
EVALUATION AND SELECTION OF CASE TOOLS:

A METHODOLOGY AND A CASE STUDY

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

KORAY OKŞAR

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF INFORMATION SYSTEMS

FEBRUARY 2010

Approval of the Graduate School of Informatics

Prof. Dr. Nazife Baykal

Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of Master

of Science.

Assist. Prof. Dr. Tuğba Taşkaya Temizel

Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully adequate,

in scope and quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Altan Koçyiğit

Supervisor

Examining Committee Members

Prof. Dr. Semih Bilgen (METU, EEE) _____________________

Assist. Prof. Dr. Altan Koçyiğit (METU, II) _____________________

Assoc. Prof. Dr. Onur Demirörs (METU, II) _____________________

Assist. Prof. Dr. Pekin Erhan Eren (METU, II) _____________________

Assist. Prof. Dr.Sevgi Özkan (METU, II) _____________________

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

Name, Last name : Koray OKŞAR

Signature : ________________

iv

ABSTRACT

EVALUATION AND SELECTION OF CASE TOOLS:

A METHODOLOGY AND A CASE STUDY

Okşar, Koray

M. S., Department of Information Systems

Supervisor: Assist. Prof. Dr. Altan Koçyiğit

February 2010, 224 pages

Today’s Computer Aided Software Engineering (CASE) technology covers nearly all

activities in software development ranging from requirement analysis to deployment.

Organizations are evaluating CASE tool solutions to automate or ease their processes.

While reducing human errors, these tools also increase control, visibility and auditability

of the processes. However, to achieve these benefits, the right tool or tools should be

selected for usage in the intended processes. This is not an easy task when the vast

number of tools in the market is considered. Failure to select the right tool may impede

project’s progress besides causing economic loss. In this thesis study, a methodology is

proposed for CASE tool evaluation and selection among various candidates and the

points that separate this work from similar studies in the literature are explained.

Moreover, the methodology is performed on a case study.

Keywords: CASE tool evaluation, CASE tool selection

v

ÖZ

CASE ARAÇLARININ DEĞERLENDİRİLMESİ VE SEÇİMİ:

BİR METODOLOJİ VE BİR ÖRNEK İNCELEMESİ

Okşar, Koray

Yüksek Lisans, Bilişim Sistemleri Bölümü

Tez yöneticisi: Assist. Prof. Dr. Altan Koçyiğit

Şubat 2010, 224 sayfa

Günümüz Bilgisayar Destekli Yazılım Mühendisliği (CASE) teknolojisi yazılım

geliştirmede gereksinim analizinden dağıtıma kadar neredeyse her aktiviteyi

kapsamaktadır. Organizasyonlar süreçlerini otomatikleştirmek ya da kolaylaştırmak

amacıyla CASE aracı çözümlerini değerlendirmektedir. Bu araçlar insan kaynaklı

hataları azaltırken süreçlerin kontrolünü, görünürlüğünü ve denetlenebilirliğini

arttırmaktadır. Ne varki bu yararlara erişmek için, düşünülen süreçlerde kullanılmak

üzere doğru araç ya da araçlar seçilmelidir. Piyasadaki araç sayısının fazlalığı göz önüne

alınırsa bu kolay bir iş değildir. Doğru aracı şeçmede başarısızlık projenin gidişatına

sekte vurmanın yanı sıra ekonomik kayba da sebep olur. Bu tez çalışmasında, birçok

aday arasından CASE aracı değerlendirmesi ve seçimi için bir yöntemler dizisi sunulmuş

ve bu çalışmayı literatürdeki benzer çalışmalardan ayıran noktalar açıklanmıştır. Ayrıca,

yöntemler dizisi bir örnek olay çalışması üzerinde uygulanmıştır.

Anahtar kelimeler: CASE aracı değerlendirmesi, CASE aracı seçimi

vi

ACKNOWLEDGMENTS

It is my privilege to express my sincere gratitude to my supervisor Assistant Professor

Altan Koçyiğit for his guidance, stimulating ideas, criticism, encouragement and insight

throughout the completion of this thesis.

I must thank my managers Suat Gümüşlüol, Özlem Değer, Seyhan Halisipek at OYAK

Headquarters because of their generosity at giving me permission to leave for thesis

meetings and their support for my case study. I should also thank my colleague Alper

Aslan for his valuable comments and to my other colleagues because of their kind

tolerance to my absences.

I am also grateful to my beloved one Emel Sarıkaya whose endless support encouraged

me to proceed, to my sister Dilek and to everyone who have aided in one way or

another.

vii

TABLE OF CONTENTS

ABSTRACT .. IV

ÖZ .. V

ACKNOWLEDGMENTS ... VI

TABLE OF CONTENTS ... VII

LIST OF TABLES ... X

LIST OF FIGURES .. XIV

LIST OF ABBREVIATIONS ... XV

CHAPTER

1. INTRODUCTION .. 1

2. LITERATURE SURVEY ... 5

2.1 SOFTWARE EVALUATION AND SELECTION IN GENERAL ... 5
2.2 CASE SOFTWARE ... 8
2.3 CASE SOFTWARE EVALUATION AND SELECTION .. 11
2.4 CONTINUOUS INTEGRATION .. 15

3. PROPOSED METHODOLOGY FOR CASE SOFTWARE EVALUATION AND
SELECTION ... 20

3.1 THE INITIATION ACTIVITY .. 25
3.1.1 Step1: Rationale Determination ... 26
3.1.2 Step2: Commitment Determination .. 28
3.1.3 Step3: Methodological Constraints Determination .. 30
3.1.4 Step4: Evaluation Team Formation: .. 31

3.2 THE HIGH LEVEL EVALUATION CRITERIA DEFINITION ACTIVITY 32
3.2.1 Step1: Constraints Determination .. 33
3.2.2 Step2: Existing Toolset Examination (optional) ... 40
3.2.3 Step3: Tool Area to Search Determination .. 41
3.2.4 Step4: High Level Criteria Determination ... 43

viii

3.3 THE PRESCREENING ACTIVITY ... 46
3.3.1 Step1: Tool Information Gathering for Each Tool Area 48
3.3.2 Step2: Criteria Matching for Each Tool Area: .. 49

3.4 THE LOW LEVEL EVALUATION CRITERIA DEFINITION ACTIVITY 52
3.4.1 Step1: Organizational Requirement Analysis for Each Tool Area 54
3.4.2 Step2: External Analysis for Each Tool Area ... 56
3.4.3 Step3: Criteria Formation .. 57
3.4.4 Step4: Criteria Prioritization and Categorization ... 59

3.5 THE SCREENING ACTIVITY ... 61
3.5.1 Step1: Tool Information Gathering for Each Tool Area 62
3.5.2 Step2: Candidate CASE Tool Selection for Each Tool Area 63

3.6 THE EVALUATION AND COMPARISON ACTIVITY ... 63
3.6.1 Step1: Assessment Method Determination for Each Criterion 64
3.6.2 Step 2: Assessment and Comparison for Each Criterion 69

3.7 THE RANKING AND SELECTION ACTIVITY .. 72
3.7.1 Step1: AHP Application ... 73
3.7.2 Step2: Final Selection .. 89

4. APPLICATION OF THE METHODOLOGY ON A CASE STUDY 91

4.1 ACTIVITY 1: INITIATION .. 93
4.1.1 Step 1: Rationale Determination .. 93
4.1.2 Step 2: Commitment Determination ... 95
4.1.3 Step 3: Methodological Constraints Determination ... 97
4.1.4 Step 4: Evaluation Team Formation .. 98

4.2 ACTIVITY 2: THE HIGH LEVEL EVALUATION CRITERIA DEFINITION 98
4.2.1 Step 1: Constraints Determination ... 98
4.2.2 Step 2: Existing Toolset Examination ... 102
4.2.3 Step 3: Tool Area to Search Determination ... 105
4.2.4 Step 4: High level Criteria Determination for Each Tool Area 106

ix

4.3 ACTIVITY 3: PRESCREENING .. 110
4.3.1 Step1: Tool Information Gathering for Each Tool Area 110
4.3.2 Step 2: Criteria Matching for Each Tool Area ... 113

4.4 ACTIVITY 4: LOW LEVEL EVALUATION CRITERIA DEFINITION 119
4.4.1 Step 1: Organizational Requirement Analysis .. 119
4.4.2 Step 2: External Analysis ... 123
4.4.3 Step 3: Criteria Formation for Each Tool Area ... 126
4.4.4 Step 4: Criteria Prioritization and Categorization .. 126

4.5 ACTIVITY 5: SCREENING ... 129

4.6 ACTIVITY 6: EVALUATION AND COMPARISON .. 133
4.6.1 Step1: Assessment method determination for each criterion 133
4.6.2 Step2: Assessment and Comparison for Each Criterion 136

4.7 ACTIVITY 7: RANKING AND SELECTION .. 136
4.7.1 Step 1: AHP Application .. 137
4.7.2 Step2: Final Selection .. 147

5. CONCLUSION AND FUTURE WORK .. 151

REFERENCES .. 155

TRADEMARKS ... 167

APPENDICES .. 168

APPENDIX A: LOW LEVEL CRITERION DEFINITIONS FOR EACH TOOL AREA ... 168
APPENDIX B: EVALUATION RESULTS FOR EACH LOW LEVEL CRITERION 194
APPENDIX C: PRORITY CALCULATIONS OF ALTERNATIVES 212
APPENDIX D: CONSISTENCY CALCULATIONS ... 219

x

LIST OF TABLES

TABLE 1: TOOL INFORMATION TABLE FORMAT (COLUMN-WISE) .. 48
TABLE 2: EVALUATION CRITERION TABLE FORMAT (ROW-WISE) ... 58
TABLE 3: EVALUATION CRITERION PRIORITY AND TYPE TABLE FORMAT (COLUMN-WISE) 60
TABLE 4: CRITERION-ASSESSMENT METHOD TABLE FORMAT (COLUMN-WISE) .. 68
TABLE 5: SAATY’S “FUNDAMENTAL VERBAL SCALE FOR PAIRWISE COMPARISON” 69
TABLE 6: COMPARISON TABLE EXAMPLE ... 70
TABLE 7: EVALUATION AND COMPARISON TABLE FORMAT (ROW-WISE) .. 71
TABLE 8: CATEGORY COMPARISON TABLE FORMAT ... 80
TABLE 9: SYNTHESIS TABLE FORMAT ... 83
TABLE 10: RI VALUES .. 86
TABLE 11: CONSISTENCY CHECK TABLE FORMAT .. 86
TABLE 12: CI SERVER TOOL INFORMATION TABLE .. 111
TABLE 13: CONFIGURATION MANAGEMENT TOOL INFORMATION TABLE.. 112
TABLE 14: BUILD TOOL INFORMATION TABLE .. 113
TABLE 15: CI SERVER TOOL – CRITERION MATCHING TABLE (CHECKLIST) ... 114
TABLE 16: CONFIGURATION MANAGEMENT TOOL – CRITERION MATCHING TABLE (CHECKLIST) 116
TABLE 17: BUILD TOOL – CRITERION MATCHING TABLE (CHECKLIST) ... 118
TABLE 18: CI SERVER CRITERIA PRIORITIZATION AND CATEGORIZATION RESULTS 127
TABLE 19: CONFIGURATION MANAGEMENT CRITERIA PRIORITIZATION AND CATEGORIZATION RESULTS .. 128
TABLE 20: BUILD CRITERIA PRIORITIZATION AND CATEGORIZATION RESULTS ... 128
TABLE 21: CI SERVER TOOL – CRITERION MATCHING TABLE 2 (CHECKLIST) .. 130
TABLE 22: CONFIGURATION MANAGEMENT TOOL – CRITERION MATCHING TABLE 2 (CHECKLIST) 131
TABLE 23: BUILD TOOL – CRITERION MATCHING TABLE 2 (CHECKLIST) ... 132
TABLE 24: CRITERION – ASSESSMENT METHOD TABLE FOR CI SERVER TOOL AREA 134
TABLE 25: CRITERION – ASSESSMENT METHOD TABLE FOR CONFIGURATION MANAGEMENT TOOL AREA .. 135
TABLE 26: CRITERION – ASSESSMENT METHOD TABLE FOR BUILD TOOL AREA .. 136
TABLE 27: CATEGORY COMPARISON TABLE ... 139
TABLE 28: FUNCTIONAL CRITERIA TABLE .. 139
TABLE 29: SAATY’S VERBAL SCALE TABLE .. 140
TABLE 30: FUNCTIONAL CRITERIA COMPARISON TABLE .. 140
TABLE 31: QUALITY CRITERIA TABLE .. 141
TABLE 32: QUALITY CRITERIA COMPARISON TABLE .. 141
TABLE 33: SUPPLIER/COMMUNITY CRITERION ... 141
TABLE 34: RANKING TABLE FOR FUNCTIONAL CATEGORY ... 142
TABLE 35: RANKING TABLE FOR QUALITY CATEGORY ... 143
TABLE 36: RANKING TABLE FOR SUPPLIER/COMMUNITY CATEGORY ... 144
TABLE 37: OVERALL RANKING TABLE FOR CI SERVER TOOL AREA .. 144
TABLE 38: QUALITY CRITERIA TABLE .. 146

xi

TABLE 39: QUALITY CRITERIA COMPARISON TABLE .. 146
TABLE 40: OVERALL RANKING TABLE FOR BUILD TOOL AREA ... 147
TABLE 41: LLC1 .. 169
TABLE 42: LLC2 .. 170
TABLE 43: LLC3 .. 170
TABLE 44: LLC4 .. 171
TABLE 45: LLC5 .. 171
TABLE 46: LLC6 .. 172
TABLE 47: LLC7 .. 172
TABLE 48: LLC8 .. 173
TABLE 49: LLC9 .. 173
TABLE 50: LLC10 .. 174
TABLE 51: LLC11 ... 174
TABLE 52: LLC12 .. 175
TABLE 53: LLC13 .. 175
TABLE 54: LLC14 .. 176
TABLE 55: LLC15 .. 177
TABLE 56: LLC16 .. 177
TABLE 57: LLC17 .. 178
TABLE 58: LLC18 .. 178
TABLE 59: LLC19 .. 179
TABLE 60: LLC20 .. 179
TABLE 61: LLC21 .. 180
TABLE 62: LLC22 .. 181
TABLE 63: LLC23 .. 181
TABLE 64: LLC24 .. 182
TABLE 65: LLC25 .. 183
TABLE 66: LLC26 .. 183
TABLE 67: LLC27 .. 184
TABLE 68: LLC28 .. 185
TABLE 69: LLC29 .. 185
TABLE 70: LLC30 .. 186
TABLE 71: LLC31 .. 186
TABLE 72: LLC32 .. 187
TABLE 73: LLC33 .. 187
TABLE 74: LLC34 .. 188
TABLE 75: LLC35 .. 188
TABLE 76: LLC36 .. 189
TABLE 77: LLC37 .. 189
TABLE 78: LLC38 .. 190
TABLE 79: LLC39 .. 190

xii

TABLE 80: LLC40 .. 191
TABLE 81: LLC41 .. 191
TABLE 82: LLC42 .. 192
TABLE 83: LLC43 .. 192
TABLE 84: LLC44 .. 193
TABLE 85: LLC45 .. 193
TABLE 86: EVALUATION AND COMPARISON TABLE FOR LLC2 .. 195
TABLE 87: EVALUATION AND COMPARISON TABLE FOR LLC3 .. 196
TABLE 88: EVALUATION AND COMPARISON TABLE FOR LLC6 .. 197
TABLE 89: EVALUATION AND COMPARISON TABLE FOR LLC9 .. 198
TABLE 90: EVALUATION AND COMPARISON TABLE FOR LLC10 .. 199
TABLE 91: EVALUATION AND COMPARISON TABLE FOR LLC15 .. 200
TABLE 92: EVALUATION AND COMPARISON TABLE FOR LLC16 .. 201
TABLE 93: EVALUATION AND COMPARISON TABLE FOR LLC17 .. 202
TABLE 94: EVALUATION AND COMPARISON TABLE FOR LLC19 .. 203
TABLE 95: EVALUATION AND COMPARISON TABLE FOR LLC20 .. 204
TABLE 96: EVALUATION AND COMPARISON TABLE FOR LLC23 .. 205
TABLE 97: EVALUATION AND COMPARISON TABLE FOR LLC24 .. 205
TABLE 98: EVALUATION AND COMPARISON TABLE FOR LLC25 .. 206
TABLE 99: EVALUATION AND COMPARISON TABLE FOR LLC26 .. 206
TABLE 100: EVALUATION AND COMPARISON TABLE FOR LLC27... 207
TABLE 101: EVALUATION AND COMPARISON TABLE FOR LLC29... 207
TABLE 102: EVALUATION AND COMPARISON TABLE FOR LLC30... 207
TABLE 103: EVALUATION AND COMPARISON TABLE FOR LLC31... 208
TABLE 104: EVALUATION AND COMPARISON TABLE FOR LLC33... 208
TABLE 105: EVALUATION AND COMPARISON TABLE FOR LLC37... 208
TABLE 106: EVALUATION AND COMPARISON TABLE FOR LLC379 ... 209
TABLE 107: EVALUATION AND COMPARISON TABLE FOR LLC40... 210
TABLE 108: EVALUATION AND COMPARISON TABLE FOR LLC41... 210
TABLE 109: EVALUATION AND COMPARISON TABLE FOR LLC42... 211
TABLE 110: SYNTHESIS TABLE FOR LLC2 ... 212
TABLE 111: SYNTHESIS TABLE FOR LLC3 ... 213
TABLE 112: SYNTHESIS TABLE FOR LLC6 ... 213
TABLE 113: SYNTHESIS TABLE FOR LLC9 ... 214
TABLE 114: SYNTHESIS TABLE FOR LLC10 ... 214
TABLE 115: SYNTHESIS TABLE FOR LLC15 ... 215
TABLE 116: SYNTHESIS TABLE FOR LLC16 ... 215
TABLE 117: SYNTHESIS TABLE FOR LLC17 ... 216
TABLE 118: SYNTHESIS TABLE FOR LLC19 ... 216
TABLE 119: SYNTHESIS TABLE FOR LLC20 ... 217
TABLE 120: SYNTHESIS TABLE FOR LLC39 ... 217

xiii

TABLE 121: SYNTHESIS TABLE FOR LLC40 ... 218
TABLE 122: SYNTHESIS TABLE FOR LLC41 ... 218
TABLE 123: SYNTHESIS TABLE FOR LLC42 ... 218
TABLE 124: CONSISTENCY CHECK TABLE FOR LLC2 ... 219
TABLE 125: CONSISTENCY CHECK TABLE FOR LLC3 ... 220
TABLE 126: CONSISTENCY CHECK TABLE FOR LLC6 ... 220
TABLE 127: CONSISTENCY CHECK TABLE FOR LLC9 ... 221
TABLE 128: CONSISTENCY CHECK TABLE FOR LLC10 ... 221
TABLE 129: CONSISTENCY CHECK TABLE FOR LLC15 ... 222
TABLE 130: CONSISTENCY CHECK TABLE FOR LLC16 ... 222
TABLE 131: CONSISTENCY CHECK TABLE FOR LLC17 ... 223
TABLE 132: CONSISTENCY CHECK TABLE FOR LLC19 ... 223
TABLE 133: CONSISTENCY CHECK TABLE FOR LLC20 ... 224

xiv

LIST OF FIGURES

FIGURE 1: CONTINUOUS INTEGRATION SYSTEM COMPONENTS ... 17
FIGURE 2: THE PROPOSED METHODOLOGY ... 22
FIGURE 3: BREAKDOWN OF THE INITIATION ACTIVITY .. 25
FIGURE 4: BREAKDOWN OF THE HIGH LEVEL EVALUATION CRITERIA DEFINITION ACTIVITY 33
FIGURE 5: BREAKDOWN OF THE PRESCREENING ACTIVITY .. 47
FIGURE 6: EXAMPLE FROM THE CASE STUDY ... 49
FIGURE 7: EXAMPLE FROM THE CASE STUDY ... 50
FIGURE 8: BREAKDOWN OF THE LOW LEVEL EVALUATION CRITERIA DEFINITION ACTIVITY 53
FIGURE 9: EXAMPLE FROM THE CASE STUDY ... 61
FIGURE 10: BREAKDOWN OF THE SCREENING ACTIVITY .. 62
FIGURE 11: BREAKDOWN OF THE EVALUATION AND COMPARISON ACTIVITY ... 64
FIGURE 12: EXAMPLE FROM THE CASE STUDY ... 68
FIGURE 13: EXAMPLE FROM THE CASE STUDY ... 72
FIGURE 14: BREAKDOWN OF THE RANKING AND SELECTION ACTIVITY .. 73
FIGURE 15: PROPOSED AHP PROBLEM HIERARCHY ... 79
FIGURE 16: EXAMPLE FROM THE CASE STUDY ... 84
FIGURE 17: EXAMPLE FROM THE CASE STUDY ... 87
FIGURE 18: AHP PROBLEM HIERARCHY ... 138
FIGURE 19: AHP PROBLEM HIERARCHY ... 145

xv

LIST OF ABBREVIATIONS

AHP: Analytical Hierarchy Process

CASE: Computer Aided Software Engineering

CI: Continuous Integration

COTS: Commercial off the Shelf

CRM: Customer Relationship Management

DSS: Decision Support System

ERP: Enterprise Resource Planning

HLC: High Level Criterion

IM: Instant Messaging

ISO: International Standards Organization

LLC: Low Level Criterion

MCDM: Multi Criteria Decision Making

RFP: Request for Proposal

RSS: Really Simple Syndication

SMS: Short Message Service

WAS: Weighted Average Sum

1

CHAPTER 1

INTRODUCTION

Software selection is a difficult process that tries to fulfill organizational requirements

by evaluating and selecting a suitable package from alternatives that are present in the

market. Several studies have been conducted in the literature that intends to solve this

problem in various fields. This study focuses on software selection issues in the CASE

tools area.

As defined in ISO/IEC 12207 a CASE tool is a software product that can assist software

engineers by providing automated support for software life-cycle activities [24]. Besides

providing automation, CASE technology today is also used to provide information about

the software being developed.

The emergence of CASE tools dates back to 1980s when only a few basic tools existed

that were working on specific fields. Today, we have a vast array of suppliers which

generally provide more than one CASE tool and there are many open source tools in the

market that are also in the competition. Today’s CASE technology covers nearly all

activities in the software development process ranging from requirements elicitation to

maintenance.

To manage the increasing complexity of software development practices and

technologies, many organizations are employing CASE tools in their processes.

Although, usage of these CASE tools has been beneficial for the organizations, they

didn’t provide the magnitude of improvement predicted when they were first introduced.

2

This is generally linked to the creative nature of software development process which

cannot be completely automated. Also, complex tools require a long learning time and

some of them constrain the work of users which may lead to rejection or reluctant use.

This makes selection of the right tool an important issue. The tools that lack the

necessary functionality, the ones that have low usability or the ones that simply don’t fit

into the organizational culture may cause economic loss.

Success and approval of a CASE implementation in an organization may be improved

by using a well designed CASE software evaluation and selection methodology.

However, the CASE software selection task is usually performed under schedule

pressure and a standard process for selection of a CASE tool is usually not defined. In

case of a decision necessity, the decision makers may not have enough time to design

the selection process in detail so they tend to use ad hoc approaches. If a comparison

opportunity between tools exists, they tend to compare features which are easy or

popular to measure. However, these features may be irrelevant or less relevant when the

end user requirements are concerned.

The purpose of this thesis study is to provide a well defined and repeatable methodology

for the organizations to adopt and apply in CASE software evaluation and selection. The

proposed methodology employs a requirement driven approach for the purpose of

eventually selecting a tool that is a “best fit” for the organizational practice that the tool

will be used for. The methodology starts from defining the organizational requirements

for CASE tool adoption and continues with progressive screening of the alternatives in

the market. To help extracting requirement definitions, categorized question sets are

presented. After screening phases, final candidates will be evaluated to measure how

well each satisfies the predetermined criteria and then ranked using a well known

ranking method in the field of multi-criteria decision making called Analytical Hierarchy

Process (AHP) [10]. With the application of these activities, an inherently subjective

process is tried to be formalized with the objective of increasing its accuracy.

3

Besides providing a tool selection process, the application of the proposed methodology

also enhances the understanding of organizational requirements for CASE tools.

Moreover, the literature search that will be made throughout the study and the findings

that result from various calculation and comparisons will form a valuable knowledge

base for future reference.

Several studies exist in the literature that covers software selection problem in general

and a few of them investigate CASE tool selection in particular. However, these studies

do not present an end to end methodology which covers criteria formation, evaluation

technique and ranking method. Rather, they generally focus on presenting a set of

criteria to be used in tool selection. Due to the diverse nature of software development

organizations and a vast array of tool options in the market, definition of a standard

criteria set seems difficult. Since each organizational software development formation

has unique needs, the standard criteria set given would need extensive tailoring before

they can be used. Moreover, new technologies are being added to the CASE tools area

everyday which makes these criteria obsolete in a small time frame. The ISO 14102

standard for CASE tool evaluation and selection was also criticized from this

perspective [6]. Recognizing this condition, this study does not present a set of

predefined criteria for CASE tool selection. Rather, the focus is on definition of a

methodology that covers criteria formation by the organization itself by eliciting the

organizational requirements and examining the technology trends.

Another difficulty that exists for CASE tool selection is the high number of candidate

tools. The CASE tool market is continuously growing both from the commercial and

open source sides. New CASE tools are being introduced regularly which claim to

possess the best functionality and characteristics.

The previously mentioned AHP method is considered suitable by this study for selection

among CASE tool candidates. However, if we use it directly on all of the candidates and

compare them with the multiple criteria of the organization, the comparisons and

calculations may take enormous time.

4

Organizations generally cannot devote this much time to the selection process.

Therefore, this study proposes two screening operations prior to ranking the alternatives.

The aim of these operations is to reduce the number of candidates that will be subject to

detailed evaluation. Usage of screening prior to ranking is also defended by Blanc and

Korn [7]; however a method for screening was not given. To the best of our knowledge,

the two stage screening method proposed in this study is not employed by any other

study in this field.

Moreover, almost all the studies in the field mainly focus on selection of a single CASE

tool that will be used in one particular field. However, one tool may not satisfy all the

requirements of the intended field. Instead, a combination of several tools may need to

be used and this is not a rare case. This possibility and its complications of this approach

are also studied in detail in this thesis.

Furthermore, a case study is performed to demonstrate the application of the proposed

methodology on the tool selection for one of the popular areas of agile development:

continuous integration; an agile practice for which CASE tools are mostly used.

Although the proposed methodology does not give any predefined criteria for software

practices, this case study presents necessary criteria for the continuous integration area

since this is the practice that the subject organization in the study is using the

methodology for. Therefore practitioners may be inspired from this part of the thesis in

case of tool selection for continuous integration as no specific work on this field exists in

the literature.

This thesis consists of five chapters. The second chapter presents a summarized survey

of literature on the topics concerned. In the third chapter, all the activities and steps of

the proposed methodology are detailed in sequence. The fourth chapter presents the

application of the methodology on a real case study and the last chapter presents the

conclusion of the thesis.

5

CHAPTER 2

LITERATURE SURVEY

In this chapter, literature information concerning the areas investigated by this thesis is

presented. In that respect, first section is devoted to the general software evaluation and

selection problem. Second section provides information about the improvements and

problems in CASE software today. Third section summarizes the studies performed

specifically on CASE tool evaluation and selection. And the last section includes

information about the continous integration practice of agile development which is the

subject of the case study in chapter four.

2.1 SOFTWARE EVALUATION AND SELECTION IN GENERAL

The demand for software packages is continuously increasing. There are variety of

packages being developed by the vendors to supply this demand. Also, open source

software development community is growing and rapidly producing new software. The

functionality of the packages offered varies from very simple to extensively

complicated. These circumstances make the proper selection of a software package a

difficult task. Selection of the wrong package may result in wrong strategic decisions

with subsequent economic loss to the organization [8]. Therefore, better ways of

decision making on this subject has been investigated by researchers.

6

Software evaluation and selection is an example of mutiple criteria decision making

(MCDM) problems which involve making preference decisions over the available

alternatives having multiple attributes. In such problems, the existence of limited

resources generates the constraints and the value of the decision variables satisfying

these constraints defines the feasible set. Then, each feasible solution is assigned a

priority number reflecting the preferences of the decision maker. This number should be

obtained with a criterion function.

According to Ballestero, only non-preferential technical information is required for the

initial phase of this paradigm that is for defining the feasible set. In other words, the first

phase defines what is possible from purely technical information. Actual preferences of

the decison maker is reflected in the second phase that is when the criterion function is

established. The intersection of both phases yields the feasible solutions which satisfy

the constraints of the problem. The best or optimal solution is finally obtained by

utilizing more or less sophisticated mathematical techniques considering multiple

criteria [91].

Objectivity should be seeked when making decisions in such contexts however there are

fundamental limitations for this according to Figueira. He points out these limitations as:

 The borderline between what is feasible and what is not is often fuzzy in real

decision making contexts.

 Many data are uncertain, imprecise or ill-defined.

 In general, it is impossible to say that a decision is a good one or a bad one

by referring only to a mathematical model . Organizational, pedagogical,

and/or cultural apsects of the whole decison process which lead to making a

decision also contribute to its quality and success [92].

7

In light of these difficulties, MCDM techiques proposed in the literature aims to help

decison makers in:

 Sorting out alternatives that are superior among the studied set

 Ranking the alternatives in decreasing order of performance

 Choosing the best alternative

According to Jadhav and Sonar’ s extensive research on the literature [8], the researchers

have worked on evaluation and selection of software in the following fields:

 Commercial off the shelf (COTS) software

 CASE tools

 Simulation software

 Decision support system (DSS) software

 Analytical Hierarchy Process (AHP) software

 Knowledge management tools

 Data mining software

 Visual programming languages

 Enterprise Resource Planning (ERP) packages

 Customer Relationship Management (CRM) packages

 Expert system shells

 Operations management software

It is found that most of the research is made for COTS software evaluation and selection

category. Jadhav and Sonar further classifies these studies according to their

contribution to the field as the studies providing methodologies for software selection,

the studies providing software evaluation techniques, the studies providing software

evaluation criteria, and the ones that offer systems/tools to support decision makers in

software selection. The results of this classification is presented in their paper [8].

8

2.2 CASE SOFTWARE

According to Sodhi’s definition, “Computer-Aided Software Engineering (CASE)

encompasses a collection of automated tools and methods that assist software

engineering in the phases of the software development life cycle” [100]. Pressman,

Sommervile, Forte and McCulley propose slighty varied definitions for CASE [101,

103, 102]. Combining these definitions, we can deduce simply that a CASE tool is a

software component supporting a specific task in the software-production process.

