
 

 

 

 

 

EFFECTS OF PARALLEL PROGRAMMING DESIGN PATTERNS 

ON THE PERFORMANCE OF MULTI-CORE PROCESSOR 

BASED REAL TIME EMBEDDED SYSTEMS 

 

 

 

 

 

A THESIS SUBMITTED TO 

THE GRADUATE SCHOOL OF NATURAL AND APPLIED 

SCIENCES 

OF 

MIDDLE EAST TECHNICAL UNIVERSITY 

 

 

 

BY 

 

 

BURAK KEKEÇ 

 

 

 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

FOR 

THE DEGREE OF MASTER OF SCIENCE 

IN 

ELECTRICAL AND ELECTRONICS ENGINEERING 

 

 

 

 

JUNE 2010 
 



 
Approval of the thesis: 

 
 

EFFECTS OF PARALLEL PROGRAMMING DESIGN 
PATTERNS ON THE PERFORMANCE OF MULTI-CORE 

PROCESSOR BASED REAL TIME EMBEDDED SYSTEMS 

 

submitted by Burak KEKEÇ in partial fulfillment of the requirements for the degree 
of Master of Science in Electrical and Electronics Engineering Department, Middle 
East Technical University by, 
 

Prof. Dr. Canan ÖZGEN                                                        ________________________  
Dean, Graduate School of Natural and Applied Sciences  
 
Prof. Dr. İsmet ERKMEN           ________________________  
Head of Department, Electrical and Electronics Engineering  
 
Prof. Dr. Semih BİLGEN                       ________________________  
Supervisor, Electrical and Electronics Engineering Dept., METU  
 
 
Examining Committee Members:  
 
Prof. Dr. Hasan GÜRAN            _______________________  
Electrical and Electronics Engineering Dept., METU  
 
Prof. Dr. Semih BİLGEN                   _______________________  
Electrical and Electronics Engineering Dept., METU  
 
Assoc. Prof. Dr. Cüneyt BAZLAMAÇCI          _______________________  
Electrical and Electronics Engineering Dept., METU  
 
Asst. Prof. Dr. Şenan Ece SCHMIDT           _______________________  
Electrical and Electronics Engineering Dept., METU  
 
Şafak ŞEKER                                                                          _______________________  
Lead Design Engineer, ASELSAN INC. 

 

               Date:         _______30.06.2010_______



 

 iii 

 

 

 

 

 

 

 

 

I hereby declare that all information in this document has been obtained 

and presented in accordance with academic rules and ethical conduct. I 

also declare that, as required by these rules and conduct, I have fully 

cited and referenced all material and results that are not original to this 

work. 

 

     Name, Last name  : Burak KEKEÇ 

     Signature                : 



 

 iv 

 

ABSTRACT 

 

 

 

EFFECTS OF PARALLEL PROGRAMMING DESIGN PATTERNS ON THE 

PERFORMANCE OF MULTI-CORE PROCESSOR BASED REAL TIME 

EMBEDDED SYSTEMS 

 

 

KEKEÇ, Burak 

M.Sc., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Semih BİLGEN 

 

June 2010, 114 pages 

 

 

 

 
Increasing usage of multi-core processors has led to their use in real time 

embedded systems (RTES). This entails high performance requirements 

which may not be easily met when software development follows traditional 

techniques long used for single processor systems. In this study, parallel 

programming design patterns especially developed and reported in the 

literature will be used to improve RTES implementations on multi-core 

systems. Specific performance parameters will be selected for assessment, 

and performance of traditionally developed software will be compared with 

that of software developed using parallel programming patterns. 

 

 

Key Words: Multicore programming, real-time embedded systems, design 

patterns 



 

 v 

 

ÖZ 

 

 

 

PARALEL PROGRAMLAMA TASARIM ÖRÜNTÜLERİNİN ÇOK İŞLEMCİLİ 

GERÇEK ZAMANLI GÖMÜLÜ SİSTEM PERFORMANSI ÜZERİNDEKİ 

ETKİSİ 
 

 

KEKEÇ, Burak 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Semih BİLGEN 

 

Haziran 2010, 114 sayfa 

 

 

 

 

Çok çekirdekli işlemcilerin yaygınlaşması, bunların gerçek zamanlı gömülü 

sistemlerde (GZGS) de kullanılmasına yol açmıştır. Ancak bunun gerektirdiği 

yüksek performans, tek işlemcili sistemler için kullanılan geleneksel 

yöntemlerle geliştirilmiş yazılımlarla sağlanamayabilmektedir. Bu çalışmada, 

GZGS performansı ölçütleri seçilecek ve özel olarak bu amaca yönelik olarak 

tanımlanmış ve literatürde tartışılmış bulunan paralel programlama tasarım 

örüntüleri kullanılarak elde edilen performans ile geleneksel yöntemlerle 

geliştirilen yazılımların performansı karşılaştırılacaktır. 

 

 

Anahtar Kelimeler: Çok çekirdekli işlemci programlama, gerçek zamanlı 

gömülü sistemler, tasarım örüntüleri 



 

 vi 

 

 

 

 

 

 

 

 

 

 

 

To Melik Gazi… 



 

 vii 

 

ACKNOWLEDGMENTS 

 

 

 
I would like to thank Prof. Dr. Semih BİLGEN for his valuable supervision, 

support and guidance throughout the thesis work. 

 

I am grateful to Şafak ŞEKER and my other colleagues for their supports 

throughout the thesis work. I am also grateful to Aselsan Electronics 

Industries Inc. for encouragements and resources that are supported for this 

thesis. 

 

I would like to thank to TUBİTAK for scholarship throughout this study. 

 

Finally, I owe my deepest gratitude to my parents and my brothers for their 

encouragements and to my dear who is my everything. 



 

 viii 

 

TABLE OF CONTENTS 

 

 

 

ABSTRACT .................................................................................................... iv 

ÖZ ................................................................................................................... v 

ACKNOWLEDGMENTS ............................................................................... vii 

TABLE OF CONTENTS ............................................................................... viii 

LIST OF ABBREVIATIONS ........................................................................... xi 

LIST OF TABLES .......................................................................................... xii 

LIST OF FIGURES ...................................................................................... xiii 

INTRODUCTION ........................................................................................... 1 

BACKGROUND ............................................................................................. 4 

2.1 Multicore Processors ........................................................................ 4 

2.2 Parallel Computing and Symmetric Multiprocessing (SMP) .............. 5 

2.3 Multicore Programming Challenges and Approaches ....................... 6 

2.4 Patterns for Parallel Programming Design Approach ..................... 10 

2.4.1 Design Patterns & Pattern Language: ...................................... 10 

2.4.2 Design Patterns in Real-Time Systems: ................................... 11 

2.4.3 Parallel Programming Patterns................................................. 11 

2.4.3.1 Parallel Programming Pattern Language ........................... 12 

2.4.3.2 Our Pattern Language (OPL) ............................................. 18 

2.5 Real Time Performance Metrics ..................................................... 20 

IMPLEMENTATION ..................................................................................... 24 

3.1 VxWorks OS & VxWorks 6.6 with SMP........................................... 24 

3.2 Wind River WorkBench 3.0 ............................................................. 28 

3.2.1 VxWorks Image Project: ........................................................... 30 

3.2.2 VxWorks Downloadable Kernel Module Project: ...................... 30 

3.2.3 Debugger ................................................................................. 31 

3.2.4 Additional Tools ........................................................................ 31 

3.2.4.1 System Viewer ................................................................... 31 

3.2.4.2 VxWorks Simulator ............................................................ 32 

3.2.4.3 Function Tracer .................................................................. 33 

3.3 Experiment Setup ........................................................................... 34 

3.3.1 Host Machine ........................................................................... 34 



 

 ix 

3.3.2 Target Machine ........................................................................ 36 

3.3.2.1 Wind River SBC8641D: ..................................................... 37 

3.3.2.2 Freescale MPC8641D ....................................................... 37 

3.4 Test Project ..................................................................................... 38 

3.4.1 List Management Software: ...................................................... 38 

3.4.2 Design of Parallel Test Software: ............................................. 45 

3.4.2.1 Finding Concurrency Phase............................................... 45 

3.4.2.2 Algorithm Structure Phase ................................................. 55 

3.4.2.3 Supporting Structure Phase ............................................... 58 

3.4.2.4 Implementation Mechanism Phase .................................... 60 

EVALUATION .............................................................................................. 73 

4.1 Test Method: ................................................................................... 73 

4.1.1 “Define”s in Software: ............................................................... 74 

4.1.2 Auxiliary Testing Program: ....................................................... 75 

4.2 Input Set: ........................................................................................ 77 

4.3 Test Cases: ..................................................................................... 78 

4.3.1 Test Case 1: Timeline Measurement Test ................................ 78 

Goal of test: ....................................................................................... 78 

Testing Method: ................................................................................ 78 

Evaluation Method: ........................................................................... 78 

Expectations: ..................................................................................... 79 

Result: ............................................................................................... 81 

4.3.2 Test Case 2: Consistency Test ................................................ 85 

Goal of test: ....................................................................................... 85 

Testing Method: ................................................................................ 85 

Evaluation Method: ........................................................................... 86 

Expectations: ..................................................................................... 86 

Result: ............................................................................................... 86 

4.3.3 Test Case 3: Computation Time Test ....................................... 86 

Goal of test: ....................................................................................... 86 

Testing Method: ................................................................................ 87 

Evaluation Method: ........................................................................... 87 

Expectations: ..................................................................................... 87 

Result: ............................................................................................... 88 

4.3.4 Test Case 4: Time Constraint Test ......................................... 103 

Goal of test: ..................................................................................... 103 

Testing Method: .............................................................................. 103 



 

 x 

Evaluation Method: ......................................................................... 104 

Expectations: ................................................................................... 104 

Result: ............................................................................................. 104 

DISCUSSION AND CONCLUSION ........................................................... 106 

REFERENCES .......................................................................................... 109 

APPENDIX-A ............................................................................................. 113 



 

 xi 

 

LIST OF ABBREVIATIONS 

 

 

 

OS: Operating System 

SMP: Symmetric Multiprocessing 

SISD: Single instruction single data 

SIMD: Single instruction multiple data 

MISD: Multiple instruction single data 

MIMD: Multiple instruction multiple data 

RT: Real-Time 

UE: Unit of execution  

PE: Processing Element 



 

 xii 

 

LIST OF TABLES  

 

 

 

Table 2.1: Relationship between Supporting Structures patterns and 

Algorithm Structure patterns [1] ............................................................................ 15 

Table 2.2: Relationship between Supporting Structures patterns and 

programming environments [1] ............................................................................. 16 

Table 4.1: Computation time change in usec for the same input .................. 104 

Table A.1: Test Input Set ..................................................................................... 113 



 

 xiii 

 

LIST OF FIGURES 

 

 

 

Figure 3.1: VxWorks Tasks .................................................................................... 25 

Figure 3.2: User Interface of Wind River Workbench ........................................ 29 

Figure 3.3: Experiment Setup ................................................................................ 34 

Figure 3.4 Flow Chart of the List Management Algorithm ................................ 39 

Figure 3.5: Flow Chart of Update Decision Algorithm ....................................... 42 

Figure 3.6: Flow Chart of Updating algorithm ..................................................... 44 

Figure 3.7: Task group ordering for Design Approach 1 ................................... 50 

Figure 3.8: Class Diagram Of List Management Problem ................................ 63 

Figure 3.9: Message Sequence Diagram of the List Management Software 64 

Figure 4.1 Auxiliary testing Program .................................................................... 76 

Figure 4.2: Timing for 3rd input arrival for Serial Design.................................... 81 

Figure 4.3: Timing for 3rd input arrival for Parallel Design 1 ............................ 82 

Figure 4.4: Timing for 3rd input arrival for Parallel Design 2 ............................ 83 

Figure 4.5: Timing for 3rd input arrival for Parallel Design 3 ............................ 84 

Figure 4.6:  Arrival - computation time graph for 1 to 250 elements of input 

file for all design when there is no kill time .......................................................... 89 

Figure 4.7: Arrival - computation time graph for 1 to 100 elements of input file 

for all design when there is no kill time ................................................................ 90 

Figure 4.8: Arrival - computation time graph for 1 to 250 elements of input file 

for all design except Design 1 when there is no kill time .................................. 92 

Figure 4.9: Arrival - computation time graph for 1 to 100 elements of input file 

for all design except Design 1 when there is no kill time .................................. 93 

Figure 4.10: Arrival - computation time graph for 1 to 250 elements of input 

file when killtime is set to 10 usec. ....................................................................... 95 

Figure 4.11: Arrival - computation time graph for 1 to 50 elements of input file 

when killtime is set to 10 usec. .............................................................................. 96 

Figure 4.12: Arrival - computation time graph for 1 to 250 elements of input 

file when killtime is set to 10 usec. ....................................................................... 98 

Figure 4.13: Arrival - computation time graph for 1 to 50 elements of input file 

when killtime is set to 10 usec. .............................................................................. 99 

Figure 4.14: Arrival - computation time graph for 1 to 250 elements of input 



 

 xiv 

file when killtime is set to 100 usec. ................................................................... 101 

Figure 4.15: Arrival - computation time graph for 1 to 50 elements of input file 

when killtime is set to 100 usec. ......................................................................... 102 

 



 

 1 

 

CHAPTER 1 

 

 

INTRODUCTION 
 

 

 

Development in science and the technology has triggered many 

improvements in the computation area. The problems to be solved by 

computers become bigger and more complex. This requires faster 

computers. To meet this requirement multicore processors have been 

introduced. Multicore processors are composed of two or more independent 

processing elements with fast interface between the processing elements. 

 

While multicore processors are new in computing technology, actually, 

parallel computing and multithreading concepts are not new. However with 

multicore processors these concepts have become more important. 

 

To obtain better performance from multicore processors, software developers 

must respond to multicore processors solutions of chip developers by 

developing proper software with parallel programming effort. However to 

perform this, software developers face lots of challenges such as parallelizing 

tasks, data synchronization, load balancing, avoiding race conditions etc. 

 

Parallel programming design patterns or pattern languages are helpful 

solutions to overcome these challenges. 

 

The aim of this thesis study is to evaluate the effectiveness of a specific 

parallel programming design pattern language proposed by Mattson et.al. [1], 



 

 2 

via a case study that involves a real time list management algorithm 

implementation. 

 

In the scope of the present study, the list management algorithm which has 

been implemented as serial by traditional coding style, is re-implemented 

using the parallel programming design pattern language in [1] to exploit the 

concurrency provided by the multicore processors. Parallel implementation is 

made using three different design approaches which include different 

patterns from that pattern language. 

 

After implementations of the serial and three different parallel designs, each 

parallel implementation will be compared with the serial implementation and 

other parallel implementations with respect to the real time performance 

metrics. Then this comparison results will be evaluated and some inferences 

are derived about parallel programming. 

 

The remaining chapters of the thesis are organized as follows:  

 

In Chapter 2 background information about multicore processors, parallel 

computing and symmetric multiprocessing, multicore programming and its 

challenges, pattern, pattern language concepts and parallel programming 

patterns is presented. Moreover information about real rime software and real 

time performance metrics are also introduced. 

 

In Chapter 3 experimental work in the thesis is explained. The software 

development environment, hardware components and connections between 

them in the experiment setup, and the software and tools are introduced. 

Also the list management algorithm that is implemented in the thesis, 

implementation details of serial and three parallel software design tested, 

parallel programming patterns and their usage in the software are also 

presented. 



 

 3 

 

In Chapter 4 test method to compare the one serial and three parallel 

implementations with respect to the real time performance metrics is 

explained. Different test cases to evaluate the software with respect to the 

different real time performance metrics are explained in details. Moreover, 

some graphs and tables are formed with the output data obtained from the 

described test cases.  

In Chapter 5 the one serial and three parallel different implementations of the 

list management algorithm are summarized and compared with respect to the 

real time performance metrics. Also suitability of the selected patterns for the 

parallel designed software is discussed and some inferences about the 

pattern selection for the different versions of the algorithm are stated. After a 

review of achievements and shortcomings of the study, suggestions for future 

work are also presented in this concluding chapter. 



