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ABSTRACT

DATA MINING ON ARCHITECTURE SIMULATION

Maden, Engin 

M.S., Department of Computer Engineering 

Supervisor   : Asst. Prof. Dr. Pınar Şenkul

February 2010, 120 pages

Data mining is the process of extracting patterns from huge data. One of the branches 

in  data  mining  is  mining  sequence  data  and  here  the  data  can  be  viewed  as  a 

sequence of events and each event has an associated time of occurrence. Sequence 

data is modelled using episodes and events are included in episodes.

The  aim  of  this  thesis  work  is  analysing  architecture  simulation  output  data  by 

applying  episode  mining  techniques,  showing the  previously known relationships 

between  the  events  in  architecture  and  providing  an  environment  to  predict  the 

performance of a program in an architecture before executing the codes. One of the 

most  important  points  here  is  the application  area  of  episode mining  techniques. 

Architecture simulation data is a new domain to apply these techniques and by using 

the  results  of  these  techniques  making  predictions  about  the  performance  of 

programs in an architecture before execution can be considered as a new approach. 

For  this  purpose,  by  implementing  three  episode  mining  techniques  which  are 

WINEPI  approach,  non-overlapping  occurrence  based  approach  and  MINEPI 

approach  a  data  mining  tool  has  been  developed.  This  tool  has  three  main 

components. These are data pre-processor, episode miner and output analyser. 

iv



Keywords:  Sequential  Pattern  Mining,  Frequent  Episode  Mining,  Architecture 

Simulation

v



ÖZ

MİMARİ BENZETİMİ ÜZERİNDE VERİ MADENCİLİĞİ

Maden, Engin 

Yükseklisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Pınar Şenkul

Şubat 2010, 120 sayfa

Veri  madenciliği,  büyük verilerden  örüntüler  çıkartma  sürecidir.  Veri  madenciliği 

dallarından birisi de ardışık veriler üzerinde işlem yapılmasıdır ve burada veri olaylar 

dizisi  olarak görülür ve her bir veri  bir meydana gelme zamanı  değerine sahiptir. 

Ardışık veri, bölümler kullanılarak modellenir ve olaylar bu bölümler içinde yer alır.

Bu  tezin  amacı,  bölüm  madenciliği  tekniklerini  kullanarak  mimari  benzetimi 

çıktılarını analiz etmek, mimarideki olaylar arasında bilinen ilişkileri göstermek ve 

bir mimari üzerinde bir programın kodlarını çalıştırmadan önce performansı ile ilgili 

tahmin yapmak için bir ortam hazırlamaktır. Buradaki en önemli noktalardan birisi 

bölüm madenciliği yöntemlerinin uygulama alanıdır. Mimari benzetimi verileri, bu 

yöntemlerin uygulanması için yeni bir alandır ve bu yöntemlerle elde edilen sonuçlar 

kullanılarak  bir  mimari  üzerinde  bir  programı  çalıştırmadan  önce  performansı 

hakkında tahminler yapılması yeni bir yaklaşım olarak değerlendirilebilir. Bu amaçla 

bölüm madenciliğine  ilişkin üç yöntem olan WINEPI yaklaşımı,  örtüşmeyen  oluş 

temelli yaklaşım ve MINEPI yaklaşımının gerçekleştirilmesiyle bir veri madenciliği 

aracı  geliştirilmiştir.  Bu  aracın  üç  temel  bileşeni  mevcuttur  ve  bunlar  veri  ön 

işleyicisi, bölüm madencisi ve çıktı analizcisidir.
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CHAPTER 1

INTRODUCTION

The aim of this thesis work is firstly analysing architecture simulation output data by 

applying  episode  mining  techniques,  showing the  previously known relationships 

between  the  events  in  architecture  and generating  an  environment  to  predict  the 

performance of a program in an architecture before executing the codes. For this 

purpose a data mining tool has been developed that has three main components.

 

1. First component is the data pre-processor that transforms the raw output data 

of  the  architecture  simulation  into  processable  input  data  for  the  second 

component of the tool,the episode miner. 

2. Episode  miner  component  takes  the  inputs  and  by  applying  the  episode 

mining algorithms with the given options by the user it produces an output 

containing the frequent episodes  and rules generated from these episodes. 

This component includes the implementations of three algorithms, window 

based episode mining algorithm of Mannila et. al.  [1], minimal occurrence 

based episode mining algorithm of Mannila et. al. [1] and non-overlapping 

occurrence based algorithm of  Laxman et. al. [2].

3. The last component of the tool is the analyser and it gets the output of the 

episode miner as input and produces visual outputs as several types of charts 

about the frequent episodes and the generated rules.

Event logs taken from the architecture simulation is the input to this study. These log 

data  are  generally  very huge  in  terms  of  gigabytes  consisting  of  various  type  of 

events. In order to analyse the data feasibly and to be able to generate interpretable 

patterns, the number of event types is limited to four in most of the experiments. 
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Several different analyses have been performed on the architecture event logs;

1. The relations among the event types have been analysed.

2. The performance of a program execution on a processor can be measured 

with the IPC (Instruction Per Cycle) values and this value depends on  how 

the particular software being run interacts with the processor. Therefore, as 

another analysis,  we search for relationships between event types and IPC 

changes in benchmark data. For this analysis, the data set is preprocessed to 

generate  a new dataset  consisting conventional   event  types  and two new 

event  types  as  “IPC  increases”  and  “IPC  decreases”  on  the  basis  of  the 

changes in IPC values. The interesting rules containing the events such as 

“IPC increase” and “IPC decrease” have been generated. In this analysis,we 

partitioned the data  into program blocks  containing  these rules for further 

analysis.

3. Here,  in  the  previous  analysis  we  have  noticed  that  there  are  unique 

sequences of events corresponding to execution blocks and these blocks are 

repeated several times in benchmark data. Therefore, we decided to analyse 

these  unique  sequences  as  individual  input  datasets.  Input  datasets  were 

obtained for two different architectures and the unique sequences have been 

analysed with respect to the generated rules and the IPC differences between 

two architectures. We generated rules from program blocks and obtained IPC 

changes for these blocks during the execution of a program. Afterwards, we 

generated  patterns  showing the  relationships  between these  rules  and IPC 

change values.

As a result the main objective of this work is applying techniques of episode mining, 

to a new domain,  processor architecture simulation datasets, which is different from 

the classical samples such as telecommunication alarm networks. With the help of 

the  generated  results,  it  was  expected  to  generate  facilities  to  make  a  strong 

prediction about the performance of the programs on different architectures before 

running them. 

Here, analysing architecture simulation data by using episode mining techniques and 

2



using the results  of this  analysis  to make predictions  about the performance of a 

program in an architecture before executing the codes can be considered as a new 

approach for computer architecture and data mining.
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CHAPTER 2

AN OVERVIEW ABOUT DATA MINING

2.1     About Data Mining

2.1.1  Data, Information and Knowledge

From the IT (Information Technologies) point of view data are any facts, numbers or 

text that can be processed by a computer. This data can be: 

• Operational or transactional data such as, sales, cost, inventory, payroll, and 

accounting

• Non-operational  data,  such  as  industry  sales,  forecast  data  and  macro 

economic data 

• Meta data  -  (data  about  the data)  such as  logical  database  design  or  data 

dictionary definitions 

The  patterns,  associations,  or  relationships  among  all  this  data can  provide 

information. For example, analysis of retail point of sale transaction data can give 

information on which products are selling and when. Therefore this information can 

be  used  to  analyse  the  data  about  the  sales.  Information  can  be  converted  into 

knowledge about  historical  patterns  and  future  trends.  For  example,  summary 

information  on  retail  supermarket  sales  can  be  analysed  in  light  of  promotional 

efforts to provide knowledge of consumer buying behaviour. Thus, a manufacturer or 

retailer could determine which items are most susceptible to promotional efforts [3].
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2.1.2  Definition of Data Mining

If we look at the various definitions of data mining , first of all we can see that Hand, 

Mannila and Smyth  define the term “data mining” as follows:

“Data  mining  is  the  analysis  of  (often  large)  observational  data  sets  to  find 

unsuspected relationships  and to summarize  the data  in  novel ways  that  are both 

understandable and useful to the data owner” [4].

According  to  another  definition,  data  mining  is  the  process  of  looking  for  new 

knowledge in existing data. The main idea of data mining can be given as transforming a 

low-level data which is frequently too large and too complex to understand, into a higher 

form that can be considered as knowledge or information. Here the basic properties of 

this information or knowledge which is obtained from the raw data are:

• It is more compact. For example it can be a summary.

• It is more abstract. For example it can be a descriptive model.

• It is more useful. For example it can be a predictive model.

Data  mining  is  usually  defined  as  searching,  analysing  and sifting  through large 

amounts  of  data  to  find  relationships,  patterns  or  any  significant  statistical 

correlations.  With the advent  of computers,  large databases and the internet,  it  is 

easier than ever to collect millions, billions and even trillions of pieces of data that 

can  then  be  systematically  analysed  to  help  look  for  relationships  and  to  seek 

solutions to difficult problems. The use of data mining is increasing and becoming 

more  and  more  common  in  both  private  and  public  sectors.  Industries  such  as 

banking,  insurance,  medicine  and retailing  commonly  use  data  mining  to  reduce 

costs,  enhance  research  and  increase  sales.  In  the  public  sector,  data  mining 

applications initially were used as a means to detect fraud and waste, but have grown 

to also be used for purposes such as measuring and improving program performance.

[5].
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The data stored in files databases  and other repositories has reached an enormous 

quantity in information technologies and such a huge amount of data makes it really 

essential to develop powerful means to for analysis. In addition to analysis of data, it 

has also become important to extract the interesting knowledge which will help in 

decision-making.  Data  mining,  whose  another  name  can  be  given  as  KDD 

(Knowledge  Discovery  in  Databases)  ,  basically  explains  a  set  of  processes 

consisting of non-trivial extraction of implicit , previously unknown and potentially 

useful information from databases. In general KDD and data mining are considered 

as synonyms. However, actually data mining should be evaluated as a part of KDD 

process [6].

Data mining commonly involves four classes of task [7]:

• Classification: It arranges the data into predefined groups. For example an 

email  program might  attempt  to  classify  an  email  as  legitimate  or  spam. 

Common  algorithms  include  Decision  Tree  Learning,  Nearest  Neighbour, 

Naive Bayesian Classification and Neural network. 

• Clustering: It is like classification but the groups are not predefined, so the 

algorithm will try to group similar items together. 

• Regression: It attempts to find a function which models the data with the least 

error. 

• Association Rule Mining: It searches for relationships between variables. For 

example  a  supermarket  might  gather  data  on  customer  purchasing  habits. 

Using  association  rule  learning,  the  supermarket  can  determine  which 

products  are  frequently  bought  together  and  use  this  information  for 

marketing  purposes.  This  is  sometimes  referred  to  as  "market  basket 

analysis".
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2.2     Association Rule Mining

The proposed work can be considered as a association rule mining task.  For this 

reason, in this section , a brief overview of association rule mining is presented. 

The formal definition for association rules can be given as follows:

Let I={I1,I2,...,Im} be a set of m distinct attributes, T be a transaction containing a set 

of items such that T  Ι  ⊆ and D be a database with different transaction records Ts. 

An association rule is an implication in the form of X⇒Y, where X, Y  ⊂ I are sets 

of items called itemsets, and X  ∩ Y =∅. X is called antecedent while Y is called 

consequent, the rule means “X implies Y”. For association rules, there are two basic 

measures: support and confidence. Support and confidence values are predefined by 

users  to  drop  the  rules  that  are  not  interesting  or  useful  because  the  database  is 

generally too large and users are interested in only frequent or interesting itemsets or 

rules. Support of an association rule is defined as the percentage or fraction of record 

containing  X∪Y to the total number of records in the database. For example, let's 

assume that  the support  of an association  rule  is  0.5%. This  means  that  just  0.5 

percent of the transaction contain this item. Confidence of an association rule can be 

defined  as  the  percentage  or  fraction  of  the  number  of  transactions  that  contain 

X∪Y to the total  number of records that  contain X. Confidence is a measure of 

strength of the association rules. Let's assume that the confidence of the association 

rule X⇒Y is 75%, it means that 75% of the transactions that contain X also contain 

Y together [8].

A transaction can be defined as a set of items and discovering association rules from 

databases of transactions can be considered as one of the most important problems in 

data mining. Here, the most time consuming operation in this discovery process is 

the computation of the frequency of the occurrences of interesting subset of items 

which  are  called  as  candidates  in  the  database  of  transactions.  Association  rule 

mining  has  a  wide  range  of  applicability  such  market  basket  analysis,  medical 

diagnosis  research,  website  navigation  analysis,  homeland  security  and  so  on. 
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Association rules are used to identify relationships among a set of items in database. 

These relationships are not based on inherent properties of the data themselves (as 

with functional dependencies), but rather based on co-occurrence of the data items. 

Association rule and frequent itemset mining became a widely researched area and 

hence faster and faster algorithms have been presented. Many of these algorithms are 

based on Apriori or they are the modifications of Apriori.  The scheme of Apriori 

algorithm is not only used in association rule mining but also in other data mining 

fields  such  as  sequential  pattern  mining,  episode  mining,  functional  dependency 

discovery and here frequent  pattern  mining  techniques  can also be used to solve 

many other problems such as iceberg cube computation and classification. Therefore, 

it  has  become  an  interesting  research  problem  to  find  out  new  methods  and 

approaches for effective and efficient frequent pattern mining [9].

Many algorithms for generating association rules were presented over time. Some 

well known algorithms are Apriori, Eclat and Frequent Pattern Growth (FP-Growth) 

[10] , but they only do half the job, since they are algorithms for mining frequent 

itemsets. Another step needs to be done after to generate rules from frequent itemsets 

found in a database.

• Apriori Algorithm: The best-known algorithm to mine association rules is the 

Apriori.  It  uses  a  breadth-first  search  strategy  to  counting  the  support  of 

itemsets  and  uses  a  candidate  generation  function  which  exploits  the 

downward closure property of support.

• Eclat Algorithm: Eclat is a depth-first search algorithm using set intersection.

• FP-growth  Algorithm:  FP-growth  uses  an  extended  prefix-tree  (FP-tree) 

structure  to store  the database  in  a compressed form.  FP-growth adopts  a 

divide-and-conquer  approach to  decompose  both the mining  tasks and the 

databases.  It  uses  a  pattern  fragment  growth  method  to  avoid  the  costly 

process of candidate generation and testing used by Apriori.

• Zero-attribute-rule: The zero-attribute-rule, or ZeroR, does not involve any 

attribute in the condition part, and always returns the most frequent class in 

the  training  set.  This  algorithm  is  frequently  used  to  measure  the 

8



classification success of other algorithms.

• One-attribute-rule:  The  one-attribute-rule,  or  OneR,  is  an  algorithm  for 

finding association rules. According to Ross, very simple association rules, 

involving just one attribute in the condition part, often work well in practice 

with real-world data. The idea of the OneR (one-attribute-rule) algorithm is to 

find the one attribute to use to classify a novel data point that makes fewest 

prediction errors. For example, to classify a car you haven't seen before, you 

might apply the following rule: If Fast Then Sportscar, as opposed to a rule 

with multiple attributes in the condition: If Fast And Softtop And Red Then 

Sportscar. The algorithm is as follows:

  For each attribute A:

           For each value V of that attribute, create a rule:

      1. count how often each class appears

      2. find the most frequent class, c

      3. make a rule "if A=V then C=c"

                        Calculate the error rate of this rule

                  Pick the attribute whose rules produce the lowest error rate

2.3     FIM (Frequent Itemset Mining)

The aim of frequent itemset mining is finding interesting patterns from databases. A 

FIM algorithm scans the database for several times to find itemsets that  occur in 

transactions more frequently than a given threshold. Here the support is the number 

of occurrences and the threshold is the minimum support. Two of the most popular 

FIM algorithms  are Apriori  and FP-Growth.  According to a report  from the first 

Workshop  on  Frequent  Itemset  Mining  Implementations  (FIMI'03),  FP-growth 

implementations were generally an order of magnitude faster than Apriori ;however, 

on several datasets, an Apriori implementation,  apriori borgelt,  was slightly faster 

when the support was high [11].
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There are various types  of applications  on  mining  frequent  patterns  or itemsets. 

Some  of  them  are  the  discovery  of  association  rules,  strong  rules,  correlations, 

sequential  rules,  episodes,  multi-dimensional  patterns  and  many  other  important 

discovery tasks. The problem in mining frequent patterns can be given as: Assuming 

a large data base of item transactions is given, find all frequent itemsets, where a 

frequent  itemset  is  one  that  occurs  in  at  least  a  user-specified  percentage  of  the 

database. Most of the proposed pattern-mining algorithms are a variant of Apriori. 

Apriori  employs  a  bottom  up,  breadth-first  search  that  enumerates  every  single 

frequent itemset. Also Apriori uses the downward closure property of itemset support 

in order to prune the search space with the idea that the property that all subsets of a 

frequent itemset must themselves be frequent. Thus only the frequent itemsets are 

used to construct candidate (k + 1)-itemsets. A pass over the database is made at each 

level to find the frequent itemsets among the candidates. Apriori-inspired algorithms 

show good performance with sparse datasets such as market basket data, where the 

frequent patterns are relatively short [12].

