
1

A WEB BASED GIS MASHUP FOR ARCHAEOLOGY

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

BÜLENT ÖZTÜRK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

GEODETIC AND GEOGRAPHICAL INFORMATION TECHNOLOGIES

APRIL 2010

Approval of the thesis:

A WEB BASED GIS MASHUP FOR ARCHAEOLOGY

submitted by BÜLENT ÖZTÜRK in partial fulfillment of the requirements for the degree of
Master of Science in Geodetic and Geographical Information Technologies Department,
Middle East Technical University by,

Prof.Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Assoc.Prof.Dr. Mahmut Onur Karslıoğlu
Head of Department, Geodetic and Geographical Inf. Tech., METU

Assoc.Prof.Dr. Ahmet Coşar
Supervisor, Computer Engineering Dept., METU

Prof.Dr. Adnan Yazıcı
Co-supervisor, Computer Engineering Dept., METU

Examining Committee Members:

Assoc.Prof.Dr. Zuhal Akyürek
Civil Engineering Dept., METU

Prof.Dr. Adnan Yazıcı
Computer Engineering Dept., METU

Assoc.Prof.Dr. Ahmet Coşar
Computer Engineering Dept., METU

Assoc.Prof.Dr. Burcu Erciyas
Settlement Archaeology, METU

Dr. Nigar Şen Köktaş
Space and Defense Technologies, METU-Technopolis

Date: 29 April 2010

I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: BÜLENT ÖZTÜRK

Signature :

iii

ABSTRACT

A WEB BASED GIS MASHUP FOR ARCHAEOLOGY

Öztürk, Bülent

M.S., Department of Geodetic and Geographical Information Technologies

Supervisor : Assoc.Prof.Dr. Ahmet Coşar

Co-Supervisor : Prof.Dr. Adnan Yazıcı

April 2010, 96 pages

Information technologies have achieved an important role in archaeology. The management,

research and exchange of the large amount of data gathered from archeological sites needs

the tools of information technologies. The web based GIS combines the advantages of both

GIS and the Internet technologies. This system can be used as a tool that helps to support

the management of information for archaeological sites and provides support functions for

specialists.This web based system can hold many types of archaeological site data from small

excavation campaigns to large sites. The system consists of a relational database, a web

server, and a GIS mapping server. Google Maps Server is used as a GIS mapping server

in this study. The client computers require only the availability of a proper browser that

supports javascript and ajax technologies. With this system, Google Maps can be used as an

archaeological research tool for everybody interested in archaeology. In a general, everybody

can reach the system using their web browsers in order to search and retrieve information

regarding archaeological sites. This system also enables specialists to upload, search and

share archaeological data. The aim of this study is to provide easy and simple access to the

iv

GIS related archaeological site information in Turkey, using a web based and user friendly

interface and share the information the information with specialists all over the world.

Keywords: WEB , GIS, Google Map, Archaeology, Mashup

v

ÖZ

ARKEOLOJİ İÇİN AĞ TABANLI CBS MELEZ UYGULAMASI

Öztürk, Bülent

Yüksek Lisans, Jeodezi ve Coğrafi Bilgi Teknolojileri Bölümü

Tez Yöneticisi : Doç.Dr. Ahmet Coşar

Ortak Tez Yöneticisi : Prof.Dr. Adnan Yazıcı

Nisan 2010, 96 sayfa

Bilgi teknolojileri arkeoloji’de önemli bir rol elde etmiştir. Arkeolojik alanlardan toplanan

büyük miktarlardaki verinin yönetimi, araştırılması ve alışverişi bilgi teknolojileri araçları

gerektiriyor. Web tabanlı CBS, CBS ve internet teknolojisinin avantajlarını birleştirir. Bu sis-

tem, arkeolojik alanların bilgi yönetimine yardımcı destek ve uzmanlar için destek fonksiyon-

larını sağlayan bir araç olarak kullanılabilir. Bu web tabanlı sistem örneğin, küçük kazı kam-

plarından büyük alanlarına kadar ,çok çeşitli arkeolojik alan verilerini tutabilir. Sistem, bir

ilişkisel veritabanı, bir web sunucusu ve bir CBS harita sunucusundan oluşur. Bu çalışmada

CBS harita sunucusu olarak Google Maps kullanılmıştır. Kullanıcı bilgisayarlarında sadece

Javascript ve Ajax teknolojilerinin kullanılabilirliğini destekleyen uygun bir tarayıcı gerek-

tirir. Bu sistem ile, Google Maps, arkeoloji ile ilgilenen herkes için bir arkeolojik araştırma

aracı olarak kullanılabilir. Genel bir şekilde, herkes sisteme arkeolojik alanara ilişkin bilgi

aramak ve almak için web tarayıcılarını kullanarak ulaşabilir. Bu sistem aynı zamanda uz-

manlara arkeolojik verileri yüklemeyi, aramayı ve paylaşmayı etkin kılar. Bu çalışmanın

vi

amacı, Türkiye deki CBS ile ilgili olan arkeolojik alan bilgilerine, web tabanlı ve kullanıcı

dostu arayüzü kullanarak, kolay ve basit erişim sağlamak ve bu bilgileri dünyanın her tarafındaki

uzmanlarla paylaşmak.

Anahtar Kelimeler: WEB , CBS, Google Map, Arkeoloji, Mashup

vii

to my twin brother

viii

ACKNOWLEDGMENTS

I would like to express my appreciation to my supervisor and co-supervisor, Assoc.Prof.Dr.

Ahmet Coşar and Prof.Dr. Adnan Yazıcı for their remarkable patience, guidance, suggestions

and evaluation during the preparation of this study.

I am grateful to my friend Hüseyin Kalyoncu for his assistance and support.

I am also thankful to,

Özgür Gencel, who has encouraged me to resume my MA degree after 3 years;

Vedat Toprak, for his guidance in finding thesis advisors during my registration period;

Sibel Gülnar, who has supported me in all chancellery work and related subjects;

Nazife Baykal, who gave permission and support for using the computer at METU Inf. Inst.

as a host;

Burcu Erciyas, for generating the database of my thesis;

Özlem Albayrak, for her invaluable ideas;

Ümit Kızıloğlu and Sinan Kaan Yerli, for their support in writing the thesis;

Geomatics Ltd. Şti, for providing GPS devices to do some of the measurements;

Volkan Evrin, Yusuf Arla, Mustafa Vural and Mithat Onur for all their support;

Rüştü Öztürk, for his support during the thesis (taaaaaammaaaaaammmmmm....);

and finally to my mother and my father, whom I owe everything.

