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Aerospace Engineering Dept., METU

Assist. Prof. Dr. Ali Türker Kutay
Aerospace Engineering Dept., METU

Date:



I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: GÖNENÇ GÜRSOY
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ABSTRACT

NEURAL NETWORK BASED ONLINE ESTIMATION OF MANEUVERING STEADY
STATES AND CONTROL LIMITS

Gürsoy, Gönenç

M.Sc., Department of Aerospace Engineering

Supervisor : Assist. Prof. Dr. İlkay Yavrucuk

June 2010, 92 pages

This thesis concerns the design and development of neural network based predictive algo-

rithms to predict approaching aircraft limits. Therefore, approximate dynamics of flight enve-

lope parameters such as angle of attack and load factor are constructed using neural network

augmented dynamic models. Then, consructed models are used to predict steady state re-

sponses. By inverting the models and solving for critical controls at the known envelope lim-

its, critical control inputs are calculated as well. The performance of the predictor algorithm

is then evaluated with a different neural network online adaptation law which uses a stack

of recorded data. It is shown that using a stack of recorded data online, constructed models

become much more representative of limit parameter dynamics compared to adaptation us-

ing instantaneous measured data only. The benefits of recording data online and using it for

weight adaptation are presented in the scope of dynamic trim and control limit predictions.

Keywords: Online system identification, limit detection, neural networks, concurrent learning
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ÖZ

YAPAY SİNİR AĞI TABANLI MANEVRA DENGE NOKTALARININ VE KONTROL
LİMİTLERİNİN ÇEVRİMİÇİ BELİRLENMESİ

Gürsoy, Gönenç

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. İlkay Yavrucuk

Haziran 2010, 92 sayfa

Bu tezde yapay sinir ağları kullanılarak, yaklaşmakta olan hava aracı limitlerinin çevrimiçi

tahminini sağlayacak algoritmaların geliştirilmesi ele alınmıştır. Bu amaç ile uçus zarfı parame-

treleri olan hücum açısı ve yük faktörünün yapay sinir ağı tabanlı dinamik modelleri oluşturul-

muştur. Oluşturulan dinamik modeller kullanılarak uçuş zarfı parametrelerinin durağan kararlılık

durumları tahmin edilmiştir. Aynı zamanda bu modeller ters çevirilerek, bilinen uçuş zarfı

limitlerinde kritik kontrol girdileri de bulunmuştur. Geliştirilen tahmin algoritması, uçuş

sırasında uçuş verilerinin kaydedildiği ve kullanıldığı, farklı bir yapay sinir ağı öğrenme

yöntemi ile değerlendirilmiştir. Uçuş sırasında kaydedilen verilerin kullanıldığı öğrenme

yönteminin, anlık verileri kullanan öğrenme yöntemlerine göre, gerçek hücum açısı ve yük

faktörü dinamiğini daha iyi temsil ettiği gösterilmiştir. Uçuş sırasında verilerin kaydedilip

kullanılmasının çeşitli faydaları manevra denge noktalarının ve kontrol limitlerinin tahmini

açısından gösterilmiştir.

Anahtar Kelimeler: çevrimiçi sistem tanımlama, limitlerin belirlenmesi, yapay sinir ağları, eş

zamanlı öğrenme
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CHAPTER 1

INTRODUCTION

1.1 Focus of the Study

Flight envelope protection is an area of research where the focus is to cue the pilot such

that the known envelope limits are not violated during flight. These systems are mainly used

for both fixed and rotary wing aircraft in order to improve handling qualities. In envelope

protection, aircraft is allowed to use the full flight envelope without possibility of violating

known flight envelope limits. In literature, this type of cueing systems are also called as

carefree maneuvering systems and they exhibit limit prediction and limit avoidance. In limit

prediction, the algorithms are developed in such a way that the violations of limits are detected

in an effective lead time before the actual violation occurs. This is mainly done by predicting

the steady-state dynamics of the critical states during flight. Then, this information is used in

limit avoidance part in order to apply a preventive action with the aim of pilot cueing.

In this work, we mainly focused on predicting the steady states of the parameters which

dominates the flight envelope such as; angle of attack and load factor. Also the calculation of

critical controls due to the known envelope limits are aimed. In other words the main focus is

the detection of limits during flight. Limit avoidance is out of the scope of this thesis.

1



1.2 Background

In limit prediction, main purpose is to predict the future response of the limit parameters at

the instants the controls are applied. Limit parameters can be taken as any fast states, which

will be defined later in detail, of aircraft dynamics such as angle of attack, load factor and

angular rates, etc. Note that, once a future response is predicted at the time the controls are

applied, it is possible to calculate the distance of limit parameters to the known envelope lim-

its. This distance is also called as limit margin. In limit prediction, critical controls which

will cause the violations of upper and lower bounds of flight envelope limits can be calculated

as well. The distance of current controls to the critical controls are called control margins.

Therefore, once the limit margins and control margins are calculated and sent to EPS at the

time the controls are applied, a preventive action can be taken in an effective lead time, in

order to avoid approaching limit violations. Envelope protection systems will surely improve

the overall confidence and safety of the aircraft. The necessity of envelope protection be-

comes much more essential, especially, when aggressive maneuvering close to the envelope

limits is desired. As a result, the capability of being aware and responding automatically to

approaching limits will be an important feature.

In previous works, different approaches have been used in order to develop successful limit

prediction algorithms. The most known first application, which is a feasibility study for neural

network based limit protection systems, can be found in [1]. In this study, off-line trained

neural networks and empirical functions are mainly used to generate limits. In [2] limits are

modeled by use of neural-fuzzy logic hybrid systems.

At NASA Ames Research Center, a study was performed for main rotor torque cueing sys-

tems [3]. They used polynomial nueral networks (PNN) with Fixed Time Horizon Prediction

Method to predict near future limit violations. Prediction Horizon refers to a fixed time at

which the state to be measured (Torque) is expected to get its maximum value (peak). In the

method applied, they showed that a functional relationship can be developed to predict the

value of the limit at the prediction horizon by use of current states and control inputs.

In [4-8] and [23-26], limit prediction algorithms are much more developed. Generally, they

focused on tilt-rotor aircraft and helicopter models in order to perform limit detection and

avoidance algorithms. In these studies, limit parameter response types are categorized into
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Figure 1.1: Limit Parameter Response Types [12, 5]

three different categories according the responses to a step input: Transient Peak Response

Critical, Steady State Response Critical, and Integrated Response Critical (Figure1.1). In

other words, for each type of limit response, different types of algorithms are developed.

One of those algorithms is Dynamic Trim Algorithm, which is mainly applied for steady state

response critical type of limit parameters [4, 5, 6, 7, 8]. The algorithm directly relates the

steady state response of limit parameters to current state information and control inputs by

using an off-line trained neural network. Off-line training can be done with flight test data or

simulation data. Other algorithm which is known as Adaptive Dynamic Trim Algorithm uses

a first order linear model and an adaptive term for the online approximation of real dynamics

[27, 28, 29, 30, 4, 5, 6, 7, 8] . Adaptive term compensates for the errors between the real model

and the first order linear model. Then the steady states are found by equating the derivatives

of approximate model to zero. This algorithm is applicable to steady state response critical as

well.

Aircraft states can be categorized into two groups due to their response times: fast and slow

states. Generally fast states come to a steady state in a shorter response time compared to slow

states. Angular velocities, angle of attack and load factor are some examples of fast states.

Whereas, body velocities, altitude and dynamic pressure can be thought of as slow states,

since they generally come to a steady state at a larger response time. Fast and slow states are

mainly used in the development of Dynamic Trim concept. Dynamic trim is a quasi-steady
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maneuvering flight condition where the fast states have reached the equilibrium whereas the

slow states may still be varying with time [27, 28, 29, 30]. Dynamic trim algorithm uses dy-

namic trim concept in order to predict steady state response. In the literature, it is shown that

adaptive dynamic trim algorithm, which includes an adaptive neural network term, increases

the accuracy of prediction over dynamic trim algorithm. Applications of non-real-time and

real-time piloted simulations can be found in [4, 6]. By using adaptive dynamic trim algo-

rithm, even if large variations in CG location [28, 30, 8], weight and flight conditions occur,

the developed algorithm can still calculate quite successful predictions.

For transient response critical limits, peak response estimation algorithm is developed in [5,

9, 10, 11, 12]. The algorithm is based on estimating the transient peak of the limit parameter

that occurs just after the control input. Mainly, predictions for flapping transient limits are

studied.

Yavrucuk, Unnikrishnan, Prasad and Calise used adaptive dynamic trim algorithm with lin-

early and nonlinearly parameterized neural networks [27, 28, 29, 30]. Control margins which

correspond to the steady state limits are computed. Especially, load factor, angle of attack and

torque predictions are calculated for tilt-rotor simulation.

In [13] and [30], envelope protection system design for autonomous unmanned aerial vehi-

cles is studied. Generated online dynamic models are used to estimate limits on controller

commands. Simulation and flight test results are provided for rotor stall limit and load factor

protections.

1.3 Neural Networks and System Identification

Neural networks are an evolving field in which the main purpose is to resemble the human

brain in order to capture and learn highly nonlinear environments or data. In system identi-

fication or automatic flight control problems, those nonlinear environments, where adaptive

elements are expected to adapt, are called modeling errors. In the case of limit prediction, the

occurences of modeling errors are mainly due to the differences between the real and approx-

imate dynamics. In fig1.2 general structure of a single hidden layer neural network is shown.

In most control problems, neural networks are succesfullly used for cancelling out modeling

errors [14, 15, 16, 33, 34, 35].
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Figure 1.2: Single Hidden Layer Neural Network Structure

1.4 Concurrent Learning

A known problem in adaptive control or online system identification problems is that mod-

eling errors are compansated using instantaneous measured data only. This is referred to as

instantaneous learning throughout the thesis. It is commonly a known fact that the use of

instantaneous learning causes a re-learning process of the error dynamics over time. On the

other hand, intelligent learning algorithms are expected to learn the error dynamics such that

the modeling error of a previously encountered maneuver should decrease gradually when

that maneuver is repeated in the future.

In [33, 34, 35], a long term learning flight controller is developed such that the expectation

mentioned above is satisfied quiet successfully. In those studies, a novel approach to adaptive

control, which uses the instantaneous information as well as recorded information for weight

adaptations, is proposed. It is shown that by using a stack of recorded information along with

the instantaneous or online information, it is possible to guarantee a long term learning in the

adaptive flight controller, which increases the performance when the controller encounters a

maneuver that has been performed in the past.

In this thesis, the methodology mentioned above is used for neural network weight updates in

order to improve the performance of the predictor algorithm over time. This weight update
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law is called concurrent learning throughout the thesis since the recorded information and the

instantaneous information are used concurrently.

1.5 Contribution of the Thesis

This thesis has the following contributions to the area of limit detection:

1. Neural network based adaptive dynamic trim and control limit estimation algorithm, which

is developed in [30, 27, 29, 28], is evaluated for short term and long term simulations. In

short term simulations, as expected, accurate dynamic trim and control limit predictions are

obtained by using instantaneous learning. On the other hand, in long term simulations, where

maneuvers are repeated over and over, it is seen that inaccurate control limit predictions are

higly probable.

2. Concurrent learning which uses a stack of recorded data online for weight adaptations

is implemented to neural network based adaptive dynamic trim and control limit estimation

algorithm.