 

 4 

 

CHAPTER 2 

 

 

BACKGROUND 
 

 

 

2.1 Multicore Processors 

 

Traditional methods to increase performance of a processor were using more 

transistors on chips and increasing clock rate. However, this solution has 

reached its limit. Since they cause high heat dissipation and too much power 

consumption, chip developers have changed their methods. The new trend is 

building chips with multiple cores instead of single core. This new method is 

more power efficient and supplies better performance. [2] Thus, nowadays 

multicore processors are preferred instead of single core processors.  

 

Actually, multicore processor technology is an important solution for many 

computing problems because some present problems and possible future 

problems in human life require better performance. Multicore processors will 

be indispensable for all areas of computing that require high performance 

such as management of big databases, high quality PC animations and 

games, high quality digital media, internet, data security etc. [3] As a result 

usage of multicore processors has been increasing gradually with time. 

 



 

 5 

2.2 Parallel Computing and Symmetric Multiprocessing 

(SMP) 

 

Sometimes single processor can not be practicable to solve some problems 

that require high performance. Using more than one processor to work 

concurrently is the solution for these problems. Processors can be connected 

together in different ways. There are different kinds of parallel computing 

architectures. These architectures can be roughly classified with Flynn’s 

taxonomy which classifies parallel computing architectures with regard to 

memory and instruction coherency. There are four types of structure in 

Flynn’s taxonomy: SISD, SIMD, MISD, MIMD. [4] In SISD systems single 

instructions access the single data and no parallelism can be exploited, in 

SIMD systems single instruction access different data simultaneously, in 

MISD systems multiple instructions process on the same data and in MIMD 

systems multiple instructions process on different data. [5] 

 

In parallel computing architectures processing elements can be on the same 

machine or on distributed machines. If processing elements are on the same 

machine, this kind of computing is named as multiprocessing. Multicore 

processors are a kind of multiprocessing architecture with a difference that 

parallelism is achieved not by processors but by processor cores. For 

multicore processors, more than one core exists in a single processor. That 

is, multicore processors are chip-level multiprocessing systems.  

 

Symmetric Multiprocessing (SMP) is one of various parallel processing 

approaches in which more than one identical processor can access a single 

shared memory via a common bus. An identical copy of an operating system 

runs on each processor. Also each processor has its own caches. Since 

processors have identical architecture and instruction sets, a process or 

thread can run on any of them. Thus workload can be balanced.  

 



 

 6 

SMP approach can be used for multicore processors. SMP Multicore 

processors can run a single OS which supports SMP such as VxWorks 6.6 

SMP [6], Linux 2.6 [7] These OS can fulfill load balancing which is fairly 

sharing out the overall processing workload to the processing elements. 

 

2.3 Multicore Programming Challenges and Approaches 

 
Before release of multicore processors, most software developers did not 

have to consider parallelism, so serial programming was efficient. However 

after beginning to use multicore processors, software developers must also 

improve their code writing skills and they also rewrite their code that was 

written for single core processors to reap the benefits of multi processors. 

They must parallelize their codes, divide serial program into tasks that can be 

run parallel on different cores simultaneously.  

 

However this kind of programming is not easy. There are lots of challenges in 

multicore programming. Sometimes difficulty arises from the problem 

characteristic. Some problems can not be parallelized. Management of data 

used for solving a problem is another major challenge. Sharing data between 

tasks running in parallel and synchronizing the shared data are also 

significant issues for parallel programming. Software developers must avoid 

deadlocks and race conditions. [8] Partitioning of software into threads is 

another important issue that developers must be careful. It must be adequate 

for efficiency i.e. not too much and not too little. Also handling communication 

mechanism between these threads is another challenge. Proper load 

balancing must be ensured for avoiding mistakes due to disordered 

execution of available threads in software. Beside multicore software design, 

debugging is also a challenge for developers. [9]  

 

Multiprocessing and multithreading are not new issues in programming but 



 

 7 

with usage of multicore processors, they have become more popular. 

Presently there are some software development tools (compilers, frameworks 

etc.) that ease multithreading. [10] Nowadays companies continue to improve 

their tools to overcome multicore programming challenges. [9] Some static 

analysis tools have been developed to identify deadlocks and race 

conditions. Also there are compilers and operating systems that support 

development of multithreaded software. Moreover debugging tools have 

been improved to perform multicore debugging. Also some Parallel 

programming frameworks are available that ease the parallel programming. 

 

However to be able to use these tools and to overcome multicore 

programming challenges software developers must also improve their writing 

skills and also change their viewpoint about problem analysis. Parallel 

thought is a fundamental starting point of parallel programming. [11] 

 

To overcome these challenges and to make parallel programming easier, 

there are lots of studies. In the scope of these studies new parallel 

programming languages, frameworks, design patterns, parallel software 

architectures, libraries, run time environments are being introduced gradually. 

There are some research groups that study on this area. 

 

Parallel Computing Laboratory (Par Lab) at the University of California, 

Berkeley is one of research group that study on parallel programming. 

According to [12] Par Lab has a top-down from the application approach 

instead of traditional bottom-up from the hardware approach. In parallel 

program development approach of Par Lab, there are two layers. First one is 

efficiency layer that includes optimized libraries and parallel programming 

frameworks developed by the parallel programmer experts. Second one is 

the productivity layer that includes composition and coordination language 

which are used to develop applications by the help of the efficiency layer. 

Application programmers or domain experts use the productivity of this layer. 



 

 8 

Finally, autotuners which map the software efficiently to a particular parallel 

computer are involved in Par Lab approach. [12] 

 

Pervasive Parallelism Laboratory (PPL) at Stanford University is another 

research group that study on parallel programming. PPL aims to make 

parallel programming easier. PPL studies on specific applications in different 

areas, programming models, software systems such as virtual machines, 

optimized compilers etc. and hardware architectures. The key concepts of 

PPL approach are domain specific languages, combining implicit or dynamic 

and explicit or static management of parallelism in a common parallel 

runtime, flexible hardware features. [13] 

 

The Universal Parallel Computing Research Center (UPCRC) at the 

University of Illinois is another research group that study on parallel 

programming. UPCRC aims to develop a disciplined parallel programming 

model that supported by sophisticated development and execution 

environments as existing models in sequential programming. Also UPCRC 

study on parallelism of all levels from application to hardware such as parallel 

languages, autotuners, domain-specific environments, adaptive runtime 

environments, hardware mechanisms, refactoring tools. Moreover UPCRC 

aims to make future applications human centric. [14] 

 

In [15], parallel computing approaches in ubiquitous programming of three 

different groups involved three universities are maintained. The first group is 

Parallel Computing Laboratory (Par Lab) at the University of California, 

Berkeley. Par Lab team has defined their pattern language which includes 

architectural and software patterns. Also they have formed a pattern-oriented 

software framework to build the software architecture of the parallel program. 

The second group is The Universal Parallel Computing Research Center at 

the University of Illinois. They focus on programming language, compiler, and 

runtime technologies supporting parallel programming. The third group 



 

 9 

Stanford University’s Pervasive Parallelism Laboratory (PPL). Their goal is to 

make parallelism accessible to average software developers. To do they 

develop parallel domain-specific languages. Moreover all three groups study 

on some other areas different from ubiquitous programming to develop 

parallel programs. 

 

In [16] a pattern language for distributed computing is introduced. Although 

patterns involved in this pattern language are about distributed computing, 

some of them can be used for parallel programming such as patterns about 

concurrency, synchronization, message passing, data access.  

 

In [17] Berkeley Par Lab’s approach to the parallel programming and their 

studies are explained. Their studies are focused on both hardware and 

software parts of the computation. They have developed application-driven 

projects in different area by the helps of the domain experts. Par Lab 

introduces a pattern language, frameworks, productive environments to 

provide the abstraction of low level operations from the programmer. At the 

last part of [17] four other projects related with the parallel programming 

challenge are mentioned. One of them is The Universal Parallel Computing 

Research Center of the University of Illinois. They focus on productivity in 

specific domains than on generality or performance. They are advancing 

compiler to determine potential parallel parts. Also they develop frameworks 

that generate domain specific environment that provide an abstraction of 

parallel programming details. Another project is belongs to The Pervasive 

Parallelism Laboratory at Stanford University. Their approach includes 

domain specific languages and a common parallel runtime environment. 

Georgia Tech University is another group which develops different 

applications for Cell Broadband Engine Processor. Another project is The 

Habanero Multicore Software Project at Rice University. Languages, 

compilers, libraries, and tools are being developed in this project. 

 



 

 10 

In [18] a new language for multicore processors, Manticore, is introduced. 

This language is a general-purpose programming language i.e. it is not 

developed for a specific field and it is also a parallel programming language. 

 

Parallel programming patterns or pattern languages can be a common 

solution to parallel programming challenges for different domains. Two 

parallel programming pattern languages are reviewed in further detail in the 

next chapter. 

 

2.4 Patterns for Parallel Programming Design Approach 

2.4.1 Design Patterns & Pattern Language: 

 
The concept of design patterns was first introduced by architect C. Alexander 

and some design patterns were offered to some common problems in area of 

architecture. In course of time this concept was entrenched in the area of 

software development. [19]  

 

Software design patterns are generalized, time-tested and high-quality 

solutions to recurring problems that software developers frequently face with. 

These solutions are recorded within a predefined context which generally 

contains the name of pattern, problem, forces, solution etc. Thanks to this 

well-defined context, readers can understand design patterns quickly. Design 

patterns are also good method for sharing experience between experts of an 

area. Furthermore, design patterns generate a common vocabulary between 

people working in the same area. This provides better communication in the 

domain. [1] 

 

Pattern languages are structured collection of patterns, or “the web of 

patterns”. Pattern languages help developers to select appropriate patterns in 

complex designs.  



 

 11 

 

There is a strong relation between some patterns in other words; actually 

some patterns complete each other. Thus, in design process, each selected 

pattern in pattern language leads to some other patterns. [1][20] 

 

2.4.2 Design Patterns in Real-Time Systems: 

 
Although design patterns concept has been used in software for years, their 

usage in Real-Time (RT) software has not been soon. Some reasons for this 

delay stem from the nature of RT software. Mostly RT software must run on a 

particular hardware and this hardware has some limitations on memory, size, 

power etc. Since software patterns consume some of these limited hardware 

features, RT software developers could adapt to design patterns after 

improvements in hardware technologies. 

 

Another reason for the delay in design pattern usage in RT software is that 

generally RT software developers are domain experts but not software 

development experts. Thus, enhancement of their software developing skills 

took some time. [21] 

 

After usage of design patterns in RT software, some additional patterns that 

offer solutions to problems concerning RT software specifically have been 

developed.  

 

 

2.4.3 Parallel Programming Patterns 

 
After parallel computing became popular, software developers started to 

develop new skills to exploit concurrency. Then, some software design 

patterns and pattern languages have been developed for parallel 



 

 12 

programming software to overcome some common problems and also to 

form better parallel software architecture. The first parallel programming 

pattern language was introduced in [1] by experts of parallel computing. 

Another pattern language for parallel programming is currently being 

developed by Berkeley Par Lab. [20]  

 

2.4.3.1  Parallel Programming Pattern Language 

 
In [1], Mattson, Sanders and Massingill collect and combine the experiences 

of experts in the parallel programming field. They present this collection as a 

pattern language which is a familiar method for software developers. 

 

This pattern language is composed of four phases of parallel programming. 

Visiting these four phases sequentially with a top-down approach is 

recommended to parallel software developers. From top to down these 

phases are Finding Concurrencies, Algorithm Structure, Supporting 

Structures and Implementation Mechanisms. 

 

2.4.3.1.1 Finding Concurrency Design Space: 

 
In this design space of pattern language, the problem that is tried to solve 

with a parallel program is analyzed by the developer. This analysis is focused 

on problem size, possible tasks that solve the problem and data that would 

be used by tasks. After this analysis, the developer decides whether the 

parallel program effort is worthwhile or not for this problem. Also the 

developer determines the tasks, data and possible concurrent parts in the 

program.  

The patterns in this design space can be divided into three groups. 

 

 



 

 13 

Decomposition Patterns: 

There are two patterns under this group which are Task Decomposition 

Pattern and Data Decomposition Pattern. By the help of these patterns the 

problem is decomposed into tasks that can be executed concurrently and 

data used by the tasks. Actually there is a strong interaction between these 

two patterns but according to the problem, one of them is selected for start. 

 

Dependency Analysis Patterns: 

Group Tasks Pattern, Order Tasks Pattern, and Data Sharing Pattern are 

included in this group. Thanks to these patterns dependencies between tasks 

are defined. 

 

Design Evaluation Patterns: 

Owing to this pattern the software developer can evaluate the design made in 

this design space. After the evaluation software developer decides whether 

to continue with this design or turn back and correct the design. 

 

 

2.4.3.1.2 Algorithm Structure Design Space 

 
In this design space, the software developer tries to distribute the 

concurrency found in the first phase to the unit of executions (UEs), namely 

threads or processes, by using patterns involved in this design space. 

 
Most appropriate pattern or patterns must be selected for the problem. While 

making this selection, the developer must consider some software forces 

such as Efficiency, Simplicity, Portability and Scalability and also features of 

the target platform on which the parallel program run. Sometimes these 

factors can lead to conflicts. Thus the developer must optimize the selection. 

 

Appropriate pattern selection depends on the specific problem. The potential 



 

 14 

concurrent part of the problem is the major factor for this selection. This 

factor is named as major organizing principle. According to the problem, a 

task group, data or flow of data may be the major organizing principle. 

 

Eventually the developer determines to the major organizing principle, the 

most appropriate pattern or patterns for design is selected. The developer 

must also consider the software quality factors and sometimes the hardware 

on which the program will run. 

 

Organize By Tasks: 

If execution of tasks is the major organizing principle, patterns in this group 

can be selected. Task Parallelism Pattern and Divide and Conquer 

Pattern are patterns in this group. Selection of one of these patterns is made 

according to the enumeration of the tasks. If tasks are enumerated linearly 

then Task Parallelism Pattern is selected else if they are enumerated 

recursively then Divide and Conquer Pattern can be selected. 

 

Organize By Data Decomposition: 

If decomposition of the data is the major organizing principle patterns in this 

group can be selected. Geometric Decomposition Pattern and Recursive 

Data Pattern are patterns in this group. Selection of one of these patterns is 

made according to the structure of data decomposition of the problem. If data 

is decomposed linearly then Geometric Decomposition Pattern is selected 

else if data has a recursive data structure then Recursive Data Pattern can 

be selected. 

 

Organize By Flow of Data: 

If flow of the data is major organizing principle patterns in this group can be 

selected. Pipeline Pattern and Event-Based Coordination Pattern are 

patterns in this group. Selection of one of these patterns is made according 

to the data flow order. If data flow regular and static then Pipeline Pattern 



 

 15 

can be selected else if it is irregular and/or dynamic then Event-Based 

Coordination Pattern can be selected. 

 

2.4.3.1.3 Supporting Structures Design Space 

 
Patterns in this phase map the algorithm that was defined in Finding 

Concurrency and Algorithm Structure design spaces to the program source 

code. Patterns involved in this design space can be divided into two groups 

which are program structures and data structures.  

 
Selection of patterns in this phase depends on the programming environment 

and selected patterns of previous phases. Table 2.1 shows relationships 

between supporting structure patterns and algorithm structure patterns and 

Table 2.2 shows relationships between supporting structure patterns and 

programming environments. In tables, number of stars shows the relevance 

of the supporting structure pattern in different cases. 

 

 

 

 

Table 2.1: Relationship between Supporting Structures patterns and 

Algorithm Structure patterns [1] 

 
 

Task 
Parallelism 

Divide 
and 

Conquer 

Geometric 
Decomposition 

Recursive 
Data 

Pipeline 
Event-Based 
Coordination 

SPMD **** *** **** ** *** ** 

Loop 
Parallelism 

**** ** ***    

Master/Worker **** ** * * * * 

Fork/Join ** **** **  **** **** 

 

 

 



 

 16 

 

Table 2.2: Relationship between Supporting Structures patterns and 

programming environments [1] 

 
 OpenMP MPI Java 

SPMD *** **** ** 

Loop Parallelism **** * *** 

Master/ Worker ** *** *** 

Fork/Join ***  **** 

 

 
 

Program Structuring Patterns: 

This group contains patterns which are used for structuring the program 

source code.  

SPMD Pattern, Master/Worker Pattern, Loop Parallelism Pattern and 

Fork/Join Pattern are the patterns in this group. Some of these patterns can 

be used simultaneously in a program. According to the programming 

environment and patterns selected in algorithm structure phase, appropriate 

pattern or patterns are selected from this group. 

