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ABSTRACT 

 

MODELING, IDENTIFICATION AND REAL TIME POSITION CONTROL 

OF A TWO-AXIS GIMBALLED MIRROR SYSTEM 

 
 

Çağatay, Kartal 

M.Sc., Department of Mechanical Engineering 

Supervisor: Prof. Dr. Bülent E. Platin 

Co-Supervisor: Prof. Dr. Tuna Balkan 

 

February 2010, 157 pages 

 

 

This work focuses on modeling, parameter estimation, and real-time position control 

of a two axis Gimbaled Mirror System (GMS) which is designed and manufactured 

to move an IR spot generated by an Infra Red Scene Generator System (IRSGS) in 

two orthogonal axes (elevation and azimuth) within the IR scene which is also 

generated by the IRSGS.  

 

Mathematical models of the GMS, the control system, and the disturbance torque 

originated from the movements of Flight Motion Simulator (FMS), on which the 

IRSGS will be mounted, are constructed using MATLAB®/Simulink® and 

MATLAB/Simulink/SimMechanics®. Parameter estimations of the GMS and control 

system elements are achieved using MATLAB/Simulink Parameter Estimation 

Tool®. 

 

The controller tuning is performed using the developed mathematical models in 

MATLAB/Simulink environment. Optimized digital PID controllers are 

implemented in the real-time control system. Performances of the controllers for 
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both GMS axes are evaluated by both real system tests and simulation runs; and the 

results of these runs are compared. Controller performances under the effect of 

disturbances are analyzed by using the mathematical models developed in the 

MATLAB/ Simulink environment. 

 

Keywords: Two Axis Gimbal System, System Identification, Modeling, Controller 

Tuning, Real-Time Control, MATLAB, LabView® 
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ÖZ 

 

İKİ EKSENLİ BİR GİMBALLİ AYNA SİSTEMİNİN MODELLENMESİ, 

TANILANMASI VE GERÇEK ZAMANLI KONTROLÜ 

 
 

Çağatay, Kartal 

Yüksek Lisans, Makine Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Bülent E. Platin 

Ortak Tez Yöneticisi: Prof. Dr. Tuna Balkan 

 

Şubat 2010, 157 sayfa 

 
 
Bu çalışmada, bir Kızıl Ötesi Görüntü Oluşturma Sistemi (KÖGOS) tarafından 

oluşturulan kızıl ötesi spotun, yine KÖGOS tarafından oluşturulan kızıl ötesi sahne 

içerisinde birbirine dik iki eksende (istikamet ve yükseliş) konumlandırılabilmesi 

için tasarlanan ve üretilen iki eksenli bir Gimballi Ayna Sistemi (GAS)’nin ve onun 

eksenlerinin gerçek zamanlı konum kontrolünün gerçekleştirilebilmesi için kurulan 

gerçek zamanlı kontrol sisteminin modellenmesi, oluşturulan modelde yer alan 

bilinmeyen parametrelerin belirlenmesi ve GAS eksenlerinin gerçek zamanlı konum 

kontrolü gerçekleştirilmiştir. 

 

GAS’ın, kontrol sistemi elemanlarının ve KÖGOS’in üzerine oturtulacağı hareketli 

bir platform olan Uçuş Hareket Simülatörü (UHS)’nün hareketlerinden kaynaklanan 

bozanetkenlerin matematiksel modelleri ise MATLAB/Simulink ve 

MATLAB/Simulink/SimMechanics yazılımları kullanılarak oluşturulmuştur. GAS 

ve kontrol sisteminin parametreleri MATLAB/Simulink Parameter Estimation Tool 

kullanılarak elde edilmiştir. 
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Kontrol sistemi parametreleri MATLAB/Simulink ortamında geliştirilen 

matematiksel modeller kullanılarak belirlenmiş ve bu parametreler gerçek sisteme 

uygulanmıştır. Denetleyici başarımları her iki GAS ekseni için de hem gerçek sistem 

ile yapılan testler hem de MATLAB/Simulink ortamında geliştirilen benzetim 

modeli kullanılarak değerlendirilmiş ve elde edilen sonuçlar karşılaştırılmıştır. 

Denetleyicilerin bozanetkenlerin etkisi altında iken gösterdiği başarım ise 

MATLAB/Simulink ortamında geliştirilen matematiksel modeller kullanılarak 

analiz edilmiştir. 

 

Anahtar Kelimeler: İki Eksenli Gimbal Sistemi, Sistem tanılanması, Modelleme, 

Kontrol Sistemi parametrelerinin optimizasyonu, Gerçek Zamanlı Kontrol, 

MATLAB, LabView 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1 INTRODUCTION 

1.1 Background and motivation 

 

Today the missile technology is so advanced that it is not possible for a jet or a 

helicopter to escape from a guided missile just by making some maneuvers. 

Therefore, recently designed flying platforms are equipped with different kind of 

equipments, which are designed to avoid the fatal consequences of being hit by a 

missile, either by destroying the missile or deceiving its sensors. These equipments 

are called as countermeasures.  

 

The classification of guided missiles according to how their seeker section works, 

leads to two main categories; IR (infrared) guided missiles and RF (radio frequency) 

guided missiles. Countermeasures designed to counter the guided missiles could also 

be divided into two main categories as IR countermeasures and RF countermeasures.  

 

Infrared countermeasures are the devices designed to protect platforms from IR 

guided missiles by confusing the missiles’ infrared guidance system. Flares are the 

most common aerial infrared countermeasures. They are used to counter IR guided 

surface-to-air or air-to-air missiles. They are mostly made of a spontaneous 

combustion metal which burns hotter than jet exhaust. Once the presence of an IR 

missile is sensed, flares are released by the aircraft. The aircraft would then pull 

away at a sharp angle from the flare and then reduce the engine power in attempt to 
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cool the thermal signature. This change in temperature and presence of new IR 

signatures, theoretically confuse the missile’s seeker and hopefully cause the missile 

to follow flare(s) rather than the aircraft. 

 

Flares could be dispensed from an aircraft in short intervals, one at a time, long 

intervals, or in clusters. To be able to counter different missiles effectively, flare 

dispensing programs should be optimized according to the type of missile. In order 

to be able to optimize the flare dispensing programs, some tests should be conducted 

with different dispensing programs to observe the behavior of the missile, whether it 

hits the target or not. However, conducting these tests with real systems (i.e. 

launching an IR guided missile to a target and observing if the aircraft would be able 

to avoid the missile hit by using predetermined flare dispensing programs) will 

inevitably result in personnel and expensive system loss, which is certainly not an 

option. Hardware in the Loop (HIL) Simulation is a method to conduct these tests in 

a safe and cost effective manner. 

 

HIL simulation is a technique that is used increasingly in the development and test 

of complex real-time embedded systems, in which some components of the 

complicated system are simulated in software, while some other components are 

used as actual entities, between which appropriate interfaces are constructed to 

transform signals. Figure 1.1 shows a general schematic of a HIL simulation system.  

 

Roketsan Inc., is developing a HIL simulation system which will be used as a tool 

for optimizing flare dispensing programs to effectively counter various kinds of IR 

guided missiles. Real missile hardware will be used in this HIL simulation as the 

unit under test (UUT). The HIL simulation architecture that is being developed by 

Roketsan Inc., is shown in Figure 1.2. 
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Figure 1.1. General schematic description of a HIL system 
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Figure 1.2. HIL architecture 

 

 

 

A Flight Motion Simulator (FMS) will be used in the developed HIL simulation 

system in order to be able to simulate the motion of the missile in 3 axes; pitch, yaw 
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and roll. According to the IR Scene that is generated considering the scenario to be 

simulated, the seeker of the missile creates and sends appropriate signals to the CPU 

of the missile and the CPU decides the necessary actions and sends relevant signals 

to the actuators. However, in the HIL simulation, these signals are sent to the 

actuators of the FMS instead of the control actuation system of the missile so the 

FMS assures the missile to make the necessary motion. A typical 3 axes FMS is 

shown in Figure 1.3. 

 

 

 

 
 

Figure 1.3. A typical three axes FMS [1] 

 

 

 

For the HIL simulation system developed by Roketsan Inc. however, a 5 axes FMS 

will be used instead of a classic 3 axes type. This is because the head of the missile 

could also move independently from the body of the missile and so there is a 

necessity to move the IR scene according to the movements of the missile head. The 

seeker of a missile can only see the IR images which are within the range of its Field 

of View (FOV), so the angular magnitude of the background of the IR scene that 

will be generated should be equal to the FOV of the missile. On the other hand there 

is another concept called Field of Regard (FOR) for the missile, which indicates the 
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angular magnitude that the head of the missile could scan. There is a need to move 

the IR scene inside the FOR and this is why another two axes for the FMS are 

needed which are called together as Target Motion Simulator (TMS) on which the 

Infrared Scene Generation System (IRSGS) will be placed. With these 2 axes the 

FMS needed for the HIL simulation will be a 5 axes one. A typical 5 axes FMS is 

shown in Figure 1.4. 

 

 

 

 
 

Figure 1.4. A five axes FMS [2] 

 

 

 

The IRSGS, which is also being developed by Roketsan Inc. as a subsystem of HIL 

simulation system, is the system in charge of the formation of the IR spots, which 

are the elements of the IR scene that was calculated by the Central Control System, 

on the seeker of the missile in real-time. The dynamic and radiometric states of the 

platforms and the countermeasures, which are inside the FOV, at the angle that the 

head of the missile looks, are transferred from the Central Control System to the 

IRSGS. According to these transferred information, an IR Scene is formed and 
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reflected on the missile’s seeker. The IRSGS is composed of some optical and 

electromechanical components which are used for forming the IR spots, changing 

the angular magnitudes and power of the IR spots, and moving the generated IR 

spots in two orthogonal axes.  

 

A Gimbaled Mirror System (GMS) is procured by Roketsan Inc., for the purpose of 

moving the generated IR spot in azimuth and elevation axes to simulate the motion 

of the target relative to the seeker of the missile. Furthermore, a real-time control 

system, which composed of a real-time platform, a motion control card, an amplifier 

for each axis, and the GMS, is constituted in order to achieve real-time closed loop 

position control of GMS axes. Using the real-time control structure developed, 

accurate and yet rapid tracking of the position commands sent from the IRSGS 

computer for both GMS axes is crucial for fidelity and efficiency of the HIL 

simulations. 

 

1.2 Literature survey 

 

Literature survey conducted covers mainly two areas. Components used in infrared 

scene generation systems to simulate target motion in two orthogonal axes and 

position control algorithms for two axis gimbal systems. 

 

1.2.1 Literature survey on components used to simulate target motion in two 

orthogonal axis for infrared scene generation purposes 

 

The results of the literature survey made, reveals that the components which are 

extensively used to simulate target motion in two orthogonal axes for infrared scene 

generation purposes are; galvanometric scanners, polygon scanners, and gimbaled 

mirror systems. 
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1.2.1.1 Galvanometric scanners 

 

Galvanometric scanners (galvos) are rotational devices which direct a light beam in 

one axis by rotating a mirror. The magnitude of the applied command signal 

determines the turn angle of the mirror. The combination of two galvanometric 

scanners can be used to position a light beam in two axes (Figure 1.5). Actually this 

combination is being used in two axes laser scanners. 

 

 

 

 
 

Figure 1.5. Combination of two galvanometric scanners to form a X-Y 

scanner.[3] 

 

 

 

As an example of galvanometric scanners’ usage in the scene generation systems to 

simulate the target motion, a supplemental projector system for the simulation of 

high intensity point source targets created in 1998 by AMCOM’s MRDEC can be 

assessed [4]. This projector is capable of simulating very high intensity point sources 

which may be dynamically positioned anywhere within the seeker FOV. A single 
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point source is created using one laser diode, and it is steered independently in two 

axes within the FOV using a galvanometer scanner [4].  

 

1.2.1.2 Polygon scanners 

 

In Figure 1.6 several different polygon mirrors are shown. A polygon mirror is a 

multi-faced mirror. When coupled with a rotary actuator, it can be used (also named) 

as a polygon mirror scanner. Rotating polygon mirrors are being used for a wide 

variety of different tasks. For example; in LIDAR systems combinations of polygon 

mirrors are used for scanning the azimuth and elevation axes. In laser printers, they 

are used to direct the laser beam aimed at them through a system of lenses and 

mirrors onto the photoreceptor. In omni-directional barcode scanners they are used 

to produce a pattern of beams in varying orientations allowing them to read barcodes 

presented to it at different angles. On the other hand, there are some polygon mirrors 

with faces of different inclination. Using this type of polygon mirror, directing of a 

light beam in two orthogonal axes could be achieved. 

 

 

 

 
 

Figure 1.6. Polygon mirrors[5] 
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An infrared scene projector, which uses a polygon scanner to create a two-

dimensional scene across the UUT’s FOV is explained in [6]. The Laser Diode 

Array Projector (LDAP) is a laser scanning system which was operational at US 

Army Missile Command's (MICOM) Research, Development, and Engineering 

Center (RDEC). It consisted of a linear array of diode lasers, an optical scanning 

system and drive electronics and was specifically designed for testing sensors which 

utilize a focal plane array (FPA). The output intensity of each diode laser is 

modulated with the polygon mirror to effectively generate a two-dimensional scene 

across the UUT’s FOV. Three out of each group of four polygon facets are 

machined with different inclinations in order to obtain a scan pattern with a 4:1 field 

interlace. 

 

 

 

 
 

Figure 1.7. Schematic of LDAP [6] 
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Actually the polygon mirror scanner used in [6] is not used for simulating the target 

motion. The purpose of its usage is creating a scene on the UUT’s seeker by 

scanning the scene with smaller parts. But since the x-y positioning of a light beam 

can be achieved by the same logic as in its usage in [6], the use of them is 

considered as a solution.  

 

1.2.1.3 Gimbaled Mirror System 

 

An example for the use of a gimbaled mirror system to simulate the target motion is 

given in [7]. That study explains the structure and working principles of an infrared 

scene generator system being developed by RAFAEL which is called TSG (Target 

Scene Generator). 

 

 

 

 
 

Figure 1.8. Configuration of the multiple elements on the IR scene generation 

table of TSG being developed by RAFAEL[7] 
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TSG is planned to be used for open loop testing of classical electro-optical missile 

seekers. A part of TSG is shown in Figure 1.8. From Figure 1.8 it is seen that at the 

end of each optical channel (before the beams enter beam combiners) there is a 

gimbaled mirror system to allow target pointing to any position within the 10° FOV. 

The gimbaled mirror system configuration used in TSG is shown in Figure 1.9. 

 

 

 

 
 

Figure 1.9. Gimbaled mirror system of TSG being developed by RAFAEL[7] 

 

 

 

1.2.2 Literature survey on two axis gimbal position control algorithms 

 

Two axis gimbals are used for a wide range of different applications so the position 

control of these systems is an important and widely studied topic involving various 

disciplines. There are several studies in the literature, which specifically sought to 
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develop position control algorithms in order to yield a better dynamic performance 

for the gimbal axes. In this section, some important studies on the topic are 

presented. 

