

A PARALLEL ALGORITHM FOR FLIGHT ROUTE PLANNING ON

GPU USING CUDA

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

SEÇKİN SANCI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

COMPUTER ENGINEERING

APRIL 2010

Approval of the thesis:

A PARALLEL ALGORITHM FOR FLIGHT ROUTE PLANNING ON GPU

USING CUDA

submitted by SEÇKİN SANCI in partial fulfillment of the requirements for the

degree of Master of Science in Computer Engineering Department, Middle

East Technical University by,

Prof. Dr. Canan Özgen

Dean, Gradute School of Natural and Applied Sciences ________

Prof. Dr. Adnan Yazıcı

Head of Department, Computer Engineering ________

Assoc. Prof. Dr. Veysi İşler

Supervisor, Computer Engineering Dept., METU ________

Examining Committee Members:

Prof. Dr. Faruk Polat

Computer Engineering Dept., METU ________

Assoc. Prof. Dr. Veysi İşler

Computer Engineering Dept., METU ________

Prof. Dr. Cevdet Aykanat

Computer Engineering Dept., Bilkent University ________

Prof. Dr. İ. Hakkı Toroslu

Computer Engineering Dept., METU ________

Asst. Prof. Dr. Pınar Şenkul

Computer Engineering Dept., METU ________

 Date: ________

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare that,

as required by these rules and conduct, I have fully cited and referenced all material

and results that are not original to this work.

Name, Last Name: SEÇKİN SANCI

Signature :

iv

ABSTRACT

A PARALLEL ALGORITHM FOR FLIGHT ROUTE PLANNING

ON GPU USING CUDA

Sancı, Seçkin

M.S., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Veysi İşler

April 2010, 96 pages

Aerial surveillance missions require a geographical region known as the area of

interest to be inspected. The route that the aerial reconnaissance vehicle will follow

is known as the flight route. Flight route planning operation has to be done before

the actual mission is executed. A flight route may consist of hundreds of pre-

defined geographical positions called waypoints. The optimal flight route planning

manages to find a tour passing through all of the waypoints by covering the

minimum possible distance. Due to the combinatorial nature of the problem it is

impractical to devise a solution using brute force approaches. This study presents a

strategy to find a cost effective and near-optimal solution to the flight route

planning problem. The proposed approach is implemented on GPU using CUDA.

Keywords: Aerial Surveillance, Flight Route Planning, Waypoint, GPU, CUDA

v

ÖZ

UÇUŞ ROTASI PLANLAMASI İÇİN GRAFİK İŞLEMCİ

ÜZERİNDE ÇALIŞAN VE CUDA KULLANAN PARALEL BİR

ALGORİTMA

Sancı, Seçkin

Yüksek Lisans, Bilgisayar Mühendisliği

Tez Yöneticisi : Doç. Dr. Veysi İşler

Nisan 2010, 96 sayfa

Havadan gözetleme görevleri ilgi alanı olarak da bilinen bir coğrafi bölgenin

incelenmesini gerektirir. Hava keşif aracının izlediği yol uçuş rotası olarak bilinir.

Uçuş rotasının planlanması asıl görevin gerçekleştirilmesinden önce yapılmalıdır.

Bir uçuş rotası geçiş noktası olarak bilinen önceden belirlenmiş yüzlerce coğrafi

noktadan oluşabilir. İdeal uçuş rotası planlaması bütün geçiş noktalarınından

mümkün olan en kısa mesafeyi katederek geçen bir tur bulmayı başarır. Problemin

faktöriyel yapısından ötürü her olası çözümün denenmesi pratik değildir. Bu

çalışma uçuş rotası planlaması problemine düşük maliyetli ve neredeyse ideal bir

çözüm sunmaktadır. Önerilen yaklaşım CUDA kullanılarak grafik işlemci üzerinde

uygulanmıştır.

Anahtar Kelimeler: Havadan Gözetleme, Uçuş Rotası Planlaması, Geçiş Noktası,

Grafik İşlemci, CUDA

vi

To my family

vii

ACKNOWLEDGMENTS

I am honored to present my special thanks and deepest gratitude to my supervisor

Assoc. Prof. Dr. Veysi İşler for all his guidance and support during this study. I

would like to thank to STM for providing me time and resources whenever I

needed. Finally, I would like to thank my family for all their life-long support.

viii

TABLE OF CONTENTS

ABSTRACT ... iv

ÖZ .. v

DEDICATION .. vi

ACKNOWLEDGEMENTS .. vii

TABLE OF CONTENTS .. viii

LIST OF TABLES ... xii

LIST OF FIGURES .. xiv

CHAPTERS

1 INTRODUCTION ... 1

1.1 Background and Motivation of the Study 1

1.2 Problem Overview ... 5

1.3 Proposed Solution .. 7

1.4 Organization and Roadmap ... 10

2 RELATEDWORK ... 11

2.1 Different Approaches to Flight Route Planning Problem 11

2.2 Travelling Salesman Problem ... 13

ix

2.3 Genetic Algorithms .. 16

2.4 Greedy Algorithms .. 19

2.5 CUDA .. 20

2.6 Parallel Genetic Algorithms ... 22

2.7 Computational Geometry .. 23

3 FORMAL PROBLEM DEFINITION ... 25

3.1 The Aerial Surveillance Mission ... 25

3.2 The Surveillance Aircraft ... 28

3.3 Problem Definition .. 31

4 IMPLEMENTATION ... 35

4.1 Overview .. 35

4.2 Solution Approximation Using Genetic Algorithm 37

4.2.1 Approach .. 37

4.2.2 Crossover Operation .. 40

4.2.3 Mutation Operation .. 44

4.2.4 Genetic Algorithm Parameters 46

4.2.5 Selection Development Using Greedy Heuristic 49

4.3 Mapping the Genetic Algorithm into CUDA 50

4.3.1 CUDA Specifics ... 51

4.3.1.1 CUDA Threads .. 51

x

4.3.1.2 Conditional Statements .. 53

4.3.1.3 Memory Management .. 53

4.3.2 Genetic Algorithm Steps on CUDA 54

4.3.3 Distributed Genetic Algorithm Steps on CUDA 57

5 RESULTS .. 60

5.1 Test Environment .. 60

5.2 Comparison of Parallel and Serial Versions of the Genetic Algorithm 61

5.2.1 Running Time Comparison .. 61

5.2.2 Convergence Time Comparison .. 62

5.2.3 Speedup Comparision ... 64

5.2.4 Number of Generations Comparison 66

5.3 GPU Time Consumption ... 67

5.3.1 GPU Time Usage of Individual Functions 67

5.3.2 Effects of Thread Usage ... 71

5.4 Effects of TSP Parameters ... 72

5.4.1 Initial Population Size .. 72

5.4.2 Greedy Selection Percentage .. 75

5.4.3 Number of Closer Waypoints ... 77

5.4.4 Group Size .. 79

5.4.5 Mutation Percentage ... 81

xi

5.5 Comparison of Parallel and Serial Versions of the Random Search

Algorithm .. 84

5.5.1 Running Time Comparison .. 84

5.5.2 Speedup Comparision ... 85

5.6 Comparison of Genetic and Random Search Algorithms 87

5.7 Comparison of Distributed Genetic Algorithm with Genetic and

Random Search Algorithms .. 90

6 CONCLUSION .. 93

6.1 Future Work .. 94

6.1.1 Flight Route Planning .. 94

6.1.2 CUDA Programming .. 94

REFERENCES .. 95

xii

LIST OF TABLES

TABLES

Table 3.1: TIHA Aircraft Basic Specifications ... 31

Table 3.2: Formalized Table of Problem Domain... 34

Table 4.1: Sample Crossover Operation ... 39

Table 4.2: Sample Configuration Parameters for the GA 48

Table 5.1: Running Time Test Results for Genetic Algorithm 61

Table 5.2: Convergence Time Test Results for Genetic Algorithm 63

Table 5.3: Speed Up Test Results for Genetic Algorithm....................................... 64

Table 5.4: Number of Generations Test Results for Genetic Algorithm 66

Table 5.5: Number of Threads Test Results for Parallel Genetic Algorithm 71

Table 5.6: Effect of Initial Population Size to Convergence Time 73

Table 5.7: Effect of Initial Population Size to Fitness .. 73

Table 5.8: Effect of Greedy Selection Percentage to Convergence Time 75

Table 5.9: Effect of Greedy Selection Percentage to Fitness 75

Table 5.10: Effect of Number of Closer Waypoints to Convergence Time 77

Table 5.11: Effect of Number of Closer Waypoints to Fitness 77

xiii

Table 5.12: Effect of Group Size to Convergence Time ... 79

Table 5.13: Effect of Group Size to Fitness .. 79

Table 5.14: Effect of Mutation Percentage to Convergence Time 82

Table 5.15: Effect of Mutation Percentage to Fitness ... 82

Table 5.16: Convergence Time Test Results for Random Search Algorithm 84

Table 5.17: Speed Up Test Results for Random Search Algorithm 86

Table 5.18: Comparison of Approximate Running Times and Fitness values

between CPU versions of Genetic and Random Search Algorithms 88

Table 5.19: Comparison of Approximate Running Times and Fitness values

between GPU versions of Genetic and Random Search Algorithms 88

Table 5.20: Comparison of Approximate Running Times and Fitness values

between Genetic, Random Search and Distributed Genetic Algorithms 91

xiv

LIST OF FIGURES

FIGURES

Figure 1.1: Labruguière photographed by kite in 1889 ... 2

Figure 1.2: Camera bay of a reconnaissance Mirage III R .. 3

Figure 1.3: Shadow 600, a reconnaissance UAV ... 3

Figure 1.4: Sample MPS screen .. 4

Figure 1.5: Sample Flight Route ... 6

Figure 1.6: Original Travelling Salesman Problem .. 8

Figure 2.1: Surveillance Problem Defined by Cross, Marlow & Looker 13

Figure 2.2: Examples of various default heading options 15

Figure 2.3: Effect of adding ghost ships .. 16

Figure 3.1: Sample Aerial Surveillance Mission .. 26

Figure 3.2: TIHA System Composition .. 29

Figure 3.3: TIHA Aircraft on a Mission ... 30

Figure 4.1: Sample waypoint list... 36

Figure 4.2: Operation of Genetic Algorithm ... 38

Figure 4.3: Sample Cycle Crossover Method ... 41

Figure 4.4: The relationship between threads, thread blocks and grids in CUDA .. 52

Figure 4.5: Pseudo Code for CPU version of the Genetic Algorithm 54

Figure 4.6: Pseudo Code for GPU version of the Genetic Algorithm..................... 55

Figure 4.7: Pseudo Code for Distributed Genetic Algorithm 58

Figure 4.8: Island Migration Model .. 59

xv

Figure 5.1: Running Time Comparison for Parallel and Serial Versions of the

Genetic Algorithm ... 62

Figure 5.2: Convergence Time Comparison for Parallel and Serial Versions of the

Genetic Algorithm ... 64

Figure 5.3: Speed Up Coefficient Comparison for Parallel and Serial Versions of

the Genetic Algorithm ... 65

Figure 5.4: Number of Generations Comparison for Parallel and Serial Versions of

the Genetic Algorithm ... 67

Figure 5.5: Percentage of Operations according to GPU Time Consumption for the

32 Waypoint Test .. 68

Figure 5.6: Percentage of Operations according to GPU Time Consumption for the

64 Waypoint Test .. 69

Figure 5.7: Percentage of Operations according to GPU Time Consumption for the

128 Waypoint Test .. 70

Figure 5.8: Effect of Using Different Number of Threads for the Genetic Algorithm

in the GPU ... 72

Figure 5.9: Effect of Using Different Initial Population Sizes on Running Time for

the Genetic Algorithm ... 74

Figure 5.10: Effect of Using Different Initial Population Sizes on Flight Route

Length for the Genetic Algorithm ... 74

Figure 5.11: Effect of Using Different Greedy Percentages on Running Time for

the Genetic Algorithm ... 76

Figure 5.12: Effect of Using Different Greedy Percentages on Flight Route Length

for the Genetic Algorithm ... 76

Figure 5.13: Effect of Using Different Number of Closer Waypoints on Running

Time for the Genetic Algorithm .. 78

Figure 5.14: Effect of Using Different Number of Closer Waypoints on Flight

Route Length for the Genetic Algorithm .. 78

Figure 5.15: Effect of Using Different Group Sizes on Running Time for the

Genetic Algorithm ... 80

Figure 5.16: Effect of Using Different Group Sizes on Flight Route Length for the

Genetic Algorithm ... 81

xvi

Figure 5.17: Effect of Using Different Mutation Percentages on Running Time for

the Genetic Algorithm ... 83

Figure 5.18: Effect of Using Different Mutation Percentages on Flight Route

Length for the Genetic Algorithm ... 83

Figure 5.19: Running Time Comparison for Parallel and Serial Versions of the

Random Search Algorithm for Different Number of Iterations 85

Figure 5.20: Speed Up Coefficient Comparison for Parallel and Serial Versions of

the Random Search Algorithm for Different Number of Iterations 87

Figure 5.21: Running Time and Fitness Comparison between CPU versions of

Genetic and Random Search Algorithms .. 89

Figure 5.22: Running Time and Fitness Comparison between GPU versions of

Genetic and Random Search Algorithms .. 90

Figure 5.23: Running Time and Fitness Comparison between Genetic, Random

Search and Distributed Genetic Algorithms.. 92

1

CHAPTER 1

INTRODUCTION

1.1 Background and Motivation of the Study

Actually coming from the French word for “watching over” Surveillance can be

described as monitoring the activities of entities such as individuals, groups of

people or manned / unmanned vehicles often in a surreptitious manner. The act of

surveillance is usually carried out legally by governmental bodies. Surveillance has

always been an issue in military organizations, also. Types of surveillance are

named according to the medium they are carried on. For example while telephone

surveillance means collecting data from wired or wireless phone lines, satellite

surveillance corresponds to analyzing the transmissions passing through or images

taken from satellites orbiting the earth.

