

TRAFFIC SIGN DETECTION USING FPGA

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

İBRAHİM ÖZKAN

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

APRIL 2010

Approval of the thesis:

TRAFFIC SIGN DETECTION USING FPGA

submitted by İBRAHİM ÖZKAN in partial fulfillment of the requirements for the
degree of Master of Science in Electrical and Electronics Engineering
Department, Middle East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İsmet Erkmen
Head of Department, Electrical and Electronics Engineering

Assoc.Prof. Dr. Mehmet Mete Bulut
Supervisor, Electrical and Electronics Engineering

Prof. Dr. Gözde Bozdağı Akar
Co-Supervisor, Electrical and Electronics Engineering

Examining Committee Members:

Assoc. Prof. Dr. Aydın Alatan
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Mehmet Mete Bulut
Electrical and Electronics Engineering Dept., METU

Prof. Dr. Gözde Bozdağı Akar
Electrical and Electronics Engineering Dept., METU

Assist. Prof. Dr. Çağatay Candan
Electrical and Electronics Engineering Dept., METU

Hakan Caner, M.Sc.
ASELSAN Inc.

 Date:

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

Name, Last name : İBRAHİM ÖZKAN

Signature :

iv

ABSTRACT

TRAFFIC SIGN DETECTION USING FPGA

Özkan, İbrahim

M. S., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Mehmet Mete Bulut

Co-Supervisor: Prof. Dr. Gözde Bozdağı Akar

April 2010, 91 pages

In this thesis, real time detection of traffic signs using FPGA hardware is presented.

Traffic signs have distinctive color and shape properties. Therefore, color and shape

based algorithms are chosen to implemented on FPGA. FPGA supports sufficient

logic to implement complete systems and sub-systems.

Color information of images/frames is used to minimize the search domain of

detection process. Using FPGA, real time conversion of YUV space to RGB space

is performed. Furthermore, color thresholding algorithm is used to localize the sign

in the image/video depending on the color.

Edges are the most important image/frame attributes that provide valuable

information about the shape of the objects. Sobel edge detection algorithm is

implemented on FPGA. After color segmentation, FPGA implementation of Sobel

algorithm is used to find the edges of candidate traffic signs in real time. Later,

radial symmetry based shape detection algorithm is used to determine circular

traffic signs.

v

Each FPGA implemented algorithm is tested by using video sequences and static

images. In addition, combined implementation of color based and shape based

algorithms are tested. Joint application of color and shape based algorithms are used

in order to reduce search domain and the processing time of detection process.

Designing architecture on FPGA makes traffic sign detection system portable as a

final product and relatively more efficient than the computer based detection

systems. The resulting hardware is suitable where cost and compactness constraints

are important.

Keywords: Real Time Traffic Sign Detection, FPGA, Color Segmentation, Shape

Based Detection

vi

ÖZ

FPGA KULLANARAK TRAFİK İŞARETİ TESPİTİ

Özkan, İbrahim

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Mehmet Mete Bulut

Ortak Tez Yöneticisi: Prof. Dr. Gözde Bozdağı Akar

Nisan 2010, 91 sayfa

Bu tezde, FPGA donanımı kullanılarak trafik işaretlerinin gerçek zamanlı tespiti

gerçekleştirilmiştir. Trafik işaretleri kendine özgü renk ve şekil bilgisine sahiptir.

Bu yüzden, renk ve şekil bilgisine dayalı algoritmalar, FPGA üzerinde gerçeklemek

için seçilmiştir. FPGA’ler bütün trafik işaret tespit sistemini gerçeklemek için

yeterli donanım mantığına sahiptir.

Resim veya video üzerindeki renk bilgisi, trafik işareti tespit sürecinin tarama

alanını küçültmek için kullanılır. Bu amaçla, ilk önce FPGA kullanılarak YUV

renk uzayından RGB renk uzayına çevrim gerçekleştirilmiştir. Daha sonra, renk

eşikleme algoritması kullanılarak video üzerindeki trafik işaretlerinin olası yerleri

bulunmuştur.

Kenarlar, cisimlerin şekilleri hakkında önemli bilgiler veren en önemli görüntü

özelliklerinden biridir. Sobel kenar belirleme algoritması FPGA üzerinde

gerçeklenmiştir. Video üzerinde renk bölütleme işleminden sonra, FPGA üzerinde

vii

çalışan Sobel algoritması olası trafik işaretlerinin kenarlarını bulmak için kullanılır..

Daha sonra, radial simetri tabanlı şekil belirleme algoritması sayesinde dairesel

trafik işaretleri tespit edilir.

FPGA’de gerçeklenen her algoritma video ve resimler üzerinde ayrı ayrı test

edilmiştir. Ayrıca, renk ve şekil özelliklerinin beraber kullanılmasına dayalı

algoritma da test edilmiştir. Renk ve şekil bilgisini beraber kullanılması olası trafik

işaretlerinin bulunduğu alanı sınırlanmış, dolayısıyla işlem zamanını düşürmüştür

Mimarinin FPGA kullanılarak tasarlanması, trafik işaret tespit sistemini taşınabilir

yapmıştır. Ayrıca diğer bilgisayar tabanlı işaret tespit sistemlerine göre daha etkili

bir sistem olmuştur. Sonuçlanan donanım fiyatın ve kendi başına çalışabilirliğin

önemli olduğu yerler için uygundur.

Anahtar Kelimeler: Gerçek Zamanlı Trafik İşareti Tespiti, FPGA, Renk

Bölümleme, Şekil Temelli Tespit

viii

To My Family

ix

ACKNOWLEDGEMENTS

I wish to express my deepest thanksgiving to my supervisor, Assoc. Prof. Dr.

Mehmet Mete BULUT for his boundless help, excellent supervision and leading

guidance from beginning to end of thesis work.

I also express my sincere gratitude to my co-supervisor, Prof. Dr. Gözde BOZDAĞI

AKAR, for her initiative ideas and guidance that helped to construct this work.

I would like to thank ASELSAN Inc. for facilities provided for the completion of

this thesis.

I would like to express my thanks especially to Hakan CANER and to my all

friends for their support and fellowship.

I would also like to thank TÜBİTAK for its support on scientific and technological

researches.

I would like to express my special appreciation to my family for their continuous

support and encouragements.

x

TABLE OF CONTENTS

ABSTRACT .. IV

ÖZ .. VI

ACKNOWLEDGEMENTS ... IX

TABLE OF CONTENTS .. X

LIST OF TABLES ... XII

LIST OF FIGURES .. XIII

CHAPTERS…………………………………………………………………………………………..1

1 INTRODUCTION ... 1

1.1 SCOPE OF THESIS .. 2
1.2 THESIS OUTLINE ... 3

2 BACKGROUND ON TRAFFIC SIGN DETECTION .. 5

2.1 INTRODUCTION ... 5
2.2 DETECTION OF TRAFFIC SIGNS ... 6

2.2.1 Detection Using Color Feature .. 6
2.2.2 Detection Using Shape Feature .. 14

3 DETECTION OF TRAFFIC SIGNS USING FPGA HARDWARE .. 22

3.1 HARDWARE ARCHITECTURE ... 22
3.1.1 XILINX ML507 FPGA BOARD .. 22
3.1.2 VIDEO INTERFACE INPUT/OUTPUT CARD .. 23
3.1.3 INTER-INTEGRATED CIRCUIT (I2C) BUS .. 25

3.2 FPGA IMPLEMENTED MODULES .. 28
3.2.1 VIDEO MATRIX & OUTPUT INTERFACE ... 28
3.2.2 VIDEO ANALYZER .. 28
3.2.3 TRAFFIC SIGN DETECTION MODULES ... 28

4 EXPERIMENTAL RESULTS ... 51

4.1 INTRODUCTION ... 51
4.2 TEST RESULTS .. 52

4.2.1 MATLAB Test Results of Algorithms on Separate Images .. 54

xi

4.2.2 Test Results of FPGA Implementation .. 58
4.2.3 Timing and Resource Usage .. 67

5 CONCLUSIONS AND FUTURE WORK ... 72

5.1 CONCLUSIONS .. 72
5.2 FUTURE WORK ... 74

REFERENCES ... 75

APPENDIX A STRUCTURE OF FPGA AND DESIGN FLOW.. 80

APPENDIX B HARDWARE DESIGN CONSIDERATIONS .. 86

xii

LIST OF TABLES

Table 2.1 Features of traffic signs ... 5

Table 2.2 Color enhancement values (normalized to 255) 8

Table 4.1 Output results for circular sign detection system for well illuminated

images (t=40) ... 55

Table 4.2 Output results for circular sign detection system for well illuminated

images (t=50) ... 55

Table 4.3 Output results for circular sign detection system for poor illuminated

images .. 56

Table 4.4 Output results for circular sign detection system for poor illuminated

images (after threshold changing for color segmentation) 56

Table 4.5 Output results for circular sign detection system for shadowed images .. 57

Table 4.6 Output results for circular sign detection system for shadowed images

(after the change of color segmentation module threshold) 57

Table 4.7 Output results for circular sign detection system for shadowed images

(after the change of shape detection threshold and color segmentation threshold)

 ... 58

Table 4.8 Output results for joint application of color segmentation & edge

detection module ... 63

Table 4.9 Output results for joint application of color segmentation & edge

detection module ... 63

Table 4.10 Output results for joint application of color segmentation & edge

detection module ... 64

Table 4.11 Output results for circular sign detection system for well illuminated

images .. 66

Table 4.12 Output results for circular sign detection system for poorly illuminated

images .. 66

Table 4.13 Output results for circular sign detection system for shadowed images 67

xiii

LIST OF FIGURES

Figure 2.1 Detection of Traffic Signs using color feature ... 7

Figure 2.2 Hue, Saturation look up tables. ... 8

Figure 2.3 Hue Membership Function ... 12

Figure 2.4 Saturation Membership Function ... 12

Figure 2.5 The Output Function ... 13

Figure 2.6 The Fuzzy System Surface ... 13

Figure 2.7 Detection of Traffic Signs using shape feature 15

Figure 2.8 The E Membership Functions. .. 18

Figure 2.9 The T Membership Functions. .. 18

Figure 2.10 The O Membership Functions .. 19

Figure 2.11 The R1 Membership Functions. ... 19

Figure 2.12 The R2 Membership Functions. ... 19

Figure 2.13 Angular spacing of 4-bin. ... 20

Figure 3.1 Block Diagram of the system ... 23

Figure 3.2 BT.656 8-bit Parallel Interface Data Format for 625/50 Video Systems 24

Figure 3.3 Typical BT.656 Vertical Blanking Intervals For 625/50 Video Systems24

Figure 3.4 I2C Bus Connections .. 26

Figure 3.5 I2C Bus Serial Communication Timing ... 26

Figure 3.6 Block diagram of RGB conversion and color segmentation module 30

Figure 3.7 State transitions of RGB conversion module .. 31

Figure 3.8 Block diagram of hardware implementation of Sobel algorithm 34

Figure 3.9 First output of line buffers .. 35

Figure 3.10 Second output of line buffers .. 35

Figure 3.11 Line buffering for a new line .. 35

Figure 3.12 Hardware Implementation of 2D filter ... 36

Figure 3.13 First generated 3x3 window.. 36

xiv

Figure 3.14 Second generated 3x3 window ... 37

Figure 3.15 Generated windows after coming of a new line 37

Figure 3.16 Block Diagram of Magnitude Calculation & Thresholding 38

Figure 3.17 Locations of affected pixels .. 40

Figure 3.18 Block diagram of the algorithm .. 43

Figure 3.19 Hardware modules to find the locations of positive affected pixels 44

Figure 3.20 Simulation for Magnitude Calculation block 45

Figure 3.21 Simulation for Address logic block .. 46

Figure 3.22 Addresses of SRAM ... 47

Figure 3.23 Flow chart of the circular sign detection algorithm 48

Figure 3.24 Flow chart of the comparison of convolution result with threshold 50

Figure 4.1 Well-illuminated traffic sign... 52

Figure 4.2 Poorly-illuminated traffic sign ... 53

Figure 4.3 Shadowed traffic sign .. 53

Figure 4.4 Joint application of color and shape based algorithms 54

Figure 4.5 Original image having one circular sign ... 59

Figure 4.6 Output of color segmentation module (for red component) 60

Figure 4.7 Output of joint application of color segmentation & edge detection

module ... 60

Figure 4.8 Original image having one circular sign ... 61

Figure 4.9 Output of color segmentation module (for red component) 62

Figure 4.10 Output of joint application of color segmentation & edge detection

module ... 62

Figure 4.11 Output of the system ... 65

Figure 4.12 Logic Resource Utilization after Color Segmentation 68

Figure 4.13 Logic Resource Utilization after Edge Detection 69

Figure 4.14 Logic Resource Utilization of Circular Sign Detection System 71

Figure A.1 Typical logic block .. 81

Figure A.2 FPGA I/O Banks .. 82

Figure A.3 Design Flow ... 83

Figure B.1 Virtex-5 FPGA ML50x Evaluation Platform Block Diagram …......….86

Figure B.2 ML507 development board .. 88

xv

Figure B.3 Video Interface I/O Card ... 89

Figure B.4 Video Interface I/O Card Front Side .. 90

Figure B.5 Video Interface I/O Card Back Side ………………………….......90

Figure B.6 Xilinx Platform Cable USB ... 91

1

CHAPTER 1

INTRODUCTION

With the improvements in technology, making the machines fully autonomous is

the most popular topic of researchers in order to minimize the human factor. Human

perception abilities depend on the individual’s physical and mental conditions.

Therefore, these abilities can be affected by many factors such as tiredness [30].