 

Data Structuring Patterns: 

This group contains patterns which are used to structure the data to manage 

data dependencies. Shared Data Pattern, Shared Queue Pattern and 

Distributed Array Pattern are the patterns in this group. 

 

2.4.3.1.4 Implementation Mechanisms Design Space 

 
In this phase patterns of the previous phases are mapped to the codes for a 

specific environment. Methods in this phase can not be considered as design 

patterns. But this phase is important to complete the pattern language. 

Methods in this phase are UE management, Synchronization and 

Communication.  



 

 17 

 

UE management: 

There are different methods of creation, destruction, and management of the 

UEs (processes and threads) for different environments. Threads are created 

and destroyed with less cost with respect to he processes. 

  

Synchronization: 

Synchronization is very important issue for parallel programming. Because if 

task running order change, result of the program may change. For serial 

computation ordering is supplied by nature of sequential execution but in 

parallel computation more attention must be taken.  

 

Moreover mutual exclusion is necessary to avoid parallel access to the 

shared data. If while one task writes to data and another task reads it at the 

same time, wrong data is read. 

 

For both synchronization and mutual exclusion, there are different methods 

for different environments. 

 

Communication: 

Data transfer between the UEs is indispensable for most parallel programs. 

Communication mechanism is changed for different environments. Thus 

methods for communication are also changed. 

 

2.4.3.1.5 Comments on Parallel Programming Pattern Language 

 
Mattson, Sanders and Massingill’s book [1] was written thanks to many years 

of experience of parallel computing. However the pattern language 

introduced in this book is not definitively completed but it was a start point for 

an iterative process of improvement. In course of time sufficiency of patterns 

are expected to be determined by users of this language and missing parts 



 

 18 

will be removed with some new patterns. [1]  

 

Moreover, patterns in this book are high level patterns which are hard to 

learn. This pattern language needs small scaled patterns that support it. Also 

there may be some technology dependent and domain dependent patterns 

beside the patterns involved in this pattern language. [23] 

 

2.4.3.2  Our Pattern Language (OPL) 

(Berkeley Par Lab Pattern Language for Parallel Programming) 

 
OPL (Our Programming Language) developed by Berkeley Par Lab [24] is 

another pattern language for parallel programming. This pattern language is 

organized with a layered structure and it focuses on patterns for parallel 

programming and their usage. Other concepts of computer science are out of 

scope of this pattern language. Also OPL is domain independent, i.e., it is 

appropriate to application programmers in any field. 

 

2.4.3.2.1 Structure of OPL 

 
OPL is organized with a layered structure that contains five main groups of 

patterns. These groups are Architectural patterns, Computational patterns, 

Parallel Algorithm strategy patterns, Implementation strategy patterns and 

Concurrent execution patterns. 

 
Architectural patterns and Computational patterns layers are at the same 

level and there is strong relation between them. An ordinary software 

developer visits layers from top to bottom but there can be some back and 

forth transitions. 

 



 

 19 

2.4.3.2.2 Architectural Patterns:  

This group of patterns defines the overall architecture of a program. Patterns 

in this group are Pipe-and-filter, Agent and Repository, Process control, 

Event based implicit invocation, Model-view-controller, Bulk Iterative, 

Map reduce, Layered systems, Arbitrary static task graph. 

 

2.4.3.2.3 Computational Patterns:  

Patterns involved in this group define the computations made by components 

of the program. Patterns in this group are Backtrack, Banch and bound, 

Circuits, Dynamic programming, Dense linear algebra, Finite state 

machine, Graph algorithms, Graphical models, Monte Carlo, N-body, 

Sparse Linear Algebra, Spectral methods, Structured mesh, 

Unstructured mesh. 

 

2.4.3.2.4 Parallel Algorithm Strategy Patterns:  

This group is composed of high level strategies for better software to exploit 

concurrency. Patterns in this group are Task parallelism, Data parallelism, 

Recursive splitting, Pipeline, Geometric decomposition, Discrete event, 

Graph partitioning, Digital Circuits. 

 

2.4.3.2.5 Implementation Strategy Patterns:  

This group of patterns defines implementation of the parallel program. There 

are two types of patterns in this group, namely program structure patterns 

and data structure patterns. Program structure patterns that describe 

program organization are Single-Program Multiple Data (SPMD), Strict 

data parallel, Loop-level parallelism, Fork/join, Master-worker/Task-

queue, Actors, BSP.  Also data structure patterns are Shared queue, 

Distributed array, Shared hash table, Shared data, Data Locality.  

  



 

 20 

2.4.3.2.6 Concurrent Execution Patterns:  

 

Patterns in this group illustrate the mapping of the parallel algorithm to the 

program. These patterns are strongly related with hardware and parallel 

programming model. 

There are two types of patterns in this group. First type is process/thread 

control patterns and CSP or Communicating Sequential Processes, Data 

flow, Task-graph, Single-Instruction Multiple Data (SIMD), Thread pool, 

Speculation are the patterns of this type. The second type is coordination 

patterns that include Message passing, Collective communication, 

Mutual exclusion, Point to point synchronization, Collective 

synchronization, Transactional memory patterns. [24] 

 

2.5 Real Time Performance Metrics 

 

Real time systems are systems that must respond to an event within 

operational deadlines. If such a system cannot complete its work before a 

deadline then it is said to have failed. Thus correctness of the system 

depends not only on the correctness of solution but also response time. 

 

Hard real time systems always require response time within given 

constraints. If even the system responds late only once, then it is said to 

have failed. 

 

Soft real time systems can tolerate such delays but if these occur 

consistently then the system is said to have failed. 

 

A real time system does not necessarily run as fast as possible. But it runs 

within deterministic time constraints. These constraints are defined 

specifically by system requirements. 



 

 21 

 

In real-time embedded systems performance and low power consumption is 

very important. Multicore processors are good choices to satisfy these two 

criteria. 

 

There are a number of metrics used to measure real time system 

performance. According to [25], some metrics to measure performance are 

grouped under performance profiles that include constraints that specify the 

time spent in functions, A-B timing which is the time between two specified 

points, response to external events which is the time between an external 

event and system response (e.g. interrupt latency), RTOS task performance 

i.e. task deadline performance according to a specific task profile.  

 

In [26], three types of performance metrics for real-time systems are stated: 

 

 Qualitative binary criteria (criteria either being fulfilled or not): 

o Timeliness, the ability to meet all deadlines 

o No unbounded delays nor arbitrarily long executions 

o Safety licensable, or better, safety licensed 

o Functional correctness 

o Deterministic behavior 

o Permanent readiness 

o Simultaneous operation towards the outside 

o All applicable physical constraints met 

o Only static and real features used 

o Deadlocks prevented 

 

 Qualitative gradual criteria (one system may have a property to a 

higher degree than another one, but the property cannot be 

quantified): 

o Safety 



 

 22 

o Dependability 

o Behavioral predictability, even in error situations 

o Complexity, or better, simplicity (the simpler the better) 

o Reliability 

o Robustness 

o Fault tolerance 

o Graceful degradation upon malfunctions 

o Portability 

o Flexibility 

 

 Quantitative criteria (criteria giving rise to measurable numbers): 

o Worst-case response times to occurring events 

o Worst-case times to detect and correct errors 

o Signal to noise ratio and noise suppression 

o MTBF, MTDF, MTTF, and MTTR 

o Capacity reserves 

o Overall project costs (“the bottom-line”) 

 

For different cases different subset of these metrics can be used. For 

example in [27] responsiveness (worst-case time to response time to an 

event) and timeliness (worst-case time to process after responding event) 

are mentioned as the metrics that determine the system performance. 

 

Beside these real time system performance metrics, there are some 

performance metrics for parallel applications such as Sequential Time, 

Parallel Time, Critical Path Time, Speed, Speedup, Efficiency, Utilization, and 

Total Overhead. [28] 

 

In [1] and in [24], parallel programming patterns from different sources have 

been brought together and pattern languages have been introduced. Since 

accessing to [1] is easier than accessing to [24] and [1] is well documented 



 

 23 

than [24], the pattern language in [1] is selected as guide for this thesis.  



 

 24 

 

CHAPTER 3 

 

 

IMPLEMENTATION 
 

 

 

In this chapter, implementation of parallel software design for the test project 

in the thesis, multicore programming skills, development environment and 

test setup are described. The test project is designed both as sequential 

program and as parallel program by using the pattern language in [1]. 

Moreover, the test project is developed with attention to embedded real time 

software concerns.  

 

Executable code of the project is run on an embedded environment. Wind 

River SBC8641D multicore evaluation board is used as hardware on which 

embedded real-time WindRiver VxWorks 6.6 SMP operating system 

operates. 

 

Also Wind River WorkBench 3.0 development environment and its tools are 

used to develop the test project and to obtain the measurements. 

 

3.1 VxWorks OS & VxWorks 6.6 with SMP 

 

VxWorks is a real time operating system which is developed by WindRiver 

Company.  

 

Main unit of execution elements for VxWorks OS are tasks. Task states and 



 

 25 

transitions are described in Figure 3.1. 

 

 

 

 

 

 
READY: The state of a task that is not waiting for any resource other than 

the CPU. 

PEND: The state of a task that is blocked due to the unavailability of some 

resource such as semaphore, message. 

DELAY: The state of a task that is asleep for some duration. 

SUSPEND: The state of a task that is unavailable for execution 

 

Figure 3.1: VxWorks Tasks 
 

 

 

The VxWorks real-time kernel provides a multitasking environment that 

makes the tasks run concurrently on a processing unit (PU). Tasks have a 

task control block (TCB) in which context (state) of some system information 

about the task such as program counter, CPU registers, a stack for dynamic 

variables and function calls are saved.  While running task on PU changes 

previous task context is stored on its TCB and new task context is restored 

from its TCB. This is called as context switching. [30] 



 

 26 

Multitasking on VxWorks OS is performed by two scheduling algorithms:  

 

 Preemptive Scheduling: CPU is allocated to the higher priority task 

among ready tasks by the preemptive priority-based scheduler.  

 

 Round-robin scheduling: CPU is allocated fairly among all ready 

tasks of the same priority by executing tasks for same time interval or 

time slice.  

 

For VxWorks previous releases until VxWorks 6.6 SMP, although tasks are 

seems as they run concurrently, this concurrency was virtual. In fact, at any 

moment only one task can be executed and to execute any other task, tasks 

must be switched by the operating system.  

With VxWorks 6.6 SMP real parallel operating is performed on different cores 

of the multicore hardware. At a moment one task can be executed on one 

core and another one on another core. Beside this, the multitasking is still 

provided on any cores of the hardware. 

 

In VxWorks 6.6 SMP OS with default settings, ready tasks are assigned to 

any idle core. But a task can be assigned to a specific core by user. This is 

called as CPU affinity. 

 

Mutual exclusion is one of the most important issues for multitasking systems 

which means that avoiding the simultaneous use of a common resource by 

two execution unit. This resource can be a global variable or a piece of code 

called critical sections. Semaphores, message queues, task preemption 

locks are standard methods for performing the mutual exclusion in VxWorks 

OS. 

 

Beside these methods, some new methods are required for VxWorks SMP to 

exploit concurrency and to solve some problems such as memory access 



 

 27 

disorders which can be occurred only in multicore systems.  

 

 Spinlocks: Spinlocks are like semaphore as both usage and 

mechanism. But main difference is that while task wait for a spinlock it 

does not make state transition from running to pending as in 

semaphore. Instead, task spin in a tight loop while it take spinlock. 

This is called spinning or busy wait. When spinlock is given by the task 

taken it, it is taken immediately by the task make busy wait without any 

context switch. Spinlock must be taken for a short and deterministic 

period of time because it may make the both PEs (CPU core on which 

task that took spinlock run and CPU core on which task making busy 

wait to take spinlock run) be busy. Spinlocks must be used carefully to 

avoid live locks. 

 

o Live Lock occurs when such a case that task1 took spinlockA 

and waits for spinlockB when task2 had taken spinlock B and 

waits for spinlockA. 

 

 Memory Barrier: Modern CPUs reorder the memory access (read 

and write) request. Sometimes this may cause errors. Actually this is 

not a problem for unicore CPUs but it is only for multicore CPUs. To 

avoid this problem memory barriers which prevents the memory 

access reordering are used. Example adapted from [30] shows how 

can memory access reorder be problem. 

 
/* CPU 0 - announce the availability of work */ 

pWork = &work_item; /*store pointer to work item to be performed*/ 

workAvailable = 1; 

 

/* CPU 1 - wait for work to be performed */ 

while (!workAvailable); 

doWork (pWork); /*error - pWork might not be visible to this CPU yet*/ 

 



 

 28 

 

 Atomic Operations: Atomic operations are small operations that 

atomically access memory. Mutual exclusion is guaranteed while 

these operations are made. These operations are add, subtract, 

increment, decrement, OR, XOR, AND, NAND, set, clear, compare 

and swap. [30] 

 

 CPU-Specific Mutual Exclusion: For a specific CPU task switching 

can be locked for a time to provide mutual exclusion. [30] 

 

3.2 Wind River WorkBench 3.0 

 

Wind River Workbench 3.0 is development tool for embedded real-time 

applications running on VxWorks OS. This tool is constructed on Eclipse-IDE 

which is an open source multi-language software development environment.  

In Figure 3.2 user interface of Wind River Workbench is shown. 

 



 

 29 

 

 

Figure 3.2: User Interface of Wind River Workbench 
 

 

 

Workbench is not only for developing software but it also supplies some 

features to control target by means of its cross development environment 

which is defined in [29] as ñCross-development is the process of writing code 

on one system, known as a host, that will run on another system, known as a 

targetò. 

 

Workbench supports some different kinds of project as VxWorks Image 

Project, VxWorks Boot Loader/BSP Project, VxWorks Downloadable Kernel 

Module Project, VxWorks Real-time Process Project, VxWorks Shared 

Library Project, VxWorks ROMFS File System Project, User-Defined Project 



 

 30 

and Native Application Project. Among these project types VxWorks Image 

Project and VxWorks Downloadable Kernel Module Project are used in 

thesis. Additionally, VxWorks Boot Loader/BSP Project executable supplied 

by Wind River with SBC8641D is also used.  

[29] 

 

3.2.1 VxWorks Image Project: 

 
VxWorks kernel image that is booted to the target is configured by VxWorks 

Image project. The most appropriate image projects for this thesis were 

created and used. Necessary configurations were set to be able measure 

performance parameters on running application. Moreover two image 

projects were created for thesis. One of them was built as only uniprocessor 

(UP) features included in it and other were built with symmetric 

multiprocessor (SMP) features addition to the UP features. Other 

configuration parameters were kept same between these two projects. 

[29] 

 

3.2.2 VxWorks Downloadable Kernel Module Project: 

 
VxWorks Downloadable Kernel Module projects are developed and built to 

add its executable into operating system kernel as module. This executables 

can be downloaded to and unloaded from target after image boots. Since 

these modules are added to the kernel space they can use system resources 

directly. Also operating system operations can be called from these modules. 

[29] Test program in this thesis were developed as a downloadable kernel 

module. 

 



 

 31 

3.2.3 Debugger 

 

As well as being a good development tool Workbench also offers a useful 

debugger that can be enable to debug kernel tasks and Real-time processes 

(RTPs). This debugger supports breakpoints, watching variables and 

registers, basic execution control (step into, step over, step out, go, and 

stop), advanced execution control (go all, stop all), system and task mode 

debugging on SMP systems and most of other debugging issues.  

 

3.2.4 Additional Tools 

Moreover thanks to additional tools workbench enable developers to test the 

software in early phase of development process. 

3.2.4.1  System Viewer 

 
Wind River System Viewer is a logic analyzer that captures interactions 

between the operating system, application and target hardware in a time 

interval dynamically. These interactions are kernel activities such as 

semaphore gives and takes, task spawns and deletions, timer expirations, 

interrupts, message queue sends and receives, watchdog time activity, 

exceptions, signal activity, system calls, I/O activity, networking activity, 

memory allocation, freeing and partitioning, task switch, task states and also  

user events coded by user. 