Generally Aprori  approaches  were used based on the downward closure property 

before the FP-tree based mining  method was developed.  That  is,  if  any length k 

pattern is not frequent in a transaction database, superset patterns can not be frequent. 

Aprori based algorithms can prune the candidate itemsets using this characteristic. 

But  as  a  negative  point  Apriori  based  algorithms  should  generate  and  test  all 

candidates.  Moreover,  they  must  repeatedly  scan  a  large  amount  of  the  original 

database in order to  check if  a  candidate  is  frequent  or not and this  approach is 

inefficient and ineffective. Pattern growth based approaches were developed to solve 

this problem. Using a divide and conquer method, FP-tree based methods mine the 

complete set of frequent patterns to reduce the search space without generating all 

candidates. Typically an association rule mining algorithm firstly generates frequent 

patterns and then it makes association rules satisfying a minimum support. There is a 

limitation for traditional model about mining frequent itemsets. Here, all the items 

are  treated  uniformly  but  in  real  the  importance  of  items  are  different.  So  that 

weighted frequent itemset mining algorithms have been developed. Different weight 

values are given to items in the transaction database.  The main idea of weighted 
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frequent itemset mining is to concern satisfying the downward closure property. This 

is  broken  when  different  weights  are  applied  to  the  items  according  to  their 

significance. Generally,  weighted association rule mining algorithms have adopted 

an Apriori algorithm based on the downward closure property. They have suggested 

the weighted closure property,  the sorted closure property or other techniques  in 

order to satisfy the downward closure property. But the algorithms that are based on 

Apriori,   use  candidate  set  generation  and  test  techniques.  Here,  it  is  really  a 

remarkable  cost  to  generate  and  test  all  candidates.  It  is  shown in  performance 

analyses that frequent pattern growth algorithms are more efficient at mining large 

databases and more scalable than Apriori based techniques. On the other hand, there 

is  not  an approach of weighted association  rule  mining  using the pattern  growth 

algorithm.  Because,  here  when you  apply the  FP-growth  methods  the  downward 

closure property is broken [13].

2.4     Apriori Algorithm

The problem of association rule mining can be divided into two sub-problems:

• Find all combinations of items in a set of transactions that occur with a given 

minimum frequency. These combinations are called frequent itemsets. 

• Calculate  rules  that  express  the  probable  co-occurrence  of  items  within 

frequent itemsets.

Apriori  calculates  the probability  of  an item being  present  in  a  frequent  itemset, 

given  that  another  item  or  items  is  present.  Association  rule  mining  is  not 

recommended  for  finding  associations  involving  rare  events  in  problem domains 

with a large number of items. Apriori discovers patterns with frequency above the 

minimum support threshold. Therefore, in order to find associations involving rare 

events, the algorithm must run with very low minimum support values. However, 

doing so could potentially explode the number of enumerated itemsets, especially in 

cases  with  a  large  number  of  items.  This  could  increase  the  execution  time 
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significantly.  Classification  or  anomaly  detection  may  be  more  suitable  for 

discovering rare events when the data has a high number of attributes [14].

Apriori  algorithm can be considered as an example of a level-wise algorithm for 

association  discovery.  It  passes  for  several  times  over  the  input  data  to  find  the 

frequent  itemsets.  Let  Lk denote the set  of frequent  itemsets  of size k and let  Ck 

denote the set of candidate itemsets of size k. Before making the k-th pass, Apriori 

generates Ck using Lk-1. Its candidate generation process ensures that all subsets of 

size k-1 of Ck are all members of the set Lk-1. In the k-th pass, it then counts the 

support for all the itemsets in Ck. At the end of the pass all itemsets in Ck with a 

support  greater  than  or  equal  to  the  minimum  support  form the  set  of  frequent 

itemsets  Lk.  The method of pruning the Ck  set  using Lk-1  results  in a much more 

efficient support counting phase for Apriori when compared to the earlier algorithms. 

In addition, the usage of a hash-tree data structure for storing the candidates provides 

a very efficient support-counting process [15].

Except for Aprori , other algorithms are designed for finding association rules in data 

having  no  transactions  (WINEPI  and  MINEPI),  or  having  no  timestamps  (DNA 

sequencing).  As common in  association  rule  mining,  given a  set  of itemsets  (for 

instance,  sets  of  retail  transactions,  each  listing  individual  items  purchased),  the 

algorithm attempts to find subsets which are common to at least a minimum number 

C of the itemsets. Apriori uses a "bottom up" approach, where frequent subsets are 

extended one item at a time (a step known as candidate generation), and groups of 

candidates  are  tested  against  the data.  The  algorithm terminates  when no further 

successful extensions are found. Apriori, while historically significant, suffers from a 

number  of  inefficiencies  or  trade-offs,  which  have  spawned  other  algorithms. 

Candidate generation generates large numbers of subsets (the algorithm attempts to 

load up the candidate set with as many as possible before each scan). Bottom-up 

subset exploration (essentially a breadth-first traversal of the subset lattice) finds any 

maximal subset S only after all 2 | S | − 1 of its proper subsets [14].
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CHAPTER 3

BACKGROUND

3.1     Sequential Pattern Mining

We can call a database that consists of sequences of values or events that change 

with time as  a time-series database. In this type of database,  the valid time of each 

dataset  is  recorded.  For  instance,  in  a  time-series  database  that  records  the sales 

transaction  of a supermarket,  each transaction  includes  an extra  attribute  indicate 

when the transaction happened. Basically there are four kinds of patterns we can get 

from various types of time-series data: 

1-Trend Analysis: Finding the evolution patterns over the time can be called as trend 

analysis. These can be  cyclic movements or variations,  seasonal movements,  long-

term trend movements and irregular or random movements. If we give an example, 

we can model the changes in price into a function Y=F(t) by using the historical 

stock price records of a company. Also this function can be given as a time-series 

graph. Tuesday the price will increase by 8 % and every Thursday the price will drop 

by around 4.5%. This method is widely used in the analysis of stock market [16].

2-Similarity Search:  The process here is a matching process that can tolerate some 

differences within a certain threshold. According to the length of sequences we are 

trying to match ,  sequence matching can be classified as:

• Subsequence Matching

• Whole Sequence Matching
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Assume that the data of stock prices is transformed into curves , those curves include 

many different shapes such as up, sharp up, down, big down. The typical example of 

similarity search is about the curve and shapes of one stock and the idea is to find 

other stocks that have the similar curves and shapes [16].

3-Sequential  Patterns: In  sequential  pattern  mining  the  relationships  between  the 

occurrences of sequential events are searched and the aim is to find  if there exist any 

specific order of the occurrences. The sequential patterns of specific individual items 

can  be  found  in  addition  to  sequential  patterns  cross  different  items.  Sequential 

pattern  mining  is  widely  used  in  analysing  of  DNA  sequence.  An  example  of 

sequential patterns is that every time company-A stock drops 8% ,  company-B stock 

will also drops at least 3.5% within three days [16].

4-Periodical Patterns:  These patterns are recurring patterns in the database and the 

periods can be a day, a week, a month, a season or a year. If we take the periodical 

sequences as a set of sequences in sequential pattern mining, this can be considered 

as periodical pattern mining. While operating periodical pattern mining in a customer 

transaction database where each sequence represents a sequence of items bought by a 

customer,  we  have  a  long  sequence  of  data.  However,  this  sequence  can  be 

partitioned into periods and thus, we can obtain a set of sequences. An example of 

periodical pattern is that if a restaurant received many coffee customers during 4:00-

6:00 pm, dinner will sell well between 9:00-10:00 pm [16].

After  the introduction  of sequential  pattern mining,  its  popularity has remarkably 

increased with its broad area of applications like market and customer analysis, web 

log analysis, pattern discovery in protein sequences and mining XML query access 

patterns for caching. We can define a sequential pattern as a sequence of itemsets 

occurring in a specific order.

Sequential  pattern is a sequence of itemsets that frequently occurred in a specific 

order, all items in the same itemsets are supposed to have the same transaction time 

value or within a time gap. In recent years many studies have presented convincing 
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arguments that for mining frequent patterns for itemsets and sequences. As different 

from mining frequent itemsets, there are not so many methods proposed for mining 

closed sequential patterns. The major reason for this situation can be given as the 

complexity of the problem. Today, CloSpan is known as the only algorithm for this 

process. As in most of the frequent closed itemset mining algorithms, it proceeds a 

candidate maintenance-and-test approach. For example, it needs to maintain the set 

of  already mined closed sequence candidates  which  can be used to  prune search 

space  and check  if  a  newly  found frequent  sequence  is  promising  to  be  closed. 

However, this closed pattern mining algorithm has a poor scalability in the number 

of frequent closed patterns. Because a large number of frequent closed patterns or 

just  candidates need much memory space and large  search space for the closure 

checking of new patterns [17].

For each dataset, it is clear that timestamp value is an important attribute. Also this is 

important  in in the process of data mining and it  can give us more accurate  and 

useful information. For instance, association rule mining does not take the timestamp 

into account, the rule can be “Buy A ⇒ Buy B”. If we consider timestamp then we 

can get more accurate and useful rules such as: Buy A implies Buy B within a week 

or usually people Buy A every week. As we can see with the second kind of rules, 

business  organizations  can  make  more  accurate  and  useful  prediction  and 

consequently make more sound decisions [16]. 

3.2     Frequent Episode Mining 

The data can be analysed consists of sequence of events and there are several data 

mining and machine learning application areas processing this type of data. Alarms 

in  a  telecommunication  network,  user  interface  actions,  crimes  committed  by  a 

person and occurrences of recurrent illnesses can be given as examples of such data. 

Here, each event in the sequence has an associated time of occurrence. In Figure 1, 

[1] an example of event sequence is represented. Here A, B, C, D, E and F are event 
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types  such  as  different  types  of  alarms  from  a  telecommunication  network  or 

different types of user actions and they have been marked on a time line [1].

Generally , machine learning and data mining techniques are focused on the analysis 

of  unordered  collections  of  data.  Examples  of  this  type  of  data  can  be  given  as 

transaction databases and sequence databases. While analysing a sequence the typical 

point  is  to  find  the  frequent  episodes  such  as  collections  of  events  occurring 

frequently together.  Here, the main idea of episode mining is to find relationship 

between events. After that these relationships will be used to explain the problems 

that cause an event or predict the possible result. There are several applications of 

episode  mining  such  as  biomedical  data  analysis,  drought  risk  management  in 

climatology and internet anomaly intrusion detection. The task of mining frequent 

episodes  was  originally  defined  on   a  sequence  of  events  where  the  events  are 

sampled regularly as proposed by Mannila [1].

Episodes, in general, are partially ordered sets of events. From the sequence in the 

Figure 1 one can make, for instance, the observation that whenever A and B occur, in 

either order,  C  occurs  soon.  When  discovering  episodes  in  a  telecommunication 

network  alarm  log,  the  goal  is  to  find  relationships  between  alarms.  Such 

relationships can then be used in the on-line analysis of the incoming alarm stream, 

for instance to better explain the problems that cause alarms, to suppress redundant 

alarms and to predict severe faults [1].
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3.2.1    Event Sequences  and Episodes

3.2.1.1 Event Sequences

We consider the input as a sequence of events, where each event has an associated 

time of occurrence. Given a set E of event types, an event is a pair ( A,t ) , where 

A є E is an event type and t is an integer, the (occurrence) time of the event. The 

event type can actually contain several attributes; for simplicity we consider here just 

the case where the event type is a single value. An event sequence s on E is a triple 

(s, Ts  , Te), where  s = < (A1, t1), (A2,t2) ,...,(An,tn) > is an ordered sequence of events 

such that Ai є E for all i = 1,...,n, and ti ≤  ti+1 for all i = 1,...,n-1. Further on, Ts and Te 

are integers: Ts is called the starting time and Te the ending time, and Ts ≤ ti < Te for 

all i = 1,...,n [1].

Example 3.2.1.1.1: Figure 1 [18]  presents the event sequence s=(29; 68),  where

 s=<(E , 31 ) ,  (D , 32 ) ,  (F , 33 ) , ( A , 35 ) , ( B , 37 ) , ( C , 38 ) , . . . , ( D , 67 ) >

The sample sequence here starts with time 29 to just before time 68. In this sample 

for each event that occurred in the time interval [29 , 68), the event type and the time 

of occurrence have been recorded [1].

While analysing event sequences, the aim is to find all frequent episodes from a class 

of episodes. An episode's events must occur close enough in time for us to consider 

this episode as an interesting one. 

Here, the borders of being close for events are specified by the user. A window is a 

slice of event sequence and the event sequence can be considered as a sequence of 
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partially overlapping windows. By determining the width of the window , the user 

gives the measures for deciding if the events occur closely or not.

In addition to the width of the window, the user specifies in how many windows an 

episode has to occur to be considered frequent. “Formally,  a window on an event 

sequence s = (s , Ts , Te) is an event sequence w = ( w , ts , te ) , where ts < Te and te > 

Ts , and w consists of those pairs ( A , t ) from s where ts ≤  t < te. The time span te -  ts 

is called the width of the window w, and it is denoted width(w). Given an event 

sequence s and an integer win, we denote by W(s , win) the set of all windows w on s 

such that width(w)=win” [1]

For an event sequence, the first and the last window extend outside the sequence. 

Here, the first window contains only the first time point of the sequence and the last 

window contains only the last time point of the sequence. Given an event sequence 

s = ( s , Ts , Te ) and a window width win, the number of windows in W( s , win ) is 

Te - Ts + win – 1.

Example 3.2.1.1.2: In Figure 1 [1] there are also two windows of width 5 on the 

sequence s. The window starting at time 35 is

(<( A , 35 ) , ( B , 37 ) , ( C , 38 ) , ( E , 39 )> , 35 , 40 )

Note that the event (F , 40) that occurred at the ending time is not in the window. The 

window starting at 36 is similar to this one; the difference is that the first event. (A, 

35) is missing and there is a new event (F,40) at the end. The set of the partially 

overlapping windows of width 5 constitutes W (s, 5) the first window is (∅,  25, 30), 

and the last is (<( D, 67)>, 67, 72).  Event (D, 67) occurs in 5 windows of width 5, as 

for instance event (C ,50) does [1].
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3.2.1.2  Episodes

We  can  define  an  episode  as  a  partially  ordered  collection  of  events  occurring 

together. We can illustrate the episodes in directed acyclic graphs and episodes can 

be classified into three categories such as serial episodes, parallel episodes and non-

serial and non-parallel episodes. If we look at the episodes given in Figure 2 [1], 

episode α  is a serial episode: it occurs in a sequence only if there are events of types 

E and F that occur in this order in the sequence. Episode β is a parallel episode: no 

constraints on the relative order of A and B are given. Episode γ  is an example of 

non-serial and non-parallel episode: it occurs in a sequence if there are occurrences 

of A and B and these precede an occurrence of C; no constraints on the relative order 

of A and B are given.

The formal definition of episodes can be given as in the following:

“ An episode α  is a triple ( V , ≤  ,  g ) where V is a set of nodes, ≤  is a partial order 

on V, and g : V →  E is a mapping associating each node with an event type. The 

interpretation of an episode is  that  the events in g(V) have to occur in the order 

described by ≤. The size of α, denoted |α|, is |V|. Episode α is parallel if the partial 

order ≤ is trivial (i.e., x y for all x , y є V such that x ≠ y). Episode α  is serial if the 

relation ≤  is a total order (i.e., x ≤ y or y ≤ x for all x , y є V). Episode α  is injective 

if the mapping g is an injection, i.e., no event type occurs twice in the episode.” [1]

19

Figure 2: Episodes  α , β and γ



Example 3.2.1.2.1: If  we consider  episode α=(V, ≤,  g) in  Figure 2 episode α is 

injective, because it does not contain duplicate event types. Here, we only compute 

the number of windows where α occurs at all and we do not consider the number of 

occurrences per window [1].

Another  important  term  about  episode  mining  is  subepisodes.  The  definition  of 

subepisode can be given as :

“An episode β = (V', ≤', g') is a subepisode of  α=(V', ≤', g') denoted β α, if there 

exists an injective mapping f : V' → V such that g'(v)=g(f(v)) for all v є V' ,and for 

all v, w є V' with v ≤' w also f(v) ≤  f(w). An episode α is a superepisode of β  if and 

only if β α. We write β α if  β α  and  α β” [1].

Example 3.2.1.2.2: In Figure 2 [1] the episode β is a subgraph of the episode γ. Here, 

the nodes in episode β are not ordered, therefore the corresponding nodes in γ do not 

need to be ordered[1].

To consider an episode to occur in a sequence, the nodes of the episode need to have 

corresponding events in the sequence such that the event types are the same and the 

partial order of the episode is respected.