 

The thesis study conducted by Swarup [8] specifically sought to design and control a 

two-axis gimbal system which will be used for positioning a miniature video camera 

to perform visual tracking experiments for the object-catching architecture built 

around the MIT Whole Arm Manipulator at the Artificial Intelligence Laboratory of 

Massachusetts Institute of Technology in the USA. The scope of the work mainly 

included the design phase of the gimbal system, modeling kinematics, and dynamics 

of the system, design and implementation of two different controllers which are, 

proportional-derivative (PD) controller and computed torque controller. 

 

Optics of the camera used allowed only a limited field of view to be sensed, so, to be 

able to accurately track the objects while maintaining maximum visual information 

flow, it was crucial to design a controller which rapidly positions the FOV in 

response to fast moving objects. On the other hand, the steady-state positioning error 

was less of a concern since the FOV allows for some error. 

 

Due to the asymmetry in the camera inertial tensor, centripetal and Coriolis forces 

were expected to affect the dynamics of the system significantly. Because of this 

cross-coupling, a multivariable methodology was deemed necessary when designing 

an appropriate control system. 

 

Since a very small steady-state error was not vital, a PD controller was selected. The 

position and derivative gains for the PD controller were tuned by applying a step 

function and modifying the gains. As the result of the optimization, overshoot less 

than 5% and 50 ms rise time achieved for a step input with π/6 amplitude for both 

axes. In that study, it is noted that even faster rise times were achievable, in order to 

prevent the system from saturating the amplifiers at high inputs, a compromise was 



  

 

13 

made by reducing the gains to allow the gimbal to achieve larger inputs although at 

shorter rise times. 

 

The second controller designed was a computed torque controller. The purpose of 

the computed torque controller was improving tracking performance by explicitly 

accounting for the nonlinear dynamics of the system. Proportional and derivative 

feedback terms were also added to the control law to account for the inaccuracies in 

modeling the system inertia tensor and nonlinear terms. Thus the controller is 

decomposed into n decoupled double integrators of the form: 

 

jjPjjDdjj qkqkqu ~~ −−= &&&   nj ,...,1=               (1.1) 

 

where 

 

djq&&  Desired acceleration 

ju  Control law 

jDk  Derivative gain 

jPk  Proportional gain 

jq~  Joint displacement error 

 

Since the acceleration is not physically measurable, numerical methods must be used 

to differentiate position and velocity data. These computations, however, introduce 

phase lag into the calculated acceleration, introducing error. 

 

An elliptical trajectory was chosen in order to quantify each controller’s 

performance with respect to the coupled nonlinear dynamics. As a result, it was 

observed that the bandwidth of the computed torque controller was obviously much 

lower than that of the PD controller, but the tracking performance was slightly 
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better. It was concluded that a high servo rate PD controller satisfactorily tracked 

moving objects with minimal overshoot. Although the computed torque controller 

employs the inverse plant dynamics in an attempt to linearize the system, the high 

frequency content of the controller resulted in a lower overall system bandwidth due 

to delays in computing. A PD controller was selected at the end since it is more 

robust and has much higher bandwidth. The gyroscopic coupling effects of the 

gimbal system were insignificant within the motion space necessary for visual 

sensing. 

 

The results of the reviewed study show that, depending on the severity of the 

disturbances that affects the system; a simple control algorithm like PD control can 

provide better results than a more complex control algorithm which takes the 

disturbances and uncertainties affecting the system into consideration. An in depth 

analysis of the disturbances should be made before deciding the necessity of 

implementation of a complex control algorithm. 

 

Another important study [9] mainly considers the performance of sliding mode 

control on a two axis gimbal system which is typical to tactical missiles. The 

objective of the gimbal control system is to follow a desired trajectory developed in 

real-time as rapidly as possible with a minimum steady state error. The scope of the 

study includes modeling of the rotational motion, design of sliding mode control, 

and evaluation of the performance of the controller via simulation.  

 

Euler’s equation of motion was used for modeling the rotational motion of the 

system. Since the antenna mounted on the gimbal post was modeled as a circular 

plate, the motion for the pitch and yaw axes were not coupled. Because of this, only 

one axis, which is the pitch axis, was considered in the study. Viscous damping, 

friction and the torques generated by the missile’s motion were also taken into 

account. The friction torque and the torque produced on the pitch axes due to missile 
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motion were considered as unknown disturbances. The combined motor and pitch 

axis dynamics were obtained in state variable form as 

 

21 xx =&                  (1.2.a) 

( ) ( ) ( ) ( ){ }uxxbxxbxxxxx 21210212102 ,,,, Δ++Δ+= ϕϕ&           (1.2.b) 

1xy =                  (1.2.c) 

 

where 

 

1x , 2x  …….State variables 

u  …….Control law 

( )210 , xxϕ  Nominal value of ( )21, xxϕ  assuming all motor parameters, moments of 

inertia and other values are known. The friction torque and disturbance 

torques are not included. 

( )21, xxϕΔ  Disturbances and deviations in the nominal values  

( )210 , xxb  Nominal value of ( )21, xxb  

( )21, xxbΔ  Unknown variations in the nominal values of ( )21, xxb  

 

In the reviewed study, the sliding mode controller design was performed following 

the steps below: 

 

1) A sliding surface of the form 112
~~ xcx +=σ  was selected such that the closed loop 

system motion on this surface exhibits a desired behavior regardless of plant 

uncertainties and disturbances. 1
~x  and 2

~x  are given by the relations: 

 

1
*

11
~ xxx −=                (1.3.a) 

2
*

22
~ xxx −=                (1.3.b) 
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where * denotes desired system behavior and 1c  was selected considering the 

required settling time. 

 

2) A positive definite candidate to the Lyapunov function was selected as  

 

( ) 2
21

1 ,
2
1 σxxbV −=                  (1.4) 

 

3) For the sliding surface to be reached in a finite amount of time, the derivative of 

the Lyapunov function candidate should satisfy the following inequality: 

 

σρ1−<V& , 01 >ρ                  (1.5) 

 

A suitable control law, which guarantees the above inequality holds true, is 

decided.  

 

The pitch axis with sliding mode control was simulated by using a software model. 

A realistic desired trajectory was chosen. Simulations ran for both nominal case 

where the disturbances and deviations from the nominal values are zero, and for the 

case with disturbances. When the simulation results are examined, it can be seen that 

the developed sliding mode controller provided a very accurate tracking even in the 

presence of disturbances and uncertainties. 

 

The results of this particular study show that the sliding mode control is a powerful 

method when there are uncertainties in the system parameters or unmodeled 

disturbances. Without knowing anything about the disturbances it rejects them in an 

effective manner. Because of the switching behavior of the control law, it is not 

sensitive to the disturbances and provides a rapid but yet robust response.  
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Another study [10] presents two different advanced controller design methods, 

namely, robust inverse dynamics control and adaptive control, for motion control of 

a two degree of freedom gimbal which will be attached to an aviation vehicle and 

will be used for air surveys. Due to dynamic modeling errors, friction and 

disturbances from the outside environment, which may degrade the tracking 

accuracy of an airborne gimbal, controllers that are more advanced than a 

proportional-integral-derivative (PID) controller was thought to be necessary. A 

stabilizer or rate sensor was mounted on the base of the system to measure the 

disturbance. Tracking and disturbance rejection performances of the designed 

controllers were observed by both conducting experiments on the system and 

simulation runs with various reference commands and with disturbances due to all 

kinds of disturbances possible. The results showed that both robust inverse dynamics 

control and adaptive control performed tracking and disturbance rejection 

satisfactorily. Another study [11] presents the implementation of sliding mode 

control for the same system used in [10]. The results of this study showed the 

effectiveness of the proposed sliding mode controller in rejecting the disturbances.  

 

The thesis study conducted by Skoglar [12] specifically sought to find a solution to 

the trajectory planning and motion control problem of a two axis camera gimbal 

which hosts an experimental sensor system consisting of an IR sensor, a video 

camera and an integrated navigation system. Two different control strategies, PID 

with anti-windup and linear quadratic (LQ), were implemented and tested for the 

motion control of the gimbal system. The challenge was to perform control that 

responds quickly, but do not excite the damping flexibility too much. The LQ-

controller used a linearization of the dynamic model to fulfill these requirements. 

 

From the simulation results it was observed that when PID control algorithm was 

used, the reference tracking performance was not so good since the flexibility causes 

large overshoots. Thus, it was concluded that the PID-regulator is inadequate for 

control of mechanical structure with flexibility. Instead, an LQ regulator was 
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developed to handle the flexibility. Since the control design requires a linear model 

of the system, a linearization of the nonlinear dynamic model was performed. The 

simulation results showed that the LQ-regulator takes the flexibility into 

consideration and the results with the LQ-regulator are better than the results with 

the PID-regulator. 

 

Other than these studies, Rzasa [13] designed proportional-integral-velocity (PIV) 

control with velocity and acceleration feedforward for rapid and accurate position 

control of a two axis gimbal, which was used for moving a transceiver in directional 

wireless communications systems. 

 

The gimbal systems considered in the reviewed studies are generally relatively large 

systems which house large payloads while the two axis gimbal system used in this 

thesis study is a relatively small one. Furthermore, the production of GMS used in 

this study is a high quality one with negligible unbalance for the axes and very low 

friction values in both axes. Also, since no transmission element (such as gear, belt, 

etc.) is used to drive the GMS axes, backlash is not a problem. So, no control action 

is needed to compensate the bearing friction, backlash or unbalance of the axes.  

 

The systems in [9], [10], [11] are expected to be affected by disturbance torques 

induced by the motion of the base on which they are mounted. Since the GMS will 

be mounted on a moving FMS, some disturbance torques will be induced also on the 

GMS axes. However, since the FMS motions are not expected to be severe and no 

serious vibrations will be present, advanced controller algorithms like sliding mode 

control, adaptive control or robust inverse dynamics control, which are used in 

studies [9], [10], [11], are not thought to be necessary. Instead, a digital PID 

controller is decided to be used. Swarup showed in [8] that a PD controller can be 

adequate for position control of gimbal axes.  

 



  

 

19 

1.3 Research objectives 

 

Three main objectives of this study can be given as: 

 

The first objective is to develop a detailed model of the real-time control system 

using MATLAB/Simulink environment. This task includes developing models for 

each component of the control system. Some tests and analyses should be performed 

to decide the phenomenon to be modeled. Also an estimation of some parameters 

should be carried out since values for some parameters are unknown. 

 

The second objective is to mathematically model the disturbance torques that are 

imposed on the GMS axes because of the motion of FMS axes. The rotational 

movements of FMS axes cause torques acting on GMS axes dictated by the angular 

momentum equation. These torques are uncontrolled torques hence they behave as 

disturbances on the control system. Their effects on the performance of the 

controllers could be observed by conducting tests. These tests should include 

mounting GMS on a motion simulator and observing the GMS axes motions while 

moving the motion simulator by different motion profiles. However, since the 

angular velocity and angular acceleration values attained by the motion simulator 

would be high for the tests to be performed it is not safe to perform these tests 

without having a clue about how the GMS axes will behave under these conditions. 

In addition, using a simulation model is certainly less time-consuming than 

performing tests with real equipment. If a high fidelity model on the kinematics and 

dynamics of the system is developed, several different operating conditions could be 

analyzed within relatively short time intervals.  

 

The third and last objective is to optimize the controller parameters of the motion 

control card that will be used for real-time position control of GMS axes, 

considering the time domain requirements defined for motion of GMS axes. The 
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performances of the controllers for static environment are intended to be evaluated 

by using the developed MATLAB/Simulink model of the system and also by 

performing tests with the real system. The performances of the controllers under 

dynamic conditions are intended to be evaluated by using the devised 

MATLAB/Simulink model. 

 

1.4 Thesis outline 

 

Thesis study is composed of seven chapters; 

 

Chapter 1 is the introduction chapter, which explains the background, motivation 

and objectives of this study as well as giving some basic definitions related to the 

study. The published studies in literature on methods for position controlling of the 

axes of a two axis gimbal (pitch-yaw gimbal) are reviewed and discussed. Methods 

for simulating target motion in two orthogonal axes for infrared scene generation 

purposes are also reviewed and explained in this chapter. 

 

In Chapter 2, real-time control system elements (Gimbaled Mirror System (GMS), 

the motion control card, amplifiers, and the real-time platform) are explained and 

technical data for these elements are given.  

 

Modeling of the whole system dynamics is explained in Chapter 3. The model of 

each component of the real-time control system developed by using 

MATLAB/Simulink is explained in detail. Mathematical expressions for disturbance 

torques acting on GMS axes because of the motion of FMS axes are developed 

analytically by using Euler equations for rigid body motion and these expressions 

are verified by using a model developed by using MATLAB/Simulink/ 

SimMechanics modules. Denavit-Hartenberg convention is used for kinematics 

analysis of the FMS-GMS system. 
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Chapter 4 covers the parameter estimation of the unknown parameters of the system 

in which MATLAB/Simulink Parameter Estimation Tool is used. Outputs are 

compared for the real system and the MATLAB/Simulink model, in which the 

estimated parameters are used. 

 

Chapter 5 explains the parameter optimization of the digital PID controller of the 

motion control card for both GMS axes. First, the requirements for the position 

control of both GMS axes are defined. Then the discrete time transfer functions 

between the voltage outputs of the motion control card and angular positions are 

obtained for both axes since the controller design is performed in discrete time 

domain. Finally, the PID controller parameters’ optimizations for both axes are 

achieved by using pole placement method via MATLAB/SISO Design Tool®  

 

Chapter 6 explains the assessment of performance of the digital PID controllers, 

whose parameters are optimized, for both GMS axes by using the simulation model 

developed using MATLAB/Simulink and also by conducting some tests with the 

real system.  

 

Chapter 7 summarizes the whole study, presents the conclusions arrived, and gives 

recommendations for the future work.  
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CHAPTER 2 

 

 

REAL TIME CONTROL SYSTEM ARCHITECTURE AND COMPONENTS 

2 REAL TIME CONTROL SYSTEM ARCHITECTURE ACOMPONENTS 

 

 

To achieve a real-time closed-loop position control of the two GMS axes 

independent from each other, a real time control system is constituted. The 

established real-time control system consists of a GMS (axis gimbals, actuators and 

encoders), a motion control card, and an amplifier for each GMS axis. The control 

system architecture is shown in Figure 2.1.  
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Figure 2.1. Real-time control system architecture 
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2.1 Gimbaled Mirror System (GMS) 

 

The GMS consists of a stationary base and two gimbals for azimuth and elevation 

movements producing a motion in two orthogonal axes. Figure 2.2 depicts the main 

components of GMS. The maximum dimensions for GMS along three orthogonal 

axes (azimuth axis, elevation axis and third axis perpendicular to the first two) are 

100, 138, and 108 mm, respectively. The total mass of the system is approximately 1 

kg. The mass moment of inertia values of the GMS axis gimbals about center of 

mass of the axis gimbals w.r.t. the body fixed coordinate frames are supplied by the 

manufacturer, which were obtained from the solid model of the GMS.  

 

 

 

Azimuth
gimbal
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gimbalAzimuth

gimbal

Elevation
gimbal

 
 

Figure 2.2. Gimbaled mirror system 

 

 

 

The unbalances in both axes are negligible so it is possible to activate these axes 

separately. For balancing the parts, counter-masses were added to the elevation 
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frames. These counter-masses are made of brass and can be shifted in a slotted hole 

to balance the assembly. 

