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ABSTRACT

ANTENNA PATTERNS FOR DETECTING SLOWLY MOVING TARGETS IN TWO
CHANNEL GMTI PROCESSING

Yildirim, Gékhan
M.Sc., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Seyit Sencer Ko¢

June 2010, 104 pages

Ground Moving Target Indicator (GMTI) is a well-known and widely used signal
processing method in airborne and spaceborne radars. In airborne radar and
GMTI literature, many radar designs and signal processing techniques have been
developed to increase the detection and estimation performance under heavy
interference conditions. The motion of the aircraft on which the radar is
mounted, high altitudes and ranges, targets with low radar cross sections and
slowly moving targets complicates the problem of localization and observation of
moving targets on a huge area of interest. In order to overcome these problems,
engineers developed more complex radar hardwares with many receiver
channels and signal processing algorithms. Multi-channel receiver provides
adaptive digital beam-forming and adaptive Doppler processing capabilities.

However, designing a cost efficient and light multi-channel receiver and a signal



processing unit, which can handle a huge amount of received data from multi
channels, is a difficult task to accomplish. Therefore, this thesis aims to propose
non-adaptive antenna beams to reduce the number of channels to two in GMTI
processing. This reduction yields a simplification both in receiver structure and
signal processing unit. The measure of excellence of these propositions will be

the ability to detect slowly moving targets with nearly optimum performance.

Keywords: GMTI, STAP, Eigen-Beam, Endo-Clutter, Two Channel, Karhunen-Leove
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0z

iKi KANAL GMTI ISLEMEDE YAVAS HEDEFLERIN TESPITi iCIN ANTEN ORUNTULERI

Yildirim, Gékhan
Yiiksek Lisans., Elektrik-Elektronik Mihendisligi Bolimu

Tez Ydneticisi: Dog. Dr. Seyit Sencer Kog

Haziran 2010, 104 sayfa

Hareketli Yer Hedeflerinin Tespiti (GMTI), oldukg¢a bilinen ve hava ve uzay
platformu radarlarinda genis 6lctiide kullanilan bir yontemdir. Hava platformu
radar ve GMTI literaturinde, agir girisim kosullarinda tespit ve kestirim
performansini arttirmak icin bircok radar tasarimi ve sinyal isleme teknigi
gelistirilmistir. Radarin bulundugu platformun hareketi, yuksek irtifa ve menziller,
distk radar kesit alanl ve yavas hareket eden hedefler, hareketli hedeflerin
blytk bir ilgi alaninda go6zlemlenmesini ve konumunun belirlenmesini
zorlastirmaktadir. Miihendisler bu sorunlarin Gstesinden gelmek igin ¢ok kanalli
almac¢ iceren karmasik radar donanimlari ve sinyal isleme algoritmalari
gelistirmistir. Cok kanalli almag, uyarlamali huzme bigimlendirme ve uyarlamal
Doppler isleme yetenegi saglamaktadir. Ancak, uygun maliyetli ve hafif bir cok
kanalli almag ile bu almaglardan gelen ylksek miktardaki veriyi yonetebilecek bir
sinyal isleme birimi tasarlamak zorlayici bir istir. Bu nedenle bu tez, uyarlanabilir

Vi



olmayan anten huzmeleri 6nererek GMTI sisteminde kanal sayisini azaltmayi
amaclamaktadir. Bu azaltma almac¢ yapisinda ve sinyal isleme biriminde
sadelesme saglamaktadir. Onerilen anten huzmelerinin basarimlari, yavas
hedefleri optimuma vyakin bir performansla tespit etme vyetenekleri ile

Olclilecektir.

Anathar Kelimeler: GMTI, STAP, Eigen-Huzme, Kargasa ici, iki Kanal, Karhunen-

Leove Agilimi
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CHAPTER 1

INTRODUCTION

1.1. Radar and GMTI History

Object detection with radar was first used by Christian Hilsmeyer, who
illustrated the possibility of detection under non-visible conditions, in 1904.
In 1917, Nikola Tesla enhanced the radar principle by stating the feasibility
of intentionally transmitting and receiving electromagnetic waves to detect
the relative position of a target. Several developments have been made on

radar concepts by scientists and engineers up to World War Il.

In the World War I, British Army used the ground stationed radars (which
are called Chain Home) effectively against the German Air Forces (Luftwaffe)
to locate the bomber aircrafts of German Army. However, after locating the
bomber aircrafts, the pilots of the anti-bomber aircrafts of British Air Forces
had to see the German aircrafts in order to eliminate them. As a precaution,
Luftwaffe started to fly at night and in bad weather conditions, in order to
avoid the enemy. British Air Forces had to take a counter measure in order
to see the enemy aircrafts while flying, during the nights and bad weather

conditions.

Airborne radar idea was first proposed by Scottish inventor Robert Wattson-
Watt; his idea was realized by miniaturizing the radar systems to the sizes
which are suitable for aircrafts, by increasing the operating frequency of the

radar and resultantly, ability to decrease the antenna size. These radars



were able to end the German night and bad weather bombing tactics during
the war, [1]. These radars were intended to be used in Air-to-Air Detection

or Air Moving Target Indication (AMTI).

Ground Moving Target Indication (GMTI) ideas arose because of the Cold
War requirements starting from 1970s. Several developments were made in
the course of the Cold War up to the contract of Joint STARS (Surveillance
Target and Attack Radar System) with Grumman/Norden and Motorola in
1985. The system had to have a GMTI mode and an imaging mode called
Synthetic Aperture Radar (SAR) in order to be used against Warsaw Pact’s
armored follow-on forces, before they arrive to NATO’s defenses. After the
cold war, GMTI was used during the Post Cold War era, in Gulf War, in

Kosovo and Afghanistan, [2].

1.2. Thesis Motivation and Objective

In airborne radar and GMTI literature, many radar designs and signal
processing techniques have been developed to increase the detection and
estimation performance under heavy interference conditions. The motion of
the aircraft on which the radar is mounted, high altitudes and ranges,
targets with low radar cross sections and slowly moving targets complicates
the problem of localization and observation of moving targets on a huge are
of interest. In order to overcome these problems, engineers developed more
complex radar hardwares with many receiver channels and signal processing
algorithms. Multi-channel receiver provides adaptive digital beam-forming
and adaptive Doppler processing capabilities. However, designing a cost
efficient and light multi-channel receiver and a signal processing unit, which
can handle a huge amount of received data from multi-channels, are difficult

tasks to accomplish.

Therefore, the main motivation of work in this thesis is to propose good
non-adaptive antenna beams to reduce the number of channels to two in

2



GMTI processing. This reduction yields a simplification both in receiver
structure and signal processing unit. The measure of excellence of the
propositions will be the ability to detect slowly moving targets with nearly
optimum performance. In order to support the proposition, there are

certain objectives that will be mentioned throughout the thesis:

Explaining the main principle of airborne radar

- Investigating the optimum multi-channel GMTI signal processing

technique

- Deriving and investigating the sub-optimum signal processing techniques

with reduced number of channels and/or pulses

- Determining the advantages and disadvantages of sub-optimum

techniques

- Proposing some good reduced channel (sub-optimum) solutions and

supporting these solutions with logical bases

1.3. Thesis Outline

Chapter 1 mentioned the history of radar and GMTI concepts and outlines
the work done throughout the thesis. Chapter 2 will familiarize with the
basic principles of airborne radar, GMTI and Space-Time Adaptive Processing
(STAP) and introduce the data collection and signal models. Chapter 3 will
investigate the performance of optimum and sub-optimum (reduced rank)
STAP approaches, their advantages and disadvantages and cover the
subspace and subspace processing concepts. Chapter 4 will state the main
problem that the thesis aims to overcome, indicate the assumptions and

constraints, propose good solutions and investigate their performances.



CHAPTER 2

RADAR, GMTI AND SPACE TIME ADAPTIVE PROCESSING
CONCEPTS

2.1. Radar Background

The term RADAR is an acronym for “Radio Detection and Ranging”. The main
purpose of radar is to detect existence of a target by transmitting
electromagnetic waves and receiving the reflections of these waves from the
targets. In addition to the existence of a target, manipulation of the

transmitted and received waves will basically give the following information:

- Range (how far away the target is from the radar) of the target by

measuring the time difference between transmitted and received waves

- Velocity (radial or along the range vector) of the target by measuring the
frequency difference between transmitted and received waves (which

will also be referred as Doppler phenomenon or Doppler shift)
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Figure 2-1 Radar detection

Since electromagnetic waves travels with the speed of light
(c=299810°m/s) and as it can be seen from Figure 2-1 that the
electromagnetic wave travels two times the distance between radar and the

target, the range of the target can be found using (2-1):

cAt
R=—.
2 (2-1)



The radial velocity of the target is related to the Doppler shift between the
transmitted and received waves. The amount of the Doppler shift is

measured by using (2-2):

frx - (2-2)
Here f, is represents the Doppler shift. The shift depends on how fast the
range between the radar and the aircraft changes within the cycles of the
electromagnetic wave. The distance traveled by the electromagnetic wave

can be represented as a function of time as in the (2-3):

— _2\/Rt
d(t)=2R - (2-3)

Here V; is the radial velocity component of the moving target. This range

corresponds to a time varying phase change, which is represented in (2-4):

_ YA
dt) = 27, (ZR cR j (2-4)

Since the frequency is the derivative of phase, then:

d¢: Z\/R ——%

1
fo=—9¢__ =-2r
® 2omdt ™oc A (2-5)

Here, A represents the wavelength of the transmitted electromagnetic

wave. Resultantly we have:

' (2-6)

R™ 2 ' (2-7)

Eqn. (2-6) shows that the measurable Doppler shift is a result of radial
velocity of the target and a function of operational wavelength (or

frequency). It is obvious that, if the radar is mounted on a moving platform,



the effective or the relative radial motion between the radar and the moving

target determines the Doppler shift.

2.2. GMTI Background

Ground Moving Target Indicator (GMTI) is the general name for an ability of
radar systems or algorithms which can detect moving targets on the ground.
The main challenge of GMTI is to detect the targets which are buried under
heavy ground reflection signals, which, from now on will be referred to as
clutter. Classical airborne radar systems with GMTI have the basic structure

of a side looking airborne radar (SLAR) as illustrated in Figure 2-2:

Aircraft’s Motion

Radar Beam

Ground Moving
Target

.- Radar Beam on
.- Ground

Figure 2-2 GMTI operation
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In GMTI operation, a side looking radar antenna sweeps the surface by
illuminating it with electromagnetic pulses with pre-defined waveform
properties. Detection can be done if the target is illuminated for a certain
amount of time (observation time) or by a certain number of pulses. Several
signal processing techniques have been used to reveal ground moving

targets.