“Formally, an episode α=(V, ≤, g) occurs in an event sequence s=<(A1,t1), (A2, t2), ..., 

(An,tn)>  if there exists an injective mapping h : V→{1, ... , n} from nodes of α to 

events of s such that g (x) =  Ah(x) for all x є V, and for all x, y є V with x ≠ y and 

x ≤ y we have th (x) < t h (y).” [1].

Example 3.2.1.3: In Figure 1  [2] the given window ( w ,35 ,40 ) contains events A , 

B , C  and E. Here, episodes β and γ of Figure 2 [1] occur in the window, but α does 

not.
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The frequency of an episode is the fraction of windows in which the episode occurs. 

If the event sequence is s and the window width is win , then the frequency of an 

episode α in s is 

Here episode  α is frequent if fr (α ,s, win)  ≥ min_fr. The min_fr is the threshold 

value specified by the user. Our task is to discover all frequent episodes from a given 

class ε of episodes and the collection of frequent episodes with respect to s, win and 

min_fr is denoted by F (s, win, min_fr).

After the frequent episodes are discovered, these episodes will be used to generate 

the rules describing the relationships between the events in the given sequence. For 

example, if we know that the episode β of Figure 2 occurs in 4.2% of the windows 

and that the superepisode γ occurs in 4.0% of the windows, we can estimate that after 

seeing a window with A and B, there is a chance of about 0.95 that C follows in the 

same window. Formally, an episode rule is an expression β→ γ , where β and γ  are 

episodes such that β γ. The fraction fr(γ,s,win) / fr (β,s,win) is the confidence of the 

episode rule. The confidence can be interpreted as the conditional probability of the 

whole of γ occurring in a window, given that β occurs in it. Episode rules show the 

connections between events more clearly than frequent episodes alone [1].

3.2.2  Algorithms for WINEPI Approach 

For episode mining  with WINEPI approach,there  are  five algorithms.  Mainly the 

algorithms starts  generating candidates by starting with 1-length episodes and finds 

the frequent episodes among these candidates. Then the rules are generated by using 

these frequent episodes and their sub-episodes.

21



If we consider the whole procedure, firstly, we find the frequencies of the episodes 

with  length-1,  determine  the  frequent  episodes  by  using  the  frequency threshold 

given  and then  generate  the  2-length  candidates.  After  that  we will  compute  the 

frequencies of these candidate episodes and specify which of them are frequent. And 

the procedure will go on until the set of frequent episodes is empty. Finally, we will 

generate the rules from the frequent episodes by using the given confidence threshold 

parameter.

As a result, the whole process can be divided into two parts as;

 1. Candidate  Generation:  The  aim  of  candidate  generation  process  is  to 

minimize the number of candidates on each level.  Therefore the work for 

database pass can be reduced.  Generally combining  multiple  iterations  for 

candidate  generation  to  a  single  database  pass  is  helpful  for  reducing  the 

count of expensive database passes. In order to do this, firstly candidates for 

the  next  level  l +  1  are  computed  and then  with  the  assumption  that  all 

candidates of level l + 1 are frequent candidates for the following level  l + 2 

are computed. And the process goes on. In this approach no frequent episode 

is missed, however candidate collections can be larger. When we look at the 

time complexity of Algorithm 3, it is independent of the length of the event 

sequence  and  it  is  polynomial  in  the  size  of  the  collection  of  frequent 

episodes.  The candidate  generation operations are very similar  for parallel 

and  serial  episodes.  Small  changes  in  the  algorithm for  parallel  episodes 

about candidate generation is enough to adapt this method for serial episodes 

[1].

 2. Recognition: The process for this part is remarkably different for parallel and 

serial episodes. For the implementation of the database pass, the algorithms 

recognizing the episodes in sequences in an incremental  method are given 

and for two windows w = (w,  ts, ts + win) and w' = (w' ,ts + 1, ts + win + 1) , 

the sequences w and w' of events are similar to each other. After the episodes 

in w are recognized, updates are done incrementally in data structures to shift 

the window w to get w'. Algorithms firstly checks the empty window at the 
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beginning of the sequence and finally they check the empty window at the 

end  of  the  sequence.  While  computing  the  frequency  of  episodes,  the 

windows on the input sequence are considered.

 2.1. For Parallel Episodes: Here, for each candidate parallel episode α we 

have a counter α.event_count that holds how many events of α are present 

in the window. If α.event_count becomes equal to the size of episode α : 

|α|, this means that the current window contains α and we save the starting 

time of this window in α.inwindow. If α.event_count decreases again, this 

means  that  α  is  no  longer  contained  in  the  current  window  and  we 

increase the value of α.freq_count by the number of windows where α 

remained entirely in the window. Finally the value of  α.freq_count gives 

us the total count of windows where α occurs. In order to get candidate 

episodes efficiently,  they are indexed by the number of events of each 

type that they contain. Here all episodes that contain exactly a events of 

type A are in the list contains ( A , a ). If we shift the window, the events 

contained by the window will change and the episodes affected by this 

change will be updated. For example, there is one event of type C in the 

window and a second one comes in, all episodes in the list contains ( C ,  

2 ) are updated with the information that both events of type C they are 

expecting are now present [1].

 2.2. For  Serial  Episodes:  A  data  structure  such  as  state  automata  that 

accept the candidate episodes is used in processing the event sequence. 

We have an automaton for each serial episode denoted by  α. There can 

be several instances of each automaton at the same time, so that the active 

states reflect the (disjoint) prefixes of α occurring in the window. When 

the first event of the episode comes into the window, a new instance of 

the automaton is initialized and this automaton is removed when the same 

event  leaves  the  window.  If  the  episode  is  entirely  contained  in  the 

window, this means that  automaton of the episode reached its accepting 

state.
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Here, if there are no other automata for this episode in the accepting state the starting 

time of the window is saved in α.inwindow. If an automata in the accepting state is 

removed and if there are no other automata for  α in the accepting state the field 

α.freq_count is increased by the number of windows where α remained entirely in 

the window. The automatas in the same state make the same transitions and they 

produce the same results so it is not useful to have multiple automata in the same 

state. The automata reaching the common state last will be remove last, too. So that it 

will be enough to process this automata among the others in the same state. As a 

result, the maximum number of the automatas for an episode will be equal to the 

number  of  events  in  this  episode.  When  to  remove  should  be  known  for  each 

automata. Thus, all the automata for α can be represented with one array of size |α| 

and the value of α.initialized[i] is the latest initialization time of an automaton that 

has reached its ith state. For each event type A є E, the automata that accept A are 

linked together to a list waits (A). The list contains entries of the form (α, x) meaning 

that episode α is waiting for its xth event.

When an event (A, t) enters the window during a shift, the list waits (A) is traversed. 

If an automaton reaches a common state i with another automaton, the earlier entry 

α.initialized[i]  is simply overwritten.  The transitions made during one shift of the 

window are stored in a list transitions. They are represented in the form (α, x, t) 

meaning that episode α got its xth event and the latest initialization time of the prefix 

of  length  x  is  t.  Updates  regarding  the  old  states  of  the  automata  are  done 

immediately but updates for the new states are done only after all transitions have 

been identified, in order to not overwrite any useful information. For easy removal of 

automata when they go out of the window, the automata initialized at  time t are 

stored in a list beginsat (t) [1].

If an episode is not serial or parallel, the recognition of this arbitrary episode can be 

operated  by  the  recognition  of  a  hierarchical  combination  of  serial  and  parallel 

episodes. For example,  episode  γ in Figure 2 [18] is a serial  combination of two 

episodes: a parallel episode δ' consisting of A and B, and an episode δ'' consisting of 

C  alone.  The  occurrence  of  an  episode  in  a  window  can  be  tested  using  such 
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hierarchical structure: to see whether episode γ occurs in a window one checks (using 

a method for serial episodes) whether the subepisodes δ and δ'' occur in this order; to 

check the occurrence of δ' one uses a method for parallel episodes to verify whether 

A and B occur. On the other hand there are some complications to be taken into 

account.  Sometimes  it  may be  necessary  to  duplicate  an  event  node  to  obtain  a 

decomposition to serial and parallel episodes. This is helpful for injective episodes 

but  for  non-injective  episodes  we need more  complex  methods.  Here,  composite 

events have duration values where the  elementary events do not. An alternative to 

the recognition of general episodes is to handle all episodes basically like parallel 

episodes and to check the correct partial  ordering only when all events are in the 

window. Parallel  episodes  can be located  efficiently;  after  they have been found, 

checking the correct partial ordering is relatively fast [1].

The operations in algorithms for candidate generation and recognition for parallel 

and serial episodes  can be summarized as;

• Algorithm 1 is the base of the operations in episode mining for this technique. 

It  takes the set of event types,  the event sequence,  the set  of episodes, a 

window  width  win,  a  frequency  threshold  as  min_fr,  and  a  confidence 

threshold  as  min_conf  as  parameters  and it  describes  how rules  and their 

confidences can be computed from the frequencies of episodes. 

• Algorithm 2 computes the collection F (s , win, min_fr) of frequent episodes 

from a class ε of episodes. The algorithm performs a levelwise (breadth-first) 

search in the class of episodes following the subepisode relation. The search 

starts from the most general episodes, i.e., episodes with only one event. On 

each level the algorithm first  computes  a collection of candidate  episodes, 

and then checks their frequencies from the event sequence.

• Algorithm 3 computes candidates for parallel episodes and serial episodes. 

The method in this algorithm can be easily adapted to deal with the classes of 

parallel episodes, serial episodes, and injective parallel and serial episodes. 

Potential  candidates  can be identified  by creating all  combinations  of two 

episodes in the same block. For the efficient identification of blocks, we store 
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in  Fl  .block_start[ j ] for each episode Fl [j] the i such that Fl  [i] is the first 

episode in the block.

• Algorithm  4  executes  the  recognition  phase  for  parallel  episodes  and 

calculates the frequency counts of the episodes. Then, if the frequency count 

is above the given threshold value, it is considered as a frequent episode.

• Algorithm 5 does the same job as Algorithm for but this time it calculates the 

frequency counts of the serial episodes and finds the frequent ones.

We can consider  the following example  to  understand the execution  of the steps 

while  recognizing  the episodes  and calculating the frequency values for WINEPI 

approach. 

Example 3.2.2.1: Assume that we have a small event sequence as;

  T (time of occurrence)        Event
1 1
2 3
3 2

Here, assume that we have a frequency threshold as 0.25 and our window width is 3. 

For  serial  episodes,  the  process  for  the  recognition  of  1-length  episodes  can  be 

illustrated as in the following way;

C:{{1},{2},{3}} win=3
s= < (1,1),(2,3),(3,2) >

In  the  following  table,  the  data  structures  and  their  contents  are  given  after  the 

initialization phase of the recognition algorithm.
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Initialization
t=0
{1}.initialized[1] 0
{2}.initialized[1] 0
{3}.initialized[1] 0

waits(1) {(1,1)}
waits(2) {(2,1)}
waits(3) {(3,1)}

{1}.frequency_count 0
{2}.frequency_count 0
{3}.frequency_count 0

beginsat(-2) { }
beginsat(-1) { }
beginsat(0) { }
beginsat(1) { }
beginsat(2) { }
beginsat(3) { }
beginsat(4) { }
beginsat(5) { }
beginsat(6) { }
transitions { }

{1}.inwindow
{2}.inwindow
{3}.inwindow

At first iteration, time (t) = 1 and the algorithm gets the event 1 occurs at this time.

t=1 start=-1
{1}.initialized[1] 1
{2}.initialized[1] 0
{3}.initialized[1] 0

waits(1) {(1,1)}
waits(2) {(2,1)}
waits(3) {(3,1)}
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{1}.frequency_count 0
{2}.frequency_count 0
{3}.frequency_count 0

beginsat(-2) { }
beginsat(-1) { }
beginsat(0) { }
beginsat(1) { (1,1) }
beginsat(2) { }
beginsat(3) { }
beginsat(4) { }
beginsat(5) { }
beginsat(6) { }

transitions { { { 1 },1,1 } }

{1}.inwindow -1
{2}.inwindow
{3}.inwindow

At time(t) = 2, the type of event occurs is 3.

t=2 start=0
{1}.initialized[1] 1
{2}.initialized[1] 0
{3}.initialized[1] 2

waits(1) {(1,1)}
waits(2) {(2,1)}
waits(3) {(3,1)}

{1}.frequency_count 0
{2}.frequency_count 0
{3}.frequency_count 0

beginsat(-2) { }
beginsat(-1) { }
beginsat(0) { }
beginsat(1) { (1,1) }
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beginsat(2) { (3,1) }
beginsat(3) { }
beginsat(4) { }
beginsat(5) { }
beginsat(6) { }

transitions { { { 3 },1,2 } }

{1}.inwindow -1
{2}.inwindow
{3}.inwindow 0

Event with type 2 occurs at time(t)=3.

t=3 start=1
{1}.initialized[1] 1
{2}.initialized[1] 3
{3}.initialized[1] 2

waits(1) {(1,1)}
waits(2) {(2,1)}
waits(3) {(3,1)}

{1}.frequency_count 0
{2}.frequency_count 0
{3}.frequency_count 0

beginsat(-2) { }
beginsat(-1) { }
beginsat(0) { }
beginsat(1) { (1,1) }
beginsat(2) { (3,1) }
beginsat(3) { (2,1) }
beginsat(4) { }
beginsat(5) { }
beginsat(6) { }

transitions { { { 2 },1,3 } }

{1}.inwindow -1
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{2}.inwindow 1
{3}.inwindow 0

At time(t)=4 no event occurs and the sequence comes to end. Here, the event with 

type 1 comes out of window and its frequency count is calculated as 3.

t=4 start=2
{1}.initialized[1] 0
{2}.initialized[1] 3
{3}.initialized[1] 2

waits(1) {(1,1)}
waits(2) {(2,1)}
waits(3) {(3,1)}

{1}.frequency_count 0-(-1)+2 = 3
{2}.frequency_count 0
{3}.frequency_count 0

beginsat(-2) { }
beginsat(-1) { }
beginsat(0) { }
beginsat(1) { (1,1) }
beginsat(2) { (3,1) }
beginsat(3) { (2,1) }
beginsat(4) { }
beginsat(5) { }
beginsat(6) { }

transitions { }

{1}.inwindow -1
{2}.inwindow 1
{3}.inwindow 0

At time(t)=5 no event occurs and the sequence comes to end. Here, the event with 

type 3 comes out of window and its frequency count is calculated as 3.
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t=5 start=3
{1}.initialized[1] 0
{2}.initialized[1] 3
{3}.initialized[1] 0

waits(1) {(1,1)}
waits(2) {(2,1)}
waits(3) {(3,1)}

{1}.frequency_count 3
{2}.frequency_count 0
{3}.frequency_count 0-0+3 = 3

beginsat(-2) { }
beginsat(-1) { }
beginsat(0) { }
beginsat(1) { (1,1) }
beginsat(2) { (3,1) }
beginsat(3) { (2,1) }
beginsat(4) { }
beginsat(5) { }
beginsat(6) { }

transitions { }

{1}.inwindow -1
{2}.inwindow 1
{3}.inwindow 0

At time(t)=6 no event occurs and the sequence comes to end. Here, the event with 

type 2 comes out of window and its frequency count is calculated as 3.

t=6 start=4
{1}.initialized[1] 0
{2}.initialized[1] 0
{3}.initialized[1] 0

waits(1) {(1,1)}
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waits(2) {(2,1)}
waits(3) {(3,1)}

{1}.frequency_count 3
{2}.frequency_count 0-1+4=3
{3}.frequency_count 3

beginsat(-2) { }
beginsat(-1) { }
beginsat(0) { }
beginsat(1) { (1,1) }
beginsat(2) { (3,1) }
beginsat(3) { (2,1) }
beginsat(4) { }
beginsat(5) { }
beginsat(6) { }

transitions { }

{1}.inwindow -1
{2}.inwindow 1
{3}.inwindow 0

As a result frequencies are counted and the frequency values are calculated with the 

formula; 

frequency = α.freq count / ( Te-Ts + win – 1 )

Episode Frequency count Frequency
{1} 3 3/7=0.42
{2} 3 3/7=0.42
{3} 3 3/7=0.42
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3.2.3 A Fast Algorithm For Finding Frequent Episodes In Event Streams (Non-
overlapping Approach)

While  mining  temporal  patterns  from  event  streams,  the  method  of  discovering 

frequent  episodes  can  be  used.  Here,  the  episodes  denote  the  patterns  and these 

patterns are ordered collections of event types. For instance, (A → B → C) denotes a 

temporal pattern where an event type A , is followed some time later by a B and a C, 

in that order. In a data sequence if all events of an episode are included in their order, 

this indicates that this episode occurs in this sequence. The count of the occurrences 

of the episode determines whether the episode is interesting or not. If the episode 

occurs frequently enough in the sequence, this episode is considered an interesting 

one. As a result the task about data mining here is to find all interesting episodes. 

This means that these episodes' frequency counts will be greater than the threshold 

given by the user.

According to the method of Mannila [1], the frequency of an episode is the number 

of windows in the event sequence in each of which the episode occurs. Here, the 

algorithm for counting these windows uses finite state automata as a data structure. 

