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ABSTRACT 

 

 

ANTENNA PATTERNS FOR DETECTING SLOWLY MOVING TARGETS IN TWO 

CHANNEL GMTI PROCESSING 

 

 

 

 

Yıldırım, Gökhan 

M.Sc., Department of Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. Seyit Sencer Koç 

 

 

June 2010, 104 pages 

 

 

Ground Moving Target Indicator (GMTI) is a well-known and widely used signal 

processing method in airborne and spaceborne radars. In airborne radar and 

GMTI literature, many radar designs and signal processing techniques have been 

developed to increase the detection and estimation performance under heavy 

interference conditions. The motion of the aircraft on which the radar is 

mounted, high altitudes and ranges, targets with low radar cross sections and 

slowly moving targets complicates the problem of localization and observation of 

moving targets on a huge area of interest. In order to overcome these problems, 

engineers developed more complex radar hardwares with many receiver 

channels and signal processing algorithms. Multi-channel receiver provides 

adaptive digital beam-forming and adaptive Doppler processing capabilities. 

However, designing a cost efficient and light multi-channel receiver and a signal 
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processing unit, which can handle a huge amount of received data from multi 

channels, is a difficult task to accomplish. Therefore, this thesis aims to propose 

non-adaptive antenna beams to reduce the number of channels to two in GMTI 

processing. This reduction yields a simplification both in receiver structure and 

signal processing unit. The measure of excellence of these propositions will be 

the ability to detect slowly moving targets with nearly optimum performance. 

 

Keywords: GMTI, STAP, Eigen-Beam, Endo-Clutter, Two Channel, Karhunen-Leove 

Expansion 
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ÖZ 

 

 

İKİ KANAL GMTI İŞLEMEDE YAVAŞ HEDEFLERİN TESPİTİ İÇİN ANTEN ÖRÜNTÜLERİ 

 

 

 

Yıldırım, Gökhan 

Yüksek Lisans., Elektrik-Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Seyit Sencer Koç 

 

 

Haziran 2010, 104 sayfa 

 

 

Hareketli Yer Hedeflerinin Tespiti (GMTI), oldukça bilinen ve hava ve uzay 

platformu radarlarında geniş ölçüde kullanılan bir yöntemdir. Hava platformu 

radar ve GMTI literatüründe, ağır girişim koşullarında tespit ve kestirim 

performansını arttırmak için birçok radar tasarımı ve sinyal işleme tekniği 

geliştirilmiştir. Radarın bulunduğu platformun hareketi, yüksek irtifa ve menziller, 

düşük radar kesit alanlı ve yavaş hareket eden hedefler, hareketli hedeflerin 

büyük bir ilgi alanında gözlemlenmesini ve konumunun belirlenmesini 

zorlaştırmaktadır. Mühendisler bu sorunların üstesinden gelmek için çok kanallı 

almaç içeren karmaşık radar donanımları ve sinyal işleme algoritmaları 

geliştirmiştir. Çok kanallı almaç, uyarlamalı huzme biçimlendirme ve uyarlamalı 

Doppler işleme yeteneği sağlamaktadır. Ancak, uygun maliyetli ve hafif bir çok 

kanallı almaç ile bu almaçlardan gelen yüksek miktardaki veriyi yönetebilecek bir 

sinyal işleme birimi tasarlamak zorlayıcı bir iştir. Bu nedenle bu tez, uyarlanabilir 
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olmayan anten huzmeleri önererek GMTI sisteminde kanal sayısını azaltmayı 

amaçlamaktadır. Bu azaltma almaç yapısında ve sinyal işleme biriminde 

sadeleşme sağlamaktadır. Önerilen anten huzmelerinin başarımları, yavaş 

hedefleri optimuma yakın bir performansla tespit etme yetenekleri ile 

ölçülecektir. 

 

Anathar Kelimeler: GMTI, STAP, Eigen-Huzme, Kargaşa İçi, İki Kanal, Karhunen-

Leove Açılımı 
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CHAPTER 1 
 

 

INTRODUCTION 
 

 

1. INTRODUCTION 

1.1. Radar and GMTI History 

Object detection with radar was first used by Christian Hülsmeyer, who 

illustrated the possibility of detection under non-visible conditions, in 1904. 

In 1917, Nikola Tesla enhanced the radar principle by stating the feasibility 

of intentionally transmitting and receiving electromagnetic waves to detect 

the relative position of a target. Several developments have been made on 

radar concepts by scientists and engineers up to World War II. 

In the World War II, British Army used the ground stationed radars (which 

are called Chain Home) effectively against the German Air Forces (Luftwaffe) 

to locate the bomber aircrafts of German Army. However, after locating the 

bomber aircrafts, the pilots of the anti-bomber aircrafts of British Air Forces 

had to see the German aircrafts in order to eliminate them. As a precaution, 

Luftwaffe started to fly at night and in bad weather conditions, in order to 

avoid the enemy. British Air Forces had to take a counter measure in order 

to see the enemy aircrafts while flying, during the nights and bad weather 

conditions. 

Airborne radar idea was first proposed by Scottish inventor Robert Wattson-

Watt; his idea was realized by miniaturizing the radar systems to the sizes 

which are suitable for aircrafts, by increasing the operating frequency of the 

radar and resultantly, ability to decrease the antenna size. These radars 



2 

were able to end the German night and bad weather bombing tactics during 

the war, [1]. These radars were intended to be used in Air-to-Air Detection 

or Air Moving Target Indication (AMTI). 

Ground Moving Target Indication (GMTI) ideas arose because of the Cold 

War requirements starting from 1970s. Several developments were made in 

the course of the Cold War up to the contract of Joint STARS (Surveillance 

Target and Attack Radar System) with Grumman/Norden and Motorola in 

1985. The system had to have a GMTI mode and an imaging mode called 

Synthetic Aperture Radar (SAR) in order to be used against Warsaw Pact’s 

armored follow-on forces, before they arrive to NATO’s defenses. After the 

cold war, GMTI was used during the Post Cold War era, in Gulf War, in 

Kosovo and Afghanistan, [2]. 

1.2. Thesis Motivation and Objective 

In airborne radar and GMTI literature, many radar designs and signal 

processing techniques have been developed to increase the detection and 

estimation performance under heavy interference conditions. The motion of 

the aircraft on which the radar is mounted, high altitudes and ranges, 

targets with low radar cross sections and slowly moving targets complicates 

the problem of localization and observation of moving targets on a huge are 

of interest. In order to overcome these problems, engineers developed more 

complex radar hardwares with many receiver channels and signal processing 

algorithms. Multi-channel receiver provides adaptive digital beam-forming 

and adaptive Doppler processing capabilities. However, designing a cost 

efficient and light multi-channel receiver and a signal processing unit, which 

can handle a huge amount of received data from multi-channels, are difficult 

tasks to accomplish. 

Therefore, the main motivation of work in this thesis is to propose good 

non-adaptive antenna beams to reduce the number of channels to two in 
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GMTI processing. This reduction yields a simplification both in receiver 

structure and signal processing unit. The measure of excellence of the 

propositions will be the ability to detect slowly moving targets with nearly 

optimum performance. In order to support the proposition, there are 

certain objectives that will be mentioned throughout the thesis: 

- Explaining the main principle of airborne radar 

- Investigating the optimum multi-channel GMTI signal processing 

technique 

- Deriving and investigating the sub-optimum signal processing techniques 

with reduced number of channels and/or pulses 

- Determining the advantages and disadvantages of sub-optimum 

techniques 

- Proposing some good reduced channel (sub-optimum) solutions and 

supporting these solutions with logical bases 

1.3. Thesis Outline 

Chapter 1 mentioned the history of radar and GMTI concepts and outlines 

the work done throughout the thesis. Chapter 2 will familiarize with the 

basic principles of airborne radar, GMTI and Space-Time Adaptive Processing 

(STAP) and introduce the data collection and signal models. Chapter 3 will 

investigate the performance of optimum and sub-optimum (reduced rank) 

STAP approaches, their advantages and disadvantages and cover the 

subspace and subspace processing concepts. Chapter 4 will state the main 

problem that the thesis aims to overcome, indicate the assumptions and 

constraints, propose good solutions and investigate their performances. 
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CHAPTER 2 
 

 

RADAR, GMTI AND SPACE TIME ADAPTIVE PROCESSING 
CONCEPTS 

 

 

2. RADAR, GMTI AND SPACE TIME ADAPTIVE PROCESSING CONCEPTS 

2.1. Radar Background 

The term RADAR is an acronym for “Radio Detection and Ranging”. The main 

purpose of radar is to detect existence of a target by transmitting 

electromagnetic waves and receiving the reflections of these waves from the 

targets. In addition to the existence of a target, manipulation of the 

transmitted and received waves will basically give the following information: 

- Range (how far away the target is from the radar) of the target by 

measuring the time difference between transmitted and received waves 

- Velocity (radial or along the range vector) of the target by measuring the 

frequency difference between transmitted and received waves (which 

will also be referred as Doppler phenomenon or Doppler shift) 
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Figure  2-1 Radar detection 

 

Since electromagnetic waves travels with the speed of light 

( smxc /10998.2 8= ) and as it can be seen from Figure  2-1 that the 

electromagnetic wave travels two times the distance between radar and the 

target, the range of the target can be found using ( 2-1): 

2

tc
R

∆= . 
( 2-1)

t∆  = Time Difference 

Time 

Transmitted wave with 

frequency TXf  

Received wave with 

frequency RXf  

Radar 

Aircraft Motion 

Vector 

Radial Velocity 

Component 

Aircraft 

Transmitted Wave 

Received Wave 
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The radial velocity of the target is related to the Doppler shift between the 

transmitted and received waves. The amount of the Doppler shift is 

measured by using ( 2-2): 

RXTXD fff −= . 
( 2-2)

Here Df  is represents the Doppler shift. The shift depends on how fast the 

range between the radar and the aircraft changes within the cycles of the 

electromagnetic wave. The distance traveled by the electromagnetic wave 

can be represented as a function of time as in the ( 2-3): 

( )
c

tV
Rtd R2

2 −= . 
( 2-3)

Here RV  is the radial velocity component of the moving target. This range 

corresponds to a time varying phase change, which is represented in ( 2-4): 

( ) 






 −=
c

tV
Rft R

TX

2
22πφ . 

( 2-4)

Since the frequency is the derivative of phase, then: 

λ
φ

π
RR

TXD

V

c

V
f

dt

d
f

22

2

1 −=−== . 
( 2-5)

Here, λ  represents the wavelength of the transmitted electromagnetic 

wave. Resultantly we have: 

λ
R

RXTXD

V
fff

2−=−= , 
( 2-6)

( )
2

TXRX
R

ff
V

−= λ
. 