ix

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . vi

ACKNOWLEDGMENTS . ix

TABLE OF CONTENTS . x

LIST OF TABLES . xiv

LIST OF FIGURES . xvi

LIST OF ABBREVIATIONS . xix

CHAPTER

1 INTRODUCTION . 1

1.1 STATEMENT OF THE PROBLEM 2

1.2 OBJECTIVE OF THE STUDY . 2

1.3 STRUCTURE OF THE THESIS 3

2 BACKGROUND . 4

2.1 WHAT IS A MASHUP . 5

2.1.1 Mashup Archaeology . 5

2.1.2 Portable Antiquities Scheme 6

2.1.3 Online Archaeology . 7

2.1.4 Heritage Gateway . 8

2.1.5 TAY Project . 10

2.1.6 Google Maps, Web-Based Map Service 11

2.1.7 Timeline, Web Widget for Temporal Data 14

2.2 RETRIEVING INFORMATION 15

2.2.1 Topological Queries . 18

x

2.2.1.1 Point In Polygon (Containment Query) 18

2.2.1.2 Line In Polygon (Containment Query) 19

2.2.1.3 Polygon Overlay 20

2.2.2 Distance Queries . 20

2.2.2.1 Distance From a Center 21

2.2.2.2 Distance From a Geographic Object 21

2.2.3 Attribute Queries . 21

2.2.4 Relational Queries . 22

2.2.5 Semantic Queries . 23

2.3 WEB SERVICES . 23

3 SYSTEM DESIGN AND DEVELOPMENT 26

3.1 CLIENT SERVER ARCHITECTURE 26

3.1.1 Network Side . 29

3.1.2 Server Side (Remote - Map Server) 29

3.1.3 Server Side (Local) . 29

3.1.3.1 Web and Database Service 30

3.1.4 Client Side . 34

3.2 DATABASE DESIGN . 35

3.3 SOFTWARE DESIGN IN SERVER SIDE 37

3.3.1 Web Server Directory Structure 37

3.3.2 PHP Class Structure . 38

3.4 SOFTWARE DESIGN ON CLIENT SIDE 41

3.4.1 JavaScript and AJAX Frameworks 41

3.4.1.1 Sardalya Library 42

3.4.1.2 ExtJS Library 42

3.4.1.3 Timeline . 42

3.4.1.4 Projected Overlay Library 43

3.4.1.5 Google Maps API 43

3.5 GRAPHICAL USER INTERFACE DESIGN 44

3.5.1 Title of the Mashup . 45

xi

3.5.2 Map Section of the Mashup 45

3.5.3 Mini Map Section . 45

3.5.4 Timeline Section . 46

3.5.5 Query Criteria Section 46

3.5.6 Result Area of the Mashup 47

3.5.7 Layer Area . 47

3.5.8 Controls of the Mashup 47

3.5.9 Information Panels of the Mashup 48

3.6 SYSTEM DEVELOPMENT . 48

3.6.1 Developer Side Development 48

3.6.2 Client Side Development 52

3.6.3 Server Side Development 53

4 TEST CASE AND IMPLEMENTATION 56

4.1 SYSTEM OVERVIEW . 56

4.2 USAGE OF THE SYSTEM . 56

4.3 TEST CASES QUERIES . 58

4.3.1 Spatial Queries . 58

4.3.1.1 Distance (Buffer) From a Center 59

4.3.1.2 Distance (Buffer) From an Object 59

4.3.1.3 Object Proximity 61

4.3.1.4 Point in Polygon (Rectangular) 62

4.3.1.5 Point in Polygon (Province) 63

4.3.2 Attribute, Relational and Semantic Queries 63

4.3.3 Result & Controls of Queries for Hattusa 66

4.3.3.1 Map Controls 67

4.3.3.2 Timeline Controls 69

4.3.3.3 Accordion Type Information Windows 71

4.4 SUMMARY . 72

5 CONCLUSION . 74

5.1 ADVANTAGES . 75

xii

5.2 DISADVANTAGES . 75

5.3 RESULTS . 76

5.4 FUTURE WORKS . 76

REFERENCES . 78

APPENDICES

A JSON FORMAT . 82

B ENCODED POLYLINE ALGORITHM FORMAT 86

C DATABASE TABLES . 88

D SOME CODE SAMPLES . 94

D.1 GOOGLE MAPS API CODE SAPMLE 94

D.2 EXTJS (AJAX) CODE SAMPLE 95

D.3 PHP CODE SAMPLE . 96

xiii

LIST OF TABLES

TABLES

Table 2.1 Database comparison . 17

Table 3.1 HTML sample . 31

Table 3.2 PHP sample . 31

Table 3.3 SQL connection and query . 32

Table 3.4 Some database tables . 36

Table 3.5 PHP class definition . 39

Table 3.6 PHP class structure . 40

Table 4.1 Map controls . 68

Table A.1 Simple JSON example . 85

Table C.1 Table: excavation . 88

Table C.2 Table: eventimeline . 88

Table C.3 Table: excavation general info . 89

Table C.4 Table: excavation periods . 89

Table C.5 Table: excavation references . 89

Table C.6 Table: excavation session . 90

Table C.7 Table: excavation session supporters . 90

Table C.8 Table: images . 90

Table C.9 Table: people . 90

Table C.10Table: permission . 91

Table C.11Table: previous works . 91

xiv

Table C.12Table: publications . 91

Table C.13Table: stratigraphic squence . 91

Table C.14Table: supporters . 92

Table C.15Table: team . 92

Table C.16Table: team session . 92

Table C.17Table: team session people . 93

Table C.18Table: visual . 93

Table D.1 Initilazing ”Google Maps API” . 94

Table D.2 ExtJS (Ajax) grid panel code . 95

Table D.3 PHP sql query code sample . 96

xv

LIST OF FIGURES

FIGURES

Figure 2.1 ”Mashup Archaeology Aggregating Museum Archaeology & Archaeolog-

ical Heritage” web page . 6

Figure 2.2 ”Portable Antiquities Scheme” web page 7

Figure 2.3 ”Online Archaeology” web page . 8

Figure 2.4 ”Heritage Gateway” web page . 9

Figure 2.5 TAY web page . 10

Figure 2.6 ”Google Maps” web page . 12

Figure 2.7 Timeline example . 14

Figure 2.8 Point in polygon . 19

Figure 2.9 Line in polygon . 19

Figure 2.10 Polygon overlay . 20

Figure 2.11 Distance from a center . 21

Figure 2.12 Distance from a geographic object . 22

Figure 2.13 Web service . 24

Figure 2.14 ”Google Maps” service . 25

Figure 3.1 Simple structure of client-server architecture. 26

Figure 3.2 System architecture . 28

Figure 3.3 Server side components . 30

Figure 3.4 PostgreSQL sql query 1 . 33

Figure 3.5 PostgreSQL sql query 2 . 33

Figure 3.6 Database architecture . 35

Figure 3.7 Ajax working structure . 41

xvi

Figure 3.8 GUI Design . 44

Figure 3.9 Title of the Mashup . 45

Figure 3.10 Map section of the Mashup . 45

Figure 3.11 Mini map section . 46

Figure 3.12 Timeline section . 46

Figure 3.13 Area query criteria . 46

Figure 3.14 Other query criteria . 46

Figure 3.15 Result area of the Mashup . 47

Figure 3.16 Layer area . 47

Figure 3.17 Controls of the Mashup . 47

Figure 3.18 Information panels . 48

Figure 3.19 ”Quanta Plus Web Development” tool . 49

Figure 3.20 pgAdmin . 50

Figure 3.21 phpPgAdmin . 51

Figure 3.22 PostgreSQL console . 51

Figure 3.23 Firebug plugin for Firefox. 52

Figure 4.1 Screen shot of Mashup . 57

Figure 4.2 Flow chart of the Mashup . 58

Figure 4.3 Distance from a center . 59

Figure 4.4 Distance from a river (in 35km) . 60

Figure 4.5 Distance from a river (very-near) . 61

Figure 4.6 Proximity (in 5km) . 62

Figure 4.7 Proximity (very near) . 62

Figure 4.8 Points in a rectangular area . 63

Figure 4.9 Points in a province . 64

Figure 4.10 Distance from a center belonging to the Neolithic period 65

Figure 4.11 Points in a rectangular area belonging to the Hittite period 65

Figure 4.12 Points in a province with Phrygian period 66

xvii

Figure 4.13 Distance from a river belonging to the Bronze age period 66

Figure 4.14 Proximity with Neolithic period . 67

Figure 4.15 Zoom-out Hattusa . 68

Figure 4.16 Zoom-in Hattusa . 69

Figure 4.17 Pdf exports of Hattusa . 70

Figure 4.18 Timeline and layer of Hattusa . 70

Figure 4.19 Photo panels . 71

Figure 4.20 Info panel 1 . 72

Figure 4.21 Info panel 2 . 72

Figure A.1 Object in JSON format . 82

Figure A.2 Array in JSON format . 83

Figure A.3 Value in JSON format . 83

Figure A.4 String in JSON format . 84

Figure A.5 Number in JSON format . 84

xviii

LIST OF ABBREVIATIONS

Adodb Database Abstraction Library for PHP

ADSL Asymmetric Digital Subscriber Line

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

BSD Berkeley Software Distribution

DOM Document Object Model

GIS Geographic Information Systems

GUI Graphical User Interface

HTML Hyper Text Markup Language

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

MIT Massachusetts Institute of Technology

OS Operating System

PHP Personal Home Page

RSS Really Simple Syndication

SIMILE Semantic Interoperability of Metadata and Information in unLike Environ-
ments

SOAP Simple Object Access Protocol

SQL Structured Query Language

WSDL Web Services Description Language

XML Extensible Markup Language

xix

CHAPTER 1

INTRODUCTION

Turkey has a very rich historical and cultural heritage. Therefore, many important archaeo-

logical studies in our country. There are many archaeological sites and cultural heritage areas,

which are spread all over the country. Most of these sites have been or are being excavated.

Others are waiting for excavation or discovery. Although there are many, it is not easy to

access information such as locations, histories, works in progress, the discovered remains and

related information. Information sources for these are not stored in easily accessible media

and in some cases require some authorized permissions in order to access them.

Accessing the information sources is easy through the Internet. Therefore, desired informa-

tion about archaeological sites can also be reached by ordinary people, if they are placed on

the Internet in an accessible way.

This system was designed and implemented for easy access to information about archaeolog-

ical sites and related findings. Accessing information is not sufficient by itself. Retrieving

selectively only the required information is also important in order to avoid information pol-

lution. To achieve this, some search methods using various criteria have been designed. One

of the most important criteria is to be able to make spatial queries. In this way, it is possible

to perform spatial search by specifying criteria such as geographical boundaries, distance to

reference geographical locations, proximity to a class of geographical object (such as rivers,

mountains, hills, etc.).

Prior to conducting this study, it was realized that there are no web based archaeological

systems that contain information and allow filtering or that have search capabilities. Besides,

it was also realized that there is no web based system that stores archaeological features that

1

can be queried. Existing systems/databases usually store only simple textual attributes about

archaeological sites and researchers working on that site. The lack of such a system causes

specialists to perform their research unaware of other works or studies.

1.1 STATEMENT OF THE PROBLEM

Maps have always been important to humanity. They show where we are living, where our

natural resources are located, how to go to places, where our neighbours are, where our bor-

ders are, etc.

For a specialist who may be an archaeologist it is necessary to locate archaeological sites on

the map and archaeological background information on those sites. A database that contains

all the textual and graphical information and is linked to maps that show the locations of

archaeological sites would be of great value to especially archaeologists, but also to experts

studying man made artifacts.

Most of the archaeological excavations have their own web sites and hold all related infor-

mation in web pages in non-standard or non-uniform formats. It is necessary that all sort

of information are stored in a standard format.Otherwise it may be impossible or extremely

difficult for researchers to find the data they need. This system is designed and planned to

overcome such problems.

1.2 OBJECTIVE OF THE STUDY

The objective of this study is to design and implement a web-based map mashup for archae-

ological sites. It is intended to add spatial information to the database so that it is possible to

issue spatial queries on the maps using this system. Combining maps, archaeological infor-

mation and timeline, it will be possible to create a mashup application and publish it on the

Internet. In order to create such a system, we must design a suitable GUI (Graphical User

Interface) that is able to use and make this system reachable with technologies such as Ajax,

PHP, PostGIS, and integrate it with external web-based systems such as Google Maps API.

By designing such a system, the main goal of easily sharing archaeological site information

will have been achieved.

2

1.3 STRUCTURE OF THE THESIS

This paragraph briefly describes the structure of the thesis. Chapter 2 gives the background

of similar archaeological web sites and technologies which are commonly used in this type

of systems. In this chapter, some examples are given in order to define and have a better

understanding of mashup based systems and the capabilities of existing systems. Chapter

3 introduces the design and development of our system. In the design section, the parts of

the system are explained, and in the development section, the tools and technologies that

have been used in building the system are introduced. Chapter 4 describes some case state-

ments and implementations of the system. Some supported search queries and results are

also shown in this chapter in order to better describe capabilities of our system design and

to point out the differences with the existing ones. In Chapter 5, the conclusions and advan-

tages/disadvantages of the system are discussed, achieved results and possible future works

are mentioned.

3

CHAPTER 2

BACKGROUND

Geographic Information Systems (GIS) have rapidly spread out in scientific area and daily

life. It is used in almost all geoscientific applications, and as a result has increasingly entered

our daily life. Meanwhile, the development of the Internet and related technologies introduce

new applications in the field of GIS, ”web based GIS”.

Internet is a useful and powerful tool for gathering and manipulating information. Most of the

information known to the humanity can be reached through the Internet. This is also possible

for geographic information (Using GIS in Public Policy Analysis in North Carolina, Water-

shed Education for Communities and Officials NC State Universiy). Today, many people can

easily search, find, reach and access all kinds of information by taking advantage of the web,

which was not easy before the Internet. Therefore, Web-based GIS has become an important

spatial information source for data entry, sharing, searching, analysis and easy access. By the

help of the web, even an ordinary user can benefit from GIS through a computer which is

connected to the Internet. This was not possible before the Internet. It is not a privilege of

specialists to use GIS. Web based access by the public makes the use of web based GIS by

people who are interested in the subject, easy.

In this study, more than one system and architecture were used in order to build such a web-

based GIS system. In this chapter, brief information about the background of the study, the

tools and some definitions are given.

4

2.1 WHAT IS A MASHUP

Mashup is defined by Paul J. D. and Harvey (Paul J. D., Harvey M. D., 2008) as a ”Combined

content or functionality from existing web services, websites and/or RSS feeds to serve a new

one”. It also is described as ”more than one sources and services are ”mashed up” or combined

or mixed to make a hybrid or to create a new one or adding valuable something which is

known” (Ajax-Powered Google Maps Mashup Tutorial, ORACLE Technology Network). A

set of common technologies are used for making a Mashup application. JavaScript, Ajax,

JSON, php, Postgresql and PostGIS add-on and finally, what is important for our mashup,

Google Maps API technologies are brought together for a Mashup.

In the same manner, in a GIS mashup, at least one of the contents is connected with geographic

information or technologies in nature and it can typically be displayed on a map (GIS Mashups

for Geospatial Professionals, GEOG 863). In this study, the geographical side of this Mashup

is connected to the mapping data supplied by Google Maps with a data service supplied by

PostGIS and its archaeological spatial data (Ajax-Powered Google Maps Mashup Tutorial,

ORACLE Technology Network).

According to ”Farallon Geographics Inc.”’s definition of ”Enterprise Mashup” as stated on

their web pages, mashups have in common two main threads. The first one is using location

and maps as a theme, the second one is providing a decision support by using a simple visual

web interface (Enterprise Mashup, Farallon Geographics). In the following pages, a few

archaeological mashup applications for the web will be introduced. However, some of them

lack GIS and / or mapping technologies on their web pages. These will be represented first,

then web-GIS based ones will be shown. So the differences between Web based GIS mashup

and the others, which are not GIS based applications, can be compared.

2.1.1 Mashup Archaeology

”Mashup Archaeology, Aggregating Museum Archaeology & Archaeological Heritage” web

page is first example.

In Figure 2.1, ”A Mashup Archaeology, Aggregates Web Content on Museum Archaeology

and Archaeological Heritage” is shown. The web site takes advantage of web feeds (such

5

Figure 2.1: ”Mashup Archaeology Aggregating Museum Archaeology & Archaeological Her-
itage” web page

as RSS) and basic mashup technology. Its contents include journal articles, publications,

and news which appear in traditional media, as well as blogs, pod-casts, video-casts, social

bookmarks and other social sites appearing in web 2.0 media.

This mashup application is part of a project that is carried out by the ’University of Manch-

ester’. Their project aims to teach the use of web feeds and basic mashup technology to

postgraduate students, third year undergraduate students and people related to archaeology

(Dr K. Arvanitis & Dr S. Jones, Mashup Archaeology).

Although it uses some web technologies and archaeological sources with data, it has no geo-

graphical applications or mapping interface related with this mashup.

2.1.2 Portable Antiquities Scheme

Another example is the ”Portable Antiquities Scheme” web site.

This site (Figure 2.2) records the archaeological objects which are found by metal-detector

users and ordinary people who are discovering these objects when walking, gardening or

going somewhere in daily life in England and Wales. The site provides news, articles, event

6

Figure 2.2: ”Portable Antiquities Scheme” web page

listings and access to its own database of objects and images. It also gives some valuable infor-

mation about archaeology and related subjects. Basically, the mashup side of this site consists

of web RSS feed and collected data about archaeological remains. These feeds are divided

into three main categories. General feeds consist of news, articles, photos from ’flickr’, blogs,

event listing, and notes. Database specific feeds show the latest finds with names of location.

Period feeds show the finds with their periods that extend from paleolithic to post-medieval.

Basically, the site was structured on data entries which come from people who share these

data with RSS feed technologies. However, this site does not include any GIS based web

application.

2.1.3 Online Archaeology

”Online Archaeology - UK Archaeology Map Resource” (Steve W., Online Archaeology) is

one of the examples that has geographic information and maps together in a mashup applica-

tion.

The web site (Figure 2.3) consists of two main parts. The first part is holding text based

information where all archaeological things are discussed in a forum stored by this site. This

7

Figure 2.3: ”Online Archaeology” web page

part also includes books, news, blogs, articles, links, movies and photos. The second part

holds the maps and GIS information about the archaeological sites in UK. For the second

part, web technologies, Google Maps and archaeological data with locations are used in order

to assemble a mashup application. On the web site, the archaeological sites are shown on

a map when selected from the list which is located on the left side of the map. Each row

on the list shows locations of selected items. The search section is simple and can only be

searched by layer name. The map is created by Google Maps API and all items are displayed

on it. Although it combines archaeological data, simple search, and web based maps, this

second part lacks GIS based database and spatial queries. This site can still be defined as an

archaeological mashup.

2.1.4 Heritage Gateway

The fourth example of mashup application on archaeology is ”Heritage Gateway”.

The web site (Figure 2.4) provides people the ability to search historical sites and buildings in

England (The Historic Buildings and Monuments Commission for England, Heritage Gate-

way). The search part of it contains where, what, when, who, and resources sections. So, any

8

Figure 2.4: ”Heritage Gateway” web page

combination of these sections; location (where), type (what), period (when) and person (who)

can be used as search criteria together. The resources can also be selected. In the ”Where Sec-

tion”, the search is made depending on text based search and the result is signed and shown

on the map. After that, a selection is made for ”search within” the selected location. The

”search within” choice creates a rectangle on the map which determines the borders of the

search parameters within a combo-box. Depending on the selection made, a message like ”5

km of selected location” or ”100 meters of selected location” etc appears. The results are

shown on a new page in a row based notation. In the ”What Section”, the search parameters

consist of Building and Site type. It has a tree based notation. Each category is divided into

sub categories like tree branches. The ”What Section” search corresponds to the ”Where Sec-

tion”. Search results are coming from both sections’ combined queries. The ”When Section”

determines periods parameters of the search queries The ”Who Section” holds the person

who is associated or who is the architect and the ”Resources Section” contains all data. The

site is a complete mashup example with its sources, construction, mapping application and its

arhcaeological data. Although it is a good example of a mashup applications, it lacks complex

spatial queries and spatial database. The search results are not shown on the map either. It

also does not support the layer application with timeline.