 

After capturing these interactions it can demonstrates the events in timeline, 

task by task graph or table.  By using this tool race conditions, deadlocks, 

CPU starvation, and other problems relating to task interaction can be 

detected. [31] 

 



 

 32 

3.2.4.2  VxWorks Simulator 

 
The Wind River VxWorks Simulator is a hardware simulator that runs on the 

host machine. VxWorks applications can be developed, run, and tested on 

host machine without hardware thanks to VxWorks Simulator. VxWorks 

Simulator supports most of standard VxWorks features as followings: 

 Real-Time Processes (RTPs) 

 Error Detection and Reporting 

 ISR Stack Protection (Solaris and Linux hosts only) 

 Shared Data Regions 

 Shared Libraries (Windows and Linux hosts only) 

 ROMFS 

 VxMP (shared-memory objects) 

 VxFusion (distributed message queues) 

 Wind River System Viewer 

 

Also simulated hardware supports following features: 

 a VxWorks console 

 a system timer 

 a memory management unit (MMU)ðMMU support is required to 

take 

 Advantage of the VxWorks real-time process (RTP) feature. 

 non-volatile RAM (NVRAM) 

 virtual disk supportðVirtual disk support allows you to simulate a 

disk block 

 device. The simulated disk block device can then be used with any 

file system 

 supported by VxWorks. 

 a timestamp driver 

 a real-time clock 



 

 33 

 symmetric multiprocessing (SMP) environment 

[32] 

 
Moreover, VxWorks Simulator supports networking application and it can be 

used to test complex networking applications. However since it does not 

simulates machine-level instructions for a target architecture, it is not suitable 

develop hardware device drivers. Also for more accurate SMP simulation 

multicore host machine must be used instead of simulator. 

In this thesis both UP and SMP VxWorks Simulators are used to test 

software in early development phases. Then test program run on real 

hardware. 

 [32]  

 

3.2.4.3 Function Tracer 

 

Wind River Function Tracer is a dynamic execution-tracing tool that monitors 

the calls to a traced function while the application runs. It gives the 

information about which task make call, which parameters are passed, what 

is the return of function and also execution time of call. [33]  

 

In this thesis System Viewer tool is used while coding and testing the 

software. VxWorks simulator tool is used to run the executable of the 

software in early phases to verify and debug the executable. When source 

code is verified at a sufficient depth on the simulator, the real hardware 

SBC8641D is replaced with the simulator. Debugger and Function Tracer 

tools are frequently used throughout the work to debug the program. Tools 

such as Performance profiler, Memory Analyzer, Data Monitor and Code 

Coverage Analyzer are not used in this thesis and have not been included in 

the review presented above; but they can be useful for parallel programming. 

For example Performance profiler can be used to determine the 

computationally insensitive parts which are potentially parallelizable in the 



 

 34 

source code. 

 

3.3 Experiment Setup 

 
Experiment setup in this thesis is formed with two nodes and two connections 

between them as shown in Figure 3.3. One node is host machine which is a 

standard PC and other is target machine which WindRiver SBC8641D 

evaluation board. 

  

 

 

 

Figure 3.3: Experiment Setup 

 

 

 

3.3.1 Host Machine 

 

Host machine that is used in this thesis is a standard a computer with Intel 

Core2 Quad CPU Q9400 @2.66Hz 1.97Hz, 3.46 GB of RAM. As an OS, 

Windows XP is run on the host machine. This machine has one Ethernet port 

and one serial port to connect with target.  



 

 35 

 

Some necessary programs are installed on the host machine. For this work 

an FTP server, an NFS server and Wind River WorkBench will run on host 

machine. 

 

 

Connections with target: 

 

 As an FTP server, the FTP server supplied by Wind River in 

WorkBench installation directories is used. FTP server is necessary to 

boot VxWorks Image which is configured instance of VxWorks OS. To 

use this FTP server user rights must be set. Also board must be 

configured as to be able to boot from host and user name and 

password must be set same as FTP server rights.  

 

 WorkBench supplies a useful interface to board by its target server 

connection facility. Thanks to target server connection, download a 

Kernel Module to the board is very easy as drag and drop. Running 

tasks, downloaded modules, vb. can be watched by target server 

connection. Also some VxWorks tools such as system viewer, 

performance scope, debugger, console, shell vb. can be run owing to 

the target server connection.  Another feature supplied by target 

server connection is The Target Server File System (TSFS). It is a full-

featured, easy to use file system that can be used to mount on host 

file system.  However since its slow, in this thesis an external NFS 

server tool is used. But System Viewer tool actually uses TSFS. 

 

 WorkBench also supplies terminal view to open serial connection with 

target. Terminal view can be used to watch the output text from target 

and to send input text to the target. An alternative program to terminal 

is Hyperterminal supplied by Windows XP.  



 

 36 

 

 As NFS server an open source NFS server Truegrid Pro NFS is used 

for this thesis. Thanks to this server some directories on host machine 

are exported to the target use. Configuration files are read from these 

directories and log files are written to them in this thesis. This program 

runs as windows service on the host. 

 

 Windows Telnet client is used to input text to board and output text 

from board. It is used as an alternative to the terminal feature of 

Workbench. 

 

Other Used Programs: 

 

PuTTY:  

This tool is described as ñPuTTY is a free SSH, Telnet and Rlogin client for 

32-bit Windows systemsò in its manual. Additionally it can be used to listen 

serial channel. This tool can log the output to a specified log file. In this thesis 

it is used both serial channel and telnet client. 

 
UltraEdit:  

UltraEdit is commercial text editor software. Also it has a useful file 

comparison tool. This tool will be used to compare the output log files.  

 

3.3.2 Target Machine 

 
Target machine, namely the hardware that the application will run on is 

WindRiver SBC8641D for this thesis. 

 

 



 

 37 

3.3.2.1  Wind River SBC8641D: 

 
The SBC8641D evaluation board is produced by Wind River to enable 

software engineers to develop and test parallel applications. This single 

board computer is in a 6U form factor and contains the Freescale® 

MPC8641D™ dual core processor.  

 

Features available on the SBC8641D evaluation board are listed as 

followings: 

 Freescale MPC8641D processor 

 2 banks of 256MB of DDR2 SDRAM running at DDR400 speed 

(each bank on different DDRMC). 

 128MB of Local Bus SDRAM using a 100-pin DIMM. 

 (2) 16MB of on-board Flash memory (Dual boot ROM). 

 64MB One Nand, Flash File System. 

 8KB EEPROM. 

 Four Gigabit Ethernet (GbE) ports via front-panel RJ45 connectors. 

 Two RS-232 serial communication ports via mini-DB9 connectors. 

 (2) x8 PCIe connectors 

 Hard reset switch. 

 8 user switches. 

 2x16 LCD character display. 

 16-pin JTAG header for emulator communication 

 52-pin Universal Debug header for emulator communication. 

 [34] 

 

3.3.2.2  Freescale MPC8641D  

 
The MPC8641D is a dual core processor developed by Freescale. This 

processor has two 32-bit Power Architecture microprocessor cores e600 

http://en.wikipedia.org/wiki/32-bit
http://en.wikipedia.org/wiki/Power_Architecture
http://en.wikipedia.org/wiki/Microprocessor


 

 38 

running at up to 1.5 GHz, two L2 cache for each core, dual 64 bit (72b with 

ECC) DDR2 memory controllers which can be assigned to the cores or 

shared between them, Dual 8-lane PCI Express ports, 4-lane serial RapidIO 

port, four Ethernet controllers supporting QoS and 10 Mbps, 100 Mbps, and 

1000 Mbps.  

 

The MPC8641D supports both symmetric multiprocessing (SMP) and 

Asymmetric multiprocessing (AMP). [35] 

 

3.4 Test Project 

3.4.1 List Management Software: 

 

A dynamically changing list is managed by the test program within real time 

constraints. Members of the list that be managed are called ListElements. All 

ListElements are specified by an ID and they have three types of specific 

parameters and one major parameter. Specific parameters are called 

XParameter, YParameter, ZParameter which have similar properties. They 

are determined by their values. Each has minimum, maximum, average 

values. Major parameter has a single value for each element. 

 

Parameters of a ListElement are measured by some devices. Measurements 

are made from some numbers of samples and minimum, maximum and 

average values are determined. Then ListElements that parameters values 

are determined are sent to the test program by another program via TCP 

interface. Any number of ListElements can be sent at one time. 

 

After ListElements reach to the test program, program decides whether newly 

received element (RE) can update any present ListElement in the list or it is 

new element for the list. This decision is made with update decision 

algorithm. If RE can update an existing ListElement than this elements 



 

 39 

selected as Currently Updating Element (CULE) else a new ListElement is 

created and it is selected as CULE. After CULE is selected than updating 

process is made for CULE according to updating algorithm. General flow of 

the List Management Algorithm is shown in Figure 3.4. 

 

 

 

 

 

Figure 3.4 Flow Chart of the List Management Algorithm 
 

 

 

Update Decision Algorithm:  
 

Currently updating ListElement (CULE) is chosen according to result of the 

update decision algorithm. If result is UPDATE for a ListElement then it is 

RE 

Wait RE 

Select CULE 

Process 

Update CULE 

Process 

CULE 



 

 40 

selected as CULE else a new ListElement is created and becomes CULE. 

 

To decide CULE, newly parameters of received element are compared one 

by one with the parameters of ListElements that are currently involved in the 

list.  

 

 
Major Parameter Comparison: Firstly major parameter values are 

compared. If the absolute value of the difference of the comparing elements 

major parameter values is less than MAX_DIFFERENCE then algorithm 

continues with specific parameter comparison. Else then next element from 

list is selected as comparing element. 

 

Specific Parameter Comparison: MostInterceptionPercentage are 

computed for specific parameters of ListElement and ReceivedElement as 

following: 

  

 Saying that currently comparing ListElement specific parameter minimum 

and maximum values are minValueLE and maxValueLE respectively and 

similiarly minimum and maximum values of newly received element 

parameters are minValueRE and maxValueRE. 

 Interception is computed as following for different cases: 

 Interception = 0  

if maxValueLE  minValueRE or maxValueRE  minValueLE 

 Interception = maxValueRE - minValueRE  

if minValueLE  minValueRE and maxValueRE  maxValueLE  

 Interception = maxValueLE - minValueLE   

if minValueRE  minValueLE and  maxValueLE  maxValueRE 

 Interception = maxValueLE – minValueRE  

if minValueLE  minValueRE and  maxValueLE  maxValueRE 

 Interception = maxValueRE – minValueLE  



 

 41 

if minValueRE  minValueLE and  maxValueRE  maxValueLE 

 Maximum Interception Percentage = 100 * maximum of 

Interception/(maxValueLE - minValueLE) and Interception/(maxValueRE - 

minValueRE) 

 

If Maximum Interception Percentage values for all three parameters are 

greater than MIN_INTERCEPTION_PERCENTAGE then ListElement is 

selected as CULE. Else then next element from list is selected as comparing 

element. 

 

Beside this X, Y and Z parameter comparison algorithm, also some other 

algorithms may be possible with different methods. Some methods may be 

use parameter history list. Thus process time for the method is changed with 

the selected MAX_HISTORY_LENGTH constant. Since main focus of this 

thesis is not related with the selected methods, in test program this part of 

algorithm is replaced with a TimeKiller function that uses the CPU for a given 

time named as killtime. Tests are made for different killtime values to 

simulate different methods and different MAX_HISTORY_LENGTH constant 

values. 

 

After major parameter and X, Y, Z parameter comparison, if more than one 

element are decided as CULE candidate then major parameters of these 

candidates are compared and one that has nearest major parameters value 

to the RE major parameter value, is selected as CULE. 

 

If all ListElements compared and CULE is not determined yet then new 

ListElement is created and selected as CULE. 

 

In Figure 3.5 the flow chart of the Update Decision Algorithm is presented. 

 



 

 42 

i = 0

CMinMPVDif = MAX_DIFFERENCE

NoUpdate = true

i == no of LE

CLE = ith element of list

MPVDif = abs(MPV of CLE – MPV of RE)

Is MPVDif less than 

MAX_DIFFERENCE?

Is

X and Y and Z parameter values 

Appropriate?

Add to 

CandidateList

NoUpdate = false

i++

NoUpdate == true

Create New ListElement

CULE = New Element

CULE=LE from 

CandidateList with nearest 

major parameter

NO

YES

YES

NO

NO

YES

NO

YES

 

 

Figure 3.5: Flow Chart of Update Decision Algorithm 

 

 

 

 

Updating Algorithm: 

 
CULE major parameter value is set to the Received Element major 

parameter value. Then minimum, maximum, average values and number of 

samples values are inserted as a new value history element to the 

parameter. Then maximum, minimum and average values of parameter are 

computed as following: 

 



 

 43 

 maxValue = maximum value among the value history elements max 

values. 

 minValue = minimum value among the value history elements max 

values. 

 avgValue = summation of multiplication of average value and number of 

samples divided by summation of number of samples among the value 

history elements. 

 

After these update algorithm some other extra analysis on the list can be 

made. This analysis processing time is changed with the list length or with 

MAX_HISTORY_LENGTH constant. Since main focus of this thesis is not 

related with these analysis methods, in test program this part of algorithm is 

replaced with an TimeKiller function that uses the CPU for a given time. 

 

In Figure 3.6 Flow Chart of the Updating Algorithm is demonstrated. 

 

 



 

 44 

 

 

Figure 3.6: Flow Chart of Updating algorithm 
 



 

 45 

3.4.2 Design of Parallel Test Software: 

 

Parallel software design for the test project is made by using the pattern 

language in [1]. According to the pattern language in [1] there are four design 

phases that must sequentially be passed through by designer. Below, each 

phase shall be described in succession. In each phase, three different design 

approaches shall be considered. 

 

In advance, it must be stated that the unit of execution (UE) is the task itself 

for the purposes of this thesis because the running program will execute on 

VxWorks OS as a downloadable kernel module. 

 

3.4.2.1 Finding Concurrency Phase 

 

According to the pattern language introduced in [1], first step to solve a 

problem as parallel is finding the concurrency in the problem.  

 

Unfortunately the problem that is tried to solve in this thesis, does not have 

any parallelism that can be seen obviously. However some parts can be still 

make parallel.  

 

At first sight, algorithm that is mentioned in 3.4.1 includes two main tasks. 

First one is update decision task which determines the CULE and second 

task is updating task that updates the parameters of the CULE with the 

parameters of the RE. 

 

As for data, two main data are available in this problem, which are current list 

of LEs and the list of REs.  

 

According the pattern language in [1] there are some forces in finding 



 

 46 

concurrency patterns that the software designer must consider. One of these 

forces is flexibility. Parallel software design must be as flexible as it can be 

adapted to another hardware which has different architecture, different 

number of processors and different types of data sharing mechanisms.  

Another force is efficiency. Parallel software design is efficient if exploited 

concurrency is greater than work done to make design parallel. Number and 

size of tasks and data must be adequate to exploit concurrency by to make 

all PEs busy. Otherwise overhead of design (too much task switching, 

synchronization, communication etc) may bring about less performance 

respect to the serial program performance. Another force is simplicity. Design 

must be simple enough to be handled and complex enough to be run as 

parallel. However flexibility and efficiency may sometimes bring about some 

complexity. 

 

Also design must be suitable for the hardware on which software run. 

Number of PE is an important hardware feature. Design must be made as 

ideally all PEs be used during runtime. Another important issue that must be 

considered is the data sharing mechanism on the hardware to make 

appropriate data decomposition. 

 

Hardware on which test application in this thesis runs is a dual core 

processor. Thus it has two PEs. Also hardware is used as an SMP system. 

Therefore data sharing is performed by shared memory mechanism. These 

hardware features must be considered while parallel software design is being 

made. 

 

Implementation of the list management algorithm can be made with three 

different parallel design approaches. 

 

 



 

 47 

3.4.2.1.1 Design Approach 1: 

 

One possible parallel programming design for list updating problem can be 

made as decompose the update decision task and updating task into small 

tasks as they process on only one parameter of the list elements. Also 

unfortunately there must be other tasks that run as sequential. These tasks 

are major element comparing task and new element creation task.  

 

Tasks: Tasks in this approach are listed below. 

 

 Task0: Major parameter comparing task 

Ǔ This task runs as sequential and it decides whether the major 

parameters of the RE and CLE are appropriate to update or not. 

Ǔ Major parameters of the ith RE and the kth LE are data accessed by 

this task. These data are read only for this task. 

 

 Task1: X parameter comparing task 

Ǔ This task decides whether the X parameters of the RE and CLE 

are appropriate to update or not. 

