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ABSTRACT

A HYBRID MOVIE RECOMMENDER USING DYNAMIC FUZZY CLUSTERING

Gürcan, Fatih

M.Sc., Department of Computer Engineering

Supervisor : Dr. Ay³enur Birtürk

January 2010, 77 pages

Recommender systems are information retrieval tools helping users in their informa-

tion seeking tasks and guiding them in a large space of possible options. Many hybrid

recommender systems are proposed so far to overcome shortcomings born of pure

content-based (PCB) and pure collaborative �ltering (PCF) systems. Most studies on

recommender systems aim to improve the accuracy and e�ciency of predictions. In

this thesis, we propose an online hybrid recommender strategy (CBCFdfc) based on

content boosted collaborative �ltering algorithm which aims to improve the prediction

accuracy and e�ciency. CBCFdfc combines content-based and collaborative character-

istics to solve problems like sparsity, new item and over-specialization. CBCFdfc uses

fuzzy clustering to keep a certain level of prediction accuracy while decreasing online

prediction time. We compare CBCFdfc with PCB and PCF according to prediction

accuracy metrics, and with CBCFonl (online CBCF without clustering) according to

online recommendation time. Test results showed that CBCFdfc performs better than

other approaches in most cases. We, also, evaluate the e�ect of user-speci�ed parame-

ters to the prediction accuracy and e�ciency. According to test results, we determine

optimal values for these parameters. In addition to experiments made on simulated

data, we also perform a user study and evaluate opinions of users about recommended
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movies. The results that are obtained in user evaluation are satisfactory. As a result,

the proposed system can be regarded as an accurate and e�cient hybrid online movie

recommender.

Keywords: hybrid recommender system, content-based systems, collaborative �ltering

systems, fuzzy clustering
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ÖZ

�ÇER�KLE DESTEKLENM�� KOOPERAT�F F�LTRELEME ALGOR�TMASINA
DAYALI MELEZ VE D�NAM�K B�R ÖNER� S�STEM�

Gürcan, Fatih

Yüksek Lisans, Bilgisayar Mühendisli§i

Tez Yöneticisi : Dr. Ay³enur Birtürk

Ocak 2010, 77 sayfa

Öneri sistemleri kullan�c�lar�n arad�klar� bilgiyi bulmalar�na yard�m eden bilgi eri³im

araçlar�d�r. Saf içerik tabanl� (PCB) ve saf i³birlikçi �ltreleme (PCF) metotlar�n�n yol

açt�§� zorluklar�n üstesinden gelebilmek için ³imdiye kadar pek çok melez sistem öner-

ilmi³tir. Öneri sistemleri hakk�nda yap�lan pek çok çal�³ma tahminlerin do§rulu§unu

ve h�z�n� artt�rmay� amaçlamaktad�r. Bu tezde, yap�lacak tahminlerin do§rulu§unu

ve sürecin verimlili§ini artt�rmay� hede�eyen, içerikle desteklenmi³ i³birlikçi �ltreleme

algoritmas�na dayal� melez ve dinamik bir öneri sistemi (CBCFdfc) önerilmektedir.

CBCFdfc içerik tabanl� ve kooperatif �ltreleme esas�na dayanan metodlar� birle³tir-

erek seyreklik, yeni ürün ve a³�r� uzmanla³ma gibi sorunlar� çözmeye çal�³maktad�r.

CBCFdfc öneri süresini k�salt�rken tahminlerin do§rulu§unu belli bir düzeyin alt�na

dü³ürmemek için bulan�k kümeleme kullanmaktad�r. Tasarlanan yakla³�m, tahmin

do§rulu§u ölçütlerine göre PCB ve PCF ile, önerme süresine göre CBCFonl (Kümeleme

kullan�lmam�³ içerikle desteklenmi³ kooperatif �ltreleme) ile kar³�la³t�r�lm�³t�r. Test

sonuçlar� CBCFdfc'nin ço§u durumda di§er yakla³�mlara göre daha iyi bir performans

gösterdi§ini ortaya koymu³tur. Kullan�c� taraf�ndan belirtilen parametrelerin öneri-

lerin do§rulu§una ve önerme h�z�na olan etkisi de§erlendirilmi³tir. Test sonuçlar�na
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göre bu parametreler için ideal aral�klar belirlenmi³tir. Simüle edilmi³ verilerle yap�lan

deneylere ek olarak, bir kullan�c� arayüzü geli³tirilerek kullan�c�lar�n kendilerine öner-

ilen �lmler hakk�ndaki görü³leri de§erlendirilmi³tir. Al�nan sonuçlar tatmin edici ç�k-

m�³t�r. Sonuç olarak geli³tirilen sistemin do§ru ve h�zl� çal�³an bir �lm öneri sistemi

olarak de§erlendirilebilece§i görülmü³tür.

Anahtar Kelimeler: melez öneri sistemi, içerik tabanl� öneri sistemleri, kooperatif �l-

trelemeye dayal� öneri sistemleri, bulan�k kümeleme
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kendisini bekleyen hayat için fazlas�yla saf ve temiz olan Elif Ceren'e...
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CHAPTER 1

INTRODUCTION

This chapter begins with a brief overview of recommender systems. Afterwards, major

challenges and shortcomings of current recommender system technology will be intro-

duced. De�nition of our research problem and major contributions of our thesis will

be given, consequently. Finally we will give the organization of thesis.

1.1 Recommender Systems Overview

The amount of opportunities and knowledge that the Internet provides is increasing

day by day. Although, the Internet supplements traditional tools to gather informa-

tion, �nding desirable information becomes more di�cult as the size and diversity of

information in the Internet increases. Recommender systems have emerged to over-

come this di�culty. Today, they are used intensively in most of the domains including

book, movie, restaurant, news and music recommendation. Several well-known web-

sites using recommender systems are Amazon, imdb, MovieLens and Yahoo! MUSIC.

Burke de�ned a recommender system as "any system that produces individualized

recommendations as output, or has the e�ect of guiding the user in a personalized way

to interesting or useful objects in a large space of possible options" [16]. Recommender

systems are basically information retrieval tools helping users in their information-

seeking tasks, however they di�er from classic information retrieval tools from several

aspects. Firstly, user pro�ling is a dynamic task in recommender systems in contrast

to other personalization systems which always dispatch same information to the users

personalized according to their pro�les. Secondly, recommendations are computed
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online with an interaction to the system instead of o�ine computation [69].

Recent recommender technology bene�ts from a wide range of techniques including

information �ltering, information retrieval, user modeling and machine learning. Rec-

ommender systems are basically composed of three components [16]:

• The information that the system necessities before the recommendation process

begins

• The information that user must provide in order to generate recommendations

• An algorithm that combines �rst two information to arrive at its suggestions

Recommender systems are classi�ed by di�erent ways according to the above counter-

parts. Most frequently used classi�cation is the one which is done according to the

recommendation technique used: Content-based �ltering (CBF) and collaborative �l-

tering (CF) [7]. CBF is mainly based on information retrieval and information �ltering

techniques. This technique assumes each user as an independent entity and tries to

uniquely characterize a user's pro�le in order to make recommendations [6, 10]. On

the other side, CF does not use any kind of content data. It tries to predict preferences

of a user, according to preferences of other similar users [53].

1.2 Major Di�culties in Recommender Systems Development

Recommender systems hardly tackle with some particular challenges. These challenges

can be caused by domain characteristics, weakness of the technique used or inadequacy

of the implementation. Some challenges occur only with CF techniques, some occur

only with CBF techniques and some occur with both of them. These challenges are

brie�y explained below:

• New Item: New item, also known as "�rst rater", problem is a weak side of CF

techniques. With CF techniques, until a new object is rated by enough number

of users, the object cannot be recommended [5]. This problem can be solved by

using hybrid techniques [59].

2



• New User: If the recommender does not know the preferences of a user, it

cannot recommend any objects to the user. Several techniques are used to over-

come this challenge. Some systems use demographics of users while some other

systems use more advanced techniques such as item popularity and item entropy

[65].

• Sparsity: In most domains, number of previously given ratings per object is

generally very low [49]. This fact causes the problem of sparsity. Sparsity is

not related only with the overall proportion of ratings, the distribution of the

given ratings also causes sparsity. Several techniques are proposed to overcome

sparsity problem. These include using demographic data of users [61], Singular

Value Decomposition (SVD) [61] and EM learning algorithms [64].

• Scalability: In big user and object spaces, making dynamic recommendations

requires large computation times. To get rid of e�ciency-concerned problems,

various model-based techniques are proposed. Model-based techniques predict

ratings of previously unrated objects according to a created model. Frequently

used model-based techniques are Bayesian networks, Clustering Algorithms and

Bayesian classi�ers [3].

• Over-specialization: In some circumstances, users may rarely receive a recom-

mendation di�ering from his previously experiences. This problem can be solved

by adding some serendipity to the prediction algorithm. Genetic algorithms in

the context of information �ltering are proposed by some researchers to overcome

over-specialization [74].

• Concept Drift: Concept drift is used for the long term changes in the attitudes

and behaviors of users while they were interacting with the recommender system.

Since the pro�le of a user is created cumulatively, the recommender system needs

to adopt itself quickly to the changes in the user's behaviors. Most popular

technique that partially overcomes this problem is giving more weight to the

newer observations [45].

• Gray Sheep: CF systems are compelled by users having extraordinary behav-

iors that do not �t to any category. Claypool et al. call this type of users as gray

sheep users [19]. CBF techniques are used to overcome this problem.
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• Synonymy: In some certain domains, objects should not be recommended if

they are too similar to previously recommended objects. For instance, in news

recommendation domain, di�erent news describing same event should not be

recommended several times. To overcome this problem some systems, such as

DailyLearner, �lter out objects those are too similar to previously recommended

objects [12].

1.3 Research Problem

A rating-based movie recommender has two fundamental tasks. Firstly, it predicts

ratings of previously unrated movies by using some technique. Secondly, according to

actual and predicted ratings, it recommends movies to users.

In a more formal sense, when a user-movie matrix is created with the actual ratings

the recommendation problem reduces to �lling up this sparse matrix by using some

technique. As it is formulated in [3], if the user space is denoted by U and movie

space is denoted by M , our user-movie matrix can be formulated as UxM . Let c0 be

the convenience of a movie m0 for the user u0, then the predictor tries to estimate c

for each m ∈ M which is not previously rated by each u ∈ U . Convenience can be

expressed as c : UxM → R. Here R is a non-negative real number within a range,

usually called as rating de�ned by the function. After prediction of ratings, we obtain a

dense user-movie matrix which reduces the recommendation problem to simple sorting.

1.4 Brief Background and Expected Contributions

The major contribution of this thesis can be considered as the enhancement of content-

boosted collaborative �ltering (CBCF) algorithm proposed by Melville et al. [52]. We

named our recommender as CBCFdfc stands for content-boosted collaborative �ltering

with dynamic fuzzy clustering. Melville et al.'s work include some de�ciencies. Firstly,

their Bayesian classi�er was only using maximum likelihood decision rule which yields

inaccurate predictions compared to average likelihood decision rule. Secondly, their

proposed algorithm was working only o�ine and did not cover online recommenda-

tion. Thirdly, in their work, the e�ect of parametric values like number of selected
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neighbors in collaborative �ltering or weight of content-based ratings to the accuracy

and e�ciency are not considered. Fourthly, they made their experiments only with

Movielens datasets so that they did not implement a user interface in order to evaluate

user preferences.

The contribution of this thesis can be considered as �ve-fold:

• Proposing a more accurate hybrid algorithm by employing additional features in

the content-based part (i.e. adjusting value, average likelihood).

• Testing e�ect of user-speci�ed parameters to the accuracy and e�ciency.

• Applying fuzzy clustering to proposed algorithm in order to enable online rec-

ommendation.

• Proposing a new initialization method for fuzzy c-means clustering to increase

accuracy and e�ciency.

• Evaluating preferences of users in addition to evaluation of provided datasets by

MovieLens.

1.5 Motivations for the Techniques Used in CBCFdfc

The motivations for our approach are listed below:

• Why a hybrid approach?

Both of CF and CBF have pluses and minuses. In our approach we created a

hybrid recommender combining strong sides of CF and CBF. By employing CBF

we overcome new item, sparsity and gray sheep problems. Similarly, by employ-

ing CF we overcome limited content analysis, concept drift, over-specialization

and synonymy problems. All of these mentioned problems are explained in Sec-

tion 1.2. Another domain-speci�c motivation for using CBF is the text-based

and utilizable dataset we work on.

• Why a model-based approach?
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Memory-based methods make accurate predictions, however they su�er from

high online computation times in big databases [3]. To be able to make recom-

mendations in acceptable times we developed a model-based approach.

• Why fuzzy clustering?

Clustering is a widely used technique in model-based method recommender sys-

tems. In our approach we use fuzzy clustering because contrary to hard clus-

tering; fuzzy clustering generates more proper clusters. Consequently, proper

clusters of users supposed to yield more accurate predictions.

1.6 Organization of Thesis

The rest of the thesis is organized as follows. In the next chapter, we give information

about works that are related to recommender systems, clustering techniques, used

evaluation metrics and evaluation techniques. In chapter 3, we describe Pure Content-

Based Filtering (PCB), Pure Collaborative Filtering (PCF), o�ine CBCF (CBCF) and

online CBCF without clustering (CBCFonl) algorithms in detail. In the same chapter,

we introduce initialization and working mechanism of our clustering algorithm fuzzy

c-means clustering and explain the interface used for user evaluation. In chapter 4, we

evaluate our proposed algorithm by comparing PCB, PCF, CBCF and CBCFonl and

provide the detailed evaluation results. In the last chapter, we conclude the thesis and

give information about the future work.
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CHAPTER 2

RELATED WORK

The previous chapter provided background about recommender systems, expressed the

research problem and listed possible contribution. The aim of this chapter is to present

characteristics of recommender systems and prior researches. The research done on

content-boosted collaborative systems will also be covered with various limitations

and possible extensions of the current technology. Additionally, researches on rating

systems, current neighborhood algorithms, model-based approaches, and evaluation

metrics will be expressed throughout the review.

There is plenty of research on recommender systems since the mid of 90's [73, 67, 37].

As the commercial importance of them increases, the number and diversity of the

researches done on this �eld also increase. Although it is a new research area, most

of the recommenders share some common characteristics [3]. Recommenders which do

not use rating-based algorithms are named as preference-based recommenders. They

do not concern about individual ratings of objects; rather they try to �nd correct

order of recommendations according to the user's preferences. There is a number of

researches done on preference-based �ltering systems in the literature [25, 20]. In this

review we will cover only rating-based recommenders. Throughout the thesis when we

say recommender; unless explicitly expressed we mean rating-based recommenders.
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2.1 Classi�cation of Recommender Systems According to Used Rec-

ommendation Technique

Recommenders are categorized into �ve groups according to the recommendation tech-

nique they use. These techniques are: Demographic techniques, utility-based tech-

niques, knowledge-base techniques, content-based techniques and collaborative tech-

niques. Burke summarized these techniques in Table 2.1 [16]. In Table 2.1, I is the

set of items over which recommendations might be made, U is the set of users whose

preferences are known, u is the user for whom recommendations need to be generated,

and i is some item for which we would like to predict u's preference.

Even if, all of these techniques have distinctive advantages, most of recent recom-

menders use content-based �ltering or collaborative �ltering techniques.

Table 2.1: Recommendation techniques

Technique Background Input Process

Demographic Demographic informa-
tion about U and their
ratings of items in I.

Demographic informa-
tion about u.

Identify users that are de-
mographically similar to u,
and extrapolate from their
ratings of i.

Utility-based Features of items in I. A utility function over
items in I that describes
preferences of u.

Apply the function to the
items and determine rank
of i.

Knowledge-
based

Features of items in
I. Knowledge of how
these items meet user
needs.

A description of needs
or interests of u.