CASE tools have been used by engineers since the early 80’s where they were mainly

performing computer aided documentation. They were being used to key in text and

manipulate it by a visual interface. Later improvements led to the development of data

dictionaries which stored details of all the data types and related processes. Computer

aided diagramming tools were also developed to assist the software engineers and

programmers to quickly draft and easily modify diagrams and designs. In later 80’s,

CASE tools that generated code were developed for various fourth generation

programming languages [93].

Code generators were further enhanced in the 90’s which enabled CASE tools to

produce code in a more sophisticated manner from designs and data flows fed into the

system. In these years, developing user friendly graphical user interfaces are

emphasized. This has resulted in the greater involvement of the end users in software

engineering process. Also, CASE tools that could be used in the entire life cycle of the

software development paradigm were also introduced which includes project

management tools and cost calculators. These tools made it possible to predict the

resources and time scheduled of software in development [93].

High rates of CASE tool penetration into the market during these years is understandable

because the total cost for human resources in software production was about $250

billion per year and even a modest increase in productivity would significantly reduce

costs [2].

9

In the present, there are tools that support requirements elicitation and analysis, design

and communication, enforcement of standards and methodologies, prototyping and rapid

application development, reverse engineering and software maintenance [83]. Moreover,

software engineering continues to become more complex with the availability of various

software platforms for development. The requirement to seamlessly switch between

different platforms has forced the CASE tools to evolve further to meet the needs of the

industry. Software reengineering is also gaining importantance as a methodology and

CASE tools have been developed addressing this area [93]. Tool vendors that seek to

support a team in the software development process are trying to address such issues as

team coordination and project management [96].

It seems that CASE technology will play a key role in the information technology market,

and many new products will appear. However, this product proliferation and the richness

of the functions offered are creating critical problems.

Besides increasing the tool capabilities, the additional features also increased the

complexity of tools leading to steep learning curves. Kemerer states that the reason of

limited usage of a CASE tool would be its complexity [111]. Iivari describes the same

issue from a different perspective. He points out that the users’ perception of the tool

being complicated to work with is the main problem [112].

Moreover, assesing the capabilities of many products on the market is more difficult.

Understanding their functional relationships between each other also requires careful

examination since the terminology in this area is often misleading or confusing.

According to Fuggetta’s study terms such as tool, workbench, toolset, and environment

are given very different meanings and interpretations among different organizations [2].

It is difficult, therefore, to develop a clear and systematic classification of the available

technology for effective assessment and acquisition [2].

10

Several classification schemes are proposed in the literature to address this problem.

Sommerville proposed a functional and an activity based classification where tools are

classified according to their specific function or the process activities that they support

[103]. Fuggetta proposed a classification acoording to the breadth of support that the

tools offer. He grouped the CASE tools into three categories as tools, workbenches and

environments in the order of increasing software development activity coverage [2].

However, according to Sommerville, the boundaries between these classes are blurred. It

may therefore not always be easy to position a product using a classification.

Nevertheless he states, a classification is a useful first step to help understand the extent

of process support that a tool provides [103].

Furthermore, the need for integration in CASE technology is increasingly acknowledged

by researchers and practitioners [2]. According to Thomas and Nejmeh, integration can

be analyzed in four dimensions: data integration, control integration, presentation

integration and process integration. Data integration deals with the management of

information as a whole between the tools. Control integration deals with the combination

of underlying environment functions according to project preferences. Presentation

integration focuses on improving user interface interactions with the user and the

process integration ensures that tools interact effectively in support of a defined process

[104].

11

2.3 CASE SOFTWARE EVALUATION AND SELECTION

CASE tools can increase productivity in software development projects by supporting

activities which are usually carried out with human efforts using little or no tool support.

However, the introduction of a tool can also decrease productivity in some situations

where much more effort should be spent to maintain the tool. This condition results in

the need to make a detailed elaboration on tool evaluation and selection.

It has been found that the same tool can have very different effects on productivity

depending on individual project characteristics. According to a study performed by

Bruckhaus, Madhavji, Janssen and Henshaw, large productivity differences are observed

when the same CASE tool is used in different sized projects and in the projects applying

different development processes. Hence, they deduced a connection with the project size

and tool productivity and conclude that a tool’s performance may peak in a certain sized

project. Also, one of their conclusions was that adopting a complex process can be

substantially less expensive if the appropriate tools are also adopted [97].

According to the ISO standard on “Software Product Evaluation” (ISO 14598) [106], the

evaluation process should promote four characteristics: repeatibility, reproducibility,

impartiality and objectivity.

Moreover, according to Lundell and Lings, besides ensuring these characteristics, three

primary dimensions need to be taken into account for an evaluation activity: the

stakeholder dimension, the contextual dimension and the activity dimension [98].

When selecting stakeholders, a broad and representative selection is encouraged. Also,

the roles’ closeness to the usage context of the tool is stated as important. If multiple

perspectives are involved in the selection process, validity of the results will be

enhanced but effective and ongoing feedback is essential to create a sense of ownership.

However, individual stakeholders can have very different goals considering the broad

scope of the subject [98].

12

In such cases, Brown and Wallnau suggest that only aggreed, explicit and shared goals

should be taken into account which can be treated as organizational goals [105].

Focus on the contextual dimension is very important because it is based on the realistic

perception of an information system not only as a technical system but also as a dynamic

social system [98]. This situation makes each organization unique in the business of

software development. This is supported by the exploratory study conducted by Reeken

and Trienekens. They investigated method and CASE-tool usage in sixteen largest

organizations in Netherlands and one of their findings was the fundamentally different

ways of usage of the same terms about CASE tools in these organizations [107].

This result shows the necessity to develop an evaluation framework within a particular

organizational setting. Failure to consider this specific setting, can result in outcomes

that have limited relevance for the organization [98].

The activity dimension of the evaluation is supported in the literature by different

approaches and several activity sets are proposed but it should be pointed out that

selecting or constructing a set of activities is very dependent on the contextual and

stakeholder dimensions. However, failure to consider the activity dimension can result in

poorly conducted evaluations which can produce unreliable outputs causing a lack of

stakeholder confidence for the process [98].

At this point, it is important to state that evaluation and selection are different concepts.

Evaluation is a process of measurement and assessment while selection is a process of

applying thresholds and weights to evaluation results and arriving at decisions [99]. For

the selection process, a selection algorithm is used. Among the mostly used ones in the

literature are the simple weighted average sum (WAS) method and the structured

“Analytical Hierarchy Process” (AHP) [4, 10]. Some fuzzy aproaches and various

algorithms focusing on preference measurements and pairwise comparisons are also

proposed. However, because of its suitability for qualitative decisions in a group setting,

AHP method remains as the mostly used method in this area.

13

In 1992, Blanc and Korn studied CASE tool evaluation and selection while proposing a

compact metholodogy. In their methodology, they stress the importance of screening

which they call “formation of a short list” [7]. They also suggest matching user

requirements with CASE tool capabilities instead of using a standard criteria set

however they don’t offer a method for gathering the user requirements. Moreover, they

don’t propose to collect technology information from external sources which is

understandable when the narrow scope of the CASE tool sector is considered at the time

of their research. They finally propose that the selection process can only arrive to a

final conclusion when the users actually use the tool [7]. But this may not be possible in

today’s business environment which increases the need of developing a more detailed

methodology to aid in tool selection prior to actual use.

The ISO standard 14102 provides a set of activities and a structured charasteristic set for

CASE tool selection [5]. These set of characteristics are extended from ISO/IEC 9126-

1:2001 which defines the general model of software product quality characteristics

[114]. ISO 14102 further categorizes these characteristics into four groups as:

characteristics related to life cycle process functionality, CASE tool usage functionality,

general quality and not related to quality. The objective of the proposed process is to

obtain quantitative evaluation results upon which the final selection decisions can be

made [5].

The standard is later criticized by Lundell and Lings in that the tool characteristics

proposed are not complete and some have overlapping scopes. Although the lack of

completeness was also acknowledged by the standard, Lundell and Lings state that the

standard should have included method support for dealing with this lack. Also, they

found the method proposed by the standard too qualitative and defend that it should

include further scrutiny about human factors inherent in a specific organisational setting

[6].

14

The learning aspect of the evaluation process is also stated in several studies. One of

them is the study of Etzerodt and Madsen which emphasizes the adoption of such a

learning perspective during the course of evaluation. They defend that the evaluation

process is not measuring a fixed set of values but should be seen as a process where the

actors involved learn from their own experiences [108].

Moreover, some studies in the literature focus on the sociological effects of the tool

evaluation processes, especially when using pilot projects as an evaluation method. For

instance, Sadler and Kitchenham point out that the effects resulting from the tool’s

capabilities should not be confused with the effects resulting from the reaction of users

to the tools in such pilot projects. Because people may show unexpected reactions to the

tools because of the novelty they bring into the environment [90].

It is important to state that the evalauation processes are not only proposed for assessing

the tools prior to acquisition but also for the tools that are already in use. The studies

covering this area mainly aim to reveal whether the tools’ functions are sufficient for the

job or being effectively used and whether the tool provides the expected benefits [13, 90,

110].

15

2.4 CONTINUOUS INTEGRATION

The proposed methodology for CASE tool evaluation and selection is detailed in chapter

three and in the following chapter four, the application of this methodology on a CASE

study is demonstrated. In this case study, the proposed methodology will be employed

for an instution’s CASE tool selection problem. The instution is in the endeavour of

making their practices more agile and is looking for CASE tool solutions to be used in

their software integration process. In other words, they intend to form a continuos

intregration process with the help of CASE tools which will be determined by the

proposed methodology. Therefore, a brief introduction to the continuous integration

practice is given in this section.

Agile methods rely on an iterative approach to software development and are designed

to support the development efforts for which the system requirements frequently change

during the process. They are intended to deliver working software to customers as

quickly as possible and they brought the concept of focusing on the software itself rather

than on its design and documentation [103].

Continuous integration is a well known practice of the agile methods that is designed to

accelerate software delivery thus enhancing project agility. To satisfy this goal, the

practice involves mechanisms and activities to decrease integration times. Martin

Fowler describes continuous integration as “a software development practice where

members of a team integrate their work frequently, usually each person integrates at

least daily—leading to multiple integrations per day. Each integration is verified by an

automated build (including test) to detect integration errors as quickly as possible”

[113].

Thus, continuous integration provides rapid feedback so that the state of the project can

be learned several times a day. It reduces the time between when a defect is introduced

and when it is fixed which leads to an increase in software quality [109].

16

A typical continuous integration scenario includes the steps detailed below:

1. A developer commits code to the version control repository. This repository is being

checked regularly by the continuous integration server for changes.

2. Continuous integration server detects a commit to the version control repository.

Then it gets the latest version to its environment (e.g. sandbox) and starts a build

process by executing a predesignated build script.

3. After the build finishes, the continuous integration server generates feedback for the

specified project members.

4. After notifications, continuous integration server continues to poll the repository for

changes.

We can illustrate the components of a typical continuous integration system in the figure

below (Figure 1) and descriptions for each component are given after the figure.

17

Figure 1: Continuous integration system components

 CONTINUOUS INTEGRATION SERVER

The continuous integration server polls the version control repository and executes an

integration build whenever a change is committed by a developer. When executing the

build, it follows a predesignated build script which usually contains instructions about

compilation, database integrations, running tests, running inspections and deployment

information. The continuous integration server also provides feedback to interested

parties about the result of the build.

18

 VERSION CONTROL SYSTEM

Version control (also known as revision control or source control) is the management of

changes to code files, executables, documents and other information stored as computer

files. Automation and tool support is indispensable in this domain [94]. Changes are

usually identified by a version number and kept in a database. However, the best

solution for handling changes in software projects is the software configuration

management process. This process covers additional practices to maintain software

integrity and traceability besides the simple version control.

From the continuous integration perspective, the version control tool provides a “single

source point” so that all source code is available from one primary location [109].

 BUILD TOOL

In computer programming, compilation means translation of source code into executable

code. A build on the other hand has a broader scope than compilation. It may include

compilation, deployment, packaging, testing, inspection and other specific functionality.

It provides a process for putting the source code together and verifying that the software

works as a cohesive unit [109]. The build is described in a build script which is executed

by a build tool. As stated before, the continuous integration server invokes the build tool

when necessary.

 FEEDBACK SYSTEM

In order for the continuous integration system send information concerning the builds,

there should be a feedback mechanism in place. This mechanism is usually an e-mail

application but can also be Really Simple Syndication (RSS), Instant Messaging (IM) or

Short Message Service (SMS). The continuous integration server invokes the feedback

system to send notification about the result of a finished build.

19

After setting up these components the automated continuous integration environment

will be ready. However, automation of the continuous integration system is not enough

to be completely safe from integration problems. Practicing routines like using a

separate integration build machine, frequent commits to a version control repository and

fixing broken builds immediately are also essential for performing an effective

continuous integration [109].

20

CHAPTER 3

PROPOSED METHODOLOGY

FOR CASE SOFTWARE EVALUATION AND SELECTION

According to the literature survey made, a publication that addresses a complete

methodology of software evaluation and selection does not exist. This is confirmed by

the study of Jadhav and Sonar [8] which states that a publication that involves selection

criteria, methodology, evaluation technique and practical application for the selection of

CASE tools is not present.

The purpose of this thesis is to present a requirement driven methodology that covers all

the phases of the CASE tool selection process including and giving emphasis to

screening and evaluation criteria definition. The methodology is valid for the CASE

tools that are developed to support a software engineering phase or practice and for the

particular organization which forms the context of the evaluation and involves a

software development group. It is defended that a tool cannot be best in all

circumstances but can be best for a specific context that is a specific organization.

The methodology defined in this work will be referred throughout the thesis as

“proposed methodology”. It is formed by activities which in turn are formed by steps.

The sequence of these activities and the artifacts they produce are shown in Figure 2.

21

As can be seen in the diagram, there are seven activities that form the methodology:

1. Initiation

2. High Level Evaluation Criteria Definition

3. Prescreening

4. Low Level Evaluation Criteria Definition

5. Screening

6. Evaluation and Comparison

7. Ranking and Selection

The activities are mainly sequential however the “Prescreening” activity and the “Low

Level Evaluation Criteria Definition” activity may be performed in parallel. But both of

these activities should be finished in order to pass to the “Screening” activity.

After completing the “Ranking and Selection” activity, a CASE tool or several CASE

tools are selected and will be put into use in organization’s processes. This phase which

is defined as “Implementation and Maintenance” is not in the scope of the proposed

methodology but may be addressed in future research.

It is important to note that after applying the proposed methodology, no tool may pass

the screening phases. This situation means that none of the tools in the current CASE

market satisfies the organization’s criteria. In such a case, the criteria may be

reconsidered by the evaluators. After the reconsideration, if the evaluators are able to

relax the limiting criteria in such a way that their constraining effect is reduced to allow

some CASE tools to pass, then the selection process may be repeated. Otherwise, the

overall acquisition process may be abandoned or options like developing an in-house

tool from scratch or modifying an existing tool may be considered.

22

(o
pt

io
na

l)

P
os

si
bl

e
pa

ra
lle

lis
m

(o
pt

io
n

al
)

Figure 2: The proposed methodology

23

The proposed methodology starts with the initiation activity in which the rationale

behind the CASE tool acquisition effort is clarified. Also, organizational commitment to

the process is assessed and an evaluation team is formed in this activity.

In the high level evaluation criteria definition activity, the aim is to extract the most

important and obvious requirements of the organization. These requirements usually

arose from organizational constraints and previous tool experiences in the organization.

Also in this activity, it is determined whether multiple CASE tool combinations will be

evaluated or a single CASE tool solution is sufficient.

In the following prescreening activity, the first candidate CASE tools are selected

according to the high level criteria formed in the previous activity. It is possible that

none of the tools that exist in the market pass the prescreening phase. In that case, the

high level criteria obtained in the previous step may optionally be relaxed to a degree

that some tools can satisfy them or the acquisition process may be abandoned.

The low level evaluation criteria definition activity may start in parallel with the

prescreening activity or after it. In this activity, a more detailed organizational

requirement analysis is performed combined with an external analysis. The results are

combined to form the low level criteria which will then be prioritized and categorized.

The criteria which are identified as high priority are utilized in the screening activity

where the organization further eliminates some of the tools. After finishing this last

screening, the final candidate list will be ready for detailed evaluation. Again, it is

possible that no tool be able to pass the screening in which case an optional return to the

previous criteria determination activity may be made to relax some of the criteria.

24

The two screening phases utilize high priority criteria which are generally in the form of

pass/fail clauses that do not require extensive measurements to assess. In the following

evaluation and comparison activity, the capabilities of the candidate tools are assessed

and compared against the normal priority low level criteria which require more detailed

examination and research.

In the final ranking and selection activity, results of the previous comparisons and

weight determination techniques presented by the AHP method are utilized to find the

final ranking of the tools. Then the recommended tool or tools to be used in the

organization can be disclosed. These tools may optionally be studied in a pilot project

before the implementation if the necessary resources are available for such a work. The

detailed explanations of these activities are given in the rest of this chapter.

It is important to note that although the flow of the activities and steps is clearly defined

in the methodology, the time and effort that will be dedicated to them is not rigid and

can be adjusted according to the needs.

25

3.1 The Initiation Activity

In this very first activity of the proposed methodology, we aim to clarify the reasons

behind the attempted CASE tool acquisition and whether the organization has fully

committed on the process. This activity is divided into four sequential steps:

1. Rationale Determination

2. Commitment Determination

3. Methodological Constraints Determination

4. Evaluation Team Formation

Flow of these steps is demonstrated in the figure below. (Figure 3) Explanations are

given for each of the steps.

Rationale
Determination

Commitment
Determination

INITIATION

Problem
Statement

Methodological
Constraints

Determination

Methodological
Constraints

Evaluation Team
Formation

Figure 3: Breakdown of the Initiation Activity

26

3.1.1 Step1: Rationale Determination

Before entering the process of CASE tool evaluation and selection, the organization

should set the rationale for CASE tool acquisition first. Rationale forms the reason that

leads the organization to CASE tool acquisition. It may be one of these:

 The organization may want to automate a complete software development phase

or a part of it

The organization may be conducting one of its development practices or phases

manually. This manual execution may be leading to some human related errors or

may be consuming valuable time and resources. In this scenario, the organization

wants to automate this set of human controlled practices by using CASE

software. It is important to note that the organization may already be using CASE

software for some parts of this practice but the CASE tool or tools being used

may not cover the practice as a whole. In this respect, the organization may

utilize the proposed methodology to find a suitable tool or tools that cover the

practice as a whole. During the process, the existing CASE tools may be replaced

with betters which is the case given below in the second possible rationale.

 The organization may want to replace a CASE tool with a better alternative

In this case, the organization may be having problems or difficulties with the

CASE software that they are currently using. Or, in a complete automation

process like the case above, the existing tools may not have enough functionality

or suitability for integration with the other tools.

27

As a start, the properties of the existing CASE tool(s) should be examined.

Properties which the organization benefits from and the ones that cause problems

for the teams working with the tool should be identified. Also, significant

functionality which is required but not present in the tool should be identified.

For example, in the case of a configuration management tool, the benefited

functionality may be the tool’s web interface, the drawback of the tool may be its

poor performance and an additional desired functionality may be a supported

integration with the organization’s integrated development environment. This

information will be input to the following criteria definition activities.

 The organization may want to change their software development methodology

or part of it and in need for a CASE tool that will support the new methodology

In this case, the organization is having problems not with its current toolset but

with its current methodology. Thus, the organization is in the process of

modification of its development practices and the new practices will be supported

by CASE tools.

 The organization may just want to enter a CASE tool evaluation process for

forming a knowledge base for future decisions.

In this case, the development or management team in the organization anticipates

that a CASE tool acquisition may be required in the future. This anticipation may

be due to a possible change of development methodology or according to the

observed trends of the CASE tool technology. The areas of software

development that the organization is interested in for CASE tool adoption will be

evaluated and the proposed methodology will be applied to find the suitable

candidates.

28

This proposed methodology is designed to be used in one of the circumstances described

above. If it is intended to be used for another reason, the activities forming the

methodology may not be suitable or they need to be modified.

After the clarification of the rationale, a brief problem statement describing the issues

and their sources that lead to CASE tool acquisition should be prepared. It will act as a

concise description of the problem and a starting point in the progress of solution

forming. A good problem statement should include the definition of the problem, the

reason behind the problem and the expected solution. It can also include the information

that explains why the organization orients towards an acquisition process instead of

writing a tool itself.

3.1.2 Step2: Commitment Determination

Before entering the processes of CASE tool evaluation, selection, acquisition and

implementation, organizational commitment should be ensured. This commitment is

expected both from the management who will financially support and supervise the

acquisition and from majority of the potential users of the system to be acquired. If the

organization lacks commitment from either source, the acquisition and implementation

process may be in jeopardy and all of the efforts may be wasted.

The short term and long term economic benefits of using the intended CASE technology

may need to be discussed with management to get their approval for the process. Also, if

the actual users (e.g., developers) of the system are reluctant for the implementation,

achievement of the expected benefits of the CASE tool(s) is unlikely. User related

benefits and potential improvement that can be gained after the learning period of the

system may be explained to the users to get approval from them.

29

Also, since the CASE tool(s) will require installation and maintenance support from

system administrators, it is better that they and the other staff who will indirectly be

involved in the process be consulted and their opinions taken into consideration.

Moreover, these mentioned stakeholders should also agree on using a well defined

methodology like the one proposed with this study for the CASE tool selection process.

Usage of such a methodology will minimize the risk of selecting a wrong tool which will

cause economical loss and demoralization of the team. Also, the evaluation process will

form a knowledge base for the organization in case of future evaluation and selection

efforts. However, it requires time and staff to perform and these resources may not be

readily available. In this respect, the proposed methodology is prepared to finish in a

reasonable time by utilizing progressive screening to minimize the number of CASE tool

candidates to be input to the evaluation and ranking activities which take longer times.

The questions below should be answered in order to determine commitment to the

process. The answers should be positive in order to continue to the methodology. One

exception to this is the second question. The answer maybe “no” to this question if and

only if the organization has made an intentional decision to only use a freeware CASE

tool.

Commitment Requirements Question Set:

1. Has the management fully agreed on acquisition and implementation of a CASE

tool?

2. Has the management fully agreed on funding a CASE tool?

3. Has the management fully agreed on supporting the selection process (the

proposed methodology)?

4. Has the development team agreed on acquisition and implementation of a CASE

tool?

30

3.1.3 Step3: Methodological Constraints Determination

In this step of the initiation activity, the organization should determine its constraints

about the application of the proposed methodology. In this step, the organization has

already agreed on the usage of the methodology however the constraints on it like the

amount of resources that can be devoted have not yet been set.

The methodology involves browsing the literature, measurements for the evaluation

activities and group meetings for decision making. The detail level of all these activities

may be adjusted according to the available resources which will be determined in this

step. However, it should be noted that the more resources dedicated to the process, the

more accurate result will be obtained and the more extensive knowledge base will be

formed.

The questions below should be answered in order to determine the methodological

constraints.

Methodological Constraints Question Set:

1. What is the number of personnel that can be delegated as the evaluators?

2. How much time can the evaluators allocate for the methodology work?

3. How much time can the organization devote to the selection process totally?

After determining the methodological constraints, the organization may form the

evaluator team in the next step.

31

3.1.4 Step4: Evaluation Team Formation:

The activities in the methodology should be performed by an evaluation team formed by

organization employees. It is suggested that the team include a coordinator who is

skilled in the domain of the intended practice for CASE tool usage and minimum of two

evaluators. The evaluators will gather the organizational requirements, convert them to

organizational criteria, screen and evaluate the tools according to these criteria. The

coordinator will manage these activities and arrange group meetings for prioritization

and other decision making activities.

More than one evaluator is required in order to conduct search and information gathering

activities in parallel during the application of the methodology. It is also suggested that

the team members be representatives of the intended tool user group but not be biased

towards a specific tool. They should be able to dedicate time for the activities and

organize evaluation meetings with other employees when necessary. Besides the

evaluation team, other stakeholders like the developers or the management will also be

consulted when gathering organizational requirements.

After forming the evaluation team, the initiation activity is considered to be finished and

the next activity of the proposed methodology namely “The high level evaluation criteria

definition activity” can start.

32

3.2 The High Level Evaluation Criteria Definition Activity

In this activity, the high level evaluation criteria that represent the organization’s

primary needs will be extracted.

The organizational constraints limiting the selection and attributes coming from the

experiences with the existing CASE tools in the organization will form the high level

requirements of the organization. It is important to note that the requirements that will

originate from this activity should be “high level” that is they should be obvious without

needing a measurement or extensive searching. Requirements such as “the tool’s price

should be lower than $10000” falls into this category. Then these high level

requirements will be expressed as the high level criteria for tool selection.

The steps that form this activity are given below:

1. Constraints Determination

2. Existing Toolset Examination (optional)

3. Tool Area to Search Determination

4. High Level Criteria Determination

Methodological constraints were determined in the previous activity since they apply to

the selection process and not to the tool(s). In the constraints determination step of this

activity, the organization should determine its constraints about the tool(s). Then the

existing set of tools and experiences with them should be investigated to aid tool search

and replacement decisions. However, this step is only valid if tools exist in the

organization. Otherwise, this step may be passed. The step called “Tool Area to Search

Determination” is for determining the number of the tool areas that the intended practice

spans. In other words, this is where the organization tries to assess whether the

methodology will be performed to select a single tool or a combination of tools.

33

After the tool areas are determined, high level criteria can be finalized in the last step

called “High Level Criteria Determination”. The flow of these steps and the artifacts

they produce are depicted in the figure below. (Figure 4)

Figure 4: Breakdown of the High Level Evaluation Criteria Definition Activity

3.2.1 Step1: Constraints Determination

After determining the rationale for acquisition in the previous activity, the organization

should now set their constraints concerning the CASE tool(s). It is important to note that

a constraint does not represent a desirable feature of the tool but represents a “must”

feature or characteristic that the tool should absolutely possess.

34

The constraints will be expressed in three categories:

 Organizational constraints

 Environmental constraints

 Development phase related constraints

The explanations of these constraints are presented below.

3.2.1.1 Organizational Constraints

This type of constraints usually originates from the resources of the organization that can

be devoted for the acquisition. Also constraints like mandatory conformance to an

international or an organizational standard falls into this category. The list of

organizational constraints can be extended by the organization that is applying this

methodology. However, the evaluators in the department should be careful about the

item they are adding in that it should really represent a constraint for the selection. In

other words, it should be something that the tool must absolutely satisfy the requirement

of it. The questions below should be answered as a starting point.

Organizational Constraints Question Set:

1. What is the maximum expenditure we can spend on the tool?

Note: Answer to this question may be zero if only freeware solutions will be

considered

Note: It is better to also discuss the preferred amount of expenditure at this point

so it can be treated as a further requirement.

35

Note: If multiple tool areas are discovered in the third step of this activity, total

of the costs of tools belonging to these areas should be taken into account.

Note: Support costs of the tools should also be taken into account when searching

their price.

2. What is the number of licenses needed?

Note: There are three types of commercial licenses usually found in the market

for CASE tools called floating, node-locked and authorized licenses. Floating

licenses are served from a license pool upon request and don’t have a computer

or user restriction. Node-locked licenses are restricted to be used in a specific

computer and authorized licenses are restricted to be used by a specific user. The

exact number of licenses required will be determined by examining the license

type provided by the tool, the density of usage of the tool and the number of

workers that will use the tool. Here, only a rough estimation about the license

numbers required in case of these different licensing schemes should be given.

This number will be useful when evaluating tools according to their cost.

3. How much time should be required to fully integrate the tool into the

organization’s development practices?

Note: This amount is not related to the time needed to apply the selection

methodology. Rather, it is the time needed for implementation of the tool after it

has been selected which concerns factors like the ease of installation of the tool

or the tool not having a steep learning curve (easy to learn, easy to implement)

36

4. Should the tool conform to an international standard that is adopted in the

organization?

Note: The organization may be bound to conform to a general standard

concerning its services or a practice specific standard like MIL-STD-973 for

configuration management. In such a case, the tool that will be acquired should

also conform to this standard.

3.2.1.2 Environmental Constraints

This type of constraints originates from the organization’s hardware and software

environment or specific technology compliance mandates.

The organization policies or practices may restrict disk usage, memory usage or may

require specific chipset support. These necessities form the hardware related

environmental constraints. Only the candidates that satisfy these requirements will be

evaluated.

Software related environmental requirements include operating system support

requirements and interoperability or compatibility requirements with other software

being used in the organization such as the database system or an application server. Only

the CASE tools that work on the specific operating system or the ones that are

compatible with the specific software of the organization will be evaluated further.

Moreover, the requirement for the tool to support a software development technology or

framework which the organization is using forms a specific technology compliance

constraint. This type of constraints should also be assessed when evaluating tools.

37

The questions below should be answered to proceed with the methodology. The

organization may add additional environmental constraints in the same lines.

Environmental Constraints Question Set:

1. Do we need a tool that supports a specific processor architecture?

(E.g.: SPARC, X86, X64, etc…)

2. Do we need a tool that supports a specific CPU bus size?

(E.g.: 32 or 64 bit systems)

3. Do we have a constraint on the CPU usage of the tool?

(E.g.: The tool’s CPU requirement should be dual core 2 GHz at most)

4. Do we have a constraint on the disk usage of the tool?

Note: This includes the installation size plus the estimated growing size.

5. Do we have a constraint on the memory usage of the tool?

(E.g.: The tool’s memory consumption should be around 256 MB and up to 512

MB as the maximum)

6. Do we have a constraint on the network usage of the tool?

(E.g.: The tool should work without a network connection or the tool’s

continuous bandwidth usage should be around 1 kb/sec up to 5 kb/sec as the

maximum)

7. Do we need a tool that supports a specific operating system for the server?

(E.g.: Windows Server 2003, Red Hat Enterprise Linux 5.0, etc…)

38

8. Do we need a tool that supports a specific operating system for the clients?

(E.g.: Windows XP SP3, Windows Vista, Open Sues v11, MacOsX 10.6, etc…)

9. Do we need a tool that should integrate with a specific software being used in the

organization?

Note: Here, integrability is used in the same sense as interoperability meaning

that the two systems should be able to exchange information between each other

and work together

(E.g.: The version control tool should integrate with the build tool being used in

the organization)

10. Do we need a tool that should be compatible with a specific software being used

in the organization?

