

DESIGN OF AN INTEGRATED HARDWARE-IN-THE-LOOP
 SIMULATION SYSTEM

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

SERDAR ÜŞENMEZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

MECHANICAL ENGINEERING

JUNE 2010

Approval of the thesis:

DESIGN OF AN INTEGRATED HARDWARE-IN-THE-LOOP

SIMULATION SYSTEM

submitted by SERDAR ÜŞENMEZ in partial fulfillment of the requirements for
the degree of Master of Science in Mechanical Engineering Department,
Middle East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Suha Oral
Head of Department, Mechanical Engineering

Assist. Prof. Dr. A. Buğra Koku
Supervisor, Mechanical Engineering Dept., METU

Assist. Prof. Dr. Melik Dölen
Co-Supervisor, Mechanical Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Mehmet Çalışkan
Mechanical Engineering Dept., METU

Assist. Prof. Dr. A. Buğra Koku
Mechanical Engineering Dept., METU

Assist. Prof. Dr. Melik Dölen
Mechanical Engineering Dept., METU

Assoc. Prof. Dr. Veysel Gazi
Electrical and Electronics Engineering Dept., TOBB ETÜ

Assist. Prof. Dr. E. İlhan Konukseven
Mechanical Engineering Dept., METU

Date: 22/06/2010

iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also
declare that, as required by these rules and conduct, I have fully cited and
referenced all material and results that are not original to this work.

 Name, Last name:

Serdar ÜŞENMEZ

 Signature:

iv

ABSTRACT

DESIGN OF AN INTEGRATED HARDWARE-IN-THE-LOOP
SIMULATION SYSTEM

Üşenmez, Serdar

M.Sc., Department of Mechanical Engineering

Supervisor: Assist. Prof. Dr. A. Buğra Koku

Co-Supervisor: Assist. Prof. Dr. Melik Dölen

June 2010, 172 Pages

This thesis aims to propose multiple methods for performing a hardware-in-the-

loop simulation, providing the hardware and software tools necessary for design

and execution. For this purpose, methods of modeling commonly encountered

dynamical system components are explored and techniques suitable for calculating

the states of the modeled system are presented. Modules and subsystems that

enable the realization of a hardware-in-the-loop simulation application and its

interfacing with external controller hardware are explained. The thesis also presents

three different simulation scenarios. Solutions suitable for these scenarios are

provided along with their implementations. The details and specifications of the

developed software packages and hardware platforms are given. The provided

results illustrate the advantages and disadvantages of the approaches used in these

solutions.

Keywords: Hardware in the Loop Simulation, Dynamic System Modeling, Control

Systems Education, Peripheral Device Emulation

v

ÖZ

TÜMLEŞİK BİR ÇEVRİMİÇİ DONANIM BENZETİMİ
SİSTEMİNİN TASARLANMASI

Üşenmez, Serdar

Yüksek Lisans, Makine Mühendisliği Bölümü

Tez yöneticisi: Yrd. Doç. Dr. A. Buğra Koku

Yardımcı tez yöneticisi: Yrd. Doç. Dr. Melik Dölen

Haziran 2010, 172 Sayfa

Bu tezde bir çevrimiçi donanım benzetiminin gerçekleştirilmesi için çeşitli

yöntemlerin öne sürülmesi ve tasarım ile uygulama için gerekli donanım ve yazılım

gereçlerinin sağlanması hedeflenmiştir. Bu amaçla, sıklıkla karşılaşılan dinamik

sistem bileşenlerinin modellenmesine dair yöntemler incelenmiş ve modellenen

sisteme ait durum değişkenlerinin hesaplanmasına yönelik yordamlar sunulmuştur.

Bir çevrimiçi donanım benzetimi uygulamasının gerçekleştirilmesini ve bunun

harici denetleyici donanımlarla arabağlanmasını sağlayan modüller ve alt sistemler

açıklanmıştır. Bu tez ayrıca üç farklı benzetim senaryosu sunmaktadır. Bu

senaryolara uygun çözümler ve bunların uygulanışları anlatılmıştır. Geliştirilen

yazılım paketleri ve donanım platformlarına dair ayrıntılar ve özellikler verilmiştir.

Sunulan sonuçlar, bu çözümlerde kullanılan yaklaşımların faydalı ve kusurlu

yönlerini gösterir niteliktedir.

Anahtar kelimeler: Çevrimiçi Donanım Benzetimi, Dinamik Sistem Modellemesi,

Kontrol Sistemleri Eğitimi, Çevresel Cihaz Öykünmesi

vi

To everyone I care,

“I don't know half of you half as well as I should like; and I like less than half of

you half as well as you deserve.”

– Bilbo Baggins, The Lord of the Rings

vii

ACKNOWLEDGEMENTS

First of all, I express my sincere appreciation to Asst. Prof. Dr. Ahmet Buğra Koku

and Asst. Prof. Dr. Melik Dölen for generously providing their knowledge,

wisdom, guidance and support during my studies regarding this thesis.

I also thank sincerely my colleagues Barış Ragıp Mutlu, Ulaş Yaman, Ergin Kılıç

and Rasim Aşkın Dilan for their endless support and collaboration during all our

works. I also thank all my friends, whose support has given me and my colleagues

the will to work.

I should give special thanks to all the students who took the ME 534 – Computer

Control of Machines course given in Middle East Technical University during

Spring 2008 and Fall 2010 semesters for bearing with me throughout their already-

painful final project period. Without their precious feedback, this thesis would be

missing much, much more than just a section.

I would like to express my thanks and love for my parents, for all their love,

patience and understanding, with hopes of one day proving myself worthy of their

support.

Last, but not least, I thank the Scientific and Technological Research Council of

Turkey for their financial support in the project “Development of Personal

Computer-based Motion Controller Systems” (no. 108E048), which has made it

possible for me to conduct this thesis work.

viii

TABLE OF CONTENTS

ABSTRACT ... iv

ÖZ.. v

ACKNOWLEDGEMENTS .. vii

TABLE OF CONTENTS ... viii

LIST OF TABLES .. xii

LIST OF FIGURES .. xiii

LIST OF SYMBOLS ... xvi

CHAPTERS

1 INTRODUCTION .. 1

1.1 Introduction.. 1

1.2 Simulation .. 2

1.3 Hardware-in-the-Loop Simulation... 3

1.4 Objective of the Thesis .. 6

1.5 Organization .. 6

2 LITERATURE SURVEY .. 8

2.1 Introduction.. 8

2.2 Studies and Applications ... 8

2.3 Commercial Products... 11

2.4 Dynamic Systems Modeling .. 13

2.5 Closure ... 16

3 MODELING AND SIMULATION TECHNIQUES 17

3.1 Introduction.. 17

3.2 Modeling Dynamic Systems .. 17

3.2.1 Transmission Elements ... 18

ix

3.2.1.1 Gears .. 18

3.2.1.2 Rack and Pinion ... 21

3.2.1.3 Ball Screw .. 23

3.2.1.4 Belt ... 25

3.2.2 Power Generation Elements .. 27

3.3 Friction Modeling .. 30

3.4 Solver Techniques ... 36

3.4.1 Euler’s Method.. 38

3.4.2 Heun’s Method.. 39

3.4.3 Runge-Kutta Method .. 40

3.4.4 Adams-Bashforth Method ... 40

3.5 Creating Discrete-Time Models of Dynamic Systems 41

3.6 Closure ... 43

4 HARDWARE-IN-THE-LOOP SIMULATION FOR EDUCATIONAL

APPLICATONS .. 44

4.1 Introduction.. 44

4.2 Proposed System .. 45

4.3 Application .. 48

4.3.1 Plant Model ... 50

4.3.2 Disturbance Model .. 50

4.3.3 Software Details .. 55

4.3.4 Hardware Platform .. 59

4.3.5 Interfacing ... 60

4.4 Results ... 60

4.5 Closure ... 64

5 REAL-TIME HARDWARE-IN-THE-LOOP SIMULATION UTILIZING

FPGA ... 67

5.1 Introduction.. 67

5.2 Application .. 68

5.2.1 Plant Model ... 68

x

5.2.2 Hardware Platform .. 71

5.2.3 Interface Emulators ... 72

5.2.3.1 Incremental Encoder emulator ... 72

5.2.3.2 PWM receiver .. 75

5.2.4 Embedded Microprocessor Implementation 76

5.2.5 Parallel FPU Implementation .. 77

5.3 Results ... 78

5.4 Closure ... 84

6 NON-REAL-TIME HARDWARE-IN-THE-LOOP SOLUTION UTILIZING

A HYBRID ARCHITECTURE .. 86

6.1 Introduction.. 86

6.2 Modeling .. 90

6.2.1 Plant Model ... 90

6.2.2 Disturbance Model .. 97

6.3 Implementation .. 100

6.3.1 PC Software .. 100

6.3.2 NGW100 Software.. 103

6.3.3 FPGA Design .. 106

6.4 Results ... 107

6.5 Closure ... 114

7 CONCLUSION AND FUTURE WORK ... 117

7.1 Conclusion ... 117

7.2 Future work .. 119

REFERENCES .. 121

APPENDICES

A HARDWARE SPECIFICATIONS ... 133

A.1 PIC Development Board and Microchip PIC Microcontrollers 133

A.2 NGW100 Network Gateway Kit and AT32AP7000 Microprocessor 134

A.3 Terasic Altera DE1 Cyclone II FPGA Starter Kit 136

A.4 Terasic Altera Nios II Embedded Evaluation Kit 137

xi

B SOURCE CODE LISTINGS ... 139

B.1 Introduction ... 139

B.2 Source code – MainForm.cs.. 140

B.3 Source code – Antenna.cs ... 142

B.4 Source code – Environment.cs .. 148

B.5 Source code – Satellite.cs.. 149

B.6 Source code – Simulation.cs ... 151

B.7 Source code – StateSolver.cs .. 154

B.8 Source code – Protoc16.h.. 155

B.9 Definition and pseudocode – PWM_Receive.v 155

B.10 Definition and pseudocode – Encoder.vhd ... 156

B.11 Source code – main.cpp .. 156

B.12 Source codes for NGW100 platform – CadmusDevice.h 159

B.13 Source code – CadmusDevice.cpp .. 159

B.14 Source code – CadmusManager.h ... 162

B.15 Source code – CadmusManager.cpp ... 163

B.16 Source code – DisturbanceSource.h.. 166

B.17 Source code – DisturbanceSource.cpp .. 166

B.18 Source code – EncoderCommander.h ... 167

B.19 Source code – EncoderCommander.cpp ... 168

B.20 Source code – Solver_RK4.h .. 169

B.21 Source code – Solver_RK4.cpp .. 169

B.22 Definition and pseudocode – NGW_Interface.vhd 170

B.23 Definition and pseudocode – InputSignaller.vhd 171

B.24 MATLAB script – hils_milling_distgen.m ... 171

xii

LIST OF TABLES

TABLES

Table 4.1: Questionnaire results for educational applications 64

Table 4.2: Cadmus simulation times ... 65

Table 5.1: Offline simulation test results .. 79

Table 5.2: Sample application resource usage .. 79

Table 5.3: 4th Order Runge-Kutta method computation times 83

Table 6.1: Plant parameters for CNC machining center ... 97

Table 6.2: Hybrid solution FPGA resource usage... 114

Table A.1: Microchip PIC18F4520 microcontroller specifications 134

Table A.2: Specifications of Cyclone II EP2C20F484C7 FPGA chip 137

Table A.3: Specifications of Cyclone III EP3C25F324 FPGA chip 138

Table B.1: Source files developed for the applications ... 139

xiii

LIST OF FIGURES

FIGURES

Figure 3.1: Gear pair ... 18

Figure 3.2: Backlash in a gear pair .. 20

Figure 3.3: Transmission force in dead-zone backlash model 20

Figure 3.4: Rack and pinion .. 22

Figure 3.5: Backlash in a rack-and-pinion .. 23

Figure 3.6: Ball screw assembly ... 23

Figure 3.7: Backlash between screw and nut in a ball screw. 24

Figure 3.8: Two-pulley belt drive ... 26

Figure 3.9: Two-pulley belt drive with spring model ... 26

Figure 3.10: Direct torque control ... 28

Figure 3.11: Typical torque capability curve for an electric motors 29

Figure 3.12: Friction as a function of displacement as defined in Dahl’s model 32

Figure 3.13: Illustration of the bristle model for friction .. 34

Figure 4.1: Operational block diagram for Cadmus software 47

Figure 4.2: Representation of the antenna dish and the definition of angles 49

Figure 4.3: Functional block diagram of the Cadmus application project 49

Figure 4.4: Antenna dish inside wind flow ... 51

Figure 4.5: Wind angle of satellite dish .. 52

Figure 4.6: Drag force on antenna dish with respect to wind angle 54

Figure 4.7: Disturbance torque on antenna dish with respect to wind angle 54

Figure 4.8: Main tab of Cadmus Software .. 56

Figure 4.9: Settings tab of Cadmus software .. 57

xiv

Figure 4.10: View tab of Cadmus software... 58

Figure 4.11: Microchip PIC development board ... 59

Figure 4.12: Lead/lag controller design for satellite tracking antenna 60

Figure 4.13: Satellite and antenna azimuth angles for sample simulation using

lead/lag controller .. 61

Figure 4.14: Motor and disturbance torques on azimuth axis for sample antenna

simulation using lead/lag controller .. 62

Figure 4.15: Satellite and antenna elevation angles for sample simulation using

lead/lag controller .. 62

Figure 4.16: Motor and disturbance torques on elevation axis for sample antenna

simulation using lead/lag controller .. 63

Figure 4.17: Signal strength for sample antenna simulation using lead/lag controller