( 2-7)

Eqn. ( 2-6) shows that the measurable Doppler shift is a result of radial 

velocity of the target and a function of operational wavelength (or 

frequency). It is obvious that, if the radar is mounted on a moving platform, 
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the effective or the relative radial motion between the radar and the moving 

target determines the Doppler shift. 

2.2. GMTI Background 

Ground Moving Target Indicator (GMTI) is the general name for an ability of 

radar systems or algorithms which can detect moving targets on the ground. 

The main challenge of GMTI is to detect the targets which are buried under 

heavy ground reflection signals, which, from now on will be referred to as 

clutter. Classical airborne radar systems with GMTI have the basic structure 

of a side looking airborne radar (SLAR) as illustrated in Figure  2-2: 

 

Figure  2-2 GMTI operation 

Aircraft’s Motion 

Radar Beam 

Radar Beam on 
Ground 

Ground Moving 
Target 
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In GMTI operation, a side looking radar antenna sweeps the surface by 

illuminating it with electromagnetic pulses with pre-defined waveform 

properties. Detection can be done if the target is illuminated for a certain 

amount of time (observation time) or by a certain number of pulses. Several 

signal processing techniques have been used to reveal ground moving 

targets. 

2.3. GMTI Techniques 

Throughout the course of GMTI history, different techniques were used to 

reveal the moving ground targets. The well-known and widely used 

techniques are mentioned in the following subsections. 

2.3.1. Displaced Phase Center Antenna (DPCA) Technique 

DPCA is the most basic GMTI technique, which was widely used in early 

GMTI systems, [3]. Its fundamental principle is to eliminate the unwanted 

reflections and to reveal the moving targets on ground by looking at the 

same area from the same point in space, but at a different time.  
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The data collection geometry can be seen in Figure  2-3: 

 

Figure  2-3 DPCA data collection geometry 

 

In principle, radar transmits and receives one pulse in the first time 

instant (first pulse). In the second time instant (second pulse), the aircraft 

moves forward, exactly the amount of separation between the two 

receiver antennae and again the radar transmits and receives (Figure  2-3). 

The received signal of the first receiver in the first pulse and the received 

signal of the second receiver in the second pulse are taken from the same 

surface on the ground. Theoretically, it can be said that the returns from 

non-moving ground objects (also called clutter) are same. However, 

returns from moving ground objects will differ because of the motion of 

the ground target. DPCA technique uses the fact that the moving target 

can be revealed by subtracting these two pulses. 

First Receiver Antenna 

Direction of 
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Direction of 
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The performance of DPCA is very good if the aircraft’s velocity is adjusted 

precisely to match the antenna separation distance on each pulse. 

However, due to the practical factors like air turbulence, inaccurate 

velocity measurement devices, unstable pulse repetitions and channel 

mismatches, DPCA technique’s performance degrades and can be 

enhanced by using adaptive processing for better clutter suppression, [4]. 

2.3.2. Adaptive Displaced Phase Center Antenna (ADPCA) Technique 

ADPCA technique was developed in order to cope with the practical 

problems like unwanted aircraft motion, erroneous velocity 

measurements, inconsistent pulse repetitions and non-ideal receiver 

channels. The term “adaptive” implies that the received data are used to 

estimate and correct the errors, which are caused by practical problems 

mentioned above. The ADPCA data collection geometry is illustrated in 

Figure  2-4: 

 

Figure  2-4 ADPCA data collection geometry 
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There are two different ADPCA techniques in the literature to perform 

detection operation. The first technique is mentioned in [4] and the main 

steps in this ADPCA technique are as follows: 

- Estimate the antenna position error using the received data 

- Calculate the phase shift caused by this error 

- Correct the received data with the calculated phase shift  

- Conduct the subtraction operation as in the DPCA case. 

- Detect the moving targets 

The second technique is introduced in [5] and it is using a detector similar 

to the one which will be derived in section  3.1. Throughout the thesis, the 

second ADPCA technique will be considered. 

The performance of ADPCA technique is better as far as the practical 

problems are concerned, [5]. However, DPCA and ADPCA techniques are 

able to detect relatively fast moving targets because of the clutter spread 

due to the aircraft motion, [5]. 

2.4. Endo-Clutter and Exo-Clutter Targets 

Ideally, if the radar is stationary and transmits electromagnetic pulses to 

the surface with the same angle, the signals reflected from the clutter will 

not have a Doppler spread. However, in practice, the following items can 

cause clutter spread: 

- The motion of the platform, on which the radar is mounted  

- The motion introduced by wind to ground objects and sea surface 

(Internal Clutter Motion) 

- The change in aspect angle of the clutter patch 
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Figure  2-5 Clutter frequency spectrum in non-moving and moving aircraft cases 

 

The DPCA and ADPCA techniques are successful to detect the targets 

outside or at the edge of the clutter spread region (Figure  2-5). These 

types of targets are called “Exo-clutter Targets”. Exo-clutter targets have 

higher Doppler shifts which means they move relatively fast. 

Main challenging problem is to detect the targets inside the clutter 

spread region, which are called “Endo-clutter Targets” as shown in Figure 

Frequency 

Amplitude 

Frequency 

Amplitude 

Clutter Signal 
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 2-6. The detection of these targets is difficult since they are buried under 

a high clutter power because of their low Doppler shifts.  

 

Figure  2-6 Endo-Clutter and Exo-Clutter targets 

 

The DPCA and ADPCA techniques can also detect the endo-clutter targets; 

however, a more general approach to the solution of detection problem may 

enhance the endo-clutter detection performance significantly. This approach 

leads us to the Space-Time Adaptive Processing (STAP), which is the general 

solution of detection problem and it gives optimum detection performance. 

2.5. Motivations to STAP and STAP Data Collection Geometry 

In GMTI data collection, the received signals are taken from different 

antennae (spatial domain) at different times (temporal domain). Widely 

used GMTI techniques like DPCA and ADPCA is not optimum in detecting the 

slowly moving targets or in other words endo-clutter targets, because they 

are using the correlation between space and time. However, since all the 

signals received from all channels in different times are not independent 

generally, an optimum signal processing scheme has to be 2-D adaptive 

processing, [6]. 

Space-Time Adaptive Processing (STAP) gives the opportunity to take 

advantage of the correlation between space and time domains in an 

adaptive manner; thus, it will provide the optimum performance in 

Frequency 

Amplitude 

Clutter Spread Region 

Endo-Clutter Target 

Exo-Clutter Target 
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detection of endo-clutter targets. Exo-clutter targets can be detected with a 

nearly optimum performance with non-adaptive and 1-D processing 

methods, since exo-clutter performance only depends on noise component, 

which is an independent variable in space and time domains. The STAP 

technique is the optimum processing technique, which offers a 2D adaptive 

signal processing both in space (beam-forming) and time (Doppler 

processing).  

Full STAP data collection geometry is illustrated in Figure  2-7: 

 

 

Figure  2-7 STAP data collection geometry 

 

In STAP, a number of channels (K many) and a number of pulses (N many) 

can be used to operate. The number of channels and pulses provide KN 

many degrees of freedoms (DoFs) which can be used to suppress the clutter 

and detect endo-clutter targets. 
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2.6. Signal and Statistics Models in STAP 

There are mainly four types of signals in STAP terminology. These are target, 

clutter, interference and thermal noise signals. The interfering signals are 

not in the scope of this thesis and will not be investigated. The remaining 

signals and their statistical models are explained in the subsections  2.6.1, 

 2.6.2 and  2.6.3. 

2.6.1. Target Signal Model 

Target signal can be expressed as the signals reflected from the moving 

targets back to the radar channels. The target signal has two main 

components; space and time. The received signal in time depends on the 

velocities of target and aircraft, and the azimuth angle of the target. 

Target signal parameters are shown in Figure  2-8: 

 

Figure  2-8 Target signal parameters 
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Let the target’s radial velocity component be RV , aircraft velocity be AV , 

azimuth angle of the target be Tθ  and the wavelength of the transmitted 

pulse be λ . The Doppler shift of the target can be found from ( 2-8): 

( )
λ

θ
λ

TAR
D

VV
f

sin22 += . ( 2-8)

Let the pulse repetition interval (PRI) of the radar be pT . Then in every pT , 

the phase of the received signal from one channel differs by pDTf . The 

received signal from the target for one received channel and N pulses can 

be written as in ( 2-9): 

( )( )
( )( )

( )( )










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






−−

−
−

=

12exp

12exp

02exp

NTfj

Tfj

Tfj

pD

pD

pD

π

π
π

M
tp . 

( 2-9)

tp  denotes the received target signal vector in time domain. Target signal 

in space domain depends on the azimuth angle of the target and channel 

separation as illustrated in Figure  2-9: 

 

 

Figure  2-9 Target signal reception in space domain 
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The phase of the signal which is received from a channel depends on its 

signal reception delay. The delay for Kth channel can be written as in 

( 2-10): 

( ) ( )TK dKD θsin1−= . 
( 2-10)

Here d  is the channel separation. This separation in space causes the 

change in phase represented in ( 2-11): 

( ) ( )
λ

θφ T
K

dK sin1−= . 
( 2-11)

In the analysis, it is assumed that all the channels have unity antenna gain 

and isotropic antenna patterns. 

Consequently, the target signal vector in space can be written as in ( 2-12): 

( ) ( )

( ) ( )

( ) ( )
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


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
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sp . 
( 2-12)

The space-time signal received from the target is the Kronecker product 

of space and time signals defined in ( 2-14): 

st ppp ⊗= , 
( 2-13)
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p

p
M

. 
( 2-14)

Here ⊗  means the Kronecker product operation. Every ip  represents the 

Kx1 channel response of i’th pulse and p  is a KNx1 vector. The total 

space-time response p  is multiplied by a random complex coefficient 
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which includes the reflected power of the target because of its reflectivity, 

orientation with respect to radar, range and other system parameters. 

The complex coefficient can be modeled as in ( 2-15): 

QI jααα += , 
( 2-15)

where Iα  and Qα  are assumed to be independent identically distributed 

random variables with zero mean Gaussian distribution with a variance of 

2

2
tσ

, where 2
tσ  is assumed to be known. This model is referred to as 

Gaussian Fluctuating Signal Swerling-1 target model, in which the 

coefficient is constant in one space-time response (coherent processing 

interval) but will differ in another space-time response.  