Infer a match between i
and need of u.

Content-based Features of items in I. Ratings from u of items
in I.

Generate a classi�er that
�ts rating behavior of u
and use it on i.

Collaborative Ratings from U of
items in I.

Ratings from u of items
in I.

Identify users in U similar
to u, and extrapolate from
their ratings of i.

2.1.1 Demographic Techniques

Demographic techniques use simple demographics in order to classify users [62, 54].

Major advantage of demographic systems against CF systems is the ability of recom-

mendation in the absence of data provided by other users. In other words, demographic

techniques do not su�er from sparsity-related problems. However, demographic tech-
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niques are put under a strain because utilizing demographic data is di�cult task for

some domains. Demographic techniques are used in many commercial systems addi-

tional to CF techniques [46, 41, 86].

2.1.2 Utility-based Techniques

The idea of utility-based techniques is based on creating a utility function and calculat-

ing the utility of each object according to it. Since, utility-based systems do not base

their recommendations on accumulated statistical evidence, they do not confront spar-

sity problem. There are several studies on utility-based systems including Tête-à-Tête

and PersonaLogic [50].

2.1.3 Knowledge-based Techniques

By using knowledge-based techniques, recommenders suggest items based on users'

preferences. Knowledge-based techniques use di�erent forms of knowledge structures

including declarative knowledge, procedural knowledge and structural knowledge. Se-

mantic networks, classi�cation schemes and thesauri are representative examples of

knowledge-based techniques. Knowledge-based techniques have a certain drawback;

the diversity of their recommendations is limited with their knowledge-base. En-

trée and Google are representative examples of these systems which use their own

knowledge-base for recommendation. Entrée uses cuisine knowledge to deduce simi-

larity between menus [16], where Google uses popularity information of the web pages

[15].

2.1.4 Content-Based Filtering Techniques

Foundations of content-based �ltering techniques are found in the studies about in-

formation �ltering and information retrieval [10]. Most of recent CBF systems use

machine learning instead of traditional information retrieval techniques [47, 26]. Ma-

chine learning techniques which are frequently used for content-analysis are clustering

[43], decision trees [57] and arti�cial neural networks [62].
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CBF techniques, basically, use content data of users and objects. User pro�le of each

user is created in accordance with the results of content analysis [54, 47]. Predictions

are made according to these user pro�les. Nkweteyim summarizes this process for CBF

systems [58]:

Content-based recommenders typically represent documents similarly

to IR techniques, for example, making use of indexing and the vector space

model to represent documents and the user. The model represents objects

as unique �xed-length vectors of features, usually words of a document,

weighted by some criteria. Recommendations are made by comparing the

user pro�le with documents present in the system, and only those docu-

ments that are very similar to the user pro�le are recommended. This is

analogous to comparing a user query with a document collection in a search

task, and returning the documents that are most similar to the query, as

the result of the search.

Because of the di�culty of utilization of content data in some domains (e.g. multimedia

environments), CBF systems generally perform on only textual data [3]. The content

in text-based domains is generally described by keywords. These keywords, also known

as features of objects, are used to build up user pro�les [19]. Features of an object may

be director of a movie, author of a book or category of a song. For several domains,

such as book, movie, academic article and music, we can easily �nd text-based datasets.

However, for many domains �nding text-based datasets is a di�cult task.

CBF techniques have some advantages over other recommendation techniques. Firstly,

since they based their recommendations on content data of objects, they do not con-

front sparsity-related problems. Secondly, if a user rated high number of objects, he

will receive more accurate and quali�ed recommendations due to its improved pro�le

[58]. On the other side, CBF techniques have some challenges also. A major challenge

about CBF is the �rst user problem. To be able to create a user's pro�le, CBF needs

its own previously given ratings. CBF, also, su�ers from synonymy problem in some

domains, such as news recommendation. In these speci�c domains, objects which are

too similar to previously recommended objects should not be recommended. Lastly,

for some speci�c domains implementing a convenient analyzer may be problematic.
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As it is known, the accuracy of recommendations in CBF systems is relevant with the

�ltering capability of the employed content-based analyzer.

There are plenty of researches on CBF in the literature. One of the early researches

on this area is InfoFinder which creates the user pro�le according to the e-mails sent

by the user and noti�es the user if there is something interesting for the user [17].

NewsWeeder is a content-based recommender which �lters the net news according to

previously given ratings. NewsWeeder uses a learning algorithm based on Minimum

Description Length (MDL) principle [47]. DailyLearner, a news recommender proposed

by Billsus et al., selects recommendation technique that can give the recommendation

with the higher level of accuracy [12].

2.1.5 Collaborative Filtering Recommender Systems

With collaborative �ltering (CF) techniques, recommendation of an object is based

on previously given ratings to that object by other users. Practically, CF techniques

provide a basis for recommendation of objects, regardless of whether their content

can be represented in a way that is useful for recommendation. In contrary to CBF,

CF does not run into some problems such as limited content analysis, synonymy,

over-specialization and concept drift. On the other hand, they have some challenges

including new item, sparsity, scalability and gray sheep. Neighborhood-based CF algo-

rithm is the most frequently used CF algorithm. Mellville explains working mechanism

of neighborhood-based CF in three steps [52]:

1. By using a similarity measuring method weight all users with respect to similarity

with the active user.

2. Select n users that have the highest similarity with the active user. These selected

users form the neighborhood of the active user.

3. Compute a prediction from a weighted combination of the selected neighbors'

ratings.

Weighting Users or Objects
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Similarity computation between users or objects is a critical step in CF. For item-

based CF algorithms, the idea of the similarity computation between objects is �rst to

work on the users who have rated both of these items and then to apply a similarity

computation to determine the similarity between the two co-rated objects of the users.

For a user-based CF algorithm, the process is similar. [77].

There are many di�erent methods to compute similarity between users or items such

as correlation-based similarity, vector cosine-based similarity and entropy based un-

certainty [73, 68]. Correlation-based similarity methods are frequently used in recent

CF systems. Popular variations of them are Pearson correlation, Spearman correlation

and Kendall's correlation. In his research, Breese gives a comparison between these

measures [14].

Selecting the Neighborhood

There are two common approaches to de�ne the neighborhood of a user: Selecting

top-N-neighbors and using a similarity threshold. In systems using top-N-neighbors

technique; each user has same number of neighbors, regardless of its similarity to the

users in its neighborhood. In systems using similarity threshold, two users are regarded

as neighbors if their similarity value is bigger than a speci�ed threshold. In addition,

there are also studies in the literature combining these two approaches [28].

Computing the Prediction

After similarity weighting and neighborhood selection, predicted ratings are computed

for each previously unrated object. Various computation approaches exist including

simple average, weighted average and mean-centered weighted average (a.k.a. adjusted

weighted average) [35].

Collaborative Filtering was �rst presented in Tapestry which is based on the idea of

manually �nding similar users to the active user [31]. In Tapestry, users are able to

like or dislike an object which is regarded as a binary rating. In accordance with

these binary ratings, objects are recommended to similar users. Since the emergence

of Tapestry, extended research made on collaborative �ltering. GroupLens [44], Video

Recommender [37], and Ringo [73] were the �rst CF systems automating recommen-

dation contrary to manuely working Tapestry. In the process of time, collaborative
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�ltering is performed on di�erent domains. PHOAKS was created for helping people to

�nd concerning information on the World Wide Web [80] and Jester was designed for

recommendation of jokes [32]. Fire�y was used for movie and music recommendation

�rst, but now it covers many domains including newsgroups, books and web pages.

GroupLens is an open-source movie recommender which also has been evolved since

mid-90s. For the time it was �rst proposed it was able to use only explicit ratings,

however now it can also collect implicit ratings [67].

2.1.6 Hybrid Recommender Systems

As it is stated earlier, the term hybrid is used for systems those combine CBF and

CF techniques. Burke categorizes hybrid recommenders according to their combina-

tion methods, these categories are: Weighted, switching, mixed, feature combination,

cascade, feature augmentation and meta-level [16]. The description of each category

is given in Table 2.2.

Table 2.2: Hybridization methods

Hybridization method Description

Weighted The scores (or votes) of several recommendation techniques are com-
bined together to produce a single recommendation.

Switching The system switches between recommendation techniques depending
on the current situation.

Mixed Recommendations from several di�erent recommenders are presented
at the same time.

Feature combination Features from di�erent recommendation data sources are thrown to-
gether into a single recommendation algorithm.

Cascade One recommender re�nes the recommendations given by another.

Feature augmentation Output from one technique is used as an input feature to another.

Meta-level The model learned by one recommender is used as input to another.

Besides, Tuzhilin categorizes hybrid systems into four groups according to their cre-

ation procedures [3]. The procedures followed in the creation of hybrid systems are

given below.

1. Creating collaborative and content-based recommenders separately and then

combining their predictions

2. Adding some content-based characteristics to a collaborative approach
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3. Adding some collaborative characteristics to a content-based approach

4. Creating a complete recommender that combine content-based and collaborative

characteristics

Systems categorized in the �rst group have di�erent combination methods of sepa-

rate recommenders' outputs. Some of them uses an immutable combination formula

[19]; while some other change the weights in combination according to the accuracy

of predicted ratings of CF and CBF [61]. Adding some CBF characteristics to CF

systems is a popular trend in recent systems [7, 52]. These systems are also known as

collaboration via content systems. Limited number of recent recommenders fall into

third category. [76] is a characteristic example for these systems which is implemented

by using dimensionality reduction techniques on user pro�les. Recommenders falling

into fourth category unify characteristics of CF and CBF techniques and widely used

today [4, 64, 21].

Most of the recent recommenders have hybrid characteristics. Fab is a web based rec-

ommender combining CF and CBF techniques. It uses collection and selection agents

to �nd relevant documents for a user. Relevant documents are found by collection

agents and then presented to users to be rated. Eventually, every given rating changes

behaviors of selection agents dynamically [7]. Basu et.al proposed a hybrid recom-

mender based on inductive learning. Their system recommends movies by using both

user preferences and ratings [8]. [71] and [9] proposed hybrid recommenders for TV

viewing domain named ClixSmart and TV Scout, respectively. Melville proposed a

content-boosted hybrid recommender which performs CF on the predicted ratings of

pure CBF recommender. [52].

2.2 Classi�cation of Recommender Systems using Collaborative Fil-

tering Techniques according to Method Used

As it is stated in [14], CF algorithms can be categorized into two groups: Memory-

based (a.k.a. heuristic-based) algorithms and model-based algorithms. Memory-based

algorithms use entire user and object space for predictions. On the other hand, model-

based algorithms use a learned model representing all users and/or objects in order to
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make predictions according to learned model. Many researches are done on memory-

based algorithms [14, 67, 73] and model-based algorithms [12, 31, 38, 60] in the litera-

ture. In latter sections, theoretical background about and representative examples of

these algorithms will be covered.

2.2.1 Collaborative Filtering using Memory-Based Algorithms

Memory-based algorithms use the entire collection of users or objects to make predic-

tions. The working mechanism of these algorithms is given in Section 2.1.5. Memory-

based algorithms predict ratings accurately in many applications, however in dynamic

systems memory-based algorithms su�er from high computation times. In order to

overcome ine�ciency in memory-based algorithms, model-based algorithms are pro-

posed for dynamic systems.

In order to improve accuracy of memory-based CF algorithms several techniques are

proposed so far. These techniques include default voting, case ampli�cation, voting

by category, similarity updating and prediction modulation. In default voting, to

overcome sparsity we give default negative or neutral ratings to previously unrated

objects. As a consequence comparisons between users can be made easier, due to the

increase in the number of common-rated objects [75]. In case ampli�cation, weights

of most similar users to the actual user are ampli�ed to 1, so that their contributions

in the �nal predictions increase [14]. Voting by category is proposed by Gokiso-cho

et al. to overcome sparsity problem. With voting by category, user-object ratings

matrix is divided into clusters. By transferring ratings among these clusters each

object is assigned to one of the clusters. Jeong et al. proposed similarity updating

and prediction modulation. Their proposed method uses an iterative message passing

procedure to minimize the predictive accuracy error and evenly distribute predicted

ratings over true rating scales [40].

2.2.2 Collaborative Filtering using Model-Based Algorithms

Model-based algorithms are especially used for dynamic systems running on large

databases. They learn a model from the ratings space in order to use this model
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to make predictions. Notable model-based algorithms proposed so far are: Neural

networks [39], Latent semantic indexing [30], clustering [48] and Bayesian networks

[21].

In Neural Network models, CF is seen as a classi�cation task. This model enables clas-

si�cation of previously unrated objects to speci�ed classes. Pazzani proposed a system

based on neural network model [11]. Latent Semantic Indexing is an information re-

trieval method using Singular Value Decomposition (SVD) to identify patterns in the

relationships between concepts in an unstructured collection of text. Latent Semantic

Indexing is used in information discovery, text summarization, online customer support

and spam �ltering [85]. Bayesian Network models share some common characteristics

with Neural Network models. A Bayesian network model is a probabilistic graphical

model that represents a set of random variables and their conditional independencies

via a directed acyclic graph [83]. Bayesian network models are used in many applica-

tions including document classi�cation, information retrieval, data fusion and decision

support. Recommender systems, described above are summarized by Adomavicius et

al. [3].
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Table 2.3: Classi�cation of recommender systems research

Recommendation
Approach

Memory-based Model-based

Content-based Commonly used techniques: Infor-
mation retrieval, Clustering Repre-
sentative research examples: Lang
1995, Balabanovic and Shoham 1997,
Pazzani and Billsus 1997

Commonly used techniques:
Bayesian classi�ers, Clustering,
Decision trees, Arti�cial neural
networks
Representative research examples:
Pazzani and Billsus 1997, Mooney et
al. 1998, Mooney and Roy 1999, Bill-
sus and Pazzani 2000, Zhang et al.
2002

Collaborative Commonly used techniques: Nearest
neighbor (cosine, correlation), Clus-
tering, Graph theory
Representative research examples:
Resnick et al. 1994, Hill et al. 1995,
Shardanand and Maes 1995, Breese
et al. 1998, Nakamura and Abe
1998, Aggarwal et al. 1999, Delgado
and Ishii 1999, Pennock and Horwitz
1999, Sarwar et al. 2001

Commonly used techniques:
Bayesian networks, Clustering,
Arti�cial neural networks, Linear
regression, Probablistic models
Representative research examples:
Breese et al. 1998, Chien and George
1999, Pennock and Horwitz 1999,
Goldberg et al. 2001, Shani et al.
2002, Marlin 2003, Si and Jin 2003

Hybrid Commonly used techniques: Lin-
ear combination of predicted ratings,
Various voting schemes, Incorporat-
ing one component as a part of the
heuristic for the other
Representative research examples:
Claypool et al. 1999, Good et al.
1999, Pazzani 1999, Tran and Cohen
2000, Melville et al. 2002

Commonly used techniques: Incor-
porating one component as a part of
the model for the other, Building one
unifying model
Representative research examples:
Basu et al. 1998, Condli� et al. 1999,
Soboro� and Nicholas 1999, Ansari
et al. 2000, Popescul et al. 2001,
Schein et al. 2002

Clustering is a very popular approach in today's model-based applications. Below we

give a summary of clustering methods.

2.2.2.1 Clustering Methods

Clustering methods group users or objects with respect to their features. Clustering

methods are categorized into �ve groups: Iterative methods, hierarchical methods,

density-based methods, grid-based methods and model-based methods [58]

• Iterative Clustering Methods Iterative clustering methods create an initial

cluster as the �rst step. Afterwards by moving objects from one cluster to another

iteratively, all objects are distributed into corresponding clusters. For iterative

clustering methods, initial speci�cation of the number of clusters is necessary
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which is a di�cult task for some datasets. K-means or fuzzy c-means clustering

clustering are representative examples of iterative clustering methods.

