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ABSTRACT 

 

 

DESIGN OF AN INTEGRATED HARDWARE-IN-THE-LOOP 
SIMULATION SYSTEM 

 

 

Üşenmez, Serdar 

M.Sc., Department of Mechanical Engineering 

Supervisor: Assist. Prof. Dr. A. Buğra Koku 

Co-Supervisor: Assist. Prof. Dr. Melik Dölen 

 

June 2010, 172 Pages 

 

This thesis aims to propose multiple methods for performing a hardware-in-the-

loop simulation, providing the hardware and software tools necessary for design 

and execution. For this purpose, methods of modeling commonly encountered 

dynamical system components are explored and techniques suitable for calculating 

the states of the modeled system are presented. Modules and subsystems that 

enable the realization of a hardware-in-the-loop simulation application and its 

interfacing with external controller hardware are explained. The thesis also presents 

three different simulation scenarios. Solutions suitable for these scenarios are 

provided along with their implementations. The details and specifications of the 

developed software packages and hardware platforms are given. The provided 

results illustrate the advantages and disadvantages of the approaches used in these 

solutions. 

 

Keywords: Hardware in the Loop Simulation, Dynamic System Modeling, Control 

Systems Education, Peripheral Device Emulation 

  



v 
 
 

 

 

ÖZ 

 

 

TÜMLEŞİK BİR ÇEVRİMİÇİ DONANIM BENZETİMİ 
SİSTEMİNİN TASARLANMASI 

 

 

Üşenmez, Serdar 

Yüksek Lisans, Makine Mühendisliği Bölümü 

Tez yöneticisi: Yrd. Doç. Dr. A. Buğra Koku 

Yardımcı tez yöneticisi: Yrd. Doç. Dr. Melik Dölen 

 

Haziran 2010, 172 Sayfa 

 

Bu tezde bir çevrimiçi donanım benzetiminin gerçekleştirilmesi için çeşitli 

yöntemlerin öne sürülmesi ve tasarım ile uygulama için gerekli donanım ve yazılım 

gereçlerinin sağlanması hedeflenmiştir. Bu amaçla, sıklıkla karşılaşılan dinamik 

sistem bileşenlerinin modellenmesine dair yöntemler incelenmiş ve modellenen 

sisteme ait durum değişkenlerinin hesaplanmasına yönelik yordamlar sunulmuştur. 

Bir çevrimiçi donanım benzetimi uygulamasının gerçekleştirilmesini ve bunun 

harici denetleyici donanımlarla arabağlanmasını sağlayan modüller ve alt sistemler 

açıklanmıştır. Bu tez ayrıca üç farklı benzetim senaryosu sunmaktadır. Bu 

senaryolara uygun çözümler ve bunların uygulanışları anlatılmıştır. Geliştirilen 

yazılım paketleri ve donanım platformlarına dair ayrıntılar ve özellikler verilmiştir. 

Sunulan sonuçlar, bu çözümlerde kullanılan yaklaşımların faydalı ve kusurlu 

yönlerini gösterir niteliktedir. 

 

Anahtar kelimeler: Çevrimiçi Donanım Benzetimi, Dinamik Sistem Modellemesi, 

Kontrol Sistemleri Eğitimi, Çevresel Cihaz Öykünmesi 
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To everyone I care, 

 

“I don't know half of you half as well as I should like; and I like less than half of 

you half as well as you deserve.” 

– Bilbo Baggins, The Lord of the Rings 
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CHAPTER 1  
 
 
 
 

INTRODUCTION 
 

 

 

 

1.1 Introduction 
 

Control systems are an inherent part of modern life. From the earliest ages of 

human history, timing and positioning mechanisms have been in use. Machines 

designed in the industrial era commonly employed centrifugal speed regulators, 

cams and other mechanisms to provide desired motion and synchronization. Over 

the decades, improving mechanical and electrical theory and practices, as well as 

emergence of the electronics discipline the fields of control theory and control 

engineering developed rapidly. Systems and machinery in the industry became 

more and more inseparable from control systems. Through improving technology, 

miniaturization and changing consumer needs, even common household items 

came to use controllers for their operation. Today, motor controllers, PLCs and 

various microcontrollers provide the necessary control and coordination for almost 

any production tool. From the provision of basic services to consumer electronics; 

microcontrollers, DSPs and logic circuitry of varying capacities take their places in 

every area of human life without us even noticing. 

 

The importance of control systems in maintaining and advancing the modern living 

has led to massive amount of studies being conducted in the field. First formal 

analysis of centrifugal governors by Maxwell [1] in the late 19th century, followed 

by Routh’s [2] generalization of the work to linear systems, great interest on the 

topic was raised in the academic field. People such as Lyapunov, Nyquist, Bellman 
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and Ragazzini developed a number of techniques for analysis and design of 

dynamic systems and controllers. As a result, there exists an arsenal of tools, such 

as the Laplace and z- domains, root loci, Bode plots, state space design and so on 

are available to control engineers. Fields of non-linear, optimal and adaptive 

control are well established and advancing, while intelligent control elements like 

artificial neural networks and fuzzy logic controllers have gained widespread use 

both on their own and combined with other well-known techniques during last 

decades. Lately, the design of control systems have changed partially or completely 

into computer aided design processes, and progressing through computer 

automated design [3]. 

 

1.2 Simulation 
 

With all the tools available to control engineers today, design of a system capable 

of accomplishing a given control task is not very hard. Clearly documented 

procedures and powerful computer tools relieve the designers from the burden of 

repeated calculations and allow them to focus on more important qualities of the 

design. 

 

More often than not, the techniques used in the design process involve assumptions 

and simplifications in their theoretical bases. Similarly, the mathematical models of 

systems in question, which are needed for proper design, contain certain 

simplifications due to some parameters not being known, too complicated to model 

precisely or simply because the literature lacks the proper tools. Therefore the 

developed controllers, while good at fulfilling the requirements, are not perfect. 

 

The increased expectations of today’s world, however, demand precision and 

perfection. To overcome the deviations due to imperfect design tools, control 

engineers are also equipped with a variety of inspection and analysis tools that help 

them investigate the controller performance. Analytical tools, combined with the 



3 
 
 

 

iteration power of modern computers, allow the engineers to rapidly examine the 

system and controller behavior and fine tune their designs to meet specifications. 

 

A very powerful and valid tool in exploring plant and controller performance is 

simulation. In simulations, numerical integration methods are used to determine the 

plant behavior based on system states and inputs. These methods not only free the 

analysis process from most simplifications and approximations introduced by other 

analytical tools, but they also allow the investigation of plants that include non-

linear components (which are very difficult to cope with using traditional 

approaches) or those that act on discontinuous equations. Through the use of proper 

engines, even systems that require tools other than differential equations (e.g. state 

machines) to model can be simulated for investigation. With the computational 

power of modern computers, performing the calculations for simulations are easily 

done, making them a widely available tool. 

 

The power of simulations is not limited to their ability to work with novel plant 

models. They also grant the developer the ability to monitor the states of any 

simulated component inside the plant without any additional computation. What’s 

more, it is possible to directly manipulate these states (mimicking disturbances, 

malfunctions or similar internal or external effects) as well as the most basic 

system properties (such as masses, friction coefficients etc.) during the course of 

simulation. This way, introduction of deterministic and (pseudo) random 

disturbances, component degradation, changes in external circumstances and 

similar phenomena become possible. These opportunities cannot be provided by 

most traditional analysis techniques. 

 

1.3 Hardware-in-the-Loop Simulation 
 

In many cases, it is not possible to perform extensive investigation and testing of 

the mathematical qualities and topology of the controller. The actual controller 

device needs to be manufactured and issues related with its physical 
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implementation should be taken care of. The necessary circuit design and assembly 

need to be done. The hardware and software programs that will realize the designed 

control algorithm should be developed and implemented. Any problems that may 

arise during sensor and actuator communication should be fixed. During these 

efforts, any possible constraints due to available hardware resources need to be 

met. The best and most valid way of accomplishing these goals is to couple the 

controller device with the plant to be controlled, providing all the conditions of 

actual operation. 

 

In some cases, however, an implementation and testing process involving the actual 

system to be controlled may be undesirable. First of all, the cost of performing test 

runs on the plant might be too much. The cost of the plant itself, combined with the 

risk of damaging the equipment (or more importantly, the working personnel) in 

case of an error or malfunction may render the tests unfeasible. Secondly, 

collecting detailed information on a running plant is not an easy task. While some 

information can be obtained from the sensors already installed for normal 

operation, should more detailed information regarding other components be 

needed, fitting the system with necessary sensors requires careful planning and 

execution. Selection of suitable sensors, careful placement and mounting, proper 

laying and shielding of cables, use of capable data collection devices and so on 

need to be taken into consideration. Finally, the plant may not be even available for 

the engineer to work on. In tight development schedules, the development of the 

control systems may be required to be completed before a prototype of the plant is 

unavailable. 

 

To overcome such difficulties, the concept of hardware-in-the-loop simulation 

(“HILS”, also referred to as “HLS”, “HIL simulation” or “HWIL simulation”) is 

proposed. Basically, HILS is a technique where a controller device is connected to 

a simulation of the system to be controlled, via the emulation of sensor and actuator 

interfaces. 
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A powerful computing platform (which may actually consist of one or more 

devices) runs a high fidelity simulation of the plant in question. Facilities for 

controlling the simulation, monitoring system states, introduction of external 

effects on the simulation, injection of disturbances and recording of all the data 

generated during the process are provided via this platform. 

 

An interface emulator stands between the simulator platform and the controller. 

This emulator provides the physical connection of the controller to the plant. 

Electrical signals that would be generated by the sensors are mimicked based on 

the simulation states, while command signals intended for driving the actuators are 

received from the controller and passed to the simulation as inputs. With the aid of 

this interface, the simulation is indistinguishable from the actual plant as far as the 

controller’s point of view is concerned. The controller operates normally as if it 

would during normal operation without any significant modification. 

 

The simulation might be performed in real- or non-real-time. In real-time 

simulations, the calculations are performed within a certain time frame. The 

simulation loop needs to be completed and necessary sensor data should be made 

available to the controller before it begins the execution of control calculations for 

the next sampling period. (It is necessary to note that the term “real-time” does not 

necessarily mean “high computational performance”; it rather indicates 

deterministic computation timings.) On the other hand, in a non-real-time 

simulation, such a timing constraint does not exist. Although the value of the 

sampling time inside the simulation and control calculations are kept the same, the 

actual execution time might be longer or shorter. The time may be scaled or the 

process may be carried based on a timing signal (which may not even have a set 

frequency) provided by the controller. In certain non-real-time simulations, where 

the timings of the signals transmitted between the controller and the simulation are 
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meaningful, the interface emulation may also need to be adjusted to make up for 

the change in actual execution time. 

Hardware-in-the-loop grants the control engineer the chance to work with the 

almost-final design of the controller. With all the possibilities provided by running 

a simulation, almost any situation that can be encountered during normal operation 

can be generated and necessary changes on the design can be made. 

 

1.4 Objective of the Thesis 
 

The goal of this thesis is to develop a hardware-in-the-loop simulator. This system 

should be able to interface with a controller device using communication methods 

commonly found in such devices. It should also be able to work with any plant that 

the user specifies by defining its mathematical model. Finally, the data generated 

during simulation should be recorded and presented to the user in a convenient 

form for analysis and optimization purposes. One desired property of the solution is 

that it should not require any additional hardware or commercial software packages 

other than those provided in it. In other words, the proposed solution should be 

integrated and self-sufficient for its purposes. 

 

To accomplish the goals set here, mathematical tools, hardware and software that 

are suited for performing HILS will be investigated. Different approaches to HILS 

will be explored, their qualities will be inspected and the results will be compared. 

 

1.5 Organization 
 

Following the introduction chapter, Chapter 2 gives information on the current 

state of the art in hardware-in-the-loop simulation applications. Various 

applications and products for HILS are reviewed. A brief survey regarding 

modeling techniques for dynamic systems is presented. 
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Chapter 3 discusses the mathematical models for components that are commonly 

encountered in dynamical systems are presented. Numerical integration techniques 

and other solver routines for carrying out the simulation operations are given. 

 

Chapter 4 proposes a non-real-time HILS solution for use in education of control 

engineering. Application of this solution in an actual course is explained with 

results. 

 

Chapter 5 gives details on a general-purpose, real-time HILS system. Components 

for enabling simulation-controller interfacing are also presented. 

 

Chapter 6 develops an HILS system consisting of multiple hardware platforms, 

complete with design and execution tools. 

 

Finally, Chapter 7 summarizes the results of the study and hints at possible future 

developments.  
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CHAPTER 2  
 
 
 
 

LITERATURE SURVEY 
 

 

 

 

2.1 Introduction 
 

HILS is a powerful tool that has found applications in a wide variety of areas, from 

marine research to space missions and even education. In order to set the 

background and current state of hardware-in-the-loop simulation and relevant 

systems, this chapter explores and presents information on the various studies and 

applications on the subject. Commercially available hardware and software 

products enabling or aiding HILS applications are also given here. Finally, a brief 

survey regarding the modeling of components found in dynamical systems is 

presented. 

 

2.2 Studies and Applications 
 

The use of HILS has a history dating back over 40 years. Driven by military 

purposes where demands for precision are high due to involved risks, simulation of 

tactical missiles for guidance systems testing constitutes examples of some of the 

earliest works. The Sidewinder missile program is one example of such works 

employing HILS during the late 1960’s. Powerful hardware have been used in real-

time 6 degree-of-freedom simulation of active missiles and targets [4]. Radio 

frequency and millimeter-wave radar signal injectors, infrared image and electro-

optical signal generators are used to simulate the sensor inputs to the missiles [5-6]. 

Instead of modeling sensors along with relevant noise and error forms, such an 
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approach provides highly realistic simulations. Also, the opportunity to test the 

entire control system hardware rather than only the processor is thus provided [7]. 

 

Development and production of the instrumentation, equipment and various 

systems used in aerospace are quite demanding. Due to the high amount of funds 

spent for research in the field and the risk of accidents involving irreversible 

damages, loss of equipment or even human lives; extensive testing of all the 

systems used is required. HILS is therefore invaluable for this field. The developers 

of the highly maneuverable aircraft technology, or HiMAT, remote-piloted vehicles 

benefitted greatly from this tool [8]. The Cassini Spacecraft and its mission bound 

for Saturn is a good demonstration of space applications employing HILS [9]. A 

multitude of systems, such as the attitude and articulation control, command and 

data subsystem and many other components were tested using high-fidelity 

simulations. In addition to verification of sequences, procedures and software; the 

simulations have also served in training the crew on duty in the mission. Another 

application of HILS on the special purpose dexterous manipulator used in the 

International Space Station includes simulation of numerous systems involved in 

the system [10]. A novelty of this study is the employment of a scaled rigid robot 

that is used instead of the mathematical model of contact dynamic models. 

Investigation of the kinematics and dynamics of the manipulator on a space satellite 

system with vision sensor was done by Chinese researchers [11]. The Formation 

Flying Test Bed developed by NASA uses dynamic HILS of the guidance, 

navigation and control analysis for clusters of satellites maintaining a formation 

[12]. In another research, dynamical simulation of picosatellite sensor nodes in low 

earth orbit was performed for a distributed orbital computer network intended for 

use in space missions [13]. 

 

Verification of structures and controllers of unmanned marine vessels, both surface 

and underwater, may be done using HILS. Navigation algorithms and other 

software, maneuverability, energy consumption and dynamical qualities of the 
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vehicle such as stability and maneuverability are investigated using simulations 

[14-15]. In a work by researchers, hydrodynamics, models of thrusters, propellers 

and various control surfaces, waves and currents in the water and other similar 

effects were included in the simulations [16]. Aside from individual vessels, a 

simulation architecture for cooperative operation of multiple unmanned vehicles 

was also proposed [17]. This architecture involves environmental emulation 

including acoustic propagation model, virtual sensors and communication devices. 

 

Today, use of HILS in the automotive industry has become commonplace. Tight 

budgets and deadlines, as well as demanding safety measures require the engineers 

to extensively test the performance and reliability of numerous mechanical 

elements and embedded controllers. For this purpose, simulation platforms aiming 

for testing different systems were developed by many different facilities [18-24]. 

The validation of many safety and driving aid systems are also done using HILS 

[25-26]. To meet the high production rates and extensiveness of the validation 

procedures involved, work has been done on automation of the testing process [27]. 

Latest work in the field not only involves simulation of the mechanical and 

electrical systems, but also the injection of faults into these in order to explore their 

performances under imperfect conditions [28]. 

 

HILS has received attention in testing and validation of electrical machinery and 

power electronics systems as well. Researchers have proposed mathematical tools, 

procedures and implementation methods for realizing such simulations [29-30]. 

Applications regarding the simulation of electronic components such as converters 

and filters were developed [31-33]. Simulations of electromechanical drives using 

different methods such as finite element models were also presented [34-35]. 

 

The plants that can be simulated by HILS techniques are not limited to dynamical 

systems or those that are defined using differential equations. Plants governed by 

logical rule sets or discrete equations, as well as networks of plants can also be 
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simulated. Communications experts have employed HILS in analysis of mobile 

devices belonging to various-scale wireless communication networks [36-37]. 

Models of undersea networks, communication backbones and ocean observatories 

were developed and investigated by ocean researchers [38]. Numerous works on 

analysis and optimization of traffic signal controllers were carried out [39-42]. 

 

The conveniences provided by HILS have made it a feasible option in education, 

too. Teachers aiming to provide low-cost and high-efficiency laboratory work for 

the students have resorted to such applications [43-45]. 

 

2.3 Commercial Products 
 

Today, HIL simulations aren’t only encountered in research studies and special 

projects. While the developing technology lowers the cost of powerful hardware, 

increasing customer expectancy for everyday product performance and reliability 

has introduced medium and even small scale developers and manufacturers with 

the necessity for simulations. To close the gap between these parties and the 

already-advanced HILS technology, several other hardware and software 

developers have stepped in. 

 

Speedgoat [46] is a manufacturer for highly-flexible, scalable hardware platforms 

for use in HILS applications. Processor platforms of varying cost and performance 

levels are provided. Numerous expansion modules for analog and digital I/O, serial 

and parallel communication and working with pulse-based signals 

(encoder/decoders, PWM etc.) are available. Shared memory modules can be used 

for data transfer between multiple products or third-party devices. FPGA-based 

configurable modules for further customization purposes also exist. 

 

dSpace [47] provides hardware and software products for automotive, aerospace 

and industrial control applications. Hardware platforms for both implementing 

controllers and performing their HILS testing are available. Extension modules for 
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extensive controller communication and calibration, as well as data diversion and 

bypassing for advanced testing applications, can be used. To aid the development 

process, a variety of specialized software packages are also provided. Design and 

implementation of controllers, experimentation and testing, generation of software 

embedded in the products, measurement, calibration and simulation tasks are 

facilitated by these packages. 

 

Opal-RT [48] is mainly a software developer focusing on real-time simulator 

packages specifically tailored for a multitude of fields, as well as toolboxes for use 

with other existing design and analysis software. Controller prototypes, motor 

drives, converters and various scale electricity grids are covered by the electrical & 

power systems simulators. Aerospace & defense product family provides tools for 

simulating various flight systems, turbine engines and UAVs. Complete automobile 

simulation including electric and hybrid cars, engine and transmission assemblies, 

and complete including hybrid and electric automobiles including hybrid and 

vehicle dynamics are made possible by the automotive products. Along with all the 

software tools, an array of I/O and signal conditioning modules are also provided 

for controller interfacing. 

 

Applied Dynamics International [49] is the developer of the ADvantage 

Framework, a comprehensive set of software tools for real and non-real-time HILS, 

as well as distributed simulation. The framework provides both development and 

run-time environments for these applications. The Beacon product family provides 

automated generation of safe and reliable controller code generation, as well as 

providing aid in development of test cases for the generated code. A line of 

hardware products, Emul8, are also available for supplementing the simulation of 

automobiles or military vehicles, for the purpose of designing automotive 

electronic control modules. 
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Aside from tools specifically designed for HILS, other companies have developed 

additional modules for their products to enable such simulation applications. 

National Instruments [50] provides the NI HIL Simulator Reference System line of 

hardware products and associated plug-ins for the LabVIEW software package. 

Similarly, The MathWorks [51] proposes the xPC Target Turnkey hardware family 

along with the necessary libraries for Matlab/Simulink software packages. Both 

companies supplement their products with a variety of I/O modules. 

 

2.4 Dynamic Systems Modeling 
 

Proper modeling of the plant is essential in all simulation applications. Quite often, 

dynamics of the systems are not limited to simple forces and masses, but are 

instead composed of many different subsystems governed by a large variety of 

phenomena. To obtain an acceptable fidelity, these should be investigated and 

modeled using appropriate techniques and approximations. 

 

Friction is an effect that occurs in all mechanical systems, appearing at the physical 

interface between two contacting surfaces. As the need for reducing and 

compensating friction increased by the ever-demanding market, friction has 

received great attention by researchers. Early documented work on friction dates 

back to mid-18th century by Coulomb on dry friction and late 19th century by 

Reynolds [52] on viscous friction. Later in early 20th century, work by Stribeck 

[53] gives the friction force as a function of velocity itself in constant-velocity 

motion, with a sudden drop at lower speeds (also known as the Stribeck effect). 

The stiction phenomenon, which is the existence of friction force higher than the 

Coulomb friction when the body is at rest, is explained by Morin [54]. In modeling 

the sticking effect and break-away in static friction, Rabinowicz [55] addresses the 

transition process as a function of displacement. Johannes et al. [56] and 

Richardson et al. [57] indicate in independent works that the magnitude of the force 

required to overcome sticking condition depends on the rate of application of the 

force. Courtney-Pratt et al. [58] suggest a spring-like behavior in relative 
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displacement of two bodies before motion occurs. In more recent work, 

Karnopp [59] proposes a method for addressing the issue of detecting zero velocity 

in computer simulations using a dead band zone. Armstrong et al. [60] later 

introduce temporal dependencies to the classical friction model to reflect certain 

observed dynamic effects. 

 

With the availability of more powerful hardware and the demand for high precision 

in servo motors, dynamic models for friction have received great interest. Driven 

by experiments on servo systems with ball bearings, Dahl [61] models the friction 

force as a function of displacement (using a differential equation that is based on 

the stress-strain curve in solid mechanics) and also proposes a time domain model 

that is a generalization of Coulomb friction. The absence of Stribeck effect and 

stiction in Dahl’s equations later leads to the extension of this model by Bliman 

[62]. In an attempt to capture the effect of irregular micro-scale contact between 

two surfaces, Haessig et al. [63] introduce a model based on the bending, snapping 

and random re-bonding of flexible bristles between contacting surfaces. Although 

inefficient for simulations, this model provides good results that capture the 

random nature of friction. In the same work, a modification is made on the model 

by adding another state in determining the strain of the bristles, in an attempt to 

come up with a more computationally feasible “reset integrator” model. Bliman 

et al. [64-66] propose a linear model in state-space, partially exhibiting the stiction, 

break-away and Stribeck effects, which reduces to Dahl’s model when expressed in 

its first order of complexity. An extensive model that is based on the bristle model 

and covers the Stribeck effect, break-away and stiction is proposed by Canudas de 

Wit et al. [67] with the name “LuGre friction model”. 

 

Belts are widely used in a variety of applications requiring the transmission of 

power over a distance. Early modeling of belt mechanics is presented by 

Reynolds [68] and further developed by Swift [69] under the “creep theory”. Their 

works depend on the idea that frictional forces exerted on the belt by the pulleys 
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cause the elastic belt to extend and contract. This model is commonly applied using 

lumped parameters, by representing traversing belt parts as springs or spring-

damper assemblies, in such works by Abrate [70] and Hace et al. [71]. Bechtel et 

al. [72] extend the creep theory to include the inertial effect on the part of the belt 

wrapped around the pulleys. Work by Rubin [73] applies the model to multi-pulley 

drives that are commonly used in many applications. Firbank [74] claims that creep 

theory is inadequate in modeling modern belts that contain high-stiffness steel 

fibers, instead proposing the “shear theory”. This model explains the belt 

transmission based on the shear strains between the pulley surface and the cords 

within the belt. Work by Childs et al. [75] confirm the shear theory by the power 

loss in belt drives. Alciatore et al. [76] show that this model is necessary to handle 

multi-pulley cases with inextensible belts. Gerbert [77-78] extends the shear theory 

to flat, V and multi-ribbed V belts. 

 

Backlash, which is the undesired clearance between teeth of mating gear pairs, is a 

common effect deteriorating the control performance of a system. Therefore it is 

necessary to obtain a suitable backlash model for effective compensation. 

Slotine [79] proposes a dead zone model, which has become the most common 

approach to backlash. Sarkar et al. [80] model backlash as an impact event that 

occurs when mating gears come into contact. An exact backlash model is proposed 

by Nordin et al. [81]. 

 

Coming in many different sizes, shapes and characteristics; today electric motors 

are the primary source of actuation in almost any dynamical system. Due to their 

high power output, AC motors are commonly used in industrial applications. 

