ RE as the fitness function for the GA. The comparisons of all 

sections are based on these cases. 

 

 

 

 

Figure 5.17 Combination of regularization methods and the GA 
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5.2.2.1 Tikhonov Regularization and GA 

We employed Tikhonov Regularization for solving inverse ECG problem. We used the results of 

regularization as IP for the GA. There were ten noisy torso potentials which were obtained by 

adding 30 dB SNR with different seeds.  After regularization we had ten estimated epicardial 

potentials. In GA case, we used two different fitness functions which were least squares 

minimization and the RE. The first fitness function is more realistic in clinical case, since the 

measured apicardial potentials must be known to calculate the RE. The results showed that 

combination of Tikhonov Regularization and  the GA improves the regularization of ill-posed 

ECG problem. In Figure 5.18, we used the least squares minimization in (c) and the RE in (d) as 

fitness function. We used the known epicardial potentials for the second case. 
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Figure 5.18 Comparing the known epicardial potentials with results of combination of 

Tikhonov Regularization and the GA for three different cases at time t=58 

 

 

 

Table 5.3 RE and CC rate comparison of Tikhonov Regularization Results and combination of 
GA with Tikhonov Regularization Results. 

 
 Avg. RE ± std. Avg. CC ± std. 

1st Tikhonov Regularization 0.560±0.001 0.788±0.001 
2nd Tikhonov Regularization 0.559±0.001 0.787±0.001 
1st GA Solution 0.551±0.001 0.801±0.001 
2nd GA Solution 0.558±0.002 0.790±0.001 
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Figure 5.19 Mean RE plots of single Tikhonov Regularization results and the results of the 
combination of Tikhonov Regularization with the GA for two different fitness functions, (a) least 

squares minimization, (b) the RE with known epicardial potentials 
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The GA accomplished to improve the regularization and reduce the RE in Fig. 5.19. Also the 

generation number and the IP count are the critical parameters and effect the results of 

optimization. According to the results in Figure 5.19 and Table 5.3, GA could improve the 

regularization results of Tikhonov Regularization method. The GA’s RE is smaller and CC is 

higher than single Tikhonov Regularization method’s results. 

 

5.2.2.2 TSVD Regularization and GA 

Similar to Tikhonov Regularization same conditions were applied to TSVD Regularization. 

According to the results in Figure 5.20, we see the changes over the simulated epicardial 

potentials on the Map3d visual results. The second plot in Figure 5.21, the GA reduces the RE for 

TSVD regularization slightly. Also in Table 5.4, the GA combined TSVD method’s RE is 

smaller and CC is higher than single TSVD Regularization method’s results. 
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Figure 5.20 Comparing the known epicardial potentials with results of combination of TSVD 
Regularization and the GA for three different cases at time t=58 (regularization parameter 

from GCV) 
 

 

Table 5.4 RE and CC rate comparison of TSVD Regularization and combination of GA with 
TSVD Regularization Results. 

 
 Avg. RE ± std. Avg. CC ± std. 

1st TSVD Regularization 0.719±0.004 0.766±0.002 
2nd TSVD Regularization 0.717±0.004 0.773±0.002 
3rd TSVD Regularization 0.741±0.004 0.765±0.002 
1st GA Solution 0.716±0.004 0.881±0.002 
2nd GA Solution 0.719±0.002 0.869±0.001 

 



 46 

0 20 40 60 80 100
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time(t)

R
e
la

ti
v
e
 E

rr
o
r(

R
E

)

Relative Error vs. Time

 

 

TSVD Method

GA for TSVD

 
 

(a) 
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Figure 5.21 The RE rates of combination of TSVD Regularization with the GA, (a) fitness 
function is least squares minimization (3.2), (b) fitness function is RE using known epicardial 

potentials (regularization parameter from GCV) 
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5.2.2.3 Least Squares QR Method and GA 

Figure 5.22 shows the Map3d visual results for LSQR regularization results and the GA 

combined regularization results for two different fitness functions used in GA. In the second case 

the visual results show that GA accomplishes to improve the reflection of the wavefront 

propagation pattern of the exact epicardial potential maps. 
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Figure 5.22 Comparing the known epicardial potentials with results of combination of LSQR 
Method with the GA for three different cases at time t=51 

 

 