Recalling the naming conventions of surveillance types the main concern of this

study, aerial surveillance, means the surveillance activity conducted from air.

Being a subset of regional surveillance it can be defined as; gathering data from an

airborne vehicle. Although it seems as a new technology aerial surveillance has a

long history starting from late 1700s in terms of reconnaissance balloons as the

leaders of revolutionary French became interested in using the balloons to observe

enemy maneuvers. Following the invention of photography, the era of aerial

photographs has begun. These photographs were first taken from manned and

unmanned balloons, and then from reconnaissance kites (Figure 1.1).

2

Figure 1.1: Labruguière photographed by kite in 1889

While developing parallel with the current technology, aerial surveillance has taken

out of ordinary ways also. On some occasions rockets or even pigeons attached

with cameras were used. However the next main step aerial surveillance has come

with the advent of airplanes. The first use of airplanes in aerial reconnaissance

mission was made during the Italian-Turkish War of 1911–1912 in Libya. The

aerial surveillance continued in terms of visual and photographic reconnaissance

through the First World War. The Second World War brought the concept of fast,

small aircraft which would use their speed and high service ceiling to avoid

detection and interception. These new airplanes had no armament but extra fuel

cells and were capable of recording video along with photographs. The era of Cold

War led to the development of highly specialized and secretive strategic

reconnaissance aircraft also known as spy planes which were capable of flying at

extreme speed and altitude.

Today’s aerial surveillance is defined as gathering of surveillance data in the forms

of visual imagery or video by unmanned aerial vehicles or reconnaissance aircraft

such as spy planes or helicopters. Advances in digital imaging technology and

3

hardware capabilities made very high resolution imagery possible (Figure 1.2)

which means the ability of identifying objects at extremely long distances.

Figure 1.2: Camera bay of a reconnaissance Mirage III R

Among the aerial surveillance vehicles unmanned aerial vehicles are especially

considered in this study. An unmanned aerial vehicle (UAV) can be defined as an

aircraft that flies without a human crew on board (Figure 1.3). UAVs may be put in

two categories where the vehicle can be controlled from a remote location or fly

autonomously based on pre-defined flight plan. UAVs considered in this study fall

to the second type of vehicles.

Figure 1.3: Shadow 600, a reconnaissance UAV

4

Mission plans used in UAVs are produced using software packages called Mission

Planning System (MPS). Aim of MPSs is supplying the reconnaissance mission

with an application for pre-flight planning, mission rehearsal and post-flight

debriefing (Figure 1.4). The ability for military agencies to have comprehensive

mission planning system is vital especially when the missions are highly critical.

Effective mission planning systems should offer a thorough understanding of each

potential situation and any potential items that might put the mission in danger.

Figure 1.4: Sample MPS screen

In terms of aerial surveillance missions carried out with unmanned aerial vehicles,

devising a mission plan is both simple and complicated. It is simple since it does

not include scenarios such as weapons delivery, airdrop planning and threat

analysis. However it is complicated because the main action of the mission plan,

flight route planning, is highly critical and should consider fuel consumption while

trying to search the maximum part of the area of interest.

5

This study mainly aims to devise a strategy that tries to reach a near optimal

solution to the flight route planning problem while maintaining cost effectiveness

in terms of processing time.

1.2 Problem Overview

The aerial surveillance mission of an unmanned aerial vehicle (UAV) is defined

simply in three steps: start flying from the initial point, fly through the area of

interest (AI) and land on the final point where the final point may as well be the

initial point. The AI is defined as the smallest rectangular area that includes the

actual land/sea territory that the mission will be flown over. The process of

selecting the path to be flown during the mission is called flight route planning.

The UAV flies through a pre-planned flight route. The flight route consists of

waypoints (Figure 1.5). Waypoints are defined as points that must be visited in the

AI in order to ensure that the entire AI is covered during the mission. The search

spacing between waypoints is pre-known and is based on the expected optical

detection range of the camera of the UAV at a given altitude. Waypoints might be

assigned priorities showing their importance for the mission. The waypoints should

be flown to in the planned order to complete the mission.

6

Figure 1.5: Sample Flight Route

The optimal result of the aerial surveillance mission is to search the entire area of

interest through the shortest path, in minimum time and with minimum fuel

consumption. The practical aim of this study is coming as close as possible to the

optimal result however this may not be possible. Depending on time and/or fuel

concerns the UAV may not be able to search the entire AI.

In the real world, flight route planning is a 3-dimensional problem consisting of

multiple criteria such as time, fuel and mission goals to be concerned. However to

find a practical solution it is imperative to simplify the problem to a 2-dimensional

shortest path finding problem. Finding the shortest path also means finding the

most cost effective path in terms of time and fuel consumption. Despite this

simplification calculating the optimal flight route remains a computationally time

consuming operation due to the combinatory nature of the problem. Searching

through the numerous possible flight routes will demand substantial amount of time

especially when the AI and number of waypoints are large. Knowing that

surveillance data is valuable and meaningful only for a definite time, this kind of

7

delay is unacceptable. So that this study aims to devise a strategy to find an almost

optimal solution to the flight route planning problem in an acceptable computation

time.

1.3 Proposed Solution

This study aims to find a cost effective and practical solution to the flight route

planning problem mentioned in the previous section. The first step in the proposed

solution is to reduce the 3-dimensional problem to a 2-dimensional shortest path

finding problem in order to convert it to Travelling Salesman Problem (TSP). In

this study an augmentation of the TSP will be considered where cities in the

original problem are replaced by the waypoints defined on the area of interest (AI).

The waypoints are assumed to be stationary according to the nature of the flight

route planning problem. In the proposed strategy a genetic algorithm is applied to

the whole TSP along with a greedy approach for making local decisions. The final

algorithm is compiled both on a standard C compiler and CUDA C compiler in

order to verify the performance gained using the highly parallel architecture of

graphical processing unit (GPU). The components of the proposed algorithm are

explained in the following paragraphs.

The Travelling Salesman Problem (TSP) in computer science is a combinatorial

optimization problem in which for a given list of points and their pair wise

distances, a shortest possible path that visits all the points is searched (Figure 1.6).

For simplicity TSP can be modeled as a weighed graph in which vertices denotes

the points and edges the paths, the path distances are shown as edges’ length.

8

Figure 1.6: Original Travelling Salesman Problem

Travelling Salesman Problem has been shown to be NP-hard which means brute

force approaches to solve the problem will be fruitless. The direct solution in which

all possible paths are tested to be the shortest has a complexity of O(N!) so it

doesn’t provide any practical solution for input numbers more than 20. With this

knowledge at hand, heuristics and approximation algorithms are used for devising

practical solutions to the TSP.

A genetic algorithm (GA) is an approximation technique used in computer science

to find exact or near-exact solutions to searching problems. GAs use techniques

inspired by evolutionary biology such as inheritance, mutation, selection, and

crossover. Execution of GAs can be summarized as follows:

1. An initial group is selected from candidates set

2. Each individual in the group is tested according to some criteria

9

3. Following actions are taken repeatedly on the group until termination

condition

i. Select the most appropriate individuals for reproduction

ii. Produce new individuals through crossover and mutation

operations

iii. Evaluate the new individuals according to the criteria

iv. Replace least appropriate members of population with new

individuals

Applying a GA to NP-hard problems such as the proposed TSP does not ensure an

optimal solution. However it usually gives good approximations in a reasonable

amount of time and near-perfect results with smaller data sets. In this study the

proposed GA will be supported by using greedy heuristics.

A greedy algorithm is an algorithm that uses the method of making the decision of

selecting the locally optimal choice at each stage of execution in order to find the

globally optimum solution. In general greedy algorithms maintain;

1. A candidate set that contains the possible optimal solution

2. A selection function to choose the best candidate and

3. A solution function to decide if the final solution is reached

Applying a greedy algorithm to the proposed TSP will result in going to the nearest

point to the current one at each step of execution. For NP-complete cases like the

TSP, greedy algorithms do not always find optimum solutions. However, they

work quickly and usually give practical approximations to the optimum solution.

The proposed algorithm of this study will be implemented on GPU using CUDA.

Compute Unified Device Architecture (CUDA) is a general purpose parallel

computing architecture developed by NVIDIA. CUDA mainly exploits the parallel

compute engine in NVIDIA graphics processing units (GPUs) to solve

computational problems. CUDA includes a unique Instruction Set Architecture

(ISA) and the parallel compute engine in the GPU. Programming CUDA is through

10

using 'C for CUDA', a C-like language which has some extensions over the

standard C language.

1.4 Organization and Roadmap

Chapter 2 discusses the previous work done on flight route planning problem

addressing their different approaches and also the proposed solutions to the TSP

and other NP-hard problems in general. This chapter also gives knowledge about

improvements achieved using CUDA in different algorithms.

Chapter 3 presents the formal mathematical definition of the flight route planning

problem

Chapter 4 explains the proposed algorithm for the problem along with

implementation details

Chapter 5 verifies the solution by showing the results of extensive testing done for

different situations of the problem

Chapter 6 summarizes the study and concludes it by bringing forward the possible

future improvements that can be done over the solution

11

CHAPTER 2

RELATED WORK

This chapter presents the previous work done on flight route planning problem and

the sub-parts of the proposed solution such as: studies on TSP, Genetic Algorithms,

Greedy Algorithms, CUDA, Parallel Genetic Algorithms and Computational

Geometry. These parts are examined in a comparative manner and according to

their relevance to the proposed problem and solution.

2.1 Different Approaches to Flight Route Planning Problem

As discussed in the previous sections, main strategy of this study is reducing the 3-

dimensional flight route planning problem to a 2-dimensional shortest path finding

problem, namely the Travelling Salesman Problem (TSP). However there are other

approaches for solving the flight route planning problem. These will be discussed

in the following paragraphs in detail.

One such approach is the Ant Colony Optimization, a meta-heuristic introduced by

Dorigo et al. in 1991. For solving the TSP (Dorigo, 1992) the Ant Colony

Optimization takes the natural behavior of real ants as a model. In the real world

ants communicate through detecting pheromone trails. While an ant passes through

a route it leaves a sample amount of pheromone onto the path. These pheromones

however, are temporary and will lose their intensity in time due to natural causes

such as evaporation, emission by soil etc. Ants show tendency to follow the paths

where intensity of pheromone trails is higher which means the higher density of

12

pheromone trails on a road the more attractive that road will be. The Ant Colony

Optimization technique is known to show good performances for the TSP

especially for smaller data sets. However it is also known that execution times

increase drastically for considerably large domains.

Despite this fact Ant Colony Optimization technique has a high potential for a

parallel implementation (Talbi, Roux, Fonlupt, & Robillard, 1999; Stutzle, 1998).

Keeping this in mind, You, in his study tried to exploit the highly parallelizable

structure of Ant Colony Optimization technique using NVIDIA’s CUDA

programming model [1]. In this study a slightly altered version of the native Ant

Colony Optimization technique was used. The “artificial” ants used in the study are

chosen to have list of locations that were visited before in order not to make trivial

second visits. Besides keeping the list Ant Colony Optimization technique adds a

local search procedure in order to satisfy a more efficient selection of the next path

to follow. This approach resembles the use of Greedy Algorithm in the strategy

used by this study, again in order to enhance efficiency of the algorithm.

Another approach for solving the flight route planning problem considers an altered

version of the problem. In their study (Cross, Marlow & Looker) puts forward a

more dynamic approach to the flight route planning problem. They aim to classify

the previously detected entities within an Area of Interest (AI) using the radar

capabilities of a surveillance aircraft. For this purpose they aim to plan a route that

will take entities into the radar range and fly through these entities in a pre-defined

order. Another constraint is that the entities are assumed to be non-stationary [2].

They argue that the current methodology to solve this surveillance problem

considering only the section of the AI between the current waypoints and stationary

entities may not be enough to devise an acceptable solution to the specific case they

explained (Figure 2.1). So instead of reducing the flight route planning problem to

TSP they consider a Dynamic TSP where the points of interest in the original

problem are assumed to be moving.

13

Figure 2.1: Surveillance Problem Defined by Cross, Marlow & Looker

In their algorithm the surveillance aircraft plans to fly to the contacts that have not

yet been classified. The contacts should also be flown to in the pre-defined order

for completing the mission. However due to the dynamic structure of the problem

the aircraft may deviate from the pre-planned flight routes and fly towards entities

that need to be classified. The pre-defined list of entities may change as some

entities will be able to move in and out of radar detection range [2].

2.2 Travelling Salesman Problem

Reducing the flight route planning problem to the well known Travelling Salesman

Problem (TSP) seems to be the natural solution. Even the approaches that does not

use the TSP directly, mostly use the ideas behind the TSP to construct their own

model for solution or mention it at least as a comparison method. The studies

discussed in this section use the TSP as the main approach to solve the flight route

planning problem and have significant resemblances to the main strategy devised in

this study. However there are some differences which usually stem from the nature

of different application areas of the flight route planning problem.

14

In their study (Marlow, D.O. , P. Kilby and G. N. Mercer, 2009) searches for a

strategy for solving an aerial maritime surveillance problem. That study deals with

searching for and identifying ships that sail in an Area of Interest (AI). The study

expands the concept of TSP by adding some concepts such as ships moving with

random velocities (dynamic TSP), different start points for surveillance aircraft

(open TSP) and incomplete a pre-knowledge of the AI (on-line TSP) [4]. However

in implementation they reduce the problem to an augmentation of the traditional

Travelling Salesman Problem (TSP). The study also makes use of new ideas such

as alternative default headings and introduction of ghost ships to the problem

space.

Introducing the use of alternative default headings to the TSP yields three different

possible implementations of the path followed to reach a waypoint (Figure 2.2).