 ... 63

Figure 5.1: Hardware configuration for the FPGA solution 68

Figure 5.2: Spindle drive system ... 69

Figure 5.3: Block diagram of sample application system 70

Figure 5.4: Form of the disturbance torque applied on the spindle shaft 71

Figure 5.5: Terasic Altera DE1 Cyclone II FPGA Starter Kit 72

Figure 5.6: Incremental encoder output signals for clockwise rotation 73

Figure 5.7: Incremental encoder output signals for counter-clockwise rotation 73

Figure 5.8: Incremental encoder emulator block diagram 74

Figure 5.9: Illustration of timing in encoder emulator operation 74

Figure 5.10: Block diagram of PWM receiver .. 75

Figure 5.11: Modified PWM with synchronization signal 76

Figure 5.12: Block diagram for parallel-FPU CCDE solver 78

Figure 5.13: Computation time by CCDE degree, one equation per loop 81

Figure 5.14: Computation time by CCDE degree, two equations per loop 81

Figure 5.15: Parallel-FPU implementation computation time by CCDE degree 82

Figure 5.16: Parallel-FPU implementation resource usage by CCDE degree 82

Figure 5.17: Hysteresis and fuzzy controller performances for spindle drive 83

xv

Figure 5.18: PID and sliding mode controller performances for spindle drive....... 84

Figure 6.1: Atmel NGW100 Network Gateway Kit ... 87

Figure 6.2: Block diagram of the microprocessor-based simulator 89

Figure 6.3: Operation timeline for microprocessor-based solution......................... 90

Figure 6.4: X-axis feed drive for CNC machining center 92

Figure 6.5: Z-axis feed drive for CNC machining center 92

Figure 6.6: First MCV-1100 3-Axis CNC Machining Center 93

Figure 6.7: Horizontal axes of the CNC machining center 94

Figure 6.8: Vertical axis of the CNC machining center .. 95

Figure 6.9: Torque capability curve for CNC machining center axis motors 96

Figure 6.10: Example of light cutting force disturbance on single axis 99

Figure 6.11: Screenshot from the System Maker tool ... 101

Figure 6.12: Screenshot from the System Monitor tool .. 103

Figure 6.13: Mean times for sub-processes within the NGW100 108

Figure 6.14: Cutting tool trajectory for bottle injection mold 108

Figure 6.15: Section of axis references for bottle injection mold 109

Figure 6.16: Section of x-axis motor position error for bottle injection mold 109

Figure 6.17: Section of y-axis motor position error for bottle injection mold 110

Figure 6.18: Section of z-axis motor position error for bottle injection mold 110

Figure 6.19: Section of x-axis cart position error due to backlash for bottle injection

mold ... 111

Figure 6.20: Section of x-axis cart position error due to backlash for bottle injection

mold ... 111

Figure 6.21: Section of x-axis cart position error due to backlash for bottle injection

mold ... 112

Figure 6.22: Hybrid solution FPGA utilization floor plan 113

xvi

LIST OF SYMBOLS

Latin Symbols

A antenna dish frontal area

Ad antenna dish drag area

As antenna dish side area

Cd drag coefficient

b viscous friction coefficient

D backlash amount

Fd drag/disturbance force

Ff dry friction force

Fs stiction force

Ft backlash transmission force

Ftot total force

h simulation step size

hs ball screw lead

Jeq equivalent inertia

Jm motor inertia

k spring constant

mT slope of torque limit in constant torque region

mw mass of workpiece

N number of gear teeth, normal force

Nc number of cutting edges on machine tool

Pr rated power

xvii

Td disturbance torque

Tf static friction torque

Tm applied motor torque

Tm
* reference motor torque

Tmax motor torque limit

Tr rated torque

Greek Symbols

ηs ball screw efficiency

µ dry friction coefficient

θ antenna elevation

θR elevation reference

ψ antenna azimuth

ψR azimuth reference

ω angular speed

ωr rated angular speed

ωp maximum angular speed

Acronyms and Abbreviations

ADC Analog/Digital Converter

CCP Capture/Compare/Pulse Width Modulation

CPU Central Processing Unit

CTBGA ChipArray Thin Core Ball Grid Array

CMOS Complementary Metal-Oxide-Semiconductor

CNC Computer Numerical Control

CCDE Constant Coefficient Difference Equation

DMIPS Dhrystone Million Instructions Per Second

DSP Digital Signal Processor

xviii

DAC Digital/Analog Converter

DMA Direct Memory Access

DTC Direct Torque Control

DDR Double Data Rate

EEPROM Electrically Erasable & Programmable Read-Only Memory

EMF Electromotive Force

ECCP Enhanced Capture/Compare/Pulse Width Modulation

EUSART Enhanced Universal Synchronous/Asynchronous

Receiver/Transmitter

FPGA Field Programmable Gate Array

FTP File Transfer Protocol

FIFO First In First Out

FPU Floating Point (Arithmetic) Unit

GPIO General Purpose Inpt/Output

GUI Graphical User Interface

GPU Graphics Processing Unit

HILS Hardware In The Loop Simulation

HTTP Hyper Text Transfer Protocol

ISP In System Programming

IrDA Infrared Data Association

IO Input/Output

IDE Integrated Development Environment

I2S Integrated Interchip Sound

I2C Inter-Integrated Circuit

JTAG Joint Test Action Group

LCD Liquid Crystal Display

MAC Media Access Control

MII Media Independent Interface

MMU Memory Management Unit

MIPS Million Instructions Per Second

xix

MMC Multimedia Card

NASA National Aeronautics and Space Administration

NGW Network Gateway

NC Numerical Control

OS Operating System

PSP Parallel Slave Port

PC Personal Computer

PLL Phase Lock Loop

PLC Programmable Logic Circuit

PPR Pulse Per Revolution

PWM Pulse Width Modulation

QCIF Quarter Common Intermediate Format

QVGA Quarter Video Graphics Array

RAM Random Access Memory

RISC Reduced Instruction Set Computing

RMII Reduced Media Independent Interface

SD (Card) Secure Digital Card

SPI Serial Peripheral Interface

SIMD Single Instruction Multiple Data

SRAM Static Random Access Memory

SMA SubMiniature version A

SVGA Super Video Graphics Array

SDRAM Synchronous Dynamic Random Access Memory

SSP Synchronous Serial Port

SSRAM Synchronous Static Random Access Memory

SOPC System On Programmable Chip

USB Universal Serial Bus

USART Universal Synchronous/Asynchronous Receiver/Transmitter

UAV Unmanned Aerial Vehicle

VGA Video Graphics Array

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

Control systems are an inherent part of modern life. From the earliest ages of

human history, timing and positioning mechanisms have been in use. Machines

designed in the industrial era commonly employed centrifugal speed regulators,

cams and other mechanisms to provide desired motion and synchronization. Over

the decades, improving mechanical and electrical theory and practices, as well as

emergence of the electronics discipline the fields of control theory and control

engineering developed rapidly. Systems and machinery in the industry became

more and more inseparable from control systems. Through improving technology,

miniaturization and changing consumer needs, even common household items

came to use controllers for their operation. Today, motor controllers, PLCs and

various microcontrollers provide the necessary control and coordination for almost

any production tool. From the provision of basic services to consumer electronics;

microcontrollers, DSPs and logic circuitry of varying capacities take their places in

every area of human life without us even noticing.

The importance of control systems in maintaining and advancing the modern living

has led to massive amount of studies being conducted in the field. First formal

analysis of centrifugal governors by Maxwell [1] in the late 19th century, followed

by Routh’s [2] generalization of the work to linear systems, great interest on the

topic was raised in the academic field. People such as Lyapunov, Nyquist, Bellman

2

and Ragazzini developed a number of techniques for analysis and design of

dynamic systems and controllers. As a result, there exists an arsenal of tools, such

as the Laplace and z- domains, root loci, Bode plots, state space design and so on

are available to control engineers. Fields of non-linear, optimal and adaptive

control are well established and advancing, while intelligent control elements like

artificial neural networks and fuzzy logic controllers have gained widespread use

both on their own and combined with other well-known techniques during last

decades. Lately, the design of control systems have changed partially or completely

into computer aided design processes, and progressing through computer

automated design [3].

1.2 Simulation

With all the tools available to control engineers today, design of a system capable

of accomplishing a given control task is not very hard. Clearly documented

procedures and powerful computer tools relieve the designers from the burden of

repeated calculations and allow them to focus on more important qualities of the

design.

More often than not, the techniques used in the design process involve assumptions

and simplifications in their theoretical bases. Similarly, the mathematical models of

systems in question, which are needed for proper design, contain certain

simplifications due to some parameters not being known, too complicated to model

precisely or simply because the literature lacks the proper tools. Therefore the

developed controllers, while good at fulfilling the requirements, are not perfect.

The increased expectations of today’s world, however, demand precision and

perfection. To overcome the deviations due to imperfect design tools, control

engineers are also equipped with a variety of inspection and analysis tools that help

them investigate the controller performance. Analytical tools, combined with the

3

iteration power of modern computers, allow the engineers to rapidly examine the

system and controller behavior and fine tune their designs to meet specifications.

A very powerful and valid tool in exploring plant and controller performance is

simulation. In simulations, numerical integration methods are used to determine the

plant behavior based on system states and inputs. These methods not only free the

analysis process from most simplifications and approximations introduced by other

analytical tools, but they also allow the investigation of plants that include non-

linear components (which are very difficult to cope with using traditional

approaches) or those that act on discontinuous equations. Through the use of proper

engines, even systems that require tools other than differential equations (e.g. state

machines) to model can be simulated for investigation. With the computational

power of modern computers, performing the calculations for simulations are easily

done, making them a widely available tool.

The power of simulations is not limited to their ability to work with novel plant

models. They also grant the developer the ability to monitor the states of any

simulated component inside the plant without any additional computation. What’s

more, it is possible to directly manipulate these states (mimicking disturbances,

malfunctions or similar internal or external effects) as well as the most basic

system properties (such as masses, friction coefficients etc.) during the course of

simulation. This way, introduction of deterministic and (pseudo) random

disturbances, component degradation, changes in external circumstances and

similar phenomena become possible. These opportunities cannot be provided by

most traditional analysis techniques.

1.3 Hardware-in-the-Loop Simulation

In many cases, it is not possible to perform extensive investigation and testing of

the mathematical qualities and topology of the controller. The actual controller

device needs to be manufactured and issues related with its physical

4

implementation should be taken care of. The necessary circuit design and assembly

need to be done. The hardware and software programs that will realize the designed

control algorithm should be developed and implemented. Any problems that may

arise during sensor and actuator communication should be fixed. During these

efforts, any possible constraints due to available hardware resources need to be

met. The best and most valid way of accomplishing these goals is to couple the

controller device with the plant to be controlled, providing all the conditions of

actual operation.

In some cases, however, an implementation and testing process involving the actual

system to be controlled may be undesirable. First of all, the cost of performing test

runs on the plant might be too much. The cost of the plant itself, combined with the

risk of damaging the equipment (or more importantly, the working personnel) in

case of an error or malfunction may render the tests unfeasible. Secondly,

collecting detailed information on a running plant is not an easy task. While some

information can be obtained from the sensors already installed for normal

operation, should more detailed information regarding other components be

needed, fitting the system with necessary sensors requires careful planning and

execution. Selection of suitable sensors, careful placement and mounting, proper

laying and shielding of cables, use of capable data collection devices and so on

need to be taken into consideration. Finally, the plant may not be even available for

the engineer to work on. In tight development schedules, the development of the

control systems may be required to be completed before a prototype of the plant is

unavailable.

To overcome such difficulties, the concept of hardware-in-the-loop simulation

(“HILS”, also referred to as “HLS”, “HIL simulation” or “HWIL simulation”) is

proposed. Basically, HILS is a technique where a controller device is connected to

a simulation of the system to be controlled, via the emulation of sensor and actuator

interfaces.

5

A powerful computing platform (which may actually consist of one or more

devices) runs a high fidelity simulation of the plant in question. Facilities for

controlling the simulation, monitoring system states, introduction of external

effects on the simulation, injection of disturbances and recording of all the data

generated during the process are provided via this platform.

An interface emulator stands between the simulator platform and the controller.

This emulator provides the physical connection of the controller to the plant.

Electrical signals that would be generated by the sensors are mimicked based on

the simulation states, while command signals intended for driving the actuators are

received from the controller and passed to the simulation as inputs. With the aid of

this interface, the simulation is indistinguishable from the actual plant as far as the

controller’s point of view is concerned. The controller operates normally as if it

would during normal operation without any significant modification.

The simulation might be performed in real- or non-real-time. In real-time

simulations, the calculations are performed within a certain time frame. The

simulation loop needs to be completed and necessary sensor data should be made

available to the controller before it begins the execution of control calculations for

the next sampling period. (It is necessary to note that the term “real-time” does not

necessarily mean “high computational performance”; it rather indicates

deterministic computation timings.) On the other hand, in a non-real-time

simulation, such a timing constraint does not exist. Although the value of the

sampling time inside the simulation and control calculations are kept the same, the

actual execution time might be longer or shorter. The time may be scaled or the

process may be carried based on a timing signal (which may not even have a set

frequency) provided by the controller. In certain non-real-time simulations, where

the timings of the signals transmitted between the controller and the simulation are

6

meaningful, the interface emulation may also need to be adjusted to make up for

the change in actual execution time.

Hardware-in-the-loop grants the control engineer the chance to work with the

almost-final design of the controller. With all the possibilities provided by running

a simulation, almost any situation that can be encountered during normal operation

can be generated and necessary changes on the design can be made.

1.4 Objective of the Thesis

The goal of this thesis is to develop a hardware-in-the-loop simulator. This system

should be able to interface with a controller device using communication methods

commonly found in such devices. It should also be able to work with any plant that

the user specifies by defining its mathematical model. Finally, the data generated

during simulation should be recorded and presented to the user in a convenient

form for analysis and optimization purposes. One desired property of the solution is

that it should not require any additional hardware or commercial software packages

other than those provided in it. In other words, the proposed solution should be

integrated and self-sufficient for its purposes.

To accomplish the goals set here, mathematical tools, hardware and software that

are suited for performing HILS will be investigated. Different approaches to HILS

will be explored, their qualities will be inspected and the results will be compared.

1.5 Organization

Following the introduction chapter, Chapter 2 gives information on the current

state of the art in hardware-in-the-loop simulation applications. Various

applications and products for HILS are reviewed. A brief survey regarding

modeling techniques for dynamic systems is presented.

7

Chapter 3 discusses the mathematical models for components that are commonly

encountered in dynamical systems are presented. Numerical integration techniques

and other solver routines for carrying out the simulation operations are given.

Chapter 4 proposes a non-real-time HILS solution for use in education of control

engineering. Application of this solution in an actual course is explained with

results.

Chapter 5 gives details on a general-purpose, real-time HILS system. Components

for enabling simulation-controller interfacing are also presented.