There are outstanding applications about minimizing the human based faults such as

fully autonomous vehicle systems and driving support systems.

Most of the traffic accidents occur because of driver’s fault. Today, many

automobile manufacturers spend million dollars to provide the safety of drivers and

pedestrians. Driving Supporting Systems and autonomous vehicle system are

common topics in order to decrease the accidents.

Driving Support System or autonomous vehicle system rely on vision-based

recognition of surrounding area in order to make driving decisions. Studies on these

areas have been focused on three main tasks: 1) road detection; 2) obstacle

detection; and 3) sign recognition. Road detection and Obstacle detection have been

studied for many years, with many good results, but traffic sign recognition is still

an open search area [4]. Driving supporting systems can recognize traffic signs

accurately; therefore, false recognizing of signs can be prevented. For autonomous

vehicle systems, sign recognition can be used to guide the vehicle according to the

information coming from signs.

2

Traffic signs give much useful information about the environment when driving.

Missed signs can cause dangerous situations or even accidents [32]. Therefore

automated recognition of traffic is a serious topic for driver supporting systems and

autonomous vehicles.

Traffic signs have some discriminative features such as color and shape properties,

which can be used for detection and recognizing of traffic signs. However, when

using these features there are some challenging occasions, listed as follows;

• Lightning conditions are changeable during day. Especially in bad lighting

conditions, it is harder to gather color and contour information of traffic

signs [33].

• Other objects can occlude traffic signs. Because of occlusion, detection of

traffic sign can be even impossible.

• Weather conditions such as rain, snow or fog, effects the detection of sign

candidates.

• Surface metal of traffic signs may physically be damaged or changed.

Either driving support systems or autonomous vehicles have to be fast and robust to

detect signs in real time and recognize them precisely [25]. A late detection would

completely be useless [33]. In addition to these, sign detection system has to be

produced at low cost. In real time, the system has to run complicated algorithms

with good performance. Achieving this level of processing, powerful and expensive

systems are needed. Due to its parallel architecture and small size, the FPGA

platform is suitable for implementing various vision based safety systems on

automotive vehicles at low cost [34].

1.1 Scope of Thesis

In this thesis, detection of circular traffic signs in static images and in video

sequences is studied and implemented on FPGA.

3

First algorithms for traffic sign detection have been searched and most suitable ones

have been selected for real time applications. After that, selected algorithms have

been implemented on FPGA hardware.

The developed algorithm, for the detection of traffic signs, based on color

segmentation, edge detection and shape detection. Shape detection is applied after

the joint application of color segmentation and edge detection algorithms in order to

explore circular signs within the frame.

Standard definition PAL video is digitized at 720x576 resolution which results in a

13,5MHz pixel rate. To detect or eliminate different features within the image, the

filtering operation receives input data at a rate of over 10 mega samples per second.

Coupled with new high resolution standards and multi channel environments,

processing requirements can be even higher. Achieving this level of processing

power using programmable DSP requires multiple processors [26]. In addition to

these, the image processing algorithms has been limited to software implementation

which is slower due to the limited processor speed [27]. An alternative solution is

FPGA integrated circuits. Reconfigurable systems based on FPGA integrated

circuits are used for fast prototyping implementations of the complete real time

designs. [28]

The developed algorithms compared with the state of the art techniques found in the

literature in terms of detection performance. Once the performance is guaranteed, it

is implemented on FPGA using ISE software.

1.2 Thesis Outline

In Chapter 2, algorithms for detection of traffic signs are given. Basically, these

algorithms use color and shape information of traffic signs. In addition to these,

FPGA based applications used in this project are cited.

4

In Chapter 3, selected algorithms for detecting traffic signs are explained. In

addition, hardware implementations of these algorithms are expressed with details.

In Chapter 4, implemented algorithms in FPGA are tested with static images and

video streams obtained from different sources. Experimental results for each

algorithm are given in this section.

Chapter 5, includes the conclusion and the future work.

5

CHAPTER 2

BACKGROUND ON TRAFFIC SIGN DETECTION

2.1 Introduction

The traffic sign detection and recognition systems have an increasing interest in the

last times, due to the importance of safety for drivers, passengers and

pedestrians[1]. Signs give important information however; a driver may not notice a

particular sign due to distractions or lack of concentration. In this case it may be

helpful to make them aware of the information that they have missed [2].

Traffic signs have discriminating features like color and shape. Therefore, these

properties can be used to detect traffic signs. Features of traffic signs can be

summed up as shown in Table 2.1.

Table 2.1 Features of traffic signs

Sign Type
Possible

(Border) Colors
Sign Shape

Restricting & Warning Red, Blue, Black
Triangle, Rectangle,

Octagon, Circle

Information Blue, Red Rectangle

Highway Information Green Rectangle

6

A vision based supporting systems for vehicle, serves as a driver –aid systems in

controlling the car. This kind of system has three main tasks. First one is the road

detection and following, which has been studied for a long time. Second one is the

detection of obstacles on the road till control systems avoid them. The last one is

detection and interpretation of traffic signs to provide feedback for safe driving

Many algorithms for detection of traffic signs have been developed up to now. The

summary of these studies will be given in this chapter.

2.2 Detection of Traffic Signs

In this step, the aim is to locate a road sign candidate on the frame coming from a

video capturing device. Outputs of detection step are used as inputs for recognition

of traffic signs.

 For the detection of traffic signs, many algorithms have been developed. Most of

these algorithms base on segmentation via color features of the signs [3], [4], [5],

[7], [10], [11].

In addition to color features, there are many algorithms using the shape information

of the traffic signs. Furthermore, there are some approaches which use a two step

strategy. First, color properties in any of the color domains are used for

segmentation. Then, shape features are used to make final decision about traffic

signs detection.

2.2.1 Detection Using Color Feature

As shown in Table 2.1, traffic signs have discriminating colors which are red, blue,

and green. Therefore, color segmentation algorithms are very popular in traffic sign

detection.

The methods used in detection with color features, includes similar steps. First of

all; a suitable color space such as RGB, YUV, HSB, etc. is selected and then

7

segmentation algorithms are used for desired color. A binary image is formed as an

output of the segmentation algorithm. Succeeding that, image processing algorithms

are used for that binary image to provide group of pixels with meaningful

localization of traffic signs [13]. These image processing algorithms can be some

filtering application for noise reduction or some morphological operation for

removing irrelevant information. This process can be summarized in Figure 2.1.

Figure 2.1 Detection of Traffic Signs using color feature

Damavandi and Mohammadi [14] suggest that using YCrCb color space gives the

best practical result because of its segregated luminance component. Besides,

extraction of red chrominance is less time consuming. After that, a median filter and

a thinning algorithm are applied to remove irrelevant information and reveal the

skeleton for the other stages of algorithm.

Escalera et al. [15], [16] propose that, HSI color space can be used for segmentation

due to its robustness in brightness variation. For detection process, only hue and

saturation components are considered; intensity component is not taken into

account.

For hue and saturation components, look up tables are generated. Formulas given

in (2.1) and (2.2) are used to generate these look up tables. Constructed look up

tables can be seen in Figure 2.2.

8

()

min
min

min

min max

max
max

max

255 0

0

255 255

i i i i
i

H i i i i
i i i i

i

−⎧ ≤ ≤⎪
⎪⎪= ≤ ≤⎨
⎪ −⎪ ≤ ≤
⎪⎩

 (2.1)

()
⎩
⎨
⎧

≤≤
≤≤

=
255255

0

min

min

ii
iii

iS (2.2)

Figure 2.2 Hue, Saturation look up tables.

i values represents the original values for hue and saturation, and ()iH , ()iS are the

mapped values.

Table 2.2 Color enhancement values (normalized to 255)

 Hue Min. Hue Max. Saturation Min.

Red Signs 11-224 0(255) 23

Blue Signs 128-143 137 84

Ghica, Yu and Yuan [39] proposed to use vector based threshold in RGB color

space. Red, Green and Blue are defined as basis vectors and pixel color c can be

represented by:

9

1* e 2* 3*c c R d c Green c Blue= + + (2.3)

where 13,2,10 ≤≤ ccc

For a given reference color (expressed by using same basis functions)

()3,2,1 rrrr = the distance d between pixel color c and reference color r is as

follow:

() () ()222 332211 crcrcrd −+−+−= (2.4)

The threshold function F is given by:

()
()
⎪⎩

⎪
⎨
⎧

>−

≤−
=

tcrifc

tcrif
cF

0,0,0
 (2.5)

where t is the suitable threshold.

This detection module based on color segmentation. They use a morphological filter

to remove non-sense pixels of function F.

Escalera et al.[4] proposed that hue component calculation requires evaluation of

some non-linear and trigonometric equations which are expensive to evaluate for

every single pixel. Therefore, they developed the RGB color threshold algorithm

based on the idea of Kamada and Yoshida [17]. For red colored traffic signs, they

used ratio of blue and green components to red component for defining the

threshold criteria as shown below.

10

case.other any in),(
),(
),(
),(
),(
),(

),(

2

''

''
1

kyxg

B
yxf
yxf

B

G
yxf
yxf

G

RyxfR

kyxg

b
r

b
a

b
r

g
a

bra

=

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

≤≤

≤≤

≤≤

=
 (2.6)

where

• g(x,y) is the decision output of color threshold.

•),(yxfr ,),(yxf g ,),(yxfb are the red, green, blue components of each pixel

• aR , bR , '
aG , '

bG , '
aB , '

bB are the threshold values.

Kantawong [18] states that RGB color space is very sensitive to lightning and

converting HSI color space has heavy computational cost. Hence, Kantawong

proposes a modified RGB version which uses color thresholding as a contrast

improvement technique.

The equations used for this technique are expressed below:

() ()
3

,,
255, ∑−= bgr fff

yxp (2.7)

where bgr fff ,, are red green and blue values of the selected pixel.

()
() ()

9

,,*10
,

8

1
⎟
⎠

⎞
⎜
⎝

⎛
+

=
∑ yxgyxp

yxp avg (2.8)

where ()yxg , is the neighboring pixels of the selected pixel.

11

()
() ()
() ()⎪⎩

⎪
⎨
⎧

<

≥
=

avgavg

avgavg

yxPyxpifwhite

yxPyxpifblack
yxp

,*3,

,*3,
, (2.9)

where ()avgyxP , is the average color value of all pixels in the image.

Janssen et al [19] states a color conversion algorithm from RGB space to remove

the sensitivity of RGB color space to lighting. They used normalized color space

“Irg”.

3
bgr fff

I
++

=
I

fr r

3
=

I
f

g g

3
= (2.10)

where I corresponds to intensity, r corresponds to normalized red, g corresponds to

normalized green and R,G,B correspond to red, green, blue signal of camera.

Fleyeh [30] proposed a color segmentation algorithm based on converting the RGB

images into HSV color spaces. The HSV color space is used because; Hue

component is invariant to the variations in light conditions. A fuzzy system is used

specify the range of each pixel’s color. Hue and Saturation membership function are

used to define each sign color as shown in Figure 2.3 and Figure 2.4. Seven Fuzzy

rules are defined to segment a certain color;

1. If (Hue is Red1) and (Saturation is Red) then (Result is Red)

2. If (Hue is Red2) and (Saturation is Red) then (Result is Red)

3. If (Hue is Yellow) and (Saturation is Yellow then (Result is Yellow)

4. If (Hue is Green) and (Saturation is Green) then (Result is Green)

5. If (Hue is Blue) and (Saturation is Blue) then (Result is Blue)

6. If (Hue is Noise1) then (Result is Black)

7. If (Hue is Noise2) then (Result is Black)

12

 Figure 2.3 Hue Membership Function

 Figure 2.4 Saturation Membership Function

“Result” output variable is shown in Figure 2.5 which consists of five member

functions, one for each color. They represent a certain range of gray levels in the

output image which correspond the colors used in road signs [30]. Relationship

between Hue, Saturation and Results membership functions is shown in Figure 2.6.

13

 Figure 2.5 The Output Function

 Figure 2.6 The Fuzzy System Surface

In [25] RGB color segmentation is used to detect candidate regions with two

restriction rules. First rule gives good results in good lighting conditions.

Normalized color information is used in second rule and gives good results in dark

images. These rules are explained as follows;

1. Pixel belongs to red sign if: (For good lighting conditions)

)50),((>jif r and)15),(),((>− jifjif gr and)15),(),((>− jifjif br (2.11)

14

where),(),,(),,(jifjifjif bgr are red green and blue values of the selected pixel

with coordinates (i,j).