The first implementation is direct-to-waypoint default heading which minimizes

the travel time; however this implementation may result in not covering the entire

AI. The alternative implementation to direct-to-waypoint default heading is

perpendicular return to the way line implementation which is likely to increase the

percentage of AI to be searched however definitely increasing the distance

travelled and as a result amount of fuel consumed. A third implementation is doing

a “midway” return which is as its name suggests a middle way move between the

direct-to-waypoint heading and the perpendicular return. In this implementation the

aircraft aims to reach the midpoint on the way line of the perpendicular intercept

point and the waypoint [4]. The strategy described in this study will make use of

the direct to the waypoint implementation as fuel consumption is the primary

priority.

15

Figure 2.2: Examples of various default heading options

1) Direct to the waypoint

2) Perpendicular return

3) Midway return

The purpose of adding ghost ships to the AI is to make sure that the surveillance

aircraft searches the areas that are unlikely to be visited using the pre-defined flight

path. In case of an AI with sparsely distributed waypoints a significant percentage

of the AI is likely not to be searched (Figure 2.3). This approach is worth to be

implemented if the main concern is the amount of region to be searched. Results of

the study indicates that the perpendicular default heading and including ghost ships

provide improvement in the condition where the waypoints in the AI has low

density and/or are concentrated in some part of the AI [4]. For the concept of this

thesis the use of a mechanism such as ghost ships may be considered when the

main purpose of the mission is searching the highest percentage of the AI as much

as possible.

16

Figure 2.3: Effect of adding ghost ships

Planned flight path without ghost ships (solid line)

Altered flight path due to ghost ships (dashed line)

Ghost Ships (triangles on the edges of the AI)

2.3 Genetic Algorithms

As it was mentioned in the previous sections Travelling Salesman Problem (TSP)

seems to be the natural solution to the flight route planning problem. However it is

known that due to the combinatorial nature of the TSP it is fruitless to try to solve

the problem using exhaustive brute-force methods. Also discussed in the previous

sections that genetic algorithms offer practical approximate solutions to NP-Hard

problems, such as the TSP discussed in this study.

17

Genetic algorithms (GA) as an optimization technique reflect principles of the

natural evolution. The main principle of behind the GAs is “the survival of the

fittest”. This principle provides a mechanism to search for a near optimal solution

without going through all possible solutions. Genetic algorithms follow the steps of

the natural process of evolution.

As the fittest individuals survive in the nature a GA lets the best guesses to the

solution pass to the next generation. The GAs first guess solutions then test them

and create a new generation of solutions from the fittest solutions which are

expected to be better ones.

The steps of a GA are as follows:

• Evaluation

• Crossover

• Mutation

In the implementation of a GA first an initial population is selected, usually

randomly. Then each individual’s fitness is computed. This fitness is used to find

which individuals will be considered for crossover. Crossover is the process where

two individuals are combined to create new individuals. Then mutation occurs as

some individuals are chosen randomly to be mutated. After mutation the next

generation is formed. The whole process is repeated until some stopping criteria.

At this point the individual which is the fittest according to the criteria proposed is

selected as the final solution.

In his study (Bryant, 2000) states that different forms of crossover and mutation

techniques can be combined to give various genetic algorithms that can be used to

solve the TSP [6].

However, he says that these methods have been tested on different problems and it

will therefore be difficult to compare them to each other.

18

Bryant’s study first gives the optimal solutions of some TSP problems for sample

number of cities and uses these costs to test the different crossover methods. In

order to test only the crossover algorithms the study uses no heuristic information.

The compared crossover methods are partially modified crossover, order crossover

and matrix crossover. The result of the comparison favors the matrix crossover

method over the two other methods. The matrix crossover method gave just %2

more than the optimal case on average for different situations.

The main difference of matrix crossover method is that it uses a matrix

representation to hold the city-to-city distance instead of holding the positions of

cities. However the study states that the matrix representation used in the method

takes more space to store and also more computation time [6].

After testing the non-heuristic methods the study looks at a heuristic crossover also

and finds out that the heuristic method sometimes gives the best known solution for

that particular problem, and otherwise returns a solution very close to that value

[6]. The study concludes by stating that GAs gives good approximations for the

TSP especially when matrix or heuristic crossover methods are used. The strategy

devised in this thesis considers a heuristic crossover approach.

In their work (Maria John, David Panton and Kevin White, 2001) , like most of the

other studies, stated that the flight route planning problem can be reduced to the

TSP, citing that it is a computationally time consuming problem and not suitable

for an approach using standard optimization techniques [7].

The study focuses on formulating the problem both as an integer programming

problem based on grid squares, already knowing that this model will consume

significant amount of execution time especially for larger input sets, and a Genetic

Algorithm (GA) based on permutations of these grid squares. The main trade off

described in the study is the one between the definitely optimal solution of the

integer programming method and the shorter execution time of the GA based

solution. The two methods are tested for different input sets and the results of the

study show that while the integer programming method finds the optimal solution,

the GA based approach scored a performance on finding the shortest path problem

19

only %1.3 to 2.7 outside the optimal solution. However in terms of execution time

the GA based approach achieved a speed up of 10 to 30 times. The study is

concluded by declaring that for the concept of regional surveillance creating the

mission plan in a small amount of time is an operational advantage and in the view

of this statement a GA is operationally superior to the integer programming model

[7].

2.4 Greedy Algorithms

As it was mentioned in the previous sections Travelling Salesman Problem (TSP)

seems to be the natural solution to the flight route planning problem and Genetic

Algorithms can be seen as a practical solution to this. While the GAs are quite

efficient in terms of execution time, the choice of how to make the local decisions

in the algorithm may affect performance. Using a purely random approach may

seem natural; however it causes lower performance compared to heuristic methods.

The strategy described in this study uses a Greedy approach to make local

decisions which arise during the execution of the GA.

In his work (Bryant, 2000) mentions the greedy algorithms citing that since there is

no known algorithm that will solve NP-hard problems in polynomial time, the aim

of trying to find the optimal solution should be sacrificed in order to devise a

solution that needs a shorter execution time [6]. The study puts forward a Greedy

Algorithm as a solution method to the TSP.

In the study Greedy Algorithms are described as a method that can find a feasible

solution to the TSP. The algorithm defined in the study works as follows:

 Distances between the cities in the TSP is modeled as a graph where the

vertices denote the cities and the edges the paths between the cities

 The distance between two cities is assigned as the cost of the edge of the

graph which denotes the path between those two cities

 A list of all edges in the graph is created

20

 Created list is ordered from smallest cost to largest cost

 The edges with smallest cost is selected repeatedly providing they do not

create a cycle

The study concludes its discussion about the Greedy algorithms by mentioning that

although the greedy algorithms work fast to find a solution, as they are more

concerned about selecting the local minimum distance they may lose the notion of

finding a global best solution and in practical the cost of final edges that are added

to the solution are usually quite large [6].

2.5 CUDA

The processor of a graphics card, namely the GPU is much different than the CPU

in terms of internal structure. Instead of having at most four processing cores like a

CPU, the GPUs include hundreds of small processing units, called pipelines, which

makes them suitable for running parallel applications with great efficiency. The

new approach in the graphics card design is implementing the unified shader

pipeline which allows the GPU to execute all kinds of operations that the CPU can.

This innovation led to the development of CUDA (Compute Unified Device

Architecture) by NVIDIA. CUDA is a parallel programming model and software

environment that offers the programmers to develop their programs in standard

programming languages such as C that will use the capabilities of GPU.

In the study conducted by (Bydal, 2008) the possibility and efficiency of solving

the TSP through a GA using the CUDA API is discussed. Also the problem of the

performance gain using the GPU instead of the regular CPU is addressed [8].

The study gives information about CUDA citing three of its main characteristics;

hierarchy of thread groups, shared memories and barrier synchronization and adds

that these are transferred into the C programming language using a set of

extensions where these extensions are used by the programmer to create parallelism

in the application. The programming model of CUDA is also mentioned in the

study shortly, where the execution application covers the following steps:

21

 The application is started by the CPU

 The execution is passed to the GPU by copying the data from the main memory to

GPU’s own memory

 After that point GPU makes all operations on the data

 When the GPU finishes execution the results are copied back to main memory

The study ends with presenting the results of the implementation. It is seen from

the results that the parallel execution run on the GPU does not provide an increase

in the efficiency for smaller data sets. However after number cities in the TSP

passes 50 shows its superiority over the serial implementation run on CPU. In

terms of execution times while the time consumed by the two implementations is

almost equal for input sizes around 50, the CUDA implementation achieves 3 times

speed up for an input size of 128 [8].

Although it does not use the TSP directly the work of, You, makes the

implementation of Ant Colony Optimization approach using CUDA. Mentioning

the importance of memory arrangement of GPU while using CUDA, because of the

large access latency difference between the CPU and GPU, the study defines some

rules for accessing the memory which are as follows:

 Frequently accessed data is stored on share memory

 Write-once data, is stored on global memory

 Read-only data is stored on GPU’s texture cache [1]

The study is concluded by saying that improvement of running time grows as the

complexity of problem grows as it was in the previous study. The strategy devised

in this thesis uses a similar approach towards implementing a GA using CUDA as

in the work of (Bydal, 2008) and some rules for memory management as they were

used in, You.

22

2.6 Parallel Genetic Algorithms

Parallel Genetic Algorithms is a variant of the Genetic Algorithms, where there is

more than one initial population and these populations are evolved concurrently.

The study of (Nowostawski and Poli, 1999) describes the Parallel Genetic

Algorithms in comparison to Serial Genetic algorithms and gives further

information about types of Parallel Genetic Algorithms [16].

The study describes Genetic Algorithms as a successful approach for many

applications in different domains, but it also says that the approach has some

utilization problems that can be overcome with a parallel implementation [16]. The

problems addressed for Serial Genetic Algorithms are:

 Large population sizes may require considerable memory to store, such that

to run an application efficiently a Parallel Genetic Algorithm becomes necessary.

 Evaluating fitness may require very long time for large input sets making

use of a single CPU impractical.

 Serial Genetic Algorithms may converge to a local optimum in the search

space making Parallel Genetic Algorithms a solution with a better chance to find a

nearer solution to the global optimum [16].

The study goes on with describing various kinds of Parallel Genetic Algorithms

and devises taxonomy for differentiating the approaches. The constraints defined in

the taxonomy are:

 Method of evaluating fitness and using mutation/migration

 Number of initial populations

 Interaction between populations

 Rules of parent selection

Using the constraints listed above the study divides the Parallel Genetic Algorithms

into eight types:

23

Master-Slave parallelization, Static subpopulations with migration, Static

overlapping subpopulations, Massively parallel genetic algorithms, Dynamic

demes, Parallel steady-state genetic algorithms, Parallel messy genetic algorithms,

Hybrid methods [16].

2.7 Computational Geometry

Computational geometry is the branch of computer science that deals with

algorithms which can be expressed in terms of geometrical concepts. The main

motivation behind the development of computational geometry is the suitability of

problems in the areas of computer graphics, CAD/CAM and GIS applications to be

solved by geometric approaches. One of the core problems in computational

geometry is the “Euclidean Shortest Path Problem”. This problem is analogous to

the flight route planning problem discussed in this study.

In their study (Hershberger and Suri, 1997) propose an optimal-time algorithm for

computing the shortest path between two points on a plane in the presence of

polygonal obstacles [14]. Their algorithm uses an implementation of continuous

version of Dijkstra’s method and wavefront propagation. The approach uses a

preprocessing method which they call conforming subdivision of the plane which

divides the plane into cells using horizontal and vertical edges in order to leave

each point in a separate cell. The algorithm then inserts the line segments of the

obstacles into the cells and uses this structure for propagation algorithm. The study

states that passing the plane cell by cell into the wavefront propagation instead of

passing it as a whole works more efficiently. The study also adds another idea into

the algorithm which is called approximate propagation. This idea is used in order to

eliminate the cost of detecting obstacle edges within the cells and uses two

wavefronts, instead of one, that approach the edge from opposite directions and

estimates the positions of the edges rather than calculating them exactly. At the end

of the propagation phase the algorithm collects the results from each cell and uses

these results to construct the final shortest path map [14].

24

Unlike the previous study, (Agarwal, Sharathkumar and Yu, 2009) aim to find an

approximate shortest path for the Euclidean Shortest Path Problem in their work

[15]. The study aims to devise a linear solution for the proposed problem. The

algorithm first tries to create a layout of the plane along with the obstacles, which

they call the “sketch”, and then try to find an approximate shortest path using this

layout. Creating the sketch works as basically constructing a convex polygon for

each obstacle where the polygon contains the obstacle. Then the algorithm travels

through the edges of these polygons in order to compute a shortest path through

these obstacles [15].

25

CHAPTER 3

FORMAL PROBLEM DEFINITION

This chapter presents formal mathematical definition of the flight route planning

problem along with a description of the main actors of regional surveillance,

namely the surveillance mission and the surveillance aircraft. After this, a problem

model is constructed first by reducing the flight route planning problem to known

computational problems and then introducing regional surveillance specific

concepts to the proposed model. The model will be later used for devising the

solution in the following chapters.

3.1 The Aerial Surveillance Mission

The basic objective of the aerial surveillance mission is to monitor a given

geographic area (Figure 3.1). A particular region is assigned to a surveillance

aircraft, which is called the Area of Interest. This study considers a single aircraft

and a single rectangular AI.

Type of the aircraft is independent of the problem proposed in this thesis, however

using real world values for the aircraft is imperative to get realistic results. For that

reason TIHA surveillance aircraft is chosen as the model vehicle for this study.

TIHA is an unmanned aerial vehicle being developed for the Turkish Armed Forces

by TAI being the main contractor. The reasons for this selection is that; first TIHA

26

is a national project and second the author of this thesis has a high chance for

working in the Mission Planning System that is going to be developed for the

TIHA aircraft. Technical details of the aircraft will be given in the following

section.