9

2.1.5 TAY Project

The last example (Figure 2.5) of an archaeological mashup is TAY Project (Türkiye Arke-

ololojik Yerleşmeleri- Turkey Archaeological Settlements).

Figure 2.5: TAY web page

This project is a good example of mashup. It contains a set of web technologies and valuable

information about archaeological data. The aim of this project is to publish, validate and

monitor archaeological data of Turkey, as well as to create and share chronological inventories

on an international platform by the help of web technologies. The web site also gives some

information about archaeology.

The most important part of the site is the TAY-CBS (GIS) section. It shows the locations of

the settlements and some simple text based searches can be made in this section. Java Applet

technology was used in building this site. In order to make use of it, the web browser either

has to support java applet or suitable java programs have to be installed on the computer.

A simple map of Turkey is located on the center of the page. Some selection criteria options

are shown on the left side of the page (Figure 2.5). These selections are historical chronology,

settlement types, research methods, registration status, museums, cave, railway, river or lake.

10

When one of them is selected, matching points, appear on the maps. A text based search can

also be made using the textbox in the upper right corner, together with the selection made in

the left of the map. The search results are shown on the map and a pop-up window.

Although it uses mixed web technologies and archaeological data, it lacks spatial database

and spatial queries such as proximity, area search etc. It also lacks capability to show satellite

image and layered mapping. However it is the most important contributor to archaeological

science as a source of collected information.

2.1.6 Google Maps, Web-Based Map Service

There are many web-based mapping services and their APIs are ready to be used by the gen-

eral public. Two of the open sources are GeoServer and MapServer. The Commercial soft-

wares include ObjectFX Web Mapping Tools, ArcGIS Server, ArcIMS, GeoWebPublisher,

GeoMedia, Oracle Map Viewer and LizardTech’s Express Server. Although there are many

similar applications and sites, the most useful and widespread web-based mapping service is

Google Maps. It uses the Mercator projection for mapping (Google Maps, Wikipedia), hence

the angles between latitude and longitude are preserved. Although it has some distortion

when in a zoom-out view, the distortion is not noticeable in a close-up view (Google Maps

Help Forum, Google).

Google Maps (Figure 2.6) is an advanced web mapping service which contains the latest

web technology, up-to-date information of maps, and satellite images. It also contains some

locational information such as driving directions, street views and POI (Point of Interest)

search such as, buildings, areas, schools, squares, national parks, shopping centers, parking

areas, etc. All of these are provided by Google’s databases.

In addition to all these features of Google Maps, it gives users the opportunity to benefit

from the information that is stored. It also gives the user the ability to create his or her

own customized maps. In order to achieve this, Google Maps software called API, which is

available for free.

Google Maps API is a collection of application programs objects which were created by

Google and allows developers to integrate Google Maps into their websites with their own

data by using JavaScript functions. It is possible to embed or re-write the full Google Maps

11

Figure 2.6: ”Google Maps” web page

site tailored to personal requirement.

The API files are loaded from Google when loading the web page. The API contains many

javascript codes and functions. After loading the web page, API functions become ready to

use. These codes, functions, or variables are called by the client’s side programs that are also

composed of JavaScripts. Therefore, these are run on the client side as a piece of the program.

The reasons for choosing Google Maps in this study are:

• simplicity

The end user, who is using the maps, does neither have to use complex or expensive software

nor does he have to learn new and complex using guides. This gives the opportunity to

save considerable time and money in building a web site coupled to Google Maps if it is

programmed in a right way. According to G. Nicoara ”Users simply want to see results” (G.

Nicoara, GITA) and that’s true. Google Maps API provides this, if it is programmed in a right

way.

12

• free software

Obeying the license agreement for non-commercial use, it can be used everywhere where

maps are part of a mashup application. Therefore, it is preferred by many users and as a

result, there are many new applications, codes and mashups developed using it.

• easy to learn

There are many various web-based application mashups etc. that can be used as examples.

Besides, there are also many online resources for learning and example codes can be found

from forum sites where the codes are discussed in detail.

In addition to all these, JavaScript and AJAX support make Google Maps easy and applicable

in every way.

The other advantages of Google Maps API are listed below;

• Quick development time

• Light weight application on client side

• Easy user interface

• Fast loading

• No complex display for selected area and layer

• Focused only on mapping.

Although it has many advantages, it also has some disadvantages that are listed below;

• More limited functionality than commercial products

• Difficult to overlay complex GIS data

• Can not read GIS database directly

• Fewer people are interested in its development

Despite all these disadvantages, Google Maps and its API are one of the most desired, selected

and used web based GIS applications and mapping services.

13

2.1.7 Timeline, Web Widget for Temporal Data

Presentation or displaying of chronological sequence of events or objects, that are related to

time can be defined as a timeline (What is Timeline, Midmarket CIO Definitions). Graphical

presentation makes it easier for the user to understand the temporal data. It is used in many

branches of science in order to view periods of development, chronology, or changes in time.

Briefly, it shows events that happened. There are some web-based tools for visualizing tem-

poral data, information or objects, related with time. Their purpose is to show the temporal

data using web based technologies such as Flash or Ajax. One of them is Simile-Widgets

project’s Timeline.

Timeline is a JavaScript code based API component. It allows web site creators to assemble

an interactive timeline and display its data on their sites. JavaScript supported web browsers

are sufficient to run it. Simile-Widget’s Timeline is often used on web pages that have Google

Maps API (Simile-Widgets, MIT). When both of them are used, they show the temporal data

on a map and create a simple mashup.

Figure 2.7: Timeline example

The Timeline (Figure 2.7) contains one or more bands. Each band is scaled with date and

contains events. It also can be panned by the mouse pointer, mouse scroll or arrow keys. If

there are more than one band, they can be synchronized with each other with different time

scales (Simile-Widgets, MIT).

The time data which are shown on the bands are in JSON format. These are static on the

14

web page and client side or dynamically produced on the server side. Each event data can be

programmed by using JavaScript and assigned a function, which is activated when clicked.

So the Timeline and its events make the web page dynamic.

2.2 RETRIEVING INFORMATION

Before describing information, we have to define data and relations between information.

In a simple way, data can be defined as raw facts. They are facts such as phone numbers,

addresses, coordinates, location names, areas etc. All of these do not form meaningful things

by themselves. They must be organized and brought together in order to create a meaningful

content. Information is the organization of these ”raw facts” in a meaningful manner (The

Information, eCheat.com). Although well organized, reported or tabulated, it is not always

meaningful to people.

There are many ways to arrange data to make them meaningful. The type of data also affects

the information. If data is put together inappropriately with respect to type, the information

cannot become meaningful.

Of course, all these data must be stored and retrieved when needed. The storage media or

systems are called database. For different types of data, there are different types of databases.

The data, stored on database, could be queried and retrieved to become information which is

ordered and made meaningful. Therefore the information is created from the data, which are

stored in a database by querying in a correct way. For geographical data, a different type of

database is needed so that the relations between geographical data can be queried.

Spatial database system is a kind of database system, that proposes principal database technol-

ogy for Geographic Information Systems. According to traditional databases, spatial database

deals with managing, storing and querying data related to space such as geometric, geographic

or spatial data objects in space, including points, lines and polygons (R.H. Güting, 1994).

Traditional databases deal with the objects attributes and their features, quantities, etc.. There-

fore, there is no connection with the location of an object (e.g. an archaeological site) and its

other attributes, such as date range, remains, finds, structural evidence etc.. As a result, the

space related queries can not be answered in traditional databases (D. Wheatley, M. Gillings,

15

2002).

• What are the shapes of artifacts which are found on ”abc” excavation site ?

• What is the quantity of pottery in the ”xyz” museum ?

are examples of traditional database queries (PostGIS, Using PostGIS)

However, spatial databases give answers to queries that relate to space-location queries that

traditional ones can not handle.

• What is the total length of all silk roads, expressed in kilometers ?

• What is the distance between two archaeological sites ?

• What are the locations of archaeological sites within a certain distance to a river ”xyz”

?

• What are the positions of archaeological objects that belong to the Iron Age period and

are within 15km to the ”xyz” river ?

• Are there any excavation sites in the selected area which are supported and managed by

the government ?

are examples of spatial database queries (PostGIS, Using PostGIS).

Today, there are many spatial databases or traditional (relational) databases with spatial exten-

sions. MySQL with spatial extension, PostgreSQL with PostGIS extension, Firebird, Ingres

with spatial object library, MaxDB, IBM DB2 Spatial Extender, Oracle Spatial, Informix

Spatial DataBlade Microsoft SQL Server are examples of both commercial and open source

spatial databases (G. Brent Hall, Michael G. Leahy, 2008).

Some popular open source and commercial spatial databases are compared in Table 2.1.

PostGIS is a spatial extension for PostgreSQL object relational database. It was written in

C. So, it is a C-based spatial engine for PostgreSQL. It enables spatial related queries and

retrieval support for geographic information systems in PostgreSQL. The PostGIS’s power

comes from being a standard back-end for most applications and tools as a ”Free and Open

16

Table 2.1: Database comparison

Database Comparison
MySQL PostGIS Oracle Spatial

OGC compliant SQL with Geom-
etry types. Com-
pliant with the ex-
ception of precise
spatial operations

SFSQL-TF 1.1
Certified

SFS1; GML 2.0;
OLS 1.1; SRS;
WMS 1.1

Spatial data-types
(vector-oriented) 2D,3D

2D only, Rtree
keys

As specified
in OGC SF-
SQL: Point,
Linestring, Poly-
gon, Multipoint,
Multilinestring,
Multipolygon,
Geomatrycollec-
tion

All types sup-
ported in SFS1
+ circles, arcs,
combination of
arcs and lines and
rectangles; Sup-
port 3D storing
of lines / points /

polygons
Spatial data-types (raster-
oriented)

N CHIP datatype to
store rasters in
PostgreSQL

Grid-based data
and image data
are supported
using GeoRaster
data type

Support of spatio / tempo-
ral models

N User maintenance Versioned tables
with Workspace
Manager

Exchange formats XML,
GML, CityGML, X3D,
KML output

N All FME Formats
GML, SVG KML

GML 2.0 and
much of GML
3.0. OGCs
Open Location
Services. Forth-
coming WFS-T,
Web Catalog
Service, OpenLS

Source Software for Geospatial” . It is also used heavily by applications and libraries in

the Java development language (G. Brent Hall, Michael G. Leahy, 2008). Therefore it is

commonly used in a wide area and many different application platforms.

If we have data, database and queries, there has to be a retrieval system. In order to talk

about an information retrieval system, we simply have to have a storage or database, data

and queries. It depends on the relevant information that comes from the database by reading

all stored documents. In practice, the user is never interested in the selection of the relevant

17

information, because, the user has no time to read and process the entire document collection.

Instead, computers read the entire document collection in order to extract the relevant ones by

using the appropriate set of queries (Information Retrieval,The Information Retrieval Group,

Computing Science University of Glasgow).

As a geographic information, a retrieval system can be shortly defined as searching for any

kind of geographic related information or meta-data on a spatial databases in response to a

spatially related queries (M. van Kreveld, I. Reinbacher, A. Arampatzis, R. van Zwol, 2004).

Spatial querying can be defined as a special type of database queries of data types such as

points, lines and polygons and that these consider the spatial relationships between their ge-

ometries (Spatial Query, Wikipedia).

There are primarily three types of queries used for retrieving geographical information. These

are, phenomenal or attribute queries, topological queries, and distance queries (J. Conolly, M.

Lake, 2006).

Spatial queries require that examination of the spatial properties of the objects will provide

the selection set. They can be divided into two types: Topological and Distance (Buffering)

queries (J. Conolly, M. Lake, 2006).

2.2.1 Topological Queries

Topological queries are concerned with the geometric configuration of an object or relation-

ship between objects. For example, ”select all sites within Smith Country” (J. Conolly, M.

Lake, 2006).

Assume that there are two map layers. One of them holds points which represent archaeo-

logical sites and the other one holds polygons which represent state boundaries. The question

”select all archaeological sites in Maine” is thus a topological query as it depends on estab-

lishing whether a point lies within the boundaries of a polygon.

2.2.1.1 Point In Polygon (Containment Query)

To determine whether a point is inside a polygon or not.

18

Figure 2.8: Point in polygon

Illustrated in Figure 2.8, which essentially asks the question ”What do we have at this X,Y

point in the current coordinate system ?” (R.R. Larso, Berkeley).

It gives the answer to the questions (J. Conolly, M. Lake, 2006) ;

• What proportion of the bronze age barrows in Wiltshire is located on Chakland ?

• Select all artifacts that come from building N in settlement S.

• How many sites were found in the last survey zone ?

• Are there any Late Iroquoin villages in Simcoe Country ?

2.2.1.2 Line In Polygon (Containment Query)

To determine whether a line crosses through a polygon boundary or not.

Figure 2.9: Line in polygon

It gives the answer to the questions (J. Conolly, M. Lake, 2006);

19

• Which counties does Offa’s Dyke pass through ?