Chapter 6 develops an HILS system consisting of multiple hardware platforms,

complete with design and execution tools.

Finally, Chapter 7 summarizes the results of the study and hints at possible future

developments.

8

CHAPTER 2

LITERATURE SURVEY

2.1 Introduction

HILS is a powerful tool that has found applications in a wide variety of areas, from

marine research to space missions and even education. In order to set the

background and current state of hardware-in-the-loop simulation and relevant

systems, this chapter explores and presents information on the various studies and

applications on the subject. Commercially available hardware and software

products enabling or aiding HILS applications are also given here. Finally, a brief

survey regarding the modeling of components found in dynamical systems is

presented.

2.2 Studies and Applications

The use of HILS has a history dating back over 40 years. Driven by military

purposes where demands for precision are high due to involved risks, simulation of

tactical missiles for guidance systems testing constitutes examples of some of the

earliest works. The Sidewinder missile program is one example of such works

employing HILS during the late 1960’s. Powerful hardware have been used in real-

time 6 degree-of-freedom simulation of active missiles and targets [4]. Radio

frequency and millimeter-wave radar signal injectors, infrared image and electro-

optical signal generators are used to simulate the sensor inputs to the missiles [5-6].

Instead of modeling sensors along with relevant noise and error forms, such an

9

approach provides highly realistic simulations. Also, the opportunity to test the

entire control system hardware rather than only the processor is thus provided [7].

Development and production of the instrumentation, equipment and various

systems used in aerospace are quite demanding. Due to the high amount of funds

spent for research in the field and the risk of accidents involving irreversible

damages, loss of equipment or even human lives; extensive testing of all the

systems used is required. HILS is therefore invaluable for this field. The developers

of the highly maneuverable aircraft technology, or HiMAT, remote-piloted vehicles

benefitted greatly from this tool [8]. The Cassini Spacecraft and its mission bound

for Saturn is a good demonstration of space applications employing HILS [9]. A

multitude of systems, such as the attitude and articulation control, command and

data subsystem and many other components were tested using high-fidelity

simulations. In addition to verification of sequences, procedures and software; the

simulations have also served in training the crew on duty in the mission. Another

application of HILS on the special purpose dexterous manipulator used in the

International Space Station includes simulation of numerous systems involved in

the system [10]. A novelty of this study is the employment of a scaled rigid robot

that is used instead of the mathematical model of contact dynamic models.

Investigation of the kinematics and dynamics of the manipulator on a space satellite

system with vision sensor was done by Chinese researchers [11]. The Formation

Flying Test Bed developed by NASA uses dynamic HILS of the guidance,

navigation and control analysis for clusters of satellites maintaining a formation

[12]. In another research, dynamical simulation of picosatellite sensor nodes in low

earth orbit was performed for a distributed orbital computer network intended for

use in space missions [13].

Verification of structures and controllers of unmanned marine vessels, both surface

and underwater, may be done using HILS. Navigation algorithms and other

software, maneuverability, energy consumption and dynamical qualities of the

10

vehicle such as stability and maneuverability are investigated using simulations

[14-15]. In a work by researchers, hydrodynamics, models of thrusters, propellers

and various control surfaces, waves and currents in the water and other similar

effects were included in the simulations [16]. Aside from individual vessels, a

simulation architecture for cooperative operation of multiple unmanned vehicles

was also proposed [17]. This architecture involves environmental emulation

including acoustic propagation model, virtual sensors and communication devices.

Today, use of HILS in the automotive industry has become commonplace. Tight

budgets and deadlines, as well as demanding safety measures require the engineers

to extensively test the performance and reliability of numerous mechanical

elements and embedded controllers. For this purpose, simulation platforms aiming

for testing different systems were developed by many different facilities [18-24].

The validation of many safety and driving aid systems are also done using HILS

[25-26]. To meet the high production rates and extensiveness of the validation

procedures involved, work has been done on automation of the testing process [27].

Latest work in the field not only involves simulation of the mechanical and

electrical systems, but also the injection of faults into these in order to explore their

performances under imperfect conditions [28].

HILS has received attention in testing and validation of electrical machinery and

power electronics systems as well. Researchers have proposed mathematical tools,

procedures and implementation methods for realizing such simulations [29-30].

Applications regarding the simulation of electronic components such as converters

and filters were developed [31-33]. Simulations of electromechanical drives using

different methods such as finite element models were also presented [34-35].

The plants that can be simulated by HILS techniques are not limited to dynamical

systems or those that are defined using differential equations. Plants governed by

logical rule sets or discrete equations, as well as networks of plants can also be

11

simulated. Communications experts have employed HILS in analysis of mobile

devices belonging to various-scale wireless communication networks [36-37].

Models of undersea networks, communication backbones and ocean observatories

were developed and investigated by ocean researchers [38]. Numerous works on

analysis and optimization of traffic signal controllers were carried out [39-42].

The conveniences provided by HILS have made it a feasible option in education,

too. Teachers aiming to provide low-cost and high-efficiency laboratory work for

the students have resorted to such applications [43-45].

2.3 Commercial Products

Today, HIL simulations aren’t only encountered in research studies and special

projects. While the developing technology lowers the cost of powerful hardware,

increasing customer expectancy for everyday product performance and reliability

has introduced medium and even small scale developers and manufacturers with

the necessity for simulations. To close the gap between these parties and the

already-advanced HILS technology, several other hardware and software

developers have stepped in.

Speedgoat [46] is a manufacturer for highly-flexible, scalable hardware platforms

for use in HILS applications. Processor platforms of varying cost and performance

levels are provided. Numerous expansion modules for analog and digital I/O, serial

and parallel communication and working with pulse-based signals

(encoder/decoders, PWM etc.) are available. Shared memory modules can be used

for data transfer between multiple products or third-party devices. FPGA-based

configurable modules for further customization purposes also exist.

dSpace [47] provides hardware and software products for automotive, aerospace

and industrial control applications. Hardware platforms for both implementing

controllers and performing their HILS testing are available. Extension modules for

12

extensive controller communication and calibration, as well as data diversion and

bypassing for advanced testing applications, can be used. To aid the development

process, a variety of specialized software packages are also provided. Design and

implementation of controllers, experimentation and testing, generation of software

embedded in the products, measurement, calibration and simulation tasks are

facilitated by these packages.

Opal-RT [48] is mainly a software developer focusing on real-time simulator

packages specifically tailored for a multitude of fields, as well as toolboxes for use

with other existing design and analysis software. Controller prototypes, motor

drives, converters and various scale electricity grids are covered by the electrical &

power systems simulators. Aerospace & defense product family provides tools for

simulating various flight systems, turbine engines and UAVs. Complete automobile

simulation including electric and hybrid cars, engine and transmission assemblies,

and complete including hybrid and electric automobiles including hybrid and

vehicle dynamics are made possible by the automotive products. Along with all the

software tools, an array of I/O and signal conditioning modules are also provided

for controller interfacing.

Applied Dynamics International [49] is the developer of the ADvantage

Framework, a comprehensive set of software tools for real and non-real-time HILS,

as well as distributed simulation. The framework provides both development and

run-time environments for these applications. The Beacon product family provides

automated generation of safe and reliable controller code generation, as well as

providing aid in development of test cases for the generated code. A line of

hardware products, Emul8, are also available for supplementing the simulation of

automobiles or military vehicles, for the purpose of designing automotive

electronic control modules.

13

Aside from tools specifically designed for HILS, other companies have developed

additional modules for their products to enable such simulation applications.

National Instruments [50] provides the NI HIL Simulator Reference System line of

hardware products and associated plug-ins for the LabVIEW software package.

Similarly, The MathWorks [51] proposes the xPC Target Turnkey hardware family

along with the necessary libraries for Matlab/Simulink software packages. Both

companies supplement their products with a variety of I/O modules.

2.4 Dynamic Systems Modeling

Proper modeling of the plant is essential in all simulation applications. Quite often,

dynamics of the systems are not limited to simple forces and masses, but are

instead composed of many different subsystems governed by a large variety of

phenomena. To obtain an acceptable fidelity, these should be investigated and

modeled using appropriate techniques and approximations.

Friction is an effect that occurs in all mechanical systems, appearing at the physical

interface between two contacting surfaces. As the need for reducing and

compensating friction increased by the ever-demanding market, friction has

received great attention by researchers. Early documented work on friction dates

back to mid-18th century by Coulomb on dry friction and late 19th century by

Reynolds [52] on viscous friction. Later in early 20th century, work by Stribeck

[53] gives the friction force as a function of velocity itself in constant-velocity

motion, with a sudden drop at lower speeds (also known as the Stribeck effect).

The stiction phenomenon, which is the existence of friction force higher than the

Coulomb friction when the body is at rest, is explained by Morin [54]. In modeling

the sticking effect and break-away in static friction, Rabinowicz [55] addresses the

transition process as a function of displacement. Johannes et al. [56] and

Richardson et al. [57] indicate in independent works that the magnitude of the force

required to overcome sticking condition depends on the rate of application of the

force. Courtney-Pratt et al. [58] suggest a spring-like behavior in relative

14

displacement of two bodies before motion occurs. In more recent work,

Karnopp [59] proposes a method for addressing the issue of detecting zero velocity

in computer simulations using a dead band zone. Armstrong et al. [60] later

introduce temporal dependencies to the classical friction model to reflect certain

observed dynamic effects.

With the availability of more powerful hardware and the demand for high precision

in servo motors, dynamic models for friction have received great interest. Driven

by experiments on servo systems with ball bearings, Dahl [61] models the friction

force as a function of displacement (using a differential equation that is based on

the stress-strain curve in solid mechanics) and also proposes a time domain model

that is a generalization of Coulomb friction. The absence of Stribeck effect and

stiction in Dahl’s equations later leads to the extension of this model by Bliman

[62]. In an attempt to capture the effect of irregular micro-scale contact between

two surfaces, Haessig et al. [63] introduce a model based on the bending, snapping

and random re-bonding of flexible bristles between contacting surfaces. Although

inefficient for simulations, this model provides good results that capture the

random nature of friction. In the same work, a modification is made on the model

by adding another state in determining the strain of the bristles, in an attempt to

come up with a more computationally feasible “reset integrator” model. Bliman

et al. [64-66] propose a linear model in state-space, partially exhibiting the stiction,

break-away and Stribeck effects, which reduces to Dahl’s model when expressed in

its first order of complexity. An extensive model that is based on the bristle model

and covers the Stribeck effect, break-away and stiction is proposed by Canudas de

Wit et al. [67] with the name “LuGre friction model”.

Belts are widely used in a variety of applications requiring the transmission of

power over a distance. Early modeling of belt mechanics is presented by

Reynolds [68] and further developed by Swift [69] under the “creep theory”. Their

works depend on the idea that frictional forces exerted on the belt by the pulleys

15

cause the elastic belt to extend and contract. This model is commonly applied using

lumped parameters, by representing traversing belt parts as springs or spring-

damper assemblies, in such works by Abrate [70] and Hace et al. [71]. Bechtel et

al. [72] extend the creep theory to include the inertial effect on the part of the belt

wrapped around the pulleys. Work by Rubin [73] applies the model to multi-pulley

drives that are commonly used in many applications. Firbank [74] claims that creep

theory is inadequate in modeling modern belts that contain high-stiffness steel

fibers, instead proposing the “shear theory”. This model explains the belt

transmission based on the shear strains between the pulley surface and the cords

within the belt. Work by Childs et al. [75] confirm the shear theory by the power

loss in belt drives. Alciatore et al. [76] show that this model is necessary to handle

multi-pulley cases with inextensible belts. Gerbert [77-78] extends the shear theory

to flat, V and multi-ribbed V belts.

Backlash, which is the undesired clearance between teeth of mating gear pairs, is a

common effect deteriorating the control performance of a system. Therefore it is

necessary to obtain a suitable backlash model for effective compensation.

Slotine [79] proposes a dead zone model, which has become the most common

approach to backlash. Sarkar et al. [80] model backlash as an impact event that

occurs when mating gears come into contact. An exact backlash model is proposed

by Nordin et al. [81].

Coming in many different sizes, shapes and characteristics; today electric motors

are the primary source of actuation in almost any dynamical system. Due to their

high power output, AC motors are commonly used in industrial applications.

However, since these motors are governed by complex electromechanical

processes, it is desirable to add a layer of control to achieve a control scheme that

aims to obtain a desired output from these machines. For this purpose, Yamamura

et al. [82] propose the field acceleration method. Claiming that it is often difficult

to force the desired currents or voltages into stator windings, Depenbrock [83]

16

develops the concept of “direct self-control”, later to be known as “direct torque

control”. Using flux and torque estimators, French et al. [84] develop and

implement a DSP-based direct torque controller. Mir et al. [85] utilize PI and fuzzy

estimators to implement a space vector modulation scheme for realizing DTC.

Behera et al. [86] propose and validate a dither injection method to reduce torque

ripple in DTC. In an attempt to describe the characteristics of induction motors,

Soong [87] investigates their field weakening performance and gives the torque-

speed curve commonly utilized in modeling motors. In later work, Moore [88]

investigates the effects of extending the constant power region of the described

curve.

2.5 Closure

In this chapter, background on the various applications of HILS was given. Some

of the numerous fields of application were discussed, hinting at the specific

application purposes. Information on a few select commercial products available

for HILS was presented. A summary on modeling of dynamical systems was also

given.

17

CHAPTER 3

MODELING AND SIMULATION TECHNIQUES

3.1 Introduction

The first and most important element in performing a simulation is the

mathematical model of the dynamic system to be simulated. The fidelity of the

simulation to the real world is very much based on the depth and accuracy of the

models used. Careful examination and modeling of the components making up the

plant is therefore required. However, most of the time, the workings of these

components involve phenomena that are too complex to model or computationally

costly. Therefore, approximate yet accurate models need to be developed. In this

chapter, mathematical models for some components that are commonly found in

dynamical systems are given. While the bases of the models are explained,

complete derivations of the results are kept outside the scope of this thesis.

Another important part of a simulation is the solver routines. The suitability of the

selected solver to the equations that govern the plant should be investigated. The

step size and any other parameters (if applicable) should be determined correctly.

Brief information on common solution methods are also presented in this chapter.