Figure 3.1: Sample Aerial Surveillance Mission

Each aerial surveillance mission has a flight route. The flight route is defined as a

list of waypoints, known at the start of a mission. To complete the mission

successfully all waypoints must be visited and they should be flown in the pre-

defined order. The final waypoint may or may not be the starting location of the

mission. The maximum length of the flight route is bounded by the maximum

distance that can be travelled by the TIHA aircraft. This maximum length is

formulated mathematically in this study.

27

In order to present a mathematical formulation of the flight route the following

definitions are necessary:

Velocity (v): The speed that the surveillance aircraft flies during the mission, it is

assumed to be constant.

Number of waypoints (n): Total number of points to be visited during the

mission.

Path (x(ij)): The distance between the i
th

 and j
th

 waypoint. For n waypoints there

exist (n-1) paths in a flight route.

Total Route Length (R): Total distance of the paths considered for the flight

route. As the waypoints are sorted while constructing the flight path, it equals the

total length of the paths between consecutive waypoints. The total route length can

be formulated as:

 i(i+1) (3.1)

Total mission time (T): Time to complete the mission, equals to the ratio of total

route length to aircraft’s velocity. The total mission time can be formulated as:

T = R /v (3.2)

Max Range (Rmax): The maximum distance that the aircraft is capable of flying

during mission.

Max mission duration (Tmax): The maximum duration that the aircraft is capable

of flying during mission.

28

3.2 The Surveillance Aircraft

TIHA, coming from the abbreviation of Turkish words Türk İnsansız Hava Aracı

(Turkish Unmanned Aerial Vehicle) is a Medium Altitude Long Endurance

(MALE) Unmanned Aerial Vehicle (UAV). The formal name of the aircraft is

TURKISH INDIGENOUS MALE UAV. The contract concerning the development

of the Turkish Indigenous Medium Altitude Long Endurance (MALE) Unmanned

Aerial Vehicle (UAV) – TIHA Program was signed between the Under secretariat

for Defense Industries (SSM) and TAI on December 24, 2004, to meet the

requirements of Turkish Armed Forces (TAF). The program covers design,

development, production, test and delivery of three TIHA air vehicle prototypes, all

related support and ground systems and technical documentation. The program is

composed of four steps:

 Conceptual Design

 Preliminary Design

 Detail Design and Development

 Tests and Evaluation

Following the final integration of the system, the maiden flight of TIHA is planned

to be in 2009.

The TIHA system consists of:

 Aerial Platform

 Ground Control Station (GCS)

 Transportable, Image Exploitation Station (TIES)

 Portable Video Terminal (PVT)

 Ground Support Equipment (GSE)

The system composition is shown in the figure given in Figure 3.2.

29

Figure 3.2: TIHA System Composition

The TIHA system is developed for day and night real time image intelligence for

surveillance, reconnaissance, fixed/moving target detection, identification and

tracking missions. To accomplish these capabilities TIHA aircraft will be equipped

with the following payload:

 Electro-Optical Day Camera (EO Day TV),

 Day Camera (EO-Electro Optic) / Thermal Camera (IR-Infrared) / LRF-Laser

Range Finder & LD-Laser Designator and Spotter,

 SAR-Synthetic Aperture Radar / MTI- Moving Target Indicator & ISAR-Inverse

SAR

30

Figure 3.3: TIHA Aircraft on a Mission

Full composite airframe is composed of monocock fuselage, detachable wing and

V-Tail, retractable landing gear, equipment bays, service doors and other structural

components. The air vehicle is powered by a pusher type piston-prop propulsion

system. The airframe is equipped with miscellaneous sub systems like fuel system;

de/anti-ice devices; environmental conditioning system for cooling/heating

requirements of the compartments (Figure 3.3).

The avionics system includes a Flight Management System (FMS); integrated to

FMS, flight sensors (pitot-static sensor, embedded GPS/INS, magnetic heading,

displacement, temperature, pressure transducers), actuators; dedicated

31

communication and identification devices; mission control, record; and other

control and interface units.

TIHA system basic performance parameters are as follows:

 Service Ceiling: 30,000 ft

 Endurance: 24 hrs

 Cruise Speed: >75 kts

 Environmental Conditions: 15 kts side wind, 20 kts head wind; temperature,

humidity, rain and icing limits as defined in MIL-HDBK-310

Air vehicle's basic specifications are given in Table 3.1 [9]:

Table 3.1: TIHA Aircraft Basic Specifications

 Property Unit Value

 Fuselage Length m 10

 Wing Span m 17

 Wing Area m
2
 13.6

 Wing Aspect Ratio - 22

 Wing Sweep (quarter chord) ° 0

 MTOW-Maximum Take-off Weight kg 1,500

 Fuel Weight kg 250

 Payload Weight kg 200

3.3 Problem Definition

There is no data structure that directly maps the explained real world flight route

planning problem to the proposed algorithm. That is why the input space should

first be mapped into a more suitable data structure. In order to do this pair wise

distances between the waypoints on the Area of Interest are calculated and stored in

an (n x n) symmetrical matrix. The distances stored in and accessed from the matrix

32

are in such a format; where dij stands for the distance between the i
th

 and j
th

waypoints. The cost of mapping the inputs is O(N
2
), while the a operation of

accessing the distances through waypoint indexes is O(1).

Upon the reduction of the 3-dimensional input space of the flight route planning

problem, it is natural to view it as a 2-dimensional shortest path finding problem.

The proposed solution to this problem is an implementation of a slightly

augmented Travelling Salesman Problem where the real difference is that a route

created as the result of the algorithm should not finish in the initial start point. TSP

is a combinatorial problem which can be stated simply as; a salesman spends his

time visiting n cities. In one tour he visits each city just once, and finishes up where

he started. In what order should he visit them to minimize the distance traveled? In

this study the final constraint of “finishes up where he started” is not exercised due

to the reasons specific to the real world problem. Definition of the TSP continues

as follows;

 It is assumed that each city is reachable from all other cities.

 There exists a route between every pair of cities with a defined cost of

travel between these cities.

 For only two cities then the problem is trivial, since only one tour is

possible.

The TSP can also be formulated as a graph problem. For a given graph G with a set

of N vertices, a list of edges in G which passes through each vertex of G once and

only once is called a Hamiltonian Cycle. Assuming G is a complete weighted graph

with N vertices; TSP becomes the problem of finding the shortest Hamiltonian

Cycle of G.

As the input space of the of the problem is mapped to an (n x n) matrix, the formal

definition of the TSP considered in this study can be stated as; Given a (n x n)

distance matrix C = (cij) find a permutation (π), that is a member of all solutions

(π ∈ Sn) that minimizes the sum [10];

33

 i) π (i+1) + c π (n) π (1) (3.3)

In more detail TSP considered in this study falls to the category of symmetrical

TSPs; where cij = cij in the constructed distance matrix. This means that the

distance between the i
th

 and j
th

 waypoints are equal in both forward and backward

directions. This constraint makes the distance matrix symmetrical about the

diagonal. Further the TSP considered is also an Euclidian TSP. Euclidian TSPs,

although they constitute a small portion of all TSPs, can form a solution to many

problems as most real-world problems can be mapped to them. The Euclidian TSPs

are defined as;

∀ i,j ∈ C : cij = cji = , where a = (ai - aj) and b = (bi - bj) (3.4)

Euclidian TSPs are symmetric by definition, however all symmetrical TSPs do not

fall to the category of Euclidian. For the Euclidian TSPs, as they are also

symmetrical TSPs, it is faster to find the solutions since only half of the solution

space needs to be searched. However there is no polynomial algorithm to find the

optimal solution.

In terms of complexity it is intuitive to view the TSP as a determination of a

specific permutation of waypoints, numbered from 1 to N, which is a non-repeating

sequence and represents the visiting order of the waypoints. The permutation is

specific as it represents the visiting order for which the weight sum is minimized

[11].

The search space contains N! permutations and since TSP is NP complete,

problems dealing with optimizing the TSP are NP-hard. In any case the number of

solutions becomes extremely large for large N, so that an exhaustive search is

impractical. The best known algorithms for the solution yield exponential run time

complexity. These combinatorial optimization problems are a part of the Genetic

Algorithms domain [11].

To summarize the problem defined in this section the following table is constructed

(Table 3.2). The table actually lists the requirements of the real world flight path

34

planning problem. It should be noted that the domain of the problem is a list of

geographical coordinates instead of the distance matrix in order to reflect the actual

real world problem. Assuming complete weighted graph G which is described

above;

Table 3.2: Formalized Table of Problem Domain

Size of Solution Space O(N!) for N geographical coordinates of

waypoints

Problem Domain Dinput: (G) – a list of coordinates (x, y)

Doutput: (G’) – an ordered permutation of G

such that the total distance of the

Hamiltonian cycle is minimized

Objective Function Min g = ij where dij is the distance

between adjacent elements of G’

Candidate Solution G’ which is an ordered permutation of G

Selection Function This function is used to determine if G’ is

an actual Hamiltonian cycle. However since

the TIHA is an aerial surveillance vehicle

the graph G is totally connected, making all

of its permutations Hamiltonian cycles. So

this function is assumed to be always true.

Feasibility Function This function is used to determine if a

Hamiltonian cycle exists. However since

the TIHA is an aerial surveillance vehicle

the graph G is totally connected, making all

of its permutations Hamiltonian cycles. So

this function is assumed to be always true.

Solution Function G’ is an ordered permutation of G and

Min g = ij where dij is the distance

between adjacent elements of G’

35

CHAPTER 4

IMPLEMENTATION

In this chapter, implementation details of the proposed solution to the outlined

flight route planning problem are described. The chapter is organized as follows:

Section 4.1 gives an overview of the implementation along with the inputs and

outputs. The other sections give implementation details about subparts of the

proposed solution. Section 4.2 describes the Genetic Algorithm implementation for

solving the Travelling Salesman Problem. Section 4.3 provides the details of

Greedy Heuristic used inside the Genetic Algorithm and finally Section 4.4 gives

the implementation details specific to CUDA.

4.1. Overview

The flight route planning problem, in the concept of this study, is reduced to the

Travelling Salesman Problem as addressed in Chapter 3. An approach based on

using a Genetic Algorithm is proposed as a solution to this problem. In the

implementation a Greedy Approach is utilized in certain steps of the GA. The flight

route planning solution proposed in this study is implemented as an application

with two versions. In the first version the algorithm is implemented using standard

C language and works on the CPU. The second version of implementation however

uses NVIDIA’s CUDA compiler and aims to exploit GPU processing power as

much as possible. The reason for implementing two versions of the algorithm is to

36

demonstrate the feasibility of the parallel structure of the GPU for solving

computationally time consuming problems. The two versions are implemented as

logically equivalent as possible.

Although there are two versions of the application the input and outputs of these

versions are exactly the same. The applications will take a list of waypoints in the

XML format, as illustrated in Figure 4.1, which consists of Id and geographical

coordinates for each waypoint. The other inputs for the applications will be the start

and end waypoint Ids and some parameters for the execution of the Genetic

Algorithm. These parameters will be discussed in the following sections.

<?xml version="1.0" encoding="utf-8" ?>

<WayPointList>

<Waypoint Id="1" Lat="39.12" Lon="30.25" />

< Waypoint Id="2" Lat ="38.89" Lon ="30.16" />

< Waypoint Id="3" Lat ="39.32" Lon ="32.11" />

< Waypoint Id="4" Lat ="39.11" Lon="29.92" />

< Waypoint Id="5" Lat ="40.25" Lon="30.45" />

</WayPointList>

Figure 4.1: Sample waypoint list

37

The outputs of the application are the final flight route and the total length of this

route. The flight route is represented as a list of waypoint Ids.

4.2. Solution Approximation Using Genetic Algorithm

4.2.1. Approach

The strategy proposed in this study uses a Genetic Algorithm (GA) to solve the

Traveling Salesman Problem (TSP). Testing every solution for the TSP means N!

operations for N cities and adding another city increases the number by the factor

of (N + 1). Keeping this in mind brutal force approaches seem to be impractical.

GAs otherwise, are sure to find a solution to the TSP in shorter time but the goal of

finding the optimal solution is sacrificed most of the time. Although the solution, a

GA finds for the TSP, is often not the optimal one, it can find near perfect solutions

for an input size of 100 in a few minutes.

Survival of the Fittest is the main idea behind GAs since they imitate natural

evolution. As described previously in Section 1.3 the steps of execution of a GA in

general can be summarized as (Figure 4.2):

 An initial candidate set of solutions is selected from the whole solution

space

 Each candidate in this set is tested according to some fitness criteria

 The candidates that pass the test are used to produce new and better

solutions through crossover and mutation until a termination condition is reached.

38

Figure 4.2: Operation of Genetic Algorithm

This study uses a GA that is slightly modified to meet the needs of the surveillance

domain. In more detail the GA proposed in this study works as follows:

 A defined number of flight routes are created, this is called a population.

 A greedy approach is used to create the initial population such that; the waypoints

closer to each other are preferred for creating flight routes.

 The flight routes are tested according to a criterion which is being shorter.

 Two of the better flight routes are picked and named as parents.

 The parents are combined through crossover to reproduce two child flight routes

which are hopefully better in terms of shortness.

 In order to prevent the future generations of flight routes become too similar to

each other, the child flight routes are mutated in a defined percentage.

 The finalized child flight routes are inserted back to the population replacing two of

the longer flight routes. By this method the population size is always constant.

39

 Reproduction of new flight routes are continued until the pre-defined number

generations are created.

 After termination the best flight route in the population is presented as the solution

of the flight route planning problem.

The main differences between the algorithm proposed in this study and GAs in

general, is the greedy approach used in constructing the initial population and the

crossover method used for the reproduction of new generations. The greedy

approach is explained in the next section in detail. The main reason for not using a

standard crossover method is because the surveillance domain has some of its own

characteristics thus need to be attended in a different fashion. These constraints are

explained in the following paragraphs.

In a standard GA, where a candidate is represented by a string of letters or

numbers, the crossover operation is performed simply by deciding a point in the

string and exchanging the parts of two strings after that point. Assuming waypoints

are represented as wn; where wi stands for the i
th

 waypoint and a sample flight route

is represented as a list of waypoints such as; wi wjwk , where i, j and k are integers

Table 4.1 shows a sample crossover operation.