 

2.1.1 Actuators and encoders 

 

The elevation axis of GMS is actuated by a single phase brushless voice coil 

actuator while, a 3-phase brushless pancake motor is used to drive the azimuth axis. 

Since the actuator used for the elevation axis is a single phase system, there is no 

need for commutation. However, the 3-phase brushless motor used for the azimuth 

axis should be driven by commutation. Sinusoidal commutation is applied to provide 

smooth and precise control of the motor. In order to get satisfactory results from the 

sinusoidal commutation, an accurate measurement of rotor position is required. A 

high resolution encoder is used as position sensor to satisfy this requirement. 

 

Optical, rotary incremental encoders are used for both the elevation and azimuth 

axes. The encoders have three incremental output signals; 2 channels with 

complements (sin/cos signal), in quadrature and an index gated signal (ref signal for 

0-position). The encoders have 2,000,000 counts per revolution. Unfortunately, no 

detailed technical data for the encoders or the actuators is available since they were 

not provided by the supplier. 

 

2.2 Motion control card and real-time platform 

 

An NI PCI-7358 manufactured by National Instruments Corporation, which is 

shown in Figure 2.3, is used as the motion control card for position control of the 

GMS axes. It can perform closed loop motion control of servo axes in a real time 

environment. It has a 32 bit CPU which runs a real-time operating system, a DSP 
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unit for the closed loop control and a custom FPGA that performs the encoder 

interfacing. 

 

Servo axes can be used to control either brushed or brushless DC motors. An axis 

which is used for the motion control of a servo motor, consists of at least a trajectory 

generator, a PID control block, an encoder or ADC channel feedback and one or two 

DAC outputs depends on the type of the motor which is being driven. 

 

The trajectory generator generates the path from initial position to desired position, 

considering the set acceleration and velocity values for an axis and it feeds the 

instantaneous position to the PID loop each sampling period. The sampling period 

can be set as some discrete values between 62.5 microseconds and 5 milliseconds 

range. However, when all eight axes for the motion control card are enabled, the 

minimum attainable controller update period becomes 250 microseconds. Since all 

eight axes of the card will be used for HIL applications, the minimum controller 

update period will be 250 microseconds. So the controller update period is set as 250 

microseconds and this value is used all through the study. 

 

The discrete time transfer function of the digital PID controller of the motion control 

card is not given among its specifications. It should be obtained by performing tests 

with the motion control card. The DAC of the card is bipolar 10 Volts and the 

resolution of the DAC is 16 bits (0.000305 Volts/LSB). The motion control card 

communicates with the real-time platform through PCI bus. Detailed technical 

specifications of the motion control card are given in Appendix A. 

 

The real-time platform is the computer which hosts the motion control card. It 

communicates with the motion control card through PCI bus. The LabView 8.6 RT 

Module runs on the real-time platform. 
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Figure 2.3. Motion control card used for motion control of GMS [14] 

 

 

 

2.3 Amplifiers 

 

An S16A8 three phase sinusoidal brushless servo amplifier manufactured by 

Advanced Motion Controls and shown in Figure 2.4 is used to drive three phase 

brushless motor for the GMS azimuth axis. Since the sinusoidal commutation is 

performed by the motion control card for the three phase brushless motor using the 

position feedback data from the encoder for azimuth axis, an amplifier which does 

not perform any commutation is selected for this axis. For the elevation axis, the 

same amplifier is used. 

 

The additional characteristics of the amplifier used for both GMS axes are as 

follows: It is a current (torque) mode amplifier; it closes an internal current loop 

while the motion controller closes the outer position loop; there are total of two 

proportional-integral (PI) current regulators in each amplifier for each of two motor 
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phases. Their purpose is to generate a current value to pass through the motor 

windings, which is proportional to the voltage value of the command signals from 

the motion control card. The current in the third motor winding is the negative sum 

of the currents in the other two windings. The amplifier gain for the amplifier used is 

1.6 Amperes/Volt, which means the amplifier tries to output a current value which is 

1.6 times the voltage value which is applied to the input pin of the amplifier. PI 

regulators compare the sinusoidal current command signals from the motion 

controller with the actual currents flowing through the motor windings and form 

their outputs by manipulating these current errors with the proportional and integral 

gains. There are two DIP (Dual In-line Package) switches on the amplifier to 

increase/decrease the proportional gain and activate/deactivate the integral gain of 

the PI current regulators. The outputs of the PI current regulators are fed to pulse 

width modulation (PWM) blocks and PWM block outputs are fed to the motor 

terminals. PWM switching frequency of the amplifier is 33 kHz. Detailed technical 

specifications of the amplifier are given in Appendix B. 

 

 

 

 
 

Figure 2.4. Amplifiers used for motion control of GMS [15]



  

 

28 

CHAPTER 3 

 

 

MODELING OF SYSTEM DYNAMICS 

3 MODELING OF SYSTEM DYNAMICS 

 

 

The mathematical models for each of the real time control system components 

including GMS are developed in MATLAB/Simulink environment. These models 

are explained throughout this chapter. Furthermore, the mathematical modeling of 

torques acting on GMS axes due to the motion of FMS axes is represented. Tests, 

which are conducted to decide which effects should be included in the constructed 

models, are also explained.  

 

3.1 GMS model 

 

The GMS model developed in MATLAB/Simulink environment is composed of 

actuator models, Coulomb and viscous friction models, and cable models. Each 

submodel is explained in detail in the following sections. 

 

3.1.1 Actuator model 

 

The voltage reduction at actuator terminals that is proportional to the speed of the 

rotor due to back electromotive force (emf) effect is included in the developed 

actuator models. The proportionality between the voltage reduction and the angular 

speed of the rotor is defined by the voltage constant of actuator denoted as eK . The 

voltage constants for both actuators are unknown.  
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The relationship between the voltage across actuator terminals and the current 

through the actuator coils is defined by the inductance and resistance of the stator 

windings. Hence, electrical dynamics of the actuators are modeled using inductance 

and resistance values of the stator windings. In electrical actuators the conversion 

from the electrical system to the rotational mechanical system is defined by the 

torque constant of the actuator thus electrical system to mechanical system 

conversion in the actuators is modeled by torque constants of the actuators. The 

torque constants for azimuth and elevation axes actuators are also unknown. The 

dynamics of the actuators are expressed with the following equations and 

MATLAB/Simulink model developed for actuators is shown in Figure 3.1. 

 

( ) ( )tKtV ebemf θ&=                (3.1.a) 

( ) ( ) ( ) ( )∫+=− dttiLtRitVtV bemf              (3.1.b) 

( ) ( )tiKtT t=                 (3.1.c) 

 

where 

 

bemfV   Back emf voltage [V] 

eK   Voltage constant of actuator [V.s/rad] 

θ&   Angular velocity [rad/s] 

V   Voltage applied across actuator terminals by amplifier [V] 

R   Resistance of actuator coil [Ω] 

L   Inductance of actuator coil [H] 
i   Current through actuator coil [A] 

T   Torque applied by actuator [N.m] 

tK   Torque constant of actuator [N.m/A] 
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Figure 3.1. Actuator model developed in MATLAB/Simulink environment 

 

 

 

3.1.2 Friction model 

 

Friction model developed in MATLAB/Simulink environment is shown in Figure 

3.2. The bearing of the azimuth gimbal is a duplex bearing in O-arrangement. The 

elevation gimbal is mounted on the azimuth axis gimbal with two small diameter 

duplex bearings, one on the left and one on the right side. The relative motion 

between the inner and outer rings of the bearings results in Coulomb friction torque 

and viscous friction torque to act on the axis gimbals. Static friction (stiction) is 

neglected in the developed model. The relation between the friction torque acting on 

the axes gimbals and the relative motion at the bearings is modeled with the 

equation: 

 

( ) θθ && bsignTT cf +=                   (3.2) 

 

where 

 

fT   Friction torque [N.m] 

cT   Coulomb friction torque [N.m]  
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b   Viscous friction coefficient [N.m.s/rad] 

θ&   Angular velocity [rad/s] 

 

 

 

 
 

Figure 3.2. Friction model developed in MATLAB/Simulink environment 

 

 

 

Actually, in order to obtain a smoother friction model the first term in (3.2), which is 

( )θ&signTc , could be replaced by a term like ( ) ( )θπ &aTc
1tan2 −  where, a  is a 

relatively large constant. However, since it is known that the friction values for both 

axes are very low, using this expression is not expected to make a significant 

difference between the results  

 

3.1.3 Cable model 

 

For both axes of GMS, it is observed that, when the axes are rotated to an arbitrary 

position and released from that position without any initial angular velocity, they 

move. To find the reason of this behavior, some tests are performed. Each axis is 
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commanded to and then released from -1.75 degrees for five times one right after the 

other. The same procedure is repeated for 1.75 and 0 degrees with both axes. The 

plots for GMS azimuth axis are shown in Figure 3.3, through Figure 3.5 while the 

plots for GMS elevation axis are shown in Figure 3.6 through Figure 3.8.  

 

As can be seen from the graphs, a position depending torque is acting on both axis. 

When the axis gimbals are released from the same position, they stop at a different 

position in each run. Actually from the graphs it can be said that the axes gimbals do 

not even stop. Another conclusion that can be extracted from the graphs is that, in 

each run, the axes go nearer to the point that they are released than the runs before. 

The reason for these behaviors of the GMS axes is due to the dynamic interaction of 

GMS with the cables coming from the motor and encoder connectors on the GMS 

structure and attached to the axes. 
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Figure 3.3. GMS azimuth axis released from -1.75 degrees 
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Figure 3.4. GMS azimuth axis released from 1.75 degrees 
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Figure 3.5. GMS azimuth axis released from 0 degree 
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Figure 3.6. GMS elevation axis released from -1.75 degrees 
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Figure 3.7. GMS elevation axis released from 1.75 degrees 
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Figure 3.8. GMS elevation axis released from 0 degree 

 

 

 

One of these cables carries the encoder data from the encoders to the encoder 

connector, which is fixed to the structure of GMS (Figure 3.9). This cable is 

connected to only azimuth axis therefore, applying torque only on the azimuth axis. 

On the other hand the other cable carries the power signals from the motor connector 

to the motor windings (Figure 3.10). The motor connector is also fixed to the 

structure of GMS. This cable is connected to both of the axes. But the stator of the 

three phase brushless motor used for the azimuth axis is not moving. So this cable 

interacts with the elevation axis. But since the elevation axis is moving together with 

the azimuth axis, the cable is also interacting with the azimuth axis in an indirect 

manner. 
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Figure 3.9. Encoder cable 

 

 

 

 
 

Figure 3.10. Cable from the motor connector to elevation axis gimbal 
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The cables do not act like ideal torsional springs exactly. As the axes move they 

apply force on the cables as well as the cables apply force on the axes. As a result 

the forces applied to the cables cause them to deform elastically and plastically. This 

effect is more obvious for the encoder cable attached to the azimuth axis gimbal. 

The reasons behind this behavior are its type and shape as well as its connection 

conditions at both ends. 

 

Each time a force is applied to the cables; they deform. The degree of this 

deformation depends on the magnitude of the force and the time period it is applied. 

The longer the axes stay at an angular position, the more the cables are deformed 

plastically to stay at that angular position. This is why, at each run of the tests, the 

axes go nearer to the point that they are released than the runs before. 

 

Although the cables are non-ideal elements which also dissipate energy as well as 

storing it, they are modeled as ideal springs since developing a model which reflects 

the true dynamics of the cable would be cumbersome. Furthermore, since the non 

ideal behaviors of the cables are not expected to affect the whole system dynamics 

significantly, it would not worth the effort. Hence, the cables are modeled as ideal 

springs with preload. The relationship between the torques applied on axes by the 

cables and the angular positions of the axis gimbals is defined with the following 

equation: 

 

preloadcable TkT += θ                   (3.3) 

 

where 

 

cableT   Torque acting on the axis because of the presence of the cable [N.m] 

k   Spring constant [N.m/rad] 

θ   Angular position [rad] 
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preloadT   Torque acting on the axis because of the potential energy stored in the 

cables at the axis zero position [N.m] 

 

Figure 3.3 through Figure 3.8 show free vibration traces of the GMS axes. By the 

help of these traces, the viscous damping coefficients for the axes could be obtained 

by using logarithmic decrement concept. Furthermore, by knowing the inertia values 

for the axes and obtaining the viscous friction coefficients, the spring constants 

could also be obtained. The equations needed for this analysis are given below: 

 

2

1ln
x
x

≅δ                            (3.4) 

( ) 222 δπ

δζ
+

=                   (3.5) 

21 ζ
ωω
−

= d
n                  (3.6) 

Jk n
2ω=                  (3.7) 

kJb ζ2=                  (3.8) 

 

where 

 

1x  Difference between the first peak and the steady state value [deg] 

2x  Difference between the second peak and the steady state value [deg] 

δ  Second logarithmic decrement 

ζ  Damping ratio 

nω  Natural frequency [rad/s] 

dω  Damped natural frequency [rad/s] 

J  Inertia of the axes [kg.m2] 

b  Viscous damping coefficient [N.m.s/rad] 
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k  Spring constant [N.m/rad] 

 

First, 1x , 2x  and dω  values are extracted from the free vibration plots. Then, 

damping coefficients are calculated by using (3.4) and (3.5). Using the damping 

coefficient values obtained natural frequency values are calculated by using (3.6). 

Then, spring constants and viscous damping coefficients are obtained by using (3.7) 

and (3.8). The spring constant and viscous damping coefficients obtained are given 

in Table 3.1 through Table 3.6.  

 

 

 

Table 3.1. Viscous damping coefficient and spring constant values obtained by 

releasing GMS azimuth axis from -1.75 o 

 

 
Viscous Damping Coefficient 

[N.m.s/rad] 

Spring Constant 

[N.m/rad] 

Test Run 1 0.0200 1.37 

Test Run 2 0.0200 1.37 

Test Run 3 0.0198 1.27 

Test Run 4 0.0198 1.32 

Test Run 5 0.0206 1.38 
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Table 3.2. Viscous damping coefficient and spring constant values obtained by 

releasing GMS azimuth axis from 1.75o  

 

 
Viscous Damping Coefficient 

[N.m.s/rad] 

Spring Constant 

[N.m/rad] 

Test Run 1 0.00620 4.21 

Test Run 2 0.0434 6.89 

Test Run 3 0.0224 4.09 

Test Run 4 0.0296 4.26 

Test Run 5 0.0509 5.37 

 

 

 

Table 3.3. Viscous damping coefficient and spring constant values obtained by 

releasing GMS azimuth axis from 0o 

 

 
Viscous Damping Coefficient 

[N.m.s/rad] 

Spring Constant 

[N.m/rad] 

Test Run 1 0.0190 2.03 

Test Run 2 0.0236 1.92 

Test Run 3 0.0166 1.80 

Test Run 4 0.0202 1.86 
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Table 3.4. Viscous damping coefficient and spring constant values obtained by 

releasing GMS elevation axis from -1.75o 

 

 Viscous Damping Coefficient 

[N.m.s/rad] 

Spring Constant 

[N.m/rad] 
Test Run 1 0.00250 0.438 

Test Run 2 0.00250 0.438 

Test Run 3 0.00450 0.517 

Test Run 4 0.00460 0.487 

Test Run 5 0.00210 0.432 

 

 

 

Table 3.5. Viscous damping coefficient and spring constant values obtained by 

releasing GMS elevation axis from 1.75o 

 

 
Viscous Damping Coefficient 

[N.m.s/rad] 

Spring Constant 

[N.m/rad] 

Test Run 1 0.00370 0.462 

Test Run 2 0.00360 0.432 

Test Run 3 0.00350 0.405 

Test Run 4 0.00330 0.400 

Test Run 5 0.00340 0.403 
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Table 3.6. Viscous damping coefficient and spring constant values obtained by 

releasing GMS elevation axis from 0o 

 

 
Viscous Damping Coefficient 

[N.m.s/rad] 

Spring Constant 

[N.m/rad] 

Test Run 1 0.00460 0.555 

Test Run 2 0.00400 0.539 

Test Run 3 0.00450 0.553 

Test Run 4 0.00470 0.557 

Test Run 5 0.00510 0.656 

 

 

 

The steady-state values used in the calculations are not reliable since the continuous 

deformation of the cables causes the steady-state position to change. Hence, the 

values determined for spring constant and viscous damping coefficient values are 

certainly not precise but still the orders of the values are consistent. Therefore this 

information can be used for parameter estimation to define the limits and initial 

guesses for the spring constant and viscous damping coefficients. 