3.2 Modeling Dynamic Systems

Conversion and transmission of power make up for most of the processes that take

place in dynamical systems. Modeling of these events therefore provides equations

18

that can be reused in many different systems with minimal modification. The

following sections derive the models for a handful of such commonly encountered

components.

3.2.1 Transmission Elements

Due to geometrical constraints, weight or balancing concerns or other similar

reasons; power cannot always be generated (or converted) at the location it is

needed. Furthermore, the direction, speed, magnitude or range of the power source

may need to be changed for the purposes of the application at hand. Therefore,

transmission elements such as shafts, pulleys, belts, cables, gears and so on are

commonly used to transmit and reshape the generated power. This section provides

the mathematical models for some common transmission elements and/or

phenomena associated with them.

3.2.1.1 Gears

Gears are rotating machine parts that make use of cut teeth to mesh with and drive

each other in order to transmit power. Coming in a variety of designs, gears can

couple shafts arranged in various setups: parallel, intersecting at an angle or skew.

Combined with the ability to generate mechanical advantage, gears are preferred in

a wide range of applications.

Figure 3.1: Gear pair

19

For ideally manufactured and assembled gear pairs, the torque T2 applied by the

driving shaft on the driven shaft is given by

 2
2 1

1

N
T T

N
= − (3.1)

where T1 is the drive torque and N1, N2 are the number of teeth on the gears. The

teeth number ratio is also called the gear ratio (Ng). The ratios of the angular

positions θ1, θ2 and velocities ω1, ω2 of the shafts are

 1 2

2 1

N

N

θ

θ
= − (3.2)

 1 2

2 1

N

N

ω

ω
= − (3.3)

Despite the techniques used in manufacturing and assembling gears, non-ideal gear

pairs are commonly encountered. Improper gear profiles, incorrect center distances

and wear introduce excessive clearance between mating gears. This clearance leads

to an effect called “backlash”. Defined as “the play between adjacent movable

parts”, backlash can be described as the unwanted motion (or loss of motion) due to

excessive clearance between contact surfaces. Backlash occurs when contact

between the mating parts is lost and re-established because of changes in

movement direction or speed. Aside from gears, backlash is also found in other

contacting elements such as roller bearings or ball screws. Although methods have

been devised to eliminate backlash (such as duplex worm gears or preloaded

elements), these cannot be used in all applications and backlash is therefore

commonly encountered.

A common method of modeling backlash is the dead-zone model. In this approach,

the input and output gears are coupled together with a transmission force that is a

20

function of the difference between the angular positions of the gears – or more

precisely, the position difference along the pitch lines.

Figure 3.2: Backlash in a gear pair

Figure 3.3: Transmission force in dead-zone backlash model

21

In Figure 3.3, k is a spring constant dependent on the material and geometry of the

shaft and gear and D is the amount of backlash between gears. d is the position

difference of the gears along the pitch line and can be calculated as

 1 1 2 2d r rθ θ= − (3.4)

where r1, r2 are the pitch radii of the input and output gears, respectively. The

transmission force Ft, in turn, is

,
2 2

0 ,
2

,
2 2

t

D D
k d d

D
F d

D D
k d d

  
− > 

 


= <

  

+ < − 
 

 (3.5)

The torques applied on the gears are simply

 1 1tT F r= (3.6)

 2 2tT F r= (3.7)

It follows that while the positional difference of the gears is within the dead-zone,

the shafts connected to them are uncoupled. However, when the difference moves

outside the zone, the gears get into contact and the shafts act as if coupled via a

torsion spring.

3.2.1.2 Rack and Pinion

Rack and pinion assemblies are used to convert rotational motion into translational

motion using a gear and a rack with mating teeth, similar to a gear pair. Figure 3.4

shows the rack and pinion assembly.

22

Figure 3.4: Rack and pinion

The force transmitted by the pinion on the rack is simply calculated from

 F Tr= (3.8)

And the relation between the positions and velocities are

 x rθ= (3.9)

 v rω= (3.10)

The dead-zone backlash model can be easily extended into the rack and pinion

assembly. Figure 3.5 shows the definition of backlash in a rack and mating pinion.

The position difference of the rack and pinion is simply

 d r xθ= − (3.11)

Equation (3.5) holds for the transmission force (which directly applies to the rack)

and

 tT F r= (3.12)

23

Figure 3.5: Backlash in a rack-and-pinion

3.2.1.3 Ball Screw

Ball screws are mechanical devices that are used to convert rotational motion to

linear motion with minimal friction. They are similar to lead screws in the sense

that they employ a driving threaded shaft and a driven nut. However, instead of

coupling these elements directly, ball screws use a number of ball bearings to

transfer force between them. This eliminates the sliding friction between the screw

and nut and only introduces, rolling friction which is significantly lower, resulting

in higher efficiencies (typically over 90%). Figure 3.1 shows a ball screw assembly

where the nut, shaft, balls and the ball circulation mechanism are visible.

Figure 3.6: Ball screw assembly [89]

24

The force F applied on the ball screw nut by the shaft can be calculated as follows:

2 s

s

F T
h

πη
= (3.13)

where T is the torque applied on the shaft, hs is the screw lead and ηs is the screw

efficiency.

Similar to gear pairs, backlash also exists in ball screws. Figure 3.7 shows the view

of a single ball inside the screw and nut assembly, with backlash indicated in two

ends of the dead-zone. Here, the backlash is defined as D = D1 + D2. The position

difference is

 sd x x= − (3.14)

where x is the position of the nut along the shaft and xs is given by

2

s
s

h
x θ

π
= (3.15)

Figure 3.7: Backlash between screw and nut in a ball screw.

25

where θ is the angular position of the shaft. Equation (3.5) holds for the

transmission force, applying directly on the nut and via

2

s
t

s

h
T F

πη
= (3.16)

on the screw.

3.2.1.4 Belt

From turning centers to automobiles, belts are commonly used in transmission of

power over small to medium distances. Their high efficiency, tolerance to

misaligned pulleys and low maintenance requirement make belts a desirable means

of transmission. Although the angular velocity ratio of the driven pulley (or

multiple pulleys) to the driver may deviate from the ratio of pulley radii due to

slippage, toothed belts (or timing belts) solves this problem. Still, this ratio may

oscillate because of the stretching of the belt.

Although idler pulleys (for adjusting belt tension) and driving of more than one

pulley with a single belt are common, a belt connects one input pulley to one

output pulley in the most basic case (Figure 3.8).

The mathematical model of such an assembly, in its simplest form, neglects the

dynamics of the belt:

 2 1

1 2

T r

T r
= (3.17)

 2 1

1 2

r

r

ω

ω
= (3.18)

26

θ1, ω1

T2T1

r1 r2

A

B

θ2, ω2

Figure 3.8: Two-pulley belt drive

This model of a belt only serves as a relation between the masses (shafts or other

elements) connected to the pulleys. The position (as well as velocity, acceleration

and jerk) and torque of the output can be calculated directly.

A model of the belt based on the creep theory includes the tension and compression

(or bending) of the belt segments A and B on Figure 3.8 by treating these effects as

springs (Figure 3.9).

Figure 3.9: Two-pulley belt drive with spring model

27

In such a model, the input and output shafts are no longer simply coupled. Instead,

the equations of motion need to be written separately for both. The equations of

motion for the two shafts using this model, with pulley 1 being the driving side,

are:

 1 1 1 12
spring

J T r fω = −� (3.19)

 2 2 2 2 2
spring

J T r fω = +� (3.20)

where

 ()1 1 2 2springf k r rθ θ= − (3.21)

From (3.19) through (3.21), it can be seen that the angular speeds of the pulleys

will oscillate during solution unless damping torques act on them. Therefore,

careful modeling of the other plant components is required.

3.2.2 Power Generation Elements

In almost all dynamical systems, some form of power (e.g. thermal, chemical or

electrical) is converted into mechanical power and harnessed to accomplish the

desired task. Of such converters, electric motors, which employ the magnetic field

generated by electric current to convert electrical energy to mechanical energy, are

the most widely used ones. Manufactured in a great variety of sizes and shapes,

they can be found almost anywhere from ship propellers to wrist watches. The

subject of this section, however, is AC servo (induction) motors that are commonly

used in various industrial applications.

Driving an induction motor typically involves fine and high-bandwidth control of

the currents flowing through the rotor windings. In most applications, however, it is

convenient to manipulate the torque output of the motor rather than winding

28

currents. Direct Torque Control (DTC) is a controller scheme widely used for this

purpose. Utilizing flux and torque estimators that observe the winding currents,

DTC provides a means for directly controlling the torque output of the motor using

only a reference torque command (Figure 3.10).

Figure 3.10: Direct torque control

While the use of DTC simplified an induction motor to a torque modulator, motors

aren’t capable of applying the desired torque output. Rather, they have a certain

torque characteristic that limits the maximum applied torque based on the angular

speed of the motor. This limit, the “torque capability curve”, consists of three

distinct regions as seen in Figure 3.11.

As can be inferred from the figure, a typical motor can deliver up to its rated torque

(Tr) at all speeds up to its rated speed (ωr). At this state, the motor output is at its

maximum, which is called the rated power (Pr). Past the rated speed, the constant

power region is entered. The maximum torque of the motor is inversely

proportional to the speed in this zone, up to the maximum speed (ωp). When the

29

Figure 3.11: Typical torque capability curve for an electric motors

motor is pushed beyond this speed, the constant power region starts to degrade,

entering the natural mode where the torque capability decreases proportional to the

square of the speed. However, this zone is not used in most applications.

Assuming the utilization of DTC technique and neglecting the natural mode region,

the motor can be modeled simply as a near-ideal torque modulator obeying the

capability curve. The envelope of the torque capability curve (Tmax) is defined by

 max

,

,

0,

r m r

r r
r p

T

T
T

else

ω ω

ω
ω ω ω

ω

 ≤



= < ≤




 (3.22)

and finally the output of the motor (Tm) based on the reference torque (Tm
*) is

* *

max max
*

sgn() ,

,
m m

m

m

T T T T
T

T else

 ≥
= 


 (3.23)

30

3.3 Friction Modeling

One of the most common and important phenomena in dynamic systems is friction.

It can be encountered in almost any component, from shafts to linear guideways,

gear tooth interfaces and any other place where contact and relative motion exists.

Basically, friction can be defined as the tangential reaction force between

contacting surfaces. Physically, these forces can be the result of many different

mechanisms, involving contact geometry and topology, bulk and surface materials

of the bodies in contact, amount and rate of displacement and lubrication

properties. Many of these mechanisms involve effects that act only under certain

combination of conditions or for a limited time during operation. It is therefore not

possible to construct a single, universal model taking all these effects into account.

Therefore the trend has been to develop approximate models for certain application

conditions.

Classical friction models consist of different components, each focused on a

different aspect of the friction force. Their common basis is that friction always

opposes motion and is independent of the contact area. The most basic classical

friction model is the Coulomb friction, expressed as

 sgn()
f

F F v= (3.24)

where Ff is proportional to the normal contact load;

 f
F Nµ= (3.25)

where µ is the dry friction coefficient. Coulomb friction is commonly used in

controllers for friction compensation due to its simplicity. Another classical friction

model covers the effects of the viscosity of lubricants, and is named viscous

friction. This is normally described as dependent on the direction of motion by

31

 ()sgnv
F b v v

δ
= (3.26)

where b is the viscous friction coefficient. δv is a positive constant given by the

specific application and may be determined from experimental results. Stiction

describes the friction force applied while the body is at rest, which is typically

higher than the Coulomb friction. This force always counteracts the total external

force applied on the body, keeping it at rest. Since no motion is related with

stiction, it is a function of the force acting on the body:

,

,
tot tot s

s tot s

F F F
F

F F F

 <
= 

≥
 (3.27)

where Ftot is the total external force on the body and Fs is the stiction force. It is

important to note that (3.27) only holds as long as the body is at rest. In most

modeling studies; the dry and viscous frictions and stiction effect are used together

to yield the following single equation for friction:

() ()

, 0

, 0

sgn , 0v

tot tot s

s tot s

f

F v and F F

F F v and F F

b v F v v
δ


= <


= = ≥


+ >

 (3.28)

In simulation implementations of (3.28), it is important to take into consideration

the fact that velocity will most probably fail to settle at exact zero, due to errors

introduced by floating point arithmetic and/or controller effort. Therefore to detect

stiction condition, as proposed by Karnopp, a small velocity range [],ε ε− + may

need to be defined, inside of which the velocity is forcedly set to zero.

32

When more precise friction calculations are required, classical static friction

models are insufficient and dynamic models should be used. An early dynamical

friction model given by Dahl originates from the stress-strain curve in solid

mechanics. When force is applied on the body, the friction force increases it

reaches the rupture point. The stress-strain curve is modeled by the differential

equation

 ()1 sgn
C

dF F
v

dx F

α

σ
 

= − 
 

 (3.29)

where F is the friction force, FC is the Coulomb friction, σ is the stiffness

coefficient and α is a parameter used to define the sharpness of the bend in the

curve, most commonly taken equal to unity.

Figure 3.12: Friction as a function of displacement as defined in Dahl’s model

It should be noted that equation (3.29) does not take the velocity into account,

implying a friction force that is only dependent on the position. To obtain a time

model, Dahl utilizes

33

dF dF dx

dt dx dt
= (3.30)

In turn, one obtains

 ()1 sgn
C

dF F
v v

dt F

α

σ
 

= − 
 

 (3.31)

which is a generalization of the Coulomb friction.

Another dynamical friction model is the “bristle” model proposed by Haessig and

Friedland. This model approximates the micro-scale sticking and separation

between the sliding surfaces using a number of flexible bristles between the bodies

(Figure 3.13). Every contact point between these bodies is represented by two

bonded bristles. As the bodies move relative to the each other, these bristles bend

and act as springs that cause the friction force. This force is calculated as

 ()0
1

N

i i

i

F x bσ
=

= −∑ (3.32)

where N is the number of bristles in the contact area, σ0 is the bristle stiffness, xi is

the relative position of each bristle and bi is the position where the bristle contacts

are formed. As the bodies move, i ix b− increases until it equals δs, at which point

the bond is broken and a new bond is formed at a new location randomly chosen

relative to the previous bond location. The complexity of this bristle model, which

increases with N, makes it an inefficient model for use in simulations. Furthermore,

lack of a damping factor may cause an oscillation under the sticking condition.