2.3.  GMTI Techniques
Throughout the course of GMTI history, different techniques were used to
reveal the moving ground targets. The well-known and widely used

techniques are mentioned in the following subsections.

2.3.1. Displaced Phase Center Antenna (DPCA) Technique

DPCA is the most basic GMTI technique, which was widely used in early
GMTI systemes, [3]. Its fundamental principle is to eliminate the unwanted
reflections and to reveal the moving targets on ground by looking at the

same area from the same point in space, but at a different time.



The data collection geometry can be seen in Figure 2-3:

First Receiver Antenna

Second Receiver Antenna

First Time Instant Direction of
----------------------- |::> Motion of the

<:> Aircraft

Antenna Separation /

Second Time Instant Direction of
____________________________ |::> Motion of the

Aircraft

Figure 2-3 DPCA data collection geometry

In principle, radar transmits and receives one pulse in the first time
instant (first pulse). In the second time instant (second pulse), the aircraft
moves forward, exactly the amount of separation between the two
receiver antennae and again the radar transmits and receives (Figure 2-3).
The received signal of the first receiver in the first pulse and the received
signal of the second receiver in the second pulse are taken from the same
surface on the ground. Theoretically, it can be said that the returns from
non-moving ground objects (also called clutter) are same. However,
returns from moving ground objects will differ because of the motion of
the ground target. DPCA technique uses the fact that the moving target

can be revealed by subtracting these two pulses.



The performance of DPCA is very good if the aircraft’s velocity is adjusted
precisely to match the antenna separation distance on each pulse.
However, due to the practical factors like air turbulence, inaccurate
velocity measurement devices, unstable pulse repetitions and channel
mismatches, DPCA technique’s performance degrades and can be

enhanced by using adaptive processing for better clutter suppression, [4].

2.3.2. Adaptive Displaced Phase Center Antenna (ADPCA) Technique

ADPCA technique was developed in order to cope with the practical
problems like unwanted aircraft motion, erroneous velocity
measurements, inconsistent pulse repetitions and non-ideal receiver
channels. The term “adaptive” implies that the received data are used to
estimate and correct the errors, which are caused by practical problems
mentioned above. The ADPCA data collection geometry is illustrated in

Figure 2-4:

v First Receiver Antenna
v Second Receiver Antenna
First Time Instant Direction of
------------------------- [ > Motionofthe

Aircraft

Antenna Separation

Second Time Instant

Direction of
____________________________ [::$>MMWme

Aircraft

Figure 2-4 ADPCA data collection geometry
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There are two different ADPCA techniques in the literature to perform
detection operation. The first technique is mentioned in [4] and the main

steps in this ADPCA technique are as follows:

Estimate the antenna position error using the received data
Calculate the phase shift caused by this error

Correct the received data with the calculated phase shift
Conduct the subtraction operation as in the DPCA case.
Detect the moving targets

The second technique is introduced in [5] and it is using a detector similar
to the one which will be derived in section 3.1. Throughout the thesis, the

second ADPCA technique will be considered.

The performance of ADPCA technique is better as far as the practical
problems are concerned, [5]. However, DPCA and ADPCA techniques are
able to detect relatively fast moving targets because of the clutter spread

due to the aircraft motion, [5].

2.4. Endo-Clutter and Exo-Clutter Targets

Ideally, if the radar is stationary and transmits electromagnetic pulses to
the surface with the same angle, the signals reflected from the clutter will
not have a Doppler spread. However, in practice, the following items can

cause clutter spread:
The motion of the platform, on which the radar is mounted

The motion introduced by wind to ground objects and sea surface

(Internal Clutter Motion)

The change in aspect angle of the clutter patch

11
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Figure 2-5 Clutter frequency spectrum in non-moving and moving aircraft cases

The DPCA and ADPCA techniques are successful to detect the targets
outside or at the edge of the clutter spread region (Figure 2-5). These
types of targets are called “Exo-clutter Targets”. Exo-clutter targets have

higher Doppler shifts which means they move relatively fast.

Main challenging problem is to detect the targets inside the clutter

spread region, which are called “Endo-clutter Targets” as shown in Figure

12



2-6. The detection of these targets is difficult since they are buried under

a high clutter power because of their low Doppler shifts.

Y
} Amplitude
4 Endo-Clutter Target

Pid e Exo-Clutter Target

it

1 1
Clutter Spread Region >

Frequency

Figure 2-6 Endo-Clutter and Exo-Clutter targets

The DPCA and ADPCA techniques can also detect the endo-clutter targets;
however, a more general approach to the solution of detection problem may
enhance the endo-clutter detection performance significantly. This approach
leads us to the Space-Time Adaptive Processing (STAP), which is the general

solution of detection problem and it gives optimum detection performance.

2.5. Motivations to STAP and STAP Data Collection Geometry

In GMTI data collection, the received signals are taken from different
antennae (spatial domain) at different times (temporal domain). Widely
used GMTI techniques like DPCA and ADPCA is not optimum in detecting the
slowly moving targets or in other words endo-clutter targets, because they
are using the correlation between space and time. However, since all the
signals received from all channels in different times are not independent
generally, an optimum signal processing scheme has to be 2-D adaptive

processing, [6].

Space-Time Adaptive Processing (STAP) gives the opportunity to take
advantage of the correlation between space and time domains in an
adaptive manner; thus, it will provide the optimum performance in

13



detection of endo-clutter targets. Exo-clutter targets can be detected with a
nearly optimum performance with non-adaptive and 1-D processing
methods, since exo-clutter performance only depends on noise component,
which is an independent variable in space and time domains. The STAP
technique is the optimum processing technique, which offers a 2D adaptive
signal processing both in space (beam-forming) and time (Doppler

processing).

Full STAP data collection geometry is illustrated in Figure 2-7:

First Channel

v Second Channel
1
1

Radar Antenna

1
1
|
K’th Channel

Direction of
Motion of the
Aircraft

First Pulse

Second Pulse
Direction of

Motion of the
Aircraft

N’th Pulse Direction of

_________ ' ' |::> Motion of the
Aircraft

Figure 2-7 STAP data collection geometry

In STAP, a number of channels (K many) and a number of pulses (N many)
can be used to operate. The number of channels and pulses provide KN
many degrees of freedoms (DoFs) which can be used to suppress the clutter

and detect endo-clutter targets.
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2.6. Signal and Statistics Models in STAP

There are mainly four types of signals in STAP terminology. These are target,
clutter, interference and thermal noise signals. The interfering signals are
not in the scope of this thesis and will not be investigated. The remaining

signals and their statistical models are explained in the subsections 2.6.1,

2.6.2 and 2.6.3.

2.6.1. Target Signal Model

Target signal can be expressed as the signals reflected from the moving
targets back to the radar channels. The target signal has two main
components; space and time. The received signal in time depends on the

velocities of target and aircraft, and the azimuth angle of the target.

Target signal parameters are shown in Figure 2-8:

Radial Component of the \
Target’s Velocity Vector to < T
the Radar \

Target’s Velocity Vector

Azimuth Angle of Target ‘_/—

Direction of
Motion of the
Aircraft

Figure 2-8 Target signal parameters
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Let the target’s radial velocity component be V, aircraft velocity be V,,
azimuth angle of the target be &, and the wavelength of the transmitted

pulse be A . The Doppler shift of the target can be found from (2-8):

_ N, 2,sin(6;)

fo 1 1 . (2-8)

Let the pulse repetition interval (PRI) of the radar be T,.Theninevery T,
the phase of the received signal from one channel differs by fDTp. The

received signal from the target for one received channel and N pulses can

be written as in (2-9):

expl- j27£,T,(0))
| exd- jort,T, ()
Pe= : (2-9)

exd- | 271‘.DTP(N ~1))

p, denotes the received target signal vector in time domain. Target signal

in space domain depends on the azimuth angle of the target and channel

separation as illustrated in Figure 2-9:

First Channel

v Second Channel

K’th Channel

Signal Wavefront
—

Signal Reception Delay ’ S
+— Azimuth Angle of Target

— Channel Separation

Figure 2-9 Target signal reception in space domain
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The phase of the signal which is received from a channel depends on its
signal reception delay. The delay for Kth channel can be written as in

(2-10):

D, = (K —1)d sin(@T). (2-10)

Here d is the channel separation. This separation in space causes the
change in phase represented in (2-11):

(K -2)dsin(é, )
A ' (2-11)

In the analysis, it is assumed that all the channels have unity antenna gain

and isotropic antenna patterns.

Consequently, the target signal vector in space can be written as in (2-12):

i e 2”(o)ol sin(é; )

. eXigjzﬂ(l)d sj]ln(&T)jj

° : (2-12)
_exp(jZn(K Ll)jsin(BT)j_

The space-time signal received from the target is the Kronecker product

of space and time signals defined in (2-14):

P=p. 0p,, (2-13)
P1
_| P2
P=1 (2-14)
P

Here [0 means the Kronecker product operation. Every p, represents the
Kx1 channel response of i'th pulse and p is a KNx1 vector. The total

space-time response p is multiplied by a random complex coefficient

17



which includes the reflected power of the target because of its reflectivity,
orientation with respect to radar, range and other system parameters.

The complex coefficient can be modeled as in (2-15):

a=a +ja,,
IR (2-15)

where @, and a,, are assumed to be independent identically distributed

random variables with zero mean Gaussian distribution with a variance of

2

—L, where g7 is assumed to be known. This model is referred to as

Gaussian Fluctuating Signal Swerling-1 target model, in which the
coefficient is constant in one space-time response (coherent processing

interval) but will differ in another space-time response.

2.6.2. Clutter Signal Model

Clutter signal includes the reflected electromagnetic waves from all
ground obstacles (but not the electromagnetic wave sources like

jammers).