For  the  worst  case,  time  complexity  of  the  algorithm is  linear  in  the  total  time 

spanned by the event stream, the size of episodes and the number of candidates. The 

space needed by the algorithm is also linear in the size of episodes and the number of 

candidates.  Some  extensions  to  this  windows-based  frequency  have  also  been 

proposed.  There  have  also  been  some  theoretical  studies  into  this  framework 

whereby one can estimate or bound the expected frequency of an episode in a data 

stream of a given length if we have a prior Markov or Bernoulli model for the data 

generation process. Thus, if sufficient training data is available, we can first estimate 

a model for the data source and then, on new data from the same source, can assess 

the significance of discovered episodes by comparing the actual frequencies with the 

expected frequency. As an alternative approach, a new notion for episode frequency 

based on the non-overlapped occurrences of an episode in the given data sequence is 

proposed.  Here  the  algorithm has  the  same  order  of  worst  case  time  and  space 
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complexities as the windows-based counting algorithm of. On the other hand, this 

non-overlapped  occurrences  based  algorithm  is  seen  more  efficient  and  it  is 

considered  to  run  faster  than  the  window-based  algorithm  after  empirical 

investigations.  Another  important  advantage  of  the  non-overlapped  occurrences 

count is that it facilitates a formal connection between discovery of frequent episodes 

and learning of generative models for the data sequence in terms of some specialized 

family  of  Hidden  Markov  Models.  This  formal  connection  allows  us  to  assess 

statistical  significance  of  episodes  discovered  without  needing  any  prior  model 

estimation  step.  As  a  result,  when  all  these  advantages  are  considered  the  non-

overlapped  occurrences  count  becomes  an  attractive  method  for  applications 

involving frequent episode discovery from event streams [2].

The definition of non-overlapped occurrences of an episode can be given as:

Two  occurrences  of  an  episode  are  said  to  be  non-overlapped  if  no  event 

corresponding to  one occurrence  appears  in between events  corresponding to the 

other.  If we assume that we have a collection of non-overlapping occurrences, here 

every pair of occurrences in it must be also non-overlapped [2]. 

Example 3.2.3.1: <(A, 1), (A, 2), (B, 3), (A, 7), (C, 8), (B, 9), (B, 10), (D, 11), (C, 

12), (C, 13)>. 

While recognizing the occurrence of a serial episode this can be done by using a 

finite state automaton. For instance, for the episode (A → B → C), we would have an 

automaton that transits to state 1 on seeing an event of type A and then waits for an 

event of type B to transit to its next state and so on until it transits to its final state, 

when an occurrence of the episode is regarded as complete. Counting all occurrences 

might be very inefficient because different instances of the automaton of an episode 

are needed to keep track of all its state transition possibilities. For instance, there are 

a total of eighteen occurrences of the episode (A → B → C) in the event sequence in 

the example. Four of them can be listed as :

1. {(A, 1), (B, 3), (C, 8)}
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2. 2. {(A, 1), (B, 3), (C, 12)}

3. {(A, 1), (B, 3), (C, 13)}

4. {(A, 1), (B, 9), (C, 12)}

On seeing the event (A, 1) in the example event sequence 3.2.3.1, we can transit an 

automaton of this episode into state 1.However, at the event (B, 3), we cannot simply 

let this automaton transit to state 2. That way, we would miss an occurrence which 

uses the event  (A, 1) but some other occurrence of the event type  B later  in the 

sequence. Hence, at the event (B, 3), we need to keep one instance of this automaton 

in state 1 and transit another new instance of the automaton for this episode into state 

2. As is easy to see, we may need spawning of arbitrary number of new instances of 

automata if no occurrence is to be missed for an episode. Moreover, counting all 

occurrences renders candidate generation inefficient as well. This is because, when 

using total number of occurrences as the frequency definition, subepisodes may be 

less  frequent  than  corresponding  episodes.  For  example,  in  example  sequence 

3.2.3.1, while there are eighteen occurrences of (A → B → C), there are only eight 

occurrences of the subepisode (A → B). So, under such a frequency definition, level-

wise procedures cannot be used for candidate  generation.  Each occurrence:  h  of 

episode α is associated with a set of events {(Eh(vi), th(vi)) : vi  V∈ α} in the data stream. 

Two occurrences, h1 and h2, of an episode are considered as distinct occurrences if 

they do not share any events in the event sequence.  In the event sequence in the 

example there can be at most three distinct occurrences of (A → B → C) and these 

are:

      1. {(A, 1), (B, 3), (C, 8)}

2. {(A, 2), (B, 9), (C, 12)}

3. {(A, 7), (B, 10), (C, 13)}
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Example 3.2.3.2: Consider the sequence

<(A, 1), (B, 2), (A, 3), (B, 4), (A, 7), (B, 8), . . .>

Two occurrences of an episode in an event sequence are non-overlapped if no event 

corresponding to  one occurrence  appears  in between events  corresponding to the 

other occurrence. In the sequence given in the Example 3.2.3.1 there can be at most 

one non-overlapped occurrence of (A → B → C), e.g., {(A, 2), (B, 3), (C, 8)} (since 

every other  occurrence  of (A → B → C)  overlaps  with this  one).  Similarly,  in 

example 3.2.3.2,  we need to keep track of only one of the pairs of event types A and 

B,  since  any other  occurrence  of  (A → B → C) will  have  to  overlap  with  this 

occurrence. In general, there can be many sets of non-overlapped occurrences of an 

episode in an event sequence. In order to count the non-overlapped occurrences of an 

episode, we need only one automaton. Until the automaton reaches its final state, we 

do not need a new instance of this automaton after the initialization [2].

3.2.3.1  Algorithm For Serial Episodes

This algorithm counts the non-overlapped counts for serial episodes. It looks at each 

event in the input sequence and makes necessary changes to the automata in waits(). 

When processing the ith event in the data stream, namely,  (Ei, ti), the automata in 

waits(Ei) are considered. Every automaton (α, j) waiting for Ei is transited to its next 

state.  This involves  removing (α, j)  from waits(Ei)  and adding,  either  (α,  j+1) or 

(α, 1) to the appropriate waits(.) list. This means that if the automaton has not yet 

reached  its  final  state,  it  waits  next  for  α[j  +  1]  and   α(j+1)  is  added  to 

waits(α[j+1]).  If  instead,  an  automaton  has  reached  its  final  state,  then  a  new 

automaton for the episode is initialized by adding (α, 1) to waits (α[1]). Note that 

since this process of adding to the waits(.) list is performed inside the loop over all 

elements in waits(Ei),  it  is in appropriate to add to this list from within the loop. 

Hence, as was mentioned earlier, we use a temporary storage called bag. Whenever 

we want to add an element to waits(Ei) it is stored first in bag which is later emptied 
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into  waits(Ei)  after  exiting  from  the  loop.  Finally,  the  episode  frequency  is 

incremented every time its automaton reaches the final state. Since a new automaton 

for  the episode is  initialized  only after  an earlier  one  reached its  final  state,  the 

algorithm counts non-overlapped occurrences of episodes [2].

3.2.3.2  Algorithm For Parallel Episodes

If all of the events in a parallel episode are included without considering the order of 

them in the event sequence, this indicates an occurrence of the window. The only 

difference between recognizing the occurrences of the parallel and serial episodes is 

that we do need to take the order of the events into consideration.

This algorithm obtains the non-overlapped occurrences-based frequencies for a set of 

candidate parallel episodes. The inputs of the algorithm are the set of candidates, the 

data  stream  and  the  frequency  threshold  and  the  output  is  the  set  of  frequent 

episodes. The main data structure here is waits(.) list as in the serial episodes but it is 

slightly different. Each entry in the list waits(A), is an ordered pair like, (α, j), which 

indicates that there is a partial occurrence of which still  needs j events of type A 

before  it  can  become  a  complete  occurrence.  The  initialization  process  involves 

adding the relevant ordered pairs for each episode  into appropriate waits(.) lists. For 

example, episode α= (AABCCC) will initially figure in three lists, namely, waits(A), 

waits(B) and waits(C) and they will have entries ( α, 2), (α, 1) and (α, 3) respectively. 

There are two quantities associated with each episode, α, namely α.freq, which stores 

the  frequency  of  α  and  α.counter,  which  indicates  the  number  of  events  in  the 

sequence that constitute the current partial occurrence of α. As we go down the event 

sequence,  for  each  event  (Ei,  ti),  the  partial  occurrences  waiting  for  an  Ei  are 

considered for update. If (α, j)  waits (E∈ i) , then having seen an Ei   now (α, j) is 

replaced by (α, j − 1) in waits(Ei) if sufficient number of events of type Ei for  are not 

yet accounted for in the current partial occurrence. Note that this needs to be done 

through the temporary storage bag since we cannot make changes to waits (Ei)  from 

within the loop. Also, α.counter is incremented, indicating that the partial occurrence 

for   has progressed by one more node. When α .counter = |α| = N, it means that the 
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N  events  necessary  for  completing  an  occurrence  have  appeared  in  the  event 

sequence.  We  increment  the  frequency  by  one  and  start  waiting  for  a  fresh 

occurrence of  by once again adding appropriate elements to the waits(.) lists [2].

3.2.4    Minimal Occurrences  Approach (MINEPI)

Instead of looking at the windows and only considering whether an episode occurs in 

a  window  or  not,  we  now  look  at  the  exact  occurrences  of  episodes  and  the 

relationships between those occurrences. One of the advantages of this approach is 

that focusing on the occurrences of episodes allows us to more easily find rules with 

two window widths, one for the left-hand side and one for the whole rule, such as 

“if  A  and  B  occur  within  15  seconds,  then  C  follows  within  30  seconds”.  The 

approach  is  based  on  minimal  occurrences  of  episodes.  Besides  the  new  rule 

formulation,  the  use  of  minimal  occurrences  gives  raise  to  the  following  new 

method, called MINEPI, for the recognition of episodes in the input sequence. For 

each  frequent  episode  we  store  information  about  the  locations  of  its  minimal 

occurrences. In the recognition phase we can then compute the locations of minimal 

occurrences of a candidate episode α as a temporal join of the minimal occurrences 

of  two  subepisodes  of  α.  This  is  simple  and  efficient,  and  the  confidences  and 

frequencies of rules with a large number of different window widths can be obtained 

quickly, i.e., there is no need to rerun the analysis if one only wants to modify the 

window widths. In the case of complicated episodes, the time needed for recognizing 

the  occurrence  of  an  episode  can  be  significant;  the  use  of  stored  minimal 

occurrences of episodes eliminates unnecessary repetition of the recognition effort. 

We identify minimal occurrences with their time intervals in the following way. 

Given an episode α and an event sequence s, we say that the interval [ts , te) is a 

minimal occurrence of α in s, 

• If (1) α occurs in the window w = ( w , ts , te ) on s

• If (2) α does not occur in any proper subwindow on w, i.e., α does not occur 
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in any window w' = (  w' , ts' , te' ) on s such that ts ≤ t's ≤  t'e  and width ( w' ) 

< width ( w )

The  set  of  intervals  of   minimal  occurrences  of  an  episode  α  in  a  given  event 

sequence is denoted by mo (α) = { [ts , te) | [ts , te) is a minimal occurrence of α }.

[18]

Example 3.2.4.1: Here, we consider the Figure 1 and Figure 2. The parallel episode 

β consisting of event types A and B has four minimal occurrences in s: mo( β ) = 

{ [35, 38) , [46, 48) , [47, 58) , [57 , 60) }. The partially ordered episode γ has the 

following three minimal occurrences: [35 , 39) , [46 , 51) , [57 , 62).

An episode rule (with two time bounds) is an expression β[win1]  α[win⇒ 2] , where β 

and α are episodes such that β   α, and win1 and win2 are integers. The informal 

interpretation of the rule is that if episode β has a minimal occurrence at interval 

[ts,te) with te - ts ≤ win1, then episode α occurs at interval [ts , t'e)  for some t'e such that 

t'e - ts ≤ win2. Formally this can be expressed in the following way. Given win1 and β, 

denote mo (win1(β)) = { [ts  , te)  є  mo(β) | te - ts ≤ win1}. Further, given α and an 

interval [us ,ue), define occ(α; [us , ue) = true if and only if there exists a minimal 

occurrence [u's  u'e) є mo(α) such that us ≤ u's and u'e ≤ ue. 

The confidence of an episode rule β [win1]  α [win⇒ 2] is now

Example 3.2.4.2:  Continuing the previous example, we have, e.g., the following 

rules and confidences. For the rule β[3]  γ[4] we have |{[35 , 38) , [46 , 48) , [57 ,⇒  

60) }|  in the denominator and |{[35 , 38)}| in the numerator, so the confidence is 1/3. 

For the rule β[3]  γ [5] the confidence is 1.⇒
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There exists a variety of possibilities for the temporal relationships in episode rules 

with two time bounds. For example, the partial order of events can be such that the 

left-hand side events follow or surround the unseen events in the right-hand side. 

Such relationships  are  specified  in the rules since the rule right-hand side α is  a 

superepisode of the left-hand side β, and thus α contains the partial order of each 

event in the rule. Alternatively, rules that point backwards in time can be defined by 

specifying that the rule β[win1]  α[win⇒ 2] describes the case where episode β has a 

minimal occurrence at an interval [ts , te) with te - ts ≤ win1, and episode α occurs at 

interval [t's , te) for some t's such that te - t's ≤ win2. For brevity, we do not consider 

any  alternative  definitions.  While  frequency  has  a  nice  interpretation  as  the 

probability that a randomly chosen window contains the episode, the concept is not 

very useful with minimal occurrences: (1) there is no fixed window size, and (2) a 

window  may  contain  several  minimal  occurrences  of  an  episode.  Instead  of 

frequency, we use the concept of support, the number of minimal occurrences of an 

episode: the support of an episode α in a given event sequence s is |mo(α)|. Similarly 

to a frequency threshold, we now use a threshold for the support: given a support 

threshold min sup, an episode α is frequent if |mo(α)| ≥ min sup. The current episode 

rule discovery task can be stated as follows. Given an event sequence s, a class E of 

episodes, and a set W of time bounds, find all frequent episode rules of the form 

β[win1]  α[win⇒ 2], where β , α є ε, β α, and win1, win2 є W [1].

3.2.4.1   Finding Minimal Occurrences of Episodes

We know that the subepisodes of a frequent episode are frequent. Thus, we can use 

the main candidate generation algorithms used for WINEPI also for MINEPI. The 

minimal occurrences of a candidate episode α are located in the following way. In 

the first iteration of the main algorithm, mo(α) is computed from the input sequence 

for all episodes α of size 1. In the rest of the iterations, the minimal occurrences of a 

candidate α are located by first selecting two suitable subepisodes α1 and α2 of α, and 

then computing a temporal join between the minimal occurrences of α1 and α2. To be 

more specific, for serial episodes the two subepisodes are selected so that α1 contains 
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all events except the last one and α2 in turn contains all except the first one. The 

minimal occurrences of α are then found with the following specification:

For parallel episodes, the subepisodes α1 and α2 contain all events except one; the 

omitted events must be different. The minimal occurrences of a candidate episode α 

can  be  found  in  a  linear  pass  over  the  minimal  occurrences  of  the  selected 

subepisodes  α1 and  α2.  The  time  required  for  one  candidate  is  thus 

O|mo(α1)|  + |mo(α2)| + |mo(α)|,  which is O(n), where n is the length of the event 

sequence.  To  optimize  the  running  time,  α1 and  α2 can  be  selected  so  that 

|mo(α1)|  + |mo(α2)|  is  minimized.  While  minimal  occurrences  of  episodes  can  be 

located quite efficiently, the size of the data structures can be even larger than the 

original  database,  especially  in  the  first  couple  of  iterations.  Finally,  note  that 

MINEPI can be used to solve the task of WINEPI. Namely, a window contains an 

occurrence  of  an  episode  exactly  when  it  contains  a  minimal  occurrence.  The 

frequency of an episode α can thus be computed from mo(α) [1].

3.2.4.2   Finding Confidences of Rules

An episode rule with two time bounds is defined as an expression β[win1] α[win⇒ 2]; 

where β and α are episodes such that β  α, and win1 and win2 are integers. To find 

such rules, first note that for the rule to be frequent, the episode α has to be frequent. 

Rules of the above form can thus be enumerated by looking at all frequent episodes 

α, and then looking at all subepisodes β of α. The evaluation of the confidence of the 

rule β[win1]  α[win⇒ 2] can be done in one pass through the structures mo(β) and 

mo(α), as follows. For each [ts , te) є mo(β) with te - ts ≤ win1, locate the minimal 
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occurrence [us , ue) of α such that ts ≤ us and [us , ue) is the first interval in mo(α) 

with this property. Then check whether ue - ts ≤ win2.

3.3     Microarchitecture and Branch Prediction

3.3.1  Microarchitecture

When  you  specify  the  computational,  communication  and  storage  elements  of  a 

computer  system and how these hardware components  interact  and how they are 

controlled,  this  can  be  called  a  computer  microarchitecture.  You  can  determine 

which computations can be performed most efficiently and which forms of program 

and data organization will perform optimally by considering the architecture of a 

machine [18].