However, since these motors are governed by complex electromechanical 

processes, it is desirable to add a layer of control to achieve a control scheme that 

aims to obtain a desired output from these machines. For this purpose, Yamamura 

et al. [82] propose the field acceleration method. Claiming that it is often difficult 

to force the desired currents or voltages into stator windings, Depenbrock [83] 
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develops the concept of “direct self-control”, later to be known as “direct torque 

control”. Using flux and torque estimators, French et al. [84] develop and 

implement a DSP-based direct torque controller. Mir et al. [85] utilize PI and fuzzy 

estimators to implement a space vector modulation scheme for realizing DTC. 

Behera et al. [86] propose and validate a dither injection method to reduce torque 

ripple in DTC. In an attempt to describe the characteristics of induction motors, 

Soong [87] investigates their field weakening performance and gives the torque-

speed curve commonly utilized in modeling motors. In later work, Moore [88] 

investigates the effects of extending the constant power region of the described 

curve. 

 

2.5 Closure 
 

In this chapter, background on the various applications of HILS was given. Some 

of the numerous fields of application were discussed, hinting at the specific 

application purposes. Information on a few select commercial products available 

for HILS was presented.  A summary on modeling of dynamical systems was also 

given. 
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CHAPTER 3  
 
 
 
 

MODELING AND SIMULATION TECHNIQUES 
 

 

 

 

3.1 Introduction 
 

The first and most important element in performing a simulation is the 

mathematical model of the dynamic system to be simulated. The fidelity of the 

simulation to the real world is very much based on the depth and accuracy of the 

models used. Careful examination and modeling of the components making up the 

plant is therefore required. However, most of the time, the workings of these 

components involve phenomena that are too complex to model or computationally 

costly. Therefore, approximate yet accurate models need to be developed. In this 

chapter, mathematical models for some components that are commonly found in 

dynamical systems are given. While the bases of the models are explained, 

complete derivations of the results are kept outside the scope of this thesis. 

 

Another important part of a simulation is the solver routines. The suitability of the 

selected solver to the equations that govern the plant should be investigated. The 

step size and any other parameters (if applicable) should be determined correctly. 

Brief information on common solution methods are also presented in this chapter. 

 

3.2 Modeling Dynamic Systems 
 

Conversion and transmission of power make up for most of the processes that take 

place in dynamical systems. Modeling of these events therefore provides equations 
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that can be reused in many different systems with minimal modification. The 

following sections derive the models for a handful of such commonly encountered 

components. 

3.2.1 Transmission Elements 
 

Due to geometrical constraints, weight or balancing concerns or other similar 

reasons; power cannot always be generated (or converted) at the location it is 

needed. Furthermore, the direction, speed, magnitude or range of the power source 

may need to be changed for the purposes of the application at hand. Therefore, 

transmission elements such as shafts, pulleys, belts, cables, gears and so on are 

commonly used to transmit and reshape the generated power. This section provides 

the mathematical models for some common transmission elements and/or 

phenomena associated with them. 

 

3.2.1.1 Gears 
 

Gears are rotating machine parts that make use of cut teeth to mesh with and drive 

each other in order to transmit power. Coming in a variety of designs, gears can 

couple shafts arranged in various setups: parallel, intersecting at an angle or skew. 

Combined with the ability to generate mechanical advantage, gears are preferred in 

a wide range of applications. 

 

 

 

Figure 3.1: Gear pair 



19 
 
 

 

For ideally manufactured and assembled gear pairs, the torque T2 applied by the 

driving shaft on the driven shaft is given by 

 

 2
2 1

1

N
T T

N
= −  (3.1) 

 

where T1 is the drive torque and N1, N2 are the number of teeth on the gears. The 

teeth number ratio is also called the gear ratio (Ng). The ratios of the angular 

positions θ1, θ2 and velocities ω1, ω2 of the shafts are 
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Despite the techniques used in manufacturing and assembling gears, non-ideal gear 

pairs are commonly encountered. Improper gear profiles, incorrect center distances 

and wear introduce excessive clearance between mating gears. This clearance leads 

to an effect called “backlash”. Defined as “the play between adjacent movable 

parts”, backlash can be described as the unwanted motion (or loss of motion) due to 

excessive clearance between contact surfaces. Backlash occurs when contact 

between the mating parts is lost and re-established because of changes in 

movement direction or speed. Aside from gears, backlash is also found in other 

contacting elements such as roller bearings or ball screws. Although methods have 

been devised to eliminate backlash (such as duplex worm gears or preloaded 

elements), these cannot be used in all applications and backlash is therefore 

commonly encountered. 

 

A common method of modeling backlash is the dead-zone model. In this approach, 

the input and output gears are coupled together with a transmission force that is a 
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function of the difference between the angular positions of the gears – or more 

precisely, the position difference along the pitch lines. 

 

 

 

Figure 3.2: Backlash in a gear pair 

 

 

 

Figure 3.3: Transmission force in dead-zone backlash model 
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In Figure 3.3, k is a spring constant dependent on the material and geometry of the 

shaft and gear and D is the amount of backlash between gears. d is the position 

difference of the gears along the pitch line and can be calculated as 

 

 1 1 2 2d r rθ θ= −  (3.4) 

 

where r1, r2 are the pitch radii of the input and output gears, respectively. The 

transmission force Ft, in turn, is 
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The torques applied on the gears are simply 

 

 1 1tT F r=  (3.6) 

 2 2tT F r=  (3.7) 

 

It follows that while the positional difference of the gears is within the dead-zone, 

the shafts connected to them are uncoupled. However, when the difference moves 

outside the zone, the gears get into contact and the shafts act as if coupled via a 

torsion spring. 

 

3.2.1.2 Rack and Pinion 
 

Rack and pinion assemblies are used to convert rotational motion into translational 

motion using a gear and a rack with mating teeth, similar to a gear pair. Figure 3.4 

shows the rack and pinion assembly. 
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Figure 3.4: Rack and pinion 

 

 

The force transmitted by the pinion on the rack is simply calculated from 

 

 F Tr=  (3.8) 

 

And the relation between the positions and velocities are 

 

 x rθ=  (3.9) 

 v rω=  (3.10) 

 

The dead-zone backlash model can be easily extended into the rack and pinion 

assembly. Figure 3.5 shows the definition of backlash in a rack and mating pinion. 

The position difference of the rack and pinion is simply 

 d r xθ= −  (3.11) 

 

Equation (3.5) holds for the transmission force (which directly applies to the rack) 

and 

 

 tT F r=  (3.12) 
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Figure 3.5: Backlash in a rack-and-pinion 

 

 

3.2.1.3 Ball Screw 
 

Ball screws are mechanical devices that are used to convert rotational motion to 

linear motion with minimal friction. They are similar to lead screws in the sense 

that they employ a driving threaded shaft and a driven nut. However, instead of 

coupling these elements directly, ball screws use a number of ball bearings to 

transfer force between them. This eliminates the sliding friction between the screw 

and nut and only introduces, rolling friction which is significantly lower, resulting 

in higher efficiencies (typically over 90%). Figure 3.1 shows a ball screw assembly 

where the nut, shaft, balls and the ball circulation mechanism are visible. 

 

 

 

Figure 3.6: Ball screw assembly [89] 
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The force F applied on the ball screw nut by the shaft can be calculated as follows: 

 

 
2 s

s

F T
h

πη
=  (3.13) 

 

where T is the torque applied on the shaft, hs is the screw lead and ηs is the screw 

efficiency. 

 

Similar to gear pairs, backlash also exists in ball screws. Figure 3.7 shows the view 

of a single ball inside the screw and nut assembly, with backlash indicated in two 

ends of the dead-zone. Here, the backlash is defined as D = D1 + D2. The position 

difference is 

 

 sd x x= −  (3.14) 

 

where x is the position of the nut along the shaft and xs is given by 
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Figure 3.7: Backlash between screw and nut in a ball screw. 
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where θ is the angular position of the shaft. Equation (3.5) holds for the 

transmission force, applying directly on the nut and via  
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on the screw. 

 

3.2.1.4 Belt 
 

From turning centers to automobiles, belts are commonly used in transmission of 

power over small to medium distances. Their high efficiency, tolerance to 

misaligned pulleys and low maintenance requirement make belts a desirable means 

of transmission. Although the angular velocity ratio of the driven pulley (or 

multiple pulleys) to the driver may deviate from the ratio of pulley radii due to 

slippage, toothed belts (or timing belts) solves this problem. Still, this ratio may 

oscillate because of the stretching of the belt. 

 

Although idler pulleys (for adjusting belt tension) and driving of more than one 

pulley with a single belt are common, a belt connects one input pulley to one 

output pulley in the most basic case (Figure 3.8). 

The mathematical model of such an assembly, in its simplest form, neglects the 

dynamics of the belt: 
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Figure 3.8: Two-pulley belt drive 

 

 

This model of a belt only serves as a relation between the masses (shafts or other 

elements) connected to the pulleys. The position (as well as velocity, acceleration 

and jerk) and torque of the output can be calculated directly. 

 

A model of the belt based on the creep theory includes the tension and compression 

(or bending) of the belt segments A and B on Figure 3.8 by treating these effects as 

springs (Figure 3.9). 

 

 

 

Figure 3.9: Two-pulley belt drive with spring model 
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In such a model, the input and output shafts are no longer simply coupled. Instead, 

the equations of motion need to be written separately for both. The equations of 

motion for the two shafts using this model, with pulley 1 being the driving side, 

are: 

 

 1 1 1 12
spring

J T r fω = −�  (3.19) 

 2 2 2 2 2
spring

J T r fω = +�  (3.20) 

 

where 

 

  ( )1 1 2 2springf k r rθ θ= −  (3.21) 

 

From (3.19) through (3.21), it can be seen that the angular speeds of the pulleys 

will oscillate during solution unless damping torques act on them. Therefore, 

careful modeling of the other plant components is required. 

 

3.2.2 Power Generation Elements 
 

In almost all dynamical systems, some form of power (e.g. thermal, chemical or 

electrical) is converted into mechanical power and harnessed to accomplish the 

desired task. Of such converters, electric motors, which employ the magnetic field 

generated by electric current to convert electrical energy to mechanical energy, are 

the most widely used ones. Manufactured in a great variety of sizes and shapes, 

they can be found almost anywhere from ship propellers to wrist watches. The 

subject of this section, however, is AC servo (induction) motors that are commonly 

used in various industrial applications. 

 

Driving an induction motor typically involves fine and high-bandwidth control of 

the currents flowing through the rotor windings. In most applications, however, it is 

convenient to manipulate the torque output of the motor rather than winding 
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currents. Direct Torque Control (DTC) is a controller scheme widely used for this 

purpose. Utilizing flux and torque estimators that observe the winding currents, 

DTC provides a means for directly controlling the torque output of the motor using 

only a reference torque command (Figure 3.10). 

 

 

 

Figure 3.10: Direct torque control 

 

 

While the use of DTC simplified an induction motor to a torque modulator, motors 

aren’t capable of applying the desired torque output. Rather, they have a certain 

torque characteristic that limits the maximum applied torque based on the angular 

speed of the motor. This limit, the “torque capability curve”, consists of three 

distinct regions as seen in Figure 3.11. 

 

As can be inferred from the figure, a typical motor can deliver up to its rated torque 

(Tr) at all speeds up to its rated speed (ωr). At this state, the motor output is at its 

maximum, which is called the rated power (Pr). Past the rated speed, the constant 

power region is entered. The maximum torque of the motor is inversely 

proportional to the speed in this zone, up to the maximum speed (ωp). When the 
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Figure 3.11: Typical torque capability curve for an electric motors 

 

 

motor is pushed beyond this speed, the constant power region starts to degrade, 

entering the natural mode where the torque capability decreases proportional to the 

square of the speed. However, this zone is not used in most applications. 

 

Assuming the utilization of DTC technique and neglecting the natural mode region, 

the motor can be modeled simply as a near-ideal torque modulator obeying the  

capability curve. The envelope of the torque capability curve (Tmax) is defined by 
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and finally the output of the motor (Tm) based on the reference torque (Tm
*) is 
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3.3 Friction Modeling 
 

One of the most common and important phenomena in dynamic systems is friction. 

It can be encountered in almost any component, from shafts to linear guideways, 

gear tooth interfaces and any other place where contact and relative motion exists. 

Basically, friction can be defined as the tangential reaction force between 

contacting surfaces. Physically, these forces can be the result of many different 

mechanisms, involving contact geometry and topology, bulk and surface materials 

of the bodies in contact, amount and rate of displacement and lubrication 

properties. Many of these mechanisms involve effects that act only under certain 

combination of conditions or for a limited time during operation. It is therefore not 

possible to construct a single, universal model taking all these effects into account. 

Therefore the trend has been to develop approximate models for certain application 

conditions. 

 

Classical friction models consist of different components, each focused on a 

different aspect of the friction force. Their common basis is that friction always 

opposes motion and is independent of the contact area. The most basic classical 

friction model is the Coulomb friction, expressed as 

 

 sgn( )
f

F F v=  (3.24) 

 

where Ff is proportional to the normal contact load; 

 

 f
F Nµ=  (3.25) 

 

where µ is the dry friction coefficient. Coulomb friction is commonly used in 

controllers for friction compensation due to its simplicity. Another classical friction 

model covers the effects of the viscosity of lubricants, and is named viscous 

friction. This is normally described as dependent on the direction of motion by 
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 ( )sgnv
F b v v

δ
=  (3.26) 

 

where b is the viscous friction coefficient. δv is a positive constant given by the 

specific application and may be determined from experimental results. Stiction 

describes the friction force applied while the body is at rest, which is typically 

higher than the Coulomb friction. This force always counteracts the total external 

force applied on the body, keeping it at rest. Since no motion is related with 

stiction, it is a function of the force acting on the body: 

 

 
,

,
tot tot s

s tot s

F F F
F

F F F

 <
= 

≥
 (3.27) 

 

where Ftot is the total external force on the body and Fs is the stiction force. It is 

important to note that (3.27) only holds as long as the body is at rest. In most 

modeling studies; the dry and viscous frictions and stiction effect are used together 

to yield the following single equation for friction: 

 

 

( ) ( )

, 0
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
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 (3.28) 

 

In simulation implementations of (3.28), it is important to take into consideration 

the fact that velocity will most probably fail to settle at exact zero, due to errors 

introduced by floating point arithmetic and/or controller effort. Therefore to detect 

stiction condition, as proposed by Karnopp, a small velocity range [ ],ε ε− +  may 

need to be defined, inside of which the velocity is forcedly set to zero. 
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When more precise friction calculations are required, classical static friction 

models are insufficient and dynamic models should be used. An early dynamical 

friction model given by Dahl originates from the stress-strain curve in solid 

mechanics. When force is applied on the body, the friction force increases it 

reaches the rupture point. The stress-strain curve is modeled by the differential 

equation 

 

 ( )1 sgn
C

dF F
v

dx F

α

σ
 

= − 
 

 (3.29) 

 

where F is the friction force, FC is the Coulomb friction, σ is the stiffness 

coefficient and α is a parameter used to define the sharpness of the bend in the 

curve, most commonly taken equal to unity. 

 

 

 

Figure 3.12: Friction as a function of displacement as defined in Dahl’s model 

 

 

It should be noted that equation (3.29) does not take the velocity into account, 

implying a friction force that is only dependent on the position. To obtain a time 

model, Dahl utilizes 
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dF dF dx

dt dx dt
=  (3.30) 

 

In turn, one obtains 

 

 ( )1 sgn
C

dF F
v v

dt F

α

σ
 

= − 
 

 (3.31) 

 

which is a generalization of the Coulomb friction. 

Another dynamical friction model is the “bristle” model proposed by Haessig and 

Friedland. This model approximates the micro-scale sticking and separation 

between the sliding surfaces using a number of flexible bristles between the bodies 

(Figure 3.13). Every contact point between these bodies is represented by two 

bonded bristles. As the bodies move relative to the each other, these bristles bend 

and act as springs that cause the friction force. This force is calculated as 

 

 ( )0
1

N

i i

i

F x bσ
=

= −∑  (3.32) 

 

where N is the number of bristles in the contact area, σ0 is the bristle stiffness, xi is 

the relative position of each bristle and bi is the position where the bristle contacts 

are formed. As the bodies move, i ix b−  increases until it equals δs, at which point 

the bond is broken and a new bond is formed at a new location randomly chosen 

relative to the previous bond location. The complexity of this bristle model, which 

increases with N, makes it an inefficient model for use in simulations. Furthermore, 

lack of a damping factor may cause an oscillation under the sticking condition. 

 

To make up for disadvantages of the bristle model, Haessig and Friedland also 

propose the “reset integrator” friction model. In this approach, instead of breaking  
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Figure 3.13: Illustration of the bristle model for friction 

 

 

the bonds between bristles, the rate of increase in the bristle strain is kept constant 

after the rupture point is reached. This is accomplished by the introduction of an 

extra state z that determines the bristle strains: 

 

 
( ) ( )0 00 , 0 0

,

v and z z or v and z zdz

dt v else

 > ≥ < ≤ −
= 


 (3.33) 

The friction force is then given by 

 

 ( ) ( )0 11
dz

F a z v z
dt

σ σ = + +   (3.34) 

 

where σ0(v) is an arbitrary function of velocity that gives the friction when sliding 

(which may introduce the Stribeck effect), σ1dz/dt is a damping term that is only 

active under sticking condition and a(z) introduces the stiction effect that is given 

by 

 

 ( ) 0,

0 ,

a z z
a z
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where z0 is the maximum deflection before sticking condition terminates. This reset 

integrator model is more suitable for simulations than the original bristle model, 

but it is discontinuous in z. 

 

Another detailed and accurate friction model based on the bristle interpretation of 

friction is the LuGre model given by Canudas de Wit el al. Here, the bristles deflect 

like springs under force. If the When the displacement is large enough, the bristles 

begin to slip. The equations for this model are given as follows: 

 

 
( )0

vdz
v z

dt g v
σ= −  (3.36) 

 ( ) ( )0 1

dz
F z v f v

dt
σ σ= + +  (3.37) 

 

where z is the average bristle deflection, σ0 is the bristle stiffness, σ1(v) is the 

damping, g(v) gives the Stribeck effect and f(v) is the viscous friction. Common 

choices for damping, Stribeck effect and viscous friction functions are: 

 

 ( ) ( )
2

0/
0 1

v v
g v eα α −

= +  (3.38) 

 ( ) 2f v vα=  (3.39) 

 ( ) ( )
2

/
1 1

dv v
v eσ σ −

=  (3.40) 

 

For small displacements around zero velocity, the model acts similar to a spring-

and-damper system. Linearizing (3.37) around z = 0 and v = 0: 

 

 ( )0 1 2F z vσ σ σ= + +  (3.41) 
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In (3.38), the sum α0 + α1 corresponds to the stiction force while α0 is the 

Coulomb friction force. Also, for constant-velocity steady state condition, the 

friction force simply becomes: 

 

 ( ) ( ) ( )sgnF g v v f v= +  (3.42) 

 

3.4 Solver Techniques 
 

Simulating dynamical systems requires the solution of governing state equations in 

order to obtain the state variables. Let a state x be defined with the ordinary 

differential equation (ODE) 

 

 ( ) 1( , , ,..., )m

dx
x t f t x u u

dt
′= =  (3.43) 

 

where f is a function involving time t, the state x and inputs u1 to um. Let x0 be the 

initial value of this state, i.e. 

 

 0 0( )x t x=  (3.44) 

 

The equations (3.43) and (3.44) then constitute an initial value problem (IVP). 

Although it may be possible to obtain analytic solutions to certain IVP’s, there are 

many cases where this is difficult or impossible due to non-linearities or time-

variant coefficients. Even when analytical solutions exist, the methods used to 

obtain them are only too many to be conveniently implemented on a computer-

generated simulation process. In any case, the use of numerical integration methods 

(which only require the ODE itself) in order to obtain x becomes desirable in 

simulations. 
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Solver methods allow the approximation of the value of state x at time t, with the 

given initial condition x0 at time t0, based on the function f defining the ODE. Since 

these methods are computation-based, they provide solutions at certain time 

intervals. Specifically, the value of x is available at every time interval h (also 

called the “step size”) after the initial condition, i.e. at t = t0, t0+h, t0+2h, …, t0+nh 

where n is an integer. 

 

For convenience; the time, state and other values are represented in the indexed 

form (which also is used throughout this section) 

 

 0nt t nh= +  (3.45) 

 ( )n nx x t=  (3.46) 

 ( ),m n m nu u t=  (3.47) 

 

where n is called the “time index”. It should be noted that since numerical 

integration methods provide approximate values, it is mathematically more 

accurate to write the equation (3.46) with an approximately-equal sign (≈). Still, the 

equal sign is used for the sake of convenience. 

 

An advantage of these methods is that for any time tn+1, the value of xn+1 only 

depends on up to p-many (depending on the specific method used) previous values 

of t, x and u. Therefore by keeping a p-long history of these variables, the 

calculations can be executed rather easily in simulations. 

 

Some solver methods employ a variable step size h for calculation of x. The 

specific value of h is calculated such that the approximation error in each step is 

below a certain tolerance level, requiring an additional step to compute an estimate 

of the error. Variable-step methods allow for reducing the number of steps required 

for solution at the expense of accuracy. However, they are unsuitable for real-time 
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simulations due to the difficulty in mapping the time step to a real-time clock. 

Furthermore, use of fixed-step methods is more desirable since the simulation itself 

operates on a fixed interval (i.e. the sampling interval of the controller). For these 

reasons, fixed-step methods are preferred throughout the thesis studies. 

 

An important concern regarding the use of numerical integration methods is the 

stability of the solution. For the investigation of the stability, the term “stiff 

equations” are used. A stiff equation is a differential equation for which certain 

numerical integration methods turn out to be unstable unless the step size is smaller 

than a certain value. Stiffness generally arises when an equation contains changes 

in two very different time scales. For the definition of stiffness, let 

 

 ( )( )1 1, ,, , , ,...,n n n n m nx P h f t x u u+ =  (3.48) 

 

denote the application of a solver method P on the ODE given by (3.43). This ODE 

is then considered to be stiff if the Jacobian of P has at least one (complex) 

eigenvalue m that is outside the region of stability associated with the specific 

solver method selected. Since this eigenvalue is dependent on the step size, proper 

selection of h can remove the stiffness and allow for stable solution. 

 

In the following subsections, various fixed-step solver methods are presented with 

brief discussions on their bases. Although the stability analysis is out of the scope 

of this thesis; it is evident that, in some cases, such a study might be needed in 

order to select a proper step size for successful simulation. 

 

3.4.1 Euler’s Method 
 

The Euler method approximates the value of xn+1 by employing a finite difference 

approximation to x(t): 
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 ( )
( ) ( )x t h x t

x t
h

+ −
′ ≈  (3.49) 

 

which, when rearranged, yields 

 

 ( ) ( ) ( )x t h x t hx t′+ ≈ +  (3.50) 

 

Using (3.43), the equation (3.50) can be written in time-indexed form as 

 

 ( )1 1, ,, , ,...,
n n n n n m n

x x h f t x u u+ = +  (3.51) 

 

which is known as the “forward Euler method”. This is an explicit method, 

requiring only already-known values for calculation. 

 

3.4.2 Heun’s Method 
 

Also called the “modified Euler’s method” or “explicit trapezoidal rule”, Heun’s 

method applies a predictor-corrector scheme, first calculating a rough 

approximation of x and then refining it. To calculate the predictor x
*
n+1, forward 

Euler’s method is utilized: 

 

 ( )*
1 1, ,, , ,...,

n n n n n m n
x x h f t x u u+ = +  

 

Then, the trapezoidal rule is applied as corrector to obtain xn+1:  

 

 ( ) ( )*
1 1, , 1 1 1, ,, , ,..., , , ,...,

2n n n n n m n n n n m n

h
x x f t x u u f t x u u+ + +

 = + +   (3.52) 
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3.4.3 Runge-Kutta Method 
 

Runge-Kutta techniques, which are derived from the Euler method, involve the 

evaluation of the equation at multiple points within one integration step. The 

commonly used 4th order Runge-Kutta method, or “RK4”, is given by 

 

 ( )1 1 2 3 4

1
2 2

6n nx x h k k k k+ = + + + +  (3.53) 

 

The variables k1, k2, k3 and k4 are given by 

 

 ( )1 1, , ,...,n n mk f t x u u=  (3.54) 

 ( )1 1
2 1 12 2, , ,...,n n mk f t h x hk u u= + +  (3.55) 

 ( )1 1
3 2 12 2, , ,...,n n mk f t h x hk u u= + +  (3.56) 

 ( )4 3 1, , ,...,n n mk f t h x hk u u= + +  (3.57) 

 

Equation (3.53) is essentially the estimation of xn+1 using an estimated slope, which 

is a weighted average of different slopes (k1, k2, k3 and k4) within the time step. 

