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ABSTRACT 

DEVELOPMENT OF A DSP-FPGA-BASED 

RESOLVER-TO-DIGITAL CONVERTER FOR 

STABILIZED GUN PLATFORMS 

ZENGİN, Yasin 

M. Sc., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. İsmet ERKMEN 

Co-Supervisor: Prof. Dr. Aydan M. ERKMEN 

 

May 2010, 163 pages 

 

Resolver, due to its reliability and durability, has been used for the aim of shaft 

position sensing of military rotary systems such as tank turrets and gun stabilization 

platforms for decades. Ready-to-use resolver-to-digital converter integrated circuits 

which convert the resolver signals into position and speed measurements are 

utilized in servo systems most commonly. However, the ready-to-use integrated 

circuits increase the dependency of the servo system to hardware components which 

in turn decrease the efficiency and flexibility of the servo system for changing 

system structures such as for changing resolver carrier frequency or changing 

position and speed sensors. The proposed solution to increase the efficiency and 

flexibility of the servo system is a software-based resolver-to-digital converter 

which does not require aforesaid special hardware components and presents a 

complete software-based solution for the conversion. The proposed software-based 

resolver-to-digital converter makes use of common programmable hardware 
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components, that is, FPGA and DSP which form the heart of the servo controller 

technology in recent years.  

The proposed structure for the conversion has three components. The first 

component is the signal conditioner which minimizes the disturbances coming from 

the resolver signals as harmonic distortions and noise. The second component, the 

phase-sensitive demodulator, as the name implies, is responsible for phase-sensitive 

demodulation of resolver signals. The third component is the estimator filter. In 

order to determine the optimal estimator filter, five different estimator filters with 

the aforesaid two components are implemented in ASELSAN’s stabilized gun 

system STAMP and they are compared in terms of both estimation performance and 

computational complexity. The implemented filters include nonlinear observer type 

filter which is already proposed in the literature for resolver conversion, tracking 

differentiator adapted to resolver conversion and kalman filters adapted to resolver 

conversion in different forms such as linear kalman filter, extended kalman filter 

and unscented kalman filter. At the end of the study, stability and sensitivity 

analyses are also performed for the proposed system. 

Keywords: Phase-sensitive demodulation, harmonic distortions on resolver signals, 

software-based resolver-to-digital conversion, Kalman filtering. 
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ÖZ 

STABİLİZE SİLAH PLATFORMLARI İÇİN DSP VE 

FPGA TABANLI RESOLVER-SAYISAL ÇEVİRİCİ 

GELİŞTİRİLMESİ 

ZENGİN, Yasin 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Ana Bilim Dalı 

Tez Yöneticisi: Prof. Dr. İsmet ERKMEN 

Ortak Tez Yöneticisi: Prof. Dr. Aydan M. ERKMEN 

 

Mayıs 2010, 163 sayfa 

 

Dayanıklılığı ve güvenilirliğinden dolayı resolver, yıllardır tank tareti ve silah 

stabilizasyon platformu gibi askeri amaçlı döner sistemlerde kullanılmaktadır. Hali 

hazırda kullanıma hazır olarak sunulan ve yoğun bir şekilde servo sistemlerde 

kullanılmakta olan resolver-sayısal çevirici tümleşik devreleri, resolver sinyallerini 

kullanarak pozisyon ve hız ölçümünü gerçekleştirmektedirler. Ancak, kullanıma 

hazır olarak sunulan bu devreler, servo sistemin donanıma bağımlılığını artırmakta 

ve servo sistemin değişken resolver taşıyıcı frekanslarında resolverlerin veya 

değişken pozisyon ve hız sensörlerinin kullanıldığı değişken sistem yapılarına uyum 

sağlayabilme yetisini ve servo sistemin verimliliğini azaltmaktadır. Bu tez 

kapsamında soruna önerilen çözüm ise özelleşmiş donanım yapılarına ihtiyacı 

ortadan kaldıran ve yazılım üzerine kurulu bir yazılım-tabanlı resolver-sayısal 

çeviricidir. Önerilen yazılım-tabanlı resolver-sayısal çevirici, son yıllarda servo 

kontrolcü teknolojisinin vazgeçilmez programlanabilir donanım parçaları olan 

FPGA ve DSP işlemcileri kullanmaktadır. 
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Çevrim için önerilen yapı üç bileşenden oluşmaktadır. Birinci bileşen resolver 

sinyallerindeki harmonik bozulmalar ve gürültü gibi bozucu etkileri en aza 

indirgemek için kullanılan sinyal iyileştiricidir. İkinci bileşen, isminden de 

anlaşılacağı gibi, resolver sinyallerinin faza-duyarlı çözümünü gerçekleştiren faza-

duyarlı çözücüdür. Sonuncu bileşen ise tahminleyici filtredir. Resolver çevrimi için 

kullanılabilecek en iyi tahminleyici filtreyi bulabilmek amacıyla, beş farklı 

tahminleyici filtre bahsi geçen diğer iki bileşen ile birlikte ASELSAN’ın stabilize 

silah sistemi STAMP’a uygulanmış ve bu filtreler hem tahminleme performansı 

hem de işlemsel karmaşıklık açılarından karşılaştırılmıştır. Uygulanan tahminleyici 

filtreler; literatürde resolver çevrimi için önerilmiş bulunan doğrusal-olmayan filtre, 

resolver çevrimine uyarlanmış takiplemeli türevleyici ve kalman filtrenin doğrusal 

kalman filtre, kapsamlı kalman filtre ve kokusuz kalman filtre olmak üzere resolver 

çevrimine uyarlanmış üç farklı formunu içermektedir. Çalışmanın sonunda önerilen 

sistem için kararlılık ve duyarlılık analizleri de gerçekleştirilmiştir. 

Anahtar Kelimeler: Faza-duyarlı çözüm, resolver sinyallerinde harmonik 

bozulmalar, yazılım-tabanlı resolver-sayısal çevrim, Kalman filtreleme. 
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CHAPTER 1  

 

INTRODUCTION 

1.1 Motivation 

Servomechanism is a device which enables automatic control means on a 

mechanism. The term servomechanism is only used for devices which make use of 

feedback signals from the mechanism that is being controlled. Using feedback 

signals, a servomechanism attempts to correct the performance of the mechanism 

according to the command set. Although any type of system using closed loop 

control can be classified as a servomechanism, motion control systems are the 

leading area of usage nowadays. In general, controlled states for such systems are 

position, speed, acceleration and torque.  

Servomechanisms should have an input, an output, a calculator calculating the error 

between the input and output, an amplifier calculating the actuation and an actuator 

to eliminate the error. From this point of view, the first servomechanism was the 

sheep steering engine used on the SS Great Eastern which is launched in 1858. 

Thereafter, servomechanisms were used in fire-control systems and navigation 

systems. After a century, servomechanisms are used in many applications ranging 

from aeronautical to automotive [3]. 

Military fire-control is one of the disciplines that use servomechanisms since its 

invention. Fire-control concept is developed to improve hitting performance of 

weapon systems. These military systems are designed to improve the performance 

of the weapon systems in terms of rapidness of firing and hitting accuracy. A Fire-
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control system combines a number of components such as a fire-control computer, a 

servomechanism to direct the gun and a gun to fire on the target. Advanced fire-

control systems have ability to interface with more components improving firing 

accuracy such as fire control radar, thermal and day cameras and laser range finder. 

Moreover, more complex fire-control systems have additional sensors. These 

additional sensors measure the disturbing effects deflecting the system performance 

from the trajectory in demand. For instance, in a stabilized gun platform, fire-

control computer usually has an interface with a gyro in order to measure 

disturbance deflecting the gun’s velocity from the velocity in demand. Using the 

negative feedback law, the computer continually computes the necessary correction 

signal for the actuators to keep the gun’s velocity at desired value. This is the 

concept of gun stabilization. Gun stabilization is an important concept for fire-

control systems. Disturbances coming from terrain will adversely affect the 

performance of a fire-control system without gun stabilization.  

Eventually a fire-control system is a servomechanism with its ability to sense 

feedbacks coming from the mechanism. Servomechanisms should be able to 

manipulate time-based derivative of a parameter to be able to control it. For 

instance, a servomechanism designed to control the velocity of a robot arm should 

be able to change time-based derivative of velocity, that is, acceleration of the robot 

arm. In general, acceleration is not a direct controllable variable in 

servomechanisms because acceleration sensors available in the marketplace either 

show poor performance or are so expensive that making a cost-effective system 

solution very difficult. That is to say, today’s systems do not allow making use of 

acceleration sensors to control velocity of a mechanism. Therefore, controlling 

velocity of a mechanism is usually realized by using torque feedback or an indirect 

way of sensing torque, namely by calculating torque from phase currents of servo 

motors. This way of speed control is a good solution when engineers care system 

cost, performance and reliability.  
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In contrast to general opinion, servomechanisms do not necessarily have a servo 

motor. For instance systems with closed loop temperature control are also 

servomechanisms although they do not have servo motors. However, motion control 

applications make it necessary to use servo motors in control. A motor is an 

electromechanical energy converter generating a force on its rotating shaft when 

supplied with direct current or three phase alternating current depending on the type 

of the motor. A servo motor is a type of motor which gives out some information 

related to its motion such as shaft position and speed. These may be referred as the 

most common feedbacks of servo motors. Processing feedback signals from servo 

motors and other sensors, the servo controller continually controls the voltage 

supplied to motor in order to correct the motion of the servomechanism. The 

command signal for a servo controller may be one of position, speed and torque 

commands.  

ASELSAN is the leading company of Turkish defense industry in designing and 

producing stabilized fire-control systems. ASELSAN’s STAMP (Figure 1-1) and 

STOP systems are stabilized marine gun systems equipped with advanced fire-

control and servo controller units. Systems can be used with various naval guns 

including 12.7, 25 and 30 mm guns. They have several sensors to perform gun 

stabilization and target tracking on both day and night conditions. Fire on the move 

ability of the systems facilitates challenging military missions at sea.  

The main motivation of this thesis is to improve the servo drive abilities of STAMP 

and STOP systems. It is intended to solve the challenging issues observed during 

the design stage of STAMP and STOP systems. Actually, these issues are not 

unique to the systems but they can be seen as general issues and they can be 

attributed to servo control concept.  
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Figure 1-1 ASELSAN’s STAMP system on a Turkish assault boat 

1.2 Objectives and Contributions of the Thesis 

Sensorless control of motor drives, eliminating the need for sensors in control loops, 

is very popular in servo controller technology recently [2]. One advantage of the 

sensorless control is that it reduces the cost of the controller. However, as far as the 

performance is considered, sensorless control algorithms have not proved reliability 

and quality for the high-performance servo controllers yet. Especially, in the low 

speed applications, the algorithms given in literature show poor performance due to 

the model uncertainty and noise. Therefore, system performance requirements for 

stabilized gun systems make it compulsory to use sensors due to poor performance 

of sensorless control techniques.  

Resolvers are robust and reliable position sensors used in servo motors and they 

have been used reliably in shaft position measurement systems for decades. Ready-

to-use Resolver-to-Digital Converter (RDC) integrated-circuits (ICs) are used in 

servo controllers most commonly to convert the modulated resolver signals into 
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digital speed and position measurements. One disadvantage of this hardware-based 

conversion method is that adapting the hardware of the servo controller to the 

ready-to-use RDC ICs increases the cost of the servo drive considerably. Moreover, 

different position and speed sensors may be used to provide position and speed in a 

servo system. For instance, digital encoders coupled to servo motors are widely 

used in servo applications recently. For such a servo system structure, RDC ICs on 

the hardware become useless and this approach results in less cost-effective and less 

volume-effective servo controllers. On the other hand, hardware modifications to 

remove the RDC ICs will also increase the cost when one takes mass-production 

issues into consideration. Hardware configuration management for different system 

solutions will be another expensive burden of hardware modifications. Hence, if a 

software-based method which eliminates the need for RDC ICs to realize resolver-

to-digital conversion is introduced, servo controller and servo system design and 

production costs will be reduced. Besides minimizing the costs, software-based 

RDC will enhance more flexible servo controllers since making software 

modifications is much more feasible and manageable than making hardware 

modifications.     

In recent years, digital controllers have been used widely in servo applications. This 

trend of making use of digital controllers stem from the fact that working with 

digital signals by the help of computer technology is more advantageous when one 

takes flexibility, improvability, simplicity, cost and accuracy of control systems into 

consideration. Since cost effectiveness is the key point in engineering, low-cost 

computers are of great importance in developing hardware for digital servo 

controllers. Digital Signal Processor (DSP) integrated circuits with proper 

peripherals realize these requirements in servo controllers. Digital control of 

dynamical systems also necessitates utilizing Analog-to-Digital Converters (ADC) 

because dynamical systems may have several analog interfaces. Hence, both DSP 

and ADCs are widely used in servo controllers to provide cost-effective and optimal 

performance solutions for servo system applications. Besides DSP and ADCs, servo 

controllers usually have Field-Programmable Gate Array (FPGA) chips to resolve 
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the hardware functions, for instance, to read data from digital sensors and to provide 

interface with digital input-output signals. Therefore, a digital control board used in 

a servo controller may be considered to have three fundamental components; DSP, 

ADCs and FPGA. 

Consequently, the main goal of this thesis is to develop a software-based resolver-

to-digital converter which performs the conversion by using analog-to-digital 

converters and common programmable hardware components; DSP and FPGA. The 

method will eliminate the need for RDC ICs in servo controllers and open the doors 

to more flexible and compact servo controller designs. It will also reduce design and 

production costs considerably. 

The thesis proposes a software-based method for phase sensitive demodulation of 

resolver signals using Field-Programmable Gate Array (FPGA) and ADCs. Besides 

demodulation algorithm, the thesis also makes use of estimator filters to realize 

conversion using a Digital Signal Processor. The implemented estimator filters are 

Tracking Differentiator adapted to resolver conversion, Linear Kalman filter, 

Extended Kalman Filter, Unscented Kalman Filter and a filter proposed in the 

literature. The thesis compares the said estimator filters in terms of noise 

suppression performance, tracking performance and computational complexity in 

the experimental system.  

Since the system is applied to a naval stabilized gun platform, bandwidth of 

disturbances coming from the sea is examined by the help of ocean wave spectra. 

To have a fair performance comparison between the estimator filters, an input set 

for the filters is constructed by taking system requirements, spectral analysis of 

ocean waves and noise characteristics of naval servo systems all into consideration.   

Resolver signals are susceptible to electromagnetic contamination and harmonic 

distortions. Hence, the thesis focuses on understanding the noise and harmonic 

distortions on resolver signals and disturbing effects of them on position and speed 

signals. This is important to understand the acceptable error levels in the servo 
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system resulting from the resolver. In order to minimize the disturbances coming 

from such resolver signal imperfections, the thesis proposes a mixed-signal signal 

conditioner.  

At the end of the study, stability and sensitivity analyses are also performed for the 

proposed system. 

1.3 Outline of the Thesis 

In the first chapter of the thesis, the motivation, objectives and contributions of the 

thesis are given. In the second chapter, the literature survey conducted on the 

related subjects is presented. In the third chapter, proposed software-based resolver-

to-digital converter is explained in details. The fourth chapter gives performance, 

stability and sensitivity analyses of software-based Resolver-to-Digital converter. 

The fifth chapter concludes the study and refers to the future works. Finally in 

Appendix section details related to programming and hardware are given. 
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CHAPTER 2  

 

LITERATURE SURVEY 

This chapter gives a background for the thesis study. More specifically, the first 

section of this chapter summarizes the essential components of a servo system. The 

first section is also important for performance and sensitivity analyses since it 

covers the necessary information related to servo system modeling. The second 

section of this chapter gives an insight into the ocean wave spectra from which we 

extract the bandwidth requirements for servo controllers in naval applications. The 

required bandwidth should be known to design a well-tuned system which operates 

satisfactorily in the sea environment. The third section gives some rules of thumb 

related to control system design such as sampling theorem and aliasing. The fourth 

section deals with random variables and Kalman filtering which will be necessary 

for designing the estimator filters. Lastly, the fifth section inspects the similar 

studies performed by researchers for estimation of position and speed from resolver 

signals. 

2.1 Servo System Components 

2.1.1 Servo Motors and Servo Drives 

A servo motor can be classified as AC or DC according to electrical supply, 

brushed or brushless according to its commutation and synchronous or 

asynchronous according to its slip.  The most commonly used servo motors in 

today’s servomechanisms are DC brushless and AC induction motors. They are 
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both widely used in servomechanisms with some major differences in control 

software and hardware. Contrary to general opinion, both DC brushless and AC 

induction motors are classified as AC motors and they need three phase balanced 

AC currents to operate. AC induction motor is an asynchronous motor while DC 

brushless motor is a synchronous motor.  

The rotor of a DC brushless motor includes permanent magnets that generate a 

magnetic field passing through the stator windings. This magnetic field interacts 

with the magnetic field generated by the current vector flowing within the stator 

windings. This interaction produces a torque between rotor and stator which can be 

transmitted to a rotating shaft. The current waveforms of the motor should be 

continuously updated to keep these magnetic fields’ interaction so that a smooth 

torque waveform is produced and the efficiency of converting electrical energy to 

mechanical energy is maximized. 

The induction machine has no magnets in the rotor side. It has stacked steel 

laminations forming a structure like a cage whose end points are shorted. Current 

vector in the stator windings creates a rotating magnetic field inside the motor and 

this magnetic field enters the rotor side inducing a voltage in the shorted cage 

proportional to motor’s slip rate. This induced voltage results in a current in the 

rotor which consequently generates another rotating magnetic field. Two magnetic 

fields interact with each other to produce torque between the stator and the rotor.  

Driving a DC brushless motor make it necessary to use an absolute position sensor 

whereas driving an AC induction machine requires a speed sensor. Furthermore, 

AC induction machine may be operated with sensorless algorithms. Running an AC 

induction machine without speed sensor using Kalman Filter is given in [1]. Thus, 

using an AC induction motor for a servo application may be cost-effective. 

However, using a DC brushless motor may be more convenient when efficiency, 

sensitivity and reliability issues are taken into consideration.  
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A fair comparison between AC induction motors and DC brushless motors is made 

in [4]. The paper can be summarized as following. DC brushless motors can be 

operated with almost unity power factor while the peak power factor value for an 

AC induction machine may be 85%. Moreover, DC brushless motors are more 

suitable for the applications where sensitive control of position and speed is 

required. The disadvantage of DC brushless motors is that copper, eddy and 

hysteresis losses become comparable to output power when driving the motor in 

low torque-low speed demands. This is due to the fact that DC brushless motor has 

a constant direct magnetic field density generated by the permanent magnets. This 

prevents optimizing the magnetic field density so as to minimize copper, eddy and 

hysteresis losses. On the contrary, direct axis magnetic field density can be adjusted 

by the voltage to frequency ratio in an AC induction motor. Therefore, using AC 

induction motor may be more efficient in terms of copper, eddy and hysteresis 

losses. Although having these advantages, all in all, DC brushless motor will be 

more efficient. Moreover, AC induction motors are not suitable when the aim is 

sensitive position and speed control of a servomechanism. 

In conclusion, when efficiency, sensitivity and reliability considerations are taken 

into account, using DC brushless motors will be more effective in a stabilized gun 

application since there are limited power source and high sensitivity requirements. 

A servo drive controller corrects the performance of a servo motor by using 

command and feedback signals. It is responsible for managing a servo motor to be 

able to ensure position and speed of a servomechanism. It attempts to eliminate the 

error between the command and feedback by providing servo motors with three 

phase balanced currents. 

A servo drive controller is composed of hardware components, software 

components, interfaces with command and feedback signals and power elements 

transferring power to servo motor. In general, a processor board, a gate driver 

circuitry and sensors constitute the hardware components. Processor board is 
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programmed using embedded software developing tools. Interfaces with command 

and feedback signals are provided by either analog or digital channels. Power 

MOSFETs and IGBTs are used as power elements in servo drives.  

 

Figure 2-1 Generalized structure of a servo drive controller 

In a position controlled servo drive, three control loops are used to increase the 

performance and accuracy. The main and innermost loop is reserved for torque 

control. In general, torque control is achieved using Field Orientated Control (FOC) 

technique with Space Vector Pulse-Width-Modulation (SVPWM). FOC uses 

current feedbacks and motor position to apply the right current vector so that the 

servo motor can produce torque. The loop over the torque loop is the speed loop. 

Taking command and feedback signals, speed loop regulates the speed of the motor 

by actuating the torque loop. The outermost loop in a position controlled servo drive 

is the position loop. To keep position in control, position loop induces the speed 

loop. This is the cascade control of position. Cascade control improves the 

performance of a servo system considerably [2]. 