Note: Here, compatibility is used as the tools ability to use the services of an

underlying platform

Note: The operating system compatibility will not be covered here since it is

covered with another question because of its importance

(E.g.: The Java based CASE tool should be compatible with JVM 5.0 or the

CASE tools web interface should be compatible with Safari browsers)

11. Do we need a tool that should be compatible with a specific software

development technology being used in the organization?

(E.g.: The CASE tool should be developed for use in JAVA/J2EE platforms)

39

3.2.1.3 Development Phase Related Constraints

The organization will be using the CASE tool(s) for a software development phase or

practice. Thus the CASE tool(s) should be covering this phase or practice. This forms a

main constraint on the tool: its intended area to work. We certainly are not interested in

the tools covering unrelated areas.

In this step, the organization should elaborate on the phase or practice that the CASE

tool(s) will be used. It should be investigated whether the practice involves clear-cut

subpractices. Results of this examination will be input to the “Tool Area to Search

Determination” activity in which the concerned development practices or subpractices

will be matched to CASE tool areas.

The questions below should be answered to extract the development phase related

constraints.

Development Phase Related Constraints Question Set:

1. In which software development phase or practice will the CASE tool be used?

2. To which subpractices can the practice be divided?

Note: Answer to this question will not reveal a constraint actually but will be

used in the “Tool Area to Search Determination” activity.

After determining the “Development Phase Related Constraints” the constraint

determination step will be over and the evaluation team can proceed to the next step

which is “Existing Toolset Examination”.

40

3.2.2 Step2: Existing Toolset Examination (optional)

This step is only valid if there are CASE tools being currently used for the intended

practices in the organization. It can be skipped if there are no existing CASE tools.

Because of this reason the activity is “optional”.

In this step, we intend to extract the positive and negative qualities of the existing tools

so that we can decide on keeping them or replacing them with a better alternative. At the

end of this step the organization should produce three outputs namely: “Positive

Qualities of Existing Tools”, “Drawbacks of Existing Tools” and “Desired Additional

Functionality”. These outputs will be used when preparing the high level criteria and

will aid to determine what to look for when searching a better tool.

The source of this information will be the users of the existing tools. The gathering of

the information may be accomplished by using a survey which consists of the questions

below or by using a group meeting.

Existing Toolset Examination Question Set:

1. Which tools are currently being used in the organization for the intended field?

2. For each of these tools, what are the functionalities or good quality

characteristics that the users like and benefit from?

3. For each of these tools, what are the drawbacks?

4. For each of these tools, what are the desired additional functionalities?

Note: The desired functionality may include the positive replications of the

drawbacks.

41

After gathering the answers, they should be documented in three categories: Positive

Qualities of Existing Tools, Drawbacks of Existing Tools and Desired Additional

Functionality. At the end of this step, it can be concluded that the existing tools will

absolutely be kept and no evaluation corresponding to their areas is needed. If this is the

case, the to be acquired tools’ support for the integration with the existing tool(s) should

be included as a high level criterion.

3.2.3 Step3: Tool Area to Search Determination

If a complete software development phase or practice will be automated, then the overall

practice and the subpractices forming it should be evaluated to match the existing CASE

tool areas in today’s CASE tool technology. According to this examination, the solution

may comprise more than one CASE tool area (the technology area or software

development practice for which CASE tools are developed in the market) so more than

one CASE tool. Then some parts of this methodology should be repeated for each CASE

tool area.

The possible subdivisions of the intended practice were identified in the constraint

determination step when determining development phase related constraints. This

information will be utilized here.

This step of the methodology involves browsing the literature for CASE tool areas that

correspond to the intended practice as a whole, its each subpractice and possible

combinations of its subpractices.

Therefore, we can state that; the tool areas are the selected elements of the set of

subpractice combinations of the intended practice. If a software development practice

“X” can be divided into three distinct subpractices like A, B and C then the CASE tool

area possibilities will be: ABC, AB, AC, BC, A, B, C.

42

One or more of these possibilities should be selected according to the examination of the

literature. For example, if we assume that the practice which will be handled by CASE

tool(s) is “configuration management”. From the constraint determination step, we have

the information that the configuration management practice can be divided into four

subpractices: configuration identification, configuration control, configuration status

accounting and configuration auditing. Now, in the current step, we should determine

the tool areas that will be investigated. Information sources like the internet should be

searched to find whether CASE products are available for the configuration management

as a whole or for its subpractices. Such a result may yield from that examination:

The CASE tool areas that will be taken into consideration are:

1. Configuration management tools (tools that include all the functionality)

2. Configuration (version) control tools

This result means that the organization couldn’t find any tools for configuration

identification, configuration status accounting or configuration auditing. The tools in

today’s technology either include all the functionality of the configuration management

practice or just the configuration control subpractice. So this gives us two areas for

further consideration. Here however, the second area is a subset of the first area which

means that if it is revealed that the organization has criteria that the second area tools do

not address, it will be eliminated and the method will continue on one area only.

Another point that should be considered in this step is the scope which the organization

will use when examining the tool areas. That is, if a software practice is divided into

three tool areas, will the organization examine a tool corresponding to a tool area just

from the perspective of its benefit to the whole area or with the other properties it have?

43

For example, if we assume that we intend to acquire CASE tools for a software practice

that spans three tool areas as in the previous example as A, B and C. When we are

investigating tools for the A tool area, if we find tools that also cover an additional D

area, (that is tools belonging to the AD area), will we consider only the functionality of

A or will we consider the functionality of D as well? If the organization is also interested

in the functionality of D area, then one of the tool areas to search will be AD instead of

only A even if functionality of D is not related for the intended practice (ABC).

Another case is comparing a tool area combination with an identical single tool area. For

example, if we assume that we have tool areas AB, A and B. At the end of the

methodology, we would find a best tool for AB, a best tool for A and a best tool for B.

In such a case, we should determine whether we will acquire both of the tools of A and

B (assuming that they are interoperable) or we will acquire the single tool of AB. If we

assume that we call the combination of the capabilities of the tools belonging to A and B

as X and we call the capability set of the tool of AB as Y. Then for this decision, it is

required to make a final comparison between X and Y to conclude about the tool or tools

that will be acquired.

After determining the tool areas, the evaluator team can continue to the last step of this

activity which is “High Level Criteria Determination”.

3.2.4 Step4: High Level Criteria Determination

When the evaluator team finishes all previous steps, it will have requirements

originating from constraints and from existing tool experiences. Also, the tool areas to

consider will be already determined before starting this step. In this step, these

requirements will be consolidated and converted to high level criteria for tool selection.

44

Therefore, this is essentially a step of consolidation and conversion. The conversion

stated here is the conversion between requirements to criteria since they are not

equivalent concepts. Despite some other work on the field of software selection which

does not differentiate between organizational requirements and tool criteria, the

proposed methodology emphasizes this difference in agreement with the SEI process

guide on COTS software selection [9].

The main difference between requirements and criteria is that the requirements are

usually formed to express needs however criteria should express the expected

capabilities. This in turn changes the structure of the criteria in such a way that they

should be more concrete than high level requirements. They should be easily assessable

and defined in clauses expressing capability needs. The evaluation of these clauses

should not require measurement and should be answerable in a yes/no fashion.

Also, as stated in the activity’s title, the criteria prepared in this activity should be high

level that is they should represent the broad outcomes the business requires, rather than

the specific functions being expected. One exception can be the criteria derived from the

negative tool experiences of the workers. These criteria can be more specific than the

other criteria originating from the constraints however they are also addressed in this

activity as high level criteria.

In that respect, the proposed methodology offers the below format of clauses to use

when defining criteria:

 The CASE tool(s) shall support…

 The CASE tool(s) shall be able to…

 The CASE tool(s) shall include…

 The CASE tool(s) shall cost…

 The CASE tool(s) shall be developed for…

45

For example, a requirement of the organization which originates from negative tool

experiences of the developers would be: “The system shall be easy to configure” which

is too abstract and does not point to a tool capability. In the current step of the

methodology, this can be converted to a tool criterion such as: “The CASE tool shall

include a graphical wizard for the X functionality” which is concrete enough to assess.

Moreover, it can be seen that the criteria clauses do not include negatives such as the

“tool shall not include”. If such negative requirements exist, they should be converted to

their positive restatements when deriving criteria from them.

Criteria originating from constraints generally are converted to criteria that are

applicable to all of the tool areas. Therefore these are consolidated into “General High

Level Criteria” output. General criteria apply to all the tool(s) that will be acquired.

However, there may be some exceptions for some criteria which should be noted when

declaring them. Remaining criteria will be organized for each of the tool areas found in

the previous step and will be consolidated into “High Level Criteria for Each Tool Area”

output.

After categorizing the criteria formed here as general criteria and criteria for each tool

area, the criteria should be numbered. The numbering should start with the HLC prefix

meaning High Level Criteria for example HLC1, HLC2, etc…

When the numbering ends, the evaluation team is considered to have finished this step

and may continue to the prescreening activity.

Although the evaluation team is considered fully responsible for the process, it may be

useful at this step to arrange a group meeting with all of the stakeholders of the system

to discuss the formed criteria and gain everyone’s approval.

46

3.3 The Prescreening Activity

Numerous tools have been developed in the market supporting nearly every aspect of

software development. In order to decrease the evaluation effort that will be needed in

the subsequent phases of the methodology, we need to narrow the number of candidate

CASE tools. The publications in the software selection area generally focuses on the

ranking and selection algorithms used for selecting a tool for defined candidates.

However, if we decrease the number of candidates in the first place, we will greatly

reduce the resources we spend on applying the methodology. At the end of this activity,

tools that don’t address the organization’s primary needs will be eliminated from

consideration. The high level criteria we obtained from the previous step will be used for

this objective.

It is important to note that the evaluation team can also start the “Low Level Evaluation

Criteria Definition” activity at the same time it starts the prescreening activity as

depicted in Figure 2. Since the two activities are independent, the evaluator team may

split and perform the activities in parallel to increase the pace of the selection process.

The prescreening activity is composed of two steps which are:

 Tool information gathering for each tool area

 Criteria matching for each tool area

47

Schematic representation of the activity is given in the figure below. (Figure 5)

Figure 5: Breakdown of the Prescreening Activity

The questions below should be answered at the end of this activity:

1. What CASE tools are available in the market for the specified tool area?

(corresponding to a software development practice)

2. Which CASE tools in the previous set satisfy the primary criteria established in

the high level evaluation criteria definition phase?

As can be seen in the figure the steps that form the activity can be sequentially

performed however it is suggested to conduct them in parallel giving feedback to each

other. This is because the aim of this activity is not gathering extensive information

about the tool but rather making the screening as fast as possible. The suggested

procedure to apply the steps is given at the end of the step definitions.

48

3.3.1 Step1: Tool Information Gathering for Each Tool Area

In this step, the organization should start searching the information sources to determine

the candidate tools for each tool area. For instance, if the tool area is UML modeling, all

the tools that are developed for UML modeling should be documented. It is better to

organize the tool information by using tables. The information to be collected is given

below. If the organization decides to use tables to organize data, suggested columns are

also given in the table. Each row in this case will represent a tool candidate as can be

seen in the example. (Figure 6)

For each tool area:

Table 1: Tool information table format (column-wise)

Column1 : Tool Name The tool’s name

Column2 : Producer-Vendor The tool’s producer if it is commercial or the team that

first developed the tool if it is freeware-open source

Column3 : License Can be commercial if the tool is being sold with a price

(proprietary) or can include the type of free software

license

Column4 : Tool Site The tool’s website

Column5 : Tool Version The version of the tool that will be evaluated during

screening and the following activities of the

methodology

49

Example:

Figure 6: Example from the case study

The fastest information source to get this data is the internet. The searching process may

be conducted separately for each tool area in parallel. This is an important step in the

overall methodology since a tool that exists but missed from consideration can be the

tool that fits best in the organization. Also, adding a new tool in the later stages of the

methodology means repeated screening, evaluation and computation efforts.

3.3.2 Step2: Criteria Matching for Each Tool Area:

In this step, the organization should start evaluating tools according to the high level

criteria. It is better to start with criteria that can be found most easily like an

environmental criterion such as “The CASE tool shall support RedHat Enterprise Linux

5 operating system for their server software.” This kind of information can easily be

found in the tool’s web pages. Other possible information sources include tool

brochures, existing tool users, forums and user groups, etc…

50

For criteria matching, usage of tables is recommended. Each row of the table will

represent a candidate CASE tool and each column will represent a high level criteria

number. A check mark is written at the cell corresponding to a criterion-tool match

(meaning that the tool satisfies the criterion). The tool(s) that satisfy all the criteria pass

to the next stage of the methodology.

An example of this kind of checklist is given below. (Figure 7)

Figure 7: Example from the case study

When a tool fails from one criterion, the other criteria do not need to be examined since

failure to satisfy a high level criterion is enough for rejection. This is the reason of the

“NE” marks in the example meaning “not evaluated”. For future reference, the failure

reasons of the rejected tools may be documented under the checklist in a “notes” section.

If none of the tools can pass the criteria, evaluators may decide to revise them to make a

less constraining criteria set or abandon the process.

The matching process may also be conducted separately for each tool area in parallel

therefore increasing the overall efficiency of the methodology.

It is stated that the two steps forming the prescreening activity may be performed in

parallel. Below is the suggested procedure for this case.

51

Suggested Procedure to Apply the Steps:

1. Construct the tool information gathering table for a specific tool area.

2. Search the tools that are developed for that tool area and write them sequentially

on the rows of the table.

3. Rank the criteria from most easily findable to least easily findable.

4. Construct the criteria matching table by putting the most easily findable criterion

at the first column and then putting others next to it according to the previous

ranking.

5. Start gathering tool information for the first tool in the tool information table

and go on with the others.

6. When searching information for the tool information table, if you encounter

information regarding the first few criteria, mark them immediately in the

criteria matching table.

With this procedure, it is intended to decrease the total information search time

compared to the sequential application of the steps.

At the end of this step, a subset of CASE tools that represent the first candidates for

selection should be obtained and the evaluator team can proceed to the next activity.

However, if all the tools are eliminated during this step, a return to the previous high

level criteria determination activity can be made for relaxing some of the criteria or the

process as a whole may be canceled if such a relaxation is not acceptable.

52

3.4 The Low Level Evaluation Criteria Definition Activity

After determining the high level evaluation criteria, it is time to define the organization’s

low level evaluation criteria which constitutes of the detailed functional and other types

of requirements being expected from the tool(s).

At the end of this activity, low level organizational criteria for the CASE tool will be

formed which will include two groups: “normal priority low level criteria” and “high

priority low level criteria”.

Then, the normal priority criteria will be subdivided into three categories: functional

requirements, quality requirements and supplier/community requirements. Nonexistence

of low priority criteria may be questioned here but it is found unlikely that an

organization would rate its criteria’s priority as low. Moreover, the normal priority

criteria’s importance may be adjusted in the ranking activity. The current activity’s real

purpose is to separate the high priority criteria from the rest.

The low level evaluation criteria definition activity is composed of 4 steps which are

given below. The first two of these steps should be performed in parallel if more than

evaluator exists.

 Organizational requirement analysis for each tool area

 External analysis for each tool area

 Criteria formation

 Criteria prioritization and categorization

53

Schematic representation of the activity flow is given in the figure below. (Figure 8)

Figure 8: Breakdown of the Low Level Evaluation Criteria Definition Activity

The process starts with the activity of “Organizational Requirement Analysis” in which

the evaluators collect in-house requirements. An external analysis is made in parallel to

obtain additional possible requirements. In the following “Criteria Formation” activity,

these requirements which are obtained from different sources (external and internal

sources) are combined excluding the duplicates. Also, in this step the conflicts between

the requirements are found if there are any. These conflicts should be resolved by

negotiations between the sources of the conflicting requirements and the evaluators.

54

In the “Criteria Prioritization and Categorization” step, the criteria are prioritized to

distinguish the high priority ones and the remaining normal priority criteria are

distributed into three groups according to their types as functional, quality or

supplier/community.

3.4.1 Step1: Organizational Requirement Analysis for Each Tool Area

In this phase, functional and nonfunctional requirements of the organization are

identified as comprehensively as possible. The source of the requirements may be

potential tool users, the organizational policies, other employees who have experience

for the CASE tools in the intended field and may also include the managers of the

departments in which the tool will be used. Also, hardware and software maintenance

engineers and system administrators should also be considered as a source. Some of

these are stakeholders who won’t use the system themselves but may impose some

constraints (thus forming some requirements) on it. Interviews, group meetings or

surveys can be used to gather data. In case of survey usage, the experience level of the

respondents and their attention contributes to the consistency and reliability of the

results [83]. For getting more details for the data gathering activities, the reader is

referred to the “requirements elicitation” resources in the literature.

Some of the guidelines that apply to requirements engineering are also beneficial when

gathering organizational CASE tool requirements such as;

 The requirements should be unambiguous and verifiable. (a template should be

used to decrease ambiguity)

 The requirements should be complete. (all services required by the user should

be defined)

55

 The requirements should be consistent. (requirements should not have

contradictory or overlapping definitions)

 The requirements should be realistic. (potential users may have unrealistic

demands according to current technology)

Additionally, below points may hold for the CASE tool area:

 Managers may have demands that increase their control but make the end user’s

(e.g. developers) work difficult.

 End users may have subjective demands that only aids in his/her working style

but not beneficial or required by others.

Nonfunctional requirements (quality, supplier/community) which relate to the system as

a whole should also be considered since they may be more important than functional

requirements because of the fact that functional requirements may have workarounds but

nonfunctional requirements like performance may not.

Moreover, it is better to have requirements which are quantitatively defined and can

objectively be tested. Obviously some requirements like maintainability cannot be

quantified though. The organizational requirement analysis step can be performed in

parallel with the external analysis step given below.

56

3.4.2 Step2: External Analysis for Each Tool Area

In this step, low level requirements are gathered from outside of the organization.

Sources include tool web pages, independent online resources like comparisons, tool

brochures, tool presentations or demonstrations, independent consultants and several

publications that are available in the literature for CASE tools.

As another information source, ISO 14102 [5] standard presents a classification of

CASE tools according to the lifecycle processes they support. The key characteristics

that should be present in the CASE tools supporting these areas are defined structurally.

Besides categorizing according to lifecycle processes, the standard also presents general

characteristics of a CASE tool organized into three groups: CASE tool usage

functionality, general quality and not related to quality. Some of these characteristics

may be used as a low level criterion.

Another source of low level criteria may be the online or published documentation of the

CASE tools. Most CASE tools offer online information centers from which extensive

information about the tool can be obtained. Examining the documentation of candidate

tools may reveal their strengths and weaknesses against each other and may lead to

formation of some additional requirements. However, it is important to note that the

online documentation of a tool may stress the tool’s strengths but not include its weak

points. Moreover, if the forums will also be considered, they should be examined

skeptically because the information people make would be biased. They could be

reporting positive qualities of a tool that they used to and defaming another because of

their lack of knowledge.

Apart from the tool’s functionalities, information about the vendor that produces the tool

may also be needed. For searching company profiles and products they offer, ICP

(http://www.icpcredit.com/) may be used. Also several other sources exist for this

purpose.

57

Moreover, CASE tool distributors may be contacted for a presentation of their offerings.

They may provide tool brochures or working demonstrations of the tool. These kinds of

meetings may reveal additional needs or desired functionality of the organization for the

tool. However, it is better to invite different vendors that are competitors in the same

area to gain different perspectives and to make unbiased decisions.

3.4.3 Step3: Criteria Formation

After finishing both of the previous steps, the organization should have requirements

collected from internal and external sources. In this step of the methodology, the

organization should consolidate the requirements that are elicited for each tool area.

This step is necessary because the evaluator making the organizational requirement

analysis and literature analysis may not be the same person. As stated before, this is also

an advised condition for the two activities to proceed in parallel which induces a

decrease in the time required to complete the methodology.

Therefore, there may be overlapping or conflicting requirements. In this step, these

inconsistencies will be tried to be eliminated.

Also in this step, the previously gathered requirements should be converted to criteria

and documented using a standard template. During this conversion, a requirement may

be detailed into two or more criteria according to the requirement’s abstraction level.

Moreover, negative requirements should be converted to their positive restatements in

this step.

58

Writing all the organizational criteria according to a standard template reduces

ambiguity, increases the effectiveness of the organization of the criteria and also

decreases the errors that may result when the criteria definitions are left to the

evaluators’ own interpretations. This template should include a rationale section which

details the reasons behind the criterion that will help decision makers in the evaluation

phase. The template below can be used for this purpose. Writing the definition and

rationale sections in a detailed manner is encouraged to prevent the possibility of

misunderstanding since the criteria may be defined and evaluated by different workers.

Evaluation Criteria definition template:

Table 2: Evaluation criterion table format (row-wise)

Item name Description

ID The criterion identifier

Title The title of the criterion

Definition The explanation of what is required by this criterion. This section may

involve several clauses formatted in the criterion pattern which represent the

breakdown of the goal of the criterion.

Rationale The explanation of the reason behind this criterion, in other words; this is

the area we describe why we need this criterion.

Source The information about where we have found this criterion from.

Adaptability The information about whether this criterion is adaptable that is whether it

can be changed or worked around to achieve the same or similar output

Priority (Optional)

Type (Optional)

The priority and type of the criterion in the template are left as optional as they will be

documented in the next step however for data integrity they can also be evaluated and

documented when constructing evaluation criteria tables.

59

3.4.4 Step4: Criteria Prioritization and Categorization

In this step, all the criteria that are formed should be prioritized in each tool area. The

priority will be either normal or high. The high priority low level criteria will be input to

the next phase of the methodology which is the screening phase. In order a criterion to

be high priority it should resemble a characteristic of the tool that should be present as a

“must” when the organizational requirements are concerned. A normal priority on the

other hand represents the desire for a criterion but not absolute necessity. Moreover,

high priority criteria represent characteristics which the tools may possess at the required

level or may not possess at this level. A pass or a fail decision is made according to this

information. However, in the case of a normal priority criterion, the candidate tool will

be assessed according to how well it satisfies this criterion and take a score about this,

not just a pass or a fail judgment.

After prioritizing the criteria, the next step is categorizing the normal priority criteria

into three groups which will make up the type of the criteria: functional criteria, quality

criteria or supplier/community criteria. The high priority low level criteria need not to be

categorized.

Functional criteria: This type of criteria describes what the system should accomplish.

In other words, they resemble a capability that should be offered by the CASE tool.

Quality criteria: These are the criteria that are not directly related to the individual

system functions but they relate to the system as a whole. They are criteria like:

efficiency, reliability, portability, etc… Organizational criteria that are only valid for the

specific organization that is in the process of CASE tool acquisition are also considered

in this category. For instance, a criterion that states that the CASE tool operations shall

support ISO 27001 is a quality criterion.

60

Supplier/community criteria: This type of criteria describes the quality of support that

the vendor of the tool provides. For instance, a criterion such as the tool supplier should

provide on-site support in the first month of CASE tool usage period is a supplier

criterion. Also, the criteria about the tool’s user community fall under this category.

It is important to note that these are the types that are sufficient to categorize the criteria

according to the methodology however they can be divided into finer categories or new

types can be added by the user. One of the candidate types for decomposition is quality

for instance. However, since the functionality is the most important factor in the CASE

domain, this decomposition was not decided to be necessary in the proposed

methodology. The execution of the methodology does not change upon addition of new

types but the user should be cautious about adding types that are clearly defined and do

not overlap.

Below template may be used to document the criteria priorities and types:

Table 3: Evaluation criterion priority and type table format (column-wise)

Item name Description

Column 1: Criterion ID The criterion identifier

Column 2: Priority The criticality level of this criterion (should be “normal” or

“high”)

Column 3: Type The information about whether this criterion is a functional

criterion, quality criterion or supplier/community criterion.

An example of this table from the case study section is given below for quick reference.

(Figure 9)

61

Figure 9: Example from the case study

After this step, high priority criteria which will be used for screening should be ready

and normal priority criteria should have been categorized according to their type. So the

screening activity can start.

It was stated at the end of the high level criteria determination activity that a group

meeting with the stakeholders may be arranged for validation purposes. This condition

also applies here so that the formed low level criteria and their priorities may be

demonstrated to the stakeholders of the system to gain their approval as a way of

validating the process.

3.5 The Screening Activity

After determining all of the criteria, the screening phase of the methodology can start. At

the beginning of this activity, the tool information that has been gathered in the previous

prescreening activity and the high priority low level criteria should be at hand. In this

activity, more CASE tools that don’t satisfy the needs defined as high priority low level

criteria will be screened. This is the last screening phase in the proposed methodology

and the tools that pass this screening enter the evaluation phase for detailed examination.

This phase is executed in two steps:

62

 Tool information gathering for each tool area

 Candidate CASE tool selection for each tool area

Schematic representation of the activity flow is given in the figure below. (Figure 10)

Figure 10: Breakdown of the Screening Activity

This activity in fact is very similar to the prescreening activity. The only difference is

that in this activity, the screening of the tools is performed against low level criteria

which are more detailed and require more searching in order to assess. As in the case of

prescreening, the two steps forming the activity are performed in parallel.

3.5.1 Step1: Tool Information Gathering for Each Tool Area

Some tool information was gathered in the previous prescreening phase however this

information may not include data that entails whether the tool satisfies the high priority

criteria found in the previous activity. So to check this, additional tool information may

need to be gathered. The tools’ own documentation may provide sufficient information

for this step. There is no format suggested to organize the tool information gathered in

this step. As mentioned before, this step should be followed in parallel with the step

below.

63

3.5.2 Step2: Candidate CASE Tool Selection for Each Tool Area

In this step, a checklist similar to the one constructed for the prescreening activity is

prepared that shows whether the tools being examined actually satisfy the elicited high

priority low level criteria. The tools that fail to satisfy or offer a workaround for a single

high priority low level criterion is enough to be eliminated. It is suggested that the

reason for their elimination is documented under the checklist in a notes section for

future reference. At the end of this phase, a final list of tool candidates that passed from

all of the screening procedures is obtained. This candidate list will be input to the

evaluation and comparison activity. However, failure of the all the candidates during this

step is also a possibility. In such a case, a return to the previous low level criteria

determination step may be performed to relax some of the criteria in order to allow some

candidates to pass.

3.6 The Evaluation and Comparison Activity

In the beginning of this activity, the evaluators should have determined the tools that

satisfy all the high level and low level criteria that have high priority. All the tools that

were able to pass up to this stage can be used in organization’s intended practice.

However, one of them should be selected for each tool area. For this purpose, the tools

are evaluated against the normal priority low level criteria to determine the one that is a

best fit when the needs of the organization are considered.

This activity is composed of two sequential steps:

 Assessment method determination for each criterion

 Assessment and comparison for each criterion

64

These steps should be performed for each tool area but each tool area’s evaluation can

be made in parallel.

Schematic representation of the activity flow is given in the figure below. (Figure 11)

Figure 11: Breakdown of the Evaluation and Comparison Activity

3.6.1 Step1: Assessment Method Determination for Each Criterion

To conduct the evaluation process, assessment method for each tool criterion should be

determined. Possible assessment methods are given below.

 Official tool documentation lookup: Commercial tools have dedicated sites that

contain tool documentation. Freeware tools may also have official websites

maintained by the group which promotes the tool. The documentation that comes

with the tool installation is also considered as official in this study.

65

The technical details about the tools’ functionalities can usually be found in the

tool documentation. Also some quality metrics about the tool may be included

and can be assessed from the documentation. For the information that exists in

the documentation but the evaluators want to see themselves, the following

method can be used.

 Case study on tool (evaluation copy): Hands-on inspection on the tool is one of

the most reliable methods [3]. Most of the CASE tool vendors offer directly

downloadable or upon-request evaluation copies. Some of them restrict tool

functionality or scalability, some of them restrict license period and some of

them restrict all. In spite of these limitations, most of an organization’s criteria

can be tested on an evaluation copy. Of course, freeware tools can be

downloaded for this purpose with no limitation. If an evaluation copy does not

exist for a specific tool, the vendor can be contacted for a permitted work on the

real copy or this method is not used.

Some quality criteria like ease of installation, easy to use GUIs or easy

configuration can best be assessed by working hands-on with the tool. After

downloading the evaluation or real copy of the tool, a case study over a scenario

that is close to reality can be performed to observe the tool behavior and assess

the subject criteria. If the vendor of the tool does not provide an evaluation copy

or testing the subject criterion requires extensive product knowledge, then the

method below can be used.

 Demonstration or information request from the supplier: The tool suppliers are

usually generous about providing information or making a demonstration of their

tools. In case of a criterion that is hard to test for evaluators but easy to show by

the vendor can be assessed using this method.

66

Local distributors of the firms can be found from their web sites and contacted.

In case of a demonstration request, the evaluators should concentrate on

questioning the features of the tool which are the subjects of the criteria since the

vendor team would exaggerate their tool’s strong points and give information

about unrelated areas.

Also, a request for proposal (RFP) can be submitted to the vendor to get

information about very comprehensive and detailed criteria but it should be taken

into account that preparing an RFP is a very time consuming task [7]. If a

distributor of the vendor does not exist in the region of the organization, then

evaluators may ask about the subject criteria via email. However this situation

also raises concerns about the expected tool support during the tool’s lifecycle in

the organization if it is chosen to be used.

In case of freeware tools, this method would be not applicable however there are

some firms which offer commercial support services for open source tools. If

such a firm can be found, they can be contacted in regard of this method.

 Visiting an existing user group: In this method, the organization arranges a

meeting with another organization that is preferably doing similar business and

has been using the subject tool for a considerable time. This visit may also be

arranged by the supplier of the tool since they tend to promote their success

stories.

This method can reveal first hand information about some tool characteristics

which the evaluators cannot realize using another method. Robustness is an

example for such kind of a characteristic although an idea can be grasped looking

at the tool’s defect count or testing an evaluation copy.

67

 Online tool newsgroup or forum search: Online search can also be regarded as

an assessment method however it should be utilized when all the other methods

are not available or as a secondary method after utilizing one of the other

methods. This is because the information that can be obtained from these sources

may lead to incorrect decisions since the source of the information is usually not

reliable.

When using this method, it is better to look for general newsgroups or forums

that focus on the tool area rather than a specific tool.

 Tool reference search: This method involves an investigation of the vendor’s

references. In other words, the evaluators try to find which organizations are

clients of the vendor in regard of the subject tool. A large number of clients (high

market share) and tool’s long presence in the market are good signs of tool

reputation. Also, a large number of clients that are similar in size and conducting

similar business with the organization can be desired. Some firms like Gartner

and Ovum regularly assess products in this manner [87, 88].

Selection of a proper assessment method is a matter of available time and facilities. The

above method list is presented as a guide only in that another method that can yield the

desired result can also be utilized by the organization. It is also important to note that

these methods can better be applied in combination to increase the accuracy of the

results.