 

3.4.4 Adams-Bashforth Method 
 

Whereas the methods presented so far utilize the information from a single 

previous time step in order to calculate the value of x at the successive time step; 

the Adams-Bashforth method utilizes values from time steps up to four previous 

points, using a predictor-corrector scheme. The predictor x*
n+1 is given as 

 

 ( )*
1 1 2 355 59 37 9

24n n n n n n

h
x x f f f f+ − − −= + − + −  (3.58) 

 

 



41 
 
 

 

where fn =  f(tn, xn, u1,n, …, um,n). Then, xn+1 can be calculated using 

 

 ( )*
1 1 1 29 19 5

24n n n n n n

h
x x f f f f+ + − −= + + − +  (3.59) 

 

where f*
n+1 =  f(tn+1, x

*
n+1, u1,n, …, um,n). It should be noted that since this method 

requires x1, x2 and x3 in addition to x0, it cannot self-start. Either these values either 

need to be provided as part of the initial conditions, or a method capable of self-

starting (such as RK4) should be used until they are obtained. 

 

3.5 Creating Discrete-Time Models of Dynamic Systems 
 

In the modeling of dynamical systems, transfer functions are commonly used to 

express and analyze the relation between inputs and outputs of linear time-invariant 

systems, as well as many non-linear systems using appropriate linearization 

techniques. Transfer functions are obtained in the s-domain by the application of 

Laplace transformation on the governing differential equations and have the 

general form 

 

 ( )
( )
( )

2 1
2 1 0

2 1
2 1 0

m

m

n

n

X s s s s
G s

U s s s s

β β β β

α α α α

+ + + +
= =

+ + + +

�

�
 (3.60) 

 

where X is the output and U is the input of the system. For purposes of discrete-

time applications such as digital controllers or simulators, the discrete-time transfer 

function needs to be used. For this purpose, various transforms are used to convert 

an s-domain (continuous) transfer function into its z-domain (discrete) equivalent. 

This conversion maps the entire s-plane to the z-plane, where the imaginary axis is 

represented by a unit circle. All analysis and design tools regarding the 

performance and stability of a system are also applicable on this z-plane with 

appropriate mappings. 
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A common continuous-to-discrete transform is the Tustin method. This method 

uses a first order approximation of the natural logarithm function, performing the 

replacement 

 

 ( )
1

lns z
T

=  (3.61) 

 

where T is the sampling time of the discrete-time model. Expanding ln(z), 
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z z z
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T z z z

 − − −   
= + + +    

+ + +     
�  (3.62) 

 

approximating by taking only the first order term, the substitution for converting 

the transfer function to its discrete-time equivalent Gd is finally obtained: 

 

 
2 1

1
z

s
T z

−
′ =

+
 (3.63) 

 

 ( ) ( )dG Z G s′=  (3.64) 

 

 

Let the general form of the discrete-time transfer function Gd be given as 
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n
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β β β β
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�
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 (3.65) 

 

This function may be converted into a constant coefficient difference equation that 

can be employed to calculate the output x based on the input u. To obtain this 

equation, the numerator and denominator in (3.65) is divided by zn: 
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Replacing z with the unit delay q, Y(z) and X(z) can be converted into their time-

domain forms y(k) and x(k) where k is the time index, giving the CCDE: 

 

 ( ) ( )1 1
1 0 1 0

n n m n n n

n m
x k q q u k q q qα α α β β β− − − − −′ ′ ′ ′ ′ ′   + + + = + + +   � �  (3.66) 
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Provided that n > m, the CCDE can be easily solved for the value of x for any time 

index without requiring the future values of itself or of the input u. Arranging 

(3.67) in a more convenient form with this assumption, the CCDE finally becomes: 

 

 ( ) ( ) ( ) ( ) ( )1 11 1n mx k a x k a x k n b u k b u k m= − + + − + − + + −� �  (3.68) 
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3.6 Closure 
 

This chapter provides a set of commonly used mathematical tools that can be used 

in modeling and simulating dynamical systems. Models for various dynamic 

system components, such as transmission elements and electric motors, were given. 

A study of the various friction models, which plays an important part in all 

systems, was made. Finally, techniques used in solving the ordinary differential 

equations governing a system in order to obtain its state variables were presented. 
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CHAPTER 4  
 
 
 
 

HARDWARE-IN-THE-LOOP SIMULATION FOR EDUCATIONAL 
APPLICATONS 

 

 

 

 

4.1 Introduction 
 

Being the first approach to HILS used in the studies, this solution aims to provide a 

tool for reinforcing control systems education. It proposes the use of a personal 

computer for all the management and computation tasks associated with the 

simulation. While it serves as a means of exploring the capabilities of a purely PC-

based simulation, its main goal is to provide a stand-alone and user-friendly 

educational tool intended for use in control systems related courses at universities. 

 

In courses aimed at teaching discrete-time control systems, students are asked to 

design and test various controllers in order to reinforce the knowledge they receive. 

This makes it possible for the students to grasp every detail of the system they are 

controlling, helping them observe the effects of the methods and assumptions used 

during the design process. Without any doubt, the best way for such a 

reinforcement activity would be applying the given knowledge on real world 

systems. 

 

This method, however, is not very practical. First of all, the system to be controlled 

may possess qualities that are unfit for being accommodated within a laboratory 

(such as size, noise, vibrations, toxic emissions etc.). It might be too costly for the 

university to purchase, set up and/or maintain. Furthermore, collecting information 
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regarding the processes that occur inside the system is a difficult process involving 

proper fitting of the system with numerous sensors. Aside from these difficulties, it 

may be undesirable for the institution to make use of the same system over many 

years of education. In that case, need for acquisition of a new and suitable system 

(as well as proper salvaging, recycling or disposal of the old system) arises. 

Another inconvenience regarding this method is the impact of malfunctioning 

equipment on the students’ laboratory works. Even with all the disadvantages taken 

care of, the experience the students are be able to gain will be very limited due to 

the fact that they need to use the system only within certain limited schedules. 

 

In order to overcome the difficulties mentioned so far, this solution proposes the 

use of a “lab at home” approach in control systems education [90]. In this 

approach, instead of being dependent on a real system located at a laboratory, the 

students take advantage of a HILS application that imitates the system in question. 

They interface the controller they develop with this application and perform the 

simulation as if they were controlling the actual system itself. They are able to 

tweak with many system parameters such as disturbances, sensor noises, 

malfunctioning system components and so on. Thus, they are able to observe and 

work with almost all kinds of effects and problems that may arise in a real system. 

In addition to these capabilities, when a new system to work on is desired, it is 

sufficient simply to introduce its governing equations and parameters into the 

software package used. 

 

4.2 Proposed System 
 

A software package capable of simulating dynamic systems, named “Cadmus,” is 

developed in the context of this educational package. The students use a 

development board provided to them to implement their controllers and couple it to 

their personal computers via a serial port. Software and documentation necessary to 

perform the communication between the PC and the board is provided to the 

students. The behavior of the system being controlled is realistically visualized on 
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the software screens using 3-dimensional solid models, while the system’s state 

variables are displayed on graphs and recorded on demand for later use. Outside 

effects on the system (such as disturbances, noise and loads) can also be 

manipulated using the software. By these means, students find the opportunity to 

test, tune and optimize their controller designs. The very same software is also used 

by the course instructor to evaluate the students’ work. 

 

Cadmus is developed using the C# programming language, dependent on Microsoft 

.NET Framework. It runs on Windows XP and Windows Vista operating systems. 

The operating system’s graphical user interface is used for presenting user controls 

and application settings. Three dimensional solid modeling of the simulated system 

is done using the Microsoft XNA Framework [91], which is a cross-platform library 

intended for use in video games and provides methods for graphics, sound, input, 

networking and other gaming services. State variables, satellite and signal qualities 

and wind state are also overlaid on the 3-D view. Use of the mentioned frameworks 

and libraries has granted the application the ability to execute on almost any 

computer running the targeted operating systems. 

 

Figure 4.1 shows the operational block diagram of Cadmus. The mathematical 

model and parameters belonging to the simulated system, user preferences and 

application settings form the information layer of the software. Simulation layer 

contains the numerical solver methods that will make use of the system’s 

mathematical model to compute its state variables. Inputs to and outputs form the 

system are gathered from these state variables and incoming controller signals in 

order to be written into the registers; and presented for read and write operations 

over the PC / controller interface. The state variables are also sent to the 

visualization layer for three dimensional and graphical representations, as well as 

being recorded to the computer’s storage devices on demand. 
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Figure 4.1: Operational block diagram for Cadmus software 

 

When compared to other available software packages that can perform similar 

simulation tasks, the most prominent feature of the presented application is the 

three dimensional visualization of the simulated system. This allows the process of 

testing a controller to become much more than just an observation of the numerical 

values of the state variables (or their plots). The students find the opportunity to 

observe the system just like they would in an actual laboratory. Furthermore, it 

becomes possible to see the inner workings of sections that are impractical or 

impossible to expose (such as gearboxes, internal combustion engines, washing 

machines and so on) due to various reasons (lubrication, insulation, safety etc.) by 

means of using transparent models in visualization. Thanks to such features, the 

students’ interests are kept awake while the simulation becomes a process that is 

easily understood with its causes and effects clearly visible. 
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As one expects, it is completely possible to also simulate the controller hardware 

(by use of programming or scripting languages) on the computer and get rid of the 

microprocessor used for implementation [92-93]. However, the system presented 

here purposely avoids such an abstraction and demands the use of an actual 

microprocessor. The motivation here is to introduce and familiarize the students 

with the electronic components on the board as well as programming and 

operational techniques that are unique to microprocessors. They are thus kept 

informed of various situations associated with the use of such devices. This 

prevents complete abstraction of the education from the real world, keeping it 

tangible. 

 

4.3 Application 
 

An application of the method presented thus far in this section has been done as the 

final project of the Computer Control of Machines course given at Mechanical 

Engineering Department of Middle East Technical University during 2007-2008 

spring semester. This project asks the students to track a communications satellite 

in low orbit around the Earth with an antenna dish having two axes of motion: 

elevation and azimuth (Figure 4.2). The antenna is equipped with motors having 

integrated torque modulators, capable of applying the desired torque (within certain 

speed and power limitations–please refer to Section 5.3.2.1 for details). In addition, 

it is assumed that a navigational computer capable of calculating the position of the 

satellite with respect to the antenna (i.e. reference angles for elevation and 

azimuth), as well as a sensor measuring the strength of the received signal as long 

as the antenna is aligned with the satellite (Figure 4.3). The information generated 

by these subsystems is presented on 16-bit-wide registers to the PC interface. The 

students are expected to generate torque commands (again, 16-bit-wide) for the two 

motors on the axes. There is wind in the area where the antenna is located, blowing 

at speeds up to 30m/s (108km/h) and changing directions at random. Furthermore, 

there is a certain amount of backlash in the gears coupling the motors to the 

antenna, as well as Coulomb and viscous friction effects on the shafts. Under these 
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circumstances, it is a serious control engineering problem to make the antenna 

track the communications satellite within tight tolerances during its two-minute 

flight on the visible sky. Such non-ideal conditions encourage the student to 

explore beyond the classical control algorithms and look for more advanced 

methods. 

 

 

 

Figure 4.2: Representation of the antenna dish and the definition of angles 

 

 

 

Figure 4.3: Functional block diagram of the Cadmus application project 
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4.3.1 Plant Model 
 

As for the mathematical model of the simulated antenna system, since both axes are 

equipped with a gearbox (having a reduction ratio Ng) the below differential 

equations define the motion of each axis: 

 

  

 
1

m m g gJ T T Nθθ −= − ⋅��

  (4.1)
 

 
sgn( )c g dJ b T T Tθ θ θ+ + = −�� � �

  (4.2)
 

 

In these equations, Jm and J are the moments of inertia of the motor and mass 

reduced to axis shaft [kgm2]; θm and θ are the angular positions of the motor and 

antenna [rad]; Tg is the torque output of the gearbox [Nm]; Tc is the Coulomb 

friction torque on the shaft [Nm]; Td is the disturbance moment on the shaft due to 

wind force acting on antenna dish [Nm]; b is the viscous friction coefficient. Since 

backlash is assumed to exist, Tg is a function of the positional difference between 

the input and output shaft of the gearbox (see Section 3.2.1.1). 

The strength of the signal received from the satellite in orbit is given by the 

exponential function 
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( ) ( )

2 2
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ψ θ ψ θ
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 (4.3) 

 

which exhibits a narrow peak of 10 Volts when the tracking error is zero. 

 

4.3.2 Disturbance Model 
 

The reaction of the antenna is modeled from the drag force applied on the dish, 

approximated by a hollow hemisphere. Consider the antenna dish, having frontal 

area A and looking at the azimuth and elevation angles ψ and θ, inside a uniform 
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flow of air –wind– with density ρ (Figure 4.4). The velocity of the wind is given by 

the vector V
�

. The unit-length direction vector u
�

 for the dish can be obtained in 

terms of the unit vectors i
�

, j
�

 and k
�

 as: 

 

 ( )( ) ( )( ) ( )cos cos sin cos sinu i j kψ θ ψ θ θ= + +
�� ��  (4.4) 

 

The cosine of the angle γ between these vectors can be easily computed using the 

dot product 

 

 ( )cos
V

u
V

γ = ⋅

�
�
�  (4.5) 

 

 

 

Figure 4.4: Antenna dish inside wind flow 

 

 

The angle γ can be considered as the wind angle and used in calculating the drag 

area Ad as well as drag coefficient Cd. Figure 4.5 shows the orientation of the dish 

based on γ. 
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Figure 4.5: Wind angle of satellite dish 

 

 

For the γ = 0° and γ = 180° cases, the drag area equals the frontal area, i.e. 

Ad (0) = Ad (π) = A, and for γ = 90° the drag area equals the side area As of the dish 

and can be calculated as 

 

 ( ) ( ) ( )2
2 cos sin

s d c
A A rπ α α α = = −   (4.6) 

 

where rc is the radius of curvature of the dish and 

 

 1sin
c

r

r
α −  

=  
 

 (4.7) 

 

where r is the frontal radius. The drag area can then be approximated as a function 

of γ as 

 

 ( ) ( ) cosd s sA A A Aγ γ= + −  (4.8) 

 

As for the drag coefficient, Munson [94] gives the value of Cd for a parabolic dish 

as 1.42 for γ = 0° and 0.95 for γ = 180° while Peterka et al. [95] present consistent 
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experimental work while giving a drag coefficient of 0.4 for γ = 90°. Based on their 

work, the drag coefficient can be expressed as a function of γ as 

 

 ( )

( )
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1 cos 2
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2 2
1 cos 2
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2
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 (4.9) 

 

The drag force on the antenna can now be calculated as 

 

 ( ) ( ) ( )21
2d d dF v C Aγ ρ γ γ=  (4.10) 

 

Let rm be the distance between the point P1, around which the dish rotates, and P2, 

the center point of the distributed wind force. Then the vector mr u
�

 is the moment 

arm over which the disturbance torque is applied by the wind. The disturbance is 

then 

 

 ( ) ( )d d w mT F u r uγ γ= ×
� � �

 (4.11) 

 

And the torque on individual axes can be obtained as 

 

 ( ) ( ) ( ) ( ), sin cos
d d

T T i jψ γ γ ψ ψ = ⋅ − 
� � �

 (4.12) 

 ( ) ( ),d dT T kθ γ γ= ⋅
��

 (4.13) 

 

The antenna dish in the system is assumed to be 45cm in radius with a radius of 

curvature of 75cm. Using equations (4.6) to (4.10), the magnitude of the drag force 

can be calculated. Figure 4.6 shows the drag force on the dish with respect to the 

wind angle γ and the magnitude of 
dT
�

 is shown in Figure 4.7. 
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Figure 4.6: Drag force on antenna dish with respect to wind angle 

 

 

 

Figure 4.7: Disturbance torque on antenna dish with respect to wind angle 
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4.3.3 Software Details 
 

To aid the students, the specific version of Cadmus developed for the project 

displays important information such as satellite position and disturbance torques in 

addition to the antenna’s state variables. Along with these, data generated during 

simulation are both displayed on plots and recorded to a file. A three dimensional 

image of the antenna and its projections on its two axes are displayed on the user 

interface. Additional cursors on this display show the relative location of the 

satellite. A wind vane is rendered next to the antenna, hinting to the wind direction 

and speed. 

 

The microprocessor provided the student is not a very capable one and it is unable 

to close the control loop in real time for high sampling rates. Rather, the write 

operations performed by the controller to the torque command registers cause the 

simulation time to advance exactly one sampling period. The computations are then 

paused and the software waits for the next set of commands. In the end, regardless 

of the actual time between write operations, the simulation computations are done 

assuming it is equal to the sampling time. This relieves the students from the 

burden of fitting the computations within a tight time frame, minimizing 

inconveniences caused by the development board and allowing them to focus on 

the control algorithm itself. 

 

The software consists of three main screens. The main tab (Figure 4.8) displays 

position information on the antenna and satellite, wind status and simulation time 

in addition to the three dimensional visualization. In order to improve the image 

and keep the students’ interest high, details irrelevant to the simulation but help in 

providing a realistic scene are also included: trees and grasses swaying according to 

the wind direction, clouds moving in the sky and a day/night cycle based on the 

computer clock. Controls provided in this tab allow the user to run the simulation 

for the desired time period or opt to work on a single axis instead of both. 
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Figure 4.8: Main tab of Cadmus Software 

 

 

The settings tab (Figure 4.9) presents certain parameters on RS-232 

communication. The sampling time to be assumed during the simulation is entered 

in this tab. Settings regarding the recording of generated data also exist here. The 

user can select which of the many variables should be recorded; file name to be 

used and settings regarding tabulation and decimal separator for convenience when 

importing the data to other applications for analysis. Parameters defining the 

satellite orbit (elevation, angle and distance) can be changed, as well as the amount 

of backlash existent in the gearboxes. 

 

The view tab (Figure 4.10) contains plots that visualize how the system’s state 

variables change over time. There are two pairs of plots, one for each axis. First 

plot in each set shows the angular position of the relevant antenna axis and the 

relative satellite position. The second plot, on the other hand, shows the motor and 

disturbance (wind) torques applied on that axis. Also displayed in this tab is a plot 
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of the received signal strength. During simulation, all plots are continuously 

updated and each of them can be zoomed and panned for viewing convenience. 

 

 

 

Figure 4.9: Settings tab of Cadmus software 

 

 

Inside the software source code, all the components relating to the two axes of the 

antenna are collected under a single class. This class (with the addition of 

information from the registers and another class managing the wind behavior) 

refers to the solver class and obtains the angular positions and velocities of the two 

axes. This solver class is generically designed to accept any differential equation 

set introduced to it inside a certain template and employs a constant-step Runge-

Kutta integration method of order 4 to solve these equations. 
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Figure 4.10: View tab of Cadmus software 

 

 

The software executes multiple separate threads at run-time. The first thread 

performs the operations related with the simulation and registers layers mentioned 

in Section 5.2.2. When the simulation is started, the thread waits for the controller 

commands to arrive. When they are received; the simulation advances for one 

sampling period, the results are written into registers (to be queried by the 

controller) and the loop returns to command waiting state. The second thread 

executes the operations necessary for the three dimensional and projected 

visualizations of the antenna. A final thread is responsible for all other operations 

including the user interface and data recording. Thanks to this multi-threaded 

structure, the visualization operations (which are hardware-dependent and not 

easily done on every computer) are prevented from blocking the more crucial 

communication and simulation operations. 
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Another feature of the developed software is its ability to connect to the course web 

site to periodically check for updates to itself, whenever an internet connection is 

available. When a newer version is detected, the user is presented with the option to 

be directed to the web site for download and update news. This way, any changes 

made by the course instructor/assistants or the software developer can be delivered 

to the students as soon as possible. 

 

4.3.4 Hardware Platform 
 

A small, simple and low-cost development board designed for use with Microchip 

PIC18F4520 microcontroller unit; this board accommodates components useful for 

development and debugging of applications on such a microcontroller. The chip 

used on the board is a widely available general-purpose 8-bit microcontroller based 

on CMOS FLASH technology. Such a board meets the students’ most basic needs, 

providing them a tool with which to implement controller algorithms while 

requiring only the simplest knowledge on electronics. 

 

 

 

Figure 4.11: Microchip PIC development board 
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4.3.5 Interfacing 
 

As stated in Section 4.3, transfer of 16-bit-wide data packets between the controller 

and simulator is required. Owing to the fixed packet size, it is possible to form a 

communication protocol that both performs fast and requires minimal memory 

footprint on the development board. The CCS C [96] source codes (which contain 

calls to built-in serial I/O routines) that employ this protocol are provided to the 

students and presented in APPENDIX B. 

 

4.4 Results 
 

For the solution of the control problem presented in the application, a variety of 

controllers were developed by the students who have taken the course in the project 

semester. These include PD, PI, PID and lead/lag controllers with command feed-

forward, disturbance input decoupling, friction compensation and other similar 

components. One such controller developed for the project is a lead/lag controller 

designed via pole-zero cancelling root locus techniques by Mr. Mümin 

Özsipahi [97]. To improve friction compensation characteristics, a command feed-

forward controller is also included. Finally, a disturbance observer enables high-

performance rejection of the wind torque applied on the antenna dish. The overall 

architecture of this controller is shown in. 

 

 

 

Figure 4.12: Lead/lag controller design for satellite tracking antenna 



61 
 
 

 

The performance evaluation of the controller is done on the Cadmus software. 

Multiple simulations are executed with different parameters. The magnitude and 

direction the wind acting on the dish changes at varying intervals. Figures 4.13 to 

4.17 show antenna and satellite states and the received signal for a sample 

simulation run; demonstrating an exceptionally successful controller even under 

extreme disturbances. The strength of the received signal is almost always kept at 

maximum, only showing slight falls during initial application of high disturbance 

torques and a period of very fast change in the azimuth angle. 

 

In order to evaluate the impact of the developed application on the learning 

process, the students who have taken the course have been asked to fill in a 

questionnaire regarding their experiences results for which are given in Table 4.1. 

 

 

 

Figure 4.13: Satellite and antenna azimuth angles for sample simulation using 

lead/lag controller 
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Figure 4.14: Motor and disturbance torques on azimuth axis for sample antenna 

simulation using lead/lag controller 

 

 

 

Figure 4.15: Satellite and antenna elevation angles for sample simulation using 

lead/lag controller 
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Figure 4.16: Motor and disturbance torques on elevation axis for sample antenna 

simulation using lead/lag controller 

 

 

 

Figure 4.17: Signal strength for sample antenna simulation using lead/lag controller 
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Table 4.1: Questionnaire results for educational applications 

  First 
application 

Second 
application 

Education program 
Masters 64.3% 69.2% 
Doctorate 28.6% 23.1% 
Other 7.1% 7.7% 

Department 
Mechanical Engineering  92.3% 
Aerospace Engineering  7.7% 

Average difficulty Out of 10  8.08 
Overall benefit of HILS Out of 10  8.31 

Effect of Cadmus on attitude 
towards the course 

Positive 78.6% 69.2% 
Neutral 14.3% 30.8% 
Negative 7.1% 0.0% 

Effect of Cadmus on final 
project period 

More enjoyable 57.1% 69.2% 
Neutral 14.3% 15.4% 
Less enjoyable 28.6% 15.4% 

Most helpful feature of 
Cadmus 

3-D visualization  69.2% 
Recording of system states  7.7% 
Plotting of system states  15.4% 
Easy communication between 
controller and simulator 

 7.7% 

Comparison of Cadmus with a 
similar application that can be 
developed using MATLAB 

Prefer MATLAB 42.9% 15.4% 
No difference 21.4% 30.8% 
Prefer Cadmus 35.7% 53.8% 

 

4.5 Closure 
 

This chapter proposes an integrated HILS solution that is tailored for courses on 

control systems education. The overall concept of lab-at-home was explained and 

the software developed for realizing this concept was elaborated. The specifics on 

the actual application of the solution were presented along with the feedback 

received from the students who used the software. 

 

For the purposes of the simple simulation with relatively lower sampling times 

used in the application, RS-232 communication protocol provides sufficient 

bandwidth. However, personal computer manufacturers have been abandoning the 

standard and almost none of the modern personal computers that target home and 

office users provide a serial port. Although USB to RS-232 converters are widely 

available in the market, student experiences show that product qualities vary wildly 

between many different brands. In most cases, these converters are reported to be 
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the cause of communication delays that lengthen the simulation times to as long as 

20 minutes, whereas use of certain brand converters or computers with a serial port 

allow the simulation to proceed virtually in real time. Therefore, instead of 

resorting to such unreliable converters, use of a development board that is capable 

of communicating over the more widely available USB ports is an improvement 

option. 

 

In order to measure the simulation times, tests involving different state equations 

and combination of simulation elements are done on the developed software. Table 

4.1 presents the results of these tests. These results show that the software is 

capable of closing one simulation loop within 181µs to 582µs. Based on these 

timings, simulating a system using 1ms sampling time almost in real-time is 

possible with the software. However, it should be noted that the introduction of 

higher degree state equations or those involving trigonometric, logarithmic or 

exponential functions are sure to have a large impact on these timings. At this 

point, programming and optimization methods that are native to the targeted 

operating environment need to be investigated. 

 

Table 4.2: Cadmus simulation times 

 Timings (milliseconds) 
Computer A B C D 

1 0.006 0.058 0.096 0.181 
2 0.022 0.193 0.347 0.582 

A: No simulation (overhead due to communication and user interface tasks) 
B: Single-axis antenna simulation 
C: Two-axis antenna simulation 
D: Two-axis antenna, satellite and wind simulation 
PC 1: Intel Core 2 Duo 3.00GHz with 6MB cache, 2GB memory, NVIDIA 
GeForce 9600GT video card, Microsoft Windows Vista operating system 
PC 2: Intel Core Duo 2.00GHz with 2MB cache, 1GB memory, NVIDIA 
GeForce Go 7400 video card, Microsoft Windows XP operating system 
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The student questionnaires show that the use of HILS in the course final project has 

an improvement on the overall attitude of the students toward the course. 