Ǔ X parameters of the ith RE and the kth LE are data accessed by this 

task. These data are read only for this task. 

 

 Task2: Y parameter comparing task 

Ǔ This task decides whether the Y parameters of the RE and CLE 

are appropriate to update or not. 

Ǔ Y parameters of the ith RE and the kth LE are data accessed by this 

task. These data are read only for this task. 

 

 Task3: Z parameter comparing task 

Ǔ This task decides whether the Z parameters of the RE and CLE 

are appropriate to update or not. 



 

 48 

Ǔ Z parameters of the ith RE and the kth LE are data accessed by this 

task. These data are read only for this task. 

 

 Task4: New list element creating task 

Ǔ This task runs as sequential and it creates a new list element with 

default parameters. 

Ǔ Data for this task is the new list element and it is set as CULE. 

Thus this data is read/write for this task. 

 

 Task5: X parameter updating task 

Ǔ This task updates the X parameter of CULE by using X parameter 

of RE. 

Ǔ X parameters of the ith RE and the kth LE are data accessed by this 

task. X parameter of the ith RE is read only and X parameter of the 

kth LE is read/write for this task. 

 

 Task6: Y parameter updating task 

Ǔ This task updates the Y parameter of CULE by using Y parameter 

of RE. 

Ǔ Y parameters of the ith RE and the kth LE are data accessed by this 

task. Y parameter of the ith RE is read only and Y parameter of the 

kth LE is read/write for this task. 

 

 Task7: Z parameter updating task 

Ǔ This task updates the Z parameter of CULE by using Z parameter 

of RE. 

Ǔ Z parameters of the ith RE and the kth LE are data accessed by this 

task. Z parameter of the ith RE is read only and Z parameter of the 

kth LE is read/write for this task. 

 

Data: Data in this approach are listed below. 



 

 49 

 

 major parameter of each RE and LE 

 X, Y, Z parameters of each RE and LE 

 X, Y, Z parameters of CULE 

 

Task Groups: Tasks in this approach can be grouped according to their 

execution order. Tasks that run as parallel are placed in same group. Task 

groups in this approach are listed below. 

 

 TaskGroup1: includes Task1, Task2 and Task3. 

 TaskGroup2: includes Task5, Task6 and Task7. 

 Since Task0 and Task4 are run as sequential they are not placed in a 

group  

 

Task Group Orderings: 

Task group ordering for this approach is shown in Figure 3.7. 

 

 

 

 



 

 50 

 

 

Figure 3.7: Task group ordering for Design Approach 1 
 

 

 

Data Sharing: Data in this approach is used by task groups with different 

accessibility. 

 Since major parameters are accessed by only Task0, there is no 

sharing on this data. 

 X, Y, Z parameters of RE is accessed as read only both TaskGroup0 

and TaskGroup1. Also X, Y, Z parameters of LE are accessed as read 

only by TaskGroup0 and as read/write by TaskGroup1. 

 For new element case, new parameters of new element are accessed 

as read/write by both Task4 and Task Group1. 

 

Evaluation of design: 

 

In this approach, parallelism is achieved over the three parameters of the list 



 

 51 

elements. Thus for this design three tasks can be run as parallel. Since there 

are only two PEs on the test hardware, only two tasks can be run as parallel 

during the runtime. While third task run on one PE, other PE becomes idle. If 

hardware would have three PEs, this design would be very appropriate. But if 

hardware would have more than three PEs then still some PEs would be idle. 

Therefore, this design is not flexible enough.  

Since all data are accessed as read only or different date are written by 

different tasks except new element case, there is no mutual exclusion 

mechanism needed on data. For new element case parameters of new 

element are written by both Task4 and Taskgroup1. In fact for this element 

case, Task4 and TaskGroup1 run as sequential there is still no need to use a 

mutual exclusion mechanism on data. 

 

Task0, TaskGroup0, Task4 and TaskGroup1 must be synchronized to run as 

shown in Figure 3.7. 

 

3.4.2.1.2 Design Approach 2: 

 

Another design approach to solve this problem can be made as making the 

two main tasks i.e. update decision task and updating task run as parallel. 

While CULE is updating with the kth RE on one PE simultaneously update 

decision task is run on other PE for (k+1)th RE. Also new element creating 

task is needed for new element case and this task run as sequential. 

 

Tasks: Tasks in this approach are listed below. 

 

 Task0: Update decision task 

Ǔ This task finds the list element which is appropriate to update with 

the RE ie. it finds the CULE. 

Ǔ The ith RE and the kth LE are data accessed by this task. These 



 

 52 

data are read only for this task. 

 

 Task1: Updating task 

Ǔ This task updates the parameters of CULE found by Task0 or new 

element with the parameters of the RE. 

Ǔ The ith RE and the CULE are data accessed by this task. The ith RE 

is read only and CULE is read/write for this task. 

 

Data: Data in this approach are listed below. 

 each RE 

 each LE 

 CULE 

 

Task Groups: There is no need to group tasks for this approach. 

 

Task Group Orderings: 

 While Task0 is run on one PE for (i+1)th, simultaneously Task1 can 

run on another PE for ith PE as parallel. 

 

Data Sharing: 

 REs are accessed as read only by both Task0 and Task1. 

 LEs are accessed as read only by Task0 but as read/write by Task1. 

 For new element case, new parameters of new element are accessed 

as read/write by both Task1 and Task1. 

 

Evaluation: 

 

There only two parallel tasks in this approach so it is not appropriate for 

hardware having more than two PEs. Thus this design is not flexible. 

If one task lasts longer than the other, PE on which fast task run become idle 

until the slow task finishes its run. This affects the efficiency.  



 

 53 

While Task1 updates the CULE with ith RE, Task0 searches for appropriate 

LE to update with (i+1)th RE simultaneously. Therefore, for currently updating 

LE (CULE), protection is needed to avoid misread of the data. 

 

3.4.2.1.3 Design Approach 3: 

 

Another parallel design can be made as parallelizing loop works. LE list can 

be divided into equal parts. Update decision task and updating task run as 

sequentially on all PEs over the different parts of the data at the same time.  

Tasks: Tasks in this approach are listed below. 

 

 Task0: Update decision task 

Ǔ This task finds the list element which is appropriate to update with 

the RE i.e. it finds the CULE. 

Ǔ The ith RE and the some part of the current list are data accessed 

by this task. These data are read only for this task. 

 

 Task1: New list element creating task 

Ǔ This task runs as sequential and it creates a new list element with 

default parameters.  

Ǔ Data for this task is the new list element and it is set as CULE. 

Thus this data is read/write for this task. 

 

 Task2: Updating task 

Ǔ This task updates the parameters of CULE found by Task0 or new 

element created by Task1, with the parameters of the RE. 

Ǔ The ith RE and the CULE are data accessed by this task. The ith RE 

is read only and CULE is read/write for this task. 

 

 



 

 54 

Data: 

 

 each RE 

 some parts of LE list 

 

Task Groups: Task1 and Task2 run as sequential on each PE. Maybe they 

can be grouped together as TaskGroup1. 

 

Task Ordering: 

 

 Same Task0 can run on different PEs over different parts of the LE list 

as parallel. TaskGroup1 has the serial tasks of this design can run on 

any PE after Task0 finishes its work.  

 

Data Sharing: 

 

 Each TaskGroup1 accessed on RE as read only and different parts of 

the LE list as read/write. 

 

Evaluation: 

 

Since the LE list can be divided into any number of parts this design is 

flexible i.e. it can be adapted to the hardware having different number of PEs. 

 

Efficiency depends on the partitions of the LE list. The most efficient design 

can be made by fairly partitioning.  

 

Parallelism is on only Update Decision part of the algorithm. The other part is 

serial for this design and a synchronization mechanism is needed betwwen 

Task0 and TaskGroup1. 

 



 

 55 

 

3.4.2.2 Algorithm Structure Phase  

 

According to the pattern language introduced in [1], after finding tasks, data, 

task groups, task orderings and data dependencies, designing procedure 

continues with algorithm structure phase. In this phase, design is refined and 

moved closer to the program.  

 

There are also some forces that must be considered while making the 

design. Efficiency and simplicity are two forces for this phase as for finding 

concurrency phase. Portability is another force which addresses that same 

software can be run on different platforms. Another force is scalability which 

requires software that can be run on platforms that has different number of 

PEs. 

 

Most important issue for this design phase is to choose right patterns to the 

problem. The major organizing principle and features of the target platform 

affect the choice. Major organizing principle is determined according to the 

concurrency in the problem. If concurrency is on task than major organizing 

principle is organization by tasks, if it is on data then major organizing 

principle is organization by data or if it is on flow of data then major 

organizing principle is organization by flow of data. After determining the   

major organizing principle in the problem then patterns are chosen according 

to the features of the tasks, data or flow of data. [1] Also while making 

decision for right pattern, some features of target platform must be 

considered. Features like memory sharing mechanism, communication 

mechanism or number of UEs supported by hardware are important for right 

decision. 

 

 



 

 56 

3.4.2.2.1 Design Approach 1: 

 

In this approach there are two tasks that run as sequential and two task 

groups that both includes three tasks that run as parallel. Parallel tasks are 

also embarrassingly parallel i.e. there are no data dependencies between 

them. Therefore obviously major organizing principle fort his approach is 

organization by tasks. Also since according to [1] tasks in this approach are 

enumerated as linear, Task Parallelism pattern is selected.  

 

According to the task parallelism pattern task definitions, dependencies 

among tasks and scheduling are important issues. Task definitions in this 

approach are as mentioned in finding concurrency phase. Also there are no 

dependencies among the tasks that run as parallel. As to scheduling, there 

are three parallel tasks but only two PEs in the target used for this thesis. 

Therefore two tasks must be assigned to one PE and remaining one to other. 

Unfortunately this brings about a bad load balancing. This assignment is 

made by statically by using CPU affinity feature of VxWorks or it may be 

done by VxWorks OS as dynamically during runtime. 

 

Moreover it must be pointed that although parallel tasks do not accessed 

same data i.e. X parameter, Y parameter and Z parameter for this approach, 

they all accessed the list element structure which involves these three 

parameters. Since target used for this thesis supports the shared memory 

there is no need to replicate the data. If target would not support sharing 

memory and communication would be poor between PEs, it might be needed 

to replicate X parameter, Y parameter and Z parameter for tasks for better 

performance. 

 

 

 



 

 57 

3.4.2.2.2 Design Approach 2: 

 

In this approach there are two tasks run as parallel. LE list is the data that is 

used by this two parallel task. Firstly Task0 finds the CULE and then task1 

updates it. Therefore a data flow is present between parallel tasks in this 

approach. Thus major organizing principle for this approach is organization 

by flow of data. Although at first sight pipeline pattern is seem to be 

appropriate, after more thinking on problem event based coordination pattern 

becomes better because pipeline pattern requires one direction flow of data. 

However while Task1 is updating the CULE, simultaneously Task0 may try to 

compare RE and CULE that is being written by Tasks0. For this case Task1 

must notify Task0 after update of CULE is finished. Therefore event based 

coordination pattern is better choice.  

 

Since in this approach there are two parallel tasks and target in this thesis 

has two PE, this approach is suitable for the target. However it is not scalable 

and portable for targets which have more than two PEs. 

 

3.4.2.2.3 Design Approach 3: 

 

In this approach, there is one task that runs as sequential and a task group 

with two tasks runs as sequential. Parallel task namely Task0 can run on all 

PEs over different part of the current list. Therefore for this approach major 

organizing principle is organizing by data. Also since LE list in this problem 

does not have a recursive data structure geometric decomposition pattern is 

selected for this approach. 

 

Since Task0 can run on different PEs and do not need to access part of data 

other than its part, part of data can be distributed to PEs. But if overhead is 

tolerable shared memory can also be used and data is placed to the shared 



 

 58 

memory. 

 

To guarantee the better load balancing between the UEs list elements can be 

divided into parts with equal size for each PE. 

 

Since target used for this thesis has two PEs dividing LE list into two equal 

parts is appropriate. Also for targets which have different number of PEs LE 

list can be divided into number of PEs. Therefore this approach is scalable 

for different number of PEs. 

 

 

3.4.2.3 Supporting Structure Phase  

 

According to the pattern language introduced in [1], Supporting Structure 

Phase is the next phase after Algorithm Structure Phase. This phase is the 

bridge between problem domain and software domain. Generally this phase 

contains two groups of patterns. Program Structure Patterns are first group 

and they are about structure of the source code. Data Structures are the 

second group and patterns in this group is about the managing the data 

dependencies.  

 

Some forces must be considered while choosing the patterns in this phase. 

First of all “clarity of abstraction” is an important force. Source code must be 

clear enough to understand. Sequential equivalence is another force which 

addresses the consistency between the result of the sequential and parallel 

design. Also “environmental affinity” which is alignment of program onto the 

used hardware environment is important force to be considered. Additionally 

scalability, maintainability and efficiency are forces for this phase. 

 

Patterns that are chosen in previous two phase and the environment or 



 

 59 

hardware on which program run, are used to select the appropriate pattern in 

this phase. Because patterns are well supported by some environment and 

some patterns are more appropriate for some design. 

 

3.4.2.3.1 Design Approach 1: 

 

As mentioned in previous phases of design, parallelism in this approach is on 

the comparison and update of X, Y, Z parameters of an element. Task 

parallelism pattern is selected in Algorithm Structure Phase. The parallel 

tasks in this design are made same process on different data i.e. X, Y, Z 

parameters of an element for three times. Also this data is shared for all PE 

by using memory sharing features of the hardware in this thesis. Thus Loop 

Parallelism pattern can be selected for this design approach.  

 

In this design shared data is the element itself but each parallel task 

accesses the different part of the element. Used hardware supports to 

access of all tasks that run on different PE to the data. Thus there is no need 

to worry about the data sharing. 

 

Since each parallel task has same work on similar data, process times for 

each are nearly same. Thus, load balancing is fair. But using hardware in this 

thesis has only two PEs and program has three UEs this prevents the better 

performance. Also since the parallelism in this design is limited with three 

tasks, design is not scalable for hardware with more than three PEs. 

 

3.4.2.3.2 Design Approach 2: 

 

As mentioned in previous phases of design, parallelism in this approach is 

performed by pipelining the update decision and updating process. In 

Supporting Structure Phase the most appropriate pattern is fork and join 



 

 60 

pattern for this approach. 

 

In this design CULE is shared between tasks. Both parallel tasks can access 

it simultaneously. Each UE can access this shared data directly by the help 

of the used hardware. 

 

This design is the most challenged one to understand and maintain. Also 

load of tasks are fair only for list with small number of elements. As element 

numbers load of update decision task becomes weighted. 

 

 

3.4.2.3.3 Design Approach 3: 

 

As mentioned in part previous phases of design, parallelism in this approach 

is on update decision algorithm of the list elements in the current list. Task 

parallelism pattern is selected in Algorithm Structure Phase. Since same 

update decision task run over each elements of current list with in a loop, 

loop parallelism is most appropriate pattern for this approach.  

 

In this design whole current list is shared between tasks but each task only 

access different set of the elements of the list. Each UE can access related 

data directly by the help of the used hardware. 

 

This design is scalable and also it is clear to understand since it is the most 

closed design to the serial one. 

 

3.4.2.4  Implementation Mechanism Phase 

 

According to the pattern language introduced in [1], Implementation 

Mechanism Phase is the last phase of the parallel design. This phase is not 



 

 61 

actually about the patterns but it recommends some methods about UE 

creation, synchronization and communication. Thus this phase is about 

directly the implementation. Patterns or methods that are introduced in this 

phase differ with programming environment. In this thesis, since VxWorks OS 

is used, VxWorks UEs, synchronization and communication mechanism are 

used.  

 

In computation three are two types of UEs: Process and thread. In VxWorks, 

equivalents of them are Real Time Process (RTP) and Task, sequentially. In 

this thesis only Tasks are used as UE. 

 

In VxWorks, lots of synchronization mechanisms are available such as 

semaphore, spinlock, memory barriers etc. In this thesis semaphores and 

atomic operations are used as synchronization mechanism. 

 

Message Queues, Events are the intertask communication mechanism in 

VxWorks OS. Message Queues are used in this thesis. 

 

In this part implementation of the test project for this thesis is described and 

usage of methods in this phase in the implementation is revealed. 