Table 5.5 RE and CC rate comparison of LSQR Regularization Results  
and combination of GA with LSQR Method Results 

 

 Avg. RE ± std. Avg. CC ± std. 
1st LSQR Regularization 0.540±0.001 0.802±0.002 
2nd LSQR Regularization 0.541±0.002 0.798±0.001 
3rd LSQR Regularization 0.549±0.001 0.788±0.001 
1st GA Solution 0.530±0.003 0.816±0.002 
2nd GA Solution 0.537±0.002 0.807±0.001 

 

 

The transfer matrix is an ill-posed matrix, so LSQR does not work efficiently very well in low 

SNR. However, the combination of GA and LSQR method produced relatively good solutions 

compared to using the single LSQR method. Since LSQR is an iterative method, we need an 

iteration number. If the optimum value for the iteration number (in Figure 5.8) is chosen, the 

smallest RE rate and the most accurate epicardial potential distribution can be obtained; 
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otherwise the solution converges to worse epicardial potential distributions. It was found that, a 

lower RE and higher CC were obtained by the combination method (see Figure 5.23 and Table 

5.5). 
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Figure 5.23 The RE rates of combination of LSQR Method with the GA, (a) fitness function is 
least squares minimization (3.2), (b) fitness function is RE using known epicardial potentials. 
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5.2.2.4 Bayesian MAP Estimation and GA 

It can be easily seen in Figure 5.24 and 5.26 Bayesian MAP Estimation method has more 

resemblance to the original signal distrubutions than the regularization methods whose results are 

mentioned until this section. We compare the improvement of GA to the conventional 

regularization methods for optimizing the estimated epicardial potentials as axplained in detail in 

section 5.3.2.5. The covariance matrix was obtained from training set data for Bayesian MAP 

Estimation method. According to the RE rate in Figure 5.25 and Table 5.6, The GA did not 

improve the results of Bayesian MAP regularization as much as the results of other regularization 

methods.  
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Figure 5.24 Comparing the known epicardial potentials with results of combination of 
Bayesian MAP Estimation with the GA for three different cases at time t=51 

 
 

 
 
Table 5.6 RE and CC rate comparison of Bayesian MAP Estimation Results and GA combination 

of GA with Bayesian Method Results 
 

 Avg. RE ± std. Avg. CC ± std. 
1st Bayesian MAP Est. 0.513±0.004 0.856±0.002 
2nd Bayesian MAP Est. 0.517±0.004 0.841±0.002 
3rd Bayesian MAP Est. 0.525±0.004 0.820±0.002 
1st GA Solution 0.509±0.004 0.860±0.002 
2nd GA Solution 0.517±0.002 0.840±0.001 
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Figure 5.25 The RE rates of combination of Bayesian MAP Estimation with the GA, (a) fitness 
function is least squares minimization (3.2), (b) fitness function is RE using known epicardial 

potentials. 
 



 51 

5.2.2.5 Conventional Regularization Methods and GA 

In this section we compare the results of all regularization methods which were combined with 

GA. In Figure 5.26, Map3d visual results of estimated epicardial potentials are given for each 

regularization methods combined with GA at time instant t = 51. Figure 5.27 shows the RE 

graphs of the regularization methods combined with GA.  
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Figure 5.26 Comparing the known epicardial potentials with results of combination of four 
different regularization methods (Tikohonov Regularization, TSVD, LSQR and Bayesian 

MAP) with the GA at time t=51 
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Figure 5.27 The RE rate for three regularization methods combined with the GA. 
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Bayesian MAP Estimation method’s RE values are gradually decreasing and smaller than the 

other two methods. The LSQR method’s RE values are smaller than Tikhonov Regularization 

method’s RE values in early time instants, but later the values overlap. 

 

5.2.2.6 Direct Application of the GA to Training Set 

In this section, we had eight different epicardial potentials, called as training set, which we use as 

the IP for the GA. Our goal is to assess whether GA chooses some properties of training set 

potentials and produces reasonable inverse solutions. For this case, we bypassed the 

“regularization with conventional methods” part, and input eight different epicardial potential 

distributions (training set) directly into the GA process (Figure 5.28). We compared the results of 

this section with the results of combination of GA and Tikhonov Regularization. In Figure 5.29, 

the Map3d results are presented. 