The template below is proposed to place the information gathered in this step.

68

For each tool area:

Table 4: Criterion-Assessment method table format (column-wise)

Item name Description

Column 1: Criterion ID The number of the criterion

Column 2: Criterion Name The name of the criterion

Column 3: Assessment method The assessment method of the criterion. This can be

one of the methods given above or a combination of

them. In case of a combination the order defines

precedence.

An example of this table from the case study section is given below for quick reference.

(Figure 12)

Figure 12: Example from the case study

After determining the assessment methods for each criterion in each tool area, the

evaluators may pass to the next step in the methodology.

69

3.6.2 Step 2: Assessment and Comparison for Each Criterion

In this step, the evaluators should gather all the stakeholders and decision makers for the

system to perform the actual assessments for each criterion using the methods defined

previously. The group decision making activity would offer many benefits including

improved overall decision quality and decision making effectiveness. However, forming

the group from people who have different perspectives is important since people having

the same role tend to weight the priorities similarly. For instance, management would

weight managerial factors heavier than non-management members [84].

The results should be documented using a tabular format including a quantified

comparison.

“Fundamental verbal scale for pairwise comparison” that is developed by Saaty in his

“Analytical Hierarchy Process” (AHP) is used for quantifying the comparison (Table 5)

[10]. Here, only the pairwise comparison of the candidate tools is performed according

to AHP. The results will be used in one of the steps of the following ranking and

selection activity where the full form of AHP will be utilized.

Table 5: Saaty’s “Fundamental Verbal Scale for Pairwise Comparison” [10]

Expressed Judgment of Preference Numerical Value

Extremely preferred 9

Between very strongly and extremely 8

Very strongly preferred 7

Between strongly and very strongly 6

Strongly preferred 5

Between moderately and strongly 4

Moderately preferred 3

Between equally and moderately 2

Equally preferred 1

70

Fundamental verbal scale for pairwise comparison is used when comparing two

alternatives against a criterion. The procedure involves constructing a tabular matrix

where rows and columns are filled with the exact alternatives. Then, the alternative in

the first row is compared to each alternative in the columns. If the alternative in the row

is better compared to the alternative in a column, a value selected from the verbal scale

(Table 5) according the amount of superiority of the better alternative over the other is

inserted in the corresponding cell. If the alternative is worse than the alternative in a

column, reverse values are used. Value of one is used if the two alternative are the same

or perform same according to the subject criterion. Therefore the left diagonal values are

always one. This is illustrated in the example below.

Suppose we have three alternatives named as Alternative A, Alternative B and

Alternative C. According to a criterion X:

 Alternative A is very strongly preferred over Alternative B.

 Alternative A is moderately preferred over Alternative C.

 Alternative C is strongly preferred over Alternative B.

In this case, the comparison table for the criterion will be like the one given in table 6

below.

Table 6: Comparison table example

Comparison Alternative A Alternative B Alternative C

Alternative A 1 7 3

Alternative B 1/7 1 1/5

Alternative C 1/3 5 1

71

To summarize, in this step, the evaluations using the proper assessment method(s)

defined in the previous step and pairwise comparisons according to AHP verbal scale are

made. The template below is proposed to consolidate the findings and comparisons.

(Table 7) It is prepared according to the case of three candidates and can easily be

extended by the user to accommodate more. (By adding a row and a column for each)

For each criterion:

Table 7: Evaluation and comparison table format (row-wise)

Item Name Description

Criterion ID The criterion identifier

Criterion Name The name of the criterion

Candidate 1 Details of assessment findings of candidate 1 concerning this

criterion

Candidate 2 Details of assessment findings of candidate 2 concerning this

criterion

Candidate 3 Details of assessment findings of candidate 3 concerning this

criterion

Comparison Candidate 1 Candidate 2 Candidate 3

Candidate 1 1 Result of verbal scale

comparison

Result of verbal

scale

comparison

Candidate 2 Result of verbal

scale comparison

1 Result of verbal

scale

comparison

Candidate 3 Result of verbal

scale comparison

Result of verbal scale

comparison

1

72

An example from the case study is given below. (Figure 13)

Figure 13: Example from the case study

After finishing the assessment for all of the criteria, this activity is considered to be

finished.

3.7 The Ranking and Selection Activity

Since all the evaluations are made, this last activity of the methodology merely involves

some calculations and a final assessment to find the best candidate for each tool area.

The activity is composed of two steps.

 AHP application

 Final selection

The first step includes six sequential sub-steps which can be seen in the figure below.

(Figure 14) After completing these steps, a ranking is formed upon which the final tool

selections can be made. The details of the steps are given next.

73

Hierarchial problem
model construction

Derivation of ratio scale
priorities for the

categories

Category
Priorities

RANKING AND SELECTION

Hierarchial
Problem Model

Derivation of ratio scale
priorities for the criteria

Criteria
Priorities

Derivation of ratio scale
priorities for the

alternatives

Consistency ratio
estimation

Overall priority ranking

Alternative
Priorities

Consistency
ratios

Ranking
results

AHP Application

Final Selection

Figure 14: Breakdown of the Ranking and Selection Activity

3.7.1 Step1: AHP Application

Analytical Hierarchy Process (AHP) [10] which is a well-known multi criteria decision

making technique is selected as the ranking method. When the manual approximation

method is used [11], AHP can be applied in six steps at minimum. The number of steps

increases as the level of AHP model increases which is actually determined in the first

step: Hierarchial problem model construction. The minimum number of levels in an

AHP hierarchy is three in that the first level represents the overall goal, the second level

represents the objectives or the categories and the last level represents the alternatives.

74

After constructing the problem model, the second step involves constructing a pairwise

comparison matrix for the second level objectives or categories and the third step

involves constructing a pairwise comparison matrix for the third level alternatives. Then,

the comparison matrix of the alternatives is normalized in the fourth step according to a

specific procedure which will be detailed later in this chapter. The fifth step involves the

application of a consistency check algorithm to detect inconsistent judgments which can

then be corrected to increase the accuracy of the method. Finally, the sixth step utilizes

the normalized matrix produced in step four and the comparison matrix in step two to

obtain the overall priority ranking among the alternatives.

It should be pointed out that in the proposed methodology, we combined the application

of step there and four above into a single step but added an additional step because of the

introduction of one more level to the minimal three level hierarchy. Thus, the number of

steps remains at six. The explanation of these steps will be given in the succeeding

sections.

The reasons for selection of AHP method are detailed below.

Selection of the ranking method: Software selection is a problem that requires a multi-

criteria decision making (MCDM) method to be applied. The most frequently used

methods in the software selection field are the AHP and the WAS (Weighted Average

Sum) methods. Also, fuzzy based approaches have been tried in this area [8].

These three alternatives are considered in this study and AHP is selected as the most

proper method because of the following points:

75

Strengths of AHP concerning the proposed methodology:

 AHP can be applied in a decision making situation where qualitative factors

are dominant in number over quantitative factors.

 AHP organizes criteria in a hierarchy which can easily be mapped to

categorized software characteristics.

 AHP procedures are suitable for group decision making and help discussions

to center on objectives rather than on alternatives [85].

 Pairwise comparisons used in AHP are more accurate and more defensible

then arbitrarily assigning a numerical priority to a criterion [11].

 Expressing the comparison using words according to the Saaty’s verbal scale

is more appropriate to support the inexact judgments of relative CASE tool

priorities.

 AHP includes built-in consistency tests [84].

 AHP allows discussion to continue until all available and pertinent

information has been considered [85].

Also several weaknesses of the method exist according to Jadhav and Sonar [8]:

Weaknesses of AHP:

 AHP is time consuming because of the high number of pairwise comparisons

which increase as the number of alternatives increase. (N(N-1)/2 pairwise

comparisons for N alternatives)

76

 When the number of alternatives or criteria changes, priorities of alternatives

should be reevaluated.

 Addition or deletion of alternatives can lead to changes in the final rank [4].

Because of the usage of progressive and rigorous screening in the methodology, the

alternatives that can pass to the ranking phase is minimized which refutes the effect of

the first weakness. However, the risks involved with the second and third weaknesses

are valid but the advantages of the method overwhelm these points.

The WAS method: The weighted average sum method simply involves giving a score and

weight for each alternative to find the best one by multiplying these. It is very easy and

fast to use however it has serious limitations two of which are considered sufficient for

its disqualification. These are given below:

 Since the output of WAS is real numbers, the investigators may wrongly assume

that a result of a measured capability can indicate differences in ratios.

For instance, if we assume that we have found the score of a weighted criterion

of a CASE tool as 2, this does not mean that it is exactly twice as better than a

CASE tool which has a score of 1 for the same criterion. Therefore, we can

conclude that the scores which the method gives do not induce relative

superiority differences between the tools [1].

 When the number of criteria is high, it is very difficult for the evaluators to

assign weights for each of them because of the limitations of human mind when

dealing with multiple alternatives [1].

77

Fuzzy based approaches: Fuzzy based approaches for decision making in the software

selection area were used in relatively few studies however they were found successful

and promising. This is attributed to the method’s ability to accommodate the vagueness

and ambiguity that are inherent in human decision making.

However, the method requires computation of fuzzy appropriateness index and ranking

values for all alternatives which is a very tedious work [8]. In case of existence of a

dedicated tool for fuzzy calculations, this method may also be used but such a tool

couldn’t be found by the author.

Considering these findings, a four level AHP implementation was chosen as the most

suitable ranking method. It is also important to note that making the rankings according

to pure human judgment in a discussion meeting was also an option. However, when the

possible number of alternatives and limits of the human decision making capabilities are

considered, this approach was found to be much more error-prone than applying a

multiple criteria decision model like AHP.

AHP is suggested to be conducted according to the manual approximation method

detailed in the article by Jayaswal, Patton and Forman [11] or the real eigenvector

method which is the original implementation by Saaty and gives the most accurate

results.

However, using the eigenvector method requires extensive calculations and only feasible

with the help of an AHP tool like the “Expert Choice” [12]. Expert Choice is a well

known tool in the area and has the additional benefit of showing the consistency values

during the comparisons.

78

Shaped by the manual approximation method, this step is composed of six sequential

sub-steps given below. It is important to note that this is not the exact replication of the

Jayaswal’s procedure. Some flexibility is removed in accordance with the methodology

however the main principles remain the same.

 Hierarchical problem model construction

 Derivation of ratio scale priorities for the categories

 Derivation of ratio scale priorities for the criteria

 Derivation of ratio scale priorities for the alternatives

 Consistency ratio estimation

 Overall priority ranking

3.7.1.1 Hierarchical Problem Model Construction

When starting to solve a multi-criteria decision making problem using AHP, the first

step is constructing the problem hierarchy. The hierarchy is usually depicted in a

diagram where the overall goal is placed on top and the alternatives in each layer are

connected to their parents finally connecting to the goal. In the figure below, the

proposed hierarchy within this methodology is given in the case of nine low level

criteria that are arbitrarily numbered and three tool alternatives. (Figure 15)

This is a four level hierarchy with levels: The Goal, Categories, Criteria and

Alternatives. The goal represents the organization’s aim to apply the ranking that is

selecting the best CASE tool.

79

The categories in level 2 represent the criteria types proposed with the methodology

which may be extended by the user. If there is such an extension, then the categories in

the hierarchy should be changed to reflect the new type set. In level 3, low level criteria

are presented which are connected only to their type. In some AHP implementations

elements at this level may be connected to all of the nodes above them however this is

not mandatory. In level 4, alternatives that is the tool candidates are presented which are

connected to all of the criteria above them.

Figure 15: Proposed AHP problem hierarchy

After constructing this hierarchy, the organization can pass to the next step.

3.7.1.2 Derivation of Ratio Scale Priorities for the Categories

In this step, relative importance of the categories should be judged by the evaluators

which is accomplished by utilizing the “Fundamental Verbal Scale for Pairwise

Comparison” given in Table 5. The evaluators should make the below comparisons one

by one and insert the corresponding values from the verbal scale into the category

comparison table.

80

Comparisons to be made:

 Functional versus Quality

 Functional versus Supplier/Community

 Quality versus Supplier/Community

Then the row-wise totals are computed and weighted for each row and inserted into the

category comparison table. The format of this table is given below. (Table 8) It is

suggested to use three decimal places for all of the calculations in this activity.

Table 8: Category comparison table format

Comparison Functional Quality Supplier/

Community

Approximate

Weight

Functional 1 Result of

verbal scale

comparison

Result of verbal

scale comparison

Row total 1/ Total

Quality Result of

verbal scale

comparison

1 Result of verbal

scale comparison

Row total 2/ Total

Supplier/

Community

Result of

verbal scale

comparison

Result of

verbal scale

comparison

1 Row total 3/ Total

Total Total = Row total
1 + 2 + 3

Approximate weight of each row represents the quantified relative importance of each

category.

81

3.7.1.3 Derivation of Ratio Scale Priorities for the Criteria

In this step, relative priorities of the criteria in regard to their parent category are

determined. The same method used for the categories is used for criteria comparisons.

That is a comparison table is formed using the verbal scale. The following comparisons

should be made in case of three criteria for each category as in Figure 15.

Comparisons to be made:

 LLC1 versus LLC2 (for functional category)

 LLC1 versus LLC3 (for functional category)

 LLC2 versus LLC3 (for functional category)

 LLC4 versus LLC5 (for quality category)

 LLC4 versus LLC6 (for quality category)

 LLC5 versus LLC6 (for quality category)

 LLC7 versus LLC8 (for supplier/community category)

 LLC7 versus LLC9 (for supplier/community category)

 LLC8 versus LLC9 (for supplier/community category)

Three tables should be constructed corresponding to each category. The format of the

tables will be the same as Table 8 except the row and columns will be filled by the

criteria IDs. It is important to note that the total of criterion weights should be one for

each category. This means that if we add the weights of every criterion, we would get

three. After determining the weights of the criteria, the evaluation team may pass to the

next step.

82

3.7.1.4 Derivation of Ratio Scale Priorities for the Alternatives

Calculation of the priorities for the alternatives is different than the scheme used in the

previous steps. The original method of Saaty involves mathematical eigenvalue and

eigenvector calculations for this phase [10]. However, if the evaluator team lacks

suitable software for this purpose, the following approximation method is proposed in

accordance with Jayaswal [11]. This procedure is fast and provides very close results to

the eigenvalue computation if the consistency of comparisons is high which is calculated

in the next step.

Procedure for priority approximation:

1. Collect the comparison data determined in “Evaluation and Comparison”

activity previously for the first criterion.

2. Construct the synthesis table given below (Table 9) for the criterion.

3. Sum the verbal scale values column-wise to get the totals for each column.

4. Divide each cell by its column total and record the result in the corresponding

synthesis cell. (The synthesis section of the table is called the “normalized

pairwise comparison matrix” in AHP)

5. Find the average of the elements in each row of the synthesis section. These

averages represent tool superiority in regard to the specific criterion being

considered.

6. Repeat the procedure for other criteria.

83

Table 9 shows the format of the synthesis table proposed.

Table 9: Synthesis table format

Item Name Description

Criterion ID The number of the criterion

Criterion Name The name of the criterion

Comparison (this section

comes from the

evaluation activity)

Candidate 1 Candidate 2 Candidate 3

Candidate 1 1 (A) Result of verbal

scale comparison

(D)

Result of verbal

scale comparison

(H)

Candidate 2 Result of verbal scale

comparison (B)

1 (E) Result of verbal

scale comparison

(I)

Candidate 3 Result of verbal scale

comparison (C)

Result of verbal

scale comparison

(F)

1 (J)

Total Column total 1

(CT1)

Column total 2

(CT2)

Column total 3

(CT3)

Synthesis Candidate 1 Candidate 2 Candidate 3 Row

Average

Candidate 1 A/CT1 D/CT2 H/CT3 Av1

Candidate 2 B/CT1 E/CT2 I/CT3 Av2

Candidate 3 C/CT1 F/CT2 J/CT3 Av3

Total 1.000

84

An example from the case study is given below for the synthesis table which should be

prepared for every low level criterion. (Figure 16)

Figure 16: Example from the case study

Afterwards, the team may pass to the next step where the consistencies of the previous

comparisons will be checked.

3.7.1.5 Consistency Ratio Estimation

The AHP method tolerates inconsistency in the comparisons. However, to be as accurate

as possible, it is suggested to keep the inconsistency low. AHP offers a procedure to

compute the index of consistency for each comparison made according to the verbal

scale.

In this step, consistency index calculations for all of the pairwise comparisons are

performed to find and correct the inconsistent judgments. The following procedure

should be followed to compute the index and ratio values. A consistency ratio less than

or equal to 0.1 is considered reasonable.

85

Procedure for consistency estimation:

1. For the first criterion, construct the consistency check table from the template

given below. (Table 10)

2. Multiply each value in a column in the comparison section of the synthesis

table with the corresponding candidate priority given as the row average and

insert into the consistency check table according to the template.

3. Sum each row of the consistency check table and record in the corresponding

cell.

4. Divide each total with the corresponding priority value of the row alternative

and insert the values found into the “Division” column.

5. Compute the average of the division values. (DAv: Division Average)

6. Compute the consistency index (CI) according to the formula below.

CI = (DAv-n) / (n-1)

where n = the number of items being compared

7. Compute the consistency ratio (CR) according to the formula below.

CR = CI / RI

where Random Index (RI) is the average random consistency index given by

Saaty which depends on the number of elements being compared according

to the table below.

86

Table 10: RI values [10]

n 3 4 5 6 7 8

RI 0.58 0.90 1.12 1.24 1.32 1.41

As previously stated, CR ≤ 0.1 is considered acceptable.

8. Repeat the procedure for other criteria.

Table 11 shows the format of the consistency check table proposed.

Table 11: Consistency check table format

Item Name Description

Criterion ID The number of the criterion

Criterion

Name

The name of the criterion

Consistency Candidate 1 Candidate 2 Candidate 3 Totals Division

Candidate 1 A x Av1 D x Av2 H x Av3 Rowtotal1 Rowtotal1

/Av1

Candidate 2 B x Av1 E x Av2 I x Av3 Rowtotal2 Rowtotal2

/Av2

Candidate 3 C x Av1 F x Av2 J x Av3 Rowtotal3 Rowtotal3

/Av3

Average DAv

CI (DAv-n) / (n-1) = (DAv – 3) / 2 (n=3 for this example)

CR CI / RI = CI / 0.58 (According to Table 10)

87

An example for the consistency check table is given below. (Figure 17)

Figure 17: Example from the case study

If the consistency ratio of a comparison is found to be high, then the judgments made in

the comparison should be reevaluated.

3.7.1.6 Overall Priority Ranking

The relative priority of all the alternatives in regard to criteria is computed before

entering this step. Moreover, the relative priority of the criteria against each other and

the relative priority of the categories are also ready. In this last step of the methodology,

the evaluators should combine these findings in order to obtain the final ranking of the

tools.

First, the ranking of the tools in regard to the categories should be found. For this

purpose, the relative priorities of the criteria belonging to a category should be

multiplied with the relative priorities of the alternatives. If we consider the example

given in Figure 15, the rankings for the functional category which contains LLC1, LLC2

and LLC3 can be computed with the equations below.

88

Weight of Alternative 1 for the functional category = (Weight of LLC1 x Weight of

Alternative 1 in regard to LLC1) + (Weight of LLC2 x Weight of Alternative 1 in regard to

LLC2) + (Weight of LLC3 x Weight of Alternative 1 in regard to LLC3)

Weight of Alternative 2 for the functional category = (Weight of LLC1 x Weight of

Alternative 2 in regard to LLC1) + (Weight of LLC2 x Weight of Alternative 2 in regard to

LLC2) + (Weight of LLC3 x Weight of Alternative 2 in regard to LLC3)

Weight of Alternative 3 for the functional category = (Weight of LLC1 x Weight of

Alternative 3 in regard to LLC1) + (Weight of LLC2 x Weight of Alternative 3 in regard to

LLC2) + (Weight of LLC3 x Weight of Alternative 3 in regard to LLC3)

After making these computations, we can rank the alternatives in the functional

category. Ranking in the other categories is likewise and straightforward.

Then, the overall ranking of the tools can easily be found by multiplying the tool

weights in regard to categories and category weights. For instance, the equation below

can be used to compute the overall weight of Alternative 1 in our example model.

Overall weight of Alternative 1 = (Weight of the functional category x Weight of

Alternative 1 for the functional category) + (Weight of the quality category x Weight of

Alternative 1 for the quality category) + (Weight of the supplier/community category x

Weight of Alternative 1 for the supplier/community category)

The weights of the other alternatives can be computed likewise and overall rankings can

be presented.

89

3.7.2 Step2: Final Selection

In the last step, final assessment about the tools should be made according to the ranking

devised in the previous step. This step is necessary because of the following reasons:

 The final relative priorities of the tools may be very close to each other or may

even be the same. Even if the AHP method provides reliable results with human

comparisons as input, those comparisons remain subjective so close results do

not impose absolute superiority of a tool over another.

 The proposed methodology provides a benefit oriented comparison between the

tools. The tool cost was only considered as a high level criterion at the beginning

to screen the tools that have considerably exceeding prices. However, the

combined tool prices in case of a multiple tool selection or the other costs

involved like the training and maintenance costs were not taken into account. In

this step, the so called tool costs can be reevaluated by the evaluators and cheaper

tools may be selected from nearly weighted alternatives although they may not

be the first.

 The tools’ interoperability and compatibility requirements with the environment

they will work in were considered as potential candidates for high level criteria.

However, in case of a tool combination selection, the integration requirement of

the tools between each other was not taken into account since this was impossible

to evaluate before the selection of the tools. In this step, the integration

possibilities between the tools can be examined and a tool combination that

provides the most powerful and seamless integration can be selected even if this

combination is not formed from the tools that are ranked as first in each tool area.

90

 If the objective of the organization applying this methodology was to decide

whether they will keep a tool or replace it, then this decision can be made at this

step. The evaluators should check the ranking, overall priority weight and the

integration ability of their tool to the other tools that are selected (in case of a

multiple tool selection) and make a judgment about replacement. When the

possible expenditure that will be spent on the new tool and possible time that will

be dedicated to learn it are considered, it is suggested that the existing tool be

kept if it is not too behind its competitors in the ranking and it has integrations

for the other tools that will be acquired.

So this step is the last chance to make a final evaluation considering the tool weightings,

cost, interoperability and other issues not mentioned in the methodology. This decision

should be made by ensuring an evaluator consensus.

After making the decision, the tools may be studied in a pilot project for validation

purposes before making their acquisition. This study may reveal incorrect criteria

evaluations such as tool’s inability to satisfy a criterion although it has gained a check in

the screening phase for that criterion. Also, some points that are missed from

consideration when defining the criteria may be discovered. However, this work is only

suggested if a suitable project and necessary time and resources are available. The

influence of human factors and other complications concerning pilot projects are

discussed in detail by Kitchenham and Kunda [89, 95].

After this step, the organization is considered to have finished the application of the

methodology. An informal “lessons learned” document may optionally be prepared at

this step to guide future evaluations. The case study which demonstrates all the steps of

the methodology on a real organization is given in the next chapter.

91

CHAPTER 4

APPLICATION OF THE METHODOLOGY ON A CASE STUDY

The organization that is the subject of this case study is a real institution participating in

several sectors. The IT department of the institution is actively developing, supporting

and maintaining software that is being used externally from web and internally by other

departments in the institution. Seventeen active developers are working in the

department. One of them is also responsible for the deployment of developed systems on

production systems and will be called as the deployer throughout this chapter. Mainly

Java and J2EE technologies are being used. The IT department was planning to engage

CASE software in its continuous integration process which is a practice for which there

are many CASE tools claiming to support complete or partial aspects. The decision

makers in the department had to select among the alternatives which will not need

extensive customization, address all the needs and be cost effective. Therefore the

department was a reasonable candidate for application of the proposed methodology.

The research questions of the CASE study were:

 Is the proposed methodology feasible to use in the context of the subject of the

case study? (Are all of the activities applicable and is the methodology able to

produce a result?)

 Can the methodology be finished in the expected time frame?

 How is the feedback of the evaluators and stakeholders about the methodology?

 Does the methodology enhance the evaluators’ knowledge of the organizational

requirements and CASE technology as proposed?

92

 How is the result of the methodology compared to the result of an ad hoc

decision in case of not using a methodology?

 How is the confidence of the evaluators and management about the results of the

methodology? (Will the tools found be actually used?)

These questions are answered in the discussion part at the end of this chapter.

The author of this thesis is also working in this institution as a software specialist and

was the one who offered the acquisition of CASE tools as a solution for the institution’s

problems and using the proposed methodology for selecting the best set. The details of

the proposed methodology were explained to the department managers who then gave

permission for the application and authorized the author of this thesis for conduction.

Afterwards, an evaluation team was formed the members of which will be detailed in the

succeeding sections. As stated, the overall purpose was the determination of a CASE

tool solution which will solve the integration problems being faced.

In the rest of this thesis, the details of the application of the proposed methodology will

be presented. The organization’s name will not be disclosed; instead “the department”

will be used to refer to the IT department of the organization. Also, the workers’ roles

will be referred when needed instead of their real names.

93

4.1 ACTIVITY 1: INITIATION

4.1.1 Step 1: Rationale Determination

The rationale of the department fits to the first and second scenario given in the

methodology that is “the organization may want to automate a complete software

development phase or a part of it” and “the organization may want to replace a CASE

tool with a better alternative”.

Continuous integration was already being conducted in the department but by manual

means. There was some automation in the subpractices that form continuous integration

however they were not integrated as a whole.

If we divide continuous integration into three necessary distinct areas (as explained in

the literature survey section) as continuous integration server area, version control and

build area, we can further analyze the problems being faced. The continuous integration

server tool area will be abbreviated as CI server tool area in the rest of the thesis. First of

all, the department did not have a CI server so automatic starting of builds was not being

accomplished. The deployer was collecting the work of everyone, integrating them and

making a deployment if everything was successful. This integration activity was not

being performed on regular intervals. It was being done when it was required to add

functionality or solve a problem in the system.

During the integration, problems with the code were appearing occasionally and solving

these problems was causing unexpected delays if they were hard to find. This was

causing severe problems if the change requested to the system was immediate.

94

Also, the team was having problems with their version control system, VSS (Visual

Source Safe). The main problem of the system was that it was not very successful at

handling concurrent development however this was not concerning continuous

integration. One drawback of VSS affecting continuous integration was the lack of

system notification that warns the users to commit their files after they finish working on

them. Some systems warn the user to commit when they exit their workbenches. A

similar functionality was needed because developers were sometimes forgetting to

commit their files into the repository even if they finished working on them. Thus the

changes in those files were not making their way into the integration build which was

causing nonexistence of expected functionality in the system. Finding the source of this

nonexistence was also causing loss of valuable time.

Developers were using the open source free tool named Ant as their build tool. They

were using it to package their applications on their workbenches. The department did not

have a problem with this tool and the packaging functionality it had. However, to see the

new possibilities in the technology, the build area was also requested to be evaluated.

According to the proposed methodology, it is required to form a problem statement at

the end of this activity. The situation of the department was summarized in the following

problem statement by the evaluators.

Problem statement:

The department is having difficulty and unnecessary delays in their integration process.

This is due to the human controlled (ad hoc) start and conduction of the process. The

integration of the changes made by individual developers to a central system is being

performed by a developer having the deployer role. The work collected from each

developer may not include the final work or the integration of the components may

cause compilation failures which can only be caught when the deployer is making the

integration build.

95

Complexities involved with finding the source of the problem makes the situation worse

and further delays the presentation of the added functionality to the system which is

sometimes requested immediately.

Automation of the integration process as a whole by using CASE technology is expected

to be a solution for the problem. Writing a tool from scratch instead of investing on

CASE software is not an option since the department does not have the necessary

experience or time for such an effort.

4.1.2 Step 2: Commitment Determination

In this step, the department’s commitment for the adoption of a CASE tool was

investigated according to the proposed methodology. The answers to the question set

given by the methodology which were answered by the evaluators are given below.

Answers to the Commitment Requirements Question Set:

1. Has the management fully agreed on acquisition and implementation of a CASE

tool?

The management is also aware of the problems being faced in the integration

process. The developers are usually blaming the integration failures for the

delays in providing the requested functionalities. The managers expect an

increase in the development efficiency by adoption of CASE tool(s) in the

integration area.

96

2. Has the management fully agreed on funding a CASE tool?

After mutual acceptance of the potential benefits of the CASE tool technology to

be used, management agreed on funding the acquisition. A maximum and

preferred amount of expenditure from the organization’s annual budget is

determined.

3. Has the management fully agreed on supporting the selection process?

When it is explained to the management that there are too many alternatives in

the market and ad hoc processes may cause selection of a wrong tool which

means wasted expenditure, the management was voluntary for the application of

the proposed methodology.

4. Has the development team agreed on acquisition and implementation of a CASE

tool?

Since the build failures were causing extra “find and fix” work for the team, they

were eager for the adoption however some of them had negative preconceptions

for the CASE technology because of their experiences.

After obtaining these results for the commitment question set, it was concluded that the

department is at a sufficient commitment level for continuation to the methodology.

97

4.1.3 Step 3: Methodological Constraints Determination

In this step, the department’s constraints concerning the application of the methodology

were determined. The question set given by the proposed methodology was answered.

Answers to the Methodological Constraints Question Set:

1. What is the number of personnel that can be delegated as the evaluators?

The department decided that an evaluator team which is composed of three

employees will be enough. One of them will be from the management.

2. How much time can the evaluators allocate for the methodology work?

The management stated that the evaluators should spend at most 3 hours a day

for the methodology work. Urgent issues about development have precedence

over the application of the methodology.

3. How much time can the organization devote to the selection process totally?

The department is not in a hurry for the application of the methodology since

there is no deadline waiting for a project milestone. However, the problems in the

integration process are causing continuous trouble for the development team and

acquisitions are usually performed in the first two months of the year in the

organization. Therefore, 1.5 (one and a half) month is determined as available to

apply the methodology from start to finish.

98

4.1.4 Step 4: Evaluation Team Formation

The department has created the evaluation team which included three employees due to

management decision.

One of the evaluators was the author of this thesis who also was the coordinator of

application. One of them was the assistant manager of the department and the last was a

senior developer who only made decision making contribution. It was stated that this

team can be treated as representative for the entire department.

4.2 ACTIVITY 2: THE HIGH LEVEL EVALUATION CRITERIA

DEFINITION

4.2.1 Step 1: Constraints Determination

In this step, the department determined its constraints about the acquisition process

according to the methodology. The constraints had to resemble the “must”

characteristics of the system and had to be expressed in three groups as: organizational,

environmental and development phase related constraints. Here are the answers that

evaluators gave to the questions in the question set provided by the methodology.