To make up for disadvantages of the bristle model, Haessig and Friedland also

propose the “reset integrator” friction model. In this approach, instead of breaking

34

Figure 3.13: Illustration of the bristle model for friction

the bonds between bristles, the rate of increase in the bristle strain is kept constant

after the rupture point is reached. This is accomplished by the introduction of an

extra state z that determines the bristle strains:

() ()0 00 , 0 0

,

v and z z or v and z zdz

dt v else

 > ≥ < ≤ −
= 


 (3.33)

The friction force is then given by

 () ()0 11
dz

F a z v z
dt

σ σ = + +  (3.34)

where σ0(v) is an arbitrary function of velocity that gives the friction when sliding

(which may introduce the Stribeck effect), σ1dz/dt is a damping term that is only

active under sticking condition and a(z) introduces the stiction effect that is given

by

 () 0,

0 ,

a z z
a z

else

 <
= 


 (3.35)

35

where z0 is the maximum deflection before sticking condition terminates. This reset

integrator model is more suitable for simulations than the original bristle model,

but it is discontinuous in z.

Another detailed and accurate friction model based on the bristle interpretation of

friction is the LuGre model given by Canudas de Wit el al. Here, the bristles deflect

like springs under force. If the When the displacement is large enough, the bristles

begin to slip. The equations for this model are given as follows:

()0

vdz
v z

dt g v
σ= − (3.36)

 () ()0 1

dz
F z v f v

dt
σ σ= + + (3.37)

where z is the average bristle deflection, σ0 is the bristle stiffness, σ1(v) is the

damping, g(v) gives the Stribeck effect and f(v) is the viscous friction. Common

choices for damping, Stribeck effect and viscous friction functions are:

 () ()
2

0/
0 1

v v
g v eα α −

= + (3.38)

 () 2f v vα= (3.39)

 () ()
2

/
1 1

dv v
v eσ σ −

= (3.40)

For small displacements around zero velocity, the model acts similar to a spring-

and-damper system. Linearizing (3.37) around z = 0 and v = 0:

 ()0 1 2F z vσ σ σ= + + (3.41)

36

In (3.38), the sum α0 + α1 corresponds to the stiction force while α0 is the

Coulomb friction force. Also, for constant-velocity steady state condition, the

friction force simply becomes:

 () () ()sgnF g v v f v= + (3.42)

3.4 Solver Techniques

Simulating dynamical systems requires the solution of governing state equations in

order to obtain the state variables. Let a state x be defined with the ordinary

differential equation (ODE)

 () 1(, , ,...,)m

dx
x t f t x u u

dt
′= = (3.43)

where f is a function involving time t, the state x and inputs u1 to um. Let x0 be the

initial value of this state, i.e.

 0 0()x t x= (3.44)

The equations (3.43) and (3.44) then constitute an initial value problem (IVP).

Although it may be possible to obtain analytic solutions to certain IVP’s, there are

many cases where this is difficult or impossible due to non-linearities or time-

variant coefficients. Even when analytical solutions exist, the methods used to

obtain them are only too many to be conveniently implemented on a computer-

generated simulation process. In any case, the use of numerical integration methods

(which only require the ODE itself) in order to obtain x becomes desirable in

simulations.

37

Solver methods allow the approximation of the value of state x at time t, with the

given initial condition x0 at time t0, based on the function f defining the ODE. Since

these methods are computation-based, they provide solutions at certain time

intervals. Specifically, the value of x is available at every time interval h (also

called the “step size”) after the initial condition, i.e. at t = t0, t0+h, t0+2h, …, t0+nh

where n is an integer.

For convenience; the time, state and other values are represented in the indexed

form (which also is used throughout this section)

 0nt t nh= + (3.45)

 ()n nx x t= (3.46)

 (),m n m nu u t= (3.47)

where n is called the “time index”. It should be noted that since numerical

integration methods provide approximate values, it is mathematically more

accurate to write the equation (3.46) with an approximately-equal sign (≈). Still, the

equal sign is used for the sake of convenience.

An advantage of these methods is that for any time tn+1, the value of xn+1 only

depends on up to p-many (depending on the specific method used) previous values

of t, x and u. Therefore by keeping a p-long history of these variables, the

calculations can be executed rather easily in simulations.

Some solver methods employ a variable step size h for calculation of x. The

specific value of h is calculated such that the approximation error in each step is

below a certain tolerance level, requiring an additional step to compute an estimate

of the error. Variable-step methods allow for reducing the number of steps required

for solution at the expense of accuracy. However, they are unsuitable for real-time

38

simulations due to the difficulty in mapping the time step to a real-time clock.

Furthermore, use of fixed-step methods is more desirable since the simulation itself

operates on a fixed interval (i.e. the sampling interval of the controller). For these

reasons, fixed-step methods are preferred throughout the thesis studies.

An important concern regarding the use of numerical integration methods is the

stability of the solution. For the investigation of the stability, the term “stiff

equations” are used. A stiff equation is a differential equation for which certain

numerical integration methods turn out to be unstable unless the step size is smaller

than a certain value. Stiffness generally arises when an equation contains changes

in two very different time scales. For the definition of stiffness, let

 ()()1 1, ,, , , ,...,n n n n m nx P h f t x u u+ = (3.48)

denote the application of a solver method P on the ODE given by (3.43). This ODE

is then considered to be stiff if the Jacobian of P has at least one (complex)

eigenvalue m that is outside the region of stability associated with the specific

solver method selected. Since this eigenvalue is dependent on the step size, proper

selection of h can remove the stiffness and allow for stable solution.

In the following subsections, various fixed-step solver methods are presented with

brief discussions on their bases. Although the stability analysis is out of the scope

of this thesis; it is evident that, in some cases, such a study might be needed in

order to select a proper step size for successful simulation.

3.4.1 Euler’s Method

The Euler method approximates the value of xn+1 by employing a finite difference

approximation to x(t):

39

 ()
() ()x t h x t

x t
h

+ −
′ ≈ (3.49)

which, when rearranged, yields

 () () ()x t h x t hx t′+ ≈ + (3.50)

Using (3.43), the equation (3.50) can be written in time-indexed form as

 ()1 1, ,, , ,...,
n n n n n m n

x x h f t x u u+ = + (3.51)

which is known as the “forward Euler method”. This is an explicit method,

requiring only already-known values for calculation.

3.4.2 Heun’s Method

Also called the “modified Euler’s method” or “explicit trapezoidal rule”, Heun’s

method applies a predictor-corrector scheme, first calculating a rough

approximation of x and then refining it. To calculate the predictor x
*
n+1, forward

Euler’s method is utilized:

 ()*
1 1, ,, , ,...,

n n n n n m n
x x h f t x u u+ = +

Then, the trapezoidal rule is applied as corrector to obtain xn+1:

 () ()*
1 1, , 1 1 1, ,, , ,..., , , ,...,

2n n n n n m n n n n m n

h
x x f t x u u f t x u u+ + +

 = + +  (3.52)

40

3.4.3 Runge-Kutta Method

Runge-Kutta techniques, which are derived from the Euler method, involve the

evaluation of the equation at multiple points within one integration step. The

commonly used 4th order Runge-Kutta method, or “RK4”, is given by

 ()1 1 2 3 4

1
2 2

6n nx x h k k k k+ = + + + + (3.53)

The variables k1, k2, k3 and k4 are given by

 ()1 1, , ,...,n n mk f t x u u= (3.54)

 ()1 1
2 1 12 2, , ,...,n n mk f t h x hk u u= + + (3.55)

 ()1 1
3 2 12 2, , ,...,n n mk f t h x hk u u= + + (3.56)

 ()4 3 1, , ,...,n n mk f t h x hk u u= + + (3.57)

Equation (3.53) is essentially the estimation of xn+1 using an estimated slope, which

is a weighted average of different slopes (k1, k2, k3 and k4) within the time step.

3.4.4 Adams-Bashforth Method

Whereas the methods presented so far utilize the information from a single

previous time step in order to calculate the value of x at the successive time step;

the Adams-Bashforth method utilizes values from time steps up to four previous

points, using a predictor-corrector scheme. The predictor x*
n+1 is given as

 ()*
1 1 2 355 59 37 9

24n n n n n n

h
x x f f f f+ − − −= + − + − (3.58)

41

where fn = f(tn, xn, u1,n, …, um,n). Then, xn+1 can be calculated using

 ()*
1 1 1 29 19 5

24n n n n n n

h
x x f f f f+ + − −= + + − + (3.59)

where f*
n+1 = f(tn+1, x

*
n+1, u1,n, …, um,n). It should be noted that since this method

requires x1, x2 and x3 in addition to x0, it cannot self-start. Either these values either

need to be provided as part of the initial conditions, or a method capable of self-

starting (such as RK4) should be used until they are obtained.

3.5 Creating Discrete-Time Models of Dynamic Systems

In the modeling of dynamical systems, transfer functions are commonly used to

express and analyze the relation between inputs and outputs of linear time-invariant

systems, as well as many non-linear systems using appropriate linearization

techniques. Transfer functions are obtained in the s-domain by the application of

Laplace transformation on the governing differential equations and have the

general form

 ()
()
()

2 1
2 1 0

2 1
2 1 0

m

m

n

n

X s s s s
G s

U s s s s

β β β β

α α α α

+ + + +
= =

+ + + +

�

�
 (3.60)

where X is the output and U is the input of the system. For purposes of discrete-

time applications such as digital controllers or simulators, the discrete-time transfer

function needs to be used. For this purpose, various transforms are used to convert

an s-domain (continuous) transfer function into its z-domain (discrete) equivalent.

This conversion maps the entire s-plane to the z-plane, where the imaginary axis is

represented by a unit circle. All analysis and design tools regarding the

performance and stability of a system are also applicable on this z-plane with

appropriate mappings.

42

A common continuous-to-discrete transform is the Tustin method. This method

uses a first order approximation of the natural logarithm function, performing the

replacement

 ()
1

lns z
T

= (3.61)

where T is the sampling time of the discrete-time model. Expanding ln(z),

3 5

2 1 1 1 1 1
1 3 1 5 1

z z z
s

T z z z

 − − −   
= + + +    

+ + +     
� (3.62)

approximating by taking only the first order term, the substitution for converting

the transfer function to its discrete-time equivalent Gd is finally obtained:

2 1

1
z

s
T z

−
′ =

+
 (3.63)

 () ()dG Z G s′= (3.64)

Let the general form of the discrete-time transfer function Gd be given as

 ()
()
()

2 1
2 1 0

2 1
2 1 0

m

m
d n

n

X z z z z
G z

U z z z z

β β β β

α α α α

′ ′ ′ ′+ + + +
= =

′ ′ ′ ′+ + + +

�

�
 (3.65)

This function may be converted into a constant coefficient difference equation that

can be employed to calculate the output x based on the input u. To obtain this

equation, the numerator and denominator in (3.65) is divided by zn:

43

()
()

2 1
2 1 0

2 1
2 1 0

m n n n n

m

n n n

n

X z z z z z

U z z z z

β β β β

α α α α

− − − −

− − −

′ ′ ′ ′+ + + +
=

′ ′ ′ ′+ + + +

�

�

Replacing z with the unit delay q, Y(z) and X(z) can be converted into their time-

domain forms y(k) and x(k) where k is the time index, giving the CCDE:

 () ()1 1
1 0 1 0

n n m n n n

n m
x k q q u k q q qα α α β β β− − − − −′ ′ ′ ′ ′ ′   + + + = + + +   � � (3.66)

() () ()

() () ()
1 0

1 0

1

1

n

m

x k x k n x k n

u k m n u k n u k n

α α α

β β β

′ ′ ′+ + − + + −

′ ′ ′= + − + + + − + −

�

�
 (3.67)

Provided that n > m, the CCDE can be easily solved for the value of x for any time

index without requiring the future values of itself or of the input u. Arranging

(3.67) in a more convenient form with this assumption, the CCDE finally becomes:

 () () () () ()1 11 1n mx k a x k a x k n b u k b u k m= − + + − + − + + −� � (3.68)

where n i
i

n

a
α

α
−

′
=

′
 and m j

j

n

b
β

α
−

′
=

′
.

3.6 Closure

This chapter provides a set of commonly used mathematical tools that can be used

in modeling and simulating dynamical systems. Models for various dynamic

system components, such as transmission elements and electric motors, were given.

A study of the various friction models, which plays an important part in all

systems, was made. Finally, techniques used in solving the ordinary differential

equations governing a system in order to obtain its state variables were presented.

44

CHAPTER 4

HARDWARE-IN-THE-LOOP SIMULATION FOR EDUCATIONAL
APPLICATONS

4.1 Introduction

Being the first approach to HILS used in the studies, this solution aims to provide a

tool for reinforcing control systems education. It proposes the use of a personal

computer for all the management and computation tasks associated with the

simulation. While it serves as a means of exploring the capabilities of a purely PC-

based simulation, its main goal is to provide a stand-alone and user-friendly

educational tool intended for use in control systems related courses at universities.

In courses aimed at teaching discrete-time control systems, students are asked to

design and test various controllers in order to reinforce the knowledge they receive.

This makes it possible for the students to grasp every detail of the system they are

controlling, helping them observe the effects of the methods and assumptions used

during the design process. Without any doubt, the best way for such a

reinforcement activity would be applying the given knowledge on real world

systems.

This method, however, is not very practical. First of all, the system to be controlled

may possess qualities that are unfit for being accommodated within a laboratory

(such as size, noise, vibrations, toxic emissions etc.). It might be too costly for the

university to purchase, set up and/or maintain. Furthermore, collecting information

45

regarding the processes that occur inside the system is a difficult process involving

proper fitting of the system with numerous sensors. Aside from these difficulties, it

may be undesirable for the institution to make use of the same system over many

years of education. In that case, need for acquisition of a new and suitable system

(as well as proper salvaging, recycling or disposal of the old system) arises.

Another inconvenience regarding this method is the impact of malfunctioning

equipment on the students’ laboratory works. Even with all the disadvantages taken

care of, the experience the students are be able to gain will be very limited due to

the fact that they need to use the system only within certain limited schedules.

In order to overcome the difficulties mentioned so far, this solution proposes the

use of a “lab at home” approach in control systems education [90]. In this

approach, instead of being dependent on a real system located at a laboratory, the

students take advantage of a HILS application that imitates the system in question.