18



Infinitesimal Clutter

Consider an infinitesimal ground clutter patch as shown in Figure 2-10:

- ~ ~
e S 7
~ ,
N Ground Surface

Patch

» Azimuth Angle

6

Figure 2-10 Clutter signal collection

Received signal from the ground clutter patch depends on the following

parameters:

Angular distribution of clutter on that particular azimuth angle 2> C(H)

(random)

Transmit antenna voltage pattern gain on that particular azimuth angle

> G,(6) (known, deterministic)
Pulse repetition interval 2> T, (known, deterministic)

Doppler shift for stationary ground clutter patch which can be calculated

from (2-16) (known, deterministic):
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2/, sin(6
f, = XS0 (2-16)

Phase shift due to the azimuth angle of the ground clutter patch which is
determined from (2-17) (known, deterministic):

_idsin(6)
o (2-17)

Total response received from i’th channel and in n’th pulse can be written

asin (2-18):

¢, (8)=c(6)G; (8)expl- 27, T, n)expj2rm), (2-18)

Covariance of any channel at any time instant can be found with an

expectation operation which is given in (2-19):

R, (i +nK,m+kK)= E{Cm @) (9)}- (2-19)

Consequently, covariance matrix can be written as in (2-20) (full
derivation can be found in APPENDIX A), derivation is based on the works

in [14]):

R, = O'CZ.HGT (9)‘2 exp(— j27T2AX(n - kzl_ (i - m)d Sin(e)jde. (2-20)

The clutter covariance matrix R, is a KNxKN Hermitian matrix. Here in

equation (2-20) a uniform clutter is assumed. By using the clutter

covariance matrix, we can generate clutter realizations as follows, [7]:

R, = Efcc"}, (2-21)

R, =DD", (2-22)

c=Dn, (2-23)

E{cc} = E{pnn"D"}= DE{nn"jD" =DD" =R, . (2-24)
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The matrix D can be obtained by Karhunen-Leove Expansion as

illustrated in (2-26):

KN
R, = Z_l“/‘iceieiH , (2-25)
KN y
D= Zl Ai ee . (2-26)

The clutter realization will have the form in (2-27):

(2-27)

Every C, represents the Kx1 channel response of i'th pulse and C is a

KNx1 vector. The vector C is the clutter realization vector and n
represents an independent complex Gaussian distributed realization with
an identity covariance matrix. Thus, the clutter is assumed to be Gaussian

clutter with covariance matrix R, .

2.6.3. Noise Signal Model
The noise is assumed to be independent and identically distributed

complex Gaussian random vector; thus, noise signal can be written as:

n=n, +jng,,
LY (2-28)

E{nnH} = Ol e - (2-29)

where |,y IS an identity matrix of size KNxKN.
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2.6.4. Received Signal and Hypotheses
The total received signal in different hypotheses can be represented as in

(2-30) and (2-31):

r=c+n+ap :H,, (2-30)

r=c+n :H,. (2-31)

H, represents the hypothesis in which the target exists. Otherwise H,is
used. The total covariance matrices of given hypothesis are given by (2-32)

and (2-33):

R, =E{rr"}=R, +0?l +o%pp" =R +0o2pp" :H,, (2-32)

R,=E{rr"}=R +0% =R :H,. (233

Note that covariance matrices of different hypotheses are different.
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CHAPTER 3

FULL RANK STAP, REDUCED RANK STAP AND SUBSPACE
CONCEPTS

Full rank STAP is the optimum signal processing scheme in which the data from
all the channels and pulses are used simultaneously in a 2-D adaptive signal
processing operation. Reduced rank STAP, however, applies a reduction
operation on the received data before conducting adaptive processing, in order
to simplify the STAP operation at the cost of reduced detection performance.
There are several rank reduction techniques (channel wise, pulse wise or both)
which can be applied depending on the trade-off between complexity and
performance of radar. In the following subsections, full rank and reduced rank
STAP techniques will be analyzed. Subsequently, subspace concept will be

introduced to have an understanding of subspace processing idea.

3.1. Full Rank STAP Detection and Performance

Full rank STAP detection can be thought as binary hypotheses testing

problem with the following hypotheses in (3-1) and (3-2):

r=ctn+ap H, (3-1)

r=c+n :H,. (3-2)
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Here the received signal is of the form represented in (3-3):

r= . (3_3)

Every r; represents the Kx1 channel response of i'th pulse and r is a KNx1

vector.

In the sections 2.6.2 and 2.6.3, it was stated that the clutter and noise
signals are assumed to be independent and complex Gaussian distributed
random vectors with different covariance matrices. Thus the probability
distribution of received signal r can be written as a joint Gaussian
distribution. The optimum detector is given in (3-4) (Full derivation can be

found in APPENDIX B):

PR 28 (3-4)
wH :pHR—l -5
wr| 2e (3-6)

Herew is the optimum weight vector and R =R_+ 0’| is the clutter-plus-

noise covariance matrix. This weight applies on target, clutter and the noise
terms. If we write the target signal to clutter-plus-noise ratio (SCNR), we get
(3-7) (Full derivation can be found in APPENDIX C):
2|y H |2
gw"p
&NR:M
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We can manipulate (3-7) in order to find a bound to SCNR using Schwarz

inequality (Full derivation can be found in APPENDIX C):

2~Hp -1
LNR<oP R p. (3-8)

In order to check the consistency, assume that there is no clutter and the
target is buried under the noise. Then the signal-to-noise ratio (SNR) bound

is determined by (3-9):

-1
SNRsafp”(ofl) P, (3-9)
op’p
MR== (3-10)
0.2
< _t
SNR< KN 2L (-11)

n

It can be observed that, pre-processed SNR is improved by a factor of KN
after the weighting operation. This is an expected result under white noise

conditions because we have KN many samples of target to be used.

The SCNR bound represented in (3-8) is important, because it will be used

several times in the analyses in Chapter 4.

3.2. Rank Reduction Techniques

The size of the detection problem can be inferred from the Degrees of
Freedoms (DoF) or the rank of the covariance matrix R. Rank reduction
techniques are signal processing operations which reduces the DoFs and
generally the rank of the covariance matrix. A very good taxonomy of rank

reduction techniques is given in [6] as illustrated in Figure 3-1:

25



Element-Space Element-Space

Pre-Doppler Pulse Doppler Bin  Post-Doppler
Temporal
Data Filtering Data
Element . » . Element
Matrix Matrix
Space-Time
Spatial Filtering Spatial
Filtering Filtering
Y A
Data Data
Beam . > . Beam
Matrix Temporal Matrix
Filtering
Beam-Space Pulse Doppler Bin Beam-Space
Pre-Doppler Post-Doppler

Figure 3-1 Taxonomy of rank reduction techniques

The rank reduction techniques will be mentioned in 3.2.1, 3.2.2 and 3.2.3.

3.2.1. Beam-Space Rank Reduction

The idea behind the beam-space rank reduction is to form beam or

beams before Doppler processing.

Remember (3-3) the received signal is of the form:

r= |- (3-12)

Each r; represents the K channel response in one pulse.
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In beam-space rank reduction, we will combine the elements of r; with

beam-forming weights to conduct the rank reduction operation which

can be seen in Figure 3-2:

1st Pulse N’th Pulse
1 2 K 1 2 K
Beam-Former Beam-Former
1 2 L 1 2 L

Temporal Processor

l

Detections

Figure 3-2 Beam-space rank reduction

Define a rank reducer matrix as follows:

Wy Wy o Wiy Ole Ole
B - Ole Ole :
; E Ok = = Ok (3-13)
Ole Ole Wiy Wy LN

The rank reducer matrix B is a KNxLN matrix which constitutes L many
beams for each pulse. In order to have a rank reduction operation, L<K

must be satisfied. The w;, vectors are the beam-forming weights of size

Kx1. Applying the rank reducing matrix will yield received signal vectors

and covariance matrix given in (3-14), (3-15) and (3-16):

— H
fa =B7T, (3-14)

27



R, =E{ryri'}=E{B"rr"B}=B"E{ir"}B =B"RB,

(3-15)
pe =B"p. (3-16)
Then the SCNR bound formula in (3-8) will be modified as in (3-18):
SCNR< o?p"R:p,, (3-17)
CNR< o?p" B(BH RB)_lB”p- (3-18)

3.2.2. Post-Doppler Rank Reduction

The method of post-Doppler rank reduction is to apply a Discrete Fourier
Transform to the data and then to process the received signals from each
element to form beams. Post-Doppler rank reduction techniques can be
classified in terms of the number of Doppler bins used to form beams.

The rank reduction operation in this method is illustrated in Figure 3-3:

— N Pulses — N Pulses
T . T T . T
1= =]
1D DFT 1D DFT
_____________ N 1 T,
N

Adaptive Processing Adaptive Processing
#1 Doppler Bin #N Doppler Bin
Detection Detection

Figure 3-3 Post-Doppler single Doppler bin rank reduction
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The rank reducer matrix (for single Doppler bin) will be as in (3-19):

A I (3-19)

Here, D, represents the collection of n’th Doppler bin steering vectors to
get n’th bin rank reduction and it is a KNxN matrix. W, =exr(j27ﬁnTp) is

the Discrete Fourier Transform complex coefficient at n’th Doppler bin for
i'th pulse. Applying the rank reducing matrix will yield following received

signal vectors and covariance matrix shown in (3-20), (3-21) and (3-22):

n (3-20)

Ro, = E{roort } = E{DFrr#D, } = DFE{rr"}D, = DFRD,,

(3-21)
Pon=Dyip. (3-22)
Then the SCNR bound formula will be modified as in (3-24):
SCNR< 07" RiLp,,, (3-23)
SCNR< 02D, (D¥RD, | 'D!ip. (3-24)

In Post-Doppler rank reduction, computational advantage arises only if
we use number of Doppler bins less than N. Otherwise, if we use all
Doppler bins, the Post-Doppler technique does not reduce the rank and

gives optimum result, since DFT is a revertible operation.

3.2.3. Beam-Space Post-Doppler Rank Reduction

Beam-Space Post-Doppler rank reduction is a technique which reduces
the rank twice by combining the beam-space and post-Doppler rank

reduction methods.

29



The reduction operation can be shown in Figure 3-4:

1st Pulse

2

Beam-Former

N’th Pulse

T

Beam-Former

1D DFT

1D DFT

Adaptive Processing

'

#1 Doppler Bin
Detection

Adaptive Processing

|

#N Doppler Bin
Detection

Figure 3-4 Beam-space Post-Doppler rank reduction

Rank reducer matrix can be represented as in (3-25), in terms of the

matrices in (3-13) and (3-19):

B, =BD

n-

(3-25)

Since we first apply beam-forming, then the Post-Doppler technique,

SCNR bound formula can be determined as (3-30):

Reo = E{raol s} = E{BHrrB,} =BLE][rr "B, =BYRB,,

Peo

:ng,

SCNR < 07pgpRepPep »
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-1
SCNR< 07p"'B, (B4RB, ) 'Bip (3-30)

3.3. Advantages and Disadvantages of Rank Reduction

Rank reduction techniques provide a trade-off between detection
performance and practical implementation in the GMTI systems. Main
advantages and disadvantages of rank reduction techniques can be

summarized as follows:

Table 3-1 Advantages and disadvantages of rank reduction

Advantages Disadvantages
Full STAP 1. Optimum detection 1. The antenna element
performance and feed network is
complicated and
2. Provides full ox er;sive
adaptability to P
external factors 2. The amount of data to

be processed is huge

3. Practical problems like
channel calibration
with many channels is
a difficult problem to

solve.
Beam-Space 1. Reduced number of 1. Non-adaptive beam-
beams provides data forming reduces the
reduction and focused DoFs  without the
operation knowledge of the

environment.
2. Forming beams with RF

hardware is less
expensive than
constituting a multi-
channel system.