4.2.1.1 Answers to the organizational constraints question set:

1. What is the maximum expenditure we can spend on the tool?

The maximum amount of expenditure that the department can spend on the

tool(s) is determined as 40000$. However, the preferred cost is about 32000$.

99

2. What is the number of licenses needed?

Since there are seventeen active developers (one of them is the deployer),

roughly nine floating or seventeen node-locked licenses will be required. Since

everyone will be involved in the continuous integration process, the authorized

license requirement will also be seventeen. These numbers will be used to

estimate tool costs where required.

3. How much time should be required to fully integrate the tool into the

organization’s development practices?

It has been decided that it should take at most two months to fully implement and

integrate the tool into the department’s processes.

4. Should the tool conform to an international standard that is adopted in the

organization?

The department’s processes should conform to the standards ISO 9001, ISO

27001 and ISO 20000. These are the standards that the department is

continuously verified by the authorities. The tools to be acquired should possess

security, auditability and backup facilities for this constraint to be satisfied.

4.2.1.2 Answers to the environmental constraints question set:

1. Do we need a tool that supports a specific processor architecture?

X86 type architectures are being used in the department therefore the intended

CASE tool(s) should support X86.

100

2. Do we need a tool that supports a specific CPU bus size?

Clients are utilizing 32 bit processors, servers are utilizing 64 bit processors so

the CASE tool(s) that would be installed on the servers should be compatible

with 64 bit systems and the CASE tool(s) that will be installed on the clients

should be compatible with 32 bit systems.

3. Do we have a constraint on the CPU usage of the tool?

The department does not have a constraint on the CPU usage of the tool.

4. Do we have a constraint on the disk usage of the tool?

The department does not have a constraint on the disk usage of the tool.

5. Do we have a constraint on the memory usage of the tool?

The departmental constraint about the CASE tool(s) is that an individual tool’s

memory consumption should not go beyond 1 GB.

6. Do we have a constraint on the network usage of the tool?

The department has a quite capable network so does not have a constraint about

network usage of the tool.

7. Do we need a tool that supports a specific operating system for the server?

The tool(s) that would be installed on the servers should support Windows

Server 2003 operating system.

101

8. Do we need a tool that supports a specific operating system for the clients?

The tool(s) that would be installed on the clients should support Windows XP

SP3 operating system.

9. Do we need a tool that should integrate with a specific software being used in the

organization?

No mandatory integration is required other than the operating system integration

which is covered above. However, Eclipse integration is desirable which may be

included as a low level criterion later. In the case of a tool combination selection,

the integration possibilities between the tools themselves will be covered at the

final selection step at the end.

10. Do we need a tool that should be compatible with a specific software being used

in the organization?

The applicable tools should be compatible with Java platforms, the application

server being used in the department (Oracle Weblogic 9.2) and also with Internet

Explorer 7, Firefox 3.0 for the tool(s) that have a web interface.

4.2.1.3 Answers to the Development Phase Related Constraints Question Set:

1. In which software development phase or practice will the CASE tool be used?

The CASE tool(s) will be used for the continuous integration practice which will

be integrated into the current software development practices in the department.

102

2. To which subpractices can the practice be divided?

After the examination, the department concluded that the practice of continuous

integration can be further subdivided into three fundamental areas: the CI server

area, the version control area and the build area. This set satisfies the main goal

which is automatic invocation of a build cycle upon a change in the system that

can generate feedback in return.

The continuous integration systems may also include automated testing,

inspection and deployment facilities however these are not mandatory and can be

added to the system afterwards.

4.2.2 Step 2: Existing Toolset Examination

This step was given as optional in the methodology since a CASE tool might not exist in

the organization. However, in the department two CASE tools were being used

corresponding to two subpractices of the continuous integration process namely to the

version control and build areas. Therefore this step was essential for the department

since these might be replaced. Following answers were prepared for the question set

given in the methodology.

4.2.2.1 Answers to the Existing Toolset Examination Question Set:

1. Which tools are currently being used in the organization for the intended field?

When we divide the continuous integration into three as the CI server area,

version control area and build area, we see that the department is already using

CASE software for the version control and build operations. The version control

tool being used is VSS (Visual Source Safe) and the build tool being used is Ant.

103

VSS is a commercial tool from Microsoft and Ant is an open source tool that can

be used by conforming to the Apache license.

2. For each of these tools, what are the functionalities or good quality

characteristics that the users like and benefit from?

Given in the “Positive Qualities of Existing Tools” section below.

3. For each of these tools, what are the drawbacks?

Given in the “Drawbacks of Existing Tools” section below.

4. For each of these tools, what are the desired additional functionalities?

Given in the “Desired Additional Functionality” section below.

4.2.2.2 Positive Qualities of Existing Tools

 For the version control tool VSS

o Easy to install

o Easy to configure

o Easy to use

 For the build tool Ant

o Integrated with the Eclipse platform

o Easy to configure due to its XML base configuration files

104

4.2.2.3 Drawbacks of Existing Tools

 For the version control tool VSS

o Risky usage model (in case of a failure during commit, the database may

be left in a corrupted state)

o No directory versioning

o No change set support

o Lack of command line functionality (this is needed for writing batch

scripts for routine activities)

 For the build tool Ant

o The XML based build files can get quite large during the project which

makes them difficult to manage

o It does not have fault handling rules or persistence of state so it cannot be

used for workflow type operations

4.2.2.4 Desired Additional Functionality

 For the version control tool

o A strong permission model

o Ability to access the versions without keeping them in local disk

o Directory versioning

o Change set support

o Extensive command line library

105

 For the build tool

No additional desired functionality can be extracted however it is desirable that

the tool to be acquired does not have the drawbacks mentioned in the previous

section for Ant.

This concludes the existing toolset examination step. It can be observed that the

department is having problems especially with the version control tool being used but

they also want to evaluate the build tool area.

4.2.3 Step 3: Tool Area to Search Determination

In this step of the Evaluation Criteria Definition activity, the evaluators tried to identify

the technology areas for which CASE tools are developed in the market. When

determining the development phase related constraints, the evaluators have arrived to the

conclusion that the continuous integration process may be divided into the three areas as;

CI server, version control and build. Then the literature was searched to find whether

these activities are individually covered by different tools or a tool covers a combination

of them itself. Therefore the possible options were:

1. One tool for each area making three tools totally

2. One tool that has both the CI server functionality and the version control

functionality

One tool for the build functionality

3. One tool that has both the CI server functionality and the build functionality

One tool for the version control functionality

4. One tool that has both the version control functionality and the build

functionality

One tool for the CI server functionality

5. One tool that covers all the functionalities

106

After searching information sources (primarily the web), the department couldn’t find

CASE tools that fit to the options given as 2, 3, 4 and 5 above. So at the end of this step,

it is concluded that there are 3 tool areas to consider: CI server area, version control tool

area and build tool area. One additional observation was that all of the version control

tools can provide the simple functionality required by a continuous integration practice.

This includes the VSS that is being used in the organization however the problems being

faced in this area directed the evaluators to look for configuration management solutions

instead of just version control. Therefore, the version control tool area was replaced with

the broader configuration management tool area which was examined from then on.

4.2.4 Step 4: High level Criteria Determination for Each Tool Area

In this step, the department had to group the requirements into the tool areas which were

finalized in the previous step. The requirements were gathered from the outputs of the

“constraints determination” step and the “existing toolset examination” step. Moreover,

they had to be converted to criteria in the form that is explained by the methodology.

During this conversion, some of the requirements were matched to multiple criteria and

some of them were rephrased. Explanation is given for each of the criteria that are

changed from its source requirement in the details below.

4.2.4.1 General High Level Criteria

 HLC1: The CASE tool(s)’ purchase and one year maintenance prices shall cost

to 40000$ maximum if the organization purchases nine floating or seventeen

node locked licenses.

Note: The cost and license number constraints are combined as a single criterion

here.

107

 HLC2: The CASE tool(s) shall be able to be implemented in two months.

Note: The constraint that mandates conformance to ISO 9001, 27001 and 20000

is converted to the three criteria given below.

 HLC3: The CASE tool(s) shall include a security or a permission model (this

originates from the security requirement mandated by the standards that is; not

everyone should be able to use the tool)

Exception: Not applicable to the build tool

 HLC4: The CASE tool(s) shall include a logging mechanism (this originates

from the auditability requirement imposed by the standards that is the usage

history of the tool should be reportable)

 HLC5: The CASE tool(s) shall include a backup mechanism (this originates from

risk mitigating actions imposed by the standards)

Exception: Not applicable to the CI server tool

 HLC6: The CASE tool(s) shall support X86 architectures.

 HLC7: The CASE tool(s) shall support 32 bit systems for their client software.

 HLC8: The CASE tool(s) shall support 64 bit systems for their server software.

 HLC9: The CASE tool(s) shall be able to work with a maximum of 1GB

memory consumption.

108

 HLC10: The CASE tool(s) shall support Windows Server 2003 operating system

for their server software.

Exception: The tools that does not have a server component

 HLC11: The CASE tool(s) shall support Windows XP SP3 operating system for

their client software.

Exception: The tools that does not have a client component that is the tools that

only work on a single server or multiple servers.

 HLC12: The CASE tool(s) shall support Internet Explorer 7 and Firefox 3.0 for

their web interfaces.

Exception: This is a criterion for the tools that do not have a fat client component

and can only be used via their web interface.

 HLC13: The CASE tool(s) shall support Oracle Weblogic application server 9.2.

Exception: Not applicable to the configuration management tool

 HLC14: The CASE tool(s) shall support JAVA platforms.

4.2.4.2 High Level Criteria for CI Server Area:

 HLC15: The tool shall be developed for functioning as a continuous integration

server.

Note: The department has added this criterion because it is found that several

tools exist in the market which entails the CI server capability but also developed

to handle a complete collaboration process including many unrelated

functionality as release management or build artifact management. The

department doesn’t want the extra clutter coming from unrelated functionality.

109

4.2.4.3 High Level Criteria for the Configuration Management Tool Area:

Note: The drawback reported as the risky usage of the current tool is reflected

with the below criterion which states that the atomic commit functionality is

required. This functionality is found through web by the evaluators and its

definition is given under the criterion.

 HLC16: The tool shall support atomic commits.

Atomic commit: An atomic commit is an operation in which a set of distinct

changes is applied in a single transaction. If a failure occurs before the

transaction finishes, then all the changes pertaining to the commit operation are

rolled back leaving the system in a consistent state.

 HLC17: The CASE tool shall support directory versioning.

Directory versioning: The ability to give succeeding revision numbers to

directories and keep their namespace history in order to be able to return to a

previous state.

 HLC18: The CASE tool shall support change sets.

Change set: A logical container of file and directory versions that belong to a

specific task.

 HLC19: The CASE tool shall include a command line interface

 HLC20: The CASE tool shall support access to version controlled code remotely.

That is the CASE tool shall include a web interface or other means to access

code that is not in the local network.

110

4.2.4.4 High Level Criteria for the Build Tool Area:

 HLC21: The CASE tool shall be developed for JAVA building and packaging.

Note: As in HLC15, this criterion is created for screening the tools that contain

unnecessary functionalities.

So, after this step the department was considered to have finished defining its high level

evaluation criteria for tool selection and evaluators might pass to the prescreening phase.

It should also be pointed out that these criteria were validated by the assistant manager

of the department who also was a member of the evaluation team.

4.3 ACTIVITY 3: PRESCREENING

After the evaluators had finished forming the high level criteria set for each tool area,

the prescreening activity was started. In this activity, the department had to find the

CASE tools developed for each tool area in the market. Then the evaluators had to use

the high level criteria to eliminate the ones that do not meet the department’s needs.

4.3.1 Step1: Tool Information Gathering for Each Tool Area

The tools below were found in the market for each tool area. The internet was

used as the information source.

1. CI Server Tool Area: The table below (Table 12) includes tool information

for the thirty tools found in the market.

111

Table 12: CI Server tool information table

Tool Name Producer-Vendor License Tool
Site

Version

CruiseControl Originally developed by
ThoughtWorks

BSD-style license [25] 2.8.2

Hudson Originally developed by a
worker in Sun

MIT license [26] 1.341

Continuum Apache Software Foundation Apache 2.0 license [27] 1.2.3
Luntbuild Javaforge Public Domain [28] 1.6.3
QuickBuild PmEase Commercial [29] 2.0.15
Cruise ThoughtWorks Commercial [30] 1.3.2
BuildForge IBM Commercial [31] 7.1
AnthillPro Urbancode Commercial [32] 3.7.1
Gump Apache Software Foundation Apache License 2.0 [33] 3.7
Automated
Build Studio

AutomatedQA Commercial [34] 5.0

Bamboo Atlassian Software Systems Commercial [35] 2.5
Beebox TechSolCom IT Group Free [36] 3.0.3
CABIE Collabnet GNU General Public

License
[37] 2.0

Cerberus Anatol Pomozov Free [38] 0.7
CruiseControl.
NET

Originally produced by
ThoughtWorks

BSD-style license [39] 1.5.0

CruiseControl.
rb

Originally produced by
ThoughtWorks

Apache License 2.0 [40] 1.4.0

ControlTier ControlTier development
team

Apache License 2.0 [41] 3.4.9

Draco.NET Draco.NET development
team

BSD-style license [42] 1.5

EasyCIS Vaclav Zahradnik Commercial [43] 1.0.44.7
0

Electric
Commander

Electric Cloud Commercial [44] 2.2

FinalBuilder Vsoft Technologies Commercial [45] 6.0
InstallAce DigiAce Commercial [46] 1.0
OpenMake
Meister

OpenMake software Commercial [47] 7.0

OpenMake
Mojo

OpenMake software Commercial [48] 7.0

Parabuild Viewtier Systems Commercial [49] 4.0
Pulse Zutubi Commercial [50] 2.0.49
TeamCity JetBrains Commercial [51] 5.0
TFS Microsoft Commercial [52] 2008
Tinderbox Mozilla Corporation Mozilla Public

License
[53] 2.0

112

2. Configuration Management Tool Area: The table below (Table 13)

includes tool information for the twenty two tools found in the market.

Table 13: Configuration management tool information table

Tool Name Producer-Vendor License Tool
Site

Version

AccuRev AccuRev Inc. Commercial [54] 4.7.3
BitKeeper BitMover Inc. Commercial [55] 3.2.4
ClearCase IBM Rational Commercial [56] 7.1.1
Synergy Telelogic (IBM) Commercial [57] 7.1
Co-Op Reliable Software Commercial [58] 5.1
Perforce Perforce Software Inc. Commercial [59] 2009
PureCM PureCM Ltd. Commercial [60] 2009-2
Source
Anywhere

Dynamsoft Corporation Commercial [61] 2.3

Surround SCM Seapine Software Commercial [62] 2010.0.1
Team
Foundation
Server

Microsoft Commercial [63] 2008

Vault SourceGear LLC Commercial [64] 5.0.2
VSS Microsoft Commercial [65] 2005
CVS The CVS Team GNU General

Public
[66] 1.11.22

Aegis Peter Miller GNU GPL [67] 4.24
Bazaar Canonical Ltd. GNU General

Public
[68] 2.1.0b4

Darcs David Roundy GNU General
Public

[69] 1.0.4

Mercurial Matt Mackall GNU General
Public

[70] 1.4.2

Monotone Nathaniel Smith, Graydon Hoare GNU General
Public

[71] 0.45

OpenCM Eros project team GNU General
Public

[72] 0.1.2

Subversion CollabNet, Inc. Apache/BSD
style

[73] 1.5.6

Svk Best Practical Artistic/GPL [74] 2.2.1
Vesta Originally developed by

Compaq/Digital Systems
Research Center

GNU General
Public

[75] 2.1.12

113

3. Build Tool Area: The table below (Table 14) includes tool information for

the seven tools found in the market.

Table 14: Build tool information table

Tool Name Producer-Vendor License Tool
Site

Version

Ant Apache Software Foundation Apache License 2.0 [76] 1.8.0RC1
NAnt NAnt development team GPL [77] 0.86
Maven Apache Software Foundation Apache License 2.0 [78] 2.2.1
Phing Phing development team GNU Lesser Public

General License (LGPL)
[79] 2.4.0RC3

Rake Rake development team MIT/X Consortium
License

[80] 0.8.7

Xcode Apple Inc. Commercial [81] 2.3
Raven Raven development team Apache Software

License
[82] 1.2

4.3.2 Step 2: Criteria Matching for Each Tool Area

In this step, the author has searched information about the candidate tools to assess

whether they satisfy the stated high level criteria or not. This step was actually

conducted in parallel to the previous step as stated in the methodology. That is, when the

author was searching tool information for the previous table, he also found information

regarding the criteria support of the tools and immediately checked the corresponding

places in the table below. (Table 15) However, only a few cells of Table 15 were filled

this way. All the remaining cells required extensive search by the author which made

this step the most time consuming task of the overall methodology even if the columns

were ordered according to the order of importance of the criteria.

114

1. CI Server Tool Area:

Table 15: CI server tool – criterion matching table (checklist)

 HLC ID
Tool Name 15 14 13 6 10 8 1 12 2 3 4 9 7
CruiseControl
Hudson
Continuum
Luntbuild
QuickBuild
Cruise X ne ne ne ne ne ne ne ne ne ne ne ne
BuildForge X ne ne ne ne ne ne
AnthillPro
Gump X ne ne ne
Automated
Build Studio

Bamboo
Beebox
CABIE X ne ne ne
Cerberus X ne ne ne ne ne ne ne ne ne ne ne
CruiseControl
.NET

 X ne ne ne ne ne ne ne ne ne ne ne

CruiseControl
.rb

 X ne ne ne ne ne ne ne ne ne ne ne

ControlTier X ne ne ne ne ne ne ne ne ne ne ne ne
Draco.NET X ne ne ne ne ne ne ne ne ne ne ne
EasyCIS X ne ne ne ne ne ne ne ne ne ne ne
Electric
Commander

 X ne ne ne ne ne

FinalBuilder X ne ne ne ne ne ne ne ne ne ne ne
InstallAce X ne ne ne ne ne ne ne ne ne ne ne
Jhbuild X ne ne ne ne ne ne ne ne ne ne ne ne
OpenMake
Meister

OpenMake
Mojo

Parabuild
Pulse
TeamCity
Team
Foundation
Server

X ne ne ne ne ne ne ne ne ne ne ne ne

Tinderbox X ne ne ne ne ne ne ne ne ne ne ne ne

: Criterion is successfully satisfied by the tool

X: Criterion is not satisfied by the tool

ne: Not Evaluated

115

The notes below were written for future reference. They include rejection reasons for the

failed tools and some important information for the other tools.

Notes:

 CruiseControl can handle HLC3 (security criterion) by the userid parameter

given to the JMX HTTP Adapter [14].

 QuickBuild’s purchase price is $2999 (unlimited user)

 Cruise is a “software release management” product and includes many unrelated

functionality besides the CI server functionality. For this reason, it fails from

HLC 15.

 BuildForge standard edition has a price of $125,190.00 Therefore, it fails from

HLC1

 Gump and CABIE do not have a security mechanism. Therefore they fail from

HLC3.

 Cerberus is a continuous builder for Ruby not JAVA. Therefore it fails from

HLC14.

 Control Tier is actually an application service management product. For this

reason, it fails from HLC 15.

 CruiseControl.NET, CruiseControl.rb, Final Builder, Draco.NET and EasyCIS

are not compatible with JAVA technology. Therefore they fail from HLC14.

 ElectricCommander is not compatible with the required browsers. Therefore, it

fails from HLC12.

 JhBuild is developed for packaging modules; it is not a fully functional

continuous integration server. Therefore, it fails from HLC15.

 OpenMake Meister is priced at $875 per named seat and $3,000 per concurrent

seat.

 TeamCity has a price of $1999 (unlimited user)

 Tinderbox is more of a testing tool than a continuous integration server.

Therefore, if fails from HLC15.

116

Results:

The tools that satisfy high level criteria: CruiseControl, Hudson, Continuum, LuntBuild,

QuickBuild, AnthillPro, Automated Build Studio, Bamboo, Beebox, OpenMake Meister,

OpenMake Mojo, ParaBuild, Pulse, TeamCity

Out of 30 tools, 14 passed, 16 failed.

2. Configuration Management Tool Area:

Table 16: Configuration management tool – criterion matching table (checklist)

 HLC ID
Tool Name 14 20 3 6 10 8 7 1 16 5 4 12 2 9 17 18 19
AccuRev
BitKeeper X ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne
ClearCase
Synergy
Co-Op X ne ne ne ne ne ne ne ne ne
Perforce X ne ne
PureCM
Surround
SCM

TFS X ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne
Vault X ne ne
VSS X ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne
CVS X ne ne
Aegis X ne ne ne ne ne ne ne ne ne ne ne ne
Bazaar
Darcs X ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne
Mercurial
Monotone X ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne
OpenCM X ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne
Subversion
Svk
Vesta X ne

: Criterion is successfully satisfied by the tool

X: Criterion is not satisfied by the tool

ne: Not Evaluated

117

Notes:

 Accurev license cost is $1,495 per user

 BitKeeper does not include a mechanism for remote access, the code must be

held locally in order to work.

 ClearCase license cost is $4225 per floating license.

 Synergy license cost is $8,774 per floating license. Therefore, it fails from HLC1

when the number of developers in the department is considered.

 Perforce does not support directory versioning.

 Although users can version Java using TFS, it is not developed to work with

Java.

 Although CVS can satisfy some HLCs by using open source plugins, it fails from

HLC17 and HLC18.

Results:

The tools that satisfy high level criteria: Accurev, ClearCase, Synergy, PureCM,

Surround SCM, Bazaar, Mercurial, Subversion, Svk

Out of 21 tools, 9 passed, 12 failed.

118

3. Build Tool Area:

Table 17: Build tool – criterion matching table (checklist)

Tool Name 21 14 13 6 10 8 1 12 2 4 5 9 7
Ant
NAnt X ne ne ne ne ne ne ne ne ne ne ne
Maven
Phing X ne ne ne ne ne ne ne ne ne ne ne
Rake X ne ne ne ne ne ne ne ne ne ne ne
XCode X ne ne ne ne ne ne ne ne ne ne ne ne
Raven

: Criterion is successfully satisfied by the tool

X: Criterion is not satisfied by the tool

ne: Not Evaluated

Notes:

 Nant is developed for .NET, C# building. Therefore, it fails from HLC 14.

 Phing is developed for PHP building. Therefore, it fails from HLC 14.

 XCode is an integrated development environment rather than a build tool and it

also does not support Windows platforms. Therefore, it fails from HLC 22.

Results:

The tools that satisfy high level criteria: Ant, Maven, Raven

Out of 7 tools, 3 passed, 4 failed.

119

4.4 ACTIVITY 4: LOW LEVEL EVALUATION CRITERIA

DEFINITION

In this activity, the evaluators formed the department’s low level criteria for acquisition

of the continuous integration tool(s). This type of criteria had to be more detailed than

the previous class of high level criteria and required more extensive examination.

4.4.1 Step 1: Organizational Requirement Analysis

In the first step, internal requirements which resemble the needs stated by the

deployer, developers and management were collected. They are given for each

tool area below.

4.4.1.1 CI Server Tool Area:

 Feedback options: It is requested by the developers that the CI server should

include some notification mechanism about the result of the builds it executes.

There is a range of preferences about the type of the notification among

developers so it is better to use a CI tool that offers various kinds of notifications.

The popular types are email and RSS. The message is requested to include a link

pointing to the build report or to the location where the error occurred in case of

a build failure.

 Extensibility: Sometimes it becomes necessary to extend the tool to suit it to the

organizational needs. For example, it may be necessary in the future to integrate

the CI server with an in-house tool that the organization itself developed. For

such cases, the CI server should have extension mechanisms.

120

 Reliability: It is requested by all stakeholders that the CI server be reliable.

Reliability here is explained as the ability of the CI server to execute its

processes correctly and repeatedly once they are constructed. Also, it is requested

that in case of a failure the server should point the source of the error as

intuitively as possible. If this is a build failure, the CI server should be able to

show the version of the file or files that caused the build failure.

 Longevity Prospects: In cases the organization needs help for a problem with

the tool, the vendor should be in place or the tool should still be in use by a

community if it is open source software.

 Application server requirement: If the CI server application is distributed as a

web application archive (war) file, it should be deployable to the Weblogic 9.2

server that is being used in the department. It is important to note that this

requirement’s subject is not the same as HLC13 which requires interoperability

between the tools and the Weblogic server. This requirement is concerned about

the installation support of the tool on Weblogic server.

 Usability, ease of configuration: The deployer in the department prefers a web

interface for easy configuration. However he also requests to be able to modify

the configuration via XML files since he is familiar with them owing to Ant. So,

the evaluators concluded that a tool providing both of the interfaces is desirable.

 Ease of installation: It is required by the system administrators that the CI server

should not have a complex installation procedure.

 IDE integration: The department is using Eclipse version 3.4.2 for JAVA

development. Integration between the CI server and this version of Eclipse is

requested both by the deployer and the developers.

121

4.4.1.2 Configuration Management Tool Area:

 Remote access: The developers use laptops for their work in the department. It

is permitted to take the laptops home. However, some of the laptops had been

stolen when they were outside the department in the past. The management now

requests an SCM system where developers can access remotely without keeping

any code on their laptops so no code can be stolen in case of a theft. Therefore,

the SCM tool should provide a way for remote access to the repository while

providing acceptable performance.

 Folder level security: It is required by the team leaders that the configuration

management tool should support folder level security definitions. In the current

system only project level security is supported.

 Extensive documentation: Previously, the department had difficulties in finding

information for their tool. So, there is a requirement from developers that the

configuration management system should provide adequate documentation that

directs its users about its features. The documentation may be context-sensitive

(such as the windows that come when the user presses F1 in tool window), web-

based or in pdf format.

 Complete Command Set and GUI: To programmatically interact through shell,

the tool should include all its functionality as available to be invoked from

command line. However, it should also include graphical user interfaces that

have the necessary functionality for the developers’ daily SCM activities.

122

 Robustness, Reliability: It is requested by all stakeholders that the configuration

management tool be reliable and robust. Reliability here is explained by the

developers as: the tool should not fail in any case. Because a failure of the

configuration management system generally means data loss and that data is

usually source code.

 Easy branching: The configuration management tool should enable easy

creation of branches. There are a lot of configuration management patterns that

include branching mechanisms [15]. So opening a branch should be an easy task

in the configuration management system. Also it should be easy to merge two

separate branches.

 IDE integration: The department is using Eclipse version 3.4.2 for JAVA

development. Integration between the configuration management tool and this

version of Eclipse is requested by the developers.

4.4.1.3 Build tool area:

 Java version: The department is using JDK version 1.5.0_11. Applications

being built are requested to run on the JVM included in this JDK. Therefore the

build tool should support compiling and packaging applications using the

interpreter that is included in this JDK.

 IDE integration: Integration between the build tool and Eclipse version 3.4.2 is

requested by the developers.

 Extensive Documentation: Comprehensive documentation about the tool is

requested by the developers in the department.

123

4.4.2 Step 2: External Analysis

In the external analysis step, the author performed a technology search to reveal

additional requirements that are not explicitly stated by stakeholders but exist.

4.4.2.1 CI Server Tool Area:

 Dashboard: The CI server should be able to report its build results. This

reporting may be from a web based dashboard that will show the users the state

of recent and former builds. Color-coding and other visualization techniques may

be employed in the dashboard for presentation purposes.

 Labels: It is requested that the CI server should give unique labels to its builds

for identification purposes. Then the team can refer to a specific build by its label

[86].

 Project dependencies: The projects in the environment may be interdependent

to each other forcing a build order between them. So when the CI server starts

the build of one of these projects, it should automatically trigger the build of the

other project. [86]

 Detailed bill-of-materials report: The CI server should store comprehensive

data on builds and related tasks to provide a detailed bill of materials that

documents contents of each release for reproducibility and compliance

management. Also, the CI server should keep track of which build produced

which JAR and which build is using which version of a JAR. This is also called

file fingerprinting.

124

 Role-based user management: The CI server should enable categorizing users

in roles so that permissions may be granted rolewise.

 Active Directory (LDAP) Authentication: The department is using a Windows

domain environment. The CI server’s authentication mechanism should be able

to retrieve username and password information from the LDAP server so that

secondary efforts are not needed for user definitions and password changes are

directly reflected to the system.

 SCM Filtering: Normally, the build should be triggered when a change in a

source file occurs however it is necessary to exclude some type of files in this

regard. For instance, it is not desired that the system starts a full build when a

documentation file is changed in the SCM repository. Only code file changes

should be taken into consideration.

 Multiple SCM repository support: The codebase that is being developed by the

department may be dispersed into several SCM repositories. Therefore, the CI

server should be capable of monitoring multiple repositories for change.

 Historical graphs: The CI server should be able to represent the build results

belonging to a time frame in graphical format so that the trend of build results

may be observed.

4.4.2.2 Configuration Management Tool Area:

 Line-wise history tracking: The configuration management system should be

able to show which line is created or modified in which version and by whom in

a specific text based versioned file. In other words, it should be able track the

history of a file line by line.

125

 Tracking uncommitted changes: The configuration management system should

have the ability to list the changes in the user’s private workspace that he/she

hasn’t committed yet.

 Per-file commit messages: The configuration management system should be

able to allow user to add a comment for each commit he/she makes.

 Proper handling of binary files: The configuration management tool should be

able to handle binary files as well as text-based code files. Binary files should

also be versioned if they are put under source control.

 Data for managers: The configuration management tool should provide

statistical reports for the managers. For instance, a report can provide

information to the manager about how many lines of code have been written

during last month.

 Optimistic locking: Also called the copy-modify-merge model, this

functionality enables developers to simultaneously work on the same resource

which increases project pace. Currently, a strict locking model is being used

which does not allow this. However, there is a possibly of conflict introduction

into the file which both developers were working on. The configuration

management tool should also be able to catch these kinds of conflicts and

provide facilities for merging.

 Branch and version labeling: The configuration management tool should

provide labeling features for versions and branches. This way, an important

version or a set of versions can be identified.

126

No additional criteria were found from external sources concerning the build tool

area.

4.4.3 Step 3: Criteria Formation for Each Tool Area

In this step, the author has consolidated all of the requirements found. Conflicts and

overlappings between them were also resolved in this step. All of the criteria were

documented in tabular format depicted by the proposed methodology. Priorities and

types of the criteria were also determined and included in the tables. These are given for

each tool area in Appendix A.