• How many kilometers of Roman road are found in Surrey ?

• How many public footpaths are there in the Aver-bury World Heritages Site area ?

2.2.1.3 Polygon Overlay

To determine whether a polygon intersects a polygon or not.

Figure 2.10: Polygon overlay

Polygon overlay queries can give answers like (J. Conolly, M. Lake, 2006);

• How many hectares of the proposed new urban zone falls in archaeological sensitive

areas ?

• What is the amount of arable land that lies within a 5-km radius of the site ?

2.2.2 Distance Queries

Distance or buffer queries are concerned with the spatial location of objects. The distance

and buffer zone query asks the question ”what do we have within some fixed distance of this

object (point, line or polygon)” (J. Conolly, M. Lake, 2006).

Distance queries can answer questions like;

• What proportion of sites falls within 1 km of the coast ?

• What is the change in density of sherd’s (fragment of pottery) moving away from the

center of site k in 100-m intervals ?

20

• What is the difference in the average amount of high-grade arable land falling within 5

km of sites of type A versus sites of type B.

• What proportion of all scrapers are found within 2 m of hearth features ?

2.2.2.1 Distance From a Center

To determine whether there is a point object or not inside a circle with a certain radius.

For example, ”select all sites within 100 km of an obsidian source” (J. Conolly, M. Lake,

2006).

Figure 2.11: Distance from a center

Figure 2.11 shows the result of a buffer zone of a distance n around a point with a circle of

radius n.

2.2.2.2 Distance From a Geographic Object

To determine whether there is a point object or not inside the buffers of a polygon or linestring.

For example, ”select all sites within 4 km of a river Green”

Figure 2.12 shows the results of a buffer zone of a given distance, n, around a polygon.

2.2.3 Attribute Queries

Attribute queries are concerned with the non-spatial data tables of spatial objects. For exam-

ple, ”select all sites that have obsidian artifacts” (J. Conolly, M. Lake, 2006). Here, there is

no need to make a geographical or locational queries.

21

Figure 2.12: Distance from a geographic object

2.2.4 Relational Queries

The advantage of relational database model is that sets of data can be retrieved from across

two or more tables (relations) by specifying the primary and foreign keys (J. Conolly, M.

Lake, 2006).

If we want to find the total amount of archaeological sites which belong to the bronze age

and their excavations supported by the government, the data have to be retrieved from two or

more different database tables.

Assume that the first table is the archaeological site table that holds archaeological informa-

tion, geographical type locations, and as a primary key, site IDs. The second table is the

chronological table that holds the archaeological chronologies of the site with the foreign key,

site IDs. The third one holds the supporters and also uses a foreign key, site ID. ”site ID”

provides the relation between the tables, as both primary and foreign key.

Therefore, it is possible to make a query between tables which are related with each other. The

relation between two or more tables gives the resulting set of the amount of archaeological

sites.

22

2.2.5 Semantic Queries

Semantic queries enable retrieval of both explicitly and implicitly derived information based

on syntactic and semantic information contained in the database.

They also attempt to help a user to obtain or manipulate data in a database without knowing its

detailed syntactic structure - unlike - syntactic queries which only support retrieval of explicit

data based on syntactic information (KRLAB, CSIMP).

In contrast to simple queries against full-text indices, semantic queries allow queries like

”show me all excavation projects we have done in Turkey in the last 15 years” (Semantic

Web Company, Portal).

The other example, in a semantic is the query: Show the rounded shape artifacts in certain

defined location where iron age level”.

2.3 WEB SERVICES

A web service is defined as a software component stored on one computer that can be accessed

via method calls by an application (or other software component) on another computer over a

network. The communication between them is made possible by technologies such as XML

and HTTP (Paul J. D., Harvey M. D., 2008).

In a web service, the client sends the request parameters to the server. The server processes

the request and responds to the client in a particular structure. So it can be said that the web

service structure is simple and composed of client, request input, server, process, and output

response.

The simple web service, client-server architecture and HTTP protocols between them are

shown in Figure 2.13 (Web Service, Wikipedia).

For example, assume that, archaeological sites data are kept in a database. These data are pro-

vided by using a web-based application when a request is received. So this system represents

a simple web service.

In that case, web service is a structure that can convert our application to web-based ap-

23

Figure 2.13: Web service

plication. Generally, web services are using WSDL between each other. WSDL includes

information in an XML based language.

The other web service protocol is SOAP. SOAP is also XML-based and lets application ex-

change information over HTTP protocol.

Other protocols are also used. One of them is JSON. It communicates over HTTP protocol

and is native JavaScript language notation. It is simpler than SOAP which uses verbose XML.

It is easy to parse by any language and libraries and therefore also easy to read or write with

any tool (Developer Network, Yahoo). Currently, web services are requesting the remote

service using API or web API infrastructure.

In previous definitions, all mashup applications can be defined as a web service. One of the

most important examples of the web services is Google Maps API.

24

Figure 2.14: ”Google Maps” service

Figure 2.14, simply shows how a Google Maps Service works. In this figure, the client re-

quests the web page from the web server which keeps the required information about map

and data. The web server replies to the request in step 2. So the client can build the web

site with HTML structure and Google Maps API. In step 3, the client requests the API from

the Google Maps Server. After the map API is requested by JavaScript and loaded, the other

request which is related to the maps, coordinates etc. is built by Google Maps API on the

client web browser.

25

CHAPTER 3

SYSTEM DESIGN AND DEVELOPMENT

3.1 CLIENT SERVER ARCHITECTURE

The basic structure of the system was thought of and designed as a client-server architecture.

This architecture model is the fundamental of the Internet. Today, the web servers that we are

using are based on this model. There are three main components in this model. As shown in

Figure 3.1, these are the client, the server and the network as a communication medium.

Figure 3.1: Simple structure of client-server architecture.

The client, in a simple way, usually requests data from the remote server’s service. To con-

nect to the remote server, it uses some type of network, hardware and software protocols. It

provides an interface for the front end of the user interaction. With the help of this interface,

it requests any kind of information or data. Therefore, it can show the results set which comes

from the server. Servers are indispensable for centralized systems on which all information is

kept.

26

The server side usually gets requests from the remote clients and provides data or information

to them. This is the major purpose of the server. It usually manages the data or information

in its database or file systems.

A server is acapable of communicating with more than one client at the same time. When

it gets a request from the client, it processes the requests and provides the data from the

database. The server is like a meeting point of clients who come to buy something. Both of

them are talking with each other by the help of a connection media like the Internet.

Without any connection media between the client and server, there cannot be such an archi-

tecture. The connection media is shown in Figure 3.1.

The media between the client and the server computer can be a network modem, a simple

local area network, wide area network or the Internet. Communication rules, standards or any

hardware equipment are not important at this time. The only important thing is that it provides

communication between them (Pros and cons of client/server computing, Exfoesys Inc.).

In a client-server architecture, all resources are centralized. This means, all data, files etc.

are stored in one location, the server. This provides the advantage of easily backing-up

files/data and easily finding these. The server software and hardware are optimized for multi-

ple users/clients who can reach or access this resource simultaneously.

On the server side, security control is much more advanced than on the client side. The server

controls all access to the data and secures it. It is easy to add new resources to the server

(Internet FAQ Archives, ...advantages and disadvantages of Client/Server).

Although it has more advantages, if the server or its network connection goes down, all clients

who depend on this system are disabled. The installation of client-server architecture may be

expensive on the server side. It always needs to be maintained by an expert IT staff (Internet

FAQ Archives, ...advantages and disadvantages of Client/Server).

The system is generally working as a client-server architecture. In Figure 3.2, the system

architecture and the connections of more than one clients to the web server over the Internet

is shown.

On the client side, each one has a web browser. They may be in different locations and more

than one of them can be connected to the server simultaneously.

27

Figure 3.2: System architecture

The client can use any kind of network architecture to reach the servers. These can be adsl,

metronet, satellite connection, etc. but are simply called ”Internet”. The server is a computer

that a web service is running on. It replies to incoming web requests. Depending on the

requests, it connects to the database server, executes a query, gets the results and sends them

back to the client who requested the information.

In this study, clients also connect to the map server (Google Maps), request and get some

required data for mapping features. So, the client can show the mapping information to the

end user by the help of the web browser and its user interface.

The user, on the client side, uses JavaScript and DOM supported web browser. On the server

side, there are two main servers. One of them is the local server that holds the web service,

database service and archaeological data. The other one is the remote server that holds the

mapping service. The client gets the required component, a special code library used when

requesting information from the local web server. These components are in HTML files,

JavaScript codes, address and keys for getting Google Maps API. These are run on the client

computer after receiving the requested data from the server.

After that, the client also connects to the Google Maps Server and gets other necessary infor-

28

mation, codes, files etc. in order to create and display the map on the browser.

More detailed explanations of the installed components on the client and the server sides will

be given later. Details of the network side are not included in this study, because the network

itself is beyond the scope of this study. For this study it is enough to know that the network

is a tool that provides communication - connection between the client and the server. The

hardware and software are of no concern here.

3.1.1 Network Side

The network, can be considered as a hardware and software architecture that provides com-

munication between all servers and client components. In this respect it is sufficient for it to

be able to supply the desired communication.

3.1.2 Server Side (Remote - Map Server)

In this system, the map server is the second server that provides maps. The Google Maps

Server is used as a map server in this study. Its inner architecture hardware and software are

unknown.

In order to connect to and use Google Maps, some APIs are used. These are programs that run

on the client side and provide the connection between the client browser and Google Maps

Server using their functions. These APIs were downloaded from Google’s server to the client.

It is sufficient for the programmer or user to know the API reference and commands. Ac-

cording to the request, the used API connects to and gets the necessary information from

the Google Maps Server. Therefore, the browser can show the maps and related information

coming from Google.

3.1.3 Server Side (Local)

On the server side, the operating system is the Linux based ”Debian”. This OS has multi-

tasking and client-server computing capacities. It can handle a large number of requests and

processes.

29

As a hardware, the server is an ordinary desktop level computer with Debian OS. Although it

is a desktop level computer, it does not mean that it is a low level computer. When necessary,

the hardware capacities can be upgraded. The server is located in METU Informatics Institute

and benefits from the Institute’s network infrastructure. The services on that server are web

and database. Detailed information about these are below;

3.1.3.1 Web and Database Service

Web and database servers are running on the server computer. Although both are working on

the same computer and hardware, they could also have been working on separate systems like

two servers.

Due to the easy management of the systems, they are brought together in the same server used

for this study.

Figure 3.3: Server side components

In Figure 3.3, the interaction of both systems with each other is illustrated. The incoming

requests to port 80 of the server, get processed by an Apache Web Server. According to the

request, it is either processed by PHP engine and replied to or the requested file is sent to the

client without any processing.

If incoming requests refer to ”.php” suffix files, the Apache Web Server gets the file from the

storage and sends it to the PHP Hypertext to be preprocessed.

The PHP Hypertext Preprocessor interprets on the fly and sends the results back to the Apache.

30

After that, Apache only sends this interpreted result to the client. In the meantime, if required,

the PHP Preprocessor connects to the database, sends the query and gets the result.

Some HTML and PHP codes are shown in Table 3.1 and Table 3.2 below.

Table 3.1: HTML sample

A.html (Server Side)

<HTML>

<BODY>

The content of the body element is displayed

in your browser.

</BODY>

</HTML>

Result (On Browser)

The content of the body element is displayed

in your browser.

Table 3.2: PHP sample

A.php (Server Side)

<HTML>

<BODY>

<?PHP

echo "Hello";

echo "
";

echo Date("1 F d, Y");

?>

</BODY>

</HTML>

Result (On Browser)

Hello

1 January 03, 2010

Establishing the connection to the database is done by the PHP Preprocessor. This connection

can be either a socket type, or if the security of the server permits, a TCP/IP connection from

31

the outside Internet.

A sample connection string to the database in the PHP file is shown in Table 3.3 below; In

this sample, Adodb class is used.

Table 3.3: SQL connection and query

connection-class.php (Server Side)

$this->odb->PConnect($this->dbHost,$this->dbUserId,$this->dbPassword,$this->dbName);

$sql = "select * from A-tablosu";

$query = $this->odb->Execute($sql);

$result = $query->GetRows();

print_r($result);

PostgreSQL database, which is running on the server, is listening to port 5432 in order to

respond incoming requests to that port. To be able to connect to this port, the connection

conditions must satisfy the security and safety rules. These rules are stored by the database

itself.

PHP add-on of Apache web server makes connection to the database server using this port.

Therefore, it is not necessary for the web and database servers to be on the same server. Both

of them can be separate in different systems as individual servers (Figure 3.3).

Here is an example of queries which are incoming to the database.

SELECT < selection criteria > FROM < table of selection > WHERE < condition >

SELECT * FROM excavation;

The query and result are shown below in Figure 3.4

The database supports both, relational and spatial queries with PostGIS plug-in. PostgreSQL

database is generated with the spatial feature ”enabled” when it is created. So, spatial queries

can be made on the ”geometry” type column of the table.

Let’s do a simple query in spatial terms as shown in Figure 3.4. In this table, ”location” field

is geometry type.