3. For concurrent learning, online data storing is needed. In this thesis data from transient

and steady state responses are recorded independently into different history stacks. A data

storing criteria which has been used for the design of a long term learning flight controller in

[33, 34, 35] is used for recording data from transient response. In order to record data from

a steady state, a new data storing criateria is imposed. Comparisons of weight adaptations

using transient data only and using transient plus steady state data are presented in the scope

of dynamic trim predictions.

4. It is shown that the accuracy of dynamic trim and control limit predictions, using instan-

taneous measured data only, have a potential to decrease over time, especially in long term

simulations. It is demonstrated that by use of concurrent learning better online models as well

as dynamic trim and control limit predictions are obtainable for long term simulations.

5. It is shown that ”Learn while flying” capability of neural network based adaptive dynamic

trim and control limit estimation algorithm is enhanced when concurrent learning is enabled.
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1.6 Structure of the Thesis

In this thesis, fundamental concepts are given in sections 1.2 through 1.4 by introducing the

basics of envelope protection, dynamic trim concept and concurrent learning. Chapter-3 and

4 are generally based on the ideas and the contributions given in the first chapter.

In the second chapter, 6DOF modeling of a well known general aviation aircraft Cessna182

is presented. Chapter-2 ends with comparisons of eigen values and simulation results which

are used for validating the developed nonlinear model.

In chapter-3, neural network based adaptive dynamic trim algorithm is used for online esti-

mation of approaching aircraft limits of Cessna182. For that purpose, angle of attack, load

factor and pitch rate dynamics are constructed online. Then, for known flight envelope limits,

constructed models are inverted and solved for critical controls.

In chapter-4, the benefits of concurrent learning over instantaneous learning are presented in

the scope of dynamic trim and control limit predictions.
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CHAPTER 2

MATHEMATICAL MODEL

2.1 Mathematical Modeling

In this chapter mathematical modeling of a well known general aviation aircraft, Cessna182 is

presented. General six degree of freedom nonlinear equations of motion are used for nonlin-

ear modeling. In order to model forces and moments linear aerodynamic coefficients are used

[24]. Modeling environment is chosen as Matlab/Simulink environment due to the simplicity

of modeling implementation. Since developed model is used for dynamic trim predictions in

the following chapters, validation of the model is also required. Although linear models are

not used in the following chapters, they are used for validation of the developed nonlinear

model. For validation purposes developed nonlinear model is trimmed and linearized in Mat-

lab environment. Then the longitudinal and lateral modes are compared with the ones which

are found in [24]. Dynamic responses of the nonlinear model is compared with the responses

of transfer functions given in [24] as well. After validations it is concluded that the developed

model can be used for dynamic trim and control limit predictions in the following chapters.
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2.1.1 General Nonlinear Equations of Motion

It is a well known fact that it is possible to express aircraft dynamics as a set of nonlinear

ordinary differential equations. Derivation of the state equations presented here can be found

in [17, 18, 20]. Also the equations used are valid for the following assumptions:

1. The airplane is a rigid body in the motion under consideration.

2. The airplane’s mass is constant during the simulations.

3. Earth is assumed to be a fixed non-rotating frame.

4. Curvature of the earth is also neglected.

5. x-z plane of the body frame is the plane of mirror symmetry.

Translational equations and rotational equations are expressed in terms of body axes com-

ponents (u, v,w, p, q, r). The following equations [18] are used for six degree of freedom

modeling :

u̇ = −qw + rv − g sin(θ) +
qdynS

m
CX +

T
m

(2.1)

v̇ = −ru + pw + g cos(θ) sin(φ) +
qdynS

m
CY (2.2)

ẇ = −pv + qu + g cos(θ) cos(φ) +
qdynS

m
CZ (2.3)

ṗ =
1

IxIz − I2
xz
{qdynS b(IzCR + IxzCN) − qr(I2

xz + I2
z − IyIz) + pqIxz(Ix − Iy + Iz)} (2.4)

q̇ =
1
Iy
{qdynS cCM − (p2 − r2)Ixz + pr(Iz − Ix)} (2.5)

ṙ =
1

IxIz − I2
xz
{qdynS b(IxCN + IxzCR) + pq(I2

xz + I2
x − IxIy) − qrIxz(Ix − Iy + Iz)} (2.6)

The position of the aircraft is obtained by transforming [uvw]T from body frame to earth

frame. LEB which is defined as body frame to earth frame transformation matrix is given

below [17]:

LEB =



cos θ cosψ sin φ sin θ cosψ − cos φ sinψ cos φ sin θ cosψ + sin φ sinψ

cos θ sinψ sin φ sin θ sinψ + cos φ cosψ cos φ sin θ sinψ − sin φ cosψ

− sin θ sin φ cos θ cos φ cos θ


(2.7)

9



By integrating the following set of equation,



Ẋe

Ẏe

Że


= LEB



u

v

w


(2.8)

the position of the aircraft can be found. Moreover, in order to solve equation 2.8 a kine-

matic relation between Euler angular rates and body angular rates is required. In equation 2.9

necessary kinematic relation is presented [18].



φ̇

θ̇

ψ̇


=



1 sin φ tan θ cos φ tan θ

0 cos φ − sin φ

0 sin φ
cos θ

cos φ
cos θ





p

q

r


(2.9)

Note that relation 2.9 becomes discontinues when θ = ±π/2. Therefore, all the maneuvers of

the following chapters are done within θ limits (±π/2).

2.1.2 Force and Moment Models

As a general approach forces and moments acting upon the aircraft can be thought as a sum

of aerodynamic, engine and gravitational forces/moments.

Aerodynamic forces and moments are modeled by use of linear aerodynamic coefficients

which are taken from [24]. According to Table 2.2 in [24] nondimensional force and moment

coefficients (CD,CY ,CL,Cl,Cm,Cn) are written in the following form:

CD = CD0 + CDαα + CDδe
δe (2.10)

CY = CYββ + CYp p̄ + CYr r̄ + CYδaδa + CYδr δr (2.11)

CL = CL0 + CLαα + CLα̇
¯̇α + CLq q̄ + CLδeδe (2.12)

Cl = Clββ + Clp p̄ + Clr r̄ + Clδaδa + Clδr δr (2.13)

Cm = Cm0 + Cmαα + Cmα̇
¯̇α + Cmq q̄ + Cmδe

δe (2.14)

Cn = Cnββ + Cnp p̄ + Cnr r̄ + Cnδaδa + Cnδr δr (2.15)
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In equations 2.10 to 2.15, it is assumed that longitudinal aerodynamics are related to longitu-

dinal parameters only. As well, lateral aerodynamics are related to lateral parameters [24].

Note that the above expressions are defined in stability axes system. Since translational and

rotational equations of motion (equations 2.1 and 2.6) are written in body frame a transfor-

mation from stability axes to body axes is needed. For that purpose (CD,CY ,CL,Cl,Cm,Cn)

are first dimensionalized in equations 2.16 and 2.17. Then the transformation matrix defined

in equation 2.20 is used for transforming aerodynamic forces and moments to body axes.

Equations 2.21 and 2.22 represent nondimensional aerodynamic coefficients.

D = CD qdynS Y = CY qdynS L = CL qdynS (2.16)

l = Cl qdynS b m = Cm qdynS c̄ n = Cn qdynS b (2.17)



Xb

Yb

Zb


= LBS



D

Y

L


(2.18)



Rb

Mb

Nb


= LBS



l

m

n


(2.19)

LBS =



cosα 0 − sinα

0 1 0

sinα 0 cosα


(2.20)

CX = Xb/(qdynS ) CY = Yb/(qdynS ) CZ = Zb/(qdynS ) (2.21)

CR = Rb/(qdynS b) CM = Mb/(qdynS c̄) CN = Nb/(qdynS b) (2.22)

In order to model engine forces a very simple modeling technique is selected. A constant

thrust of 5000 N is applied on center of gravity along with the x-axes of the body frame. For
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trimming purposes total thrust is found according to the percent throttle position. Dummy

thrust model is as follows:

T = (5000N)
δthr

100
; 0 ≤ δthr ≤ 100 (2.23)

Equations 2.21,2.22 and 2.23 are used as inputs to six degree of freedom equations 2.1 to 2.6.

Table 2.1: Aircraft data on which aerodynamic model is based, Ref [24]

S 174 f t2

c̄ 4.9 f t
b 36 f t

Altitude 5000 f t
T AS , u 220 f t/s

Dynamic pressure, qdyn 49.6 lbs/ f t2

CG location 26.4 f raction c̄
Angle o f attack 0 deg

Weight 2650 lbs
Ixx 948 slug f t2

Iyy 1346 slug f t2

Izz 1967 slug f t2

Ixz 0 slug f t2

Table 2.2: Longitudinal and Lateral Stability Derivatives of Cessna182, Ref [24]

CD0 0.0270 Clβ −0.0923
CDu 0 Clp −0.484
CDα 0.121 Clr 0.0798
CL0 0.307 Cyβ −0.393
CLu 0 Cyp −0.075
CLα 4.41 Cyr 0.214
CLα̇ 1.7 Cnβ 0.0587
CLq 3.9 Cnp −0.0278
Cm0 0.04 Cnr −0.0937
Cmu 0 Clδa 0.229
Cmα −0.613 Clδr 0.0147
Cmα̇ −7.27 Cyδa 0
Cmq −12.4 Cyδr 0.187
CDδe

0 Cnδa −0.0216
CLδe 0.43) Cnδr −0.0645
Cmδe

−1.122
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2.1.3 Alfadot Estimation

Since α̇ derivatives are used for modeling aerodynamic forces and moments its estimation is

required. For estimating α̇ we start with the following expression:

α = arctan(
w
u

) (2.24)

by taking the time derivative of both sides α̇ is obtained as:

α̇ =
ẇu − u̇w
u2 + w2 (2.25)

During simulations α̇ is followed by a memory block so that the expected algebraic loops are

avoided. Also, α̇ becomes zero during trimming since u̇ and ẇ are made zero.

2.1.4 Atmosphere Model

It is a known fact that a multiplication with 1
2ρV2S is needed to calculate actual forces and

moments. As a result the air density ρ is required for solving equations of motion. For

that purpose ’International Standart Atmosphere’ model is used. Necessary equations can be

found in refs [25] and [26] along with the calculation of calibrated and equivalent airspeeds.

2.1.5 Calculation of Accelerations and Specific Forces

In this section acceleration expressions in the vehicle’s centre of gravity are presented. Details

are given in Ref [21]. The body axes components of acceleration vector a can be written as:

ax =
1
m

(Xgravity + XThrust + Xb) (2.26)

ay =
1
m

(Ygravity + YThrust + Yb) (2.27)

az =
1
m

(Zgravity + ZThrust + Zb) (2.28)

Specific forces (unitless parameters) are calculated by eliminating gravity terms and dividing

thrust and aerodynamic forces by the weight:
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Ax =
1
W

(XThrust + Xb) (2.29)

Ay =
1
W

(YThrust + Yb) (2.30)

Az =
1
W

(ZThrust + Zb) (2.31)

2.2 Matlab/Simulink Environment

Basic components of the developed nonlinear model is presented in fig2.1 along with the def-

initions of input vector, output vector and state vector. It is sure that the sequence of states

of the state vector must be known exactly for trimming and linearization purposes. Generally

for all simulink models the sequence of continuous states, in other words the state vector itself,

can easily be reached by using the related simulink object: ’Simulink.BlockDiagram.getInitialState’.