4.4.4 Step 4: Criteria Prioritization and Categorization

The criteria were prioritized as either normal or high in this step. Then, the normal

priority criteria were categorized as functional, quality or supplier/community. The

prioritization and categorization were also noted in the previous criteria tables. Tables

18-20 below show a summary of this information for each tool area.

127

Table 18: CI server tool criteria prioritization and categorization results

Criterion ID Priority Type

LLC1 High NA

LLC2 Normal Functional

LLC3 Normal Quality

LLC4 High NA

LLC5 High NA

LLC6 Normal Supplier/Community

LLC7 High NA

LLC8 High NA

LLC9 Normal Quality

LLC10 Normal Functional

LLC11 High NA

LLC12 High NA

LLC13 High NA

LLC14 High NA

LLC15 Normal Functional

LLC16 Normal Functional

LLC17 Normal Functional

LLC18 High NA

LLC19 Normal Functional

LLC20 Normal Functional

128

Table 19: Configuration management tool criteria prioritization and categorization results

Criterion ID Priority Type

LLC21 High NA

LLC22 High NA

LLC23 Normal Quality

LLC24 Normal Quality

LLC25 Normal Quality

LLC26 Normal Quality

LLC27 Normal Functional

LLC28 High NA

LLC29 Normal Functional

LLC30 Normal Functional

LLC31 Normal Functional

LLC32 High NA

LLC33 Normal Functional

LLC34 High NA

LLC35 High NA

LLC36 High NA

LLC37 Normal Functional

Table 20: Build tool criteria prioritization and categorization results

Criterion ID Priority Type

LLC38 High NA

LLC39 Normal Quality

LLC40 Normal Quality

LLC41 Normal Quality

LLC42 Normal Quality

LLC43 High NA

LLC44 High NA

LLC45 High NA

129

Similar to high level criteria, these low level criteria and their priorities were validated

by the assistant manager of the department as she was also a member of the evaluation

team. As stated in the methodology, a group meeting with the stakeholders of the system

might have also been arranged however since most of them were consulted during the

formation of the criteria, we didn’t consider this as necessary.

4.5 ACTIVITY 5: SCREENING

In the second screening, the author had to eliminate more tools which don’t satisfy the

criteria. According to the methodology, they had to evaluate the tools against the high

priority low level criteria determined in the previous step. The two steps of this activity

were executed in parallel (“Tool information gathering for each tool area” and

“Candidate CASE tool selection for each tool area” steps). The screening results are

demonstrated for each tool area in Tables 21-23.

130

4.5.1 CI Server Tool Area:

Table 21: CI server tool – criterion matching table 2 (checklist)

 LLC ID

Tool Name 1 4 5 7 8 11 12 13 14 18

CruiseControl

Hudson

Continuum X ne ne ne ne ne ne ne ne ne

Luntbuild X ne ne ne ne ne ne ne ne ne

QuickBuild

AnthillPro X ne ne ne ne ne

Automated Build Studio X ne ne ne ne ne ne ne ne ne

Bamboo X

Beebox X ne ne ne ne ne ne ne ne ne

OpenMake Meister X ne ne ne ne ne ne ne ne ne

OpenMake Mojo X ne ne ne ne ne ne ne ne ne

Parabuild X ne ne ne ne ne ne ne

Pulse X ne ne ne ne ne ne ne

TeamCity

: Criterion is successfully satisfied by the tool

X: Criterion is not satisfied by the tool

NE: Not Evaluated

Notes:

 Continuum, Luntbuild, Automated Build Studio, Beebox, OpenMake Meister

and OpenMake Mojo do not have RSS support for notifications and no third

plugin is found for this purpose. Therefore, they fail from LLC1.

 Anthill Pro is only configurable from Web; however LLC8 suggests that the tool

should possess both the GUI and configuration file options. Therefore, it fails

form LLC8.

131

 Parabuild is the only product of its producer: Viewtier systems. Although the tool

offers good functionality, its market coverage is not big and this raises issues

about the vendor stability criterion. This is also the case for Pulse which is the

only product of Zutubi. Therefore, they fail from LLC5.

 Bamboo cannot differentiate SCM repository files when checking for changes.

Therefore, it fails form LLC18.

Results:

Out of 14 tools, 4 of them have passed: CruiseControl, Hudson, QuickBuild, TeamCity

4.5.2 Configuration Management Tool Area:

Table 22: Configuration management tool – criterion matching table 2 (checklist)

 LLC ID

Tool Name 21 22 28 32 34 35 36

AccuRev X ne ne ne ne ne ne

ClearCase

Synergy X ne ne ne ne ne ne

PureCM X ne ne ne ne ne ne

Surround SCM X ne ne ne ne ne ne

Bazaar X ne ne ne ne ne ne

Mercurial X ne ne ne ne ne ne

Subversion X ne ne ne ne ne ne

Svk X ne ne ne ne ne ne

: Criterion is successfully satisfied by the tool

X: Criterion is not satisfied by the tool

NE: Not Evaluated

132

Notes:

 Accurev, Synergy, PureCM, Surround SCM, Bazaar, Mercurial, Subversion and

Svk do not have remote access mechanisms other than their web clients. LLC21

states that a mechanism is requested to enable working in a fat client that does

not hold code locally. A remote sandbox model is possible with some of these

tools however this is not suitable for everyday use.

Results:

Out of 9 tools, 1 of them has passed: ClearCase.

4.5.3 Build Tool Area:

Table 23: Build tool – criterion matching table 2 (checklist)

 LLC ID

Tool Name 38 43 44 45

Ant

Maven

Raven X ne ne ne

: Criterion is successfully satisfied by the tool

X: Criterion is not satisfied by the tool

NE: Not Evaluated

Notes:

 Raven build scripts are based on Ruby not XML. Developers in the department

are not familiar with Ruby. Therefore Raven fails from criterion LLC37.

Results:

Out of 3 tools, 2 of them passed: Ant and Maven.

133

4.6 ACTIVITY 6: EVALUATION AND COMPARISON

In this activity, the tools that pass the screening activity were evaluated according to

their level of support for the normal priority low level criteria. The evaluation was

performed for each tool area in two steps.

4.6.1 Step1: Assessment method determination for each criterion

The assessment method of the low level criteria was determined in this step. Possible

assessment methods given by the methodology were: official tool documentation

lookup, case study on tool evaluation copy, visiting an existing user group,

demonstration or information request from the supplier, online tool newsgroup or forum

search, tool reference search.

More than one method was used for evaluation of some criteria as this was suggested by

the methodology. Assessment method determination results for each tool area are given

in Tables 24-26.

134

Table 24: Criterion – Assessment method table for CI server tool area

Criterion ID Criterion Name Assessment Method

LLC2 Extension mechanisms Official tool documentation lookup

LLC3 Robust working Visiting an existing user group

Official tool documentation lookup

Online tool newsgroup or forum search

LLC6 Vendor and tool reputation Tool reference search

LLC9 Ease of installation Case study on tool evaluation copy

LLC10 Eclipse integration Official tool documentation lookup

LLC15 File fingerprinting support Official tool documentation lookup

Case study on tool evaluation copy

LLC16 Role-based user management Official tool documentation lookup

LLC17 LDAP authentication Official tool documentation lookup

LLC19 Multiple SCM repository support Official tool documentation lookup

Case study on tool evaluation copy

LLC20 Graphical build trends Official tool documentation lookup

Case study on tool evaluation copy

135

Table 25: Criterion – Assessment method table for configuration management tool area

Criterion ID Criterion Name Assessment Method

LLC23 Documentation Official tool documentation lookup

LLC24 Extensive command set Official tool documentation lookup

Case study on tool evaluation copy

Demonstration or information request from the

supplier

Online tool newsgroup or forum search

LLC25 Extensive graphical

interfaces

Official tool documentation lookup

Case study on tool evaluation copy

Demonstration or information request from the

supplier

LLC26 Robustness Visiting an existing user group

Case study on tool evaluation copy

Online tool newsgroup or forum search

Demonstration or information request from the

supplier

LLC27 Branching abilities Official tool documentation lookup

Case study on tool evaluation copy

Demonstration or information request from the

supplier

LLC29 Line wise history

tracking

Official tool documentation lookup

Case study on tool evaluation copy

LLC30 Uncommitted data

indication

Official tool documentation lookup

Case study on tool evaluation copy

LLC31 Per-file commit

messages

Official tool documentation lookup

LLC33 Reporting options Official tool documentation lookup

Demonstration or information request from the

supplier

LLC37 Embedded database Official tool documentation lookup

136

Table 26: Criterion – Assessment method table for build tool area

Criterion ID Criterion Name Assessment Method

LLC39 Easy installation Case study on tool evaluation copy

LLC40 Easy project

configuration

Official tool documentation lookup

Case study on tool evaluation copy

LLC41 Shallow learning curve Official tool documentation lookup

Demonstration or information request from the

supplier

LLC42 Complete

documentation

Official tool documentation lookup

4.6.2 Step2: Assessment and Comparison for Each Criterion

Actual assessments were performed in this step using the methods previously stated. The

assessment details were documented in tables. Also, the comparisons were made

according the Saaty’s verbal scale [10] as depicted in the methodology. The tables

showing the assessment results for each tool area are given in Appendix B.

4.7 ACTIVITY 7: RANKING AND SELECTION

In this activity, the intent is to conclude the selection process with the necessary

computations described by the methodology. These computations were performed in the

first step of the activity which includes the application of the AHP methodology. In the

second step, the evaluators announced the final decisions after reconsidering some issues

detailed by the methodology.

137

4.7.1 Step 1: AHP Application

Six steps which form this activity were applied for the two tool areas sequentially. These

tool areas were the CI Server tool area and the build tool area. Since configuration

management tool area only has one tool, this area was not involved in the computations.

Moreover, the computations in this step were performed according to the manual

approximation technique detailed by the methodology. Although the methodology states

the possibility of utilizing the “Expert Choice” tool, this investment was not made.

138

4.7.1.1 FOR CI SERVER TOOL AREA:

i. Hierarchical problem model construction

The four level hierarchy of the problem was defined in Figure 18.

Select the best CI server

Functional Quality
Supplier/

Community

LLC2 LLC10 LLC15 LLC16 LLC17 LLC19 LLC20 LLC3 LLC9 LLC6

CruiseControl Hudson TeamCityQuickBuild

Level1 : The Goal

Level2 : Categories

Level3 : Criteria

Level4 : Alternatives

Figure 18: AHP problem hierarchy

ii. Derivation of ratio scale priorities for the categories

The relative priorities of the categories were computed according to the methodology.

Results are given in Table 27.

139

Table 27: Category comparison table

 Functional Quality Supplier/Community Approximate

Weight

Functional 1 3 5 9.000 (.570)

Quality 1/3 1 4 5.333 (.338)

Supplier/Community 1/5 1/4 1 1.450 (.092)

Total 15.783

iii. Derivation of ratio scale priorities for the criteria

The computed relative priorities of the criteria for each category are given in Tables 28-

33. Functional criteria table and Saaty’s verbal scale table is included for quick

reference.

 For the functional category:

Criteria List:

Table 28: Functional criteria table

LLC2 Extension mechanisms

LLC10 Eclipse integration

LLC15 File fingerprinting support

LLC16 Role based user management

LLC17 LDAP authentication

LLC19 Multiple SCM repository support

LLC20 Graphical build trends

140

Table 29: Saaty’s verbal scale table [10]

Expressed Judgment of Preference Numerical Value

Extremely preferred 9

Between very strongly and extremely 8

Very strongly preferred 7

Between strongly and very strongly 6

Strongly preferred 5

Between moderately and strongly 4

Moderately preferred 3

Between equally and moderately 2

Equally preferred 1

Table 30: Functional criteria comparison table

 LLC2 LLC10 LLC15 LLC16 LLC17 LLC19 LLC20 Approximate

Weight

LLC2 1 1/7 1/3 1/7 1/2 1/4 1/3 2.702 (.031)

LLC10 7 1 5 2 5 3 5 28.000 (.322)

LLC15 3 1/5 1 3 2 1/3 1 10.533 (.121)

LLC16 7 1/2 1/3 1 5 2 2 17.833 (.205)

LLC17 2 1/5 1/2 1/5 1 1/4 1/3 4.483 (.051)

LLC19 4 1/3 3 1/2 4 1 1 13.833 (.159)

LLC20 3 1/5 1 1/2 3 1 1 9.700 (.111)

Total 87.084

141

 For the quality category:

Criteria List:

Table 31: Quality criteria table

LLC3 Robust working

LLC9 Ease of installation

Table 32: Quality criteria comparison table

 LLC3 LLC9 Approximate Weight

LLC3 1 7 8.000 (.875)

LLC9 1/7 1 1.143 (.125)

Total 9.143

 For the supplier/community category:

 Criteria List:

Table 33: Supplier/community criterion

LLC6 Vendor and tool reputation

Since there is only 1 criterion in this category, its weight is directly 1.

iv. Derivation of ratio scale priorities for the alternatives

The comparisons previously defined in the evaluation activity were utilized in this step

to calculate the relative priorities of the alternatives according to the scheme given by

the methodology. These calculations are organized in synthesis tables which are given in

Appendix C.

142

v. Consistency ratio estimation

In this step, the results of the previous comparisons were evaluated to determine their

consistency. Consistency ratio indexes were computed according to AHP as described in

the methodology. All the comparisons were found to be consistent since their index

values were lower than 0.1. The details of the computations are given in the tables which

were constructed according to the template given in the methodology. These tables can

be seen in Appendix D.

vi. Overall priority ranking

In this step, all the relative priorities found for the CI server tool area were combined to

obtain the final ranking of the tools. The ranking calculations performed are given in the

Tables 34-37.

 Functional Category:

Table 34: Ranking table for functional category

 Functional

Ranking LLC2 LLC10 LLC15 LLC16 LLC17 LLC19 LLC20 TOTALS

CruiseControl 0.031

X

0.501

0.322

X

0.308

0.121

X

0.042

0.205

X

0.042

0.051

X

0.036

0.159

X

0.308

0.111

X

0.054 0.185

Hudson 0.031

X

0.219

0.322

X

0.308

0.121

X

0.592

0.205

X

0.592

0.051

X

0.321

0.159

X

0.077

0.111

X

0.107 0.339

QuickBuild 0.031

X

0.062

0.322

X

0.077

0.121

X

0.214

0.205

X

0.214

0.051

X

0.321

0.159

X

0.308

0.111

X

0.520 0.220

TeamCity 0.031

X

0.219

0.322

X

0.308

0.121

X

0.153

0.205

X

0.153

0.051

X

0.321

0.159

X

0.308

0.111

X

0.319 0.257

143

CI Server Tool Ranking For the Functional Criteria:

1. Hudson

2. TeamCity

3. QuickBuild

4. CruiseControl

 Quality Category:

Table 35: Ranking table for quality category

 Quality

Ranking LLC3 LLC9 TOTALS

CruiseControl 0.875x0.449 0.125x0.333 0.435

Hudson 0.875x0.235 0.125x0.333 0.248

QuickBuild 0.875x0.235 0.125x0.167 0.227

TeamCity 0.875x0.082 0.125x0.167 0.093

CI Server Tool Ranking For the Quality Criteria:

1. CruiseControl

2. Hudson

3. QuickBuild

4. TeamCity

144

 Supplier/Community Category

Table 36: Ranking table for supplier/community category

 Supplier/Community

Ranking LLC6 TOTALS

CruiseControl 1x0.483 0.483

Hudson 1x0.261 0.261

QuickBuild 1x0.070 0.070

TeamCity 1x0.186 0.186

CI Server Tool Ranking For the Supplier/Community Criteria:

1. CruiseControl

2. Hudson

3. TeamCity

4. QuickBuild

 Overall Ranking

Table 37: Overall ranking table for CI server tool area

 Overall

Ranking Functional Quality Supplier/Community TOTALS

CruiseControl 0.185x0.570 0.435x0.338 0.483x0.092 0.297

Hudson 0.339 x0.570 0.248 x0.338 0.261 x0.092 0.301

QuickBuild 0.220 x0.570 0.227 x0.338 0.070 x0.092 0.209

TeamCity 0.257 x0.570 0.093 x0.338 0.186 x0.092 0.195

145

Overall CI Server Tool Ranking:

1. Hudson

2. CruiseControl

3. QuickBuild

4. TeamCity

4.7.1.2 FOR BUILD TOOL AREA:

Same steps performed for the CI server tool area were repeated for the build tool

area in this section.

i. Hierarchical problem model construction

 The four level hierarchy of the problem was defined in Figure 19 below.

Figure 19: AHP problem hierarchy

146

ii. Derivation of ratio scale priorities for the categories

Since, there is only Quality category; its relative priority is directly one.

iii. Derivation of ratio scale priorities for the criteria

 For the quality category:

Criteria List:

Table 38: Quality criteria table

LLC39 Easy installation

LLC40 Easy project configuration

LLC41 Shallow learning curve

LLC42 Complete documentation

Table 39: Quality criteria comparison table

 LLC39 LLC40 LLC41 LLC42 Approximate Weight

LLC39 1 1/5 1/5 1/5 1.600 (.057)

LLC40 5 1 3 3 12.000 (.425)

LLC41 5 1/3 1 1 7.333 (.259)

LLC42 5 1/3 1 1 7.333 (.259)

Total 28.266

iv. Derivation of ratio scale priorities for the alternatives

The synthesis tables constructed for this section are given in Appendix C.

v. Consistency ratio estimation

Consistency of the comparisons was very obvious so we didn’t need to check for

consistency.

147

vi. Overall priority ranking

Since there was only one category to evaluate, the category based ranking was

equal to the overall ranking.

Table 40: Overall ranking table for build tool area

 Overall Ranking (equals Quality Ranking)

Ranking LLC39 LLC40 LLC41 LLC42 TOTALS

Ant 0.057x0.500 0.425x0.200 0.259x0.800 0.259x0.500 0.450

Maven 0.057x0.500 0.425x0.800 0.259x0.200 0.259x0.500 0.550

Overall Build Tool Ranking:

1. Maven

2. Ant

4.7.2 Step2: Final Selection

In this step, the evaluators made their final decisions about the CASE tool acquisition

considering the computed rankings. The conclusions arrived by the evaluators are given

for each tool area below.

 For the CI server tool area

It can be seen from the ranking that Hudson and CruiseControl have taken the lead

against our commercial candidates, QuickBuild and TeamCity. However, the difference

between Hudson and CruiseControl is not very much which means that they both satisfy

the organizational requirements at a nearly equal degree. Hudson has relatively better

functionality but newer in market compared to CruiseControl which is more stable and

has a large user community.

148

In accordance with the results, the evaluators choice was using Hudson as the CI server

tool and they also stated that if Hudson had been a little behind CruiseControl they

would have again selected it since they are enthusiastic about trying the newer tools.

 For the configuration management tool area

Since ClearCase was the only tool that satisfied the screening criteria, the obvious result

here is to use ClearCase instead of VSS that is currently being used. This is mostly

because of the management’s desire about not keeping the code in the developers’

computers since this was the criterion that ClearCase was natively providing and the

other tools were not. The evaluators are also glad about the decision because ClearCase

also proved well in the mentioned normal priority low level criteria and the tool will be

supported by IBM.

 For the build tool area

In this area, Maven has taken the lead over Ant by taking ten percent higher weight. If

we look at the ranking table, we can see that this difference is mainly due to the easy

project configuration ability of Maven. However, the evaluators think that this difference

is not enough to cover the replacement costs of Ant. The department’s familiarity with

Ant and the tool’s good integration with Hudson and ClearCase further supplement the

decision of the evaluators that is keeping Ant.

Moreover, the cost of the solution is further evaluated and decided to be in the

boundaries defined by the management and tools’ integrations between each other was

decided to be sufficiently good.

So, the final set of tools that will be used in the department’s continuous integration

process was decided to be Hudson, ClearCase and Ant.

149

4.7.3 Discussion about the case study:

After finalizing the application of the proposed methodology, the effectiveness of the

case study in regard to the research questions posed at the beginning of Chapter 4 can be

assessed.

First of all, the methodology is found feasible to apply in the subject department of the

institution since all of the activities could be performed as defined in the methodology

which in turn resulted in a meaningful result. Moreover, all of the activities of the

methodology have been finished in the timeframe that was dedicated for the process that

is one and a half month even though the evaluators were also performing their usual

duties. Since the number of the alternatives were high for each tool area, we believe that

the screening activities have considerably decreased the time and effort required for

comparisons.

Because of the continuous literature search that has been made during the course of the

methodology, the knowledge of the evaluators about the continuous integration process

and the tools developed for it have been substantially enhanced. Also, some problems in

the department’s development procedures were revealed during the elicitation of internal

requirements.

After finishing the application, the senior developer who was a member of the

evaluation team commented about the process as being comprehensive enough to

provide a solid decision among the CASE tool solutions. After making discussions with

some of the stakeholders, it has been found that another criterion that necessitates an

integration with a specific workflow system being used in the department would have

also been added. On the other hand, it is observed that the tools in the final selection

already provide this integration. Also, two low level criteria that we determined as

normal priority would have been selected as high priority regarding the feedback given

by some developers. We have also concluded that such a change would not the affect the

final ranking.

150

Moreover, the AHP technique was found very valuable by the involved employees and

evaluators mostly due to the pairwise comparison logic and consistency checking facility

provided by the method. They told that the technique ensured examination of every

detail in a consistent manner and the usage of a verbal scale instead of exact numerical

scorings made the comparisons more accurate. The managers of the department also

acknowledged the organizational knowledge enhancement resulted from the

methodology and approved the proposed CASE tool combination.

It is concluded that if the CASE tool acquisition efforts were conducted without using

the methodology, the same tool combination would not have been selected. For example,

the authorized people in the department were unaware of the existence of CI server tools

like Hudson and they were considering to delegate this job to a worker to be performed

manually. For the configuration management area, they were considering to replace VSS

with ClearCase as an option however they were unsure whether better possibilities exist.

Lastly, for the build area, they didn’t know the improvements in the technology and

emergence of tools like Maven.

So, we can deduce the result that the institution has gained the expected benefits from

applying the proposed methodology because of the reasons stated. The organization

would have also employed the process proposed by ISO [5] but the success is

questionable because the ISO 14102 standard does not include a criteria set for the

continuous integration process. Likewise, other studies on this field which are limited in

number do not seem to offer the detailed systematic approach proposed by this study to

the best of our knowledge.

Finally, it is observed that the evaluators and the management have a high level of

confidence for the tool combination resulting from application of the methodology. This

is because all the decisions that resulted in forming the final tool combination were

made by internal evaluators and based on either organizational requirements or

technological observations. The tool combination proposed by the methodology will

actually be acquired and put into use before the second quarter of 2010.

151

CHAPTER 5

CONCLUSION AND FUTURE WORK

Utilization of CASE tools in software development projects is continuously increasing.

This also contributes to an increase in the number of producer firms and directs them to

offer more tools with more capabilities. So, the CASE tools in the market are increasing

in terms of number and in terms of the functionalities they offer. Organizations on the

other hand are looking for solutions that will increase product quality and decrease

development costs. However, these benefits may not be realized because of a wrong tool

selection; a tool that does not fit into the organizational context and does not provide the

requirements of the organization. This may be due to a nonprocedural (ad hoc) decision

about the tool to be acquired. However, for such an acquisition that can affect overall

development progress, a more structured decision model should be used.

In this thesis, a systematic methodology for CASE tool evaluation and selection is

presented to address this need. This methodology is designed to be used in situations

where there are many tools to assess in a short timescale. Moreover, the organisation,

internal consistency and applicability of the methodology is exercised on a case study.

The proposed methodology can be distinguished from other work in the field because it

encompasses the combination of the aspects given below:

 End to end process definition: The methodology starts from identifying the

problem of the organization that led to the CASE tool acquisition attempt and

continues until a tool or a combination of tools is selected which solve this

problem.

152

 Criteria formation from internal and external requirements: The methodology

does not propose a standard criteria set for CASE tool selection. Instead, criteria

elicitation from the stakeholders is defended since this kind of effort will result

in criteria that represent organizational needs. Also, analysis of external

resources is performed to catch the overlooked requirements and features that

will be needed in the long run.

 Question sets for easing criteria elicitation: To help criteria elicitation, the

proposed methodology includes question sets. Answering to these questions will

aid evalutors to discover some criteria.

 Progressive screening: When the high number of CASE tools and their

functionalities are considered, it can easily be deduced that a vast amount effort

would be needed if we directly apply the comparison and ranking over all the

candidates. Therefore, the proposed methodology presents a two stage screening

operation to reduce the number of candidates that will be evaluated deeply.

 Tool area and tool combination concepts: The proposed methodology

acknowledges the fact that a CASE tool combination may be the best solution

for the organization instead of a single CASE tool. To address this concern, the

concept of tool areas is proposed within the methodology.

 Self-learning aspects: The activities in the methodology not only results in a tool

selection but also enhances the team’s knowledge of the organizational

requirements and CASE technology.

However, the proposed methodology also have some limitations which are given below.

153

Limitations

 The methodology aids in the selection of the most suitable tool or tools for the

intended software development practice however the CASE technology itself

cannot cover all the aspects of a practice. Since software development is a social

effort, it is the users’ responsibility to utilize the tools properly as required by the

practice they are performing.

 A wrong CASE tool selection may cause failure of an entire business, therefore a

more formal methodology might be needed. However, this is a rare situation

considering the usage scope of CASE tools. So, such an endeavor which requires

more effort to apply is not required in practical cases.

 The proposed methodology is only exercised in a single case study that includes

“continuous integration” practice as the subject. Application of the methodology

for different practices may reveal some shortcomings not anticipated during the

design.

Case Study Analysis

The case study demonstrated that the methodology is appropriate for selecting a tool to

be used in the continuous integration process of the subject department. During the

application of the methodology, the evaluators gained knowledge about the

organizational needs and trends in today’s CASE technology. The screening phases of

the methodology have eliminated many candidates and decreased the effort that is

needed for evaluation while enabling the work to be completed in the determined

timescale (one and a half month). After the evaluations and comparisons, a tool

combination is selected which gained management approval due to realistic reasonings

provided by the methodology. Selection of the same combination without utilizing the

methodology is found unlikely by the evaluators since some of the tools and

technologies were not known before.

154

So, we can conclude that the application of the methodology was successful and

provided the expected benefits. However, we understood from the feedbacks that we

would get better coverage if the criteria determination phases of the methodology would

have been conducted in a group setting involving all the stakeholders instead of just the

evaluators. Also, according to the feedback we received, the integration related

requirements would have been considered more deeply.

Future Work

Following topics may be covered as future work:

 A tool may be developed to handle and direct all the activities involved in the

methodology.

 Implications of group decision making which is required at some points in the

methodology may be investigated more throughly.

 Analytical Hierarchy Process (AHP) is chosen for its good coverage of

qualitative decisions and group settings. However, other ranking techniques of

Multi Criteria Decision Making (MCDM) may also be evaluated for suitability.

155

REFERENCES

1. Kontio, J. 1996. A Case Study in Applying a Systematic Method for COTS
Selection. Proceedings of the 18th international conference on Software
engineering, 201 – 209.

2. Fuggetta, A. 1993. A Classification of CASE Technology. Computer, 26(12): 25
– 38.

3. Firth, R., Mosley, V., Pethia, R., Roberts, L., Wood, W. 1987. A Guide to the
Classification and Assessment of Software Engineering Tools (CMU/SEI-87-
TR-10).

4. Forman, E. H., Saul, I. G. 2001. The analytical hierarchy process—an exposition
Operations Research 49(4): 469–487.

5. ISO 14102:2008. Information technology -- Guideline For The Evaluation and
Selection of CASE Tools.

6. Lundell, B., Lings, B. 2002. Comments on ISO 14102: the Standard for CASE-
tool Evaluation. Computer Standards & Interfaces, 24(5), 381 – 388.

7. Blanc, A. L., Korn W. M. 1992. A Structured Approach to The Evaluation and
Selection of CASE Tools. Proceedings of the 1992 ACM/SIGAPP symposium
on Applied computing: technological challenges of the 1990's, 1064 - 1069.

8. Jadhav, A. S., Sonar, R. M. 2009. Evaluating and Selecting Software Packages:
A Review. Information and Software Technology 51 555–563.

156

9. Comella-Dorda S., Dean, J., Lewis, G., Morris, E., Oberndorf, P., Harper, E. A.
2004. Process for COTS Software Product Evaluation. Technical Report
CMU/SEI-2003-TR-017.

10. Saaty, T.L., 1980. The Analytic Hierarchy Process. McGraw-Hill, New York.

11. Jayaswal, B. K., Patton, P. C. with Forman, E. H. 2007. The Analytic Hierarchy
Process (AHP) in Software Development. Prentice Hall. Retrieved November 29,
2009 from METU library: http://my.safaribooksonline.com/9780132351355

12. Expert Choice, http://www.expertchoice.com/ Last accessed: November 28, 2009

13. Maccari, A., Riva, C. 2000. Empirical Evaluation of CASE Tools Usage at
Nokia. Empirical Software Engineering, 5(3), 287 – 299.