Table 4.1: Sample Crossover Operation

Parent 1 w6 w1w2 w5| w3w7w4

Parent 2 w4 w5 w1 w3| w7 w2 w6

Child 1 w6 w1 w2 w5| w7 w2 w6

Child 2 w4 w5 w1 w3| w3 w7 w4

40

In this example above, the selected point is between the 4
th

 and 5
th

 items of the

strings.

In order to create children the remaining parts of the strings after the crossover

points is replaced with each other.

The problem arising from this kind of crossover is that; the flight routes that are

constructed may not be valid flight rules. Especially violating the constraints that

each flight route should:

 Pass through each waypoint

 Do not pass through a waypoint more than once

Concerning the table above and using the direct crossover approach, Child 1 passes

through w2 and w6 twice and it fails to pass through w3 and w4. So such a flight

route is unacceptable and should be refused. The proposed crossover mechanism

should eliminate such invalid routes however it is computationally more efficient

not to let them to be created in the first place.

4.2.2. Crossover Operation

The crossover method considered in this study is an implementation of cycle

crossover. This method solves the problems that can arise because of using an

inconvenient crossover method. These possible problems are described as “failing

to visit a waypoint” and “visiting a waypoint more than once” in the previous

paragraphs. Cycle crossover method solves these problems by definition because it

does not let any waypoint previously used in the construction of a child flight route,

to be added again into the same child flight route providing that both parent flight

routes are valid ones (Figure 4.3). Crossover methods in general start by selecting a

number of potential parents from the created initial population. The number of

potential parents is called group size. The decision of the group size affects the

performance of the algorithm in terms of running time and solution optimality. This

41

study considers a parametric group size that can be changed before the flight route

planning application is run.

Figure 4.3: Sample Cycle Crossover Method

Cycle crossover method, unlike the direct crossover method described above, does

not pick a crossover point. The method basically works as follows;

 Start form a parent.

 Try to place each element to a position in the first child where that place is the

same as in either one of the parents’.

 Construct the second child as the complement of the first child.

Below there is an illustration of the method. Starting with the following parents

Parent 1 and Parent 2:

42

(Parent 1)

(Parent 2)

Let us first pick w1 from Parent 1 and add it to Child 1:

(Child 1)

As it is customary to pick every element from one of the parents and place it in the

same position to the child, and since the first position in the child is filled by w1,

the waypoint w8 cannot be taken from parent2. So w8 is also picked from Parent1

and added to Child 1.

(Child 1)

Again as the 8
th

 slot in Child 1 is filled, w7 of Parent 2 cannot be used for Child 1,

so w7 is taken form Parent 1 and added to the 7
th

 slot of Child 1.

(Child 1)

After putting w7 into the 7
th

 slot the method forces us to put w4 to the 4
th

 slot of

Child 1 as Parent 2 has w4 in its 7
th

 slot which is not usable as the slot is already

filled in Child 1. Then Child 1 looks like:

w1 w2 w3 w4 w5 w6 w7 w8

w8 w5 w2 w1 w3 w6 w4 w7

w1 * * * * * * *

w1 * * * * * * w8

w1 * * * * * w7 w8

43

 (Child 1)

Note that upon adding w4 to Child 1 the not usable waypoint becomes w1 however

as it is inserted before inserting it again will cause a cycle to be formed. At this

point the method fills the remaining slots of Child 1 from Parent 2 which makes

Child 1:

(Child 1)

As explained before the second child, Child 2 is constructed as the complement of

the first child. This means that while filling in its slots the waypoints that are not

used in Child 1 are used. So Child 2 becomes:

(Child 2)

The crossover method described above is guaranteed to create valid flight routes

providing that both the parent flight routes are valid. However it should be noted

that there is a possibility that the produced children can be the same as the parents.

Although this may seem as a problem at first, as the parents are selected from the

shorter flight routes the children are still good solutions.

w1 * * w4 * * w7 w8

w1 w5 w2 w4 w3 w6 w7 w8

w8 w2 w3 w1 w5 w6 w4 w7

44

4.2.3 Mutation Operation

The GAs eventually start to produce similar even identical results. This situation is

undesirable since many possible good solutions may be overlooked; moreover after

some point the GA will not be able to find any better solutions. In order to get

around this problem, this study proposed three techniques each of which applies to

different steps of the GA.

The first two approaches focus on the selection of the initial population. The first

method is about the initial size of the population. Selecting a larger population will

cause the GA converge to identical results later than the one working on a smaller

population. However selecting a larger initial population increases the total time

elapsed to find the solution. In order to deal with this trade off it is decided that

selection of the first population will be a parametric value which can be changed

before the flight route planning application is run. By this way it would be

possible to select an appropriate initial population size value for specific cases.

The second method concerns about the usage of the greedy approach while

selecting the initial population. As it is clear that the GA, while using the greedy

approach, will prefer to make links between cities that are close to each other, so

that the initial flight routes will be similar to each other. To overcome this case the

greedy approach will be limited with two parameters. Namely the percentage of the

population selected using the greedy approach and the number of cities that will be

considered nearer. Again like the case of initial population size these two

parameters will be able to be changed before the flight route planning application is

run.

The final method used for creating randomness in the proposed solutions to the

flight route is the mutation, which is an essential part of any GA. Mutation can be

defined as random alteration of possible solution. GAs use mutation in order not to

get stuck at local optimum values. The nature of GAs usually takes them near local

optimums instead of the global optimum. So that in each step the solutions that are

45

nearer to the local optimums will be selected for crossover as their fitness values

are better and the final result will be probably near the local optimum but will have

little chance in reaching the global optimum. So that mutation comes forward as a

random way of getting to possible solutions that would unlikely to be found.

In the concept of flight route planning it is imperative to give extra attention to

mutation, as it was done in the crossover step, in order not to let invalid flight

routes to be created. So that the mutation proposed in this study is not a completely

random one. The proposed strategy of this study also uses a parametric mutation

which can be set as a percentage before the flight route planning application is

executed.

Recalling the sample flight route created in the crossover step, Child 1, mutation

operation can be further demonstrated as follows:

(Child 1)

Implementation of a completely random mutation method to the proposed example

will work as changing a waypoint on a random position with another randomly

selected waypoint. It should be noted that this operation is not swapping as only the

value at the selected position of the flight route changes. So that an example

mutation is assigning the 3
rd

 position of the flight route the waypoint w7, making

Child 1 look like;

(Child 1)

w1 w5 w2 w4 w3 w6 w7 w8

w1 w5 w7 w4 w3 w6 w7 w8

46

The output of this mutation operation is clearly invalid as it fails to pass through w2

and visits w7 twice. In order to eliminate invalid mutations the strategy described in

this study uses a special kind of mutation.

The mutation method used in this study introduces the concept of sub routes. A

sub route is any subset of a flight route consisting of consecutive waypoints.

However the flight route itself is not considered a sub route and the reason for this

will be discussed in the following paragraphs. The method mutates the flight route

by simply reversing the selected sub route. Again considering, Child 1, the output

of the crossover operation a mutation concerning the sub route w2 - w6 will cause

Child 1 to become:

(Child 1)

Notice that this mutation operation always yields valid flight route outputs for valid

inputs. Using this mutation operation will make the final check of flight routes

against the constraints proposed obsolete. So no final verification of the flight

routes is necessary.

4.2.4 Genetic Algorithm Parameters

As discussed in the previous section some values used in the calculation of the

flight route will be parametric and will be able to be changed before the flight route

planning application is run. This choice is more a necessity than a preference as

different parameters may perform better in specific conditions. Default values will

be supplied for the following parameters however these default values are also not

constant as they will be decided according to the input space size. The following

six parameters are used to control the GA proposed in this study:

Initial Population Size: As discussed before a defined number of flight routes are

created at the start of the GA and this is called a population. The size of this initial

w1 w5 w6 w3 w4 w2 w7 w8

47

population affects the results of the algorithm since while a larger population

increases the running time of the application, a smaller initial population lowers the

chance to find a solution near global optimum.

Greedy Selection Percentage: It was discussed in the previous section that

although the greedy approach used in constructing the initial population yields a

faster algorithm it eventually leads to flight routes that look similar to each other

hence decreasing the chance of reaching the global optimum. The Greedy Selection

Percentage is used while creating a route to decide if a closer waypoint or a random

waypoint will be used as the next one.

Number of Closer Waypoints: This parameter decides the number of waypoints

that would be considered close to a specific waypoint. The decision of closeness to

a waypoint is done in the preprocess step and the list of decided number of

waypoints is kept for each waypoint. Closeness is calculated according to the pair

wise distances between waypoints. While using greedy approach to create the

initial population the GA prefers to link waypoints that are close to each other. It

should be noted there is no priority among the waypoints selected as being closer

and there is an equally random chance that any one of these waypoints will be

selected.

Group Size: As discussed in the previous sections, at the start of each crossover

step a number of flight routes are selected and the best two of them are used as

parents in the crossover operation. The group size parameter is very effective on

the GA since a large group size causes the GA run faster however may result

starvation such that some flight routes may never be used as parents. So that

reducing the chance to reach the global optimum.

Mutation Percentage: Mutation is used in order to protect the flight routes to look

identical after a number of crossover steps. The mutation percentage decides the

probability of a child flight route created as a result of crossover to undergo

mutation or not.

48

Termination Step: The GA is clearly a repetitive operation, so there needs to be a

termination condition on which the algorithm stops and presents the best solution it

has as the final one. Although it may seem plausible to stop the algorithm after the

solutions become stable this is both hard to implement and may be impractical for

very large input spaces. So that in this study running time of the algorithm is

limited with the number of crossover operations and named as Termination Step.

Table 4.2 shows a sample list of configurable parameters for the GA:

Table 4.2: Sample Configuration Parameters for the GA

Parameter Sample Value

Initial Population Size 1000

Greedy Selection Percentage 80 %

Number of Closer Waypoints 5

Group Size 10

Mutation Percentage 5 %

Termination Step 100

49

4.2.5 Selection Development Using Greedy Heuristic

The pros and cons of using the greedy approach are discussed in the previous

sections. The proposed strategy of this study considers a greedy approach

consisting of two different versions. During the construction of the initial flight

routes, the Greedy Selection Percentage defined in the previous section is used to

decide which version of the greedy approach is used. In the first version of the

approach, the selection of the next waypoint to be added to the flight route is done

randomly among the waypoints that are listed as being closer to the current

waypoint. The second version of the approach, which is definitely less greedy,

works as selecting two random waypoints which are not among the waypoints that

are listed as being closer to the current waypoint and adds the one which brings less

cost to the route.

The details of the two versions of the greedy approach are given as pseudo codes

below:

Greedy Approach Version I

Choose a random waypoint;

Mark it visited;

While (all the cities not visited) {

Select a waypoint defined as being closer to the selected waypoint randomly;

Mark it visited;

Connect it to the previous visited waypoint;

}

50

Greedy Approach Version II

Choose a random waypoint;

Mark it visited;

While (all the cities not visited) {

Choose a random waypoint w1;

Choose a random waypoint w2;

Calculate the cost of addition of each waypoint;

Mark it visited;

Connect it to the previous visited waypoint;

}

4.3 Mapping the Genetic Algorithm into CUDA

In the concepts of this study two versions of the proposed application is developed.

The first version which is called the serial implementation is written in C language.

The second version called the parallel implementation is written in C language

using CUDA extensions and compiled with the CUDA compiler. These two

versions are used to compare the respective performances of parallel and serial

implementations also the feasibility of a GPU solution for the proposed problem. In

order to have a suitable comparison, two versions of the application are designed as

logically equal as possible. However there are small differences mostly due to the

differences between the architectures of GPU and CPU. In order to further test the

genetic algorithm implementation in the GPU a control version using a distributed

51

approach is also implemented. The distributed genetic algorithm has been

developed in the same environment with the GPU version of the genetic algorithm.

The following sections describe the implementation details of the GPU

implementations. Section 4.3.1 presents the extra implementation constraints that

arise because of using CUDA. Section 4.3.2 explains the steps of genetic algorithm

implementation and Section 4.3.3 describes the distributed genetic algorithm

implementation.

4.3.1 CUDA Specifics

Implementation of an algorithm on CUDA requires some special measures to be

taken in order not to turn the advantage gained by parallel processing into a

disadvantage. This section mentions the key points of CUDA programming along

with the solutions proposed by this study. The CUDA specific implementation

details are explained in three sections namely; threads, conditional statements and

memory management.

4.3.1.1 CUDA Threads

CUDA handles the thread structure through a hierarchical order. Up to maximum

512 threads form a block and a grid of blocks make up a kernel. This structure is

illustrated in Figure 4.4. The key point in this hierarchy is that threads in a single

block can communicate through a fast local cache that is called the shared memory.

Communication among the blocks is maintained through the main memory which

is much slower compared to the shared memory. The necessity of accessing the

main memory for block-to-block communication yields to a design principle that;

threads that will run in different blocks should be designed to be totally

independent of each other.

52

To control the described hierarchy CUDA presents three variables to the user:

blockDim; is a 3D vector that describes how many threads each block contains

blockIdx; is a 2D vector that contains the placement of a block in the grid

threadIdx; is a 3D vector that describes the placement of a thread in the block

These three variables are used in the given order in order to let the programmer

access the threads that are kept in an array like structure.

Figure 4.4: The relationship between threads, thread blocks and grids in CUDA

53

4.3.1.2 Conditional Statements

Another consideration for CUDA implementation is the usage of conditional

statements such as if and else. Such branching operations may yield to a loss in

performance. As threads in CUDA, unlike CPU threads which are executed

independently, are scheduled in groups, they start running together at the same

program address and execute one common instruction at a time. If threads of a

group diverge according to a data dependent conditional statement, the group

should serially execute each branch path taken, until all paths are complete and the

threads converge back to the same execution path. [13]

4.3.1.3 Memory Management

As discussed in the section concerning CUDA threads, main memory access is a

costly operation for CUDA applications. Special care has to be taken when

developing a CUDA application while considering memory management. The

latency difference between the shared memory and the main memory requires the

frequently used data to be in the shared memory. However CUDA also provides

some caching structures in order to speed up the access to global memory.