By using this command the sequence states defined in fig2.1 is obtained.

Figure 2.1: Basic Components of Developed Simulink Model
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2.3 Validation of Developed Model

Validation is done in two respects. Firstly, developed nonlinear model is trimmed and lin-

earized around the trim point given in [24]. Then the eigen values of the linear model is

compared with the known eigen values of the aircraft which is given in the same reference.

Secondly, starting from the same trim point, the responses of the available transfer functions

of [24] are compared with the responses of the developed nonlinear model.

2.3.1 Trimming

In Matlab environment, there exist simulink tools or routines which can be used to find equi-

librium points of a nonlinear dynamical system. Using trim routines, it is possible to find

steady values for the states while satisfying the mathematical relations between outputs, in-

puts and states of the system. Trim points are needed since they will be the initial conditions

of the simulations. In this thesis, an easy method is used for trimming the aircraft. In order to

find a trim point, the following procedure is followed:

1. A state vector is chosen manually at the desired airspeed and altitude.

2. Input vector is also chosen such that all surface deflections made zero and throttle input is

set to 40 percent.

3. Simulation is started from that point. After simulation starts, PID controllers are used

for controlling the airspeed and the altitude at the desired conditions. Therefore, a steady

condition is found after a time later. A speed controller is used for keeping the aircraft at the

desired trim speed by changing the throttle. As well, an altitude controller is used for keeping

the altitude at the desired trim altitude with using elevator. If there were lateral effects, lateral

inputs could have been used for keeping roll and yaw rates as zero for a level flight trim.

4. The resulting steady condition of the simulation is recorded as a trim point and used as an

initial condition.
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2.3.2 Linearization

Simulink has some linearization routines as well. A nonlinear simulink model can easily be

linearized around a specified trim point by using linmod command. The command linmod

extracts a linear state space model of a nonlinear continuous system at a given operating

point. For our case, linmod is used for linearizing the system at the trim point which is found

previously. A and B matrices presented in appendix A.2 are obtained.

A =



−0.0453 0.0797 0.2637 −9.8099 0 0 0 0

−0.2976 −2.1089 −65.2924 0.0392 0 0 0 0

0.0101 −0.2081 −6.8265 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 −0.1877 −0.4683 −66.7113 9.8099

0 0 0 0 −0.4512 −13.0178 2.1357 0

0 0 0 0 0.1395 −0.3349 −1.2185 0

0 0 0 0 0 1 −0.0040 0


(2.32)

2.3.3 Comparison of Longitudinal and Lateral Modes with [24]

Eigen values of matrix A can be found in the table 2.3. It is seen that the eigen values obtained

are very close to the values presented in [24].

Table 2.3: Comparison of Modes with Ref[24]

Matlab ROSKAM [24]
Short Period −4.4689 ± 2.8326 −4.4497 ± 2.8240

Phugoid −0.0214 ± 0.1695 −0.0220 ± 0.1697
Dutch Roll −0.6700 ± 3.1822 −0.6702 ± 3.1748

Roll −13.06574 −13.0127
Spiral −0.0184 −0.0180
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2.3.4 Comparison of Model Responses with [24]

For validation of the developed model longitudinal and lateral responses are compared with

the ones given in [24]. Pitch attitude and angle of attack responses are chosen for comparing

longitudinal dynamics. Elevator input is given to both models (linear model of [24] and

nonlinear model developed) as a doublet input. Results can be seen in Figure 2.2.
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Figure 2.2: Comparison of Linear Model (Ref [24]) and Nonlinear Model Responses for a
doublet Elevator input

Roll attitude, sideslip angle and heading angle responses are chosen for comparing lateral

dynamics. Aileron input is applied as a doublet input to both systems while other controls are

held zero. Results are presented in Figure 2.3. For comparing lateral dynamics due to rudder

input only, one more simulation is presented too. Responses due to rudder input only can be

seen in Figure 2.4.
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Figure 2.3: Comparison of Linear Model [24] and Nonlinear Model Responses for a doublet
Aileron input
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2.4 Conclusion

In this chapter 6DOF modeling of a general aviation aircraft is presented. Validation of the

model is also performed. The model developed in this chapter is used for dynamic trim and

control limit predictions of the following chapters.
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CHAPTER 3

ONLINE ESTIMATION OF MANEUVERING

STEADY-STATES AND CONTROL LIMITS

3.1 Introduction

This chapter covers a known approach for online estimation of maneuvering steady states and

control limits of a general aviation aircraft. Maneuvering steady state predictions of angle

of attack, load factor and pitch rate parameters are presented. Especially, angle of attack

and load factor predictions are needed by envelope protection systems since they dominate

the flight envelope limits. For that purpose, linear models representing angle of attack, load

factor and pitch rate dynamics are constructed. In order to represent the real dynamics, these

linear models are augmented with adaptive terms such as adaptive neural networks. Once the

neural network augmented linear models are constructed and adaptation is maintained it is

possible to calculate the steady states of α̇, ṅz and q̇ dynamics. Also for known α, nz and

q limits, it is shown that it may possible to obtain the critical control vector by inverting the

constructed models.

Neural network augmentation of linear models are done with the help of single hidden layer

neural networks which are known to be universal approximators in the literature. Gaussian

and complementary Gaussian activation functions are used in the hidden layer. For the neural

network weight updates, a classical weight update law, which is also used in recent studies

[14, 15, 16], is applied.

As an application, a general aviation aircarft, Cessna182, is exposed to various pull-up, push-

over maneuvers. During these maneuvers approaching α, nz and q limits along with the pre-

diction of control limits are presented. Moreover, maneuvers are done with various aggrassive
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control inputs too. This is done for demonstrating the violation of known limits and to show

the available lead time just before the actual violation occurs. With the analysis performed, it

is shown that the proposed algorithm can predict limit violations in an effective lead time. Re-

sults are also harmonious with recent studies [27, 28, 29, 30] for predicting rotorcraft limits.

Simulations are also done starting from a different trim point. It is seen that the adaptive term

can represent real dynamics for different flight conditions, resulting with accurate predictions.

As a motivaton for the next chapter, aircraft is exposed to pull-up and push-over maneuvers

over and over again with the same input scenario. Here, the aim was to see the long term re-

sponse of predictions. It is seen that there exist a re-learning process of aircraft dynamics over

time due to the oscillatory behavior of weight updates. In other words the models generated

online are generally local models, they are very far from representing a global model. This is

also demonstrated by freezing the weights after a long time of simulation. It is seen that even

if the weights come to a steady-state, local oscillations may continue and generated models

may still be local models. Increasing the globality of neural network based linear models and

its effect on dynamic trim predictions along with prediction of control limits are treated in the

next chapter, by using a different learning algorithm.

3.2 Theoretical Development

Let us represent the equations of motion of an aircraft with the following nonlinear state

equations:

ẋ = f (x, u); x(t0) = x0, x ∈ <n, u ∈ <p, (3.1)

where x is the state vector with known initial condition, x0, and u is a known control vector.

The vector field f : <n ×<p −→ <n is continuous and satisfies a global Lipschitz condition

with respect to x so that the solution x(t) to the differential equation 3.1 is unique for any finite

initial condition x0 and any u(t) in the control space [30].

The state x can be divided into fast and slow states, such that

ẋ f = f1(x f , xs, u), (3.2)

ẋs = f2(x f , xs, u), (3.3)

and,

x = [x f xs]T , x f ∈ <l, xs ∈ <n−l. (3.4)
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Compared to the slow states the fast states reach a steady state much quicker during a maneu-

ver, hence include states such as angular rates, angle of attack and sideslip. The slow states

include flight parameters such as forward speed and Euler angles. Note that slow states could

also include changes in parameters like weight, altitude, CG location, etc.

The dynamic trim condition is defined as

ẋ f = 0. (3.5)

Let f̂1 represent an approximation of f1 = f1(x f , xs, u). Then the actual fast state dynamics

can be written as

ẋ f = f̂1 + ξ(x f , xs, u), (3.6)

where the modeling error in the fast state dynamics is represented by ξ = ξ(x f , xs, u), such

that

ξ = f1 − f̂1. (3.7)

Consider the following model approximation for the estimation of the fast state dynamics:

˙̂x f = f̂1 + ∆(xs, x̂ f , u, ...) + K(x f − x̂ f ), (3.8)

where ’hat’s denote the estimated variables and ∆ = ∆(xs, x̂ f , u, ...) contains a set of known

flight parameters or signals. K is called the observer gain matrix. In order to establish the

error dynamics let us define the error between the true and the approximate fast states as

e = x f − x̂ f . (3.9)

When both f and f̂ are fed the same signals, by subtracting equation 3.8 from equation 3.6,

the error dynamics can be written as

ė = −Ke + ξ − ∆. (3.10)

Thus, when the modeling error, ξ, can be cancelled through ∆, with a positive definite matrix

K, any estimation error of the actual plant dynamics will decay asymptotically to zero. Oth-

erwise, the term (ξ −∆) will act as a forcing term to the error dynamics. Neural networks can

be used to generate the signal ∆.

If the relationship in equation 3.8 is used, an estimate of the dynamic trim condition can be

found, when ˙̂x f = 0:

f̂1(x̂ fDT , xs, u) + ∆(xs, x̂ fDT , u, ...) + K(x f − x̂ fDT ) = 0. (3.11)
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where subscript ’DT’ denotes dynamic trim. The term K(x f − x̂ fDT ) is the error bias and is

commonly estimated using K(x f − x̂ f ). Therefore an estimate of the dynamic trim values of

the fast states can be obtained by solving the following equation for x̂ fDT :

f̂1(x̂ fDT , xs, u) + ∆(xs, x̂ fDT , u, ...) + Ke = 0. (3.12)

Similarly, for a given (limiting) dynamic trim state, x fDTlim
, a prediction of the control vector,

ûDT , (the control vector that results in that particular dynamic trim state) can be calculated by

solving the following set of algebraic equations for ûDT :

f̂1(x fDTlim
, xs, ûDT ) + ∆(xs, x fDTlim

, ûDT , ...) + Ke = 0, (3.13)

In this thesis, in order to construct f1 of equation 3.8 linear models consist of x̂ f , xs and u are

used. equation 3.8 takes the following form:

˙̂x f = A[x̂ f xs]T + Bu + ∆(xs, x̂ f , u, ...) + K(e), (3.14)

We can also rewrite equations 3.12 and 3.13 in the following forms:

A[x̂ fDT xs]T + Bu + ∆(xs, x̂ fDT , u, ...) + Ke = 0. (3.15)

A[x fDTlim
xs]T + BûDT + ∆(xs, x fDTlim

, ûDT , ...) + Ke = 0, (3.16)

Iterative solutions can be expressed as follows:

x̂ fDTi+1
= −C−1

1 (C2xs + B1δe + ∆1(x̂ fDTi
, xs, δe, bias) + K1e1) (3.17)

ûDTi+1 = −B−1
1 (C1 x̂ fDTlim

+ C2xs + ∆1(x̂ fDTlim
, xs, ûDTi , bias) + K1e1) (3.18)

where, C1 and C2 are the elements of A matrix.
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Block diagram representation of equation 3.14 can be seen in Fig(3.1).