• Hierarchical Clustering Methods Hierarchical clustering methods are based

on the idea of decomposition of datasets. Two types of hierarchical clustering

methods exist: Agglomerative methods and divisive methods. Agglomerative

methods distribute every object to a separate cluster �rst, and then iteratively

merge similar objects to same clusters. On the other side, divisive methods start

from one cluster containing all objects, and then iteratively split initial cluster

until a terminating condition met. Hierarchical clustering methods su�er from

di�culty of reassignment of an object to a cluster after it is merged to a di�erent

cluster.

• Density-based Clustering Methods Density-based clustering methods are

generally used in spatial databases. The clusters are represented as dense regions

of data and boundaries between clusters are represented as sparse regions.

• Grid-based Clustering Methods Grid-based clustering methods create a

number of cells and quantize the data space into these cells. Since clustering time

depends on the number of cells rather than the number of data points, grid-based

methods are computationally more e�cient than other clustering methods.

• Model-based Clustering Methods Two types of model-based clustering meth-

ods exist: Statistical clustering methods and neural network clustering methods.

Statistical clustering methods use probability theory to determine corresponding

cluster of an object. Neural network clustering methods use a prototype vector

for representation of each cluster and place each object to most suitable cluster

with regard to this prototype vector.

Below we give the description and working mechanism of several popular clustering

algorithms which can be regarded as representative examples for clustering algorithms.

K-means is an iterative clustering algorithm proposed by Aldendefer and Massart.

In k-means clustering algorithm objects are clustered according to previously given

ratings. Similarly, users are clustered according to the ratings they gave before. K-

means clustering is a nondeterministic algorithm which means �nal status of clusters is
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related with the initial assignment of users/objects to clusters. Because of that there

is no guarantee for k-means to converge an optimal �nal set of clusters. However, since

computational cost of k-means clustering algorithm is low, it is convenient to run this

algorithm several times to get a better �nal set of clusters. Nested clustering is also

possible by K-means clustering which provides a deeper categorization of objects.

K-means clustering is a hard clustering algorithm which means every user or object

is member of exactly one cluster. Fuzzy version of k-means clustering algorithm is

�rst proposed by Dunn which is called fuzzy c-means clustering [27]. In fuzzy c-

means each object has a degree of membership to clusters. The membership values

of users/objects to the clusters are inversely proportional with their distance to the

centers of the clusters. In other words, membership values of users near the center of

a cluster are bigger than membership values of users on the edge of a cluster. In fuzzy

c-means clustering, center of each cluster is hypothetical in contrast to some other

methods using actual users/objects as cluster centroids. Fuzzy c-means clustering is

used in many applications including [13, 89].

Suryavanshi proposed a clustering algorithm named relational fuzzy subtractive clus-

tering (RSFC) [78]. Main advantage of RSFC is its e�ciency. RSFC determines num-

ber of clusters and membership threshold automatically according to given dataset.

[53] uses RSFC in its hybrid recommender.

Quality Threshold (QT) clustering algorithm is used especially for gene clustering. In

contrast to k-means or fuzzy c-means, QT clustering is a deterministic algorithm. In

other words, for identical datasets QT clustering algorithm always generates same set

of clusters. Similar to RSFC, QT clustering determines number of clusters and mem-

bership threshold automatically. As a further explanation, de�nition of QT algorithm

is given below [84].

1. The user chooses a maximum diameter for clusters.

2. System builds a candidate cluster for each point by including the closest point,

the next closest, and so on, until the diameter of the cluster surpasses the thresh-

old.

3. System saves the candidate cluster having most points as the �rst true cluster,
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and removes all points in the cluster from further consideration.

4. System recurses with the reduced set of points.

As it can be understood from the above algorithm, QT clustering algorithm is compu-

tationally more ine�cient than K-means clustering.

Clustering methods are used in many applications so far. In [81], Ungar et al. analyzed

accuracy and e�ciency of clustering methods. In [53], Mojtaba et al. used a fuzzy

clustering algorithm and expressed its advantages over hard clustering algorithms. In

[14], Breese evaluated the e�ciency of Bayesian clustering methods.

2.3 Rating Systems

Recommender systems use two types of ratings; implicit rating and explicit rating.

Recommenders using explicit rating information allow users to give ratings in spec-

i�ed scales. On the other side, recommenders using implicit ratings derive rating

information from user actions.

Explicit rating can be acquired in several ways. Simplest type is unary rating. In unary

rating, user marks objects those he liked, rest of the objects stays unknown. Di�erently

from unary rating, recommenders using binary rating enable a dislike option for users.

Rating on a scale is most popular rating system used in recent recommenders.

Recommenders using implicit rating acquire information from actions of the users

in order to create user pro�les [33]. In most of these systems reading time spent

on a page is the main indicator for the interests of a user [42]. Although reading

time is an essential indicator for implicit rating, using reading time directly without

normalizing may cause some shortcomings. By normalizing we mean taking di�erence

among reading speeds of users and length of articles into consideration. The number

of mouse clicks and the amount of scrolling on the page are also valuable indicators.

As a representative example Nichol's research can be given. In his research, Nichols

proposed a scale to evaluate the relative signi�cance of di�erent types of actions.

Various actions of users are quanti�ed. These quanti�ed values of actions change

pro�le of the user. For instance, purchase of an object is the most signi�cant positive
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action; followed by glimpse of an object. Also, when the user stops browsing the

system, then system assumes the desired object has been found and a positive rating

is recorded for the �nal object, also. [55].

Exceptionally, in some suitable domains multi-criteria rating is used. Adomavicius et

al. incorporates multi-criteria rating information for restaurant recommendation in

their research [2].

2.4 Metrics Used in Recommender Systems

2.4.1 Coverage Metrics

Coverage can be de�ned as the measure of the domain of objects in the system over

which the systems can make recommendations. Di�erent metrics are proposed on the

coverage problem. The number of items for which predictions can be formed as a

percentage of the total number of items, is the most prevalent measure of coverage

and named as prediction coverage. Catalog coverage is a di�erent measure from the

prediction coverage which is de�ned as the percentage of the items in the catalog that

are ever recommended to users. There is usually an inverse proportion between predic-

tion accuracy and prediction coverage [33]. An ideal system should take the trade-o�

between accuracy and coverage into account and optimize the system according to user

needs.

In [36], Herlocker et al. expressed the characteristics of an ideal coverage metric:

• It should measure both prediction coverage and catalog coverage

• For prediction coverage it should more heavily weight items for which the user

is likely to want predictions

• There should be a way to combine the coverage measure with accuracy measures

to yield an overall "practical accuracy" measure for the recommender system.
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2.4.2 Accuracy Metrics

Accuracy can be de�ned as the closeness of agreement between a measurement result

and a true value. For recommender systems, accuracy metrics measure how close a

recommender system's predicted ranking of objects for a user di�ers from the user's

true ranking of preference [36]. First experimental evaluation on accuracy metrics

is done by Resnick [67]. Since then various accuracy metrics are proposed. Accuracy

metrics can be categorized into three groups: Predictive accuracy metrics, classi�cation

accuracy metrics, and rank accuracy metrics.

2.4.2.1 Predictive Accuracy Metrics

Predictive Accuracy Metrics measure distance between actual ratings and predicted

ratings. Mean Absolute Error (MAE) is the most widely used predictive accuracy

metric because of easiness of computation and time e�ciency. On the other hand,

MAE is not suitable for some domains in which the granularity of true preferences is

small. So far, MAE was used to evaluate the accuracy of predicted ratings for many

recommender systems including [14, 73, 36]. Other predictive accuracy metrics such

as Mean Squared Error (MSE), Root Mean Squared Error (RMSE) and Normalized

Mean Absolute Error (NMAE) are also frequently used in the evaluation of recent

recommenders.

2.4.2.2 Classi�cation Accuracy Metrics

Classi�cation Accuracy Metrics measure the frequency with which a recommendation

engine makes correct or incorrect decisions about the usefulness of an object. ROC

curve-based metrics, ad-hoc classi�cation metrics and half-life utility metrics are the

most common used ones. ROC curve area metric is the most popular classi�cation

accuracy metric. Broadly speaking, the ROC area metric can be de�ned as the measure

of the diagnostic power of a �ltering system. As a representative example, we list the

pluses and minuses of it based on Herlocker's work [36].

Pros of ROC area metric are:
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• It provides a single number representing the overall performance of an informa-

tion �ltering system

• It is developed from solid statistical decision theory designed for measuring the

performance of tasks such as those that a recommender system performs

• It covers the performance of the system over all di�erent recommendation list

lengths

Cons of ROC area metric are:

• A large set of potentially relevant items is needed for each query

• For some tasks, users are only interested in performance at one setting, not all

possible settings

• Equally distant swaps in rankings have the same e�ect no matter where in the

ranking they occur

• It may need a large number of data points to ensure good statistical power for

di�erentiating between two areas

2.4.2.3 Rank Accuracy Metrics

Rank accuracy metrics compare order of the recommended object list with the order

of user's actual object list. In contrast to predictive accuracy metrics, rank accuracy

metrics do not deal with predicted ratings of objects. Frequently used rank accuracy

metrics in the literature are: Pearson correlation, Spearman correlation, Kendall's

correlation and half-life utility metrics.

2.5 Datasets for Recommender Systems

In some domains there are plenty of datasets (movie, book, article etc.); on the other

hand in some domains �nding suitable dataset is a challenging work. The requirements

for a dataset vary according to the domain and design needs of the application. Several

questions arise for a suitable dataset at this point. According to which metrics, the
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evaluation is performed? Does the system make only o�-line tests, or does it require

on-line tests? Can evaluation be performed on simulated data, if a dataset is not

currently available? Answers of previous questions point out suitable dataset for an

application.

Herlocker categorized features of datasets into three groups: Domain features, inherent

features and sample features. Characteristics of these features are listed below [36]:

Domain features of interest include:

• The content topic being recommended and the associated context in

which recommendation takes place

• The user tasks supported by the recommender

• The novelty need

• The cost/bene�t ratio of false/true positives/negatives

• The granularity of true user preferences

Inherent features include several features about ratings:

• Whether ratings are explicit, implicit, or both

• The scale on which items are rated

• The dimensions of rating

• The presence or absence of a timestamp on ratings

• The availability of user demographic information or item content in-

formation

• The biases involved in data collection

Sample features include properties commonly considered in evaluating

a data set:

• The density of the ratings set overall, sometimes measured as the av-

erage percentage of items that have been rated per user; since many

datasets have uneven popularity distributions, density may be arti�-

cially manipulated by including or excluding items

• The number or density of ratings from the users for whom recommen-

dations are being made, which represents the experience of the user
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in the system at the time of recommendation; ratings from users with

signi�cant experience can be withheld to simulate the condition when

they were new users; and

• The general size and distribution properties of the data set - some

data sets have more items than users, though most data sets have

many more users than items.

In movie domain, one of the most widely used datasets is EachMovie dataset which

is created for HP/Compaq Research. EachMovie was containing 2.811.983 ratings

entered for 1628 movies. It was also containing timestamps for ratings and basic

demographics about users. It was used for many applications including Canny's factor

analysis algorithm [18], Domingos and Richardson's algorithm for computing network

value [24], and Pennock's research on recommending through personality diagnosis

algorithms [63]. Because of commercial reasons, EachMovie is not publicly available

since 2004. MovieLens is based on EachMovie and used for most of recent movie

recommendation systems [52, 66]. Jester dataset is created for joke recommendation

and it has some additional features in addition to current datasets. It provides a

complete training set that are rated by every single user, providing complete data on

any subset of objects [31]. There are also datasets created for live systems. Schafer

analyzed online user experiences with MetaLens [70], Rashid and Herlocker evaluated

both quality of resulting predictions and subjective user experience in [?, Herlocker04,

Rashid02]

2.6 User Evaluation Techniques

User evaluation techniques di�er according to how data collection is performed. In

some systems, ideas of users are explicitly asked. On the other side, some systems im-

plicitly observe users behaviors. Circumstances in which the evaluations are made, also

a�ect the success of the evaluation. Some researchers prefer to make their evaluations

under controlled conditions which are called laboratory studies. Some other, espe-

cially working on context-sensitive domains, prefer �eld studies. A major distinction

between laboratory studies and �eld studies is the duration of the experimentation.

Laboratory studies are generally short-term studies for which the system cannot easily
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reach a stable level; however �eld studies are experimented in long-term. Another

cause of categorization within user evaluation techniques is the criterion of a success-

ful recommendation. Some systems assume a recommendation as successful if the user

purchases a recommended object. Some other systems take implicit data into consid-

eration such as time spent on page or number of page view of the relevant object [36].

In his �eld study, Dahlen showed importance of user contribution to and participation

in recommender systems in long term [22]. Herlocker evaluated the e�ect of objects'

explanations to users' behaviors. He revealed that explanations have a signi�cant e�ect

on users' behaviors [36].
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CHAPTER 3

MAIN WORK

3.1 Methodology

Our system, basically, aims to predict ratings of previously unrated movies for a

sparse user-movie matrix. We develop several approaches. These approaches are pure

content-based �ltering (PCB), pure collaborative �ltering (PCF) and content-boosted

collaborative �ltering (CBCF). All of these approaches work o�ine and incapable of

online recommendation.

PCB bases its prediction process on movie content data and active user's pro�le. To

gather information from movie content data and active user's previously given ratings

PCB uses naïve Bayesian classi�er (NBC). We use two decision rules in NBC named

as maximum-likelihood and average-likelihood. Theoretical background and design

details of PCB are explained in Section 3.2.

PCF bases its prediction process on previously given ratings to a movie by other users.

Our PCF uses similarity-based neighborhood algorithm and as similarity measure it

uses Pearson correlation coe�cient. Details about PCF are covered in Section 3.3.

CBCF bases its prediction process on the output ratings of PCB (i.e. pseudo-ratings).

CBCF performs same neighborhood-based collaborative �ltering algorithm with PCF.

After applying CF, di�erently from PCF, it combines predicted ratings of its CF part

with pseudo-ratings. Design details of CBCF are explained in Section 3.4.

Clustering is applied to the �nal predictions of CBCF for scalability. As the clustering

algorithm we use fuzzy c-means clustering. Since it is a fuzzy algorithm, each user
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in the user space has memberships to a number of clusters instead of a single cluster.

Fuzzy c-means clustering algorithm is an iterative algorithm trying to converge an

optimal grouping of users. In order to minimize o�-line cluster initialization time and

uniformly distribute users, we propose a new initialization method. Fuzzy clustering

algorithm and its initialization method used in our system are explained in Section

3.5.

In order to evaluate user opinions about recommended movies we implemented a graph-

ical user interface. Our proposed interface asks users to rate at least 15 movies than

according to these ratings it displays a recommendation list to users. Eventually, for

each recommended movie, it asks the opinion of the user for an evaluation. Design

and working mechanism of the user interface are explained in Section 3.6.

The problem space we deal with can be formulated as a matrix of users versus movies.

In this matrix, each cell represents a user's rating on a speci�c movie. Under this

formulation, our research problem reduces to predicting values for empty cells of the

original matrix and listing the ones having highest predicted ratings. Original matrix

is supposed to be very sparse, because each user is supposed to rate a small percentage

of movies. We use a single numeric rating for each movie with high values representing

interest and low values representing disinterest. We employ explicit user ratings on a

scale of 1 to 5. Each approach(i.e. PCB, PCF, CBCF, CBCFonl and CBCFdfc) tries

to �ll the matrix by its own prediction method. Throughout the thesis, when we say

actual matrix we mean the original matrix composed of actual ratings. Also, when we

say pseudo-matrix we mean the user-movie matrix which is the output of PCB.