Understanding of the controller design processes were reinforced by their 

application on a working system instead of only using certain design and analysis 

tools. All students state that similar applications for all control-related courses 

would have a positive impact on their effectiveness. Specific to the Cadmus 

software, the students state that the 3-dimensional visualization helps them better 

grasp the behavior of the system under given inputs and conditions, as well as act 

as a source of enjoyment when they observe the results of their design. Although 

many of the students indicate that they could construct (albeit with difficulty) a 

HILS application using MATLAB/Simulink software package, they also express 

that they would rather prefer the Cadmus package. When the results from the two 

applications are compared, it is clearly seen that the improved and more bug-free 

software, as well as utilization of a more powerful development platform, increases 

both the effectiveness of the project and the enjoyment gained. As a result, the 

application successfully fulfills its goals. 

 

Based on the studies presented in this chapter, a conference paper describing the 

lab-at-home concept and the Cadmus software package was [98]. It was submitted 

to Turkish National Committee of Automatic Control 2008 held in Istanbul, Turkey 

and was accepted for oral presentation. 
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CHAPTER 5  
 
 
 
 

REAL-TIME HARDWARE-IN-THE-LOOP 
SIMULATION UTILIZING FPGA 

 

 

 

 

5.1 Introduction 
 

Aiming for a fast and highly integrated system, this solution utilizes an FPGA chip 

as the simulation’s computing platform. This chip is used to instantiate solver for 

calculating the system states, as well as interface emulators necessary for 

communicating with the controller device. A number of peripheral units are 

connected to the FPGA: serial communication adapters, memory elements and 

storage devices. Additionally, a number of external interface cores (such as encoder 

pulse generators and PWM receivers) are instantiated on the FPGA chip in order to 

enable the simulation to communicate with external devices (e.g. the controller 

under test) or imitate peripherals (e.g. encoders or other devices). A PC connected 

to this platform serves as a means of managing simulation settings as well as 

monitoring system states during the simulation. 

 

The solution uses CCDEs to calculate the simulated system’s states based on their 

previous values in time and the inputs to the system. After the equations and 

parameters describing the system to be simulated are introduced to the 

microprocessor instance, the platform performs the simulation computations while 

communicating with the controller hardware. The system variables requested by 

the user are also sent to the user’s PC during run time. If, however, the number of 

states requested is too many and the simulation step size is very small, this task 
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requires a very large bandwidth. In such a case, the states are sent to the PC only at 

certain time steps. The rest of the states are saved on the storage elements on the 

platform, only to be dumped to the PC after the simulation is completed. 

 

 

 

Figure 5.1: Hardware configuration for the FPGA solution 

 

 

5.2 Application 
 

For the realization of the FPGA-based simulator system, a simple HILS scenario is 

designed. An induction motor, which is used as the spindle drive of a turning 

center, is simulated in the application. The following sections explain the details of 

this system and its implementation. 

 

5.2.1 Plant Model 
 

The induction motor used in the system is assumed to be connected to a direct 

torque controller, which drives the induction motor. A timing belt connects the 

rotor shaft to the spindle shaft. A disturbance torque due to the cutting forces 

occurring during the machining process acts on the work piece. Figure 5.2 shows 

this spindle drive system. 
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In the figure, T* represents the torque command, Td is the disturbance torque, r1 and 

r2 are the pulley radii, J1 and J2 are the moments of inertia, b1 and b2 are the viscous 

friction coefficients, θ is the angular position of the spindle and e is the encoder 

signal. 

 

 

Figure 5.2: Spindle drive system 

 

 

The DTC and induction motor in the system are assumed to be ideal. Therefore, 

these two can be modeled as a torque modulator with a torque capability curve, as 

explained in Section 3.2.2.  

 

The transmission between the motor shaft and the spindle is assumed to be ideal, 

i.e. the timing belt perfectly transfers torque between the rotor and spindle shafts. It 

is then possible to model the combined rotor and spindle (and mounted work piece) 

loads as a single rotating mass. Then, the equivalent moment of inertia can be 

obtained by summing the rotor inertia with the spindle inertia, multiplied by the 

square of the transmission ratio. Likewise, the equivalent viscous friction is the 

sum of rotor friction with the spindle friction, multiplied by the transmission ratio. 

 

The DTC in the simulated system is assumed to be receiving the torque command 

via a PWM resolver connected to a D/A converter. Since the simulation is 

performed digitally, instead of simulating a D/A converter, the inputs are fed into 
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the PWM receiver and a 10-bit integer representing the torque command is 

obtained. The encoder emulator generates the encoder signals from the angular 

position of the spindle. These signals are counted by a quadrature counter and their 

difference is transmitted to the controller via another 10-bit PWM signal. The 

resulting simulated system model is given in Figure 5.3. 

 

Figure 5.3: Block diagram of sample application system 

 

 

For the purposes of the application, the rated motor torque is selected as 35Nm. 

The rated speed is 1500rpm while the maximum speed is 8000rpm, resulting in an 

approximate motor power of 5.5kW. The equivalent moment of inertia is taken as 

0.07Nm2, the equivalent viscous friction coefficient is taken 0.008Nms and the 

ratio of pulley radii is unity. Finally, using a sampling time of 1ms, the discrete-

time transfer functions governing this system states as a function of the net torque 

(Tnet = Tm - Td) on the spindle shaft can be obtained as 
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For a sampling time of 1kHz, the CCDEs of the system are then 



 
 

 

 

 

 ( ) 2 ( 1) 0.999 ( 2) 7.143 10 ( 1) 7.142 10 ( 2)k k k T k T kθ θ θ= − − − + × − + × −� � �

The disturbance torque acting on the work piece (and spindle shaft) is taken as a 

repeating series of discrete pulses, imitating the effect of intermittent contact 

between the cutter and work piece during the machining process. The maximum 

magnitude of this disturbance is selected as 10Nm (

the motor to reach a high enough speed, the disturbance is introduced only aft

simulation time reaches 8 seconds.

 

 

Figure 5.4: Form of the disturbance torque applied on the spindle shaft

 

 

5.2.2 Hardware Platform
 

For the implementation of the proposed solution, 

education board manufactured by Terasic 

series FPGA chip from Altera. It provides a range of components and peripherals 

for easy introduction to the FPGA technology as well as to provide

development, debugging and application
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The disturbance torque acting on the work piece (and spindle shaft) is taken as a 

repeating series of discrete pulses, imitating the effect of intermittent contact 

tween the cutter and work piece during the machining process. The maximum 

magnitude of this disturbance is selected as 10Nm (Figure 5.4). In order to allow 

the motor to reach a high enough speed, the disturbance is introduced only aft

simulation time reaches 8 seconds. 

 

Form of the disturbance torque applied on the spindle shaft

Hardware Platform 

For the implementation of the proposed solution, DE1, an FPGA development 

manufactured by Terasic is used. This board carries 

series FPGA chip from Altera. It provides a range of components and peripherals 

for easy introduction to the FPGA technology as well as to provide

development, debugging and application.  

 (5.3) 

6 6( ) 2 ( 1) 0.999 ( 2) 7.143 10 ( 1) 7.142 10 ( 2)net netk k k T k T k
− −= − − − + × − + × −  

(5.4) 

The disturbance torque acting on the work piece (and spindle shaft) is taken as a 

repeating series of discrete pulses, imitating the effect of intermittent contact 

tween the cutter and work piece during the machining process. The maximum 

). In order to allow 

the motor to reach a high enough speed, the disturbance is introduced only after the 

Form of the disturbance torque applied on the spindle shaft 

DE1, an FPGA development and 

carries a Cyclone II 

series FPGA chip from Altera. It provides a range of components and peripherals 

for easy introduction to the FPGA technology as well as to provide a handy tool for 
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5.2.3 Interface Emulators 
 

Components that enable interfacing of the simulation with various controllers are 

presented in this section along with discussions on their workings. 

 

 

 

Figure 5.5: Terasic Altera DE1 Cyclone II FPGA Starter Kit [99] 

 

 

5.2.3.1 Incremental Encoder emulator 
 

Incremental rotary and linear encoders are quite commonly used in measuring the 

position of rotating or translating mechanical components. Incremental encoders 

use mechanical or optical sensors and a specially designed disc or linear scale to 

generate two square waveforms, with 90° phase difference. The change in these 

signals can be observed by resolvers to infer the magnitude and direction of the 

motion. The number of pulses output from one channel during one full revolution, 
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or the “pulses per revolution”, determines the resolution of the encoder. The 

following figure illustrates the said waveforms. 

 

The encoder emulator developed for simulation purposes aims to function by 

emulating both the edge transitions of the output signals and the timing of these 

edges. To do so, the emulator requires the value of the measured position, as well  

 

 

Figure 5.6: Incremental encoder output signals for clockwise rotation 
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Figure 5.7: Incremental encoder output signals for counter-clockwise rotation 

 

 

as the simulation sampling time and desired PPR value. Upon receiving command, 

the position is quantized to the given resolution. Comparing the quantized position 

with that from the previous sampling time, the number of pulses (or more precisely, 

edges) that should be output from the two channels are determined. These pulses 

are then sent via the output channels, evenly distributed within the sampling time. 

This ensures that the correct number of edges will be read in the correct duration by 

the resolver on the other end of the channels. 
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The implementation of the emulator contains an FPU for quantization, a 

configurable timer module and a counter for keeping track of the output signals. 

Taking advantage of the fact that the form of output signals can be separated to 4 

unique phases, a two-bit counter can be used to provide these signals. 

 

The fidelity of the emulator to real systems depends on the timing quality of the 

incoming commands. For optimal operation, the frequency of the received 

commands should be equal to the sampling time with zero deviation. Otherwise 

inconsistency in these timings may cause overlapping pulses to be skipped, causing 

error in the measured position. 

 

 

 

Figure 5.8: Incremental encoder emulator block diagram 

 

 

 

Figure 5.9: Illustration of timing in encoder emulator operation 
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5.2.3.2 PWM receiver 
 

Pulse width modulation is a simple yet effective way for transferring data over a 

single line. Encoding data by modulating the width of a fixed-period pulse, i.e. 

changing the duty cycle, PWM signals are easy to both generate and resolve. 

A simple PWM receiver implementation contains a counter that increments as long 

as the input signal is high and a timer that latches the counter value and resets it at 

the end of each sampling period. 

 

 

 

Figure 5.10: Block diagram of PWM receiver 

 

 

To enable non-real-time simulation with controller as the clock source, a modified 

PWM scheme is also proposed. This scheme requires the use of a synchronization 

signal, which may be separate for all PWM channels or one global signal. When a 

falling edge on this synchronization signal is detected, the pulse beginning is 

assumed. After a fixed amount of time following this edge, i.e. the PWM period, 

counting is finished and the counter value is latched. The ratio of the high-time of 

the incoming signal to this period constitutes the duty cycle and thus the 

transmitted value. The end of the pulse period also marks the reception of the 

incoming command and a signal generated at this moment can be used as a trigger 

for the simulation. The time passing between the end of one pulse and the next 

synchronization is ignored. 
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The sole purpose of using a synchronization signal in the modified PWM receiver 

is to ensure proper simulation triggering. If the duty cycle of the incoming pulse 

can be guaranteed to be greater than 0% and less than 100%, its rising edge can be 

used for synchronization, eliminating the need for a separate signal. 

 

 

Figure 5.11: Modified PWM with synchronization signal 

 

 

5.2.4 Embedded Microprocessor Implementation 
 

The sample application is implemented on the Altera DE1 Development and 

Education board. This board accommodates the Altera Cyclone II 2C20 FPGA 

along with an 8MB SDRAM chip, USB Blaster serial communication adapter, a 

50MHz oscillator and many other useful peripherals. On the FPGA chip, an 

instance of the Nios II 32-bit Embedded Processor, which is designed by Altera 

solely for FPGA implementation, is implemented. This processor design includes 

an FPU implementation, and can be connected to modular interfaces to a variety of 

peripheral units which include those on the DE1 board. The Nios II processor and 

the interfaces needed to utilize the aforementioned peripherals are instantiated and 

connected together using the development tools provided by Altera, and an SOPC 

is obtained. This system is coupled with the encoder generator and PWM 

transmitter and receiver components, and downloaded onto the FPGA chip. 

 

A C program that will perform the simulation calculations of the explained system 

is written and compiled for the Nios II processor. The program consists of a main 
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loop that repeatedly performs the communication and computation tasks. Instead of 

a continuously running loop, the program waits for a torque command to arrive 

from the controller. When a command is received, an interrupt is raised in the 

processor. The incoming command is read from the digital I/O interface, and the 

simulation computations for a single sampling period are performed. The shaft 

position, which is used to generate the encoder signal, is outputted from the 

processor via the digital I/O interface to the relevant register. All system states, as 

well as the torque command and net torque, are recorded in arrays stored inside the 

SDRAM chip. Finally, when the simulation is completed, these records are dumped 

to the user’s PC via the USB connection. 

 

5.2.5 Parallel FPU Implementation 
 

For the purpose of investigating the capabilities of the FPGA platform, a partial 

implementation of the application was also done by instantiating multiple floating 

point operation units directly on the chip. This implementation aims to exploit the 

full parallelism potential of the said platform. For every arithmetic operation in the 

CCDEs (5.3) and (5.4) governing the system, FPUs are placed in a manner suitable 

for parallel processing, forming a binary-tree like structure (Figure 5.12). In 

addition to these, FIFO type memory modules that expose all their contents are 

placed in order to hold previous time values of system states. A management 

module is also placed to operate the FPUs. 

 

The solutions of the CCDEs are initiated by the simultaneous operation of the 

floating point multiplier blocks by the management module. The results of these 

multiplications are fed into the addition blocks, and these are operated in turn until 

the results of the equations are obtained. These results are finally fed into the 

relevant FIFO buffers to be used during the next computation loop. 
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Figure 5.12: Block diagram for parallel-FPU CCDE solver 

 

 

5.3 Results 
 

The offline testing of the application is performed by applying constant torque 

command with 30Nm magnitude on the system. The results obtained are compared 

against solutions performed on PC using the MATLAB/Simulink software 

package. Two different implementations are tested, using single- and double-

precision floating point representations. The performance of the simulator is also 

evaluated in terms of computation time by utilizing the performance counter 
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component of the Nios II processor. Table 5.1 presents the test results while the 

resource usage of the application is given in Table 5.2. 

 

Table 5.1: Offline simulation test results 

  
Single-precision 
implementation 

Double-precision 
implementation 

Difference from 
Simulink in ω 

RMS 410.1µrad/s 409.2µrad/s 
Mean 51.5mrad/s 51.3mrad/s 

Maximum 240.2mrad/s 240.2mrad/s 

Difference from 
Simulink in θ * 

RMS 3.7µrad 3.7µrad 
Mean 466.9mrad 470.3mrad 

Maximum 869.2mrad 881.4mrad 

Computation Time 
RMS 13.3µs 111.7µs 
Mean 13.2µs 111.5µs 

Maximum 26.8µs 140.4µs 
 

* After 20 seconds of simulation. 

 

 

Table 5.2: Sample application resource usage 

Total logic elements 10,737 (57%) 
Total combinatorial functions 9,121 (49%) 
Dedicated logic registers 6,447 (34%) 
Total memory bits 66,040 (28%) 
Embedded multiplier 9-bit elements 11 (21%) 
Program size in SDRAM memory** 52kB (0.006%) 
 
* Percentages are based on resources on the Altera DE1 board. 
** Excluding stack and heap memories. 

 

 

The numerical results of the simulation appear to have an acceptable amount 

difference from those obtained using Simulink, due to the difference between the 

employed solution techniques. It should be noted here that the error in angular 

position is the integral of the error in speed and will vary with the simulation 

duration. Again in terms of numerical results, there appears to be no significant 

difference between single- and double-precision floating point representation 
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techniques. The single-precision solution times, however, are much lower than 

double-precision solution times. The single-precision implementation is therefore 

an adequate solution as far as the sample application is concerned. 

 

In order to further explore the performance of the sample application, the 

simulation program is modified to solve for CCDEs of varying degrees as well as 

more than one equation at a time, and the computation times are measured. Results 

are given in Figure 5.13 and Figure 5.14. 

 

The parallel-FPU implementation is capable of performing a floating point 

operation every 4 clock cycles [100]. In the binary-tree arrangement of this 

implementation, the solution time can be calculated as 

 

 ( )24 log ( ) 1c tn n= × +    (5.5) 

 

where nt is the number of terms added together in the CCDE and nc is the number 

clock cycles required to obtain the solution. For this implementation, the solution 

times using a 50MHz clock signal are given in Figure 5.15, and Figure 5.16 shows 

the approximate resource usage. 

 

A final comparison is made with a numerical method approach, the Runge-Kutta 

algorithm of order 4. The method is implemented on the Nios II processor, only 

modifying the solution part of the simulation program. The state space equations 

governing the system are obtained and also coded into the solver, and numerical 

integration is performed. Two tests are made, one with a single step per loop (1ms 

step size) and one with 10 steps per loop (0.1ms step size). The computation times 

are presented in Table 5.3, while the resource usage is identical to the originally 

proposed solution. 

 



 
 

 

Figure 5.13: Computation time by CCDE degree, one equation per loop

 

 

Figure 5.14: Computation time by CCDE degree, two equations per loop
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Computation time by CCDE degree, one equation per loop 

 

Computation time by CCDE degree, two equations per loop 



 
 

 

 

Figure 5.15: Parallel

 

 

Figure 5.16: Parallel
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FPU implementation resource usage by CCDE degree 
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Table 5.3: 4th Order Runge-Kutta method computation times 

 1 step per loop 10 steps per loop 
RMS 19.1µs 63.5µs 
Mean 19.0µs 63.4µs 
Maximum 36.0µs 70.3µs 

 

Once the application is observed to be operational, it is used in evaluating the 

performance of various FPGA-based controllers that employ different control 

algorithms. These controllers use hysteresis, fuzzy logic, PID and sliding mode 

control schemes to keep the angular velocity of the spindle on a reference input that 

linearly increases up to 1200rpm and remains constant afterwards. Figures 5.17 and 

5.18 show the performance of these controllers. 

 

 

 

Figure 5.17: Hysteresis and fuzzy controller performances for spindle drive 
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Figure 5.18: PID and sliding mode controller performances for spindle drive 

 

 

5.4 Closure 
 

This chapter builds up a general-purpose HILS solution that may be used as a basis 

for developing other, more complex simulations. The proof of operation, as well as 

the advantages and disadvantages of the proposed system are investigated using a 

simple application. 

 

The spindle drive is a good demonstration of the computational capabilities of the 

proposed solution. The CCDE solution times show that it is possible to successfully 

simulate systems of order up to 10 using sampling times as high as 5 kHz. 

 

Although implementing a direct hardware solution method makes it possible to 

perform the computations at much higher speeds, the rapidly increasing resource 
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usage limits the capability of this approach. Moreover, introduction of non-

arithmetical operations, such as conditional statements, requires redundant resource 

usage in order to maintain the desired computational speed, further limiting the 

method’s capabilities. 

 

While solving CCDEs to obtain system states is quite fast, it has the limitation of 

only being able to represent linear systems. When non-linear elements exist in the 

system to be simulated, linearization techniques become necessary to obtain a 

CCDE, but the accuracy of the model is greatly reduced. In such cases, it is 

possible to resort to numerical methods such as the RK4. It is also shown that the 

proposed solution can be easily modified to use this approach, still being able to 

perform simulations with sampling times up to 2 kHz successfully. 

 

Based on the studies presented in this chapter, a conference paper explaining the 

HIL simulation of a DC motor using FPGAs was prepared [101]. It was submitted 

to Turkish National Committee of Automatic Control 2009 held in Istanbul, Turkey 

and was accepted for oral presentation. Another conference paper explaining the 

HIL simulation of the described spindle drive was prepared [102]. It was submitted 

to International Conference on Electrical Machines and Systems 2009 held in 

Tokyo, Japan and was accepted for oral presentation. 
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CHAPTER 6  
 
 
 
 

NON-REAL-TIME HARDWARE-IN-THE-LOOP SOLUTION 
UTILIZING A HYBRID ARCHITECTURE 

 

 

 

 

6.1 Introduction 
 

While the solution presented in Chapter 5 focuses on achieving high performance 

and connectivity, it lacks the simulating non-linear, complex plants with many 

states and inputs. To address this issue, another solution utilizing a combination of 

different hardware platforms and relevant software working in tandem is proposed. 

 

In this solution, a microprocessor bearing board, namely the Atmel NGW100 

Network Gateway Kit, takes over the duty of performing the simulation 

calculations. This is a general purpose development board for Atmel’s AVR32 

series 32-bit microprocessor CPU AT32AP7000. It has a number of useful storage, 

communication and I/O devices. Running a Linux distribution specifically tailored 

for the device, it provides all the drivers necessary to use the peripherals it carries. 

 

Quoting from the microprocessor datasheet [103]; “the AT32AP7000 is a complete 

System-on-chip application processor with an AVR32 RISC processor achieving 

210 DMIPS running at 150MHz. AVR32 is a high-performance 32-bit RISC 

microprocessor core, designed for cost-sensitive embedded applications, with 

particular emphasis on low power consumption, high code density and high 

application performance”.  
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Figure 6.1: Atmel NGW100 Network Gateway Kit [89] 

 

 

Apart from the hardware features, numerous useful software packages are readily 

provided on the NGW100 or can be incorporated into the Linux kernel or file 

system, whichever is necessary and/or applicable. The services available for use on 

the NGW100 include, but are not limited to; serial port console, FTP and HTTP 

servers, file sharing and packet routing services, device drivers for the various 

peripherals on the AT32AP7000 processor and numerous system management 

utilities provided by the operating system. 

 

The NGW100 is connected to an FPGA board, the DE1, via digital I/O pins. This 

board carries multiple, configurable instances of the interface emulators explained 

in Section 5.2.3 and serves as the interface between the simulation and the 

controller. On the other end, the NGW100 is connected to a personal computer 

using an Ethernet cable (which serves to transfer the source codes defining the 

plant behavior as well as state variables during runtime) and an RS-232 cable 

(which is used for accessing the terminal service for managing the simulation 

execution and other tasks on NGW100). The software package provided for the PC 

here is the main tool to be manipulated by the user. One program within the 
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package is used for defining the plant (along with state equations, manipulation 

inputs, disturbances) and a number of parameters regarding the simulation process. 

The other program is used to manage the simulation process. The desired set of 

variables inside the simulation can also be viewed during runtime and saved to the 

PC hard drive if desired. Figure 6.2 shows the block diagram of this system. 

 

The definition of the plant is done by the user by specifying the state variables, 

manipulation inputs and disturbance sources. Desired constants and intermediate 

variables that will aid in defining the equations which govern the system can also 

be defined. The user also provides the governing equations, as well as any helper 

functions (for such calculation tasks that are used multiple times in the equations), 

in the C++ programming language. The use of a programming language instead of 

mathematical sentences allows for easier inclusion of conditional (decision) 

statements (e.g. if-then-else and switch/select/case blocks), whenever required, 

inside the equations. 

 

Once all the information defining the plant is provided, the software package 

creates necessary C++ declarations for the variables and encapsulates the provided 

functions; generating a number of source files. These are then added to a previously 

prepared library containing the necessary functions for performing a simulation. 

The resulting source collection is used to compile an executable file for the 

NGW100 that will perform all the tasks necessary for simulation: solution of the 

state equations, receiving controller inputs, generation of sensor emulator data, 

reporting and so on. After this executable is sent to the NGW100, the simulation 

can be run as desired. 

 

Due to the computational capabilities of the NGW100, this solution does not claim 

real-time performance. Instead, a non-real time operating scheme that treats the 

controller as the timing master is employed, similar to the scheme explained in  
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Figure 6.2: Block diagram of the microprocessor-based simulator 

 

 

Section 4.3.3. The sampling time of the controller is specified ahead of the 

simulation. The timer source for the controller then needs to be adjusted to 

allowthe simulator to complete the calculations between two commands. Once 

these steps are done, the time between two control loops is treated by the controller 

as if it is equal to the sampling time and all calculations are executed accordingly. 
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Figure 6.3: Operation timeline for microprocessor-based solution 

 

 

6.2 Modeling 
 

A 3-axis CNC vertical milling center is selected as the simulated plant for the case 

study. The dynamics of the three axes, including friction forces, backlash and 

forces generated due to cutting process are the focus of this simulation application. 

On the other hand, spindle and thermal dynamics, as well as other systems such as 

coolant/lubricant pumps and chip removal mechanism are excluded. 

 

The following sections discuss the details of the system model and implementation 

of this solution. 