The term architecture as applied to computer design, was first used in 1964 by Gene 

Amdahl,  G.  Anne  Blaauw,  and  Frederick  Brooks,  Jr.,  the  designers  of  the  IBM 

System/360. The System/360 marked the introduction of families of computers, that 

is,  a range of hardware systems all  executing essentially the same basic machine 

instructions.  The  System/360  also  precipitated  a  shift  from the  preoccupation  of 

computer designers with computer arithmetic, which had been the main focus since 

the early 1950s. In the 1970s and 1980s, computer architects focused increasingly on 

the instruction set. In the current decade, however, designers' main challenges have 

been  to  implement  processors  efficiently,  to  design  communicating  memory 

hierarchies, and to integrate multiple processors in a single design [19].

3.3.2  Basic Microcomputer Design

Figure 3 [20] shows the basic design of a hypothetical microcomputer. CPU (The 

Central Processor Unit), where calculations and logic operations take place, contains 

a  limited  number  of  storage locations  named registers,  a  high-frequency clock,  a 

control unit, and an arithmetic logic unit.
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• The clock synchronizes the internal operations of the CPU with other system 

components.

• CU (Control Unit) coordinates the sequencing of steps involved in executing 

machine instructions.

• ALU (The Arithmetic  Logic Unit)  performs  arithmetic  operations  such as 

addition and subtraction and logical operations such as AND, OR, and NOT.

The CPU is attached to the rest of the computer via pins attached to the CPU socket 

in the computer’s motherboard. Most pins connect to the data bus, the control bus, 

and the address bus. The memory storage unit is where instructions and data are held 

while a computer program is running. The storage unit  receives requests for data 

from the CPU, transfers data from RAM (Random Access Memory ) to the CPU, and 

transfers data from the CPU into memory.  A bus is a group of parallel wires that 

transfer data from one part of the computer to another. A computer’s  system bus 

usually consists of three separate buses: the data bus, the control bus, and the address 

bus. The data bus transfers instructions and data between the CPU and memory. The 

control bus uses binary signals to synchronize actions of all devices attached to the 

system bus. The address bus holds the addresses of instructions and data when the 

currently executing instruction transfers data between the CPU and memory. Many 

personal computers use the PCI (Peripheral Component Interconnect) bus developed 

by Intel Corporation. In addition, many computers have a PCI Express graphics slot, 

which is significantly faster than the older AGP graphics slot [20].

43



A microprocessor incorporates most or all of the functions of a CPU on a single IC 

(Integrated Circuit). The first microprocessors emerged in the early 1970s and were 

used for electronic calculators,  using BCD (Binary-Coded Decimal)  arithmetic on 

4-bit words. Other embedded uses of 4- and 8-bit microprocessors, such as terminals, 

printers and various kinds of automation followed rather quickly.  Affordable 8-bit 

microprocessors  with  16-bit  addressing  also  led  to  the  first  general  purpose 

microcomputers in the mid-1970s [18]. 

In  computer  engineering,  microarchitecture (sometimes  abbreviated  to  µarch  or 

uarch) is the way a given ISA (Instruction Set Architecture ) is implemented on a 

processor.  A  given  ISA  may  be  implemented  with  different  microarchitectures. 

Implementations might vary due to different goals of a given design or due to shifts 

in technology.  Computer  architecture is the combination of microarchitecture and 

instruction set design [21].
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3.3.3   Clock  and Instruction Execution Cycle

An internal clock pulsing at a constant rate synchronizes the system bus and CPU for 

each operation. Clock cycle or in other words a machine cycle is the basic unit of 

time for machine instructions. The time required for one complete clock pulse gives 

the length of a clock cycle. In the Figure 4, a clock cycle is depicted as the time 

between one falling edge and the next:

The duration of a clock cycle  is the reciprocal of the clock’s speed, measured in 

oscillations per second. A clock that oscillates 1 billion times per second (1 GHz), 

for example,  produces a clock cycle  with a duration of one billionth of a second 

(1 nanosecond). A machine instruction requires at least one clock cycle to execute, 

and  a  few require  in  excess  of  50  clocks  (the  multiply  instruction  on  the  8088 

processor,  for  example).  Instructions  requiring  memory  access  often  have  empty 

clock cycles called wait states because of the differences in the speeds of the CPU, 

the system bus, and memory circuits [21].

Instruction execution cycle is an individual operation of the execution of a single 

machine instruction. A program is firstly loaded into memory before the execution. 

Here,  the  instruction  queue  contains  the  instructions  waiting  to  be  executed. 

Executing  a  machine  instruction  requires  three  basic  steps:  fetch,  decode  and 

execute. Two more steps are required when the instruction uses a memory operand: 

fetch operand and store output operand.

Each of the steps [22] is described as follows:
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1. Fetch the instruction from main memory: The CPU uses the value of the PC 

(Program Counter) on the address bus. The CPU then fetches the instruction 

from main memory via the data bus into the MDR (Memory Data Register). 

The value from the MDR is then placed into the CIR (Current Instruction 

Register ), a circuit  that holds the instruction temporarily so that it  can be 

decoded and executed.

2. Decode the instruction: The instruction decoder interprets and implements the 

instruction. The IR (Instruction Register) holds the current instruction, while 

the  PC  (Program  Counter)  holds  the  address  in  memory  of  the  next 

instruction to be executed.

3. Fetch data from main memory: Read the effective address from main memory 

if  the  instruction  has  an  indirect  address.  Fetch  required  data  from main 

memory to be processed and place it into data registers.

4. Execute the instruction: From the instruction register, the data forming the 

instruction  is  decoded  by  the  control  unit.  It  then  passes  the  decoded 

information as a sequence of control signals to the relevant function units of 

the CPU to perform the actions required by the instruction such as reading 

values from registers,  passing them to the ALU to add them together and 

writing the result back to a register. A condition signal is sent back to the 

control unit by the ALU if it is involved.

5. Store results: Also called write back to memory. The result generated by the 

operation is stored in the main memory, or sent to an output device. Based on 

the condition feedback from the ALU, the PC is either incremented to address 

the  next  instruction  or  updated  to  a  different  address  where  the  next 

instruction will be fetched. The cycle is then repeated.
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3.3.4   Branch Prediction

For the performance of a pipelined processor, branch prediction is one of the most 

important techniques. The main point about branch prediction is that it enables the 

processor to begin executing instructions before the branch outcome is certain. If the 

prediction is not correct, then the penalty will be called the branch delay. A two-way 

branching is usually implemented with a conditional jump instruction. A conditional 

jump can either be "not taken" and continue execution with the first branch of code 

which follows immediately after the conditional jump - or it can be "taken" and jump 

to a different place in program memory where the second branch of code is stored. It 

is not known for certain whether a conditional jump will be taken or not taken until 

the condition has been calculated and the conditional jump has passed the execution 

stage in the instruction pipeline [23].

If  branch prediction  is  not  used,  then the  conditional  jump instruction  should be 

waited to pass the execute stage before the next instruction can enter the fetch stage 

in the pipeline. The mission of the branch predictor is to avoid this waste of time by 

trying to guess whether the conditional jump is most likely to be taken or not taken. 

After guessing the branch to be the most likely, this branch is fetched and executed 

speculatively.  If after the execution of the conditional jump, it  is decided that the 

branch  taken  is  wrong,  then  the  speculatively  executed  or  partially  executed 

instructions are discarded and the pipeline starts over with the correct branch [24].

If a branch misprediction occurs, the time wasted here is equal to the number of 

stages  in  the  pipeline  from  the  fetch  stage  to  the  execute  stage.  Modern 

microprocessors tend to have quite long pipelines so that the misprediction delay is 

between 10 and 20 clock cycles. The longer the pipeline the higher the need for a 

good branch predictor.  You can not  make a  prediction  about  a  conditional  jump 

when it is executed for the first time.  Here,the branch predictor keeps records of 

whether branches are taken or not taken. When it encounters a conditional jump that 

has been seen several times before then it can base the prediction on the past history. 

The branch predictor may, for example, recognize that the conditional jump is taken 
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more often than not, or that it is taken every second time [23]. 

We can talk about three main types of branch predictions. These are static branch 

prediction, dynamic branch prediction and branch profiling. Static branch prediction 

always  predicts  a  branch  is  taken  or  not  taken.  We  meet  two  kinds  of  branch 

instruction  in  most  programs,  conditional  branch  instructions  and  unconditional 

branch  instructions.  An  unconditional  branch  effectively  has  a  condition  that  is 

always true. In addition, a large majority of conditional branches are loop back edges 

taken and only terminate when the conditions are not satisfied for one time. So it is 

reasonable to predict all branches are taken, and a lot of tests show that it can achieve 

very  high  accuracy.  Dynamic  prediction  uses  the  history  of  outcome  of  branch 

instructions to make it more accurate. Most branch predictors use a 2-bit prediction 

scheme [25].

Branch profiling  can be considered  as a  type  of  branch prediction  which can be 

located between static  and dynamic  is  branch profiling.  This method uses branch 

history information gathered during one run of a program to improve  the branch 

prediction  accuracy  during following runs.  Improving  the  accuracy  may be  done 

statically by creating a compiler that uses the collected profile information to modify 

its static prediction for individual branches [26].

A branch target predictor is the part of a processor that predicts the target of a taken 

conditional branch or an unconditional  branch instruction before the target of the 

branch instruction is computed by the execution unit of the processor [27].

Branch target  prediction  is  not  the  same  as  branch prediction.  Branch prediction 

attempts to guess whether a conditional branch will be taken or not-taken. In more 

parallel processor designs, as the instruction cache latency grows longer and the fetch 

width grows wider, branch target extraction becomes a bottleneck. 
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The recurrence is:

• Instruction cache fetches block of instructions 

• Instructions in block are scanned to identify branches 

• First predicted taken branch is identified 

• Target of that branch is computed 

• Instruction fetch restarts at branch target 

3.3.5   IPC , ILP and Performance

High performance processors are increasing the amount  of speculative work they 

perform  in  order  to  improve  instruction-level  parallelism  they  discover.  Branch 

prediction is the main method of providing speculative opportunities for a processor, 

therefore the accuracy of branch prediction is becoming very important [26].

3.3.5.1  How Programs Run - Load and Execute Process

The order of the events which occurred while running a program from the command 

prompt can be given as in the following way [28]:

• The operating system (OS) searches for the program’s filename in the current 

disk directory. If it cannot find the name there, it searches a predetermined 

list  of  directories  for  the  filename.  If  the  OS  fails  to  find  the  program 

filename, it issues an error message.

• If  the program file  is  found, the OS retrieves  basic  information  about the 

program’s file from the disk directory, including the file size and its physical 

location on the disk drive.

• The  OS determines  the  next  available  location  in  memory  and  loads  the 

program file into memory. It allocates a block of memory to the program and 
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enters information about the program’s size and location into a table which is 

sometimes called descriptor table. Additionally, the OS may adjust the values 

of pointers within the program so they contain addresses of program data.

• The  OS  executes  a  branching  instruction  that  causes  the  CPU  to  begin 

execution of the program’s first machine instruction. As soon as the program 

begins  running,  it  is  called  a  process.  The  OS  assigns  the  process  an 

identification number which is called the process ID, and this is used to keep 

track of it while running.

• The process runs by itself.  It  is the OS’s job to track the execution of the 

process and to respond to

• requests for system resources. Examples of resources are memory, disk files, 

and input-output devices.

• When the  process  ends,its  handle  is  removed  and  the  memory  it  used  is 

released so it can be used by other programs.

3.3.5.2   IPC (Instruction Per Cycle)

IPC can be considered as an aspect of a processor's performance. It can be defined as 

the  average  number  of  instructions  executed  at  each  clock  cycle  and  it  is  the 

multiplicative inverse of cycles per instruction (CPI). The number of instructions per 

second for a processor can be derived by multiplying the instructions per cycle and 

the clock speed which can be measured in cycles  per second or Hertz [Hz] of a 

processor. The number of instructions per second is an approximate indicator of the 

likely performance of the processor [29].

The  number  of  instructions  executed  per  clock  is  not  a  constant  for  a  given 

processor;  it  depends on how the particular  software being run interacts  with the 

processor, and indeed the entire machine, particularly the memory hierarchy. When 

comparing different instruction sets, a simpler instruction set may lead to a higher 

IPC figure than an implementation of a more complex instruction set using the same 
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chip technology; however, the more complex instruction set may be able to achieve 

more useful work with fewer instructions [28].

The  useful  work  that  can  be  done  with  any computer  depends  on  many  factors 

besides  the  processor speed.  These factors  include  the processor architecture,  the 

internal layout of the machine, the speed of the disk storage system, the speed of 

other attached devices, the efficiency of the operating system, and most importantly 

the high level design of the application software in use. For users and purchasers of a 

computer system, instructions per clock is not a particularly useful indication of the 

performance of their  system. For an accurate measure of performance relevant  to 

them, application benchmarks are much more useful. Awareness of its existence is 

useful, in that it provides an easy-to-grasp example of why clock speed is not the 

only factor relevant to computer performance [29].

3.3.5.3   ILP (Instruction-level Parallelism)

“Instruction-level  Parallelism (ILP) is  a  family  of  processor  and compiler  design 

techniques that speed up execution by causing individual machine operations, such 

as memory loads and stores, integer additions and floating point multiplications, to 

execute in parallel.  It  is a measure of how many of the operations in a computer 

program can be performed simultaneously” [30].

Pipelining can overlap the execution of instructions when they are independent of 

one  another.  This  potential  overlap  among  instructions  is  called  instruction-level 

parallelism (ILP) since the instructions can be evaluated in parallel. The amount of 

parallelism  available  within  a  basic  block   is  quite  small.  The  average  dynamic 

branch frequency in integer programs was measured to be about 15%, meaning that 

about 7 instructions execute between a pair of branches. Since the instructions are 

likely to depend upon one another, the amount of overlap we can exploit within a 

basic  block  is  likely  to  be  much  less  than  7.  To  obtain  substantial  performance 

enhancements, we must exploit ILP across multiple basic blocks [26]. 
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One of the goals in compiler and processor design is to identify and take advantage 

of as much ILP as possible. Generally, programs are written in a sequential form and 

instructions execute one after the other in an order specified by the programmer. ILP 

allows  the  compiler  and  the  processor  to  overlap  the  execution  of  multiple 

instructions  or  even to  change the  order  in  which  instructions  are  executed.  ILP 

existence level in a program is changeable for programs and it is really application 

specific. In some fields, such as graphics and scientific computing the amount can be 

very large. On the other hand, workloads such as cryptography exhibit much less 

parallelism [31].

The simplest and most common way to increase the amount of parallelism available 

among instructions is to exploit parallelism among iterations of a loop. This type of 

parallelism is often called loop-level parallelism.

Example 3.3.5.3.1 :

for (i=1; i<=1000; i= i+1) 

x[i] = x[i] + y[i];

This  is  a  parallel  loop.  Every  iteration  of  the  loop  can  overlap  with  any  other 

iteration, although within each loop iteration there is little opportunity for overlap 

[25]. 

Example 3.3.5.3.2 :

for (i=1; i<=100; i= i+1){

    a[i] = a[i] + b[i]; //s1 

    b[i+1] = c[i] + d[i];//s2 

}
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Statement s1 uses the value assigned in the previous iteration by statement s2, so 

there is a loop-carried dependency between s1 and s2. Despite this dependency, this 

loop can be made parallel because the dependency is not circular:

− Neither statement depends on itself;

− While s1 depends on s2, s2 does not depend on s1. 

A loop is parallel unless there is a cycle in the dependencies, since the absence of a 

cycle  means  that  the  dependencies  give  a  partial  ordering  on  the  statements.  To 

expose the parallelism, the loop must be transformed to conform to the partial order. 

Two observations are critical to this transformation: 

• There  is  no  dependency  from  s1  to  s2.  Then,  interchanging  the  two 

statements will not affect the execution of s2. 

• On the first iteration of the loop, statement s1 depends on the value of b[1] 

computed prior to initiating the loop.

This allows us to replace the loop above with the following code sequence, which 

makes possible overlapping of the iterations of the loop [26]:

a[1] = a[1] + b[1];  

  for (i=1; i<=99; i= i+1){ 

    b[i+1] = c[i] + d[i]; 

    a[i+1] = a[i+1] + b[i+1]; 

  } 

  b[101] = c[100] + d[100];
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Example 3.3.5.3.3 :

for (i=1; i<=100; i= i+1){  

 a[i+1] = a[i] + c[i]; //S1 

 b[i+1] = b[i] + a[i+1]; //S2 

}
 

This  loop  is  not  parallel  because  it  has  cycles  in  the  dependencies,  namely  the 

statements S1 and S2 depend on themselves [26].

 

Micro-architectural techniques that are used to exploit ILP include [31] :

• Instruction  pipelining  where  the  execution  of  multiple  instructions  can  be 

partially overlapped. 