 

3.4.2.4.1 General Implementation of Test Program: 

 

In this thesis test program is implemented with four different designs. 

Organization of the source code is same for all of them. Firstly serial which is 

the most straightforward and ordinary design is implemented. Then some 

refactoring is made on it and other designs are implemented as most part of 

its source code is reused. 

 

 



 

 62 

3.4.2.4.2 Serial Design: 

 

Implementation is made with object oriented approach. First problem is 

analyzed and the class in the problem, required attributes and operations for 

the classes and relations between the classes are determined. Then class 

diagram in Figure 3.8 is obtained. 

 

 

 

 

 



 

 63 

TCPServer

+int sFd

+int StartServer(int iPortNo)
+int SendMessage(char *cpSendingMessage, int iMessageLength)

MessageParser

+char MessageBuffer[300000]

+int TakeMessage(char *cpReceivedMessage, int iMessageLength)

ListManagement

+ListManagement()
+void sendFinishedMessage()
+void sendList()
+void TakeElements(list<MeasuredElement> elements)
+void print()

ListElement

+int iID
+float fMajorParameter

+ListElement()
+int CanBeUpdatedWith(const MeasuredElement& element)
+void UpdateWith(const MeasuredElement& element)
+int serialize(char *buffer)
+int deserialize(char *buffer)
+void print()

Parameter

+float fMinValue
+float fMaxValue
+float fAvgValue
+int iHistoryIndex
+int iNoOfHistoryElement

+Parameter()
+int CanBeUpdatedWith(float fMeasuredMin, float fMeasuredMax)
+void UpdateWith(float fMeasuredMin, float fMeasuredMax, float fMeasuredAvg, int iNoOfSamples)
+int serialize(char *buffer)
+int deserialize(char *buffer)
+void printHistory()

ValueHistoryElement

+float fMinValue
+float fMaxValue
+float fAvgValue
+int iNoOfSample

+int serialize(char *buffer)
+int deserialize(char *buffer)

MeasuredElement

+float fMajorParameter
+float fXmin
+float fXmax
+float fXavg
+float fYmin
+float fYmax
+float fYavg
+float fZmin
+float fZmax
+float fZavg
+int iNoOfSamples

+int serialize(char *buffer)
+int deserialize(char *buffer)
+void print()

3

20

1..*

 

 

Figure 3.8: Class Diagram Of List Management Problem 
 



 

 64 

In the problem TCPServer class receives the new measured elements 

message then it passes the raw message to the MessageParser class. 

MessageParcer class parses the message which is actually serialized as 

byte array and obtained the MeasuredElement list whis is named as RE list. 

Then it passes this list to the ListManagement class.  ListManagement class 

iterates over this list and for each element, it finds the CULE by iterating over 

ListElements as calling CanBeUpdatedWith function. After CULE is 

determined, then ListManagement class calls the UpdateWith function of the 

CULE. This flow of messages is demonstrated in Figure 3.9. 

 

 

 

repeat for X,Y,Zsd

repeat for all LEsd

repeat for X,Y,Zsd

repeat for all MEsd

 : TCPServer  : MessageParser  : ListManagement  : ListElement  : Parameter

CULE : ListElement  : Parameter

GUI

1

2 : int TakeMessage()

3 : void TakeElements()

4 : int CanBeUpdatedWith()

5 : int CanBeUpdatedWith()

67

8 : determineCULE()

9 : void UpdateWith()

10 : void UpdateWith()

11 : int SendMessage()

12

 

 

Figure 3.9: Message Sequence Diagram of the List Management 

Software 
 

 

 

 



 

 65 

After determining the classes and message sequence in the problem, these 

structures are declared implemented in appropriate C++ header and source 

files. At the end the following files are written: 

 

 Starter.cpp: source file including the main function for the problem.  

 MessageParser.h, Connection.h and Connection.cpp: header and 

source files including the declaration and implementation of the 

TCPServer and MessageParser classes. Also WaitMessage function 

which is entry point of the unique task of serial design implemented in 

Connection.cpp file. 

 ListManagement.h and ListManagement.cpp: header and source 

files including the declaration and implementation of the 

ListManagement class. 

 Structures.h and Structures.cpp: header and source files including 

the declaration and implementation of the ListElement, Parameter and 

ValueHistoryElement classes. 

 MeasuredElement.h and MeasuredElement.cpp: header and 

source file including the declaration and implementation of the 

MeasuredElement class. 

 CommonFunctions.h and CommonFunctions.cpp: header and 

source file including some common functions which are used in 

different part of the algorithm by different classes. 

 

Implementation Mechanism Pattern Usage: 

Since in serial design there is only one task and all process is made as 

serially any pattern or method is not required to use. 

 

3.4.2.4.3 Design Approach 1: 

 

Implementation of this design is made by using the serial design 



 

 66 

implementation. Some part of the source code of serial design is 

refactored and some new codes are added. Changed files are Structure.h 

and Structures.cpp because the parallelism in this design is on the 

Parameter class CanBeUpdatedWith and UpdateWith functions which are 

called by ListElement class. Additionally, two new files ParallelTasks.h 

and ParallelTasks.cpp are added. Tasks, synchronization and 

communication objects are declared and created in these new files. 

 

As mentioned in previous phases in this design there are two task groups 

and each has three parallel tasks. Also the main task in the serial design 

is kept. Serial works in this design are made by main task. Thus totally 

there are 7 tasks in this design. These tasks are named as tTCPServer 

(main task), tCBUX, tCBUY, tCBUZ update decision tasks, tUX, tUY, tUZ 

updating tasks. 

 

Also there are no data sharing in this design because all parallel tasks 

access different part of the common data i.e. instances of 

MeasuredElement and ListElement classes. But to synchronize the tasks 

a common counter is used between tasks in this design. 

 

 

Implementation Mechanism Pattern Usage: 

 

 UE Management: In this design UEs are VxWorks tasks. All 7 

tasks are created at the start of the algorithm. Then they are used 

throughout the program running. Therefore, tasks creation and 

deletion overhead is prevented.  

 

 Synchronization: Main task and update decision tasks must be 

synchronized because after parameter comparison is made main 

task continue to select CULE. For this synchronization a 



 

 67 

semaphore “semCBU” is used. When tCBUX, tCBUY, tCBUZ start 

the computation, main task requires to take the semCBU and waits 

in pending state until it is given. After all of tCBUX, tCBUY, tCBUZ 

tasks finish the computation, semCBU is given and main task 

continues to execute. The last executing task among tCBUX, 

tCBUY, tCBUZ must give this semaphore. To determine if running 

task is last or not, a global integer counter is used. At the end of 

commutations, task increments this counter and reads the value of 

it. If value is less than three, task finishes its work but if value is 3 

then task clears the counter, give semCBU semaphore and 

finishes the work. Since all tCBUX, tCBUY, tCBUZ tasks read and 

write this counter it must be mutually excludes. This is made by 

using atomic memory operation, actually atomizing operation of 

VxWorks. 

 

Similarly another semaphore “semU” is used to synchronize the 

main and tUX, tUY, tUZ tasks. Also a global counter is used with 

the same methods while CULE is updating. 

 

 Communication: REs are received by the main task. Thus first 

running task is main task. But algorithm is run on other tasks. For 

update decision, tCBUX, tCBUY, tCBUZ tasks must compare the 

related parameter of the RE and LE. Thus main task must send 

these parameters to the related task. This communication between 

main task and tCBUX, tCBUY, tCBUZ tasks is managed by 

message queue mechanism of VxWorks. For each communication 

channel one queue is created. Therefore for update decision tasks 

three message queues maned as mqCBUX, mqCBUY, mqCBUZ, 

are created. Normally tCBUX, tCBUY, tCBUZ tasks wait in pending 

state until they receive a message from main task. When main task 

sends a message to a queue, related task receives the message 



 

 68 

and starts to execute.  

 

Similarly for communications between main task and tUX, tUY, tUZ 

tasks another three queues named as mqUX, mqUY, mqUZ, are 

created. 

 

3.4.2.4.4 Design Approach 2: 

 

Implementation of this design is made by using the serial design 

implementation. Some part of the source code of serial design is 

refactored and some new codes are added. Changed files are 

ListManagement.h and ListManagement.cpp because the parallelism in 

this design is on the ListElement class CanBeUpdatedWith and 

UpdateWith functions which are called by ListManagement class. 

Additionally, two new files ParallelTasks.h and ParallelTasks.cpp are 

added. Tasks, synchronization and communication objects are declared 

and created in these new files. 

 

As mentioned in previous phases in this design there are two tasks: 

tFCULE  task which finds the CULE and tUCULE  task which updates the 

CULE. Also the main task in the serial design is kept.  

 

The CULE is the shared data for this design because while tUCULE task 

access to CULE for writing and  tFCULE  task can read it. 

 

Implementation Mechanism Pattern Usage: 

 UE Management: In this design UEs are VxWorks tasks. All 3 

tasks are created at the start of the algorithm. Then they are used 

throughout the program running. Therefore, tasks creation and 

deletion overhead is prevented.  



 

 69 

 

Synchronization: In three parts of this design, synchronization 

mechanisms are required.  

 

First one is required to synchronize main task and tFCULE task. 

When main task sends a RE to tFCULE, main task requires taking 

the semFindCULE semaphore and waits in pending state until it is 

given. When tFCULE is finds the CULE it gives the semFindCULE 

and main task continues to execute and sends the RE to tUCULE 

task. 

 

Second one is required to synchronize tUCULE task and tFCULE 

task. tFCULE task start to search for CULE by iterating over the 

current LE list. But when iterator is the CULE it passes it and when 

it reaches the end of the list, it requires taking the 

semCULEIsUpdating semaphore and waits in pending state until it 

is given. When tUCULE finishes the CULE updating it gives the 

semCULEIsUpdating semaphore and tFCULE task continues to 

execute and make comparison with RE and previous CULE 

 

Last one is required to synchronize main task and tUCULE task for 

the last RE. Since after all REs are processes main task sends a 

just finished message to the RE source from TCP Interface, it must 

wait the last updating to send this message. Thus when main task 

sends to the last RE to tUCULE task, it requires to take the 

semFinishIsWaiting semaphore and waits in pending state until it is 

given. When tFCULE task finishes the updating for last element it 

gives the semFinishIsWaiting semaphore and main task continues 

to execute and sends just finished message. 

 

 Communication: RE list are received by the main task. Thus first 



 

 70 

running task is main task. But algorithm is run on other tasks. For 

update decision tFCULE must compare the RE and LEs. Thus 

main task must send the RE and the current LE list to tFCULE 

task. This communication between main task and tFCULE task is 

managed by message queue mechanism of VxWorks and a 

meesage queue named as mqFindCULE is created. Normally 

tFCULE task waits in pending state until it receives a message 

from main task. When main task sends a message to the queue 

tFCULE task receives the message and start to execute.  

 

Similarly, main task must send RE and the information about this 

measured element is last one or not, to the tUCULE task by using 

another message queue named as mqUpdateCULE. 

 

3.4.2.4.5 Design Approach 3: 

 

Implementation of this design is made by using the serial design 

implementation. Some part of the source code of serial design is 

refactored and some new codes are added. Changed files are 

ListManagement.h and ListManagement.cpp because the parallelism in 

this design is on iterations of the ListElements in the current LE list. 

Additionally, two new files ParallelTasks.h and ParallelTasks.cpp are 

added. Tasks, synchronization and communication objects are declared 

and created in these new files. 

 

As mentioned in previous phases in this design there are can be as many 

parallel tasks as the number of PE. Since for this thesis there is two PEs, 

two parallel update decision tasks are available. These are tFCULE_1 

task which compares RE and elements in the first part of the current LE 

list and tFCULE_2 task which compares RE and elements in the second 



 

 71 

part of the current LE list.  Also the main task in the serial design is kept.  

 

In this design current list is divided into parts with the number of PEs. For 

this thesis list divides in to two parts. tFCULE_1 task reads the first half 

and tFCULE_2 reads second hald of the current LE list. Also both of them 

may read RE simultaneously.  

 

Implementation Mechanism Pattern Usage: 

 UE Management: In this design UEs are VxWorks tasks. All 3 

tasks are created at the start of the algorithm. Then they are used 

throughout the program running. Therefore, tasks creation and 

deletion overhead is prevented.  

 

Synchronization: To synchronize main task and update decision 

tasks, a semaphore semListPartOk is used. When main task sends 

the RE and related list part info to the update decision tasks, it 

requires to take the semListPartOk semaphore and waits in 

pending state until it is given. When all update decision tasks 

finishes their work, the latest one gives the semListPartOk 

semaphore and main task continues to execute. 

 

To determine if running task is latest or not, an integer counter is 

used. At the end of commutations, task increments this counter 

and reads the value of it. If value is less than number of PEs, task 

finishes its work but if value is no of PEs then task clears the 

counter, give semListPartOk semaphore and finishes the work. 

Since all update decision tasks read and write this counter it must 

be mutually excluded. This is made by using atomic memory 

operation, actually atomicInc operation of VxWorks. 

 

 



 

 72 

 Communication: RE list are received by the main task. Thus first 

running task is main task. But update decision algorithm is run on 

other tasks. Thus main task must send the RE and the current LE 

list part info to the related update decision tasks. This 

communication between main task and update decision tasks is 

managed by message queue mechanism of VxWorks. Individual 

message queues are created for each update decision task. 

Normally update decision tasks wait in pending state until they 

receive a message from main task. When main task sends a 

message to the queue update decision tasks receive the message 

and start to execute.  

 



 

 73 

 

CHAPTER 4 

 

 

EVALUATION 
 

 

 

Four different test programs are coded as implementations of the list 

management algorithm introduced in 3.4.1. One of these programs is 

designed as serial by traditional and accustomed methods. On the contrary, 

other three programs are designed with parallel programming patterns to 

obtain the gain multiprocessor technology. After designs and coding of these 

programs are finished, executables are run on WindRiver SBC8641D board 

individually and they are compared with respected to some real time 

performance metrics. 

 

In this chapter test method to measure the real time performance metrics and 

the evaluations for the results of the tests will be reported. 

 

4.1 Test Method: 

 

After design and coding of one serial and three parallel test software, to 

determine the effects of the parallel programming patterns to the real time 

performance, four test cases and a test input set is prepared. These test 

cases are prepared considering the real-time performance metrics introduced 

in part 2.5. From those metrics; Sequential Time, Parallel Time and Total 

Overhead are considered in Test Case 1, Functional correctness and 

Deterministic behavior are considered in Test Case 2, A-B timing is 



 

 74 

considered in Test Case 3, A-B timing, timeliness and deterministic behavior 

are considered in Test Case 4. 

 

Also to perform these tests, software are recompiled with including or 

excluding some code parts by some “C++ define”s. These defines effect the 

logging and testing options but not the main execution of the software. 

Moreover some external programs and WindRiver Workbench tools are used 

for test cases. Additionally, an auxiliary testing program that run on PC is 

written with java programming language. This program is used as RE source.  

 

Serial and three parallel test software are run on the SBC8641 sequentially 

and all test cases are run for each one. Then results are compared and 

reported. 

 

4.1.1 “Define”s in Software: 

 

EXTRA_EVENTS: As it is described in 3.2.4.1, user events in the source 

code can be demonstrated in the time line chart or event table of the 

WindRiver Workbench System Viewer tool. Some user events are added to 

the some part of the source code to observe the execution sequence and 

measuring the time by an easy way. But these user events are meaningful for 

only some test cases but not all. Thus code is compiled as these parts are 

included or EXTRA_EVENTS are defined for some cases, on contrary they 

are excluded or EXTRA_EVENTS are undefined for some cases before the 

compilation. 

 

DEBUG1: This define is used to include or exclude some code parts which 

are used to print some debug logs written in the code. This definition is used 

while coding the program so it is included for all test cases. 

 



 

 75 

DEBUG2: This define is used to include or exclude some code parts which 

are used to print some more detailed debug logs written in the code. This 

definition is also used while coding the program so it is included for all test 

cases too. 

 

PRINT_LIST: This define is used to include or exclude some code parts 

which are used to print whole current list at the end of process after new 

elements are received. These parts are included for some cases and 

excluded for others. 

 

WRITE_TIME: This define is used to include or exclude some code parts 

which are used to print the time in nanosecond at the start and end of the 

algorithm process after new elements are received. These parts are included 

for some cases and excluded for others. 