2. This rule gives good results in bad lighting conditions.

kjifjif

kjifjif

kjifjif

jifjifjif
k

bb

gg

rr

bgr

⋅=

⋅=

⋅=

=

),(),(

),(),(

),(),(

)),(),,(),,(max(
255

~

~

~

 (2.12)

Pixel belongs to red sign if;

)10),(),(()10),(),((
~~~~

>−>− jifjifandjifjif brgr  (2.13) 

For green and blue information signs; 

)),(),,(max(, jifjifM bgji =               (2.14) 

Pixel belongs to information sign if, 

),(4.0),(, jifjifM rrji ⋅>−              (2.15) 

2.2.2 Detection Using Shape Feature  

In addition to color features, traffic signs have also discriminating shapes. 

Therefore, this characteristic of traffic signs can be used for sign detection. Shape 

detection algorithms are more robust to changes in illumination conditions, however 

flawed shaped signs or occluded with other objects make this process quite difficult. 

In Figure 2.7, main steps for sign detection using shape information are 

summarized. 



15 

 

 

Figure 2.7 Detection of Traffic Signs using shape feature 

Escalera et al. [4] state, a kind of corner detector based on optimal corner detector 

can be used for shape detection. The detector is applied on binary image coming 

from color segmentation algorithm Special mask are generated for different shapes 

of traffic signs. Corners can be detected from the convolution of the image with 

those masks. After convolution process, the regions exceeding some threshold value 

are accepted as corners. Finally, using the geometrical relationship between labeled 

corners, geometrical shapes are detected. 

Garcia-Garrido, Sotelo and Martin-Gorostiza [1] use Canny method for edge 

detection. With the aim of making the detection more reliable, they have chosen to 

adapt, the two canny thresholds in a dynamic way, depending on the histogram 

distribution of the image. Therefore, histogram has been divided into eight regions 

and a pair of threshold levels has been assigned to each one of the regions. With this 

approach, it is possible to use the same algorithm either under good visibility 

conditions, in the day, or under less favorable conditions, at night, or in the rain. 

Hough Transform is used by them in order to detect triangular signs. A straight line 

in the xy plane with a distance to the origin ρ  and the angle of the normal line to 

this straight line passing through the origin, with the abscissa axis θ  can be 

expressed as: 

( ) ( ) ρθθ =⋅+⋅ sincos yx            (2.16) 

where the parameter space ( )θρ ,=p  should be quantized. 



16 

 

They propose, using Circular Hough Transform, circular signs and stop signs can be 

detected. A circumference in the xy-plane with center ( ΨΧ, ) and radius ρ  can be 

expressed as; 

( ) ( ) 0222 =−Ψ−+Χ− ρyx               (2.17) 

where the parameter space, ( )ρ,,ΨΧ=p  should be quantized. 

The Hough Transform for lines and circular objects has heavy computational costs. 

To decrease the computation time, Hough transform is applied to the points of 

closed contours. The closed contours are determined using “chain code”.  

Wu et al. [20] state an algorithm very similar to Loy and Barnes’s method. 

Algorithm based on voting of every edge for a potential center of traffic signs. They 

claim that their algorithm reduces the execution time 2-5 times theoretically when 

compared to similar algorithms.  

Two different cameras for detection purpose are used by J. Miura et al. [21]. One 

camera –the wide camera– is used to detect traffic sign candidates by using color, 

intensity and shape information. After that, for each candidate, second camera –the 

telephoto camera– is used to capture the candidate in a larger size. Therefore, edge 

detection can be applied to candidates coming from the first camera. In can be said, 

color and shape detection are applied consecutively.  

Fang et al [13] apply color and shape detection algorithm simultaneously to 

generate a geometry model of signs. This approach prevents formation of regions 

falsely rejected by color segmentation. 

In [30], ellipticity, triangularity, rectangularity, and octagonality measures are 

defined to decide the shape of the sign. In the definition of these measures another 

variable 1I is used. 
4
00

2
1102201 /)( μμμμ −=I          (2.18) 



17 

 

where 20μ , 02μ , 11μ are the second order central moments, and 00μ is the area of the 

object. Using 1I  ellipticity measure can be found as follows: 

 

⎩
⎨
⎧ ≤

=
otherwiseI

IifI
E

)16/(1
)16/(116

1
2

2
11

2

π
ππ

      (2.19) 

 

E gets the values between [0, 1], and for perfect ellipse it gets 1. 

 

Triangularity measure T is given by: 

 

⎩
⎨
⎧ ≤

=
otherwiseI

IifI
T

)108/(1
108/1108

1

11     (2.20) 

 

T gets the values between [0, 1], and for perfect triangle it gets 1. 

 

Rectangularity is measured by calculating the area of the region under consideration 

to the area of its minimum bounding rectangle (MBR) [31]. R1 is the rectangularity 

calculated for horizontally aligned objects, R2 is the rectangularity of objects 

oriented in any other angle and calculated as the area of its minimum bounding 

rectangle, 

 

Octagonality measure O  is given by: 

 

⎩
⎨
⎧ ≤

=
otherwiseI

IifI
O

)932.15/(1
)932.15/(1932.15

1
2

2
11

2

π
ππ

             (2.21) 

 

where O gets the value between [0, 1], and for perfect octagonal it gets 1. 

To perform the shape classification of traffic signs, five rules can be used as 

follows; 



18 

 

1.  If (R1 is Low) and (R2 is Low ) and (T is One) and (E is Low) and (O is 

High) then  

2.  If (R1 is One) or (R2 is One ) then (Shape is Rectangle)  

3.  If (R1 is Low) and (R2 is Low ) and (T is High) and (E is Low) and (O is 

One) then (Shape is Octagon) 

4.  If (R1 is Low) and (R2 is Low ) and (T is High) and (E is One) and (O is 

Low) then (Shape is Circle) 

5.  If (R1 is not One) and (R2 is not One) and (T is not One) and (E is not 

One) and (O is not One) then (Shape is Undefined) 

The membership functions of the variables at the above are shown in Figure 2.8-

12. 

 

Figure 2.8 The E Membership Functions. 

 

Figure 2.9 The T Membership Functions. 



19 

 

 

Figure 2.10 The O Membership Functions 

 

Figure 2.11 The R1 Membership Functions. 

 

Figure 2.12 The R2 Membership Functions. 

 



20 

 

In [6], stop sign detection system using FPGA is expressed. Because of the memory 

requirements of the system, several lines of pixel are buffed instead of whole image. 

Then, angle of gradient is calculated for every pixel and quantized into one of the 

different angular bins.  To calculate the pixel’s gradient equation (2.22) can be used. 

 

)(tan 1

x

y

g
g

g −=               (2.22) 

 

where g is the pixel’s gradient angle; xg , yg  are pixels gradients in the horizontal 

and vertical directions respectively. 

 

Equation (2.22) is not suitable for FPGA implementation therefore, another method 

is used. Method bases on quantizing of the pixel’s angular bin from its 

corresponding gradients. The angle spacing of the 4-bin is shown in Figure 2.13. 

 

 

Figure 2.13 Angular spacing of 4-bin. 

The next step is to calculate an entry to the Integral Map (IMap) at the 

corresponding pixel location [6]. Dual port RAMs in FPGA are used to store IMaps. 

After that, detection module based on moving window is used. At every pixel 

location in the image, selected HoG features within the detection window are 

extracted from the IMaps. Each HoG feature value is compared to its appropriate 

threshold. The results are then combined to determine the output [6]. 

 

In [8], FPGA implementation of canny edge detection algorithm is explained for 

real-time image and video processing applications. Basically, 3 modules are 



21 

 

generated in FPGA, which are convolution module, non-maximum suppression and 

hysteresis thresholding. Convolution modules are used to convolve the image/video 

data with Gaussian or derivative of Gaussian. During this process, line buffers and 

adder tree are used. The non-maximal suppression module identifies pixels that are 

local maxima in the direction of the gradient using the magnitude and orientation of 

the pixels. The hysteresis thresholding module uses two threshold values to detect 

edges. Embedded RAM blocks in FPGA are used to store data during thresholding 

operation. According to [8], FPGAs are good alternatives, which can be used to off-

load computationally-intensive and repetitive functions as co-processors. 

 

In [9], FPGA implementation of Sobel edge detection algorithm has proposed. In 

proposed architecture, pixel values coming from decoder are processed with blocks 

which compute the convolution with Sobel masks. During these processes 

horizontal and vertical gradient values are calculated. Magnitude of gradient is 

calculated using an adder. In [9], magnitude form is taken as sum of magnitudes of 

vertical and horizontal gradients. Square root form of magnitude is not suitable for 

FPGA implementation; therefore it is not used during implementation. After 

magnitude calculation, a comparator is used to detect edge values. This architecture 

is capable of operating at a clock frequency of 134.756 MHz. The edges of 512 × 

512 pixel image can be found out in 1.95 ms. 



22 

 

CHAPTER 3  

 

DETECTION OF TRAFFIC SIGNS USING FPGA 

HARDWARE  

Road signs are two dimensional with discriminating colors and shapes. Therefore, 

most of the solutions rely heavily on these features of a road sign [22]. Offline 

detection of traffic signs is not very difficult problem in principle, but in real time 

applications time constraints make it a quite difficult problem.  

Xilinx ML507 FPGA board and Video Interface Input/Output card are used for real 

time traffic sign detection. Information about these hardware is given at the below. 

Algorithms chosen for FPGA hardware are built up in MATLAB. Details of these 

algorithms are explained in this section.  

Algorithms are implemented in FPGA with Xilinx ISE software using VHDL. 

VHDL codes are synthesized and loaded to FPGA with Xilinx XST.  

3.1 HARDWARE ARCHITECTURE 

3.1.1 XILINX ML507 FPGA BOARD  
 

Xilinx ML507 FPGA demo board includes Virtex-5 field programmable gate array 

(FPGA). Detailed information about FPGA and Xilinx ML507 FPGA Board is 

given at the appendix. 



23 

 

For processing of video signal, Video Interface Input/Output Card is used.  ML507 

single ended I/O provide interface with Video Interface I/O Card. Block diagram of 

the system can be shown in Figure 3.1. 

 

 
Figure 3.1 Block Diagram of the system 

 

3.1.2 VIDEO INTERFACE INPUT/OUTPUT CARD 

Video Interface Input/Output Card includes decoder and encoder integrated circuits 

for video signals. Decoders are used for digitizing the analog video signals to 

YCbCr 4:2:2 sampling format [23]. The decoder in this card can be used for 

composite or S-video signals in NTSC or PAL formats.  

Decoder processes the incoming PAL/NTSC video signal in YCrCb 4:2:2 format 

and then, sent 8 bits wide digital signal to FPGA according to BT656 video 

standard. 

BT. 656 standard defined the parallel and serial interfaces for transmitting 4:2:2 

YCbCr digital video between equipment in studio and pro-video applications. 

Active video resolutions are either 720x486 (525/60 video systems) or 720x576 

(625/50) video systems [35]. 

The BT.656 parallel interface uses 8 or 10 bits of multiplexed YCbCr data and a 

27MHz clock. Instead of the conventional video timing signals (HSYNC, VSYNC, 

and BLANK), BT.656 uses unique timing codes embedded within the video stream. 



24 

 

This reduces the number of wires (and IC pins) required for a BT.656 video 

interface. 

 

Figure 3.2 BT.656 8-bit Parallel Interface Data Format for 625/50 Video Systems 

SAV (start of active video) and EAV (end of active video) codes are embedded 

within the YCbCr video stream. They eliminate the need for the HSYNC, VSYNC 

and BLANK timing signals normally used in a video system. The EAV and SAV 

sequences are shown in Table 3.1 

Table 3.1 BT656 EAV and SAV Sequence 
 

BIT7 BIT6 (F) BIT5 (V) BIT4(H) BIT3 BIT2 BIT1 BIT0

1 F=0 First field             
F=1 Second field 

V=1 BLANK                  
V=1 AKTIF VIDEO 

H=0 SAV 
H=1 EAV 

Reserved bits 

 

Figure 3.3 Typical BT.656 Vertical Blanking Intervals For 625/50 Video Systems 



25 

 

Decoder in Video Interface I/O Card needs 24,576 MHz clock signal. Therefore, an 

24,576 MHz oscillator is used in Video Interface I/O Card. I2C Interface is used for 

communication between the FPGA and Video Interface I/O Card. The parameters 

used for video decoder are written to RAM in the decoder via I2C interface. 

Encoder in the Video Interface I/O Card converts the digital video signal in YCbCr 

4:2:2 sampling format to analog video signal in the PAL/NTSC format [24]. The 

parameters that video encoder is used are written to RAM in the decoder via I2C 

interface. Encoder is used in this thesis for monitoring the output of the algorithms. 

Therefore, it has no contribution to performance of algorithms running in the 

FPGA.   

The schematic of the Video Interface I/O card can be seen at the appendix B.  

3.1.3 INTER-INTEGRATED CIRCUIT (I2C) BUS 
 

I2C (Inter Integrated Circuits) is a data bus which was developed in the early 

1980’s. Using the I2C bus integrated circuits can be easily connected with each 

other.  Many integrated circuits especially video integrated circuits have this data 

bus. The basic information about I2C bus serial communication standard is 

presented below.  

 

I2C bus connections can be seen in Figure 3.4. A unique address is used for each 

I2C device. Each device can be a transmitter or a receiver. During data transfer, any 

I2C bus device can be configured as a master or a slave device. The clock signal 

SCL is generated by the master device. Also, the master device addresses the other 

devices which are called slave devices. The I2C bus interface module designed for 

the video encoder and decoder supports only slave mode of operation. They only 

receive the messages which are sent for their addresses. 

 

 



26 

 

 

Figure 3.4 I2C Bus Connections 

The serial data pin (SDA) and the serial clock pin (SCL) are used for I2C bus 