3.2 Pure Content-Based Filtering Approach (PCB)

PCB analyzes movie descriptions to identify movies that are of particular interest to

the user. Although using demographic data of users is possible, PCB only uses movie

content data. Firstly, we discuss movie representations. Next, we explain what the

user pro�le means for our system. We conclude with the theoretical background and

design of the learning model we used. General overview and user-speci�ed parameters

of PCB are given in Figure 3.1

28



Figure 3.1: General overview of PCB

Representation of Movies

Movies those can be recommended to the user are stored in text �les. Table 4.1 shows

a sample of movie content �le with rows describing �ve movies with IDs from 14 to 18.

Columns indicate the attributes of movies. Each portion divided by a separator (|)

corresponds to an attribute. These attributes are ID, name, release date, web address

and genre of a movie, respectively.

Table 3.1: Sample movie content data

ID Name Release
Date

URL Genre

14 Postino,Il 01-
Jan-
1994

us.imdb.com/M/title-
exact?Postino(1994)

0|0|0|0|0|0|0|0|1|0|0|0|0|0|1|0|0|0|0

15 MrHolland's
Opus

29-
Jan-
1996

http://us.imdb.com/M/title-
exact?Mr.Holland's Opus(1995)

0|0|0|0|0|0|0|0|1|0|0|0|0|0|0|0|0|0|0|

16 French
Twist
(Gazon
maudit)

01-
Jan-
1995

http://us.imdb.com/M/title-
exact?Gazonmaudit(1995)

0|0|0|0|0|1|0|0|0|0|0|0|0|0|1|0|0|0|0

17 From Dusk
Till Dawn

05-
Feb-
1996

http://us.imdb.com/M/title-
exact?FromDuskTillDawn(1996)

0|1|0|0|0|1|1|0|0|0|0|1|0|0|0|0|1|0|0

18 White Bal-
loon, The

01-
Jan-
1995

http://us.imdb.com/M/title-
exact?BadkonakeSe�d(1995)

0|0|0|0|0|0|0|0|1|0|0|0|0|0|0|0|0|0|0

We use a movie's ID to uniquely identify the movie and genre information to classify the

movies. Genre information is composed of 19 binary values each indicating membership

of a movie to a genre. Details about genre information will be covered in Section 4.1

Learning a User Model

29



In our design we create a model of the user's preferences which is called classi�cation

learning. Our classi�cation learning algorithm learns a function that models each

user's interests. Given a previously unrated movie and the user model, this function

predicts a numeric value corresponding to the degree of user's interest. We select a

subset of the terms in movie content data as attributes of a movie (i.e. ID and genre

information).

The algorithm we used to learn a user pro�le is naïve Bayes. Researchers stated

naïve Bayes as an exceptionally well-performing text classi�cation algorithm and have

frequently adopted this algorithm in recent work [56, 51]. In naïve Bayes, learned

pro�le is used to predict previously unrated movies. As it is explained before, naïve

Bayesian classi�er (NBC) is a simple probabilistic classi�er based on Baye's Theorem.

According to [82], Baye's Theorem expresses the posterior (i.e. after evidence E is

observed) probability of a hypothesis H in terms of the prior probabilities of H and E,

and the probability of E given H.

In its simplest form, Bayes' Theorem relates conditional and marginal probabilities of

events A and B, where B has a non-zero probability.

P (A|B) =
P (B|A)P (A)

P (B)
(3.1)

In the above equality;

P (A) is the marginal probability of A. It is marginal in the sense that it does not take

into account any information about B.

P (A|B) is the conditional probability of A, given B. It is derived from the speci�ed

value of B.

P (B|A) is the conditional probability of B given A.

P (B) is the marginal probability of B, and acts as a normalizing constant.

Bayes' theorem gives a mathematical representation of how the conditional probability

of event A given B is related to the converse conditional probability of B given A [82].
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For PCB we �rstly create following probabilistic model:

p(C|F1, . . . , F19)

Above, C is a class variable that represents rating taking an integer value between 1

and 5. Movies are represented by a vector of features F1, F2, . . . , F19 in our model.

Fi is a feature variable of a movie through 1 to 19. Features are binary values indi-

cating membership of a movie to speci�ed genres. We assume that all attributes are

independent from each other and a movie can have membership to several genres.

We reformulate the model to make it more tractable. Using Bayes' theorem, we split

this posterior distribution into a prior distribution and a likelihood:

p(C|F1, . . . , F19) =
p(C)p(F1, . . . , F19|C)

p(F1, . . . , F19)
(3.2)

Equation 3.2 can also be written as

posterior =
prior ∗ likelihood

evidence
(3.3)

In our model for a user, prior probability for rating i corresponds:

p(Ci) = (number of given is) / (total number of given ratings)

Likelihood of a movie m = {f1, . . . , f19} to rating i corresponds:

p(m|ck) =
19∏
j=1

frequencykj
classk

(3.4)

In the above equation, frequencykj stands for number of given rating ks to movies

belonging to genre j and classk stands for number of given rating ks of an active user.

Since the denominator does not depend on C and the values of the features Fi are

given, we are only interested in the numerator of that fraction. If necessary operations

are done the numerator can be decomposed as:

p(C)
19∏
i=1

p(Fi|C) = p(C)p(F1|C)p(F2|C) . . . p(F19|C) (3.5)

As Equation 3.5 states, interaction between features in the same class is ignored.

Although this ignorance causes false classi�cations, it is experimentally proved that
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naïve Bayesian classi�er performs very well in spite of these false classi�cations [23].

Another way of saying this is, naive Bayesian classi�er can be a good ranker, even if

it is a poor probability estimator [29].

NBC is performed for each user independently and combines proposed probability

model with a decision rule. Here two decision rules can be applied to the probability

model: Maximum likelihood and average likelihood. In maximum likelihood (See

Equation 3.6) most probable class is picked and regarded as the prediction of NBC.

classify(f1, . . . , f19) = argmaxcp(C = c)
19∏
i=1

p(Fi = fi|C = c) (3.6)

On the other hand, in average likelihood (See Equation 3.7) weighted sum of class'

probabilities is computed and this value is regarded as the prediction of NBC.

classify(f1, . . . , f19) = argavgcp(C = c)
19∏
i=1

p(Fi = fi|C = c) (3.7)

NBC has a major challenge; if class or feature values do not occur together in the

dataset then frequency-based probability estimate will be zero because of zero values

in multiplication. To overcome this challenge we add a non-zero adjustment value

(AV ) to numerator and denominator of likelihoods (See Equation 3.8), a procedure

which is also called additive smoothing. We employ AV as a user-speci�ed parameter

to be able to evaluate its e�ect also to the accuracy of predictions. AV is a decimal

number on a scale of 0 to 1 inclusive and set to 0 by default.

p(m|ck) =
19∏
j=1

frequencykj +AV

classk +AV
(3.8)

3.3 Pure Collaborative Filtering Approach (PCF)

As one of the most successful approaches for building recommender systems, collabora-

tive �ltering uses the known preferences of a group of users to make recommendations

or predictions of the unknown preferences for other users. In other words, in collabo-

rative �ltering (CF) we try to predict how well a user will like a movie given a set of
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preferences for other users [35].

Roughly speaking, every user provides a list of previously rated movies (i.e. user-movie

ratings vector), and CF returns a list of predicted ratings for previously unrated movies.

In our design, we use a neighborhood-based CF method. In our method, a subset of

relevant users is chosen based on the similarity to the active user. After selection of

similar users, an adjusted weighted sum of their ratings is used to calculate active

user's predictions. We �rst discuss the weighting similarities between users. Next,

we explain di�erent neighborhood selection methods. We conclude with calculation of

predictions. General overview of PCF is given in Figure 3.2

Figure 3.2: General overview of PCF

Similarity Weighting

Similarity between two users is measured by computing the Pearson correlation. Pear-

son correlation coe�cient (PCC) is a measure of the linear dependence between two

variables X and Y , giving a value between +1 and -1 inclusive. It is widely used as a

measure of the strength of linear dependence between two variables.

r =

∑n
i=1(Xi −X)(Yi − Y )√∑n
i=1(Xi −X)2(Yi − Y )2

(3.9)

If we adopt above de�nition to our model, the Pearson correlation between users u

and w becomes:

Pu,w =

∑NM
i=1 (ru,i − ru)(rw,i − rw)√∑NM
i=1 (ru,i − ru)2(rw,i − rw)2

(3.10)
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where ru,i is the rating given to movie i by user u; ru is the mean rating given by user

u; and NM is the total number of movies. Similarity values obtained by using PCC

are used for both neighborhood selection and computation of prediction.

We use two parameters to determine neighborhood of each user: Neighborhood size

(NS) and similarity threshold (ST ). NS is a user-speci�ed positive integer and set to

30 by default. ST is a user-speci�ed decimal number on a scale of 0 to 1 inclusive and

set to 0.6 by default. According to our neighborhood selection algorithm, NS users

with having similarities more than ST to the active user are chosen. In simple terms,

NS and ST limit the size of neighborhoods. Although some systems develop di�erent

approaches, in our design each user has the same neighborhood for all movies.

Calculation of Final Predictions

Calculation of predictions is the last step in CF. So far, in many researches simple

weighted average is used. However, this technique has a signi�cant shortcoming: Rat-

ing tendencies of users di�er. Some users tend to give high ratings, while some other

tend to give low ratings. Because of this fact, using di�erent users' ratings in the cal-

culation, without taking mean ratings into consideration may be problematic. In our

design, we use adjusted weighted sum (i.e. mean-centered weighted average) instead

of simple weighted sum (See Equation 3.11). As it can be seen from Equation 3.12, in

adjusted weighted sum we take the di�erence between actual rating and mean rating

into consideration for each user.

pa,i =

∑NS
u=1 ru,iPa,u∑NS
u=1 Pa,u

(3.11)

pa,i = ra +

∑NS
u=1(ru,i − ru)Pa,u∑NS

u=1 Pa,u

(3.12)

Above, pa,i is the prediction for the active user a for movie i; Pa,u is the similarity

between users a and u.
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3.4 Content-Boosted Collaborative Filtering Approach (CBCF)

Our CBCF approach is an e�ective recommendation framework that combines content-

based and collaborative techniques. CBCF uses a content-based predictor to enhance

existing user data, and then provides personalized suggestions through collaborative

�ltering [52]. The detailed description of CBCF is given below. Firstly, we perform

CF on full user-movie matrix composed of pseudo-ratings. Then we combine these

CF predictions with pseudo-ratings. General overview and user-speci�ed parameters

of CBCF are given in Figure 3.2.

Figure 3.3: General overview of CBCF

Performing CF on Pseudo-Matrix

CBCF performs collaborative �ltering on pseudo-ratings instead of actual ratings. The

collaborative �ltering algorithm we use is the same with PCF uses (See Section 3.3).

NS and ST are user-speci�ed parameters for also CBCF.

Combination of Predictions

In this part, we combine predicted ratings of CF with pseudo-ratings. We use a

parameter named content weight (CW ) which determines weight of pseudo-ratings in

�nal predictions. At this point, we introduce an additional parameter: self weighting

threshold (SW ). For each user, SW indicates minimum number of rated movies for

CW to be able to exactly a�ect the combination. There is a need for a parameter like

SW because the accuracy of content-based predictions are directly proportional to the

number of movies rated by the user. Usage of SW is given below:

if nra < SW then CW = nra
SW CW
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Above, nra stands for the number of movies rated by the active user

CW is a user-speci�ed decimal number on a scale of 0 to 1 inclusive and set to 0.5 by

default. SW is user-speci�ed integer and set to 50 by default. As it can be understood,

if CW is set to 1, then CBCF behaves as PCB.

The equation used to calculate �nal predictions of CBCF is given in Equation 3.13

[52].

pa,i = va +
CW (psa,i − va) +

∑NS
u=1 Pa,u(vu,i − vu)

CW +
∑NS

u=1 Pa,u

(3.13)

In the above equation psa,i corresponds to the pseudo-rating for the active user and

movie i, vu,i is the prediction rating of CF for user u and movie i, vu is the mean rating

of user u, Pa,u is the Pearson correlation between users a and u, CW is the content

ratio. The denominator is a normalization factor that ensures all weights sum to one.

3.5 Applying Fuzzy Clustering to CBCF

We apply fuzzy clustering to the �nal predictions of CBCF for scalability concerns.

Our new model based strategy using dynamic fuzzy clustering is named CBCFdfc. The

structure of CBCFdfc is explained in detail in the following paragraphs.

General structure of fuzzy c-means

Fuzzy c-means (FCM) is a method of clustering which allows one piece of data to

belong to two or more clusters. The working mechanism of FCM is explained in detail

by [84]. FCM is basically based on minimization of the following objective function:

Jm =
N∑
i=1

C∑
j=1

tmijdist(ui − cj)2 (3.14)

Where m is any real number greater than 1, ui is the ith user and cj is the center of

the jth cluster. tij is the degree of membership of ui to cluster j, and dist(∗, ∗) is the

distance between a user and the cluster center.

The degree of membership of a user is related to the inverse of the distance to the
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cluster center:

tij =
1

dist(ui, cj)
(3.15)

The memberships are normalized and fuzzy�ed with a real parameter m > 1 so that

their sum is 1. So the equation becomes:

tij =
1∑NC

k (
dist(xi,cj)
dist(xi,ck)

)
2

m−1

(3.16)

In the above equation, NC is the number of clusters. m is a normalizing factor greater

than 1. For m equal to 2, this is equivalent to normalizing the memberships linearly

to make their sum 1. When m is close to 1, then cluster center closest to the point is

given much more weight than the others, and the algorithm is similar to k-means [84].

Fuzzy partitioning is achieved through an iterative optimization of the objective func-

tion (See Equation 3.14), with the update of membership tij by Equation 3.16 and the

cluster centers cj by:

cj =

∑NU
i=1 t

m
ijui∑NU

i=1 t
m
ij

(3.17)

This iteration will stop when maxij{|uk+1
ij − ukij |} < ε where ε is a user speci�ed value

between 0 and 1, and k is the iteration steps. This procedure converges to a local

minimum point of Jm. [84] summarizes fuzzy c-means in the following steps:

1. Initialize T = [Tij ] matrix, T (0)

2. At k-step: calculate the centers of clusters C(k) = [cj ] with T (k)

cj =

∑NU
i=1 t

m
ijui∑NU

i=1 t
m
ij

(3.18)

3. Update T (k), T (k+1)

tij =
1∑NC

k (
dist(ui,cj)
dist(ui,ck)

)
2

m−1

(3.19)

4. If |T (k+1) − T (k)| < ε then STOP; otherwise return to step 2.

To sum up, in our clustering algorithm each user has a degree of membership to

clusters. The membership values of users to the clusters are inversely proportional
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with their distance to the centers of the clusters. In other words, membership values

of users near the center of a cluster are bigger than membership values of users on the

edge of a cluster. Moreover, center of each cluster is hypothetical; contrary to some

other methods taking actual users as center of clusters [53].

In fuzzy c-means some parameters are need to be set by user. These parameters are:

Number of clusters (NC), degree of fuzziness (m) and sensitivity threshold (ε). NC

is an integer value set to 10 by default. m is a decimal number bigger than 1 set to 2

by default. ε is used in the termination condition of iterations. It is a decimal number

set to 0.01 by default.

The algorithm minimizes intra-cluster variance as well, but has the same problems

as k-means, the minimum is a local minimum, and the results depend on the initial

choice of weights [84]. To improve the performance of clustering and minimize o�ine

cluster initialization time, we proposed an approach based on maximizing the distances

between cluster centers.

Initialization of fuzzy c-means

Initialization is an important step of the fuzzy c-means. In our approach, we devel-

oped two methods: random initialization and max-distance initialization. In random

initialization, as its name implies, we randomly select NC users as cluster centers.

On the other side, in max-distance initialization we iteratively select cluster centers

according to their distance to initial cluster centers. The idea behind this method is

choosing cluster centers as far as possible from each other in order to obtain separated

cluster users. As distance measure we use Euclidean distance(See Equation 3.20).

e(u,w) =

√√√√NM∑
i=1

(ru,i − rw,i)2 (3.20)

After selecting k < NC initial cluster centers, we calculate distance function for the

rest (NU − k) users and select the one with the maximum distance to other cluster

centers. The user ui satisfying below condition will be the (k + 1)th cluster center.