2.6.2. Clutter Signal Model 

Clutter signal includes the reflected electromagnetic waves from all 

ground obstacles (but not the electromagnetic wave sources like 

jammers).  
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Consider an infinitesimal ground clutter patch as shown in Figure  2-10: 

 

Figure  2-10 Clutter signal collection 

 

Received signal from the ground clutter patch depends on the following 

parameters: 

- Angular distribution of clutter on that particular azimuth angle � ( )θc  

(random) 

- Transmit antenna voltage pattern gain on that particular azimuth angle 

� ( )θTG  (known, deterministic) 

- Pulse repetition interval � pT  (known, deterministic) 

- Doppler shift for stationary ground clutter patch which can be calculated 

from ( 2-16) (known, deterministic): 

Ground Surface 

θd  

dr  

r  
Azimuth Angle 

θ  

AV  

Infinitesimal Clutter 
Patch 

 



20 

( )
λ

θsin2 A
D

V
f = . ( 2-16)

- Phase shift due to the azimuth angle of the ground clutter patch which is 

determined from ( 2-17) (known, deterministic): 

( )
λ

θφ sinid
i = . 

( 2-17)

Total response received from i’th channel and in n’th pulse can be written 

as in ( 2-18): 

( ) ( ) ( ) ( ) ( )ipDTni jnTfjGcc πφπθθθ 2exp2exp−= , 
( 2-18)

Covariance of any channel at any time instant can be found with an 

expectation operation which is given in ( 2-19):  

( ) ( ) ( ){ }θθ *, kmni ccEkKmnKi =++cR . 
( 2-19)

Consequently, covariance matrix can be written as in ( 2-20) (full 

derivation can be found in APPENDIX A), derivation is based on the works 

in [14]): 

( ) ( ) ( ) ( )∫ 






 −−−∆−= θθ
λ

πθσ d
dmiknx

jGTc sin
2

2exp
22

cR . 
( 2-20)

The clutter covariance matrix cR  is a KNxKN Hermitian matrix. Here in 

equation ( 2-20) a uniform clutter is assumed. By using the clutter 

covariance matrix, we can generate clutter realizations as follows, [7]: 

{ }H
c ccR E= , 

( 2-21)

H
c DDR = , 

( 2-22)

Dnc = , 
( 2-23)

{ } { } { } c
HHHHH RDDDnnDDDnncc ==== EEE H . 

( 2-24)
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The matrix D  can be obtained by Karhunen-Leove Expansion as 

illustrated in (2-26):  

H
iic eeR ∑

=

=
KN

i

c
i

1

λ , ( 2-25)

H
iieeD ∑

=

=
KN

i

c
i

1

λ . ( 2-26)

 The clutter realization will have the form in ( 2-27): 
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c

c

c

c
M

. 
( 2-27)

Every ic  represents the Kx1 channel response of i’th pulse and c  is a 

KNx1 vector. The vector c  is the clutter realization vector and n  

represents an independent complex Gaussian distributed realization with 

an identity covariance matrix. Thus, the clutter is assumed to be Gaussian 

clutter with covariance matrix cR . 

2.6.3. Noise Signal Model 

The noise is assumed to be independent and identically distributed 

complex Gaussian random vector; thus, noise signal can be written as: 

QI nnn j+= , 
( 2-28)

{ } KNxKN
H Inn 2

nE σ= . 
( 2-29)

where KNxKNI  is an identity matrix of size KNxKN. 
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2.6.4. Received Signal and Hypotheses 

The total received signal in different hypotheses can be represented as in 

( 2-30) and ( 2-31): 

 1: Hpncr α++= , 
( 2-30)

0: Hncr += . 
( 2-31)

1H  represents the hypothesis in which the target exists. Otherwise 0H is 

used. The total covariance matrices of given hypothesis are given by ( 2-32) 

and ( 2-33): 

{ } 1
222 : HE ttn

HH
c

H
1 ppRppIRrrR σσσ +=++== , 

( 2-32)

{ } 0
2

0 : HE n RIRrrR c
H =+== σ . 

( 2-33)

Note that covariance matrices of different hypotheses are different. 
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CHAPTER 3 
 

 

FULL RANK STAP, REDUCED RANK STAP AND SUBSPACE 
CONCEPTS 

 

 

3. FULL RANK STAP, REDUCED RANK STAP AND SUBSPACE CONCEPTS 

Full rank STAP is the optimum signal processing scheme in which the data from 

all the channels and pulses are used simultaneously in a 2-D adaptive signal 

processing operation. Reduced rank STAP, however, applies a reduction 

operation on the received data before conducting adaptive processing, in order 

to simplify the STAP operation at the cost of reduced detection performance. 

There are several rank reduction techniques (channel wise, pulse wise or both) 

which can be applied depending on the trade-off between complexity and 

performance of radar. In the following subsections, full rank and reduced rank 

STAP techniques will be analyzed. Subsequently, subspace concept will be 

introduced to have an understanding of subspace processing idea. 

3.1. Full Rank STAP Detection and Performance 

Full rank STAP detection can be thought as binary hypotheses testing 

problem with the following hypotheses in ( 3-1) and ( 3-2): 

1: Hpncr α++= , ( 3-1)

0: Hncr += . ( 3-2)
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Here the received signal is of the form represented in ( 3-3): 












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



=

N

2

1

r

r

r

r
M

. ( 3-3)

Every ir  represents the Kx1 channel response of i’th pulse and r  is a KNx1 

vector. 

In the sections  2.6.2 and  2.6.3, it was stated that the clutter and noise 

signals are assumed to be independent and complex Gaussian distributed 

random vectors with different covariance matrices. Thus the probability 

distribution of received signal r  can be written as a joint Gaussian 

distribution. The optimum detector is given in ( 3-4) (Full derivation can be 

found in APPENDIX B): 

'''
2

ξ<>− rRp 1H  
( 3-4)

1HH Rpw −=  
( 3-5)

'''
2

ξ<>rwH  
( 3-6)

Here w  is the optimum weight vector and IRR c
2
nσ+=  is the clutter-plus-

noise covariance matrix. This weight applies on target, clutter and the noise 

terms. If we write the target signal to clutter-plus-noise ratio (SCNR), we get 

( 3-7) (Full derivation can be found in APPENDIX C): 

Rww

pw
H

H 22
t

SCNR
σ

= . ( 3-7)

 

 



25 

We can manipulate ( 3-7) in order to find a bound to SCNR using Schwarz 

inequality (Full derivation can be found in APPENDIX C): 

pRp 1H −≤ 2
tSCNR σ . 

( 3-8)

In order to check the consistency, assume that there is no clutter and the 

target is buried under the noise. Then the signal-to-noise ratio (SNR) bound 

is determined by ( 3-9): 

( ) pIpH 122 −≤ ntSNR σσ , ( 3-9)

2

2

n

tSNR
σ

σ ppH

≤ , 
( 3-10)

2

2

n

tKNSNR
σ
σ≤ . 

( 3-11)

It can be observed that, pre-processed SNR is improved by a factor of KN 

after the weighting operation. This is an expected result under white noise 

conditions because we have KN many samples of target to be used. 

The SCNR bound represented in ( 3-8) is important, because it will be used 

several times in the analyses in Chapter  4. 

3.2. Rank Reduction Techniques 

The size of the detection problem can be inferred from the Degrees of 

Freedoms (DoF) or the rank of the covariance matrix R . Rank reduction 

techniques are signal processing operations which reduces the DoFs and 

generally the rank of the covariance matrix. A very good taxonomy of rank 

reduction techniques is given in [6] as illustrated in Figure  3-1: 
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Figure  3-1 Taxonomy of rank reduction techniques 

 

The rank reduction techniques will be mentioned in  3.2.1,  3.2.2 and  3.2.3. 

3.2.1. Beam-Space Rank Reduction 

The idea behind the beam-space rank reduction is to form beam or 

beams before Doppler processing. 

Remember ( 3-3) the received signal is of the form: 
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. ( 3-12)

 Each ir  represents the K channel response in one pulse.  
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In beam-space rank reduction, we will combine the elements of ir  with 

beam-forming weights to conduct the rank reduction operation which 

can be seen in Figure  3-2:  

 

Figure  3-2 Beam-space rank reduction 

 

Define a rank reducer matrix as follows: 
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( 3-13)

The rank reducer matrix B  is a KNxLN matrix which constitutes L many 

beams for each pulse. In order to have a rank reduction operation, L<K 

must be satisfied. The ijw  vectors are the beam-forming weights of size 

Kx1. Applying the rank reducing matrix will yield received signal vectors 

and covariance matrix given in ( 3-14), ( 3-15) and ( 3-16): 

rBr H
B = , 

( 3-14)
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{ } { } { } RBBBrrBBrrBrrR HHHHHH
BBB ==== EEE , 

( 3-15)

pBp H
B = . 

( 3-16)

Then the SCNR bound formula in ( 3-8) will be modified as in ( 3-18): 

B
1

B
H
B pRp −≤ 2

tSCNR σ , 
( 3-17)

( ) pBRBBBp H1HH −≤ 2
tSCNR σ . ( 3-18)

 

3.2.2. Post-Doppler Rank Reduction 

The method of post-Doppler rank reduction is to apply a Discrete Fourier 

Transform to the data and then to process the received signals from each 

element to form beams. Post-Doppler rank reduction techniques can be 

classified in terms of the number of Doppler bins used to form beams. 

The rank reduction operation in this method is illustrated in Figure  3-3: 

 

Figure  3-3 Post-Doppler single Doppler bin rank reduction 
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The rank reducer matrix (for single Doppler bin) will be as in ( 3-19): 
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( 3-19)

Here, nD  represents the collection of n’th Doppler bin steering vectors to 

get n’th bin rank reduction and it is a KNxN matrix. ( )pn
i
n Tifjw π2exp=  is 

the Discrete Fourier Transform complex coefficient at n’th Doppler bin for 

i’th pulse.  Applying the rank reducing matrix will yield following received 

signal vectors and covariance matrix shown in ( 3-20), ( 3-21) and ( 3-22): 

rDr H
nDn = , 

( 3-20)

{ } { } { } n
H
nn

HH
nn

HH
n

H
DnDnDn RDDDrrDDrrDrrR ==== EEE , 

( 3-21)

pDp H
nDn= . 