As discussed in Chapter 2 this study some rules for accessing the memory which

are as follows:

 Frequently accessed data is stored on share memory

 Write-once data, is stored on global memory

 Read-only data is stored on GPU’s texture cache

In terms of implementation frequently accessed data is the structures that hold the

flight paths, write-once data is the final flight route and read-only data are the

coordinates of the waypoints and GA parameters.

54

4.3.2 Genetic Algorithm Steps on CUDA

This section describes the implementation details of the parallel version of the

genetic algorithm on CUDA. The parallel implementation is actually similar to the

serial implementation; however there are small differences and these are addressed

in the following paragraphs.

Figure 4.5: Pseudo Code for CPU version of the Genetic Algorithm

Figures 4.5 and 4.6 summarize the CPU and GPU implementations of the genetic

algorithm respectively. Both implementations follow the same logical steps

generally; however the GPU implementation uses threads for creating initial

population and creating children, thus doing multiple operations at each iteration.

// CPU Implementation

CreatePopulation (populationSize)

For (numberOfGenerations)

 SelectGroup (groupSize)

 CreateChildren () // Crossover and mutation is executed here

End

55

Figure 4.6: Pseudo Code for GPU version of the Genetic Algorithm

// GPU Implementation

 CreateThreads (maximumNumberOfThreads)

Foreach (thread)

 CreateFlightRoute ()

End

For (numberOfGenerations)

 CreateThreads (maximumNumberOfThreads)

 Foreach (thread)

 SelectGroup (groupSize)

 CreateChildren () // Crossover and mutation is executed here

 End

End

56

Initial Population Generation: The initial population of candidate flight routes

considered for the genetic algorithm is constructed using the same greedy approach

in both serial and parallel versions of the algorithm. However a randomization

function such as the “rand()” of C is necessary for both deciding what method of

greedy approach is selected and for selecting waypoints randomly. CUDA does not

provide such a function but it is possible to implement a random number generator

in CUDA. For this study the Linear Congruential Generator implementation

described in the GPU GEMS 3 will be used [12].

Population Set Organization: It was mentioned in the previous sections that,

upon the creation of the initial population, the candidate flight routes are tested

according to a criterion, which is being shorter. In order to operate on the

population set, the GA should be able to access these flight routes in an indexed

fashion. Testing the flight routes according to the criterion of shortness, namely

calculating their length is done simply by staring from the initial waypoint and

adding the distances between two adjacent waypoints until the final one is reached.

The parallel version uses the advantage of the GPU and assigns each flight route

length calculation to a separate thread so that makes the operation concurrently.

To work efficiently the GA needs to work on a list of flight routes sorted according

to their length. The sorting of flight routes is done by using two arrays where one

holds the unique identifiers for the flight routes and the other holds their respective

lengths. The sorting is done using quicksort. The parallel version is able to make

the sorting of both arrays simultaneously.

Crossover: The cycle crossover operation is implemented similarly in both

versions. In order to prevent invalid flight routes to be constructed both the parallel

and serial algorithms follow the same steps. This type of approach is also a

necessity to provide logical equality since different results at this step of the GA

may result in different runtime behavior in the two implementation versions. The

main difference in serial and parallel versions is that, while the serial version works

on one group at a time thus does the crossover operations one by one, the parallel

version executes the multiple crossover operations on different groups

simultaneously.

57

Mutation: The mutation operation is quite similar in both parallel and serial

versions. In both implementations two waypoints on the flight route are selected

and the sub-route between them is reversed. The only difference is that while the

serial implementation makes mutation one by one for each flight route, the parallel

version works simultaneously by assigning each mutation operation to a different

thread.

4.3.3 Distributed Genetic Algorithm Steps on CUDA

This section describes the implementation details of the distributed genetic

algorithm and on CUDA. The distributed genetic algorithm implementation has

many common properties with the genetic algorithm implementation addressed in

the previous section. The similarities and differences between the two

implementations are described in the following paragraphs.

Figure 4.7 summarizes the distributed genetic algorithm implementation on GPU.

The difference of distributed version is that instead of creating a single population

which consists of all parents, a determined number of subpopulations are created.

The creation of subpopulations is done concurrently using GPU threads.

Another point that separates the distributed genetic algorithm form the genetic

algorithm implementation of the previous section is the usage of migration instead

of mutation at the end of each iteration of the child creation process. Migration is

also executed using threads and thus concurrently on the memory of the graphics

card.

58

// Distributed GPU Implementation

CreateThreads (maximumNumberOfThreads)

Foreach (thread)

 CreateSubpopulations (numberOfSubpopulations)

End

For (numberOfGenerations)

 CreateThreads (numberOfSubpopulations)

 Foreach (thread)

 SelectGroup (groupSize)

 CreateChildren () // Crossover is executed here

 DoMigration () // Successful children are distributed to other subpopulations

 End

End

Figure 4.7: Pseudo Code for Distributed Genetic Algorithm

59

As explained earlier, distributed genetic algorithms have different types which are

mainly determined by the types and numbers of populations that the algorithm

operates on. The distributed genetic algorithm used for this study falls to the class

of static subpopulations with migration or in other words genetic algorithm with

multiple demes. The term “deme” means population. In this implementation the

initial population is divided into subpopulations (demes) and these demes are

isolated during execution. However there is some sort of communication between

these demes.

The communication between the demes is provided using a new operation called

“migration”. Migration operation carries the children created during crossover

operation of each subpopulation to the other subpopulations. Crossover is executed

same in both genetic algorithm for the previous section and the distributed genetic

algorithm of this section with the exception that mutation is not exercised for

distributed genetic algorithm implementation. The condition for a child to be

carried to other subpopulations is that the children should be better solutions than

both of their parents. This condition makes the migration a greedy operation since

it does not let worse solutions to be inserted into subpopulations. The type of

migration described here is known as “Island Model” (Figure 4.8). In this model

the children from each subpopulation is carried to all other subpopulations.

Figure 4.8: Island Migration Model

60

CHAPTER 5

RESULTS

This chapter presents the results of the study acquired by running four different

programs, namely the serial and parallel versions of the genetic algorithm and the

serial and parallel versions of random search algorithm. The chapter is organized as

follows: Section 5.1 describes the hardware and software configuration that the

tests are run on. Section 5.2 gives the results of comparison of parallel and serial

versions of the genetic algorithm. Section 5.3 explains the results of parallel

version of the genetic algorithm with a GPU point of view. Section 5.4 further

gives detail about the results of parallel version of the genetic algorithm by

emphasizing the effects of genetic algorithm parameters. Section 5.5 adds the

results obtained by the serial and parallel versions of the random search program.

Section 5.6 compares the genetic and random search algorithms. Finally Section

5.7 concludes the chapter by comparing the genetic, random search and distributed

genetic algorithms.

5.1 Test Environment

The following tests are performed on a system with the following configuration:

 Intel Core2Duo P8400 processor with a cloak frequency of 2.13 Ghz

 4 GBs of memory with a cloak frequency of 800 Mhz

 NVIDIA GeForce 9800M graphics card

 Windows Vista SP1 operating system

 NVIDIA Forceware CUDA enabled drivers version 195.94

61

 CUDA development SDK version 2.3

 Microsoft Visual Studio 2008

All the results presented in the following sections are obtained by running the

program to be tested, five times successively, omitting the highest and lowest

results and averaging the remaining three. This care has been taken in order to

eliminate the risk of taking exceptional values that may have resulted from a

hardware or software fault.

5.2 Comparison of Parallel and Serial Versions of the Genetic Algorithm

5.2.1 Running Time Comparison

First test run for the comparision of the parallel and serial versions of the genetic

algorithm measures the running time of the two programs for a sample number

(100000) of generations and for different number of waypoints (Table 5.1). The

results of the test are displayed in Figure 5.1.

Table 5.1: Running Time Test Results for Genetic Algorithm

Number of WPs 32 64 128

CPU Running Time (sec) 3,721 8,775 18,341

GPU Running Time (sec) 0,202 0,436 1,123

It can be easily deducted that running time for sample number of generations for

the GPU implementation is much more faster than the CPU implementation.

However it should also be noted that the increase proportion in running time in the

two implementations is almost the same. This situation is expected since no

algorithmic approach effects the running time for a sample number of generations.

The important point to be kept in mind from this test is that running time increases

drastically with the number of waypoints. This is due to two reasons; first, creating

62

generations for larger number of waypoints take a larger time. Second, the time to

create initial populations and sorting inputs/outputs is a more time consuming

operation for larger input sets.

Figure 5.1: Running Time Comparison for Parallel and Serial Versions of the

Genetic Algorithm

5.2.2 Convergence Time Comparison

Second test run for the comparision of the parallel and serial versions of the genetic

algorithm measures the convergence time of the two programs for different number

of waypoints (Table 5.2). The results of the test are displayed in Figure 5.2. For

testing convergence time, the programs are run for a relatively large number of

generations. Algorithm is assumed to have converged if the flight route with the

lowest length has not changed for a long time and the time of the generation when

the best flight route is found is recorded as the convergence time.

0

2

4

6

8

10

12

14

16

18

20

32 64 128

R
u

n
n

in
g

Ti
m

e
 (

se
co

n
d

s)

Number of Waypoints

CPU

GPU

63

Table 5.2: Convergence Time Test Results for Genetic Algorithm

Number of WPs 32 64 128

CPU Convergence Time (sec) 1,178 14,871 168,819

GPU Convergence Time (sec) 0,687 3,188 34,158

The results of the convergence time test is useful for understanding the behaviour

of the genetic algorithm. While the running time was inspected to be increasing

linearly with the increasing number of waypoints, the convergence time increases

exponentially. This situation is due to the fact that the number of alternative flight

routes increases in a factorial order. So that there are much many flight routes to

test. The exponential increase applies to both parallel and serial versions of the

implementation as they follow the same logical path. The GPU implementation is

still faster with respect to the CPU implementation, however the proportion of

speed up between the two implementations seems to be lower than the running time

comparision. The comparison of speed up values for the running time and

convergence time is explained in the next section.

64

Figure 5.2: Convergence Time Comparison for Parallel and Serial Versions of the

Genetic Algorithm

5.2.3 Speedup Comparision

Third test run for the comparision of the parallel and serial versions of the genetic

algorithm measures the speed up values between the parallel and serial

implementations for the running time and convergence time tests (Table 5.3). The

speed up results are displayed in Figure 5.3. These results are obtained directly by

dividing the results of running and convergence times of the CPU implementation

to the respective results from the GPU implementation.

Table 5.3: Speed Up Test Results for Genetic Algorithm

Number of WPs 32 64 128

Convergence Speed Up 1,7 4,7 4,9

Execution Speed Up 18,4 20,1 16,3

0

20

40

60

80

100

120

140

160

180

32 64 128

C
o

n
ve

rg
e

n
ce

 T
im

e
 (

se
co

n
d

s)

Number of Waypoints

CPU

GPU

65

The results of the speed up comparison reflect the algorithmic performance of the

two implementatons. While the speed up in running time reaches up to 25, the one

for convergence time can only reach to 5. After some inspection on these results it

can be deduced that the parallel implementation does not work as efficient as the

serial one in terms of number of generations. This result is expected since the

evolutionary model used for the foundation of the genetic algorithm depends on the

quality of previous generations and this quality may be lower for the parallel case

where evolution of individual groups happen simultaneously.

Another point that can be deducted from the results is that the increase in speed up

values slows down for increasing number of waypoints for convergence and even

falls down for running time. This situation can be explained as an implementation

specific case for the running time test, however for the convergence time test it

results from the increasing number of generations needed for the algorithm to

converge. The issue about generation numbers is discussed in the next section.

Figure 5.3: Speed Up Coefficient Comparison for Parallel and Serial Versions of

the Genetic Algorithm

0

5

10

15

20

25

30

32 64 128

Sp
e

e
d

 U
p

Number of Waypoints

Execution

Convergence

66

5.2.4 Number of Generations Comparison

Fourth test run for the comparision of the parallel and serial versions of the genetic

algorithm measures the number of generations needed for the convergence of the

genetic algorithm (Table 5.4). The results of the test are displayed in Figure 5.4.

The results are taken along with the convergence time test and denotes the number

of generation when the best flight route is found.

Table 5.4: Number of Generations Test Results for Genetic Algorithm

Number of WPs 32 64 128

CPU 31597 182129 990427

GPU 102400 1048576 5242880

The first obvious deduction obtained from the results of the tests is that the GPU

implementation of the genetic algorithm needs much more number of generations

to converge than the CPU one. This situation is a direct result of the fact that the

parallel implementation has to work on lower quality previous generations than the

serial one. Although the much smaller execution time needed for one generation

makes the GPU implementation still faster, the GPU implementation works

algorithmically worse than the CPU one.

Another important point extracted from the test results is that in both parallel and

serial implementations the number of generations to converge increases. This

increase seems to be linear and can be applied to both implementations, although

there is no direct proportion between them. As a result it can be concluded that, in

the concept of convergence, despite the CPU and GPU imlementations behave

differently in runtime they are effected in the same way from the increse in the

number of waypoints.

67

Figure 5.4: Number of Generations Comparison for Parallel and Serial Versions of

the Genetic Algorithm

5.3 GPU Time Consumption

The second part of the tests includes only the parallel version of the genetic

algorithm implementation. These tests aim to further investigate the behavior of the

parallel version of the genetic algorithm and the GPU.

5.3.1 GPU Time Usage of Individual Functions

The first test is run for assessing the GPU time consumption of different steps of

the algorithm. The steps are determined with respect to their functionality. The

individual operations to be tested are defined as; GPU overhead, preparing inputs,

creating the initial population, running the TSP function and copying back the

results.