 

6.2.1 Plant Model 
 

For the purposes of modeling, a CNC machining center available at the machine 

shop located in Mechanical Engineering department of Middle East Technical 

University is taken as reference. It is a First MCV-1100 3-Axis CNC Machining 

Center by Long Chang Machinery Ltd. Co., equipped with automatic tool changer, 

coolant and chip removal systems. 
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The axes of the machine are all mounted on friction (hydrostatic) guideways, and 

are driven by servomotors via ball screws. The x-axis carrying the cart (a.k.a. 

“table”) on which the workpiece is mounted is illustrated in Figure 6.4 and the y-

axis carries the entire x-axis assembly. Housed on the column is the z-axis 

assembly, carrying the entire headstock (main spindle shaft, motor and tool 

changing mechanism) (Figure 6.5). 

 

The equation of motion for the x-axis cart can be written as 

 

 ( )
1

, , sgn( )x w s x x f xx m m F F F x
−
 = + − − �� �  (6.1) 

 

where mw stands for the mass of the workpiece, mx is the mass of the cart, Fx is the 

cutting force on the axis, Ff,x is the friction force (dry) and Fs,x is the force exerted 

on the table by the ball screw nut. The equation of motion for the ball screw is 
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where Jx is the total moment of inertia of the ball screw and rotor, Tm,x is the torque 

applied by the motor, Tf,x is the dry  friction torque on the ball screw and rotor, hs,x 

is the screw lead and ηs,x is the ball screw efficiency. When backlash exists in the 

ball screw assembly, equations (6.1) and (6.2) are coupled together with the 

equation 
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Figure 6.4: X-axis feed drive for CNC machining center 

 

 

 

 

Figure 6.5: Z-axis feed drive for CNC machining center 
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where 

 
2x x x

h
d xθ

π
= −  (6.4) 

 

as explained in Section 3.2.1.3.  If the ball screw is assumed to be backlash-free, 

however, these equations can be reduced to a single equation of motion that uses an 

equivalent set of parameters. Using (6.1) and (6.2) one gets 
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Here, the equivalent inertia Jeq,x is defined as 
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Figure 6.6: First MCV-1100 3-Axis CNC Machining Center 
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Since the table’s position is linearly dependent on the angular position of the ball 

screw under no-backlash condition, it immediately follows that the velocities are 

also linearly dependent and sgn( ) sgn( )x θ= ��  holds. Hence, utilizing equations (6.1) 

and (6.2), the equivalent dry friction Tf,eq,x can be simply written as 

 

 ,
, , , ,

,2
s x

f eq x f x f x

s x

h
T F T

πη
= +  (6.7) 

 

The equations of motion regarding the y- and z-axes can be similarly obtained as 
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Figure 6.7: Horizontal axes of the CNC machining center 
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Under no-backlash condition, these can be expressed in a simpler form similar to 

(6.5) as 
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Figure 6.8: Vertical axis of the CNC machining center 
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Note that in equation (6.13) regarding the z-axis drive, the weight of the headstock 

assembly (W) is also included. The feed-drive axes are driven by Fanuc α Series 

AC Servo Motors, while the spindle motor is a Fanuc α Series AC Spindle 

(Induction) Motor. As specified in the descriptions manual [104], the speed-torque 

characteristics of the servo motors have a linearly decreasing tendency in the torque 

region up to the rated speed. Beyond this point, the motor enters the constant power 

region, similar to the model explained in Section 3.2.2 (Figure 6.9). The torque 

envelope of the motor, Tmax, is then 
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where Tr and ωr represent the rated torque and rated speed, respectively. Tr´ is the 

torque produced by the motor and Pr is the power output, both at the rated speed, 

while mT = (Tr - Tr´) / ωr and Pr = Tr´ωr. Torque applied by the motor as response 

to a torque command T
* is calculated from equation (3.23). Finally, Table 6.1 

shows the numerical values of the parameters defining the plant collected from the 

machine and motor operating manuals. 

 

 

 

Figure 6.9: Torque capability curve for CNC machining center axis motors 
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Table 6.1: Plant parameters for CNC machining center 

Parameter Symbol Unit x y z 

Mass m kg 130 331.97 260 
Dry friction force Ff N 200 200 200 
Moment of inertia J kg m2 7.9941×10-3 16.4838×10-3 19.7446×10-3 
Dry friction torque Tf N 1.1 1.5 2.1 

Viscous friction 
coefficient 

b Nms/rad 0.0005 0.0005 0.0005 

Equivalent moment 
of inertia Jeq kg m2 0.00834 0.01737 0.02044 

Equivalent dry 
friction 

Tf,eq N m 1.435 1.835 2.435 

Ball screw lead hs m 0.010 0.010 0.010 
Ball screw efficiency ηs - 0.95 0.95 0.95 

Rated torque Tr N m 12 22 30 
Rated speed ωr rad/s 209.44 209.44 209.44 
Rated power Pr W 2,094.4 3,769.9 4,398.2 

Torque-speed slope mT Nms/rad -0.00955 -0.01910 -0.04297 
Encoder resolution - pulses/rev 10,000 10,000 10,000 

 

6.2.2 Disturbance Model 
 

The disturbance in a machining center can be attributed mainly to the cutting forces 

generated during the machining process. These forces originate from the feed 

motion on the axes, chip removal by the tool cutter edges and eccentricity of the 

tool axis. In the ideal case, these forces must be derived based on a simulation of 

the actual cutting process. However, such a simulation would involve not only the 

dynamics of the chip removal process, but also a complete solid model of the 

workpiece in order to track the removed and remaining material. In addition to the 

tremendous computational resources needed for such a simulation, modeling of the 

removal process is out of the scope of this thesis and is not included in the studies. 

 

Instead of the actual disturbance model, an approximate model that generates a 

typical disturbance force for the cutting process is used. Based on the provided 

information, form can be composed using a mean value and a higher harmonic 

component of the spindle rotation, reflecting the feed and chip removal, and the 

first harmonic component of the spindle rotation, reflecting the eccentricity. The 

actual frequency of the higher harmonic component depends on the number of 
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cutting edges on the tool, Nc. During each revolution of the spindle, every edge 

engages and disengages the workpiece once; generating force with frequency Nc 

times that of the spindle revolution. The disturbance force as a function of 

simulation time can then be written as follows: 

 

 *
,max 1 2 3

sin( ) 1 sin( ) 1
( )

2 2
f

d d

N t t
F t F c c c

ω ω φ+ + +
= + + 

 
 (6.15) 

 

where Fd,max is the maximum disturbance, ω is the spindle speed and ϕ is the 

angular difference between the first tool edge and spindle eccentricity. Coefficients 

c1, c2 and c3 are selected to adjust the weight of the mean and two harmonic 

components and satisfy the following conditions: 

 

 1 2 3 1c c c+ + =  (6.16) 

 

 10 1c≤ ≤ ,   20 1c≤ ≤ ,   30 1c≤ ≤  (6.17) 

 

After the form of the disturbance force is known, the direction in which it is 

applied needs to be determined. Furthermore, in an actual process, the disturbance 

is only observed during chip removal. However, this is not included in the 

simulation. Instead, the reference trajectory for the simulated process is used to 

determine the direction and existence of disturbance. For any axis, the disturbance 

Fd is 

 

 
* *

*

sgn( ) ,sgn( )sgn( ) 1

0 ,sgn( )sgn( ) 1
d

d

F v v v
F

v v

− =
= 

≠
 (6.18) 

 

where v is the plant velocity and v* is the reference velocity. The above equation 

ensures that the disturbance is always in the opposite direction of the feed 
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movement and feed is in the direction of the uncut material. When the directions of 

the plant and reference command do not match, the disturbance force becomes zero 

as no cutting is expected to occur in this case. This model also prevents the 

disturbance from banging between extremes in two directions in cases where the 

velocity fluctuates around zero due to controller effort or numerical errors. 

 

For the application, three sets of disturbance forces are used for different scenarios: 

light, medium and heavy machining. The forces in each axis are selected such that 

for these machining types, the maximum resultant force is 1kN, 2.5kN and 4kN, 

respectively. Figure 6.10 shows an example disturbance form for a single axis, 

generated for 1kN resultant force. 

 

 

 

Figure 6.10: Example of light cutting force disturbance on single axis 
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6.3 Implementation 
 

The implementation of the proposed solution involves the development of 

necessary codes for the PC, NGW100 and FPGA platforms. In addition to their 

defined duties, these codes are also required to perform necessary communication 

and remain synchronized for successfully performing the simulation. The following 

sections explain the details of these codes, discussing the primary features required 

from each platform and methods for meeting these requirements. 

 

6.3.1 PC Software 
 

The PC software package aims to provide the user with the tools they will directly 

interact with in order to design and execute an HILS. Two programs are contained 

in this package: System Maker and System Monitor. 

 

The System Maker program allows the user to design the plant to be simulated. The 

program’s GUI presents the user with a tree view displaying the states, inputs, 

disturbances, constants and other intermediate variables of the plant; as well as its 

state equations and other settings related to the simulation process (Figure 6.11). A 

tabbed document interface provides the editing area for the selected properties. 

 

The user may start the design from scratch or open an existing System Maker file 

for modification. In any case, as many states as desired can be added, existing 

states may be removed or renamed from the interface. Inputs, disturbances, and 

other parameters can be similarly edited. The user is able to select the sources of 

the inputs, i.e. what type of command receiver (digital, PWM, etc.) will be 

employed to obtain a certain input. Likewise, the disturbance sources can also be 

specified as mathematical functions (which can be evaluated on the NGW100 

during run-time or on the PC and then transferred via Ethernet), pre-generated 

patterns (saved in binary files and read from NGW100 storage) or pseudo-random 
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Figure 6.11: Screenshot from the System Maker tool 

 

 

generators with specified mean, minimum, maximum and distribution properties. 

States, inputs and disturbances are fixed to non-array, single-precision floating 

point data types. On the other hand, constants and intermediate variables can be 

declared as single- or double-precision floating point values, bytes or short, normal 

and long integers. They can also be declared as arrays of any length. Additionally, 

all the parameters except inputs and disturbances can be assigned with the desired 

initial values. 

 

The definition of the plant’s state equations is made by expressing them using the 

C++ programming language. The user is presented with a formatted text box and 

simply needs to type in the equations for the derivatives of each plant state. These 

equations are encapsulated inside function that the NGW100 can use. Although the 

function header is pre-defined, the user is free to use the names they specified for 

states or other parameters as aliases. 
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Aside from the state equation, it is possible to specify pre-solve and post-solve 

functions. Unlike the state equation, these functions are not passed to the solver 

routine, which may call the function more than once due to its algorithm. These 

functions allow the user to specify linear relations between states, perform logical 

operations, store past state values and such tasks that need not or should not be 

passed to the solver. An even greater flexibility in plant definitions is thus 

provided. 

 

After the plant design is complete, System Maker generates the necessary source 

files from the provided information. These are combined with other source files for 

the NGW100 platform for cross-compilation, which is explained in the following 

chapter. Once compiled, the binary files are transferred to the NGW100, ready to 

perform the simulation. 

 

The System Monitor is a tool for displaying the state variables in the simulation as 

well as initiating and stopping the process. During the simulation, the NGW100 

reports the state, input and disturbance values are received via Ethernet. The 

Monitor holds the value history in the computer memory, plotting their change over 

time using on-screen graphs (Figure 6.12). If desired by the user, these values can 

be stored in a file using a format suitable for importing into other software 

packages. The Monitor is further capable of sending the necessary commands to 

start and stop the simulator to the NGW100 over serial port and Ethernet. 

 

The plant definition file generated using the System Maker is also used by the 

System Monitor to determine the variables in the plant and whether each one of 

them is reported by the NGW100 or not. Based on this information, the user is 

presented with a display setting window, using which the placement of individual 

plots on the screen, as well as trace colors can be adjusted. With these settings, the 

user can adjust the screen layout to their convenience. 
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Figure 6.12: Screenshot from the System Monitor tool 

 

 

The entire PC software package is developed using the C# programming language, 

dependent on the Microsoft .NET Framework. It can run on Windows XP, Vista 

and 7 operating systems. The System Monitor also uses the NPlot Charting 

Library [105] to draw the graphs. 

 

6.3.2 NGW100 Software 
 

Since the NGW100 is the main workhorse of the simulator, it is the most essential 

one of the hardware platforms used. In addition to the simulation calculations 

themselves, its tasks include transfer of data to and from the FPGA in order to 

receive the inputs coming from the controller and emulate the sensor outputs, as 

well as reporting of the state variables that belong to the simulated plant. The 



104 
 
 

 

software developed for NGW100 in order to accomplish said tasks can be separated 

into two main parts: simulator program and FPGA interface driver module. 

 

After the simulated plant is defined by the user and necessary sources and/or 

executables are placed on the NGW100, the simulator program is started via 

commands received from the RS-232 port. The start-up process involves the 

opening of the FPGA interface driver, initialization SPI module on the board, 

setting of the initial values of the state variables, calculation of derived constants 

and finally establishing socket connection to the user’s PC over Ethernet cable. 

 

The solution process is triggered by an interrupt signal originating from the write 

operation of the tested controller. Passing through the FPGA interface, this signal 

tells the NGW100 to acquire the inputs from the FPGA on which they are 

registered. Using the I/O pins on the NGW100 board, the FPGA is put into “read” 

mode and the inputs are received via high-speed (10Mbit/s) SPI protocol. The 

disturbance inputs to the plant, if any, are also generated, read from storage or 

obtained from buffers that are filled by the user’s PC. All the inputs and plant states 

are then used to solve for the state variables for the next time step. An 

implementation of the 4th order Runge-Kutta solver method is then employed to 

solve for the state variables for the next time step, using the inputs and current 

states. After the calculation, commands for the sensor emulators on the FPGA 

board are generated and sent, this time putting it in “write” mode and again sending 

the data over SPI. Finally, the inputs and state variables are written into a buffer to 

be sent to the PC for display and recording. The NGW100 then returns to a waiting 

state, ready to receive the next interrupt signal from the FPGA. 

 

To increase the responsiveness and performance of the simulator, multiple 

execution threads are used. The main process responsible for initialization of the 

program components is the first thread. Handling the commands that can be 

received over the RS-232 is also done here. The second thread performs the 
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solution of the state equations and the read/write operations to the FPGA board, as 

well as filling the buffer containing the state values to be sent to the PC. Its 

operation is triggered by the driver module. The last thread takes care of the 

communications with the PC. Its operation is interrupted and blocked by the 

simulator thread whenever necessary, only to be resumed when CPU time is 

available again, ensuring the simulation has the highest priority. 

 

In order to accomplish its tasks, the simulator program also utilizes the FPGA 

interface driver; a loadable Linux kernel module which provides low-level access 

to the system resources without the need to recompile the kernel [106]. The 

NGW100 is set up to automatically load this module on startup, which calls the 

necessary routines that enable the use of the GPIO chip. Since CPU interrupts are 

only available to code executing in the kernel space in Linux, it also registers itself 

to receive interrupts coming from GPIO pins. Thus, when the simulator program is 

launched, it can register itself with the driver to be notified of these interrupts, 

allowing the simulation loop to be initiated when they occur. The module also 

drives the necessary I/O pins for putting the FPGA board into “read” or “write” 

states. 

 

The programming tasks for NGW100 are done using the AVR32 Studio IDE [107]. 

The tools contained in the IDE are capable of interfacing with the board using 

relevant interfaces for debugging purposes. The main programming language used 

is C/C++, providing all the facilities of the standard libraries developed for the 

language as well as those for the Linux operating system. The libraries, executables 

and other resources developed by the user are cross-compiled for the NGW100 

platform and can be easily downloaded via FTP or transferred by means of an SD-

Card. Furthermore, since AVR32 Studio is built on top of the Eclipse IDE [108], 

any plug-ins written for Eclipse are compatible, providing a more user friendly 

environment to the developer. The code developed on the IDE is cross-compiled 
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for the NGW100 using the tools contained in AVR32 Buildroot [109-110] (a set of 

compilation tools and utilities for embedded Linux systems). 

 

The source code of the simulator program is prepared in an object-oriented fashion 

and it is functionally divided into a multitude of classes for better organization and 

reusability. In addition to these classes, the libraries stdc++ (C++ standard 

libraries), pthread (POSIX threads library) and rt (real-time library) are also 

employed. The interface driver is written in C language and only uses the Linux 

kernel libraries. 

 

6.3.3 FPGA Design 
 

The FPGA board serves as the interface between the entire simulation and the 

controller being tested. Therefore its duties are basically the notification of the 

simulation of the received commands and emulation of the sensors existing in the 

plant. The realized digital circuit consists of a communicator/manager module, 

input reception signaler, data and configuration registers and finally, the receivers 

and emulators themselves. 

 

The manager module serves as the center of operations on the FPGA. When 

manipulation commands are received from the controller, they are collected from 

the relevant registers and the NGW100 is notified by sending an interrupt signal. 

The commands are then sent over SPI upon the reception of the read instruction 

from the NGW100. After the simulation calculations are completed, the commands 

necessary to generate signals at the sensor emulators are received via SPI. These 

are written into the appropriate registers and the operation loop is thus completed. 

 

When the controller sends manipulation commands, each receiver block raises a 

signal indicating it has received data. Signals from all the blocks are monitored by 

the input reception signaler module. When a signal is received, a corresponding 

flag is raised in an internal register. When all the flags belonging to the receiver 
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blocks used in the simulation are raised, i.e. each block used has received a 

command; the signaler triggers the manager module and resets the flags. This way, 

reception of commands on every available receiver block is marked as the initiation 

of simulation calculations, realizing the “timing master is the controller” scheme. 

 

All the receiver and emulator blocks are connected to two register blocks: data and 

configuration. While data obviously serve for the storage of input and output data, 

configuration registers hold information necessary for proper and compatible 

operation of these blocks if necessary. Such information may include, but is not 

limited to, PWM periods, encoder pulse per revolution counts, sampling time and 

so on. 

 

The FPGA would ideally contain multiple instances of various receiver and sensor 

emulator blocks. The configuration registers can then be used to enable the blocks 

that are required for the execution of the desired plant simulation. The 

implementation here, however, only contains the ones necessary to simulate the 

CNC machining center and does not go into a completely flexible design. 

 

6.4 Results 
 

The functionality of the developed implementation is first performed by connecting 

constant command generators to the receivers inside the FPGA board. Using digital 

oscilloscopes and timers available on the platforms, various measurements 

regarding calculation and communication times were made. 

 

Once correct operation of all hardware platforms is observed, the simulator is 

connected to a controller also developed on an FPGA platform. The controller is 

the result of a root locus design procedure and it is loaded with command 

references for the machining operation for one part an injection mold of a bottle. 

The simulation of this operation is repeated for different disturbance force 

magnitudes, as well as under backlash and no-backlash conditions. The results are 
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successfully used both in debugging of the simulator software and optimization of 

the said controller. Figures 6.14 through 6.21 present samples from the command 

references and error data gathered during the test processes. 

 

 

Interrupt Service 
Routine

Read Inputs
Simulation 
Calculations

Write Emulator 
Data

Controller 
Command

Emulator 
Output

3.58ms

Send to 
PC

21.38µs

701.39µs

797.01ms

 

Figure 6.13: Mean times for sub-processes within the NGW100 

 

 

 

Figure 6.14: Cutting tool trajectory for bottle injection mold 
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Figure 6.15: Section of axis references for bottle injection mold 

 

Figure 6.16: Section of x-axis motor position error for bottle injection mold 
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Figure 6.17: Section of y-axis motor position error for bottle injection mold 

 

 

Figure 6.18: Section of z-axis motor position error for bottle injection mold 
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Figure 6.19: Section of x-axis cart position error due to backlash for bottle injection 

mold 

 

Figure 6.20: Section of x-axis cart position error due to backlash for bottle injection 

mold 
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Figure 6.21: Section of x-axis cart position error due to backlash for bottle injection 

mold  
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Finally, the resource usage of the software developed for each piece of hardware is 

investigated. The System Maker and System Monitor applications take up 83kB 

and 207kB in binaries. When launched, these report 20.5MB and 11.8MB of total 

memory usage. Saved plant designs take up no more than 5kB, although the size of 

saved plant designs exact size is dependent on the plant itself. The size of the 

recorded states depends on the number of states and inputs to the plant, as well as 

the simulation duration. For the CNC machining center, the recording for a 15-

minute cutting operation (including all states, torque commands and disturbances 

for a total of 18 variables) occupies up to 62MB of storage when saved in binary 

form or up to ~150MB in text form. These are obviously insignificant memory and 

storage capacities for today’s computers. With all the statically linked libraries, the 

simulator program and interface driver for the NGW100 are 32.5kB and 5.8kB in 

size, respectively. The total memory allocated by the simulation processed is 

limited by 2MB. Taking into consideration the specs of the NGW100 and that an 

SD-Card with 256MB of storage capacity is used, the platform easily handles the 

application. Finally, the resource usage on the FPGA is presented in Table 6.2 and 

Figure 6.22 shows the chip utilization floor plan. 

 

Table 6.2: Hybrid solution FPGA resource usage 

Total logic elements 924 (5%) 
Total combinatorial functions 591 (3%) 
Dedicated logic registers 704 (4%) 

 

6.5 Closure 
 

The CNC machining center application presented here constitutes a full-feature 

HILS system, complete with controller interfacing, simulation and data recording. 

Performing all the desired tasks and providing a test bed for development of an 

actual controller, it demonstrates successful implementation of the techniques 

discussed in this thesis. 
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Timings of the various tasks within the implementation show that simulation 

speeds up to 300Hz are possible, which is unsuitable for real-time applications. 

Scaled-time operation with the controller as timing master, however, is possible. 

Upon inspection, it is observed that an important proportion of the calculation 

durations is spent between the reception of the interrupt signal from the FPGA and 

initiation of calculations on the NGW100. This delay is caused by the interrupt 

handling and kernel-to-user space signaling mechanism inside the Linux operating 

system. Unfortunately, this mechanism cannot be modified by the simulation. In 

order to minimize this delay, a real-time Linux kernel or another real-time 

operating system needs to be employed on the simulator platform. At the extreme, 

it is possible to completely get rid of an “operating system” and run stand-alone 

simulation calculations. However, the task of including appropriate hardware and 

communication drivers in the code for such a complicated hardware platform is 

extremely difficult. 

 

The high deviations in simulation calculation durations make it difficult to emulate 

sensor signals that are dependent on time, such as the encoder generator. Owing to 

the specific controller used, which is capable of handling ill-delayed encoder 

signals, the emulators are configured with lower sampling times in this specific 

application. This enables the encoder signals to be sent without losing pulses. 

However, periods during which the pulse generator stops working are also 

introduced by this modification. The timing of the pulses is also no longer proper. 

These side effects may cause problems with other controllers, where the 

measurement of the signal timings is meaningful. While it is true that the use of a 

real-time operating system will improve the calculation durations, methods for 

minimizing their effect on signal emulation need to be investigated, perhaps 

leading to a revised emulator implementation. 

 

Despite the use of a separate processor platform, it is always possible to employ an 

embedded microprocessor design (such as Nios II) on the FPGA board and 
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eliminate the actual processor. In such a substitution, improved coupling of the 

simulation with the interface emulators becomes possible. This enables the removal 

of some additional management modules and relevant code, eliminating a 

significant portion of the computational delays as well as resulting in a more 

compact solution. However, there are certain downsides to this change. First of all, 

even the most basic microprocessor design takes up an important portion of the 

available resources on the FPGA board (e.g. Nios II uses up to %30 of the logic 

elements on the DE1 board). Addition of communication interfaces (Ethernet, USB 

etc.) and an FPU to this design further increase the usage, leaving even less room 

for the interface emulators. If one further attempts to implement multiple FPUs 

(commonly utilized via DSP- and SIMD-specific instructions on microprocessors), 

the resources on the FPGA are rapidly consumed and the advantages of using an 

embedded processor design are lost. The use of a stand-alone microprocessor 

platform is therefore more feasible. On the other hand, design of a board which 

accommodates the microprocessor and the FPGA chip together, as well as all other 

external resources, is a possibility. 
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CHAPTER 7  
 
 
 
 

CONCLUSION AND FUTURE WORK 
 

 

 

 

7.1 Conclusion 
 

This thesis is aimed at developing an integrated, self-contained and user-friendly 

solution to perform HIL simulations. This solution is desired to contain the 

necessary tools for designing and implementing simulation processes, interfacing 

the controller hardware at hand with the simulator and also the viewing and 

recording of the data generated during the simulation for analysis. For this purpose, 

it proposes the use of a number of hardware platforms that specially designed to 

perform the simulations and interface with controllers. It also presents numerous 

software packages that allow the user to define the plant to be simulated, generate 

the necessary machine codes to realize that simulation and finally execute it. 

 

The first work done is the development of mathematical models of common 

elements found in dynamical systems. After this, methods for solving these 

mathematical models (and plants composed of these) numerically in a simulation 

application are presented.  

 

With the required techniques at hand, an initial attempt at creating an integrated 

HILS solution is made with the aim of providing an educational tool is made. This 

tool allows control engineering students to conduct extensive laboratory-like work 

with the aid of a simple development board and a software package. This facilitates 

the reinforcement of the material covered in the courses by introducing visual 
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elements and making it easier to understand the controller and plant within cause-

effect relationship. The Cadmus package developed during two applications of this 

concept clearly shows via student feedback that it successfully fulfills its purpose. 