( 3-22)

Then the SCNR bound formula will be modified as in ( 3-24): 

Dn
1

Dn
H
Dn pRp −≤ 2

tSCNR σ , 
( 3-23)

( ) pDRDDDp H
n

1

n
H
nn

H −≤ 2
tSCNR σ . ( 3-24)

In Post-Doppler rank reduction, computational advantage arises only if 

we use number of Doppler bins less than N. Otherwise, if we use all 

Doppler bins, the Post-Doppler technique does not reduce the rank and 

gives optimum result, since DFT is a revertible operation. 

3.2.3. Beam-Space Post-Doppler Rank Reduction 

Beam-Space Post-Doppler rank reduction is a technique which reduces 

the rank twice by combining the beam-space and post-Doppler rank 

reduction methods. 
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The reduction operation can be shown in Figure  3-4: 

 

Figure  3-4 Beam-space Post-Doppler rank reduction 

 

Rank reducer matrix can be represented as in ( 3-25), in terms of the 

matrices in ( 3-13) and ( 3-19): 

nD BDB = . 
( 3-25)

Since we first apply beam-forming, then the Post-Doppler technique, 

SCNR bound formula can be determined as ( 3-30): 

rBr H
DBD = , ( 3-26)

{ } { } { } D
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HH
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D

H
BDBDBD RBBBrrBBrrBrrR ==== EEE , ( 3-27)

pBp H
DBD = , ( 3-28)
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tSCNR σ , ( 3-29)
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( ) pBRBBBp H
D

1

D
H
DD

H −≤ 2
tSCNR σ . ( 3-30)

3.3. Advantages and Disadvantages of Rank Reduction 

Rank reduction techniques provide a trade-off between detection 

performance and practical implementation in the GMTI systems. Main 

advantages and disadvantages of rank reduction techniques can be 

summarized as follows: 

 

Table  3-1 Advantages and disadvantages of rank reduction 

 

 Advantages Disadvantages 

Full STAP 1. Optimum detection 

performance 

2. Provides full 

adaptability to 
external factors 

1. The antenna element 

and feed network is 
complicated and 

expensive 

2. The amount of data to 

be processed is huge 

3. Practical problems like 

channel calibration 

with many channels is 
a difficult problem to 

solve. 

Beam-Space 1. Reduced number of 

beams provides data 

reduction and focused 
operation 

2. Forming beams with RF 
hardware is less 

expensive than 
constituting a multi-

channel system. 

1. Non-adaptive beam-

forming reduces the 

DoFs without the 
knowledge of the 

environment. 

Post-Doppler 1. Reduced number of 
data and matrix sizes 

facilitate the matrix 
operations 

1. Using less number of 
bins degrades the 

performance, using 
more bins do not 

provide simplification 
in computation. 

Beam-Space Post-

Doppler 

1. Reduced number of 

channels and data and 
provides a very simple 

processing solution 

1. Reduction in DoF is 

very significant, which 
may degrade the 

performance to 
unwanted levels. 
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3.4. Clutter, Noise and Target Subspaces 

Subspace concept is an approach in GMTI processing and interference 

suppression, which takes advantage of the dimensionality and orthogonality 

concepts.  

In a full STAP system, we have K many elements and N many pulses, which 

provides KN many DoFs. Analogously, we are working in a KN dimensional 

space. Subspace concept’s purpose can be listed as follows: 

1) Determine the subspace (and its dimensions) which the clutter is in 

2) Determine the subspace (and its dimensions) which the target signal is in 

3) Carefully process the data which spread in these subspaces to reveal the 

target signal buried under the clutter signal.  

3.4.1. Clutter Subspace 

Clutter subspace will be our main subspace to be observed. Clutter is 

modeled in section  2.6.2 as colored signal with Gaussian distribution. This 

model causes correlation between clutter samples and this correlation 

results a reduction in dimension. Thus, we will state that the clutter is not 

spread along all KN dimensions. 
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Consider a data collection scenario in which the aircraft moves forward to 

a distance which is an integer multiple of antenna separation as 

illustrated in Figure  3-5: 

 

 

Figure  3-5 Data collection scenario 

 

In this scenario, responses from K many channels in N many pulses are 

collected to form space-time response (KNx1 vector).  

Remember the received clutter signal form from ( 2-27): 
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( 3-31)

We can generate a new representation to received clutter as in ( 3-32): 
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( 3-32)

New representation in ( 3-32) is a matrix of size NxK. The first dimension 

of the matrix is constituted from temporal response and the second 

dimension is constituted from spatial response.  

Taking the Fourier Transform of that matrix in both dimensions can give 

the temporal and spatial spectral distribution of clutter in a 2D fashion as 

illustrated in Figure  3-6:  

 

Figure  3-6 2D (temporal and spatial) spectrial distribution of clutter 

 

Normalized sine angle represents the azimuth angle of the antenna 

between -90 and 90 degrees with a sine operation; because, clutter 

spectral distribution is proportional to the sine of the azimuth angle, 
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which can be seen in ( 2-20). Normalized Doppler frequency indicates the 

frequency spectra normalized with the pulse repetition frequency.  

It can be seen from Figure  3-6 that the clutter is accumulated around a 

certain line.  This line is called “clutter ridge”, [5], [6]. Define the “clutter 

ridge” parameter as in ( 3-33): 

d

TV PA2
=β . ( 3-33)

The parameter β  is called the slope of the clutter ridge, and it represents 

the slope between spatial and temporal frequencies.  If β  is an integer 

value, the rank of the clutter covariance matrix can be determined as 

follows: 

{ } ( )β1−+= NKrank cR . ( 3-34)

This idea is first stated in [8], but the proof can be found in [9]. From 

( 3-34), we can observe that clutter signal is spread along ( )β1−+ NK  

many dimensions. Clutter ridges are the 2D Fourier Transform of the 

matrix stated in ( 3-32), which is generated by using the parameters in 

Table  3-2 and the clutter realization technique mention in section  2.6.2. 

The covariance matrices are generated by using ( 2-20) with the 

parameters in Table  3-2: 

 

Table  3-2  Demonstration parameters 

 

Parameter Name Value 

Number of Antenna Elements ( K ) 16 

Number of Pulses ( N ) 16 

Platform Velocity ( AV ) 100 m/s 

Pulse Repetition Interval ( PT ) Depends on the figure 

Antenna Separation ( d ) 0.02 m 

Clutter Ridge ( β ) Depends on the figure 

Number of DoFs 16x16 = 256 
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Figure  3-7, Figure  3-8, Figure  3-9 and Figure  3-10 demonstrate some 

examples of clutter ridge slope and rank of covariance matrices: 
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Figure  3-7 Clutter Ridge for 1=β  

 

 

 

 

 

 

 

 

 



37 

For 1=β , rank of the clutter covariance matrix is 

{ } ( ) 31111616 =−+=cRrank . 
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Figure  3-8 Eigenvalues for 1=β  
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Figure  3-9 Clutter Ridge for 2=β  
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For 2=β , rank of the clutter covariance matrix is 

{ } ( ) 46211616 =−+=cRrank . 
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Figure  3-10 Eigenvalues for 2=β  

 

For K=16 and N = 16 the results are as expected; the numbers of 

eigenvalues are exactly the same with the rank formula given in ( 3-34). 

3.4.2. Noise Subspace 

The noise is assumed to be a white signal with Gaussian distribution in 

section  2.6.3. Since noise is white, it has to be spread along each 

dimension with equal power. Consider the covariance matrix of the noise: 

IR n
2
nσ= . 

( 3-35)

Since it is identity matrix, it is full rank (i.e. KN dimensional) and all the 

eigenvalues are equal to 2
nσ . 
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3.4.3. Target Subspace 

Target signal spreads along one dimension only with respect to its basis. 

The only vector in the basis of the target signal is equal to its target signal 

vector omitting the constant terms as in ( 3-36): 



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
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
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


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2
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p

p
M

. 
( 3-36)

Clutter subspace has a basis with { }cRrank  many basis vectors. Generally, 

target and clutter subspaces do not have a common basis vector. Thus, as 

far as the basis of clutter subspace is concerned, the target signal has 

components in multiple dimensions. The main purpose will be to get the 

target signal components in different dimensions and combine them 

coherently to obtain a good performance. 

3.5. Subspace Processing and Eigen-Beam Concepts 

The aim of subspace processing is to solve the detection problem in 

orthogonal dimensions and combine them to get an ultimate performance 

which is close to the theoretical SCNR bound. For the sake of simplicity, 

consider a one pulse case (N=1). Then our problem reduces to K dimensions 

which are the channels of our antenna. We can write the eigenvalue 

decomposition of total covariance matrix as in ( 3-37): 

HUUR Ψ= . 
( 3-37)

Here, U  is a unitary matrix which is a collection of eigenvectors of matrix R . 

Ψ  is a diagonal matrix in which the diagonal entries are the eigenvalues of 

matrix R . Inspecting matrix U : 

[ ]K21 eeeU L= . 
( 3-38)
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Each ie  is an eigenvector of R . Consider a beam-space rank reduction by 

selecting the eigenvectors as the beam-forming weights. We will call that 

beams as eigen-beams, which is a beam-forming technique used in 

communication and direction finding (DF) systems, [12], [13]. 

We can get the SCNR bound in ( 3-45) by using eigen-beams for one pulse 

case as follows: 

UB = , 
( 3-39)

( ) pBRBBBp H1HH −≤ 2
tSCNR σ , ( 3-40)

( ) pBBUUBBp H1HHH −Ψ≤ 2
tSCNR σ , ( 3-41)

pBBp HH 12 −Ψ≤ tSCNR σ , 
( 3-42)
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( 3-44)

∑
=

≤
K

i i

i
t

G
SCNR

1

2

2

λ
σ . 

( 3-45)

In ( 3-45), it can be observed that the SCNR is bounded by the sum of 

contributions of every dimension. By defining the contribution ratio as 
i

iG

λ

2

, 

for a case K = 32, we will have the following contribution ratios: 
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Figure  3-11 Contribution ratios 

 

In one pulse case, most of the contributions to the SCNR value come from 

28th, 30th and 32nd dimensions. The corresponding eigen-beams are shown in 

Figure  3-12, Figure  3-13 and Figure  3-14: 
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Figure  3-12 32
nd

 eigen-beam 
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Figure  3-13 30
th

 eigen-beam 
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Figure  3-14 28
th

 eigen-beam 

 

In the one pulse case, the detection problem can be solved as independent 

problems in K dimensions and then can be added to get a better result. 

Depending on the performance needs, the number of eigen-beams that 

have to be used can be determined by ( 3-45). However, the analysis is valid 

for only one pulse case. For multi pulse case, since there is a correlation 

between space and time signals, an analytic derivation is not available. 