Post-DoppIer 1. Reduced number of 1. Using less number of
data and matrix sizes bins degrades the
facilitate the matrix performance, using
operations more bins do not

provide simplification
in computation.

Beam_space Post- 1. Reduced number of 1. Reduction in DoF is
D | channels and data and very significant, which
oppler provides a very simple may degrade the
processing solution performance to

unwanted levels.
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3.4. Clutter, Noise and Target Subspaces

Subspace concept is an approach in GMTI processing and interference
suppression, which takes advantage of the dimensionality and orthogonality

concepts.

In a full STAP system, we have K many elements and N many pulses, which
provides KN many DoFs. Analogously, we are working in a KN dimensional

space. Subspace concept’s purpose can be listed as follows:
1) Determine the subspace (and its dimensions) which the clutter is in
2) Determine the subspace (and its dimensions) which the target signal is in

3) Carefully process the data which spread in these subspaces to reveal the

target signal buried under the clutter signal.

3.4.1. Clutter Subspace

Clutter subspace will be our main subspace to be observed. Clutter is
modeled in section 2.6.2 as colored signal with Gaussian distribution. This
model causes correlation between clutter samples and this correlation
results a reduction in dimension. Thus, we will state that the clutter is not

spread along all KN dimensions.
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v

Consider a data collection scenario in which the aircraft moves forward to

a distance which is an integer multiple of antenna separation as

illustrated in Figure 3-5:

First Channel

Second Channel

K’th Channel

First Pulse

Second Pulse

Radar Antenna

Antenna Separation is equal to 1 times
the distance traveled by the Antenna in

one pulse

A

y
A

y

Third Pulse

Figure 3-5 Data collection scenario

—>
—>
—>

Direction of
Motion of the
Aircraft

Direction of
Motion of the
Aircraft

Direction of
Motion of the
Aircraft

In this scenario, responses from K many channels in N many pulses are

collected to form space-time response (KNx1 vector).

Remember the received clutter signal form from (2-27):

(3-31)

We can generate a new representation to received clutter as in (3-32):
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(3-32)

New representation in (3-32) is a matrix of size NxK. The first dimension
of the matrix is constituted from temporal response and the second

dimension is constituted from spatial response.

Taking the Fourier Transform of that matrix in both dimensions can give
the temporal and spatial spectral distribution of clutter in a 2D fashion as

illustrated in Figure 3-6:

0.5

o e o
[ R % B -

[ ]
ke

Normalized Doppler Frequency
& &
P o

=]
0

o
P

05 -04 03 -02 -01 0 0.1 0.2 03 04 0.5
Mormalized Sine Angle

Figure 3-6 2D (temporal and spatial) spectrial distribution of clutter

Normalized sine angle represents the azimuth angle of the antenna
between -90 and 90 degrees with a sine operation; because, clutter

spectral distribution is proportional to the sine of the azimuth angle,
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which can be seen in (2-20). Normalized Doppler frequency indicates the

frequency spectra normalized with the pulse repetition frequency.

It can be seen from Figure 3-6 that the clutter is accumulated around a
certain line. This line is called “clutter ridge”, [5], [6]. Define the “clutter

ridge” parameter as in (3-33):

A, T
B= %- (3-33)

The parameter [ is called the slope of the clutter ridge, and it represents
the slope between spatial and temporal frequencies. If S is an integer

value, the rank of the clutter covariance matrix can be determined as

follows:

rank{R_} = K +(N -1)8. (3-34)
This idea is first stated in [8], but the proof can be found in [9]. From
(3-34), we can observe that clutter signal is spread along K +(N —1),8
many dimensions. Clutter ridges are the 2D Fourier Transform of the
matrix stated in (3-32), which is generated by using the parameters in
Table 3-2 and the clutter realization technique mention in section 2.6.2.
The covariance matrices are generated by using (2-20) with the

parameters in Table 3-2:

Table 3-2 Demonstration parameters

Parameter Name Value
Number of Antenna Elements (K) 16
Number of Pulses ( N ) 16
Platform Velocity (V,) 100 m/s
Pulse Repetition Interval (T;) Depends on the figure
Antenna Separation (d) 0.02m
Clutter Ridge ( 5) Depends on the figure
Number of DoFs 16x16 = 256
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Normalized Doppler Frequency

Figure 3-7, Figure 3-8, Figure 3-9 and Figure 3-10 demonstrate some

examples of clutter ridge slope and rank of covariance matrices:

Clutter Rigde for g = 1

--0.5 -04 03 -02 -01 0 0.1 0.2 0.3 0.4 0.5
Normalized Sine Angle

Figure 3-7 Clutter Ridge for 5 =1
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For =1, rank of the clutter covariance matrix is

rank{R_} =16+ (16-11=31.

Normalized Doppler Frequency

Eigenvalues (dB)
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Eigenvalues for 3 = 1
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X:32
Y:7.017e-012
r ]
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Eigenvalue Index

Figure 3-8 Eigenvalues for ,B =1

Clutter Rigde for 3 = 2

300

-0.3 -0.2 -01 0 0.1

Normalized Sine Angle
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Figure 3-9 Clutter Ridge for 5 = 2
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For (8 =2, rank of the clutter covariance matrix is

rank{R} =16+ (16-1)2 = 46.

Eigenvalues for 3 = 2

35 .
30 B
25+ B
o 20+ 4
Z
4 X: 46
% 151 Y.: 12.25 b
>
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()]
g 10r ]
5L 4
X: 47
Y: 3.369e-012
0r | 8
-5 1 1 1 1 1
0 50 100 150 200 250 300

Eigenvalue Index

Figure 3-10 Eigenvalues for ,B =2

For K=16 and N = 16 the results are as expected; the numbers of

eigenvalues are exactly the same with the rank formula given in (3-34).

3.4.2. Noise Subspace

The noise is assumed to be a white signal with Gaussian distribution in
section 2.6.3. Since noise is white, it has to be spread along each

dimension with equal power. Consider the covariance matrix of the noise:

2|

R,=0l. (3-35)

n

Since it is identity matrix, it is full rank (i.e. KN dimensional) and all the

eigenvalues are equal to 7.
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3.4.3. Target Subspace

Target signal spreads along one dimension only with respect to its basis.
The only vector in the basis of the target signal is equal to its target signal

vector omitting the constant terms as in (3-36):

P.

_| P2
P=1 (3-36)

Pn

Clutter subspace has a basis with rank{Rc} many basis vectors. Generally,

target and clutter subspaces do not have a common basis vector. Thus, as
far as the basis of clutter subspace is concerned, the target signal has
components in multiple dimensions. The main purpose will be to get the
target signal components in different dimensions and combine them

coherently to obtain a good performance.

3.5. Subspace Processing and Eigen-Beam Concepts

The aim of subspace processing is to solve the detection problem in
orthogonal dimensions and combine them to get an ultimate performance
which is close to the theoretical SCNR bound. For the sake of simplicity,
consider a one pulse case (N=1). Then our problem reduces to K dimensions
which are the channels of our antenna. We can write the eigenvalue

decomposition of total covariance matrix as in (3-37):

— H
R =UWU". (3-37)

Here, U is a unitary matrix which is a collection of eigenvectors of matrix R .
W is a diagonal matrix in which the diagonal entries are the eigenvalues of

matrix R . Inspecting matrix U :

U :[el e2 eK]' (3_38)
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Each g, is an eigenvector of R. Consider a beam-space rank reduction by

selecting the eigenvectors as the beam-forming weights. We will call that
beams as eigen-beams, which is a beam-forming technique used in

communication and direction finding (DF) systems, [12], [13].

We can get the SCNR bound in (3-45) by using eigen-beams for one pulse

case as follows:

B=U,

(3-39)
SCNR< 0?p"B(B"RB)"B"p, (3-40)
SCNR< o?p"B(B"UWU"B) B"p, (3-41)
SCNR< op"BY'B"p, (3-42)
_%1 0 .. 0 |
0 :
ypt= E %2 o | (3-43)
0 0 %K_
el el'p G,
H H
B"p = ef p= ezsp = %, (3-44)
ey eip| |G«
SCNR < afi'i—ir : (3-45)

i=1 i
In (3-45), it can be observed that the SCNR is bounded by the sum of

2
G
contributions of every dimension. By defining the contribution ratio as %,

for a case K = 32, we will have the following contribution ratios:
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In one pulse case, most of the contributions to the SCNR value come from

28" 30" and 32" dimensions. The corresponding eigen-beams are shown in

Figure 3-12, Figure 3-13 and Figure 3-14:
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Figure 3-13 30" eigen-beam
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Figure 3-14 28" eigen-beam

In the one pulse case, the detection problem can be solved as independent
problems in K dimensions and then can be added to get a better result.
Depending on the performance needs, the number of eigen-beams that
have to be used can be determined by (3-45). However, the analysis is valid
for only one pulse case. For multi pulse case, since there is a correlation
between space and time signals, an analytic derivation is not available.
Instead, eigen-beam idea will be transferred to multi pulse case and

analyzed numerically.
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CHAPTER 4

OPTIMIZING ANTENNA PATTERNS WITH BEAM-SPACE
APPROACH

4.1. Problem Statement

The main problem this thesis aims to solve is to propose beam-space rank
reduction solutions down to two channels, while keeping the endo-clutter
target detection performance in GMTI processing at an acceptable level. The
beam-space rank reduction solutions is constrained to have two signal-
independent beams (which means the beams are formed with passive
hardware elements like couplers and beam-forming operation does not have
a feedback from the received signal). Good endo-clutter target performance
will be measured with closeness of SCNR bound value of that beam-space

solution to the optimum STAP SCNR bound value for low target velocities.

4.2. Assumptions, Constraints and Performance Loss Metrics

There are certain assumptions that have been made to get a solution.
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The receiver structure of the beam-space solution is considered as

illustrated in Figure 4-1:

Pulses

T

Beam-Former

1 2
LNA LNA
Down. > Ana.lo.g—to—
Conversion Digital Received
Converter Signal
> —>

Figure 4-1 Two beam receiver structure

In the receiver structure, the signals coming from the outside world (clutter,
target and external noise) are combined in the beam-former to get two
output beams. Then these beams are passed through a Low-Noise Amplifier
(LNA) which adds a thermal noise component to the received signal. Assume
that the external noise is very small compared to the other signals. This
received structure will give the received signal at the output of the analog-

to-digital converter represented in (4-1):

re =B"c+aB"p+n. (4-1)

Here B is the beam-former matrix, C is the clutter signal received from all K
elements, ais the complex amplitude of the target signal, p is the target

signal received from all K elements and nis the thermal noise signal added

to the beams after LNA.
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The clutter probability distribution is assumed to be a zero mean
multivariate complex Gaussian distribution with covariance matrix R .
Noise components are independent from each other, have a zero mean
white Gaussian distribution for each beam and have a covariance matrix
Jfl where Uf represents the noise power. All signal components are

independent from each other (clutter, noise and target).