communication. These pins are bidirectional. Pull-up resistors are used with supply 

voltage for SDA and SCL pins as shown in Figure 3.4. 

 

I2C communication is started by the master module by pulling SDA pin to low 

while SCL pin is high. With the beginning of communication, all the slave devices 

start to wait for slave address data. Slave address data consists of a 7 bits slave 

address and an R/W bit. The master device sends the slave address data. An 

acknowledgment signal is sent by the slave device which has the equal slave 

address data. The acknowledgment signal corresponds to pull SDA to low. The data 

transfer direction is determined by the R/W bit. If R/W bit is equal to 0; the master 

device transmits data to a slave device. If R/W bit is equal to 1; the master device 

receives data from a slave device. The transmitters send the most significant bit of 

the data first. The receiver send the acknowledge bit after each byte on the ninth 

SCL clock. 

 

 Figure 3.5 I2C Bus Serial Communication Timing 



27 

 

The timing diagram of I2C bus communication is shown in Figure 3.5. For 

transmission, one clock pulse is generated by the master device for each data bit. 

The master device generates START and STOP conditions. While SCL is high, a 

START condition reveals itself as a high to low transition and a STOP condition 

reveals itself as a low to high transition on the SDA line. After START signal, the 

bus enters the busy condition. The bus exits from the busy condition with the STOP 

signal. 

Decoders and encoders used in Video Interface I/O Card have I2C bus. Using I2C, 

configuration parameters can be loaded to encoder/decoder’s RAM.  

I2C data bus doesn’t work properly at high frequencies. 400 KHz and lower 

frequencies are appropriate for I2C data bus.  Therefore, using the 24,576 MHz 

clock, a clock signal for I2C which is 384 KHz and a data signal which is 192 KHz 

are generated in FPGA.  

 

Video decoder has two input ports which can be configured for PAL/NTSC video 

formats. To configure the inputs for PAL/NTSC video format, parameters are 

loaded to the decoder’s RAM via I2C bus at startup. In addition to these, the 

coefficients used for converting analog video to digital video signal, are loaded to 

RAM of the decoder.  

 
Video encoder has 3 video output ports. One of these ports can be selected.  

To configure the outputs for PAL/NTSC video format, at startup parameters are 

loaded to the decoder’s RAM via I2C bus at startup. In addition to these, the 

coefficients used for converting analog video to digital video signal, are loaded to 

RAM of the decoder.  



28 

 

3.2 FPGA IMPLEMENTED MODULES 

3.2.1 VIDEO MATRIX & OUTPUT INTERFACE 

To analyze the results of algorithms used in traffic sign detection, video signal is 

generated. Video encoder converts this video signal to analog video signal and 

forwards to monitor. 

3.2.2 VIDEO ANALYZER  

Using video analyzer function, EAV and SAV sequences are detected from the 

video signal. Synchronization signals defined in BT656 standard are obtained from 

these sequences. These synchronization signals are, vertical and horizontal 

synchronization signals, PAL video active signal, odd and even field active signals.  

3.2.3 TRAFFIC SIGN DETECTION MODULES  

Proposed algorithms for real time traffic sign detection includes; 

• Color Segmentation 

• Edge Detection 

• Shape Recognition 

These three steps are implemented in Xilinx ML507 FPGA board. All these three 

steps are working for real time video signal. These steps are explained in details at 

the below. 

3.2.3.1 COLOR SEGMENTATION 

3.2.3.1.1 Theoretical Background 

Red, blue and green are dominant colors which are used on traffic signs. Certain 

thresholds and the inter-relationship between colors can be used to set these colors 

to localize the traffic sign. 



29 

 

In order to localize traffic signs, one of the color spaces can be used. Most popular 

ones are RGB and HSV color spaces. 

In color segmentation, HSV color domain is not chosen in [25] due to its own 

computational complexity. RGB color threshold algorithm suggested by Escalera 

[4] is used. For the red traffic signs formula (3.1) can be used. 

case.other any in  ),(
),(
),(
),(
),(

),(

),(

2

''

''
1

kyxg

B
yxf
yxf

B

G
yxf
yxf

G

RyxfR

kyxg

b
r

b
a

b
r

g
a

bra

=

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

≤≤

≤≤

≤≤

=
        (3,1) 

where '''' ,,,,, bababa BBGGRR are the threshold values; g(x,y) is the decision output of 

color threshold and, ),( yxfr , ),( yxf g , ),( yxfb are the red, green, blue components 

of each pixel. 

The YUV color space is used by the PAL, NTSC, and SECAM color video/TV 

standards. The YCbCr color space was developed as part of the ITU-R BT.601 

during the development of a world-wide digital component video standard. YCbCr 

is a scaled and offset version of the YUV color space. Y is defined to have a 

nominal range of 16-235; Cb and Cr are defined to have a nominal range of 16-240. 

There are several YCbCr sampling formats, such as 4:4:4, 4:2:2, and 4:2:0.  

The conversion between RGB and YCrCb formats is given by: 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

128
128

16

018,20164,1
391,0813.0164,1

0596,1164,1

CB
CR
Y

B
G
R

        (3,2) 



30 

 

For every two Y values there is only one Cb and Cr value, this means that care must 

be taken when converting from YCrCb to RGB. In the digital video stream shown 

in Figure 3.2, every pixel has Y, Cb values or Y, Cr values. In order to calculate the 

RGB value of the pixel, YCrCb values of two pixels are used. 

3.2.3.1.2 Hardware Implementation on FPGA 

The block diagram of color segmentation for red component is presented in Figure 
3.6. 

clk

reset

R_conversion
r_out

g_out

B_conversion
b_out

rgb_thresholdG_conversion

Cb_out

Y1_out

Cr_out

Y2_out

threshold_ok

case.other any in  ),(
),(
),(
),(
),(

),(

),(

2

1

kyxg

TB
yxf
yxfTB

TG
yxf
yxf

TG

RyxfR

kyxg

b
r

b
a

b
r

g
a

bra

=

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

≤≤

≤≤

≤≤

=

Cb_in
Y1_in
Cr_in
Y2_in

Cb_in
Y1_in
Cr_in
Y2_in

Cb_in
Y1_in
Cr_in
Y2_in

Cb_in
Y1_in
Cr_in
Y2_in

r_ok

g_ok

b_ok

color_segmentation for red component

 

Figure 3.6 Block diagram of RGB conversion and color segmentation module 



31 

 

In order to make color segmentation in real time, Cb, Y, Cr components of video 

signal have to be controllable. The state transitions of the color segmentation are 

shown in Figure 3.7.  

 

Figure 3.7 State transitions of RGB conversion module as output by HDL designer 
program 

“Video_examiner” block in FPGA, analyzes the digital video signal coming from 

decoder, and extracts the synchronization signals. These signals are “active_line”, 

“active_odd” and “active_even”.  The “active_line” indicates that active video 

signal is coming from decoder. “active_odd” and “active_even” indicate the odd 

and even fields of active video respectively as shown in Figure 3.3. 

In Figure 3.7, arrows shows the direction of state flow. Statements on the arrows 

indicates the conditions and the numbers on the arrows indicates the number of 

conditions. The initial state is “s_cb”. When the synchronization signals 

(“active_line”, “active_odd”, “active_even”) come from “video_examiner” 

component, state changes to “s_y1”. Using these states, Cb, Y, Cr components of 



32 

 

digital video signal can be controlled. When the state is “s_y2”, byte number 

coming  from decoder is incremented one. If byte number reaches 720, that means 

end of the line has come. In that situation, 3 clock cycle wait statement occurs in 

order to analyze EAV code. All the arrows seen in Figure 3.7 indicate the direction 

of state flow.  

During color segmentation, losing data affects the performance of traffic signs 

detection. Clock output frequency of the video decoder is 27 MHz. Therefore, clock 

frequency of the “rgb_conversion” module is chosen as 200 MHz in order not to 

lose any data. The whole process takes 4 clock cycles in 200 MHz.   

The threshold values used in equation (3,1) are chosen after experimental tests. Red 

threshold vales for formula (3.1) are taken as: 

75=aR , 255=bR , 0' =aG , 45,0' =bG , 0' =aB , 45,0' =aG .  

For darker images threshold values are taken as: 

55=aR , 255=bR , 0' =aG , 65,0' =bG , 0' =aB , 65,0' =aG . 

Similarly other threshold values are generated for green and blue components. 

3.2.3.2 EDGE DETECTION 

3.2.3.2.1 Theoretical Background  

The shape of the signs plays an important role in detection process. The edge 

information of the signs can be used in order to recognize the shape of the signs. In 

the edge detection process, boundaries of objects in the image distinguished by 

quick changes of intensity are searched. Most edge detection operators are based on 

first derivative based operation. First derivative or first difference based operators 

are the simplest ones that are why one of them is selected for implementation on 

hardware device. 



33 

 

Sobel Edge Detection 

Significant local changes in an image can be detected using edge detection 

algorithms. First difference based edge detection operators such as Sobel, use the 

gradient information in the image. The gradient can be expressed as a measure of 

change in a function and, it is defined as the vector: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

=⎥
⎦

⎤
⎢
⎣

⎡
=

y
f

x
f

G
G

yxfG
y

x)],([      (3.3) 

)],([ yxfG  vector points in the direction of the maximum rate of increase of the 

function f(x,y), and the magnitude of the gradient, given by (3.4) equals the 

maximum rate of increase of f(x,y )per unit distance in the direction G [37]. 

)],([ yxfG = 22
yx GG +            (3.4) 

The Sobel operator performs a 2-D spatial gradient measurement on an image. 

Typically it is used to find the approximate absolute gradient magnitude at each 

point in an input grayscale image. The Sobel edge detector uses a pair of 3x3 

convolution masks, one estimating the gradient in the x-direction (columns) and the 

other estimating the gradient in the y-direction (rows). A convolution mask is 

usually much smaller than the actual image. As a result, the mask is slid over the 

image, manipulating a square of pixels at a time. The actual Sobel masks are shown 

below: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

=
101
202
101

XGrad         ,   
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
=

121
000
121

YGrad            (3.5) 



34 

 

The weights used in the horizontal and vertical neighborhood are used for noise 

smoothing by giving more importance to neighborhood pixels. The reason for 

choosing 3 × 3 neighborhood is to make the operator less sensitive to noise.  

In this thesis Sobel operator is implemented in FPGA because of its low 

computational complexity and good edge detection capability in noisy conditions. 

3.2.3.2.2 Hardware Implementation on FPGA 

The FPGA implementation of the Sobel edge-detector algorithm is partitioned into 

three different stages as shown in Figure 3.8. 

 

Figure 3.8 Block diagram of hardware implementation of Sobel algorithm 

3.2.3.2.2.1 Line Buffering 

For the hardware implementation of 2D filter for video signal, the present pixel, the 

previous pixel and the following one are used. Therefore; two coming lines 

recorded the block RAM of the FPGA. Because of the PAL video signal, input 

video size is 288x720 pixels. 288 represents the line numbers and 720 represents the 

pixels numbers at each line. Consecutive two coming lines are recorded to dual port 

RAM of the FPGA. When the next line comes, previous lines are read from the 

RAM and 3 pixel’s information emitted for 2D filtering process. First output of line 

buffers is presented at Figure 3.9. 



35 

 

 

Figure 3.9 First output of line buffers 

When the second pixel of Line3 comes, pixel’s information of Line1, Line2 and 

Line3 is emitted. Second output of line buffers is presented at Figure 3.10.  

Figure 3.10 Second output of line buffers 

For every coming pixel of Line3, three pixel’s information is emitted. When a new 

line comes, information of previous two lines is used. This case can be seen at 

Figure 3.11. 

Figure 3.11 Line buffering for a new line 

For each line, all the columns are scanned. After the buffering of Line288, process 

waits for other field (odd/even field) to start over buffering. Line buffering module 

in FPGA, starts to emit pixel’s information after Line3; therefore it causes a three 

line delay in real time processing. 



36 

 

3.2.3.2.2.2 Convolution with 3x3 Gradient Matrix 
 

 

Figure 3.12 Hardware Implementation of 2D filter 

Pixels coming from line buffers are buffered again to produce 3x3 window. In 

Figure 3.13, R letter indicates the row number and C letter indicates the column 

number of pixel. 

 

Figure 3.13 First generated 3x3 window 

After coming of the new three pixels from the line buffer, a new 3x3 window is 

generated. The new window can be seen at Figure 3.14. 



37 

 

 

Figure 3.14 Second generated 3x3 window 

For a new coming line, these processes are repeated. Generated windows after 

coming of a new line are presented in Figure 3.15. 

R2C1

R3C1

R4C1

R2C2

R3C2

R4C2

R2C3

R3C3

R4C3

 

R2C1

R3C1

R4C1

R2C2

R3C2

R4C2

R2C3

R3C3

R4C3

R2C4

R3C4

R4C4

 

Figure 3.15 Generated windows after coming of a new line 

Generated windows are multiplied with the Sobel gradient mask’s coefficients. 

After that, results of the multiplication are summed as in Figure 3.12. Outcome of 

this process (convolution) is the result for the middle pixel value in the 3x3 

window.   

Convolution process with “Grad_x” mask and “Grad_y” mask are taking place 

concurrently. Then, absolute values of the results are found using a comparator and 

adder. Absolute values are used for magnitude calculation of gradient.  

 



38 

 

3.2.3.2.2.3 Magnitude Calculation & Thresholding 

Let u(x, y) be a two dimensional edge segment. Orthogonal edge gradient can be 

formed by running difference of pixels in horizontal and vertical direction. It is 