Instead, eigen-beam idea will be transferred to multi pulse case and 

analyzed numerically.  
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CHAPTER 4 
 

 

OPTIMIZING ANTENNA PATTERNS WITH BEAM-SPACE 
APPROACH 

 

 

4. OPTIMIZING ANTENNA PATTERNS WITH BEAM-SPACE APPROACH 

4.1. Problem Statement 

The main problem this thesis aims to solve is to propose beam-space rank 

reduction solutions down to two channels, while keeping the endo-clutter 

target detection performance in GMTI processing at an acceptable level. The 

beam-space rank reduction solutions is constrained to have two signal-

independent beams (which means the beams are formed with passive 

hardware elements like couplers and beam-forming operation does not have 

a feedback from the received signal). Good endo-clutter target performance 

will be measured with closeness of SCNR bound value of that beam-space 

solution to the optimum STAP SCNR bound value for low target velocities. 

4.2. Assumptions, Constraints and Performance Loss Metrics 

There are certain assumptions that have been made to get a solution.  
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The receiver structure of the beam-space solution is considered as 

illustrated in Figure  4-1: 

 

Figure  4-1 Two beam receiver structure 

 

In the receiver structure, the signals coming from the outside world (clutter, 

target and external noise) are combined in the beam-former to get two 

output beams. Then these beams are passed through a Low-Noise Amplifier 

(LNA) which adds a thermal noise component to the received signal. Assume 

that the external noise is very small compared to the other signals. This 

received structure will give the received signal at the output of the analog-

to-digital converter represented in ( 4-1): 

npBcBr HH
B ++= α . 

( 4-1)

Here B  is the beam-former matrix, c  is the clutter signal received from all K 

elements, α is the complex amplitude of the target signal, p  is the target 

signal received from all K elements and n is the thermal noise signal added 

to the beams after LNA. 

Beam-Former 

1 2 K 

1 2 

LNA LNA 

Down 
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Digital 
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Pulses 
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The clutter probability distribution is assumed to be a zero mean 

multivariate complex Gaussian distribution with covariance matrix cR . 

Noise components are independent from each other, have a zero mean 

white Gaussian distribution for each beam and have a covariance matrix 

I2
nσ  where 2

nσ  represents the noise power. All signal components are 

independent from each other (clutter, noise and target). 

The overall covariance matrix of the received signal without the target signal 

can be found as in ( 4-3): 

{ }( ) { }( ){ } { } { }HHHH
BBBBB nnBccBrrrrR EEEEE +=−−= , 

( 4-2)

IBRBR c
H

B
2
nσ+= . 

( 4-3)

There are certain constraints applied in the analysis in order to compare the 

resultant beams fairly. In the beam-former matrix, there are two beam-

former weight vectors which constitute the beams. These vectors are 

illustrated in Figure  4-2: 

 

Figure  4-2 Beamforming operation 

 

Here 1w  and 2w  are beam-former vectors and jw1 , jw2  are the elements of 

these vectors.  
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The power constraint of these vector elements can be represented as in 

Figure  4-3: 

 

Figure  4-3 Power division in beamforming 

 

Considering the power constraint, the suggestion in ( 4-5) can be made: 

inputjinputjinput PwPwP
2

2

2

1 +≥ , 
( 4-4)

2

2

2

11 jj ww +≥ . 
( 4-5)

This inequality is the first constraint. For each element in beam-former 

vectors, this inequality must hold. 

The SCNR bounds of optimum and sub-optimum (or beam-space reduced 

rank in this case) can be represented in ( 4-6) and ( 4-7), respectively, as 

follows: 

( ) pIRp c
H 122 −+≤ ntoptimumSCNR σσ , 

( 4-6)

( ) pBIBRBBp H
c

HH 122 −
− +≤ ntspacebeamSCNR σσ . 

( 4-7)

 

 

j 

jw1  jw2  

inputP  

inputj Pw
2

1  inputj Pw
2

2  



48 

Since we know that optimum performance is always greater than or equal to 

beam-space performance, we can define a metric as in ( 4-12): 

spacebeamoptimum SCNRSCNR −≥ , 
( 4-8)

( ) ( ) pBIBRBBppIRp H
c

HH
c

H 122122 −− +≥+ ntnt σσσσ , ( 4-9)

( ) ( ) 0
1212 ≥+−+ −−

pBIBRBBppIRp H
c

HH
c

H
nn σσ , ( 4-10)

0≥pRp difference
H , 

( 4-11)

( ) ( ) H
c

H
cdifference BIBRBBIRR

1212 −− +−+= nn σσ . ( 4-12)

Here we have defined a new matrix differenceR   called “Difference Matrix” 

which can be considered as a measure of the statistical difference in clutter 

and noise signals, between the optimum and beam-space solutions. The 

difference matrix must be a positive semi definite matrix (all eigenvalues are 

non-negative), in order to satisfy the inequality in ( 4-11). Second constraint 

is the positive semi-definiteness of difference matrix. 

For good beam-space solutions, we want the value in ( 4-11) to be close to 

zero, for slow targets’ p  vectors, in order to get close to the optimum SCNR 

bound. From a different point of view, the matrix ( ) BIBRBB c
H 12 −+ nσ  can 

be treated as a matrix which cancels the eigenvalues of ( ) 12 −+ IRc nσ  and the 

matrix differenceR  has minimum number of non-zero eigenvalues or the sum 

of its eigenvalues is minimized.  

First of all, consider the difference matrix in noise only case (clutter has zero 

power) in ( 4-18): 

( ) ( ) H
c

H
cdifference BIBRBBIRR

1212 −− +−+= nn σσ , ( 4-13)

( ) ( ) H
difference BIBIR

1212 −− −= nn σσ , ( 4-14)
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( 4-18)

The matrix differenceR  turns out to have a form of repeated block matrices. 

Thus, analysis of the eigenvalues of one block matrix in ( 4-19) will suffice: 

H
22

H
11block wwwwIR −−= . 

( 4-19)

Let 1w  and 2w  be two orthonormal vectors (i.e. 

0,1,1
22 === 2

H
121 wwww ). Using Gram-Schmidt orthonormalization 

procedure, we can complete these vectors to K vectors by adding the set 

{ }K

k 3=ke . The set K321 e,...,e,w,w  is a complete orthonormal set. We can find 

the eigenvalues corresponding to the vectors in the orthonormal set, we will 

get the results in ( 4-21), ( 4-22) and ( 4-24): 

1
H
22

H
11

H
11

H
11

H
11block

H
1w1 wwwwwwwwwwwRw −−==λ , 

( 4-20)
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0011 =−−== 1block
H
1w1 wRwλ , 

( 4-21)

0011 =−−== 2block
H
2w2 wRwλ , 

( 4-22)

3
H
22

H
33

H
11

H
33

H
33block

H
3e3 ewweewweeeeRe −−==λ , 

( 4-23)

1001 =−−== 3block
H
3e3 eReλ . 

( 4-24)

The upper derivation shows that 1w  and 2w  are eigenvectors of differenceR  

with 0 eigenvalue and these beam-former vectors will cancel the two 

eigenvalues of optimum STAP covariance matrix IR c
2
nσ+  in noise (because 

of the normalization), independent from the number of pulses. Thus, we can 

define our third constraints as in ( 4-25) and ( 4-26): 

1== 1
H
1

2

1 www , 
( 4-25)

1== 2
H
2

2

2 www . 
( 4-26)

4.3. Possible Good Beam-Space Solutions 

We will use the orthonormalization beam-pattern idea presented in section 

 4.2 in combination with the eigen-beam approach in clutter plus noise case. 

In order to have an analytic solution, consider one pulse detection problem 

(N=1), where the covariance matrix of optimum STAP case is of size KxK and 

represented with Karhunen-Leove Expansion in ( 4-27) as follows: 

∑
=

=+
K

i
in

1

2 H
iic eeIR λσ . 

( 4-27)
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Let 1λ  and 2λ  be the two largest eigenvalues of the covariance matrix and 

let beam-former vectors be 11 ew =  and 22 ew = .  

Since 1w  and 2w  are orhonormal, we have the equality in ( 4-28): 

I
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( 4-28)

The difference matrix of that case can be written as in ( 4-29) (full derivation 

can be found in APPENDIX D): 

∑
=

=
K

i i
differenceR

3

1 H
iiee

λ
. ( 4-29)

As it can be seen from the Karhunen-Leove Expansion of difference matrix in 

( 4-29), the two largest eigenvalues of the one-pulse covariance matrix of the 

optimum STAP case cancelled in the suboptimum case directly using the 

eigen-beams corresponding to that eigenvalues. Equivalently, the rank of 

difference matrix is minimized. The idea of eigen-beams corresponding to 

the two greatest eigenvalues of one-pulse covariance matrix will be 

extended and analyzed with respect to their performances in multi-pulsed 

cases in section  4.4. 

4.4. Performance of Eigen-Beam Patterns 

Performance analyses of two eigen-beam approach will be conducted under 

several conditions with different parameters.  
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These conditions are illustrated in Figure  4-4: 

 

Figure  4-4 Performance analyses conditions 

 

In addition to the cases mentioned above, performances of other cases (one 

eigen-beam, three eigen-beam and ADPCA) will also be compared with the 

two eigen-beam approach.  

Parameters which are used to calculate the performances are listed below: 

Table  4-1  Simulation parameters 

 

Parameter Name Value 

Number of Antenna Elements 16 

Number of Pulses 16 

Platform Velocity 75 m/s 

Pulse Repetition Interval 100 µs 

Operating Wavelength 0.03 m 

Antenna Separation 0.015 m 

Clutter Ridge 1 

Number of DoFs 16x16 = 256 

SCR -10 dB 

SNR 0 dB 

 

Known Covariance 

Matrix 

Unknown 
Covariance 

Matrix 
Sample Matrix 
Inversion (SMI) 

Antenna 

Tapering (AT) 

Phase Distortion 

(PD) 

Internal Clutter 

Motion (ICM) 

Undistorted (UN) 
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The clutter covariance matrix, which is given in ( 2-20) is repeated here for 

convenience: 

( ) ( ) ( ) ( ) ( )∫ 






 −+−∆=++ θθ
λ

πθσ d
dminkx

jGkKmnKiR Tcc sin
2

2exp,
22 .