They interface the controller they develop with this application and perform the

simulation as if they were controlling the actual system itself. They are able to

tweak with many system parameters such as disturbances, sensor noises,

malfunctioning system components and so on. Thus, they are able to observe and

work with almost all kinds of effects and problems that may arise in a real system.

In addition to these capabilities, when a new system to work on is desired, it is

sufficient simply to introduce its governing equations and parameters into the

software package used.

4.2 Proposed System

A software package capable of simulating dynamic systems, named “Cadmus,” is

developed in the context of this educational package. The students use a

development board provided to them to implement their controllers and couple it to

their personal computers via a serial port. Software and documentation necessary to

perform the communication between the PC and the board is provided to the

students. The behavior of the system being controlled is realistically visualized on

46

the software screens using 3-dimensional solid models, while the system’s state

variables are displayed on graphs and recorded on demand for later use. Outside

effects on the system (such as disturbances, noise and loads) can also be

manipulated using the software. By these means, students find the opportunity to

test, tune and optimize their controller designs. The very same software is also used

by the course instructor to evaluate the students’ work.

Cadmus is developed using the C# programming language, dependent on Microsoft

.NET Framework. It runs on Windows XP and Windows Vista operating systems.

The operating system’s graphical user interface is used for presenting user controls

and application settings. Three dimensional solid modeling of the simulated system

is done using the Microsoft XNA Framework [91], which is a cross-platform library

intended for use in video games and provides methods for graphics, sound, input,

networking and other gaming services. State variables, satellite and signal qualities

and wind state are also overlaid on the 3-D view. Use of the mentioned frameworks

and libraries has granted the application the ability to execute on almost any

computer running the targeted operating systems.

Figure 4.1 shows the operational block diagram of Cadmus. The mathematical

model and parameters belonging to the simulated system, user preferences and

application settings form the information layer of the software. Simulation layer

contains the numerical solver methods that will make use of the system’s

mathematical model to compute its state variables. Inputs to and outputs form the

system are gathered from these state variables and incoming controller signals in

order to be written into the registers; and presented for read and write operations

over the PC / controller interface. The state variables are also sent to the

visualization layer for three dimensional and graphical representations, as well as

being recorded to the computer’s storage devices on demand.

47

Figure 4.1: Operational block diagram for Cadmus software

When compared to other available software packages that can perform similar

simulation tasks, the most prominent feature of the presented application is the

three dimensional visualization of the simulated system. This allows the process of

testing a controller to become much more than just an observation of the numerical

values of the state variables (or their plots). The students find the opportunity to

observe the system just like they would in an actual laboratory. Furthermore, it

becomes possible to see the inner workings of sections that are impractical or

impossible to expose (such as gearboxes, internal combustion engines, washing

machines and so on) due to various reasons (lubrication, insulation, safety etc.) by

means of using transparent models in visualization. Thanks to such features, the

students’ interests are kept awake while the simulation becomes a process that is

easily understood with its causes and effects clearly visible.

48

As one expects, it is completely possible to also simulate the controller hardware

(by use of programming or scripting languages) on the computer and get rid of the

microprocessor used for implementation [92-93]. However, the system presented

here purposely avoids such an abstraction and demands the use of an actual

microprocessor. The motivation here is to introduce and familiarize the students

with the electronic components on the board as well as programming and

operational techniques that are unique to microprocessors. They are thus kept

informed of various situations associated with the use of such devices. This

prevents complete abstraction of the education from the real world, keeping it

tangible.

4.3 Application

An application of the method presented thus far in this section has been done as the

final project of the Computer Control of Machines course given at Mechanical

Engineering Department of Middle East Technical University during 2007-2008

spring semester. This project asks the students to track a communications satellite

in low orbit around the Earth with an antenna dish having two axes of motion:

elevation and azimuth (Figure 4.2). The antenna is equipped with motors having

integrated torque modulators, capable of applying the desired torque (within certain

speed and power limitations–please refer to Section 5.3.2.1 for details). In addition,

it is assumed that a navigational computer capable of calculating the position of the

satellite with respect to the antenna (i.e. reference angles for elevation and

azimuth), as well as a sensor measuring the strength of the received signal as long

as the antenna is aligned with the satellite (Figure 4.3). The information generated

by these subsystems is presented on 16-bit-wide registers to the PC interface. The

students are expected to generate torque commands (again, 16-bit-wide) for the two

motors on the axes. There is wind in the area where the antenna is located, blowing

at speeds up to 30m/s (108km/h) and changing directions at random. Furthermore,

there is a certain amount of backlash in the gears coupling the motors to the

antenna, as well as Coulomb and viscous friction effects on the shafts. Under these

49

circumstances, it is a serious control engineering problem to make the antenna

track the communications satellite within tight tolerances during its two-minute

flight on the visible sky. Such non-ideal conditions encourage the student to

explore beyond the classical control algorithms and look for more advanced

methods.

Figure 4.2: Representation of the antenna dish and the definition of angles

Figure 4.3: Functional block diagram of the Cadmus application project

50

4.3.1 Plant Model

As for the mathematical model of the simulated antenna system, since both axes are

equipped with a gearbox (having a reduction ratio Ng) the below differential

equations define the motion of each axis:

1

m m g gJ T T Nθθ −= − ⋅��

 (4.1)

sgn()c g dJ b T T Tθ θ θ+ + = −�� � �

 (4.2)

In these equations, Jm and J are the moments of inertia of the motor and mass

reduced to axis shaft [kgm2]; θm and θ are the angular positions of the motor and

antenna [rad]; Tg is the torque output of the gearbox [Nm]; Tc is the Coulomb

friction torque on the shaft [Nm]; Td is the disturbance moment on the shaft due to

wind force acting on antenna dish [Nm]; b is the viscous friction coefficient. Since

backlash is assumed to exist, Tg is a function of the positional difference between

the input and output shaft of the gearbox (see Section 3.2.1.1).

The strength of the signal received from the satellite in orbit is given by the

exponential function

 ()
() ()

2 2

2
, , , 10 exp

0.04
R R

R R
U

ψ ψ θ θ
ψ θ ψ θ

 − + −
= ⋅ − 

  

 (4.3)

which exhibits a narrow peak of 10 Volts when the tracking error is zero.

4.3.2 Disturbance Model

The reaction of the antenna is modeled from the drag force applied on the dish,

approximated by a hollow hemisphere. Consider the antenna dish, having frontal

area A and looking at the azimuth and elevation angles ψ and θ, inside a uniform

51

flow of air –wind– with density ρ (Figure 4.4). The velocity of the wind is given by

the vector V
�

. The unit-length direction vector u
�

 for the dish can be obtained in

terms of the unit vectors i
�

, j
�

 and k
�

 as:

 ()() ()() ()cos cos sin cos sinu i j kψ θ ψ θ θ= + +
�� �� (4.4)

The cosine of the angle γ between these vectors can be easily computed using the

dot product

 ()cos
V

u
V

γ = ⋅

�
�
� (4.5)

Figure 4.4: Antenna dish inside wind flow

The angle γ can be considered as the wind angle and used in calculating the drag

area Ad as well as drag coefficient Cd. Figure 4.5 shows the orientation of the dish

based on γ.

52

Figure 4.5: Wind angle of satellite dish

For the γ = 0° and γ = 180° cases, the drag area equals the frontal area, i.e.

Ad (0) = Ad (π) = A, and for γ = 90° the drag area equals the side area As of the dish

and can be calculated as

 () () ()2
2 cos sin

s d c
A A rπ α α α = = −  (4.6)

where rc is the radius of curvature of the dish and

 1sin
c

r

r
α −  

=  
 

 (4.7)

where r is the frontal radius. The drag area can then be approximated as a function

of γ as

 () () cosd s sA A A Aγ γ= + − (4.8)

As for the drag coefficient, Munson [94] gives the value of Cd for a parabolic dish

as 1.42 for γ = 0° and 0.95 for γ = 180° while Peterka et al. [95] present consistent

53

experimental work while giving a drag coefficient of 0.4 for γ = 90°. Based on their

work, the drag coefficient can be expressed as a function of γ as

 ()

()

()

1 cos 2
0.4 1.02 ,

2 2
1 cos 2

0.4 0.55 ,
2

dC

γ π
γ

γ
γ

γ π

 +
+ ≤

= 
+ + ≤



 (4.9)

The drag force on the antenna can now be calculated as

 () () ()21
2d d dF v C Aγ ρ γ γ= (4.10)

Let rm be the distance between the point P1, around which the dish rotates, and P2,

the center point of the distributed wind force. Then the vector mr u
�

 is the moment

arm over which the disturbance torque is applied by the wind. The disturbance is

then

 () ()d d w mT F u r uγ γ= ×
� � �

 (4.11)

And the torque on individual axes can be obtained as

 () () () (), sin cos
d d

T T i jψ γ γ ψ ψ = ⋅ − 
� � �

 (4.12)

 () (),d dT T kθ γ γ= ⋅
��

 (4.13)

The antenna dish in the system is assumed to be 45cm in radius with a radius of

curvature of 75cm. Using equations (4.6) to (4.10), the magnitude of the drag force

can be calculated. Figure 4.6 shows the drag force on the dish with respect to the

wind angle γ and the magnitude of
dT
�

 is shown in Figure 4.7.

54

Figure 4.6: Drag force on antenna dish with respect to wind angle

Figure 4.7: Disturbance torque on antenna dish with respect to wind angle

55

4.3.3 Software Details

To aid the students, the specific version of Cadmus developed for the project

displays important information such as satellite position and disturbance torques in

addition to the antenna’s state variables. Along with these, data generated during

simulation are both displayed on plots and recorded to a file. A three dimensional

image of the antenna and its projections on its two axes are displayed on the user

interface. Additional cursors on this display show the relative location of the

satellite. A wind vane is rendered next to the antenna, hinting to the wind direction

and speed.

The microprocessor provided the student is not a very capable one and it is unable

to close the control loop in real time for high sampling rates. Rather, the write

operations performed by the controller to the torque command registers cause the

simulation time to advance exactly one sampling period. The computations are then

paused and the software waits for the next set of commands. In the end, regardless

of the actual time between write operations, the simulation computations are done

assuming it is equal to the sampling time. This relieves the students from the

burden of fitting the computations within a tight time frame, minimizing

inconveniences caused by the development board and allowing them to focus on

the control algorithm itself.

The software consists of three main screens. The main tab (Figure 4.8) displays

position information on the antenna and satellite, wind status and simulation time

in addition to the three dimensional visualization. In order to improve the image

and keep the students’ interest high, details irrelevant to the simulation but help in

providing a realistic scene are also included: trees and grasses swaying according to

the wind direction, clouds moving in the sky and a day/night cycle based on the

computer clock. Controls provided in this tab allow the user to run the simulation

for the desired time period or opt to work on a single axis instead of both.

56

Figure 4.8: Main tab of Cadmus Software

The settings tab (Figure 4.9) presents certain parameters on RS-232

communication. The sampling time to be assumed during the simulation is entered

in this tab. Settings regarding the recording of generated data also exist here. The

user can select which of the many variables should be recorded; file name to be

used and settings regarding tabulation and decimal separator for convenience when

importing the data to other applications for analysis. Parameters defining the

satellite orbit (elevation, angle and distance) can be changed, as well as the amount

of backlash existent in the gearboxes.

The view tab (Figure 4.10) contains plots that visualize how the system’s state

variables change over time. There are two pairs of plots, one for each axis. First

plot in each set shows the angular position of the relevant antenna axis and the

relative satellite position. The second plot, on the other hand, shows the motor and

disturbance (wind) torques applied on that axis. Also displayed in this tab is a plot

57

of the received signal strength. During simulation, all plots are continuously

updated and each of them can be zoomed and panned for viewing convenience.

Figure 4.9: Settings tab of Cadmus software

Inside the software source code, all the components relating to the two axes of the

antenna are collected under a single class. This class (with the addition of

information from the registers and another class managing the wind behavior)

refers to the solver class and obtains the angular positions and velocities of the two

axes. This solver class is generically designed to accept any differential equation

set introduced to it inside a certain template and employs a constant-step Runge-

Kutta integration method of order 4 to solve these equations.

58

Figure 4.10: View tab of Cadmus software

The software executes multiple separate threads at run-time. The first thread

performs the operations related with the simulation and registers layers mentioned

in Section 5.2.2. When the simulation is started, the thread waits for the controller

commands to arrive. When they are received; the simulation advances for one

sampling period, the results are written into registers (to be queried by the

controller) and the loop returns to command waiting state. The second thread

executes the operations necessary for the three dimensional and projected

visualizations of the antenna. A final thread is responsible for all other operations

including the user interface and data recording. Thanks to this multi-threaded

structure, the visualization operations (which are hardware-dependent and not

easily done on every computer) are prevented from blocking the more crucial

communication and simulation operations.

59

Another feature of the developed software is its ability to connect to the course web

site to periodically check for updates to itself, whenever an internet connection is

available. When a newer version is detected, the user is presented with the option to

be directed to the web site for download and update news. This way, any changes

made by the course instructor/assistants or the software developer can be delivered

to the students as soon as possible.

4.3.4 Hardware Platform

A small, simple and low-cost development board designed for use with Microchip

PIC18F4520 microcontroller unit; this board accommodates components useful for

development and debugging of applications on such a microcontroller. The chip

used on the board is a widely available general-purpose 8-bit microcontroller based

on CMOS FLASH technology. Such a board meets the students’ most basic needs,

providing them a tool with which to implement controller algorithms while

requiring only the simplest knowledge on electronics.

Figure 4.11: Microchip PIC development board

60

4.3.5 Interfacing

As stated in Section 4.3, transfer of 16-bit-wide data packets between the controller

and simulator is required. Owing to the fixed packet size, it is possible to form a

communication protocol that both performs fast and requires minimal memory

footprint on the development board. The CCS C [96] source codes (which contain

calls to built-in serial I/O routines) that employ this protocol are provided to the

students and presented in APPENDIX B.