0

1000000

2000000

3000000

4000000

5000000

6000000

32 64 128

N
u

m
b

e
r

o
f

G
e

n
e

ra
ti

o
n

s

Number of Waypoints

CPU

GPU

68

GPU overhead means initializing the CUDA execution and copying the input

values from the main memory to graphic card’s memory. Preparing inputs implies

taking the array like inputs and arranging them into structures that are more

efficiently used by the GPU. Creating the initial population covers randomly

constructing a defined number of flight routes that are to be used as parents for the

later generations. Running the TSP function includes selecting groups of flight

routes form the population, creating children from these groups and applying

mutation. Finally copying back the results contains taking results back from the

graphics card’s memory to the main memory and freeing the memory used by

CUDA.

The following graphs are constructed according to the GPU time usage for the

individual functions described above using different number of waypoints:

Figure 5.5: Percentage of Operations according to GPU Time Consumption for the

32 Waypoint Test

Overhead
53%

Create
Population

22%

Prepare Inputs
3%

Copy Back
Results

6%

TSP
16%

32 Waypoints

69

Figure 5.5 displays the GPU Time consumption of individual functions for the case

where the flight route contains 32 waypoints. The most interesting result of this test

is that the CPU to GPU overhead takes more than half of the execution time. There

are two reasons of this situation; first the overhead is really large and second the

convergence for the 32 waypoint case takes considerably short time. It should also

be noted that creating the initial population also takes an important percentage of

the GPU time.

Figure 5.6: Percentage of Operations according to GPU Time Consumption for the

64 Waypoint Test

Figure 5.6 displays the GPU Time consumption of individual functions for the case

where the flight route contains 64 waypoints. In this graph the most significant

Overhead
9% Create

Population
10%

Prepare Inputs
1%

Copy Back
Results

1%

TSP
79%

64 Waypoints

70

change is in TSP execution time. This situation is expected since the generations

needed for the execution of the algorithm increases exponentially. Another

interesting point is that while creating the initial population took less than half of

the time of the CPU to GPU overhead for the 32 waypoint case in takes a bit more

time in than the overhead for the 64 waypoint test. This situation can be explained

such that creating initial population takes more time when there are more

waypoints while the overhead stays the same.

Figure 5.7: Percentage of Operations according to GPU Time Consumption for the

128 Waypoint Test

Figure 5.7 displays the GPU Time consumption of individual functions for the case

where the flight route contains 128 waypoints. On this test TSP execution time

takes almost all of the GPU time. All other operations, including the CPU to GPU

overhead, other than creating the initial population are insignificant. Besides the

percentage of creating the initial population has shrunk to 4 percent.

Overhead
1%

Create Population
4%

Prepare Inputs
0%

Copy Back Results
0%

TSP
95%

128 Waypoints

71

5.3.2 Effects of Thread Usage

Thread usage is one of the main issues in GPU programming. To get maximum

efficiency from the GPU and executing programs in the smallest time possible as

many as possible threads were used for the execution of programs. The limits of

number of threads are selected according to two criterion; first the hardware

limitations and second the requirements of the algorithm. The current CUDA

version allows 512 threads to be run as a block so that this number of threads can

be used without losing any efficiency. However as the algorithms were inspected to

be running stable for at most 256 threads it was decided to use 256 as number of

threads whenever possible.

For testing the effect of using different number of threads the algotirhm was run to

converge using 16, 32, 64, 128 and 256 threads (Table 5.5). The results of the test

are displayed in Figure 5.8.

Table 5.5: Number of Threads Test Results for Parallel Genetic Algorithm

Number of

Threads

16 32 64 128 256

GPU Time (sec) 47,786 23,888 12,110 6,140 3,182

As expected, using more threads has a direct effect on execution time of the

program. Actually multiplying the number of threads by two reduces the execution

time to almost 50% of the original. This test gives a result about the internal

structure of the GPU, such that when not assigned to threads the pipelines of the

hardware do nothing. So it is a direct deduction that using as many threads as

allowed by the GPU and the algorithm will give the optimal results.

72

Figure 5.8: Effect of Using Different Number of Threads for the Genetic Algorithm

in the GPU

5.4 Effects of TSP Parameters

Third set of tests run in order to examine the effects of different parameters that are

passed to the genetic algorithm. Each parameter is tested in an isolated manner

such that, while testing a parameter the other ones are kept fixed. The results are

evaluated according to two criterion namely convergence time and flight route

length. The tests of this section aim to further investigate the behavior of the

parallel implementation of the genetic algorithm. The results of this section will be

compared with the assumptions made for the genetic algorithm parameters that are

described in section 4.2.4.

5.4.1 Initial Population Size

The first test about genetic algorithm parameters considers the effect of different

initial population sizes. Initial population means the randomly created set of flight

routes that will likely become parents while creating the future generations in the

0

10

20

30

40

50

60

16 32 64 128 256

C
o

n
ve

rg
e

n
ce

 T
im

e
 (

se
co

n
d

s)

Number of Threads

GPU

GPU

73

genetic algorithm. The tests were run for 100, 1000 and 10000 number of initial

flight routes for the parallel version of the genetic algorithm implementation and

the results are acquired for the convergence case (Table 5.6, Table 5.7). These

results are displayed in figures 5.9 and 5.10.

Table 5.6: Effect of Initial Population Size to Convergence Time

 Initial Population Size 100 1000 10000

 Convergence Time (sec) 3,003 3,446 6,305

Table 5.7: Effect of Initial Population Size to Fitness

 Initial Population Size 100 1000 10000

 Fitness 3984 3954 3538

As described in Section 4.2.4 a larger initial population is expected to find a better

solution while suffering from a larger convergence time. The results justify these

assumptions. The test using the largest initial population (10000) finds a 10% better

result while converging in more than twice the time of the test using the smallest

initial population (100).

74

Figure 5.9: Effect of Using Different Initial Population Sizes on Running Time for

the Genetic Algorithm

Figure 5.10: Effect of Using Different Initial Population Sizes on Flight Route

Length for the Genetic Algorithm

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

100 1000 10000

C
o

n
ve

rg
e

n
ce

 T
im

e
 (

se
co

n
d

s)

Initial Population Size

Time

Time

3300

3400

3500

3600

3700

3800

3900

4000

4100

100 1000 10000

Fi
tn

e
ss

 V
al

u
e

Initial Population Size

Fitness

Fitness

75

5.4.2 Greedy Selection Percentage

The second test about genetic algorithm parameters is about the utilization of a

greedy approach during the execution of the genetic algorithm. The greedy

approach is used for reducing the convergence time. However there is a risk of

sticking to a local optimum than the global one while using a greedy approach as

described in previous chapters. The tests for measuring the effect of greedy

approach usage were run for 0, 30, 60 and 90 percentages and the results are

collected for the convergence case (Table 5.8, Table 5.9). These results are

displayed in figures 5.11 and 5.12.

Table 5.8: Effect of Greedy Selection Percentage to Convergence Time

Greedy Selection Percentage 0 30 60 90

Convergence Time (sec) 4,391 2,476 2,955 3,597

Table 5.9: Effect of Greedy Selection Percentage to Fitness

Using a greedy approach indeed lowers the convergence time. However its effect is

not as direct as the initial population size since over-using it may increase the

convergence time. The effect of greedy selection percentage seems insignificant for

this test case and a percentage between 30 and 60 seems plausible for achieving

shortest convergence time.

Greedy Selection Percentage 0 30 60 90

Fitness 3724 3782 3760 3820

76

Figure 5.11: Effect of Using Different Greedy Percentages on Running Time for

the Genetic Algorithm

Figure 5.12: Effect of Using Different Greedy Percentages on Flight Route Length

for the Genetic Algorithm

0,0
0,5
1,0
1,5
2,0
2,5
3,0
3,5
4,0
4,5
5,0

0 30 60 90

C
o

n
ve

rg
e

n
ce

 T
İm

e
 (

se
co

n
d

s)

Greedy Percentage

Time

Time

3660

3680

3700

3720

3740

3760

3780

3800

3820

3840

0 30 60 90

Fi
tn

e
ss

 V
al

u
e

Greedy Percentage

Fitness

Fitness

77

5.4.3 Number of Closer Waypoints

The third test about genetic algorithm parameters examines the usage of closer

waypoints while constructing flight routes. As described in the previous chapters

close waypoints are decided according to the pair wise distances between two

waypoints. Using the notion of closer waypoints aims to achieve better results than

the case of using completely random waypoints while creating the initial

population. The tests for measuring the effect of closer waypoints usage were run

for 3, 10 and 20 closer waypoints and the results are collected for the convergence

case (Table 5.10, Table 5.11). These results are displayed in figures 5.13 and 5.14.

Table 5.10: Effect of Number of Closer Waypoints to Convergence Time

Table 5.11: Effect of Number of Closer Waypoints to Fitness

Using closer waypoints helps the genetic algorithm to find a better solution.

However the number of waypoints that are defined to be close to a waypoint should

be limited since each waypoint may not have that many waypoints actually near to

it. So this parameter becomes somehow input dependent. For the test run in this

case a number of 10 closer waypoints scored the best result in terms of flight route

length but it is worth to keep in mind that this value of the parameter may not be

optimal for another input set.

Number of Closer Waypoints 3 10 20

Convergence Time (sec) 3,138 3,423 4,002

Number of Closer Waypoints 3 10 20

Fitness 4184 3658 3842

78

Figure 5.13: Effect of Using Different Number of Closer Waypoints on Running

Time for the Genetic Algorithm

Figure 5.14: Effect of Using Different Number of Closer Waypoints on Flight

Route Length for the Genetic Algorithm

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

3 10 20

C
o

n
ve

rg
e

n
ce

 T
im

e
 (

se
co

n
d

s)

Number of Closer Waypoints

Time

Time

3300
3400
3500
3600
3700
3800
3900
4000
4100
4200
4300

3 10 20

Fi
tn

e
ss

 V
al

u
e

Number of Closer Waypoints

Fitness

Fitness

79

5.4.4 Group Size

The fourth test about genetic algorithm parameters deals with using different group

sizes while creating generations. As mentioned in Section 4.2.4 larger group sizes

makes the genetic algorithm run faster however they may yield to a result which is

not close to the global best. The tests for determining the effect of using different

group sizes were run for the values of 5, 10 and 20 and the results are collected for

the convergence case (Table 5.12, Table 5.13). These results are displayed in

figures 5.15 and 5.16.

Table 5.12: Effect of Group Size to Convergence Time

Table 5.13: Effect of Group Size to Fitness

Benefit of using a larger group size in terms of convergence time is obvious.

Selecting a larger group size makes the algorithm converge in fewer generations.

The reason is that, the parents chosen for each generation are the best of a larger

group and they are usually good candidate solutions themselves. However using a

large group size also means that, some flight routes may never be chosen as parents

even if their children will be good choices. Using the test results the worse solution

obtained using 20 sized groups, than the one with 10 elements can be explained

Group Size 5 10 20

Convergence Time (sec) 4,069 3,101 2,594

Group Size 5 10 20

Fitness 3821 3725 3823

80

with that fact. This situation presents a trade-off between using a larger group for a

faster solution or a smaller one for a better solution. The choice should probably be

made due to the requirements of the application.

Figure 5.15: Effect of Using Different Group Sizes on Running Time for the

Genetic Algorithm

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5 10 20

C
o

n
ve

rg
e

n
ce

 T
im

e
 (

se
co

n
d

s)

Group Size

Time

Time

81

Figure 5.16: Effect of Using Different Group Sizes on Flight Route Length for the

Genetic Algorithm

5.4.5 Mutation Percentage

The fifth test about genetic algorithm parameters examines the effect of using

various mutation percentages during the crossover operation of the genetic

algorithm. Mutation is used to create flight routes that are unlikely to be created

using the selected parents in the crossover phase and arriving at possible other good

solutions. Using mutation is expected to achieve at better results however may

lower the performance in terms of execution time. The tests for determining the

effect of using different mutation percentages were run for the values of 0, 3 and 10

and the results are collected for the convergence case (Table 5.14, Table 5.15).

These results are displayed in figures 5.17 and 5.18.

3660

3680

3700

3720

3740

3760

3780

3800

3820

3840

5 10 20

Fi
tn

e
ss

 V
al

u
e

Group Size

Fitness

Fitness

82

Table 5.14: Effect of Mutation Percentage to Convergence Time

Table 5.15: Effect of Mutation Percentage to Fitness

As in the process of natural evolution, mutation is not a phenomenon that is

experienced frequently. So that it might be expected that using it too much will not

do any good. The results of the tests justify this claim. Using a high mutation

percentage such as 10 lowers the performance in both convergence time and

fitness. However a more plausible percentage like 3 yields a 10% better result in

fitness than the case of not using mutation, however suffering a 15% penalty in the

convergence time.

Mutation Percentage 0 3 10

Convergence Time (sec) 2,721 3,160 3,023

Mutation Percentage 0 3 10

Fitness 3870 3548 3607

83

Figure 5.17: Effect of Using Different Mutation Percentages on Running Time for

the Genetic Algorithm

Figure 5.18: Effect of Using Different Mutation Percentages on Flight Route

Length for the Genetic Algorithm

2,5

2,6

2,7

2,8

2,9

3,0

3,1

3,2

0 3 10

C
o

n
ve

rg
e

n
ce

 T
im

e
 (

se
co

n
d

s)

Mutation Percentage

Time

Time

3300

3400

3500

3600

3700

3800

3900

0 3 10

Fi
tn

e
ss

 V
al

u
e

Mutation Percentage

Fitness

Fitness

84

5.5 Comparison of Parallel and Serial Versions of the Random Search

Algorithm

Implementation of the random search algorithm has been done in order to have an

alternative method that can be compared with the genetic algorithm for the solution

of the genetic algorithm. Like the genetic algorithm’s implementation, both parallel

and serial versions of the algorithm have been developed.