 

 

 

 

Figure 5.28 Applying GA to training set directly 

 

 

According to the potential maps in these figures, application of GA to training set data, we got 

better estimated epicardial potentials than the potentials obtained from the combination of 

Tikhonov Regularization with GA. There is a decrease in RE for training set potentials compared 

to the RE for the estimated potentials obtained from the combination of Tikhonov Regularization 

with GA in Figure 5.30 and Table 5.7. 
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Figure 5.29 Comparing the known epicardial potentials with results of Tikhonov 
Regularization and the GA applied training set epicardial potentials at time t=26, 44, 61 

 

 

 

Table 5.7 RE and CC rate comparison of Tikhonov Regularization Result, 1st and 2nd GA Result 
for Training Set. 

 
 Avg. RE ± std. Avg. CC ± std. 

Tikhonov Regularization 0.564±0.002 0.771±0.002 
1st GA Solution 0.513±0.003 0.809±0.003 
2nd GA Solution 0.529±0.003 0.797±0.002 
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Figure 5.30 Comparison of the RE rate of Tikhonov Regularization Results, first and second GA 
results for Training Set 

 

 

5.2.2.7 Using a Range of Regularization Parameters from L-curve 

In this section we solved ill-posed inverse ECG using Tikhonov Regularization. This 

regularization method needs a regularization parameter to minimize squared norms of both the 

residual and the solution. The L-Curve is a generally accepted method to obtain the λ  parameter. 

It is an L shaped curve, and the optimum λ  corresponds to the corner of this curve. We used a 

number of regularization parameters around the optimum λ  as shown in Figure 5.31. Here we 

plot the L-curve at t= 46th time and show the range of λ  that is used in Tikhonov regularization. 

In this way, we obtained over-regularized and under-regularized solutions. These solutions were 

used for the IP chromosomes for the GA (Figure 5.32). According to the Map3d results of 

Tikhonov Regularization which uses a range of regularization parameters, GA produces an 

improved epicardial potentials compared to the optimum solution of regularization method in 

article (e) in Figure 5.33. We observed that the GA could choose the good features of over-

regularized and under-regularized solutions and include them to the optimization phase. So we 

got an improved epicardial potential reconstruction. Figure 5.34 shows that the RE for GA is 

smaller than the RE of optimum regularization results. In Table 5.8 the mean RE and CC rate of 

the regularization methods are introuced. 
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Figure 5.31 Choosing regularization parameters between under- and over-regularized region of 
L-curve 

 

 

 

 

Figure 5.32 Application of GA to the results of Tikhonov Regularization by using a range of 
regularization parameters 
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Figure 5.33 Comparing the known epicardial potentials with the over-regularized, under-
regularized, the optimum Tikhonov Regularization results and the two GA results at time t=46 
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Figure 5.34 The RE rate of Tikhonov Regularization Results using regularization parameter 
optimum, under- and overregularized  λ  range, and the GA results which uses these 

regularization results as IP. 
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Table 5.8 RE and CC rate comparison of 1st GA Result and Tikhonov regularization method 
when using regularization parameters from a λ  range from L-curve 

 
  Avg. RE ± std. Avg. CC ± std. 

Tikhonov (Opt) 0.577±0.002 0.801±0.001 
Tikhonov (Over) 0.713±0.003 0.557±0.003 
Tikhonov(Under) 0.811±0.003 0.501±0.001 
1st GA Result 0.516±0.002 0.851±0.003 

 

 

5.2.2.8 Comparison of Bayesian MAP Estimation and the GA 

Results with the IP from a Training Set 

In this section, we compare the results of Tikhonov Regularization, Bayesian MAP Estimation, 

combination of these methods with GA and the application of GA directly to the training set. 

Especially, the comparison focused on the Bayesian MAP Estimation results and the results of 

optimization when GA is applied to the training set directly. The performances of Tikhonov 

Regularization and Bayesian MAP Estimation are given in Figure 5.35. 
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Figure 5.35 Comparing the improvement rate of regularization methods when GA applied to 

Bayesian MAP Results, Training Set and Tikhonov Regularization Results at time t=58 
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Figure 5.36 Comparison of RE rate for best GA results of Tikhonov Regularization, Bayesian 
MAP Estimation and Training Set 

 

 

Also, the GA results for two regularization methods and training set are given in Figure 5.35.  