4.4 Results

For the solution of the control problem presented in the application, a variety of

controllers were developed by the students who have taken the course in the project

semester. These include PD, PI, PID and lead/lag controllers with command feed-

forward, disturbance input decoupling, friction compensation and other similar

components. One such controller developed for the project is a lead/lag controller

designed via pole-zero cancelling root locus techniques by Mr. Mümin

Özsipahi [97]. To improve friction compensation characteristics, a command feed-

forward controller is also included. Finally, a disturbance observer enables high-

performance rejection of the wind torque applied on the antenna dish. The overall

architecture of this controller is shown in.

Figure 4.12: Lead/lag controller design for satellite tracking antenna

61

The performance evaluation of the controller is done on the Cadmus software.

Multiple simulations are executed with different parameters. The magnitude and

direction the wind acting on the dish changes at varying intervals. Figures 4.13 to

4.17 show antenna and satellite states and the received signal for a sample

simulation run; demonstrating an exceptionally successful controller even under

extreme disturbances. The strength of the received signal is almost always kept at

maximum, only showing slight falls during initial application of high disturbance

torques and a period of very fast change in the azimuth angle.

In order to evaluate the impact of the developed application on the learning

process, the students who have taken the course have been asked to fill in a

questionnaire regarding their experiences results for which are given in Table 4.1.

Figure 4.13: Satellite and antenna azimuth angles for sample simulation using

lead/lag controller

62

Figure 4.14: Motor and disturbance torques on azimuth axis for sample antenna

simulation using lead/lag controller

Figure 4.15: Satellite and antenna elevation angles for sample simulation using

lead/lag controller

63

Figure 4.16: Motor and disturbance torques on elevation axis for sample antenna

simulation using lead/lag controller

Figure 4.17: Signal strength for sample antenna simulation using lead/lag controller

64

Table 4.1: Questionnaire results for educational applications

 First
application

Second
application

Education program
Masters 64.3% 69.2%
Doctorate 28.6% 23.1%
Other 7.1% 7.7%

Department
Mechanical Engineering 92.3%
Aerospace Engineering 7.7%

Average difficulty Out of 10 8.08
Overall benefit of HILS Out of 10 8.31

Effect of Cadmus on attitude
towards the course

Positive 78.6% 69.2%
Neutral 14.3% 30.8%
Negative 7.1% 0.0%

Effect of Cadmus on final
project period

More enjoyable 57.1% 69.2%
Neutral 14.3% 15.4%
Less enjoyable 28.6% 15.4%

Most helpful feature of
Cadmus

3-D visualization 69.2%
Recording of system states 7.7%
Plotting of system states 15.4%
Easy communication between
controller and simulator

 7.7%

Comparison of Cadmus with a
similar application that can be
developed using MATLAB

Prefer MATLAB 42.9% 15.4%
No difference 21.4% 30.8%
Prefer Cadmus 35.7% 53.8%

4.5 Closure

This chapter proposes an integrated HILS solution that is tailored for courses on

control systems education. The overall concept of lab-at-home was explained and

the software developed for realizing this concept was elaborated. The specifics on

the actual application of the solution were presented along with the feedback

received from the students who used the software.

For the purposes of the simple simulation with relatively lower sampling times

used in the application, RS-232 communication protocol provides sufficient

bandwidth. However, personal computer manufacturers have been abandoning the

standard and almost none of the modern personal computers that target home and

office users provide a serial port. Although USB to RS-232 converters are widely

available in the market, student experiences show that product qualities vary wildly

between many different brands. In most cases, these converters are reported to be

65

the cause of communication delays that lengthen the simulation times to as long as

20 minutes, whereas use of certain brand converters or computers with a serial port

allow the simulation to proceed virtually in real time. Therefore, instead of

resorting to such unreliable converters, use of a development board that is capable

of communicating over the more widely available USB ports is an improvement

option.

In order to measure the simulation times, tests involving different state equations

and combination of simulation elements are done on the developed software. Table

4.1 presents the results of these tests. These results show that the software is

capable of closing one simulation loop within 181µs to 582µs. Based on these

timings, simulating a system using 1ms sampling time almost in real-time is

possible with the software. However, it should be noted that the introduction of

higher degree state equations or those involving trigonometric, logarithmic or

exponential functions are sure to have a large impact on these timings. At this

point, programming and optimization methods that are native to the targeted

operating environment need to be investigated.

Table 4.2: Cadmus simulation times

 Timings (milliseconds)
Computer A B C D

1 0.006 0.058 0.096 0.181
2 0.022 0.193 0.347 0.582

A: No simulation (overhead due to communication and user interface tasks)
B: Single-axis antenna simulation
C: Two-axis antenna simulation
D: Two-axis antenna, satellite and wind simulation
PC 1: Intel Core 2 Duo 3.00GHz with 6MB cache, 2GB memory, NVIDIA
GeForce 9600GT video card, Microsoft Windows Vista operating system
PC 2: Intel Core Duo 2.00GHz with 2MB cache, 1GB memory, NVIDIA
GeForce Go 7400 video card, Microsoft Windows XP operating system

66

The student questionnaires show that the use of HILS in the course final project has

an improvement on the overall attitude of the students toward the course.

Understanding of the controller design processes were reinforced by their

application on a working system instead of only using certain design and analysis

tools. All students state that similar applications for all control-related courses

would have a positive impact on their effectiveness. Specific to the Cadmus

software, the students state that the 3-dimensional visualization helps them better

grasp the behavior of the system under given inputs and conditions, as well as act

as a source of enjoyment when they observe the results of their design. Although

many of the students indicate that they could construct (albeit with difficulty) a

HILS application using MATLAB/Simulink software package, they also express

that they would rather prefer the Cadmus package. When the results from the two

applications are compared, it is clearly seen that the improved and more bug-free

software, as well as utilization of a more powerful development platform, increases

both the effectiveness of the project and the enjoyment gained. As a result, the

application successfully fulfills its goals.

Based on the studies presented in this chapter, a conference paper describing the

lab-at-home concept and the Cadmus software package was [98]. It was submitted

to Turkish National Committee of Automatic Control 2008 held in Istanbul, Turkey

and was accepted for oral presentation.

67

CHAPTER 5

REAL-TIME HARDWARE-IN-THE-LOOP
SIMULATION UTILIZING FPGA

5.1 Introduction

Aiming for a fast and highly integrated system, this solution utilizes an FPGA chip

as the simulation’s computing platform. This chip is used to instantiate solver for

calculating the system states, as well as interface emulators necessary for

communicating with the controller device. A number of peripheral units are

connected to the FPGA: serial communication adapters, memory elements and

storage devices. Additionally, a number of external interface cores (such as encoder

pulse generators and PWM receivers) are instantiated on the FPGA chip in order to

enable the simulation to communicate with external devices (e.g. the controller

under test) or imitate peripherals (e.g. encoders or other devices). A PC connected

to this platform serves as a means of managing simulation settings as well as

monitoring system states during the simulation.

The solution uses CCDEs to calculate the simulated system’s states based on their

previous values in time and the inputs to the system. After the equations and

parameters describing the system to be simulated are introduced to the

microprocessor instance, the platform performs the simulation computations while

communicating with the controller hardware. The system variables requested by

the user are also sent to the user’s PC during run time. If, however, the number of

states requested is too many and the simulation step size is very small, this task

68

requires a very large bandwidth. In such a case, the states are sent to the PC only at

certain time steps. The rest of the states are saved on the storage elements on the

platform, only to be dumped to the PC after the simulation is completed.

Figure 5.1: Hardware configuration for the FPGA solution

5.2 Application

For the realization of the FPGA-based simulator system, a simple HILS scenario is

designed. An induction motor, which is used as the spindle drive of a turning

center, is simulated in the application. The following sections explain the details of

this system and its implementation.

5.2.1 Plant Model

The induction motor used in the system is assumed to be connected to a direct

torque controller, which drives the induction motor. A timing belt connects the

rotor shaft to the spindle shaft. A disturbance torque due to the cutting forces

occurring during the machining process acts on the work piece. Figure 5.2 shows

this spindle drive system.

69

In the figure, T* represents the torque command, Td is the disturbance torque, r1 and

r2 are the pulley radii, J1 and J2 are the moments of inertia, b1 and b2 are the viscous

friction coefficients, θ is the angular position of the spindle and e is the encoder

signal.

Figure 5.2: Spindle drive system

The DTC and induction motor in the system are assumed to be ideal. Therefore,

these two can be modeled as a torque modulator with a torque capability curve, as

explained in Section 3.2.2.

The transmission between the motor shaft and the spindle is assumed to be ideal,

i.e. the timing belt perfectly transfers torque between the rotor and spindle shafts. It

is then possible to model the combined rotor and spindle (and mounted work piece)

loads as a single rotating mass. Then, the equivalent moment of inertia can be

obtained by summing the rotor inertia with the spindle inertia, multiplied by the

square of the transmission ratio. Likewise, the equivalent viscous friction is the

sum of rotor friction with the spindle friction, multiplied by the transmission ratio.

The DTC in the simulated system is assumed to be receiving the torque command

via a PWM resolver connected to a D/A converter. Since the simulation is

performed digitally, instead of simulating a D/A converter, the inputs are fed into

70

the PWM receiver and a 10-bit integer representing the torque command is

obtained. The encoder emulator generates the encoder signals from the angular

position of the spindle. These signals are counted by a quadrature counter and their

difference is transmitted to the controller via another 10-bit PWM signal. The

resulting simulated system model is given in Figure 5.3.

Figure 5.3: Block diagram of sample application system

For the purposes of the application, the rated motor torque is selected as 35Nm.

The rated speed is 1500rpm while the maximum speed is 8000rpm, resulting in an

approximate motor power of 5.5kW. The equivalent moment of inertia is taken as

0.07Nm2, the equivalent viscous friction coefficient is taken 0.008Nms and the

ratio of pulley radii is unity. Finally, using a sampling time of 1ms, the discrete-

time transfer functions governing this system states as a function of the net torque

(Tnet = Tm - Td) on the spindle shaft can be obtained as

() 0.01428
() 0.9999net

z

T z z

θ
=

−

�

 (5.1)

6 6

2

() 7.143 10 7.142 10
() 2 0.9999net

z z

T z z z

θ − −× + ×
=

− +
 (5.2)

For a sampling time of 1kHz, the CCDEs of the system are then

 () 2 (1) 0.999 (2) 7.143 10 (1) 7.142 10 (2)k k k T k T kθ θ θ= − − − + × − + × −� � �

The disturbance torque acting on the work piece (and spindle shaft) is taken as a

repeating series of discrete pulses, imitating the effect of intermittent contact

between the cutter and work piece during the machining process. The maximum

magnitude of this disturbance is selected as 10Nm (

the motor to reach a high enough speed, the disturbance is introduced only aft

simulation time reaches 8 seconds.

Figure 5.4: Form of the disturbance torque applied on the spindle shaft

5.2.2 Hardware Platform

For the implementation of the proposed solution,

education board manufactured by Terasic

series FPGA chip from Altera. It provides a range of components and peripherals

for easy introduction to the FPGA technology as well as to provide

development, debugging and application

71

() 0.999 (1) 0.01428 (1)netk k T kθ θ= − + −� �

6 6() 2 (1) 0.999 (2) 7.143 10 (1) 7.142 10 (2)net netk k k T k T kθ θ θ − −= − − − + × − + × −� � �

The disturbance torque acting on the work piece (and spindle shaft) is taken as a

repeating series of discrete pulses, imitating the effect of intermittent contact

tween the cutter and work piece during the machining process. The maximum

magnitude of this disturbance is selected as 10Nm (Figure 5.4). In order to allow

the motor to reach a high enough speed, the disturbance is introduced only aft

simulation time reaches 8 seconds.

Form of the disturbance torque applied on the spindle shaft

Hardware Platform

For the implementation of the proposed solution, DE1, an FPGA development

manufactured by Terasic is used. This board carries

series FPGA chip from Altera. It provides a range of components and peripherals

for easy introduction to the FPGA technology as well as to provide

development, debugging and application.

 (5.3)

6 6() 2 (1) 0.999 (2) 7.143 10 (1) 7.142 10 (2)net netk k k T k T k
− −= − − − + × − + × −

(5.4)

The disturbance torque acting on the work piece (and spindle shaft) is taken as a

repeating series of discrete pulses, imitating the effect of intermittent contact

tween the cutter and work piece during the machining process. The maximum

). In order to allow

the motor to reach a high enough speed, the disturbance is introduced only after the

Form of the disturbance torque applied on the spindle shaft

DE1, an FPGA development and

carries a Cyclone II

series FPGA chip from Altera. It provides a range of components and peripherals

for easy introduction to the FPGA technology as well as to provide a handy tool for

72

5.2.3 Interface Emulators

Components that enable interfacing of the simulation with various controllers are

presented in this section along with discussions on their workings.

Figure 5.5: Terasic Altera DE1 Cyclone II FPGA Starter Kit [99]

5.2.3.1 Incremental Encoder emulator

Incremental rotary and linear encoders are quite commonly used in measuring the

position of rotating or translating mechanical components. Incremental encoders

use mechanical or optical sensors and a specially designed disc or linear scale to

generate two square waveforms, with 90° phase difference. The change in these

signals can be observed by resolvers to infer the magnitude and direction of the

motion. The number of pulses output from one channel during one full revolution,

73

or the “pulses per revolution”, determines the resolution of the encoder. The

following figure illustrates the said waveforms.

The encoder emulator developed for simulation purposes aims to function by

emulating both the edge transitions of the output signals and the timing of these

edges. To do so, the emulator requires the value of the measured position, as well

Figure 5.6: Incremental encoder output signals for clockwise rotation

A

B

Phase 1 234 1 234 1 234

Channel

Channel

Figure 5.7: Incremental encoder output signals for counter-clockwise rotation

as the simulation sampling time and desired PPR value. Upon receiving command,

the position is quantized to the given resolution. Comparing the quantized position

with that from the previous sampling time, the number of pulses (or more precisely,

edges) that should be output from the two channels are determined. These pulses

are then sent via the output channels, evenly distributed within the sampling time.

This ensures that the correct number of edges will be read in the correct duration by

the resolver on the other end of the channels.

74

The implementation of the emulator contains an FPU for quantization, a

configurable timer module and a counter for keeping track of the output signals.

Taking advantage of the fact that the form of output signals can be separated to 4

unique phases, a two-bit counter can be used to provide these signals.