 

With certain elements of an integrated HILS solution provided by the educational 

solution, the focus is shifted to the performance and connectivity aspects of the 

simulation. An FPGA chip with its host development board is employed to 

implement a high-speed solver for simulations. It was demonstrated that although 

such an approach results in a very fast simulator, it suffers from a trade-off between 

speed and flexibility. As the simulation of more complex system models involving 

various mathematical functions and conditional statements are desired, the 

proposed solver becomes incapable of handling these equations and the need for 

utilization of a processor unit emerges. On the other hand, the developed system 

contains sensor emulators and command receivers that enable the interfacing of the 

simulator with any external controller hardware. This successfully fulfills the 

connectivity required from such a simulator system. 

 

As the final stage of the studies, a complete HILS system utilizing the successful 

elements of the previous works is developed. Employing a combination of different 

hardware platforms with appropriate communication interfaces, this system 

exhibits all the desired features: flexible controller interfacing, the capability of 

solving almost any given set of plant equations, display and recording of system 

states during run-time and all the software tools that the user will need during 

design and execution of the simulation. Although the resulting system lacks real-

time simulation performance, it well demonstrates the working of the proposed 

setup. With the necessary optimizations and modifications to both hardware and 

software, it is evident that building a high performance simulator is possible. 

 

One might suggest the use of a personal computer, supported by an I/O card for 

controller interfacing, in order to perform HIL simulations. Via the use of a real-
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time operating system, such a platform would have a high computational power 

owing to modern CPUs (and as of the latest trend, computational use of GPUs). As 

a matter of fact, such setups are already being used in various HILS applications. 

However, this approach contradicts with certain goals of the studies of this thesis. 

First of all installation of a real-time OS on the user’s PC is quite intrusive. During 

the execution of the simulation, all other work on the computer must be ceased; 

otherwise the user’s activity will negatively impact the computational performance. 

This has a negative impact on the user-friendliness aspect of the solution. 

Furthermore, modern PC designs utilize many advanced hardware components and 

interfaces. Typically hidden below several abstraction layers in user applications, 

high-performance using these components in a real-time application requires 

careful low-level code design. Also, in contrast to high-performance yet simple 

board designs, there may be many delay sources and other bottlenecks that cannot 

be bypassed by any means. Despite the high computational capabilities of the 

platform, these effects may prevent the realization of a real-time general-purpose 

simulator. Therefore, a smaller-scale platform similar to the NGW100 remains as a 

feasible and much simpler solution to the problem. 

 

7.2 Future work 
 

The results obtained from the different solutions proposed in this thesis point out to 

a number of future work opportunities, some specific to themselves and some that 

can be generalized to the whole concept. 

 

The results of the educational package show that in order to maximize the 

efficiency of the application, extensive testing and debugging of such an 

application is necessary. It is also desirable to have a design tool to be provided to 

the course instructor or assistants, who may wish to modify certain parameters of 

the simulated plant or design an entirely new application. This will increase the 

reusability of the package over successive semesters, also giving the student to 

explore other systems and test their knowledge. 
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Attempts at developing a high performance simulator show that in order to achieve 

a fast yet flexible solver, utilization of a processor-like device is required. For this 

purpose, it may be beneficial to explore a customized processor designed to handle 

equations governing dynamical systems. Such a design will be able to exhibit both 

the flexibility of a processor and the speed of hardware-accelerated arithmetic. 

More detailed inspection and revised design of interface emulators is also advisable 

in order to decrease dependency on simulator speed and provide a more realistic 

interface. 

 

As for the hybrid solution, although the capability of handling almost any plant is 

demonstrated, the delays in the microprocessor platform deteriorate the 

performance of the overall system. Methods of code optimization, as well as the 

use of real-time operating systems or stand-alone executables are definitely to be 

beneficial at this point. Exploration of distributed and/or hardware accelerated 

calculations is also an open end. 
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APPENDIX A  
 
 
 
 

HARDWARE SPECIFICATIONS 

 

 

 

 

A.1 PIC Development Board and Microchip PIC Microcontrollers 

 

This section provides specifications for the PIC Development Board and its 

components. The board itself accommodates: 

 

• Microchip PIC18F4520 microcontroller 

• 20 MHz crystal oscillator 

• Two 0-20kΩ potentiometers (connected to pins configurable as D/A 

converter) 

• Push button (connected to pin configurable as external interrupt) 

• Three LEDs 

• Serial port with MAX232 TTL – RS-232 converter IC 

• Female sockets connected to all unused pins on the microcontroller (5V and 

ground wires also provided) 

• Reset push button 

• On-off switch 
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Table  A.1: Microchip PIC18F4520 microcontroller specifications [111-112] 

Operating Frequency 40 MHz 
CPU Speed 10 MIPS 
SRAM Memory 1,536 
Program Memory 16,384 
EEPROM Memory 256 
Interrupts 20 
I/O Pins 36 
Timers 1 × 8-bit, 3 × 16-bit 
A/D Converters 13 × 10-bit channels 
Capture/Compare/PWM 1 × CCP, 1 × ECCP modules 
Serial Communications 1 × SSP (SPI/I2C), 1 × EUSART 
Parallel Communications PSP 
Analog Comparators 2 

 

A.2 NGW100 Network Gateway Kit and AT32AP7000 Microprocessor 

 

This section provides specifications for the NGW100 Network Gateway Kit and its 
components. The NGW100 itself accommodates [113]: 

 

• Atmel AT32AP7000 CPU 

• 32 MB SDRAM 

• 16 MB on-board flash 

• SD-Card/MMC slot 

• ATtiny24 board controller & ISP interface for board identification 

• JTAG & Nexus programming/debugging interface 

• RS-232 port 

• Two Ethernet ports 

• USB port 

• 63 expansion pins for general purpose I/O and AT32AP7000 peripheral 

modules 

• Power & status LEDs 

• Two user controllable LEDs 
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• Reset push button 

• Boot select jumper 

 

The specifications of the AT32AP7000 microprocessor are [103]: 

 

• AVR32 32-bit Microcontroller 

o 210 DMIPS throughput at 150 MHz 

o 16 KB instruction cache and 16 KB data cache 

o MMU 

o Single-cycle RISC instruction set including SIMD and DSP 

instructions 

o Java hardware acceleration 

• Pixel coprocessor for video acceleration 

• Multi-hierarchy bus system 

• 32 KB SRAM data memory 

• External SDRAM, DataFlash, SRAM, MMC, SD, Compact Flash, Smart 

Media, NAND Flash memory interfaces 

• DMA Controller 

• Interrupt Controller 

• System Functions 

o Power and clock manager 

o Crystal oscillator with PLL 

o Watchdog timer 

o Real-time clock 

• 6 × multifunction timer/counters 

o Three external clock inputs, I/O pins, PWM, capture and various 

counting capabilities 

• 4 × USART 

o 115.2 kbps IrDA Modulation and Demodulation 
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o Hardware and software handshaking 

• 3 × SSP controllers 

o Supports I2S, SPI and generic frame-based protocols 

• Two-wire interface 

o Sequential read/write operations, I2C compliant 

• LCD interface 

o Supports TFT displays 

o Configurable pixel resolution supporting QCIF/QVGA/VGA/SVGA 

configurations 

• 12-bit image sensor interface for CMOS cameras 

• USB 2.0 high speed (480 Mbps) device 

• 2 × 802.3 Ethernet MAC 10/100 Mbps interfaces 

o Supports MII and RMII 

• 16-bit stereo audio bit stream DAC with sample rates up to 50 kHz 

• On-chip debug system 

o Nexus class 3 

o Full speed, non-intrusive data and program trace 

o Runtime control and JTAG interface 

• Package/Pins 

o AT32AP7000: 256-ball CTBGA 1.0 mm pitch/160 GPIO pins 

• Power supplies 

o 1.65V to1.95V VDDCORE 

o 3.0V to 3.6V VDDIO 

 

A.3 Terasic Altera DE1 Cyclone II FPGA Starter Kit 

 

This section provides specifications for the DE1 Cyclone II FPGA Starter Kit and 

its components. The DE1 itself accommodates [114]: 

• Altera Cyclone II EP2C20F484C7 FPGA Chip 
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• Built-in USB-Blaster chip for FPGA configuration 

• 8 MB SDRAM 

• 512 kB SRAM 

• 4 MB flash memory 

• 10 × toggle switches 

• 4 × push buttons 

• 18 × LEDs 

• 4 × 7-segment digit display 

• 50 MHz and 27 MHz clock sources, SMA external clock input 

• 24-bit audio codec chip with line in, line out and microphone in jacks 

• VGA video output with 4-bit resistor array DAC 

• RS-232 serial port 

• PS/2 mouse/keyboard port 

• 2 × 40-pin expansion headers 

• SD-Card slot 

 

Table  A.2: Specifications of Cyclone II EP2C20F484C7 FPGA chip [115] 

Logic Elements 18,752 
M4K RAM blocks (4 Kbits + 512 parity bits) 52 
Total RAM bits 239,616 
Embedded multipliers (9-bit) 52 
PLLs 4 
User I/O pins 315 

 

A.4 Terasic Altera Nios II Embedded Evaluation Kit 

 

This section provides specifications for the Nios II Embedded Evaluation Kit and 

its components. The boards making up the kit accommodate [116]: 

• Altera Cyclone II EP3C25F324 FPGA Chip 

• Built-in USB-Blaster chip for FPGA configuration 

• 32 MB DDR SDRAM 
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• 1 MB SSRAM 

• 16 MB flash memory 

• 4 × push buttons 

• 4 × LEDs 

• 50 MHz clock source 

• 24-bit audio codec chip with line in, line out and microphone in jacks 

• VGA video output with 4-bit resistor array DAC 

• Composite TV-in 

• RS-232 serial port 

• PS/2 mouse/keyboard port 

• Ethernet connector 

• JTAG connector 

• SD-Card slot 

 

Table  A.3: Specifications of Cyclone III EP3C25F324 FPGA chip [117] 

Logic Elements 26,624 
M9K RAM blocks (9 Kbits) 66 
Total RAM bits 608,256 
Embedded multipliers (9-bit) 132 
PLLs 4 
User I/O pins 215 
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APPENDIX B  
 
 
 
 

SOURCE CODE LISTINGS 

 

 

 

 

B.1 Introduction 

 

The listing of source code developed during the thesis studies is presented in this 

appendix for completeness. Table  B.1 provides a list of the included source files, 

while the following sections document certain important sections of these files. 

 

Table  B.1: Source files developed for the applications 

File name Lang. Description 
Related 
Chapter 

MainForm.cs C# Main application and GUI routines 4 
Antenna.cs C# Equations governing antenna behavior 4 
Environment.cs C# Variables regarding wind properties 4 
Satellite.cs C# Equations governing satellite motion 4 
Simulation.cs C# Primary simulation routines 4 
StateSolver.cs C# 4th order Runge-Kutta solver routine 4 
Protoc16.h C 16-bit communication protocol header 4 
PWM_Receive.v Verilog Modified (synced) PWM receiver 5, 6 
Encoder.vhd VHDL Time-scalable encoder emulator 5, 6 
main.cpp C++ Main simulation process 6 
CadmusDevice.h, .cpp C++ FPGA board management class 6 
CadmusManager.h, .cpp C++ PC communication management class 6 
DisturbanceSource.h, .cpp C++ Generated/pre-recorded disturbance provider 6 
EncoderCommander.h, .cpp C++ Command generator for encoder emulator 6 
Solver_RK4.h, .cpp C++ 4th order Runge-Kutta solver routine 6 
NGW_Interface.vhd VHDL FPGA manager and NGW100 interface 6 
InputSignaller.vhd VHDL Multiple input command detection module 6 
hils_milling_distgen.m m-file Machining center disturbance generation 6 
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B.2 Source code – MainForm.cs 

using System; 

using System.Collections.Generic; 

using System.Drawing; 

using System.IO; 

using System.Windows.Forms; 

 

namespace SatelliteAntenna 

{ 

 public partial class MainForm : Form 

 { 

  public MainForm() 

  { 

   InitializeComponent(); 

  } 

 

  // On launch 

  private void Form1_Load(object sender, EventArgs e) 

  { 

   // Setup scopes on view tab – grids, colors etc. 

   #region Scopes 

   // ... 

   #endregion 

 

   // Print parameters in settings tab for user convenience 

   #region System Parameters 

   // ... 

   #endregion 

 

   // Enumerate serial ports on the computer 

   string[] PortNames = 

System.IO.Ports.SerialPort.GetPortNames(); 

   if (PortNames.Length > 0) 

    cmbSettings_SerialComm_Port.Items.AddRange(PortNames); 

   else 

    MessageBox.Show("No COM ports were found. Please check 

your hardware connections and settings.", "Error", MessageBoxButtons.OK, 

MessageBoxIcon.Error); 

 

   // Reload settings from the previous run of the program, 

   // the user won't have to re-adjust everything 

   bool SettingsLoaded = false; 

   if (File.Exists("Settings.dat")) 

   { 

    try 

    { 

     // Read and apply settings from file 

     // ... 

 

     SettingsLoaded = true; 

    } 

    catch 

    { 

     // Corrupted settings file, delete it 

     File.Delete("Settings.dat"); 

    } 

   } 

 

   // Default settings if no record exists or it exists but is 

   // corrupted 

   if (!SettingsLoaded) 

   { 

    // ... 

   } 

 

   Initialized = true; 

  } 
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  // User changes sampling time 

  private void 

cmbSettings_Simulation_SamplingTime_SelectedIndexChanged(object sender, EventArgs 

e) 

  { 

   // Assign sampling time ts 

   int SamplingTime = 

Convert.ToInt32(cmbSettings_Simulation_SamplingTime.Text); 

   Simulation.SamplingTime = (float)SamplingTime / 1000; 

    

   // Populate data recording intervals, starting at ts/2 

   // down to 0.25ms 

   List<int> Items = new List<int>(); 

   for (int i = SamplingTime - 1; i > 0; i--) 

    if (((SamplingTime / i) * i) == SamplingTime) 

     Items.Add(i); 

 

   cmbSettings_Simulation_LogInterval.Items.Clear(); 

   foreach (int i in Items) 

    cmbSettings_Simulation_LogInterval.Items.Add(i); 

 

   cmbSettings_Simulation_LogInterval.Items.Add(0.5); 

   cmbSettings_Simulation_LogInterval.Items.Add(0.25); 

 

   cmbSettings_Simulation_LogInterval.SelectedIndex = 0; 

  } 

 

  // At program exit 

  private void MainForm_FormClosing(object sender, FormClosingEventArgs 

e) 

  { 

   Simulation.Stop(); 

 

   // Record application settings 

   StreamWriter Writer = new 

System.IO.StreamWriter("Settings.dat", false); 

   Writer.WriteLine("// Do not modify the contents of this file 

manually. Delete the file if you wish to reset your settings. #21"); 

    

   // ... 

   // ... 

   // ... 

 

   Writer.Flush(); 

   Writer.Close(); 

  } 

 

  // Record mouse button press for adjusting antenna angles 

  // Only works when simulation is not running 

  private void satelliteGraphicsDeviceControl_MouseDown(object sender, 

MouseEventArgs e) 

  { 

   if (Simulation.State == RunState.Stopped) 

   { 

    if (e.Button == MouseButtons.Left) 

    { 

     m_CursorPosition = Cursor.Position; 

     Cursor = Cursors.SizeAll; 

    } 

   } 

  } 

 

  // Rotate antenna when the user drags the mouse 

  // This is for setting intial position 

  private void satelliteGraphicsDeviceControl_MouseMove(object sender, 

MouseEventArgs e) 

  { 

   if (!m_CursorPosition.IsEmpty) 

   { 
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    Program.Antenna.Azimuth += 

Angle.ToRadian(Cursor.Position.X - m_CursorPosition.X) / 

Microsoft.Xna.Framework.MathHelper.Pi; 

 

    float newElevation = Program.Antenna.Elevation - 

Angle.ToRadian(Cursor.Position.Y - m_CursorPosition.Y) / 

Microsoft.Xna.Framework.MathHelper.Pi; 

    newElevation = 

Microsoft.Xna.Framework.MathHelper.Clamp(newElevation, 0f, 

Microsoft.Xna.Framework.MathHelper.Pi); 

 

    Program.Antenna.Elevation = newElevation; 

 

    m_CursorPosition = Cursor.Position; 

   } 

  } 

 

  // Record mouse button release after adjusting antenna angles 

  private void satelliteGraphicsDeviceControl_MouseUp(object sender, 

MouseEventArgs e) 

  { 

   m_CursorPosition = Point.Empty; 

   Cursor = Cursors.Default; 

  } 

 

  private bool Initialized = false; 

 

  private Point m_CursorPosition = Point.Empty; 

 } 

} 

 

B.3 Source code – Antenna.cs 

using System; 

using Microsoft.Xna.Framework; 

 

namespace SatelliteAntenna 

{ 

 public class Antenna 

 { 

  public Antenna() 

  { 

   m_Latitude = 0; // float.ToRadian(39.892365f); // 

39°53'32.51"N 

   m_Longitude = 0; // float.ToRadian(32.783357f); // 

32°47'0.09"E 

  } 

 

  public void Think() 

  { 

   float x1, x2, dx; 

   float[] States; 

 

   #region Wind 

 

   float CosElevation = (float)Math.Cos(Elevation); 

 

   Vector3 Facing = new Vector3(); 

   Facing.X = (float)Math.Cos(Azimuth) * CosElevation; 

   Facing.Y = (float)Math.Sin(Azimuth) * CosElevation; 

   Facing.Z = (float)Math.Sin(Elevation); 

 

   float CosGamma = Vector3.Dot(Facing, 

Program.Environment.WindDirection); 

   float Gamma = (float)Math.Acos(CosGamma); 
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   float Area = (0.55f + (0.45f * Math.Abs(CosGamma))) * 

0.636173f; 

   float DragCoefficient; 

   if (CosGamma < 0) 

    DragCoefficient = 0.4f + 0.51f * (1 + 

(float)Math.Cos(2 * Gamma)); 

   else 

    DragCoefficient = 0.4f + 0.275f * (1 + 

(float)Math.Cos(2 * Gamma)); 

     

   float Force = 0.602f * Program.Environment.WindSpeed * 

Program.Environment.WindSpeed * DragCoefficient * Area; 

 

   m_Azimuth_WindTorque = Force * 

(float)Math.Sin(Program.Environment.WindYaw - Azimuth); 

   m_Elevation_WindTorque = Force * 

(float)Math.Sin(Program.Environment.WindPitch - Elevation); 

    

   #endregion 

 

   #region Azimuth 

 

   if (!Program.MainForm.rbMain_ControlAxes_Elevation.Checked) 

   { 

    // Torque capability 

    if (Math.Abs(m_Azimuth_Omega1) <= 

m_Azimuth_MaximumSpeed) 

     m_Azimuth_Torque1A = m_Azimuth_TorqueCommand; 

    else 

     m_Azimuth_Torque1A = m_Azimuth_TorqueCommand * 

m_Azimuth_MaximumSpeed / Math.Abs(m_Azimuth_Omega1); 

     

    // Backlash   

    x1 = m_Azimuth_Theta1; 

    x2 = m_Azimuth_Theta2 * m_Azimuth_Radius2 / 

m_Azimuth_Radius1; 

    dx = x1 + x2; 

 

    m_Azimuth_Torque1B = StateEquation_g(dx, 

m_Azimuth_Backlash, m_Azimuth_TorsionConstant); 

    m_Azimuth_Torque2 = -(m_Azimuth_Radius2 / 

m_Azimuth_Radius1) * m_Azimuth_Torque1B; 

 

    States = new float[] { m_Azimuth_Theta1, 

m_Azimuth_Omega1, m_Azimuth_Theta2, m_Azimuth_Omega2 }; 

 

    // Apply RK4 

    States = 

StateSolver.RungeKutta4(StateEquation_Azimuth, States, new float[] { 

m_Azimuth_Torque1A, m_Azimuth_Torque1B, m_Azimuth_Torque2, m_Azimuth_WindTorque }, 

Simulation.Time, Simulation.Step); 

 

    m_Azimuth_Theta1 = States[0]; 

    m_Azimuth_Omega1 = States[1]; 

    m_Azimuth_Theta2 = States[2]; 

    m_Azimuth_Omega2 = States[3]; 

   } 

   else 

   { 

    // No control will be done for azimuth 

    m_Azimuth_Omega1 = 0; 

    m_Azimuth_Omega2 = 0; 

 

    Azimuth = Program.Satellite.Azimuth; 

   } 

 

   #endregion 

 

   #region Elevation 
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   if (!Program.MainForm.rbMain_ControlAxes_Azimuth.Checked) 

   { 

    // Torque capability 

    if (Math.Abs(m_Elevation_Omega1) <= 

m_Elevation_MaximumSpeed) 

     m_Elevation_Torque1A = 

m_Elevation_TorqueCommand; 

    else 

     m_Elevation_Torque1A = 

m_Elevation_TorqueCommand * m_Elevation_MaximumSpeed / 

Math.Abs(m_Elevation_Omega1); 

 

    // Backlash 

    x1 = m_Elevation_Theta1; 

    x2 = m_Elevation_Theta2 * m_Elevation_Radius2 / 

m_Elevation_Radius1; 

    dx = x1 + x2; 

 

    m_Elevation_Torque1B = StateEquation_g(dx, 

m_Elevation_Backlash, m_Elevation_TorsionConstant); 

    m_Elevation_Torque2 = -(m_Elevation_Radius2 / 

m_Elevation_Radius1) * m_Elevation_Torque1B; 

    float ConstraintTorque = 

StateEquation_ElevationConstraintTorque(); 

 

    States = new float[] { m_Elevation_Theta1, 

m_Elevation_Omega1, m_Elevation_Theta2, m_Elevation_Omega2 }; 

 

    // Apply RK4 

    States = 

StateSolver.RungeKutta4(StateEquation_Elevation, States, new float[] { 

m_Elevation_Torque1A, m_Elevation_Torque1B, m_Elevation_Torque2, 

m_Elevation_WindTorque, ConstraintTorque }, Simulation.Time, Simulation.Step); 

 

    m_Elevation_Theta1 = States[0]; 

    m_Elevation_Omega1 = States[1]; 

    m_Elevation_Theta2 = States[2]; 

    m_Elevation_Omega2 = States[3]; 

   } 

   else 

   { 

    // No control will be done for elevation 

    m_Elevation_Omega1 = 0; 

    m_Elevation_Omega2 = 0; 

 

    Elevation = Program.Satellite.Elevation; 

   } 

 

   #endregion 

 

   #region Signal 

 

   float AzimuthError = Program.Satellite.Azimuth - Azimuth; 

   while (AzimuthError > Mathematics.PI) 

    AzimuthError -= Mathematics.TwoPI; 

   while (AzimuthError < -Mathematics.PI) 

    AzimuthError += Mathematics.TwoPI; 

 

   float ElevationError = Program.Satellite.Elevation - 

Elevation; 

 

   AzimuthError = AzimuthError * AzimuthError; 

   ElevationError = ElevationError * ElevationError; 

 

   m_SignalStrength = 10 * (float)Math.Exp(-625 * (AzimuthError 

+ ElevationError)); 

 

   #endregion 
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  } 

 

  private float[] StateEquation_Azimuth(float[] X, float[] U, float 

Time) 

  { 

   float[] Result = new float[X.Length]; 

 

   float NetTorque1 = U[0] - U[1]; 

   if (m_Azimuth_Omega1 > 0) 

    NetTorque1 -= m_Azimuth_CoulombFriction1; 

   else if (m_Azimuth_Omega1 < 0) 

    NetTorque1 += m_Azimuth_CoulombFriction1; 

   else 

   { 

    // Static friction 

    if (Math.Abs(NetTorque1) < m_Azimuth_CoulombFriction1) 

     NetTorque1 = 0f; 

    else 

    { 

     if (NetTorque1 > 0) 

      NetTorque1 -= 

m_Azimuth_CoulombFriction1; 

     else 

      NetTorque1 += 

m_Azimuth_CoulombFriction1; 

    } 

   } 

 

   float NetTorque2 = U[2] + U[3]; 

   if (m_Azimuth_Omega2 > 0) 

    NetTorque2 -= m_Azimuth_CoulombFriction2; 

   else if (m_Azimuth_Omega2 < 0) 

    NetTorque2 += m_Azimuth_CoulombFriction2; 

   else 

   { 

    // Static friction 

    if (Math.Abs(NetTorque2) < m_Azimuth_CoulombFriction2) 

     NetTorque2 = 0f; 

    else 

    { 

     if (NetTorque2 > 0) 

      NetTorque2 -= 

m_Azimuth_CoulombFriction2; 

     else 

      NetTorque2 += 

m_Azimuth_CoulombFriction2; 

    } 

   } 

 

   Result[0] = X[1]; 

   Result[1] = -(m_Azimuth_ViscousFriction1 / 

m_Azimuth_Inertia1) * X[1] + (1 / m_Azimuth_Inertia1) * (NetTorque1); 

   Result[2] = X[3]; 

   Result[3] = -(m_Azimuth_ViscousFriction2 / 

m_Azimuth_Inertia2) * X[3] + (1 / m_Azimuth_Inertia2) * (NetTorque2); 

 

   return Result; 