According to the visual potential map results, application of GA to training set directly produces 

better estimated epicardial (optimized) potentials than the other combined regularization 

methods. Bayesian MAP method also showed a good improvement to estimate epicardial 

potentials. Figure 5.36 shows the RE rate for estimated epicardial potentials. The RE is gradually 

decreasing in the GA with the training set as the IP, for the Bayesian MAP case the RE decreases 

to a minimum value and then there is a slight increase in RE rate and, the RE starts with low rate, 

it decreases then increases for the Tikhonov regularization solution. In Table 5.9 the mean RE 

and CC rate of the regularization methods are introuced. 

 
 
 

Table 5.9 RE and CC rate comparison of single Tikhonov Regularization, single Bayesian MAP 
Results, best results of combination of GA with Tikhonov Regularization, Bayesian MAP 

Estimation and Training Set 
 

 Avg. RE ± std. Avg. CC ± std. 
Tikhonov Regularization 0.564±0.002 0.770±0.002 
Bayesian MAP Estimation 0.472±0.003 0.842±0.002 
1st GA Solution for Tikhonov Reg. 0.552±0.002 0.792±0.002 
1st GA Solution for Bayesian MAP 0.456±0.003 0.865±0.002 
1st GA Solution for Training Set 0.513±0.003 0.808±0.002 
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5.3 Discussions 

Regularization is the key step in solving inverse problems. The most well-known regularization 

methods, such as the Tikhonov regularization method and the TSVD method reduce noise in 

different ways. The Tikhonov regularization method requires constraints such as restricted 

energy of the computed epicardial potentials. The TSVD method truncates the small singular 

values to reduce the noise influence. In both regulzarization methods, we use singular value 

decomposition of transfer matrix which has an ill-conditioned property. If this matrix is large, 

then the decomposition of this matrix is an expensive operation. The LSQR method is an iterative 

regularization method which is based on bidiagonalization procedure. The LSQR method does 

not need the SVD of the transfer matrix to solve inverse problems. It produces estimated 

epicardial potentials at the end of each iteration. This method requires an optimum iteration 

number to stop processing. If we do not stop iteration after this iteration number, the method may 

converge to a worse solution with a high RE. Tikhonov regularization method and TSVD also 

require an optimum regularization parameter and an optimum truncation number, respectively, 

for solving inverse problems. We use the well-known methods, the L-curve and the GCV, to 

obtain optimum regularization parameters, We found that the L-curve method usually produces 

more stable solutions. We use another method to solve inverse ECG problem which is called 

Bayesian MAP Estimation. When the epicardial potentials are assumed to be Gaussian 

distributed, it needs a covariance matrix and a mean vector to solve the problem. In this study, we 

assumed that the mean vector is the zero vector, and we obtained the covariance matrix from 

epicardial potentials from a training set.. Finally, we combined the regularization methods with 

the GA. For each regularization method we employed the GA process. If we run GA sufficient 

number of times, we get more improved epicardial potentials. Also the GA parameters affect the 

optimization rate. These parameters are obtained by trial and error methodology. There are many 

studies to determine the GA parameters in literature. Also the application of GA directly to the 

training set and the combination of GA with Tikhonov method which uses regularization 

parameters from a range on L-cuve may be a good scheme for solving the inverse ECG problem.  
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CHAPTER 6 
 

 
 

CONCLUSIONS 
 

 

 
The inverse ECG problem is ill-posed, and regularization has to be applied in order to obtain 

stable and reliable solutions. There are several studies in literature that develop regularization 

methods to overcome this obstacle. A detailed study has been undertaken to evaluate the 

performance of some of the conventional regularization methods for solving inverse ECG 

problem. We used four different methods to estimate the epcardial potential, such as Tikhonov 

Regularization, TSVD, LSQR and Bayesian MAP Estimation methods. We solved the problem 

by each method using column sequential method to ignore temporal constraints. In this study, we 

combined the regularization methods with the GA. We compared the simulation results of the 

single regularization methods and the GA combined regularization methods. According to the 

results, the GA contributed to the regularization method to improve the regularization. In addition 

to the above studies, two new approaches were proposed by us:  

 

• We solved inverse ECG running Tikhonov regularization which used a range of 

regularization parameters which were chosen around the optimum regularization 

parameter from L-curve. We obtained under-regularized, optimum and over-regularized 

epicardial potential estimations. We used these estimated epicardial potentials to 

construct the IP for the GA. We got improved epicardial potentials which had smaller 

RE and higher CC. 