If the aim is tracking a target, as in the case of naval stabilized gun platform, a 

position error controlled servo drive should be implemented. This is due to the fact 

that the target pointer in a fire-control system usually gives relative position of the 

target with respect to the gun. In other words, a servo drive controller used in a fire-

control system usually takes the position error between the target and the gun. In 

order to eliminate this error, it is enough that servo drive controller has the ability to 

change the speed of the gun. Since the command is already the same with the 

position error itself, there is no need for an additional position sensor.  
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Figure 2-2 Position controlled servo drive controller’s nested control loops 

 

Figure 2-3 Position error controlled servo drive controller’s structure 

Speed feedback is usually obtained from a gyro in a stabilized gun system as it 

produces an absolute speed feedback. That is to say, a gyro gives out the velocity of 

the gun with respect to earth. This makes stabilization possible even if there are 

disturbing effects coming from terrain. Velocity feedback can also be acquired from 

a resolver sensor which is widely used in servo motors. In fact, resolver sensors are 

used for commutation of servo motors and they originally give out position of the 

motor. Resolver position signal can be differentiated to form up a speed signal. 

Nevertheless, this speed signal will become a relative speed of motor rotation with 

respect to motor body. As a result, speed information obtained from resolver is not 

used in stabilization process. 
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2.1.2 Field Orientated Control of Torque 

Most of servo drive controllers designed today implement Field Orientated Control 

technique to manage torque of servo motors. Field Orientated Control eliminates 

disadvantages of classical torque control techniques by using projections which 

transfers a three phase time dependent system into a two phase time independent 

system. The disadvantages of classical control techniques are summarized in [5]. 

 Classical torque control techniques does not have three phase imbalance 

management, 

 Classical torque control techniques enforce operating with sinusoidal 

references which is so difficult, 

 Classical torque control techniques cannot prevent motor from 

uncontrollable high peak and transient currents.  

Field Orientated Control uses some projections transferring three phase time and 

speed dependent system into a two co-ordinate time independent system (rotor 

reference frame, dq frame). By implementing two transformations called Clarke 

transformation and Park transformation, the stator currents may be handled as if 

they are time and speed independent variables.  

2.1.2.1 Mathematical Model of a Permanent Magnet Synchronous 

Motor 

Before giving Park and Clarke transformations, it will be useful to examine motor 

model in rotor reference frame. An AC brushless motor can be modeled as a 

Permanent Magnet Synchronous Machine with sinusoidal flux distribution. The 

motor electrical model can be summarized by the following equation sets in rotor 

reference frame (dq frame) [6]. 

Equation in d axis: 
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di
V Ri L L p i

dt
          (2.1) 

Equation in q axis: 

q
q q q d d

di
V Ri L L p i p

dt
            (2.2) 

Torque equation: 

1.5 ( ( ) )q d q d qT p i L L i i          (2.3) 

where dV  and qV  are d and q axes voltages, R is the resistance of stator windings, 

di and qi  are d and q axes currents, dL  and qL  are d and q axes inductances,   is 

the speed of the rotor, p  is the number of pole pairs and lastly   is the amplitude 

of the flux generated by rotor’s permanent magnets in stator windings.  

The back-EMF term, p  , affects the q axis equation only. As the motor speed 

increases, qV  should also be increased to keep qi  constant at steady state. Both axes 

have speed and current dependent parasitic terms. Since dL  and qL  values are 

usually very similar, torque term can be simplified as: 

(1.5 )qT p i          (2.4) 

In conclusion, a torque control scheme should regulate di and qi  to have a smooth 

torque signal. The control signals are dV  and qV  to achieve this aim. 

2.1.2.2 Current Transformations 

[7] Clarke transformation transfers this three phase system into a two-coordinate 

orthogonal, time varying system, namely alfa and beta axes. 
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Park transformation transfers two coordinate time varying system into a time 

invariant system, namely direct and quadrature axes.  
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i i i
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       (2.6) 

Direct axis is aligned to rotor flux while quadrature axis is orthogonal to rotor flux. 

Therefore, d component is called the flux component, while q component is called 

the torque component. What we want to control are two orthogonal, time 

independent current variables, di  and qi , which are responsible for producing flux 

and torque respectively. The flux component of the current vector should be 

regulated at zero when a permanent magnet motor is used. Therefore, closed loop 

control of di  and qi  is required. Widely, a proportional-integral-derivative 

controller is used as controller due to its simplicity and reliability.  

Inverse Park Transformation takes voltages qV  and dV  in rotating reference frame, 

and gives orthogonal components alfaV  and betaV , the voltage vectors in rotating 

reference frame. Following equations describe the Inverse Park Transformation: 

cos sin

sin cos

alfa d q

beta d q

V V V

V V V

 

 

 

 
       (2.7) 

2.1.2.3 Space Vector Pulse Width Modulation 

Motor terminal voltages, qV  and dV  are realized by help of Space Vector Pulse-

Width-Modulation (SVPWM) and a PWM inverter. SVPWM calculates necessary 

duty-cycles to generate gate switching signals for power elements in the inverter 
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structure. The inverter transfers power from bus bar to servo motor by switching in 

accordance with these gate switching signals. SVPWM technique minimizes 

harmonic contents of sinusoidal phase voltages applied to servo motor [8]. 

Minimum-harmonic-content sinusoidal phase voltages also minimize copper, eddy 

and hysteresis losses of servo motor. Implementation of SVPWM with a software 

switched pattern is explained in a detailed way in [9]. 

2.2 Ocean Wave Spectra and Servo Drive Bandwidth Requirements 

In a servo drive application, bandwidth of speed and torque loops should be 

adjusted such that it covers the frequency spectrum of whole disturbing effects 

coming from terrain and servomechanism itself.  For a naval system, frequency 

spectrum of external disturbances can be explained using ocean wave spectra. This 

is due to the fact that external disturbances in a naval system are dominantly 

originated from sea surface waves. Since the main goal of a naval stabilized gun 

system is to stabilize its gun at sea, the bandwidth of the servo drive system should 

be fixed by taking sea wave spectrum into consideration. There are also some 

internal disturbances caused by several effects within the system. Internal 

disturbances generally affect the torque loop performance. Hence these effects will 

not be handled in the thesis. 

Surveying ocean wave spectrum is a way to describe the external disturbances in a 

naval stabilized gun system. Using an idealized spectrum, required bandwidth of 

speed loop can be found so that servo drive can compensate for disturbances 

coming from sea. One of these idealized spectrums is the Pierson & Moskowitz 

Spectrum proposed in 1964. [10] 

Firstly, a definition of fully developed sea should be made. Surface waves stem 

from the wind. When the wind blows for a long time over a sea which is deep and 

large enough, surface waves start to move in accordance with the wind.  If a sea 

satisfies these criteria, it is called as a fully developed sea. Pierson & Moskowitz 

Spectrum is defined for a fully developed sea. Another concept is the developing 
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sea concept. A sea which has not yet reached steady state with the wind is called a 

developing sea. Searching for Joint North Sea Wave Observation Project 

(JONSWAP), Hasselman et al., (1973), claimed that wave spectrum is never fully 

developed and changes continuously with time and distance. Then a new spectrum, 

JONSWAP spectrum is formed. Although proposal of Hasselman disproves the 

Pierson-Moskowitz Spectrum of a fully developed sea, two spectrums are very 

similar except for the fact that for JONSWAP spectrum the wave energy increases 

with time and distance from a lee shore (called fetch in mathematical derivations of 

the JONSWAP spectrum) [10].  

 

Figure 2-4 Pierson-Moskowitz sea spectrum with respect to wind speed [10] 
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Figure 2-5 JONSWAP sea spectrum with respect to fetch when a constant speed 

wind is present [10] 

The theory also explains how ocean waves are generated by the wind. A summary 

can be found in [10].  

The bandwidth of ocean waves can be located from Pierson & Moskowitz sea 

spectrum. It is obvious that disturbances coming from sea will be at frequencies 

lower than 0.5 Hz. Nevertheless, it does not mean that the bandwidth of the speed 

loop should be 0.5 Hz. That is to say, servo drive should be able to reject speed 

disturbances coming with a frequency of 0.5 Hz without showing excessive phase 

shift. Otherwise, excessive delay in servo loop will decrease the performance. 

Besides, servo loop approaches to instability as the delay increases. Hence, for a 

stable and reliable control, each constituent of the servo loop should show a 

minimum delay within the sea spectrum.  

2.3 Sampling Theorem and Aliasing 

A control system designer should always be aware of the sampling theorem. The 

sampling theorem implies that sampling frequency of an analog signal should be 
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chosen as Ws>2Wmax, also known as Nyquist criterion, where Wmax is the highest-

frequency component present in continuous time signal. However, practical 

considerations on the closed loop system generally make it necessary to sample at a 

frequency much higher than 2Wmax. Usually, Ws is chosen to be 10Wmax to 20Wmax 

[11]. 

Low sampling frequency results in the folding effect (aliasing) in frequency spectra. 

The folding effect is defined as the overlap in the frequency spectra if the sampled 

analog signal has components whose frequency is higher than Ws /2. If the sampling 

frequency is not twice the full bandwidth of the continuous time signal, a folding 

error is present in the discrete time signal. The periodicity of the sampled signal 

may be represented by the formula: 

*( ) *( ),   k=1,2,3..sX s X s jW k        (2.8) 

 

Figure 2-6 Aliasing in sampling [10] 

In general, signals in control systems have high-frequency components. For 

instance, in a servomechanism, high-frequency noise on analog channels will 

always exist. As a result, a folding error will appear in the frequency spectra of 

discrete time signal unless the analog signal is sampled at twice the bandwidth of 

noise.  

In order to avoid aliasing, we must either choose the sampling frequency high 

enough or use an anti-aliasing filter to filter out the high-frequency components of 
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the continuous time signal [11]. Since it is not applicable to increase the sampling 

frequency, using an anti-aliasing filter may be a more applicable solution to aliasing 

problem. An analog low pass filter can be used as an anti-aliasing filter.  

In practice, continuous-time to discrete-time conversion of a signal is realized using 

Analog-to-Digital converters (ADCs). When an analog signal is digitalized via an 

ADC, some other concepts should also be considered such as resolution, accuracy, 

quantization error, nonlinearity and aperture error.  

 

Figure 2-7 Anti-aliasing filtering and analog-to-digital conversion 

2.4 Estimation and Kalman Filtering 

Estimation is the calculated approximation of a signal when it is not precisely 

known or it is incomplete or uncertain. In engineering applications, for instance 

obtaining time derivative of a noisy signal, estimation is of great importance 

because it removes the necessity of direct differentiation which is noise 

amplification in other saying. Kalman filter with its various forms is an 

indispensable estimation tool widely used in engineering applications. 

In this section, firstly, noise characteristics of a random variable will be studied and 

the borders between white noise and colored noise will be drawn. Then, discrete 

time Kalman filter approach will be studied for linear systems. Finally, Extended 

Kalman filter and Unscented Kalman filter approaches for nonlinear systems will be 

investigated.  
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2.4.1 Characteristics of Random Variables 

A random variable is a variable whose value is not exactly known before the 

process actually runs. For instance, noise on the analog channel of a system is a 

random variable whose value cannot be known exactly but can be expressed with a 

mean and variance by help of statistical data. Hence, random variables can be 

expressed by some probability laws. Moreover, some probability density and 

distribution functions can be written based on the statistical data collected for them. 

The most common probability distribution function seen in nature is the Gaussian 

distribution.  A random variable is called as Gaussian if it has a probability density 

function expressed by the formula: 

2
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      (2.9) 

In this formula,   is the mean and 2  is the variance. A Gaussian distribution with 

zero mean will have a peak at zero point in its probability density plot. This shows 

that, the expected value of this random variable is zero. Variance of a Gaussian 

distribution, which is square of standard deviation, informs us about the possible 

deviations of the random variable from its mean.   

When a random variable, for instance process noise or measurement noise in a 

dynamical system, is independent of its past and future values for all time, this 

random variable is named as white noise. If a random variable does not satisfy 

above condition, it is a colored noise. The power spectrum of a random variable 

which is defined as the Fourier transform of the autocorrelation determines the color 

content of the random variable.  The Wiener-Khintchine equations show the relation 

between the Fourier transform and the autocorrelation function for a continuous 

time system. 
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For the discrete domain these equations may be stated as follows: 
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Mathematically speaking, a white noise will have equal power at all frequencies in 

both continuous time and discrete time domains. A continuous time white noise will 

have an autocorrelation function given by the expression: 

( ) (0) ( )R R           (2.12) 

In this expression, ( )   is the continuous-time impulse function. Similarly, a 

discrete time white noise will have an autocorrelation function given by the 

expression: 
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Therefore, power spectrum expression for a continuous time white noise process 

will be: 

( ) (0) for all wS w R         (2.14) 

For a discrete time white noise process it will be:  

2( ) (0) ,  [ , ]S w R w            (2.15) 



23 

 

This implies that a white noise will have constant power at all frequencies. Another 

concept is uncorrelated noise. An uncorrelated noise vector implies that the 

elements of the vector are uncorrelated with each other resulting in a diagonal 

covariance matrice of the form 
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This section gives some introductory information about a Gaussian, white and 

uncorrelated random variable. This is important to understand the conditions under 

which the Kalman filter shows its optimal performance. More information about 

random variables is revealed in a great detail in [12].  

2.4.2 Kalman Filtering 

Estimating state of a linear system is a common problem for most of engineering 

disciplines. Kalman filter is a tool that solves this problem optimally for linear 

systems. Any linear system can be expressed by the equations: 

1 1 1 1k k k k k k

k k k k

x F x G u w

y H x v
     

 
       (2.17) 

In these representations of dynamical system, x  is the state of the system, u is the 

input to the system, y  is the output of the system, w  is the process noise and v  is 

the measurement noise. Since process noise and measurement noise are random 

variables, the estimate of the state will also be a random variable.  Hence, error 

between the estimate and the actual state is also a random variable. What Kalman 

filter does is to minimize expected value of this random variable while estimating 

the state at each time when a new output data of the system is available.  
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When process noise and measurement noise are both Gaussian, zero-mean, white, 

and uncorrelated, Kalman filter is the best linear estimator for the estimation 

problem. Although there is an open door of designing nonlinear filters showing 

better performance, the best linear solution of the estimation problem is the Kalman 

filtering. For the cases when process noise and measurement noise are not Gaussian, 

Kalman filter still gives out the optimal linear solution even though some nonlinear 

ways of getting better performance may still exist [12]. 

2.4.2.1 Discrete Time Kalman Filter 

The discrete time Kalman filter has two update processes for each time step called 

time update and measurement update. In the time update step, a priori estimate of 

the state is made based on the system dynamics already known without using the 

measurement at that time step. After calculating priori state estimate, time update 

step for calculation of priori estimation error covariance is applied. In the 

measurement update process, measurement is taken into account to form up 

posteriori state estimate and estimation error covariance. Measurement update 

process makes it necessary to calculate a gain matrice called Kalman filter gain. 

Kalman filter gain is calculated to correct the priori state estimate and estimation 

error covariance taking the measurement into account.  

Any system can be formulated in state-space form using state and output update 

equations and noise processes: 

1 1 1 1

{ }

{ }

{ } 0

k k k k k k

k k k k

T
k j k kj

T
k j k kj

T
k j

x F x G u w
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E w w Q

E v v R

E w v





     

 







       (2.18) 

In the above formulation, w  is process noise and v  is measurement noise.   is 

Kronecker delta function. Noise processes are white, zero-mean, uncorrelated 
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processes and their covariance matrices kQ and kR  are known. Then the algorithm 

[12] may be summarized as follows: 

1. The first step is the initialization of the Kalman filter. 0x  is the best estimate 

of initial state of system.  0P  is the uncertainty in estimating the initial state 

of the system.  

 0 0

0 0 0 0 0

( )

{( )( ) }T

x E x

P E x x x x



  



  
      (2.19) 

2. The following equations should be evaluated at each time step when a new 

output data of the system is available. 

 Priori estimation error covariance:   

 1 1 1 1
T

k k k k kP F P F Q 
          (2.20) 

 Kalman filter gain:    

 1( )T T
k k k k k k kK P H H P H R        (2.21) 

 Priori state estimate:   

 1 1 1 1k k k k kx F x G u 
          (2.22)  

 Posteriori state estimate:  

 ( )k k k k k kx x K y H x          (2.23) 

 For posteriori estimation error covariance, there are three different 

expressions defined in literature two of which are given here: 
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There are two types of covariance measurement update equations. The first type 

Joseph stabilized covariance measurement update equation which guarantees kP  to 

be symmetric positive definite as long as the initial covariance is symmetric positive 

definite. Although the second form is the simplest in terms of computational 

burden, it does not guarantee symmetry and positive definiteness [12]. 

In real time applications, Kalman filter gain can be calculated offline to save 

computational effort due to the fact that Kalman gain is not dependent on 

measurements and system dynamics does not change with time for a linear time-

invariant system. As a result, Kalman gain can be calculated using only system 

parameters ( , , , ,F G H R Q ) which are known before the system actually runs [12]. 

Although Kalman filter is derived for linear systems, it can be expanded to 

nonlinear systems. This will be very useful because most real systems show 

nonlinear dynamics. Using first order Taylor series expansion for linearization, 

Extended Kalman filter is a way of estimation in nonlinear systems. However, it is 

not the only way. Another way of estimation in nonlinear systems is Unscented 

Kalman filter which uses Unscented Transforms to transfer Gaussians through 

nonlinear system dynamics.  

2.4.2.2 Extended Kalman Filter 

Most of real systems have nonlinear dynamics. To be able to estimate the states of a 

nonlinear system using a discrete time Kalman filter, we should first discretize the 

system dynamics.  

Any nonlinear system can be formulated by the following system equations: 
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       (2.25) 

In (2.25), w  is process noise and v  is measurement noise. Noise processes are 

white, zero-mean, uncorrelated processes and their covariance matrices kQ and kR  

are known. Then the discrete time extended Kalman filter algorithm can be 

summarized [12] by the following equations: 

1. The first step is the initialization of the Kalman filter. 0x  is the best estimate 

of initial state of system.  0P  is the uncertainty in estimating the initial state 

of the system.  

 0 0

0 0 0 0 0

( )

{( )( ) }T

x E x

P E x x x x



  



  
      (2.26) 

2. The following equations should be evaluated at each time step when a new 

output data of the system is available. 

 Partial derivatives of 1kf   with respect to state and process noise are 

evaluated around posteriori estimate of state. 
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 Time update of the state estimate and estimation error covariance is 

carried out. 
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 Partial derivatives of kh  with respect to state and measurement noise are 

evaluated around priori estimate of state. 
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 Measurement update of the state estimate and estimation error 

covariance is carried out. 
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Extended Kalman filter gain cannot be calculated offline due to the fact that 

Kalman gain is dependent on partial differentiations at each mean point. Therefore, 

Extended Kalman filter seems to need more computational effort while running in 

real-time. 

2.4.2.3 Unscented Kalman Filter 

Extended Kalman Filter approximates nonlinear system functions using Taylor 

series expansion for transformation of Gaussian signals. However, Taylor series 

expansion is not the only way to perform this transformation through the nonlinear 

system dynamics. There is one more way which may give better results. It is the 

Unscented Transform. In this section of the thesis, a summary of the Unscented 

Kalman filter from [13] will be given. 

Unscented Kalman Filter makes use of Unscented Transform to linearize nonlinear 

system functions. Let us assume we have a nonlinear function called f. The first step 

of linearization is to extract sigma points from the Gaussian signal and calculate the 

weights corresponding to these sigma points. For an n-dimensional Gaussian signal, 
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there will be 2n+1 sigma points which are located at mean and two points 

symmetrically chosen with respect to the mean.  

The equations to choose sigma points for a Gaussian ( , )N   are given as: 

0

( ( ) ),   for i=1,..,n

( ( ) ),   for i=n+1,..,2n

i

i

X

X n

X n



 

 



   

   

     (2.31) 

In (2.31), 2 ( )n n      and parameters  and  determine the locations of the 

symmetrical sigma points. For each sigma point, there exist two weights which are 

calculated according to the following rules: 
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The parameter   is optimally 2 when the distribution is an exact Gaussian. In the 

second step, sigma points should be passed through nonlinear function  f.  

( )i iY f X          (2.33) 

The third and final step of the unscented transform is to calculate new mean and 

covariance parameters of resulting Gaussian. The parameters can be calculated from 

the equations: 

2
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The system equations of a nonlinear system can be expressed as follows: 

( 1) ( ( ), ( ), ) ( )

( ) ( ( ), ) ( )

x k g x k u k k w k

y k h x k k v k

  
 

      (2.35) 

In the above given expression, w  is the process noise and v  is the measurement 

noise. Noise is white, zero mean and uncorrelated. A summary of the Unscented 

Kalman Filter algorithm is given below. 