The overall covariance matrix of the received signal without the target signal

can be found as in (4-3):

ST = () A= 8 S R= S B2 L

- H + 2 )
R, =B"R,B+0? (3)

There are certain constraints applied in the analysis in order to compare the
resultant beams fairly. In the beam-former matrix, there are two beam-
former weight vectors which constitute the beams. These vectors are

illustrated in Figure 4-2:

1 K
---------- Wy,
Wll
W, W, W, W, I
W12 11 21 1K 2K W2 .
Wl -
W2K
WlK 1
First Second
Beam Beam

Figure 4-2 Beamforming operation

Here w, and w, are beam-former vectors and w;;, W,; are the elements of

these vectors.
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The power constraint of these vector elements can be represented as in

Figure 4-3:

2 2
‘le ‘ I:?nput ‘sz ‘ I:?nput

Figure 4-3 Power division in beamforming

Considering the power constraint, the suggestion in (4-5) can be made:

2 2
I:)input 2 ‘le‘ I:?nput +‘W2j‘ I:)input' (4_4)

2 2
12w, [ +wy [ (4-5)

This inequality is the first constraint. For each element in beam-former

vectors, this inequality must hold.

The SCNR bounds of optimum and sub-optimum (or beam-space reduced
rank in this case) can be represented in (4-6) and (4-7), respectively, as

follows:

-1
SCNR gy < 079" R, + 521 ] 'p, (4-6)

SCNRbeam—Space s Utsz B(BH R.B+ Uﬁl )_lBHp' (4-7)
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Since we know that optimum performance is always greater than or equal to

beam-space performance, we can define a metric as in (4-12):

$NRoptime 2 $NRbeam—space'

(4-8)

op" (R, +0%1 ) 'p= 0?p"B(B"R.B+02 ) 'B"p
t c n =%t c n ’ (4_9)

p" (R, +0? ) 'p-p"BB"RB+0%)'B"p=0
c n c n -7 (4-10)

H
p Rdifference pZOr (4_11)
-1 -1

Ryiwece = (R. +071 ) ~B[B"R,B+071)'B". (8-12)

Here we have defined a new matrix R called “Difference Matrix”

difference
which can be considered as a measure of the statistical difference in clutter
and noise signals, between the optimum and beam-space solutions. The
difference matrix must be a positive semi definite matrix (all eigenvalues are
non-negative), in order to satisfy the inequality in (4-11). Second constraint

is the positive semi-definiteness of difference matrix.

For good beam-space solutions, we want the value in (4-11) to be close to

zero, for slow targets’ p vectors, in order to get close to the optimum SCNR
bound. From a different point of view, the matrix B(BHRCB+U§I)_1B can

. . . -1
be treated as a matrix which cancels the eigenvalues of (Rc + J,fl) and the

matrix R has minimum number of non-zero eigenvalues or the sum

difference

of its eigenvalues is minimized.

First of all, consider the difference matrix in noise only case (clutter has zero

power) in (4-18):

R

difference

=(R.+0%)"-B(B"R.,B+0%)"B", (4-13)

Rdifference = (Ur?l )_l - B(O-rfl )_lBH ’

(4-14)
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o
I:'2difference_0__§ 7' (4_15)

H
Wy W, O Oq | Wy Ok Oka Ok

: : H
BB" = Ole OKx1"' . . W, Ole"' .
. . H 7
"'OKx1 Ole : : "'OKx1 W, (4-16)
H
Okt Okar" Wy W, || Oy Og " Oka W,
H H
W W, +W,W, OKxK OKxK
H H .
BB = Oxk W, W, +W,W,
: ) O« ’ (4-17)
H H
OKxK OKxK W W, +W,W,
Rblock OKxK OKxK
R _ 1 OKXK Rblock :
difference — ~_2 . .. .. _
Un ° N OKxK (4 18)
OKxK OKxK Rblock
The matrix R e tUrns out to have a form of repeated block matrices.

Thus, analysis of the eigenvalues of one block matrix in (4-19) will suffice:

_ H
Ry =1 —W,wi' —w,wi' (4-19)

let w, and w, be two orthonormal vectors (i.e.
||Wl||2 =ZI.,||W2||2 =1,wi/'w, =0). Using Gram-Schmidt orthonormalization
procedure, we can complete these vectors to K vectors by adding the set
{ek}lf:3. The set w,,w,,€;,...,6, is a complete orthonormal set. We can find

the eigenvalues corresponding to the vectors in the orthonormal set, we will

get the results in (4-21), (4-22) and (4-24):

— ot — M H H H H
At W1 Rpioa Wy SWIW, =W W W Wy =W WoW5 W, (4-20)
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Ay =WIR, W, =1-1-0=0,

w (4-21)
Aoy =WHR, W, =1-1-0=0, (4:22)

Ay =elR, e =ele,—efw wle, —elw,wle,, (4-23)
Ads =€1R,, 48 =1-0-0=1. (4-24)

The upper derivation shows that w, and w, are eigenvectors of R

difference

with 0 eigenvalue and these beam-former vectors will cancel the two
eigenvalues of optimum STAP covariance matrix R_+ &l in noise (because

of the normalization), independent from the number of pulses. Thus, we can

define our third constraints as in (4-25) and (4-26):

i = wiw, =1, (4-25)

oof” = wiw, =1 (4-26

4.3. Possible Good Beam-Space Solutions

We will use the orthonormalization beam-pattern idea presented in section
4.2 in combination with the eigen-beam approach in clutter plus noise case.
In order to have an analytic solution, consider one pulse detection problem
(N=1), where the covariance matrix of optimum STAP case is of size KxK and
represented with Karhunen-Leove Expansion in (4-27) as follows:

K
+0? = Y-
R, +07l i2:1:/1,e,e, (4-27)
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Let A, and A, be the two largest eigenvalues of the covariance matrix and

let beam-former vectors be w, =€, andw, =¢,.

Since W, and W, are orhonormal, we have the equality in (4-28):

BHB:{W?W1 WTWZ}:F O}:L

wiw, whw,| |0 1 (4-28)

The difference matrix of that case can be written as in (4-29) (full derivation

can be found in APPENDIX D):

K

Rfterence = ;/‘—];eieiH : (4-29)
As it can be seen from the Karhunen-Leove Expansion of difference matrix in
(4-29), the two largest eigenvalues of the one-pulse covariance matrix of the
optimum STAP case cancelled in the suboptimum case directly using the
eigen-beams corresponding to that eigenvalues. Equivalently, the rank of
difference matrix is minimized. The idea of eigen-beams corresponding to
the two greatest eigenvalues of one-pulse covariance matrix will be

extended and analyzed with respect to their performances in multi-pulsed

cases in section 4.4.

4.4. Performance of Eigen-Beam Patterns

Performance analyses of two eigen-beam approach will be conducted under

several conditions with different parameters.
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These conditions are illustrated in Figure 4-4:

A 4

Undistorted (UN) [«
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Tapering (AT) h Unknown
Covariance

Matrix
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Known Covariance Phase Distortion |, Inversion (SMI)

Matrix (PD)

A 4
4

.| Internal Clutter |,
Motion (ICM)

Figure 4-4 Performance analyses conditions

In addition to the cases mentioned above, performances of other cases (one

eigen-beam, three eigen-beam and ADPCA) will also be compared with the

two eigen-beam approach.

Parameters which are used to calculate the performances are listed below:

Table 4-1 Simulation parameters

Parameter Name Value
Number of Antenna Elements 16
Number of Pulses 16
Platform Velocity 75 m/s
Pulse Repetition Interval 100 ps
Operating Wavelength 0.03m
Antenna Separation 0.015m
Clutter Ridge 1
Number of DoFs 16x16 = 256
SCR -10dB
SNR 0dB
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The clutter covariance matrix, which is given in (2-20) is repeated here for

convenience:

m)d .
sm(e)jdﬁ (4-30)

(k=n)+(i -
A

[le: () ex;{ j2rr 2R

= o2

Rc(i +nK, m+ kK)

Using the defined parameters, the clutter covariance matrix will be as in

Figure 4-5:

Clutter Correlation Matrix
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Figure 4-5 Space-time clutter covariance matrix
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The patterns of two eigen-beams corresponding to the largest eigenvectors

of greatest are shown in Figure 4-6:

. I |

0.5F 8

0.4 B

Normalized Pattern Gain
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0.1 B

0
-100 -80  -60 40  -20 0 20 40 60 80 100
Angle (Degree)

Figure 4-6 Two eigen-beams

As it can be seen from Figure 4-6, two eigen-beams have peaks at other’s

nulls.
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The Table 4-2 shows the labeling of various cases in the figures of following

subsections:

Table 4-2 Labeling of the graphs

Case Labeling
Optimum Optimum Case
Two Eigen-Beam Undistorted 2EB
Two Eigen-Beam with Hamming Tapering 2EB-HAMMING
Two Eigen-Beam with Kaiser Tapering 2EB-KAISER
Two Eigen-Beam with Taylor Tapering 2EB-TAYLOR

Two Eigen-Beam Antenna Tapering (corresponds to | 2EB-AT
the best tapering among Hamming, Kaiser and
Taylor and will be determined later)

Two Eigen-Beam with Small Phase Distortion 2EB-PD-LOW

Two Eigen-Beam with Large Phase Distortion 2EB-PD-HIGH

Two Eigen-Beam with Small Phase Distortion and | 2EB-PD-LOW-SMI
Using Sample Matrix Inversion

Two Eigen-Beam with Large Phase Distortion and | 2EB-PD-HIGH-SMI
Using Sample Matrix Inversion

Two Eigen-Beam with Internal Clutter Motion 2EB-ICM

Two Eigen-Beam with Internal Clutter Motion and | 2EB-ICM-SMI
Using Sample Matrix Inversion

Adaptive Displaced Phase Center Antenna ADPCA
One Eigen-Beam 1EB
Three Eigen-Beam 3EB
Combination of Two Eigen-Beams COMB

Combination of Two Eigen-Beams with Large Phase | COMB-PD-MAX-SMI
Error and Using Sample Matrix Inversion

4.4.1. Undistorted (UN) Case

In undistorted case, there is no distortion on the received signal and no

tapering in the eigen-beams.
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The eigenvalues of the difference matrix of the undistorted case can be

seen in Figure 4-7:

Eigenvalues of Difference Matrix

1.4
1.2¢
il |
g 08}
‘_§ Optimum case
5 2EB
=y
i
L L L L |
0 50 100 150 200 250 300

Eigenvalue Index

Figure 4-7 Eigenvalues of difference matrix in undistorted condition

The eigenvalues in Figure 4-7 are found by using the clutter and noise
covariance matrices defined in (2-20) and (2-29) respectively. In optimum
STAP case, all 256 DoFs are nulled in difference matrix, which is expected,
because the difference matrix is a zero matrix if optimum STAP is

operated, since the optimum STAP has a zero difference with itself.