  } 

 

  private float[] StateEquation_Elevation(float[] X, float[] U, float 

Time) 

  { 

   float[] Result = new float[X.Length]; 

 

   float NetTorque1 = U[0] - U[1]; 

 

   if (m_Elevation_Omega1 > 0) 

    NetTorque1 -= m_Elevation_CoulombFriction1; 

   else if (m_Elevation_Omega1 < 0) 
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    NetTorque1 += m_Elevation_CoulombFriction1; 

   else 

   { 

    // Static friction 

    if (Math.Abs(NetTorque1) < 

m_Elevation_CoulombFriction1) 

     NetTorque1 = 0f; 

    else 

    { 

     if (NetTorque1 > 0) 

      NetTorque1 -= 

m_Elevation_CoulombFriction1; 

     else 

      NetTorque1 += 

m_Elevation_CoulombFriction1; 

    } 

   } 

 

   float NetTorque2 = U[2] + U[3] + U[4]; 

   if (m_Elevation_Omega2 > 0) 

    NetTorque2 -= m_Elevation_CoulombFriction2; 

   else if (m_Elevation_Omega2 < 0) 

    NetTorque2 += m_Elevation_CoulombFriction2; 

   else 

   { 

    // Static friction 

    if (Math.Abs(NetTorque2) < 

m_Elevation_CoulombFriction2) 

     NetTorque2 = 0f; 

    else 

    { 

     if (NetTorque2 > 0) 

      NetTorque2 -= 

m_Elevation_CoulombFriction2; 

     else 

      NetTorque2 += 

m_Elevation_CoulombFriction2; 

    } 

   } 

 

   Result[0] = X[1]; 

   Result[1] = -(m_Elevation_ViscousFriction1 / 

m_Elevation_Inertia1) * X[1] + (1 / m_Elevation_Inertia1) * (NetTorque1); 

   Result[2] = X[3]; 

   Result[3] = -(m_Elevation_ViscousFriction2 / 

m_Elevation_Inertia2) * X[3] + (1 / m_Elevation_Inertia2) * (NetTorque2); 

 

   return Result; 

  } 

 

  private float StateEquation_g(float Difference, float Backlash, float 

Constant) 

  { 

   float HalfLash = Backlash / 2; 

 

   if (Difference >= HalfLash) 

    return ((Difference - HalfLash) * Constant); 

   else if (Difference <= -HalfLash) 

    return ((Difference + HalfLash) * Constant); 

   else 

    return 0; 

  } 

 

  private float StateEquation_ElevationConstraintTorque() 

  { 

   if (Elevation < 0) 

    return Elevation * -2500; 

   else if (Elevation > Math.PI) 

    return ((float)Math.PI - Elevation) * 2500; 
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   else 

    return 0; 

  } 

 

  public float SignalStrength { get { return m_SignalStrength; } } 

 

  // Outputs 

  private float m_SignalStrength; 

 

  // Inputs 

  private float m_Azimuth_TorqueCommand; 

  private float m_Elevation_TorqueCommand; 

 

  // States 

  private float m_Azimuth_Theta1; 

  public float m_Azimuth_Omega1; 

  private float m_Azimuth_Theta2; 

  private float m_Azimuth_Omega2; 

 

  private float m_Elevation_Theta1; 

  private float m_Elevation_Omega1; 

  private float m_Elevation_Theta2; 

  private float m_Elevation_Omega2; 

 

  // Internals 

  private float m_Azimuth_Torque1A; 

  private float m_Azimuth_Torque1B; 

  private float m_Azimuth_Torque2; 

  private float m_Azimuth_WindTorque; 

 

  private float m_Elevation_Torque1A; 

  private float m_Elevation_Torque1B; 

  private float m_Elevation_Torque2; 

  private float m_Elevation_WindTorque; 

 

  // Parameters 

  public const float m_Elevation_Radius1 = 0.005f;   

    // m 

  public const float m_Elevation_Radius2 = 0.150f;   

    // m 

  public const float m_Elevation_GearRatio = m_Elevation_Radius2 / 

m_Elevation_Radius1; 

 

  public const float m_Elevation_InertiaTotal = 0.00015f;  

           

   // kg * m^2 

  public const float m_Elevation_Inertia1 = m_Elevation_InertiaTotal / 

2f;           // 

kg * m^2 

  public const float m_Elevation_Inertia2 = m_Elevation_Inertia1 * 

(m_Elevation_GearRatio * m_Elevation_GearRatio); // kg * m^2 

 

  public const float m_Elevation_ViscousFriction2 = 0.003f;  

           

       // N * m / (rad / s) 

  public const float m_Elevation_ViscousFriction1 = 

m_Elevation_ViscousFriction2 * ((m_Elevation_GearRatio - 1) / 

m_Elevation_GearRatio); // N * m / (rad / s) 

 

  public const float m_Elevation_CoulombFriction1 = 0.1f; // N * m 

  public const float m_Elevation_CoulombFriction2 = 18f; // N * m 

 

  public const float m_Elevation_MaximumTorque = 30f;   

     // N * m 

  public const float m_Elevation_MaximumSpeed = (1200f / 60f) * 

MathHelper.TwoPi; // rad / s 

  public const float m_Elevation_TorsionConstant = 10f;  

     // N * m / rad 
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  private float m_Elevation_Backlash = 0.000070f;   

      // rad 

   

  public const float m_Azimuth_Radius1 = 0.005f;   

   // m 

  public const float m_Azimuth_Radius2 = 0.150f;   

   // m 

  public const float m_Azimuth_GearRatio = m_Azimuth_Radius2 / 

m_Azimuth_Radius1; 

 

  public const float m_Azimuth_InertiaTotal = 0.00017f;  

           

 // kg * m^2 

  public const float m_Azimuth_Inertia1 = m_Azimuth_InertiaTotal / 2f;

          // kg * 

m^2 

  public const float m_Azimuth_Inertia2 = m_Azimuth_Inertia1 * 

(m_Azimuth_GearRatio * m_Azimuth_GearRatio); // kg * m^2 

 

  public const float m_Azimuth_ViscousFriction2 = 0.0026f;  

           

     // N * m / (rad / s) 

  public const float m_Azimuth_ViscousFriction1 = 

m_Azimuth_ViscousFriction2 * ((m_Azimuth_GearRatio - 1) / m_Azimuth_GearRatio); // 

N * m / (rad / s) 

 

  public const float m_Azimuth_CoulombFriction1 = 0.1f; // N * m 

  public const float m_Azimuth_CoulombFriction2 = 36f; // N * m 

 

  public const float m_Azimuth_MaximumTorque = 30f;   

     // N * m 

  public const float m_Azimuth_MaximumSpeed = (1200f / 60f) * 

MathHelper.TwoPi; // rad / s 

  public const float m_Azimuth_TorsionConstant = 10f;   

     // N * m / rad 

  private float m_Azimuth_Backlash = 0.000070f;   

      // rad 

 

  // Position 

  private float m_Latitude; 

  private float m_Longitude; 

 } 

} 

 

B.4 Source code – Environment.cs 

using System; 

using Microsoft.Xna.Framework; 

 

namespace SatelliteAntenna 

{ 

 public class Environment 

 { 

  public Environment() 

  { 

   m_Random = new Random(); 

   m_WindDirection = new Vector3(); 

  } 

 

  public void Think() 

  { 

   if (Simulation.Time >= m_WindThink) 

   { 

    // Select time for next wind property change 

    m_WindThink = Simulation.Time + 10 + (m_WindStrength / 

6); 

 



149 
 
 

 

    // Select new pseudo-random direction 

    float DirChangeCoeff = (float)m_Random.NextDouble() * 

2 - 1; 

    m_WindYawTarget += ((float)Math.PI + (m_WindStrength * 

0.05f)) * DirChangeCoeff * DirChangeCoeff * DirChangeCoeff * 0.25f; 

    m_WindPitchTarget = DirChangeCoeff * 0.03f; 

    m_WindSpeedTarget = m_WindStrength; 

   } 

 

   // Change wind direction gradually 

   m_WindYaw += ((m_WindYawTarget - m_WindYaw) * Simulation.Step 

* 0.3f); 

   m_WindPitch += ((m_WindPitchTarget - m_WindPitch) * 

Simulation.Step * 0.3f); 

   m_WindSpeed += ((m_WindSpeedTarget - m_WindSpeed) * 

Simulation.Step * 0.4f); 

 

   float CosPitch = (float)Math.Cos(m_WindPitch); 

   m_WindDirection.X = (float)Math.Cos(m_WindYaw) * CosPitch; 

   m_WindDirection.Y = (float)Math.Sin(m_WindYaw) * CosPitch; 

   m_WindDirection.Z = (float)Math.Sin(m_WindPitch); 

  } 

 

  public const float Radius = 6371000; 

  public const float Period = 86164.091f; // 23 hours 56 minutes 4.091 

seconds 

 

  private Random m_Random; 

 

  private float m_WindStrength; 

  private float m_WindThink; 

 

  private float m_WindYaw; 

  private float m_WindPitch; 

  private float m_WindSpeed; 

 

  private Vector3 m_WindDirection; 

 

  private float m_WindYawTarget; 

  private float m_WindPitchTarget; 

  private float m_WindSpeedTarget; 

 } 

} 

 

B.5 Source code – Satellite.cs 

using System; 

using Microsoft.Xna.Framework; 

 

namespace SatelliteAntenna 

{ 

 public class Satellite 

 { 

  public Satellite() 

  { 

   m_Inclination = Angle.ToRadian(15); 

   m_Altitude = 200000; 

   m_Radius = Environment.Radius + m_Altitude; 

   m_Period = 1800; 

 

   m_Longitude = Angle.ToRadian(90); 

  } 

 

  public void Think() 

  { 

   // Pre-multiplied rotation matrices used to calculate 

   // the position of satellite w.r.t. the antenna 
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   float Phase = m_PhaseShift + 2 * (float)Math.PI * 

Simulation.Time / m_Period; 

   float PhaseEarth = -0.01f + 2 * (float)Math.PI * 

Simulation.Time / Environment.Period; 

 

   float SinLatitudeAnt = (float)Math.Sin(-

Program.Antenna.Latitude); 

   float CosLatitudeAnt = (float)Math.Cos(-

Program.Antenna.Latitude); 

   float SinPhaseEarth = (float)Math.Sin(PhaseEarth + 

Program.Antenna.Longitude - m_Longitude); 

   float CosPhaseEarth = (float)Math.Cos(PhaseEarth + 

Program.Antenna.Longitude - m_Longitude); 

   float SinInclinationSat = (float)Math.Sin(m_Inclination); 

   float CosInclinationSat = (float)Math.Cos(m_Inclination); 

   float SinPhaseSat = (float)Math.Sin(Phase); 

   float CosPhaseSat = (float)Math.Cos(Phase); 

 

   m_Position.X = (CosLatitudeAnt * CosPhaseEarth * 

CosInclinationSat + SinLatitudeAnt * SinInclinationSat) * CosPhaseSat + 

CosLatitudeAnt * SinPhaseEarth * SinPhaseSat; 

   m_Position.Y = -SinPhaseEarth * CosInclinationSat * 

CosPhaseSat + CosPhaseEarth * SinPhaseSat; 

   m_Position.Z = (SinLatitudeAnt * CosPhaseEarth * 

CosInclinationSat - CosLatitudeAnt * SinInclinationSat) * CosPhaseSat + 

SinLatitudeAnt * SinPhaseEarth * SinPhaseSat; 

 

   m_Position *= m_Radius; 

 

   Vector3 V = m_Position - new Vector3(Environment.Radius, 0, 

0); 

 

   if ((V.Y == 0) && (V.Z == 0)) 

   { 

    m_Azimuth = 0; 

    m_Elevation = (float)Math.PI / 2; 

   } 

   else 

   { 

    Vector3 VProj = new Vector3(0, V.Y, V.Z); 

 

    m_Azimuth = (float)Math.Atan2(VProj.Z, VProj.Y); 

 

    float Cosine = Vector3.Dot(V, VProj) / (V.Length() * 

VProj.Length()); 

    if (Cosine > 1) 

     Cosine = 1; 

 

    float Acos = (float)Math.Acos(Cosine); 

 

    m_Elevation = Acos * Math.Sign(V.X); 

   } 

 

   m_MeasuredAzimuth = m_Azimuth; 

   m_MeasuredElevation = m_Elevation; 

  } 

 

 

  // Orbit 

  // http://www.lns.cornell.edu/~seb/celestia/orbital-parameters.html 

  // Apocenter distance = Pericenter distance 

  // Time of pericenter passage = irrelevant 

  private float m_Altitude; 

  private float m_Inclination; // Angle of inclination 

  private float m_Longitude; // Longitude of ascending node 

  private float m_Period; // Period of orbital motion in seconds 

 

  private Vector3 m_Position; 
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  private float m_Radius; // Radius of orbit in meters 

 

  private float m_PhaseShift; 

 

  // Calculated 

  private float m_Azimuth; 

  private float m_Elevation; 

 

  private float m_MeasuredAzimuth; 

  private float m_MeasuredElevation; 

 

  #endregion 

 } 

} 

 

B.6 Source code – Simulation.cs 

using System; 

using System.IO; 

using System.IO.Ports; 

using System.Windows.Forms; 

using System.Text; 

 

namespace SatelliteAntenna 

{ 

 public static class Simulation 

 { 

  #region Constructors 

 

  static Simulation() 

  { 

   m_Time = 0; 

   m_Step = 0.0001f; 

   m_SamplingSteps = 1; 

  } 

 

  #endregion 

 

  #region Methods 

 

  public static void Start() 

  { 

   if (m_State != RunState.Stopped) 

    return; 

 

   if (Program.MainForm.cmbSettings_SerialComm_Port.SelectedItem 

== null) 

   { 

    MessageBox.Show("Please select a COM port for the 

serial communication port.", "Error", MessageBoxButtons.OK, MessageBoxIcon.Error); 

    return; 

   } 

 

   m_Time = 0; 

   m_TimeIndex = 0; 

   m_LogIndex = 0; 

   m_ScopeRefresh = 0; 

   m_SatelliteRisen = false; 

 

   // Calculate the rising and setting times of the satellite. 

   // This ensures that a simulation run will always last 

   // for one full flight, regardless of orbit parameters. 

   float Shift; 

 

   Shift = 0; 

   Program.Satellite.PhaseShift = Shift; 

   Program.Satellite.Think(); 
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   bool Was = (Program.Satellite.Elevation > -0.017); 

   int i; 

   for (i = 1; i < 10010; i++) 

   { 

    Shift = (float)Math.PI * i / 5000; 

    Program.Satellite.PhaseShift = Shift; 

    Program.Satellite.Think(); 

 

    if ((Program.Satellite.Elevation > -0.017) && !Was) 

     break; 

 

    Was = (Program.Satellite.Elevation > -0.017); 

   } 

 

   if (i == 10010) 

   { 

 

    if (!Was) 

    { 

     MessageBox.Show("Satellite will never be 

visible. Change orbit parameters.", "Error", MessageBoxButtons.OK, 

MessageBoxIcon.Error); 

     return; 

    } 

    else 

    { 

     MessageBox.Show("Satellite will always be 

visible. Simulation will not be automatically completed.", "Warning", 

MessageBoxButtons.OK, MessageBoxIcon.Warning); 

    } 

   } 

 

   m_TimeIndex = 

(int)((float)Program.MainForm.nudMain_Time_Start.Value / m_Step); 

   m_Time = m_TimeIndex * m_Step; 

   Program.Satellite.Think(); 

 

   try 

   { 

    m_Writer = new 

StreamWriter(Program.MainForm.txtSettings_DataFile_Name.Text, true); 

    m_Writer.WriteLine("*** Satellite Tracking - Cadmus - 

v" + Program.Version.ToString() + " ***"); 

    m_Writer.WriteLine("*** Logging started at " + 

DateTime.Now.ToString()); 

 

    string LogLine = m_Time.ToString("Time"); 

 

    // Create header line based on which variables 

    // will be recorded 

 

    // ... 

    // ... 

    // ... 

 

    m_Writer.WriteLine(LogLine); 

    m_Writer.Flush(); 

   } 

   catch (Exception ex) 

   { 

    MessageBox.Show(ex.Message, "Error", 

MessageBoxButtons.OK, MessageBoxIcon.Error); 

    return; 

   } 

 

   try 

   { 

    //Program.SerialPort.ReadBufferSize = 16384; 
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    Program.SerialPort.PortName = 

Program.MainForm.cmbSettings_SerialComm_Port.Text; 

    Program.SerialPort.DataBits = 8; 

    Program.SerialPort.StopBits = StopBits.One; 

    Program.SerialPort.BaudRate = 

Convert.ToInt32(Program.MainForm.cmbSettings_SerialComm_BaudRate.Text); 

    Program.SerialPort.Parity = 

(Parity)Enum.Parse(typeof(Parity), 

Program.MainForm.cmbSettings_SerialComm_Parity.Text); 

    Program.SerialPort.Open(); 

   } 

   catch (Exception ex) 

   { 

    MessageBox.Show(ex.Message, "Error", 

MessageBoxButtons.OK, MessageBoxIcon.Error); 

    return; 

   } 

 

   // Disable GUI controls for the duration of simulation 

   // ... 

 

   // Write initial data to registers 

   // ... 

 

   m_State = RunState.Running; 

  } 

 

  public static void Stop() 

  { 

   if (m_State == RunState.Stopped) 

    return; 

 

   // Re-enable GUI controls 

// ... 

 

   m_Writer.WriteLine("*** Logging finished at " + 

DateTime.Now.ToString()); 

   m_Writer.WriteLine(); 

   m_Writer.WriteLine(); 

   m_Writer.Flush(); 

   m_Writer.Close(); 

 

   if (Program.SerialPort.IsOpen) 

    Program.SerialPort.Close(); 

 

   m_State = RunState.Stopped; 

  } 

 

  public static void AdvanceTime() 

  { 

   m_TimeIndex++; 

   m_Time = m_TimeIndex * m_Step; 

 

   // Update scopes 

   // ... 

 

    // Redraw scopes every second (a slow operation) 

    if (m_Time >= m_ScopeRefresh) 

    { 

     // ... 

 

     m_ScopeRefresh = m_Time + 1; 

    } 

 

    m_LogIndex++; 

 

    if (!m_SatelliteRisen) 

     if (Program.Satellite.Elevation >= 0.0175f) 

      m_SatelliteRisen = true; 
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    if (Program.MainForm.cbMain_Record.Checked) 

     WriteLogLine(); 

   } 

  } 

 

  private static RunState m_State; 

  private static float m_Time; 

  private static int m_TimeIndex; 

  private static float m_Step; 

  private static int m_LogIndex; 

  private static float m_ScopeRefresh; 

 

  private static float m_SamplingTime; 

  private static int m_SamplingSteps; 

  private static float m_LogInterval; 

  private static int m_LogSteps; 

 

  private static StreamWriter m_Writer; 

  private static string m_LogDelimiter; 

 

  private static bool m_SatelliteRisen; 

 

  #endregion 

 } 

 

 public enum RunState 

 { 

  Stopped, 

  Running, 

 } 

} 

 

B.7 Source code – StateSolver.cs 

using System; 

 

namespace SatelliteAntenna 

{ 

 public static class StateSolver 

 { 

  public static float[] RungeKutta4(StateEquationDelegate 

StateEquation, float[] X, float[] U, float Time, float Step) 

  { 

   float[] Result = new float[X.Length]; 

   float HalfStep = Step / 2; 

   float[] k1 = new float[X.Length]; 

   float[] k2 = new float[X.Length]; 

   float[] k3 = new float[X.Length]; 

   float[] k4 = new float[X.Length]; 

   float[] ModX = new float[X.Length]; 

 

   for (int i = 0; i < X.Length; i++) 

    ModX[i] = X[i]; 

 

   k1 = StateEquation(ModX, U, Time); 

 

   for (int i = 0; i < X.Length; i++) 

   { 

    k1[i] *= Step; 

    ModX[i] = X[i] + k1[i] / 2; 

   } 

 

   k2 = StateEquation(ModX, U, Time + HalfStep); 

 

   for (int i = 0; i < X.Length; i++) 

   { 
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    k2[i] *= Step; 

    ModX[i] = X[i] + k2[i] / 2; 

   } 

 

   k3 = StateEquation(ModX, U, Time + HalfStep); 

 

   for (int i = 0; i < X.Length; i++) 

   { 

    k3[i] *= Step; 

    ModX[i] = X[i] + k3[i]; 

   } 

 

   k4 = StateEquation(ModX, U, Time + Step); 

 

   for (int i = 0; i < X.Length; i++) 

   { 

    k4[i] *= Step; 

    Result[i] = X[i] + ((k1[i] + (2 * k2[i]) + (2 * k3[i]) 

+ k4[i]) / 6); 

   } 

 

   return Result; 

  } 

 

  public delegate float[] StateEquationDelegate(float[] X, float[] U, 

float Time); 

 } 

} 

 

B.8 Source code – Protoc16.h 

void SA_ReadRegister(int8 id, int16 *data) 

{ 

 putc(97 + id); 

 *data = getc(); 

 *data <<= 8; 

 *data += getc(); 

} 

 

void SA_WriteRegister(int8 id, int16 *data) 

{ 

 putc(65 + id); 

 putc((int8)(*data >> 8)); 

 putc((int8)(*data)); 

} 

 

B.9 Definition and pseudocode – PWM_Receive.v 

module PWM_Receive ( 

 input clk, 

 input PWM_clk, 

 input PWM_data, 

 output reg[9:0] PWM_recv_data, 

 output PWM_OK); 

         

// Pseudocode 

On each clock cycle 

 If sync signal is high then 

  Reset width counter 

 If PWM signal is high and width counter is below maximum value then 

  Increment width counter 

 If PWM signal falls or width counter reaches maximum value then 

  Latch width counter value 

  Raise data received signal 
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B.10 Definition and pseudocode – Encoder.vhd 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_unsigned.all; 

use ieee.numeric_std.all; 

 

entity Encoder2 is 

 port ( 

  clock: in std_logic; 

  input: in std_logic_vector(31 downto 0); 

  trigger: in std_logic; 

  chan_A: out std_logic; 

  chan_B: out std_logic 

 ); 

end Encoder2; 

 

-- Pseudocode 

On each clock cycle 

 If trigger signal is high then 

  Latch number of edges to be sent 

  Latch rotation direction 

  Latch delay counter value 

 If number of edges to be sent is nonzero then 

  Increment delay counter 

  If delay counter value is reached then 

   If rotation direction is clockwise then 

    Increment edge counter 

   Else 

    Decrement edge counter 

   Reset delay counter 

Always 

 Assign to Channel A: (edge counter bit 0) xor (edge counter bit 1 

 Assign to Channel B: edge counter bit 1 

 

B.11 Source code – main.cpp 

#include <fcntl.h> 

#include <math.h> 

#include <memory.h> 

#include <unistd.h> 

#include <signal.h> 

#include <stdio.h> 

#include <stdlib.h> 

#include <pthread.h> 

 

#include "CadmusDevice.h" 

#include "CadmusManager.h" 

#include "EncoderCommander.h" 

#include "Solver_RK4.h" 

#include "DisturbanceSource.h" 

 

#include "simdecl.h" 

 

int k = 0; 

float step = 0.001f; 

float t; 

float x[SYSTEM_NUMSTATES] = INITIAL_STATES; 

float u[SYSTEM_NUMINPUTS]; 

float x_new[SYSTEM_NUMSTATES]; 
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char tx[40] = { 0, }; 

char rx[40] = { 0, }; 

 

CadmusDevice* g_Device; 

CadmusManager* g_Manager; 

EncoderCommander* g_Encoder; 

Solver_RK4* g_Solver; 

DisturbanceSource *g_Disturbance_x; 

DisturbanceSource *g_Disturbance_y; 

DisturbanceSource *g_Disturbance_z; 

 

extern void stateEquation(float* x, float* u, float time, float* dx); 

 

void simStep() 

{ 

 k++; 

 t = step * k; 

 

 g_Solver->Step(x, u, t, x_new); 

 

 for (int i = 0; i < SYSTEM_NUMSTATES; i++) 

  x[i] = x_new[i]; 

} 

 

void *signal_thread(void *p) 

{ 

 while(k < 40500) 

 { 

  g_Device->WaitInterrupt(); 

 

  // Receive inputs 

  g_Device->Receive((uint8_t*)rx, 6); 

 

  u[0] = ((float)(*(unsigned short*)&rx[0]) - 512.0f) * 0.0625f; 

  u[1] = ((float)(*(unsigned short*)&rx[2]) - 512.0f) * 0.0625f; 

  u[2] = ((float)(*(unsigned short*)&rx[4]) - 512.0f) * 0.0625f; 

  u[3] = g_Disturbance_x->GetValue(k); 

  u[4] = g_Disturbance_y->GetValue(k); 

  u[5] = g_Disturbance_z->GetValue(k); 

 

  // Step 

  simStep(); 

 

  // Calculate encoder information 

  g_Encoder->SetPosition(0, x[3]); 

  g_Encoder->SetPosition(1, x[7]); 

  g_Encoder->SetPosition(2, x[11]); 

 

  *((unsigned int*)&tx[8]) = g_Encoder->GetCommand(0); 