( 4-30) 

Using the defined parameters, the clutter covariance matrix will be as in 

Figure  4-5: 
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Figure  4-5 Space-time clutter covariance matrix 
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The patterns of two eigen-beams corresponding to the largest eigenvectors 

of greatest are shown in Figure  4-6: 
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Figure  4-6 Two eigen-beams 

 

As it can be seen from Figure  4-6, two eigen-beams have peaks at other’s 

nulls.  
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The Table  4-2 shows the labeling of various cases in the figures of following 

subsections: 

Table  4-2  Labeling of the graphs 

 

Case Labeling 

Optimum Optimum Case 

Two Eigen-Beam Undistorted 2EB 

Two Eigen-Beam with Hamming Tapering 2EB-HAMMING 

Two Eigen-Beam with Kaiser Tapering 2EB-KAISER 

Two Eigen-Beam with Taylor Tapering 2EB-TAYLOR 

Two Eigen-Beam Antenna Tapering (corresponds to 

the best tapering among Hamming, Kaiser and 

Taylor and will be determined later) 

2EB-AT 

Two Eigen-Beam  with Small Phase Distortion 2EB-PD-LOW 

Two Eigen-Beam  with Large Phase Distortion 2EB-PD-HIGH 

Two Eigen-Beam  with Small Phase Distortion and 

Using Sample Matrix Inversion 

2EB-PD-LOW-SMI 

Two Eigen-Beam  with Large Phase Distortion and 

Using Sample Matrix Inversion 

2EB-PD-HIGH-SMI 

Two Eigen-Beam  with Internal Clutter Motion 2EB-ICM 

Two Eigen-Beam  with Internal Clutter Motion and 

Using Sample Matrix Inversion 

2EB-ICM-SMI 

Adaptive Displaced Phase Center Antenna ADPCA 

One Eigen-Beam 1EB 

Three Eigen-Beam 3EB 

Combination of Two Eigen-Beams COMB 

Combination of Two Eigen-Beams with Large Phase 

Error and Using Sample Matrix Inversion 

COMB-PD-MAX-SMI 

4.4.1. Undistorted (UN) Case 

In undistorted case, there is no distortion on the received signal and no 

tapering in the eigen-beams. 
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The eigenvalues of the difference matrix of the undistorted case can be 

seen in Figure  4-7: 

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Eigenvalue Index

E
ig

en
va

lu
es

Eigenvalues of Difference Matrix

 

 

Optimum case

2EB

 

Figure  4-7 Eigenvalues of difference matrix in undistorted condition 

 

The eigenvalues in Figure  4-7 are found by using the clutter and noise 

covariance matrices defined in ( 2-20) and ( 2-29) respectively. In optimum 

STAP case, all 256 DoFs are nulled in difference matrix, which is expected, 

because the difference matrix is a zero matrix if optimum STAP is 

operated, since the optimum STAP has a zero difference with itself. 

However, in undistorted case, the number of channels reduced to 2N (2 

beams, N pulses), thus we are able to null 2N = 32 many eigenvalues at 

most. 
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Thus, SCNR loss values for optimum STAP and undistorted two eigen-

beam case can be compared as in Figure  4-8: 
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Figure  4-8 SCNR loss in undistorted case 

 

SCNR loss is the difference between SCNR value of a case calculated with 

( 4-7) and the value in ( 3-11). Optimum STAP defines an SCNR bound to all 

rank reduction operations. It can be observed that, the performance of 

undistorted case is close to the theoretical bound in endo-clutter regions 

(around zero normalized Doppler). Selecting two eigenvectors of antenna 

covariance matrix as beamforming weights (eigen-beam approach) is the 

main reason for that closeness, because this choice significantly 

suppresses the clutter power (or the greatest eigenvalues) of that 

subspace. 
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SCNR difference of optimum STAP and undistorted two eigen-beam case 

can be seen in Figure  4-9: 
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Figure  4-9 SCNR difference between optimum and undistorted cases 

 

It can be seen from Figure  4-9 that, there are high losses around 

normalized Doppler 0.1 which are due to the local minima of the SCNR 

curve for two eigen-beam case. These losses can be reduced by using 

antenna tapering, as discussed in the next section. 

4.4.2. Antenna Tapering (AT) Case 

In antenna tapering case, a tapering operation is applied to the beam-

forming coefficients (i.e. eigen-beams) to smooth the SCNR performance 

around normalized Doppler 0.1 which is shown in Figure  4-9. 
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Table  4-3 summarizes the properties of the taperings applied to the 

eigen-beams: 

Table  4-3  Tapering properties 

 

Tapering Properties 

Hamming - 

Kaiser Shape parameter = 2 

Taylor Number of 

constant level 

sidelobes = 4 

Sidelobe level = -

20 dB 

 

The parameters for different tapering methods are chosen by running 

several simulations with different parameters. Since there are lots of 

parameter combinations, the results of all simulations are not given here, 

but only the best results obtained are presented. 
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Eigenvalues of difference matrices of the tapering methods can be seen 

from Figure  4-10:  

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Eigenvalue Index

E
ig

en
va

lu
es

Eigenvalues of Difference Matrix

 

 

Optimum case     

2EB              

2EB-HAMMING
2EB-KAISER           

2EB-TAYLOR

 

Figure  4-10 Eigenvalues of difference matrices in UN and AT cases 

 

It can be inferred from Figure  4-10 that all the tapering methods have 

improved the eigenvalue nulling slightly.  
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A better interpretation is possible by inspecting Figure  4-11: 
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Figure  4-11 SCNR loss in UN and AT cases 

 

As it can be seen from Figure  4-11, for all tapering methods, the SCNR 

performance in the endo-clutter region slightly decreases; however, a 

significant gain is achieved in the local minima around normalized 

Doppler 0.1. Moreover, Hamming tapering seems to cause significant 

SCNR losses both for endo-clutter and exo-clutter regions. Thus, 

Hamming tapering will not be considered in the further discussions. 
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A close look to the endo-clutter SCNR region in Figure  4-12 gives an idea 

for the best tapering among those that has been investigated: 
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Figure  4-12 SCNR difference between optimum and UN and AT cases 

 

In Figure  4-12, Taylor tapering seems to be better than the Kaiser 

tapering in nearly most of the normalized Doppler regions. Thus, in the 

foregoing analyses, eigen-beams with Taylor tapering will be used to 

compare the performance of different beam-space rank reduction 

techniques and it will be referred to as 2EB-AT case. 

4.4.3. Phase Distortion (PD) Case 

In practical implementations, due to the non-ideal cabling, non identical 

fabrication of beam-former hardwares and different thermal 

characteristics of the materials, it is impossible to have phase equivalent 

receiver channels. These practical issues cause frequency dependent 
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phase distortions on receiver channels. In order to simplify the analyses, 

the radar is assumed to have a narrowband operation; thus, the phase 

distortions will be frequency independent (constant during the reception 

operation). 

In the phase distortion (PD) case, the receiver channels are distorted by a 

Gaussian random phase with unity amplitude, which may degrade the 

performance of reduced rank STAP operation. The phase distortion is 

modeled as follows: 

 

 

Figure  4-13 Phase distortion model 

 

Here jj
j epd φ=  are random constant phases with unity amplitude and jφ  

are Gaussian random variables with zero mean and certain variances 

which correspond to certain rms degree of errors. Performance under 
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two different phase error will be investigated. These errors have 5⁰ and 

50⁰ rms values and will be referred to as LOW and HIGH phase distortions. 

A pre-defined or structured covariance matrix cannot be informed of 

these phase errors. However, a system which uses sample matrix and 

Sample Matrix Inversion (SMI) is able to estimate these errors in order to 

improve the performance. Sample Matrix Inversion is a term which 

indicates that the clutter plus noise covariance matrix is estimated from 

the collected data, and its inverse is directly used in detection operation 

defined in ( 3-4), [5], [7]. The eigenvalue nulling performances of PD cases 

under pre-defined covariance matrix and sample matrix conditions are 

illustrated in Figure  4-14: 
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Figure  4-14 Eigenvalues of difference matrices in PD cases 
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It can be seen from Figure  4-14 that, eigenvalue nulling of low phase error case 

(5⁰) and high phase error case (50⁰) is better if SMI is estimated and used as 

covariance matrix. The phase distortions applied in the simulation are shown in  

Table  4-4: 

 

Table  4-4  Phase distortions 

 

 5⁰ 50⁰  5⁰ 50⁰ 

Channel 1    -1.5230    40.1445 Channel 9     6.9676    28.7421 

Channel 2    -8.7700     0.9076 Channel 10    -0.6159    -1.6524 

Channel 3    -6.9641    39.6720 Channel 11    -1.8547    28.1665 

Channel 4    -3.3450   -61.0013 Channel 12     1.5842   -98.1329 

Channel 5    -7.1018    13.9161 Channel 13    -3.1472    17.4780 

Channel 6    -8.9707   -31.6199 Channel 14    -4.2940    99.0134 

Channel 7    -2.1531    -9.2784 Channel 15    -7.9950   -50.7836 

Channel 8     2.6744   114.5373 Channel 16    -5.9756   -71.1882 

 

It is expected to have greater SCNR losses in pre-defined covariance matrix 

cases. Because, the covariance matrix is defined without the knowledge of the 

phase distortions and can not correct these distortions. This effect can be seen 

from Figure  4-15 (one simulation is performed using the phase distortions in  

Table  4-4):  
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Figure  4-15 SCNR loss in PD cases 

 

The performance of low phase error case with SMI is very close to the 

performance of ideal two eigen-beam (2EB) case. As can be seen from 

Figure  4-15, estimating the covariance matrix and using SMI in the 

calculations increases the performance of reduced rank STAP. Especially 

there is a significant improvement in endo-clutter performance which can 

be observed in Figure  4-16: 
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Figure  4-16 SCNR difference between optimum PD cases 

 

Using SMI increases the endo-clutter performance in both low and high 

PD cases. The endo-clutter performance of the PD-LOW-SMI case is very 

similar to that of 2EB-AT case, which indicates that two eigen-beam 

approach can tolerate 5⁰ rms phase distortions. The phase distortion 

immunity concept is out of the scope of this work and will not be 

discussed further.  