defined in magnitude form in square root form as  

[ ] 2
12

2
2

1 )],([)],([),( yxGyxGyxG +=          (3.6) 

Unfortunately, the square-root operation in this formula is inherently slow and 

complicated to calculate, either in software or in hardware. Therefore, for 

applications which do not require a full-precision magnitude value, the use of 

magnitude estimation can save calculations. This well-known and widely used 

algorithm is a true gem of DSP because it provides considerable savings in 

calculation, at the cost of only a minimal loss of accuracy.   

),min(.),max(),( 2121 GGGGyxG βα +⋅=     (3.7) 

"α " and "β " are two constants whose values can be chosen to trade among RMS 

error, peak error, and implementation complexity. For our applications they are 

taken as; 1 and 1/2 [41].  
 

Output pixels

Third Stage-Mag_Calculation & Thresholding

Absulate value of 
convolution with 

Grad_x Mask

Absulate value of 
convolution with 

Grad_y Mask

Comparator
Shift 

Operation & 
Adder

Thresholding

Ouput of Second Stage

 

Figure 3.16 Block Diagram of Magnitude Calculation & Thresholding 



39 

 

In FPGA, absolute values of convolution processes are compared with each other to 

determine which one is the smallest one. Then, using the equation 3.7, magnitude 

value of the gradient is calculated. Shift operation is used to divide the minimum of 

|G1| or |G2|. After the calculation of gradient magnitude, a thresholding algorithm 

works. In principal, thresholding includes a comparator to detect if the magnitude 

value is greater than a predetermined threshold value. Optimum threshold values 

can be assigned after experimental tests. 

3.2.3.3 SHAPE RECOGNITION  

3.2.3.3.1 Detection of Circular Signs 
 

For the detection of circular signs, fast radial symmetry detector is used. Many 

shape detectors are non-robust because they require closed shapes. Robust 

techniques such as Hough circle detection are slow to compute over large images. 

The fast radial 

symmetry detector can be run as a detector at frame rate [2]. 

3.2.3.3.1.1  Theoretical Background 

The transformation here works on the gradient information of images. Hence, edge 

detection is accompanied to gathered frames. Then, algorithm searches the gradient 

information for a circle with an initial estimate of its radius. Algorithm is carried on 

a set of radii (around initial estimate) to locate sign candidates. 

In the algorithm, remaining non zero gradient elements votes for a potential circle 

center a distance r (where r is the radius of the candidate circle) away along the line 

of the gradient (either having same direction or having opposite direction). For 

locating the center of the circle, an orientation projection image is calculated for 

each image frame by examining the gradient image.  

For a given pixel, p, the gradient g, is calculated using the Sobel edge operator. If 

this pixel lay on the arc of a circle, then its centre would be in the direction of the 



40 

 

gradient [2]. Locations of positively and negatively affected pixels can be seen from 

Figure 3.17.  

 

Figure 3.17 Locations of affected pixels 

The coordinates of a positively- affected pixel are defined as: 

)
)(
)(()( n

pg
pgroundppp ve +=+      (3.8) 

At each radius Nn∈ , an orientation projection image On is formed. It is initially 

zero and updated by 

 

1)()( += ++ venven pOpO            (3.9) 

 

The vote image is defined as: 
α

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=
n

n

nn k

pO
pOpF

)(
))(sgn()(

~

~^
    (3.10) 

where, 

)(

)())(sgn(
~

~
~

pO

pOpO
n

n
n =          (3.11) 



41 

 

and  

( ) ( ) ( )
⎩
⎨
⎧ <

=
otherwisek

kpOifpO
pO

n

nnn
n

~        (3.12) 

therefore; 

1~
~

^
)()()(

−

⋅=
α

α pO
k

pOpF n
n

n
n             (3.13) 

Radial symmetry image is obtained: 

nnn AFS ∗=
^

             (3.14) 

where, 

nA  is the two dimensional Gaussian. 

In order to calculate full transform image for more than one radius value that 

averages all the symmetry contributions over all radii considered [2]: 

nn S
N

S ∑=
1                (3.15) 

This transform process can be adapted for circular sign detection. Suitable 

parameters of this transform are chosen for our case. 

Determining the Parameters 

In order to implement real time radial symmetry for circular traffic signs, some 

parameters have to be determined. These parameters are; 

• Nn∈ : Set of radii  



42 

 

• α :The radial strictness parameter  

• nk : The normalizing factor  

• nA : The Gaussian kernel 

Set of radii 

When driving a car, there is an optimum distance to detect the traffic sign before it 

becomes too large. Therefore, this optimum value can be used for our detection 

process as a radius value. For this algorithm, the set of [16,18] values can be used as 

the radii set. However, only the radius value 16 is used in FPGA implementation of 

the algorithm because of the time restrictions of making multiplication on hardware.  

The radial strictness parameter α  

The radial strictness parameter α determines how strictly radial the radial symmetry 

must be for the transform to return a high interest value [29]. That means, choosing 

lower α value emphasizes non-radially symmetric features over the image. 

However, a higher α value causes elimination of some non-radially symmetric 

points such as lines.  

For the FPGA implementation of algorithm, α value is determined as 1 because of 

minimizing the computation time of
^

nF . 

The normalizing factor nk  

When the radius becomes larger, the number of gradient elements affecting the 

transformation increases. For the case of using of different radii values, nO  have to 

be normalized to make every orientation projection image into a similar scale. 

Normalization of nO  is achieved by dividing with nk .  

For the FPGA implementation of algorithm, nk  value is determined experimentally 

as 16, because of minimizing the computation time of nF  



43 

 

The Gaussian Kernel nA  

The purpose of the Gaussian kernel nA  is to spread the influence of the positively 

and negatively-affected pixels as a function of the radius n [29]. 2-D Gaussian is 

used because of its radially symmetric structure; therefore, convolution process has 

a consistent effect over all gradient orientations. The standard deviation with the 

range n determines the arc of influence which applies to all affected pixels. In 

addition, amplifying the magnitude is necessary to prevent the effect of gradient 

elements becoming negligible at large radii as a result of being spread too thinly 

across the image [29] 

For the FPGA implementation of algorithm, Gaussian kernel is chosen as 2D 

Gaussian of size nn×  with, 

n25.0=σ    and   3=n           (3.16) 

3.2.3.3.1.2 Hardware Implementation on FPGA 

Implemented algorithm in FPGA can be summarized in Figure 3.18. First stage was 

implemented in Sobel Edge detection. In this part, implementation of the second 

stage in Figure 3.18 will be explained. 

 

Figure 3.18 Block diagram of the algorithm 

In the second stage; first, locations of positive affected pixels are determined. In 

order to accomplish this purpose, row and column number of the pixel and 



44 

 

magnitude of the gradients have to be known.  These variables are calculated in the 

“Sobel Edge Detection” part, shown in Figure 3.19 in Stage-1. 

Clock multiplier is used to produce 350 MHz clock from 200 MHz system clock. 

350 MHz clock signal is chosen, because, it is the maximum clock frequency of 

divider modules.  

Using equation (3.7) gradient magnitude can be calculated. Gradient values coming 

from the Sobel edge detection are divided with the magnitude of the gradient value. 

Therefore; two divider modules are used to calculate to find positive affected pixels 

locations. Locations are expressed with row and column numbers. 

rst
clk

clk

Magnitude Calculation

clk_multiplier

Sobel_x_out

Sobel_y_out

clk 350 MHz200 MHz

Mag_ok

clk

ce

divisor

dividend quotient_x

clk

ce

divisor

dividend quotient_y

Mag_out

divider_module2

divider_module1

clk

rst

quotient_x

address_logic

row_no

column_no

input_valid

quotient_y

Sram_address

data_shift

output_valid

row_no

column_no

division_ok_x

division_ok_y

350 MHz

Sram_controller

Sobel Edge Detection

Stage-1

Stage-2

Image_end

350 MHz

 

Figure 3.19 Hardware modules to find the locations of positive affected pixels 



45 

 

In Equation (3.8), the radius value (n) is taken as 16. Therefore, multiplication of 

gradient values with n corresponds to a shifting operation. “Sobel_x_out” and 

“Sobel_y_out” are 16 bits output ports of “Magnitude_Calculation” module, which 

include the results of multiplication of gradient values with radius. In 350 MHz, 2 

clock cycles are used for magnitude calculation. Simulation for magnitude 

calculation block is shown in Figure 3.20. Row and column numbers are calculated 

in this block. Using the gradient information coming from sobel edge block, 

magnitude of the gradient is calculated using the Equation (3.7).  In Figure 3.20, 

“mag_out[15:0] ”  shows the output value corresponds to “sobel_x_in[11:0]” and 

“sobel_y_in[11:0]”.  In addition, “sobel_x_out[15:0] ” and “sobel_y_out[15:0]” are 

the radius times “sobel_x_in[11:0]” and “sobel_y_in[11:0]” in which the radius is 

16. Divider modules use the “sobel_x_out[15:0] ” and “sobel_y_out[15:0]” as 

inputs to calculate Equation (3.8). 

 

Figure 3.20 Simulation for Magnitude Calculation block 

Divider modules work with 350 MHz and spend 18 clock cycles to generate results. 

13,5 MHz is the clock frequency of the luminance value of the video signal. 

Therefore; neither divider module nor magnitude calculation module cause to loss 

of data.  

Divider modules calculate the right side of the Equation (3.8) (marked area shown 

in (3.17)). The locations of positive affected pixels are calculated in “address_logic” 

component.  



46 

 

)
)(
)(()( n

pg
pgroundppp ve +=+

 

 

Figure 3.21 Simulation for Address logic block 

In “address_logic” component, “satir_s[10:0]” and “sutun_s[10:0]” are the internal 

signals which indicate the locations of positive affected pixels.   

satir_s <= satir_no + bolum2_in     (3.18) 

sutun_s <= sutun_no + bolum1_in                 (3.19) 

Equations (3.16) and (3.17) are used to calculate the locations of positive affected 

pixels. In these equations, “bolum1_in” indicates the output value of “divider 

module1” and “bolum2_in” indicates the output value of “divider module2”. 

After calculating the coordinates of positive affected pixels, orientation projection 

image is calculated. The orientation projection images are initially zero. For each 

pair of affected pixels vep+  the corresponding point in the orientation projection 

image nO  is incremented by one [29].  

 



47 

 

nO  has a size 288x720x8 bits therefore, internal memory of FPGA is not sufficient 

to save a place for nO voting. In order to find nO , an external memory (SRAM) is 

used.  SRAM has 32 bits data bus so, “address_logic” module, shown in Figure 

3.19, is used to determine the SRAM address with data shifting information. On 

(0,0), On(0,1), On(0,2) and On(0,3) are recorded the same SRAM address. But, 

they are in the different intervals of the 32 bits data as shown in Figure 3.22. 

 

Figure 3.22 Addresses of SRAM 

Suitable SRAM address is generated in “address_logic” block. Furthermore, data 

shifting information is also calculated in “address_logic” block. As shown in Figure 

3.21, “sram_address[17:0]” indicates address of SRAM and “data_mod[2:0]” 

indicates the shifting information.   

To calculate the address of SRAM and data shifting information, Equation (3.20) 

and (3.21) are used. 

data_mod = sutun_s mod 4             (3.20) 

sram_address = satir_s x (0xB4) + [sutun_s- (data_mod)] / 4   (3.21) 

SRAM controller module works with 200 MHz clock. Writing from or reading to 

SRAM spends 7 clock cycles. During the voting of nO , reading and writing 



48 

 

processes take place consecutively. Therefore, 14 clock cycle is used for voting 

application of nO . 13,5 MHz is the clock frequency of the luminance value of the 

video signal. For this reason, during the voting of nO , there is no loss of data. 

However, when the row and columns numbers reach the limit values (288 for row; 

720 for column), “image_end” signal rises up from the “ mag_calculation” module. 

With the rising edge of that signal, calculation process of nF starts, shown in Figure 

3.23 (marked area in the figure). 

 

Figure 3.23 Flow chart of the circular sign detection algorithm 



49 

 

In Equation (3.12), nk  is selected as 16. To find the vote image )(
^

pFn  using 

Equation (3.13), ( )pOn
~ is divided by nk  which is 16. Normally, the result is a 

floating point number. In FPGA, working with floating point number is not easy. 

Therefore, for Equation (3.13) dividing operation with nk  is ignored. In this way,  

( )pOn
~  and )(

^
pFn can be calculated as fixed point numbers. 

After finding )(
^

pFn , Radial symmetry image nS is calculated using Equation (3.14).  

nA is a two dimensional Gaussian kernel which is used to spread the influence of the 

positively and negatively-affected pixels as a function of the n. For FPGA 

implementation, n is taken as 3 and standard deviation is taken as σ = 0.85. 

Therefore normalized Gaussian kernel nA  is: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

121
242
121

nA          (3.22) 

To find Radial symmetry image nS , a convolution operation is needed. Using 

FPGA, convolution operation of )(
^

pFn with nA  is a similar process like described 

in section 3.2.3.2.2.2. First of all, line buffers are used as described in 3.2.3.2.2.1. 

Then, a 3x3 window is generated from the pixels coming from line buffers. 

Generated windows are multiplied with the Gaussian 3x3 mask’s coefficients. As 

you notice, coefficients of nA  are arranged as to be multiply of 2. Therefore, 

multiplication operation with these coefficients can be performed with simple 

shifting operations. 

Results of multiplication of 3x3 window and Gaussian mask’s coefficients are 