 

killtime: This is not a define but it is a variable that determines TimeKiller 

function execution time. This variable is set to different values for different 

test cases or for different run of same test case. 

 

 

4.1.2 Auxiliary Testing Program: 

 

Auxiliary testing program is written for two main goals. First one is to supply 

the input namely RE list with different size to the tested software. Second 

goal is preparing the inputs with easy way. This auxiliary program has a 

simple GUI to meet these goals. This GUI is formed by two main parts. First 

part is at the top of GUI and in this part some GUI elements are exists to 

prepare the input and send the input to the test software by TCP socket. 

Second part contains an text area to print the received messages sent by test 

software  and two text fields to set the TCP socket IP and port information 



 

 76 

fort the test software. GUI elements are introduced in Picture Figure 4.1. 

 

 

 

 

 

Figure 4.1 Auxiliary testing Program 
 

 

 

As it can be seen from the figure there are four different send buttons. All of 

them send the list to the tested software but different mode. 

 

Normal Mode: When Normal button is pressed, selected rows of the list are 

sent to the test software for only once. 

 

Incremental Mode: When Incremental toggle button is pressed, rows are 



 

 77 

sent to test software continuously as adding the next one elements to the 

sending list for each time until whole list is finished or button is released. In 

this mode when a list is sent, a “JustFinished” message is waited and after it 

comes new list is sent by adding one more elements to the previous list.  

 

Continuous Mode: When Continuous toggle button is pressed, selected 

rows are sent continuously until button is released.  In this mode when a list 

is sent, a “JustFinished” message is waited and after it comes same list is 

sent. 

 

One-by-one Mode: When OneByOne toggle button is pressed, list elements 

starting with selected are sent one by one continuously until whole list is 

finished or button is released.  In this mode when an element is sent, a 

“JustFinished” message is waited and after it comes same next element is 

sent. 

 

4.2 Input Set: 

 

Auxiliary testing program can write the list to a file in a defined format and 

can load it back. By using this facility of auxiliary testing program an input file 

which contains 250 elements is prepared. First 50 one is used to testing 

correctness of the software. Thus some of first 50 elements can updated the 

forming list and some of them are decided as a new element. Also some 

elements in first 50 are identical. Elements from 51 to 250 are always new 

elements for the current LE list when they sent the first time, thus all of these 

elements are different from each other with at least one different parameter. 

Parameters of the elements in the input file are given as a table in Appendix 

A. 

 



 

 78 

4.3 Test Cases: 

 

Four different test cases are prepared to define the effects of the parallel 

programming patterns to the real time performance. A subset of the input set 

is used as input for each case. This subset is determined according to the 

related test case goal. 

 

4.3.1 Test Case 1: Timeline Measurement Test 

 

Goal of test:  

In this test case by the user events in the source code, runtime behavior of 

the software is determined in a timeline via using the WindRiver System 

Viewer tool. Some performance metrics for parallel applications such as 

Sequential Time, Parallel Time and Total Overhead can be determined by 

this test. 

 

Testing Method:  

 51st, 52nd and 53rd elements of the input set are used as input of this 

test case. 

 Source codes of four software are compiled as EXTRA_EVENTS is 

defined and DEBUG1, DEBUG2, PRINT_LIST, WRITE_TIME are 

undefined. 

 Input elements are sent to the software by incremental mode of 

auxiliary testing program. 

 This test case is repeated for four times as killtime is set as 0, 10, 50 

and 100 usec. 

 

Evaluation Method: 

 WindRiver Workbench System Viewer tool is used to measure the 

time difference between the user events and to observe the parallel 



 

 79 

execution. 

 After analysis of the event table of system viewer following parameters 

are measured: 

o Sequential Time 

o Parallel Time 

o Total Overhead 

 

Expectations: 

 For first arrival of input which includes only 51st element of input file a 

new element (Element_1) must be created. 

Á Design1: While updating is made, parallelism must be 

observed. 

Á Design2: Parallelism can not be observed. 

Á Design3: Parallelism can not be observed. 

 

 For second arrival of input which includes 51st and 52nd elements of 

input file,  

o 51st element is compared with Element_1 and update for 

Element_1 is decided. 

Á Design1: While comparison and updating is made, 

parallelism must be observed. 

Á Design2: Parallelism can not be observed. 

Á Design3: Parallelism can not be observed. 

o 52nd element is compared with Element_1 and a new element 

(Element_2) creation is decided. 

Á Design1: While comparison is made, parallelism must be 

observed. 

Á Design2: While Element_1 is updated by 51st element, 

comparison for 52nd element start but since CULE is the 

only element in the list comparison is made after updating is 

finished. 



 

 80 

Á Design3: Parallelism can not be observed. 

 

 For third arrival of input which includes 51st, 52nd and 53rd elements 

of input file,  

o 51st compared with Element_1 and Element_2 and update for 

Element_1 is decided. 

Á Design1: While comparison and updating is made, 

parallelism must be observed. 

Á Design2: Parallelism can not be observed. 

Á Design3: While comparison is made, parallelism must be 

observed as comparison with Element_1 is on one PE and 

comparison with Element_2 is on other PE. 

o 52nd compared with Element_1 and Element_2 and update for 

Element_2 is decided. 

Á Design1: While comparison and updating is made, 

parallelism must be observed. 

Á Design2: While Element_1 is updated by 51st element, 

comparison for 52nd element start, parallelism must be 

observed as updating is on one PE and comparison is on 

other PE. 

Á Design3: While comparison is made, parallelism must be 

observed as comparison with Element_1 is on one PE and 

comparison with Element_2 is on other PE. 

o 53rd element is compared with Element_1 and Element_2, and 

a new element (Element_3) creation is decided. 

Á Design1: While comparison is made, parallelism must be 

observed. 

Á Design2: While Element_2 is updated by 52nd element, 

comparison for 53rd element start, parallelism must be 

observed as updating is on one PE and comparison is on 

other PE. 



 

 81 

Á Design3: While comparison is made, parallelism must be 

observed as comparison with Element_1 is on one PE and 

comparison with Element_2 is on other PE. 

 

Result: 

 

The following figures show the total execution time, parallel execution time 

and overhead time also the percentage of parallel execution and overhead 

with respect to total time for 3rd input arrival of this test for different values of 

killtime. 

 

 

 

 

 

Figure 4.2: Timing for 3rd input arrival for Serial Design 

 

 



 

 82 

 

 

 

Figure 4.3: Timing for 3rd input arrival for Parallel Design 1 
 

 

 



 

 83 

 

 

Figure 4.4: Timing for 3rd input arrival for Parallel Design 2 

 

 

 

 



 

 84 

 

 

Figure 4.5: Timing for 3rd input arrival for Parallel Design 3 
 

 

 

 

This test is made with 3 elements and 3 input arrivals. Also the 

measurements are obtained for the 3rd input arrival which contains three 

elements when the current list has two elements. Thus these measurements 

do not cover all cases but they show the parallel execution of the specified 

case. Test Case 3 can give more information about the parallel executions 

for different number of inputs. 

 

 

 



 

 85 

4.3.2 Test Case 2: Consistency Test 

 

Goal of test:  

The main goal of this test is to determine correctness of the source codes 

and consistency between serial and parallel software runtime behaviors. 

Performance metrics such as Functional correctness and Deterministic 

behavior are determined by this test. 

 

Testing Method:  

 First Step: 

o PC is connected to the board serially and connection is 

established by putty program. Also putty properties are set as it 

writes the all output screen to a log file 

o First 50 elements of the input file are used as input of this test 

case. 

o Source codes of 4 software are compiled PRINT_LIST is 

defined and EXTRA_EVENTS, DEBUG1, DEBUG2, 

WRITE_TIME are undefined. 

o Killtime is set as 10 usec. 

o Input elements are sent to the software by one-by-one mode of 

auxiliary testing program. 

 

 Second Step: 

o PC is connected to the board serially and connection is 

established by putty program. Also putty properties are set as it 

writes the all output screen to a log file. 

o First 50 elements of the input file are used as input of this test 

case. 

o Source codes of 4 software are compiled all EXTRA_EVENTS, 

DEBUG1, DEBUG2, WRITE_TIME, PRINT_LIST are 

undefined. 



 

 86 

o Killtime is set as 10 usec. 

o Input elements are sent to the software by incremental mode of 

auxiliary testing program. 

o At the end current list is printed. 

 

Evaluation Method: 

 For both two steps, by using UltraEdit comparison tool tested parallel 

software output log file is compared with the serial software output log 

file. 

 

Expectations: 

For both steps of the test output files obtained by running software developed 

with serial design and three parallel designs must be same.  

 

First step verifies that the parallel and serial software produce the same 

output for same input elements. But since input elements are sent one by 

one mode, Design 2 does not execute as parallel for the first step. Therefore 

second is made to observe the result while parallel execution is made. For 

this step all software can run as parallel. Also since elements in list are sent 

more times updating of parameters and changes in the value history list can 

be verified. 

 

Result: 

Serial program log file and parallel programs log files are compared one by 

one via UltraEdit comparison tool and its seen that all file are same as 

expected. 

 

4.3.3 Test Case 3: Computation Time Test 

 

Goal of test:  



 

 87 

The main goal of this test case is to measure the A-B timing (time between 

two points in execution) for serial and parallel software and compare them. In 

this test the computation time ratio between the software are considered 

instead of the time value. 

 

Testing Method:  

 PC is connected to the board serially and connection is established by 

putty program. Also putty properties are set as it writes the all output 

screen to a log file 

 All 250 elements of the input file are used as input of this test case. 

 Source codes of 4 software are compiled WRITE_TIME is defined and 

EXTRA_EVENTS, DEBUG1, DEBUG2, PRINT_LIST are undefined. 

 Input elements are sent to the software by incremental mode of 

auxiliary testing program. 

 This test case is repeated for four times for each software as killtime is 

set as 0, 10, 50 and 100 usec. 

 

Evaluation Method: 

 Using the time difference between start and end of the process, which  

is written in the output log file, process time – element number graph 

is obtained for all software and all run by Microsoft Excel. 

 

Expectations: 

 Parallel software must run faster than serial i.e. computation time for 

parallel software must be smaller with respect to computation time for 

the serial software. 

 For Parallel Design 1 computation time is expected as nearly 2/3rd of 

the serial computation time because two of three update decision or 

updating process is made as parallel. Also Parallel Design 1 is 

meaningful while update decision and updating for one parameter of a 

ListElement is time consuming. Thus Parallel Design 1 must become 



 

 88 

better as killltime increases. 

 Parallel Design 2 is better while list size is small. Because as list size 

increases update decision process become longer with respect to the 

updating process. Thus load balance become worse. Since in this test 

list size increase with time, parallelism become worse. 

 In Parallel Design 3 update decision process time is expected as 

nearly half of the serial design. Since in this test list size increase with 

time update decision process last longer with respect to the updating 

process and it becomes big part of overall computation time. Thus as 

time increases, computation time for Parallel Design 3 can becomes 

nearly half of the serial design. 

 

Result: 

 

The following two graphs show the computation times for each input arrivals 

specified in test method when there is no killtime.  

 



 

 

8
9

 

Without Killtime

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

0 50 100 150 200 250

Arrival

C
o

m
p

u
ta

ti
o

n
 T

im
e
 (

u
s
e
c
)

Serial

Design 1

Design 2

Design 3

 

 

Figure 4.6:  Arrival - computation time graph for 1 to 250 elements of input file for all design when there is no kill time 
 



 

 

9
0

 

Without Killtime

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

0 10 20 30 40 50 60 70 80 90 100

Arrival

C
o

m
p

u
ta

ti
o

n
 T

im
e
 (

u
s
e
c
)

Serial

Design 1

Design 2

Design 3

 

 

Figure 4.7: Arrival - computation time graph for 1 to 100 elements of input file for all design when there is no kill time 
 

 



 

 91 

When there is no killtime on parameter value comparison and update parts 

on the source code, computation time for Parallel Design 1 is catastrophic 

because the parallelism of Design 1 is on the these parts.  

 

To better view of the graph source data of the Parallel Design 1 is excluded 

and the following two graphs are obtained. They show the computation times 

for each input arrivals specified in test method for all designs except Parallel 

Design 1 when there is no killtime.  

 



 

 

9
2

 

Without Killtime

0

10000

20000

30000

40000

50000

60000

70000

80000

0 50 100 150 200 250

Arrival

C
o

m
p

u
ta

ti
o

n
 T

im
e
 (

u
s
e
c
)

Serial

Design 2

Design 3

 

 

Figure 4.8: Arrival - computation time graph for 1 to 250 elements of input file for all design except Design 1 when 

there is no kill time 



 

 

9
3

 

Without Killtime

0

2000

4000

6000

8000

10000

12000

14000

0 10 20 30 40 50 60 70 80 90 100

Arrival

C
o

m
p

u
ta

ti
o

n
 T

im
e
 (

u
s
e
c
)

Serial

Design 2

Design 3

 

 

Figure 4.9: Arrival - computation time graph for 1 to 100 elements of input file for all design except Design 1 when 

there is no kill time 



 

 94 

When number of elements in the current list is small, parallel designs are not 

faster than serial because of the overheads due to parallel program.  

 

In time, Parallel Design 2 becomes the best in an interval but later when 

update decision algorithm computation time becomes larger than the update 

algorithm’s as number of elements in the list increases then speed up for 

Parallel Design 2 does not increase any more. 

 

Design 3 becomes the best in time as number of elements in the list 

increases. The computation time for this design nearly the half as expected. 

 

The following two graphs show the computation times for each input arrivals 

specified in test method when killtime is set to 10 usec.  

 



 

 

9
5

 

With Killtime=10

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

0 50 100 150 200 250

Arrival

C
o

m
p

u
ta

ti
o

n
 T

im
e
 (

u
s
e
c
)

Serial

Design 1

Design 2

Design 3

 

 

Figure 4.10: Arrival - computation time graph for 1 to 250 elements of input file when killtime is set to 10 usec. 



 

 

9
6

 

With Killtime=10

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0 10 20 30 40 50 60 70 80 90 100

Arrival

C
o

m
p

u
ta

ti
o

n
 T

im
e
 (

u
s
e
c
)

Serial

Design 1

Design 2

Design 3

 

 

Figure 4.11: Arrival - computation time graph for 1 to 100 elements of input file when killtime is set to 10 usec. 
 



 

 97 

When killtime is set to 10 usec behaviors of serial design, Parallel Design 2 

and Parallel Design 3 do not changed. But Parallel Design 1 becomes better 

since the time difference between the computation time and overhead 

become closer.  

 



 

 

9
8

 

With Killtime=50usec

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

0 50 100 150 200 250

Arrival

C
o

m
p

u
ta

ti
o

n
 T

im
e
 (

u
s
e
c
)

Serial

Design 1

Design 2

Design 3

 

 

Figure 4.12: Arrival - computation time graph for 1 to 250 elements of input file when killtime is set to 50 usec. 



 

 

9
9

 

With Killtime=50usec

0

200000

400000

600000

800000

1000000

1200000

0 10 20 30 40 50 60 70 80 90 100

Arrival

C
o

m
p

u
ta

ti
o

n
 T

im
e
 (

u
s
e
c
)

Serial

Design 1

Design 2

Design 3

 

 

Figure 4.13: Arrival - computation time graph for 1 to 100 elements of input file when killtime is set to 50 usec. 
 



 

 100 

When killtime is set to 50 usec, Parallel Design 1 becomes better and 

meaningful because the computation time for it is less than the computation 

time for serial design.  

 



 

 

1
0
1

 

With Killtime=100usec

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

0 50 100 150 200 250

Arrival

C
o

m
p

u
ta

ti
o

n
 T

im
e
 (

u
s
e
c
)

Serial

Design 1

Design 2

Design 3

 

 

Figure 4.14: Arrival - computation time graph for 1 to 250 elements of input file when killtime is set to 100 usec. 



 

 

1
0
2

 

With Killtime=100usec

0

500000

1000000

1500000

2000000

2500000

0 10 20 30 40 50 60 70 80 90 100

Arrival

C
o

m
p

u
ta

ti
o

n
 T

im
e
 (

u
s
e
c
)

Serial

Design 1

Design 2

Design 3

 

 

Figure 4.15: Arrival - computation time graph for 1 to 50 elements of input file when killtime is set to 100 usec. 
 



 

 103 

 

When killtime is set to 100 usec Parallel Design 3 becomes more meaningful 

to exploit the concurrency. 