4.4.4. Internal Clutter Motion (ICM) Case 

The ground targets can be considered to be stationary and does not have 

a Doppler spread around the frequency spectrum. However, in a windy 

environment, the trees, leaves and other elastic objects will move with 

the randomly directed wind force, which will cause a random Doppler 

shift in the clutter spectrum. In the Internal Clutter Motion (ICM) case, 

the Doppler spread caused by the wind will be considered. This spread 

broadens the clutter spectrum and in [11] it is investigated in detail.  
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By analyzing the measurements in [11], the authors determine a clutter 

spectrum function as indicated in ( 4-31): 

( ) ( ) f
b

c e
b

r
f

r

r
fP 2

41

1

1

λλδ
−

+
+

+
= . ( 4-31)

In ( 4-31), the first term is considered as a DC term and the second one as 

an AC term. The parameter r  represents the power ratio between DC 

and AC components and can be found from ( 4-32): 

( ) ( ) ( ) 2.63log1.12log5.15log10 +−−= cfwr . 
( 4-32)

Here w  is wind speed in miles per hour, cf  is the carrier frequency in 

GHz and the logarithms are base 10. By taking inverse Fourier Transform 

of the spectrum, auto-correlation function can be obtained as in ( 4-34): 

( ) ( )∫
∞

∞−

= dfefPr fj
cc

τπτ 2 , 
( 4-33)

( ) ( )
( ) ( )22
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41
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1 πτλ
λτ
++

+
+

=
b

b

rr

r
rc . 

( 4-34)

Since the ICM is a temporal decorrelation and has an auto-correlation 

function, this decorrelation can be modeled as a covariance matrix taper 

in temporal covariance matrix and its effect changes from pulse-to-pulse 

(but not channel-to-channel). 

( )( )pc Tjir −=ijT . 
( 4-35)

Here in ( 4-35), ijT  is the ij th entry of temporal covariance matrix taper 

and pT  is the pulse repetition interval. 

Overall space-time covariance matrix taper can be found with ( 4-36): 

KxKST 1TT ⊗= , 
( 4-36)
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where STT  is the space-time covariance matrix taper, T  is the temporal 

covariance matrix taper, KxK1  is a matrix of size KxK with all ones and ⊗  

represents the Kronecker product operation. 

The covariance matrix taper is determined with using the parameters in 

Table  4-5: 

Table  4-5  ICM parameters 

 

Parameter Symbol Parameter Value 

cf  Operating Frequency 7.5 GHz 

w  Wind Speed 15 miles/hour 

pT  Pulse Repetition 

Interval 

100 microseconds 

 

The covariance matrix taper obtained from ( 4-36) is illustrated in Figure 
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Figure  4-17 ICM covariance tapering matrix 
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The ICM effect can be observed by applying the operation in ( 4-36)  to the 

covariance matrix: 

STICM TRR o= , 
( 4-37)

where ICMR  is the tapered covariance matrix (ICM covariance matrix) 

and o  represents the Hadamard product operation. 

Similar to phase distortion (PD) case, if a pre-defined covariance matrix is 

used, without the knowledge of the ICM, the performance will degrade 

significantly. However, using SMI provides the knowledge of a possible 

ICM and decreases its effect. The eigenvalue nulling performance of ICM 

case can be seen in Figure  4-18: 
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Figure  4-18 Eigenvalues of difference matrices in ICM cases 
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The eigenvalue nulling in Figure  4-18 seems to degrade slightly, when 

there is an ICM. SCNR losses in ICM case are illustrated in Figure  4-19: 

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-35

-30

-25

-20

-15

-10

-5

0

Normalized Doppler

S
C

N
R

 L
os

s 
(d

B
)

 

 

Optimum case

2EB-AT
2EB-ICM

2EB-ICM-SMI

 

Figure  4-19 SCNR loss in ICM cases 

 

As expected, using a pre-defined covariance matrix caused significant 

SCNR losses. The performance of ICM with an estimation of SMI is very 

close to the ideal two eigen-beam case, but they are not equal. Because, 

internal clutter motions spreads the clutter spectrum further and 

increases the clutter power in higher Doppler shifts. Thus, even if the SMI 

is estimated, because of this extra Doppler spread, two eigen-beam 

performance without the ICM cannot be achieved in ICM case. 
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A closer look to the endo-clutter SCNR performance in Figure  4-20 

supports this conclusion: 
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Figure  4-20 SCNR difference between optimum ICM cases 

 

It can be seen from Figure  4-20 that estimating SMI increases the 

performance in windy conditions; however, 2EB-AT performance is not 

achieved due to the extra Doppler spread caused by ICM. But after a 

certain normalized Doppler value (around 0.1) their performances 

become very similar because the effect of the spread vanishes. 

4.5. Performance Comparisons of Eigen-Beams and Other Beam 

Patterns 

In this section, two eigen-beam approach is compared to one eigen-beam 

and three eigen-beam approaches, in order to find the minimum number of 

eigen-beams, which is needed to have a reasonable endo-clutter GMTI 
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performance. In addition, two eigen-beam case will be compared to the 

ADPCA and other two channel cases to reveal any performance differences 

between those two channel GMTI techniques. 

4.5.1. Comparison to One and Three Eigen-Beam Approaches 

In one eigen-beam case (which is a one channel GMTI technique), the 

eigenvector corresponding to the greatest eigenvalue is selected as the 

beam-pattern. Similarly, in three eigen-beam case, the eigenvectors 

corresponding to the three largest eigenvalues are selected as beam 

patterns. In Figure  4-21 and Figure  4-22, the beam patterns of one and 

three eigen-beam cases can be observed, respectively: 
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Figure  4-21 Beam pattern of one eigen-beam (1 EB) case 
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Figure  4-22 Beam patterns of three eigen-beam (3 EB) case 

 

In Figure  4-22, 1st Eigen-Beam refers to the eigenvector with greatest 

eigenvalue. 
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 Using the patterns defined for one and three eigen-beam case, the 

eigenvalue nulling performance comparison of eigen-beam cases can be 

done (under no phase distortion and ICM) as illustrated in Figure  4-23: 
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Figure  4-23 Eigenvalue nulling performances of eigen-beam approaches 

 

It can be seen from Figure  4-23 that, eigen-value nulling performance 

increases as the number of eigen-beams increases. It is shown in ( 3-34) 

that the clutter covariance matrix is not of full rank (the number of non-

zero eigenvalues is not equal to the number of DoFs). This property 

implies that for some number of eigen-beams, the endo-clutter 

performance approaches to the optimum SCNR bound.  
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We can see the results of this property in Figure  4-24 and Figure  4-25: 
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Figure  4-24 SCNR bounds for eigen-beam cases 
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Figure  4-25 SCNR bounds for eigen-beam cases 

 

In Figure  4-25, we can observe that the endo-clutter performance 

increases significantly, if we use two eigen-beams rather than one. 

However, increasing it further does not improve the performance high 

enough to compensate the cost of designing a three channel receiver and 

signal processor. 

4.5.2. Comparison to ADPCA and Other Two Channel Approaches 

In ADPCA case, two gain-identical beams (which are displaced in space) 

are constituted without using the knowledge of eigenvectors. 
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The antenna pattern used in ADPCA case is shown in Figure  4-26: 
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Figure  4-26 Antenna pattern of ADPCA case 
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Using the beam patterns above, we will get eigenvalue nulling performances 

illustrated in Figure  4-27: 
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Figure  4-27 Differenece matrix comparison of the two eigen-beams and ADPCA case 

 

It can be seen in Figure  4-27 that ADPCA eigenvalue nulling performance is 

worse than that of the two eigen-beam case. SCNR bound performances in 

Figure  4-28 and Figure  4-29 give a more direct idea about these approaches: 
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Figure  4-28 SCNR loss comparison 
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Figure  4-29 SCNR difference comparison between optimum and other cases 
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In Figure  4-29, endo-clutter performance of two eigen-beam case is better 

than the ADPCA case, if the patterns of ADPCA are selected without the 

knowledge of clutter statistics. 

Consider a linear combination of the beam-forming weights of two eigen-

beam case as defined in ( 4-38) and ( 4-39): 

( )21ADPCA_1 www += κ , 
( 4-38)

( )21ADPCA_2 www −= κ , 
( 4-39)

2

1=κ . 
( 4-40)

Here, ADPCA_1w  and ADPCA_2w  are beam-forming weights in ADPCA case, 1w  

and 2w  are beam-forming weights of two eigen-beams and κ  is normalizing 

coefficient which satisfies the constraints defined in Section  4.2. 

The ADPCA beam that is constituted with the beam-forming weights in ( 4-38) 

and ( 4-39) is given in Figure  4-30: 
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Figure  4-30 Beam pattern of ADPCA obtained with linear combination 
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Two eigen-beam and ADPCA eigenvalue nulling performance obtained by 

linear combination patterns are shown in Figure  4-31: 
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Figure  4-31 Difference matrix comparison 

 

The difference matrix eigenvalues of two eigen-beam and ADPCA cases are 

very similar to each other.  
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However, the SCNR graphs in Figure  4-32 and Figure  4-33 will give more 

information: 
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Figure  4-32 SCNR loss comparison 
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Figure  4-33 SCNR difference comparison 

 

Figure  4-32 and Figure  4-33 show that, by linearly combining the eigen-

beams and applying the constraints, the two eigen-beam and ADPCA cases 

have exactly the same performance both in endo-clutter and exo-clutter 

conditions. 

In addition to ADPCA case, the performance of a general linear combination 

case can be investigated, whether it gives the same performance or not, by 

conducting an analytic analyses. 
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Consider beam-former matrices of eigen-beam (EB) and combination (CB) 

cases as shown in ( 4-41) and ( 4-42), respectively: 


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( 4-41)
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( 4-42)

Here a  and b  are arbitrary real numbers and κ  is the normalizing 

coefficient and its value can be found as in ( 4-43): 

22

1

ba +
=κ . 

( 4-43)

We know that since 1w  and 2w  are eigenvectors, they are orthogonal. This 

orthogonality provides the following property in ( 4-45): 
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( 4-44)
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
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( 4-45)

Similarly, we can prove that the combination definition in ( 4-42) also 

provides two orthogonal beam-former weights.  
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Consider the dot product in ( 4-46): 

( )( ) ( )21
H

21 wwww abba −+ κκ . 
( 4-46)

( )2212
2

21
2

11 wabwwwbwwawabw HHHH +−−κ  
( 4-47)

( ) 000 =+−− ababκ  
( 4-48)

It can be seen from ( 4-48), the combination pattern is also orthogonal and 

the property defined for EBB  in ( 4-45) is also valid for CBB . 

For another property, consider the following matrix multiplication defined in 

( 4-49): 
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( 4-50)

CB
H
EBEB

H
CB BBBB =

. ( 4-51)

The matrix defined in ( 4-49) is a Hermitian matrix with a block diagonal 

matrix form. Its inverse is simple to find, which is indicated in ( 4-52): 
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
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( 4-52)
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An interesting property of matrix 
κ

A  can be used to find the analytic inverse 

of the matrix EB
H
CBBB  which is given in ( 4-56): 

( ) 

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( 4-55)

( ) EB
H
CB

1

EB
H
CB BBBB =−

. ( 4-56)

As indicated by ( 4-55), the matrix 
κ

A  is a unitary matrix. It is clear that 

matrix EB
H
CBBB  is also a unitary matrix.  