 

3.2 Motion control card model 

 

The MATLAB/Simulink model constructed for the motion control card consists of 

trajectory generator model, PID control block model, DAC converter model, and the 

limiters for the integral term and output of the PID controller (Figure 3.11). Each 

submodel will be explained in detail in the following sections. 
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Figure 3.11. Motion control card model developed in MATLAB/Simulink 

environment 

 

 

 

3.2.1 Trajectory generator model 

 

Trajectory generator model developed in MATLAB/Simulink environment is shown 

in Figure 3.12. As mentioned in Chapter 2, the trajectory generator of the motion 

control card takes in the move constraints set for the axis (maximum velocity and 

acceleration/deceleration), initial position and the position command from the 

supervisory control, and generates a trapezoidal velocity profile, in real-time.  

 

Trapezoidal profile means that the axis accelerates at the value set until the velocity 

of the axis reaches the maximum velocity defined. Then the axis cruises at 

maximum velocity and decelerates to a stop at the desired position (Figure 3.13). 

Sometimes, when the desired movement is small or the acceleration/deceleration 

value defined is high, the axis could not reach the maximum velocity defined. For 

this case, the velocity profile is as shown in Figure 3.14.  
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Figure 3.12. Trajectory generator model developed in MATLAB/Simulink 

environment 

 

 

 

Since the angular position ranges of the GMS axes are only a few degrees, it is 

observed that the maximum velocities that are set for the axes are not reached during 

the movements of the axes. Therefore the model of the trajectory generator is 

constructed based on the velocity profile shown in Figure 3.14. 
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Figure 3.13. Trapezoidal velocity profile (maximum velocity reached) 
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Figure 3.14. Trapezoidal velocity profile (maximum velocity is not reached) 

 

 

 

3.2.2 PID control block model 

 

The digital PID control block of the motion control card takes in instantaneous 

position commands from the trajectory generator and position feedback from the 

encoder each PID controller update period, and outputs a 16-bit value which is 

converted to the corresponding voltage value by the DAC (Digital to Analog 

Converter) of the motion control card. PID control block model developed in 

MATLAB/Simulink environment is shown in Figure 3.15. 

 

By using PID control, three control laws, which are; P (proportional control), I 

(integral control), and D (derivative control) are utilized. The discrete-time domain 

transfer functions for integral (I) and derivative (D) controls depends on the 

numerical techniques used for integration and differentiation. Backward difference, 
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forward difference, and Tustin (bilinear) transformation are the commonly used 

methods. 

 

 

 

 
 

Figure 3.15. PID control block model developed in MATLAB/Simulink 

environment 

 

 

 

As mentioned in Chapter 2, the discrete time transfer function of the digital PID 

controller of the motion control card is unknown; but, it is known that a widely used 

technique for the utilization of integral and derivative control laws in discrete-time is 

the backward difference technique. For a motion control card which uses backward 

difference technique for differentiation and integration, the discrete-time domain 

transfer function of the PID controller is written as; 

 

( )
Tz

zK
z
TzKKzG dipc

1
1

−
+

−
+=                 (3.9) 

 

where  

 

T  Controller update period [s] 

pK  Proportional gain [LSB/encoder count] 
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iK  Integral gain [LSB/encoder count.s] 

dK  Derivative gain [LSB.s/encoder count] 

 

However in the manual of the motion control card it is written that the integral of 

error is scaled by dividing by 256 prior to being multiplied by iK  [16]. Using this 

information, the discrete-time domain transfer function of the PID controller of the 

motion control card is given by: 

 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −

+⎟
⎠
⎞

⎜
⎝
⎛

−
+=

Tz
zK

z
TzKKzG d

i
pc

1
1256

             (3.10) 

 

To be certain about the transfer function of the PID controller, some tests are 

conducted. By leaving the motors unpowered, and setting the position feedback to 

zero position, commands are sent to the motion control card and the DAC output of 

the motion controller is collected for different PID parameter sets by using a simple 

LabView program. For each PID parameter set a position command of 100 encoder 

counts is sent to the motion control card, while the axis velocity and acceleration 

values are set to 60,000 counts/s and 60,000 counts/s2 respectively. 

 

When the motion control card and the model outputs are plotted on the same graph, 

it was seen that there were significant differences between the outputs. Further 

analysis revealed that the motion control card accepts the iK  value entered as TKi  

and dK  value entered as
T
Kd . 

 

After the controller transfer function had been revised considering this knowledge 

and the tests were repeated, it was seen that the control card and the model outputs 

was more or less the same. The motion control card outputs and the model outputs 

plotted on the same graphs are shown in Figure 3.16, Figure 3.17 and Figure 3.18. 
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Figure 3.16. Motion control card output for Kp=1, Ki=0, Kd=0 
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Figure 3.17. Motion control card output for Kp=0, Ki=1, Kd=0 and integral limit 

of 1000 
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Figure 3.18. Motion control card output for Kp=5, Ki=8, Kd=100 and integral 

limit of 1000 

 

 

 

The maximum errors for the first two plots are 3, which corresponds to 0.915 mV. 

For the third case, where derivative control is also added, a detailed view is given in 

Figure 3.19. Because of the derivative control the response dynamics is fast but the 

data sampling rate is not as fast as the response dynamics. This is because the 

execution of the LabView function ‘Read DAC’, which is used to collect the digital 

values of the analog command output of the motion control card, takes 2-3 ms. 

Hence, the fastest data sampling rate that can be achieved by using this function is 

less than 500 Hz. A data acquisition card (DAQ) card could be used to sample data 

at appropriate rates; however, a suitable DAQ card is not available in this study. The 

only way to collect the needed data was using the ‘Read DAC’ function of LabView.  
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Figure 3.19. Detailed view of Figure 3.18 

 

 

 

From Figure 3.19 it can be seen that at points where real system data is collected, the 

simulation and real system outputs are in agreement. To be sure about the transfer 

function, PID block model, which is developed by assuming bilinear transformation 

method is used by the control card, was also constructed in MATLAB/Simulink 

environment and simulation was run with this model. From this simulation results, it 

was observed that the simulation outputs are clearly different from these of the real 

system (Figure 3.20). A model for forward difference method could not be 

developed since the degree of the numerator is greater than the denominator for the 

derivative term when the mapping is performed by forward difference method. As a 

result, it is concluded that the backward difference technique is used by the control 

card for differentiation and integration and the discrete-time domain transfer 

function for the PID controller is; 
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Figure 3.20. Output of simulation with Tustin method for Kp=5, Ki=8, Kd=100 

and integral limit of 1000 

 

 

 

There are two limiters in the PID control block of the motion control card. One of 

them limits the output of the PID control loop within 152± bit interval while the 

other limits the integral term of the PID output to a value set by the “Integral limit” 

parameter of the motion control card. During this study, the integral limit is set to 
152±  (its maximum value). 
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3.2.3 DAC model 

 

DAC model developed in MATLAB/Simulink environment is shown in Figure 3.21. 

16 bit DAC converts the digital PID loop output, which is in 152±  range to an 

analog voltage value in 10±  Volts range. DAC of the motion control card is 

modeled with a ZOH (Zero Order Hold) block and a Digital to Analog Converter 

gain ( dacK ) whose value is 16220V . 

 

 

 

 
 

Figure 3.21. DAC model developed in MATLAB/Simulink environment 

 

 

 

3.3 Amplifier model 

 

Amplifier model developed in MATLAB/Simulink environment is shown in Figure 

3.22. Amplifiers are supplied with 10±  Volts command signals from the motion 

control card and try to output a proportional current value. As mentioned in Chapter 

2, the proportionality constant which relates the input command voltage to the 

output current value is called the amplifier gain and it is 1.6 Amperes/Volt for the 

amplifiers used. 
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Figure 3.22. Amplifier model developed in MATLAB/Simulink environment 

 

 

 

However, the currents in the motor windings can not be controlled directly. To be 

able to generate a current value to pass through the motor windings proportional to 

the command signal, analog PI current regulators are used in the amplifiers. The 

difference between the current demand and the actual current sensed is fed to the PI 

current regulator. 

 

As mentioned in Chapter 2, the amplifiers have DIP switches to increase/decrease 

the proportional gain and activate/deactivate the integral gain of the PI current 

regulators. For the control system configuration, using these switches, the 

proportional gain is increased and the integral gain is activated for the amplifier used 

for the GMS azimuth axis while the proportional gain is decreased and the integral 

gain is deactivated for the amplifier used for the GMS elevation axis. This 

configuration of the DIP switches is not decided by considering a specific purpose. 

At the beginning of the study, the DIP switches are set in this configuration and 

stayed as they are throughout the study. 

 

The outputs of the PI current regulators are fed to the PWM blocks of the amplifiers. 

Since the switching frequency of PWMs is 33 kHz, the effect of their dynamics to 
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the whole system dynamics would probably be insignificant so PWM model is not 

included in the developed model. 

 

PWM blocks modulate the supply voltage of the amplifiers which is 24 Volts. So for 

100% duty cycle value the PWM blocks output 24 Volts and the output voltage 

value can not exceed this value. This phenomenon is called as amplifier saturation 

and included in the model using a saturation block. 

 

3.4 Disturbance torque model 

 

Since the IRSGS is mounted on the outer two axes of the FMS, it also makes the 

same motions as the FMS, so does the GMS. The angular motions of the FMS axes 

impose torques on the GMS axes obeying the angular momentum equation. Two 

mathematical models for disturbance torques are obtained, one by using Euler 

equations and another in MATLAB/Simulink/SimMechanics environment. These 

two models are explained and also their results are compared in the following 

sections.   

 

3.4.1 Disturbance torque model by using Euler equation for rigid body motion 

 

The torques, which are imposed on the GMS axes, originating from the motion of 

the FMS axes, are obtained using Euler equation in matrix form. The Euler equation 

is used in body fixed reference frame rather than fixed reference frame to simplify 

the calculations since the moment of inertia tensor is constant in body fixed 

reference frame. The matrix form of the Euler equation written in the body fixed 

reference frame is 

 
( ) ( ) ( ) ( ) ( ) ( )b

b
b

c
b

b
b

b
b

c
b

c JJM ωωα ˆ~ˆ +=∑                  (3.12) 
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where 

 
( )b
cĴ   Inertia tensor w.r.t. center of mass in body fixed reference frame 

[kg.m2] 
( )b

bα   Angular acceleration about the body fixed reference frame, written in 

the body fixed frame [rad/s2] 
( )b

bω   Angular velocity about the body fixed reference frame and written in 

the body fixed frame [rad/s] 
( )b
bω~   Skew symmetric angular velocity matrix [rad/s] 

 

To obtain the angular velocity and acceleration terms in the above equation, a 

kinematics analysis of the mechanism, which consists of the two outer axes of the 

FMS and the two axes of the GMS, should be performed. Denavit and Hartenberg 

(D-H) convention is used for the kinematic analysis of the FMS-GMS system. 

 

Any robotic system can be described kinematically by giving the values of four 

quantities for each link, two describe the link itself, and two describe the link's 

connection to a neighboring link [17]. These four quantities are; ks , linear 

displacement of link (k) w.r.t. link (k-1), ka , effective length of link (k), kθ , angular 

displacement of link (k) w.r.t. link (k-1) and kα , twist angle of link (k). These four 

parameters are called D-H parameters. In the case of a revolute joint, kθ  is called the 

joint variable, and the other three quantities would be fixed link parameters. The 

definition of mechanisms by means of these quantities is a convention usually called 

the D-H notation [17]. 

 

The mechanism consists of two axes of FMS and GMS axes, has a total of five links 

where link 0 is the fixed link, link 1 is the outer FMS axis gimbal, link 2 is the inner 
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FMS axis gimbal, link 3 is the GMS azimuth axis gimbal and link 4 is the GMS 

elevation axis gimbal. Each link is connected to the prior link with a revolute joint.  

 

First step for the kinematics analysis is assigning the coordinate frames to the links 

and obtaining D-H parameters. Let 
( )k

u1 , 
( )k

u2  and 
( )k

u3  be the unit vectors along the x, 

y and z axes of the coordinate frame fixed to link k. Then 
( )k

u1 , 
( )k

u2  and 
( )k

u3  could 

be assigned as described below. 

 

The unit vector 
( )k

u3  is assigned to be the axis of actuation for joint (k+1). Its sense is 

chosen arbitrarily. 
( )k

u1  is assigned to be the unit vector along the common normal 

between joint (k) and joint (k+1). It is oriented from joint (k) to joint (k+1) if their 

axes are not concurrent. If these axes are concurrent, then the sense of 
( )k

u1  is chosen 

arbitrarily. Finally, 
( )k

u2  is selected as to complete a right handed frame [18]. The 

coordinate frames assigned for the FMS-GMS mechanism using D-H convention are 

shown in Figure 3.23 and Figure 3.24. 

 

Once the coordinate frames are assigned, D-H parameters are obtained using the 

relations below. 

 

kkk AOs 1−=               (3.13.a) 

kkk OAa =               (3.13.b) 

( ) ( ) ( )

⎥⎦
⎤

⎢⎣
⎡ →∠=

−− 1

31

1

1 @
kkk

k uuuθ            (3.13.c) 

( ) ( ) ( )

⎥⎦
⎤

⎢⎣
⎡ →∠=

− kkk

k uuu 13

1

3 @α            (3.13.d) 



  

 

57 

 
 

Figure 3.23.Coordinate frames assigned for the FMS-GMS mechanism 

 

 

 

 
 

Figure 3.24.Coordinate frames assigned for the FMS-GMS mechanism 
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where 

 

kO   Intersection point of the axes along 
( )k

u1  and 
( )k

u3  

kA   Intersection point of the axes along 
( )k

u1  and 
( )1
3

−k
u [18]. 