• We applied GA to traning sets data directly to see whether GA produces better epicardial 

potentials when compared to the results of conventional regularization methods. In this 

case, we had the exact epicardial potentials, we added 30 dB white Gaussian noise the 

exact torso potential which we calculated by multiplication of transfer matrix and exact 

epicardial potentials. We used this perturbed torso potential in fitness function to 

minimize the norm of residual. We obtained improved epicardial potentials with respect 

to the results of other regularization methods.   

 
Finally, we compared the estimated epicardial potentials using the RE, CC, RMS error plots and 

the visual tool Map3d. According to the results, Bayesian MAP solutions have better error 

performances and results than those of the Tikhonov, TSVD and LSQR solutions, since we have 
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used a covariance matrix that was obtained from training set data for Bayesian MAP Estimation 

method.  

 

As a summary, the conventional regularization methods solve the inverse ECG problem. They 

use different solution methods which were given along the thesis. Each regularization methods 

has some advantages or disadvantages over the other regularization methods. Combination of 

regularization methods with GA for solving inverse ECG provides us with better estimated 

epicardial potentials. 

 
6.1 Future Work 

We will apply the GA to the mixed results of different regularization methods. By using this 

methodology, we can see whether the GA takes better sides of each regularization methods 

results or not. We will apply the CRESO method to the regularization methods which requires 

regularization parameter. Then the GA will be applied the results of regularization methods 

which uses CRESO method. We will compare the results of these new applications with the old 

results that we obtained in this thesis. Finally, we will improve the user friendly properties of the 

GUI. 
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APPENDIX A 
 

 
 

A GRAPHICAL USER INTERFACE FOR SOLVING INVERSE 
PROBLEM OF ECG 

 

 

The application is a Windows Application based on Microsoft.Net Framework. It uses matlab 

regularization routines [29] which are compiled as dll (dynamic link library) and refereced in 

application. The regularization part is solved in matlab side.  

 

It works in the following way;  

 

1. User enters some number of SNR values to the interface, 

2. Choosing the genetic algorithm parameters 

a. Population size 

b. Fitness scaling 

c. Selection 

• Rolulette 

• Tournament* 

• Custom 

d. Crossover 

• Scattered* 

• Custom 

e. Maximum generation number 

f. Mutation Type 

• Gaussian 

• Uniform* 

• Custom 

g. Mutation Rate 

h. Fitness Function 

                                                
* Default parameters for the program 
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i. Crossover Rate 

3. Choosing regularization methods 

a. Tikhonov Regularization 

b. TSVD 

c. LSQR 

d. Bayesian MAP Estimation 

e. TGSVD 

4. Choosing the regularization parameters finding method 

a. L-curve 

b. GCV 

c. CRESO 

5. Start Solution (During solution phase user can choose to see the L-curve graph, GCV 

graph, RE graph or plot biggest error). Problem solution based on column sequential 

method, 

6. After reconstructing estimating epicardial potentials from each noised torso potentials by 

using regularization methods, GA process starts, the noised eliminated solutions are the 

IP for the GA, 

7. GA process stops if: 

a. the improvement rate of generations less than a specified rate,  

b. the iteration number is greater than the generation count, 

c. the RE is less than the specified rate for each result (we assume that we know 

the exact epicardial potentials) and not reach the maximum number of iteration 

(generation count). 

8. Results, wich are shown through the interface, are: 

a. RE rate for each chromosomes, 

b. CC rate for each chromosomes, 

c. Residual norm for each chromosomes with the noiseless initial epicardial 

potentials. 