• Superscalar execution in which multiple execution units are used to execute 

multiple  instructions  in  parallel.  In  typical  superscalar  processors,  the 

instructions  executing  simultaneously  are  adjacent  in  the  original  program 

order. 

• Out-of-order execution where instructions execute in any order that does not 

violate  data  dependencies.  Note that  this  technique is  independent  of both 

pipelining and superscalar. 

• Register  renaming  which  refers  to  a  technique  used  to  avoid  unnecessary 

serialization of program operations imposed by the reuse of registers by those 

operations, used to enable out-of-order execution. 

• Speculative execution which allow the execution of complete instructions or 

parts of instructions before being certain whether this execution should take 

place.  A  commonly  used  form  of  speculative  execution  is  control  flow 

speculation where instructions past a control flow instruction (e.g., a branch) 

are executed before the target of the control flow instruction is determined. 

Several other forms of speculative execution have been proposed and are in 

use  including  speculative  execution  driven  by  value  prediction,  memory 

dependence prediction and cache latency prediction. 
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• Branch prediction which is used to avoid stalling for control dependencies to 

be resolved. Branch prediction is used with speculative execution. 
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CHAPTER 4

            EPISODE MINING ON ARCHITECTURE SIMULATION DATA

4.1     General Overview

In this thesis work, we have pursued two main goals;

• Operating  data  mining  techniques  about  episode  mining  on  architecture 

simulation data and showing the previously known relationships between the 

events occurred during the execution of the programs

• Searching for the interesting relationships between the events and finding out 

rules  correlated  with the IPC values  obtained  during the execution.  Then, 

with  the  help  of  these  relationships,  to  make  predictions  about  the 

performance about a given program's execution in an architecture. 

In order to accomplish this, three types of techniques have been implemented and 

these implementations  have lead to a data  mining  tool  specifically about  episode 

mining on event sequences which we call “EMT (Episode Mining Tool)”. EMT has 

three  components,  namely  “Data  Pre-processor,  Episode  Miner  and  Output 

Analyser”. EMT supports both a command line and as well as a GUI interface. In 

command  line  version  the  parameters  are  taken  from  command  line  for  pre-

processing operations  or  the related  method of  episode mining  operation and the 

results are printed to an output file. In GUI version, the parameters are taken from the 

GUI components and the results are printed to the output file. And also, the results 

can  be  analysed  with  the  help  of  output  analyser  component  by  visualizing  the 
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outputs about the episodes or rules generated in various types of charts. In addition to 

visualizing, analysing multiple output files in a single process is enabled here.

We have worked on event sequence data, which is modelled as a sequence of events 

and each event has an associated time of occurrence. Therefore, EMT can be used to 

analyse any dataset which is an event sequence. The only condition is the format of 

the data. The input structure must follow this simple format in each line:

4.2     Implementation Details of The Algorithms

The three types of algorithms implemented during this research are;

 

• Mannila's  window  episode  mining  algorithms  (WINEPI)  for  parallel  and 

serial episodes [1]

• Non-overlapping  occurrence  counting  algorithms  for  parallel  an  serial 

episodes [2]

• Mannila's  minimal  occurrence  based  algorithms  (MINEPI)  for  serial  and 

parallel episodes [1]

In general, we directly implemented the original format of these algorithms but in 

some parts we had to make changes due to the differences between the structure of 

our dataset and the reference dataset of these algorithms.

1-WINEPI implementation:WINEPI is a window based approach and there are four 

parameters such as “window width, frequency threshold, confidence threshold and 

maximum length of episodes to be generated”.
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• Window  width:  As  mentioned  in  the  background  information  chapter  for 

WINEPI algorithms  the event  sequence  is  sliced into  windows that  has  a 

starting time point (ts) and an ending time point (te). While calculating the 

frequency  counts,  the  count  of  the  windows  that  the  episode  occurs  are 

considered and this window width shows the size of these windows.

• Frequency Threshold: This is the threshold value for determining the frequent 

episodes. If the episodes frequency value is greater than this threshold, then it 

is considered as a frequent episode, it is infrequent otherwise.

• Confidence Threshold: After generating the frequent episodes, the rules are 

generated  based  on these  frequent  episodes  and this  parameter  is  used  to 

determine if a rule is interesting or not.

• Maximum Length:  Other  parameters  except  this  one occur  in  the original 

specification of the algorithm. This value is used to generate the rules of the 

episodes having a specified maximum length. Originally the algorithm does 

not terminate until  the generated set of frequent episodes is an empty set. 

However, for instance, we may want to use a small threshold value and in our 

event  sequence  there  may  be  frequent  episodes  with  size  “10”  or  “15” 

although we want to investigate only episodes with length “3” or smaller. 

Assuming that we have a huge data set in terms of gigabytes, the execution 

time will be out of acceptable borders in this situation. So, when we give this 

maximum length parameter to our implementation we can get and analyse the 

outputs about our dataset in a less amount of time.

We  also  have  a  different  approach  about  processing  the  input  dataset  in  our 

implementations. Here, the input datasets may be huge sized files. Thus, reading the 

input file for once and taking it into memory and processing it may seem to reduce 

the time cost as reducing the I/O operations. But this time we have to face with the 

memory constraints because for instance trying to read a 10 GB input into memory 

and producing the necessary data structures about the algorithm for this data will not 

be feasible and if you are not running a server type computer having enough memory 

for this operation, the program can not be executed and will lead an out of memory 
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error.  Therefore,  to  avoid  such  a  situation,  we  used  an  iterative  technique  for 

processing the input data such as holding only a window of the event sequence in 

memory and getting a new time point (it may include an event or not) and removing 

the first time point of the window (again it may include an event or not ) in each 

iteration. As a result, we developed a sliding window mechanism while processing 

the input values. For example, assume that our window width is 5 and in an iteration 

we have a window containing events  as in Figure 5.

Figure 4.1 

After reading an event, for instance with type “B” from the input value, our window 

will be as in Figure 6; 

 

The candidate generation algorithm for both parallel and serial episodes have been 

implemented as given in the original versions for WINEPI. Also, the rule generation 

for  parallel  and  serial  episodes  and  the  recognition  algorithm for  calculating  the 

frequencies of parallel episodes have been implemented as in the original forms of 

the algorithms.

On the other hand, we had to make some changes in recognizing the occurrences of 

serial episodes in WINEPI approach. Mannila refers to a telecommunication network 

alarm dataset while presenting algorithms and here also it is stated that:

59

AA A C

AB A B

First  event  in window

B

Last  event  in window Incoming event

Figure 5: Before reading a new event from sequence 

Figure 6: After reading a new event from sequence 

B

C



“It is useless to have multiple automata in the same state, as they would only make 

the same transitions and produce the same information. It suffices to maintain the 

one that reached the common state last since it will be also removed last. There are 

thus at most |α| automata for an episode α. For each automaton we need to know 

when it should be removed. We can thus represent all the automata for α with one 

array of size |α|:  the value of α.initialized[i]  is  the latest  initialization  time of an 

automaton that has reached its ith state. Recall that α itself is represented by an array 

containing its events; this array can be used to label the state transitions” [1].

As  a  result  of  this  approach  there  are  some  problems  about  calculating  the 

occurrences of the serial episodes according to the original form of the algorithm. 

Especially,  the problem can be seen if there are multiple occurrences of the same 

event in a single window. To indicate this, we can review an example sequence such 

as;

For this example, if we trace the Algorithm 5 given to calculate the occurrences of 

serial  episodes  in  [18]  for  the  WINEPI  approach  with  window  width  =  4  for 

candidate episode {1}, we obtain the transitions;

s={1,2,3,1,2,3} Ts=1 Te=7
WinWidth=4
Candidates: {1}

t=1

Start=-2 t=1
Initialized [1]:1
transitions ({1},1,1)
beginsat [1]:({1},1)
waits ({1},1)
freq_count 0
inwindow -2
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s={<1,1>,<2,2>,<3,3>,<1,4>,<2,5>,<3,6>} 



…

t=4

Start=1 t=4
initialized [1]:4
transitions ({1},1,4)
beginsat [1]:({1},1) [4]:({1},1)
waits ({1},1)
freq_count 0
inwindow -2

t=5 

Start=2 t=5
initialized [1]:0
transitions
beginsat [1]:({1},1) [4]:({1},1)
waits ({1},1)
freq_count 4
inwindow -2

...

t=8

Start=5 t=8
initialized [1]:0
transitions
beginsat [1]:({1},1) [4]:({1},1)
waits ({1},1)
freq_count 11
inwindow -2

…

At the end of execution, the frequency count of episode {1} is found as 11. But in 

fact the accurate value must be 7. The basic reason of this wrong result is that the 

values for "initialized"  and "inwindow" does not change where they should do. As 
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stated before, this occurs when there are multiple occurrences of an event in a single 

window.

We guess that the input dataset have time spaces between the alarm events and the 

same type of alarm does not repeatedly occur in a single window in experiments 

given  in  the  reference  work.  But  in  our  dataset,  we use cycle  values  as  time of 

occurrences of events and this situation may occur in our event sequences. Therefore, 

we needed to design a straight-forward algorithm for recognizing the occurrences of 

the serial episodes. About this recognition operation, it is given that:

“A  practical  alternative  to  the  recognition  of  general  episodes  is  to  handle  all 

episodes basically like parallel  episodes, and to check the correct  partial  ordering 

only when all events are in the window. Parallel episodes can be located efficiently; 

after they have been found, checking the correct partial ordering is relatively fast  ” 

[18].

Then, simply by using the concepts of sliding window mechanism, we developed a 

straight-forward algorithm. Here, we just get the events into the window and check 

whether each candidate episode occurs in this window or not. There is an important 

point to be checked here because there may be multiple events in a cycle, means in a 

time point as given in Figure 7;

In  such  a  situation  our  algorithm  should  handle  all  of  the  combinations  of  this 

window content. Here, to check whether a candidate episode such as “{C,C,A,C}” 

we should check these combinations of the window;
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Figure 7: Processing multiple events in a single cycle



• {A,B,A,A,C}:No occurrence ⇒ X

• {B,B,A,A,C}:No occurrence ⇒ X

• {C,B,A,A,C}:No occurrence  ⇒ X

• {A,B,C,A,C}:No occurrence  ⇒ X

• {B,B,C,A,C}:No occurrence  ⇒ X

• {C,B,C,A,C}:Episode occurs  ⇒ √

The process of our algorithm can be given as;

 1 Read a cycle from the input sequence. 

 2 If there is an occurrence of event type 'A' in the incoming cycle add this event 

to the window,else add a null event to the window.

 3 Remove the first cycle instance in the window.

 4 For all candidate episodes ; 

 4.1 For all  combinations  of cycles  containing multiple  events,  generate  a 

window;

 4.2 Check if the candidate episode occurs in the generated window,

 4.3 If there is an occurrence 

 4.3.1 Increment the frequency count for this episode, 

 4.3.2 Go to the step 4, to process a new candidate episode.

 4.4 Else, go on for the next generated window.

 5 Repeat this process until the end of the event sequence.

2-Non-overlapping occurrence based implementation: In this part, non-overlapping 

occurrences of the episodes are calculated and with the given threshold values the 

rules are generated from the frequent episodes. For this approach, the original forms 
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of the algorithms given in [2] for parallel and serial episodes have been implemented. 

In order to generate candidate episodes in each iteration and rule generation process 

the same method in WINEPI implementation has been used.

3-MINEPI implementation: Here, the minimal occurrences of the candidate episodes 

are calculated and there is one more parameter  as a difference from the previous 

approaches. We use two window width values as given in the algorithms for MINEPI 

and the implementation for this part is done with respect to the original algorithms 

given in [18]. Again the same method in WINEPI for generating candidates in each 

iteration and rule generation process are applied  here.

4.3     Experiments and Results

During this thesis work we worked with different datasets for different analysis. The 

datasets  contain  events  and  their  cycle  values  corresponding  to  the  time  of 

occurrence values in our algorithms. The events in datasets used in experiments are 

instance based events and they do not have duration values. Events occur in a time 

value and there is not a time interval for the occurrences of the events. Here, firstly 

we considered all types of events and worked with a huge dataset. However,  we saw 

that to extract useful information from such a large domain would not be feasible. 

Therefore,  we decided  to  concentrate  on only some specific  types  of  events  and 

ignore the other types. For further analysis, we added event types about IPC values to 

our  architectural  events.  But  here  we  realised  that  in  the  output  of  programs' 

execution in an architecture, some sequences appeared repeatedly and the execution 

sequences consisted of these unique sequences. 

Here,  these  sequences  corresponds  to  the  program  blocks  such  as  conditional 

branches or loop structures. Therefore, finally we decided to investigate these unique 

sequences  and  find  out  relationships  between  the  rules  generated  from  these 

sequences  and  the  IPC  values  during  the  execution  of  them.  The  investigated 

datasets, their structures and the results are described in the following experimental 

details:
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4.3.1   Experiment 1

Input Data Structure: The dataset used in this step consists all event types of data 

obtained from the architecture simulation. Thus, the benchmarks have large sizes and 

the format of the input files are as in the following:

Here, we are interested in the first two columns:the cycle values corresponding to the 

time of occurrences in our algorithms and the event types.

The input data format is shown in Figure 8:

The simulation data is obtained from an experimental architecture that implements 

speculation in a 2-threaded multi-threaded architecture.
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Figure 8: Input file for experiment-1

<cycle> <event> <inst-PC> <mem-addr> <block-addr> <replacement-block-addr>



Here, the event types existing in this dataset and their meanings are:

1:   Branch misprediction.

2:  L1 data cache miss

3:   L2 data cache miss

4:   Load misspeculation

5:   Roll back due to Branch misprediction

6:   Roll back due to Load misspeculation

21: Branch misprediction.

22: L1 data cache miss

23: L2 data cache miss

24: Load misspeculation

25: Roll back due to Branch misprediction

26: Roll back due to Load misspeculation

    7: Main-thread enters the runahead mode

8: Recovery-thread is forked

9: Recovery-thread  rolls  back  due  a  miss-branch,  the  main-

thread is killed.

10: Recovery-thread rolls back due a wrong-value detection, the 

main-thread is killed.

11: Main-thread enters the blocking mode.

12: Main-thread is running the runahead mode, it is killed.

13: Main-thread is running the blocking mode. Recovery process 

is done, the recovery-thread stops.

100: L1  data  cache:  a  block(block-addr)  is  fetched  from L2,  a 

victim(replacement-block-addr) block is kicked out if conflicted.

200: L2 data cache: a block(block-addr) is fetched from memory, 

a victim(replacement-block-addr) block is kicked out if conflicted.

Results: We obtained different result sets with different parameters from EMT about 

this  dataset.  As  an  example  the  result  output  for  the  parallel  episodes  and  the 

generated rules with the WINEPI approach can are shown in Figure 9 and Figure 10.
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Figure 9: Outputs for frequency of the episodes in experiment-1

Figure 10: Outputs for confidence of the rules in experiment-1



Analysis: During program execution in a speculative processor, multiple branch mis-

predictions may be observed in rapid succession. One of the main reasons behind this 

phenomenon is the exploitation of instruction-level parallelism. The processor issues 

multiple instructions at each cycle and never waits for the resolution of branches as 

long as pending branch instructions continue to resolve correctly,  i.e.,  predictions 

continue  to  be  correct.  As  a  result,  at  any  given  time  there  are  many  branch 

instructions waiting for resolution.  When one of these branch instructions is mis-

predicted,  several  others  preceding  this  branch might  have been mis-predicted  as 

well. The first rule shown in Figure 10 clearly shows this behaviour: a branch mis-

prediction leads to multiple branch mis-predictions.

The  second  and  the  third  rules  also  indicate  expected  behaviour.  Once  a  mis-

prediction is detected, a roll-back is initiated, i.e., 1 -> 1, 5.  

On a few occasions, branch mis-predictions may lead to additional cache misses. The 

rule 1 -> 1, 3 shows such expected clustering of events.  However, rules 1 -> 1, 7, 

7 -> 1, 7; 1-> 1, 8; 8 -> 1, 8 all appear to be coincidental bearing no significance 

from an architectural perspective.

Rule 4 -> 1,4 indicates that an incorrect load value obtained from a load speculation 

may  trigger  branch  mis-speculations,  obviously  unexpectedly.  This  rule  yields 

information  that  is  not  common knowledge in computer  architecture.  Although a 

deeper analysis of the processor behaviour is needed to assess the frequency and the 

importance of the phenomenon, it clearly is a case which indicates that there is merit 

in investigating architectural simulation data using data mining techniques. 

In order to understand this particular case better, let us review the process of load 

speculation in  an ILP processor. Load speculation is the process of executing load 

instructions out of program order, before preceding store instructions complete. 
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Consider the following code:

I1:         SW  $8, a1

I2:         LW  $4, a2

If I2 is executed before I1 and a1 != a2, this will  lead to improved performance 

because  the  instructions  waiting  for  the  value  of  register  4  can  proceed  sooner. 

If a1 = a2, the load instruction will obtain the stale value from the memory and a load 

mis-speculation will result. 