Figure 3.1: Observer Loop for Dynamic Trim Predictions

3.3 Single Hidden Layer Neural Network Augmentation

Single hidden layer neural networks (SHLNN) are used to estimate the function ξ mentioned

above. In other words, the difference between real dynamics and approximate dynamics are

compansated by these adaptive elements. In general, SHLNNs are universal approximators

and consist of an input layer, a hidden layer and an output layer. The ideal and estimator

dynamics can be written in these forms [27, 29]:

ẋ f = A1[x f xs]T + B1u + W∗
T
β(V∗

T
x̄) + ε(t) (3.19)

˙̂x f = A1[x̂ f xs]T + B1u + ŴTβ(V̂T x̄) + K(x f − x̂ f ) (3.20)

where Ŵ and V̂ are the estimates of the ideal weights W∗ and V∗ respectively. We can also

define the weight errors as:

W̃ = Ŵ −W∗ (3.21)

24



Ṽ = V̂ − V∗ (3.22)

The error dynamics can be found by subtracting equation 3.20 from equation 3.19 :

ė = (A1 − K)e − ŴTβ(V̂T x̄) + W∗
T
β(V∗

T
x̄) + ε(t) (3.23)

Assume that P is the solution of the following Lyapunov equation:

(A1 − K)T P + P(A1 − K) = −Q (3.24)

where Q > 0.

The classic update law for ultimately bounded error and weight signals is obtained [27, 29]:

˙̂W = −(β − β′V̂T x̄)(eT P)LRW (3.25)

˙̂V = −LRV x̄(eT P)ŴTβ
′
(VT x̄) (3.26)

where LRV and LRW are the corresponding learning rates.

Single hidden layer neural network structure and related mathematical expressions are given

in Fig 3.2.
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Figure 3.2: Multi-input Single-output Single Hidden Layer Neural Network Structure and
Mathematical Expressions
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3.4 Construction of Neural Network Augmented Linear Models

In this section we try to build up approximate models of α̇, ṅz and q̇ dynamics. Since there

exist multiple limits equation 3.14 may written in the following form:



˙̂α

˙̂nz

˙̂q


= A



α̂

n̂z

q̂

V



+ B[δe] + K



α − α̂
nz − n̂z

q − q̂


+



41(α̂,V, δe, 1)

42(n̂z,V, δe, 1)

43(q̂,V, δe, 1)


(3.27)

As a general approach for detecting multiple limits simultaneously [30], each fast state in

x̂ f = [α̂ n̂z q̂]T needs an observer loop as in fig 3.1. In this case we have 3 fast states and

3 observer loops. Note that the slow state V is directly measured and used in equation 3.27.

Here, the first 3 by 3 part of A matrix is taken as a diagonal matrix assuming that there exist

no functional dependence between fast states. Moreover, the fourth column of A is taken

differently than zero implying that a functional dependence between each fast state and the

slow state V can be established. Just to remind, x f could be written as functions of other slow

sates such as; pressure altitude, dynamic pressure, attitudes, body axes velocities and etc. In

deed, if x f is required to be as functions of all aircraft states, it would be more convenient to

use a reduced order linearized model for the selection of A and B matrices. Whereas in this

chapter and in the following chapters, A and B are selected with large modeling errors, in other

words, adaptive neural networks are used significantly to represent existing and unknown

modeling errors. Selection of K matrix is another issue. Since observer loops are independent,

K matrix can be taken as a digonal matrix too. The acceptances stated here are mainly design

choices and highly dependent on the user.

With the assumptions and acceptances above, approximate models of α̇, ṅz and q̇ can be

written independently in the following forms:

˙̂α = [A11 A14]


α̂

V

 + B1δe + K11(α − α̂) + ∆1(α̂,V, δe, bias) (3.28)
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˙̂nz = [A22 A24]


n̂z

V

 + B2δe + K22(nz − n̂z) + ∆2(n̂z,V, δe, bias) (3.29)

˙̂q = [A33 A34]


q̂

V

 + B3δe + K33(q − q̂) + ∆3(q̂,V, δe, bias) (3.30)

For the above expressions, A and B constants are selected with large modeling errors which

are expected to be compansated by adaptive elements. To make a proper initial guess, one can

think of available lead time after a step control input as a constraint for selecting A11, A22 and

A33 constants. Or, they can be thought as time constants associated with related dynamics.

For demonstration, different linear model responses and angle of attack response after a step

control input are compared in fig 3.3. It is obvious that the linear model with A11 = −5 and

B1 = −3 has a lead time which is closer to the available lead time of model response. A

similar approach can be used for nz and q dynamics too.

Owing to the fact that the slow state V is directly measured and not observed, the multiplica-

tion of V with A14, A24 and A34 will act as bias terms in equations 3.28, 3.30 and 3.29. As a

result, the selection of A14, A24 and A34 would not be as critical as the selection of A11, A22

and A33.
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A proper initial guess for selecting B constant can also be done. Let’s rewrite equation 3.16

without neural network and Ke terms and solve for ûDT :

ûDT = −
Ax fDTlim

B
(3.31)

With equation 3.31 it is possible to find limit controls ûDT at known limit boundaries x fDTlim
.

For angle of attack response limit boundaries are taken as 13 and -6 degrees. It is clear that

an improper selection of B constants might cause too wide or too narrow control limits. This

is demonstrated in fig 3.4. In that figure linear model with B=-1 has an enormous control

margin which is also not practical for use due to the control surface deflection limits. As a

result, those disscussions might be kept in mind during the selection of A and B constants.

Besides selected A and B’s are shown in table 3.1.
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We also select proper observer gains K as a requirement of the observer loop. They are intro-

duced to reduce the effect of the modeling error which may probably be nonzero at the initial

condition. They are also used to make certain appropriate convergence of network weights.
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Neural network structure selection is also another important point. Single hidden layer neural

networks (SHLNN) are generally used in the literature due to their universal approximation

capabilities. In the literature, sigmoidal functions in the hidden layer of SHLNN are used

generally. In this thesis SHLNN which consist of 11 Gaussian and 11 complematary Gaussian

activation functions in the hidden layer is used.

Gaussian activation f unction : f (x) = e−(1+x/a)2
(3.32)

Complementary Gaussian activation f unction : f (x) = 1 − e−(1+x/a)2
(3.33)

In equations 3.32 and 3.33 Gaussian and complementary Gaussian activation functions are

presented. The activation potential a can be used as a scaling factor if selected adequately

large.

To calculate the number of weights of ∆1 network, we can use fig 3.2. Since we have 23

activation functions it makes 23 output layer weights (W). Also, ∆1 has 4 inputs, that makes

4 by 22 input layer weight matrix (V). In total 111 weights are adjusted by the network. ∆2

and ∆3 networks have the same number of weights too.

Table 3.1: Selected A and B constants

˙̂α A11 = −5 A14 = 0.1 B1 = −3
˙̂nz A22 = −5 A24 = 0.5 B2 = −3
˙̂q A33 = −11 A34 = 0.8 B3 = −10

30



3.4.1 Dynamic Trim Predictions

Dynamic trim equation of ˙̂α can be written in the following form of equation 3.28:

[A11 A14]


α̂DT

V

 + B1δe + ∆1(α̂DT ,V, δe, bias) + K1e1 = 0. (3.34)

An approximate iterative solution for α̂DT may be obtained using:

α̂DTi+1 = −A−1
11 (A14V + B1δe + ∆1(α̂DTi ,V, δe, bias) + K1e1) (3.35)

Similar iterative solutions may be written for ˙̂nz and q̇ too:

n̂zDTi+1
= −A−1

22 (A24V + B2δe + ∆2(n̂zDTi
,V, δe, bias) + K2e2) (3.36)

q̂DTi+1 = −A−1
33 (A34V + B3δe + ∆3(q̂DTi ,V, δe, bias) + K3e3) (3.37)

Note that equations 3.35, 3.36 and 3.37 contain highly nonlinear adaptive terms which in-

cludes the dynamic trim variables. In general, dynamic trim equations will have at least one

fixed point solution in as much as the bounded activation functions are used. The point which

is not guaranteed is that there may occur more than one iterative solutions which might not be

correct due to the high nonlinearty of the adaptive elements.

Generally, the initial value of x̂ fDTi
should be taken as x̂ f in the first iteration. This way,

it is highly probable to obtain a closer solution to the current neural network input vector.

Besides, it is a commonly known experience [30, 13, 28] that even when the iteration number

per simulation time step is taken as one (i = 1), the convergence error (x̂ fDTi+1
− x̂ fDTi

) may stay

within acceptable ranges. And, it is demonstrated in references [30, 13, 28] that it is probable

to obtain sufficiently correct dynamic trim solutions in one or two iterations. The dynamic

trim solutions presented in this thesis are found with using one iteration per simulation time

step. Also, simulations with two and four iterations are performed and convergences are

compared.

Therefore, solutions can be found with acceptable convergence errors. The exact solutions

are not afforded since there exist a possibility of converging to other fixed point solutions by

increasing the number of iterations even more.

At a maneuvering steady state x̂ fDT and x̂ f are equivalent. Therefore, a fixed point solution

around the current neural network input vector is guranteed.

31



3.4.2 Control Limit Predictions

For known limit boundaries of α , equation 3.34 takes the following form:

[A11 A14]


α̂DTlim

V

 + B1δeDT + ∆1(α̂DTlim ,V, δeDT , bias) + K1e1 = 0. (3.38)

An iterative solution is given by:

δeDTi+1
= −B−1

1 (A11α̂DTlim + A14V + ∆1(α̂DTlim ,V, δeDTi
, bias) + K1e1) (3.39)

Similar iterative solutions may be written for limit controls due to known nz and q limits too:

δeDTi+1
= −B−1

2 (A22n̂zDTlim
+ A24V + ∆2(n̂zDTlim

,V, δeDTi
, bias) + K2e2) (3.40)

δeDTi+1
= −B−1

2 (−A33q̂DTlim + A34V + ∆1(q̂DTlim ,V, δeDTi
, bias) + K3e3) (3.41)

Solution of control limits is much more different than dynamic trim solution. In equations

3.39, 3.40 and 3.41 neural network is evaluated at the known envelope limits. A probable

problem may happen especially when the aircraft is flying far from limits. This is because,

adaptive neural networks are expected to compansate for the modeling errors whatever the

flight regime is, and at the same time, they are desired to represent the envelope limits as

well. Therefore, it may not always be possible to result with accurate limit control predictions

especially when limit dynamics are forgotten over time. This problem is treated in detail in

the next chapter. In this chapter, satisfactory limit control predictions are obtained in short

simulation times. And, in the next chapter it is shown that control limit predictions may get

worse when simulations are evaluated at long term since networks may get highly nonlinear

and forget about the previous limit violations in time.

Table 3.2: Selected Learning rates and Observer gains

∆1 network ∆2 network ∆3 network
LRW 2000 2000 2000
LRV 3500 2000 3000

K1 K2 K3

12 30 30
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3.5 Simulations and Results

In this section dynamic trim predictions and control limit predictions during different pull-up

push-over maneuvers are presented. Dynamic trims and control limits are iteratively found by

solving equations 3.35 to 3.37 and equations 3.39 to 3.41 at each simulation time step. In all

maneuvers here same configuration of neural network learning rates and observer gains are

applied. They are presented in table 3.2.

For the first maneuver aircraft is trimmed at 121.5 KIAS and exposed to elevator inputs of

different magnitudes. Results can be seen in fig 3.5.
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Figure 3.5: Dynamic trim predictions of α, nz and q (Maneuver-1)
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During the first eight seconds of the maneuver neural network adaptation is not used. In

that time interval observer follows its own approximate dynamics and results with inaccu-

rate predictions. After eight seconds, adaptation begins and dynamic trim predictions become

accurate.