 

To analyze the kinematics of the system in rotational frames, the D-H parameters, 

ks  and ka  are not needed. 321 ,, θθθ , and 4θ  are the joint variables for joint 1, joint 2, 

joint 3, and joint 4 respectively. Twist angles of links obtained by using (3.13.d) are 

 
( ) ( ) ( ) ouuu 90@

1

1

1

3

0

31 =⎥⎦
⎤

⎢⎣
⎡ →∠=α            (3.14.a) 

( ) ( ) ( ) ouuu 90@
2

1

2

3

1

32 =⎥⎦
⎤

⎢⎣
⎡ →∠=α            (3.14.b) 

( ) ( ) ( ) ouuu 90@
3

1

3

3

2

33 =⎥⎦
⎤

⎢⎣
⎡ →∠=α            (3.14.c) 

 

Based on D-H convention, the rotation matrix between link k and link (k-1) could be 

written as; [18] 

 
( ) kk uukk eeC αθ 13

~~,1ˆ =−                                 (3.15) 

 

where  

 

( )k
t

kk
u uuuIe k θθθθ cos1sin~cosˆ

333
~

3 −++=                                                           (3.16) 

( )k
t

kk
u uuuIe k αααα cos1sin~cosˆ

111
~

1 −++=                                                          (3.17) 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0
0
1

1u             ⇒           
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=
010
100

000
~

1u              (3.18) 
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1
0
0

3u             ⇒            
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=

000
001
010

~
3u              (3.19) 

 

By substituting (3.19) into (3.16); 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=

100
0cossin
0sincos

3
~

kk

kk
u ke θθ

θθ
θ              (3.20) 

 

And by substituting (3.18) into (3.17); 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

kk

kk
u ke

αα
ααα

cossin0
sincos0

001
1

~
               (3.21) 

 

Finally, by substituting (3.20) and (3.21) into (3.15), the rotation matrix between 

link k and link (k-1) could be written as; 

 

( )

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−
=−

kk

kkkkk

kkkkk
kkC

αα
αθαθθ

αθαθθ

cossin0
sincoscoscossin

sinsincossincos
ˆ ,1             (3.22) 

 

Angular velocities and angular accelerations of links w.r.t. inertial frame are given 

with (3.23) and (3.24) [17], while angular velocities and angular accelerations of 

links w.r.t. their body frames are given with (3.25) and (3.26) [17]. 

 
( ) ( )

31
0

1
0 ˆ ukkkk −− Φ+= θωω &                (3.23) 

( ) ( ) ( )[ ] 31
0

1
0

1
0 ˆ~ˆ uI kkkkkk −−− Φ++= ωθθαα &&&              (3.24) 
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( ) ( ) ( )0,0ˆ
k

Tkk
k C ωω =         ⇒            ( ) ( )0

k
T

k
k

k ωω Φ=             (3.25) 

( ) ( ) ( )0,0ˆ
k

Tkk
k C αα =         ⇒            ( ) ( )0

k
T

k
k

k αα Φ=             (3.26) 

 

where orientation matrix of link k, kΦ̂ , could be expressed as [18]; 

 
( )k

k C ,0ˆˆ =Φ                  (3.27) 

 

Since non-diagonal terms of the inertia matrices for GMS azimuth and elevation 

axes are negligible when compared to the diagonal terms, they are taken as zero. 

Thus, the inertia matrices take the form: 

 

( ) ( )

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
==

33

22

11
4

4
3

3

00
00
00

ˆˆ

J
J

J
JJ                (3.28) 

 

GMS azimuth axis: 

 
( ) ( ) ( ) ( ) ( ) ( )3

3
3

3
3

3
3

3
3

3
3

3
ˆ~ˆ ωωα JJM c +=∑                       (3.29) 

 

The second row of the above matrix operation gives the expression of the 

disturbance torque acting on GMS azimuth axis, since the GMS azimuth axis rotates 

around 
( )3
2u . Using (3.29), the disturbance torque for GMS azimuth axis is obtained: 

 

( ) ( )( ) ( ) ( )( )[ ]221
2

3
2

333
2

2
2

1
2

21133 sinsincossincossin θθθθθθθθθθ &&&& −+−−= JJT
azmd   

( )21221322 sincos θθθθθθ &&&&&& +−+ J               (3.30) 
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Disturbance torque model for GMS azimuth axis developed in MATLAB/Simulink 

environment using (3.30) is shown in Figure 3.25. 

 

 

 

 
 

Figure 3.25. Disturbance torque model for GMS azimuth axis developed in 

MATLAB/Simulink environment 

 

 

 

GMS elevation axis: 

 
( ) ( ) ( ) ( ) ( ) ( )4

4
4

4
4

4
4

4
4

4
4

4
ˆ~ˆ ωωα JJM c +=∑                  (3.31) 

 

The third row of the above matrix operation gives the expression of the disturbance 

torque acting on GMS elevation axis, since the GMS elevation axis rotates around 
( )4
3u . Using (3.31), the disturbance torque for GMS elevation axis is obtained: 
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( )3214323231322132333 sinsincoscossinsincossin θθθθθθθθθθθθθθθθθ &&&&&&&&&&&& ++−++= JT
elvd  

( )( )4231432421432211 sinsincossinsincoscoscos θθθθθθθθθθθθ &&&& +++−−+ JJ  

( )423143242143 cossincoscossinsincossin θθθθθθθθθθθθ &&&& ++−                 (3.32) 

 

Disturbance torque model for GMS elevation axis developed in MATLAB/Simulink 

environment using (3.32) is shown in Figure 3.26. 

 

 

 

 
 

Figure 3.26. Disturbance torque model for GMS elevation axis developed in 

MATLAB/Simulink environment 
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3.4.2 Disturbance torque model developed in MATLAB/Simulink/ 

SimMechanics environment 

 

Disturbance torques acting on the GMS axes (due to the motion of FMS axes) are 

also modeled in MATLAB/Simulink/SimMechanics environment to verify the 

model constructed in MATLAB/Simulink environment. Constructed MATLAB/ 

Simulink/SimMechanics model is shown in Figure 3.27. In MATLAB/Simulink 

/SimMechanics, the links of the FMS-GMS mechanism and the revolute joints 

between them are represented by the SimMechanics blocks “Body” and “Revolute”. 

The parameters needed for the “Body” block are the mass and inertia tensor of the 

link, and the position and orientation of the CG (Center of Gravity) and the points 

where the revolute joints are connected to the link while for the “Revolute” block, 

the axis of action should be entered. 

 

 

 
 

Figure 3.27. Disturbance torque model developed in MATLAB/Simulink/ 

SimMechanics environment 
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After the needed parameters are entered, “Body” and “Revolute” blocks are 

connected to each other. To simulate the actuation of the joints in the model, “Joint 

Actuator” blocks are used. “Joint Actuator” block has a parameter called “Actuate 

with” using which the joint could be actuated either with motion or generalized 

forces. For the model, the FMS axes are actuated with motion. The GMS axes, on 

the other hand, are actuated with torques.  

 

3.4.3 Verification of the two disturbance torque models 

 

Various FMS motion profiles are applied to both MATLAB/Simulink model and 

MATLAB/Simulink/SimMechanics model and the outputs are compared via plotting 

the outputs of both models on the same graphs. All the unknown parameters except 

the torque constants of the motors are set to zero for the simulations. 

 

Actually, the inertia matrix of GMS azimuth gimbal depends on the angular position 

of the elevation gimbal. Since the elevation gimbal is mounted on the azimuth 

gimbal, the geometry of azimuth gimbal differs for different angular positions of the 

elevation gimbal. However, because of the limited angular freedom of the GMS 

elevation axis, which is constrained between 75.1±  degrees by software and 3±  

degrees mechanically, this effect is not taken into consideration and so is not 

included in MATLAB/Simulink model. On the other hand, MATLAB/Simulink/ 

SimMechanics model includes this effect inherently. As a result, difference between 

the simulation results of the models for azimuth axis are expected to become larger 

as the elevation axis position departs from zero position because the axes angular 

positions are not limited in the simulations. 
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First case: 

 

A constant angular acceleration of 5 deg/s2 is applied to both FMS axes while the 

controlled torques for both axes are set to zero. The initial positions of the FMS axes 

at t=0 is shown in Figure 3.28. A relatively small angular acceleration is selected for 

this scenario to make it more meaningful. Since there is no controlled torque on the 

GMS axes, the application of a larger angular acceleration to FMS axes would cause 

GMS axes to move large angles (which actually is impossible since the angular 

freedom of both GMS axes are limited to few degrees in the real system). The 

results of the simulation for both models and the differences between them are 

shown in Figure 3.29 through Figure 3.32. 

 

 

 

 
 

Figure 3.28. Initial position of FMS axes for the first case 
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Figure 3.29. GMS azimuth axis position for the first case 
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Figure 3.30. Angular position difference between model outputs for azimuth 

axis 
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Figure 3.31. GMS elevation axis position for the first case 
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Figure 3.32. Angular position difference between model outputs for elevation 

axis 
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Second Case: 

 

A sinusoidal position profile of 22 degrees amplitude and 0.81 Hz frequency is 

applied to both FMS axes while both GMS axes are commanded to zero angular 

position. The sinusoidal position profile is selected specifically for the FMS axes to 

reach their maximum velocity and acceleration limits during the motion. The PID 

parameters for the digital controller of motion control card are arbitrarily selected as 

Kp=1, Kd=100 and Ki=1 for both GMS axes. The initial positions of the FMS axes at 

t=0 is shown in Figure 3.33.The results of the simulation for both models and the 

differences between them are shown in Figure 3.34 through Figure 3.37. 

 

 

 

 
 

Figure 3.33. Initial position of FMS axes for the second case 
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Figure 3.34. GMS azimuth axis position for the second case 
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Figure 3.35. Angular position difference between model outputs for azimuth 

axis 
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Figure 3.36. GMS elevation axis position for the second case 
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Figure 3.37. Angular position difference between model outputs for elevation 

axis 
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Results for the first case show that the difference between the azimuth angular 

position outputs increases as expected, as the elevation axis position departs from 

zero position. The maximum difference between the model outputs is 0.2 degrees for 

azimuth axis while 0.02 degrees for elevation axis. However, these difference values 

are attained at 35 degrees for azimuth axis and 60 degrees for elevation axis, which 

are not meaningful for the actual system since the angular motions of GMS axes are 

constrained between 75.1±  degrees by software and 3±  degrees mechanically in 

the real system. The error plots show that the differences between the model values 

for GMS axes angular positions, which are within the real system’s range, are 

negligible. In addition to the first case conclusions, the second case results show that 

when controller torque is applied to the GMS axes, the differences between the 

model outputs decreases greatly compared to the first case which is expected. To 

summarize, both model outputs are in perfect agreement and hence the models 

developed for disturbance torques are verified. 
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CHAPTER 4 

 

 

PARAMETER ESTIMATION 

 

4 PARAMETER ESTIMATION 

 

There are some parameters in the developed MATLAB/Simulink model, whose 

values are unknown. These unknown parameters are either the parameters of the 

GMS model or the parameters of the amplifier model. In order to obtain the 

complete model, the values of these unknown parameters should be determined. In 

this chapter, how the parameter estimation is performed by using 

MATLAB/Simulink Parameter Estimation Tool is explained and also the results of 

the estimation are discussed. 

 

4.1. Parameters to be estimated 

 

The parameters that are used in the developed MATLAB/Simulink model of the 

real-time control system are: 

 

dacK      Digital to Analog Converter (DAC) gain 

aK         Amplifier gain 

azmtK    Torque constant of the motor used for GMS azimuth axis 

elvtK   Torque constant of the motor used for GMS elevation axis 

azmeK    Voltage constant of the motor used for GMS azimuth axis 

elveK    Voltage constant of the motor used for GMS elevation axis 

countradK 2  Conversion factor from radians to motor encoder counts 
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azmJ   Mass moment of inertia of the GMS azimuth axis 

elvJ   Mass moment of inertia of the GMS elevation axis 

azmb   Viscous damping coefficient of GMS azimuth axis 

elvb   Viscous damping coefficient of GMS elevation axis 

azmcT   Coulomb friction torque acting on GMS azimuth axis 

elvcT   Coulomb friction torque acting on GMS elevation axis 

azmk   Spring constant of GMS azimuth axis 

elvk   Spring constant of GMS elevation axis 

azmpreloadT  Torque acting on the GMS azimuth axis because of preloading of the 

cable 

elvpreloadT  Torque acting on the GMS elevation axis because of preloading of the 

cable 

azmpK   Proportional gain of the PI current regulator of the servo amplifier 

used for GMS azimuth axis  

elvpK   Proportional gain of the PI current regulator of the servo amplifier 

used for GMS elevation axis 

azmiK   Integral gain of the PI current regulator of the servo amplifier used for 

GMS azimuth axis 

azmL   Inductance of each coil of the three phase brushless motor of GMS 

azimuth axis 

elvL   Inductance of the coil of the single phase brushless motor of GMS 

elevation axis 

azmR   Resistance of each coil of the three phase brushless motor of GMS 

azimuth axis 

elvR   Resistance of the coil of the single phase brushless motor of GMS 

elevation axis 
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The numerical values for dacK , aK  and countradK 2  are known and given in the 

previous chapters. azmL , elvL , azmR  and elvR  are also known since they are given by 

the manufacturer. The numerical values for the other parameters should be 

estimated. The moment of inertia values of the GMS axes gimbals about their 

rotation axes are also estimated although their values are given. This is because the 

inertia values supplied are obtained from the solid model of the system hence the 

real values may not be exactly the same. 

 

4.2. Estimation of the system parameters by using MATLAB/Simulink 

Parameter Estimation Tool 

 

At first, the parameter estimation was thought to be performed for GMS axes and the 

amplifiers, separately. For the estimation of the amplifier parameters, the 

manipulation signal from the motion control card, which is the input to the 

amplifiers, and the current output of the amplifiers, should be collected. On the other 

hand, for the estimation of the GMS axes parameters, the current in the motor 

windings, which is the input to the GMS axes, and the angular position of the axes, 

should be collected. 

 

The PID controller sampling frequency of the motion control card is 4 kHz while the 

PWM switching frequency of the amplifier is 33 kHz. For the collected command 

signal and current data to be meaningful, the sampling rate should at least be twice 

these values, which means the sampling rate should be at least 8 kHz for the 

command signal from the motion control card and 66 Hz for the current data. 

Collecting data at these rates is possible via DAQ cards; however, a suitable DAQ 

card could not be supplied for this study. The only way to collect the needed data 

was using the ADC ports of the motion control card. However, the execution of the 

LabView function ‘Read ADC.vi’, which is used to read the digital value of analog 
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voltage on ADC channels of the control card, takes about 2 ms. Hence, the fastest 

data sampling rate that can be achieved by using this function is less than 500 Hz. 

Furthermore, the time intervals between the collected data points are not equal if this 

method is used for collecting data. It is concluded that, by using the motion control 

card and LabView, it is not possible to collect the data as fast as needed to perform 

the parameter estimation for the components separately. Of course, instead of using 

LabView a driver for the motion control card can be written in any programming 

language and this way the data on ADC channels of the card can be read. This 

solution is not preferred since another method for system parameter estimation, 

which does not require handling of each system component separately, is possible.  