SELECT sub id, name, type, site type, astext location , start date, height, nation, end date

32

Figure 3.4: PostgreSQL sql query 1

FROM excavation;

Figure 3.5: PostgreSQL sql query 2

Thus, in the ”location” field, (Figure 3.5), the data which were meaningless to us before,

turn into point data which indicate coordinates. In more complex queries, it can be answered

whether given points are in a polygon or not and their proximity to each other can be com-

pared.

More detailed information about the database section will be given.

33

3.1.4 Client Side

The computer on the client side may use any operating system. Because today’s operating

systems are graphical-based, the programs which are running on these systems also depend

on graphical interface. So, it is sufficient for the web-browser to have any of the operating

systems.

This is mainly because web standards and high maturing technologies are better supporting

them than other browsers (Web browser standards supports, Web Devout).

Apart from this, the client side does not need anything except being able to access the Internet.

The web browser which is working on the client side and its structure will be mentioned in

this chapter’s software design section.

34

3.2 DATABASE DESIGN

A spatial database is used for this study. A PostgreSQL database was installed. After the

database installation, the spatial add-on of PostgreSQL, PostGIS, was installed. Therefore,

the database gained spatial properties through the support of PostGIS. The installation details

can be found in PostGIS manual from the Internet. In this study, some database tables and

relations are shown in Figure 3.6.

Figure 3.6: Database architecture

35

The database contains 18 related and unrelated tables. Details of all database tables are shown

in Appendix C. In Table 3.4, some of the tables of database are shown;

Table 3.4: Some database tables

Table excavation
Name Type Description
id serial PRIMARY KEY
sub id integer[]
name character varying(255)
type character varying(25)
site type character varying(25)
location geometry
start date date
height double precision
nation character(2)
end date date

Table timeline
Name Type Description
eventID serial PRIMARY KEY
eid integer
start serial FOREIGN KEY
end serial
title serial
description serial
layerURL character varying(50)
pointSWlat double precision
pointNElat double precision
pointNElng double precision
pointSWlng double precision

36

3.3 SOFTWARE DESIGN IN SERVER SIDE

3.3.1 Web Server Directory Structure

The Apache Web server and its files form the main part of the system. These files include all

information about;

• how the client connects to the map server

• which data is sent by Ajax

• how the interface will be

• and how the system works and is displayed

These files determine the ”real” system and each of them is a part of a mashup program.

Files are located in Apache ”DOCUMENT ROOT” directory and usually are found in ”/var/www/”

directory in many Linux systems.

Here, these are categorized by their functions with sectioning folders. This makes them easy

to maintain, add, remove or upgrade. Adding new functions or files at a later stage, can be

done easily in a suitable location of folders.

Below, the addresses of the folders and files are shown;

• DOCUMENT ROOT/ArchaeoSiteMap/var

• DOCUMENT ROOT/ArchaeoSiteMap/roots.php

• DOCUMENT ROOT/ArchaeoSiteMap/lib

• DOCUMENT ROOT/ArchaeoSiteMap/photos

• DOCUMENT ROOT/ArchaeoSiteMap/class

• DOCUMENT ROOT/ArchaeoSiteMap/test

• DOCUMENT ROOT/ArchaeoSiteMap/img

37

The main folder is, ”DOCUMENT ROOT/ArchaeoSiteMap”. All other folders are in upper

levels.

• ”var” folder contains the variable files. In this folder, there is a file named ”global.php”.

Variables are held in this file. This file is included in other ”.php” files and thus they

get the same variables from one place ”global.php” files.

• ”lib” folder contains some framework files. These are ”Sardalya”, ”Timeline”, ”Adodb”,

”ExtJS” and a few ”.js” file. In codes, some of them provide connection to database,

some of them provide GUI, some of them support Ajax and javascript extensions etc.

Each ”library” or frameworks are included in codes.

• ”photos” folder holds the photos, pictures, or drawings.

• ”class” folder holds the class files of PHP. These class files also contain ”packets” which

are used in codes in order to make them simple, avoid repeating codes and use to make

the same structure everywhere in the programs.

• ”test” folder contains test codes and examples of the system. Before publishing the real

codes, all are tested in this folder and debugged.

• ”img” folder contains some images which are used in GUI.

This structure is the familiar Linux file structure and is easy to maintain for anybody who

knows Linux.

3.3.2 PHP Class Structure

Php classes are used in many sections of the codes. Here, they are used as an object-oriented

programming tool. Briefly, we can say that, object-oriented programming consists of classes,

methods, and objects. Objects can be defined as data structures which contain a set of routines.

These are called methods. So a class contains a collection of these methods and objects (PHP

Classes, Spoono).

The benefit of using classes is that superior organizations with less repetitive code can be

established.

38

Table 3.5: PHP class definition

Simple Class definition

<?php

class SimpleClass

{

// property declaration

public $var = ’a default value’;

// method declaration

public function displayVar() {

echo $this->var;

}

}

?>

Creating an instance

$instance = new SimpleClass();

// This can also be done with a variable:

$className = ’Foo’;

$instance = new $className(); // Foo()

?>

Here is a simple class example in Table 3.5 (Class and Objects, PHP Manual);

39

In our study, an example of class is in Table 3.6;

Table 3.6: PHP class structure

class.php

class asm{

function asm(){

/// This section is executed when the instance created..

/// mainly prepering the database connection is here.

...

}//function asm

// $parameter is query criteria.

function Cquery($parameter){

/// query text

$sql = "select * from TABLE_A where TCOLONE_A = ’$parameter’";

/// execute the query

$query = $this->odb->Execute($sql);

/// return the results

return $query->GetRows();

}//function Cquery

}//class asm

index.php

// class file is included. So we can reach it.

//

include("class.php");

// create the instance...

$query = new asm;

// make the query using class..

$query = "837";

$result = $asm->Cquery($query);

// print the results

print_r($result)

In this example (Table 3.6), we use another class in order to make a database connection. In

PHP, ADOdb classes are used. ADOdb is a database abstraction library for PHP. It currently

supports MySQL, Oracle, Microsoft SQL Server, Sybase, Sybase SQL Anywhere, Informix,

PostgreSQL, FrontBase, Interbase (Firebird and Borland variants), Foxpro, Access, ADO and

ODBC (J. Lim, ADOdb).

40

3.4 SOFTWARE DESIGN ON CLIENT SIDE

3.4.1 JavaScript and AJAX Frameworks

On the client side, most of the operations are performed in the web browser. These are con-

trolled by JavaScript codes or Ajax frameworks. Actually Ajax is a kind of JavaScript, which

is supported by today’s high end web browsers. It provides the web browser with data sending

and receiving capabilities without reloading entire web pages. Therefore, if it is programmed

suitably, the web browser acts as a GUI based software.

The differences between classic web model and Ajax working principles are shown in Figure

3.7 (AJAX - Asynchronous JavaScript And XML, UVic Dept. of Comp. Sci.)

Figure 3.7: Ajax working structure

Although there are many Ajax frameworks, some of them were selected and used on the

client side scripting. The selection was made based on an advise of some users who have

been using them. By using Ajax frameworks, developing codes on the client side, became

41

easier than developing the server side PHPs codes. Here are the Ajax frameworks which are

used in the client side in codes;

3.4.1.1 Sardalya Library

Sardalya is one of the open source ”Ajax library”s, designed to work with today’s cross-

browsers which are supporting DOM. This library was created by Volkan OZCELIK

(http://www.sarmal.com/sardalya/). The aim is to develop DHTML programming easily. It is

independent from the OS. Although, it was designed for Ajax, it is also used for some other

JavaScript functions.

3.4.1.2 ExtJS Library

The second is ”ExtJS” Framework. The main purpose of this framework is to create user

friendly interface widgets. With this UI, Ajax power is combined for getting a powerfull

framework. It enables the programmer to create ”amazing web applications within the web

standards” with only a few lines of codes. ExtJS is also used for an Ajax property. Commu-

nication between the server and the client is also provided by this framework. This commu-

nication is made possible by data which is in JSON format. In appendix A, JSON format is

given with an example.

3.4.1.3 Timeline

The other application on the client side, after Google Maps, is timeline. It is a kind of dhtml

ajax widget for visualizing temporal information. It has been developed as part of the SIMILE

Project of MIT(http://simile.mit.edu/) with the BSD licence. It enables the programmer to

make an interactive timeline. In this study, timeline is located on Google Maps and contains

layer related date. These layers represent the situation of the stated location.

42

3.4.1.4 Projected Overlay Library

This library was used as part of timeline widget. With the help of this library, it is possible

to show projected images on the map and change the transparency of the images. It was

developed for this purpose by John D. Coryat in 2008. This library is provided free of charge

with GNU General Public License.

3.4.1.5 Google Maps API

Of course, the main structure depends on The Google Maps API . Creating a map and other

operations related with this map are provided by the help of this API. So, this map can be

specialized for our purpose and we can use Google Maps on our web site (Google Code Help,

Google). Google Maps API provides map, satellite image and DEM image with some tools.

43

3.5 GRAPHICAL USER INTERFACE DESIGN

Here, in this section, Graphical User Interface (GUI) is explained. GUI mostly takes advan-

tage of the ExtJS library. ExtJS library provides instant widgets for this study. In Figure 3.8,

this part of the interface and locations are shown.

Figure 3.8: GUI Design

44

3.5.1 Title of the Mashup

The title of the web page is here (Figure 3.9). It was constructed with native HTML.

Figure 3.9: Title of the Mashup

3.5.2 Map Section of the Mashup

Google Maps API (Figure 3.10) is located in this section. The map of the selected area is also

shown. When the page is loaded, it shows the map of Turkey with selections like zoom in,

zoom out or sliding, the page can show different map areas.

Figure 3.10: Map section of the Mashup

3.5.3 Mini Map Section

This layer is also a part of Google Maps API. It shows (Figure 3.11) the mini look of the

whole map.

45

Figure 3.11: Mini map section

3.5.4 Timeline Section

Timeline is located on the map section as a transparent visibility (Figure 3.12). It is built

using SIMILE Timeline Library. It is used for showing the layer which depends on time on

the map.

Figure 3.12: Timeline section

3.5.5 Query Criteria Section

The query area is divided into two section tabs. One of them is for geographic attributes in

Figure 3.13;, the other is for related, non-spatial attributes in Figure 3.14.

Figure 3.13: Area query criteria Figure 3.14: Other query criteria

46

3.5.6 Result Area of the Mashup

The query results are shown in Figure 3.15.

Figure 3.15: Result area of the Mashup

3.5.7 Layer Area

Figure 3.16, with the use of timeline, shows the layer. The layer transparency can be con-

trolled on the map.

Figure 3.16: Layer area

3.5.8 Controls of the Mashup

Some map based controls such as zoom-in, zoom-out, switch off on the timeline, and export

to pdf file are shown in Figure 3.17. In system development there will be more controls.

Figure 3.17: Controls of the Mashup

47

3.5.9 Information Panels of the Mashup

Accordion type info panels contain information of selected result. ExtJS accordion structure

is used. Top panel contains photos of selected result areas. The other panels contain general

information on excavation or archaeological site in Figure 3.18. Detail of the panels will be

given in Section 4.3.3.3.

Figure 3.18: Information panels

3.6 SYSTEM DEVELOPMENT

The system design was presented in the previous section. In this section, development of the

system will explained. As known, the system architecture is a client server type archaeology

mashup. The local server side of the system has Linux based OS. The client side can be any

OS supporting web browser.

There is also a section which is not mentioned before, the developer section. The Developer

side is also a part of this system. Without the developer side, of course, the system can not be

built and can not be improved.

In this study all development of the system was made with open source software. During the

development of the client side, the server side and also the developer side, open source codes

or operating systems (OS) have been used.

In this chapter, firstly, infrastructure and software, that was used during the development will

be explained. Afterwards, the server and client side development will be described.

3.6.1 Developer Side Development

On the developer side, Linux based Fedora 10 was selected as the OS. The selection was made

because of similarities to the server side operating system. Therefore, the developer became

48

much more prone to the system and developed the codes without difficulty.

For writing the codes on the developer side, Quanta Plus Development editor was selected. It

is said that, ”Quanta Plus is a stable and feature rich web development environment” (Quanta

Plus, KDE Web Dev Team). The use of Quanta is like other web developer programs. It has

a text area and control buttons on top of it. It highlights , corrects and completes the codes

while writing.

It has also many other helping properties for web development. Currently, it is running on

Linux based systems. Figure 3.19 is a screen shot of Quanta Plus;

Figure 3.19: ”Quanta Plus Web Development” tool

The codes, which were developed, were sent to the server with quanta ssh properties. So,

development of codes were actually made on the developer side and saved to the remote

system or server on the fly with ssh functions of quanta.

Similarly, database development was made similar to the codes. Although creating and storing

of the database was made on the server side; development, creation of tables and assigning

attributes were made on the developer side. Therefore, to reach the databases, two programs

or tools were used. One of them is open source administration and development platform for

PostgreSQL, pgAdmin (pgAdmin, PostgresSQL).

49

Figure 3.20: pgAdmin

In Figure 3.20, the screen shot of pgAdmin is shown. pgAdmin supports connection and

management of PostgreSQL database. In the development phase, this tool was used many

times for database processes.

The other tool is also an open source software, with the only difference that it is a web based

database management system for PostgreSQL, phpPgAdmin (Figure 3.21)

All database development processes were managed by these two tools. Sometimes, when

direct access to the database was needed, connection to the server was established and the

database was intervened. Figure 3.22 represents this direct connection and intervening.