Modeling error compensation is also shown in fig 3.6. As expected prior to adaptation mod-

eling error is compensated by observer gain. Whereas after the adaptation, the contribution of

the neural network to the modeling error significantly increases and Ke converges to zero.
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Figure 3.6: Modeling Error compensation for ˙̂α, ˙̂nz and ˙̂q (Maneuver-1)

Since proximity to known envelope limits can be calculated by use of the dynamic trim con-

dition for a given control input, it is desired to estimate the allowable control travel and cue

the pilot at the time of control input, in other words before the limiting state is reached. To

do that control limits at known envelope limits are calculated by inverting the dynamic trim

equations and solving for controls. In this study, angle of attack and g limits are assumed

to be as -6 to 13 degrees and -0.5 to 2.5 g’s. Maximum and minimum pitch rate limits are

assumed to be as -16 to 30 deg/sec. Control limits of the first maneuver is shown in fig 3.7.
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Figure 3.7: Limit controls due to α, nz and q (Maneuver-1)

Note that control margins due the load factor limits are narrower than the ones obtained from

α and q limits. According to the discussions of section 3.4, this should be mainly due to the

selection of the B2. Results may improve by a proper B constant.

As a second maneuver, aircraft is exposed to aggressive elevator inputs. Here, the aim is

to demonstrate the violation of envelope limits as well as control limits. For that purpose

after the twenty seconds of the first maneuver, simulation is contiuned and aggrassive inputs

are given to the system. Figures 3.8, 3.9 and 3.10 include dynamic trim prediction along with

control limit predictions. It is obvious that angle of attack, g and pitch rate limits are predicted

in effective lead times. In addition to that whenever the dynamic trim predictions violate the

known envelope limits, control limits are violated too. These information are mainly required

by envelope protection systems in order to cue the pilot before the actual limiting state is

reached.
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Dynamic trim convergence ypDTi+1
− ypDTi

and control limit convergences ulimi+1 − ulimi of

Maneuver1-2 are demonstrated in figs3.11, 3.12 and 3.13 with different number of iterations

per simulation time step. According to the results one iteration per simulation time step is

adequately sufficient for dynamic trim predictions. As well, one iteration per simulation time

step is sufficient for lower and upper control limit predictions in order to achieve a fixed point

solution.
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Figure 3.8: Dynamic trim predictions of α and limit controls due to α limits (Maneuver-2)

One more simulation is performed at a different trim point to show the adaptation capability

of the adaptive scheme. Model is trimmed at 145 KIAS and the elevator scenario of the first

maneuver is doubled. This is the third maneuver of this section. Dynamic trim predictions

and control limit predictions are given in figs 3.14 and 3.15. Again predictions are made in

effective lead times.

Aircraft states during first and second maneuvers can be seen in figures 3.16, 3.17 and 3.18.
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Figure 3.16: Aircraft States during Maneuver-1
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Figure 3.17: Aircraft States during Maneuver-2
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Figure 3.18: Aircraft States during Maneuver-3
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3.6 Motivation for the Next Chapter

As it is mentioned before neural networks used here are universal approximators and should

have been able to approximate the modeling error perfectly. The task is to train the networks in

a short time such that the modeling error is adequately represented. Here the main problem is

that network weights rarely converged to steady values. This implies that the aircraft dynamics

is relearned during flight even if the performed maneuver has been encountered before. To

demonstrate the re-learning process, weight updates of maneuvers 1,2 and 3 are presented in

figs 3.19 and 3.20. It can be seen that the weight updates are oscillatory and not resulting

steady values in that short time. As a result the generated models are accurate only locally.
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Figure 3.19: Neural Network Weight Updates (Maneuver-1 and 2)

Further, in order to support the ideas above a long term simulation is also performed. Maneuver-

1 is run over 300 seconds. Indeed, this is not a practical scenario, just performed intentionally

to have an understanding of the long term response of the weight updates. It is a commonly

known fact that although the neural network weights can be located at nearly steady values,

the local oscillations may still continue and the generated models may still be local models
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Figure 3.20: Neural Network Weight Updates (Maneuver-3)

which are far from representing a global model. In figs 3.21 and 3.22, it is shown that the neu-

ral network activation functions are well shaped after about 150 seconds. As well after about

150 seconds weights of ∆1 and ∆2 networks achieve nearly steady values. In order to have an

insight about the globality/locality of the solutions weights are frozen at 300th second. Mod-

eling error compensations before and after that time is presented in fig 3.23. As expected after

weights are frozen neural network is not capable of approximating modeling errors anymore.

This also indicates that the weights are not located in the proper locations in that long time of

simulation. Learning law used in this chapter is called instantaneous learning law throught

the thesis.

As it is mentioned in section 3.4.2 adaptive neural networks are expected to compansate for

the modeling errors whatever the flight regime is, and at the same time, they are expected

to represent the envelope limits as well. Therefore, in order to have accurate control limit

solutions neural network is expected to learn the limit dynamics during limit violations and

never forget those limits. This motivation is also treated in detail in the next chapter by

performing long term simulations.
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In the next chapter, a recently known neural network weight update law is implemented for

dynamic trim predictions. A long term learning algorithm is implemented such that the en-

countered modeling errors are recorded and the information gained in the past is used for

further adaptations. And, it is shown that generation of global models are more probable

when the update law of next chapter is used.
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Figure 3.21: Activation function outputs of ∆1, ∆2 and ∆3 networks (Maneuver-4)
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3.7 Conclusion

In this chapter, neural network based adaptive dynamic trim and control limit prediction al-

gorithm is applied on a fixed wing aircraft model. It is seen that with the proposed algorithm

limit violations and approaching aircraft limits are detected in effective lead times. Results

obtained in this chapter are also harmonious with the limit predictions of previous works.

It is seen that when the classical weight update law is used for limit predictions, a re-learning

process of aircraft dynamics is highly probable. In the next chapter a different learning algo-

rithm is used and its benefits over the classical weight update law (instantaneous learning) are

presented with various simulations in the scope of dynamic trim and control limit predictions.
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CHAPTER 4

CONCURRENT LEARNING IMPLEMENTATION

4.1 Introduction

In this chapter, a recently known neural network learning algorithm, which is commonly

known as concurrent learning, is studied in the scope of dynamic trim predictions and esti-

mation of control limits. The key point of concurrent learning is that a stack of data collected

during flight is used to update the neural network weights online. Data is collected from tran-

sient and steady state responses seperately. The collection of data representing transient and

steady state conditions is used along with instantaneous measured data for weight adaptations.

It is seen that colllecting steady state conditions and using them for weight updates results in

faster and accurate dynamic trim predictions compared to using instantaneous data only.

In view of the fact that past information is used in weight adaptations, much better modeling

error compensations are expected from the proposed algorithm. The first expectation is that

the modeling error of an encountered maneuver should decrease gradually when that maneu-

ver is repeated again. This also indicates the long term learning capabilities of such learning

algorithms. Secondly, a faster generation of accurate online models are expected for newly

introduced modeling errors which are mainly due to the varying aircraft configurations and

flight conditions as well. For instance, a shift in the center of gravity location or a decrement

in aircraft weight or flying at different places of flight envelop including the limits are just

reasons for occurences of new modeling errors. In the case of new modeling errors algorithm

is still expected to give correct dynamic trim predictions. Moreover, since the control limits

are found by evaluating the network at the known envelope limits, the network is expected

to represent the limit dynamics and the current flight regimes simultaneously. Therefore, as
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a third expectation, much more global adaptations are needed for accurate control limit so-

lutions. The simulations performed in this chapter mainly focused on the expectations stated

here.

The weight update law applied in this chapter is also used for the design of a long term flight

controller presented in [33, 34, 35]. In those studies data points ”sufficiently different” from

each other are recorded in a stack. Since sufficiently different data points are mainly found

in transient response of a fast state, in this chapter the same criteria are used for recording

data points into the transient stack. Besides, the main purpose is to predict maneuvering

steady states. According to this, we improved the conditions to record data to fit the main

purpose. In addition to record data that is sufficiently different, we put importance on the

states that represent a maneuvering steady state. As a result a different storing criteria is used

for recording steady state data, and the related stack is called the steady state stack.

It is a commonly known fact that the instantaneous learning law has the rank-1 limitation in

the weight update [33]. In other words the rank of NN weight dynamics is always at most

one when only instantaneous data is used for training. Readers may refer to [35] for details

of rank-1 limitation. The oscillatory behavior of weight updates are mainly due to the rank-1

limitation. Further, by using the recorded information for weight updates, alleviation of that

limitation can be maintained [35]. Hence, a convergence of the network weights to steady

values is more probable when concurrent learning is used.

Analyses are done at high and low learning rate configurations seperately. For the first case, a

considerably low learning rate is chosen such that the contribution of instantaneous learning

to the modeling eror compensation is made almost zero. It is seen that even if the contribution

of instantaneous learning was almost zero, the use of history stacks located the weights in the

proper locations and accurate dynamic trim predictions are maintained in a short time. The

comparisons of predictions with transient and steady state data are presented as well. For the

second type of analysis high learning rates are chosen. This time there exist a significant con-

tribution of instantaneous learning for modeling error compensation. Simulations are done

in such a way that after a time later new modeling errors are introduced by changing the B

constants of linear models. And, it is shown that by use of the recorded data nonlinearity of

new modeling errors are better learned and resulted with accurate dynamic trim predictions

compared to using instantaneous measured data only. In both analysis the use of steady state
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data points incresed the speed of adaptation and the accuracy of predictions at the approach-

ing limit boundaries. For the third type of analysis, aircraft is exposed to limit violations

intentionally at the first few maneuvers of a long term simulation. Here, high learning rates

are used as well. It is demonstrated that adaptation using concurrent learning results with

accurate control limit predictions at long term since limit violations are recorded into long

term memories. Comparisons of instantaneous learning and concurrent learning in the scope

of control limit predictions are presented.

4.2 Theoretical Development

Concurrent Learning Through Recorded Data

Let’s first remember the model tracking error dynamics of the previous chapter:

ė = −Ke + ξ −WTβ(VT x̄) (4.1)

r = ξ −WTβ(VT x̄) (4.2)

In equation 4.1, the difference between current modeling error (ξ) and the adaptive neural

network output WTβ(VT x̄) is called the residual signal r and is used for online learning (in-

stantaneous learning). Residual signal in the form of equation 4.2 doesn’t contain any past

information. The residual signal can be written in a more general form:

rci = ξi −WTβ(VT x̄i) (4.3)

Using the residual signal of equation 4.3, the concurrent learning law, which will be defined

later, attempts to reduce the difference between the stored estimate of model error (ξi) and the

neural network output WTβ(VT x̄i) which is also based on stored state information.

Selection of Data Points for Concurrent Learning

A key part in the design is to establish the correct data recording criteria. For control problems

[33, 34, 35], the criteria is to record data that are sufficiently different:

(~x − ~xp)T (~x − ~xp)
~xT~x

> ε~x (4.4)
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where p denotes the last point stored in the history stack.