 

When the whole control system is considered, the input to the system is the position 

commands sent to the motion control card and the output is the angular position of 

the GMS axis gimbals. It is possible to collect the angular position of GMS axes, at 

333 Hz using the ‘Acquire Trajectory Data.vi’ of LabView. Even though this 

sampling rate is not adequate to resemble the dynamics of the motion control card or 

amplifier, it is thought to be adequate to reflect the dynamics of the GMS axes since 

the response of the GMS axes are not expected to have spectral components beyond 

100 Hertz. 

 

MATLAB/Simulink Parameter Estimation Tool is used for parameter estimation. By 

using this tool and the constructed MATLAB/Simulink model, it is possible to 

estimate the model parameters by defining input and output ports on the model and 

introducing position commands and defining GMS axis gimbal positions as input-

output pairs. For the parameter estimation of each GMS axis, a total of sixteen input-

output data sets are used. Four different PID gain sets, which make the system 

stable, are used for each GMS axis as the PID parameters for the controller of the 

motion control card. For each PID gain set, four different inputs are applied to each 

GMS axis, which are; step position inputs with magnitudes of 0.009 and 0.018 

degrees and position inputs of 0.009 and 0.018 degrees which are achieved by 
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setting the acceleration/deceleration of the GMS axes to 10.8 degrees/s2 (60,000 

counts/s2).  

 

The algorithm used for the parameter estimation task is the "pattern search" method 

which uses an advanced pattern search algorithm while the cost function that the 

estimation algorithm attempts to minimize is selected as the sum of squared errors. 

Pattern search methods belong to a class of optimization methods known as direct 

search methods. The algorithm starts with a finite initial step length. As the iteration 

approaches the solution, the algorithm reduces the length of the steps. Eventually, 

when the step length becomes smaller than a certain tolerance, the algorithm is said 

to be converged and the search stops. To perform the parameter estimation, some 

simulations of the model is run. A fixed step size of 250 microseconds is used for 

the simulations while the solver is selected as Dormand-Prince. Before performing 

the parameter estimation, feasible values for minimum and maximum limits and 

initial guesses are defined for each parameter to be estimated.  

 

The real system outputs and the outputs of the Simulink model with the estimated 

parameters plotted on the same graphs and also the errors between the real system 

outputs and simulation outputs are shown in Figure 4.1 through Figure 4.16 for 

azimuth axis and in Figure 4.17 through Figure 4.32 for elevation axis. 

 

As can be seen from the position graphs, the general trends of real system and 

simulation outputs are same. From error graphs it is observed that, the difference 

between real system and simulation outputs are generally in the order of 10-4 

degrees. Parameter estimation results are slightly better for the elevation axis of 

GMS. For the azimuth axis, the error reaches to a maximum of 0.005 degrees while 

for the elevation axis, the maximum error attained is 0.002 degrees. This is due to 

the fact that; modeling the cable which is attached to elevation axis as a torsional 

spring is more accurate, since this cable is less prone to deformation. The parameter 

values obtained as the result of estimation are shown in Table 4.1 and Table 4.2. 
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Figure 4.1. GMS azimuth axis response to 0.018 degrees step input (Kp=8, Ki=1, 

Kd=60) 
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Figure 4.2. Error between real system and simulation outputs 
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Figure 4.3. GMS azimuth axis response to 0.018 degrees input (Kp=8, Ki=1, 

Kd=60) 
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Figure 4.4. Error between real system and simulation outputs 
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Figure 4.5. GMS azimuth axis response to 0.009 degrees step input (Kp=8, Ki=1, 

Kd=60) 
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Figure 4.6. Error between real system and simulation outputs 
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Figure 4.7. GMS azimuth axis response to 0.009 degrees input (Kp=8, Ki=1, 

Kd=60) 

 

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6
-4

-2

0

2

4

6

8x 10
-4

Time[s]

A
ng

ul
ar

 P
os

iti
on

 E
rr

or
[d

eg
]

 
 

Figure 4.8. Error between real system and simulation outputs 
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Figure 4.9. GMS azimuth axis response to 0.018 degrees step input (Kp=1, Ki=1, 

Kd=150) 
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Figure 4.10. Error between real system and simulation outputs 
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Figure 4.11. GMS azimuth axis response to 0.018 degrees step input (Kp=1, 

Ki=1, Kd=150) 
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Figure 4.12. Error between real system and simulation outputs 
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Figure 4.13. GMS azimuth axis response to 0.009 degrees step input (Kp=1, 

Ki=1, Kd=150) 

 

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6
-8

-6

-4

-2

0

2

4

6

8

10

12x 10
-4

Time[s]

A
ng

ul
ar

 P
os

iti
on

 E
rr

or
[d

eg
]

 
 

Figure 4.14. Error between real system and simulation outputs 
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Figure 4.15. GMS azimuth axis response to 0.009 degrees input (Kp=1, Ki=1, 

Kd=150) 
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Figure 4.16. Error between real system and simulation outputs 
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Figure 4.17. GMS elevation axis response to 0.018 degrees step input (Kp=5, 

Ki=1, Kd=20) 
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Figure 4.18. Error between real system and simulation outputs 
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Figure 4.19. GMS elevation axis response to 0.018 degrees input (Kp=5, Ki=1, 

Kd=20) 
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Figure 4.20. Error between real system and simulation outputs 
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Figure 4.21. GMS elevation axis response to 0.009 degrees step input (Kp=5, 

Ki=1, Kd=20) 
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Figure 4.22. Error between real system and simulation outputs 
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Figure 4.23. GMS elevation axis response to 0.009 degrees input (Kp=5, Ki=1, 

Kd=20) 
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Figure 4.24. Error between real system and simulation outputs 
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Figure 4.25. GMS elevation axis response to 0.018 degrees step input (Kp=5, 

Ki=1, Kd=50) 

 

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6
-2

-1

0

1

2

3

4x 10
-4

Time[s]

A
ng

ul
ar

 P
os

iti
on

 E
rr

or
[d

eg
]

 
 

Figure 4.26. Error between real system and simulation outputs 
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Figure 4.27. GMS elevation axis response to 0.018 degrees input (Kp=5, Ki=1, 

Kd=50) 
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Figure 4.28. Error between real system and simulation outputs 
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Figure 4.29. GMS elevation axis response to 0.009 degrees step input (Kp=5, 

Ki=1, Kd=50) 
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Figure 4.30. Error between real system and simulation outputs 
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Figure 4.31. GMS elevation axis response to 0.009 degrees step input (Kp=5, 

Ki=1, Kd=50) 
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Figure 4.32. Error between real system and simulation outputs 
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Table 4.1. Estimated Values for GMS Azimuth Axis 

 

Estimated Parameter Estimated Value 

azmJ  41057.5 −× [kg.m2] 

azmb  0203.0 [N.m.s/rad] 

azmk  30.3 [N.m/rad] 

azmiK  31028.1 × [V/V.s] 

azmpK  87.4 [V/V] 

azmtK  117.0 [N.m/A] 

azmeK  113.0 [V.s/rad] 

azmcT  51027.2 −× [N.m] 

azmpreloadT  41021.1 −× [N.m] 

 

 

 

Table 4.2. Estimated Values for GMS Elevation Axis 

 

Estimated Parameter Estimated Value 

elvJ  51045.7 −× [kg.m2] 

elvb  31002.2 −× [N.m.s/rad] 

elvk  529.0 [N.m/rad] 

elvpK  07.1 [V/V] 

elvtK  136.0 [N.m/A] 

elveK  141.0 [V.s/rad] 

elvcT  61037.2 −× [N.m] 

elvpreloadT  51080.1 −× [N.m] 
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The estimated values given in Table 4.1 and Table 4.2 are logical as: 

 

• The inertia of azimuth axis is greater than the inertia of the elevation axis as 

expected. 

 

• The spring constant and viscous friction coefficient values for both axes are 

in agreement with the rough values obtained as a result of the free oscillation 

tests performed for characterizing the cables. 

 

•  
azmpK  value is greater than 

elvpK  value as expected. This was expected 

because the proportional gain values of the PI current regulators of the 

amplifiers are set as ‘Decreased’ for the elevation axis and set as ‘Increased’ 

for azimuth axis, using the related dipswitches on the amplifiers. 

 

• 
azmtK , 

azmeK , 
elvtK  and 

elveK  values are compared with these of motors of same 

size from the catalogues of different motor manufacturers. The values are in 

agreement. 

 

• Actually, if one uses SI units, where the unit of the torque constant is N.m/A 

and the unit of the voltage constant is V.s/rad, numerical values of the torque 

constant and voltage constant should be the same. The values estimated for 

these constants are not the same but there exist some small differences 

between them about 3% for both axes. This is a reasonable outcome of the 

parameter estimation process, which could be taken as its success. 
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CHAPTER 5 

 

 

CONTROLLER PARAMETER OPTIMIZATION 

 

5 CONTROLLER PARAMETER OPTIMIZATION 

 

Since the motion control card has an embedded digital PID controller for each axis, 

the control algorithm that is used for position control of both GMS axes is PID 

control. Hence, the main task is to optimize the PID parameters of the digital PID 

controllers for each GMS axis. Firstly, the requirements for the motion of GMS axes 

should be determined.  

 

5.1 Requirements for position control of GMS axes 

 

The requirements for the real time position control of the GMS axes are derived 

from the HIL requirements related to motion of the IR spot in azimuth and elevation 

axes. These requirements are: 

 

• The maximum angular velocity of the spots in both azimuth and elevation axes 

should not be smaller than 5°/s. 

• The position accuracy of the spots in both axes should be less than 0.01°. 

• Update rate of the position commands to the electromechanical components of 

IRSGS is 100 Hz. 

 

When a mirror is turned by an angle θ , the deflected beam turns by an angle θ2 . So 

when any of the GMS axes is turned by an angle θ , then the IR spot will be moved 

by θ2  in the corresponding axis on the created IR scene (Figure 5.1).  



  

 

96 

 
 

Figure 5.1. Reflection of a beam from GMS 

 

 

 

The requirements for the GMS axes position control are determined as, 

 

• The maximum angular velocity of GMS axes should not be smaller than 

2.5°/s. 

• The settling time for GMS axes should be less than 10 ms. 

• The position accuracy of the GMS axes should be better than 0.005°. 

• Since the maximum angular velocity requirement is 2.5°/s, the maximum 

position command that should be achieved in 10 ms is 0.025°. Since a 

position accuracy of 0.005° should be satisfied for a 0.025° position 

command the steady state error for a step input could not be higher than 

20%. To be on the safe side, it is decided that the steady state error to a step 

input should be less than 10% of the input magnitude. 

 

As long as GMS axes achieve a settling time of 10 ms, the overshoot of the position 

response is not very important, but still an excessive overshoot is naturally not 

preferred. In order to avoid large overshoots in the GMS axes position response, the 

following requirement for overshoot is also added: 
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• Maximum percent overshoot for GMS axes should be less than 25%. 

 

5.2 Obtaining the open loop transfer functions for GMS axes in z-domain 

 

Since the system is a hybrid system, which means it has both continuous states and 

discrete states, the transfer functions in the s-domain should be transformed to z-

domain in order to be able to design the controller in z-domain. Transformation from 

s-domain to z-domain by using ZOH (Zero Order Hold) method is given in detail in 

the following sections. For the controller design of both GMS axes, nonlinear effects 

(Coulomb friction, preloading of the cables, limiters such as the integral limit and 

PID output limit of the motion control card or amplifier saturation voltage) are 

neglected. 

 

The direct digital design method is used for this study. However, design by 

emulation method could also be used to design discrete time controllers as well as 

the direct digital design method, since the sampling rate is high and the quantization 

interval is small.  The direct digital design method is selected since the controllers to 

be designed are digital controllers and designing them in their true domain seems 

more appropriate. 

 

Azimuth axis: 

 

The conceptual block diagram of the control system for GMS axes is shown in 

Figure 5.2 and analytical block diagram is shown in Figure 5.3. 

 

To obtain the transfer function between the controller output, ( )sM  and the angular 

position of the azimuth axis, ( )sθ , following equations are used. 
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Figure 5.2. Conceptual block diagram of the control system 
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( ) )()()( sLsIsRIsVsV bemf ++=                                (5.2) 

( ) ( )ssKsV ebemf θ=                                                  (5.3) 

( )sIKsT t=)(                                                                       (5.4) 

( ) ( ) ( )sksbssJssT θθθ ++= 2)(                                (5.5) 

 

The numerical values of the parameters for GMS azimuth axis are, 

 

000305.0
2
20

16 ≅=dacK  [V/LSB] 

6.1=aK  [A/V] 

117.0=tK  [N.m/A] 

113.0=eK  [V.s/rad] 
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Figure 5.3. Analytical block diagram of the control system 
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318310
2

2000000
2 ≅=

πcountradK  [encoder count/rad]  

4105.57 −×=J  [kg.m2]  

0203.0=b  [N.m.s/rad] 

30.3=k  [N.m/rad] 

87.4=pK  [V/V] 

31028.1 ×=iK  [V/V.s] 

0033.0=L  [H] 

7.10=R  [Ω] 

 

Solving (5.1), (5.2), (5.3), (5.4) and (5.5) together, the transfer function between the 

controller output, ( )sM  and the angular position of the azimuth axis, ( )sθ  is 

obtained as, 

 

( )
( ) ( ) ( )

( ) ( ) ( ) ( ) iipetpip

iatpat
M kKsbKkRkKsKKbRbKJKkLsJRJKbLsJL

KKKsKKK
sG

sM
s

++++++++++++
+

== 234θ
θ  

          (5.6) 

 

When the numerical values of the parameters are used in (5.6); 

 

( )
( ) ( )

423043.77056.1008744.010825.1
1.240912.0

2346 ++++×
+

== − ssss
ssG

sM
s

Mθ
θ  [rad/V]         (5.7) 

 

Open loop transfer function can be obtained as follows; 

 

( ) ( )             
423043.77056.1008744.010825.1

2332059.88
23462 ++++×

+
== − ssss

sKKsGsG daccountradMOL θ

[encoder count/LSB]                  (5.8) 
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The discrete open loop transfer function is obtained by transforming the continuous 

time domain open loop transfer function into discrete time domain by using ‘ZOH’ 

(Zero Order Hold) method. 

 

The discrete time domain open loop transfer function is expressed as, 

 

( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

−

sG
s
zZzG OLOL

11                   (5.9) 

 

This transformation is performed by using an m-file named ‘oltf_for_gms_axes.m’ 

written in MATLAB. The code is given in Appendix C. The discrete time open loop 

transfer function is obtained as, 

 

( )
0.30191.885-3.8643.281-

105.206-0.0002274- 0.0002109  109.759
234

-523-5

++
×+×

=
zzzz

zzzzGOL           (5.10) 

 

Elevation axis: 

 

The block diagram of the control system for GMS elevation axis is same as the one 

for GMS azimuth axis and shown in Figure 5.2. The transfer function between the 

controller output for the elevation axis and the angular position of the elevation axis 

is nearly the same with the transfer function between the controller output for the 

azimuth axis and the angular position of the azimuth axis. The only difference is 

that, the integral control of the PI current regulator of the amplifier used for the 

elevation axis is deactivated.  