 

Following comments can be deduced from the result of this test: 

 The best design is Design 3 considering the execution speed.  

 Design 1 is meaningful when the parameter value comparison and 

update part of the program is time consuming. 

 Speed up for the Design 2 stops when computation time for the 

update decision algorithm becomes longer than the computation time 

for update algorithm. 

 

 

4.3.4 Test Case 4: Time Constraint Test 

 
Goal of test:  

The main goal of this test is to measure the performance metrics such as A-B 

timing timeliness (the ability to meet all deadlines) and deterministic behavior. 

 

Testing Method:  

 PC is connected to the board serially and connection is established by 

putty program. Also putty properties are set as it writes the all output 

screen to a log file 

 First 50 elements of the input file are used as input of this test case. 

 Source codes of 4 software are compiled WRITE_TIME is defined and 

EXTRA_EVENTS, DEBUG1, DEBUG2, PRINT_LIST are undefined. 

 Killtime is set as 50 usec. 

 Input elements are sent to the software by selecting all and continuous 

mode of auxiliary testing program. 

 After sending 51 times test is stopped. 

 



 

 104 

Evaluation Method: 

 Using the time differences between start and end of the process, 

which  is written in the output log file following features of processing 

time are obtained: 

o Mean 

o Variance 

o Minimum 

o Maximum 

o Separation(Maximum - Minimum) 

 

Expectations: 

 

Since this thesis measure the real-time performance of the software 

computation time for the same input must be in deterministic value. Since in 

first of 51 arrivals of inputs some different processes (creation of elements) 

are performed it is discarded and other 50 must be considered. 

 

Result: 

 

The following table and computation time – arrivals graphs are obtained from 

this test. 

 

 

 

Table 4.1: Computation time change in usec for the same input 
 

  Serial Design 1 Design 2 Design 3 

mean 169351.2 158910.8 153358.6 94792.6 

variance 1345.002 1931.566 82.43918 1422.286 

min 169321 158807 153343 94756 

max 169505 158975 153384 94964 

separation 184 168 41 208 

 



 

 105 

 

There is no big difference among the serial and parallel designs considering 

the change of the response time for each arrival of the same input. Thus all 

designs can be acceptable regarding the real time constraints. 



 

 106 

 

CHAPTER 5 

 

 

DISCUSSION AND CONCLUSION 
 

 

 
Faster computers are being required to solve today’s big and complex 

problems. To meet this, chip developers have produced the multicore 

processors. Also software developers must develop their skills to adapt this 

new hardware and to take the advantages of it. Parallel programming has 

been become mandatory. Parallel programming patterns help software 

developers for better parallel software. 

 

In this thesis, to determine the effects of parallel programming patterns on 

real time performance, one serial and three parallel software designs are 

implemented to solve a list management algorithm. Serial software is 

designed by the traditional methods without any parallel programming 

pattern. In the first parallel design, parallelism is on the tasks which carry out 

the same tasks three times in one pass of the algorithm. In the second 

parallel design, parallelism is obtained as pipelining the two sequential tasks 

and synchronizing them by events. In the third parallel design, parallelism is 

on the iterations of a loop. 

 

All parallel designs exhibit better performance in comparison to the serial 

design. But performance gains and other software quality factors are different 

among them. 

 

The first design, which is based on loop parallelism on parameter 

comparison, is clear to understand but it is not scalable with the processor 



 

 107 

number because it has only three parallel tasks. Also the performance 

improvement for this design depends directly on the work load of the parallel 

task. To obtain better performance with such a design load of the tasks must 

be big enough else performance become worse than the serial design 

because of the overheads due to parallelism such as tasks switch, task 

communication etc. 

 

The second design, that is pipeline structure, is the most complex one to 

understand and it is not scalable with the processor number because it has 

only two parallel tasks. Also if the work load of these tasks differs, 

performance improvement decreasing. To obtain better performance with 

such a design load of the tasks must be comparable. 

 

The third design, which is based on loop parallelism on element comparison, 

is the most clear to understand because it is the closest one to the serial 

design. Also it is as scalable design as loop iterations can be diminished in to 

tasks where tasks have enough work. Since tasks are the iterations of a loop 

all tasks have nearly same work load. If this kind of parallelism can be 

obtained for an algorithm it must be the first choice. 

 

In this thesis, applicability of parallel programming patterns to the real time 

software is shown. Also it can be proved that parallel programming effort is 

worthwhile to obtain better performance from the multicore processor for real 

time software by implementing a real time algorithm that is already used in 

practice. Improvement on real time performance, reduction in power 

consumption and deterministic behavior encourage the real time software 

developers to use multicore processors and parallel programming patterns. 

 

VxWorks 6.6 with SMP is used in this thesis as real time operating system. 

WindRiver VxWorks product is one of the most reliable and well supported 

real time operating system. Some important issues for parallel programming 

such as load balancing, task communication mechanism etc. are provided by 



 

 108 

the operating system features. 

 

Moreover in this thesis the pattern language in [1] is tried on an algorithm 

with real time constraints. Patterns in this pattern language are high level 

patterns which address the analysis the problem and software design. They 

also offer some implementation methods. This language is mostly useful to 

learn parallel thinking about a problem while analyzing it and also to form the 

general architecture of the software which implements the problem as 

parallel.   

 

The main shortcoming of the present study is also related to its strength: 

namely, the fact that it is based on an experimental study. As such, while it is 

repeatable for experiments that involve highly similar characteristics, there is 

no claim to generalizability of results. That is, how design patterns affect 

performance in general, is not a conclusion that is or that could be derived in 

this study. 

 

In this thesis, only one hardware platform with dualcore processor is used 

and VxWorks 6.6 with SMP operating system is run on it. To derive more 

conclusive evaluations, the test program needs to be tried with different 

hardware and operating systems. This is the first suggestion for immediate 

future work. 

 

Although list management algorithm is implemented with three different 

ways, another algorithm can be implemented in future works. This would 

naturally enrich the evaluations in terms of generalizability of results. 

 

Moreover, parallel designs in this thesis are based on the pattern language in 

[1]. Other parallel programming patterns and pattern languages or parallel 

programming environments with parallel programming languages, compilers, 

frameworks can be tried and compared in future studies. 



 

 109 

 

REFERENCES 

 

 

 

[1] Mattson, T. G., Sanders, B. A., and Massingill, B. L.,  “Patterns for Parallel 

Programming”, Addison-Wesley, 2004 

 

[2] Geer, D., “Industry Trends: Chip Makers Turn to Multicore Processors”, 

IEEE Computer, vol. 38, no. 5, pp. 11-13, May,  

 

[3] AMD White Paper, “Multi-Core Processors - The next evolution in 

computing”, 2005 

 

[4] Flynn, M. J., “Some computer organizations and their effectiveness”, IEEE 

Transactions on Computers, C-21(9), 1972 

 

[5] “Wikipedia – Flynn Taxonomy”, 

http://en.wikipedia.org/wiki/Flynn%27s_taxonomy, last visited on June 2010 

 

[6]  Wind River Systems, Inc., “VxWorks 6.6 SMP Product Note”, 2007 

 

[7]  Siddha, S., “Multi-core and Linux* Kernel”, Intel Open Source Technology 

Center, March 2007 

 

[8] Geer, D., “For Programmers, Multicore Chips Mean Multiple Challenges” 

IEEE Computer, vol. 40, no. 9, pp. 17-19, August 2007 

 

[9] Quinnell, R. A., “Multicore partitioning is a threads and comms problem”, 

EE Times, October 20, 2008 

 

[10] Kanaracus, C., “Multicore Boom Needs New Developer Skills”, IDG 

http://en.wikipedia.org/wiki/Flynn%27s_taxonomy


 

 110 

News Service, Friday, March 21, 2008 

 

[11] Reinders, J., “Rules for Parallel Programming for Multicore”, Dr. Dobb's 

Journal, 32, 10; ProQuest Computing pg. 10, October 2007  

 

[12] Asanovic, K., Bodik, R., Demmel, J., Keaveny, T., Keutzer, K.,  

Kubiatowicz, J. D., Lee, E. A., Morgan, N., Necula, G., Patterson, D. A., Sen, 

K., Wawrzynek, J., Wessel, D. and Yelick, K. A., “The Parallel Computing 

Laboratory at U.C. Berkeley: A Research Agenda Based on the Berkeley 

View”, Electrical Engineering and Computer Sciences at University of 

California at Berkeley, March 21, 2008 

 

[13] Aiken, A., Dally, B., Fedkiw, R., Hanrahan, P., Hennessy, J., Horowitz, 

M., Koltun, V., Kozyrakis, C., Olukotun, K., Rosenblum, M., and Thrun, S., 

“The Stanford Pervasive Parallelism Lab”, August 2008 

 

[14] Adve, S. V., Adve, V. S., Agha, G., Frank, M. I., Garzarán, M. J., Hart, J. 

C., Hwu, W. W., Johnson, R. E., Kale, L. V., Kumar, R., Marinov, D., 

Nahrstedt, K., Padua, D., Parthasarathy, M., Patel, S. J., Rosu, G., Roth, D., 

Snir, M., Torrellas, J., Zilles, C. “Parallel Computing Research at Illinois The 

UPCRC Agenda”, University of Illinois at Urbana-Champaign, November 

2008 

 

[15] Snir, M., et.al., “Ubiquitous Parallel Computing from Berkeley, Illinois and 

Stanford”, IEEE Micro, 2010 

 

[16] Buschmann, F., Henney, K., Schmidt, D., “Pattern-Oriented Software 

Architecture: A Pattern Language for Distributed Computing”, Wiley, India, 

2007 

 

[17] Asanovic, K., et.al., “A view of the parallel computing landscape”, Comm. 

ACM, 52:10, October 2009 



 

 111 

 

[18] Fluet, M., et.al., “Manticore: a heterogeneous parallel language”, Annual 

Symposium on Principles of Programming Languages; Proceedings of the 

2007 workshop on Declarative aspects of multicore programming, Nice, 

France, pp.37 – 44, 2007 

 

[19] Christopher, A., et al., “A Pattern Language Towns, Buildings, 

Construction”, Vol.2, New York: Oxford University Press, 1977 

 

[20] “A Pattern Language For Parallel Programming Ver 2.0”, 

http://parlab.eecs.berkeley.edu/wiki/patterns/patterns, last visited on June 

2010 

 

[21] Douglass, B. P., “Real-Time Design Patterns: Robust Architecture for 

Real- Time Systems”, Addision-Wesley, 2002 

 

[22] Mattson, T., “Teaching people how to think parallel”, Principal Engineer 

Application Research Laboratory Intel Corp, 2009 

 

[23] Johnson, R., “Parallel Programming Patterns”, The Universal Parallel 

Computing Research Center, Illinois, September 19, 2008 

 

[24] Mattson, T., “Our Pattern Language (OPL)”, February 13, 2009 

 

[25] Hillary, N., “Measuring Performance for Real-Time Systems, Rev.0”, 

Freescale Semiconductor , November 2005 

 

[26] Halang, W. A., “Measuring the Performance of Real-Time Systems”, 

2000 

 

[27] Zalewski, J., “From Software Sensitivity to Software Dynamics: 

Performance Metrics for Real-Time Software Architectures”, July 2005 

http://parlab.eecs.berkeley.edu/wiki/patterns/patterns


 

 112 

 

[28] Hwang, K., Xu, Z., “Scalable parallel computers for real-time signal 

processing”, Hong Kong Univ., July 1996 

 

[29] Wind River Systems, Inc., “Wind River Workbench USER’S GUIDE 3.0”, 

2007 

 

[30] Wind River Systems, Inc., “VxWorks KERNEL PROGRAMMER'S GUIDE 

6.6”, 2007 

 

[31] Wind River Systems, Inc., “2007Wind River System Viewer USER'S 

GUIDE 3.0”, 2007 

 

[32] Wind River Systems, Inc., “Wind River VxWorks Simulator USER'S 

GUIDE 6.6”, 2007 

 

[33] Wind River Systems, Inc., “Wind River Workbench Function Tracer 

USER'S GUIDE 3.0”, 2007 

 

[34] Wind River Systems, Inc., “Wind River SBC8641D Engineering 

Reference Guide”, 2007 

 

[35] Freescale MPC8641D Product Summary Page, 

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MPC86

41D, last visited on June 2010 

 

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MPC8641D
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MPC8641D


 

 113 

 

APPENDIX-A 

 

 

Table of Elements in Input File 

 

 

 

Table A.1: Test Input Set 
 

No major Xmin Xmax Ymin Ymax Zmin Zmax Decision 

1 0 1001 1001 101 101 11 11 new element with ID=1 

2 0 1001 1001 101 101 11 11 update element with ID=1 

3 0 1000 1002 101 101 11 11 update element with ID=1 

4 0 1001 1001 100 102 11 11 update element with ID=1 

5 0 1001 1001 101 101 10 12 update element with ID=1 

6 0 1501 1501 101 101 11 11 new element with ID=2 

7 0 1501 1501 151 151 11 11 new element with ID=3 

8 0 1501 1501 151 151 15 15 new element with ID=4 

9 0 1500 1502 151 151 15 15 update element with ID=4 

10 0 1496 1506 151 151 15 15 update element with ID=4 

11 0 1504 1514 151 151 15 15 new element with ID=5 

12 0 1489 1499 151 151 15 15 update element with ID=4 

13 0 1601 1601 161 161 16 16 new element with ID=6 

14 0 1601 1601 160 162 16 16 update element with ID=6 

15 0 1601 1601 156 166 16 16 update element with ID=6 

16 0 1601 1601 164 174 16 16 new element with ID=7 

17 0 1601 1601 149 159 16 16 update element with ID=6 

18 0 1801 1801 181 181 18 18 new element with ID=8 

19 0 1801 1801 181 181 17 19 update element with ID=9 

20 0 1801 1801 181 181 13 23 update element with ID=9 

21 0 1801 1801 181 181 24 29 new element with ID=10 

22 0 1801 1801 181 181 10 15 update element with ID=9 

23 50 1001 1001 101 101 11 11 new element with ID=11 

24 50 1501 1501 101 101 11 11 new element with ID=12 

25 50 1501 1501 151 151 11 11 new element with ID=13 

26 50 1501 1501 151 151 15 15 new element with ID=14 

27 50 1504 1514 151 151 15 15 new element with ID=15 

28 50 1601 1601 161 161 16 16 new element with ID=16 

29 50 1601 1601 164 174 16 16 new element with ID=17 

30 50 1801 1801 181 181 18 18 new element with ID=18 

31 50 1801 1801 181 181 24 29 new element with ID=19 



 

 114 

32 50 1001 1001 101 101 11 11 update element with ID=11 

33 50 1501 1501 101 101 11 11 update element with ID=12 

34 50 1501 1501 151 151 11 11 update element with ID=13 

35 50 1501 1501 151 151 15 15 update element with ID=14 

36 50 1504 1514 151 151 15 15 update element with ID=15 

37 50 1601 1601 161 161 16 16 update element with ID=16 

38 50 1601 1601 164 174 16 16 update element with ID=17 

39 50 1801 1801 181 181 18 18 update element with ID=18 

40 50 1801 1801 181 181 24 29 update element with ID=19 

41 0 3000 3003 300 303 30 33 new element with ID=20 

42 0 3000 3000 300 303 30 33 update element with ID=20 

43 0 3003 3003 300 303 30 33 update element with ID=20 

44 0 3000 3003 300 300 30 33 update element with ID=20 

45 0 3000 3003 303 303 30 33 update element with ID=20 

46 0 3000 3003 300 303 30 30 update element with ID=20 

47 0 3000 3003 300 303 33 33 update element with ID=20 

48 0 3001 3001 301 301 31 31 update element with ID=20 

49 50 3000 3003 300 303 30 33 new element with ID=21 

50 50 3000 3003 300 303 30 33 update element with ID=21 

                  

51~60 0+40i 5000 5000 100 100 10 10 10 new element 

61~70 0+40i 5050 5050 100 100 10 10 10 new element 

71~80 0+40i 5100 5100 100 100 10 10 10 new element 

81~90 0+40i 5150 5150 100 100 10 10 10 new element 

91~100 0+40i 5200 5200 100 100 10 10 10 new element 

                  

101~250 0+40i 6000+50k 6000+50k 100 100 10 10 150 new element 

 