States and controls which are sufficiently different from the previously recorded ones, are

mainly found in transient response. We call the history stack of this criteria as the transient

stack as it will mostly effect the modeling error compensation during transient response of

our predictions.
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Figure 4.1: Comparison of data storing criterias for α response

However, on top of the classic data collection algorithm we impose the following criteria:

εy1 <
√

[xl(k) − xl(k − 1)]2 + [xl(k) − xl(k − 2)]2 + ... + [xl(k) − xL(k − N)]2 < εy2 (4.5)

and

εz1 <
√

[δl(k) − δl(k − 1)]2 + [δl(k) − δl(k − 2)]2 + ... + [δl(k) − δl(k − N)]2 < εz2 (4.6)

Here x is a one dimensional limiting state in consideration, x(k) is the current state and x(k−N)
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is the state information of N time steps before. Similarly, δ represents the corresponding

controls. Here, the algorithm checks for a steady state condition (steady states and controls)

and if so, it adds it into the recorded stack to be used in future concurrent learning. We call

this criteria the statedy state stack. An example of data storing activity can be seen in fig4.1.

Note that these are only conditions for data recording. Once it is decided to be a relevant data

to be stored all related data used in the network update such as state vector, control vector

and modeling error are all stored. If the stack becomes large the oldest data in the stacks is

replaced with the new ones.

Concurrent Learning Weight Update Law

For the simulations presented in this chapter the folllowing NN weight adaptation law is used

[35]:

Ẇ = −(β − β′VT x̄)rT LRW −Wc

p∑

i=1

(βi − β′iVT x̄i)rci LRW (4.7)

V̇ = −LRV x̄rT WTβ
′
(VT x̄) − Vc

p∑

i=1

LRV x̄irT
ci

WTβ
′
(VT x̄i) (4.8)

where Wc and Vc are orthogonal projection operators and are defined as:

Wc = (I − ββ
T

βTβ
) (4.9)

Vc = (I − LRV x̄x̄T LRV

x̄T LRV LRV x̄
) (4.10)

By using orthogonal projections, it made possible to constrain background learning to the

nullspace of online adaptation [35].

Since there are two history stacks used in this study, equations (4.7) and (4.8) can be written

in the following form:
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Ẇ = −(β − β′VT x̄)rT LRW −Wc

p1∑

i=1

(βti − β
′
tiV

T x̄ti)rtci
LRWtr

−Wc

p2∑

i=1

(βssi − β
′
ssi

VT x̄ssi)rssci
LRWs

(4.11)

V̇ = −LRV x̄rT WTβ
′
(VT x̄) − Vc

p1∑

i=1

LRVtr
x̄tir

T
tci

WTβ
′
(VT x̄ti) − Vc

p2∑

i=1

LRVs
x̄ssir

T
ssci

WTβ
′
(VT x̄ssi)

(4.12)

Here subscript t and ss denote the variables which are calculated with the recorded infor-

mation of transient and steady-state stacks. Also, p1 and p2 are the sizes or the maximum

number of data points of the related stacks.

Note that learning rates of transient stack and steady state stack are denoted by LRWtr
,LRVtr

,LRWs

and LRVs
. In theory [35], learning rates are equivalent such that: LRW = LRWtr

= LRWs
and

LRV = LRVtr
= LRVs

. For the simulations done in this chapter, learning rates of the history

stacks are chosen lower values compared to instantaneous learning rates LRW , LRV . In this

way, weights may converge to steady values smoothly. So that by keeping the learning rates

of the previous chapter as the instantaneous learning rates of that chapter, we show the benefits

of concurrent learning over the instantaneous adaptations of chapter-3.

Detailed observer loop for dynamic trim predictions can be seen in fig 4.2.

Table 4.1: Design Param. of Low Learning Rate Simulations
Angle of Attack Predictions

A11 = −5 A14 = 0.1 B1 = −3 K1 = 12 LRW = 10
LRV = 10 LRWtr

= 5 LRVtr
= 10 LRWs

= 5 LRVs
= 10

εy1 = 0.0008 εy2 = 0.01 εz1 = 0.0008 εz2 = 0.01 ε~x = 0.002

Table 4.2: Design Param. of Low Learning Rate Simulations
Load Factor Predictions

A22 = −5 A24 = 0.5 B2 = −3 K2 = 15 LRW = 20
LRV = 200 LRWtr

= 1.3 LRVtr
= 1.4 LRWs

= 10 LRVs
= 10

εy1 = 0.0005 εy2 = 0.0008 εz1 = 0.0005 εz2 = 0.0008 ε~x = 0.003
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Figure 4.2: Concurrent Learning Enabled Observer Loop for Dynamic Trim Predictions
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4.3 Simulation Results

4.3.1 Dynamic Trim Predictions

In this section, concurrent learning implemented dynamic trim predictions are presented. Air-

craft is exposed to pull-up and push-over maneuvers as it is done in the maneuver-1 of the

previous chapter. Simulations started from 121.5 KIAS level flight trim point. The algorithm

applied in this chapter is the same algorithm with the one applied in previous chapter except

the weight update law.
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Figure 4.3: Short Term Comparison of Dynamic Trim Predictions at a Low LRW and LRV for
α̂ dynamics
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In order to obtain the benefits of concurrent learning, analyses are performed at high and low

learning rate configurations.

For the first analysis, instantaneous learning rates LRW and LRV are chosen intentionally low

values such that the contribution of instantaneous learning to modeling error cancellation is

almost made zero. With this approach it is possible to see the effect of recorded data on weight

adaptations. In fig4.3 dynamic trim predictions for angle of attack dynamics is presented. It

is obvious that concurrent learning using transient data have a much more adaptation capa-

bility compared to learning with instantaneous data only, even if the learning rates are very

low. Moreover, using steady state data on top of the transient stack increases the speed of

adaptations and more accurate dynamic trim predictions are obtained at the limit boundaries

in a short time. Design parameters can also be seen in tables 4.1 and 4.2
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α̂ dynamics
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Data recording activity of both stacks can also be seen in fig4.3. Here the size of both stacks

are chosen to be 50 data points. Whenever the stacks are full, the oldest data is replaced with

the new ones.

Since concurrent learning is expected to have a better long term learning capability, same

simulation is contiuned up to 100 seconds. Dynamic trim predictions of last 20 seconds are

presented in fig4.4. As it is expected, concurrent learning using both transient and steady state

data results in accurate dynamic trim predictions in long term. Since recorded transient data

are mainly responsible for compensating modeling errors during transient response, training

with transient data only cannot locate the weights in the proper locations and results with

inaccurate dynamic trim predictions at approaching limits. This fact can also be seen in fig4.5.

In that figure, it is shown that transient only adaptation has no contribution to modeling error

cancellation during a maneuvering steady state. Hence, each stack has a different job for

modeling error cancellations.
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Figure 4.5: Long Term Comparison of Modelling Error Compensations at a Low LRW and LRV

for α̂ dynamics

Comparison of weight updates of angle of attack predictions are presented in fig4.6. Note that

the oscillations found in the weight dynamics of chapter 3 do not exist in the weight updates

of fig4.6. Here weights are being located such that the modelling errors of multiple data points

are taken into account instead of instantaneous modeling error only.
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The results obtained in this chapter may be improved by selecting much better data storing

criteria.
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Figure 4.8: Short Term Comparison of Dynamic Trim Predictions at a Low LRW and LRV for
n̂z dynamics

Dynamic trim predictions of load factor dynamics are presented as well. In fig4.8 short term

prediction responses can be seen. For load factor predictions, the importance of steady state

stack is increased by selecting a relatively high learning gain while the instantaneous learning

rate and the learning rate of transient stack are kept low. It can be seen in fig4.8 that the

adaptation using steady state stack predicts the dynamic trims 10 seconds before, compared
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to learning using transient data only. This fact is also obvious from the weight updates given

in fig4.9. Besides, neural network weights have converged to steady values this time. Long

term responses and modeling error compensations are given in figures 4.10 and 4.12.
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Figure 4.9: Top to bottom: Weight update comparisons of instantaneous learning and concur-
rent learning at short term for nz dynamics
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For the second type of analysis, instantaneous learning rates LRW and LRV are chosen high

values such that the contribution of instantaneous learning to modeling error cancellations

is almost made significant. It is sure that instantaneous learning at a high learning rate will

compansate for modeling errors for both transient and steady state responses. Therefore, the

benefit of using recorded data may not always be visible in dynamic trim prediction point of

view. In order to see the benefit of concurrent learning in the existence of a high instantaneous

learning rate, new modeling errors are introduced during simulations and the adaptations to

those errors are compared. Design parameters can also be seen in tables 4.3, 4.4 and 4.5.

The scenario which is done for low learning rate case is repeated for high learning rate case

this time. Dynamic trim predictions for angle of attack dynamics can be seen in fig4.13. After

50 seconds of simulation new modeling errors are introduced intentionally by changing the

B1 constant of approximate linear model.
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Figure 4.13: Long Term Comparison of Dynamic Trim Predictions at a High LRW and LRV for
α̂ Dynamics (New Modeling Error is Introduced)
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It is clear that after introducing the new B1, weight updates using instantaneous data only give

inaccurate and oscillatory dynamic trim predictions at the time controls are applied (fig4.13).

From the EPS (Envelop Protection System) point of view, it is desired to estimate the allow-

able control travel and cue the pilot at the time the controls are applied, before the limiting

state is reached. Hence, in the case of adaptations using instantaneous data only, after the new

modeling errors are introduced, EPS may receive inaccurate and oscillatory dynamic trim and

limit control predictions. Whereas the adaptations using recorded data have a capability of

learning the new modelig errors in a short time. Therefore, the inaccurate and oscillatiory

predictions at the transient response no longer exist (fig4.13).

−5

0

5

ao
a 

(d
eg

)

 

 

−5

0

5

ao
a 

(d
eg

)

−5

0

5

ao
a 

(d
eg

)

Model Response

Dynamic Trim Prediction

95 100 105 110 115
−4
−2

0
2
4

Time (sec)

E
le

v.
 (

de
g)

Adaptation OFF

Conc. Learn. with Transient + Steady−state data

Conc. Learn. with Transient data

Instantaneous Learn.

Figure 4.14: Long Term Comparison of Dynamic Trim Predictions at a High LRW and LRV for
α̂ Dynamics (Weights are Frozen)

After the new modeling errors are introduced, adaptations using steady state stack may lo-

cate the weights such that the generated online models may represent global behaviors. To

demonstrate this, simulations are continued up to 100 seconds and after that time weights are
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frozen intentionally. Simulation results are shown in fig4.14. It is clear that the online models

which are generated using steady state stack are much more representative of the α̇ dynamics.

Although the weights are frozen, dynamic trim prediction is still accurate.
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Learning at High a LRW and LRV for α̂ Dynamics

In addition, the whole weight update time history is given in fig4.15. The convergence of

neural network weights to steady values after the application of new modeling errors can also

be seen. Note that weight updates using instantaneous measured data only give an oscillatory

response.

Load factor dynamic trim predictions of the same scenario is presented in fig4.17. This time

modeling error is increased in such a way that the controls are reversed by altering the sign

and the magnitude of B2 constant. This way, much more inaccurate dynamic trim predictions

are obtained at the time the controls are applied. Also by use of the recorded data, those
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erroneous predictions are avoided in a short time. Predictions after weights are frozen and the

overall weight updates can be seen in figs4.19 and 4.21.

Results of pitch rate predictions for the same scenario are presented in figs4.18 and 4.20.