We reason that  the  observed  case  arises  because  of  the  interaction  of  load  mis-

speculation with branch prediction and validation. 

Consider the sequence:

I1:         SW  $8, a1

I2:         LW  $4, a2

I3:         Beq $4, $8, L1

and  assume  that  I3  has  been  correctly  predicted.  However,  if  the  load  has  been 

speculatively executed and the speculation is not successful the load will obtain the 

wrong  value.  The  branch  instruction,  although  correctly  predicted,  may  be 

considered an incorrect prediction because the processor upon verifying the values of 

$4 and $8 does not find them to be equal. Note that the processor would correctly 

conclude that the branch was correctly predicted had the memory operations been 

executed  in  program  order.  As  a  result,  we  observe  4  ->  1,4,  i.e.,  a  load 

misspeculation  leads  to  a  branch  misprediction  as  well  as  an  additional  load 

misspeculation.

Rules 1-> 1, 23;   23 -> 1, 23 may represent coincidental occurrences, but they also 

might represent scenarios where because of a branch mis-prediction the processor's 

touching of additional cache misses. 
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Clearly, such a case is possible when the program incorrectly takes a path that should 

not have been taken; since the data references in this unvisited region will not likely 

to be  in the cache. 

Rules 1-> 1,6; 6-> 1,6; 1 -> 1, 200 and 200 -> 1, 200 appear to be coincidences, 

albeit being  frequent. Similarly,  1 -> 1, 24,  and 24 -> 1,24 do not appear to be 

significant from an  architectural perspective. 

For the next step we decided to consider only specific types of events and search for 

the relationships between these event types.

4.3.2   Experiment 2

Input Data Structure: The dataset used in this step consists only four types of events 

about  the  function  calls  and  branches  in  program  executions  in  architecture 

simulation. Here, the dataset provided by the architecture was in binary format to 

reduce the size of the input file. We used a simple C code to transform this binary 

data into a text input and also for the uniformness of input files processed in these 

experimental steps to indicate the event types with numbers instead of characters as 

given in the binary file. The structure of the binary data and this code piece to pre-

process these data can be given as;

// ----------------------------------------------------------------------
//  CFEVENT                                                            
//  Data        : cfCode    : Control flow's code                         
//                               'C' = Function call                      
//                               'R' = Function return                
//                               'F' = Forward branch                    
//                               'B' = Backward branch                
//                 : cycles    : Instruction cycles                    
//                 : pc        : Program counter                        
//                 : bt        : Branch target                        
//                 : ilpCount    : Number of committed stages            
//                 : ilpTotal    : Number of total issues                
//                                                                         
//  The data structure uses to store single control flow's event        
//  -------------------------------------------------------------------------
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typedef struct {
  char cfCode;
  unsigned int cycles;
  unsigned int pc;
  unsigned int bt;
  short ilpCount;
  short ilpTotal;
} CFEVENT;

CFEVENT curCFEvent;
double curILP;
while(srcFile.read((char*)&curCFEvent, sizeof(CFEVENT))) {
          // Avoid division by zero
          if(curCFEvent.ilpCount == 0) curILP = 0.0;
          else curILP = curCFEvent.ilpTotal / ((double)curCFEvent.ilpCount);

          // Write to destination file
          destFile << curCFEvent.cycles << " ";

          if(curCFEvent.cfCode == 'C') destFile << "4 ";            // Function call
          else if(curCFEvent.cfCode == 'R') destFile << "-4 ";     // Function return
          else if(curCFEvent.cfCode == 'F') destFile << "2 ";      // Forward branch
          else if(curCFEvent.cfCode == 'B') destFile << "-2 ";   // Backward branch
          else destFile << "999999 ";

          destFile << curCFEvent.pc << " "; // program counter
          destFile << curCFEvent.bt << " "; // branch target
          destFile << curCFEvent.ilpCount << " ";
          destFile << curCFEvent.ilpTotal << " ";
          destFile << curILP << "\n";    }

After  this  pre-processing  operation  the  input  file  for  EMT  was  obtained.  The 

structure of the input file can be given as in Figure 11:
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Here, mainly we have four types of events and these events are :

4: Function Call

    -4 : Function Return

      2 : Forward Branch

     -2: Backward Branch

We  marked  the  events  in  the  other  types  with  the  number  “999999”  and  while 

processing the input file we did not took the episodes and rules including the event 

“999999” into account. We only considered these four types of events.

Results: We processed the input data with our three approaches and we did this for 

both parallel and serial episodes. While we examined the outputs, we noticed that we 

should consider the changes in the IPC values during the execution of the programs 

to make predictions about the performance of running the program in an architecture. 

So, for the next step we decided to prepare a new dataset containing the IPC values.
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Figure 11: Input file for experiment-2



As an example, the results obtained for the frequencies of the serial episodes and the 

results  for  the  confidence  of  the  generated  rules  with  the  non-overlapping 

occurrences based algorithm can be given as in Figure 12 and Figure 13;
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Figure 13: Outputs for confidence of the rules in experiment-2

Figure 12: Outputs for frequency of the episodes in experiment-2



4.3.3   Experiment 3

Input Data Structure: In this step, we not only took the events occurred during the 

execution of a program in an architecture,but also the mean of the IPC values and 

their  changes.  As in the previous step,  again we were interested in four types  of 

events about the branches and functions. The dataset used in this step can be given as 

in Figure 14:

Each line in this input file is a single machine cycle as in the previous experimental 

steps. Each column indicates an event with its type. Number of events in a single 

cycle is not fixed but it should have at least two events per cycle which are branch 

and IPC. This means that the last token in each  line shows an IPC value and the 

previous tokens are the events occurred during this cycle.

Example 4.3.3.1:          14 0.777

 14 12 0.5

 14 14 12 8
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Figure 14: Input file for experiment-3



• The first line means first cycle contains a function return and IPC of value 

0.777

• The second line means second cycle  contains a function return,  a forward 

branch and IPC of value 0.5

• The  third  line  means  third  cycle  contains  two  function  return,  a  forward 

branch and IPC of value 8.

As mentioned before, we have four types of events and these events are :

11: Function Call

      12: Function Return

      13: Forward Branch

      14: Backward Branch

Here, we did some pre-processing before running EMT with this input file. There are 

events  in  each line with IPC values and we generated a new input  by starting a 

counter from 1 to indicate the cycles and print the events in the same line to the same 

cycle.  Also,  after  each  cycle  we checked the  IPC values.  We classified  the  IPC 

values in 8 classes from 0 to 8. Then, in each cycle if the IPC's class had changed and 

had decreased,  then we added a  new event marked as “-101” which meant  “IPC 

decreases”. If the IPC's class had changed and had increased, then we added a new 

event marked as “-101” which meant “IPC increases”. In this way, we generated a 

new  input  file  containing  6  types  of  events  about  branches,  functions  and  IPC 

changes.

Results: We used 6 different dataset in this step and applied our three episode mining 

techniques with various different parameters. We looked for relationships between 

IPC values and the four event types used in this step. As a result, we realised that 

some blocks in program executions occurred repeatedly in our input datasets  and 

instead of reviewing the whole sequence, it would be better to consider these unique 

sequences  indicating  these  program blocks.  Then,  it  would  be  easier  to  see  the 

relationships between the rules generated about these event types and IPC values. 
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Therefore, it  would be possible to make predictions about the performance of the 

programs in an architecture.

As an example the output for the frequencies of episodes and the output for the rules 

generated by EMT with the frequent episodes with the WINEPI approach for serial 

episodes can be given as in Figure 15 and Figure 16.
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Figure 15: Outputs for frequency of the episodes in experiment-3



4.3.4   Experiment 4

Input Data Structure: As mentioned in the results of the previous step, we used a 

different approach this time. We decided to consider the unique event sequences in 

program executions and given ID value to each sequence that represents a block. We 

had two different datasets in this step and one of them contains 47 unique sequences 

and the other contained 316 unique sequences. The contents of the input files can be 

given as in Figure 17.
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Figure 16: Outputs for confidence of the rules in experiment-3



The file format is as follows:

1. Each line represents a unique sequence for the program.

2. Each line contains a string.

3. Each character in a string represents an event.

    3.1 Character "1" = backward branch

    3.2 Character "2" = forward branch

    3.3 Character "3" = function return

    3.4 Character "4" = function call

    3.5 Character "5" = load

    3.6 Character "6" = store
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Figure 17: Input file for experiment-4



Example 4.3.4.1 :    556622

                                 21

In this example line 1 represents two load events followed by two store events then 

two forward branch events. Line 2 represents a forward branch event follow by a 

backward branch event.

Here, we did some pre-processing in these input datasets. We took each line as a 

sequence of events and with a counter starting from 1 and increasing incrementally 

we marked each event in a cycle. Finally, we generated 47 inputs for the first dataset 

and 316 input files for the second dataset. Then, we applied our 3 episode mining 

methods for parallel and serial episodes with various different parameters.

Results: We searched for the relationships between the events in these datasets in this 

step.  We processed  each  block  indicated  with  an  id  and an  input  sequence,  and 

generated rules for each of these blocks. Then, we saw that to make predictions and 

comments about performance of the programs we should combine these generated 

rules representing these sequences with IPC changes. But here, the changes in IPC 

would be calculated between the values in two different  architectures  in the next 

experimental step.

As an example, the results obtained for one of the input sequences of the first dataset 

for the frequencies of the episodes and the rules generated with the frequent episodes 

according to the WINEPI approach for serial episodes can be given as in Figure 18 

and Figure 19:
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Figure 19: Outputs for confidence of the rules in experiment-4

Figure 18: Outputs for frequency of the episodes in experiment-4



Also, in this step we analysed the results of this input file given in the example in the 

visual component of EMT and for the frequencies of the episodes, we got a result as 

shown in Figure 20:

And for the rules and their confidences we got the results from the same input file as 

shown in Figure 21:
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Figure 20: The first 10 episodes with length 3 according to their frequencies in the 
experiment-4



4.3.5   Experiment 5

Input Data Structure:  In this  step, we had a different approach and we used four 

different  datasets  for  two  different  architectures.  These  input  files  contains  the 

execution sequence of the blocks specified in the previous step and indicated by the 

unique event sequences, and the IPC values during their executions.

The format of the input files can be given as:

Each  line  contains  two  columns.  The  first  column  is  block  number  and  second 

column is IPC.
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Figure 21: The first 5 rules with length 3 according to their confidences in the 
experiment-4



Example 4.3.5.1 : 1    0.67

3    1.5

3    1.5

Line 1 means block 1 executed at 0.67 IPC, lines 2 and 3 mean block 3 executed at 

1.5 IPC.

Results:In  this  situation,  we  had  the  rules  generated  from the  unique  sequences 

meaning the blocks from the previous step and also the IPC values of these blocks. 

Here, we generated a relation table for these rules and blocks as in the following:

        Rule   BlockID     Confidence
----------------------------------------------
           66.665565         12     1.0000
            66.66555         12     1.0000
            6.665565         12     1.0000
             6.66555         12     1.0000
         665.665565         208     1.0000
           665.66556        208     1.0000
           665.66555        208     1.0000
           6.6565565        208     1.0000
            6.656556        208     1.0000
            6.656555        208     1.0000
        66556.665565        208     1.0000
         6655.665565        208     1.0000
          6655.66556        208     1.0000
....

Here,  the  first  column  indicates  the  rule  in  a  slightly  different  format.  Here, 

“66.665565” shows the rule “66 -> 665565” and the second column indicates for 

which block this rule is generated.  And the last column gives a confidence value 

which is the ration of in how many blocks the rule is generated. This confidence 

value can be calculated as  “1 / count of the blocks where the rule is generated”.

After that we generated another relation table containing the changes in IPC values in 

different architectures. This table can be given as:
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             Rule      Delta IPC   Confidence
----------------------------------------------
               6.646          0     1.0000
              64.646          0     1.0000
              46.464          0     1.0000
               4.464          0     1.0000
                4.44          0     1.0000
                3.32          0     1.0000
                5.51          0     0.9959
                5.54          0     0.9785
                4.43          0     0.9785
                2.21          0     0.9766
          5555.55555          0     0.9638
           555.55555          0     0.9638
            55.55555          0     0.9638
             5.55555          0     0.9638
                2.22          0     0.9362
               5.535          0     0.6667
              53.535          0     0.6667
                5.53          0     0.6363
                5.52          0     0.6102
                2.25          0     0.5679
              55.552          0     0.5475
               5.552          0     0.5475
                6.61          0     0.5259
              55.553          0     0.5217
               5.553          0     0.5217
            666.6666       -178     0.5000
            666.6666       -169     0.5000
             66.6666       -178     0.5000
             66.6666       -169     0.5000
...

Here, according to these results for instance there is 0 change in IPC values for all 

blocks where the rule “6->646”  is generated in two different architectures. And there 

is -1.78 change in IPC values in 0.5 of the blocks and -1.69 change in IPC values in 
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0.5  of  the  blocks  where  the  rule  “666->6666”   is  generated  in  two  different 

architectures.

We tried to see which rules can represent which of these blocks in this analysis, but 

as seen in the example the changes in IPC values for a block and the rule to represent 

this block is not constant for all. Therefore, we think that by using the IPC values for 

these program blocks obtained in two different architecture, and the rules generated 

for  these  blocks,  one  more  episode  mining  step  can  say  something  about  their 

relationships to make comments about the performance of a program in a different 

architecture before the execution.

4.3.6   Experiment 6

Input Data Structure: In the previous experiment, we generated the rules from the 

unique  sequences  that  we  can  call  program blocks  and also  we had  IPC values 

obtained during the execution of a program in an architecture. In this step, we used 

these  IPC  values  for  two  different  architectures  and  tried  to  find  a  relationship 

between the change in IPC values and the rules generated from the program blocks.

Here, first of all by using the pre-processing component of EMT, we generated an 

input dataset for the episode mining component. We had the sequence of program 

blocks such as :

1
2
3
3
4
5
2
3
4
6
6
6
6
...
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Also, we had the IPC values corresponding to the execution of these blocks with the 

given id numbers in two different architectures such as;

0.6206
0.7174
1.3571
2.3750
1.1429
1.2778
1.7368
2.3750
1.1429
1.0000
1.7368
2.3750
1.1429
1.0000
1.0000
0.2482
1.0000
...

Then, by using the pre-processing component we generated an input file for episode 

mining containing the rules for the given block in the execution sequence and the 

IPC change value (delta IPC) for two architectures. For each of the executed blocks 

we repeated this data and encapsulated the rules of block and delta IPC value in a 

single time value.

Example 4.3.6.1:  For the block no:1, in the input sequence there are lines such as;

1 6661
1 5551
1 66661
1 666662
1 55551
1 555552
10
...

These lines mean that;

1 6661 : Time (t) = 1 and rule 6->66 ; the number:1 at the end of 6661 gives the 

separation point for the left part of the rule. 
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1 666662 : Time (t) = 1 and rule 66->666 ; the number:2 at the end of 666662 

gives the separation point for the left part of the rule.

10: At the end of each time value, this value indicates the change in IPC value for 

two  architectures.  If  there  is  an  extra  0  number,  this  means  that  the  value  is  a 

negative change in IPC. Here, 10 means -1 for delta IPC value.

Also, the value here is not the exact IPC change value. EMT takes a parameter for 

delta IPC level and this value should be multiplied with the IPC level to get the 

correct value in IPC change. This conversion is done in order to classify the changes 

in IPC values. For instance if the value in dataset is “-2” and the IPC level is “0.25”, 

then this means that change in IPC value is between -0.50 and -0.75.

Results:  After  generating  the  input  file  for  the  episode  mining  operation  on rule 

strings and IPC changes, we assigned the parameter window_width=1 and generate 

episodes in the format “<rule_string, delta_IPC_value>” and also rules in the format 

“<rule_string> -> <rule_string, delta_IPC_value>”. 

We used a coefficient as 0.9 to classify the changes in IPC values and got results for 

episodes and rules. For episodes containing a rule and a delta IPC value an example 

output can be given as;

Example 4.3.6.2:

-1 5565 -> 556565 freq_count  147  frequency  0.002202445163610212

This line means that the rule “5, 5, 6, 5 -> 5, 5, 6, 5, 6, 5” and delta IPC value  :-1 x 

0.9=-0.9 has a frequency of  0.002.Since the number of rules are not small and the 

frequency of them being seen with a certain delta IPC level value is too low, we 

decided to consider the rules consisting of a rule and a delta IPC level value.
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The results for episodes and frequency values can be given as in Figure 22:

The lines for rules generated give the relationships between the rules and delta IPC 

values and the confidence of these relationships. An example can be given as;

Example 4.3.6.3:

(5 -> 55 ) -> -7 ,(5 -> 55 ) confidence: 0.7499999999999999 

The line in this example means that the rule “5 -> 5, 5” causes -7 x 0.9 = 6.3 change 

in IPC value. And the confidence of this relationship is %74 according to the episode 

mining operations on datasets.
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As a result, the output in Figure 23 shows that we have found a relationship between 

the rules generated from the unique sequences obtained from program executions and 

IPC changes in two different architectures.