 

So by setting 0=iK  in (5.6), the transfer function between the controller output for 

the elevation axis, ( )sM  and the angular position of the elevation axis, ( )sθ  is 

obtained as, 
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( )
( ) ( ) ( )

( ) ( ) ( ) ( )kRkKsKKbRbKkLsJRJKbLsJL
KKK

sG
sM
s

petpp

pat
M +++++++++

== 23θ
θ  (5.11) 

 

The numerical values of the parameters for the elevation axis are: 

 

000305.0
2
20

16 ≅=dacK [V/LSB] 

6.1=aK  [A/V] 

136.0=tK  [N.m/A] 

141.0=eK  [V.s/rad] 

318310
2

2000000
2 ≅=

πcountradK [encoder counts/rad] 

5107.45 −×=J  [kg.m2]  
31002.2 −×=b  [N.m.s/rad] 

529.0=k  [N.m/rad] 

07.1=pK  [V/V] 

0027.0=L  [H] 

5.8=R  [Ω] 

 

When these numerical values of the parameters are used in (5.11); 

 

( )
( ) ( )

5.06+ 0.03992+ 0.0007187+102.012
0.2323

 237- sss
sG

sM
s

M ×
== θ

θ  [rad/V]         (5.12) 

 

So the open loop transfer function can be obtained as follows; 

 

( ) ( )             
5.06+ 0.03992+ 0.0007187+102.012

 22.57
 237-2 sss

KKsGsG daccountradMOL ×
== θ

[encoder count/LSB]                (5.13) 
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The transformation from s-domain to z-domain by using ‘ZOH’ method is again 

performed by using the m-file named ‘oltf_for_gms_axes.m’ written in MATLAB, 

whose code is given in Appendix C. The discrete time open loop transfer function is 

obtained as, 

 

( )
0.4095-1.8112.401-

0.00015180.00076910.0002368 
23

2

zzz
zzzGOL +

++
=             (5.14) 

 

5.3 Optimization of digital PID controller parameters by using MATLAB/ 

SISO Design Tool 

 

To design the discrete PID controllers for GMS axes MATLAB/SISO Design Tool 

is used. Firstly, obtained discrete time open loop transfer functions are imported by 

MATLAB/SISO Design Tool. Then using the root locus, the placements of the 

closed loop poles are decided. Stages of the controller design by using 

MATLAB/SISO Design Tool are given in detail in the following sections. 

 

Azimuth axis: 

 

The root locus of the discrete time domain open loop transfer function is plotted and 

shown in Figure 5.4. 

 

The controlled system should have a maximum 10 ms settling time when a step 

input is applied and the maximum overshoot should not be greater than 25%. If these 

requirements are mapped to the z-plane, it is concluded that the dominant closed 

loop poles should lie in the white region shown in Figure 5.5 to achieve time domain 

specifications.  
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Figure 5.4. Root Locus for GMS azimuth axis (1/3) 

 

 

 

 
 

Figure 5.5. Root Locus for GMS azimuth axis (2/3) 
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The transfer function of the PID controller was obtained in Chapter 3 and it is given 

by (3.11). By equating the denominators and simplifying, 
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+
⎟
⎠
⎞

⎜
⎝
⎛ ++

+
−

⎟
⎠
⎞

⎜
⎝
⎛ ++=            (5.15) 

 

As can be seen from (5.15), two poles of the controller are at z=0 and z=1. So there 

are three free parameters of the controller which are the location of the two zeros 

and the gain of the controller. Firstly, poles of the PID controller which are at z=0 

and z=1 is added to the system. After the poles of the controller are placed at their 

location, the root locus takes the form in Figure 5.6. 

 

 

 

 
 

Figure 5.6. Root Locus for GMS azimuth axis (3/3) 
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From Figure 5.6 it can be seen that the two complex conjugate open loop poles make 

the system unstable. To make the system stable and to be able to make the two 

branches, which go to infinity, to pass through the region of design where the closed 

loop poles should be placed, the zeros of the controller should be placed near to the 

open loop poles at z=1 and z=0.979. This way these open loop poles end up at the 

two zeros placed near to them and the complex conjugate open loop poles would 

move towards the inside of the unit circle and one of them would end up at the open 

loop zero at z=0.936.  

 

When the two zeros of the controller are placed at z=0.999 and z=0.978, as 

expected, the complex conjugate poles move towards inside of the unit circle. Since 

the effects of the open loop poles at z=1 and z=0.979 are canceled by the zeros of 

the controller, the complex conjugate poles dominate the system behavior of the 

system. The last thing to do is placing the two dominant closed loop poles inside the 

predefined area of success by adjusting the gain. 

 

With the gain adjusted to 290 and the zeros of the PID controller placed at z=0.999 

and z=0.978, the closed loop poles are located inside the predefined area as shown in 

Figure 5.7. The designed PID controller is; 

 

( ) ( )( )
( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−−
=

zz
zzzGc 1

978.0999.0290                          (5.16) 

 

By equating (5.16) to (5.15), the parameters of the PID controller are obtained as, 

66.6=pK , 63.1=iK  and 34.283=dK . However, since the PID parameters of the 

digital controller of the motion control card can only be set as integers, the values 

are rounded up to the nearest integers. So the PID parameters for the azimuth axis 

are set as, 7=pK , 2=iK  and 283=dK . With the designed controller, the unit step 

response of the closed loop system is as shown in Figure 5.8. As can be seen from 
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Figure 5.8, the maximum percent overshoot, settling time and steady state error 

specifications are satisfied. 

 

 

 

 
 

Figure 5.7. Location of the dominant closed loop poles for GMS azimuth axis 
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Figure 5.8. Unit step response of the GMS azimuth axis with the designed 

controller 
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Elevation axis: 

 

The root locus of the discrete time domain open loop transfer function is plotted and 

shown in Figure 5.9. The controlled system should have a maximum 10 ms settling 

time when a step input is applied and the maximum overshoot should not be greater 

than 25%. If these requirements are mapped on to the z-plane, it is concluded that 

the dominant closed loop poles should lie in the white region shown in Figure 5.10 

to achieve time domain specifications. 

 

Again, the first thing to do is to add the poles of the PID controller which are at z=0 

and z=1 is to the system. After the poles of the controller are placed at their location, 

the root locus takes the form shown in Figure 5.11. 

 

 

 

 
 

Figure 5.9. Root locus for GMS elevation axis (1/3) 
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Figure 5.10. Root locus for GMS elevation axis (2/3) 

 

 

 

 
 

Figure 5.11. Root Locus for GMS elevation axis (3/3) 
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From Figure 5.11 it can be seen that the two complex conjugate open loop poles 

make the system unstable. To make the system stable and to be able to make the two 

branches, which go to infinity, to pass through the region where the closed loop 

poles should be placed, one of the zeros of the controller should be placed near to 

the open loop pole at z=1 while the other zero should be placed between z=0 and 

z=1. This way the open loop pole at z=1 end up at the zero placed near to it and the 

complex conjugate open loop poles would move towards the inside of the unit circle 

and one of them would end up at the open zero of the controller, which is placed 

between z=0 and z=1.  

 

When one of the zeros of the controller is placed at z=0.9970 and the other zero is 

placed at z=0.9608, the complex conjugate poles move towards inside of the unit 

circle as expected. Lastly, the two dominant closed loop poles should be placed 

inside the predefined area of success by adjusting the gain. 

 

 

 

 
 

Figure 5.12. Location of the dominant closed loop poles for GMS elevation axis 
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With the gain adjusted to 167.02 and the zeros of the PID controller placed at 

z=0.9970 and z=0.9608, the closed loop poles are located inside the predefined area 

as shown in Figure 5.12. The designed PID controller becomes; 

 

 ( ) ( )( )
( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−−
=

zz
zzzGc 1

9608.09970.002.167              (5.17) 

 

By equating (5.17) to (5.15), the parameters for the PID controller of the GMS 

elevation axis are obtained as, 7.01=pK , 5.03=iK  and 159.99=dK . However, 

since the PID parameters of the digital controller of the motion control card can only 

be set as integers, the values are rounded up to the nearest integers. Hence the PID 

parameters for the azimuth axis are set as, 7=pK , 5=iK  and 160=dK . With the 

designed controller, the unit step response of the closed loop system is as shown in 

Figure 5.13. As can be seen from the plot, maximum percent overshoot, settling time 

and steady state error specifications are satisfied. 
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Figure 5.13. Unit step response of the GMS elevation axis with the designed 

controller 
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CHAPTER 6 

 

 

CONTROLLER PERFORMANCE EVALUATION 

 

6 CONTROLLER PERFORMANCE EVALUATION 

 

The performance of the digital PID controllers optimized for the GMS axes, both on 

a stationary platform and on FMS are to be observed and evaluated. Two methods 

used for this purpose are running simulation models and performing tests with the 

real system. 

 

The performances on a stationary base are observed both by simulation runs and real 

system tests. However, since the 5 axis FMS that would be used for the HIL 

simulation system is not available yet, performances of the controllers on moving 

FMS axes for both GMS axes are observed by simulation runs only. A fixed step 

size of 250 microseconds is used for the simulations while the solver is selected as 

Dormand-Prince. 

 

6.1 Performances of controllers on a stationary platform  

 

The case, where the GMS is mounted on a stationary plate is considered in this 

section. The simulation model is run for different step inputs with magnitudes of 

0.005, 0.010, 0.025 and 0.050 degrees for both GMS axes while the FMS axes are 

motionless. The same step inputs are also sent to the motion control card. The real 

system responses and simulation outputs plotted on the same graphs and also the 

error graphs showing the errors between the real system and simulation outputs are 

shown in Figure 6.1 through Figure 6.16. 
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Figure 6.1. GMS azimuth axis response to 0.005 degree step input 
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Figure 6.2. Error between real system and simulation outputs 
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Figure 6.3. GMS elevation axis response to 0.005 degree step input 
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Figure 6.4. Error between real system and simulation outputs 
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Figure 6.5. GMS azimuth axis response to 0.010 degree step input 
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Figure 6.6. Error between real system and simulation outputs 
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Figure 6.7. GMS elevation axis response to 0.010 degree step input 
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Figure 6.8. Error between real system and simulation outputs 
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Figure 6.9. GMS azimuth axis response to 0.025 degree step input 
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Figure 6.10. Error between real system and simulation outputs 
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Figure 6.11. GMS elevation axis response to 0.025 degree step input 
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Figure 6.12. Error between real system and simulation outputs 
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Figure 6.13. GMS azimuth axis response to 0.050 degree step input 
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Figure 6.14. Error between real system and simulation outputs 
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Figure 6.15. GMS elevation axis response to 0.050 degree step input 
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Figure 6.16. Error between real system and simulation outputs 
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As can be seen from the figures, the error between real system responses and 

simulation outputs are generally in the order of 10-4. Both real axes responses and 

simulation outputs to 0.005 degree step input are as expected and meet time domain 

specs. However, when the simulation output for azimuth axis to 0.010 degree step 

input is examined, it is seen that the maximum overshoot value is decreased, and the 

settling time is increased. The reason is the saturation of the amplifier. The 

modulated supply voltage is 24 Volts. For 100% duty cycle the PWM blocks output 

a maximum voltage of 24 Volts. While the submodel outputs are examined, it is 

noticed that the voltage output of PWM block for the azimuth axis is limited by the 

voltage limiter block to 24 Volts. This behavior is not clear for the real system 

response. On the other hand, both the real system response and simulation output of 

the elevation axis to 0.010 degree step input is as expected and satisfies the 

requirements. 

 

When the 0.025 degrees step input response plot for the azimuth axis is examined, it 

is seen that there is no overshoot. Maximum overshoot value is expected to decrease 

further since the amplifier which saturates for 0.010 degree step input is expected to 

saturate again for 0.025 degree step input but the decrease in the overshoot value is 

more drastic than expected. It is suspected that the other limits in the control system, 

which are the PID output limit and integral term limit, may be reached. When the 

PID output is observed, it is seen that the PID output reaches its positive limit 

indeed. The elevation axis still does not reach either the saturation limit for amplifier 

or the PID output limit for 0.025 degree step input so that it behaves as expected. 

Real system responses and simulation outputs for both axes to 0.025 degree step 

input satisfy the requirements. 

 

Although step inputs greater than 0.025 degrees are not expected as axis position 

commands in the system, responses to a 0.050 degree step input are also observed in 

order to check the performance limits of the controllers. For 0.050 degree step input, 

the PID output of the elevation axis also reaches its positive limit. Hence, the time 
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domain characteristics of the response are also changed for elevation axis response 

but it still satisfies the requirements. On the other hand, the settling time for the 

azimuth axis increases to 22 ms for 0.050 degree step input, which does not satisfy 

the requirement. 

 

6.2 Controllers’ performances in dynamic environment 

 

Some realistic scenarios were simulated utilizing a simulation model of the whole 

HIL system which had been constructed at Roketsan Inc. Three sets of position 

commands for the FMS and GMS axes are extracted from the results of these 

scenario runs and used as inputs to the developed MATLAB/Simulink model in 

order to observe the performance of the controllers under the effect of disturbance 

torques imposed on GMS axes.  

 

The FMS position commands from the scenario runs are not directly fed as 

kinematic inputs to FMS axes. The transfer functions for the FMS axes are available 

so the position commands are fed to these FMS axes transfer functions first and then 

supplied as kinematic inputs to the FMS axes in the model. This way the fidelity of 

the simulation to real life increases. 

 

For each scenario, simulation is run for both cases where the FMS is moving and not 

moving. The position commands for the GMS axes, the GMS axes position 

responses while FMS is also moving and GMS axes position responses while the 

FMS axes are stationary are plotted on the same graph for each scenario. The error 

between the commanded trajectories and axes responses are given by graphs. On the 

other hand, to observe the effect of FMS motion on system performance, the 

differences between the outputs of the simulations with and without FMS motion are 

presented via graphs. 
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First scenario: 

 

The position commands for FMS axes are shown in Figure 6.17 and Figure 6.18 

while the position commands for GMS axes, position responses for stationary and 

moving FMS cases, and the error graphs are given in Figure 6.19 through Figure 

6.24. 
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Figure 6.17. Position command for the outer FMS axis 
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Figure 6.18. Position command for the inner FMS axis 
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Figure 6.19. Position command and response of GMS azimuth axis 
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Figure 6.20. Error between commanded position and simulation output with 

FMS motion for azimuth axis 
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Figure 6.21. Difference between the simulation outputs with and without FMS 

motion for azimuth axis 
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Figure 6.22. Position command and response of GMS elevation axis 
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Figure 6.23. Error between commanded position and simulation output with 

FMS motion for elevation axis 
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Figure 6.24. Difference between the simulation outputs with and without FMS 

motion for elevation axis 

 

 

Results show that both GMS axes track given position commands accurately. The 

maximum error between the commanded trajectory and the axis trajectory is 

0.00018 degrees, which is the position resolution value, for both GMS axes. On the 

other hand, the maximum difference between the outputs of the simulations with and 

without FMS motion is 0.00018 degrees for the azimuth axis and 0.00036 degrees 

for the elevation axis. Such small differences show that the effect of FMS axes 

movements on GMS axes are effectively rejected by the control systems of both 

axes for this scenario. 