Weight updates are given in fig4.23 too. Results similar to angle of attack and load factor

predictions are obtained. Comparisons of dynamic trim convergences are presented in figures

4.16, 4.22 and 4.24.
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Figure 4.16: Dynamic Trim Convergences of α Predictions (i=1)
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Figure 4.17: Long Term Comparison of Dynamic Trim Predictions at a High LRW and LRV for
n̂z Dynamics (New Modeling Error is Introduced)
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Figure 4.18: Long Term Comparison of Dynamic Trim Predictions at a High LRW and LRV for
q̂ Dynamics (New Modeling Error is Introduced)

Table 4.3: Design Param. of High Learning Rate Simulations
Angle of Attack Predictions

A11 = −5 A14 = 0.1 B1 = −3 K1 = 12 LRW = 2000
LRV = 3500 LRWtr

= 1 LRVtr
= 1 LRWs

= 1 LRVs
= 1

εy1 = 0.0008 εy2 = 0.01 εz1 = 0.0008 εz2 = 0.01 ε~x = 0.002

Table 4.4: Design Param. of High Learning Rate Simulations
Load Factor Predictions

A22 = −5 A24 = 0.5 B2 = −3 K2 = 30 LRW = 2000
LRV = 2000 LRWtr

= 0.5 LRVtr
= 0.5 LRWs

= 0.5 LRVs
= 0.5

εy1 = 0.0005 εy2 = 0.0008 εz1 = 0.0005 εz2 = 0.0008 ε~x = 0.003

Table 4.5: Design Param. of High Learning Rate Simulations
Pitch Rate Predictions

A33 = −10 A34 = 0.8 B3 = −11 K3 = 30 LRW = 2000
LRV = 3000 LRWtr

= 0.5 LRVtr
= 0.5 LRWs

= 0.5 LRVs
= 0.5

εy1 = 0.003 εy2 = 0.004 εz1 = 0.003 εz2 = 0.004 ε~x = 0.0018
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Figure 4.21: Overall Weight update Comparisons of Instantaneous Learning and Concurrent
Learning at a High LRW and LRV for n̂z Dynamics
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Figure 4.22: Dynamic Trim Convergences of nz Predictions (i=1)
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Figure 4.23: Overall Weight update Comparisons of Instantaneous Learning and Concurrent
Learning at a High LRW and LRV for q̂ Dynamics
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Figure 4.24: Dynamic Trim Convergences of q Predictions (i=1)
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4.3.2 Control Limit Predictions

Generally dynamic trim solutions are easily obtained with acceptable error convergences.

Whereas, the situation may not be so easy for predicting control limits. Note that in equations

3.41, 3.40 and 3.39 neural network is required to be calculated at the known envelope bound-

aries. A probable difficulty here is that the network may not be a well representative of the

envelope limits if it has not been trained at the limits before. In other words, neural networks

may give incorrect outputs when they are evaluated at the flight conditions where they have

never been passed before. So, in order to represent the envelope limits as well as the normal

operating conditions correctly, online limit violations or offline trained neural networks at the

limits may be needed. It is also known that although there may exist limit violations online,

adaptations using instantaneous data only will have a tendency to forget about the nature of

the violated limits. Therefore, a global neural network adaptation will be appropriate in order

to solve for the control limits online.

In chapter-3, satisfactory results are obtained at short term simulations. Results are harmo-

nious with previous works too. It is known that neural network have a tendency to increase its

nonlinearity for perfect modeling error compensations. When this happens, iterative solutions

may become difficult. This fact may be seen in long term simulations even better, especially

when maneuvers are repeated over and over again.

The following results compare control limit predictions using instantaneous learning and con-

current learning for a long simulation time. Although it is not practical, different elevator

inputs are repeated over time. At the first 30 seconds of the simulation, aggrassive inputs are

given such that the limits are violated. After the 30th second, smaller inputs are given to the

system so that the flight around the normal operating conditions are maintained. Then the

magnitudes of the inputs are changed again. Design parameters can also be seen in tables 4.6,

4.7 and 4.8.

In fig 4.25 load factor response of the above scenario is presented. Violation of limits can

be seen in the first 30 seconds of the simulation. Here, neural network is expected to learn

the limit dynamics by recording the transient and steady state data of the first 30 seconds.

Data recording activity can be seen in fig 4.26. Control limit predictions using instantaneous

learning and concurrent learning up to that time are compared in fig 4.26. It is seen that
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whenever the envelope limits are violated (fig 4.25) in the first 30 seconds, control limits are

violated too.
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Figure 4.25: n̂z Response at Long Term

−20

0

20

D
eg

re
e

 

 

−20

0

20

D
eg

re
e

0

50

# 
of

 p
oi

nt
s

0 20 40 60 80 100 120 140 160 180 200
0

50

Time (sec)

# 
of

 p
oi

nt
s

Elevator Input

Lower Cont. Limit Prediction

Upper Cont. Limit Prediction

Steady−State Stack (used as a long term memory)

Transient Stack (used as a long term memory)

Conc. Learn. with Transient + Steady−state data

Instantaneous Learn.

Aggrassive Inputs
Violation of limits

New Input scenario
New Input scenario

Figure 4.26: Long Term Comparison of Limit Control Predictions at a High LRW and LRV for
n̂z Dynamics

Between 30 and 100 seconds, aggrassiveness of the elevator input is decreased such that a

flight regime far from limits are maintained (fig 4.25). In that time period, control limit

predictions using instantaneous data and recorded data gives similar results (fig 4.26).

In the scenario, after the 100th second, aggrassiveness of the inputs are increased intention-
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ally and limits are violated again. It is seen that adaptation using instantaneous data forgets

about the limit dynamics it has learned in the first 30 seconds. Due to this fact neural network

tries to relearn the limits, and during this relearning process, inaccurate control limit predic-

tions are obtained. Whereas, by using concurrent learning accurate control limit predictions

are achieved at long term, especially when the limits are violated again. Weight updates and

activation function outputs are presented in the fig 4.27. Note that weight updates of instanta-

neous learning have a rapid increase at the 100th second and the nonlinearity of the network

changes dramatically at that time.
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Figure 4.27: Long Term Comparison Activation Function Outputs and Weight Updates at a
High LRW and LRV for n̂z Dynamics
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Figure 4.28: α̂ Response at Long Term
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Figure 4.29: Long Term Comparison of Limit Control Predictions at a High LRW and LRV for
α̂ Dynamics

Angle of attack response and control limit predictions of the same simulation scenario are

presented in fig 4.28. This time aircraft violates only the negative angle of attack limits

after the 100th second. It can be seen in fig 4.29 that although the aircraft is far from the

positive angle of attack limits, negative control limits are violated due to the inaccurate control

limit predictions of instantaneous learning. Besides, reliable and non-oscillating control limit

predictions are calculated by use of concurrent learning at long term. Whenever the negative
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envelope limits are violated positive control limits are violated as well. Also, observe that

transient stack is used as a short term memory since recorded data are renewed in a shorter

time compared to steady state stack. This is a user dependet selection and the results obtained

may get better by selecting different storing criteria. Weight updates and activation function

outputs are also presented in fig 4.30. It is seen that V matrix of concurrent learning is much

more steady compared to the V matrix of instantaneous learning.
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Figure 4.30: Long Term Comparison Activation Function Outputs and Weight Updates at a
High LRW and LRV for α̂ Dynamics
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Figure 4.31: α̂ Response at Long Term
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Figure 4.32: Long Term Comparison of Limit Control Predictions at a High LRW and LRV for
q̂ Dynamics

Similar results are achieved for pitch rate limits too. Pitch rate response, control limits due

to pitch rate limits and weight updates can be seen in figures 4.31, 4.32 and 4.33. When

concurrent learning is used better control margins are obtained at long term compared to

using instantaneous data only (fig 4.32)

Aircraft states of the long term simulation of this section can be seen in figure 4.34
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Figure 4.33: Long Term Comparison Activation Function Outputs and Weight Updates at a
High LRW and LRV for q̂ Dynamics
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Figure 4.34: Aircraft States during the Long Term Simulation

Table 4.6: Design Param. of High Learning Rate Simulations
Angle of Attack Control Limits

A11 = −5 A14 = 0.1 B1 = −3 K1 = 12 LRW = 2000
LRV = 3500 LRWtr

= 0.01 LRVtr
= 0.01 LRWs

= 0.005 LRVs
= 0.005

εy1 = 0.0008 εy2 = 0.01 εz1 = 0.0008 εz2 = 0.01 ε~x = 0.002
Table 4.7: Design Param. of High Learning Rate Simulations

Load Factor Control Limits

A22 = −5 A24 = 0.5 B2 = −3 K2 = 30 LRW = 2000
LRV = 2000 LRWtr

= 0.01 LRVtr
= 0.01 LRWs

= 0.01 LRVs
= 0.01

εy1 = 0.0005 εy2 = 0.0006 εz1 = 0.0005 εz2 = 0.0006 ε~x = 0.03
Table 4.8: Design Param. of High Learning Rate Simulations

Pitch Rate Control Limits

A33 = −10 A34 = 0.8 B3 = −15 K3 = 30 LRW = 2000
LRV = 3000 LRWtr

= 0.0005 LRVtr
= 0.0005 LRWs

= 0.005 LRVs
= 0.005

εy1 = 0.001 εy2 = 0.002 εz1 = 0.001 εz2 = 0.002 ε~x = 0.05
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4.4 Discussion

In this chapter, implementation of concurrent learning to neural network based adaptive dy-

namic trim and control limit estimation algorithm is presented. Online data storing is done

in such a way that the data from transient response and steady state responses of limit pa-

rameters are recorded independently into different history stacks. In order to record transient

data, a storing criterion which has been used for the design of a long term learning adaptive

flight controller [33, 34, 35] is used. Whereas, a new criterion is applied for recording steady

state data into a different stack. It is shown that much more accurate dynamic trim predictions

are obtained when steady state data as well as transient data are used for weight adaptations

compared to adaptations using transient and instantaneous data only.

Moreover, it is concluded that dynamic trim and control limit predictions using instantaneous

learning has a potential to cause inaccurate iterative solutions especially for long term simu-

lations. Since for long term, neural networks have a potential to gain high nonlinearity while

forgetting the nature of the past limit violations or modeling error compensations. Whereas

by using concurrent learning, past violations of limits and modeling error compensations are

recorded into long term memories (history stacks) and those information are used for further

weight adaptations. As expected, much more global online models and accurate dynamic trim

predictions as well as control limits are obtained in long term simulations.
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CHAPTER 5

CONCLUSION

Operational limits are constraints for both manned and unmanned aerial vehicles. The task

of envelope protection is to observe and ensure vehicle operation within these limits. It is

obvious that an automatic envelope protection system will maintain the adjustment between

safety and performance, especially during agrassive maneuvers where the limit violations are

highly probable. Therefore, for an effective envelope protection, approaching aircraft limits

should be predicted before the actual limiting states are reached. These predictions are mainly

used by limit avoidance algorithms to avoid the probable violations of envelope limits.

In this thesis, limit detection was the main focus. For that purpose, a 6DOF aircraft model is

developed in chapter-2. Then, in chapter-3, using this model, maneuvering steady states of

angle of attack, load factor and pitch rate parameters are predicted online. Control limits due

to known envelope limits are estimated online as well. For these predictions, online models of

angle of attack, load factor and pitch rate dynamics are generated. In order to generate online

models, neural network augmented linear models are used. Modeling errors between real and

approximate dynamics are compansated by adaptive neural networks.