 The inputs for the algorithm are 1t  , 1t , tu  and tz . In the first step, 

sigma points are extracted from the previous estimate and estimation 

error covariance. 

 1 1 1 1 1 1( )t t t t t tX                  (2.36) 

 Calculated sigma points are passed through the nonlinear function g with 

the input tu . 

 *
1( , )t t tX g u X        (2.37) 

 Mean and variance parameters are calculated from the sigma points. 
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    (2.38) 

 A new set of sigma points are extracted and passed through the nonlinear 

function h. 
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 Using these new sigma points, prediction *
tz   and uncertainty tS  is 

calculated. 
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 Cross covariance between state and observation is calculated. 
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 The Kalman gain is calculated using cross covariance matrix. 

 , 1x z
t t tK S          (2.42) 

 Finally, estimation update is completed by calculating the parameters t  

and t . The outputs of the algorithm are the parameters t  and t . 
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      (2.43) 

Unscented Kalman Filter makes use of Unscented Transform to transform Gaussian 

signals through the nonlinear functions. The algorithm is more complex compared 

to the Extended Kalman Filter which uses only the first order term of Taylor series 

expansion. Although, asymptotic complexity seems to be the same when UKF and 

EKF are compared, in fact, the EKF is faster in practical applications. Although 

estimation performance of UKF is better than that of EKF generally, in most 

practical applications EKF and UKF show very similar performance [13].  

However, if the system has intensive nonlinearities, EKF may generate unreliable 

estimates [25]. In that case, using UKF will upgrade the estimation performance 



32 

 

considerably. One more advantage of UKF is that, it does not require differentiation 

of nonlinear functions. It is a differentiation-free nonlinear estimator [12]. 

2.5 Resolvers and Resolver-to-Digital Conversion 

Resolvers have been used to sense angular position in industrial and military 

applications for nearly 50 years. It is a cost-effective and robust position sensor 

which can be used in challenging environments due to its simplicity, durability and 

reliability. A resolver is simply a rotating transformer. When excited with an AC 

signal through the reference inputs, it gives out two outputs called sine output and 

cosine output. They are named with these names because amplitudes of them are 

proportional to sine of rotor position and cosine of rotor position respectively.  

These two signals together are named as resolver format voltages [14]. The signals 

can be expressed mathematically as: 

 Reference input:  sinA wt  

 Sine Output:   sin sin  AB wt  

 Cosine Output: cos sin  AB wt  

  is angular position of the motor, w  is the excitation frequency, A  is the excitation 

amplitude and B  is the transformation ratio of the resolver. 

 

Figure 2-8 Resolver and resolver signals 
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Resolvers make interface electronics necessary to get a digital angular position 

measurement. This interface electronics converting resolver format voltages into 

meaningful digital data is called as Resolver-to-Digital converter. There are 

different types of Resolver-to-Digital converters available in the market. However, 

the most effective types are tracking type Resolver-to-Digital converters [14]. The 

advantages of the tracking type converters over other type converters are: 

 Ratio metric Operation 

 Noise Immunity 

 Instant Digital Data 

 Velocity voltage outputs. 

Besides the advantages of tracking type Resolver-to-Digital converters, there are 

still some problems with this type of converters. These problems [14] are 

summarized as follows: 

 Digital output lags actual position during acceleration. 

 Flickering exists when the digital data is not an exact representation of the 

input angle. 

 Common and differential phase shifts and distortions on the resolver 

format voltages may affect the performance of the conversion badly and 

result in noisy speed and position signals. 

 Speed voltages exist on the resolver format voltages which deteriorate the 

conversion performance. 

To eliminate these disadvantages, many methods are described in the literature. The 

inspected methods are handled in the next section.  
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2.5.1 Resolver-to-Digital Conversion Methods Proposed in the 

Literature 

Acquiring velocity information from noisy position data is a known problem on 

which researchers have been studying consistently for decades. Therefore, literature 

includes so many investigations dealing with this problem. The main idea behind 

these investigations is the same and can be summarized by the expression that 

engineers designing servomechanisms want to know time based derivative of a 

system parameter. This is unavoidable especially in the cases when derivative of a 

system parameter is also another system parameter to be controlled.  

Resolver is an indispensable position sensor for servo applications due to its 

simplicity, robustness and reliability. Resolver gives out position information by 

amplifying an AC input signal so that it generates two amplitude modulated AC 

signals as outputs which are named as resolver format voltages. The first amplitude 

modulated signal carries the information of cosine of the angular position while the 

second one carries the information of sine of the angular position. Therefore, what 

the engineers should do is to extract position information and estimate velocity 

information from resolver format signals.  

 

Figure 2-9 Resolver format signals as motor rotates 
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Literature survey performed on resolver-to-digital conversion give rise to a useful 

knowledge about the conversion process. A summary of literature survey performed 

on resolver conversion is given in this section.  

Sarma, Agrawal and Udupa have developed a software based Resolver-to-Digital 

converter using a DSP based reference generator [15]. Since the reference 

frequency changes from resolver to resolver, software based reference generator 

implies a more flexible Resolver-to-Digital converter which can be used with any 

resolver. Demodulation of resolver format voltages is made using synchronous 

amplitude demodulation technique. They sampled resolver format voltages at the 

peaks of reference signal. After demodulation, they used a look-up-table including 

arctangent values for a complete 360° rotation in order to get the position 

information from sine and cosine envelops. Although results show a good 

performance in position estimation, velocity estimation problem is not dealt in the 

paper. Hence, the method can be seen as a trigonometric calculator rather than an 

estimator. Similar solutions are given in [16, 17, 18]. 

Harnefors [2] used a Linear Kalman Filter structure to estimate position and speed 

from noisy resolver format voltages. He used dq transformation matrice to have a 

steady-state Discrete Time Algebraic Riccati equation so that Kalman filter gain 

matrice could be calculated offline before the system actually runs. This results in a 

reduction in computational burden. Furthermore, in the study, he has formed up the 

system model in such a way that the acceleration error present in a tracking resolver 

conversion process is eliminated.  

Bellini and Bifaretti [19] used a Discrete Time Kalman filter with a Phase Locked 

Loop based filter to estimate position and speed of a resolver. Since a PLL structure 

is implemented, using a Steady State Linear Kalman filter becomes sufficient for 

estimation. Furthermore, this model of system was formed up so that the filter can 

also perform an estimation of the acceleration. Therefore, the outputs of the filter do 

not lag the actual state even if acceleration is present in the motion. Moreover, it is 
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stated that by the help of the filter, noise on the speed output is reduced compared to 

other methods.  

Kaewjinda and Konghirun [20] implemented digital version of a classical tracking 

type Resolver-to-Digital converter using a Digital Signal Processor. The algorithm 

is confirmed in a vector controlled drive system of a Permanent Magnet 

Synchronous Machine. Moreover, offset calibration of resolver is made to eliminate 

offset errors in angle sensing. They also introduced a digital tracking type Resolver-

to-Digital converter with a hardware error calculation algorithm [34].  Both 

structures they introduced are very similar to tracking type resolver-to-Digital 

converters except for the fact that the algorithms are implemented in a Digital 

Signal Processor.  

Harnefors and Nee [21] designed a nonlinear observer for resolver-to-digital 

conversion process. Actually, the observer is a generic type observer that can be 

adapted to several processes. For instance, the observer can be used for estimating 

speed and position of a PMSM using fundamental excitation. The same algorithm 

may also be used for saliency and signal injection to estimate position of a PMSM 

with different d and q axes’ inductances. Lastly, the algorithm can also be employed 

for resolver position and speed estimation process. The algorithm makes use of a 

nonlinear observer whose structure can be configured according to one of the above 

described processes. The study also includes stability and noise analyses of the 

proposed filter. The analyses are very useful from the view of practical 

implementations. 

Lastly, Murray and Li designed a digital tracking resolver-to-digital converter in 

[22]. The converter makes use of a hardware error calculation scheme and a DSP 

IC, namely, TMS320C14. The converter is simply a digitized version of the 

classical tracking type RDC. The proposed method utilizes a hardware component 

to realize the error calculation and a DSP to implement the tracking loop.  
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2.5.2 Tracking Differentiators 

Pure differentiation is known as to amplify the noise level on a discrete time signal. 

Another way of obtaining time-based derivative of a signal without amplifying the 

noise is the tracking differentiation. Not originally proposed for resolver-to-digital 

conversion, when adapted to this process, the tracking differentiator may perform a 

good performance. Hence, the filter is adapted to the resolver conversion process in 

Chapter 3 and some introductory information about the method is given in this 

section.   

Gao inspected discrete time differentiators in terms of tracking performance [23]. 

The inspected differentiators include linearized approximations of pure 

differentiation as first order approximation and second order approximation; 
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Gao also inspected tracking differentiator in the form; 
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      (2.46) 

In above given representations of Tracking Differentiator, v  is the input, 1x  and 2x  

are the filter states and R  is the filtering parameter of the tracking differentiator. 

This is a simplified form of tracking differentiator. Gao also examined Robust 

Exact Differentiator (RED) introduced in [24]. The paper includes the comparison 

test of the above mentioned differentiation methods. The performances of four 

different differentiators are compared to true derivative which is set as step response 
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of a second order system. It is underlined that a white noise of 10% is added to 

signal before differentiation. The performances of the differentiators with respect to 

the true derivative are shown in Figure 2.12. 

 

Figure 2-10 Comparative test results for implemented differentiators in [23] 

Gao concluded that Tracking Differentiator has the best performance. Second order 

approximation’s performance is also good while first order approximation and 

Robust Exact Differentiator performed poorly.  

Consequently, the Tracking Differentiator is a successful means of differentiation in 

discrete domain. Since it uses a simple nonlinear function, it is practical in terms of 

computational complexity. It needs neither the system model nor the noise model. 

The tracking differentiation is described in details in [25] and [26].  

2.6 Conclusion of the Literature Survey 

In order to help the reader to have an insight into the proposed system and 

performed performance, stability and sensitivity analyses, a comprehensive 

literature survey covering all related subjects is given in this chapter. In this section, 
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a conclusion made on the resolver-to-digital conversion methods proposed in the 

literature will be given rather than a conclusion covering the entire chapter.  

The methods proposed in [15], [16], [17] and [18] are trigonometry-based methods. 

Hence, they perform the conversion by using various trigonometric functions in an 

open-loop structure which yield more noisy resolver position signals compared to 

the closed-loop structures. What is more is that since they use open-loop structures, 

they cannot produce speed signals, which is a serious drawback of them.  

The method proposed in [2] makes use of a linear Kalman filter by linearizing the 

resolver conversion process by the help of dq transformation matrices. This method 

has some advantages such as giving out speed estimate and having zero acceleration 

error. Actually, the filter proposed in [19] is very similar to the filter proposed in [2] 

from practical point of view. A similar method is also designed and implemented in 

the thesis study by making use of “one step Kalman filter equations”. 

Methods proposed in [20] and [22] are similar methods both of whom implement a 

digital version of type 2 tracking resolver-to-digital converter. This converter 

structure possesses a drawback which is lagging under acceleration. 

The filter proposed in [21] makes use of a structure in the form of a nonlinear 

observer and this structure is already realized as a part of the thesis and its 

performance is compared to other implemented filters.  

The aforesaid studies in the literature solve the problem of designing a software-

based resolver-to-digital conversion partially since the proposed filters make use of 

demodulated resolver signals. That is to say, the studies in the literature propose 

methods for neither demodulating resolver signals nor minimizing the resolver 

signal imperfections. Hence, intended to eliminate this deficiency of the literature, 

the thesis forms a complete solution for the problem of software-based resolver-to-

digital conversion. For this purpose, besides the estimation algorithms, the proposed 

system has a software-based demodulator to realize the demodulation of resolver 
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signals and a signal conditioner to minimize the disturbances coming from resolver 

signal imperfections. Moreover, the thesis introduces novel methods for estimation 

of position and speed from demodulated resolver signals such as Extended Kalman 

filter, Unscented Kalman filter and Tracking Differentiator approaches. 
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CHAPTER 3  

 

DEVELOPMENT OF A DSP-FPGA-BASED 

RESOLVER-TO-DIGITAL CONVERTER 

3.1 Proposed Resolver-to-Digital Converter 

Resolvers have been used to sense angular position in industrial and military 

applications for nearly 50 years. It is a cost-effective and robust position sensor 

which can be used in challenging environments due to its simplicity, durability and 

reliability. Resolvers require an electronics interface which is named as resolver-to-

digital converter for converting resolver signals into digital position and speed 

measurements. Since the proper current vector applied to a servo motor is 

calculated using motor shaft position, resolver-to-digital converter is the heart of a 

servo controller when servo motors coupled to resolver sensors are present in the 

servo system. 

A resolver sensor is simply a rotating transformer. Excited by a high frequency 

reference signal, the resolver sensor gives out two signals which are named as 

resolver format signals. Resolver format signals carry the shaft position information 

through differential channels and at the end of these channels a resolver-to-digital 

converter waits to convert resolver format signals into digital angular position and 

angular velocity signals.   
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Figure 3-1 Resolver and resolver signals 

The reference input of the resolver is excited by an AC voltage whose fundamental 

frequency is w  rad/s; 

 Reference input:  sin wt  

Then, the rotor windings will modulate the reference voltage as sine and cosine 

functions of resolver position; 

 Sine Output:   sin sin  wt  

 Cosine Output: cos sin  wt  

where   is angular position of the resolver rotor with respect to resolver stator and 

w  is the reference signal’s frequency (carrier frequency of resolver signals) in 

rad/s. Utilizing the resolver signals, a resolver-to-digital converter (RDC) estimates 

resolver position ( ) and resolver speed  d
dt

 .   

The block diagram of the software-based resolver-to-digital converter proposed in 

the thesis is shown in Figure 3-3. The important parameters related to the converter 

such as sampling rate and signal frequencies are also given in Figure 3-3. The 
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proposed RDC is implemented in the stabilized gun platform system seen in Figure 

3-2.  

 

Figure 3-2 ASELSAN’s stabilized gun system STAMP on a STEWARD platform 
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Figure 3-3 Proposed RDC and details related to implementation of it in real-time 

(R.S. in the block diagram stands for “Realized System”) 

3.1.1 Components of the Proposed RDC 

Resolver signals may be contaminated by high-frequency noise and distorted due to 

disturbances coming from both transmission channels and resolver sensor itself 

(section 3.2). In order to minimize and/or eliminate the deteriorating effects of 
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resolver signal imperfections on RDC’s performance, analog anti-aliasing filters 

and digital filters are utilized in the proposed structure. 

The proposed system has three analog-to-digital converters (ADCs) to digitize three 

resolver signals (section 3.2.3.2). Before the digitization, three anti-aliasing filters 

are used to minimize the high-frequency distortions and noise present in resolver 

signals (section 3.2.3.1). After sampling, digital interpolation filters, implemented 

in the Field-Programmable Gate Array (FPGA), reconstruct the resolver signals 

from sampled signals (section 3.2.3.2). In order to eliminate the low-frequency 

harmonic distortions and DC offset present in the reconstructed resolver signals, 

digital high-pass filters are also implemented in the FPGA (section 3.2.3.3).  

The core of the proposed RDC is the estimator filter that estimates the resolver 

position ( ) and speed  d
dt

  from the demodulated resolver signals, namely 

sin  and cos  signals (section 3.4). Hence, to provide the estimator filter with 

sin  and cos  signals, the proposed RDC also has a phase-sensitive demodulator 

implemented in FPGA (section 3.3).   

3.1.2 Forming the System Structure for the Proposed RDC 

DSP and FPGA, both having advantages and disadvantages, actually they are not 

competitors but they may be complementary parts of an efficient system. Floating-

point tasks with lower sampling rates and increased arithmetic complexity suit the 

DSP more whereas fixed-point arithmetic tasks with higher sampling rates and 

repetitive behavior suit the FPGA more. For instance, realizing a floating-point 

multiplier in FPGA is unreasonable since it will cover much area (logic gates) in 

FPGA while DSP’s Central Processing Unit (CPU) with its highly-developed 

arithmetic sub-units will realize the operation with a little effort. On the other hand, 

FPGA can handle high-frequency data streams easily where DSP cannot handle 

them efficiently. As a result, in the proposed system, software components that 

require higher sampling rates are embedded into the FPGA whereas software 
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components that have higher arithmetic complexity are embedded into the DSP. 

Table 3-1 shows the assignments of the components. 

Table 3-1 Forming system structure 

Component Sampling Frequency 
Arithmetic 
Complexity Destination 

Interpolation Filter 768 kHz Low FPGA 
High-Pass filter 768 kHz Low FPGA 

Demodulator 768 kHz Low FPGA 
Estimator filter 10 kHz High DSP 

3.2 Resolver Signal Imperfections and Filtering Resolver Signals to 

Improve Resolver-to-Digital Conversion Accuracy 

In this section, resolver signal imperfections are investigated and their disturbing 

effects on the performance of the software-based RDC are analyzed both 

mathematically and numerically. Then, the signal conditioner designed to minimize 

these disturbing effects are explained in details. The improvement made in resolver 

conversion performance is also presented with test results.  

3.2.1 Resolver Signal Imperfections - Low and High Frequency 

Harmonic Distortions in Resolver Signals 

The Fast Fourier Transform (FFT) analysis performed on pure resolver signals has 

shown that resolver signals have harmonic distortion components within a wide 

frequency spectrum. Comparing the harmonic components’ frequencies with the 

Nyquist frequency of the system, we can divide resolver signal imperfections into 

two main groups. Low-frequency harmonic components whose frequency spectrum 

is below the Nyquist frequency form up the first constituent of the imperfections in 

resolver signals. These components can be eliminated in digital domain since they 

do not result in misinformation by aliasing. High-frequency harmonic components 

and very-high-frequency noise whose frequency spectrum lies above the Nyquist 
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frequency are the second constituents of resolver signal imperfections. It is 

concluded that this type of components should be eliminated using analog pre-

filters in front of digitization in order not to result in misinformation by aliasing.   

From the sampling theorem, we know that the frequency components exceeding the 

Nyquist frequency will be folded in the digitized signal and they will be seen as 

lower frequency signals. FFT analysis of resolver signals shows that there is also 

substantial amount of low-frequency distortions and DC offset in resolver signals. 

Figure 3-4 shows the result of the FFT analysis of the resolver sine signal when the 

resolver rotor position is 90° (i.e. FFT analysis of sin sin wt  where / 2  ). 

 

Figure 3-4 Pure resolver signal sin( / 2)sin wt  (blue signal) and its FFT (red 

signal) 

When Figure 3-4 is examined closely, it is observed that pure resolver signals have 

harmonic distortion components at frequencies kw  where 0,2,3,4,5k   and w  is 

the fundamental frequency (w=2πf and f=5000 Hz in the experimental system). The 

amplitudes of the harmonic distortion components in the realized system are 

measured as given in Table 3-2.  
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Table 3-2 Distortion levels in pure resolver signals normalized to fundamental 

component 

Component Type Frequency 

Magnitude 

dB % 

Low-frequency Distortion DC offset -23.6 6.66 

Fundamental Component 5 kHz 0 100 

High-frequency 
Distortions 

10 kHz -38 1.26 

15 kHz -33.6 2.09 

20 kHz -43.6 0.66 

25 kHz -39.6 1.05 

High-frequency Noise >>25 kHz <<-40 <<1 

3.2.2 Disturbing Effects of Resolver Signal Imperfections on Software-

Based Conversion Performance 

The misinformation in frequency spectrum due to aliasing will deteriorate the 

conversion performance and cause an error in position estimation which is called as 

position estimation error. Furthermore, not only aliasing components but also low-

frequency harmonics and DC offset will cause error in position estimation. 