However, in undistorted case, the number of channels reduced to 2N (2
beams, N pulses), thus we are able to null 2N = 32 many eigenvalues at

most.
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Thus, SCNR loss values for optimum STAP and undistorted two eigen-

beam case can be compared as in Figure 4-8:

SCNR Loss (dB)

Optimum case
2EB

1 1 1
05 -04 -03 -02 -01 0 0.1 0.2 0.3 0.4 0.5
Normalized Doppler

Figure 4-8 SCNR loss in undistorted case

SCNR loss is the difference between SCNR value of a case calculated with
(4-7) and the value in (3-11). Optimum STAP defines an SCNR bound to all
rank reduction operations. It can be observed that, the performance of
undistorted case is close to the theoretical bound in endo-clutter regions
(around zero normalized Doppler). Selecting two eigenvectors of antenna
covariance matrix as beamforming weights (eigen-beam approach) is the
main reason for that closeness, because this choice significantly
suppresses the clutter power (or the greatest eigenvalues) of that

subspace.
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SCNR difference of optimum STAP and undistorted two eigen-beam case

can be seen in Figure 4-9:

SCNR Difference Between Optimum and Other Cases

Optimum case
2EB

SCNR Difference (dB)

O L L L
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Normalized Doppler

Figure 4-9 SCNR difference between optimum and undistorted cases

It can be seen from Figure 4-9 that, there are high losses around
normalized Doppler 0.1 which are due to the local minima of the SCNR
curve for two eigen-beam case. These losses can be reduced by using

antenna tapering, as discussed in the next section.

4.4.2. Antenna Tapering (AT) Case

In antenna tapering case, a tapering operation is applied to the beam-
forming coefficients (i.e. eigen-beams) to smooth the SCNR performance

around normalized Doppler 0.1 which is shown in Figure 4-9.
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Table 4-3 summarizes the properties of the taperings applied to the

eigen-beams:

Table 4-3 Tapering properties

Tapering Properties
Hamming -
Kaiser Shape parameter = 2
Taylor Number of Sidelobe level = -

constant level

sidelobes =4

20dB

The parameters for different tapering methods are chosen by running

several simulations with different parameters. Since there are lots of

parameter combinations, the results of all simulations are not given here,

but only the best results obtained are presented.
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Eigenvalues of difference matrices of the tapering methods can be seen

from Figure 4-10:

Eigenvalues of Difference Matrix

14p
1.2}
1t
g’:)’ 0.8l Optimum case
s 2EB
s | | mm——- 2EB-HAMMING
o 2EB-KAISER
----- 2EB-TAYLOR
L L L L |
100 150 200 250 300

Eigenvalue Index

Figure 4-10 Eigenvalues of difference matrices in UN and AT cases

It can be inferred from Figure 4-10 that all the tapering methods have

improved the eigenvalue nulling slightly.
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A better interpretation is possible by inspecting Figure 4-11:
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Figure 4-11 SCNR loss in UN and AT cases

As it can be seen from Figure 4-11, for all tapering methods, the SCNR
performance in the endo-clutter region slightly decreases; however, a
significant gain is achieved in the local minima around normalized
Doppler 0.1. Moreover, Hamming tapering seems to cause significant
SCNR losses both for endo-clutter and exo-clutter regions. Thus,

Hamming tapering will not be considered in the further discussions.
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A close look to the endo-clutter SCNR region in Figure 4-12 gives an idea

for the best tapering among those that has been investigated:

SCNR Difference Between Optimum and Other Cases
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Figure 4-12 SCNR difference between optimum and UN and AT cases

In Figure 4-12, Taylor tapering seems to be better than the Kaiser
tapering in nearly most of the normalized Doppler regions. Thus, in the
foregoing analyses, eigen-beams with Taylor tapering will be used to
compare the performance of different beam-space rank reduction

techniques and it will be referred to as 2EB-AT case.

4.4.3. Phase Distortion (PD) Case

In practical implementations, due to the non-ideal cabling, non identical
fabrication of beam-former hardwares and different thermal
characteristics of the materials, it is impossible to have phase equivalent

receiver channels. These practical issues cause frequency dependent

62



phase distortions on receiver channels. In order to simplify the analyses,
the radar is assumed to have a narrowband operation; thus, the phase
distortions will be frequency independent (constant during the reception

operation).

In the phase distortion (PD) case, the receiver channels are distorted by a
Gaussian random phase with unity amplitude, which may degrade the
performance of reduced rank STAP operation. The phase distortion is

modeled as follows:

Pulses

pd, =e'? pd, =e'% pd, =el%

Beam-Former

1 2

LNA LNA

Down Analog-to-
Conversion |—p Digital > Received
Signal

—| Converter |

Figure 4-13 Phase distortion model

[

Here pd]- =e'% are random constant phases with unity amplitude and @

are Gaussian random variables with zero mean and certain variances

which correspond to certain rms degree of errors. Performance under
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two different phase error will be investigated. These errors have 5° and

50° rms values and will be referred to as LOW and HIGH phase distortions.

A pre-defined or structured covariance matrix cannot be informed of
these phase errors. However, a system which uses sample matrix and
Sample Matrix Inversion (SMI) is able to estimate these errors in order to
improve the performance. Sample Matrix Inversion is a term which
indicates that the clutter plus noise covariance matrix is estimated from
the collected data, and its inverse is directly used in detection operation
defined in (3-4), [5], [7]. The eigenvalue nulling performances of PD cases

under pre-defined covariance matrix and sample matrix conditions are

illustrated in Figure 4-14:

Eigenvalues of Difference Matrix
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1 1 1 1 |
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Eigenvalue Index

Figure 4-14 Eigenvalues of difference matrices in PD cases
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It can be seen from Figure 4-14 that, eigenvalue nulling of low phase error case
(5°) and high phase error case (50°) is better if SMI is estimated and used as

covariance matrix. The phase distortions applied in the simulation are shown in

Table 4-4:

Table 4-4 Phase distortions

50 50° 50 50°
Channel1 | -1.5230 | 40.1445 | Channel9 6.9676 28.7421

Channel 2 -8.7700 0.9076 | Channel10 | -0.6159 -1.6524
Channel 3 -6.9641 39.6720 | Channel 11 -1.8547 28.1665
Channel4 | -3.3450 | -61.0013 | Channel 12 1.5842 | -98.1329
Channel 5 -7.1018 13.9161 | Channel 13 -3.1472 17.4780
Channel 6 -8.9707 | -31.6199 | Channel 14 -4.2940 99.0134
Channel 7 -2.1531 -9.2784 | Channel 15 -7.9950 | -50.7836
Channel 8 2.6744 114.5373 | Channel 16 -5.9756 | -71.1882

It is expected to have greater SCNR losses in pre-defined covariance matrix
cases. Because, the covariance matrix is defined without the knowledge of the
phase distortions and can not correct these distortions. This effect can be seen

from Figure 4-15 (one simulation is performed using the phase distortions in

Table 4-4):
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Figure 4-15 SCNR loss in PD cases

The performance of low phase error case with SMI is very close to the
performance of ideal two eigen-beam (2EB) case. As can be seen from
Figure 4-15, estimating the covariance matrix and using SMI in the
calculations increases the performance of reduced rank STAP. Especially
there is a significant improvement in endo-clutter performance which can

be observed in Figure 4-16:

66



SCNR Difference Between Optimum and Other Cases
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Figure 4-16 SCNR difference between optimum PD cases

Using SMI increases the endo-clutter performance in both low and high
PD cases. The endo-clutter performance of the PD-LOW-SMI case is very
similar to that of 2EB-AT case, which indicates that two eigen-beam
approach can tolerate 5° rms phase distortions. The phase distortion
immunity concept is out of the scope of this work and will not be

discussed further.

4.4.4. Internal Clutter Motion (ICM) Case

The ground targets can be considered to be stationary and does not have
a Doppler spread around the frequency spectrum. However, in a windy
environment, the trees, leaves and other elastic objects will move with
the randomly directed wind force, which will cause a random Doppler
shift in the clutter spectrum. In the Internal Clutter Motion (ICM) case,
the Doppler spread caused by the wind will be considered. This spread

broadens the clutter spectrum and in [11] it is investigated in detail.
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By analyzing the measurements in [11], the authors determine a clutter
spectrum function as indicated in (4-31):

_r 1 ba -2
Pc(f)—r—+15(f)+r—+17e 2 (4-31)

In (4-31), the first term is considered as a DC term and the second one as
an AC term. The parameter r represents the power ratio between DC

and AC components and can be found from (4-32):

10log(r) = ~155log(w) - 121log(f, ) + 632. (4-32)

Here w is wind speed in miles per hour, f, is the carrier frequency in

GHz and the logarithms are base 10. By taking inverse Fourier Transform

of the spectrum, auto-correlation function can be obtained as in (4-34):

00

)= [R(re

(4-33)

—00

r (T)_ r + 1 (bﬂ)2

T r+l r+1(bAY +(4m ) (4-34)
Since the ICM is a temporal decorrelation and has an auto-correlation
function, this decorrelation can be modeled as a covariance matrix taper
in temporal covariance matrix and its effect changes from pulse-to-pulse

(but not channel-to-channel).
T = A j)Tp). (4-35)

Here in (4-35), T, is the ij th entry of temporal covariance matrix taper

]

and T, is the pulse repetition interval.

Overall space-time covariance matrix taper can be found with (4-36):

T =T DLy, (4-36)
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where T, is the space-time covariance matrix taper, T is the temporal
covariance matrix taper, 1., is a matrix of size KxK with all ones and [J

represents the Kronecker product operation.

The covariance matrix taper is determined with using the parameters in

Table 4-5:
Table 4-5 ICM parameters
Parameter Symbol Parameter Value
f. Operating Frequency 7.5 GHz
W Wind Speed 15 miles/hour
Tp Pulse Repetition 100 microseconds
Interval

The covariance matrix taper obtained from (4-36) is illustrated in Figure

4-17:

Correlation

0.999
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0.998

100
0.997

Index

150 0.996
0.995
200
0.994

250

Index

Figure 4-17 ICM covariance tapering matrix
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Eigenvalues

The ICM effect can be observed by applying the operation in (4-36) to the

covariance matrix:

Riem =ReTg, (4-37)

where R, is the tapered covariance matrix (ICM covariance matrix)

and o represents the Hadamard product operation.