5.5.1 Running Time Comparison

First test run for the comparision of the parallel and serial versions of the random

search algorithm measures the running time of the two programs for different

number of iterations (Table 5.16). The results of the test are displayed in Figure

5.19.

Table 5.16: Convergence Time Test Results for Random Search Algorithm

Number of Iterations 1000 10000 100000 1000000

CPU Running Time (sec) 0,091 0,750 7,583 77,250

GPU Running Time (sec) 0,038 0,068 0,383 3,594

Using the power of its parallel pipelines the GPU implementation is much faster

than its CPU counterpart. As there is no sequential operation in the random search

algorithm, the threads can be run without any algorithmic overhead. The only extra

time consuming event is starting the CUDA execution and copying the inputs to the

graphic card’s memory.

Another important point about the random search algorithm is that, unlike the

genetic algorithm, it does not get more complex with increasing number of

iterations such that the increase in running time in both CPU and GPU

85

implementations is linear with respect to increasing number of random flight routes

that are created and tested.

Figure 5.19: Running Time Comparison for Parallel and Serial Versions of the

Random Search Algorithm for Different Number of Iterations

5.5.2 Speedup Comparision

Second test run for the comparision of the parallel and serial versions of the

random search algorithm measures the speed up values between the parallel and

serial implementations for different number of iterations (Table 5.17). The speed

up results are displayed in Figure 5.20. These results are obtained directly by

dividing the results of running times of the CPU implementation to the respective

results from the GPU implementation.

0

10

20

30

40

50

60

70

80

90

1000 10000 100000 1000000

R
u

n
n

in
g

Ti
m

e
 (

se
co

n
d

s)

Number of Iterations

CPU

GPU

86

Table 5.17: Speed Up Test Results for Random Search Algorithm

Number of Iterations 1000 10000 100000 1000000

Speed Up 2,395 11,029 19,799 21,494

The speed up values show the efficiency of the GPU implementation more

profoundly. It is seen from the results that the speed up values increase with the

increasing number of iterations, so that yielding to an increasing efficiency.

However a question may arise here; why does the speed up values are lower with

lower number of iterations.

The question put forward in the paragraph above is closely connected to another

result that can be obtained from Table 5.17 and Figure 5.20. Although there is an

increase in the speed up values for increasing number of iterations, the acceleration

of this increase seems to be decreasing.

The answer to the first question is the overhead time between CPU and GPU.

When there are fewer random search iterations the overhead takes a larger

percentage of execution time making the speed up value lower. The answer to the

question about the decreasing acceleration of the increase of speed up values is

that, when the overhead starts to become less significant with the increasing

number of operations the speed up becomes purely the proportion of execution

times of a single random search operation in the GPU and CPU. So, it can be

deducted from these results that for considerably large number of iterations the

speed up values will become constant.

87

Figure 5.20: Speed Up Coefficient Comparison for Parallel and Serial Versions of

the Random Search Algorithm for Different Number of Iterations

5.6 Comparison of Genetic and Random Search Algorithms

At this step the tests it is worth to make a comparison between Genetic and

Random Search Algorithms that are implemented. In the following tests both CPU

and GPU versions of the algorithms are compared.

As genetic and random search algorithms run with different parameters and

mechanisms the only way to compare them is using the domain specific parameters

of the flight route planning problem. These parameters are the running times of the

programs and the fitness values of the flight routes. For the tests the algorithms are

run for some time and the fitness of the best flight route for each algorithm is listed

(Table 5.18, Table 5.19). The running time of the algorithms is depicted as the

approximate running time since it was not possible to stop the algorithms at an

exact time, however the difference between the exact and depicted running times is

negligible. The results of the test are displayed in Figures 5.21 and 5.22.

0

5

10

15

20

25

1000 10000 100000 1000000

Sp
e

e
d

 U
p

Number of Iterations

SpeedUp

SpeedUp

88

Table 5.18: Comparison of Approximate Running Times and Fitness values

between CPU versions of Genetic and Random Search Algorithms

Table 5.19: Comparison of Approximate Running Times and Fitness values

between GPU versions of Genetic and Random Search Algorithms

The first result obtained from the Running Time/Fitness comparison is that the

genetic algorithm converges much faster than the random search in both CPU and

GPU versions. On the other hand, although having worse fitness results at each

step, the random search algorithm closes the gap and it has a higher speed in

reducing the fitness value for each step. For the GPU version the gap between

fitness values fall to an acceptable %3.5, however it stays about at %14 for the

CPU version at the final step of the tests. At this point it can be deducted that the

random search algorithm is more suitable for a GPU implementation.

It is easy to deduce from the main mechanisms of the algorithms that the random

search is more likely to find the global optimum solution if it is run for a very large

amount of time, while the genetic algorithm will probably converge at a local

optimum value. Inspecting the results partially justify this claim. Such that while it

is seen from Figure 5.22 that the random search algorithm will likely provide better

results for larger running times in the GPU implementation, its result for 16,000

seconds is worse than the genetic algorithm’s result for 3,350 seconds. On the other

Approximate Running Time (sec) 3,75 7,5 30 75
Genetic Algorithm Fitness 5053 4162 3958 3929
Random Search Fitness 9126 7337 4592 4471

Approximate Running Time (sec) 0,375 1,500 3,350 16,000

Genetic Algorithm Fitness 5071 4054 3936 3820

Random Search Fitness 7337 4670 4369 3957

89

hand Figure 5.22 shows that the CPU implementation of the random search

algorithm works worse than the corresponding genetic algorithm in terms of both

fitness and running time.

At the end of the comparison it is not easy to say that one algorithm is better than

the other for the GPU version as the results may change for different input sets. But

the CPU tests show that the genetic algorithm is superior to the random search

algorithm. The important result is that, as the previous tests proved, both GPU

implementations are superior to their respective CPU implementations and this

result is the point where this study aims to reach. Finally it can be concluded that

while the genetic algorithm runs more efficiently than the random search for cases

where reaching an optimum solution is more important the random search

algorithm may be a better choice for finding the optimum solution in a GPU

implementation.

Figure 5.21: Running Time and Fitness Comparison between CPU versions of

Genetic and Random Search Algorithms

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

3,75 7,5 30 75

Fi
tn

e
ss

 V
al

u
e

Running Time (seconds)

Genetic Algorithm

Random Search

90

Figure 5.22: Running Time and Fitness Comparison between GPU versions of

Genetic and Random Search Algorithms

5.7 Comparison of Distributed Genetic Algorithm with Genetic and Random

Search Algorithms

To conclude the tests it is imperative to make a comparison between all the three

algorithms that are implemented. As the main aim of this study is to demonstrate

the benefits of CUDA based GPU implementations, only parallel versions of the

algorithms are used for the final step of the tests.

Like the tests of the previous section the tests of this section are run with respect to

running times of the programs and the fitness values of the flight routes. Again for

the test the algorithms are run for some time and the fitness of the best flight route

for each algorithm is listed (Table 5.20). The results of the tests are displayed in

Figure 5.23.

0

1000

2000

3000

4000

5000

6000

7000

8000

0,375 1,5 3,350 16,000

Fi
tn

e
ss

 V
al

u
e

Running Time (seconds)

Genetic Algorithm

Random Search

91

Table 5.20: Comparison of Approximate Running Times and Fitness values

between Genetic, Random Search and Distributed Genetic Algorithms

Approximate Running Time (sec) 0,375 1,500 3,350 16,000

Genetic Algorithm Fitness 5071 4054 3936 3820

Random Search Fitness 7337 4670 4369 3957

Distributed Genetic Algorithm Fitness 4765 3844 3793 3781

Unlike the tests of the previous section the results of this section are much clearer

about the best algorithm for the flight route planning problem. The distributed

version of the genetic algorithm proves itself to be much more faster than the other

two algorithms in terms of both convergence speed and fitness value. The results

on Table 5.20 shows that the distributed genetic algorithm finds a very good

solution at 1,5 th second, which is more than twice faster than the traditional

genetic algorithm and nearly 10 times faster than the random search algorithm for a

similar solution.

Also Figure 5.23 shows that the curve of distributed genetic algorithm is much

flatter than the other two algorithms, which means that the distributed genetic

algorithm converges much faster than the other two algorithms. Keeping in mind

that the distributed genetic algorithm converges to better results it can be deduced

that the migration approach used in distributed genetic algorithm is superior to the

mutation used in genetic algorithm.

Final conclusion of the tests is that, for a GPU implementation the distributed

genetic algorithm proves to be a better solution than both traditional genetic and

random search algorithms. This situation is due to the fact that the distributed

genetic algorithm is already suitable for parallel execution and its main problem of

communication latency is overcome by the efficient shared memory usage in the

GPU.

92

Figure 5.23: Running Time and Fitness Comparison between Genetic, Random

Search and Distributed Genetic Algorithms

0

1000

2000

3000

4000

5000

6000

7000

8000

0,375 1,5 3,350 16,000

Fi
tn

e
ss

 V
al

u
e

Running Time (seconds)

Genetic Algorithm

Random Search

Distributed Genetic
Algorithm

93

CHAPTER 6

CONCLUSION

The flight route planning problem is one of the substantial challenges in the

concept of mission planning systems. The main trade off in flight route planning is

between finding the optimal solution and finding the solution in a reasonable

amount of time. The concern about time originates from the nature of

reconnaissance. The results of reconnaissance missions are often meaningful and

valuable for a certain amount of time.

Although many solution models are presented Travelling Salesman Problem suits

the flight route planning problem the best. This study uses an approach that utilizes

a Genetic Algorithm to solve the TSP. GAs give good approximations to the TSP

in short amount of time. The GA is further supported with a Greedy Approach in

order to converge to a solution even faster.

The devised algorithms have been implemented in two versions where they use

serial and parallel execution methods respectively. The parallel version of the

algorithm is developed using NVIDIA’s CUDA compiler. The second

implementation demonstrates both the modern GPU’s processing power and

CUDA compiler’s capabilities. As two versions of implementation follow the same

logical steps, the results of the study purely demonstrates the improvement

maintained by this new technology.

At the end of the study it is shown that GPU processing capabilities are more than a

match for the classical CPU based approaches especially when an algorithm can be

94

parallelized. CUDA offers ease of usage and some other optimizations for GPU

programming. Although limited to a specific kind of hardware and programming

languages, CUDA has important potential that can be utilized in solving complex

computational problems.

6.1 Future Work

Future work related to flight route planning and CUDA programming are discussed

separately in the following sections.

6.1.1 Flight Route Planning

Future work related to flight route planning is summarized as follows:

 The proposed flight route planning solution of this study does not take into account

the effect of wind on the flight route. So that for a more realistic flight route, a

model which includes aerodynamic calculations may be introduced.

 There may be zones which may be defined as unavailable on the Area of Interest

resulting from real world situations.

 Other kinds of payload than the optical camera can be introduced to the solution

model such as radar systems.

6.1.2 CUDA Programming

Future work related to CUDA Programming is summarized as follows:

 An Object Oriented (OO) version of the application can be developed using the

probable future compiler of CUDA which supports OO languages such as C++ and

Java.

95

REFERENCES

[1] Ying-Shiuan You. Parallel Ant System for Traveling Salesman Problem on

GPUs. In GECCO 2009 - GPUs for Genetic and Evolutionary Computation.

Pages: 1-2, 2009

[2] Martin Cross, Dr David Marlow and Dr Jason Looker. Application of the Non-

stationary Travelling Salesman Problem to Maritime Surveillance. Proceedings of

MISG 2007. Pages: 1-4, 2007

 [3] Philip Kilby, Patrick Tobin, Ruth Luscombe. The Maritime Surveillance

Problem. Proceedings of MISG 2007. Pages: 33-35, 2007

 [4] Marlow, D.O. , P. Kilby and G. N. Mercer. Examining Methods for

Maximizing Ship Classifications in Maritime Surveillance. 18
th

 World IMACS /

MODSIM Congress, Cairns, Australia. Pages: 1630-1632, 2009

 [5] Barry Secrest. Travelling Salesman Problem for Surveillance Mission Using

Particle Swarm Optimization. School of Engineering and Management of the Air

Force Institue of Technology, Air University. Pages: 10-13 , 2001

[6] Kylie Bryant. Genetic Algorithms and the Traveling Salesman Problem.

Department of Mathematics, Harvey Mudd College. Pages: 10-12, 20-23, 2000

 [7] Maria John, David Panton and Kevin White. Mission Planning for Regional

Surveillance, Annals of Operations Research, pp. 108, 157–173, 2001

 [8] Asbjorn Bydal. Implementation of Genetic Algorithm on CUDA.

http://fag.grm.hia.no. (last accessed date: 18 December 2009)

 [9] TURKISH INDIGENOUS MALE UAV (TIHA). http://www.tai.com.tr. (last

accessed date: 20 December 2009)

[10] Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B. (1985), The

Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization,

Wiley, Chichester.

[11] G. Üçoluk. Genetic Algorithm Solution of the TSP Avoiding Special

Crossover and Mutation. Intelligent Automation and Soft Computing, 3(8), TSI

Press, Pages: 1-3, 2002.

[12] NVIDIA. GPU Gems 3. Addison-Wesley Pearson education, 2008.

96

[13] NVIDIA Compute PTX ISA 1.2 manual pp.9

[14] John Hershberger, Subhash Suri. An Optimal Algorithm for Euclidean

Shortest Paths in the Plane. SIAM Journal on Computing 28 (6), Pages: 1-12, 1997

[15] Pankaj K.Agarwal, R.Sharathkumar, HaiYu .Approximate Euclidean Shortest

Paths amid Convex Obstacles. Proceedings of the nineteenth annual ACM

symposium on Theory of computing, Pages: 1-10, 2009

[16] Mariusz Nowostawski, Riccardo Poli. Parallel Genetic Algorithm Taxonomy.

KES’99 Pages: 1-5, 1999