  *((unsigned int*)&tx[4]) = g_Encoder->GetCommand(1); 

  *((unsigned int*)&tx[0]) = g_Encoder->GetCommand(2); 

 

  g_Encoder->Advance(); 

 

  // Write outputs 

  g_Device->Send((uint8_t*)tx, 12); 

 } 

 

 pthread_exit(NULL); 

} 

 

int main(int argc, char** argv) 
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{ 

 g_Device = new CadmusDevice(); 

 g_Device->Open(); 

 

 g_Solver = new Solver_RK4(stateEquation, SYSTEM_NUMSTATES, SYSTEM_NUMINPUTS, 

step); 

 

 g_Manager = new CadmusManager(); 

 g_Manager->SetServer("10.0.0.50", 5202); 

 g_Manager->Prepare((1 + SYSTEM_NUMSTATES + SYSTEM_NUMINPUTS) * 

sizeof(float), 1500); 

 g_Manager->Connect(); 

 g_Manager->Start(); 

 

 g_Encoder = new EncoderCommander(); 

 g_Encoder->SetSamplingTime(0.001); 

 g_Encoder->SetEdgesPerRev(0, 40000); 

 g_Encoder->SetEdgesPerRev(1, 40000); 

 g_Encoder->SetEdgesPerRev(2, 40000); 

 g_Encoder->SetPosition(0, x[3]); 

 g_Encoder->SetPosition(1, x[7]); 

 g_Encoder->SetPosition(2, x[11]); 

 g_Encoder->Advance(); 

 

 g_Disturbance_x = new DisturbanceSource(); 

 g_Disturbance_x->LoadDatFile("/cadmus/heavy_full_150_Fx.dat", 30000); 

 g_Disturbance_y = new DisturbanceSource(); 

 g_Disturbance_y->LoadDatFile("/cadmus/heavy_full_150_Fy.dat", 30000); 

 g_Disturbance_z = new DisturbanceSource(); 

 g_Disturbance_z->LoadDatFile("/cadmus/heavy_full_150_Fz.dat", 30000); 

 

 pthread_t sigthr; 

 pthread_create(&sigthr, NULL, signal_thread, NULL); 

 

 timespec timeOut, remains; 

 int nsret; 

 

 while (k < 40500) 

 { 

  timeOut.tv_sec = 0; 

  timeOut.tv_nsec = 200000000; 

 

  do 

  { 

   nsret = nanosleep(&timeOut, &remains); 

   timeOut.tv_sec = remains.tv_sec; 

   timeOut.tv_nsec = remains.tv_nsec; 

  } while (nsret == -1); 

 } 

 

 g_Device->Close(); 

 g_Manager->Stop(); 

 g_Manager->Disconnect(); 

 

 return 0; 

} 
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B.12 Source codes for NGW100 platform – CadmusDevice.h 

#include <stdint.h> 

#include <pthread.h> 

#include <semaphore.h> 

#include <linux/types.h> 

#include <linux/spi/spidev.h> 

 

class CadmusDevice 

{ 

private: 

 int fileDesc; 

 bool isOpen; 

 

 sem_t intSem; 

 

 static const char *spiDevice; 

 uint8_t spiMode; 

 uint8_t spiBits; 

 uint32_t spiSpeed; 

 uint16_t spiDelay; 

 int spiFileDesc; 

 spi_ioc_transfer spiXfer; 

 

 void SetSignalHandler(void (*sigHandler)(int)); 

 

 static CadmusDevice *mainDevice; 

 

 static void SignalHandler(int signo); 

 

public: 

 CadmusDevice(); 

 ~CadmusDevice(); 

 

 bool Open(); 

 void Close(); 

 

 const char* GetDeviceName(); 

 const int GetMajorNumber(); 

 const int GetFileDesc(); 

 bool IsOpen(); 

 

 bool Send(uint8_t *data, int length); 

 bool Receive(uint8_t *data, int length); 

 

 void WaitInterrupt(); 

}; 

 

B.13 Source code – CadmusDevice.cpp 

#include "CadmusDevice.h" 

#include "cadmusio.h" 

 

#include <errno.h> 

#include <fcntl.h> 

#include <memory.h> 

#include <unistd.h> 

#include <signal.h> 

#include <stdlib.h> 

#include <sys/ioctl.h> 

#include <linux/spi/spidev.h> 
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const char* CadmusDevice::spiDevice = "/dev/spidev1.1"; 

CadmusDevice *CadmusDevice::mainDevice = NULL; 

 

void CadmusDevice::SignalHandler(int signo) 

{ 

 if (signo == SIGIO) 

  sem_post(&mainDevice->intSem); 

} 

 

CadmusDevice::CadmusDevice() 

{ 

 fileDesc = -1; 

 isOpen = false; 

 

 spiMode = 0; 

 spiBits = 8; 

 spiSpeed = 10000000; 

 spiDelay = 0; 

 

 spiXfer = *(new spi_ioc_transfer()); 

} 

 

CadmusDevice::~CadmusDevice() 

{ 

} 

 

void CadmusDevice::SetSignalHandler(void (*sigHandler)(int)) 

{ 

 if (sigHandler != NULL) 

 { 

  struct sigaction action; 

  memset(&action, 0, sizeof(action)); 

  action.sa_handler = sigHandler; 

  action.sa_flags = 0; 

 

  sigaction(SIGIO, &action, NULL); 

  fcntl(fileDesc, F_SETOWN, getpid()); 

  fcntl(fileDesc, F_SETFL, fcntl(fileDesc, F_GETFL) | FASYNC); 

 } 

 else 

 { 

  fcntl(fileDesc, F_SETFL, fcntl(fileDesc, F_GETFL) &~ FASYNC); 

  fcntl(fileDesc, F_SETOWN, -1); 

 } 

} 

 

bool CadmusDevice::Open() 

{ 

 fileDesc = open(CADMUSIO_DEVICE_NAME, 0); 

 

 if (fileDesc < 0) 

  return false; 

 

 // ******* 

 // * SPI * 

 // ******* 

 int retval; 

 

 spiFileDesc = open(spiDevice, O_RDWR); 

 

 // Mode 
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 retval = ioctl(spiFileDesc, SPI_IOC_WR_MODE, &spiMode); 

 if (retval == -1) 

  return false; 

 

 retval = ioctl(spiFileDesc, SPI_IOC_RD_MODE, &spiMode); 

 if (retval == -1) 

  return false; 

 

 // Bits per word 

 retval = ioctl(spiFileDesc, SPI_IOC_WR_BITS_PER_WORD, &spiBits); 

 if (retval == -1) 

  return false; 

 

 retval = ioctl(spiFileDesc, SPI_IOC_RD_BITS_PER_WORD, &spiBits); 

 if (retval == -1) 

  return false; 

 

 // Max speed Hz 

 retval = ioctl(spiFileDesc, SPI_IOC_WR_MAX_SPEED_HZ, &spiSpeed); 

 if (retval == -1) 

  return false; 

 

 retval = ioctl(spiFileDesc, SPI_IOC_RD_MAX_SPEED_HZ, &spiSpeed); 

 if (retval == -1) 

  return false; 

 

 sem_init(&intSem, 0, 0); 

 

 mainDevice = this; 

 SetSignalHandler(CadmusDevice::SignalHandler); 

 

 isOpen = true; 

 return true; 

} 

 

void CadmusDevice::Close() 

{ 

 isOpen = false; 

 

 SetSignalHandler(NULL); 

 sem_post(&intSem); 

 mainDevice = NULL; 

 

 close(fileDesc); 

 close(spiFileDesc); 

} 

 

const char* CadmusDevice::GetDeviceName() 

{ 

 return CADMUSIO_DEVICE_NAME; 

} 

 

const int CadmusDevice::GetMajorNumber() 

{ 

 return CADMUSIO_MAJOR_NUM; 

} 

 

const int CadmusDevice::GetFileDesc() 

{ 

 return fileDesc; 

} 
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bool CadmusDevice::IsOpen() 

{ 

 return isOpen; 

} 

 

bool CadmusDevice::Send(uint8_t *data, int length) 

{ 

 ioctl(fileDesc, CADMUSIO_SET_MODE, 2); 

 

 spiXfer.tx_buf = (unsigned long)data; 

 spiXfer.rx_buf = (unsigned long)NULL; 

 spiXfer.len = length; 

 spiXfer.delay_usecs = spiDelay; 

 spiXfer.speed_hz = spiSpeed; 

 spiXfer.bits_per_word = spiBits; 

 

 if(ioctl(spiFileDesc, SPI_IOC_MESSAGE(1), &spiXfer) == 1) 

  return false; 

 else 

  return true; 

} 

 

bool CadmusDevice::Receive(uint8_t *data, int length) 

{ 

 ioctl(fileDesc, CADMUSIO_SET_MODE, 3); 

 

 spiXfer.tx_buf = (unsigned long)NULL; 

 spiXfer.rx_buf = (unsigned long)data; 

 spiXfer.len = length; 

 spiXfer.delay_usecs = spiDelay; 

 spiXfer.speed_hz = spiSpeed; 

 spiXfer.bits_per_word = spiBits; 

 

 if(ioctl(spiFileDesc, SPI_IOC_MESSAGE(1), &spiXfer) == 1) 

  return false; 

 else 

  return true; 

} 

 

void CadmusDevice::WaitInterrupt() 

{ 

 sem_wait(&intSem); 

} 

 

B.14 Source code – CadmusManager.h 

#include <netinet/in.h> 

#include <pthread.h> 

#include <semaphore.h> 

 

struct StateSenderInfo 

{ 

 char* buffer; 

 int objectCount; 

 size_t objectSize; 

 char* fillPtr; 

 char* sendPtr; 

 char* bufferEnd; 

 bool sendEnabled; 

 

 int socketfd; 
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 sem_t* semaphore; 

}; 

 

class CadmusManager 

{ 

private: 

 int socketfd; 

 struct sockaddr_in serverAddress; 

 bool connected; 

 

 StateSenderInfo stateBuffer; 

 pthread_t stateSendThread; 

 sem_t stateSemaphore; 

 

public: 

 CadmusManager(); 

 ~CadmusManager(); 

 

 void SetServer(const char* address, int port); 

 bool Connect(); 

 bool Disconnect(); 

 bool Prepare(size_t objectSize, int count); 

 bool Start(); 

 bool Stop(); 

 bool SendStatePacket(const void* stateObject); 

}; 

 

void* StateSendLoop(void* arg); 

 

enum PacketType 

{ 

 PACK_PING = 0x00, 

 PACK_STATE = 0xff 

}; 

 

B.15 Source code – CadmusManager.cpp 

#include "CadmusManager.h" 

#include "Log.h" 

 

#include <arpa/inet.h> 

#include <errno.h> 

#include <malloc.h> 

#include <memory.h> 

#include <sys/socket.h> 

#include <sys/types.h> 

#include <unistd.h> 

 

CadmusManager::CadmusManager() 

{ 

 socketfd = -1; 

 connected = false; 

} 

 

CadmusManager::~CadmusManager() 

{ 

 

} 

 

void CadmusManager::SetServer(const char* address, int port) 

{ 
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 memset(&serverAddress, 0, sizeof(serverAddress)); 

 serverAddress.sin_family = AF_INET; 

 serverAddress.sin_addr.s_addr = inet_addr(address); 

 serverAddress.sin_port = htons(port); 

} 

 

bool CadmusManager::Connect() 

{ 

 if (!connected) 

 { 

  socketfd = socket(AF_INET, SOCK_STREAM, 0); 

 

  if (socketfd < 0) 

   return false; 

 

  int result = connect(socketfd, (struct sockaddr*)&serverAddress, 

sizeof(serverAddress)); 

 

  if (result < 0) 

   return false; 

 

  stateBuffer.socketfd = socketfd; 

  connected = true; 

  return true; 

 } 

 

 return false; 

} 

 

bool CadmusManager::Disconnect() 

{ 

 if (connected) 

 { 

  int result = shutdown(socketfd, SHUT_RDWR); 

 

  if (result < 0) 

   return false; 

 

  result = close(socketfd); 

 

  if (result < 0) 

   return false; 

 

  connected = false; 

  return true; 

 } 

 

 return false; 

} 

 

bool CadmusManager::Prepare(size_t objectSize, int count) 

{ 

 int result = sem_init(&stateSemaphore, 0, 1); 

 

 if (result < 0) 

  return false; 

 

 stateBuffer.semaphore = &stateSemaphore; 

 stateBuffer.objectSize = objectSize; 

 stateBuffer.objectCount = count; 

 stateBuffer.buffer = (char*)malloc(objectSize * count); 

 



165 
 
 

 

 if (stateBuffer.buffer == NULL) 

  return false; 

 

 stateBuffer.bufferEnd = stateBuffer.buffer + (objectSize * count); 

 stateBuffer.fillPtr = stateBuffer.buffer; 

 stateBuffer.sendPtr = stateBuffer.buffer; 

 

 stateBuffer.socketfd = socketfd; 

 

 return true; 

} 

 

bool CadmusManager::Start() 

{ 

 stateBuffer.sendEnabled = true; 

 int result = pthread_create(&stateSendThread, NULL, StateSendLoop, 

(void*)(&stateBuffer)); 

 

 if (result != 0) 

  return false; 

 

 return true; 

} 

 

bool CadmusManager::Stop() 

{ 

 stateBuffer.sendEnabled = false; 

 pthread_join(stateSendThread, NULL); 

 return true; 

} 

 

bool CadmusManager::SendStatePacket(const void* stateObject) 

{ 

 sem_wait(&stateSemaphore); 

 

 memcpy( (void*)stateBuffer.fillPtr, stateObject, stateBuffer.objectSize); 

 

 stateBuffer.fillPtr += stateBuffer.objectSize; 

 

 if (stateBuffer.fillPtr >= stateBuffer.bufferEnd) 

  stateBuffer.fillPtr = stateBuffer.buffer; 

 

 // Fullcheck 

 if (stateBuffer.fillPtr == stateBuffer.sendPtr) 

 { 

  Log::SetLastError(-1, "CadmusManager::Send(): stateBuffer full"); 

  return false; 

 } 

 

 sem_post(&stateSemaphore); 

 

 return true; 

} 

 

void* StateSendLoop(void* arg) 

{ 

 StateSenderInfo *sb = (StateSenderInfo*)arg; 

 char* fillPtr; 

 int semVal; 

 

 while (sb->sendEnabled) 

 { 
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  usleep(1000); 

  sem_getvalue(sb->semaphore, &semVal); 

 

  if (semVal > 0) 

  { 

   fillPtr = sb->fillPtr; 

 

   if (fillPtr > sb->sendPtr) 

   { 

    send(sb->socketfd, sb->sendPtr, fillPtr - sb->sendPtr, 

0); 

    sb->sendPtr = fillPtr; 

   } 

   else if (fillPtr < sb->sendPtr) 

   { 

    send(sb->socketfd, sb->sendPtr, sb->bufferEnd - sb-

>sendPtr, 0); 

    send(sb->socketfd, sb->buffer, fillPtr - sb->buffer, 

0); 

    sb->sendPtr = fillPtr; 

   } 

  } 

 } 

 

 return 0; 

} 

 

B.16 Source code – DisturbanceSource.h 

class DisturbanceSource 

{ 

private: 

 float* data; 

 int length; 

 bool repeat; 

 

public: 

 void LoadDatFile(const char* fileName, size_t count); 

 void LoadDatFile(const char* fileName, long int start, size_t count); 

 float GetValue(int index); 

}; 

 

B.17 Source code – DisturbanceSource.cpp 

#include <stdio.h> 

#include <malloc.h> 

#include "DisturbanceSource.h" 

 

void DisturbanceSource::LoadDatFile(const char *fileName, size_t count) 

{ 

 data = (float*)malloc(count * sizeof(float)); 

 

 FILE *fp = fopen(fileName, "rb"); 

 

 fread(data, sizeof(float), count, fp); 

 

 fclose(fp); 

 

 length = count; 

 repeat = true; 
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} 

 

void DisturbanceSource::LoadDatFile(const char* fileName, long int start, size_t 

count) 

{ 

 data = (float*)malloc(count * sizeof(float)); 

 

 FILE *fp = fopen(fileName, "rb"); 

 

 fseek(fp, start * sizeof(float), SEEK_SET); 

 fread(data, sizeof(float), count, fp); 

 

 fclose(fp); 

 

 length = count; 

 repeat = true; 

} 

 

float DisturbanceSource::GetValue(int index) 

{ 

 if (repeat) 

 { 

  return data[index % length]; 

 } 

 else 

 { 

  if (index < length) 

   return data[index]; 

  else 

   return data[length - 1]; 

 } 

} 

 

B.18 Source code – EncoderCommander.h 

class EncoderCommander 

{ 

private: 

 unsigned int delayBase; 

 float multiplier[5]; 

 int oldInt[5]; 

 int newInt[5]; 

 

 unsigned int command; 

 unsigned int dir; 

 unsigned int count; 

 unsigned int delay; 

 

public: 

 void SetSamplingTime(float t); 

 void SetEdgesPerRev(int i, int edges); 

 void SetPosition(int i, float theta); 

 int GetIntegerPosition(int i); 

 unsigned int GetCommand(int i); 

 void Advance(); 

}; 
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B.19 Source code – EncoderCommander.cpp 

#include <stdio.h> 

#include <math.h> 

#include "EncoderCommander.h" 

 

void EncoderCommander::SetSamplingTime(float t) 

{ 

 delayBase = (int)(50000000.0f * t); 

} 

 

void EncoderCommander::SetEdgesPerRev(int i, int edges) 

{ 

 multiplier[i] = (float)edges / (2 * M_PI); 

} 

 

void EncoderCommander::SetPosition(int i, float theta) 

{ 

 newInt[i] = (int)(theta * multiplier[i]); 

} 

 

int EncoderCommander::GetIntegerPosition(int i) 

{ 

 return oldInt[i]; 

} 

 

unsigned int EncoderCommander::GetCommand(int i) 

{ 

 if (newInt[i] > oldInt[i]) 

 { 

  dir = 0x00000000; 

  count = newInt[i] - oldInt[i]; 

  delay = delayBase / count; 

 } 

 else if (newInt[i] < oldInt[i]) 

 { 

  dir = 0x80000000; 

  count = oldInt[i] - newInt[i]; 

  delay = delayBase / count; 

 } 

 else 

 { 

  dir = 0x80000000; 

  count = 0; 

  delay = 0xffff; 

 } 

 

 command = dir | (count << 16) | delay; 

 

 return command; 

} 

 

void EncoderCommander::Advance() 

{ 

 for (int i = 0; i < 5; i++) 

  oldInt[i] = newInt[i]; 

} 
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B.20 Source code – Solver_RK4.h 

class Solver_RK4 

{ 

private: 

 void (*eqn)(float*, float*, float, float*); 

 int xLen; 

 int uLen; 

 float* k1; 

 float* k2; 

 float* k3; 

 float* k4; 

 float* xMod; 

 float stepSize; 

 float halfStep; 

 

public: 

 Solver_RK4(void (*equation)(float*, float*, float, float*), const int x_len, 

const int u_Len, const float step_size); 

 ~Solver_RK4(); 

 

 void Step(float* x, float* u, float time, float* x_new); 

}; 

 

B.21 Source code – Solver_RK4.cpp 

#include "Solver_RK4.h" 

#include <stdlib.h> 

 

Solver_RK4::Solver_RK4( 

  void (*equation)(float*, float*, float, float*), 

  const int x_len, const int u_len, const float step_size) 

{ 

 eqn = equation; 

 xLen = x_len; 

 uLen = u_len; 

 

 k1 = (float*)malloc(x_len * sizeof(float)); 

 k2 = (float*)malloc(x_len * sizeof(float)); 

 k3 = (float*)malloc(x_len * sizeof(float)); 

 k4 = (float*)malloc(x_len * sizeof(float)); 

 xMod = (float*)malloc(x_len * sizeof(float)); 

 

 stepSize = step_size; 

 halfStep = stepSize / 2.0f; 

} 

 

Solver_RK4::~Solver_RK4() 

{ 

 free(k1); 

 free(k2); 

 free(k3); 

 free(k4); 

 free(xMod); 

} 

 

void Solver_RK4::Step(float* x, float* u, float time, float* x_new) 

{ 

 float timePhs = time + halfStep; 

 float timePs = time + stepSize; 

 int i; 
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 for (i = 0; i < xLen; i++) 

  xMod[i] = x[i]; 

 

 eqn(xMod, u, time, k1); 

 

 for (i = 0; i < xLen; i++) 

 { 

  k1[i] *= stepSize; 

  xMod[i] = x[i] + (k1[i] / 2.0f); 

 } 

 

 eqn(xMod, u, timePhs, k2); 

 

 for (i = 0; i < xLen; i++) 

 { 

  k2[i] *= stepSize; 

  xMod[i] = x[i] + (k2[i] / 2.0f); 

 } 

 

 eqn(xMod, u, timePhs, k3); 

 

 for (i = 0; i < xLen; i++) 

 { 

  k3[i] *= stepSize; 

  xMod[i] = x[i] + k3[i]; 

 } 

 

 eqn(xMod, u, timePs, k4); 

 

 for (i = 0; i < xLen; i++) 

 { 

  k4[i] *= stepSize; 

  x_new[i] = x[i] + ((k1[i] + (2.0f * (k2[i] + k3[i])) + k4[i]) / 

6.0f); 

 } 

} 

 

B.22 Definition and pseudocode – NGW_Interface.vhd 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_unsigned.all; 

use ieee.numeric_std.all; 

 

entity NGW_Interface is 

 port ( 

  clk: in std_logic; 

  --------------------- 

  spi_sck: in std_logic; 

  spi_mosi: in std_logic; 

  spi_miso: out std_logic; 

  spi_ssel: in std_logic; 

  --------------------- 

  mode: in std_logic_vector(2 downto 0); 

  --------------------- 

  rsignal: in std_logic; 

  tsignal: out std_logic; 

  --------------------- 

  data_out: out std_logic_vector(319 downto 0); 

  conf_out: out std_logic_vector(319 downto 0); 



171 
 
 

 

  data_in: in std_logic_vector(319 downto 0); 

  conf_in: out std_logic_vector(319 downto 0) 

 ); 

end NGW_Interface; 

 

-- Pseudocode 

On each clock cycle 

 If SPI data is incoming then 

  If mode is "write" then 

   Bit-shift sensor emulation data into registers 

  If mode is "read" then 

   Bit-shift input command data through SPI to NGW100 

 If SPI data transfer is completed and mode is "write" then 

  Initiate sensor emulator operation 

 IF signal is received from InputSignaller then 

  Read input receiver data into registers 

 

B.23 Definition and pseudocode – InputSignaller.vhd 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_unsigned.all; 

use ieee.numeric_std.all; 

 

entity InputSignaller is 

 port ( 

  clock: in std_logic; 

  input0: in std_logic; 

  input1: in std_logic; 

  input2: in std_logic; 

  collect: out std_logic; 

  send: out std_logic 

 ); 

end InputSignaller; 

 

-- Pseudocode 

On each clock cycle 

 For all input modules connected 

  If module reception signal is high then raise module flag 

 If all module flags are raised then 

  Signal manager module to collect input data 

  Signal NGW100 to execute simulation 

  Reset all flags 

 

B.24 MATLAB script – hils_milling_distgen.m 

% Define parameters 

t = 0:0.001:30; 

Fmax = 1000; 

harm = 4; 

rpm = 150; 

phase = 10; 

name = 'light'; 

 

% Derived parameters 

tm = (rpm/60)*t*2*pi; 

Fxy_max = Fmax; 

Fz_max = Fmax / 10; 

phase1 = phase * (pi/180); 

phase2 = phase1 + (pi/2); 

 

% Generate values 
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Fx = (0.5 * Fxy_max) + (0.4 * Fxy_max * ((sin(harm * tm) + 1) / 2)) + (0.1 * 

Fxy_max * ((sin(tm + phase1) + 1) / 2)); 

Fy = (0.5 * Fxy_max) + (0.4 * Fxy_max * ((sin(harm * tm) + 1) / 2)) + (0.1 * 

Fxy_max * ((cos(tm + phase1) + 1) / 2)); 

Fz = (0.5 * Fz_max)  + (0.4 * Fz_max  * ((sin(harm * tm) + 1) / 2)) + (0.1 * Fz_max  

* ((sin(tm + phase2) + 1) / 2)); 

 

% Normalize max. value 

Fr = (Fx.^2 + Fy.^2 + Fz.^2).^0.5; 

scale = Fmax / max(Fr); 

Fx = Fx .* scale; 

Fy = Fy .* scale; 

Fz = Fz .* scale; 

Fr = (Fx.^2 + Fy.^2 + Fz.^2).^0.5; 

 

% Save binaries 

fname = sprintf('%s_Fx.dat', name); 

fid = fopen(fname, 'wb'); 

fwrite(fid, Fx, 'float32'); 

fclose(fid); 

fname = sprintf('%s_Fy.dat', name); 

fid = fopen(fname, 'wb'); 

fwrite(fid, Fy, 'float32'); 

fclose(fid); 

fname = sprintf('%s_Fz.dat', name); 

fid = fopen(fname, 'wb'); 

fwrite(fid, Fz, 'float32'); 

fclose(fid); 

  

Denklem 1 