Ck+1 = max{e(ui − c1)pow + . . . e(ui − ck)pow}

Above pow is also a user-speci�ed integer set to 2 by default.
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In our approach, selecting initial clusters is not a trivial work. Number of initial

clusters (NIC) is a user-speci�ed integer less or equal than number of clusters (NC).

It is set to 1 by default. Naïve approach for the selection of initial clusters is random

selection. In addition to it, we developed another method which is supposed to select

more distinguishable initial users compared to random selection. Distinguishable users

are supposed to yield a better set of clusters in future iterations. The idea behind this

is similar with the the idea behind max-distance initialization. We obtain these users

by taking the users having maximum standard deviation values. The formula we used

for the calculation of standard deviation for each user is given below.

stu =

√√√√NM∑
i=1

(ru,i − ru)2 (3.21)

Above stu is the standard deviation of user u, ru is the mean rating of user u nad NM

is the number of movies. After the calculation of standard deviation for each user we

select top NIC of them as distinguishable users.

Using created clusters for prediction

The method we use is similar to Mojtaba's method in [53]. C = c1, c2, . . . , cNC is the

set of NC cluster centers representing NC clusters. The membership value tij of each

user ui to cluster Cj is proportional to its distance or dissimilarity from the cluster

center cj . The membership values of all the users are stored in matrix T (NUxNC).

For an active user ua, we �rst �nd fuzzy nearest cluster, which is the cluster P to

which the membership tpa is maximum. Now similar users of ua are the users having

maximum membership to cluster P . Thus we simplify the computation of NS neigh-

bors enormously. After neighborhood selection, we calculate the Pearson correlation

between active user and NS users. As it is told in Section 3.4, prediction is done for

only movies which have not been yet rated by ua. The prediction formula we use is

same with the one we use in PCF (See Equation 3.13).

In addition to using nearest cluster center in the selection of neighborhood, we use

top-NAC nearest clusters. NAC is a user-speci�ed integer representing number of

active clusters in the selection of neighborhood and calculation of prediction for each

online insertion. It is set to 1 by default. Top-NAC nearest clusters are selected

according to the membership of the active user to NC clusters. Membership values
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of ua to NAC clusters determines the distribution of NS users among these clusters.

Remaining work is same with the above approach.

3.6 User Interface Design

For user evaluation we implemented a graphical user interface. Firstly, our user in-
terface guides the active user to rate a number of movies. Consequently, according to
given ratings it displays a number of movies to the screen as a recommendation list.
As it can be guessed, the recommended movies are selected by taking top predicted
movies in the created user-movie ratings matrix. Finally, user interface asks the user
to evaluate movies in the recommendation list. The detailed implementation of user
interface is explained with screenshots below:

Figure 3.4: Login screen of Movie-Rec

The initial screen is given in Figure 3.4. As it can be seen from the �gure, users �rst
log in the system. After logging in, they are confronted with a screen composed of
movies, each movie on a line followed by rating options from 1 to 5 (See Figure 3.5).
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Figure 3.5: List of movies

Our recommender expects ratings of at least 15 movies from users. Although rec-
ommendations can be made with lower number of movies, for the sake of prediction
accuracy we do not let recommendations below this threshold. When the user rates
15th movie, Recommend button appears at the bottom of the page. Recommend but-
ton directs the user to the evaluation screen (See Figure 3.6).

Figure 3.6: List of recommended movies

In �nal screen each user is supposed to evaluate recommended movies to himself. Here,

41



we present six choices to users as listed below:

• positive attitude: like - may like

• negative attitude: dislike - may not like

• neutral attitude: neutral - no idea

Recommended movies are divided into two groups �rst: Movies those are already

watched and movies those are not wathced yet. Since there are hundreds of movies

it is inevitable to force users to evaluate movies which they have not watced yet. To

facilitate the evaluation process for users we put genre information and imdb link.

For both of the situations(i.e. movies they already watched and movies they have

not watched yet) users may prefer one of three attitudes; positive, negative and neu-

tral. According to preferences of users, we evaluate the accuracy of the system. The

evaluation of the system will be explained in detail in the next chapter.
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CHAPTER 4

EVALUATION AND TEST RESULTS

4.1 Datasets

Our experimentations are based on MovieLens dataset that was collected by Grou-

pLens Research Project [79]. There are currently three publicly available datasets in

MovieLens database. These datasets having close sparsities are listed below:

• 100,000 ratings for 1682 movies by 943 users

• 1 million ratings for 3900 movies by 6040 users

• 10 million ratings for 10681 movies by 71567 users

MovieLens datasets have following characteristics:

• Each user has rated at least 20 movies.

• Information about movies is compatible with Internet Movie Database (imdb).

• Simple demographics about users (e.g. gender, profession, age) are available.

• Simple content data about movies (e.g. release date, genre) is available

All ratings are integer values on a scale of 1 to 5. One stands for lowest rating indicat-

ing a sharp dislike, �ve stands for highest rating indicating a sharp like. MovieLens

datasets contain useful information about users and items. Id, name, date of release,

imdb URL and genre of each movie are available. As it is explained in Section 3.2, only
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Table 4.1: Sample movie content data

ID Name Release
Date

URL Genre

14 Postino,Il 01-
Jan-
1994

http://us.imdb.com/M/title-
exact?Postino(1994)

0|0|0|0|0|0|0|0|1|0|0|0|0|0|1|0|0|0|0

15 MrHolland's
Opus

29-
Jan-
1996

http://us.imdb.com/M/title-
exact?Mr.Holland's Opus(1995)

0|0|0|0|0|0|0|0|1|0|0|0|0|0|0|0|0|0|0|

16 French
Twist
(Gazon
maudit)

01-
Jan-
1995

http://us.imdb.com/M/title-
exact?Gazonmaudit(1995)

0|0|0|0|0|1|0|0|0|0|0|0|0|0|1|0|0|0|0

17 From Dusk
Till Dawn

05-
Feb-
1996

http://us.imdb.com/M/title-
exact?FromDuskTillDawn(1996)

0|1|0|0|0|1|1|0|0|0|0|1|0|0|0|0|1|0|0

18 White Bal-
loon, The

01-
Jan-
1995

http://us.imdb.com/M/title-
exact?BadkonakeSe�d(1995)

0|0|0|0|0|0|0|0|1|0|0|0|0|0|0|0|0|0|0

id and genre information of a movie is used. 18 genres are recognized by MovieLens

(See Table 4.2)

Although we employ only user id in our design; age, gender, occupation and zip code

of each user are also available. A sample of user content data is given in Table 4.3.

MovieLens provides training sets and test sets for experimentation. Training sets in-

clude user ID, movie ID, rating and timestamp information for a number of (user,movie)

pairs (See Table 4.4).

4.2 Prediction Accuracy Metrics

Several metrics have been proposed for assessing the accuracy of recommender systems.

There are two categories of accuracy metrics: Statistical accuracy metrics and decision-

support accuracy metrics [35]. We evaluate our system with both of these metrics.

4.2.1 Mean Absolute Error

The MAE metric measures the average absolute deviation between a predicted rating

and the user's actual rating. There are two major advantages of the MAE metric.
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Table 4.2: Genre information

ID Genre

0 Unknown

1 Action

2 Adventure

3 Animation

4 Children's

5 Comedy

6 Crime

7 Documentary

8 Drama

9 Fantasy

10 Film-Noir

11 Horror

12 Musical

13 Mystery

14 Romance

15 Sci-Fi

16 Thriller

17 War

18 Western

Table 4.3: Sample user demographic data

ID Age Gender Occupation Zip Code

24 21 F artist 94533

25 39 M engineer 55107

26 49 M engineer 21044

27 40 F librarian 30030

28 32 M writer 55369

29 41 M programmer 94043

Firstly, computation of the MAE is simple and understandable. Secondly, the MAE

has well studied statistical properties that provide for testing the signi�cance of a

di�erence between two systems [36]. So far, the MAE (See Equation 4.1) has been

used to evaluate the accuracy of many proposed systems [14, 35, 73].

MAE =
1

n

n∑
i=1

|ai − pi| =
1

n

n∑
i=1

|ei| (4.1)

As the name suggests, the MAE is an average of the absolute errors ei = ai−pi, where

pi is the prediction and ai the actual value.

Lower MAE values indicates more accurate predictions.
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Table 4.4: Sample training data

User ID Movie ID Rating Timestamp

305 451 3 886324817

6 86 3 883603013

62 257 2 879372434

286 1014 5 879781125

200 222 5 876042340

210 40 3 891035994

4.2.2 Receiver Operating Characteristic

In our experiments as decision support accuracy measure, we use ROC area metric.

ROC area metric is a measure of the diagnostic power of a �ltering system. It is the

area under the receiver operating characteristic (ROC) curve-a curve that plots the

sensitivity and the 1-speci�city of the test. Sensitivity is the probability of a randomly

selected relevant object being accepted by the �lter. Speci�city is the probability of a

randomly selected irrelevant object being rejected by the �lter. The ROC curve plots

sensitivity and 1 - speci�city, obtaining a set of points by varying the quality threshold.

The range of ROC sensitivity is between 0 and 1, where 0.5 is random and 1 is perfect.

Comparing results of di�erent systems using ROC curves may be subjective, contrary

to comparing with the MAE. However, the area under a ROC curve can be used as a

metric of the system's ability to discriminate relevant objects from irrelevant objects

[34].

Herlocker et al. summarize advantages and disadvantages of ROC area metric [36].

Pros of the ROC area metric are:

• It provides a single number representing the overall performance of an informa-

tion �ltering system

• It is developed from solid statistical decision theory designed for measuring the

performance of tasks such as those that a recommender system performs

• It covers the performance of the system over all di�erent recommendation list

lengths

Cons of the ROC area metric are:

46



• A large set of potentially relevant items is needed for each query,

• Equally distant swaps in rankings have the same e�ect no matter where in the

ranking they occur,

• It may need a large number of data points to ensure good statistical power for

di�erentiating between two areas.

4.3 O�ine Evaluation

4.3.1 Methodology

In our o�ine experiments we use Mean Absolute Error (MAE) and Receiver Operating

Characteristic (ROC) as statistical and decision-support accuracy metrics, respectively.

Since rating scale we use ranges from 1 to 5, we select ROC-4 as decision support

accuracy metric. According to ROC-4, predictions greater than or equal to 4 are

supposed to be relevant movies and predictions less than 4 are supposed to be irrelevant

movies for a user.

For each experiment, �rstly we give brief background information. Secondly, we give

the test results of experiments. Thirdly, we comment on the results and state the

expected and unexpected outcomes of experiments. We perform our experiments for

�ve distinct training sets of MovieLens (i.e. u1, u2, u3, u4, u5). For the sake of read-

ability, increase on the MAE metric(i.e. decrease in prediction accuracy) is regarded

as a negative change. Similarly, the increase on the ROC-4 metric(i.e. increase in

classi�cation accuracy) is regarded as a positive change.

In following sections, we evaluate experiments conducted by di�erent parameters. Un-

less explicitly stated, we �x adjusting value (AV ) to 0, neighborhood size (NS) to 30,

similarity threshold (ST ) to 0,6 and content weight (CW ) to 0,5. Default values and

types of these parameters are given in Table 4.5.

Before evaluating the accuracy of PCF, PCB and CBCF, we evaluate the e�ect of

parameters to the prediction results. In Section 4.3.2 we compare decision rules of

naïve Bayesian classi�er: maximum likelihood and average likelihood. In Section 4.3.3
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Table 4.5: Default values and types of parameters for o�ine evaluation

Parameter Default Value Type

adjusting value (AV ) 0 [0,1]

neighborhood size (NS) 30 integer

similarity threshold (ST ) 0,6 [0,1]

content weight (CW ) 0,5 [0,1]

the e�ect of AV to the prediction accuracy of PCB is evaluated. In Section 4.3.4 and

Section 4.3.5 we evaluate the e�ect of NS and ST . In Section 4.3.6 the e�ect of CW

to the prediction accuracy of CBCF is evaluated.

Testing mechanism of o�ine evaluation is given in Figure 4.1.

4.3.2 Comparison of Maximum Likelihood and Average Likelihood for

PCB

As it is explained in Section 3.2 we can apply two decision rules to our probability

model: Maximum likelihood and average likelihood. In maximum likelihood we pick

most probable class. In average likelihood we take the weighted sum of class' proba-

bilities.

Table 4.6: Comparison of used decision rules

MAE ROC-4

Approach u1 u2 u3 u4 u5 average u1 u2 u3 u4 u5 average

PCBmax 0,950 0,927 0,919 0,918 0,930 - 0,6093 0,6083 0,6138 0,6193 0,6104 -

PCBavg 0,875 0,856 0,844 0,853 0,858 - 0,6088 0,6073 0,6020 0,6093 0,6050 -

%
change
of
MAE
and
ROC-
4
from
PCBmax
to
PCBavg

7,85 7,64 8,23 7,11 7,68 7,70 0,07 0,18 1,93 1,62 0,88 0,93

The results of our experiments are summarized in Table 4.6. PCBmax stands for PCB

using maximum likelihood and PCBavg stands for PCB using average likelihood. As

it can be seen from Table 4.6, on the MAE metric, PCBavg performs 7.7% better

than PCBmax. On the ROC-4 metric, PCBavg performs 0.94% better than PCBmax.

This is an expected result, because when we pick most probable class as the class of
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a movie, we implicitly neglect other classes' probabilities. In, PCBavg we calculate

the weighted sum of the numerical values of classes so that we obtain a more accurate

classi�cation of movies. In conclusion, PCBavg, compared to PCBmax generates more

accurate predictions which yields a decline on the MAE metric. Also it does a better of

job of recommending relevant movies, while reducing the probability of recommending

irrelevant movies to the user which yields an increase on the ROC-4 metric.

Figure 4.1: General mechanism of o�ine evaluation

4.3.3 E�ect of Adjusting Value to the Accuracy of PCB

In this experiment, we tested the accuracy of of PCBmax and PCBavg with 11 values

of AV with AV = {0, 0.1, . . . , 1}. The results of our experiments are summarized in
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Table 4.7.