From the sampling theorem, we know that the frequency component at 

'sf nf f  , where sf  is the sampling frequency and n is an integer, will appear in 

the sampled signal as if there is a frequency component at 'f f . An example 

from the experimental system may be that the frequency component at 10 kHz will 

appear as a frequency component at 5.4 kHz after sampling process since the 

sampling rate is 15.4 kHz. Table 3-3 shows the aliases of the frequency components 

present in resolver signals in the experimental system.  
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Table 3-3 Aliases of the resolver signals’ components in the experimental system 

where the Nyquist frequency is 7.7 kHz 

Aliasing Actual Frequency Seen as 

No aliasing since 
f<7.7 kHz 

DC DC 
5 kHz 5 kHz 

Aliasing occurs since 
f>7.7 kHz 

10 kHz 5.4 kHz 
15 kHz 400 Hz 
20 kHz 4.6 kHz 
25 kHz 9.6 kHz 

The following analysis proves the disturbing effects of harmonic distortions on the 

software-based conversion performance. We can start the analysis by modeling a 

resolver signal with harmonic distortion components. The distorted sine signal will 

be 

2

sin sin sin( )
k N

k k
k

wt C kwt D 




    
 

      (3.1) 

The term sin sin wt  in (3.1) stands for the actual resolver sine signal. Hence,   is 

the resolver position and w  is the fundamental frequency in rad/s ( 2w f  and 

f=5 kHz). The term 
2

sin sin( )
k N

k k
k

C kwt 




  represents the high-frequency 

harmonic distortions where kC  represents amplitudes of the harmonics and k  

represents phase angles of them. Lastly, the term sinD   is for the low-frequency 

harmonics which are modeled using a DC offset neglecting other components. 

The discrete model of the resolver signal when aliasing is taken into account will be 

* * *

0

sin sin( ) sin( ) sins k k s k
k

wnT C w nT D  




       (3.2) 
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where sT  is the sampling period and snT  represents the sampling instants on time 

axis. *
kC  , *

k  and *
kw  are magnitudes, phase angles and frequencies of the aliases 

respectively.  

The sampled signal will be demodulated by phase-sensitive demodulator which can 

be modeled as a half-period integrator from 0 to 1/2f. Hence, the demodulator 

output for sine channel can be derived by the following operations; 

 
1/ 2

* * *

00

sin sin( ) sin( ) sin
f

s k k s k
k

f wnT C w nT D dt   




    
 

   (3.3) 

1/ 2 1/ 2 1/ 2
* * *

00 0 0

  sin sin( ) sin( ) sin
f f f

s k k s k
k

f wnT dt C w nT dt Ddt   




       (3.4) 

1/ 2
* * *

0 0

  sin sin( ) sin
2

f

k k s k
k

D
f C w nT dt

   




        (3.5) 

The first term in (3.5) represents the demanded output of the demodulator for sine 

channel. However, since half-period integration of the aliasing components and DC 

component, represented by the second term and the third term in (3.5) respectively, 

will be nonzero, the demodulator output will deviate from the demanded output 

sin . Similarly, demodulator output for cosine channel will also deviate from the 

demanded output cos  because of the same reason.  

By the help of a reasonable assumption that half-period integration of aliasing 

components will be proportional to the amplitude of the resolver signal ( sin  or 

cos ), the misinforming demodulator outputs for sine and cosine channels can be 

modeled as sin sinS    and cos cosC    respectively. 

The estimator filter in the proposed system runs to eliminate the error between the 

actual position ( ) and the estimated position ( ) by using the error signal 

calculator expressed by the equation set (3.6). 
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sin cos cos sin sin( )              (3.6) 

We can assume that the estimator filter tracks the position information carried by 

the demodulator outputs with zero error. 

 sin cos cos sin sin( ) 0               (3.7) 

However, when the demodulator output is misinforming as in the case of software-

based demodulator, although the estimator filter tracks the demodulator outputs 

with zero error, it will track the actual position with a nonzero error. If we write the 

misinforming demodulator outputs into (3.7), the tracking error   will be found 

as 

(sin sin )cos (cos cos )sin 0S C               (3.8) 

sin( ) sin cos cos sin 0S C              (3.9) 

sin( ) cos sin sin cosC S                   (3.10) 

Hence, the analysis proves that resolver signal imperfections degrade the 

conversion accuracy and induce a nonzero position estimation error. Moreover, the 

analysis shows that the estimation error is dependent on the actual position ( ), 

estimated position ( ) and demodulator output deviations ( S  and C ). 

3.2.3 Position Estimation Error due to Resolver Signal Imperfections 

and Resultant Disturbances on Torque and Speed of the Motor 

Since there are many aliases in the digitized resolver signals and their frequencies, 

amplitudes and phases are not exactly known, it seems challenging to calculate an 

approximate value for the position estimation error due to aliasing components. 

However, an upper limit can be calculated using the information given in Table 3-2 

and Table 3-3 with the assumption that amplitudes of the aliases cannot exceed the 
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amplitudes of the original signals. On the other hand, it seems possible to calculate 

an approximate value for the position estimation error due to low-frequency 

harmonic components and DC offset since they appear in the digital signal without 

encountering any transformation.  

Table 3-4 Calculated maximum percentage errors at the demodulator outputs due to 

low-frequency harmonics ( D ) and high-frequency harmonics ( E ) 

Actual 
Frequency 

Frequency 
in Digital 
Domain 

Max imum 
Amplitude 

of the 
Distortion 

Phase  of 
the Alise 

when max. 
error exist 

Error at 
the Dem. 
Output D  E  

DC DC 6.66% - 10.35% 10.35% - 
10 kHz 5.4 kHz 1.26% 0° 1.25% - 

<4.89% 

15 kHz 400 Hz 2.09% ~75° 3.19% - 
20 kHz 4.6 kHz 0.66% 0° 0.43% - 
25 khz 9.6 kHz 1.05% 0° 0 - 

Noise Noise Neglected 0 - 

Table 3-4 gives the calculated maximum errors at the demodulator output due to 

both aliasing ( E ) and non-aliasing components ( D ). Then the upper limit for the 

total demodulator output error can be calculated by summing up E  and D  as 

15.24%S C D E              (3.11) 

Using S  and C  values, the position estimation error can be calculated using 

(3.10). In order to avoid iterations in solving (3.10), it is assumed that   is equal to 

  in calculation of the multiplicative terms cos sin   and sin cos  . In the 

calculations, the resolver rotor is assumed to be rotating with a speed of 2π rad/s 

and S  and C  are assumed to be normally distributed with mean zero and 

variance 0.4% (corresponding to a maximum error of 15% approximately). Figure 

3-5 shows the variation of the calculated position estimation error.  
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Figure 3-5 Actual position, estimated erroneous position and position estimation 

error with respect to time (s) 

The experimental system without eliminating resolver signal imperfections will 

have a maximum position estimation error of 0.1 rad (5.73 deg) as seen in Figure 3-

5. Moreover, erroneous position information will also cause erroneous torque 

feedback and degrade the torque loop performance. In the experimental system, 

since the torque feedback is not a measurable variable, it is calculated using motor 

phase currents and rotor position to be able to form up a torque control loop. The 

calculation of the torque is made by the help of a special transformation which 

shows the relation between the torque feedback and resolver shaft position   as 

1 2sin cos cos
3 3a bT i i       

 
     (3.12) 

where signals ai  and bi  stand for the motor phase currents. To observe the effect of 

the position estimation error on torque loop performance, a simulation is performed 

using (3.10) and (3.12). In the simulation model, a one pole pair synchronous motor 
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with a resolver sensor rotating with a speed of 2π rad/s is simulated. The model has 

Inverse Park and Inverse Clarke transforms in order to simulate the motor phase 

currents ai  and bi . The true torque is calculated by using the correct position signal 

whereas the erroneous torque is calculated by using the position signal with the 

estimation error. In the simulation, S  and C  are assumed to be normally 

distributed with mean zero and variance 0.4% (corresponding to a maximum error 

of 15%). The correct and erroneous signals for position and torque are shown in 

Figure 3-6. 

 

Figure 3-6 Effect of misinforming position signal on torque feedback signal 

(horizontal axis is time axis in seconds) 

It is concluded that the maximum error in torque estimation due to position 

estimation error will be 1% of the demanded torque. Since a closed loop torque 

control technique (Field Orientated Control) is implemented in the experimental 

system, misinforming torque estimation will result in undesirable oscillations in 
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motor torque. Depending on the inertia and the frictional forces of the motor and the 

experimental system that is actuated by the motor, these undesirable oscillations 

may create unrecoverable disturbing effects on the speed loop of the system. For 

instance, Figure 3-7 shows how the same amount of ripple in motor torque (1% of 

maximum achievable torque) disturbs the speed of the experimental system. It is 

observed that speed of the system incurs an oscillation with peak-to-peak amplitude 

of 2°/sec. This amount of uncontrollable oscillation in speed of the system will 

degrade target tracking performance of the stabilized gun platform. 

 

Figure 3-7 Oscilloscope screen showing torque signal (red signal where 10V means 

maximum torque) with 1% torque ripple and ripple’s disturbing effect on speed of 

the experimental system (blue signal where 10V corresponds to 100°/sec) 

The disturbing effect originating from resolver signal imperfections in the proposed 

software-based RDC will degrade the performance of the gun stabilization system 

and the experimental system will face up with oscillations in motor torque and 

speed. Therefore, minimization of this disturbance is of great importance to 

minimize oscillations in system and to maintain high-performance target tracking 

with high-performance gun stabilization. The proposed method to 
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eliminate/minimize resolver signal imperfections is a mixed-signal signal 

conditioner which uses analog and digital filters as seen in Figure 3-8. 

 

Figure 3-8 Proposed mixed-signal signal conditioner to obtain distortion-free and 

noise-free digital resolver signals (R.S. stands for “Realized System”) 

3.2.3.1 Minimization of High-Frequency Harmonic Distortions and 

Noise (“Aliasing Components”) in Resolver Signals Using Analog 

Anti-Aliasing Filters 

In order to prevent aliasing, we should use pre-filters, named as anti-aliasing filters 

in front of the source signals to reshape the frequency spectrum by suppressing the 

frequency components beyond the Nyquist frequency [27]. Filter parameters such 

as bandwidth and filtering order should be assigned based on the system parameters 

such as resolver carrier frequency, sampling frequency and maximum speed that the 

resolver rotor may reach in the experimental system. 

Since the Nyquist frequency (7.7 kHz) is close to resolver signal carrier frequency 

(5 kHz) in the experimental system, higher order filters would be better in 

suppression of the undesirable high-frequency components because higher order 

filters have sharper magnitude plots beyond the cut-off frequency. On the other 
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hand, it is a known fact that as the filter order increases phase contribution of the 

filter also increases. More phase contribution means more delay in measurements 

and increasing estimation error. Furthermore, implementation cost of the filter also 

increases as the filter order increases. Considering above mentioned factors, a table 

examining cost, performance and delay of different order filters is formed. To 

prevent suppression of the fundamental component at 5 kHz which carries the 

actual position data  , the filters’ cut-off frequencies are set to 6 kHz which is close 

to the midpoint between 5 kHz and 7.7 kHz. Table 3-5 gives position estimation 

errors due to delays that anti-aliasing filters introduce to resolver signals in the 

experimental system. The measurements are made when the resolver rotates with a 

speed of 4800 deg/sec. This speed value is close to the maximum speed of the 

experimental system. Therefore, the error values given in Table 3-5 can be regarded 

as the maximum error values due to anti-aliasing filtering delays in the experimental 

system.  

Table 3-5 Position estimation error due to delay introduced by the different order 

anti-aliasing filters in the experimental system 

  Order 1 Filter Order 2 Filter Order 3 Filter 
Phase at 5 kHz -39.8 deg -76.7 deg -111.8 deg 

Suppression at 7.7 kHz -4.4 dB -5.7 dB -7.4 dB 
Op-amps for realization 1 1 2 
Position tracking error 
when res. rotor speed is 

4800 deg/s 0.1061 deg 0.2045 deg 0.2981 deg 

The analysis shows that position estimation error due to anti-aliasing filtering will 

be much smaller than the error due to resolver signal imperfections which has been 

calculated as 5.73 deg in the previous section. Hence, high-frequency suppression 

ability and cost of the filter becomes more important in choosing the right order 

anti-aliasing filter. Examining Table 3-4, it is concluded that the second order filter 

is the most practicable filter for the experimental system. The filter suppresses high-

frequency harmonic components substantially (Figure 3-9) and it can be realized 

using only one operational-amplifier.   
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Figure 3-9 Pure resolver sine signal and its FFT (red signal) on the above scope 

screen and resolver sine signal after filtered by the anti-aliasing filter and its FFT 

(red signal) on the below scope screen 
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The filter improves the accuracy of the demodulated data by 62.37%. The details 

related to the filter’s performance are given in Table 3-6. 

Table 3-6 Anti-aliasing filter’s performance 

Before Anti-aliasing Filtering 

Frequency 

Amplitude of 
Harmonic 
Dist. dB 

Amplitude of 
Harmonic 

Dist. % 

Error at 
demodulator 

output E   

10 kHz -38 1.26 1.25% 

<4.89 % 

15 kHz -33.6 2.09 3.19% 

20 kHz -43.6 0.66 0.43% 

25 kHz -39.6 1.05 0% 

After Anti-aliasing Filtering 

Frequency 

Amplitude of 
Harmonic 
Dist. dB 

Amplitude of 
Harmonic 

Dist. % 

Error at 
demodulator 

output  E  

10 kHz -42.8 0.72 0.71% 

<1.84% 

15 kHz -43.6 0.66 1.00% 

20 kHz <-52.8 <0.2 <0.13% 

25 kHz <-52.8 <0.2 0% 

Suppression of High-
frequency Harmonic 

Distortions at 
Demodulator Output 62.37% 

3.2.3.2 Digitization and Reconstruction of Filtered Resolver Signals in 

FPGA 

Analog-to-digital conversion rate should satisfy the Nyquist criterion for the 

fundamental component to guarantee the feasibility of the software-based resolver-

to-digital converter. ADCs used in the experimental system have a sampling rate of 

15.4 kHz and they satisfy the Nyquist criterion for the fundamental frequency 5 

kHz. Their conversion resolution is 16 bit in signed fixed-point arithmetic (two’s 

complement form).  

From the sampling theorem we know that if the sampling frequency is sufficiently 

high compared to the bandwidth of the continuous-time signal (ws>2Bandwidth), 
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the original signal can be reconstructed from the sampled signal using an ideal sinc 

filter. Since an ideal sinc filter is non-causal and has an infinite delay, it is not 

physically realizable [28]. Hence, a windowed digital low-pass filter to reconstruct 

the resolver signals in discrete-domain is used instead. 

 

Figure 3-10 Reconstruction of resolver signals by low-pass filtering 

Digital filters may be classified according to duration of their impulse responses: 

Finite-Impulse Response (FIR) filters and Infinite-Impulse Response (IIR) filters. 

Even though both filters can be implemented in an FPGA, implementing FIR filters 

seems easier and more reliable. FIR filtering in FPGA is easier because FIR filters 

have an open loop structure. On the other hand, IIR filters require feedback from 

output. The need for feedback not only complicates the FPGA software but also 

opens the doors to stability problems and makes the filter much more sensitive to 

quantization errors. Therefore, utilizing an FIR filter will be more easy and reliable 

due to its simple structure, stability and robustness against quantization effects [29, 

30].  

The FIR filter parameters such as sampling rate, Fstop and Fpass frequencies, 

coefficient resolution and filter arithmetic is adjusted such that; 

 Sampling rate is adjusted according to the performed trade-off between 

demanded FPGA code efficiency and maximum allowable error due to 

quantization, 
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 Coefficient resolution and filter arithmetic are selected according to the 

analog-to-digital conversion resolution and arithmetic, 

 Fstop and Fpass frequencies are adjusted according to the resolver signal 

carrier frequency. 

Firstly, in order to decide on the sampling rate of the interpolation filter, a trade-off 

between the filtering performance and the code efficiency should be resolved. 

Choosing higher sampling rates for the filter is better to minimize the quantization 

error in the reconstructed sinusoidal. On the other hand, lower sampling rates are 

better for feasibility of the filter in FPGA. As the ratio of the FPGA clock frequency 

(constant) to the filter sampling frequency increases, the filter covers less area in 

FPGA since it needs making use of less parallel structures. Taking both factors into 

consideration, sampling frequency of the up sampled signal is optimized at 768 kHz 

(i.e. an up-sampling factor of 49.87 is used) in the experimental system. At this rate, 

the quantization error at the demodulator output becomes less than 50.5 10  

percent which is negligibly small compared to S  and C  values (15.24%). 

Secondly, since analog-to-digital conversion resolution is 16 bit in signed fixed-

point arithmetic, filter coefficients are also generated in 16 bit fixed-point signed 

arithmetic in the experimental system.  

Thirdly, the filter Fstop and Fpass parameters are adjusted to 5500 Hz and 9500 Hz 

respectively to filter out only the higher-frequency components above the resolver 

carrier frequency and not to suppress the fundamental component at 5 kHz. Filter 

parameters and filter’s demanded magnitude response are given in Figure 3-11.  
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Figure 3-11 Digital interpolation filter parameters and demanded magnitude 

response 

The filter is realized using Filter Design and Analysis (FDA) tool of Matlab and 

filter coefficients are loaded into FPGA software design environment (ISE). The 

filter order is realized as 433. The filter is implemented using Finite Impulse 

Response filter cores (MAC FIR version 5.1 of Xilinx). The details related to FPGA 

programming issues are given in Appendix A. Filter’s realized magnitude and phase 

responses are seen in Figure 3-12. Figure 3-13 illustrates the real-time 

reconstruction of a resolver signal in the experimental system. 

 

Figure 3-12 Realized magnitude and phase responses of digital interpolation filter 

implemented in FPGA 
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Figure 3-13 Sampled resolver signal (red signal) and reconstructed resolver signal 

(blue signal) observed in real-time by the help of Chipscope software 
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3.2.3.3 Elimination of Low-Frequency Harmonic Distortions (Non-

aliasing Components) in Reconstructed Resolver Signals using Digital 

High-Pass Filters Implemented in FPGA 

Suppressing low-frequency distortion components and DC offset present in resolver 

signals will improve the software-based RDC performance considerably as proved 

previously. For this purpose, a digital high-pass filter is designed and implemented 

in FPGA.  

Since the high-pass filter is applied to the output of the interpolation filter, the 

sampling frequency of the filter is adjusted as the same with the interpolation filter 

which has been optimized at 768 kHz. Since analog-to-digital conversion resolution 

is 16 bit in signed fixed-point arithmetic, filter structure is also formed in 16 bit 

fixed-point signed arithmetic. Filter’s Fstop and Fpass parameters are adjusted to 200 

Hz and 4500 Hz to filter out only the lower-frequency components below the 

resolver carrier frequency. Filter’s demanded magnitude response and related 

parameters are given in Figure 3-14.  

 

Figure 3-14 Digital high-pass filter parameters and demanded magnitude response 

The filter is realized using Filter Design and Analysis (FDA) tool of Matlab and 

filter coefficients are loaded into FPGA software design environment (ISE). The 
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filter order is realized as 436. The filter is implemented using Finite Impulse 

Response filter cores (MAC FIR version 5.1 of Xilinx). The details related to FPGA 

programming issues are given in Appendix A. Filter’s realized magnitude and phase 

responses are seen in Figure 3-15. 

 

Figure 3-15 Realized magnitude and phase responses of the high-pass filter 

implemented in FPGA 

The filter suppresses low-frequency harmonics and DC offset by a factor -70 dB. 

Hence, it will be reasonable to assume that there will be zero low-frequency 

harmonic distortions and zero DC offset at the output of the high-pass filter. Table 

3-7 gives the details related to the performance of the filter.  

Figure 3-16 shows the resolver signal’s states through the analog and digital filters 

implemented in the experimental system. 
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Table 3-7 Performance of the digital high-pass filter 

Before High-Pass Filtering 

Frequency 

Amplitude of 
Harmonic 
Dist. dB 

Amplitude of 
Harmonic 

Dist. % 

Error at 
demodulator 
output D  

DC -23.6 6.66 10.35% 
After High-Pass Filtering 

Frequency 

Amplitude of 
Harmonic 
Dist. dB 

Amplitude of 
Harmonic 

Dist. % 

Error at 
demodulator 
output D  

DC -93.6 0.0000208 0.00% 
Suppression of 

disturbance of  Low-
frequency Harmonic 

Distortions at 
Demodulator Output Eliminated completely 

 

Figure 3-16 Resolver signal’s states from output of the anti-aliasing filter to the 

input of the demodulator passing through the interpolation filter and digital high-

pass filter 
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3.2.4 Improvement in Position Estimation Accuracy with Minimization 

of Resolver Signal Imperfections in the Experimental System 

After the implemented analog and digital filters are applied to resolver channels, the 

error term coming from the low-frequency distortions ( D ) is eliminated 

completely and the error term coming from the high-frequency distortions ( E ) is 

minimized. Based on the data given in Table 3.6 and Table 3.7, new value for 

maximum demodulator output error becomes  

0% 1.84% 1.84%S C D E           

Therefore, with the minimization of resolver signal imperfections, the demodulator 

output errors ( S  and C ) are decreased to 1.84%. Using these new values, 

improvement in position estimation accuracy is calculated by the help of previously 

derived formula for position estimation error (3.10). The formula was 

sin( ) cos sin sin cosC S                   (3.10) 

In order to avoid iterations in solving (3.10), it is assumed that   is equal to   in 

calculation of the multiplicative terms cos sin   and sin cos  . In the 

calculations, the resolver rotor is assumed to be rotating with a speed of 2π rad/s 

and S  and C  are assumed to be normally distributed with mean zero and 

variance 0.005% (corresponding to a maximum error of 1.8%). Figure 3-17 shows 

the variation of the calculated position estimation error. With the minimization of 

the resolver signal imperfections, the upper limit for position estimation error is 

decreased to 0.015 rad (0.85 deg) as seen in Figure 3-17. Furthermore, the upper 

limit for torque estimation error is decreased from 1% to 0.02% as seen in Figure 3-

18. 