14. CruiseControl, http://cruisecontrol.sourceforge.net/main/install.html
Last accessed: November 28, 2009

15. Berczuk, S., Appleton, B. 2003. Software Configuration Management Patterns.
ISBN: 0201741172 2003 Addison-Wesley

16. CruiseControl, http://cruisecontrol.sourceforge.net/main/plugins.html
Last accessed: November 28, 2009

17. Hudson, http://wiki.hudson-ci.org/display/HUDSON/Extend+Hudson
Last accessed: November 28, 2009

18. QuickBuild, http://wiki.pmease.com/display/qb2/Plugin+Management
Last accessed: November 28, 2009

19. TeamCity,
http://www.jetbrains.net/confluence/display/TCD4/Developing+TeamCity+Plugi
ns Last accessed: November 28, 2009

157

20. QuickBuild,
http://track.pmease.com/browse/QB?report=com.atlassian.jira.plugin.system.proj
ect:openissues-panel Last accessed: November 28, 2009

21. JavaOne Conference 2008,
http://java.sun.com/javaone/sf/2008/articles/2008dukeschoiceawards.jsp
Last accessed: November 28, 2009

22. CruiseControl, http://code.google.com/p/cruisecontrol-eclipse-plugin/
Last accessed: November 28, 2009

23. Hudson, http://code.google.com/p/hudson-eclipse/
Last accessed: November 28, 2009

24. ISO / IEC 12207:2008. Systems and software engineering – Software life cycle
processes.

Continuous Integration Server Tools:

25. CruiseControl, http://cruisecontrol.sourceforge.net

Last accessed: November 28, 2009

26. Hudson, http://hudson-ci.org/
Last accessed: November 28, 2009

27. Continuum, http://continuum.apache.org/
Last accessed: November 28, 2009

28. Luntbuild, http://luntbuild.javaforge.com/
Last accessed: November 28, 2009

29. QuickBuild, http://www.pmease.com/
Last accessed: November 28, 2009

158

30. Cruise, http://www.thoughtworks-studios.com/cruise-release-management
Last accessed: November 28, 2009

31. BuildForge, http://www.ibm.com/software/awdtools/buildforge
Last accessed: November 28, 2009

32. Anthill Pro, www.anthillpro.com
Last accessed: November 28, 2009

33. Gump, http://gump.apache.org
Last accessed: November 28, 2009

34. Automated Build Studio, http://www.automatedqa.com/products/abs
Last accessed: November 28, 2009

35. Bamboo, http://www.atlassian.com/software/bamboo/
Last accessed: November 28, 2009

36. Beebox, http://www.beebox.ca/en/home.html
Last accessed: November 28, 2009

37. Cabie, http://cabie.tigris.org/
Last accessed: November 28, 2009

38. Cerberus, http://cerberus.rubyforge.org/
Last accessed: November 28, 2009

39. CruiseControl.NET,
http://confluence.public.thoughtworks.org/display/CCNET/Welcome+to+Cruise
Control.NET
Last accessed: November 28, 2009

40. CruiseControl.rb, http://cruisecontrolrb.thoughtworks.com/
Last accessed: November 28, 2009

159

41. Control Tier, http://open.controltier.org/wiki/Main_Page
Last accessed: November 28, 2009

42. Draco.NET, http://draconet.sourceforge.net/
Last accessed: November 28, 2009

43. EasyCIS, http://www.easycis.eu/web/features.aspx
Last accessed: November 28, 2009

44. Electric Commander, http://www.electric-
cloud.com/products/electriccommander.php
Last accessed: November 28, 2009

45. Final Builder, www.FinalBuilder.com
Last accessed: November 28, 2009

46. InstallAce, http://www.installace.com/Default.aspx
Last accessed: November 28, 2009

47. OpenMake Meister, http://www.openmakesoftware.com/meister-7.0/
Last accessed: November 28, 2009

48. OpenMake Mojo, http://www.openmakesoftware.com/mojo-max-info/
Last accessed: November 28, 2009

49. Parabuild, http://www.viewtier.com/index.htm
Last accessed: November 28, 2009

50. Pulse, http://zutubi.com/
Last accessed: November 28, 2009

51. TeamCity, http://www.jetbrains.com/teamcity/
Last accessed: November 28, 2009

160

52. Team Foundation Server, http://msdn.microsoft.com/en-
us/teamsystem/default.aspx
Last accessed: November 28, 2009

53. Tinderbox, http://www.mozilla.org/tinderbox.html
Last accessed: November 28, 2009

End of continuous integration server tools

Configuration Management Tools:

54. Accurev, http://www.accurev.com/accurev.html

Last accessed: November 29, 2009

55. Bitkeeper, http://www.bitkeeper.com/Products.html
Last accessed: November 29, 2009

56. IBM Rational Clearcase, http://www-01.ibm.com/software/awdtools/clearcase/
Last accessed: November 29, 2009

57. IBM Rational Synergy, http://www-01.ibm.com/software/awdtools/synergy/
Last accessed: November 29, 2009

58. Co Op, http://www.relisoft.com/co_op/index.htm
Last accessed: November 29, 2009

59. Perforce, http://www.perforce.com/
Last accessed: November 29, 2009

60. PureCM, http://www.purecm.com/
Last accessed: November 29, 2009

61. SourceAnywhere, http://www.componentsource.com/products/sourceanywhere-
standalone/index.html
Last accessed: November 29, 2009

161

62. Surround SCM, http://www.seapine.com/surroundscm.html
Last accessed: November 29, 2009

63. Team Foundation Server, http://msdn.microsoft.com/en-
us/teamsystem/default.aspx
Last accessed: November 29, 2009

64. Vault, http://www.sourcegear.com/vault/
Last accessed: November 29, 2009

65. VSS, http://msdn.microsoft.com/en-us/library/3h0544kx%28VS.80%29.aspx
Last accessed: November 29, 2009

66. CVS, http://www.nongnu.org/cvs/
Last accessed: November 29, 2009

67. Aegis, http://aegis.sourceforge.net/
Last accessed: November 29, 2009

68. Bazaar, http://bazaar.canonical.com/en/
Last accessed: November 29, 2009

69. Darcs, http://ostatic.com/darcs
Last accessed: November 29, 2009

70. Mercurial, http://mercurial.selenic.com/
Last accessed: November 29, 2009

71. Monotone, http://www.monotone.ca/
Last accessed: November 29, 2009

72. Open CM, http://www.opencm.org/
Last accessed: November 29, 2009

162

73. Subversion, http://subversion.tigris.org/
Last accessed: November 29, 2009

74. Svk, http://bestpractical.com/svk/
Last accessed: November 29, 2009

75. Vesta, http://www.vestasys.org/
Last accessed: November 29, 2009

End of configuration management tools

Build Tools:

76. Ant, http://ant.apache.org

Last accessed: November 29, 2009

77. NAnt, http://nant.sourceforge.net/
Last accessed: November 29, 2009

78. Maven, http://maven.apache.org
Last accessed: November 29, 2009

79. Phing, http://phing.info/trac/
Last accessed: November 29, 2009

80. Rake, http://rubyforge.org/projects/rake/
Last accessed: November 29, 2009

81. XCode, http://developer.apple.com/tools/xcode/
Last accessed: November 29, 2009

82. Raven, http://rubyforge.org/projects/raven/
Last accessed: November 29, 2009

End of build tools

163

83. Post, G., Kagan, A., Keim, R. T. 1998. A Comparative Evaluation of CASE
Tools. Journal of Systems and Software, 44(2), 87 – 96.

84. Lai, V. S., Trueblood, R. P., Wong, B. K. 1997. Software Selection: A Case
Study of The Application of the Analytical Hierarchical Process to The Selection
of Multimedia Authoring System Information & Management 36 (1999)
221±232.

85. Dyer, R. F., Forman, E. H., 1992. Group Decision Support With the Analytic
Hierarchy Process. Decision Support Systems, 8(2), 99 – 124.

86. Duvall, P. 2006. Automation For The People: Choosing A Continuous
Integration Server. http://www.ibm.com/developerworks/java/library/j-
ap09056/index.html
Last accessed: November 15, 2009

87. Gartner Group, New Bern, NC. http://www.thegartnergroup.com/
Last accessed: November 20, 2009

88. Ovum, Boston, MA. http://www.ovum.com/
Last accessed: November 20, 2009

89. Kitchenham, B. 1996. DESMET: A Methodology For Evaluating Software
Engineering Methods and Tools. Computing & Control Engineering Journal,
8(3), 120 – 126.

90. Sadler, C., Kitchenham, B. A. 1996. ACM Sigsoft Evaluating Software
Engineering Methods and Tool Part4: The Influence of Human Factors. ACM
SIGSOFT Software Engineering Notes, 21(5), 11 – 13.

91. Ballestero, E. 1998. Multiple Criteria Decision Making and its Applications to
Economic Problems Springer ISBN: 978-0792382386.

164

92. Figueira, J. 2005. Multiple Criteria Decision Analysis: State of the Art Surveys
(International Series in Operations Research & Management Science). Springer
ISBN: 978-0-387-23067-2.

93. CASE History, http://it.toolbox.com/wiki/index.php/History_of_CASE
Last accessed: January 22, 2010

94. Candrlic, S., Pavlic, M., Poscic, P. 2007. A comparison and The Desirable
Features of Version Control Tools Information Technology Interfaces. Issue 25-
28 June 2007 Page(s):121 – 126.

95. Kunda D. 2003. STACE: Social Technical Approach to COTS Software
Evaluation. Component-Based Software Quality, LNCS 2693, 64 – 84.

96. Vessey, I., Sravanapudi, A. 1992. Evaluation of Vendor Products: CASE Tools
in Support of Work Groups. System Sciences. Proceedings of the Twenty-Fifth
Hawaii International Conference, 4, 420 – 431.

97. Bruckhaus, T., Madhavji, N. H., Janssen I., Henshaw J. 1996. The Impact of
Tools on Software Productivity. IEEE Software, 13(5), 29 – 38.

98. Lundell, B., Lings, B. 2004. On Understanding Evaluation of Tool Support for
IS Development. Australasian Journal of Information Systems, 12(1), 39 – 53.

99. 1993 IEEE Std 1209-1992. Recommended Practice for the Evaluation and
Selection of CASE Tools.

100. Sodhi, J. 1991. Software Engineering: Methods, Management, and CASE Tools,
McGraw-Hill, Blue Ridge Summit, Pa.

101. Pressman, R.S. 1992. Software Engineering - A Practitioner’s Approach,
McGraw-Hill, New York.

165

102. Forte, G., McCulley, K. 1991. CASE Outlook: Guide to Products and Services,
CASE Consulting Group, Lake Oswego, Ore.

103. Sommerville, I. 1992. Software Engineering, Addison-Wesley, Reading,
Mass.

104. Thomas, I., Nejmeh, B.A. 1992. Definition of Tool Integration for
Environments, IEEE Software, Vol. 9, No. 2, Mar., pp. 29-35.

105. Brown, A.W., Wallnau, K.C. 1996. A Framework for Evaluating Software
Technology, IEEE Software, Vol. 13 (5), 39-49

106. ISO 1998 Information Technology - Software Product Evaluation - Part 5:
Process for evaluators, ISO/IEC 14598-1:1998(E), 1998-07-01

107. Van Reeken, A.J., Trienekens, J.J.M. 1992. The Practical Importance of Methods
and Case Tools: Results of Empirical Research, MERIT 92-015, Maastricht
Economic Research Institute on Innovation and Technology, University of
Limburg, Maastricht, Netherlands

108. Etzerodt, P., Madsen, K.H. 1988. Information Systems Assessment as a Learning
Process, Proceedings of the IFIP WG 8.2 Working Conference on Information
Systems Assessment, , North-Holland, Amsterdam, pp 333-345.

109. Duvall, P. M. 2007. Continuous integration – Improving Software Quality and
Reducing Risk Addison-Wesley

110. Budgen, D., Thomson, M. 2001. CASE Tool Evaluation: Experiences From An
Empirical Study. The Journal of Systems and Software , 67 (2003), 55–75

111. Kemerer, C.F., 1992. How The Learning Curve Affects CASE Tool Adoption.
IEEE Software 9 (3), 23-28.

112. Iivari, J., 1996. Why Are CASE Tools Not Used? Communications of the ACM
39 (10), 94-103.

166

113. Continuous Integration, 2006.

http://martinfowler.com/articles/continuousIntegration.html

Last accessed: January 22, 2010

114. ISO 2001 Software Engineering – Product Quality – Part 1: Quality model,

ISO/IEC 9126-1: 2001

167

TRADEMARKS

QuickBuild is a trademark of PmEase.
Cruise is a trademark of ThoughtWorks.
BuildForge is a trademark of IBM.
AnthillPro is a trademark of Urbancode.
Automated Build Studio is a trademark of AutomatedQA.
Bamboo is a trademark of Atlassian Software Systems.
EasyCIS is a trademark of Vaclav Zahradnik.
ElectricCommander is a trademark of Electric Cloud.
FinalBuilder is a trademark of Vsoft Technologies.
InstallAce is a trademark of DigiAce.
OpenMake Meister is a trademark of OpenMake Software.
OpenMake Mojo is a trademark of OpenMake Software.
Parabuild is a trademark of Viewtier Systems.
Pulse is a trademark of Zutubi.
TeamCity is a trademark of JetBrains.
Team Foundation Server is a trademark of Microsoft.
AccuRev is a trademark of AccuRev Inc.
BitKeeper is a trademark of BitMover Inc.
ClearCase is a trademark of IBM Rational.
Synergy is a trademark of Telelogic (IBM).
Co-Op is a trademark of Reliable Software.
Perforce is a trademark of Perforce Software Inc.
PureCM is a trademark of PureCM Ltd.
SourceAnywhere is a trademark of Dynamsoft Corporation.
Surround SCM is a trademark of Seapine Software.
Team Foundation Server is a trademark of Microsoft.
Vault is a trademark of SourceGear LLC.
VSS is a trademark of Microsoft.
Xcode is a trademark of Apple Inc.

168

APPENDICES

APPENDIX A:

LOW LEVEL CRITERION DEFINITIONS FOR EACH TOOL AREA

1. CI Server Tool Area

169

Table 41: LLC1

Item name Description

ID LLC1

Title Feedback through email and RSS

Definition The CI server shall support build result notifications.

The notifications shall include but not limited to email and RSS.

The message shall point to the build report in case of a successful

build.

The message shall point to the source that caused the error in case of

a failed build.

The CI server shall support filtering the mail recipients according to

the build results.

Rationale One of the main purposes of the continuous integration practice is the

build result notification. By using notifications, all the people that are

involved in developing the project can observe the health of it and

can intervene quickly in case of build failures. However, to avoid big

mail stacks, it is requested by the developers that the CI server should

send email only in case of build failures, not after successful builds.

Source Deployer, developers

Adaptability Email notification functionality is of prime importance and it should

be included in the tool. However the RSS notification functionality

may be provided by an external plugin if it is not included in the

system by default.

Priority High

Type Functional

170

Table 42: LLC2

Item name Description

ID LLC2

Title Extension mechanisms

Definition The CI server shall support being extended through plugins or other

mechanisms.

Rationale The functionality of the server should not be closed to modification. It

should be extendable through plugins.

Source Deployer

Adaptability None

Priority Normal

Type Functional

Reliability requirement was detailed in criterion LLC3 and another functional

requirement was derived from it as LLC4.

Table 43: LLC3

Item name Description

ID LLC3

Title Robust working

Definition The CI server shall execute its processes correctly and repeatedly

once they are constructed.

Rationale It is requested that the CI server be robust enough to require only

minimal user intervention.

Source Deployer

Adaptability None

Priority Normal

Type Quality

171

Table 44: LLC4

Item name Description

ID LLC4

Title Error pointing

Definition The CI server shall be able to point the version of the file that is

causing a build failure.

Rationale The CI server should make it easy to pinpoint error sources.

Source Deployer and developers

Adaptability None

Priority High

Type Functional

The requirement named “longevity prospects” was expanded to LLC5 and LLC6.

Table 45: LLC5

Item name Description

ID LLC5

Title Vendor or community stability

Definition The vendor shall be in the sector for at least a year.

If the tool is open source it shall have a large community.

Rationale If the tool’s vendor goes bankrupt, it would mean support

discontinuance for the tool. In the case of open source software, a

small user group would also mean insufficient support.

Source Management, deployer

Adaptability None

Priority High

Type Supplier/Community

172

Table 46: LLC6

Item name Description

ID LLC6

Title Vendor and tool reputation

Definition The vendor’s credibility and its tool’s success in the CI server area

shall be high. In case of open source software, the original developer

firm of the tool may be considered in this respect.

Rationale High reputation of the vendor generally indicates high reliability.

Source Management

Adaptability None

Priority Normal

Type Supplier/Community

Table 47: LLC7

Item name Description

ID LLC7

Title Weblogic support

Definition If the server is distributed as a web application archive (WAR) file, it

shall support Weblogic server version 9.2

Rationale The department is using Weblogic application server so the

applications that will run on it, should support it.

Source Deployer

Adaptability None

Priority High

Type Functional

173

Table 48: LLC8

Item name Description

ID LLC8

Title Ease of use

Definition The CI server shall include a web interface for configuration.

The CI server shall support configuration via XML files.

Rationale For easy maintenance of the tool, a web interface is requested. From

that interface, full functionality of the tool should be configurable.

Also, because there is Ant experience in the department,

configurability via XML files is requested secondarily.

Source Deployer

Adaptability It is acceptable if the web frontend of the tool is provided from third-

party firms.

Priority High

Type Functional

Table 49: LLC9

Item name Description

ID LLC9

Title Ease of installation

Definition The CI server shall be easily installable without requiring extensive

configuration.

Rationale It would be required in the future that the tool is reinstalled on a

different host. This is not a rare case in the department.

Source System administrators, deployer

Adaptability The CI server may require post install configuration but if wizards are

provided for this, then the CI server may pass from this criterion.

Priority Normal

Type Quality

174

Table 50: LLC10

Item name Description

ID LLC10

Title Eclipse integration

Definition The CI server shall support integration with Eclipse 3.4.2

Rationale It is requested by the deployer that it should be possible to manage

the CI server operations from his Eclipse IDE.

Source Deployer

Adaptability The integration may not be internal; instead it would be available by a

third party plugin.

Priority Normal

Type Functional

Table 51: LLC11

Item name Description

ID LLC11

Title Dashboard presence

Definition The CI server shall include a web based dashboard that displays its

most recent and former build details and results.

Rationale It is requested that the operations of the build tool be examined easily

from a web interface.

Source Literature, deployer

Adaptability None

Priority High

Type Functional

175

Table 52: LLC12

Item name Description

ID LLC12

Title Labeling

Definition The CI server shall support labeling its builds and shall also support

modification of the labeling format.

Rationale If the builds are labeled, referring to them becomes easier.

Source Literature

Adaptability None

Priority High

Type Functional

Table 53: LLC13

Item name Description

ID LLC13

Title Project dependency support

Definition The CI server shall support project dependencies so that when a build

starts for a project, building of the dependent projects can be

triggered.

Rationale Some development projects which are ongoing in the department

share libraries. Therefore a build performed on one of these projects

should trigger the build on others.

Source Literature, deployer

Adaptability None

Priority High

Type Functional

176

Detailed bill of materials report requirement was detailed into two criteria: LLC14 and

LLC15.

Table 54: LLC14

Item name Description

ID LLC14

Title Bill of materials support

Definition The CI server shall support reporting each build contents in a bill of

materials report.

Rationale For compliance requirements in the department, all of the artifacts

included in a specific build should be able to be identified and listed.

Source Literature, Management

Adaptability The reporting format may be arbitrary however it should provide the

necessary information.

Priority High

Type Functional

177

Table 55: LLC15

Item name Description

ID LLC15

Title File fingerprinting support

Definition The CI server shall be able to present the information about JAR

version-build relationship.

Rationale The CI server should keep track of which build produced which jar

and which build is using which version of a jar. Interdependent

modules are being developed by different developers who exchange

JAR files in between. So keeping track of the trail of those JARs in

builds is beneficial.

Source Literature

Adaptability None

Priority Normal

Type Functional

Table 56: LLC16

Item name Description

ID LLC16

Title Role-based user management

Definition The CI server shall be able to categorize users in roles.

Rationale It is requested to define user permissions in groups representing roles

such as the deployers or developers groups.

Source Literature

Adaptability None

Priority Normal

Type Functional

178

Table 57: LLC17

Item name Description

ID LLC17

Title LDAP authentication

Definition The CI server shall support Active Directory authentication.

Rationale It is requested by the system administrators that the tool’s

authentication mechanisms support LDAP so that password

management can be performed centrally.

Source Literature, system administrators

Adaptability None

Priority Normal

Type Functional

Table 58: LLC18

Item name Description

ID LLC18

Title SCM filtering

Definition The CI server shall be able to filter the file types that can trigger a

build.

Rationale The development platforms being used in the department includes

many configuration and documentation files. Changes in those files

do not affect the codebase and should not trigger the build operation.

Source Literature, developers

Adaptability None

Priority High

Type Functional

179

Table 59: LLC19

Item name Description

ID LLC19

Title Multiple SCM repository support

Definition The CI server shall be able to monitor multiple source repositories.

Rationale The department is using multiple source repositories belonging to a

single project. This structure is valid for the current SCM system

however it will probably be the same in the to be acquired system.

Source Literature

Adaptability It is acceptable if this functionality is provided by a third party plugin.

Priority Normal

Type Functional

Table 60: LLC20

Item name Description

ID LLC20

Title Graphical build trends

Definition The CI server shall be able to present its build results over time on a

graphical format that will be available on web.

Rationale It is requested by the management that the trend of the builds should

be observable on graphics which will be a quick way of project health

determination.

Source Literature, management

Adaptability None

Priority Normal

Type Functional

180

2. Configuration Management Tool Area

Table 61: LLC21

Item name Description

ID LLC21

Title Remote access

Definition The configuration management tool shall support remote access to its

source repositories through a fat client.

Rationale Because of the security concerns in the department, it is not desired to

keep the source code on developer’s laptops. Web interfaces of the

tools is not a solution for this case since developers do not want to

make their daily work on web which would be slow and not integrate

to their IDES.

Source Management

Adaptability None

Priority High

Type Functional

181

Table 62: LLC22

Item name Description

ID LLC22

Title Folder level security

Definition The configuration management tool shall support definition of user

permissions at the folder level.

Rationale Giving permissions at the repository level is not efficient and leads to

creation of multiple unnecessary repositories. It is required that the

permissions be able to be defined at the folder level.

Source Deployer and developers

Adaptability None

Priority High

Type Functional

Table 63: LLC23

Item name Description

ID LLC23

Title Extensive Documentation

Definition The configuration management tool shall include comprehensive

documentation that details its each function.

Rationale The tool documentation is the first resource to look in case of a

problem or a need to learn a function of the tool.

Source Developers

Adaptability None

Priority Normal

Type Quality

182

Complete command set and GUI requirement was detailed into two criteria: LLC24,

LLC25.

Table 64: LLC24

Item name Description

ID LLC24

Title Extensive command set

Definition The configuration management tool shall support invocation of all its

major functionality through command line.

Rationale Some developers are familiar with command line usage of tool and in

fact they prefer such usage over GUIs. Also, sometimes it is required

to write scripts that invoke command line.

Source Developers

Adaptability None

Priority Normal

Type Quality

183

Table 65: LLC25

Item name Description

ID LLC25

Title Extensive graphical interfaces

Definition The configuration management tool shall include GUIs for its major

functions.

Rationale Some developers prefer usage from the GUI.

Source Developers

Adaptability The tool may include just one interface and all of its functionality

may be invoked from that interface without the need of another one.

The tool may have an interface that is being provided as a plugin.

Priority Normal

Type Quality

Table 66: LLC26

Item name Description

ID LLC26

Title Robustness

Definition The configuration management tool shall be able to work flawlessly

except in case of failure of its dependent systems like the network

system.

Rationale The configuration management tool holds the primary asset of the

department: the code files. Therefore a failure may lead to data loss

and significant rework effort.

Source Developers

Adaptability None

Priority Normal

Type Quality

184

Table 67: LLC27

Item name Description

ID LLC27

Title Branching abilities

Definition The configuration management tool shall support creation of branches

at any level.

Rationale The department is working on a new project and maintaining an older

one. The development of the older one is still being done on a per

request basis. Therefore branching abilities of the tool is important to

diversify the work.

Source Developers

Adaptability None

Priority Normal

Type Functional

185

Table 68: LLC28

Item name Description

ID LLC28

Title Eclipse integration

Definition The configuration management tool shall support integration with

Eclipse version 3.4.2. All of the major functions of the tool shall be

able to be invoked inside Eclipse.

Rationale This version of the Eclipse development platform is being used in the

department. It is requested that all the tools in the department have

integrations for Eclipse so that the developers would not need to

switch programs and be able to do everything in Eclipse.

Source Management, developers

Adaptability None

Priority High

Type Functional

Table 69: LLC29

Item name Description

ID LLC29

Title Line wise history tracking

Definition The configuration management tool shall be able to show the

originating version of each line in a text based code file.

Rationale It is requested by the developers that the system should be able to

show the line wise history in a java file. That is in when each line is

added and by whom.

Source Literature

Adaptability None

Priority Normal

Type Functional

186

Table 70: LLC30

Item name Description

ID LLC30

Title Uncommitted data indication

Definition The configuration management tool shall be able to show the work

that is not yet committed to the source repository.

Rationale It is requested by the developers that the tool should list their files

that are checked out but not yet committed.

Source Literature, developers

Adaptability None

Priority Normal

Type Functional

Table 71: LLC31

Item name Description

ID LLC31

Title Per-file commit messages

Definition The configuration management shall support comment entering for

each commit.

Rationale If the developers can enter a comment that accompanies a commit,

they can quickly obtain data about each version creation provided that

the comments are meaningful.

Source Literature

Adaptability None

Priority Normal

Type Functional

187

Table 72: LLC32

Item name Description

ID LLC32

Title Binary file handling

Definition The configuration management tool shall be able to version binary

files as well as text files.

Rationale The class files are not version controlled since they are reproducible

however there are some types of binary configuration files that the

developers need to version.

Source Literature

Adaptability None

Priority High

Type Functional

Table 73: LLC33

Item name Description

ID LLC33

Title Reporting options

Definition The configuration management tool shall include reporting facilities.

Rationale It is requested by the management that the configuration management

tool provide them metrics such as line of code measurement.

Source Literature, management

Adaptability Reporting options may be provided by external plugins.

Priority Normal

Type Functional

188

Optimistic locking requirement was detailed into two criteria: LLC34 and LLC35.

Table 74: LLC34

Item name Description

ID LLC34

Title Optimistic locking support

Definition The configuration management tool shall support the copy-modify-

merge model for concurrent development.

Rationale There are long configuration files which should be worked on by

different developers. This model enables the developers to work in

parallel on such files without to need to wait each other.

Source Literature, developers

Adaptability None

Priority High

Type Functional

Table 75: LLC35

Item name Description

ID LLC35

Title Merging support

Definition The configuration management tool shall support merging that is

reconciling multiple changes performed on different copies of the

same file.

Rationale In the optimistic locking model merging is necessary.

Source Literature, developers

Adaptability None

Priority High

Type Functional

189

Table 76: LLC36

Item name Description

ID LLC36

Title Labeling support

Definition The configuration management tool shall support branch and version

labeling.

Rationale Labeling is required to identify baselines (milestones). Also, the CI

server typically designates a version that is used in the build by giving

a label to it.

Source Deployer

Adaptability None

Priority High

Type Functional

Table 77: LLC37

Item name Description

ID LLC37

Title Embedded database

Definition The configuration management tool shall include an embedded

database suited for file handling.

Rationale It is not desired to use a RDBMS to keep the source because these

types of databases are not designed for this purpose. Also, it is not

desired to deal with the extra configuration of a database. It would be

better if the tool includes a preconfigured embedded database suited

for file storage.

Source Deployer, Management

Adaptability None

Priority Normal

Type Functional

190

3. Build Tool Area

Table 78: LLC38

Item name Description

ID LLC38

Title XML Syntax

Definition The build tool shall support XML in the definition of build

scripts.

Rationale All the developers use XML in the development. They are

familiar to working in XML.

Source Deployer, developers

Adaptability None

Priority High

Type Functional

Table 79: LLC39

Item name Description

ID LLC39

Title Easy installation

Definition The build tool shall be able to be installed easily by an installer.

Rationale Hardware and operating system changes occur in regular intervals.

The system administrators prefer easily installable tools.

Source System administrators

Adaptability None

Priority Normal

Type Quality

191

Table 80: LLC40

Item name Description

ID LLC40

Title Easy project configuration

Definition The build tool shall support project creation in a few steps.

Rationale The creation and configuration of a project in Ant is straightforward

and users request the same behavior from the to be acquired build

tool.

Source Deployer, developers

Adaptability None

Priority Normal

Type Quality

The requirement named “Time to learn for a new developer” was detailed into

two criteria LLC40 and LLC41.

Table 81: LLC41

Item name Description

ID LLC41

Title Shallow learning curve

Definition The build tool shall include low complexity functions.

Rationale Dealing with the complexities of a build tool is not preferred since the

reason of its presence is easing the build process.

Source Deployer, developers

Adaptability None

Priority Normal

Type Quality

192

Table 82: LLC42

Item name Description

ID LLC42

Title Complete documentation

Definition The build tool shall include documentation for all of its functionality.

Rationale Information is requested to be easily found for the build tool since the

build schemes change regularly and capabilities of the tool which are

not needed before may be needed.

Source Literature, developers

Adaptability None

Priority Normal

Type Quality

Table 83: LLC43

Item name Description

ID LLC43

Title Multi-project support

Definition The build tool shall support defining and executing multiple projects.

Rationale The structure of the codebase necessitates multiple build projects.

That is the current condition in Ant.

Source Deployer, developers

Adaptability Another functionality that results in the same behavior as multiple

projects may be accepted.

Priority High

Type Functional

193

Table 84: LLC44

Item name Description

ID LLC44

Title Log generation

Definition The build tool shall support generation of log files belonging to builds

executed. These logs shall include each action executes by the tool

and its result.

Rationale Logging of all actions is requested by the standards being conformed

in the department.

Source Deployer, developers

Adaptability None

Priority High

Type Functional

Table 85: LLC45

Item name Description

ID LLC45

Title Eclipse integration

Definition The build shall support integration with Eclipse version 3.4.2

Rationale Developers request to run their build scripts inside their Eclipse

shells. They don’t want to switch platforms.

Source Literature, developers

Adaptability None

Priority High

Type Functional

194

APPENDIX B:

EVALUATION RESULTS FOR EACH LOW LEVEL CRITERION

1. Assessment Details, Findings and Comparisons for CI server tool area:

Evaluation and comparisons for the following tools in CI server tool area are

given in Tables 86-95.

Tools Evaluated: CruiseControl (Version: 2.8.2)

 Hudson (Version: 1.341)

 QuickBuild (Version: 2.0.15)

 TeamCity (Version: 5.0)

195

Table 86: Evaluation and comparison table for LLC2

Criterion ID LLC2

Criterion

Name

Extension mechanisms

CruiseControl CC is open source so it is extendable directly from source. It also has a

plugin development resource page and many developed plugins [16].

Hudson Hudson is open source and it has a plugin base which is not big as

CruiseControl but constantly growing [17].

QuickBuild QuickBuild is not open source. It has plugins available however they are

mostly developed by its vendor PMEase Inc. and the evaluators couldn’t

find any information about developing custom plugins. Therefore it is

concluded that users are dependent on the vendor for extension [18].

TeamCity TeamCity is not open source however it has a sufficient plugin

development facility and documentation for extension [19].

Comparison CruiseControl Hudson QuickBuild TeamCity

CruiseControl 1 3 5 3

Hudson 1/3 1 5 1

QuickBuild 1/5 1/5 1 1/5

TeamCity 1/3 1 5 1

196

Table 87: Evaluation and comparison table for LLC3

Criterion ID LLC3

Criterion

Name

Robust working

CruiseControl CruiseControl is in the market since 2002 and it has 27 versions released

since then. This is an indication of high stability of the product. A

company using it for years also gave good feedback about the tool’s

robustness.

Hudson Hudson is relatively new in the market. It has been available since 2007. It

has an issue tracker reference at its page where the details about the

product’s defects can be found. We can conclude from this reference that

the tool has a good rate of defect fixing which is a good indication of its

robustness.