In the development phase, written codes for the client-side were debugged with Firebug. Fire-

bug is an add-on extension for Mozilla Firefox. It allows the debugging, editing, and moni-

toring of the website’s CSS, HTML, and JavaScript codes (Firebug, GetFirebug Web).

Firebug helped developing JavaScript codes as well as Ajax codes. Firebug screen shot is

shown in Figure 3.23.

On the developer side, Dell 1501 Laptop was used. It has 2 GB ram, 100 GB hard-disk and

network connection, both cable and wireless. Its operating system and other programs are

50

Figure 3.21: phpPgAdmin

Figure 3.22: PostgreSQL console

working on this configuration efficiently.

51

Figure 3.23: Firebug plugin for Firefox.

3.6.2 Client Side Development

On the client side, any operating system that has capability to run a web browser that supports

web 2.0 standard is sufficient. However, due to the support of web standards (Web Browser

Standards Supports, Web Devout), Firefox is preferred. For using Google Maps API, Google

announced system requirements for supporting browsers (Google Code, Google). These are

below;

• IE 6.0+

• Firefox 2.0+

• Safari 3.1+

• Google Chrome

As a hardware on the client side, a wide and full color support screen resolution (1440x900) is

preferable. In addition to this, any connection components or hardware is a must for reaching

servers over the Internet. Today’s computers are supporting these properties. Of course, much

more ram and disk capacities are also preferable.

52

3.6.3 Server Side Development

The server is hosted in the Informatics Institute, METU. It is benefiting from the infrastruc-

tures of Informatics Institute and METU networks. As a hardware, it has a Pentium based

processor with 1.3GHz processor speed, 512 MB memory, 80 GB harddisk and network in-

terface card.

The operating system it is working on, is Linux based Debian version 5.0. Therefore, it

supports multitasking jobs and heavy requests incoming from clients. There are two important

services that are working as a daemon on this server. One of them is a web-server, the other

one is a relational and spatial database server.

As a web server, Apache has been installed. Apache has been developed and maintained

by an open community of developers under the auspices of the Apache Software Foundation

(Apache Web Server, Wikipedia).

Apache Web Server is working with a PHP module. PHP, here, undertake pre-processing for

incoming requests to the Apache. Php codes which are embedded in HTML document are

interpreted by the Apache web server with PHP module in order to produce dynamic web

pages. Therefore, it produces web page documents on the fly. It is also used for connecting

to the database, executing queries and getting the results. Sending the results of queries to the

clients as a web page document is also done with PHP.

Web server installation is very simple, because when an operating system is installed, it is

installed with it by default. However, if it was ignored during the installation of an OS, it is

possible to install it later. In Linux, although there are a few differences in the installation,

many of them are alike.

When running ”apt-get install apache” command as a root, the Apache Web Server will be

installed and is ready to reply to incoming requests. With Apache, php package may also be

installed. PHP is installed with a similar command ”apt-get install php”. So, Apache and its

PHP module are ready to work.

The other service is the database server. PostgreSQL was installed on the server as the

database server. It has also spatial feature capability. In order to get spatial feature, PostGIS, a

spatial extension for PostgreSQL database was installed as an add-on. Thus, our PostgreSQL

53

database became a spatial relational database. In the previous chapter, spatial database was

explained in detail.

The installation of a database is similar to the installation of a web server. When the OS

is being installed, it is possible to install a database server without much effort. However it

is also possible to install it after the installation of an OS. This can be done with a similar

command. As a root, ”apt-get install postgresql” command does the installation.

In the same way, installation of PostGIS extension is done by a command line, like ”apt-get

install PostGIS”. However, this does not mean that the created database is able to work with

PostGIS. In order to enable PostGIS, spatial properties, in the database, the following steps

have to be taken (PostGis-1.5 OSVN Manual, Refractions Research - Internal). All these are

applied with a command line on the server side.

Create a database on PostgreSQL.

createdb [yourdatabase]

Enable the PL/pgSQL language in the database.

createlang plpgsql [yourdatabase]

Load the PostGIS object and function definitions into the database by loading the postgis.sql

definitions file.

psql -d [yourdatabase] -f postgis.sql

For a complete set of EPSG coordinate system definition identifiers, also load the spatial ref sys.sql

definitions file.

psql -d [yourdatabase] -f spatial ref sys.sql.

Load comments.sql into the database adding comments to the PostGIS functions is desired.

psql -d [yourdatabase] -f postgis comments.sql

After all these steps, the database is ready to be used with spatial capabilities.

Finally, in order to get remote access and maintain the server, ssh daemon is working in the

server. Ssh daemon provides remote access with secure connection. The developer reaches

the server with this ssh connection. In Linux, ”ssh” command, in windows some ssh programs

are used to initiate the ssh daemon. This remote access provides the direct intervention to the

54

system, database or web server daemon. Such an access is shown in the previous Figure 3.22.

For the backup operation of the files, Rsync program was used. Rsync is scheduled with

crontab and executed at specified times. So, the backup process is executed automatically at

desired times.

55

CHAPTER 4

TEST CASE AND IMPLEMENTATION

4.1 SYSTEM OVERVIEW

The main purpose of the mashup’s design is to provide easy usage with a graphical user

interface (GUI). ’Extjs’ framework widgets library was used to achieve this. It supports a

graphical background interface for the mashup. All the interface was prepared with this rule

or purpose. The GUI is divided into some sections in itself. These sections and their relative

locations are explained in here;

The map section is located at the top left side of the page. The search section is located on

the right side of the map. Also, search results and layer controls are located on the right side

of the map, below the search section. In the previous Chapter 3, the locations of the sections

were shown. The web page is shown in Figure 4.1;

4.2 USAGE OF THE SYSTEM

In order to use the system, one has to be familiar with web based GUI and Google Maps. In

addition, basic computer knowledge and being able to use the Internet are requirements.

The system rules could be kept simple. It contains these basic parts: search, select, look and

examine. The flowchart of the system is shown in Figure 4.2. The user follows the levels

from 1 to 2 and progresses down in the figure from T1 to T2. These levels, which represent

the user’s next choice, depend on the previous level and ”T” represents time.

As shown in Figure 4.2, within Level 1, the processes are independent from each other. The

56

Figure 4.1: Screen shot of Mashup

user can search, view and select the results in Level 1 any time. Level 2 processes , however,

are dependent on Level 1. After the selection of the results, Level 2 processes appears. In

Level 2 processes, the user can make a choice about the result’s detail. He can either select

the close view or export the result as a pdf file. The ”Zoom out” selection, in this level, is

working after ”zoom in”, i.e. ”zoom out” is ineffective, before ”zoom in”. Level 3 depends on

Level 2 timeline objects. It is shown after the selection of timeline objects. After the selection,

the layer control appears on the control panel and the layer, which is controlled by the user,

appears on the map in the specific location. Here, all dependencies are related to time.

57

Figure 4.2: Flow chart of the Mashup

4.3 TEST CASES QUERIES

The system has the capability of making several queries and showing these. The most impor-

tant of them are spatial queries. The others are phenomenal, relational, and semantic queries

that are related with each other.

4.3.1 Spatial Queries

The system, owing to its structure, supports spatial queries. These queries are replied to by

the PostGIS database. These are mainly distance, proximity and topological queries.

58

4.3.1.1 Distance (Buffer) From a Center

Distance queries deal with the object’s proximity to the selected feature. They check if the

object is within a certain distance to the selected feature. There are several distance queries

in this system.

On the map, a point is marked with specific radius which is a buffer area around it. This

radius is either selected with a second marked point or entered in a text-box before any point

marking. The circle that is created by selecting the points appears on the map. The search is

done within this circle. Any point in the circle is exposed by making a spatial query.

The query is replied to by PostGIS database. After that, the results are shown on the map and

appear in the result section. In Figure 4.3, a query and its results are shown;

Figure 4.3: Distance from a center

In Figure 4.3, the center point is marked between Ankara and Yozgat. The radius point is

marked near Kahramanmaraş. Therefore, the buffer size is a radius from the center point to

the second marked point. When submitting the search button, the archaeological sites (points)

and Hattusa appear near Yozgat within the buffer.

4.3.1.2 Distance (Buffer) From an Object

In this type query, rivers were selected as geometry objects. Similar to ”Distance From a Cen-

ter” it can be thought as if rivers are points. The remaining thought is the same as ”Distance

59

(Buffer) From a Center”

In query ”Area” section, almost all rivers are defined and selectable by combo-box. After the

selection, the selected river appears on the map. The river data comes from the database as a

(multi)polygon or (multi)line-string and is shown on the map. In order to show these, Google

Maps API provides an easy method. They are converted encoded structures. Therefore the

client browser can easily show these without consuming memory resources. Only necessary

points are shown on the polygon or drawing at a suitable zoom level. Unnecessary points

are not shown or drawn to save memory of the browser. When zoom level decreases, i.e.

zoomed-in, the detail of the polygon or the points are shown. The details of these feature are

explained in Appendix B .

Again, after the selection of the river, the distance or buffered region are asked. This is entered

in the text-box next to the river combo-box. The number entered for the distance between the

river and the point has to be in km. The search is made within this buffered area, along the

river within this buffered region. If there are any points/objects in this region, the results are

shown on the map and in the result section as a list. In the same way, instead of entering the

buffered size, there is a combo-box for the selection of some buffered region. Selections such

as ”between 0 to 5 km” as a so close, ”4 to 15 km” as a close, or ”13 to 50 km” as a near can

be made. These also represent the buffered area region with a specific distance from the river.

Figure 4.4: Distance from a river (in 35km)

Some examples and results are shown in Figure 4.4 and 4.5. In Figure 4.4, the region search

within 35 km of ”Kızılırmak” river is shown. In Figure 4.5, the same river with a buffered

60

Figure 4.5: Distance from a river (very-near)

region (very near) results are shown.

4.3.1.3 Object Proximity

The last distance query type is proximity. Again, the same structure was used for this query

type. However, in this query, relations between the geometry objects (polygons and points)

were examined. For example; ”search and bring the results of the points which are close to

the given river within 1 km”. In this query, all archaeological sites (points) are compared with

the rivers. The query criteria are searched and if there are any matches, they are shown on the

map.

Figure 4.6 shows the example of such a query and its results. In the result list, according to

the selected criteria, the point of an archaeological site, the distance of it from the river and

river names appear.

In the same way, proximity of any point to any river can be searched by selecting from the

combo-box section. Likewise, the archaeological locations which are ”very-near” can be

searched for as seen in Figure 4.7.

61

Figure 4.6: Proximity (in 5km)

Figure 4.7: Proximity (very near)

4.3.1.4 Point in Polygon (Rectangular)

Topological queries are concerned with the objects’ locations and relationship among them.

They provides answer to questions like; ”are there any points (or point) in the selected area

or polygon”. Here, a few examples of topological queries in this system are illustrated.

The first topological query is to find a point in a rectangular area. The rectangular area is

selected by marking two points, which are the north-west and south-east corners of the rect-

angle. After marking these points, the area appears on the map.

62

When the search is submitted, the system seeks the archaeological sites (a point or points) in

the marked area and results appear on the map and in the result list section.

Figure 4.8: Points in a rectangular area

In Figure 4.8, the rectangular polygon search and results are shown.

4.3.1.5 Point in Polygon (Province)

The second example of topological query is to find a point in a complex polygon. Here, the

polygons are the borders of the provinces of Turkey. In a query section, a province is selected

in the combo-box. When the province is selected, the borders of it appears on the map. River

polygons and province polygons use the same decoding algorithm, explained in Appendix B

After the province border appears, any archaeological site can be searched inside it by sub-

mitting the query. The query executed on the spatial database, PostGIS, and the results are

shown on the map and in the result list section.

Figure 4.9 shows an example of this. The selected province is ”Çorum” and the results appear

inside Çorum’s borders and in the result section list.

4.3.2 Attribute, Relational and Semantic Queries

The last type of queries can be collected under the same title. These are related to each other.

Each of them will be explained individually;

63

Figure 4.9: Points in a province

Attribute queries are only concerned with non-spatial data such as name queries of provinces

etc. No geographical objects are queried in these.

Relational queries are concerned with more than one table. These tables can include both

spatial or non-spatial data. In this type of queries, a table may contain the geographic loca-

tions, another table may contain the period of these locations. Query criteria must satisfy both

tables. The tables are connected to each other with primary key and foreign keys. The table

connections are shown in the Appendix C.

Similarly, semantic queries are composed of both; attribute and relational queries. However,

these are a bit more complex and aim to move specific targets or answers. These type of

queries are executed on more than one table and results give answers for a predetermined

detailed questions.

In this study, attribute and relational queries can be made with ”Other Selection” tabs, in the

query criteria section. Here, the periods of the archaeological sites can be selected. These

selection tabs are related to the first ”Area Selection” tabs. When an area is selected in the

”Area Selection” criteria, the selected periods of archaeological sites are searched within this

selected area. So, the area and periods are used together in the query. Both of them are

executed on two different tables that are related with primary and foreign keys. This is an

example of relational queries and can be applied to each area query.

Some queries and results are shown in figures;

64

Figure 4.10 shows an example for a point with a distance (circle) and belonging to the Ne-

olithic period.

Figure 4.10: Distance from a center belonging to the Neolithic period

Figure 4.11 shows an example for a point in rectangular polygon belonging to the Hittite

period.