The new and old values for demodulator output error, position estimation error and 

torque estimation error are given in Table 3-8. 
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Table 3-8 Improvement in error values with minimization of resolver signal 

imperfections 

Error at 

Before Minimization of 
Resolver Signal 
Imperfections 

After Minimization of 
Resolver Signal 
Imperfections 

Demodulator Output 15.24% 1.84% 
Position Estimation 0.1 rad (5.732 deg) 0.015 rad (0.85 deg) 
Torque Estimation 1% 0.02% 

 

 

Figure 3-17 Actual position, estimated position and position estimation error when 

resolver signal imperfections are minimized 
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Figure 3-18 Effect of erroneous position signal on torque estimate signal after 

resolver signal imperfections are minimized 

Effects of Attenuations and Delays in the Fundamental Component 

Some other error sources will arise in the proposed system with the usage of the 

filters; attenuations and delays in the fundamental component (5 kHz). Since the 

filters are applied to all resolver channels (sine, cosine and reference channels), 

attenuation levels will be the same for all channels and this guarantees that no 

differential effect due to signal attenuations will exist. The following simple 

analysis shows that common mode attenuation will not affect the conversion 

accuracy. Let us assume that A is the attenuation factor common to all resolver 

signals. Then the error in the converter will be 

sin sin cos sin cos sin 0A wt A wt          (3.13) 

sin (sin cos cos sin ) 0A wt            (3.14) 

 sin cos cos sin sin( ) 0                 (3.15) 
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Therefore, the position estimation error    due to common signal attenuation 

becomes zero. However, another error source will arise due to common phase shifts 

in the channels. The common mode phase shift will result in constant duration 

delays in resolver channels and as a result it will incur position estimation error. 

This error in position estimate is proportional to the speed of the resolver rotor 

because as the speed increases the resolver rotor travels larger angles during the 

constant duration delay.  

The amount of the common mode phase shift can be calculated by summing up 

three filters’ phase contributions at 5 kHz which are given in Table 3-5 for the anti-

aliasing filter, in Figure 3-12 for the interpolation filter and in Figure 3-15 for the 

high-pass filter. Table 3-9 gives the calculated delays and corresponding position 

estimation errors in the experimental system when the resolver rotor rotates with a 

speed of 100 rad/s (5732 deg/sec) which is the maximum achievable resolver speed 

in the experimental system.  

Table 3-9 Delays and position estimation errors due to filtering in the experimental 

system 

  
Anti-aliasing 

Filter 
Interpolation 

Filter  
High-Pass 

Filter  Total 
 Phase at 5 kHz -76.7 deg -504.4 deg -166.8 deg -747.9 deg 

Delay in seconds 42 us 280 us 92 us 324 us 

Max. Tracking Error 
when Res. Rotor 

speed is 5732 deg/sec 0.240 deg 1.605 deg 0.527 deg 2.349 deg 

Total Maximum Position Estimation Error in the Experimental System 

We have two main error sources in the proposed system. The former is the 

increasing non-linearity in the system with the introduction of parasitic 

multiplicative terms at the demodulator outputs ( sin sinS    and 

cos cosC   ) due to resolver signal imperfections. The latter is the filtering 

delays introduced by the analog and digital filters applied to resolver channels. The 
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first error is limited to 0.015 rad with the minimization of the resolver signal 

imperfections. The second error is proportional to the resolver speed and it delays 

the measurements. Based on the data in Table 3-8 and Table 3-9, the position 

estimation error due to distortions, noise and delays can be formulated as follows 

(0.015 0.00040965 ) radMaxPositionEstimationError      (3.16) 

where   is the resolver speed in rad/s. Since the maximum achievable resolver 

rotor speed is 100 rad/s in the experimental system, the maximum position 

estimation error becomes 

0.015 rad  0.00040965 s  100 rad/s = 0.019 rad   

Even if the system has this level of error in position estimation, torque control loop 

will be affected so negligibly that error in torque estimation will be 0.02% of the 

demanded torque. 

3.3 FPGA-Based Phase-Sensitive Demodulator 

Processing the reconstructed resolver signals sin sinwt  , sin coswt   and sin wt , 

the phase-sensitive demodulator gives out sin  and cos  signals. In order to 

realize the said function, the proposed structure makes use of two modulus 

functions, two half-period integrators and one phase-detector. The block diagram of 

the system is seen in Figure 3-19. 
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Figure 3-19 Phase-sensitive demodulator implemented in FPGA 

Since half-period integration of a sinusoidal signal produces an output proportional 

to the amplitude of the signal, we can estimate sin  and cos  by integrating 

sin sinwt   and sin coswt   signals between two successive zero-crossings of the 

signal. This is exactly what the half-period integrators do in the proposed system. 

However, the phase of the resolver format signals with respect to the reference 

signal should also be known to construct sin  and cos  signals from sin  and 

cos  signals. Therefore, a phase-detector which senses the phases of sine and 

cosine signals with respect to the reference signal is also utilized in the proposed 

system. The phase-detector produces two outputs which can take discrete values +1 

or -1. The values of the outputs actually express the position signal’s quadrant on 

the unit circle.  
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Figure 3-20 Quadrants 

3.3.1 Realization of Modulus Function and Half-Period Integrator in 

FPGA 

The function of modulus and half-period integrator can be expressed 

mathematically by  

0
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0

0

1/ 2

1/ 2

sin
sin sin
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cos sin

t f

t

t f

t

wt dt
f

wt dt
f






















       (3.17) 

where 0t  represents any zero-crossing instant of the resolver signal and f stands for 

the fundamental frequency. sin sin wt  and cos sin wt  in (3.17) are modulus of 

the reconstructed resolver signals. Hence, finding the positive amplitude of the 

resolver signal turns into just finding the area between the resolver signal and time 

axis as shown in Figure 3-21. 
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Figure 3-21 Demodulation by modulus and half-period integration 

The discretization of the integration term in (3.17) yields 
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where 1/s sT f  and sf  is the sampling frequency. The discrete form of the 

integration requires multiplication with  sT  whose implementation in FPGA makes 

it necessary to use multiplier cores. However, multiplier cores cover much area in 

FPGA and decreases the FPGA code efficiency considerably. On the other hand, 

DSP with its highly parallel multiplier-accumulator (MAC) units can realize the 

multiplication without exhausting much computational power. Therefore, in order 

to increase the efficiency of the proposed system, the discrete model is rewritten 

without the multiplication as follows 
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The resultant operation is just an accumulation of the input signal. Therefore, the 

modification prevents multiplications in FPGA and increases FPGA code 
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efficiency. However, accumulation will not yield sin  and cos  signals directly 

but it will give out linear functions of  sin  and cos  such as 
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where fundamental frequency f  is 5 kHz and sampling frequency sf  is 768 kHz in 

the experimental system.  

The conversion from sA  and cA  to  sin  and cos  is realized in DSP because 

the conversion given by the equation set (3.21) will exhaust much more resource in 

FPGA due to multiplications and division included. 
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        (3.21) 

Figure 3-22 shows the software components to realize modulus function and half-

period integrator in FPGA. 

 

Figure 3-22 Structure realizing modulus function and half-period integration in 

FPGA 
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Modulus Function 

The modulus function is realized using three blocks as seen in Figure 3-23. Its input 

(X) is sinA wt  and output (Y) is sinA wt  where A may be sin  or cos . The 

negative-cycle detector in the structure gives out a digital low when the input is 

positive and a digital high when the input is negative. The switch passes either 

sinA wt  or sinA wt  according to the negative-cycle detector’s output (S) where 

sinA wt  supplied by the two’s complementer block. Two’s complementer negates 

the input in two’s complement form since the input signal is in two’s complement 

form. 

 

Figure 3-23 Modulus function realized in FGPA 

Accumulator with Reset Input 

The accumulator in the proposed system is a backward Euler type accumulator and 

it is used as the integrator in the demodulator (Figure 3-24). Its input (X) is 

sinA wt  and its output (Y) is the accumulation of the input throughout the time. It 

calculates its recent output by summing its recent input with its previous output at 

each sampling instant unless reset input (R) is not triggered. If reset input is 

triggered, the switch resets the accumulation and starts to accumulate from zero 

level.  
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Figure 3-24 Realization of the Backward Euler accumulator with reset input in 

FPGA 

Zero-crossing Detector 

The zero-crossing detector produces a trigger signal at each zero-crossing instant of 

the resolver signal. This trigger signal latches the accumulator output by the help of 

the flip-flops and resets the internal accumulator signal through the reset input of 

the accumulator. This structure guarantees that the estimator filter will not be 

confused by the internal accumulation result and it will always be provided by the 

most recent completed half-period integration result. 

3.3.2 Phase-Detector 

Accumulation is necessary but not enough for phase sensitive demodulation of 

resolver signals. Accumulators will yield signals SA  and CA  which are proportional 

to sin  and cos  signals. However, the phases of the signals with respect to the 

reference signal are also necessary to detect the quadrant of the position, namely to 

construct sin  and cos  signals from sin  and cos  signals.  

For instance, in Figure 3-25 reconstructed reference, sine and cosine signals are 

seen when the rotor position is within fourth and first quadrants. Phase-detector can 
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determine the quadrant of the position by comparing resolver format signals’ states 

with respect to zero at each time instant when the reference signal reaches its 

positive peak. This guarantees that the quadrant detection is not affected from phase 

shifts up to 90°. The duration from the the zero crossing to the peak of the reference 

signal is embedded into the code before programming. This duration is dependent 

on the resolver carrier frequency (one fourth of the reference signal’s period) and 

should be updated if the carrier frequency of the system changes. Hence, the 

demodulator has a single adjusting parameter. The quadrant detection algorithm is 

explained schematically in Figure 3-26. 

 

Figure 3-25 Reconstructed reference signal (blue), sine signal (green) and cosine 

signal (red) when the position is within the fourth and first quadrant 
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Figure 3-26 Detection of the phase of resolver format signals with respect to 

reference signal 

Phase-detector has two outputs such that one output is dedicated for sine signal and 

one output is dedicated for cosine signal. At the time instant when the reference 

signal is at its peak, phase-detector will output +1 for any positive resolver format 

signal or -1 for any negative resolver format signal.  

Table 3-10 Phase-detector’s outputs for position signal’s quadrant 

  in 
output for sine 

channel 
output for 

cosine channel 
the first quadrant +1 +1 

the second quadrant +1 -1 
the third quadrant -1 -1 

the fourth quadrant -1 +1 

3.3.3 Construction of Demodulated Signals in DSP 

DSP continually reads the outputs of phase-detector (+1+1, +1-1, -1-1 or -1+1) and 

sA  and cA  through the parallel bus between DSP and FPGA at a sampling rate of 

10 kHz. After each reading operation is completed, DSP firstly calculates sin  

and cos  from sA  and cA  by using the formula (3.21). Then, it constructs sin  
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by multiplying sin  with phase-detector’s output for sine signal and it constructs 

cos   by multiplying cos  with phase-detector’s output for cosine signal.  The 

constructed  sin  and cos  signals are processed by the estimator filter and 

resolver position   and speed d
dt

  are estimated. 

3.3.4 Benefit of the Proposed FPGA-based Phase-Sensitive 

Demodulator 

The benefit of the proposed software-based demodulation structure is that the servo 

controller can provide interface with any type of resolver easily with a slight 

modification in FPGA and DSP software. The demodulator has only one parameter 

which is dependent on the resolver carrier frequency. Therefore, the demodulator 

can be adapted to operate with changing resolver carrier frequencies by adjusting 

this single parameter. Hence, there is no longer a need for hardware modifications 

which exhaust much more resources.  

This structure of demodulation also enables a complete solution for software-based 

Resolver-to-Digital conversion. It makes resolver conversion possible without 

needing any component specialized to resolver conversion process and by using 

only generic components such as ADCs, and FPGA which can be found almost in 

all processor and data acquisition boards.  

3.4 Position and Speed Estimation from Demodulated Resolver Signals 

In servo applications, using a speed sensor to form up a speed control loop is 

avoided to minimize system costs when a position sensor is already available. 

System speed is estimated from position signal in such systems. Pure differentiation 

to obtain speed signal from position signal generally fails since direct differentiation 

amplifies the noise components in the signal. The following figure shows the result 

of pure differentiation of the position signal. 
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Figure 3-27 Pure differentiation of servo position signal versus speed estimate by an 

estimator filter 

Figure 3.27 also shows the speed estimate of an estimator filter and the estimate 

seems much more clean and suitable to be utilized in the servo loop. Hence, 

estimation techniques predominate over pure differentiation when a digital servo 

control system is the point at issue. In the thesis, five different estimation methods 

are implemented and estimation performances of them are examined in both 

simulation and real-time. These inspected methods include; 
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 Nonlinear Observer recommended for resolver position and speed 

estimation by Harnefors in [21],  

 Tracking Differentiator (TD) adapted to resolver position and speed 

estimation, 

 Linear Kalman Filter (LKF) approach to resolver position and speed 

estimation, 

 Extended Kalman filter (EKF) approach to resolver position and speed 

estimation, 

 Unscented Kalman filter (UKF) approach to resolver position and speed 

estimation. 

3.4.1 Implementation of the Estimator Filters 

In this section, the estimator filters’ mathematics are explained in summary. 

Furthermore, implementations of them in DSP are also shown with block diagrams 

and algorithmic state machines. 

3.4.1.1 Nonlinear Observer for Resolver Position and Speed Estimation 

The algorithm is proposed by Harnefors in [21]. The algorithm is in type of a 

nonlinear observer described by the following equations; 

1

2

sin cos cos sin sin( )

d

dt
d

dt

      
  

   

   



 

     (3.22) 

where   is the error signal,   is the estimated speed and   is the estimated 

position. 1  and 2  are tuning parameters of the filter.  

The filter is realized in DSP as shown in Figure 3-28. The model has an error 

calculation block and two integrators. The mod operator is needed to generate a 
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position signal between 0 and 2π. sin  and cos  signals are supplied by the 

phase-sensitive demodulator. 

 

Figure 3-28 Block diagram showing the implementation of the Nonlinear Observer 

in DSP 

3.4.1.2 Tracking Differentiator Approach to Resolver Position and 

Speed Estimation 

Tracking differentiation is a nonlinear means of finding time-based derivative of a 

noisy signal without using direct differentiation. It is first introduced by Han 

Jingqing for military target information processing. The advantage of it is that it 

does not need the system and noise models [31]. The original filter can be modeled 

by the equation set 

1
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2 22
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      (3.23) 

where function sat is described as 

sgn( ),  
( , )

,   

x x
sat x x x






  


       (3.24) 
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where v is the input for the filter and 1x  tracks the input while 2x  tracks the time-

based derivative of v. R  and   are tuning parameters of the filter.  

The filter is adapted to resolver conversion process by replacing the error term 

1x v  with sinusoidal error calculator described as 

sin cos cos sin sin( )               (3.25) 

where   is the position estimate of the filter and sin  and cos  signals are 

demodulated resolver signals. Then, the adapted tracking differentiator model is 

given by the following equations; 

(sin cos cos sin ) ,
2

d

dt

d
Rsat

dt R

 

      



 
    

 

    (3.26) 

The adapted algorithm is implemented in DSP as shown in Figure 3-29. The model 

has two integrators and two feedback branches. The nonlinear function is realized 

using simple functions and switches.  

 

Figure 3-29 Block diagram showing the realization of the Tracking Differentiator in 

DSP 
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3.4.1.3 LKF, EKF and UKF for Resolver Position and Speed 

Estimation 

Detailed investigation of Kalman filtering is given in Chapter 2. In this section, 

some additional properties of Kalman filtering will be given and it will be adapted 

to resolver conversion process in three different forms. 

Assuming constant acceleration, the resolver can be modeled as a dynamical system 

described by the following equation set 

/

/ 0 1 0

/ 0 0 1

/ 0 0 0

dx dt Ax

d dt

d dt

da dt a

 
 



     
          
          

       (3.27) 

where   is position ,   is velocity and a is acceleration. Then, the noise-free 

discrete form of this continuous time state-space representation is 
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where sT  is the sampling period of the filter. The output equation is 
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         (3.29) 
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where h is the nonlinear function in resolver conversion process. If the process 

noise and measurement noise are also taken into consideration, the system equations 

will be of the form 

1

( )
k k k

k k k

x Fx

y h x v

  
 

        (3.30) 

where   is the process noise and v is the measurement noise. The error covariance 

matrices for process noise and measurement noise are represented by kQ  and kR  

respectively.  
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        (3.31) 

This mathematical model of the resolver conversion is used in the derived Kalman 

filter equations implemented as a part of the thesis (i.e. LKF, EKF and UKF).  

3.4.1.3.1 Linear Kalman Filter Approach to Resolver Position and 

Speed Estimation 

The advantage of this filter arises in real-time because the algorithm does not 

require continuous update for the Kalman gain. The Kalman gain is solved once 

before the filter actually runs and then the filter runs using this constant Kalman 

gain. Therefore, the real-time algorithm does not exhaust any processing power for 

solving Kalman gain continually. However, to derive this computationally efficient 

Kalman filter algorithm, we should make use of “one-step Kalman filter equations”. 

One-Step Kalman Filter Equations 

One-step Kalman filter equations are given in the literature for obtaining efficient 

Kalman filter algorithms [12]. The aim is to get a priori estimate without calculating 

posteriori estimate. 
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Priori state estimate is 

1 ( ( ))k k k k k k kx F x K y H x  
          (3.32) 

where the term ( )k k ky H x  is named as innovation. It is the error between real 

output of the system and the estimate.  

Priori error covariance is 

1
1 ( )T T T T

k k k k k k k k k k k k k k kP F P F F P H H P H R H P F Q     
        (3.33) 

This is called discrete-time Algebraic Riccati Equation (DARE). If components of 

(3.33) are linear and time-invariant, the DARE would converge to a steady-state 

solution and it will be possible to calculate the Kalman gain offline before the 

system actually runs. 

1( )T T
k k k k k k kK P H H P H R          (3.34) 

However, resolver conversion process has nonlinear dynamics with measurements 

carried by nonlinear functions of  , that is, sin  and cos .  

Linearizing Resolver Conversion Process and LKF for Resolver Conversion 

To be able to use linear Kalman filter in resolver conversion, nonlinear dynamics of 

the model should be linearized. In fact, it is simply writing the innovation term as 

sin cos cos sin sin( )k k k k k k k                (3.35)  

where k
  is priori position estimate at k’th sample, sin k  and cos k  are 

measurements at k’th sample and cos k
  and sin k

  are cosine of priori position 

estimate and sine of priori position estimate respectively. The innovation term 

expressed by (3.35) can be approximated by k k    for small . 
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sin( )k k k k                (3.36) 

Then, (3.36) will yield the equality given by 

k k k k k ky H x              (3.37) 

Then the linearized h , that is, kH  of the system becomes 

 1 0 0kH H          (3.38) 

Since the system is linear and time-invariant with this modification, the steady-state 

solution for discrete-time algebraic Riccati equation can be used in Kalman filtering 

algorithm. (3.33) can be rewritten for steady-state solution as follows 

1( )T T T TP FPF FPH HPH R HPF Q        (3.39) 

While solving for (3.39), process noise covariance matrice is assumed to be 

constant and measurement noise covariance matrice is tuned to improve the 

disturbance rejection ability of the filter. Hence, the algorithm has a single tuning 

parameter a . 
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        (3.40) 

Steady-state solution of the algebraic Riccati equation can be found using Matlab’s 

dare function. Since a steady-state solution for DARE is present, steady-state 

solution for Kalman gain can also be calculated by using (3.41). 