Table 4.7: E�ect of AV to the accuracy of PCBmax and PCBavg

MAE ROC-4

Approach AV u1 u2 u3 u4 u5 %
change
of
MAE
from
AV=0

u1 u2 u3 u4 u5 %
change
of
ROC-
4
from
AV=0

PCBmax 0 0,950 0,927 0,919 0,918 0,930 - 0,6093 0,6083 0,6138 0,6193 0,6104 -

PCBmax 0,1 0,939 0,916 0,914 0,906 0,920 1,1 0,6105 0,6091 0,6135 0,6193 0,6102 0,05

PCBmax 0,2 0,928 0,908 0,903 0,897 0,909 2,2 0,6120 0,6100 0,6137 0,6208 0,6115 0,23

PCBmax 0,3 0,920 0,899 0,894 0,891 0,902 3,1 0,6130 0,6116 0,6150 0,6209 0,6114 0,35

PCBmax 0,4 0,913 0,894 0,886 0,883 0,894 3,8 0,6135 0,6117 0,6169 0,6216 0,6123 0,49

PCBmax 0,5 0,907 0,888 0,878 0,877 0,888 4,6 0,6153 0,6117 0,6178 0,6214 0,6133 0,60

PCBmax 0,6 0,900 0,885 0,872 0,871 0,884 5,2 0,6170 0,6115 0,6195 0,6218 0,6132 0,72

PCBmax 0,7 0,895 0,880 0,868 0,867 0,880 5,7 0,6179 0,6119 0,6196 0,6225 0,6139 0,81

PCBmax 0,8 0,891 0,876 0,864 0,863 0,877 6,2 0,6181 0,6124 0,6202 0,6230 0,6131 0,84

PCBmax 0,9 0,887 0,874 0,860 0,861 0,873 6,5 0,6186 0,6134 0,6207 0,6229 0,6136 0,92

PCBmax 1 0,885 0,873 0,857 0,859 0,868 6,8 0,6180 0,6127 0,6208 0,6224 0,6152 0,92

PCBavg 0 0,875 0,856 0,844 0,853 0,858 - 0,6088 0,6073 0,6020 0,6093 0,6050 -

PCBavg 0,1 0,867 0,848 0,836 0,845 0,848 1,0 0,6110 0,6061 0,6014 0,6081 0,6041 -
0,05

PCBavg 0,2 0,860 0,842 0,831 0,838 0,842 1,7 0,6123 0,6079 0,6004 0,6091 0,6050 0,08

PCBavg 0,3 0,856 0,838 0,827 0,834 0,837 2,2 0,6122 0,6107 0,6015 0,6103 0,6070 0,31

PCBavg 0,4 0,852 0,834 0,823 0,830 0,833 2,7 0,6142 0,6121 0,6023 0,6116 0,6085 0,54

PCBavg 0,5 0,849 0,831 0,821 0,828 0,830 3,0 0,6157 0,6143 0,6022 0,6112 0,6089 0,66

PCBavg 0,6 0,847 0,829 0,819 0,826 0,828 3,3 0,6167 0,6153 0,6028 0,6122 0,6094 0,80

PCBavg 0,7 0,844 0,828 0,817 0,825 0,827 3,5 0,6172 0,6153 0,6042 0,6132 0,6097 0,90

PCBavg 0,8 0,843 0,827 0,816 0,824 0,825 3,6 0,6169 0,6165 0,6040 0,6137 0,6111 0,98

PCBavg 0,9 0,841 0,826 0,815 0,822 0,824 3,8 0,6165 0,6171 0,6053 0,6143 0,6124 1,10

PCBavg 1 0,841 0,825 0,815 0,821 0,823 3,9 0,6152 0,6175 0,6062 0,6142 0,6133 1,12

Change of accuracy with increasing values of AV is shown in Figure 4.2. Figure

4.2(a) and Figure 4.2(b) show the percentage change of the MAE metric from AV=0

to AV = {0.1, 0.2, . . . , 1} for PCBmax and PCBavg, respectively. Similarly, Figure

4.2(c) and Figure 4.2(d) show the percentage change of ROC-4 metric from AV=0 to

AV = {0.1, 0.2, . . . , 1}.
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(a) percentage change of MAE from
AV=0 to AV = {0, 0.1, . . . , 1} for
PCBmax

(b) percentage change of MAE from
AV=0 to AV = {0, 0.1, . . . , 1} for
PCBavg

(c) percentage change of ROC-4 from
AV=0 to AV = {0, 0.1, . . . , 1} for
PCBmax

(d) percentage change of ROC-4 from
AV=0 to AV = {0, 0.1, . . . , 1} for
PCBavg

Figure 4.2: E�ect of AV to the accuracy of PCBmax and PCBavg

Results show that, as AV increases and gets closer to 1, PCBmax and PCBavg per-

form a signi�cant improvement on MAE and ROC-4 metrics. The reason behind the

improvement in the prediction accuracy is the decrease of the e�ect of zero-valued

probability estimates. However, the improvement diminishes as AV increases because

of the addition of AV with both the numerator and denominator of the probability

estimates (See Equation 3.8). To conclude, employing a sizeable parameter like AV is

rational.
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4.3.4 E�ect of Neighborhood Size to the Accuracies of PCF and CBCF

In this experiment, we tested accuracy of PCF and CBCF with 10 values of NS with

NS = {20, 40, . . . , 200}. The results of our experiments are summarized in Table 4.8.

Table 4.8: E�ect of NS to the accuracy of PCF and CBCF

MAE ROC-4

Approach NS u1 u2 u3 u4 u5 %
change
of
MAE
from
NS
=
20

u1 u2 u3 u4 u5 %
change
of
ROC-
4
from
NS
=
20

PCF 20 0,929 0,907 0,903 0,899 0,913 - 0,5837 0,6003 0,5974 0,5979 0,5923 -

PCF 40 0,911 0,886 0,879 0,879 0,888 2,41 0,5846 0,6017 0,5993 0,5986 0,5961 0,29

PCF 60 0,903 0,879 0,872 0,871 0,881 3,17 0,5862 0,6021 0,5999 0,5996 0,5962 0,42

PCF 80 0,900 0,875 0,869 0,868 0,879 3,51 0,5870 0,6022 0,6004 0,5999 0,5965 0,49

PCF 100 0,899 0,873 0,867 0,866 0,879 3,66 0,5870 0,6023 0,6002 0,6000 0,5965 0,49

PCF 120 0,898 0,873 0,867 0,865 0,878 3,74 0,5869 0,6028 0,6001 0,5999 0,5959 0,47

PCF 140 0,897 0,871 0,866 0,864 0,878 3,82 0,5871 0,6030 0,6004 0,5999 0,5957 0,49

PCF 160 0,897 0,871 0,866 0,865 0,876 3,89 0,5872 0,6032 0,6004 0,5998 0,5959 0,50

PCF 180 0,897 0,871 0,865 0,864 0,876 3,90 0,5874 0,6029 0,6005 0,5998 0,5961 0,50

PCF 200 0,897 0,870 0,865 0,864 0,875 3,93 0,5872 0,6031 0,6006 0,5996 0,5960 0,50

CBCF 20 0,842 0,825 0,816 0,820 0,823 - 0,6167 0,6206 0,6088 0,6180 0,6154 -

CBCF 40 0,841 0,825 0,815 0,820 0,822 0,066 0,6162 0,6207 0,6091 0,6177 0,6152 -
0,018

CBCF 60 0,841 0,825 0,815 0,820 0,822 0,078 0,6162 0,6204 0,6090 0,6177 0,6154 -
0,026

CBCF 80 0,841 0,824 0,815 0,820 0,822 0,088 0,6164 0,6203 0,6092 0,6175 0,6152 -
0,030

CBCF 100 0,841 0,824 0,815 0,820 0,822 0,090 0,6163 0,6202 0,6091 0,6176 0,6151 -
0,037

CBCF 120 0,841 0,824 0,815 0,820 0,822 0,091 0,6163 0,6203 0,6091 0,6176 0,6152 -
0,034

CBCF 140 0,841 0,824 0,815 0,820 0,822 0,090 0,6163 0,6203 0,6091 0,6176 0,6152 -
0,034

CBCF 160 0,841 0,824 0,815 0,820 0,822 0,091 0,6163 0,6203 0,6091 0,6176 0,6152 -
0,034

CBCF 180 0,841 0,824 0,815 0,820 0,822 0,091 0,6163 0,6203 0,6091 0,6176 0,6152 -
0,034

CBCF 200 0,841 0,824 0,815 0,820 0,822 0,091 0,6163 0,6203 0,6091 0,6176 0,6152 -
0,034

Change of accuracy with increasing values of NS is shown in Figure 4.3. Figure 4.3(a)

and Figure 4.3(b) show the percentage change of the MAE metric from NS=20 to

NS = {40, 60, . . . , 200} for PCF and CBCF, respectively. Similarly, Figure 4.3(c) and

Figure 4.3(d) show the percentage change of ROC-4 metric.

Results show that, the the accuracy of PCF, on both MAE and ROC-4 metrics, im-

proves with increase of NS and remains almost constant after some point (See Figure

4.3(a) and Figure 4.3(c)). It is an expected result, because after a point additional

neighbors are getting to have small similarities with the active user so that they do not

have a signi�cant e�ect in the calculation of �nal predictions. Although, CBCF fol-

lows a similar pattern with PCF on the MAE(See Figure 4.3(b)), comparative to PCF,

CBCF is insensitive to change of NS on both metrics. This, also, is an expected result,
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(a) percentage change of MAE from
NS=20 to NS = {40, 60, . . . , 200} for
PCF

(b) percentage change of MAE from
NS=20 to NS = {40, 60, . . . , 200} for
CBCF

(c) percentage change of ROC-4 from
NS=20 to NS = {40, 60, . . . , 200} for
PCF

(d) percentage change of ROC-4 from
NS=20 to NS = {40, 60, . . . , 200} for
CBCF

Figure 4.3: E�ect of NS to the accuracy of PCF and CBCF
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because CBCF performs CF on a dense matrix in contrast to PCF which performs CF

on a very sparse matrix. Another reason is the weight of pseudo-ratings, which also

decreases the e�ect of NS in prediction accuracy. Roughly speaking, increase of NS

has a positive impact on the accuracy to some extent.

4.3.5 E�ect of Similarity Threshold to the accuracy of PCF and CBCF

In this experiment, we tested the accuracy of PCF and CBCF with 11 values of ST

with ST = {0, 0.1, . . . , 1}. The results of our experiments are summarized in Table

4.9.

Table 4.9: E�ect of ST to the accuracy of PCF and CBCF

MAE ROC-4

Approach ST u1 u2 u3 u4 u5 %
change
of
MAE
from
ST
=
0

u1 u2 u3 u4 u5 %
change
of
ROC-
4
from
ST
=
0

PCF 0 0,889 0,862 0,852 0,853 0,864 - 0,5760 0,5959 0,5945 0,5944 0,5968 -

PCF 0,1 0,889 0,862 0,852 0,853 0,865 0,00 0,5760 0,5959 0,5945 0,5944 0,5968 0,00

PCF 0,2 0,890 0,862 0,852 0,854 0,865 -
0,06

0,5767 0,5966 0,5949 0,5943 0,5968 0,06

PCF 0,3 0,903 0,870 0,860 0,865 0,877 -
1,25

0,5838 0,5998 0,5994 0,5968 0,5979 0,69

PCF 0,4 0,917 0,892 0,882 0,882 0,892 -
3,31

0,5850 0,6026 0,5997 0,5993 0,5961 0,86

PCF 0,5 0,917 0,894 0,884 0,886 0,896 -
3,60

0,5851 0,6021 0,5996 0,5979 0,5949 0,75

PCF 0,6 0,917 0,894 0,884 0,886 0,896 -
3,60

0,5852 0,6021 0,5996 0,5979 0,5949 0,75

PCF 0,7 0,917 0,894 0,884 0,886 0,896 -
3,60

0,5852 0,6021 0,5996 0,5979 0,5949 0,75

PCF 0,8 0,917 0,894 0,884 0,886 0,896 -
3,60

0,5852 0,6021 0,5996 0,5979 0,5949 0,75

PCF 0,9 0,917 0,894 0,884 0,886 0,896 -
3,60

0,5852 0,6021 0,5996 0,5979 0,5949 0,75

PCF 1 0,917 0,894 0,884 0,886 0,896 -
3,60

0,5852 0,6021 0,5996 0,5979 0,5949 0,75

CBCF 0 0,836 0,820 0,808 0,814 0,817 - 0,6198 0,6194 0,6085 0,6163 0,6164 -

CBCF 0,1 0,836 0,820 0,808 0,814 0,817 0,00 0,6196 0,6194 0,6085 0,6163 0,6164 -
0,01

CBCF 0,2 0,836 0,820 0,808 0,814 0,817 -
0,01

0,6196 0,6196 0,6084 0,6161 0,6167 0,00

CBCF 0,3 0,836 0,821 0,809 0,814 0,817 -
0,02

0,6200 0,6199 0,6083 0,6178 0,6171 0,09

CBCF 0,4 0,838 0,822 0,810 0,815 0,818 -
0,16

0,6187 0,6208 0,6077 0,6178 0,6171 0,05

CBCF 0,5 0,839 0,823 0,812 0,818 0,819 -
0,40

0,6172 0,6215 0,6080 0,6183 0,6160 0,02

CBCF 0,6 0,842 0,825 0,816 0,820 0,823 -
0,71

0,6163 0,6206 0,6087 0,6180 0,6153 -
0,05

CBCF 0,7 0,843 0,827 0,818 0,823 0,826 -
1,03

0,6165 0,6196 0,6074 0,6167 0,6150 -
0,17

CBCF 0,8 0,844 0,828 0,820 0,824 0,827 -
1,17

0,6167 0,6197 0,6077 0,6160 0,6149 -
0,17

CBCF 0,9 0,845 0,828 0,820 0,824 0,827 -
1,20

0,6168 0,6196 0,6072 0,6159 0,6146 -
0,21

CBCF 1 0,845 0,828 0,820 0,824 0,827 -
1,20

0,6168 0,6196 0,6072 0,6160 0,6147 -
0,20

Change of the accuracy with increasing values of ST is shown in Figure 4.4. Figure
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4.4(a) and Figure 4.4(b) show the percentage change of the MAE metric from ST=0

to ST = {0.1, 0.2, . . . , 1} for PCF and CBCF, respectively. Similarly, Figure 4.4(c)

and Figure 4.4(d) show the percentage change of ROC-4 metric.

(a) percentage change of MAE from
ST=0 to ST = {0, 0.1, . . . , 1} for PCF

(b) percentage change of MAE from
ST=0 to ST = {0, 0.1, . . . , 1} for
CBCF

(c) percentage change of ROC-4 from
ST=0 to ST = {0, 0.1, . . . , 1} for PCF

(d) percentage change of ROC-4 from
ST=0 to ST = {0, 0.1, . . . , 1} for
CBCF

Figure 4.4: E�ect of ST to the accuracy of PCF and CBCF

Results show that, the accuracy of PCF and CBCF decrease on the MAE metric with

the increase in ST and remains almost constant after some point (See Figure 4.4(a)

and Figure 4.4(b)). It is an expected outcome, because after a point, ST starts to

limit neighborhood of the active user. Consequently, neighborhood becomes a smaller

value than NS. As it is explained in Section 4.3.4 if number of neighbors decreases

the accuracy also decreases to some extent. Additionally, we can infer that, e�ect of

ST increases comparatively in smaller values of NS. On the ROC-4 metric PCF and

CBCF follow similar patterns (See Figure 4.4(c) and Figure 4.4(d)), however relative
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to PCF, CBCF is insensitive to change in NS. This, also, is also an expected result,

because CBCF performs CF on a dense matrix in contrast to PCF which performs CF

on a very sparse matrix. Another reason is the weight of pseudo-ratings, which also

decreases the e�ect of ST in the accuracy.

4.3.6 E�ect of Content Weight to the Accuracy of CBCF

In this experiment, we tested the accuracy of CBCF with 11 values of CW with CW =

{0, 0.1, . . . , 1}. The results of our experiment are summarized in Table 4.10.As it is

mentioned before, content weight(CW ) indicates maximum weight of pseudo-ratings

in the combination of CBCF's �nal predictions. CW is applied with self weighting

(SW ) threshold. SW indicates minimum number of rated movies for CW to totally

a�ect the combination. For these experiments we �xed SW to 50. The results of our

experiment are summarized in Table 4.10.