Similar to phase distortion (PD) case, if a pre-defined covariance matrix is
used, without the knowledge of the ICM, the performance will degrade
significantly. However, using SMI provides the knowledge of a possible
ICM and decreases its effect. The eigenvalue nulling performance of ICM

case can be seen in Figure 4-18:

Eigenvalues of Difference Matrix

1.2+
1 L
0.8+
0.6 Optimum case
2EB-AT
2EB-ICM
0.4+
2EB-ICM-SMI
0.2
L
_02 | | | | | |
0 50 100 150 200 250 300

Eigenvalue Index

Figure 4-18 Eigenvalues of difference matrices in ICM cases
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The eigenvalue nulling in Figure 4-18 seems to degrade slightly, when

there is an ICM. SCNR losses in ICM case are illustrated in Figure 4-19:
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1 1 1 1
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Normalized Doppler

Figure 4-19 SCNR loss in ICM cases

As expected, using a pre-defined covariance matrix caused significant
SCNR losses. The performance of ICM with an estimation of SMI is very
close to the ideal two eigen-beam case, but they are not equal. Because,
internal clutter motions spreads the clutter spectrum further and
increases the clutter power in higher Doppler shifts. Thus, even if the SMI
is estimated, because of this extra Doppler spread, two eigen-beam

performance without the ICM cannot be achieved in ICM case.
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A closer look to the endo-clutter SCNR performance in Figure 4-20

supports this conclusion:

SCNR Difference Between Optimum and Other Cases

6 -
Optimum case
2EB-AT

5¢ 2EB-ICM
2EB-ICM-SMI
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w ~

N
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T s

O L L L L L L L J
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
Normalized Doppler

Figure 4-20 SCNR difference between optimum ICM cases

It can be seen from Figure 4-20 that estimating SMI increases the
performance in windy conditions; however, 2EB-AT performance is not
achieved due to the extra Doppler spread caused by ICM. But after a
certain normalized Doppler value (around 0.1) their performances

become very similar because the effect of the spread vanishes.

4.5. Performance Comparisons of Eigen-Beams and Other Beam

Patterns

In this section, two eigen-beam approach is compared to one eigen-beam
and three eigen-beam approaches, in order to find the minimum number of

eigen-beams, which is needed to have a reasonable endo-clutter GMTI
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performance. In addition, two eigen-beam case will be compared to the

AD

PCA and other two channel cases to reveal any performance differences

between those two channel GMTI techniques.

Normalized Pattern Gain

4.5.1. Comparison to One and Three Eigen-Beam Approaches

In one eigen-beam case (which is a one channel GMTI technique), the
eigenvector corresponding to the greatest eigenvalue is selected as the
beam-pattern. Similarly, in three eigen-beam case, the eigenvectors
corresponding to the three largest eigenvalues are selected as beam
patterns. In Figure 4-21 and Figure 4-22, the beam patterns of one and

three eigen-beam cases can be observed, respectively:

1
0.9+ {\ i
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0.5+ -
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0.1 -

0
-100  -80 -60 -40 -20 0 20 40 60 80 100
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Figure 4-21 Beam pattern of one eigen-beam (1 EB) case
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Normalized Pattern Gain
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Figure 4-22 Beam patterns of three eigen-beam (3 EB) case

In Figure 4-22, 1* Eigen-Beam refers to the eigenvector with greatest

eigenvalue.
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Using the patterns defined for one and three eigen-beam case, the
eigenvalue nulling performance comparison of eigen-beam cases can be

done (under no phase distortion and ICM) as illustrated in Figure 4-23:

Eigenvalues of Difference Matrix
1.4~

12-

Optimum case
1EB

2EB-AT

3EB

Eigenvalues

L L L L |
0 50 100 150 200 250 300
Eigenvalue Index

Figure 4-23 Eigenvalue nulling performances of eigen-beam approaches

It can be seen from Figure 4-23 that, eigen-value nulling performance
increases as the number of eigen-beams increases. It is shown in (3-34)
that the clutter covariance matrix is not of full rank (the number of non-
zero eigenvalues is not equal to the number of DoFs). This property
implies that for some number of eigen-beams, the endo-clutter

performance approaches to the optimum SCNR bound.
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We can see the results of this property in Figure 4-24 and Figure 4-25:

SCNR Loss (dB)
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1EB

30
2EB-AT
3EB
_35 1 1 1 1 1 1 1 1 1 |
-05 -04 -03 -02 -01 0 0.1 0.2 0.3 0.4
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Figure 4-24 SCNR bounds for eigen-beam cases
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SCNR Difference Between Optimum and Other Cases
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Figure 4-25 SCNR bounds for eigen-beam cases

In Figure 4-25, we can observe that the endo-clutter performance
increases significantly, if we use two eigen-beams rather than one.
However, increasing it further does not improve the performance high
enough to compensate the cost of designing a three channel receiver and

signal processor.

4.5.2. Comparison to ADPCA and Other Two Channel Approaches

In ADPCA case, two gain-identical beams (which are displaced in space)

are constituted without using the knowledge of eigenvectors.
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The antenna pattern used in ADPCA case is shown in Figure 4-26:

Normalized Pattern Gain
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Figure 4-26 Antenna pattern of ADPCA case
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Using the beam patterns above, we will get eigenvalue nulling performances

illustrated in Figure 4-27:

Eigenvalues of Difference Matrix

1.4
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0 50 100 150 200 250 300
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Figure 4-27 Differenece matrix comparison of the two eigen-beams and ADPCA case

It can be seen in Figure 4-27 that ADPCA eigenvalue nulling performance is
worse than that of the two eigen-beam case. SCNR bound performances in

Figure 4-28 and Figure 4-29 give a more direct idea about these approaches:
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Figure 4-28 SCNR loss comparison
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Figure 4-29 SCNR difference comparison between optimum and other cases
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In Figure 4-29, endo-clutter performance of two eigen-beam case is better
than the ADPCA case, if the patterns of ADPCA are selected without the

knowledge of clutter statistics.

Consider a linear combination of the beam-forming weights of two eigen-

beam case as defined in (4-38) and (4-39):

WADPCA_l = K(Wl +W2)’

(4-38)

W appca 2 :K(Wl _Wz)r (4-39)
k=%,

2 (4-40)

Here, W oppca 1 @nd W yppcs , are beam-forming weights in ADPCA case, W,

and W, are beam-forming weights of two eigen-beams and k is normalizing

coefficient which satisfies the constraints defined in Section 4.2.

The ADPCA beam that is constituted with the beam-forming weights in (4-38)

and (4-39) is given in Figure 4-30:

1 J
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Figure 4-30 Beam pattern of ADPCA obtained with linear combination
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Two eigen-beam and ADPCA eigenvalue nulling performance obtained by

linear combination patterns are shown in Figure 4-31:

Eigenvalues of Difference Matrix

1.4
1.2+
1r 3
E 3
[}
% 0.8r Optimum case
> | —w— 2EB-AT
]
(o) L | ADPCA
o 0.6
¢
0.4 4
by
¥
0.2f /éf
U/
O o et | L L L L |
0 50 100 150 200 250 300

Eigenvalue Index

Figure 4-31 Difference matrix comparison

The difference matrix eigenvalues of two eigen-beam and ADPCA cases are

very similar to each other.
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However, the SCNR graphs in Figure 4-32 and Figure 4-33 will give more

information:

SCNR Loss (dB)
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Figure 4-32 SCNR loss comparison
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Figure 4-33 SCNR difference comparison

Figure 4-32 and Figure 4-33 show that, by linearly combining the eigen-
beams and applying the constraints, the two eigen-beam and ADPCA cases
have exactly the same performance both in endo-clutter and exo-clutter

conditions.

In addition to ADPCA case, the performance of a general linear combination
case can be investigated, whether it gives the same performance or not, by

conducting an analytic analyses.

84



Consider beam-former matrices of eigen-beam (EB) and combination (CB)

cases as shown in (4-41) and (4-42), respectively:

W, w, "'Ole Ole

B = Ok Ok :

U 0 Ok | (4-41)

. Kx1 Kx1

Ole Ole e Wy W,

K(an +bW2) K(bwl —aw2)~-~ Ole Ole
B — Ole Ole
. E : Ok Ok ' (4-42)
Ok O "'K(awl +bW2) K(le _awz)

Here a and b are arbitrary real numbers and « is the normalizing

coefficient and its value can be found as in (4-43):

_ 1
Ve ep (4-43)

We know that since w, and W, are eigenvectors, they are orthogonal. This

orthogonality provides the following property in (4-45):

wiw, wi'w,--- 0 0
BEBBEB = W?.Wl Wngm H. H ’
W W, W W, (4-44)
0 0 '“Wgwl Wng
1 000
g |0 T E_
EBPEB C .10 2Nx2N (4-45)
0 00 1

Similarly, we can prove that the combination definition in (4-42) also

provides two orthogonal beam-former weights.
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Consider the dot product in (4-46):

(«(aw, +bw,))" x(bw, —aw,).

(4-46)
K(able w, —a’w,'w, —b*wi w; + abw}’ W2) (4-47)
K(ab—0—0+ab)=0 (4-48)

It can be seen from (4-48), the combination pattern is also orthogonal and

the property defined for B,y in (4-45) is also valid for B, .

For another property, consider the following matrix multiplication defined in

(4-49):
AK 02x2 02x2
A
BH B — 2x2 . K . )
ceCEs T i 0,, (4-49)
02x2 02x2 AK
A =@ Kb
““|kb -ka| (4-50)

BgBBEB :BEBBCB. (4-51)

The matrix defined in (4-49) is a Hermitian matrix with a block diagonal

matrix form. Its inverse is simple to find, which is indicated in (4-52):

A;l 02x2 02x2
) 0 Al - :
BEBe) =] 2 T -
A (4-52)
02x2 02x2 A;l
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An interesting property of matrix A_ can be used to find the analytic inverse

of the matrix BZ;B g, which is given in (4-56):

Al = 1 -Kka -Kb
R LR It I - (4-53)
A= 1 -Kka —kb
N L 2 -kb Kka |
- 2 2 -
[ /—(a2+b2)] (a +b ) (4-54)
P R (SN
kb -k (4-55)
(BSBBEB )_1 = BEBBEB . (4-56)

As indicated by (4-55), the matrix A_ is a unitary matrix. It is clear that

. H . . .
matrix BcgBeg is also a unitary matrix.