1( )T TK PH HPH R           (3.41) 
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Solving for (3.41) will yield a Kalman gain in the form of 

1
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K k
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         (3.42) 

Hence, using one-step Kalman filter equation given by (3.32), the mathematical 

model for the discrete-time linear Kalman filter for resolver conversion process can 

be written as  
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     (3.43) 

The filter is implemented in DSP as shown in Figure 3-30. 
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Figure 3-30 Block diagram showing the implementation of LKF in DSP 
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3.4.1.3.2 Extended Kalman Filter Approach to Resolver Position and 

Speed Estimation 

EKF requires calculation of partial derivatives of the non-linear function h with 

respect to x at mean points at each time step. 

0 0sin( )
( )

0 0  cos( )
kk

k k

k

h
H x x

x









 
      

     (3.44) 

Since kH  is position and time dependent, this modification results in a time-varying 

algebraic Riccati equation. As a result, Kalman gain will also be time-varying. This 

implies that the algorithm will continuously solve the DARE and calculate the 

Kalman gain at each time step. This will increase computational burden 

considerably. Solving the nonlinearity by the help of the partial derivative, the 

Kalman algorithm is implemented by the continuous update of the steps given in 

Figure 3-31. The mathematical formulation for each step is given in section 2.5.2.2 

where Extended Kalman Filter algorithm is explained in details. 
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Figure 3-31 Algorithmic state machine showing the realization of the EKF in DSP 

Similar to LKF, process noise covariance matrice is assumed to be constant and 

measurement noise covariance matrice is tuned to improve disturbance rejection 

ability of the filter. Hence, the EKF has a single tuning parameter a .  
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3.4.1.3.3 Unscented Kalman Filter Approach to Resolver Position and 

Speed Estimation 

UKF is similar to EKF when the computational complexity is considered. On the 

other hand, it is more successful when the system has severe nonlinearities [12]. In 

hope of a better estimation performance, UKF algorithm is implemented for 

resolver conversion process.   

The unscented transformation is a way of passing Gaussian signals through 

nonlinear functions. Instead of linearization with differentiation as the EKF, the 

UKF makes use of unscented transforms while passing Gaussian signals through 

nonlinear functions. Hence, the unscented transformation is applied to h in the 

proposed system.  

Assuming a Gaussian with dimension n with mean   and covariance  , there will 

be 2n+1 sigma points symmetrically located with respect to the mean. This 

selection of sigma points relies on a deterministic method and some parameters are 

needed to locate these deterministic points. For resolver conversion, there are 7 

sigma points since the dimensionality of the state vector is 3. Each sigma point has 

two weights which are used in recovering mean and covariance after the sigma 

points are passed through the nonlinear function h.  

The equations to choose sigma points iX   for a Gaussian ( , )N   are given as 

0 ,   for i=0

( ( ) ),   for i=1,2,3

( ( ) ),   for i=4,5,6

i

i

X

X n

X n



 

 



   

   

       (3.46) 

where 2 ( )n n      and  and  are the parameters which determine the 

locations of the symmetrical sigma points. For each sigma point, there exist two 

weights i
mw   and i

cw  which are calculated according to the following rules 
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where the parameter   is optimally 2 when the distribution is an exact Gaussian. 

Second step of unscented transform is passing sigma points through the nonlinear 

function h.  

( )i iY h X          (3.48)  

iY  is the output of the nonlinear function for each sigma point. The third and final 

step of the unscented transform is to calculate new mean '  and covariance '  of 

the resultant Gaussian. The parameters can be calculated from the equations 
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       (3.49) 

The equations are simple but they will be enough to increase the computational 

complexity considerably because the algorithm calculates sigma points and weights 

at each time step. Solving the nonlinearity by the help of unscented transform, the 

Kalman algorithm is implemented by the continuous update of the steps given in 

Figure 3-32. The mathematical formulation for each step is given in section 2.5.2.3 

where Unscented Kalman Filter algorithm is explained in details. 
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Figure 3-32 Algorithmic state machine showing the realization of the UKF in DSP 

Similar to LKF and EKF, process noise covariance matrice is assumed to be 

constant and measurement noise covariance matrice is tuned to improve disturbance 

rejection ability of the filter. Hence, UKF has four tuning parameters; γ, α, β and κ. 
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CHAPTER 4  

 

PERFORMANCE ANALYSIS OF THE PROPOSED 

RESOLVER-TO-DIGITAL CONVERTER 

One of the most important performance criterions for resolver converters is the 

conversion bandwidth. External disturbances coming from sea have a bandwidth of 

0.5 Hz according to both Pierson & Moskowitz and JONSWAP spectrums as 

analyzed in Chapter 2. Hence, stabilization at sea requires that the position sensor 

utilized on the stabilization system, for instance a resolver with a RDC, track input 

signals coming at a frequency spectrum 0.5 Hz.  

Noise suppression ability is another important performance criterion for resolver 

converters since a resolver, operating in a noisy environment where high motor 

phase currents are flowing closely, generates electromagnetically contaminated 

output signals. Moreover, disturbances coming from the resolver channels and 

demodulator degrade the conversion performance. Hence, the converter should be 

robust against the noise and said disturbances to maintain high-performance 

tracking.   

Taking above mentioned performance criterions into consideration, models for 

simulation and real-time tests are constructed in this chapter. The estimator filters 

are tuned in simulation environment and tuned filters are implemented in an 

experimental STAMP system. Filters’ performances are observed in real-time in the 
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experimental system and results are given. Stability and sensitivity analyses are also 

given in this chapter.   

4.1 Constructing Models for Simulative and Real-time Performance 

Tests and Tuning the Estimator Filters 

Before running the estimator filters in real-time, we should make sure that they 

work properly and their parameters are adjusted optimally. For this purpose, 

simulation models of the estimator filters are constructed in Simulink. Once the 

filters are verified and tuned in simulation environment, they are applied to real-

time models running in the experimental system. 

4.1.1 Constructing Simulation Models of the Estimator Filters for 

Tuning Procedure 

A simulative resolver position trajectory based on a realistic scenario is determined 

and the trajectory is passed through sine and cosine functions to simulate the 

resolver and the phase-sensitive demodulator. Some amount of white noise is added 

to signals and noisy signals are fed to the estimator filters. Simulation models of the 

estimator filters are constructed as described in section 3.4. The simulation model is 

summarized schematically in Figure 4-1. In the performance tests, position and 

speed estimates of the estimator filters are compared to the constructed position and 

speed trajectories and performance parameters such as position and speed 

estimation errors are calculated.  
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Figure 4-1 Simulation model 

A servo system can be modeled as a gear box transmitting the motion from servo 

motors to servo system as shown in Figure 4-2. In order to construct a realistic 

position trajectory, system gear ratio, system maximum speed, system maximum 

acceleration and system bandwidth all should be taken into consideration.  

 

Figure 4-2 Gun-stabilization system block diagram 

Since the resolver is mounted to shaft of the servo motor, maximum acceleration 

and maximum speed that the estimator filters should be able to track are evaluated 

by multiplying system maximum acceleration and maximum speed values by the 

system gear ratio. The gear ratio is 120 and maximum speed and maximum 

acceleration values are 60°/s (1.0467 rad/s) and 120°/s2 (2.0933  rad/ s2) 

respectively in the experimental system. Hence, for a sinusoidal resolver position 

trajectory, amplitude of the signal should be adjusted such that; 

 Peak of the second order time based derivative of resolver position 

trajectory signal (acceleration of the resolver) does not exceed 2120 120°/s  

( 2120 2.0933  rad/s ), 
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 Peak of the first order time based derivative of resolver position trajectory 

signal (speed of the resolver) does not exceed 120 60°/s  

(120 1.0467  rad/s ). 

Regarding above mentioned considerations and system bandwidth (0.5 Hz), 

simulative resolver position trajectory is constructed as 

 2

0
39.8sin(2 )  radft

         (4.1) 

where f  is chosen as 0.4Hz . Then, simulative resolver speed trajectory can be 

found by taking derivative of the position trajectory with respect to time such that 

100cos(2 )   rad/s d ftdt
          (4.2) 

where f  is 0.4Hz . 

In the simulation model, noise process is assumed to be white, uncorrelated and 

zero mean Gaussian process. Variance of the noise is extracted from real noise data 

collected from the stabilized gun system while resolver is stationary and resolver 

position is close to 45° (Figure 4-3). Using var and mean functions of Matlab, 

variance of the signal is found as 6.90735x10-5 where mean of it is found as 0.6589 

corresponding to a resolver position of 41.22°. Hence, white noise signals with the 

same variance are added to noise-free cos  and sin  signals. Then, noisy resolver 

signals are fed to the estimator filters and filters are tuned based on the performance 

observations made in simulation environment.  
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Figure 4-3 Noise on the resolver channel in the gun stabilization system when 

resolver speed is zero and position is 41.22° 

Figure 4-4 shows the simulative position trajectory ( ) and constructed sin  and 

cos  signals with additive white noise.  

 

Figure 4-4 Noise-free position signal and noisy sine and cosine signals used as input 

to estimator filters in simulation environment 
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4.1.2 Tuning the Filters 

The filters are tuned in simulation environment and the same parameters are used in 

real-time performance tests. To make the performance tests fair, parameters of each 

filter are adjusted such that the error between the speed estimate and the true speed 

has the same level of noise amplification (variance) for each filter. This level is set 

to 2.75 rad/s corresponding to 2.75% of maximum achievable resolver speed in the 

experimental system. The tuned parameters of the estimator filters and 

corresponding performance parameters are shown in Table 4-1. 

Table 4-1 Tuned Parameters of the estimator filters and corresponding performance 

parameters obtained in simulation environment 

Filter Environ. 

Filters’ 
Tuning 
Params

Tuned 
Values

Filters’ Performance Parameters 

Mean of 
Position 

Estimation 
Error 
(rad) 

Variance 
of Position 
Estimation 

Error  
(rad) 

Mean of 
Speed 

Estimation 
Error 
(rad/s) 

Variance 
of Speed 

Estimation  
Error 
(rad/s) 

Nonlinear 
Observer Simulation 

γ1 350000
-0.00461 0.07252 0.00136 2.75671 γ2 200 

Tracking 
Differentiator Simulation 

R 50000 
-0.01379 0.66366 -0.00189 2.75944 λ 0.071 

SSLKF Simulation α 1.8E-09 -0.00854 0.08826 0.00037 2.75536 
EKF Simulation α 1.8E-09 -0.00779 0.05207 0.00025 2.75846 

UKF Simulation 

γ 0.15 

-0.00829 0.08361 0.00027 2.75441 

α 1.41 
β 2 
κ 1 

All in all, the tracking differentiator has the maximum average position estimation 

error which is 0.01379 rad (0.79 deg). This error level is acceptable since it will 

incur a negligible amount of torque ripple (<0.01%) in the experimental system. 

Hence, it is concluded that the filters are tuned well enough to run in real-time. 
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4.1.3 Running the Estimator Filters in the Experimental System for 

Real-time Performance Tests 

The estimator filters with the other necessary components of the converter are 

implemented in an experimental STAMP system. The experimental system has a 

servo motor with a resolver sensor, a resolver reference generator, a DSP board and 

a motor drive board. The block diagram of the experimental system is shown in 

Figure 4-5. 

 

Figure 4-5 Experimental system for real-time performance tests 
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After filtered by the anti-aliasing filters, resolver signals are sampled by the analog-

to-digital converters on the DSP board and sampled signals are carried to the FPGA 

through serial interfaces. Then, the resolver signals are reconstructed from the 

sampled signals by the interpolation filters and filtered by the high-pass filters for 

elimination of low-frequency distortions. The reconstructed resolver signals are 

demodulated by the phase-sensitive demodulator and demodulated resolver signals 

are delivered to the estimator filters running in the DSP. 

The position trajectory for real-time performance tests is formed as 

 2

0
11.25sin(2 )  radft

         (4.3) 

where f  is chosen as 0.4Hz . Then, resolver speed trajectory can be found by 

differentiating the position trajectory with respect to time such that 

9 cos(2 )   rad/s d ftdt
           (4.4) 

where f  is 0.4Hz . In order to stabilize the position and speed of the motor at the 

determined position and speed trajectories expressed by (4.3) and (4.4) respectively, 

a PID based closed-loop speed controller is embedded into the servo drive 

controller software and speed feedback is obtained from the reference RDC (Analog 

Devices’ AD2S83). The experimental system can be summarized schematically as 

shown in Figure 4-6. 
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Figure 4-6 Schematically summary of the experimental system used in real-time 

performance tests 

4.2 Simulative and Real-time Estimation Performances of the Filters 

Simulative and real-time performance tests are performed with the pre-determined 

position and speed trajectories. The estimation errors in simulation environment are 

calculated by subtracting the estimate signals from the pre-determined trajectories 

while estimation errors in real-time are calculated by subtracting the estimate 

signals from the measurements of the reference RDC.  

4.2.1 Simulative and Real-time Performances of the Nonlinear 

Observer 

The estimation performances of the Nonlinear Observer in simulation and real-time 

are shown in Figure 4-7, Figure 4-8, Figure 4-9 and Figure 4-10. 
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Figure 4-7 Position estimation performance of the Nonlinear Observer in simulation 

 

Figure 4-8 Speed estimation performance of the Nonlinear Observer in simulation 
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Figure 4-9 Position estimation performance of the Nonlinear Observer in real-time 

 

Figure 4-10 Speed estimation performance of the Nonlinear Observer in real-time 
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Table 4-2 gives the filter’s performance parameters calculated using Matlab’s mean 

and var functions.  

Table 4-2 Performance parameters of the Nonlinear Observer in simulation and 

real-time 

Environment
Filter 

Params 

Filter 
Params’ 
Values 

Mean of 
Position 

Estimation 
Error (rad) 

Variance of 
Position 

Estimation 
Error  (rad)

Mean of 
Speed 

Estimation 
Error 
(rad/s) 

Variance of 
Speed 

Estimation  
Error 
(rad/s) 

Simulation 

γ1 350000 

-0.00461 0.07252 0.00136 2.75671 γ2 200 

Real-time 

γ1 350000 

-0.00197 0.01424 -0.23219 0.43378 γ2 200 

4.2.2 Simulative and Real-time Performances of the Tracking 

Differentiator 

The estimation performances of the Tracking Differentiator in simulation and real-

time are shown in Figure 4-11, Figure 4-12, Figure 4-13 and Figure 4-14. 
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Figure 4-11 Position estimation performance of the Tracking Diff. in simulation 

 

Figure 4-12 Speed estimation performance of the Tracking Diff. in simulation 
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Figure 4-13 Position estimation performance of the Tracking Diff. in real-time 

 

Figure 4-14 Speed estimation performance of the Tracking Diff. in real-time 
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Table 4-3 gives the filter’s performance parameters calculated using Matlab’s mean 

and var functions.  

Table 4-3 Performance parameters of the Tracking Differentiator in simulation and 

real-time 

Environment 
Filter 

Params 

Filter 
Params’ 
Values 

Mean of 
Position 

Estimation 
Error (rad) 

Variance of 
Position 

Estimation 
Error  (rad)

Mean of 
Speed 

Estimation 
Error 
(rad/s) 

Variance of 
Speed 

Estimation  
Error 
(rad/s) 

Simulation 
R 50000 

-0.01379 0.66366 -0.00189 2.75944 λ 0.071 

Real-time 
R 50000 

-0.00329 0.0552 -0.23207 0.59698 λ 0.071 

4.2.3 Simulative and Real-time Performances of the LKF 

The estimation performances of the LKF in simulation and real-time are shown in 

Figure 4-15, Figure 4-16, Figure 4-17 and Figure 4-18. 

 

Figure 4-15 Position estimation performance of the LKF in simulation 
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Figure 4-16 Speed estimation performance of the LKF in simulation 

 

Figure 4-17 Position estimation performance of the LKF in real-time 
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Figure 4-18 Speed estimation performance of the LKF in real-time 

Table 4-4 gives the filter’s performance parameters calculated using Matlab’s mean 

and var functions.  

Table 4-4 Performance parameters of the LKF in simulation and real-time 

Environment 
Filter 

Params 

Filter 
Params’ 
Values 

Mean of 
Position 

Estimation 
Error (rad) 

Variance of 
Position 

Estimation 
Error  (rad)

Mean of 
Speed 

Estimation 
Error 
(rad/s) 

Variance of 
Speed 

Estimation  
Error 
(rad/s) 

Simulation α 1.8E-09 -0.00854 0.08826 0.00037 2.75536 
Real-time α 1.8E-09 -0.00192 0.01734 -0.22581 1.00329 

4.2.4 Simulative and Real-time Performances of the EKF 

The estimation performances of the EKF in simulation and real-time are shown in 

Figure 4-19, Figure 4-20, Figure 4-21 and Figure 4-22. 
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Figure 4-19 Position estimation performance of the EKF in simulation 

 

Figure 4-20 Speed estimation performance of the EKF in simulation 
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Figure 4-21 Position estimation performance of the EKF in real-time 

 

Figure 4-22 Speed estimation performance of the EKF in real-time 
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Table 4-5 gives the filter’s performance parameters calculated using Matlab’s mean 

and var functions.  

Table 4-5 Performance parameters of the EKF in simulation and real-time 

Environment 
Filter 

Params 

Filter 
Params’ 
Values 

Mean of 
Position 

Estimation 
Error (rad) 

Variance of 
Position 

Estimation 
Error  (rad)

Mean of 
Speed 

Estimation 
Error 
(rad/s) 

Variance of 
Speed 

Estimation  
Error 
(rad/s) 

Simulation α 1.8E-09 -0.00779 0.05207 0.00025 2.75846 

Real-time α 1.8E-09 -0.00097 0.03001 -0.20787 2.79309 

4.2.5 Simulative and Real-time Performances of the UKF 

The estimation performances of the UKF in simulation and real-time are shown in 

Figure 4-23, Figure 4-24, Figure 4-25 and Figure 4-26. 

 

Figure 4-23 Position estimation performance of the UKF in simulation 
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Figure 4-24 Speed estimation performance of the UKF in simulation 

 

Figure 4-25 Position estimation performance of the UKF in real-time 
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Figure 4-26 Speed estimation performance of the UKF in real-time 

Table 4-6 gives the filter’s performance parameters calculated using Matlab’s mean 

and var functions.  

Table 4-6 Performance parameters of the UKF in simulation and real-time 

Environment 
Filter 

Params Values 

Mean of 
Position 

Estimation 
Error (rad) 

Variance of 
Position 

Estimation 
Error  (rad)

Mean of 
Speed 

Estimation 
Error 
(rad/s) 

Variance of 
Speed 

Estimation  
Error 
(rad/s) 

Simulation 

γ 0.15 

-0.00829 0.08361 0.00027 2.75441 

α 1.41 
β 2 
κ 1 

Real-time 

γ 0.15 

-0.0022 0.03158 -0.2158 2.18465 

α 1.41 
β 2 
κ 1 
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4.3 Comparative Analysis of the Real-time Estimation Performances of 

the Estimator Filters 

Estimation performances in simulation and real-time differ due to changing noise 

and signal characteristics. 

 Noise injected to resolver signals in simulation models is white, 

uncorrelated and zero-mean Gaussian. However, noise in the servo system 

does not satisfy these conditions. For instance, Figure 4-27 shows Power 

Spectral Density (PSD) analysis of real-time cosine signal. Since the signal 

has not a flat power spectral density, it is concluded that noise is not white in 

the experimental system.  

 Simulation models have idealized characteristics such that nonlinearities 

present in the experimental system do not exist in simulation models. For 

instance, real-time demodulated cosine and sine signals have multiplicative 

distortion terms ( sin sinS    and cos cosC   ) whereas simulation 

models do not have such terms.  

 Simulation models do not suffer from delays in the demodulated sine and 

cosine signals whereas real-time models are exposed to them.  

Therefore, the goal of the real-time comparative performance analysis is to find the 

most robust estimator filter against system non-linearities, signal distortions and 

non-ideal noise characteristics. If a filter is more sensitive to the said disturbing 

effects, it is less suitable to be utilized in the servo system. 



118 

 

 

Figure 4-27 Real-time demodulated cosine signal and its Power Spectral Density 

estimate 

Since the noise in resolver process is not white, it is expected that Kalman filters in 

real-time will not be as successful as they are in simulation environment. Contrary 
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to this expectation, Kalman filters performed better than the nonlinear observer and 

the tracking differentiator with smaller estimation errors in both position estimate 

and speed estimate. However, evaluating position and speed estimation 

performances of the estimator filters alone does not give enough insight into 

replaceability of the designed software-based RDC with the ready-to-use RDC ICs. 

Hence, effects on torque, speed and position loops’ performances should also be 

inspected. Table 4-7 includes all the data related to real-time performances of the 

filters.  