In chapter-3, a classical weight update law which was called instantaneous learning is used

for updating the neural network weights for modeling error compensation. A key problem

in that chapter was that the online models were generated only locally. Due to this fact,

in chapter-3, a relearning process of limit parameter dynamics over time is seen. Whereas,

in limit prediction, global online models are needed since a future response is going to be

predicted at the times the controls are applied. Therefore, online modeling could be done in

such a way that the modeling error cancellations of a maneuver, which was encountered in the

past, could be recorded and used for further modeling error cancellations. This idea is also
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used as a motivation for the fourth chapter.

In chapter-4, a much more intelligent weight update law, called concurrent learning, is imple-

mented to adaptive dynamic trim and control limit prediction algorithm. Besides, the benefits

of concurrent learning over the instantaneous learning of chapter-3 are demonstrated with

various simulations. The main advantages of concurrent learning enabled limit detection al-

gorithm are presented below:

• Previously encountered maneuvers are recorded in long term memories (history stacks)

and these information are used for further modeling error compensations. It is shown

that neural network weights have a much more potential to be located in steady values.

Therefore, global online models are much more probable when concurrent learning is

used.

• Using concurrent learning, a faster generation of accurate online models are obtained

for newly introduced modeling errors.

• It is concluded that using concurrent learning, neural network has a much more po-

tential to represent the limit dynamics and normal operating conditions simultaneously.

This way iterative solutions of dynamic trim and control limit predictions become much

more reliable and accurate.

• It is also shown that by using a stack of steady state data for concurrent learning, for all

above items, the accuracy of dynamic trim and control limit predictions is enhanced.

The following items are also listed as recommendations for future works:

• The performance of concurrent learning is highly dependent on data selection criteria as

expected. In chapter-4, whenever the history stacks become full, oldest data is replaced

with a new one. Therefore, it is obvious that the results would get better by using

more intelliget data storing criteria. Different data storing criteria can be developed and

compared with the ones used in this thesis, as future work.

• Neural network adaptations are generally affected by the complexity of the neural net-

works. Less number of neurons may cause difficulties in modeling error compensations.
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Whereas difficulties may also be seen when high number of neurons are used. There-

fore, with an optimum number of neurons, modeling errors may be compensated more

effectively. In this thesis, a highly nonlinear network is used. As future study, a network

with optimum number of neurons can be selected and the results may improve.

• Throughout the thesis longitudinal maneuvers are performed by using elevator inputs

only. More realistic scenarios may be performed by including lateral maneuvers. For

this purpose linear models and neural networks could be written as functions of lateral

inputs and lateral slow states as well. It would be possible to calculate critical lateral

controls due to known limits of lateral or longitudinal limit parameters. Therefore, as

future work, multiple limits including critical rudder and critical aileron controls can

be found for different maneuver types.

• Simulations for which the limits are violated can be repeated using a known limit avoid-

ance method. The differences between concurrent learning and instantaneous learning

can also be compared in the scope of limit avoidance as future work.

• Command limiting architecture [16] of envelope protection systems, which are mainly

applied for autonomous UAV’s, can also be studied as future work, in the scope of

concurrent learning and instantaneous learning.

• As a future work, neural networks may be instantaneously linearized at each simula-

tion time step. Control limits and dynamic trim predictions can be solved using in-

stantaneous linearized networks. In appendix section, a procedure for instantaneous

linearization is presented.
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APPENDIX A

ITEMS RELATED TO MATHEMATICAL MODEL AND

NEURAL NETWORKS

A.1 Mathematical Derivation of Linearized Dynamic Trim and Control Limit

Equations

Single hidden layer neural networks can easily be linearized around the current neural network

input vector by use of the following taylor expansion:

∆(x̄) ≈ ∆(ā) +
d∆

dx̄
|x̄=ā(x̄ − ā) + (HOT ) (A.1)

since, ∆(x̄) = WTβ(VT x̄) for a SHL network,

d∆

dx̄
|x̄=a = (WT dβ

dz
dz
dx̄

)|x̄=ā (A.2)

where, dz
dx̄ = VT and dβ

dz is a function of VT x̄ therefore equation A.1 becomes with omitting

the higher order terms,

∆(x̄) = WTβ(VT ā) + WT dβ
dz
|z=VT āVT (x̄ − ā) (A.3)

∆(x̄) = WTβ(VT ā) −WT dβ
dz
|z=VT āVT ā + WT dβ

dz
|z=VT āVT x̄ (A.4)

The last term in equation A.4 can be written by use of associative property of matrix multi-

plications, in other words WT dβ
dz |z=VT āVT x̄ = (WT dβ

dz |z=VT āVT )x̄,
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Here, x̄ = [bias x̂ f xs u] and the multiplication (WT dβ
dz |z=VT āVT ) becomes a 1 by 4 matrix, can

be called as matrix L. And, equation A.4 can be written as:

∆(x̄) = WTβ(VT ā) −WT dβ
dz
|z=VT āVT ā + [L11 L12 L13 L14]



bias

x̂ f

xs

u



(A.5)

Note that the signals such as WTβ(VT ā), WT dβ
dz |z=VT āVT ā and [L11 L12 L13 L14] are all avail-

able signals at each simulation time step.

Dynamic trim equation, 3.15, may be written in terms of linearized neural network, as follows

A[x̂ fDT xs]T +Bu+WTβ(VT ā)−WT dβ
dz
|z=VT āVT ā+[L11 L12 L13 L14]



bias

x̂ fDT

xs

u



+Ke = 0. (A.6)

also, an iterative dynamic trim solution can be writtten in the following form,

x̂ fDTi+1
= −(A11 + L11)−1((A14 + L13)xs + (B1 + L14)δe + WTβ(VT ā) −WT dβ

dz
|z=VT āVT ā + Ke)

(A.7)

control limits are expressed as well,

ûDTi+1 = −(B1+L14)−1((A11+L11)x̂ fDTlim
+(A14+L13)xs+∆1(x̂ fDTlim

, xs, ûDTi , bias)+Ke) (A.8)
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A.2 Trimmed and Linearizad Model of Chapter-2

A.2.1 Trim Point

State vector and input vector of the nonlinear model have the following forms:

~x = [φ θ ψp q r u v w Xe Ye Ze Alt]′ (A.9)

~u = [δe δa δr δthr]′ (A.10)

Level flight trim point at 67.2 m/s (true airspeed) is found by using the method mentioned in

section 2.3.1. The following trim condition is obtained and used throughout the thesis:

~x = [0 − 0.004 0 0 0 0 67.27 0 − 0.2717 0 0 − 1524 1524]′ (A.11)

~̇x = [0 0 0 0 0 0 0 0 0 0 67.27 0 0]′ (A.12)

~u = [2.17 0 0 35.9]′ (A.13)

Note that, attitudes and rates are in radians and inputs are in degrees. Others are in metric

system.

A.2.2 Linearized Model

The following linear model around the trim point of section 2.3.1 is obtained by using linmod

command of Matlab.
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ẋ = A



u

w

q

θ

v

p

r

φ



+ B



δe

δa

δr

δthr



(A.14)

where, A and B are found to be as:

A =



−0.0453 0.0797 0.2637 −9.8099 0 0 0 0

−0.2976 −2.1089 −65.2924 0.0392 0 0 0 0

0.0101 −0.2081 −6.8265 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 −0.1877 −0.4683 −66.7113 9.8099

0 0 0 0 −0.4512 −13.0178 2.1357 0

0 0 0 0 0.1395 −0.3349 −1.2185 0

0 0 0 0 0 1 −0.0040 0


(A.15)

B =



−0.001 0 0 0.0416

−0.2390 0 0 0

−0.6099 0 0 0

0 0 0 0

0 0 0.1049 0

0 1.3173 0.0831 0

0 −0.0625 −0.1791 0

0 0 0 0



(A.16)
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A.3 Derivation of Concurrent Learning Weight Update Law

Error dynamics of chapter-3 is written in the following forms:

ė = (A1 − K)e − ŴTβ(V̂T x̄) + W∗
T
β(V∗

T
x̄) + ε(t) (A.17)

W̃ = Ŵ −W∗ (A.18)

Ṽ = V̂ − V∗ (A.19)

We can expand the last three terms of equation A.17, and error dynamics take the following

form [36]:

ė = (A1 − K)e − [W̃T (β(V̂T x̄) − β′(V̂T x̄)V̂T x̄) + ŴTβ
′
(V̂T x̄)ṼT x̄ + w] (A.20)

where,

w = W̃Tβ
′
(V∗

T
x̄) + (HigherOrderTerms) + ε(t) (A.21)

It is shown in reference [36] that w signal is bounded. In order to obtain the bounds on w,

reader may refer to [36].

Now we may consider the following Lyapunov [37, 38] candidate of the form:

L(e, W̃, Ṽ) =
1
2

eT Pe +
1
2

tr{W̃L−1
RW

W̃T } + 1
2

tr{ṼT L−1
RV

Ṽ} (A.22)

Take the time derivative of the function,

L̇(e, W̃, Ṽ) =
1
2

ėT Pe +
1
2

eT Pė
1
2

tr{ ˙̂WL−1
RW

W̃T } + 1
2

tr{ṼT L−1
RV

˙̂V} (A.23)

then substitude equation A.20 into equation A.23,
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L̇(e, W̃, Ṽ) =
1
2

eT Qe − rT [W̃T (β(V̂T x̄) − β′(V̂T x̄)V̂T x̄) + ŴTβ
′
(V̂T x̄)ṼT x̄ + w]

... + tr{(Ẇi + Ẇh)L−1
RW

W̃T } + tr{ṼT L−1
RV

(V̇i + V̇h)} (A.24)

Ẇh and Ẇi are the weight update contributions of recorded data and instantaneous data re-

spectively.

We can add and subtract
∑p

i=1(4i − ξi)T (4i − ξi) from (A.24), where (4i − ξi)T = rci and

eT P = rT , L̇(e, W̃, Ṽ) becomes:

L̇(e, W̃, Ṽ) =
1
2

eT Qe − rT [W̃T (β(V̂T x̄) − β′(V̂T x̄)V̂T x̄) + ŴTβ
′
(V̂T x̄)ṼT x̄ + w]

... + tr{(Ẇi + Ẇh)L−1
RW

W̃T } + tr{ṼT L−1
RV

(V̇i + V̇h)}

... −
p∑

i=1

rT
ci

(4i − ξi) +

p∑

i=1

rT
ci

(4i − ξi) (A.25)

Expanding the last term of equation A.25, we can set the following terms to zero:

tr{[(−β(V̂T x̄) + β
′
(V̂T x̄)V̂T x̄)rT + ẆiL−1

RW
]W̃T } = 0 (A.26)

tr{ṼT (−x̄rT WTβ
′
+ L−1

RV
V̇i)} = 0 (A.27)

tr{(
p∑

i=1

(βi − β′iVT x̄i)rT
ci

+ ẆhL−1
RW

)W̃T } = 0 (A.28)

tr{ṼT (x̄irT
ci

WTβ
′
i + L−1

RV
V̇h)} = 0 (A.29)

Now, we can solve for Ẇi,Ẇh,V̇i and V̇h. Weight update law of chapter-4 can be written in the

following forms:

Ẇ = Ẇi + Ẇh (A.30)
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V̇ = V̇i + V̇h (A.31)

User may refer to [36] for detailed Lyapunov based proof of ultimate boundedness of error

signals.

92