Figure 4.11: Points in a rectangular area belonging to the Hittite period

Figure 4.12 shows an example for a point within the borders (polygon) of a province in be-

longing to the Phrygian period.

Figure 4.13 shows an example for an object with distance (rivers) and belonging to the Bronze

age period.

65

Figure 4.12: Points in a province with Phrygian period

Figure 4.13: Distance from a river belonging to the Bronze age period

Figure 4.14 shows an example for a proximity query belonging to the Neolithic period

4.3.3 Result & Controls of Queries for Hattusa

The result of the queries are shown on the map. The other information or controls which

are related to the result are shown in suitable places on the mashup. These are map controls,

timeline controls, layer controls and info panels which include photos and documents.

Photos, information or map controls are shown below the map. Map controls are located

66

Figure 4.14: Proximity with Neolithic period

below the map, timeline control is located on top of the map and timeline related layer control

is located below the search results side.

4.3.3.1 Map Controls

Table 4.1 shows the map control symbols and meanings.

67

Table 4.1: Map controls

map title, the location of control names ap-
pear in that title.

zoom in, the selected result is zooming in
when it is used.

zoom out, the selected result is zooming out.
This option can only be used after the zoom
in control is used.

timeline, the timeline module is closed and
opened with this.

pdf export, using this, the information about
that selected result information is exported as
a pdf file.

If Hattusa is selected in Figure 4.15, ”zoom-in”, the near satellite view appears on map section

in Figure 4.16.

Figure 4.15: Zoom-out Hattusa

In a similar way, ”zoom-out”’s duty is to restore the map’s previous view during the search

phase. ”topological query and result” or ” buffer-queries and results” figures can be seen in

68

Figure 4.16: Zoom-in Hattusa

the zoom-out phase.

The control ”Pdf export” exports all the information about the selected location ”Hattusa”

pdf file format in Figure 4.17. This is part of the web-service. It can be considered as an

interactive web service. It also provides the end-user with the opportunity to easily document

the result.

Finally, ”timeline” control’s duty is to close or open the timeline section, which is located on

the top side of the map. Its only function is to provide a wide view area on the map. However,

the objects on the timeline, have some functions related to the maps.

4.3.3.2 Timeline Controls

Timeline appears when one of the search results is selected. The objects (or text) on it are

related to the time and layer.

In Figure 4.16, the timeline and its objects are shown on the map. The objects (or text) on

the timeline are located with respect to time. Each object on it represents one layer, which

is located on a specific area in time. When the object is selected, the layer appears on the

69

Figure 4.17: Pdf exports of Hattusa

map and the ”transparency” control section appears on the right side of the map. The control

mechanism becomes a slide bar. The transparency of the layer is controlled by this slide bar.

Figure 4.18: Timeline and layer of Hattusa

70

In Figure 4.18, the drawing is related to time and located on Hattusa as a layer. The trans-

parency of the figure is controlled by the ”Layers” section on the right-bottom, and adjusted

to 50. The timeline, map and layer control relations are defined in Figure 4.18. The working

principles of these relations can be seen.

Many layers that are related to time can be shown on the map using Timeline and the trans-

parency of each of them is controlled by the Layers section. This gives the advantage of

being able to trace the changes within time and mark some areas as a layer for classifying the

locations.

4.3.3.3 Accordion Type Information Windows

When a result is selected, the information related with this also comes to the accordion type

windows. First part of the window shows the photos of the selected result(s). When user

clicks the mini photo, a big photo opens in a pop-up window. The other part of the accordion

gives some information about the archaeological site such as general information, references

in time, related publications and information about session supporters.

A screen capture of that part is shown in Figures 4.19, 4.20 and 4.21.

Figure 4.19: Photo panels

71

Figure 4.20: Info panel 1

Figure 4.21: Info panel 2

4.4 SUMMARY

The mashup system works as intended. As a future work, some functions will be added.

However, like any computer program, it may contain some ”bug”s and therefore may need to

be debugged as these are discovered. Better algorithms in codes may also be used so that the

mashup’s performance improves.

Computer programs never stay unchanged. They are always developed to get better than

72

before; so will the mashup. The performance and other requirements will become apparent

during the usage of the system. As a web-based GIS, the possibilities of the program are

almost infinite. The development of it will continue.

73

CHAPTER 5

CONCLUSION

With the capabilities that today’s technologies offer, GIS is being used in many areas by

government bodies and institutes. GIS has been too complex and expensive to be used by

ordinary users until recently. In an addition, these applications were installed on singular

systems that were not open to public for sharing. However, as a web based application, this

technology has been rapidly spreading out in many areas and attracts more users. Archeology

has become one of these web based applications and is already widely being used by the

public.

Turkey is a real treasure in terms of archaeological sites. There are thousands of historical

remains and archaeological sites spread throughout the country. In many of them, surface

research and excavations work is being carried out and yet many others are waiting to be

excavated. Although there are numerous publications on these excavations it is not easy to

search and reach these sources or even basic information on these.

A web based GIS can be used to facilitate the search for locations of archaeological sites, get

information on the work that has been done or is being done, querying these and sharing the

information. In this respect, this study intends to contribute to archaeology in a scientific way.

At the same time, this study can be a base structure and an idea for similar systems that will

be constructed in the future.

74

5.1 ADVANTAGES

The mashup that was constructed has many advantages, because it is a web based application.

It does not depended on any client side platform to work. It can work on browsers which

are independent of the operating systems and structures. This means that it can be used by

most of today’s computers. Using such an independent system which works on almost all

computers is a real advantage making it accessible to researchers around the globe.

It is not necessary to install any add-on or supporting programs on a web browser or computer.

Therefore, there is no need to purchase such programs. This in turn is an advantage in terms

of budget and installation time for the end user.

Changing, updating or improving the structure of the mashup or the database is easier than

with the non-client server structure. There is no need to do it for each client. All clients who

are using this application can benefit from all kind of changes made on the server side. This

is an advantage in management over the one center systems.

Web based systems have a structure that users are familiar with. Users spend the time to

learn how to use the structure, which is much easier than to learn complex programs. In this

respect, the system was kept quite simple. So, it makes it possible that the application is used

by people of all levels.

Finally, this system is based on sharing information as a mashup. As a purpose, sharing

information appears to be the most important advantage of it.

5.2 DISADVANTAGES

Although, it has many advantages, it also has some disadvantages caused by the structure of

the system. The most important of them is that it is necessary to have the Internet connection.

In client-server structures, there must be a connections between the components. This is

provided in some way by either the Internet or another connection medium. If this connection

is not established or breaks for some reason, the system becomes totally ineffective.

In the same way, there is a dependency on the server side. If there is a problem on the servers

which are being used, the system collapses. The only way to overcome this is to create

75

more than one distribution server structure, route all connections to the other servers when

one of them becomes unavailable. This mashup system does not support such a distributed

architecture. However, such a structure could be built as a future work.

For the time being, the system is supported and works with only one web browser, the ”Fire-

fox”. The reason for this is that Firefox is supporting the W3C standards and the system codes

have been written with this standard. This disadvantage can be easily overcome by adding the

standards that other browsers can interpret on the current codes. This can be another future

work.

5.3 RESULTS

The mashup works as planned. In order to use GIS properties, it has a spatial database and

Google Maps, which is used for supporting this database, as the map server. Google Maps is

a powerful GIS tool that is used in many scientific applications.

Combination of these two important features helped creating a mashup for archaeology. A

similar study has been done by TUBA. However it is not for public use and does not contain

map information as in this study (TUBA, Ayşe Erguvan). It has been confirmed by the General

Directorate of Cultural Heritage and Museums that there is no operational study using maps

like they are used in this study (General Directorate of Cultural Heritage and Museums, P.Ç.

Ermiş).

Since, it is to be the first version of its kind, it may be insufficient in some ways or may contain

errors. Therefore, this system most probably will have to be modified and corrected during its

usage.

Opening the service and further work phases of this study will eliminate the lack of informa-

tion sharing and will provide an important contribution to archaeology.

5.4 FUTURE WORKS

Although the system has been tested and is working functionally , it needs the addition and

upgrading of features. Certain user groups and authorities will be given defined permissions.

76

The authority system is envisaged to have several levels. At the top, an admin type user will

be assigned the authority to control all the system, whereas on the bottom, an ordinary user

will be given permission to only search or see information. All other levels of permissions

can be assigned with respect to these.

Secondly, screens for entering information to the system will be built. One of the aims of the

system is to share information. In order to do this, GUI entrance will be opened to people

who are assigned authority to enter information or data. The system was designed to provide

such data entering. Therefore, the addition of input screens can be easily done in the future.

Furthermore, this system will contain the suggestions of users and can be developed consid-

ering these suggestions.

In addition to these, by adding more than one server to the system, it can be converted to a

distributed structure and some code corrections need to be done so that it can be used with

other type browsers.

Finally, it is desired that this study will serve as an example to other studies of similar kind.

From this point of view, developing this study will continue.

77

REFERENCES

Paul J. D., Harvey M. D., 2008, ”AJAX, Rich Internet Applications, and Web Development

for Programmers”, Prentice Hall, United States

Ralf Hartmut Güting, 1994, ”An Introduction to Spatial Database Systems”, The VLDB Jour-

nal - The International Journal on Very Large Data Bases

David Wheatley & Mark Gillings, 2002, ”Spatial Technology and Archaeology, The Archae-

ological Applications of GIS”, Taylor & Francis, Great Britain, p23

G. Brent Hall, Michael G. Leahy, 2008, ”Open Source Approaches in Spatial Data Handling”,

Springer, Berlin

M. van Kreveld, I. Reinbacher, A. Arampatzis, and R. van Zwol, 2004, ”Distributed rank-

ing methods for geographic information retrieval.” In Proceedings of EWCG-04, the 20th

European Workshop on Computational Geometry.

James Conolly and Mark Lake, 2006, ”Geographical Information Systems in Archaeology”,

Cambridge, United Kingdom

Google Maps, Wikipedia, http://en.wikipedia.org/wiki/Google Map, last accessed on Decem-

ber 24, 2009

Spatial Query, Wikipedia, http://en.wikipedia.org/wiki/Spatial query, last accessed on De-

cember 24, 2009

Web Service, Wikipedia, http://en.wikipedia.org/wiki/Web service, last accessed December

24, 2009

Steve W., Online Archaeology, http://www.online-archaeology.co.uk/GoogleMap/, last ac-

cessed on December 13, 2009

Dr Kostas Arvanitis, Dr Sian Jones, Mashup Archaeology, Aggregating museum archae-

ology & archaeological heritage, http://mashuparchaeology.humanities.manchester.ac.uk/,

last accessed on December 22, 2009

78

Greta Nicoara, GITA, 2008, www.gita.org/chapters/texas northcentral

/ppts/02 14 08/GoogleMapsAPI.ppt, last accessed December 24, 2009

Simile-Widgets, MIT, http://code.google.com/p/simile-widgets/wiki/Timeline, last accessed

on December 24, 2009

PostGIS, Using PostGIS, http://postgis.refractions.net/docs/ch04.html# id2538511, last ac-

cessed January 17, 2010

Ray R. Larso, ”Geographic Information Retrieval and Spatial Browsing”,

https://sherlock.ischool.berkeley.edu/geo ir/PART1.html, last accessed on December

20, 2009

KRLAB, Computer Science and Information Management Program, Asian Institute of Tech-

nology, http://kr.cs.ait.ac.th/Home, last accessed December 24, 2009

Semantic Web Company, http://www.semantic-web.at/1.32.catchword.281.semantic-

query.htm, last accessed December 24, 2009

Developer Network, Yahoo, http://www.theserverside.com/news/thread.tss?thread id=42722,

last accessed December 24, 2009

Pros and cons of client/server computing, Exfoesys Inc., http://www.exforsys.com/

tutorials/programming-concepts/pros-and-cons-of-client-server-computing.html, last ac-

cessed Januray 03, 2010

Internet FAQ Archives, ...advantages and disadvantages of Client/Server,

http://www.faqs.org/qa/qa-17360.html, last accessed January 03, 2010

Web Devout, Web browser standards supports, http://www.webdevout.net/browser-support-

summary, last accessed January 03, 2010

Class and Objects, PHP Manual, http://www.php.net/manual/en/language.oop5.basic.php,

last accessed January 17, 2010

John Lim, ADOdb, http://adodb.sourceforge.net/, last accessed January 05, 2010

AJAX - Asynchronous JavaScript And XML, UVic Dept. of Comp. Sci.,

https://secure.cs.uvic.ca/twiki/bin/view/Research/AJAX, last accessed January 17,

2010

79

Google Code Help, Google, http://code.google.com/support/bin/answer.py?hl=en &an-

swer=16532, last accessed January 03, 2010

pgAdmin, PostgresSQL Tools, http://www.pgadmin.org/, last accessed January 05, 2010.

Firebug, Parakey, Inc., http://getfirebug.com/, last accessed January 18, 2010.