Table 4-7 Results of the real-time performance tests of the estimator filters 

Filter Environ. Params Values

Mean of Position 
Estimation Error 

(rad) 

Mean of Speed 
Estimation 

Error (rad/s)  

Nonlinear 
Observer Real-time 

γ1 350000
-0.00197 -0.23219 γ2 200 

Tracking 
Differentiator Real-time 

R 50000 
-0.00329 -0.23207 λ 0.071 

LKF Real-time α 1.8E-09 -0.00192 -0.22581 
EKF Real-time α 1.8E-09 -0.00097 -0.20787 

UKF Real-time 

γ 0.15 

-0.0022 -0.2158 

α 1.41 
β 2 
κ 1 

4.3.1 Comparison of the Estimator Filters for Torque Loop’s 

Performance 

Since resolver rotor position (motor shaft position) signal is utilized for calculation 

of the produced torque in the servo system, error in position estimate in turn will 

degrade the torque loop performance. The block diagram of the torque control loop 

of the stabilized gun system is shown in Figure 4-28. 
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Figure 4-28 Simplified block diagram of the torque control loop with Field 

Orientated Control (FOC) in the servo system 

(4.5) shows the relation between the torque feedback and resolver shaft position   

as 

1 2sin cos cos
3 3a bT i i       

 
     (4.5) 

where T stands for the produced torque and ai  and bi  stand for the motor phase 

currents. To observe the effect of the each filter’s position estimation error on 

torque loop’s performance, a simulation is performed by using (4.5).  

Simulation Model 

In the simulation model, a one pole pair synchronous motor with a resolver sensor 

rotating with a speed of 2π rad/s is simulated. The model has Inverse Park and 

Inverse Clarke transforms in order to simulate the motor phase currents ai  and bi . 

The true torque estimate is calculated by using the correct position signal whereas 

the erroneous torque estimate is calculated by using the position signal with the 

estimation error. The simulation is repeated for each estimator filter by changing the 

position estimation error value of the model according to the data given in Table 4-

7. The simulation model is shown in Figure 4-29. 
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Figure 4-29 Simulation model in Simulink to observe the torque estimation error for 

filters’ position estimation errors 

Torque Estimation Performance for Different Estimator Filters  

Using the derived simulation model, torque estimation error for each estimator filter 

is observed in simulation environment as shown in Figure 4-30. 
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Figure 4-30 Torque estimation errors for estimator filters’ position outputs 

All in all, torque estimation error values are so small ( 42.85 10 %  ) that torque 

loop’s performance will be affected negligibly with utilization of any estimator 

filter.  
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4.3.2 Comparison of the Estimator Filters for Speed and Position 

Loops’ Performances 

Velocity output of the estimator filter may be utilized to form up a closed-loop 

speed controller for a non-stabilized servo system as shown in Figure 4-31. One 

example for such a system may be stationary gun control systems deployed at battle 

field. 

 

Figure 4-31 Block diagram of the speed control loop in the non-stabilized servo 

system 

Since the system speed estimate is directly fed to the loop without encountering any 

transformation, an error in this signal will induce the same amount of tracking error 

in system speed loop. Therefore, feasibility of the estimator filters’ velocity output 

in the servo system should be examined in terms of the resultant deterioration in 

speed and position tracking performance of the gun system.  

The main goal of a gun control system is to keep the gun orientation at the target 

while the target is not stationary. In general, fire control systems utilize radars and 

electro-optical sensors which sense the target angular position with respect to the 

gun. Hence, in general, a position controlled servo system is preferred in gun 

control systems to stabilize the gun position. The most precise and reliable way of 

realizing the position controlled servo system is to use nested three control loops 

two of whom are above mentioned speed control and torque control loops. The third 

and the last loop of the position controlled servo system is the position loop. 
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Figure 4-32 Position error controlled non-stabilized servo system 

In the position controlled non-stabilized servo system, speed estimation error’s 

disturbing effect on target tracking performance will be tolerated and reduced by the 

position loop. In order to observe the amount of this tolerance, a simulation is 

performed in Simulink using the real estimation error data given in Table 4-7.  

Simulation Model 

The simulation model is constructed by using nested loops of speed and position 

and modeling the torque loop’s transfer function as a gain. The gun control system 

can be modeled as a differentiator between torque signal and speed signal as 

( ) ( )T s JsW s         (4.6) 

where T(s) and W(s) are the torque and speed signals in Laplace domain and J is the 

inertia of the system. Together with the zero-order hold, the system transfer 

function in Laplace domain can be written as 

2

( ) 1 1 1

( )

s sT TW s e e

T s s Js Js

  
         (4.7) 

The discrete-time model in Z domain can be found using the Pulse transfer Function 

method described in [11], namely by the operation 
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1
1
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( ) 1 1
(1 )

( ) (1 )

sT
sT zW z e

Z z Z
T z Js Js J z

 




           
    (4.8) 

where Z stands for Pulse Transfer Function operator and Ts stands for the sampling 

period. The numerical values for Ts and J are 0.001 s and 34 kgm2 respectively 

yielding a system transfer function of 

1 5
5

1

( ) 2.9412 10
2.9412 10

( ) (1 ) 1

W z z

T z z z

 





  

 
    (4.9) 

Using the system transfer function expressed by (4.9), the simulation model is 

constructed as seen in Figure 4-33. The model is supported by the realistic system 

parameters collected from the experimental system. For instance, the torque gain is 

set to 420 since the maximum achievable system torque is 420 Nm. Speed scale 

gain is set to 1.0467 since the maximum achievable system speed is 1.0467 rad/s. 

Lastly, friction torque is set to 85 Nm as measured in the experimental system.  

 

Figure 4-33 Non-stabilized gun control system’s simulation model 

The system speed estimation error values for each estimator filter are calculated 

from the data given in Table 4-7. The calculated system speed estimation error 

values are given in Table 4-8.  
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Table 4-8 System speed estimation error values calculated by multiplying real-time 

resolver speed estimation error values by system gear ratio (1/120) 

Filter 

Mean of Resolver 
Speed Estimation 

Error (rad/s) 

Mean of System 
Speed Estimation 

Error (rad/s) 

Nonlinear 
Observer -0.23219 -0.00193492 

Tracking 
Differentiator -0.23207 -0.00193392 

LKF -0.22581 -0.00188175 
EKF -0.20787 -0.00173225 
UKF -0.21580 -0.00179833 

In the simulation model, the software-based RDC is modeled as a speed sensor with 

non-zero speed estimation error. The simulation is repeated for each estimator filter 

by changing the system speed estimation error value of the model according to 

Table 4-8. System position command trajectory in simulation model is formed as 

the same with the position trajectory used in real-time performance tests. Namely, it 

is 0.09375sin(2 0.4 )t  rad. In the simulation, it is assumed that the radar or electro-

optical sensor produces the position error at a sampling frequency of 25 Hz. 

Comparison of the Estimator Filters for Speed and Position Loops’ Performances 

Making use of the derived simulation model, speed and position tracking errors are 

measured for different estimator filters by using running mean method. The results 

are given in Table 4-9. Transient responses of the loops are also taken into 

consideration during the measurements.  
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Figure 4-34 Measuring servo system speed and position tracking errors in 

simulation environment using running mean method in Simulink 

Table 4-9 Position and speed loops’ performances with different estimator filters for 

a position command trajectory of 0.09375sin(2 )ft  rad 

Filter 

Average System 
Speed 

Estimation 
Error (rad/s) 

Simulation 
Time 

Running Mean 
of Position 

Tracking Error 
(rad) 

Running Mean 
of Speed 

Tracking Error  
(rad/s) 

Zero Estimation Error 0 7 s 0.017672955 0.00761063 
Nonlinear Observer -0.00193492 7 s 0.017676911 0.00761110 

Tracking Differentiator -0.00193392 7 s 0.017676909 0.00761108 
LKF -0.00188175 7 s 0.017676795 0.00761109 
EKF -0.00173225 7 s 0.017676469 0.00761105 
UKF -0.00179833 7 s 0.017676613 0.00761107 

Figure 4-35 shows the position tracking performance of the servo loop for changing 

position estimation error values for a position command trajectory of 

0.09375sin(2 0.4 )t  rad.  
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Figure 4-35 Scope screen showing position tracking performance of the servo 

system in transient and steady-state for changing position estimation error values 

when a position command trajectory of 0.09375sin(2 )ft  rad is applied to the 

servo system 

When Table 4-9 is examined in close, it is observed that position tracking errors of 

the servo system with non-zero estimation errors (i.e. with estimator filters’ speed 

estimation errors) are negligibly small compared to the position tracking error of the 
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servo system when zero speed estimation error is applied. This proves the claim that 

the estimator filters can be utilized as system speed estimator in a non-stabilized 

servo system. Therefore, from the aspect of non-stabilized gun control system’s 

target tracking performance, the proposed software-based RDC seem to be 

replaceable with the ready-to-use RDC ICs. 

4.3.3 Comparison of the Estimator Filters for Filtering Performances 

and Computational Complexity 

Kalman filters show slightly better performance in both simulation environment and 

in real-time when we investigate the resolver speed estimation performances of the 

filters. In fact, since real-time noise in resolver process is not Gaussian and it is 

correlated to position signal, it is expected that Kalman filters implemented in the 

experimental system will not be as successful as they are in simulation 

environment. However, although the real-time noise in the process does not satisfy 

the optimality criterions of the Kalman filtering, that is being white, uncorrelated 

and Gaussian, Kalman filters performed slightly better than the nonlinear ways of 

filtering such as nonlinear observer and tracking differentiator. 

When we compare estimation performances of different type Kalman filters for 

resolver conversion process, we see that the EKF is the best filter followed by the 

UKF and then LKF. Although it is stated that the UKF generally performs slightly 

better than EKF in [13], we observed that UKF performs worse. The worse 

performance of the UKF may be due to tuning imperfections since the UKF has 

four tuning parameters and these parameters are closely dependent on the noise 

model which is not exactly known. Moreover, the worse performance of the UKF 

may also be due to the fact that system nonlinearities in resolver conversion process 

are not so severe that Unscented Transform could not show its dominating success 

in passing Gaussians through nonlinear functions.  All in all, it is proved that there 

is not a great difference in estimation performances of LKF, UKF and EKF for 

resolver conversion process. Hence, UKF and EKF with their higher computational 
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power requirements are not so feasible that LKF with its minimized computational 

complexity show a very similar estimation performance.  

As far as the computational efficiency is thought based on the mathematical 

derivations of the filters, UKF is the most complex filter followed by EKF. LKF, 

Nonlinear Observer and Tracking Differentiator have similar computational 

complexities which can be stated as light compared to the EKF and the UKF. 

Hence, it is concluded that the ideal filter for software-based resolver-to-digital 

converter is the Linear Kalman filter as illustrated in Figure 4-36.   

 

Figure 4-36 Accuracy and computational complexity graphs of the estimator filters 

(not scaled to real values) 

One more advantage of the Kalman filters over the Nonlinear Observer and the 

Tracking Differentiator is that they provide an estimate of the acceleration even 

though it is a bit noisy. The acceleration information may be utilized to form up an 

acceleration-controlled servo system instead of the classical torque-controlled servo 

system. Acceleration control increases the stiffness of the servo system 

considerably [32, 33, 34].  
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4.4 Stability and Sensitivity Analyses 

4.4.1 Stability Analysis 

The stability analysis is performed for the Kalman filter by making use of the 

Liapunov stability criterion. The mathematical model of the Linear Kalman filter is  

2
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where k
  is the filter’s position estimate, k

  is the filter’s speed estimate, ka  is the 

filter’s acceleration estimate and k  is the actual resolver position. Lastly, K is the 

pre-calculated Kalman gain and it is expressed as 
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Then the filter can be described by  
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Setting k  to zero, zero-input solution for the system can be found by solving the 

following state-space equation; 
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The second method of Liapunov states that if a system has an asymptotically stable 

equilibrium state within a region of attraction in the state space, whatever the 

energy level the system is in at the beginning, it will dissipate its energy and its 

energy will decay within a trajectory with increasing time until the system reaches 

the minimum energy level at the equilibrium state. Hence, if a system has an 

asymptotically stable equilibrium state in a certain region in state space, then we 

can claim that it is asymptotically stable in this region. If asymptotic stability holds 

for all states in state space from which the energy trajectories start, then the 

equilibrium state is said to be asymptotically stable in the large. Asymptotic 

stability in the large is a desirable feature in control engineering. [11] 

Practically, let us consider a discrete-time system described as 

( 1) ( )x k Ax k          (4.14) 

where x is the state vector of the system and A is the state matrix of the system. Let 

us assume that A is a nonsingular matrix. Then the equilibrium state at the origin of 

the system (x=0) is asymptotically stable in the large, if, given any positive definite 

Hermitian matrix Q, there exists a positive definite Hermitian matrix P such that 

*A PA P Q            (4.15) 

Using the above defined method, let us investigate the stability of the origin for the 

Kalman filter realized in the thesis. The A matrix will be 

2
1

2

3

1 / 2

1

0 1

s s

s

k T T

A k T

k

 
 

  
  

       (4.16) 

Writing the numerical values for 1k , 2k , 3k  and sT  which are 0.1235037, 73.98153, 

22158.22  and 0.0001 s respectively, we get  
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0.8764963 0.0001 0.00005

73.98153 1 0.0001

22158.32 0 1

A

 
   
  

     (4.17) 

Then, let us choose Q to be I. Then from the equation (4.15), the stability equation 

becomes 

1 0 0

* 0 1 0

0 0 1

A PA P

 
    
 
 

       (4.18) 

Making use of the Matlab’s dlyap function, the solution for P is found as 

11 7 6

7 6 3

4 3

 3.93 10            -1.96 10         -2.05 10

-1.96 10              2.06 10           -5 10

-2.05 10               -5 10               27.99

P

   
 

    
   

    (4.19) 

Applying the Sylvester’s criterion for positive definiteness, the P matrix is found as 

to be positive definite. Hence, the equilibrium state x=0 is asymptotically stable in 

the large for the Kalman filter implemented in the thesis.  

4.4.2 Sensitivity Analysis 

In this section, sensitivity of the position tracking error of the servo system 

equipped with the proposed RDC to demodulator output errors ( S and C ) is 

analyzed. At the end of the study, robustness of the servo system is also measured 

by the numerical analysis.  
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Figure 4-37 Flow of the error from the demodulator to the position tracking 
performance of the servo system 

Position Estimation Error as a Function of S , C  and Actual Position 

Kalman filter derived for the software-based RDC can be seen as to have two 

components; a nonlinear transfer function and a linear transfer function.  

 

Figure 4-38 Kalman filter divided into two components for sensitivity analysis 

Firstly, let us neglect the dynamics of the Kalman filter carried by the linear transfer 

function and express the position estimation error in terms of S , C  and actual 

position by using the nonlinear transfer function. The nonlinear transfer function in 

Kalman filter is the error calculator function expressed by 
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sin cos cos sin           (4.20) 

where   is the actual resolver position and   is the position estimate of the filter. 

From the analysis performed in section 3.2.2, we know that if the Kalman filter 

shows zero steady-state error, the position estimation error   will be 

cos sin sin cosC S              (4.21) 

Then, (4.21) can be expanded as 

cos sin( ) sin cos( )C S                (4.22) 

Further expanding will yield 

( , , ) cos (sin cos cos sin )

                         sin (cos cos sin sin )

C S C

S

      
    

       
   

   (4.23) 

Since   will be very close to zero, we can assume cos   to be 1 and sin   to 

be 0. Then, (4.23) will be reduced to 

( , , ) cos sin sin cosC S C S               (4.24) 

Hence, the position estimation error due to demodulator output errors and actual 

position can be approximated by (4.24).  

This analysis gives the behavior of the filter with the assumption that the kalman 

filter will track the input with zero steady-state error. However, for some values of 

the filter parameter   the assumption may not hold, that is, filter may show non-

zero steady-state error. Hence, the following analysis is performed to include the 

Kalman filter’s dynamics in the sensitivity analysis as well. 

Position Estimation Error as a Function of Filter Parameter and Resolver Speed 

The Kalman filter is modeled by the following state-space representation; 
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    (4.25) 

where k
  is the filter’s position estimate, k

  is the filter’s speed estimate, ka  is the 

filter’s acceleration estimate and k  is the actual resolver position. Lastly, K is the 

pre-calculated Kalman gain and it is expressed by 

1

2

3

k

K k

k

 
   
 
 

         (4.26) 

Let us make use of Z-transform method in extracting the transfer function of the 

filter. The following equations can be written in Z domain. 

1 1
3( )a z a k z             (4.27) 

1 1 1
2 ( ) sz k z T z a               (4.28) 

2
1 1 1 1

1( )
2
s

s

T
z k z T z z a                 (4.29) 

where the following definitions are given 
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         (4.30) 

Writing (4.27) into (4.28), an expression for   in terms of   and   is derived. 

When the derived expression and (4.27) are both written into (4.29), the following 

linear transfer function is obtained. 
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 (4.31) 

Then, the error signal in Z-domain can be expressed as 

( ) ( ) (1 ( ))E z G z G z               (4.32) 

For instance, for a position signal varying with constant speed k A   rad/s, the 

error signal in Z-domain will be 

1

1 2
( ) (1 ( )) (1 ( ))

(1 )
sAT z

E z G z G z
z




   


     (4.33) 

Making use of (4.33), the variation of the steady-state error with respect to filter 

parameter  and resolver speed is observed as shown in Figure 4-38.   

 

Figure 4-39 Steady-state error with respect to resolver speed and   where speed 

varies from 1 rad/s to 100 rad/s and   varies from 1010  to 510  
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From Figure 4-38, it is concluded that the steady-state error changes negligibly with 

changing   where   takes values between 1010  to 510 . As a result, it can be 

assumed that 0


   where   changes in this limited region. The reason why 

  is limited between 1010  to 510  can be explained by the trade-off performed 

between the filter bandwidth and noise suppression performance. If the parameter 

( ) is made greater than 510 , the filter’s bandwidth decreases to an unacceptable 

level. On the other hand, if it is made smaller than 1010 , the filter bandwidth 

increases so much that the noise suppression ability deteriorates. Figure 4-39 

explains the situation with error signal’s variation with different filter parameters 

selected between 1010  to 510 . 

 

Figure 4-40 Error signal’s settling for different values of the filter parameter   

Although the bandwidth changes with changing parameter value, the steady-state 

error does not change with changing parameter value (Figure 4-39). On the other 

hand, the steady-state error increases with increasing resolver speed (Figure 4-38). 
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Hence, we can claim that the estimation error is dependent on not only the resolver 

position but also resolver speed. This situation can be explained mathematically by 

the final-value theorem. The steady-state error will be 

 
1 1 1 1

1 0 1 2 3 4
1 1 1 11 1

1 2 3 4

0 1 2 3 4

1 2

(1 )(1 )(1 )(1 )
( ) lim (1 ) ( ) lim

(1 )(1 )(1 )(1 )

(1 )(1 )(1 )(1 )
                                             

(1 )(1 )(1

z z

b b z b z b z b z
A z E z A

a z a z a z a z

b b b b b
A

a a a


   


    

    
         

   


   3 4)(1 )a

 (4.34) 

where A  is the actual resolver speed in rad/s and ib  and ia  are filter coefficients 

calculated with the filter parameter  . Hence, the theorem reveals that there will 

always be a finite steady-state error whose amplitude is proportional to resolver 

speed while the resolver rotates with a constant speed. By using the assumption 

0


   and numerical values of ib  and ia , position estimation error due to 

constant resolver speed can be formulated as 

( ) 0.0000375  radA A         (4.35) 

Position Estimation Error Due to Filtering Delays 

Another error source is the filtering delays which stem from implementation of anti-

aliasing filter, interpolation filter and high-pass filter on resolver channels. The 

expression (4.36) has been derived in section 3.2.5 and it gives the position 

estimation error with respect to resolver speed as 

( ) 0.00040965  rad           (4.36) 

where   is the resolver speed in rad/s. 

Total Position Estimation Error 

Making use of (4.24), (4.35) and (4.36), the total position estimation error can be 

approximated by the following expression; 
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( , , , , ) cos sin sin cos

                                  0.0000375 0.00040965  rad

C S A C S

A

      


     
 

   (4.37) 

where C and S  are demodulator output percentage errors for cosine and sine 

channels respectively, A  is the constant resolver speed in rad/s and   is the 

resolver speed in rad/s. Since the expression is derived for constant speed case, the 

third and the fourth terms can be unified reducing (4.37) to 

( , , , ) cos sin sin cos 0.00044715C S A C S A              (4.38) 

Then, sensitivity of the position estimation error to C  and S  can be found using 

partial derivatives such as 

cos sin
C

  



        (4.39) 

and  

sin cos
S

  
 


        (4.40) 

The sensitivity of the position estimation error to filter parameter   has been found 

as negligibly small in the region where the filter has acceptable bandwidth and 

noise rejection performance. Similarly, we can also neglect the sensitivity of the 

position estimation error to constant speed A since the related coefficient in (4.38) is 

negligibly small. Hence, the sensitivity of the position estimation error to filter 

parameter and resolver speed is assumed to be zero throughout the sensitivity 

analysis. 