9. After solutions are obtained, user can visualize the epicardial geometry and data using 

Map3d tool from its interface. In the left part of the interface user can choose the results 

and the noiseless data to compare the difference, in this case, user can choose noiseless 

data, one result from regularization methods and one result from GA to decide how 

efficient the GA to improve regularization methods and to lessen noise. 
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APPENDIX B 
 

 
 
CLASSIFICATION OF ELECTROPHYSIOLOGICAL CARDIAC 

MODELS 
 

 
 
Basically the classification of electrophysiological cardiac models can be subdivided into two 

main categories: mono- and bidomain modeling as well as rule-based modeling. The former 

considers the heart to consist of two subspaces, extra-and intracellular, being separated with the 

cell membrane. The membrane contains ion channels which allow ions of certain types to pass 

through it. The conductivity of ion channels changes according to the potential difference 

between the subspaces (transmembrane voltage (TMV)). Thus a large amount of differential 

equations must be solved in order to simulate electrophysiology of myocardium. This task 

requires huge computational efforts, strong parallelization and large volumes of memory, but 

leads to very precise results. 

 

Rule-based modeling, on the other hand, considers the excitation of small patches of ventricular 

tissue based on certain rules ignoring the nature of this excitation. These patches possess 

relatively large size (typically 1×1×1mm3), thus the memory consumption is moderate. The 

action potential curve, refractory times and excitation conduction velocity are not computed in 

the course of modeling, but selected from a database according to certain criteria. Thus the 

calculation time decreases dramatically (several minutes against several days for the bidomain 

models on a single workstation), which allows for the use of cardiac modeling in everyday 

clinical practice. Due to the relative simplicity of this approach, several cardiac models based on 

this principle have been developed [35, 38, 40, 43, 44]. 

 
1. General Scheme of Myocardial Cell Models 

The first quantitative model of an excitable cell was proposed by Hodgkin and Huxley in [41]. 

They considered the cell membrane as an electrical circuit containing a capacity and three 

resistances plugged in parallel (Figure B.1). The resistances were defined for the currents of 

sodium and potassium ions flowing through the corresponding ion channels, as well as for a 

small ”leakage current” made up by chloride and other ions. The resistance for the latter current 

was considered to be constant, whereas the former two resistances were changing with the 

transmembrane voltage. 
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Figure B.1. The Hodgkin-Huxley representation of the cell membrane. Here Imrepresents the 
transmembrane current, Φi and Φe are the intra- and extracellular potentials, with transmembrane 

voltage: Vm= Φi− Φe. IN a, IK and IL represent the sodium, potassium and leakage currents, 
RNa, RK and RL– corresponding resistances and VNa, VKand VL- corresponding Nernst 

potentials. CM is the capacitance of the cell membrane. 
 

 

The total current through the cell membrane can be written as follows: 

 

(B.1) 

where I is the overall current through the cell membrane, CM is the capacitance of the cell 

membrane, Vm is the transmembrane voltage (TMV), INa, IK and IL represent the sodium, 

potassium and leakage currents, correspondingly. The ionic currents through the membrane can 

be computed by: 

 
(B.2) 

 

(B.3) 

 

(B.4) 

where VN a, VKand VL  are the Nernst potentials for sodium, potassium and leakage ions [3], 

which are defined by the difference of concentration of the ion types inside and outside the cell, 

and gNa, gK and gL are the corresponding conductivities. The latter are defined by the fraction of 

opened channels for each type of ions. They change according to first order differential equations. 

The rate constants of these differential equations depend on the TMV. This model is able to 

correctly describe the excitation of an axon.  
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2. Cellular Automaton 

A cellular automaton based model of the heart used in the present work belongs to the rule-based 

heart models. This model does not consider the interaction between the intra- and extracellular 

spaces in order to simulate the excitation propagation. Instead, a set of rules is defined for this 

propagation. The action potential curves are not computed ”on-the-fly”, but rather chosen from a 

predefined library. Thus a high performance and low memory consumption are assured, although 

the method is by far not as flexible as the bidomain methods. 

 

A cellular automaton is applied to simulate the excitation propagation throughout the heart. If a 

voxel is depolarized, under certain conditions the neighboring voxels get excited as well. A voxel 

is considered as neighboring to a given one, if they have a common face or if they are connected 

with a segment of the excitation conduction system. 

The excitation is conducted between the voxels if the following conditions are met: 

 

1. Both voxels are excitable. 

2. Both voxels belong to the same tissue or to tissues, between which the excitation 

conduction is allowed. For example, the direct conduction of excitation from atria to 

ventricles and vice versa is forbidden. On the contrary, the excitation propagation 

between Purkinje fibers and ventricular myocardium is allowed. 