Then we can define the following equalities in ( 4-57) and ( 4-58), by using 

unitary and Hermitian properties: 

( ) EB
H
CBCB

H
EBCB

H
EBEB

H
CB

1

EB
H
CBEB

H
CB2Nx2N BBBBBBBBBBBBI === −

, ( 4-57)

H
EBEB

H
CB

H
CB BBBB =  

( 4-58)

Now we can prove the equivalence in performances of two eigen-beam and 

combination cases.  _EBdifferenceR  and _CBdifferenceR  are the difference matrices 

of two eigen-beam case and combination cases, respectively. In order to 

give the same performance, they must be equivalent; thus starting from the 

difference matrix of two eigen-beam case in ( 4-59), we can derive the 

desired result: 

( )( ) H
EB

1

EBc
H
EBEB_EBdifference BBIRBBRR

−− +−= 21
nσ , 

( 4-59)
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We can insert two identity matrices without violating any equality and then 

we can substitute ( 4-57) and ( 4-58) instead of identity matrices as shown in 

( 4-60), ( 4-61) and ( 4-62): 

( )( ) H
EB

1
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H
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nσ . 

( 4-62)

Using the unitary property of matrices CB
H
EBBB  and EB

H
CBBB   defined in 

( 4-56), we can write the inverse of ( ) EB
H
CBCBc

H
CBCB

H
EB BBBIRBBB 2

nσ+  as: 
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−− +−= 21
nσ . 

( 4-65)

Using the property defined in ( 4-58) we get the proof in ( 4-67): 

( )( ) H
CB

1

CBc
H
CBCB_EBdifference BBIRBBRR

−− +−= 21
nσ , 

( 4-66)

_CBdifference_EBdifference RR = . 
( 4-67)

We have shown in ( 4-67) that the difference matrices of two cases (two 

eigen-beam and combination cases) are equal to each other. This implies 

that they have exactly the same performance. 
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In order to show this result numerically, let 5=a  and 3=b . The beam 

patterns in Figure  4-34 is obtained for that combination: 
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Figure  4-34 Beam patterns for combination (COMB) case 
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The eigenvalue nulling and SCNR bound performances of two eigen-beam 

and combination cases are given in Figure  4-35, Figure  4-36 and Figure  4-37: 
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Figure  4-35 Difference matrix comparison in COMB case 
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Figure  4-36 SCNR loss comparison in COMB case 
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Figure  4-37 SCNR difference comparison in COMB case 

 

As it is indicated in Figure  4-35, Figure  4-36 and Figure  4-37, as long as the 

constraints are satisfied, all combinations of eigen-beams give exactly the 

same performance. 

Two eigen-beam case and combination case can be compared under non-

ideal conditions in order to see whether there is a possible difference or not. 

Consider the case with 50⁰ rms phase error between channels. In addition, 

the covariance matrix is estimated from the data itself (SMI case).  
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The performances of the two eigen-beam and combination case are 

illustrated in Figure  4-38, Figure  4-39 and Figure  4-40: 
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Figure  4-38 Difference matrix comparison under non-ideal conditions 
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Figure  4-39 SCNR loss comparison under non-ideal conditions 
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Figure  4-40 SCNR difference comparison under non-ideal conditions 

 

It can be inferred from Figure  4-38, Figure  4-39 and Figure  4-40 that, even if 

there is a distortion in the receiver channels, the two cases give the same 

performance even under SMI case. This shows that any arbitrary 

combinations of eigen-beams give very similar performances under non-

ideal circumstances.  
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CHAPTER 5 
 

 

CONCLUSION 
 

 

5. CONCLUSION 

5.1. Thesis Summary 

The objective of this thesis is to derive and propose two channel GMTI signal 

processing schemes which have good detection performances in the low 

Doppler (or velocity) region in Doppler spectrum, namely, endo-clutter 

detection. 

For this purpose, basic radar detection and GMTI concepts were introduced. 

Then, widely used GMTI techniques are discussed in order to emphasize the 

necessity of developing an adaptive 2D signal processing scheme, which is 

space-time adaptive processing, to detect endo-clutter targets with a 

reasonable performance. 

In order to understand the performance of STAP approach, signal and 

statistical models are investigated. These signal and statistical models are 

then used to determine the SCNR performance of optimum (full STAP) case. 

As far as the practical implementation issues and signal processing load of 

full STAP is concerned, the need of a reduced size detection problem is 

obvious. This need is satisfied by introducing reduced rank STAP, the types 

of rank reduction, comparison of rank reduction techniques and sub-space 

processing and eigen-beam concepts. 

All the concepts that are introduced throughout the thesis are used in order 

to propose two eigen-beam technique, which has very similar performance 
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with full STAP especially in endo-clutter region. Then the performance of 

two eigen-beam technique is investigated under non-ideal conditions. 

Afterwards, the minimum number of eigen-beams needed to get 

satisfactory results is found to support the two eigen-beam approach. Finally, 

the non-uniqueness of two eigen-beam solution (in terms of detection 

performance) is emphasized by introducing the linear combination of two 

eigen-beams. 

The main motivation of this thesis is to develop a practical GMTI technique, 

with two non-adaptive channel, but adaptive Doppler processing. Since the 

beam constitution (rank reduction) operation is not adaptive, we have to 

investigate good beam patterns which preserve the maximum amount of 

information about the full STAP case. By this way, it is aimed to have a good 

performance in challenging detection regions (slowly moving targets). It is 

imperative to suppress the clutter signals as much as it can be; thus, eigen-

beam concept is introduced, which considers the statistical properties of the 

clutter in constituting the beams. 

5.2. Future Work 

Several topics regarding this subject can be investigated to further develop 

the concepts introduced here. These topics can be as follows: 

1. Practical hardware issues concerning the beam-forming operations can 

be discussed  

2. Further investigation of knowledge aided STAP to have an improvement 

on performance can be made 

3. Similar analyses can be performed under non side looking radars 
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APPENDIX A 
APPENDICES 

 

DERIVATION OF CLUTTER COVARIANCE MATRIX 
 

 

A. Derivation Of Clutter Covariance Matrix 

Remember that the total response received from i’th channel and in n’th pulse 

can be written as in (A-1): 

( ) ( ) ( ) ( ) ( )ipDTni jnTfjGcc πφπθθθ 2exp2exp−= , 
(A-1)

( ) ( ) ( ) ( ) ( )






 −−= θ
λ
πθθθ sin2

2
exp idnTVjGcc pATni . 

(A-2)

In (A-2), ( )θnic  is the clutter return in n’th pulse in i’th channel. Covariance of 

any channel at any time instant can be found with an expectation operation 

which is shown in (A-3):  

( ) ( ) ( ){ }θθ *, kmni ccEkKmnKi =++cR . 
(A-3)

( )

( ) ( ) ( ) ( )( ) ( )















 −−−−

=++

θ
λ
πθθ sin2

2
exp

,

22
dmiknTVjGcE

kKmnKi

pAT

cR

 
(A-4)

( )

( ){ } ( ) ( ) ( )( ) ( )∫ 






 −−−−

=++

θθ
λ
πθθ ddmiknTVjGcE

kKmnKi

pAT sin2
2

exp

,

22

cR

 
(A-5)

In the equation (A-5), we can observe that the nKi + ’th row and kKm + ’th 

column of the covariance matrix of the clutter signal can be found with an 

expectation and integration operation. Consequently, covariance matrix can be 

written as in (A-8): 
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( ){ }22 θσ cEc = , (A-6)

pATVx =∆ , 
(A-7)

( )

( ) ( ) ( ) ( )∫ 






 −−−∆−

=++

θθ
λ

πθσ d
dmiknx

jG

kKmnKi

Tc sin
2

2exp

,

22

cR

. 
(A-8)

2
cσ  represents the clutter power provided that: 

( )∫ =1
2 θθ dGT . 

(A-9)

 

 

 

 

 

 

 

 

 

 

 



100 

APPENDIX B 
 

 

DERIVATION OF OPTIMUM DETECTOR 
 

 

B. Derivation Of Optimum Detector 

Likelihood ratio of the hypotheses can be written as in (B-1).  
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(B-1)
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
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rRrrppRr HH

t
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(B-2)

( ) ''112 ξσ <>++− −−
rRrrppRr HH

t
H  

(B-3)

Matrix inversion lemma can be written as in (B-4): 

( ) 1H1
1H

H RppR
pRp

RppR −−
−

−−

+
−=+

2

2
112

1 t

t
t σ

σσ , 
(B-4)

Using the matrix inversion lemma, the test will become as I (B-10): 
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'''
2

ξ<>− rRp 1H , 
(B-8)

1HH Rpw −= , 
(B-9)
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ξ<>rwH . 
(B-10)
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APPENDIX C 
 

 

DERIVATION OF SCNR EQUATION AND SCNR BOUND 
 

 

C. Derivation Of Scnr Equation And Scnr Bound 

In order to find signal-to-clutter plus noise ratio after the weighting 

operation, we have to write the SCNR equation after weighting as in (C-1): 
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

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EE
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(C-3)

IwwwRw

pw
H

c
H

H

2

22

n

t
SCNR

σ
σ

+
= , (C-4)

Rww

pw
H

H 22
t

SCNR
σ

= . (C-5)

Here (C-5) represents the SCNR value after processing the received data with 

weight vector w . We can manipulate (C-5) in order to find a bound to SCNR, 

using Schwarz inequality: 
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Rww

pw
H

H 22
t

SCNR
σ

= , (C-6)

Rww

pRRw
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1/21/2H 22 −

= t
SCNR

σ
, (C-7)

Rww

pRRw
H

1/21/2H 222 −

≤ t
SCNR

σ
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( )( )
Rww

pRpRww
H

1HH −

≤
2
tSCNR

σ
, 

(C-9)

pRp 1H −≤ 2
tSCNR σ . 

(C-10)

Eqn. (C-10) represents the SCNR bound that can be achieved by optimum 

STAP technique. 
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APPENDIX D 
 

 

DERIVATION OF DIFFERENCE MATRIX OF ONE PULSE CASE 
 

 

D. Derivation Of Difference Matrix Of One Pulse Case 

The difference matrix of the one pulse case (N=1) can be found as in  
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