Figure 4-40 visualizes sensitivity of the nonlinear transfer function to demodulator 

output percentage errors S  and C . 
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Figure 4-41 Sensitivity of the nonlinear transfer function to demodulator output 

percentage errors S  and C  

The position estimation error signal is visualized by using realistic S  and C  

values in Figure 4-41. S  and C  are modeled as Gaussian distributed signals 

with mean 0 and variance 0.005% which correspond to maximum demodulator 

output errors of 1.8% as calculated in section 3.2.5. 

 

Figure 4-42 Position estimation error in steady-state due to Gaussian demodulator 

output errors while the resolver rotor rotates with a speed of 2  rad/s  

The position estimate signal is used to form up the torque loop of the servo drive 

controller. The following transformation derived from (3.12) gives the relation 

between the torque tracking error T  and the position estimation error  . 
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  (4.41) 

where T  is the demanded torque, TT  is the erroneous actual torque, ai  and bi  are 

motor phase currents and   is the actual position. Expanding (4.41) will yield 
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 (4.42) 

Since   is so small we can assume that cos 1   and sin     , which will 

reduce (4.42) to 

1 2
cos sin sin

3 3
a bT i i             
 

    (4.43) 

where ai  and bi  are position and torque dependent variables. They can be 

approximated using (2.5) and (2.6) as 

sinai T            (4.44) 

3
sin cos

2 2b

T T
i           (4.45) 

Hence, writing (4.44) and (4.45) into (4.43), the sensitivity of torque tracking error 

to position estimation error can be found as 
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2 sin cos
T

T  






        (4.46) 

Combining (4.46) and (4.38), we will obtain  

 2
2 sin cos ,T T C S           (4.47) 

Hence, the torque tracking error will be periodic and its frequency will depend on 

the rate of change of the actual position of the motor. That is to say, T  shows 

oscillation with a frequency four times the motor rotation frequency as seen in the 

Figure 4-42. Let us name this oscillation as “torque ripple”. 

 

Figure 4-43 Scope screen showing torque ripple and sin  and cos  signals when a 

torque demand of 50% and a demodulator output error of 1% are present in the 

system 

The following differential equation which is time domain expression of (4.6) gives 

the relation between the torque tracking error T  and speed tracking error  . 

d
T J

dt


           (4.48) 

which can also be written as 
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2

1

1
t

t

Tdt
J

           (4.49) 

where J is the inertia of the system. Then, the sensitivity of speed tracking error to 

torque tracking error can be derived by differentiating both sides of (4.49) with 

respect to T . 

2 2

1 1

2 1

1 1 1
( )

t t

t t

T
Tdt dt t t

T T J J T J

    
         

      (4.50) 

Similarly, the system position tracking error   is the time-based integral of the 

system speed tracking error  . 

2

1

t

t

dt            (4.51) 

Hence, the sensitivity function can be written as 

2 2

1 1

2 1( )
t t

t t

dt dt t t


  

   
         

       (4.52) 

Consequently, an oscillation on the torque signal will induce an oscillation on the 

system speed at the same frequency. Similarly an oscillation on the speed signal 

will induce an oscillation on the position signal at the same frequency. Hence, 2t  

and 1t  values in (4.50) and (4.52) should be determined based on the torque ripple 

frequency. If we perform the worst case analysis, the integration time 2 1( )t t  

should be chosen as 

2 1
1( ) 2 T

t t f          (4.53) 
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where Tf  is the frequency of the torque ripple which has been determined as four 

times the motor rotation frequency from (4.47).  

The overall sensitivity function which relates the system position tracking error to 

the demodulator output error can be found from the chain rule as 

, ,

T

C S C S T

 
 

    


    
      (4.54) 

which yields (4.55) by (4.52), (4.50), (4.46), (4.40) and (4.39). 

   2 2

2 1

2
cos sin

,

T
t t

C S J
 

  


     (4.55) 

Then, for any value of C  or S , let us call them 'C  and 'S ,   can be 

found by the integral term 

   
', '

2 2

2 1

0

2
, cos sin ', '

,

C S T
d C S t t C S

C S J
 

 
     

   (4.56) 

When (5.56) is inspected closely, it is observed that T  and J  works adversely, that 

is, as the torque demand T increases, position tracking error increases whereas as 

the inertia of the system J increases, position tracking error decreases for a constant 

demodulator output error. It is also concluded that the position tracking error is 

dependent on the actual motor position ( ). Moreover, as 2 1( )t t  increases, in 

other words, as the frequency of the torque tracking error decreases, position 

tracking error increases. This result makes it necessary that the analysis will be 

performed for a determined operation frequency of the motor. Hence, let us assume 

that the motor operates at a very low frequency, namely 1 Hz inducing a 4 Hz 

torque ripple. Then, 2 1( )t t  can be calculated as 0.125 s from (4.53). Let us also 

assume that there is a torque demand of 71.2 Nm which induces the maximum 

permissible acceleration in the system (120°/sec2). This operation condition may be 
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thought as the worst case since the operation frequency of the motor is so low that it 

induces a speed of 3°/s in the system where the maximum speed is 60°/s and the 

torque demand is at the maximum value permissible in the system. Writing the 

numerical values of J (34 kgm2), T (71.2 Nm) and 2 1( )t t  (0.125 s) into (4.56), 

position tracking error can be found as 

 2
0.5235 cos sin ', '  radC S         (4.57) 

The maximum error occurs when   is at 45°, 135°, 225° and 315° since 

 2
cos sin   produces peaks at these angles. Writing the peak value for 

 2
cos sin   which is 0.25 into (4.57) will yield 

max
0.13088 ', '  radC S          (4.58) 

The maximum acceptable position tracking error can be determined from the 

deviation of the projectile fired from the gun and the center point of the target 

located at a distance of 100 meters from the gun. The deviation can be modeled as 

the perimeter of a portion of a circle with radius 100 meters as illustrated in Figure 

4-43. 

 

Figure 4-44 Deviation of the projectile from the target for the proposed system 
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The acceptable maximum deviation amount can be assumed to be 0.5 m since even 

the gun in the experimental system shows this amount of deviation for a target at a 

distance of 100 m. Then, combining (4.58) and perimeter of circle formula, 

max
100 13.088 ', ' 0.5 mC S          (4.59) 

the maximum permissible demodulator output error can be found as 3.8%. If the 

actual value for the demodulator output error which is 1.84% is compared with this 

calculated value, it is concluded that the proposed system is reliable against 

demodulator output error with a safety margin of 2%.  

 

Figure 4-45 Projectile deviation with respect to the demodulator output error 

Figure 4-45 shows the amount of projectile deviation with respect to the 

demodulator output. The value for the realized system is 0.24 m. If the signal 

conditioner was not applied to the resolver channels, this value would be 2 m 

approximately as extracted from Figure 4-45 for a demodulator output error of 15%.  
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It is important to state that the error values determined by this analysis are the 

maximum errors that the probability of seeing these levels of errors is very low 

because; 

 The demodulator output error values has been calculated for the worst case 

analysis, 

 Improving effects of the closed-loop control are neglected in the analysis 

and transients are taken into consideration since the system is more 

vulnerable to such imperfections in transients, 

 Operating frequency and system acceleration values are selected to 

guarantee the worst case analysis.  

In conclusion, the proposed system is claimed to be robust against the most 

effective imperfection, that is, demodulator output error, under the most severe 

condition it can face up with. 

Sensitivity of Errors to Analog-to-Digital Conversion Rate 

Analog-to-digital conversion rate comes up as the most important parameter of the 

proposed system. As the conversion rate goes towards infinity, frequency cut-off 

points of the anti-aliasing filter and the interpolation filter also move along the 

frequency axis towards the infinity. In the limit point, that is, in continuous-time 

domain, as a matter of fact, we neither need the anti-aliasing filter nor the 

interpolation filter since necessity for these filters arises from the digitization of the 

converter. Therefore, as the analog-to-digital conversion rate comes down along the 

frequency axis from infinity to Nyquist rate, the position estimation error of the 

software-based RDC increases due to both increasing filtering delays and increasing 

aliasing. 
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CHAPTER 5  

 

CONCLUSION AND FUTURE WORK 

5.1 Conclusion of the Thesis 

The objective of this thesis has been stated to develop a software-based resolver-to-

digital converter to be utilized in weapon systems. The motivation behind this 

objective is to enhance the servo controllers used in weapon systems in terms of 

adaptability to changing system structures. For this purpose, enhancing the 

independency of the servo system to hardware components in realization of system 

functions becomes more of an issue. Hence, a software-based resolver-to-digital 

converter which eliminates the need for special hardware components for resolver 

conversion contributes to this motivation. 

Excited with a reference signal, a resolver gives out two amplitude modulated 

signals. Measuring the reference signal and the amplitude modulated signals, the 

software-based RDC estimates position and speed of the resolver by the help of 

three components. These components can be specified as signal conditioner, phase-

sensitive demodulator and estimator filter. 

The resolver signals have harmonic distortions and high-frequency noise due to 

several imperfections present in the servo system. Such imperfections may decrease 

the quality of the demodulation, which consequently increases the position 

estimation error. Increased position estimation error in turn induces oscillations on 

the torque signal. As a consequence of the torque oscillations, the speed of the 

system also oscillates, which may prevent the weapon system from realizing its 

main function that is stabilizing the speed of the gun. Therefore, at the beginning of 
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the thesis study, an analysis examining the levels of harmonic distortions and noise 

present in resolver signals and their possible effects on torque and speed of the 

servo system is performed. Based on the result of the analysis, it is concluded that 

suppression of the harmonic distortions and noise is indispensable for the 

experimental system to obtain ripple-free torque and speed signals. Hence, a mixed-

signal signal conditioner is designed to be used in front of the phase-sensitive 

demodulator. The signal conditioner suppresses the deteriorating effects of the 

resolver signal imperfections on the demodulation. Namely, the demodulator output 

error is decreased from 15.24% to 1.84% by the application of the signal 

conditioner. As a result, amplitude of the oscillations on the torque signal is 

decreased from 1% to 0.02% where the latter value is proved to be an acceptable 

torque error value by the sensitivity analysis. 

The phase sensitive demodulator, as the name implies, demodulates the amplitude 

modulated resolver signals by also sensing their phases with respect to the reference 

signal. For realization of this function, the demodulator utilizes several components 

which may be specified as zero-crossing detectors, half-period integrators, a phase 

detector, two’s complementers, negative cycle detectors and some other logic 

elements. The performance of the designed demodulator is highly satisfactory that 

the quantization error at the demodulator output becomes less than 50.5 10  

percent. The developed demodulator reduces the effort consumed for adaptation of 

the servo system to a different sensor. Furthermore, the demodulator provides 

interface with any type of resolver without needing any hardware modification and 

by changing only one parameter embedded in the FPGA code. 

Several estimator filters are analyzed in both simulation environment and in real-

time. The real-time analysis is performed on a DSP board which has necessary 

components to realize the aforesaid signal conditioner and FPGA-based phase 

sensitive demodulator. The analyzed estimator filters are; 

 Nonlinear observer proposed in [21] 
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 Tracking differentiator adapted to resolver conversion process 

 Linear Kalman filter adapted to resolver conversion process 

 Extended Kalman filter adapted to resolver conversion process 

 Unscented Kalman filter adapted to resolver conversion process 

Since the algorithms are implemented in real-time, not only the estimation 

performances but also algorithmic complexities of the algorithms are of great 

importance. Less complexity with higher performance is always the point where we 

would like to reach for a real-time system. In the implemented algorithms, although 

the complexity increases severely from nonlinear observer to unscented kalman 

filter, the estimation accuracy does not increase in a parallel manner to the 

increasing complexity. At the end of the performed performance analyses, it is 

concluded that the most practicable filter for resolver conversion is the Linear 

Kalman filter.  

Stability and sensitivity analyses are also performed for the proposed system. The 

system is proved to be stable according to Liapunov’s stability criterion and robust 

against the most effective disturbances of the system which can be specified as 

demodulator output errors and delays in filtering circuits. The sensitivity analysis 

also shows that it is possible to improve the performance of the proposed system by 

increasing the sampling frequency of the analog-to-digital converters since 

increased sampling frequency will decrease the level of the aforesaid disturbances. 

The replacebility of the ready-to-use RDC IC’s with the proposed software-based 

RDC is proved by the performed analyses. The effects of the position and speed 

estimation errors on system torque, system speed and system position are analyzed 

and it is observed that the performance of the servo system equipped with the 

proposed system is highly satisfactory.  
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5.2 Future Work 

Torque produced by the servo motor fluctuates due to several reasons in a servo 

system. Torque ripples can be classified according to their frequency spectrum; 

high-frequency ripple components and low frequency ripple components. Absorbed 

by the inertia, high-frequency ripple components generally do not result in 

disturbing effects on the system performance. On the other hand, low-frequency 

ripple components have dramatic effects on the system performance. Low-

frequency ripple components spread into the system speed and turn into real 

motions which deflect the system performance from the demanded behavior. 

Moreover, these ripples prevent designers from increasing speed loop gains 

sufficiently because they are amplified more by higher controller gains. On the 

other hand, decreasing the gains, a more serious problem is observed. Lower speed 

loop gains result in unsatisfactory system performance and deteriorates tracking 

abilities of the servo system. That is to say, the torque ripple problem which may be 

seen as a simple problem turns into a serious one.  

During the thesis study, it is observed that low bandwidth of torque loop results in 

torque ripples in the servo system. This is due to the fact that torque loop cannot 

compensate for disturbing effects coming from gears of the system. Since these 

disturbing effects’ frequency spectrum exceeds the bandwidth of the torque loop, 

the loop can not respond fast enough and oscillations are observed on the torque 

signal. Uncompensated back-EMF and nonlinear characteristics of drive electronics 

and motor decreases the torque loop’s bandwidth and amplifies the torque ripples.  

PWM inverter, connected series to motor resistance and inductance, enables 

transferring electrical power from a DC bus to the servo motor using sinusoidal 

modulated PWM signals. The servo motor converts electrical energy into 

mechanical energy and it produces torque on the rotating shaft. This energy transfer 

is realized with three phase balanced AC currents. An AC servo motor produces a 

ripple-free torque signal when current waveforms are pure sinusoidals and do not 
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show harmonic distortions. However, nonlinearities and imperfections of PWM 

inverter, servo motor and drive electronics result in harmonic distortions in the 

current waveforms. As a result, torque shows fluctuations which eventually corrupt 

the speed loop and deteriorate its performance.  

In summary, torque fluctuations will always exist in a servo system with a wide 

frequency spectrum. Low frequency components may result from nonlinear motor 

characteristics, PWM dead band, nonlinear resistance and inductance of motor 

windings, nonlinear effects of the bus, snubber circuits, PWM inverter, gain and 

offset errors in current sensing and voltage drop across the switching elements. 

High-frequency ripple components may stem from position sensor inaccuracies, low 

bandwidth current sensors, PWM modulation technique, inadequate bus capacity, 

low sampling-time and low frequency PWM signals. High-frequency fluctuations in 

a heavy system may be absorbed by the inertia. However, if low frequency torque 

ripples are present in torque, then speed of the system will also fluctuate. Needless 

to say that this will occur if the frequency of the fluctuations is within the system 

bandwidth. Consequently, low frequency torque fluctuations are not welcome in a 

servo drive system and should be minimized possibly. Hence, the future work will 

cover an analysis of this problem and propose a method for removal of the problem 

with compensation of back-EMF and nonlinear effects. The method may make use 

of neural networks such as Echo State Network for identification of back-EMF and 

nonlinear effects. 
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APPENDIX A 

 

HARDWARE AND SOFTWARE 

A DSP board is used to realize the software-based RDC. The DSP board has a 

Digital Signal Processor with proper peripherals and Analog-to-Digital converters 

for data acquisition. It also includes a Field-Programmable Gate Array (FPGA). A 

motor drive board and a servo motor are also used in the experimental set-up. 

 

Figure A-1 Experimental set-up 
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Digital Signal Processor 

Texas Instrument’s C6000 series Digital Signal Processor is used in digital signal 

processing. C6000 is a high performance floating-point Digital Signal Processor.  

DSP chip is connected to external memory elements through a parallel data bus. It 

has a 32-bit External Memory Interface Unit (EMIF) and Enhanced Direct Memory 

Access (EDMA) controller that enables fast data transfer between the CPU and the 

external memory interfaces without interrupting the CPU. The internal structure of 

the DSP is shown in Figure A-2. 

 

Figure A-2 DSP CPU, EMIF, EDMA and external memory 

Analog-to-Digital Converters and Anti-Aliasing Filters 

The first remarkable point in selection of a suitable ADC for RDC process is the 

required sampling frequency. Resolver signals in the experimental system have a 

bandwidth of 5 kHz. According to Nyquist criterion, a sampler used for RDC 

should have a sampling frequency of 10 kHz at a minimum. The ADC chips on the 

DSP board have a maximum sampling frequency of 15.4 kHz. Therefore, they 

satisfy the Nyquist criterion. 

The Signal-to-Noise Ratio (SNR) is another important criterion for the selection of 

a suitable ADC for RDC. ADC chips used on the DSP board have an SNR of 80 

dB. Hence, the Effective Number of Bits (ENB) can be calculated from the equation 

given below: 
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80
15

6.02

dB
ENB bits    

Effective resolution of the chips is approximately 15 bits. Compared to RDC chips, 

this value of effective resolution is satisfactory.  

Before the conversion, anti-aliasing filters are used to prevent from aliasing. A 

second order analog Butterworth filter whose -3dB cut-off frequency is at 6 kHz is 

used for this purpose. The data transfer from ADC chips is realized by the FPGA 

through the serial interface (SPI).  

Field-Programmable Gate Array 

FPGA is a programmable logic processor that can be programmed in VHSIC 

Hardware Description Language (VHDL) to resolve hardware functions. The DSP 

board used in the thesis study has a Xilinx’s Spartan Family FPGA chip. FPGA is 

used to realize not only some hardware functions but also some signal processing 

on resolver signals. For instance, up sampling, interpolation and demodulation are 

performed in FPGA by coding in VHDL. The block diagram in Figure A-3 

summarizes FPGA’s role in DSP board. 

 

Figure A-3 FPGA’s role in the hardware 
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Resolver and Reference Signal Generator 

A 5 kHz resolver and a 5 kHz reference signal generator are used in the 

experimental set-up. 

 

Figure A-4 5 kHz resolver used in experimental set-up 

AC Servo Motor and Motor Drive Unit 

The experimental set-up has a servo motor and a motor drive board.  

 

Figure A-5 AC servo motor used in the experimental set-up 
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Position and Speed Measurement 

Measurements of motor speed and position are performed using Analog Devices’ 

AD2S83 Resolver-to-Digital IC.  

Software Tools Used for Simulation 

Matlab and Simulink are used in simulations. Filter Design and Analysis Toolbox 

of Matlab is very helpful in designing FIR and IIR filters. The ready to use 

functions of Matlab and tools of Simulink facilitated the study considerably.  

Software Tools used for Programming DSP Board 

FPGA code is composed in VHDL and compiled in ISE, a software tool of Xilinx 

Inc. Using the Xilinx’s IMPACT interface, FPGA’s boot EEPROM is programmed 

via a JTAG connection. Debugging of FPGA code is made with Chipscope which is 

an embedded debugger making use of internal RAMs of the chip to monitor the 

states of FPGA’s internal signals. The Chipscope first stores the internal signals into 

available RAMs and carry them onto the computer monitor using the JTAG 

connection.  

DSP algorithm is composed in Matlab Simulink using Embedded Target for TI 

C6000 DSP and compiled in CCS software of Texas Instruments. DSPC6000 is 

programmed using CCS via a JTAG emulator.  

Issues Related to Implementing FIR Filter in FPGA 

FIR filters in FPGA can be designed using MAC FIR core generator. MAC FIR 

core makes use of the conventional tapped-delay line FIR structure. It uses internal 

multipliers, adders and RAMs of FPGA to achieve multiply-accumulate and delay 

operations.  
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Figure A-6 Tapped-delay line FIR structure 

The following figure shows the interface for designing MAC FIR filter in ISE 

program. Details related to usage of the core are given in the data sheet of the core. 

 

Figure A-7 MAC FIR filter design interface in ISE program 