 

Second scenario: 

 

The position commands for FMS axes are shown in Figure 6.25 and Figure 6.26 

while the position commands for GMS axes, position responses for stationary and 

moving FMS cases, and error graphs are given in Figure 6.27 through Figure 6.32. 
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Figure 6.25. Position command for the outer FMS axis 
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Figure 6.26. Position command for the inner FMS axis 
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Figure 6.27. Position command and response of GMS azimuth axis 
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Figure 6.28. Error between commanded position and simulation output with 

FMS motion for azimuth axis 
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Figure 6.29. Difference between the simulation outputs with and without FMS 

motion for azimuth axis 
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Figure 6.30. Position command and response of GMS elevation axis 
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Figure 6.31. Error between commanded position and simulation output with 

FMS motion for elevation axis 
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Figure 6.32. Difference between the simulation outputs with and without FMS 

motion for elevation axis 
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From the graphs, it is seen that although both GMS axes track given position 

commands accurately for the major part of the scenario, between 2.37 and 2.42 

seconds the error between the commanded and axis trajectories for azimuth axis 

does not satisfy the position accuracy requirement. When the commanded trajectory 

for the azimuth axis is examined, it can be seen that at 2.34 seconds, the trajectory is 

at -0.15 degrees while at 2.42 seconds the trajectory is at -0.43 degrees. This 

corresponds to an average movement of 0.035 degrees per 10 milliseconds, which is 

the command update rate. From the controller performance results given in previous 

section, it was observed that amplifier saturation and limiting of PID output occurs 

for azimuth axis when relatively large position commands are applied. This causes 

position commands greater than 0.025 degrees not to settle in 10 milliseconds. 

Relatively large position commands sent to the azimuth axis between 2.34 and 2.42 

seconds result in an accumulated error because of amplifier saturation and PID 

output limitation, and this error exceeds the accuracy limit after some point. The 

maximum error between the commanded trajectory and the axis trajectory is 0.0037 

degrees for GMS elevation axis which is smaller than the required position accuracy. 

On the other hand, the maximum difference between the outputs of the simulations 

with and without FMS motion is 0.00018 degrees for the azimuth axis and 0.00144 

degrees for the elevation axis. Since these differences are smaller than the position 

accuracy required, it can be said that the effect of FMS axes movements on GMS 

axes are effectively rejected by the control systems of both axes also for this 

scenario. 

 

Third scenario: 

 

The position commands for FMS axes are shown in Figure 6.33 and Figure 6.34 

while the position commands for GMS axes, position responses for stationary and 

moving FMS cases, and the error graphs are given in Figure 6.35 through Figure 

6.40. 
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Figure 6.33. Position command for the outer FMS axis 

 

 

 

0 1 2 3 4 5 6 7 8 9 10
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time[s]

A
ng

ul
ar

 P
os

iti
on

[d
eg

]

Angular position of FMS inner axis

 
 

Figure 6.34. Position command for the inner FMS axis 
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Figure 6.35. Position command and response of GMS azimuth axis 
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Figure 6.36. Error between commanded position and simulation output with 

FMS motion for azimuth axis 
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Figure 6.37. Difference between the simulation outputs with and without FMS 

motion for azimuth axis 
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Figure 6.38. Position command and response of GMS elevation axis 
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Figure 6.39. Error between commanded position and simulation output with 

FMS motion for elevation axis 
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Figure 6.40. Difference between the simulation outputs with and without FMS 

motion for elevation axis 
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Results show that both GMS axes track given position commands accurately. The 

maximum error between the commanded trajectory and the axis trajectory is 0.004 

degrees for azimuth axis and 0.00054 degrees for elevation axis. On the other hand, 

the maximum difference between the outputs of the simulations with and without 

FMS motion is 0.00036 degrees for both GMS axes. Such small differences show 

that for this scenario, the disturbance torques imposed on GMS axes because of 

FMS axes movements are effectively rejected by the control systems of both axes. 
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CHAPTER 7 

 

 

SUMMARY, CONCLUSION AND RECOMMENDATIONS 

 

7 SUMMARY, CONCLUSION AND RECOMMENDATIONS 

 

7.1 Summary 

 

The focus of this thesis work is on modeling, parameter identification, real-time 

control system design, and implementation of a two axis gimbaled mirror system. 

 

Roketsan Inc., is developing a HIL system, which will be used as a tool for 

optimizing flare dispensing programs to effectively counter various kinds of IR 

guided missiles. An IRSGS is also being developed by Roketsan Inc. to simulate the 

radiometric properties and motion of the target. The aforementioned two axis 

gimbaled mirror system is the component that will be used for moving the generated 

IR spot in azimuth and elevation axes to simulate the motion of the target w.r.t. the 

seeker of the missile. 

 

The mathematical models are obtained and realized in MATLAB/Simulink 

environment for each component of the real-time control system, mainly, the motion 

control card, amplifiers and the GMS axes.  

 

The motion control card can generate trajectories for the axes considering the 

velocity and acceleration values set for the axes and the position commands sent to 

the card. These command generators are modeled. The discrete time transfer 
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function of the digital PID controllers that the motion control card has for each axis 

is first assumed and then verified by performing tests on the motion control card. 

 

The amplifiers used are current (torque) mode amplifiers. They have PI current 

regulators in order to make a current value, which is proportional to the voltage 

value that is applied to their input pins, pass through the motor windings. Of all the 

components of the amplifiers, these PI current regulators have the most important 

impact on the dynamics of the system. Modeling the amplifiers as proportionality 

constants between the input voltage and the output current would decrease the 

fidelity of the developed model to the real system much. Consequently, PI current 

regulator models are also included.  

 

The electrical dynamics of actuators of the GMS axes are modeled with the 

resistance and inductance values of the motor coils. The power flow from the 

electrical system to the mechanical system is modeled through the torque constants 

while its reverse flow is modeled by the back emf effect.  

 

Both viscous friction and Coulomb friction at the bearings are included in the model. 

It is observed that the dynamics of the cables coming from the connectors and 

attached to the axes has significant effect on the dynamics of the axes. The cables 

cause position depending torques to act on the axes. The cables are represented as if 

they are springs. 

 

Disturbance torques that would be developed on the GMS axes because of the 

motion of the FMS axes are modeled using two different methods. In the first 

method, Euler equations for rigid body motion for both GMS axes are solved. For 

this method, the kinematics analysis of the five link FMS-GMS mechanism is 

performed by using Denavit-Hartenberg convention. In the second method, the 

FMS-GMS mechanism is modeled in the MATLAB/Simulink/SimMechanics 

environment. The outputs of these two models are compared for verification. 
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Values of some parameters of the constructed MATLAB/Simulink model were 

unknown. The MATLAB/Simulink Parameter Estimation Tool is used to estimate 

these missing parameters. Various position commands are sent to the motion control 

card and the responses of the GMS axes to these commands are collected via the 

motion control card. These input-output data sets are entered to MATLAB/Simulink 

Parameter Estimation Tool and the parameters to be estimated are left as unknowns 

in the developed MATLAB/Simulink model. The parameter values obtained as the 

result of estimation are deemed logical. The real system outputs and the simulation 

outputs are compared to validate the estimation results. With the unknown values 

estimated, the model development is completed. 

 

The optimization on the PID parameters of the digital controllers is achieved by the 

pole placement method. Since the control system has both continuous and discrete 

states, a transformation from s-domain to z-domain is performed to obtain the 

discrete time transfer functions of systems for both axes. The transfer functions 

obtained are imported to MATLAB/SISO Design Tool and the optimization on 

controller parameters are performed using the root locus of the system in 

MATLAB/SISO Design Tool. The nonlinear effects in the model such as friction 

torque, preloading of the cables, PID output limiter, PID controller integral term 

limiter and PWM modulator block output voltage limiter are neglected during 

controller optimization. 

 

The performances of the controllers are observed both by running the simulation 

model and conducting tests with the real system. The real system outputs and the 

simulation results are compared.  

 

The performances of the controllers under the effect of the disturbance torques, 

which are imposed on GMS axes by the motion of FMS axes, are simulated using 

the MATLAB/Simulink model. 
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7.2 Conclusions 

 

The main objectives of this thesis work are to form a detailed high fidelity model for 

the whole real-time control system, and optimizing the PID parameters of the motion 

control card digital controllers in order to achieve the position control of the GMS 

axes considering the time domain requirements determined and implementing the 

optimized controllers. 

 

A good understanding of the real-time control system components and a detailed 

analysis on their characteristics enable the construction of true and detailed models 

of each component. 

 

Perfect agreement between the two different models developed for the torques acting 

on GMS axes because of the motion of FMS axes shows that the mathematical 

modeling of disturbance torques is highly reliable. Hence, using any one of these 

models in simulations to observe the performance of the system under the effect of 

disturbances would give a good idea about how the real system would behave on a 

FMS in motion. 

 

Using MATLAB/Simulink Parameter Estimation Tool is a convenient selection for 

parameter estimation. It can perform the parameter estimation for multiple input-

output datasets at the same time which greatly increases the reliability of the values 

obtained as the result of estimation. All the parameter values obtained as the result 

of the estimation were meaningful. From the parameter estimation results it is 

concluded that, although the parameter estimation results are deemed satisfactory, 

the time-varying effects of the cables on GMS axes dynamics degrades the success 

and reliability of the estimation especially for the azimuth axis. This is because the 

cable coming from the encoder connector and attached to the azimuth axis deforms 

more because of its structure. The whole MATLAB/Simulink model completed with 
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the estimation of the unknown parameters is highly reliable and detailed which 

increases the possibility of the controllers optimized using this model to perform as 

expected in the real system. 

 

With the optimized PID parameters both the real system responses and simulation 

outputs to different magnitude step inputs are satisfying the time domain 

requirements, which shows the accuracy of the modeling and success of the 

controller parameter optimization together. 

 

The simulation results for the case, where FMS and GMS motion profiles taken 

from the realistic scenarios, show that the GMS axes track the position commands 

very closely. Since the accuracy of the constructed MATLAB/Simulink model is 

proven by the very close results between the real system and simulation outputs 

obtained from the stationary environment tests, and the accuracy of the disturbance 

torque models are proven by exactly same results of the two models, the real system 

is expected to behave more or less the same as the model outputs.  

 

The motion control card used for the real-time control system has PID controller 

blocks for each axis by default which impedes the implementation of other control 

algorithms. The PID algorithm is thought to be adequate since the design and 

production of the GMS is high quality with negligible unbalance for the axes and 

very low friction values for each axis. The results show that the PID controller is 

suitable and adequate for the task indeed.  

 

It is observed that for a small system like GMS used in this study, which has very 

small moment of inertia values for the axes and very small Coulomb friction at the 

bearings, the elasticity of the cables can affect the system dynamics greatly. Since 

the cables are non-ideal elements and their effect on the system dynamics is time-

varying; presence of the cables made both modeling and position controlling more 
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difficult. Since the use of the cables is inevitable, they should be guided in a proper 

way in order to lessen their unwanted effects on system dynamics.  

 

Among all the nonlinearities, the PID output limit of the digital PID controllers in 

the motion control card has the most significant impact on system dynamics. For 

large position commands the PID output reaches its limit and cause the position 

responses of the GMS axes deviate from the expected behavior. 

 

7.3 Recommendations for future work 

 

In order to observe the real performance of the controllers for both axes under the 

effect of disturbance torques, tests should be carried out on FMS.  

 

The effect of the elasticity of the cables is a problem. They are modeled as ideal 

springs but this is only an assumption. It can be seen from the cable characterization 

test figures in Chapter 3 that the free position of the cables continuously changes and 

the torque values that they apply at a position depends on the previous deformation 

of them. For more efficient and accurate position control of the GMS axes, the 

effects of the cables on GMS axes should be compensated. The cables from the 

connectors to the axes should be guided in a proper way.  

 

Frequency domain analysis of the system is not performed since there were no 

frequency domain specs for the motion of GMS axes. Tests could be conducted with 

GMS to get the frequency responses of the axes. 

 

The supply voltages of the amplifiers could be increased in order to get faster 

response from the system at the expense of increased maximum overshoot.  
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Since the PID output reaches its limit for large position commands, the PID 

controller gains could be decreased in order to prevent the PID output to reach its 

limit. This way the position response of the GMS axes could satisfy the 

requirements for even larger position commands. Of course, while decreasing the 

controller gains time domain requirements should be considered. The system may 

not achieve the desired response for smaller gains. 

 

The data used in all stages of this thesis work is collected via the motion control card 

and just because of this fact the maximum data collection rate is limited to 333 Hz. 

By using DAQ cards much faster rates could be achieved for data collection. This 

way, the parameter identification could be performed for each component of the 

real-time control system separately, which in turn would lead to more reliable 

results. 
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APPENDIX A 

 

 

TECHNICAL SPECIFICATIONS OF THE MOTION CONTROL CARD 

 

 

 
 

Figure A.1. Technical specifications of the motion control card (1/7) [19]  
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Figure A.2. Technical specifications of the motion control card (2/7) [19] 
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Figure A.3. Technical specifications of the motion control card (3/7) [19] 
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Figure A.4. Technical specifications of the motion control card (4/7) [19] 
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Figure A.5. Technical specifications of the motion control card (5/7) [19] 
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Figure A.6. Technical specifications of the motion control card (6/7) [19] 
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Figure A.7. Technical specifications of the motion control card (7/7) [19] 
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APPENDIX B 

 

 

AMPLIFIER SPECIFICATIONS 

 

 

 
 

Figure B.1. Specifications of three phase sinusoidal brushless amplifier [20] 
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Figure B.2. Hardware settings for three phase sinusoidal brushless amplifier 

[20] 
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APPENDIX C 

 

 

MATLAB CODE TO PERFORM TRANSFORMATION FROM S-DOMAIN 

TO Z-DOMAIN USING ‘ZOH’ METHOD 

 

 
K_dac=20/(2^16);                   %DAC converter gain 

K_rad2count=1000000/pi;            %Conversion from radians to 

encoder counts 

Ka=1.6;                            %Amplifier gain 

Ts=0.000250;                       %Controller update period 

  

%Azimuth Axis 

%-------------------------------------- 

  

G_teta_m_azimuth=tf([(Kt_azm*Ka*Kp_azm)(Kt_azm*Ka*Ki_azm)], 

[(J_azm*L_azm) (b_azm*L_azm+J_azm*Kp_azm+J_azm*R_azm) 

(k_azm*L_azm+J_azm*Ki_azm+b_azm*Kp_azm+b_azm*R_azm+Kt_azm*Ke_azm) 

(k_azm*Kp_azm+k_azm*R_azm+b_azm*Ki_azm) (k_azm*Ki_azm)]); 

 

G_ol_azimuth=G_teta_m_azimuth*K_rad2count*K_dac; 

 

G_ol_azimuth_discrete=c2d(G_ol_azimuth,Ts,'zoh'); 

  

%Elevation Axis 

%-------------------------------------- 

  

G_teta_m_elevation=tf([(Kt_elv*Ka*Kp_elv)(Kt_elv*Ka*Ki_elv)], 

[(J_elv*L_elv) (b_elv*L_elv+J_elv*Kp_elv+J_elv*R_elv) 

(k_elv*L_elv+J_elv*Ki_elv+b_elv*Kp_elv+b_elv*R_elv+Kt_elv*Ke_elv) 

(k_elv*Kp_elv+k_elv*R_elv+b_elv*Ki_elv) (k_elv*Ki_elv)]); 

G_ol_elevation=G_teta_m_elevation*K_rad2count*K_dac; 

 

G_ol_elevation_discrete=c2d(G_ol_elevation,Ts,'zoh'); 
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