QuickBuild PMEase, the developer firm of QuickBuild, has been in the market for a

considerable amount of time. They also developed the predecessor;

LuntBuild: an open source tool containing functionality close to

QuickBuild. The tool has a defect reference page where we can see a high

defect fixing rate [20].

TeamCity TeamCity is in the market since 2006. The tool has a defect reference page

where we can see that it has a relatively high number of open defects (2622

defects) which is a negative indicator of robustness.

Comparison CruiseControl Hudson QuickBuild TeamCity

CruiseControl 1 2 2 5

Hudson 1/2 1 1 3

QuickBuild 1/2 1 1 3

TeamCity 1/5 1/3 1/3 1

197

Table 88: Evaluation and comparison table for LLC6

Criterion ID LLC6

Criterion

Name

Vendor and tool reputation

CruiseControl CruiseControl is open to public however it is originally developed by

ThoughtWorks which is a well known company in the sector with many

references. Also the tool itself has a very high download count in

sourceforge.

Hudson Hudson is also open to public. Its producer is Kohsuke Kawaguchi, a

developer working for Sun Microsystems. Commercial support for Hudson

is also announced by Sun in 2009. The tool has earned an award in

developer solutions category in 2008 in the JavaOne conference [21].

QuickBuild QuickBuild has many references that can be seen in its site however its

name is not mentioned in reports or articles discussing the continuous

integration market. Its producer firm PMEase Inc. does not have reputation

as much as the other candidate tools that the evaluators selected.

TeamCity TeamCity has gained relatively high interest than the other tools in the

commercial CI server tool market according to the articles and company

references. However, continuous integration is not the main focus of its

producer firm; JetBrains. Instead they mostly focus on their JAVA IDE:

IntelliJ IDEA. This raises concerns about the future of the tool.

Comparison CruiseControl Hudson QuickBuild TeamCity

CruiseControl 1 2 6 3

Hudson 1/2 1 3 2

QuickBuild 1/6 1/3 1 1/4

TeamCity 1/3 1/2 4 1

198

Table 89: Evaluation and comparison table for LLC9

Criterion ID LLC9

Criterion

Name

Ease of installation

CruiseControl Cruise Control contains both an executable binary package and the source

code version. According to the evaluators’ trial on the real tool, it is very

easy to make an installation with the executable distribution. Minimal

configuration is necessary to make the tool running since it comes in a self

contained package including a Jetty server.

Hudson Hudson also contains a binary and a source distribution. The war file that

comes can be directly executed with java- jar or it can be deployed to a

J2EE compliant application server. If it is directly executed it will be

served from the Winstone servlet container that is coming bundled with it.

So installation can be done in a quick and straightforward way.

QuickBuild Setup of QuickBuild is not difficult however if a multiplatform parallel

system will be configured it requires agent installations and some

configuration. After starting its server, the web interface launches a wizard

for further configuration. The package is self contained in that it contains

both an application server and a database.

TeamCity TeamCity has an easy to follow step by step documentation for installation.

Therefore, its installation can be considered quite easy. As in the case of

QuickBuild configuration of build agents can require a little more effort.

Comparison CruiseControl Hudson QuickBuild TeamCity

CruiseControl 1 1 2 2

Hudson 1 1 2 2

QuickBuild 1/2 1/2 1 1

TeamCity 1/2 1/2 1 1

199

Table 90: Evaluation and comparison table for LLC10

Criterion ID LLC10

Criterion

Name

Eclipse integration

CruiseControl Eclipse 3.2 and higher are supported with the latest Eclipse plugin of the

tool [22].

Hudson Eclipse 3.4.2 is supported by the Hudson’s Eclipse plugin [23].

QuickBuild The support for Eclipse is declared in the QuickBuild’s site but details

about the version of Eclipse that is supported or an installation procedure

could not be found. This condition raises concerns about the quality of the

integration.

TeamCity Eclipse 3.4 is supported by TeamCity by installing the plugin that comes

with the product. Installation is described step by step and is quite easy.

Comparison CruiseControl Hudson QuickBuild TeamCity

CruiseControl 1 1 4 1

Hudson 1 1 4 1

QuickBuild 1/4 1/4 1 1/4

TeamCity 1 1 4 1

200

Table 91: Evaluation and comparison table for LLC15

Criterion ID LLC15

Criterion

Name

File fingerprinting support

CruiseControl This or a similar functionality could not be found in CruiseControl. It will

be considered as non-existent.

Hudson Hudson directly supports file fingerprinting as detailed in its

documentation. In case of multiple dependent projects, Hudson can easily

present which artifact of one project is used in the other project. This can

be achieved at the JAR level.

QuickBuild According to the information obtained directly from the vendor that

QuickBuild does not provide JAR level fingerprinting but includes a

detailed dependency tracking facility that can provide that information

indirectly.

TeamCity TeamCity also has an equivalent dependency tracking system for artifacts

that can show which artifact is used in which project but this functionality

is not for JAR level tracking.

Comparison CruiseControl Hudson QuickBuild TeamCity

CruiseControl 1 1/9 1/6 1/6

Hudson 9 1 4 5

QuickBuild 6 1/4 1 2

TeamCity 6 1/5 1/2 1

201

Table 92: Evaluation and comparison table for LLC16

Criterion ID LLC16

Criterion

Name

Role-based user management

CruiseControl CruiseControl has user authentication but it is per user based and role or

scheme definitions are not supported. Also, available permission

definitions are very limited.

Hudson Hudson has group based authentication. Thus role groups can be defined

with different permission levels.

QuickBuild QuickBuild possesses both user and group based authentication

mechanisms and it offers the ability to setup permissions at a finer level. A

role-based model can be easily constructed.

TeamCity TeamCity offers a role-based authentication mechanism by default. The

tool comes with the predefined system administrator, project administrator,

project developer, agent manager and project viewer roles. New roles can

be added, permissions are configurable.

Comparison CruiseControl Hudson QuickBuild TeamCity

CruiseControl 1 1/5 1/7 1/8

Hudson 5 1 1/2 1/3

QuickBuild 7 2 1 1/2

TeamCity 8 3 2 1

202

Table 93: Evaluation and comparison table for LLC17

Criterion ID LLC17

Criterion

Name

LDAP authentication

CruiseControl CruiseControl does not support LDAP authentication.

Hudson LDAP authentication is supported by Hudson.

QuickBuild LDAP authentication is supported by QuickBuild.

TeamCity LDAP authentication is supported by TeamCity however it should be

configured via an XML file not from the GUI which makes the

configuration a little more difficult. Though the tool also has an LDAP

synchronization functionality which can fetch user and group data from

LDAP and update user group memberships based on the data retrieved.

Comparison CruiseControl Hudson QuickBuild TeamCity

CruiseControl 1 1/9 1/9 1/9

Hudson 9 1 1 1

QuickBuild 9 1 1 1

TeamCity 9 1 1 1

203

Table 94: Evaluation and comparison table for LLC19

Criterion ID LLC19

Criterion

Name

Multiple SCM repository support

CruiseControl CruiseControl can poll multiple SCM systems and multiple repositories.

Hudson Hudson cannot be configured to connect with multiple SCM systems

however it can be configured to poll multiple SCM repositories of the same

SCM system.

QuickBuild QuickBuild can poll multiple SCM systems and multiple repositories.

TeamCity TeamCity can poll multiple SCM systems and multiple repositories.

Comparison CruiseControl Hudson QuickBuild TeamCity

CruiseControl 1 4 1 1

Hudson 1/4 1 1/4 1/4

QuickBuild 1 4 1 1

TeamCity 1 4 1 1

204

Table 95: Evaluation and comparison table for LLC20

Criterion ID LLC20

Criterion

Name

Graphical build trends

CruiseControl The Cruise Control’s dashboard interface provides visualization of build

results. The department couldn’t find any graphical build trend

representation in standalone CruiseControl however this functionality is

available through various plugins. Configuration of dashboard should be

done via an XML file.

Hudson Hudson also includes a dashboard interface in which several graphical

representations are offered. However trend graphics are mainly for test tool

integrations and test results. Build result graphics are comparably limited.

QuickBuild QuickBuild includes statistical graphs that can show build and test trends.

TeamCity TeamCity offers custom graphic creation functionality which allows the

user to create a graphical representation of the build data. This is a strong

point in that the user can create any type of chart however the configuration

should be made via an XML file.

Comparison CruiseControl Hudson QuickBuild TeamCity

CruiseControl 1 1/3 1/7 1/6

Hudson 3 1 1/6 1/4

QuickBuild 7 6 1 2

TeamCity 6 4 1/2 1

205

2. Assessment Details, Findings and Comparisons for Configuration

Management Tool Area:

Only tool that passed the screening activity was ClearCase. Therefore,

evaluation and comparison efforts were not necessary for the configuration

management tool area. However, for completeness and future reference

assessments were also made for ClearCase. Results are given in Tables 96-

105.

Tool Evaluated: ClearCase (Version: 7.1.1)

Table 96: Evaluation and comparison table for LLC23

Criterion ID LLC23

Criterion

Name

Extensive documentation

ClearCase ClearCase is coming with extensive documentation detailing its every

feature. Guides are available and separated as administrator guide, user

guide and installation guide. Users can get help inside the tool by clicking

on help in the top bar. Also context sensitive help that is accessible by

clicking on F1 is available for most of the windows that the tool has.

Table 97: Evaluation and comparison table for LLC24

Criterion ID LLC24

Criterion

Name

Extensive command set

ClearCase All of the ClearCase functionality is available in the tool’s command set

since the tool is firstly developed for Unix and then ported on Windows.

206

Table 98: Evaluation and comparison table for LLC25

Criterion ID LLC25

Criterion

Name

Extensive graphical interfaces

ClearCase Most major operations of the tool are included in its GUI called ClearCase

Explorer. Wizards are generally offered for multi-step tasks. Also, a

graphical interface is available for the administrators of the tool called

“administration console”.

Table 99: Evaluation and comparison table for LLC26

Criterion ID LLC26

Criterion

Name

Robustness

ClearCase ClearCase entered the CASE tool market in 1992 for Unix platforms. So it

is in the market for 17 years and many versions are released during this

period. With every version many defects are fixed however addition of new

functionalities also brought new defects and increased the tool complexity.

According to the research, the tool can be considered robust for its core

functionalities however fragile for human errors due to its complexity. So,

errors are likely to be faced in the learning and adjustment period. The

defect fixing activities are being conducted by IBM regularly.

207

Table 100: Evaluation and comparison table for LLC27

Criterion ID LLC27

Criterion

Name

Branching abilities

ClearCase ClearCase offers many facilities for branching. The usage model is divided

into two as base usage and UCM (unified change management) usage

models. In the base model, branching is manual and there is no limit for

branch creation. These branches can also be merged. The UCM model

automates the branch formation and merging operations. Either way,

branching needs for all SCM patterns can be satisfied.

Table 101: Evaluation and comparison table for LLC29

Criterion ID LLC29

Criterion

Name

Line wise history tracking

ClearCase ClearCase offers the “cleartool annotate” command in its command-set

which takes a text file as input and displays it with information added after

each line. This information indicates when, and in which version, the line

was added. So we can conclude that this criterion is fully satisfied by

ClearCase.

Table 102: Evaluation and comparison table for LLC30

Criterion ID LLC30

Criterion

Name

Uncommitted data indication

ClearCase Through the usage of ClearCase’s “find checkouts” functionality, the files

that are checked out but not yet committed back to the repository can easily

be found. This functionality can be invoked from the command set, GUI or

from supported IDE plugins.

208

Table 103: Evaluation and comparison table for LLC31

Criterion ID LLC31

Criterion

Name

Per-file commit messages

ClearCase ClearCase supports entering comments for all the commit operations.

Usage of this capability is optional but can also be made mandatory by the

tool.

Table 104: Evaluation and comparison table for LLC33

Criterion ID LLC33

Criterion

Name

Reporting options

ClearCase ClearCase includes an interface called “Report Builder” which consists of

various predefined reports that are centered on artifacts and users. Custom

reports can also be added but they should be prepared in the proper format

required by the tool.

Table 105: Evaluation and comparison table for LLC37

Criterion ID LLC37

Criterion

Name

Embedded database

ClearCase ClearCase is bundled with an embedded database and does not require or

support a third party database. The database coming with the tool has a

specialized and secured repository format for file storage and retrieval. It

only keeps the whole file once and then starts to keep only the differences

between its versions. This avoids excessive disk space usage but is only

valid for text based files.

209

3. Assessment Details, Findings and Comparisons for Build Tool Area:

Evaluations and comparisons for the following tools in Build Tool Area are

given in Tables 106-109.

Tools Evaluated: Ant (Version: 1.8.0RC1)

 Maven (Version: 2.2.1)

Table 106: Evaluation and comparison table for LLC379

Criterion ID LLC39

Criterion

Name

Easy installation

Ant Ant may come bundled with other applications like an IDE. Otherwise, it

can be installed very easily. After expanding the installation package, some

environment variables should be set in order Ant to work correctly. The

installation and environment variable configuration may not exceed 5

minutes.

Maven Maven can also be installed easily. It only requires a standard JDK on the

computer.

Comparison Ant Maven

Ant 1 1

Maven 1 1

210

Table 107: Evaluation and comparison table for LLC40

Criterion ID LLC40

Criterion

Name

Easy project configuration

Ant Project configuration with Ant can get detailed for complex builds.

However, it allows extensive customization of the build scripts.

Maven Maven offers a standard project layout and if the user conforms to this

layout, project configuration is quite easy and straightforward.

Comparison Ant Maven

Ant 1 1/4

Maven 4 1

Table 108: Evaluation and comparison table for LLC41

Criterion ID LLC41

Criterion

Name

Shallow learning curve

Ant Since Ant is currently being used in the department, everybody knows its

syntax and functions. However, it is also stated by the developers that

learning Ant for a newcomer would not be hard.

Maven Maven has a relatively different project structure and it includes

dependency management facilities which are not familiar to the

department. However, according to the users in the community, it is not

difficult to learn.

Comparison Ant Maven

Ant 1 4

Maven 1/4 1

211

Table 109: Evaluation and comparison table for LLC42

Criterion ID LLC42

Criterion

Name

Complete documentation

Ant Ant comes with a good documentation which covers each functionality of

the tool and is continually updated by Apache.

Maven Maven also has an extensive and up-to-date documentation at Apache’s

site.

Comparison Ant Maven

Ant 1 1

Maven 1 1

212

APPENDIX C: PRORITY CALCULATIONS OF ALTERNATIVES

Calculations for Activity 6 Step 1.4 “Derivation of ratio scale priorities for the

alternatives” are included in this section for both the CI server and build tool areas.

Synthesis tables for the CI server tool area:

Table 110: Synthesis table for LLC2

Criterion ID LLC2
Criterion
Name

Extension mechanisms

Comparison CruiseControl Hudson QuickBuild TeamCity
CruiseControl 1 3 5 3
Hudson 1/3 1 5 1
QuickBuild 1/5 1/5 1 1/5
TeamCity 1/3 1 5 1
Total 1.867 5.200 16.000 5.200

Synthesis CruiseControl Hudson QuickBuild TeamCity Row Average
CruiseControl 0.536 0.577 0.313 0.577 0.501
Hudson 0.178 0.192 0.313 0.192 0.219
QuickBuild 0.107 0.038 0.063 0.038 0.062
TeamCity 0.178 0.192 0.313 0.192 0.219
Total 1.000

213

Table 111: Synthesis table for LLC3

Criterion ID LLC3
Criterion
Name

Robust working

Comparison CruiseControl Hudson QuickBuild TeamCity
CruiseControl 1 2 2 5
Hudson 1/2 1 1 3
QuickBuild 1/2 1 1 3
TeamCity 1/5 1/3 1/3 1
Total 2.200 4.333 4.333 12.000

Synthesis CruiseControl Hudson QuickBuild TeamCity Row Average
CruiseControl 0.455 0.462 0.462 0.417 0.449
Hudson 0.227 0.231 0.231 0.250 0.235
QuickBuild 0.227 0.231 0.231 0.250 0.235
TeamCity 0.091 0.077 0.077 0.083 0.082
Total 1.000

Table 112: Synthesis table for LLC6

Criterion ID LLC6
Criterion
Name

Vendor and tool reputation

Comparison CruiseControl Hudson QuickBuild TeamCity
CruiseControl 1 2 6 3
Hudson 1/2 1 3 2
QuickBuild 1/6 1/3 1 1/4
TeamCity 1/3 1/2 4 1
Total 2.000 3.833 14.000 6.250

Synthesis CruiseControl Hudson QuickBuild TeamCity Row Average
CruiseControl 0.500 0.522 0.429 0.480 0.483
Hudson 0.250 0.261 0.214 0.320 0.261
QuickBuild 0.083 0.087 0.071 0.040 0.070
TeamCity 0.167 0.130 0.286 0.160 0.186
Total 1.000

214

Table 113: Synthesis table for LLC9

Criterion ID LLC9
Criterion
Name

Ease of installation

Comparison CruiseControl Hudson QuickBuild TeamCity
CruiseControl 1 1 2 2
Hudson 1 1 2 2
QuickBuild 1/2 1/2 1 1
TeamCity 1/2 1/2 1 1
Total 3.000 3.000 6.000 6.000

Synthesis CruiseControl Hudson QuickBuild TeamCity Row Average
CruiseControl 0.333 0.333 0.333 0.333 0.333
Hudson 0.333 0.333 0.333 0.333 0.333
QuickBuild 0.167 0.167 0.167 0.167 0.167
TeamCity 0.167 0.167 0.167 0.167 0.167
Total 1.000

Table 114: Synthesis table for LLC10

Criterion ID LLC10
Criterion
Name

Eclipse integration

Comparison CruiseControl Hudson QuickBuild TeamCity
CruiseControl 1 1 4 1
Hudson 1 1 4 1
QuickBuild 1/4 1/4 1 1/4
TeamCity 1 1 4 1
Total 3.250 3.250 13.000 3.250

Synthesis CruiseControl Hudson QuickBuild TeamCity Row Average
CruiseControl 0.308 0.308 0.308 0.308 0.308
Hudson 0.308 0.308 0.308 0.308 0.308
QuickBuild 0.077 0.077 0.077 0.077 0.077
TeamCity 0.308 0.308 0.308 0.308 0.308
Total 1.000

215

Table 115: Synthesis table for LLC15

Criterion ID LLC15
Criterion
Name

File fingerprinting support

Comparison CruiseControl Hudson QuickBuild TeamCity
CruiseControl 1 1/9 1/6 1/6
Hudson 9 1 4 5
QuickBuild 6 1/4 1 2
TeamCity 6 1/5 1/2 1
Total 22.000 1.561 5.667 8.167

Synthesis CruiseControl Hudson QuickBuild TeamCity Row Average
CruiseControl 0.045 0.071 0.029 0.020 0.042
Hudson 0.409 0.641 0.706 0.612 0.592
QuickBuild 0.273 0.160 0.176 0.245 0.214
TeamCity 0.273 0.128 0.088 0.122 0.153
Total 1.000

Table 116: Synthesis table for LLC16

Criterion ID LLC16
Criterion
Name

Role-based user management

Comparison CruiseControl Hudson QuickBuild TeamCity
CruiseControl 1 1/5 1/7 1/8
Hudson 5 1 1/2 1/3
QuickBuild 7 2 1 1/2
TeamCity 8 3 2 1
Total 21.000 6.200 3.643 1.958

Synthesis CruiseControl Hudson QuickBuild TeamCity Row

Average
CruiseControl 0.048 0.032 0.039 0.064 0.046
Hudson 0.238 0.161 0.137 0.170 0.177
QuickBuild 0.333 0.323 0.274 0.255 0.296
TeamCity 0.381 0.484 0.549 0.511 0.481
Total 1.000

216

Table 117: Synthesis table for LLC17

Criterion ID LLC17
Criterion
Name

LDAP authentication

Comparison CruiseControl Hudson QuickBuild TeamCity
CruiseControl 1 1/9 1/9 1/9
Hudson 9 1 1 1
QuickBuild 9 1 1 1
TeamCity 9 1 1 1
Total 28.000 3.111 3.111 3.111

Synthesis CruiseControl Hudson QuickBuild TeamCity Row Average
CruiseControl 0.036 0.036 0.036 0.036 0.036
Hudson 0.321 0.321 0.321 0.321 0.321
QuickBuild 0.321 0.321 0.321 0.321 0.321
TeamCity 0.321 0.321 0.321 0.321 0.321
Total 1.000

Table 118: Synthesis table for LLC19

Criterion ID LLC19
Criterion
Name

Multiple SCM repository support

Comparison CruiseControl Hudson QuickBuild TeamCity
CruiseControl 1 4 1 1
Hudson 1/4 1 1/4 1/4
QuickBuild 1 4 1 1
TeamCity 1 4 1 1
Total 3.250 13.000 3.250 3.250

Synthesis CruiseControl Hudson QuickBuild TeamCity Row Average
CruiseControl 0.308 0.308 0.308 0.308 0.308
Hudson 0.077 0.077 0.077 0.077 0.077
QuickBuild 0.308 0.308 0.308 0.308 0.308
TeamCity 0.308 0.308 0.308 0.308 0.308
Total 1.000

217

Table 119: Synthesis table for LLC20

Criterion ID LLC20
Criterion
Name

Graphical build trends

Comparison CruiseControl Hudson QuickBuild TeamCity
CruiseControl 1 1/3 1/7 1/6
Hudson 3 1 1/6 1/4
QuickBuild 7 6 1 2
TeamCity 6 4 1/2 1
Total 17.000 11.333 1.810 3.417

Synthesis CruiseControl Hudson QuickBuild TeamCity Row Average
CruiseControl 0.059 0.029 0.079 0.049 0.054
Hudson 0.176 0.088 0.092 0.073 0.107
QuickBuild 0.412 0.529 0.552 0.585 0.520
TeamCity 0.353 0.353 0.276 0.293 0.319
Total 1.000

Synthesis tables for the build tool area:

Table 120: Synthesis table for LLC39

Criterion ID LLC39
Criterion
Name

Easy installation

Comparison Ant Maven
Ant 1 1
Maven 1 1
Total 2 2

Synthesis Ant Maven Row Average
Ant 0.500 0.500 0.500
Maven 0.500 0.500 0.500
Total 1.000

218

Table 121: Synthesis table for LLC40

Criterion ID LLC40
Criterion
Name

Easy project configuration

Comparison Ant Maven
Ant 1 1/4
Maven 4 1
Total 5 1.25

Synthesis Ant Maven Row Average
Ant 0.200 0.200 0.200
Maven 0.800 0.800 0.800
Total 1.000

Table 122: Synthesis table for LLC41

Criterion ID LLC41
Criterion
Name

Shallow learning curve

Comparison Ant Maven
Ant 1 4
Maven 1/4 1
Total 1.25 5

Synthesis Ant Maven Row Average
Ant 0.800 0.800 0.800
Maven 0.200 0.200 0.200
Total 1.000

Table 123: Synthesis table for LLC42

Criterion ID LLC42
Criterion
Name

Complete documentation

Comparison Ant Maven
Ant 1 1
Maven 1 1
Total 2 2

Synthesis Ant Maven Row Average
Ant 0.500 0.500 0.500
Maven 0.500 0.500 0.500
Total 1.000

219

APPENDIX D: CONSISTENCY CALCULATIONS

Consistency check tables for the CI server tool area are given in this section.

Calculations for Activity 6 Step 1.5 - Consistency ratio estimation:

Table 124: Consistency check table for LLC2

Criterion ID LLC2
Criterion
Name

Extension mechanisms

Consistency Cruise
Control

Hudson Quick
Build

TeamCity Totals Division

CruiseControl 1
X

0.501

3
X

0.219

5
X

0.062

3
X

0.219 2.249 4.489
Hudson 1/3

X
0.501

1
X

0.219

5
X

0.062

1
X

0.219 0.915 4.178
QuickBuild 1/5

X
0.501

1/5
X

0.219

1
X

0.062

1/5
X

0.219 0.221 3.567
TeamCity 1/3

X
0.501

1
X

0.219

5
X

0.062

1
X

0.219 0.915 4.178
Average 4.103
CI (4.103 – 4) / 3 = 0.034
CR 0.034 / 0.90 = 0.038

220

Table 125: Consistency check table for LLC3

Criterion ID LLC3
Criterion
Name

Robust working

Consistency Cruise
Control

Hudson Quick
Build

TeamCity Totals Division

CruiseControl 1
X

0.449

2
X

0.235

2
X

0.235

5
X

0.082 1.799 4.007
Hudson 1/2

X
0.449

1
X

0.235

1
X

0.235

3
X

0.082 0.941 4.002
QuickBuild 1/2

X
0.449

1
X

0.235

1
X

0.235

3
X

0.082 0.941 4.002
TeamCity 1/5

X
0.449

1/3
X

0.235

1/3
X

0.235

1
X

0.082 0.328 4.006
Average 4.004
CI 0.001
CR 0.002

Table 126: Consistency check table for LLC6

Criterion ID LLC6
Criterion
Name

Vendor and tool reputation

Consistency Cruise
Control

Hudson Quick
Build

TeamCity Totals Division

CruiseControl 1
X

0.483

2
X

0.261

6
X

0.070

3
X

0.186 1.983 4.106
Hudson 1/2

X
0.483

1
X

0.261

3
X

0.070

2
X

0.186 1.085 4.155
QuickBuild 1/6

X
0.483

1/3
X

0.261

1
X

0.070

1/4
X

0.186 0.284 4.057
TeamCity 1/3

X
0.483

1/2
X

0.261

4
X

0.070

1
X

0.186 0.758 4.073
Average 4.098
CI 0.033
CR 0.036

221

Table 127: Consistency check table for LLC9

Criterion ID LLC9
Criterion
Name

Ease of installation

Consistency Cruise
Control

Hudson Quick
Build

TeamCity Totals Division

CruiseControl 1
X

0.333

1
X

0.333

2
X

0.167

2
X

0.167 1.334 4.006
Hudson 1

X
0.333

1
X

0.333

2
X

0.167

2
X

0.167 1.334 4.006
QuickBuild 1/2

X
0.333

1/2
X

0.333

1
X

0.167

1
X

0.167 0.667 3.994
TeamCity 1/2

X
0.333

1/2
X

0.333

1
X

0.167

1
X

0.167 0.667 3.994
Average 4.000
CI 0.000
CR 0.000

Table 128: Consistency check table for LLC10

Criterion ID LLC10
Criterion
Name

Eclipse integration

Consistency Cruise
Control

Hudson Quick
Build

TeamCity Totals Division

CruiseControl 1
X

0.308

1
X

0.308

4
X

0.077

1
X

0.308 1.232 4.000
Hudson 1

X
0.308

1
X

0.308

4
X

0.077

1
X

0.308 1.232 4.000
QuickBuild 1/4

X
0.308

1/4
X

0.308

1
X

0.077

1/4
X

0.308 0.308 4.000
TeamCity 1

X
0.308

1
X

0.308

4
X

0.077

1
X

0.308 1.232 4.000
Average 4.000
CI 0.000
CR 0.000

222

Table 129: Consistency check table for LLC15

Criterion ID LLC15
Criterion
Name

File fingerprinting support

Consistency Cruise
Control

Hudson Quick
Build

TeamCity Totals Division

CruiseControl 1
X

0.042

1/9
X

0.592

1/6
X

0.214

1/6
X

0.153 0.169 4.022
Hudson 9

X
0.042

1
X

0.592

4
X

0.214

5
X

0.153 2.591 4.377
QuickBuild 6

X
0.042

1/4
X

0.592

1
X

0.214

2
X

0.153 0.920 4.299
TeamCity 6

X
0.042

1/5
X

0.592

1/2
X

0.214

1
X

0.153 0.630 4.120
Average 4.205
CI 0.068
CR 0.076

Table 130: Consistency check table for LLC16

Criterion ID LLC16
Criterion
Name

Role-based user management

Consistency Cruise
Control

Hudson Quick
Build

TeamCity Totals Division

CruiseControl 1
X

0.046

1/5
X

0.177

1/7
X

0.296

1/8
X

0.481 0.184 3.996
Hudson 5

X
0.046

1
X

0.177

1/2
X

0.296

1/3
X

0.481 0.715 4.041
QuickBuild 7

X
0.046

2
X

0.177

1
X

0.296

1/2
X

0.481 1.213 4.096
TeamCity 8

X
0.046

3
X

0.177

2
X

0.296

1
X

0.481 1.972 4.100
Average 4.058
CI 0.019
CR 0.022

223

Table 131: Consistency check table for LLC17

Criterion ID LLC17
Criterion
Name

LDAP authentication

Consistency Cruise
Control

Hudson Quick
Build

TeamCity Totals Division

CruiseControl 1
X

0.036

1/9
X

0.321

1/9
X

0.321

1/9
X

0.321 0.143 3.972
Hudson 9

X
0.036

1
X

0.321

1
X

0.321

1
X

0.321 1.287 4.009
QuickBuild 9

X
0.036

1
X

0.321

1
X

0.321

1
X

0.321 1.287 4.009
TeamCity 9

X
0.036

1
X

0.321

1
X

0.321

1
X

0.321 1.287 4.009
Average 4.000
CI 0.000
CR 0.000

Table 132: Consistency check table for LLC19

Criterion ID LLC19
Criterion
Name

Multiple SCM repository support

Consistency Cruise
Control

Hudson Quick
Build

TeamCity Totals Division

CruiseControl 1
X

0.308

4
X

0.077

1
X

0.308

1
X

0.308 1.232 4.000
Hudson 1/4

X
0.308

1
X

0.077

1/4
X

0.308

1/4
X

0.308 0.308 4.000
QuickBuild 1

X
0.308

4
X

0.077

1
X

0.308

1
X

0.308 1.232 4.000
TeamCity 1

X
0.308

4
X

0.077

1
X

0.308

1
X

0.308 1.232 4.000
Average 4.000
CI 0.000
CR 0.000

224

Table 133: Consistency check table for LLC20

Criterion ID LLC20
Criterion
Name

Graphical build trends

Consistency Cruise
Control

Hudson Quick
Build

TeamCity Totals Division

CruiseControl 1
X

0.054

1/3
X

0.107

1/7
X

0.520

1/6
X

0.319 0.217 4.021
Hudson 3

X
0.054

1
X

0.107

1/6
X

0.520

1/4
X

0.319 0.435 4.069
QuickBuild 7

X
0.054

6
X

0.107

1
X

0.520

2
X

0.319 2.178 4.188
TeamCity 6

X
0.054

4
X

0.107

1/2
X

0.520

1
X

0.319 1.331 4.172
Average 4.113
CI 0.038
CR 0.042