Table 4.10: E�ect of CW to the accuracy of CBCF

MAE ROC-4

Approach CW u1 u2 u3 u4 u5 %
change
of
MAE
from
CW
=
0

u1 u2 u3 u4 u5 %
change
of
ROC-
4
from
CW
=
0

CBCF 0 0,878 0,870 0,851 0,865 0,869 - 0,6110 0,6132 0,6053 0,6063 0,6036 -

CBCF 0,1 0,873 0,863 0,846 0,859 0,862 0,68 0,6120 0,6128 0,6046 0,6065 0,6050 0,05

CBCF 0,2 0,869 0,857 0,842 0,854 0,858 1,23 0,6126 0,6136 0,6052 0,6076 0,6076 0,24

CBCF 0,3 0,867 0,853 0,838 0,850 0,854 1,66 0,6135 0,6134 0,6051 0,6089 0,6072 0,28

CBCF 0,4 0,865 0,850 0,836 0,847 0,850 1,99 0,6126 0,6124 0,6051 0,6096 0,6073 0,25

CBCF 0,5 0,864 0,848 0,834 0,845 0,848 2,19 0,6126 0,6121 0,6044 0,6094 0,6055 0,16

CBCF 0,6 0,864 0,847 0,833 0,844 0,847 2,25 0,6120 0,6097 0,6039 0,6091 0,6067 0,06

CBCF 0,7 0,864 0,847 0,834 0,844 0,847 2,24 0,6108 0,6090 0,6028 0,6086 0,6068 -
0,04

CBCF 0,8 0,866 0,848 0,835 0,845 0,848 2,09 0,6121 0,6091 0,6029 0,6094 0,6054 -
0,02

CBCF 0,9 0,869 0,851 0,837 0,847 0,851 1,81 0,6094 0,6077 0,6034 0,6081 0,6044 -
0,21

CBCF 1 0,872 0,854 0,841 0,850 0,854 1,44 0,6095 0,6076 0,6017 0,6073 0,6028 -
0,35

Change of accuracy with increasing values of CW is shown in 4.5. 4.5(a) shows the

percentage change of the MAEmetric from CW=0 to ST = {0.1, 0.2, . . . , 1}. Similarly,

4.5(b) shows the percentage change of the ROC-4 metric from CW=0 to CW =

{0.1, 0.2, . . . , 1}.
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(a) percentage change of the MAE from
CW=0 to CW = {0, 0.1, . . . , 1}

(b) percentage change of ROC-4 from
CW=0 to CW = {0, 0.1, . . . , 1}

Figure 4.5: E�ect of CW to the accuracy

Results show that, the accuracy of CBCF, on both MAE and ROC-4 metrics increases

until some point and decreases after that point. As it can be seen in Figure 4.5,

there is an optimal interval for CW around 0,5 on both MAE and ROC-4 metrics.

It is understandable because predictions get worse as CW gets closer to endpoints

consequently CBCF gets closer to PCF and PCB. As a result, choosing CW somewhere

around 0,5 is rational.

4.3.7 Comparing Accuracies of PCB, PCF and CBCF

For default values of our parameters (See Table 4.5) we compare PCB, PCF and CBCF.

The results of our experiments are summarized in Table 4.11.

Table 4.11: Comparison of CBCF with PCB and PCF

MAE ROC-4

Approach u1 u2 u3 u4 u5 u1 u2 u3 u4 u5

PCB 0,95 0,927 0,919 0,918 0,93 0,6093 0,6073 0,602 0,6093 0,605

PCF 0,897 0,871 0,866 0,864 0,878 0,6083 0,6021 0,5996 0,5979 0,5949

CBCF 0,864 0,848 0,834 0,845 0,848 0,6138 0,6121 0,6044 0,6094 0,6055

On the MAE metric, CBCF performs 9.06% better than PCB and 3.3% better than

PCF. On the ROC-4 metric, CBCF performs 0.4% better than PCB and 1.4% better

than PCF. To conclude CBCF outperforms PCB and PCF on both MAE and ROC-

4 metrics(See Table 4.12). Although the improvements are signi�cant, CBCF can
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perform better with the optimized values of user-speci�ed parameters.

Table 4.12: Summary of comparison results of CBCF with PCB and PCF

MAE ROC-4

CBCF vs. PCB %9,6 %0,4

CBCF vs. PCF %3,3 %1,4

4.4 Online Evaluation

4.4.1 Methodology

In our online experiments we use Mean Absolute Error (MAE) and Receiver Op-

erating Characteristics (ROC) as statistical and decision-support accuracy metrics,

respectively. We calculate elapsed time by dividing the number of clock ticks to the

clock ticks per second. Since we construct the clusters o�ine we are not interested

with the time elapsed while constructing the clusters.

For each experiment, �rstly we give brief background information. Secondly, we give

the test results of experiments. Thirdly, we interpret the results of each experiment.

We perform our experiments for four distinct training sets of MovieLens (i.e. u4, u5,

ua, ub). Increase on the MAE metric(i.e. decrease in prediction accuracy) is regarded

as a negative change. Similarly, the increase on the ROC-4 metric(i.e. increase in clas-

si�cation accuracy) is regarded as a positive change. For online user evaluation instead

of employing user-speci�ed vectors, we use a portion of training matrix. Although, dif-

ferent ratios can be speci�ed, we use 10% of training matrices for all experiments given

below.

In following sections, we analyze experiments conducted by di�erent parameters. Un-

less explicitly stated, we �xed number of clusters (NC) to 10, degree of fuzziness (m) to

2, sensitivity threshold (ε) to 0,01 and number of active clusters (NAC) to 1. Default

values and types of these parameters are given in Table 4.13.
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Table 4.13: Default values and types of parameters for o�ine evaluation

Parameter Default Value Type

number of clusters (NC) 10 integer

degree of fuzziness (m) 2 {1.25, 1.5, 2, 3}

sensitivity threshold (ε) 0.01 decimal

number of active clusters (NAC) 1 integer

Before evaluating accuracy and e�ciency of CBCFdfc (i.e. CBCF with dynamic fuzzy

clustering) and CBCFonl (i.e. online CBCF without clustering), we evaluate the e�ects

of some parameters to the results. In Section 4.4.2 we evaluate the e�ect of NS. In

Section 4.4.3 we evaluate the e�ect of NAC.

4.4.2 E�ect of Neighborhood Size to the Accuracy and E�ciency of CBCF

In this experiment, we tested accuracy and e�ciency of CBCFdfc and CBCFonl with

NS = {10, 20, . . . , 100}. The results of our experiments are summarized in Table 4.14

and Table 4.15.

Table 4.14: E�ect of NS to the accuracy of CBCFdfc and CBCFonl

MAE ROC-4

Approach NS u4 u5 ua ub %
change
of
MAE
from
NS=10

u4 u5 ua ub %
change
of
ROC-
4
from
NS=10

CBCFdfc 10 0,820 0,827 0,831 0,846 - 0,6183 0,6153 0,6197 0,6258 -

CBCFdfc 20 0,821 0,829 0,832 0,847 -0,09 0,6184 0,6154 0,6201 0,6259 0,024

CBCFdfc 30 0,822 0,829 0,832 0,847 -0,11 0,6183 0,6155 0,6198 0,6260 0,018

CBCFdfc 40 0,822 0,829 0,832 0,847 -0,14 0,6181 0,6151 0,6198 0,6262 0,002

CBCFdfc 50 0,822 0,829 0,832 0,847 -0,15 0,6183 0,6150 0,6197 0,6261 -0,002

CBCFdfc 60 0,822 0,829 0,832 0,847 -0,16 0,6184 0,6151 0,6200 0,6259 0,011

CBCFdfc 70 0,822 0,829 0,832 0,847 -0,16 0,6183 0,6149 0,6198 0,6260 -0,007

CBCFdfc 80 0,822 0,829 0,832 0,847 -0,16 0,6184 0,6152 0,6197 0,6260 0,008

CBCFdfc 90 0,822 0,829 0,832 0,847 -0,16 0,6183 0,6151 0,6196 0,6259 -0,011

CBCFdfc 100 0,822 0,829 0,832 0,847 -0,17 0,6184 0,6151 0,6197 0,6259 -0,003

CBCFonl 10 0,822 0,823 0,829 0,847 - 0,6137 0,6130 0,6181 0,6228 -

CBCFonl 20 0,822 0,822 0,829 0,847 0,04 0,6135 0,6131 0,6179 0,6230 0,013

CBCFonl 30 0,821 0,822 0,829 0,846 0,05 0,6136 0,6127 0,6181 0,6231 -0,008

CBCFonl 40 0,821 0,822 0,829 0,846 0,07 0,6137 0,6130 0,6178 0,6234 0,029

CBCFonl 50 0,821 0,822 0,829 0,846 0,07 0,6137 0,6131 0,6180 0,6235 0,036

CBCFonl 60 0,821 0,822 0,829 0,846 0,08 0,6137 0,6130 0,6180 0,6236 0,039

CBCFonl 70 0,821 0,822 0,829 0,846 0,08 0,6137 0,6130 0,6180 0,6236 0,042

CBCFonl 80 0,821 0,822 0,829 0,846 0,09 0,6137 0,6131 0,6182 0,6237 0,050

CBCFonl 90 0,821 0,822 0,829 0,846 0,09 0,6137 0,6131 0,6182 0,6238 0,056

CBCFonl 100 0,821 0,822 0,829 0,846 0,08 0,6137 0,6130 0,6182 0,6238 0,043

As it can be seen from Table 4.14 the accuracy of CBCFdfc remains nearly constant
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Table 4.15: E�ect of NS to the e�ciency of CBCFdfc and CBCFonl

online prediction time (s)

Approach NS u4 u5 ua ub % change of time (s) from NS=10

CBCFdfc 10 2,32 2,33 2,32 2,35 -

CBCFdfc 20 2,47 2,45 2,47 2,47 -5,80

CBCFdfc 30 2,61 2,61 2,59 2,60 -11,70

CBCFdfc 40 2,84 2,72 2,76 2,78 -19,10

CBCFdfc 50 2,88 2,96 2,85 2,87 -24,04

CBCFdfc 60 3,02 2,98 2,98 2,98 -28,33

CBCFdfc 70 3,17 3,16 3,10 3,11 -34,56

CBCFdfc 80 3,37 3,25 3,23 3,24 -40,46

CBCFdfc 90 3,47 3,49 3,36 3,36 -46,79

CBCFdfc 100 3,47 3,53 3,54 3,55 -51,18

CBCFonl 10 8,10 8,19 8,10 8,17 -

CBCFonl 20 8,09 8,21 8,08 8,17 -0,22

CBCFonl 30 8,22 8,18 8,14 8,16 -0,62

CBCFonl 40 8,22 8,12 8,18 8,12 -0,50

CBCFonl 50 8,18 8,21 8,24 8,17 -0,77

CBCFonl 60 8,17 8,16 8,23 8,13 -0,25

CBCFonl 70 8,18 8,14 8,16 8,18 -0,47

CBCFonl 80 8,22 8,17 8,19 8,20 -0,77

CBCFonl 90 8,32 8,28 8,20 8,19 -1,29

CBCFonl 100 8,28 8,18 8,17 8,21 -0,65

on both metrics. It is an expected result, because our motivation for clustering was

to be able create cluster centroids which represent users properly. Another factor for

constancy in the accuracy is using fuzzy clustering instead of hard clustering. A proper

representing set of users can be created with small number of neighbors by using fuzzy

clustering techniques [84].

(a) percentage change of online pre-
diction time from NS=10 to NS =
{20, 30, . . . , 100} for CBCFdfc

(b) percentage change of online pre-
diction time from NS=10 to NS =
{20, 30, . . . , 100} for CBCFonl

Figure 4.6: E�ect of NS to the e�ciency of CBCFdfc and CBCFonl

Change of e�ciency with increasing values of NS is shown in Figure 4.6. Figure 4.6(a)

and Figure 4.6(b) show the percentage change of e�ciency in terms of online prediction

time from NS=10 to NS = {20, 30, . . . , 100} for CBCFdfc and CBCFonl, respectively.
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As can be seen from Table 4.15 and Figure 4.6, online prediction time of CBCFdfc

increases linearly where online prediction time of CBCFonl remains almost constant.

Therefore, as we stated earlier(See Section 3.5) online prediction time of CBCFdfc is

directly proportional with NS because of the similarity computation with NS users

for each online insertion. And online prediction time of CBCFonl is not related with

NS because of the similarity computation with NU users for each online insertion. As

a result, setting NS to a small number is plausible.

4.4.3 E�ect of Neighbor Clusters to the Accuracy and E�ciency of CBCFdfc

and CBCFonl

In this experiment, we tested the prediction and e�ciency of CBCFdfc with NAC =

{1, 2, . . . , 10}. The results of our experiments are summarized in Table 4.16 and Table

4.17. Change of the accuracy and e�ciency with increasing values of NAC is shown

in Figure 4.7.

Table 4.16: E�ect of NAC to the accuracy of CBCFdfc

MAE ROC-4

Approach NAC u4 u5 ua ub %
change
of
MAE
from
NAC=1

u4 u5 ua ub %
change
of
ROC-
4
from
NAC=1

CBCFdfc 1 0,822 0,829 0,832 0,847 - 0,6183 0,6153 0,6198 0,6262 -

CBCFdfc 2 0,818 0,819 0,827 0,843 0,64 0,6138 0,6115 0,6179 0,6225 -0,56

CBCFdfc 3 0,821 0,820 0,827 0,843 0,54 0,6137 0,6123 0,6173 0,6233 -0,52

CBCFdfc 4 0,818 0,819 0,827 0,843 0,65 0,6136 0,6120 0,6178 0,6230 -0,53

CBCFdfc 5 0,818 0,820 0,827 0,843 0,64 0,6135 0,6121 0,6177 0,6230 -0,54

CBCFdfc 6 0,818 0,819 0,827 0,844 0,63 0,6131 0,6124 0,6182 0,6232 -0,51

CBCFdfc 7 0,825 0,819 0,827 0,843 0,55 0,6133 0,6128 0,6182 0,6237 -0,56

CBCFdfc 8 0,818 0,819 0,827 0,843 0,66 0,6130 0,6120 0,6184 0,6227 -0,54

CBCFdfc 9 0,818 0,819 0,827 0,843 0,66 0,6130 0,6117 0,6186 0,6229 -0,54

CBCFdfc 10 0,818 0,819 0,827 0,843 0,65 0,6133 0,6121 0,6179 0,6233 -0,52

Table 4.17: E�ect of NAC to e�ciency of CBCFdfc

online prediction time (s)

Approach NAC u4 u5 ua ub % change of time NAC=1

CBCFdfc 1 2,63 2,63 2,63 2,62 -

CBCFdfc 2 4,84 4,82 4,84 4,83 83,92

CBCFdfc 3 7,23 7 7 6,98 168,41

CBCFdfc 4 9,16 9,21 9,15 9,16 249,00

CBCFdfc 5 11,38 11,34 11,39 11,28 331,87

CBCFdfc 6 13,53 13,52 13,51 13,51 414,46

CBCFdfc 7 15,65 16,15 15,6 15,67 500,09

CBCFdfc 8 17,75 17,75 17,82 17,84 577,07

CBCFdfc 9 20,58 20 20,61 20,59 678,12

CBCFdfc 10 22,1 22,19 22,19 22,08 742,63
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As it can be seen from Table 4.16, the statistical accuracy (i.e. MAE) of CBCFdfc

increases �rst then remains nearly constant(See Figure 4.7(a)). Conversely, decision-
support accuracy (i.e. ROC-4) of CBCFdfc decreases �rst then remains nearly con-
stant (See Figure 4.7(b)). However, the changes on both metrics are insigni�cant (i.e.
<0.1%) so that the optimal value for NAC should be chosen according to the e�ciency
of CBCFdfc with di�erent values of NAC.

(a) percentage change of MAE from
NAC=0 to NAC = {1, 2, . . . , 10} for
CBCFdfc

(b) percentage change of ROC-4 from
NAC=0 to NAC = {1, 2, . . . , 10} for
CBCFdfc

(c) percentage change of online pre-
diction time from NAC=0 to NAC =
{1, 2, . . . , 10} for CBCFdfc

Figure 4.7: E�ect of NAC to the accuracy and e�ciency of CBCFdfc

Figure 4.7(c) shows the percentage change of e�ciency in terms of online prediction

time from NS=10 to NS = {20, 30, . . . , 100} for CBCFdfc. As can be seen from

Table 4.17 and Figure 4.7(c), online prediction time of CBCFdfc increases linearly with

increase of NAC. As it is explained in Section 3.5, number of similarities computed

in top-NAC nearest clusters approach is NACxNS causing linear increase of online

prediction time, similar to the case in the above section. Consequently, for e�ciency
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in online prediction, setting NAC to a small number is plausible.