Then we can define the following equalities in (4-57) and (4-58), by using

unitary and Hermitian properties:

-1
I onan = BSBBEB (BSBBEB) = BgBBEBB:BBCB = BEBBCBBSBBEB ’ (4-57)

BgB = BEBBEBBEB

(4-58)
Now we can prove the equivalence in performances of two eigen-beam and
combination cases. R gence s ANd R jirerence ca are the difference matrices
of two eigen-beam case and combination cases, respectively. In order to
give the same performance, they must be equivalent; thus starting from the

difference matrix of two eigen-beam case in (4-59), we can derive the

desired result:

Rdifference_EB = R_l - BEB (B EB (Rc + o-r?l )B EB )_l BEB ’ (4_59)

87



We can insert two identity matrices without violating any equality and then
we can substitute (4-57) and (4-58) instead of identity matrices as shown in

(4-60), (4-61) and (4-62):

- -1
Ritwence e = R - Bes (I 2Nx2NB|I;B (Rc + O-r?I )B = 2Nx2N) BEB ’ (4-60)
|2Nx2NB|I;B :BEBBCBBSBBEBBEB :BEBBCBBgBr (4-61)
- -1
Riterence 8 = R t- Bes (BEBBCBBSB (Rc +U§| )BCBBEBBEB) BEB' (4-62)

Using the unitary property of matrices BizB.; and BizB.; defined in

(4-56), we can write the inverse of B.B.:Bis (Rc +07l )BCBBEBBEB as:
R gitterence £8 = R " -Be ((B rsBcs )BSB (Rc +0,l )BCB (BSB Bes ))_l Bts. (4-63)
R gitterence £ = R 7 -Bes (B eaBes )_1 (B e (Rc +0,l )B cB )_1 (B ceBes )_1B B (4-64)

- -1
Riference 8 = R ' _BEBB:BBCB (BSB (Rc +UZI)BCB) BSBBEBBEB'

n (4-65)
Using the property defined in (4-58) we get the proof in (4-67):
_ -1
Rireecees =R ~Bcg (BEB (Rc +o,l )BCB) Bcs, (4-66)
Rdifference_EB = Rdifference_CB * (4-67)

We have shown in (4-67) that the difference matrices of two cases (two
eigen-beam and combination cases) are equal to each other. This implies

that they have exactly the same performance.
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In order to show this result numerically, let a=5 and b=3. The beam

patterns in Figure 4-34 is obtained for that combination:
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Figure 4-34 Beam patterns for combination (COMB) case
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The eigenvalue nulling and SCNR bound performances of two eigen-beam

and combination cases are given in Figure 4-35, Figure 4-36 and Figure 4-37:
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Figure 4-35 Difference matrix comparison in COMB case
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Figure 4-36 SCNR loss comparison in COMB case
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Figure 4-37 SCNR difference comparison in COMB case

As it is indicated in Figure 4-35, Figure 4-36 and Figure 4-37, as long as the
constraints are satisfied, all combinations of eigen-beams give exactly the

same performance.

Two eigen-beam case and combination case can be compared under non-
ideal conditions in order to see whether there is a possible difference or not.
Consider the case with 50° rms phase error between channels. In addition,

the covariance matrix is estimated from the data itself (SMI case).
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The performances of the two eigen-beam and combination case are

illustrated in Figure 4-38, Figure 4-39 and Figure 4-40:
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Figure 4-38 Difference matrix comparison under non-ideal conditions
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Figure 4-39 SCNR loss comparison under non-ideal conditions
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Figure 4-40 SCNR difference comparison under non-ideal conditions

It can be inferred from Figure 4-38, Figure 4-39 and Figure 4-40 that, even if
there is a distortion in the receiver channels, the two cases give the same
performance even under SMI case. This shows that any arbitrary
combinations of eigen-beams give very similar performances under non-

ideal circumstances.

93



CHAPTER 5

CONCLUSION

5.1. Thesis Summary

The objective of this thesis is to derive and propose two channel GMTI signal
processing schemes which have good detection performances in the low
Doppler (or velocity) region in Doppler spectrum, namely, endo-clutter
detection.

For this purpose, basic radar detection and GMTI concepts were introduced.
Then, widely used GMTI techniques are discussed in order to emphasize the
necessity of developing an adaptive 2D signal processing scheme, which is
space-time adaptive processing, to detect endo-clutter targets with a

reasonable performance.

In order to understand the performance of STAP approach, signal and
statistical models are investigated. These signal and statistical models are
then used to determine the SCNR performance of optimum (full STAP) case.
As far as the practical implementation issues and signal processing load of
full STAP is concerned, the need of a reduced size detection problem is
obvious. This need is satisfied by introducing reduced rank STAP, the types
of rank reduction, comparison of rank reduction techniques and sub-space

processing and eigen-beam concepts.

All the concepts that are introduced throughout the thesis are used in order

to propose two eigen-beam technique, which has very similar performance

94



with full STAP especially in endo-clutter region. Then the performance of
two eigen-beam technique is investigated under non-ideal conditions.
Afterwards, the minimum number of eigen-beams needed to get
satisfactory results is found to support the two eigen-beam approach. Finally,
the non-uniqueness of two eigen-beam solution (in terms of detection
performance) is emphasized by introducing the linear combination of two

eigen-beams.

The main motivation of this thesis is to develop a practical GMTI technique,
with two non-adaptive channel, but adaptive Doppler processing. Since the
beam constitution (rank reduction) operation is not adaptive, we have to
investigate good beam patterns which preserve the maximum amount of
information about the full STAP case. By this way, it is aimed to have a good
performance in challenging detection regions (slowly moving targets). It is
imperative to suppress the clutter signals as much as it can be; thus, eigen-
beam concept is introduced, which considers the statistical properties of the

clutter in constituting the beams.

5.2.  Future Work

Several topics regarding this subject can be investigated to further develop

the concepts introduced here. These topics can be as follows:

1. Practical hardware issues concerning the beam-forming operations can

be discussed

2. Further investigation of knowledge aided STAP to have an improvement

on performance can be made

3. Similar analyses can be performed under non side looking radars
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APPENDIX A

DERIVATION OF CLUTTER COVARIANCE MATRIX

Remember that the total response received from i'th channel and in n’th pulse

can be written as in (A-1):

c,(6)=c(6)G, (Q)exd— j2rt T, n)exdj 2mmy), (A-1)

¢,(6)=clo)G, (ﬁ)exp(— Ed (NATpn-id)sm(e)j. -

In (A-2), C; (6’) is the clutter return in n’th pulse in i"th channel. Covariance of
any channel at any time instant can be found with an expectation operation

which is shown in (A-3):

R.(i+nK,m+kK)= E{Cm (6)cin (9)} (A-3)

R_(i +nK,m+kK)=

E{|c(e)|2|eT (o) ex;{— 22,7, ()~ - m)d)sm(e)j} ()

R_(i +nK,m+kK)=

2 2 21T : .
[€{ [clo)}c. (6) ex,{- 27 (20, (n- )~ - m)d)s.n(e)jde (A-5)
In the equation (A-5), we can observe that the i +nK 'th row and m+kK ’th
column of the covariance matrix of the clutter signal can be found with an

expectation and integration operation. Consequently, covariance matrix can be

written as in (A-8):
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R (i +nK,m+kK)=

a?[|G, (6)° exp{— jznZAX(” - kz; (i~ m)d sin(@)jdé?'

o’ represents the clutter power provided that:

fIG:(6) do=1.
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APPENDIX B

DERIVATION OF OPTIMUM DETECTOR

Likelihood ratio of the hypotheses can be written as in (B-1).

1 {_r“ (R+afpp“)_1r]
2

ex
plrH,) _ 7R +arpp"

p(r [H,) 1 TR
7R, +0? 2

H 2. H )1 Hp -1
of T

2,

—r" (R +oazpp" )_1r +r"R7r&é&"

Matrix inversion lemma can be written as in (B-4):

2

-1 _ (o) _ _

(R+Ut2ppH) -R 1_1+0-2ptHR_1p Rpp"R,
t

Using the matrix inversion lemma, the test will become as | (B-10):

g o; _ - 40 g
—r" Rl_mR lppHR 1:|r+rHer2§(,
t

2
“rHRY +1+02z—tHR_lp(rHR—1p)(pHR—1r)+rHR—1r25..,
t
o;

m(r H R_lp)(pH R_lr )25“,
t
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PR 28,

(B-8)
wH =pHR?, (5:9)
‘er‘ 28 (B-10)
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APPENDIX C

DERIVATION OF SCNR EQUATION AND SCNR BOUND

In order to find signal-to-clutter plus noise ratio after the weighting

operation, we have to write the SCNR equation after weighting as in (C-1):

el |
SCNR= —, 1)
el v ] o |
SCNR = Utz‘WHp‘z )
E{WHCCHW} + E{WHI’]I’]HW} (C-2)
SCNR = UtZ‘WHp‘Z ,
w' E{ccH }w+w“E{nn“}w (C-3)
_ otwef
SCNR= wi'R w+wHallw’ (C-4)
a?w"p 2

Here (C-5) represents the SCNR value after processing the received data with
weight vector w. We can manipulate (C-5) in order to find a bound to SCNR,

using Schwarz inequality:
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2
a?jw"p|

SONR= o Rw (@)
O_IZ‘WH R”ZR_”Zp‘Z

SONR= e, (C-7)

2|\ WHRY2 2 R 12 2

SCNR< o HW WHM[ p” ) (C-8)
2(WHR HR!

o ]

SCNR< o7p"R 7. (C-10)

Egn. (C-10) represents the SCNR bound that can be achieved by optimum
STAP technique.
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APPENDIX D

DERIVATION OF DIFFERENCE MATRIX OF ONE PULSE CASE

The difference matrix of the one pulse case (N=1) can be found as in

Rdifference = (Rc + O-r?l )_l - B(BHRCB + O-r?l )_lBH ! (D-l)
Rdifference = (Rc +0—r?| )_l _B(BHRCB +J§BH|B)_lBH ’ (D-2)
R gifference = (Rc +U§| )_1 _B(BH (Rc +U§| )B)_lBH ’ (D-3)
i 1 H ( Hi H j_l H
Rgftaence = ), —€€ —B/B" > Aee'B| B",
diff — /1i = (D'4)
K 1 H Al O N H
R. =Y —ee"-B B”,
difference ;A, i~i |:O A2j| (D_S)
K 0
— 1 H _ %1 H
Rdifference _;/‘i €€ B 0 ¢ B, (D-6)
2
R —iie P
difference < /1i i /11 -1 /]2 272 (D-7)
K
1
R. =) —ee'.
difference ;A, i (D-8)
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