compared with a threshold value as shown in Figure 3.24. 



50 

 

result >threshold

Multiplication 
Result of 

3x3 Window and 
Gaussian Mask’s 

coefficients

Store location of 
pixel to BRAM

yes

no

 

Figure 3.24 Flow chart of the comparison of convolution result with threshold 

Results stored in Block RAM indicate the possible center locations of circular 

traffic signs in the video frame.   

Threshold values are chosen after MATLAB simulations and experimental results. 

For our applications threshold value is taken as 50. 



51 

 

CHAPTER 4  

 

EXPERIMENTAL RESULTS 

4.1 Introduction 
 

In order to validate the algorithms implemented on FPGA, as stated in Chapter 3, 

they are first developed in MATLAB. For the test of the algorithms, static images 

[36] are initially used. After porting to FPGA real time video sequences are also 

used.  

 

For real time sequences, a laptop with S-Video output port is used while playing the 

stored video. In additions to video frames, static images are used in tests of 

algorithms. 

 

First step of the proposed algorithm is color segmentation. Second step of proposed 

algorithm is edge detection. Edge detection algorithms are applied after color 

segmentation algorithms. Results of joint application of algorithms are given for 

different images and video sequences in section 4.4.1. 

 

Third step of proposed algorithm is circle shape recognition based algorithms. 

Results of joint applications of all algorithms are given for different images and 

video sequences in section 4.4.2.  

  

Algorithms applied for detection of traffic signs are developed on two different 

platforms which are: 



52 

 

• MATLAB 

• Xilinx ISE 10.1 

4.2 Test Results 
 

Three groups of images with the following properties are used in testing of the 

MATLAB and FPGA implementations of algorithms. 

 

Well Illuminated: This set includes well illuminated 47 images which contains 19 

triangular, 13 circular, 15 rectangular traffic signs (25 red, 22 blue signs).  Images 

are captured from video scenes. Resolutions of the images are 720x576. An 

example for well-illuminated images is given in Figure 4.1. 

 

 
Figure 4.1 Well-illuminated traffic sign  

 

Poorly Illuminated:  Images in this set are either not well illuminated or 

illumination causes detection process to be more difficult (i.e. sunlight directly 

coming just behind the traffic sign).This set includes 42 images which contain 17 

triangular, 15 circular, 10 rectangular traffic signs (27 red, 15 blue signs). Images 

are captured from video scenes. Resolutions of the images are 720x576. An 

example for poorly-illuminated images is given in Figure 4.2. 



53 

 

 

 
Figure 4.2  Poorly-illuminated traffic sign 

 

Shadowed: This set includes 30 images which are in shade. This group of images 

consists of 14 circular, 3 rectangular, 13 triangular traffic signs (21 red, 9 blue). 

Resolutions of the images are 720x576. An example for shadowed images is given 

in Figure 4.3. 

 

 
Figure 4.3  Shadowed traffic sign 

 



54 

 

4.2.1 MATLAB Test Results of Algorithms on Separate Images 
 

In literature, there are many algorithms to detect traffic signs. Basically, these 

algorithms use color and shape features of traffic signs. For real time application of 

traffic sign detection, joint application of shape based algorithms and color 

segmentation is preferred to decrease processing time of detection. Steps defined in 

Figure 4.4 are implemented by using MATLAB.  

 

 

 

Figure 4.4 Joint application of color and shape based algorithms  

 

For MATLAB simulations, parameters for circular shape detection algorithm are 

different from the parameter values defined in 3.2.3.3.1.1. The parameter values are 

taken as: 

• Nn∈ : Set of radii is taken as [16,18] 

• α :The radial strictness parameter is taken as 1,  

• nk : The normalizing factor is taken as 18, 

• nA : The Gaussian Kernel; n25.0=σ    and   3=n                                 

MATLAB test results are given in following sections. Finding the location of 

circular shape’s centers at wrong places is taken as a false positive case.   



55 

 

4.2.1.1 Test Results on Well-Illuminated Images 

For this set, threshold values for color segmentation are taken as: 

75=aR , 255=bR , 0' =aG ,45 45,0' =bG , 0' =aB ,45, 45,0' =aG .  

Threshold value for circular shape detection algorithm is selected as 40. Detection 

result is given in Table 4.1. 

Table 4.1 Output results for circular sign detection system for well illuminated 
images (t=40) 

Shape Signs to be 
Detected 

Detected 
Traffic Signs 

% of 
Detection 

False 
Positives 

Circular 13 13 % 100 3 

 

Threshold value for circular sign detection algorithm determines the detection rate 

and number of false positives. Small threshold values cause more false positives. 

Objects which have less radially symmetric features can be detected. The threshold 

value is selected as 50. Detection result is given in Table 4.2. 

Table 4.2 Output results for circular sign detection system for well illuminated 
images (t=50) 

Shape Signs to be 
Detected 

Detected 
Traffic Signs 

% of 
Detection 

False 
Positives 

Circular 13 12 % 92,30 1 

 

4.2.1.2 Test Results on Poorly Illuminated Images 

For poorly illuminated images, color segmentation module has an important role for 

the performance of whole system. Threshold values for color segmentation are 

taken as: 



56 

 

75=aR , 255=bR , 0' =aG ,45 45,0' =bG , 0' =aB ,45, 45,0' =aG .  

Threshold value for circular detection algorithm is selected as 40. Detection result is 

given in Table 4.3. 

Table 4.3 Output results for circular sign detection system for poor illuminated 
images 

Shape Signs to be 
Detected 

Detected 
Traffic Signs 

% of 
Detection 

False 
Positives 

Circular 15 8 %53,3 0 

 

For poor illumination, thresholds for color segmentation can be optimized. 

Threshold values for color segmentation can be taken as: 

55=aR , 255=bR , 0' =aG ,65 65,0' =bG , 0' =aB ,65 65,0' =aG . 

Table 4.4 shows the output results of the system after color segmentation threshold 

change. 

Table 4.4 Output results for circular sign detection system for poor illuminated 
images (after threshold changing for color segmentation) 

Shape Signs to be 
Detected 

Detected 
Traffic Signs 

% of 
Detection 

False 
Positives 

Circular 15 11 %73,3 2 

 

Change of color segmentation threshold increases the rate of detection but, it also 

causes false positive detection. 



57 

 

4.2.1.3 Test Results on Shadowed Images 

Circular sign detection algorithm gives good results for partial shadowed images.  

Threshold values for color segmentation are taken as: 

75=aR , 255=bR , 0' =aG ,45 45,0' =bG , 0' =aB ,45 45,0' =aG .  

Threshold value for circular detection algorithm is selected as 40. Table 4.5 shows 

the output results of the system. 

Table 4.5 Output results for circular sign detection system for shadowed images 

Shape Signs to be 
Detected 

Detected 
Traffic Signs 

% of 
Detection 

False 
Positives 

Circular 14 7 %50 1 

 

For shadowed images, thresholds for color segmentation can be optimized. 

Threshold vales for color segmentation can be taken as: 

55=aR , 255=bR , 0' =aG , 65,0' =bG , 0' =aB , 65,0' =aG . 

Table 4.6 shows the output results of the system after color segmentation threshold 

change. 

Table 4.6 Output results for circular sign detection system for shadowed images 
(after the change of color segmentation module threshold) 

Shape Signs to be 
Detected 

Detected 
Traffic Signs 

% of 
Detection 

False 
Positives 

Circular 14 9 %64,28 3 

 



58 

 

Similarly, changing the threshold of circular shape detection module can increase 

the detection rate. Partial shadowed images reveal less symmetric parts. Therefore, 

decreasing the threshold of shape detection algorithm increases the detection rate of 

system. In a contrary manner, false positives tend to increase. Threshold vales for 

color segmentation can be taken as: 

55=aR , 255=bR , 0' =aG , 65,0' =bG , 0' =aB ,65 65,0' =aG , and 

Threshold for circular shape detection algorithm has changed from 40 to 35. 

Table 4.7 shows the output results of the system after shape detection threshold 

change.  

Table 4.7 Output results for circular sign detection system for shadowed images 
(after the change of shape detection threshold and color segmentation threshold) 

Shape Signs to be 
Detected 

Detected 
Traffic Signs 

% of 
Detection 

False 
Positives 

Circular 14 10 %71,42 4 

 

MATLAB results are compared with the results found in the [38]. Once the 

performance is guaranteed, it is implemented on FPGA using ISE software. 

4.2.2 Test Results of FPGA Implementation 

4.2.2.1 Test Results of Joint Application of Color Segmentation and 
Edge Detection Implementation on Separate Images 
 

Color Segmentation and edge detection algorithms are intermediate steps for 

detection of traffic signs. The last step, shape recognition, will determine the 

detection rate of hardware implementation. However, the outputs of color 

segmentation and edge detection modules directly affect the performance of traffic 

sign detection. Therefore, using following two case, performance of color 

segmentation and edge detection modules can be discussed. 



59 

 

 Case-1 (Pass): If the output of module (hardware implementation of algorithm) 

consists of traffic signs completely (with no corruption), algorithm is assumed as 

successfully. In the output image, there can be other objects with the traffic signs.  

Figure 4.5 shows the image captured from a video scene. Figure 4.6 shows the 

output of color segmentation module. As seen in Figure 4.6, output of the color 

segmentation module shows the traffic sign successfully. Output of joint application 

of color segmentation and edge detection module is shown at Figure 4.7. 

 

   

 
 

Figure 4.5  Original image having one circular sign 

 

 



60 

 

 
 

Figure 4.6  Output of color segmentation module (for red component) 

 

 

 
 

Figure 4.7  Output of joint application of color segmentation & edge detection 

module 

 

 



61 

 

Case-2(Fail): If the output of module doesn’t include traffic sign completely, 

algorithm is assumed as unsuccessful. Figure 4.8 shows the image captured from a 

video scene. Figure 4.9 shows the output of color segmentation module. As seen in 

Figure 4.9, right side of the triangle doesn’t come out from the algorithm because of 

the shadow effect of trees. This case assumed as a failure. Output of joint 

application of color segmentation and edge detection module is shown at Figure 

4.10. 

 

 
 

Figure 4.8  Original image having one circular sign 
 

 

 



62 

 

 
 

Figure 4.9  Output of color segmentation module (for red component) 

 

 
 

Figure 4.10  Output of joint application of color segmentation & edge detection module 

 

The shape recognition module uses the output images shown in Figure 4.7 and 

Figure 4.10. Therefore, performance of edge detection depends on the color 

segmentation and edge detection modules. 



63 

 

Well illuminated, poorly illuminated, and shadowed images are studied for two 

cases expressed above. 

4.2.2.1.1 Test Results on Well-Illuminated Images 
For well illuminated images, color segmentation and edge detection module works 

perfectly. The real performance of sign detection is determined by shape detection 

module. Table 4.8 shows the output results for well-illuminated images according to 

the defined cases in section 4.4.1. 

Table 4.8 Output results for joint application of color segmentation & edge 
detection module 

Color Signs to be 
Detected 

Number of 
Passed 

Number of 
Failed % of Passed 

Red 25 23 2 92 

Blue 22 19 3 86,36 

 

Five failed case occurs because of the occlusion of other objects. 

4.2.2.1.2 Test Results on Poorly-Illuminated Images 
For poorly illuminated images, especially when the sun shines just behind the sign, 

the output image of color segmentation module can corrupt. Therefore, the 

performance of color segmentation module has a big role in performance of traffic 

sign detections. Table 4.9 shows the output results for poorly-illuminated images 

according to the defined cases in section 4.4.1. 

Table 4.9 Output results for joint application of color segmentation & edge 
detection module 

Color Signs to be 
Detected 

Number of 
Passed 

Number of 
Failed % of Passed 

Red 27 15 12 55,55 

Blue 15 8 7 53,33 



64 

 

4.2.2.1.3 Test Results on Shadowed Images 

Color segmentation module fails because of the dark shadows appearing over whole 

or most part of signs. Actually, partial shadows don’t affect the shape of the sign 

coming from the joint application of color segmentation and edge detection module. 

Sign recognition algorithms still give good results for partial shadowed images. But, 

these kinds of situations are admitted as a failure in Table 4.10 according to the 

defined cases in section 4.4.1. 

Table 4.10 Output results for joint application of color segmentation & edge 
detection module 

Color Signs to be 
Detected 

Number of 
Passed 

Number of 
Failed % of Passed 

Red 21 12 9 57,14 

Blue 9 4 5 44,4 

 

4.2.2.2 Test Results of Circular Sign Detection Implementation on 
Separate Images 
 

Circular shape detection algorithm uses the gradient information of pixels as inputs. 

That means in FPGA implementation of circular sign detection algorithm uses the 

output of joint application of color segmentation, edge detection algorithms as 

shown in Figure 4.4. The output of whole system is the location information of 

possible circular traffic sign. In the output video circular sign is marked with square 

and whole other areas are whitened. The output of system is shown in Figure 4.11.  



65 

 

 

Figure 4.11 Output of the system 

 

Three group of pictures described in 4.2 are used to determine the performance of 

whole system. For the FPGA implementation of circular sign detection algorithm 

based on radial symmetry, some approximations are taken into considerations. 

Especially, the parameter values defined in 3.2.3.3.1 are approximated for FPGA 