Google Code, Google, http://code.Google.com/apis/maps/, last accessed Januray 05, 2010

PostGis-1.5 OSVN Manual, Refractions Research - Internal,

http://postgis.refractions.net/documentation/, last accessed Januray 07, 2010

Quanta Plus, KDE Web Dev Team, http://quanta.kdewebdev.org/, last accessed Januray 05,

2010

Web Browser Standards Supports, Web Devout, http://www.webdevout.net/browser-support-

summary, last accessed Januray 03, 2010

The Historic Buildings and Monuments Commission for England, Heritage Gateway,

http://www.heritagegateway.org.uk/gateway/, last accessed on December 22, 2009

PHP Classes, Spoono, http://www.spoono.com/php/tutorials/tutorial.php?id=27

Apache Web Server, Wikipedia, http://en.wikipedia.org/wiki/Apache web server, last ac-

cessed Januray 07, 2010

sing GIS in Public Policy Analysis in North Carolina, Water-

shed Education for Communities and Officials NC State Universi,

http://www.ces.ncsu.edu/depts/design/research/WECO/policyGIS/why.html, last accessed

on April 9, 2010

Ajax-Powered Google Maps Mashup Tutorial, ORACLE Technology Network,

http://www.oracle.com/technology/pub/articles/dev2arch/2007/05/google-mashups.html,

last accessed on April 9, 2010

GIS Mashups for Geospatial Professionals, GEOG 863, Department of Geogra-

phy, https://courseware.e-education.psu.edu/courses/geog863/content/syllabus.html, last

accessed on April 9, 2010

Enterprise Mashup, Farallon Geographics, http://www.fargeo.com/services/enterprise-

mashup, last accessed on April 9, 2010

80

Google Maps Help Forum, Google, http://www.google.com/support/forum/p/maps/thread?

tid=075eb10962e00cc5& hl=en, last accessed on April 9, 2010

What is Timeline, Midmarket CIO Definitions, http://searchcio-

midmarket.techtarget.com/sDefinition/0,,sid183 gci214199,00.html, last accessed on

April 12, 2010

The Information, eCheat.com, http://www.echeat.com/easay.php?t=31901, last accessed on

April 12, 2010

Information Retrieval,The Information Retrieval Group, Computing Science University of

Glasgow, http://www.dcs.gla.ac.uk/Keith/Chapter.1/Ch.1.html, last accessed on April 12,

2010

JSON, Json.org, http://www.json.org/, last accessed on May 9, 2010

Encoded Polyline Algorithm Format, Google, http://code.google.com/apis/maps/documentation

/polylinealgorithm.html, last accessed on May 11, 2010

81

APPENDIX A

JSON FORMAT

JSON (JavaScript Object Notation) is a lightweight data-interchange format (JSON, Json.org).

JSON is built on two structures:

• Name value pairs (object, record, struct, dictionary, hash table, keyed list, or associative

array)

• List of values (an array, vector, list, or sequence)

An Object (in Figure A.1) is an unordered set of name value pairs.

Begins with { (left brace)

Ends with } (right brace).

Each name is followed by : (colon).

The name value pairs are separated by , (comma).

Figure A.1: Object in JSON format

82

An Array (in Figure A.2) is an ordered collection of values.

Begins with [(left bracket).

Ends with] (right bracket).

Values are separated by , (comma).

Figure A.2: Array in JSON format

A Value (in Figure A.3) can be a string in double quotes, or a number, or true or false or null,

or an object or an array.

Figure A.3: Value in JSON format

83

A String (in Figure A.4) is a collection of zero or more Unicode characters, wrapped in double

quotes, using backslash escapes.

Figure A.4: String in JSON format

A Number (in Figure A.5) is very much like a C or Java number, except that the octal and

hexadecimal formats are not used.

Figure A.5: Number in JSON format

84

Table A.1: Simple JSON example

Json data (Input)

var myObject = { ’color’ : ’blue’,

’animal’ : {’dog’ : ’friendly’ }

};

Accessing data in Json (Output)

document.writeln(myObject.animal.dog); // outputs friendly

In table A.1 a simple JSON example is shown.

85

APPENDIX B

ENCODED POLYLINE ALGORITHM FORMAT

For any set of points, encoded polylines store two types encoded information (Google Maps

API,Encoded Polyline Algorithm Format, Google).

• the latitude and longitudes.

• the maximum zoom levels to display.

Levels are encoded using unsigned values, however point coordinates are encoded signed

values. Therefore the encoding process is different for levels and point coordinates.

The process converts a binary value into ASCII characters codes. It uses similar to base64

encoding scheme.

The steps for encoding are specified below (Google Maps API,Encoded Polyline Algorithm

Format, Google).

1 Take the initial signed value:

-179.9832104

2 Take the decimal value and multiply it by 1e5, rounding the result:

-17998321

3 Convert the decimal value to binary.

00000001 00010010 10100001 11110001

11111110 11101101 01011110 00001110

11111110 11101101 01011110 00001111

86

4 Left-shift the binary value one bit:

11111101 11011010 10111100 00011110

5 If the original decimal value is negative, invert this encoding:

00000010 00100101 01000011 11100001

6 Break the binary value out into 5-bit chunks (starting from the right hand side):

00001 00010 01010 10000 11111 00001

7 Place the 5-bit chunks into reverse order:

00001 11111 10000 01010 00010 00001

8 OR each value with 0x20 if another bit chunk follows:

100001 111111 110000 101010 100010 000001

9 Convert each value to decimal:

33 63 48 42 34 1

10 Add 63 to each value:

96 126 111 105 97 64

11 Convert each value to its ASCII equivalent:

’õia

Example

Points: (38.5, -120.2), (40.7, -120.95), (43.252, -126.453)

Encoded polyline: p iF ps—U ulLnnqC mqNvxq’

87

APPENDIX C

DATABASE TABLES

Table C.1: Table: excavation

excavation Structure
Name Type Description
id serial PRIMARY KEY
sub id integer[]
name character varying(255)
type character varying(25)
site type character varying(25)
location geometry
start date date
height double precision
nation character(2)
end date date

Table C.2: Table: eventimeline

eventimeline Structure
Name Type Description
eventID serial PRIMARY KEY
eid integer FOREIGN KEY
start date
end date
title character varying(50)
description character varying(50)
description character varying(50)
layerURL character varying(50)
pointSWlat double precision
pointNElat double precision
pointNElng double precision
pointSWlng double precision

88

Table C.3: Table: excavation general info

excavation general info Structure
Name Type Description
id serial PRIMARY KEY
eid integer FOREIGN KEY
village character varying(255)
town character varying(255)
region character varying(25)
history text
property rights text
stiuation character varying(255)

Table C.4: Table: excavation periods

excavation periods Structure
Name Type Description
id integer PRIMARY KEY
eid integer FOREIGN KEY
pname character varying(10)

Table C.5: Table: excavation references

excavation references Structure
Name Type Description
id serial PRIMARY KEY
eid integer FOREIGN KEY
reference type character varying(25)
name character varying(50)
info text
date date
source text

89

Table C.6: Table: excavation session

excavation session Structure
Name Type Description
id serial PRIMARY KEY
eid integer FOREIGN KEY
session name character varying(255)
start date date
end date date
summary text

Table C.7: Table: excavation session supporters

excavation session supporters Structure
Name Type Description
id serial PRIMARY KEY
spid integer FOREIGN KEY
esid integer
start date date
end date date

Table C.8: Table: images

images Structure
Name Type Description
id integer PRIMARY KEY
eid integer FOREIGN KEY
iname character varying(50)

Table C.9: Table: people

people Structure
Name Type Description
id serial PRIMARY KEY
name character varying(50)
surname character varying(50)
prefix character varying(25)
nationality character varying(25)
organization character varying(50)
role character varying(25)

90

Table C.10: Table: permission

permission Structure
Name Type Description
id serial PRIMARY KEY
esid integer FOREIGN KEY
name character varying(50)
date date
auth owner character varying(50)

Table C.11: Table: previous works

previous works Structure
Name Type Description
id serial PRIMARY KEY
eid integer FOREIGN KEY
esid integer
name character varying(255)
refer character varying(255)
link character varying(255)
info text

Table C.12: Table: publications

publications Structure
Name Type Description
id serial PRIMARY KEY
eid integer FOREIGN KEY
esid integer
type character varying(25)
source character varying(255)
name character varying(255)
date date

Table C.13: Table: stratigraphic squence

stratigraphic squence Structure
Name Type Description
id serial PRIMARY KEY
esid integer
ss phase character varying(5)

91

Table C.14: Table: supporters

supporters Structure
Name Type Description
id serial PRIMARY KEY
name character varying(255)
organization character varying(25)
nation character varying(5)

Table C.15: Table: team

team Structure
Name Type Description
id serial PRIMARY KEY
sub id integer
name character varying(25)

Table C.16: Table: team session

team session Structure
Name Type Description
id serial PRIMARY KEY
esid integer FOREIGN KEY
tid integer

92

Table C.17: Table: team session people

team session people Structure
Name Type Description
id serial PRIMARY KEY
pid integer
tsid integer
start date date
end date date

Table C.18: Table: visual

visual Structure
Name Type Description
id serial PRIMARY KEY
eid integer
esid integer
link character varying(255)
type character varying(255)
file type character varying(25)
adder character varying(50)
date date

93

APPENDIX D

SOME CODE SAMPLES

D.1 GOOGLE MAPS API CODE SAPMLE

Table D.1: Initilazing ”Google Maps API”

var centerLatitude = 39.00;

var centerLongitude = 35.2;

var description="";

var startZoom = 6;

var point;

map = new GMap2(document.getElementById("_map"));

var location = new GLatLng(centerLatitude, centerLongitude);

map.setCenter(location, startZoom);

map.addMapType(G_PHYSICAL_MAP);

map.addControl(new GMenuMapTypeControl());

map.addControl(new GLargeMapControl3D());

map.setMapType(G_PHYSICAL_MAP);

var overlayControl = new GOverviewMapControl();

map.addControl(overlayControl);

GEvent.addListener(map, ’mousemove’, function(latlng) {

document.getElementById("latbox").value=latlng.lat();

document.getElementById("lonbox").value=latlng.lng();

});

GEvent.addListener(map, ’singlerightclick’, function(latlng) {

addMarker2(document.getElementById("latbox").

value,document.getElementById("lonbox").value);

});

}

94

D.2 EXTJS (AJAX) CODE SAMPLE

Table D.2: ExtJS (Ajax) grid panel code

var proxy2 = new Ext.data.HttpProxy({

url: ’asm_search.php’

});

var reader2 = new Ext.data.JsonReader({

totalRecords: ’\@total’

},[

{name: ’id’, type: ’int’},

{name: ’sub_id’, type: ’int’},

{name: ’name’},

{name: ’type’},

{name: ’distance’},

{name: ’river’},

{name: ’site_type’},

{name: ’location’},

{name: ’start_date’},

{name: ’end_date’},

{name: ’height’},

{name: ’nation’},

{name: ’location_text’},

{name: ’location_gml’},

{name: ’location_svg’}

]);

var store2 = new Ext.data.Store({

proxy:proxy2,

reader:reader2}

);

store2.load();

grid2 = new Ext.grid.GridPanel({

store: store2,

columns: [

{header: ’id’, id:’id’, width: 20, hidden: false, dataIndex: ’id’},

{header: ’sub_id’, width: 100, hidden: true,dataIndex: ’sub_id’},

{header: ’name’, width: 100, sortable:true, dataIndex: ’name’},

{header: ’type’, width: 100, hidden: true, dataIndex: ’type’},

{header: ’distance (km)’, width: 80, dataIndex: ’distance’},

{header: ’geoObject’, width: 140, sortable: true, dataIndex: ’river’},

{header: ’site_type’, width: 100, hidden: true, dataIndex: ’site_type’},

{header: ’location’, width: 100, hidden: true, dataIndex: ’location’},

{header: ’start_date’, width: 100, hidden: true,dataIndex: ’start_date’},

{header: ’end_date’, width: 100, hidden: true,dataIndex: ’end_date’},

{header: ’height’, width: 100, hidden: true,dataIndex: ’height’},

{header: ’nation’, width: 40,hidden: true, dataIndex: ’nation’},

{header: ’location_text’, width: 150,hidden: true, dataIndex: ’location_text’},

{header: ’location_gml’, width: 140,hidden: true, dataIndex: ’location_gml’},

{header: ’location_svg’, width: 310,hidden: true, dataIndex: ’location_svg’}

],

stripeRows: true,

height:150,

width:360,

title:’Search Result’

});

document.getElementById(’_resultDiv’).innerHTML = "";

grid2.render("_resultDiv");

95

D.3 PHP CODE SAMPLE

Table D.3: PHP sql query code sample

$sql = "

SELECT DISTINCT ON (excavation.id) excavation.id, pname, name, astext(location) as

location_text, asgml(location) as location_gml, assvg(location) as location_svg

FROM excavation, excavation_periods

WHERE

location && SetSRID(’BOX3D($lat0 $lon0, $lat1 $lon1)’::box3d,32767)

AND

excavation_periods.eid = excavation.id

AND

excavation_periods.pname LIKE ’$periods’

ORDER BY excavation.id

";

$query = $this->odb->Execute($sql);

$err_msg = $this->odb->errorMsg();

$err_no = $this->odb->errorNo();

if($query->RecordCount()){

$result = $query->GetRows();

}else{

return null;

}

foreach($result as $number => $images){

foreach($images as $number2 => $images2){

if(!is_int($number2))

$result2[$number2]=$images2;

}

$result3[]=$result2;

}

unset($result);

unset($result2);

return $result3;

96