3. The voxel receiving the excitation should not be already excited. In other words, the 

myocardial tissue within the voxel should not be in refractory state. 

 
For a normal heart beat, the excitation starts in the AV-node with a given frequency defining the 

heart rate. Afterwards the excitation propagates through the excitation con-duction system and 

reaches the ventricular myocardium. An extrasystolic beat can be modeled by introduction of a 

spontaneous excitation somewhere in the myocardium. Then the excitation is conducted through 

the myocardium until it reaches the excitation conduction system. Afterwards the excitation is 

spread over the endocardium by the conduction system. So the “all-or-nothing” principle is 

fulfilled independently from the origin of excitation.  

 

3. Body Surface Potential Mapping (BSPM) 

The technique known as Body Surface Potential Mapping (BSPM) involves sampling potentials 

at a greater number of sites on the torso surface (in the range of 32–256 electrodes). The wave 

forms of ECG signals recorded at the body surface depend not only on the heart’s electrical 

activity, but also on the positions of the electrode pairs used. When multiple lead positions are 

used, each lead provides a different aspect of the heart’s electrical activity. The display of a set of 

instantaneous potential data on a map representing the body surface is called a Body Surface Map 
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(BSM). The increasing experimental and clinical use of BSPM has shown that such maps can be 

related to certain regional electrical processes in the heart.  

 

A body surface map is a low resolution projection of cardiac electrical events filtered by the torso 

cavity. With this greater amount of information, it is necessary to display this information in a 

useful manner and interpret the information in accordance with known electro-physiological 

principles to provide an accurate assessment of the cardiac state. These data can be interpreted 

directly in the form of potential maps with pattern matching techniques as is now accepted in 

Japan for daily clinical diagnosis [45]. However, the ability to determine details of regional 

electrical activity in the heart from visual inspection of the BSPM is limited. There have been 

some directions made towards identifying sites of reentry based on visual examination of QRS 

integral maps [46]. A better prospect would involve processing the large quantity of data through 

some form of mathematical modelling, to unravel the filtering effects of the torso and recover the 

electrical information at the heart level (i.e., solving the inverse problem of electrocardiography). 

Accurate solutions of the inverse problem from body surface maps will have great benefit for 

improving diagnosis and hence decisions about the treatment of patients. For the successful 

noninvasive computational calculation of cardiac sources, high quality body surface potential 

data must be obtained as the input for an inverse solution. The practical acquisition of high 

quality data is a non-trivial matter. However, this is becoming easier with the development of 

disposable electrode strips and portable multichannel recording systems. 
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APPENDIX C 
 

 
 

GENETIC ALGORITHM PARAMETERS 
 

 

 
 

1. Selection Types 

• Roulette Selection 

Each individual in population is assigned a probability value of being selected which is the 

proportionate of the fitness of them. Two chromosomes are then chosen randomly based on these 

probability values and produce new generation. 

 
• Tournament Selection 

It is one of the selection methods in GAs which runs a tournament among the individuals of the 

population chosen randomly from the current generation and selects the best fitting individual for 

crossover easily adjusted by changing the size of the tournament. The worst fitting individuals 

have small probability to be selected, If the size of the tournament size is large. 

 
2. Crossover Types 

• Scattered 

Scatter derives its bases from earlier strategies for setting up constraints and decision regulations. 

The aim of this type of crossover enables a solution procedure based on the elements which are 

combined to provide better individuals than one based only on the parent elements. 

 
3. Mutation 

• Uniform 

A mutation operator is used to replace the value of the chosen property with a uniform random 

value selected between the specified upper and lower bounds. This mutation operator is suitable 

for float and integer properties (genes). 

 

• Gaussian 

A mutation operator is used for adding a unit Gaussian distributed random value to the chosen 

gene. Clipping is required for the new gene if it is not between the specified value lower or upper 

bounds for that gene. This mutation is suitable for float and integer properties (genes). 
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4. Elitism 

In the generation, some individuals may have better fitness value than the other individuals. 

Therefore, in order to avoid destruction of these individuals due to the crossover and mutation 

operator, they should be passed to the new generation without any changes. Elitisit selection is 

used for choosing the best individuals and passing them to the new generation. However, the 

number of elitist selection should not be too high, otherwise the generations cycles aroud the 

elitist individuals. 

 