implementations. Therefore, there are differences between the results of MATLAB 

simulations and FPGA implementations. 

 

4.2.2.2.1 Test Results on Well-Illuminated Images 

From the MATLAB results, optimum thresholds for color segmentation module and 

shape detection module are selected. 

Threshold vales for color segmentation are: 

75=aR , 255=bR , 0' =aG , 45,0' =bG , 0' =aB , 45,0' =aG .  

Threshold value for circular sign detection module is 50. 

Table 4.11 shows the results for well-illuminated images.  



66 

 

Table 4.11 Output results for circular sign detection system for well illuminated 
images 

Shape Signs to be 
Detected 

Detected 
Traffic Signs 

% of 
Detection 

False 
Positives 

Circular 13 11 % 84,61 2 

 

The result of FPGA implementation is similar to the result of MATLAB. Because 

of the approximations for FPGA implementations, some of the signs can’t be 

detected. In addition, using only one radius value and approximation of Gaussian 

kernel as expressed in Equation (3.22), cause to increase of false positives. 

 

4.2.2.2.2 Test Results on Poorly Illuminated Images 

From the MATLAB results, optimum thresholds for color segmentation module and 

shape detection module are selected. 

Threshold vales for color segmentation are: 

55=aR , 255=bR , 0' =aG , 65,0' =bG , 0' =aB , 65,0' =aG . 

Threshold value for circular sign detection module is 40. 

Table 4.12 shows the output results of the system. 

Table 4.12 Output results for circular sign detection system for poorly illuminated 
images 

Shape Signs to be 
Detected 

Detected 
Traffic Signs 

% of 
Detection 

False 
Positives 

Circular 15 10 %66,6 1 

 

The detection rate is close to the MATLAB results.  

 



67 

 

4.2.2.2.3 Test Results on Shadowed Images 

From the MATLAB results, optimum thresholds for color segmentation module and 

shape detection module are selected. 

Threshold vales for color segmentation are: 

55=aR , 255=bR , 0' =aG , 65,0' =bG , 0' =aB , 65,0' =aG . 

Threshold value for circular sign detection module is 35. 

Table 4.13 shows the output results of the system. 

Table 4.13 Output results for circular sign detection system for shadowed images 

Shape Signs to be 
Detected 

Detected 
Traffic Signs 

% of 
Detection 

False 
Positives 

Circular 14 9 %64,28 2 

 

Circular sign recognition algorithm gives good results for partial shadowed images. 

Similarly, the detection rate of FPGA implementation is lower than the MATLAB 

results. 

4.2.3 Timing and Resource Usage 
 

For color segmentation algorithm, two Y values are used to detect the RGB values 

of a pixel. Video decoder clock frequency is 27 MHz and system clock frequency is 

200 MHz. Information of two pixels ( 11YCb 22YCr ) is used to find the one pixel’s 

RGB value. 4 clock cycles in 200 MHz are needed for color conversion from YUV 

space to RGB space. In addition, 2 clock cycles are used for color thresholding. 

Therefore, 6 clock cycles are used for color segmentation and there is no loss of 



68 

 

data. Two pixel delay occurs because of the color space conversion. Delay is 

expressed as (1/13,5MHz)74 ns x 2 clock cycles = 148 ns. 

 

Logic resource utilization of designed hardware on FPGA is given in Figure 4.12. 

 

Device Utilization Summary 

Slice Logic Utilization Used Available Utilization 

Number of Slice Registers 906 44,800 2% 

Number used as Flip Flops 906     

Number of Slice LUTs 1,774 44,800 3% 

Number used as logic 1,585 44,800 3% 

Slice Logic Distribution        

Number of occupied Slices 668 11,200 5% 

Number of LUT Flip Flop pairs used 1,989     

Specific Feature Utilization        

Number of BlockRAM/FIFO 52 148 35% 

Number using BlockRAM only 52     

Total primitives used        

Number of 36k BlockRAM used 51     

Number of 18k BlockRAM used 1     

Total Memory used (KB) 1,854 5,328 34% 

Number of BUFG/BUFGCTRLs 6 32 18% 

Number used as BUFGs 6     

 

Figure 4.12 Logic Resource Utilization after Color Segmentation 

 

Edge detection module uses the outputs of color segmentation module as inputs. 

Coming data is buffered for convolution operation with Sobel masks. Therefore, 



69 

 

two video line-delays occur. Delay is expressed as; (1/13,5MHz) x720 pixels x 2 

lines = 106 sμ . 

Logic resource utilization of designed hardware on FPGA is given in Figure 4.13. 

 

Device Utilization Summary 

Slice Logic Utilization Used Available Utilization 

Number of Slice Registers 1,086 44,800 2% 

Number used as Flip Flops 1,086     

Number of Slice LUTs 1,977 44,800 4% 

Number used as logic 1,803 44,800 4% 

Slice Logic Distribution        

Number of occupied Slices 761 11,200 6% 

Number of LUT Flip Flop pairs used 2,273     

Specific Feature Utilization        

Number of BlockRAM/FIFO 32 148 21% 

Number using BlockRAM only 32     

Total primitives used        

Number of 36k BlockRAM used 31     

Number of 18k BlockRAM used 2     

Total Memory used (KB) 1,152 5,328 21% 

Number of BUFG/BUFGCTRLs 9 32 28% 

Number used as BUFGs 9     

 

Figure 4.13 Logic Resource Utilization after Edge Detection 

 

Circular shape recognition module uses the outputs of edge detection module as 

inputs. Voting process of nO  as shown in Figure 3.22, runs simultaneously with the 



70 

 

video signal. After the voting process of nO , the radial symmetry image nS  process 

starts to run with the rising edge of signal “image_end”. This process doesn’t work 

simultaneously with the video signal (marked area in Figure 3.22) However, 

working in 200 MHz provides to complete the line buffering and convolution with 

Gaussian mask processes before the next video field comes. The calculations are 

presented below; 

For line buffering operations; 

• 50 MHz clock is used 

• 288x720 pixels are buffered 

Therefore; 

(1/50MHz) x 288 x 720 = 4,14 ms is needed for whole process. 

Convolutions with Gaussian mask (3x3) works with 200MHz clock. The important 

point is that clock of convolution operation has to be at least three times bigger than 

the clock of line buffering. Because, producing 3x3 window from line buffer’s 

coming data, multiplication with Gaussian mask coefficients and adding the results 

take at least 3 clock cycles.  

For PAL (625-line/50 Hz video systems) standard there are 50 fields for a second, 

which means there are 20 ms between two consecutive fields. Therefore, after 4.14 

ms, the sign detection system catches up the next coming field. Consequently, the 

system works with a delay of 20 ms. 

Logic resource utilization of designed system hardware in FPGA is given in Figure 

4.14. 

 

 

 

 

 

 



71 

 

Device Utilization Summary 

Slice Logic Utilization Used Available Utilization 

Number of Slice Registers 3,117 44,800 6% 

Number used as Flip Flops 3,117     

Number of Slice LUTs 3,326 44,800 7% 

Number used as logic 3,077 44,800 6% 

Slice Logic Distribution        

Number of occupied Slices 1,486 11,200 13% 

Number of LUT Flip Flop pairs used 4,539     

Specific Feature Utilization        

Number of BlockRAM/FIFO 45 148 30% 

Number using BlockRAM only 45     

Total primitives used        

Number of 36k BlockRAM used 44     

Number of 18k BlockRAM used 2     

Total Memory used (KB) 1,620 5,328 30% 

Number of BUFG/BUFGCTRLs 13 32 40% 

Number used as BUFGs 13     

  

Figure 4.14 Logic Resource Utilization of Circular Sign Detection System 



72 

 

CHAPTER 5  

 

CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

In this thesis, detection of traffic signs using FPGA was studied. For detection, two 

discriminating feature; namely color and shape of the signs are used. The joint 

implementation of shape and color based algorithms is utilized to improve the 

performance of detection process.  Algorithms implemented on FPGA are tested 

with video streams and images. 

 

For color based algorithms HSV space is not preferred, because of the 

computational complexity. RGB color domain is used for FPGA implementation. 

From the experimental results given in chapter 4, it is understood that RGB color 

space is convenient for color segmentation for well illuminated images. In addition, 

RGB color space gives satisfactory results for poorly illuminated and shadowed 

images. 

 

For edge detection, Sobel edge detection algorithm is implemented, because of its 

low computational complexity and good edge detection capability in noisy 

conditions.  

 

For circular shape detection radial symmetry detector is used because of its 

robustness against rotation and high detection rates. But these algorithms need 



73 

 

recursive computations which are hard to implement on FPGA. Therefore, some 

approximations are taken into consideration during the FPGA implementation of 

these algorithms. Because of these approximations, performance rate decrease 

according to the MATLAB simulations. 

 

The output result of this joint implementation has a critical significance in whole 

system. For well illuminated images, detection rate is higher than %90. For poorly 

and shadowed images, detection rate is about %70 with optimized parameter values. 

There are false positive values because of the approximations taken into 

consideration in the implementation of FPGA. First of all, during the 

implementation of circular sign detection algorithm, only one radius value is used 

instead of set of radii. Also, the radial strictness parameter(α ) is chosen as 1 in 

order to simplify the calculations. Taking the radial strictness parameter α  as a 

lower value, causes to increase of non-radially symmetric features. These are 

summarized as the main reasons of false positives values. 

 

The implemented algorithms also yield low delay in computation on FPGA. Color 

segmentation and edge detection algorithm on FPGA causes 107 sμ delay. Circular 

shape detection algorithm on FPGA uses one field (odd or even) of a video frame 

and causes 4.14 ms delay. Since the frame rate is 25 frame/sec (Δt= 40msec), all the 

computation is completed within a frame time. There are 20 ms between two 

consecutive fields. After 4.14 ms, the circular shape detection algorithm catches up 

with the next coming field. Therefore, the algorithm causes one field long delay. 

 

Color Segmentation, edge detection and circular sign detection algorithms uses low 

resources of FPGA. However, implementation of triangular and rectangular sign 

detection algorithms increases the resource usage of FPGA. Still, max resource 

usage of FPGA can be limited with %15. This gives the opportunity to make the 

implementation on a cheaper FPGA device. Therefore, traffic sign detection system 



74 

 

can be used as a standalone system or used with another system to improve 

vehicle’s safety.  

 

5.2 Future Work 

In order to detect traffic signs except circular traffic signs, other shape detection 

algorithms can be implemented on FPGA. 

In addition, the performance of circular traffic sign detection system can be 

improved with some additional modules. The parameters can be defined using 

image statistics. Gathering information about the brightness of the signs gives the 

opportunity to adjust optimum parameters to detect circular signs. 

During the hardware implementation of the algorithms, processor is not used. In 

order to increase the detection rate, circular shape detection algorithm can be 

implemented on processor. However, this operation causes more delay.  

As another future work, detection process can be combined with the recognition 

process to identify the traffic signs. 

 



75 

 

REFERENCES 

[1] M. A. Garcia-Garrido, M. A. Sotelo, E. Mart´ın-Gorostiza, “Fast Traffic Sign 

Detection and Recognition Under Changing Lighting Conditions” Proceedings of 

the IEEE ITSC 2006. 2006 IEEE Intelligent Transportation Systems Conference 

Toronto, Canada, September 17-20, 2006. 

[2] N. Barnes, A. Zelinsky, “Real-time radial symmetry for speed sign detection” 

2004 IEEE Intelligent Vehicle Symposium University of Parma, Italy. June 14-17 

2004 

[3] G. Piccioli, E. De Michelli, P. Parodi, M. Campani, “A Robust Method for Road 

Sign Detection and Recognition,” Image and Vision Computing, vol.14, pp.209-

223, 1996. 

[4] A. De la Escalera, L. E. Moreno, M. A. Salichs, J. M. Armigol, “Road Traffic 

Sign Detection and Classification” Industrial Electronics, IEEE Transactions on, 

Vol. 44, No. 6., pp. 848-859, 1997. 

[5] N. Kehtarnavaz, A. Ahmad, “Traffic Sign Recognition in Noisy Outdoor 

Scenes,” Proceedings of the Intelligent Vehicles '95 Symposium, pp. 460-465, Sept. 

1995. 

[6] T. P. Cao, G. Deng, “Real-Time Vision-based Stop Sign Detection System on 

FPGA”, Digital Image Computing: Techniques and Applications, pp:465-471, 2008 

[7] L. Priese, R. Lakmann, V. Rehrmann, “Ideogram Identification in a Realtime 

Traffic Sign Recognition System,” In Proc. Intelligent Vehicles Symp.pp. 310-314, 

1995. 



76 

 

[8] H.S. Neoh, A. Hazanchuk. “Adaptive Edge Detection for Real-Time Video 

Processing using FPGAs”, Global Signal Processing-Citeseer, 2004 

[9] T. A. Abbasi, M. U. Abbasi, “A Proposed FPGA Based Architecture for Sobel 

Edge Detection Operator”, J. of Active and Passive Electronic Devices, Vol. 2, pp. 

271–277, Old City Publishing, Inc., 2007 

[10] S. EsTable, J. Schick, F. Stein, R. Janssen, R. Ott, W. Ritter, Y. J. Zheng, “A 

Real Time Traffic Sign Recognition System," in proc. Intelligent Vehicles'94, 1994. 

[11] L. Estevez, N. Kehtarnavaz, “A Real-Time Histographic Approach to Road 

Sign Recognition,” Proceedings of the IEEE Southwest Symposium on Image 

Analysis and Interpretation, pp. 95-100, 1996. 

[12] “Field Programmable Gate Arrays (FPGA)”, [Online] Available: 

http://www.globalspec.com/reference/3203/Field-Programmable-Gate-Arrays-

FPGA, Last accessed date: 08/01/2010 

[13] C.Y. Fang, S. W. Chen, C. S. Fuh, “Road-Sign Detection and Tracking,” 

Vehicular Technology, IEEE Transactions on Volume 52, Issue 5, pp. 1329-1341, 

Sept. 2003. 

[14] Y.B. Damavandi, K. Mohammadi, “Speed Limit Traffic Sign Detection & 

Recognition” Proceedings of the 2004 IEEE. Conference on Cybernetics an 

Intelligent Systems Singapore, 1-3 December, 2004.   