Analysis: In these results, it can be seen that there are different levels of relationships 

between the IPC changes and the generated rules. For the input datasets used in this 

experiment, the relationships between the events “load” and “store” are not modelled 

and this is the main reason of this situation. We can say that for the generated results, 

an increase in IPC level can be expected for the rules  starting with the event “store”. 

On the other hand, if a rule starts with the event “load”, there may be an increase in 

IPC level or not. As an alternative approach, instead of classifying the IPC changes 

values into levels such as ..,-2,-1,0,1,2..., three categories such as “IPC increases”, 

“IPC decreases” and “IPC does not change” can be used to analyse the relationships 

between the generated rules and IPC values.
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CHAPTER 5

EPISODE MINING TOOL (EMT)

5.1     General Properties

EMT is designed to investigate the relationships between events in a given event 

sequence. Here three types of techniques in episode mining are implemented. These 

are  window  based  WINEPI  approach  for  parallel  and  serial  episodes,  minimal 

occurrence  based  approach  for  parallel  and  serial  episodes  and  non-overlapping 

occurrence  based  approach  for  parallel  and  serial  episodes.  This  tool  has  some 

specific features about mining architectural events but it can be used to for episode 

mining  operations  in  any dataset  containing  time of occurrence values  and event 

types.

Main features of EMT can be given as :

• Before processing the input data, the event types that will not be considered 

during the mining operations can be specified

• The  pre-processing  operations  can  be  done  on  input  dataset.  Here,  it  is 

important that the data should be in appropriate format to perform the related 

pre-processing operations.

• While performing episode mining operations on architecture simulation, the 

dataset  may  be  viewed  as  a  collection  of  unique  sequences  representing 

program blocks. Here, each sequence can be given as a single line and new 

input  files  containing  event  sequences  for  these  program  blocks  can  be 

produced for each unique sequence.
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• Episode  mining  with  parameters  as  window  width,  minimum  frequency 

threshold and minimum confidence threshold can be operated for our three 

types of episode mining techniques.

• The  outputs  generated  after  episode  mining  can  be  visually  analysed 

according to the episodes' frequency values and rules' confidence values with 

respect to the length parameter.

• Multiple output files can be analysed in a single step and they can be grouped 

according to the common rules or episodes.

5.2     Components of EMT

There are three main components in EMF as ;

• Data  pre-processor:  This  component  does  the  pre-processing  operation  on 

dataset and generates a new input file with a postfix “_processed”. Here it 

takes the types of events to be ignored during the episode mining process and 

if  there are  IPC values in  the input  sequence it  can produce an input  file 

containing the changes in IPC values. Also it can process unique sequences in 

a file where each sequence is represented with a line.

• Episode  miner:  This  is  the  core  of  the  components  in  EMT.  After  pre-

processing the input dataset if necessary, all of the episode mining operations 

with our three techniques are done with using this component. It takes the 

necessary parameters  in addition to the input  file  according to the chosen 

algorithms.  Then,  it  produces  an  output  file  containing  the  episodes' 

frequencies and generated rules with confidence values.

• Output analyser: This component is the visual part of EMT. Here, after the 

results  are  generated  in  the  previous  component,  this  output  file  can  be 

analysed with different types of graphs with different selections with the help 

of output analyser. Also, multiple output files can be analysed and grouped 

according to their episodes' frequencies or rules' confidences in a single step.
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During  the  episode  mining  operations,  if  MINEPI  approach  is  chosen,  EMT 

generates the minimal occurrences of the episodes in separate files with the extension 

“.minepi” and the user can look at the minimal occurrences of episodes in these files 

named with the episodes.

5.3    Usage

EMT has two usage modes. One of them is the command line mode and the other is 

the  GUI  mode.  For  command  line  mode,  pre-processor  and  episode  miner 

components can be used which are two separate executable files. Since the output 

analyser contains GUI components and gives the results as types of charts it can only 

be used from the GUI mode.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

Data mining has been gaining more importance and its application areas are getting 

wide with the increase in volumes of data. We can see the usage of data mining 

techniques  in  several  types  of  areas  such as  retail,  financial,  communication  and 

marketing organizations and science and engineering. One of the branches in data 

mining is mining sequence data where data can be viewed as a sequence of events 

each  having  a  time  of  occurrence.  Sequence  and episode  mining  techniques  and 

algorithms have been applied various kinds of data such as occurrences of recurrent 

illnesses and alarms in a telecommunication network. 

The motivation in this thesis work is to apply episode mining algorithms to a new 

kind of data, architecture simulation data, and generating facilities and preparing an 

environment  to  make  predictions  about  the  performance  of  programs  in  an 

architecture. Here the events in datasets are instance based events and they do not 

have duration values. For this thesis work, analysing event logs of an architecture by 

using  episode  mining  techniques  and  using  the  results  of  this  analysis  to  make 

predictions about the performance of a program in this architecture before executing 

the codes can be considered as a new approach for computer architecture and data 

mining.

An  episode  mining  tool  (EMT)  has  been  developed  to  analyse  the  benchmark 

datasets obtained from running programs in an architecture. Three approaches have 

been  implemented  as  window based  occurrences,  minimal  occurrences  and  non-

overlapping occurrences. Implementing these techniques in such a data mining tool 
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is a non-existing application and this tool can be used to analyse any type of dataset 

containing instance based event sequences. Almost all of the facilities of this episode 

mining tool can be used with different types of datasets consisting events in a time 

sequence.

In  this  thesis,  as  the  first  analysis  task,  we  generated  some  patterns  containing 

architecture  event  types.  Here,  we  have  found  patterns  that  are  accurate  for 

architecture  simulation.  Therefore,  we  have  accomplished  our  goal  for  finding 

patterns supporting the expected behaviours and some general rules for the computer 

architecture by using data mining techniques. 

For the main purpose of thesis work, we analysed the program executions and we 

saw that the executions can be given as a set of unique sequences. Therefore, we 

analysed these unique sequences, program blocks in other words, and generated rules 

containing  architecture  event  types.  Also,  we took the  IPC changes  between  the 

execution  of  blocks  in  different  architectures  and  generated  a  list  containing 

relationships between IPC change values and the rules.

As a result, after analysing the program blocks and generate rules related with these 

blocks, the relationships obtained from EMT will help to make predictions about the 

performance of a program in an architecture before running.

The analysis  of this  thesis work and the data  mining tool developed here can be 

considered as a base step for analysing computer architecture datasets by using data 

mining  techniques  and  this  approach  can  be  improved  by  using  other  different 

aspects  of data  mining as a future work.  For example,  instance based events  are 

considered here and there is not a duration for the occurrences of the events. To 

extend this approach, continuous events having duration values may be evaluated by 

using  temporal  data  mining  techniques.  Therefore,  more  interesting  and  hidden 

relations  between  sequences  and  subsequences  of  events  might  be  discovered. 
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Another point here may be about visualization and the EMT may be developed by 

adding  visual  extensions.  Especially,  the  output  analyser  component  can  be 

considered as a starting point and more visual features such as time series charts 

containing frequent episodes or confident rules generated from program blocks can 

be added to facilitate the analysis of results. Finally, by using the analysis methods 

and results in this thesis work and the features of EMT, a stable method may be 

developed to make predictions about the performance of programs in an architecture. 

This method may contain some statistical and mathematical techniques and generate 

some numerical results. After that, the confidence of the developed method and its 

results may be checked by making some experiments on different architectures. 
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APPENDIX A

USAGE OF EMT IN GUI MODE

As shown in Figure 24, in GUI mode, the user firstly runs the executable EMT file 

and chooses the “Data Pre-processing” operation from the menu.

After that the user should select the “Open” item to be processed from the menu of 

pre-processing component as shown in Figure 25.
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Figure 24: Pre-processing operation in EMT



Then a browser is opened and the user should select the file from the browser as in 

the Figure 26.

If any type of episode is desired to be ignored and deleted from the dataset, they can 

be given as in Figure 27;
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Figure 25: Opening input file for pre-processing

Figure 26: Selecting file from the browser for pre-processing



Then, according to the structure of the input file, the type of pre-processing operation 

is selected as shown in Figure 28. If the dataset contains IPC values, a new input is 

generated according to the changes in IPC values. If the input dataset contains unique 

sequences, new input files can be generated for each of the line in dataset. 
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Figure 28: Selecting the pre-processing method

Figure 27: Ignore events in the given dataset



After selecting the method, new input file is generated and a message is given to user 

as shown in Figure 29.

For investigating the relationships between the rules of unique sequences and IPC 

changes, firstly we should provide an input file in an appropriate form. To do this, 

the user selects  the “Process Unique Sequence Lists  with IPC changes” from the 

menu of pre-processing component of EMT as in Figure 30.
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Figure 29: Message given to the user after pre-processing

Figure 30: Selecting processing unique sequences with IPC changes



Then, a message is given to the user to select the input files containing the block 

execution sequence and IPC values for two architectures as shown in Figure 31.

After that, the user selects the two datasets from the browser in the next screen as in 

Figure 32.

The user specifies the directory which includes the rules for the unique sequences 

from the next coming browser as shown in Figure 33.
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Figure 31: Message given to the user to select the input datasets

Figure 32: Selecting the datasets for two architectures



After selecting the directory, the user gives a name for the output file containing an 

event sequence of rule strings and changes in IPC values as in Figure 34.

The user enters a level for expressing the changes in IPC values as in Figure 35.
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Figure 33: Selecting the directory including the rules for unique sequences

Figure 34: Getting the name of the output event sequence



After pre-processing is completed, an information message is given to the user as 

shown in Figure 36.

Another operation that the users can do with the pre-processing component is to filter 

the results obtained from episode mining operation as shown in Figure 37. Here, the 

user specifies the input file that contains episodes and rules and the pre-processor 

filters the episodes and rules consisting of only a rule and a delta-IPC level value.
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Figure 35: Getting an IPC level to express the changes

Figure 36: Message given to the user after pre-processing of two datasets is 
completed



 Firstly the user gives the input file containing rules and episodes as in Figure 38;
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Figure 37: Selecting filter operation for pre-processing

 
Figure 38: Specifying input file for filtering



To  use  this  component  the  user  selects  the  “Episode  Mining”  item  from  the 

“Operation” in main menu of EMT as shown in Figure 39.

Then the user selects which technique to be applied for what type of episodes from 

the algorithm menu of the episode miner component as in Figure 40.

Then the user gives the window width as shown in Figure 41, minimum frequency 

threshold  as  shown  in  Figure  42,  minimum  confidence  threshold,  as  shown  in 
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Figure 39: Episode mining operation in EMT

Figure 40: Algorithm selection in episode miner



Figure 43, maximum episode length as shown in Figure 44 and  input types of events 

as shown in Figure 45 to be ignored parameters  from the dialog boxes opened in 

EMT.
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Figure 41: Giving window width parameter in episode miner

Figure 42: Giving minimum frequency parameter in episode miner
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Figure 43: Giving minimum confidence parameter in episode miner

Figure 44: Giving maximum episode length parameter in episode miner



After  that  the  user  selects  the  input  file  containing  the  dataset  to  be  processed 

according to the chosen method as shown in Figure 46.
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Figure 46: Selecting file from the browser for episode mining

Figure 45: Giving ignored event types parameter in episode miner



Finally the user gives the name of the output file where the results to be written as 

shown  in  Figure  47  and  a  message  is  given  to  the  user  after  the  execution  is 

completed as in Figure 48.
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Figure 47: Specifying output file for episode mining

Figure 48: Message given to the user after episode mining



By using this component of EMT, the user can analyse the output files obtained from 

the previous components and see the results of episode mining operations in different 

types of charts. The user should firstly choose the “Output Analysing” item from the 

“Operation” menu of EMT as shown in Figure 49.

Then to analyse  a single output file, the user chooses “Open single file” item from 

the “File” menu of the output analyser as shown in Figure 50.
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Figure 49: Output analysing operation in EMT

Figure 50: Open single file in output analyser



After that the user selects the input file to be analysed as shown in Figure 51.

For the next step,  the user decides whether  he wants to analyse according to the 

frequencies  of the episodes or the confidence values of the rules generated  as in 

Figure 52. 
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Figure 52: Analyse type selection for a single output

Figure 51: Selecting file from the browser for output analysing



Then, the user gives the length of the rules or episodes as shown in Figure 53.

And the user selects the type of chart for the results of the analysis shown in Figure 

54.

Then how many rules and which rules to be shown is selected by the user as shown 

in Figure 55.
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Figure 54: Chart type selection for output analysing

Figure 53: Rule length selection for output analysing



Finally, the result of analysis is given as a chart as shown in Figure 56.
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Figure 56: Result for single output analysis

Figure 55: Rule count and type selection for output analysing



If the user wants to analyse multiple output files in a single step, firstly he chooses 

the “Analyse multiple files” option and selects the directory containing the output 

files from the browser as shown in Figure 57.

 

Then the user selects  the way to analyse as in Figure 58 and the analyse type as 

“according to maximum/minimum confidence/frequency” as shown in Figure 59.
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Figure 57: Selecting directory for multiple output file analysis

Figure 58: Analyse episodes/rules



             

After  that  EMT gets  the  length  of  episodes/rules  and asks  whether  to  group the 

output files or not as shown in Figure 60.
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Figure 59: Selecting analyse type

Figure 60: Grouping the output files 



Then, the user selects the chart type and the result chart is given as shown in Figure 

61.
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Figure 61: Resulting chart after grouping the output files 



APPENDIX B

USAGE OF EMT IN COMMAND LINE MODE

In command line the user gives the necessary parameters to run pre-processor and the 

results are printed to the given output file as shown in Figure 62:

Here, the parameters should be given as:

       DataPreProcessor.jar <input file> <outputFile> <option>

The option can be “--IPC” to process the input containing IPC values , “--unique-

sequence”  to  process  the input  file  containing  unique sequences  in  its  each  line, 

“--AnalyseRulesWithIPC” to generate rules obtained from unique sequences and IPC 

changes in given files and “--filterAnalysis” to filter the rules containing only a rule 

and an IPC level value.
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Figure 62: Runing pre-processor from command line



For  episode  mining,  the  user  gives  the  parameters  to  episode  miner  as  in  the 

following way:

 EpisodeMiner.jar <input file> <window width> <min frequency> <max episode 

length> <min confidence> <algorithm string> <output file> <window width-2>

Here, the parameter “window width-2” is used only for MINEPI algorithms and the 

parameter algorithm string is an option string containing 6 characters where each of 

these characters represent an implemented algorithm and must be either 0 or 1. The 

order of the algorithms can be given as:

• WINEPI  for parallel episodes

• WINEPI for serial episodes

• Non-overlapping counts for parallel episodes

• Non-overlapping counts for serial episodes

• MINEPI for parallel episodes

• MINEPI for serial episodes

For instance, a string such as “000001” means that apply only “MINEPI for serial 

episodes” as shown in Figure 63.
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Figure 63: Runing episode miner from command line


	ABSTRACT
	ÖZ
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	INTRODUCTION
	AN OVERVIEW ABOUT DATA MINING
	2.1     About Data Mining
	2.1.1  Data, Information and Knowledge
	2.1.2  Definition of Data Mining

	2.2     Association Rule Mining
	2.3     FIM (Frequent Itemset Mining)
	2.4     Apriori Algorithm
	BACKGROUND
	3.1     Sequential Pattern Mining		
	3.2     Frequent Episode Mining 
	3.2.1    Event Sequences  and Episodes
	3.2.1.1 Event Sequences
	3.2.1.2  Episodes

	3.2.2  Algorithms for WINEPI Approach 
	3.2.3 A Fast Algorithm For Finding Frequent Episodes In Event Streams (Non-overlapping Approach)
	3.2.3.1  Algorithm For Serial Episodes
	3.2.3.2  Algorithm For Parallel Episodes

	3.2.4    Minimal Occurrences  Approach (MINEPI)
	3.2.4.1   Finding Minimal Occurrences of Episodes
	3.2.4.2   Finding Confidences of Rules


	3.3     Microarchitecture and Branch Prediction
	3.3.1  Microarchitecture
	3.3.2  Basic Microcomputer Design
	3.3.3   Clock  and Instruction Execution Cycle
	3.3.4   Branch Prediction
	3.3.5   IPC , ILP and Performance
	3.3.5.1  How Programs Run - Load and Execute Process
	3.3.5.2   IPC (Instruction Per Cycle)
	3.3.5.3   ILP (Instruction-level Parallelism)


	            EPISODE MINING ON ARCHITECTURE SIMULATION DATA		
	4.1     General Overview
	4.2     Implementation Details of The Algorithms
	4.3     Experiments and Results
	4.3.1   Experiment 1
	4.3.2   Experiment 2
	4.3.3   Experiment 3
	4.3.4   Experiment 4
	4.3.5   Experiment 5
	4.3.6   Experiment 6

	EPISODE MINING TOOL (EMT)
	5.1     General Properties
	5.2     Components of EMT
	5.3    Usage
	CONCLUSION AND FUTURE WORK
	REFERENCES
	USAGE OF EMT IN GUI MODE
	USAGE OF EMT IN COMMAND LINE MODE