4.4.4 Comparing the Accuracy and E�ciency of and CBCFdfc with other

approaches

For default values of our variables (See Table 4.13) we compare PCB, PCF and CBCF.

The results of our experiments are summarized in Table 4.11. CBCF stands for o�ine

CBCF which was already computed in Section 4.3.

Table 4.18: Comparison of CBCFdfc with CBCF and CBCFonl

MAE ROC-4 online prediction time (s)

Approach u4 u5 ua ub u4 u5 ua ub u4 u5 ua ub

CBCF 0,846 0,849 0,852 0,858 0,6238 0,6183 0,6160 0,6190 - - - -

CBCFonl 0,822 0,823 0,829 0,847 0,6137 0,6130 0,6181 0,6228 8,10 8,19 8,10 8,17

CBCFdfc 0,820 0,827 0,831 0,846 0,6183 0,6153 0,6197 0,6258 2,32 2,33 2,32 2,35

As it is given in Table 4.19; on the MAE metric, CBCFdfc performs 2.40% better

than CBCF and 0.14% better than CBCFonl. On the ROC-4 metric, CBCFdfc per-

forms 0.08% better than CBCFonl and 0.47% better than CBCF. Although CBCFdfc

outperforms other approaches on both metrics the di�erence between them is quite

marginal. Major gain of CBCFdfc is its e�ciency compared to CBCFonl. In terms of

online prediction time CBCFdfc performs % 249 better than CBCFonl. As a conclu-

sion, using clustering on online prediction is considerably reasonable in respect to the

accuracy and e�ciency.

Table 4.19: Summary of comparison results of CBCFdfc with CBCF and CBCFonl

MAE ROC-4 time (s)

CBCFdfc vs. CBCF 2,40% 0,08% -

CBCFdfc vs. CBCFonl 0,14% 0,47% 249%

4.5 Evaluation of Initialization of Fuzzy c-Means Clustering

As it is explained in 3.5, in addition to random initialization we developed a new

method for fuzzy clustering which we called max-distance cluster initialization method.

Di�erently from random initialization in max-distance initialization we iteratively se-
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lect cluster centers according to their distance to initial cluster centers. We compare

the accuracy and e�ciency of these two methods in Section 4.5.1.

In addition to random selection of initial clusters in max-distance initialization method

we developed a new method which is supposed to select more distinguishable initial

users compared to random selection. Brie�y, we obtain these users by taking the

users having maximum standard deviation values. We compare accuracies of these

two methods in Section 4.5.1.

for fuzzy clustering which we called max-distance cluster initialization method. Dif-

ferently from random initialization in max-distance initialization we iteratively select

cluster centers according to their distance to initial cluster centers. We compare the

accuracy and e�ciency of these two methods in Section 4.5.2.

4.5.1 Comparison of Cluster Initialization Methods

The results of our experiments are summarized in Table 4.20 and Table 4.20. In the ta-

bles given below, CBCFdfc,rand stands for CBCFdfc using random initialization method

and CBCFdfc,dist stands for CBCFdfc using max-distance initialization method.

Table 4.20: Comparing accuracy of used cluster initialization methods

MAE ROC-4

Approach u4 u5 ua ub average u4 u5 ua ub average

CBCFdfc,rand 0,821 0,828 0,831 0,846 - 0,6180 0,6145 0,6191 0,6250 -

CBCFdfc,dist 0,821 0,828 0,831 0,846 - 0,6186 0,6155 0,6198 0,6259 -

% change of MAE
and ROC-4 from
CBCFdfc,rand

0,00 0,02 0,00 0,00 0,00 0,09 0,16 0,10 0,15 0,13

As it can be seen from Table 4.20, on the MAE metric, CBCFdfc,rand and CBCFdfc,dist

perform almost equal. On the ROC-4 metric, CBCFdfc,dist performs 0.13% better

than CBCFdfc,rand. The di�erence between CBCFdfc,rand and CBCFdfc,dist is slightly

marginal but still signi�cant. The reason behind this di�erence in the accuracy is rela-

tively balanced separation of cluster centers in CBCFdfc,dist according to the situation

in CBCFdfc,rand. As a result, with random selection of cluster centers we cannot guar-

antee to obtain ideal cluster centers so that we use max-distance initialization method

in our approach.

64



Table 4.21: Comparing e�ciency of used cluster initialization methods

o�ine cluster construction time (s) online prediction time (s)

Approach u4 u5 ua ub average u4 u5 ua ub average

CBCFdfc,rand 217 190 132 130 - 0,0285 0,0276 0,0281 0,0277 -

CBCFdfc,dist 302 234 166 157 - 0,0282 0,0274 0,0273 0,0273 -

% change of MAE
and ROC-4 from
CBCFdfc,rand

-40 -23 -26 -21 -28 1,1 0,7 3,0 1,5 1,6

Table 4.21 shows the comparison of e�ciency between CBCFdfc,rand and CBCFdfc,dist.

According to o�ine cluster construction time, CBCFdfc,dist takes % 28 more time

than CBCFdfc,rand. However, since we are not interested with o�ine time, increase in

cluster construction time does not pose a problem. On the other side, online e�ciency

of CBCFdfc,dist performs % 1,6 better than CBCFdfc,rand. To conclude, there is a

trade-o� between online and o�ine times. Although, decline in the o�ine time is

much more bigger than improvement in the online time as a percentage, due to our

considerations mentioned in Section 3.5 we choose max-distance initialization method

for cluster construction.

4.5.2 Comparison of Initial Cluster Selection Methods

The results of our experiments are summarized in Table 4.22.

Table 4.22: Comparing accuracy of used initial cluster selection methods

MAE ROC-4

Approach u4 u5 ua ub average u4 u5 ua ub average

CBCFdfc,dist−rand 0,822 0,829 0,832 0,847 - 0,6182 0,6148 0,6197 0,6257 -

CBCFdfc,dist−stdev 0,822 0,829 0,832 0,847 - 0,6186 0,6153 0,6199 0,6263 -

% change of MAE
and ROC-4 from
CBCFdfc,dist−rand

0,01 0,01 0,00 0,00 0,01 0,06 0,09 0,03 0,10 0,07

As it can be seen from Table 4.22, on the MAEmetric, CBCFdfc,dist−rand and CBCFdfc,dist−stdev

perform almost equal. On the ROC-4 metric, CBCFdfc,dist−stdev performs 0.07% better

than CBCFcl,dist−rand. The di�erence between CBCFdfc,dist−rand and CBCFdfc,dist−stdev

is slightly marginal but still signi�cant.

The reason behind this di�erence is similar to the reason explained in the above sec-

tion. As it is expected, choosing the users having bigger standard deviation values

yield more distinguishable initial clusters so that increases the accuracy. To conclude,
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CBCFdfc,dist−stdev is more appropriate for initial cluster selection.

4.6 User Evaluation

4.6.1 Methodology

The main goal of user tests is to gather usefulness data of our interactive movie rec-

ommender. We have conducted the tests in January 2010 with 35 people all between

25-35 years. The tests have been conducted online each taking 15 minutes in average.

Each test user rated movies on his own computer which is connected to the server.

After entering rating information, Movie-Rec displays a recommendation list to the

screen. Thereafter, the test user gives feedback about relativeness of movies in the

recommendation list. Recommendation list is composed of 15 movies, each having six

choices as it is explained in Section 3.6.

The most frequently encountered problem occurring during the tests was, that the

most of the movies are not known by users. Genre information and imdb link are

provided for each movie to solve this problem.

4.6.2 Test Results

Evaluation results of 35 users are given in Table 4.23.
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Table 4.23: User evaluation results

"already watched" "not watched yet" general attitude

like dislike neutral may like may not like no idea positive negative neutral

user1 2 1 0 5 2 5 47% 20% 33%

user2 3 0 0 6 1 5 60% 7% 33%

user3 0 0 0 9 2 4 60% 13% 27%

user4 0 0 1 10 2 2 67% 13% 20%

user5 4 1 1 6 1 2 67% 13% 20%

user6 5 0 0 7 1 2 80% 7% 13%

user7 1 0 0 9 2 3 67% 13% 20%

user8 2 1 0 10 1 1 80% 13% 7%

user9 3 2 0 7 1 2 67% 20% 13%

user10 3 0 1 8 1 2 73% 7% 20%

user11 4 0 0 5 0 6 60% 0% 40%

user12 2 1 0 9 0 3 73% 7% 20%

user13 3 1 0 7 0 4 67% 7% 27%

user14 3 0 1 5 2 4 53% 13% 33%

user15 2 0 0 9 0 4 73% 0% 27%

user16 1 0 0 12 0 2 87% 0% 13%

user17 1 0 1 7 2 4 53% 13% 33%

user18 4 1 0 7 2 1 73% 20% 7%

user19 3 1 2 8 1 0 73% 13% 13%

user20 4 0 0 7 3 1 73% 20% 7%

user21 2 0 0 9 2 2 73% 13% 13%

user22 2 0 1 7 1 4 60% 7% 33%

user23 1 1 0 7 2 4 53% 20% 27%

user24 3 0 1 8 0 3 73% 0% 27%

user25 4 2 0 6 0 3 67% 13% 20%

user26 1 0 0 9 1 4 67% 7% 27%

user27 1 1 0 10 2 1 73% 20% 7%

user28 0 0 0 10 0 5 67% 0% 33%

user29 1 1 0 8 1 4 60% 13% 27%

user30 0 0 0 11 3 1 73% 20% 7%

user31 2 1 1 9 2 0 73% 20% 7%

user32 3 1 0 7 1 3 67% 13% 20%

user33 1 0 0 9 3 2 67% 20% 13%

user34 4 0 0 8 0 3 80% 0% 20%

user35 1 0 0 8 3 3 60% 20% 20%

Table 4.24 summarizes the evaluation results. As it can be seen from Table 4.24 68%

of recommended movies are evaluated as positive, 12% are evaluated as negative and

21% are evaluated as neutral by test users. The standart deviation of positive, negative

and neutral feedbacks are 9%, 5% and 7%, respectively.

Table 4.24: Summary of user evaluation results

mean st. dev.

positive attitude 68% 9%

negative attitude 12% 5%

neutral attitude 21% 7%

According to user evaluation results, we can conclude that Movie-Rec recommends

movies to the users with an acceptable accuracy.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this thesis, we propose a novel approach for movie recommendation, which resolves

some limitations by combining collaborative �ltering and content-based �ltering tech-

niques. Our hybrid approach is a uni�ed model, which employs some user-speci�ed

parameters in order to get more accurate and e�cient recommendations. We use

well-known MovieLens rating data and the IMDB movie information for experiments.

Our recommendation algorithm is based on Content-Boosted Collaborative Filtering

(CBCF) algorithm which is proposed by Melville et al. in [52]. In our work, we extend

and improve their proposed system by adding some new techniques and components.

Firstly, we enhance the naive Bayesian classi�er (NBC) proposed in [52] in order to get

a better classi�cation of movies. In addition to maximum-likelihood that Melville et

al. used, we use a di�erent decision rule named average-likelihood. By means of test

results, we see that NBC using average-likelihood outperforms NBC using maximum-

likelihood on both accuracy metrics. We also use additive smoothing with a user-

speci�ed parameter (AV ) to overcome anomalies caused by existence of zeros in the

multiplication of the likelihood estimates. Test results indicate the optimal value of

AV as a decimal number close 1. We compare accuracy of CBCF using average-

likelihood with pure content-based �ltering (PCB) and pure collaborative �ltering

(PCF). According to test results, CBCF outperforms PCB and PCF signi�cantly on

both metrics.

Secondly, in order to be able to make online recommendations e�ciently we use a fuzzy
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clustering model (i.e. fuzzy c-means clustering) that combines model and memory-

based techniques. Although, fuzziness increases o�ine initialization time of clusters,

it does not pose a problem because we are interested only in online recommendation

time. We compare CBCFdfc (CBCF with dynamic fuzzy clustering) with CBCFonl

(online CBCF without clustering) and CBCF (o�ine CBCF) in terms of accuracy and

e�ciency metrics. Results are surprising; in addition to dramatic decline from O(n) to

O(1) in online recommendation time, CBCFdfc performs even better than CBCFonl on

accuracy metrics. To sum up, accuracy of CBCFdfc is comparable with the accuracy

of the CBCFonl and CBCF, on the other side scalability of CBCFdfc is considerably

better than the scalability of CBCFonl.

Thirdly, we propose a new cluster initialization method in order to increase accuracy

and e�ciency. In addition to random selection of clusters (CBCFdfc,rand) we iteratively

select cluster centers according to their distance to initial cluster centers (CBCFdfc,dist).

CBCFdfc,dist's o�ine cluster construction time is more than CBCFdfc,dist's cluster con-

struction time. However, since we are not interested with o�ine time, it does not pose

a problem. In all experiments, CBCFdfc,dist performed better than CBCFdfc,rand in

accuracy and online e�ciency. Also, in addition to random selection of initial clusters

(CBCFdfc,dist−rand), we select more distinguishable initial users by picking the users

having maximum standard deviation values (CBCFdfc,dist−stdev). Test results were

meaningful, CBCFdfc,dist−stdev marginally better than CBCFdfc,dist−stdev.

Fourthly, we evaluate the e�ect of user-speci�ed parameters those signi�cantly e�ect

the accuracy and e�ciency of the recommendations. These parameters are adjust-

ment value (AV ) in NBC, neighborhood size (NS) and similarity threshold (ST ) in

collaborative �ltering engine, weight of content-based ratings (CW ) in combination

part of CBCF and number of clusters (NAC) in clustering part. AV is used for addi-

tive smoothing in NBC and according to test results choosing AV a relatively sizeable

value increases accuracy as it is explained above. NS and ST are used to limit the

number of neighbors of a user. Test results show that, e�ect of these parameters to

the accuracy are similar. As the number of neighbors increases we see that accuracy

increases until some point then remains almost constant. On the other side, increase

of NS negatively e�ects e�ciency of CBCFdfc. The reason is clear; online recommen-

dation time of CBCFdfc is linearly dependent with calculation time of neighborhood
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selection in CF. So for NS and ST there is a trade-o� between accuracy and e�ciency.

As the fourth parameter, CW , determines weight of content-based and collaborative

characteristics of CBCF. If CW is a relatively big number than CBCF gets closer to

PCB, otherwise CBCF gets closer to PCF. By means of various experiments we see

that there is an optimal interval for CW on both accuracy metrics, so it is reasonable

to keep CW in this optimal interval. As the last parameter, we employ NAC which

corresponds number of active clusters used for the computation of �nal predictions in

CBCFdfc. Increase of NAC marginally improves accuracy, however negatively e�ects

e�ciency. As a result keeping NAC small is resonable.

Fifthly, we evaluate opinions of users about recommended movies. For user evaluation

we use feedbacks obtained by the user interface. Feedbacks are grouped under three

categories; positive, negative and neutral. Approximately 70% of users users agreed

with recommended movies to them and approximately 10% disagreed. Received feed-

backs are quite satisfactory in comparison with other studies in recommender systems

literature.

In conclusion, our system CBCFdfc can be evaluated as an accurate and e�cient online

recommender for movie domain.

5.2 Future Work

• In CBCFdfc we only perform user-based similarity. This means while selecting

neighbors only the similarity between users according to ratings they give are

taken into consideration. In addition to user-based similarity, item-based sim-

ilarity can be used. Item-based (i.e. movie-based) similarity measurement can

improve the accuracy of the system.

• In our approach we do not implement reclustering of the user space. In dy-

namic databases it is a necessity to recluster database so that cluster centroids

can properly represent users as the number of user insertions into the database

increases.

• In addition to user-based clustering, item-based (movie-based) clustering also

can be performed. Item-based clustering applied with user-based clustering can
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decrease online recommendation time for each user.

• The user interface can be improved in order to provide a better evaluation frame-

work.
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