[15] A. de la Escalera, J. Armingol, and M. Mata, “Traffic Sign Recognition and 

Analysis for Intelligent Vehicles” lmage and Vision Comput., Vol. 21, pp. 247-258, 

2003. 

[16] A. de la Escalera, J. M. Armingol, M. A. Salichs, “Traffic Sign Detection for 

Driver Support Systems” International Conference on Field and Service Robotics, 

2001. 



77 

 

[17] H. Kamada and M. Yoshida, “A Visual Control System Using Image 

Processing and Fuzzy Theory,” in Vision Based Vehicle Guidance, I. Masaki, Ed. 

Berlin, Germany: Springer-Verlag, 1992, pp. 111–128. 

[18] S. Kantawong, “Road Traffic Signs Detection and Classification for Blind Man 

Navigation System” International Conference on Control, Automation and Systems 

2007 Oct. 17-20, 2007 in COEX, Seoul, Korea 

[19] R. Janssen, W. Ritter, F. Stein, and S. Ott. “Hybrid Approach for Traffic Sign 

Recognition,” In Proc. of Intelligent Vehicles Conference, pp 390-395,1993. 

[20] G. Wu, W. Liu, X. Xie, Q. Wei, “A Shape Detection Method Based On The 

Radial Symmetry Nature and Direction-Discriminated Voting” 1-4244-1437-7/07 

IEEE. ICIP 2007 

[21] J. Miura, T. Kanda, and Y. Shirai, “An active vision system for real-time traffic 

sign recognition” In Proc. IEEE Conf. on Intelligent Transportation Systems (ITS), 

pages 52–57, Dearborn, MI, 2000. 

[22] Y.Y. Nguwi, A.Z. Kouzani, “A Study on Automatic Recognition of Road 

Signs” 1-4244-0023-6/06 IEEE CIS 2006 

[23] Philips Semiconductors 9-bit video input processor SAF7113H R21/02/pp81 

Document order number: 9397 750 12902 Date of release: 22 Mar 2004 

[24] Analog Devices Chip Scale PAL/NTSC Video Encoder with Advanced Power 

Management ADV7174/ADV7179 datasheet C02980–0–2/04(A),2004 

[25] V. Andrey, K. H. Jo, “Automatic Detection and Recognition of Traffic Signs 

using Geometric Structure Analysis” SICE-ICASE International Joint Conference 

2006 Oct. 18-21, 2006 in Bexco, Busan Korea 



78 

 

[26] H. S. Neoh, A. Hazanchuk, “Adaptive Edge Detection for Real-Time Video 

Processing using FPGAs”, ALTERA,2005” 

[27] T. A. Abbasi, M. U. Abbasi, “A Proposed FPGA Based Architecture for Sobel 

Edge Detection Operator”, Active and Passive Electronic Devices, Vol. 2, pp. 271–

277, 2007 

[28] A. Trost, B. Zajc, “Design of Real-Time Edge Detection Circuits on Multi-

FPGA Prototyping System” ELECO 99 International Conference on Electrical and 

Electronics Engineering, 1999 

[29] G. Loy, A. Zelinsky, “Fast Radial Symmetry for Detecting Points of Interest” 

IEEE Transactions on Pattern Analysis and Machine Intelligence” Vol. 25, No. 8, 

August 2003 

[30] H. Fleyeh, “Traffic Sign Recognition By Fuzzy Sets” Inteliigent Vehicles 

Syposium, 2008 IEEE, pp.422-427, 4-6 June 2008 

[31] P. L. Rosin, “Measuring Shape: Ellipticity, Rectangularity, and Triangularity”, 

Cardiff University, Machine Vision and Applications Journal, pp.172-184, July 

2003 

[32] A. Broggi, P. Cerri, P. Medici, P.P. Porta, “Real Time Road Signs 

Recognition”, Proceedings of the 2007 IEEE Intelligent Vehicles Syposium 

Istanbul, Turkey, June 13-15, 2007  

[33]“Road Sign Recognition Survey” [On-line] Available: 

http://euler.fd.cvut.cz/research/rs2/files/skoda-rs-survey.html, last accessed date: 

02/01/2010 

[34] T. P. Cao, G. Deng, “Real Time Vision-based Stop Sign Detection System on 

FPGA” 978-0-7695-3456-5/08, 2008 IEEE Computer Society 



79 

 

[35] “BT.656_Video_Interface_for_ICs”, Application Note AN9728.2, Intersil 

Americas Inc., 2002. 

[36]Alcalá de Henares (Madrid, Spain) Universidad de Alcalá 

http://roadanalysis.uah.es, last accessed date: 03/11/2010 

[37] R. Jain, R. Kasturi, B.G. Schunck, “Machine Vision”, McGraw-Hill, Inc., 1995 

[38] Emre Ulay, “Color and Shape Based Traffic Sign Detection”, MS Thesis, 

METU, Nov. 2008. 

[39] D. Ghica, S.W. Lu, X. Yuan “Recognition of Traffic Signs by Artificial Neural 

Network”, 1995 IEEE International Conf. on Neural Networks, Perth, Australia, 

vol.3, pp.1444-1449, Nov. 1995. 

[40] M. Bülent Havur, “Traffic Sign Recognition for Unmanned Vehicle Control”, 

MS Thesis, METU, Nov. 2006. 

[41] M. Frerking, “Digital Signal Processing In Communications Systems”, 

Springer, 1994 



80 

 

 

APPENDIX A 

 

STRUCTURE OF FPGA AND DESIGN FLOW 

In this appendix general information about FPGAs and its structures is explained. 

A.1   General Informations 

Field Programmable Gate Arrays (FPGA) are a new computing architecture that is 

under development since the early '90s. FPGAs contain as many as tens of 

thousands of logic cells and an even greater number of flip-flops. FPGAs are used 

in applications ranging from data processing and storage, to instrumentation, 

telecommunications, and digital signal processing. Other terms for FPGA include 

logic cell array (LCAs) and programmable application-specific integrated chip 

(pASIC). 

Field-programmable gate arrays are available with different numbers of system 

gates, shift registers, logic cells, and look up tables. Logic blocks or logic cells 

(LCs) do not include I/O blocks, but generally contain a look up table to generate 

any function of inputs, a clocked latch (flip-flop) to provide registered outputs, and 

control logic circuits for configuration purposes. Logic cells are also known as logic 

array blocks (LABs), logic elements (LEs) and configurable logic blocks (CLBs). 

Look up tables (LUTs) or truth tables are used to implement a single logic function 

by storing the correct output logic state in a memory location that corresponds to 

each particular combination of input variables. 



81 

 

FPGA processors change the view on algorithmic problem solving and have the 

advantage of being extremely powerful for many applications. Widely used 

computer architectures have a fixed central processing unit (CPU) operating on data 

stored in a memory. Programs determine the sequence of single instructions 

executed by the CPU. This is a disadvantage for algorithms that can be executed in 

parallel. In contrast, FPGA computers have no given processor structure but offer 

large amounts of logic gates, registers, RAM, and routing resources. These can be 

used for performing logical and arithmetical operations, for variable storage, and to 

transfer data between different parts of the system. Programs do not determine the 

sequence of execution but the logical structure of the reconfigurable machine. 

Therefore, algorithms are not only executable in parallel but are executed using a 

minimum amount of hardware. Typically, thousands of operations can be performed 

in parallel on an FPGA computer during every clock cycle. [12] 

A.2   Structure 
 
A 2.1    Configurable Logic Block (CLBs)  

The CLB is the basic logic unit in an FPGA. Exact numbers and features vary from 

device to device, but every CLB consists of a configurable switch matrix with 4 or 6 

inputs, some selection circuitry (MUX, etc), and flip-flops as seen in Figure A-1. 

The switch matrix is highly flexible and can be configured to handle combinatorial 

logic, shift registers, or RAM. 

 

 
Figure A.1 Typical logic block 

 



82 

 

A 2.2    Memory 

Embedded Block RAM memory is available in most FPGAs, which allows for on-

chip memory in your design. These allow for on-chip memory for your design. 

Xilinx FPGAs provide up to 10 Mbits of on-chip memory in 36 kbit blocks that can 

support true dual-port operation. 

A 2.3    Complete Clock Management 

Digital clock management is provided by most FPGAs in the industry (all Xilinx 

FPGAs have this feature). The most advanced FPGAs from Xilinx offer both digital 

clock management and phase-looped locking that provide precision clock synthesis 

combined with jitter reduction and filtering. 

A 2.4    IOB Details 

Today´s FPGAs provide support for dozens of I/O standards thus providing the 

ideal interface bridge in your system. I/O in FPGAs is grouped in banks as shown in 

Figure A.2 with each bank independently able to support different I/O standards. 

Today´s leading FPGAs provide over a dozen I/O banks, thus allowing flexibility in 

I/O support.  

 

Figure A.2 FPGA I/O Banks 



83 

 

A.3   FPGA Design Flow 

A simplified version of design flow is given in the Figure A.3. 

 

 

Figure A.3 Design Flow 

 

A 3.1    Design Entry 

There are different techniques for design entry. Schematic based, Hardware 

Description Language and combination of both. Selection of a method depends on 

the design and designer. If the designer wants to deal more with Hardware, then 

Schematic entry is the better choice. When the design is complex or the designer 

thinks the design in an algorithmic way then HDL is the better choice. Language 

based entry is faster but lag in performance and density. HDLs represent a level of 

abstraction that can isolate the designers from the details of the hardware 



84 

 

implementation.  Schematic based entry gives designers much more visibility into 

the hardware. It is the better choice for those who are hardware oriented. 

A 3.2    Synthesis 

Synthesis process translates VHDL or Verilog code into a device netlist formate. i.e 

a complete circuit with logical elements( gates, flip flops, etc…) for the design. If 

the design contains more than one sub designs, ex. to implement  a processor, we 

need a CPU as one design element and RAM as another and so on, then the 

synthesis process generates netlist for each design element. Synthesis process will 

check code syntax and analyze the hierarchy of the design which ensures that the 

design is optimized for the design architecture, the designer has selected. The 

resulting netlist(s) is saved to an NGC( Native Generic Circuit) file (for Xilinx® 

Synthesis Technology (XST)). 

A 3.3    Implementation  
 

This process consists a sequence of three steps 

1.Translate 

2.Map 

3. Place and Route 

 

Translate process combines all the input netlists and constraints to a logic design 

file. This information is saved as a NGD (Native Generic Database) file. This can 

be done using NGD Build program. Here, defining constraints is nothing but, 

assigning the ports in the design to the physical elements (ex. pins, switches, 

buttons etc) of the targeted device and specifying time requirements of the design. 

This information is stored in a file named UCF (User Constraints File). 

Tools used to create or modify the UCF are PACE, Constraint Editor etc 

Map process divides the whole circuit with logical elements into sub blocks such 

that they can be fit into the FPGA logic blocks. That means map process fits the 



85 

 

logic defined by the NGD file into the targeted FPGA elements (Combinational 

Logic Blocks (CLB), Input Output Blocks (IOB)) and generates an NCD (Native 

Circuit Description) file which physically represents the design mapped to the 

components of FPGA. MAP program is used for this purpose. 

Place and Route PAR program is used for this process. The place and route 

process places the sub blocks from the map process into logic blocks according to 

the constraints and connects the logic blocks. For example; if a sub block is placed 

in a logic block which is very near to IO pin, then it may save the time but it may 

affect some other constraint. So tradeoff between all the constraints is taken account 

by the place and route process. The PAR tool takes the mapped NCD file as input 

and produces a completely routed NCD file as output. Output NCD file consists the 

routing information. 

A 3.4    Device Programming  

Now the design must be loaded on the FPGA. But the design must be converted to a 

format so that the FPGA can accept it. BITGEN program deals with the conversion. 

The routed NCD file is then given to the BITGEN program to generate a bit stream 

(a .BIT file) which can be used to configure the target FPGA device. This can be 

done using a cable. Selection of cable depends on the design. 

 



86 

 

 

APPENDIX B 

 

HARDWARE DESIGN CONSIDERATIONS 

In this appendix, hardware design considerations will be introduced. 

B.1 ML507 Development Board 
 

 

Figure B.1 Virtex-5 FPGA ML50x Evaluation Platform Block Diagram 



87 

 

General properties of ML507 FPGA board are given at the below; 
 

• Xilinx Virtex-5 FPGA ML507 (XC5VFX70T-1FFG1136) 

• Two Xilinx XCF32P Platform Flash PROMs (32 Mb each) for storing large 

device configurations 

• Xilinx System ACE™ CompactFlash configuration controller with Type I 

CompactFlash connector 

• 64-bit wide, 256-MB DDR2 small outline DIMM (SODIMM), compatible 

with EDK supported IP and software drivers 

• Clocking 

•  Programmable system clock generator chip 

•  One open 3.3V clock oscillator socket 

•  External clocking via SMAs (two differential pairs) 

• General purpose DIP switches (8), LEDs (8), pushbuttons, and rotary 

encoder 

• Expansion header with 32 single-ended I/O, 16 LVDS-capable differential 

pairs, 

• 14 spare I/Os shared with buttons and LEDs, power, JTAG chain expansion 

capability, and I2C bus expansion 

• Stereo AC97 audio codec with line-in, line-out, 50-mW headphone, 

microphone-in jacks, SPDIF digital audio jacks, and piezo audio transducer 

• RS-232 serial port, DB9 and header for second serial port 

• One 8-Kb I2C EEPROM and other I2C capable devices 

• PS/2 mouse and keyboard connectors 

• ZBT synchronous SRAM, 9 Mb on 32-bit data bus with four parity bits 

• JTAG configuration port for use with Parallel Cable III, Parallel Cable IV, 

or Platform 

• USB download cable 

• 5V @ 6A AC adapter 

 



88 

 

 

Figure B.2 ML507 development board 



89 

 

B.2 Video I/O Interface Card 

 
 

Figure B.3 Video Interface I/O Card 



90 

 

 

 

Figure B.4. Video Interface I/O Card Front Side 

 

 

Figure B.5. Video Interface I/O Card Back Side 



91 

 

B.3 Programming Device 

During the FPGA design, Xilinx ISE is used as development environment. In 

addition, XST is used for synthesis, ChipScope for on-chip debugging and 

IMPACT for programming the FPGA. VHDL is selected as coding language. 

 

Xilinx Program Cable USB is used to program memory devices on board via the 

FPGA JTAG PORT. Xilinx IMPACT tool controls this device. Platform Cable USB 

is shown in Figure B.6. 
 

 

 

Figure B.6. Xilinx Platform Cable USB 

 