The fidelity of the emulator to real systems depends on the timing quality of the

incoming commands. For optimal operation, the frequency of the received

commands should be equal to the sampling time with zero deviation. Otherwise

inconsistency in these timings may cause overlapping pulses to be skipped, causing

error in the measured position.

Figure 5.8: Incremental encoder emulator block diagram

Figure 5.9: Illustration of timing in encoder emulator operation

75

5.2.3.2 PWM receiver

Pulse width modulation is a simple yet effective way for transferring data over a

single line. Encoding data by modulating the width of a fixed-period pulse, i.e.

changing the duty cycle, PWM signals are easy to both generate and resolve.

A simple PWM receiver implementation contains a counter that increments as long

as the input signal is high and a timer that latches the counter value and resets it at

the end of each sampling period.

Figure 5.10: Block diagram of PWM receiver

To enable non-real-time simulation with controller as the clock source, a modified

PWM scheme is also proposed. This scheme requires the use of a synchronization

signal, which may be separate for all PWM channels or one global signal. When a

falling edge on this synchronization signal is detected, the pulse beginning is

assumed. After a fixed amount of time following this edge, i.e. the PWM period,

counting is finished and the counter value is latched. The ratio of the high-time of

the incoming signal to this period constitutes the duty cycle and thus the

transmitted value. The end of the pulse period also marks the reception of the

incoming command and a signal generated at this moment can be used as a trigger

for the simulation. The time passing between the end of one pulse and the next

synchronization is ignored.

76

The sole purpose of using a synchronization signal in the modified PWM receiver

is to ensure proper simulation triggering. If the duty cycle of the incoming pulse

can be guaranteed to be greater than 0% and less than 100%, its rising edge can be

used for synchronization, eliminating the need for a separate signal.

Figure 5.11: Modified PWM with synchronization signal

5.2.4 Embedded Microprocessor Implementation

The sample application is implemented on the Altera DE1 Development and

Education board. This board accommodates the Altera Cyclone II 2C20 FPGA

along with an 8MB SDRAM chip, USB Blaster serial communication adapter, a

50MHz oscillator and many other useful peripherals. On the FPGA chip, an

instance of the Nios II 32-bit Embedded Processor, which is designed by Altera

solely for FPGA implementation, is implemented. This processor design includes

an FPU implementation, and can be connected to modular interfaces to a variety of

peripheral units which include those on the DE1 board. The Nios II processor and

the interfaces needed to utilize the aforementioned peripherals are instantiated and

connected together using the development tools provided by Altera, and an SOPC

is obtained. This system is coupled with the encoder generator and PWM

transmitter and receiver components, and downloaded onto the FPGA chip.

A C program that will perform the simulation calculations of the explained system

is written and compiled for the Nios II processor. The program consists of a main

77

loop that repeatedly performs the communication and computation tasks. Instead of

a continuously running loop, the program waits for a torque command to arrive

from the controller. When a command is received, an interrupt is raised in the

processor. The incoming command is read from the digital I/O interface, and the

simulation computations for a single sampling period are performed. The shaft

position, which is used to generate the encoder signal, is outputted from the

processor via the digital I/O interface to the relevant register. All system states, as

well as the torque command and net torque, are recorded in arrays stored inside the

SDRAM chip. Finally, when the simulation is completed, these records are dumped

to the user’s PC via the USB connection.

5.2.5 Parallel FPU Implementation

For the purpose of investigating the capabilities of the FPGA platform, a partial

implementation of the application was also done by instantiating multiple floating

point operation units directly on the chip. This implementation aims to exploit the

full parallelism potential of the said platform. For every arithmetic operation in the

CCDEs (5.3) and (5.4) governing the system, FPUs are placed in a manner suitable

for parallel processing, forming a binary-tree like structure (Figure 5.12). In

addition to these, FIFO type memory modules that expose all their contents are

placed in order to hold previous time values of system states. A management

module is also placed to operate the FPUs.

The solutions of the CCDEs are initiated by the simultaneous operation of the

floating point multiplier blocks by the management module. The results of these

multiplications are fed into the addition blocks, and these are operated in turn until

the results of the equations are obtained. These results are finally fed into the

relevant FIFO buffers to be used during the next computation loop.

78

Floating point
multiplication module

Floating point
summation module

ω Observable
FIFO buffer

T Observable
FIFO buffer

θ Observable
FIFO buffer

aω,1

ω(k-1)

bω,1

T(k-1)

aθ,1

T(k-1)

aθ,2

T(k-2)

bθ,1

θ(k-1)

bθ,1

θ(k-2)

Input

Layer 1 Layer 2 Layer 3

ω(k)

θ(k)

Figure 5.12: Block diagram for parallel-FPU CCDE solver

5.3 Results

The offline testing of the application is performed by applying constant torque

command with 30Nm magnitude on the system. The results obtained are compared

against solutions performed on PC using the MATLAB/Simulink software

package. Two different implementations are tested, using single- and double-

precision floating point representations. The performance of the simulator is also

evaluated in terms of computation time by utilizing the performance counter

79

component of the Nios II processor. Table 5.1 presents the test results while the

resource usage of the application is given in Table 5.2.

Table 5.1: Offline simulation test results

Single-precision
implementation

Double-precision
implementation

Difference from
Simulink in ω

RMS 410.1µrad/s 409.2µrad/s
Mean 51.5mrad/s 51.3mrad/s

Maximum 240.2mrad/s 240.2mrad/s

Difference from
Simulink in θ *

RMS 3.7µrad 3.7µrad
Mean 466.9mrad 470.3mrad

Maximum 869.2mrad 881.4mrad

Computation Time
RMS 13.3µs 111.7µs
Mean 13.2µs 111.5µs

Maximum 26.8µs 140.4µs

* After 20 seconds of simulation.

Table 5.2: Sample application resource usage

Total logic elements 10,737 (57%)
Total combinatorial functions 9,121 (49%)
Dedicated logic registers 6,447 (34%)
Total memory bits 66,040 (28%)
Embedded multiplier 9-bit elements 11 (21%)
Program size in SDRAM memory** 52kB (0.006%)

* Percentages are based on resources on the Altera DE1 board.
** Excluding stack and heap memories.

The numerical results of the simulation appear to have an acceptable amount

difference from those obtained using Simulink, due to the difference between the

employed solution techniques. It should be noted here that the error in angular

position is the integral of the error in speed and will vary with the simulation

duration. Again in terms of numerical results, there appears to be no significant

difference between single- and double-precision floating point representation

80

techniques. The single-precision solution times, however, are much lower than

double-precision solution times. The single-precision implementation is therefore

an adequate solution as far as the sample application is concerned.

In order to further explore the performance of the sample application, the

simulation program is modified to solve for CCDEs of varying degrees as well as

more than one equation at a time, and the computation times are measured. Results

are given in Figure 5.13 and Figure 5.14.

The parallel-FPU implementation is capable of performing a floating point

operation every 4 clock cycles [100]. In the binary-tree arrangement of this

implementation, the solution time can be calculated as

 ()24 log () 1c tn n= × +   (5.5)

where nt is the number of terms added together in the CCDE and nc is the number

clock cycles required to obtain the solution. For this implementation, the solution

times using a 50MHz clock signal are given in Figure 5.15, and Figure 5.16 shows

the approximate resource usage.

A final comparison is made with a numerical method approach, the Runge-Kutta

algorithm of order 4. The method is implemented on the Nios II processor, only

modifying the solution part of the simulation program. The state space equations

governing the system are obtained and also coded into the solver, and numerical

integration is performed. Two tests are made, one with a single step per loop (1ms

step size) and one with 10 steps per loop (0.1ms step size). The computation times

are presented in Table 5.3, while the resource usage is identical to the originally

proposed solution.

Figure 5.13: Computation time by CCDE degree, one equation per loop

Figure 5.14: Computation time by CCDE degree, two equations per loop

81

Computation time by CCDE degree, one equation per loop

Computation time by CCDE degree, two equations per loop

Computation time by CCDE degree, one equation per loop

Computation time by CCDE degree, two equations per loop

Figure 5.15: Parallel

Figure 5.16: Parallel

82

Parallel-FPU implementation computation time by CCDE degree

Parallel-FPU implementation resource usage by CCDE degree

time by CCDE degree

FPU implementation resource usage by CCDE degree

83

Table 5.3: 4th Order Runge-Kutta method computation times

 1 step per loop 10 steps per loop
RMS 19.1µs 63.5µs
Mean 19.0µs 63.4µs
Maximum 36.0µs 70.3µs

Once the application is observed to be operational, it is used in evaluating the

performance of various FPGA-based controllers that employ different control

algorithms. These controllers use hysteresis, fuzzy logic, PID and sliding mode

control schemes to keep the angular velocity of the spindle on a reference input that

linearly increases up to 1200rpm and remains constant afterwards. Figures 5.17 and

5.18 show the performance of these controllers.

Figure 5.17: Hysteresis and fuzzy controller performances for spindle drive

84

Figure 5.18: PID and sliding mode controller performances for spindle drive

5.4 Closure

This chapter builds up a general-purpose HILS solution that may be used as a basis

for developing other, more complex simulations. The proof of operation, as well as

the advantages and disadvantages of the proposed system are investigated using a

simple application.

The spindle drive is a good demonstration of the computational capabilities of the

proposed solution. The CCDE solution times show that it is possible to successfully

simulate systems of order up to 10 using sampling times as high as 5 kHz.

Although implementing a direct hardware solution method makes it possible to

perform the computations at much higher speeds, the rapidly increasing resource

85

usage limits the capability of this approach. Moreover, introduction of non-

arithmetical operations, such as conditional statements, requires redundant resource

usage in order to maintain the desired computational speed, further limiting the

method’s capabilities.

While solving CCDEs to obtain system states is quite fast, it has the limitation of

only being able to represent linear systems. When non-linear elements exist in the

system to be simulated, linearization techniques become necessary to obtain a

CCDE, but the accuracy of the model is greatly reduced. In such cases, it is

possible to resort to numerical methods such as the RK4. It is also shown that the

proposed solution can be easily modified to use this approach, still being able to

perform simulations with sampling times up to 2 kHz successfully.

Based on the studies presented in this chapter, a conference paper explaining the

HIL simulation of a DC motor using FPGAs was prepared [101]. It was submitted

to Turkish National Committee of Automatic Control 2009 held in Istanbul, Turkey

and was accepted for oral presentation. Another conference paper explaining the

HIL simulation of the described spindle drive was prepared [102]. It was submitted

to International Conference on Electrical Machines and Systems 2009 held in

Tokyo, Japan and was accepted for oral presentation.

86

CHAPTER 6

NON-REAL-TIME HARDWARE-IN-THE-LOOP SOLUTION
UTILIZING A HYBRID ARCHITECTURE

6.1 Introduction

While the solution presented in Chapter 5 focuses on achieving high performance

and connectivity, it lacks the simulating non-linear, complex plants with many

states and inputs. To address this issue, another solution utilizing a combination of

different hardware platforms and relevant software working in tandem is proposed.

In this solution, a microprocessor bearing board, namely the Atmel NGW100

Network Gateway Kit, takes over the duty of performing the simulation

calculations. This is a general purpose development board for Atmel’s AVR32

series 32-bit microprocessor CPU AT32AP7000. It has a number of useful storage,

communication and I/O devices. Running a Linux distribution specifically tailored

for the device, it provides all the drivers necessary to use the peripherals it carries.

Quoting from the microprocessor datasheet [103]; “the AT32AP7000 is a complete

System-on-chip application processor with an AVR32 RISC processor achieving

210 DMIPS running at 150MHz. AVR32 is a high-performance 32-bit RISC

microprocessor core, designed for cost-sensitive embedded applications, with

particular emphasis on low power consumption, high code density and high

application performance”.

87

Figure 6.1: Atmel NGW100 Network Gateway Kit [89]

Apart from the hardware features, numerous useful software packages are readily

provided on the NGW100 or can be incorporated into the Linux kernel or file

system, whichever is necessary and/or applicable. The services available for use on

the NGW100 include, but are not limited to; serial port console, FTP and HTTP

servers, file sharing and packet routing services, device drivers for the various

peripherals on the AT32AP7000 processor and numerous system management

utilities provided by the operating system.

The NGW100 is connected to an FPGA board, the DE1, via digital I/O pins. This

board carries multiple, configurable instances of the interface emulators explained

in Section 5.2.3 and serves as the interface between the simulation and the

controller. On the other end, the NGW100 is connected to a personal computer

using an Ethernet cable (which serves to transfer the source codes defining the

plant behavior as well as state variables during runtime) and an RS-232 cable

(which is used for accessing the terminal service for managing the simulation

execution and other tasks on NGW100). The software package provided for the PC

here is the main tool to be manipulated by the user. One program within the

88

package is used for defining the plant (along with state equations, manipulation

inputs, disturbances) and a number of parameters regarding the simulation process.

The other program is used to manage the simulation process. The desired set of

variables inside the simulation can also be viewed during runtime and saved to the

PC hard drive if desired. Figure 6.2 shows the block diagram of this system.

The definition of the plant is done by the user by specifying the state variables,

manipulation inputs and disturbance sources. Desired constants and intermediate

variables that will aid in defining the equations which govern the system can also

be defined. The user also provides the governing equations, as well as any helper

functions (for such calculation tasks that are used multiple times in the equations),

in the C++ programming language. The use of a programming language instead of

mathematical sentences allows for easier inclusion of conditional (decision)

statements (e.g. if-then-else and switch/select/case blocks), whenever required,

inside the equations.

Once all the information defining the plant is provided, the software package

creates necessary C++ declarations for the variables and encapsulates the provided

functions; generating a number of source files. These are then added to a previously

prepared library containing the necessary functions for performing a simulation.

The resulting source collection is used to compile an executable file for the

NGW100 that will perform all the tasks necessary for simulation: solution of the

state equations, receiving controller inputs, generation of sensor emulator data,

reporting and so on. After this executable is sent to the NGW100, the simulation

can be run as desired.

Due to the computational capabilities of the NGW100, this solution does not claim

real-time performance. Instead, a non-real time operating scheme that treats the

controller as the timing master is employed, similar to the scheme explained in

89

Figure 6.2: Block diagram of the microprocessor-based simulator

Section 4.3.3. The sampling time of the controller is specified ahead of the

simulation. The timer source for the controller then needs to be adjusted to

allowthe simulator to complete the calculations between two commands. Once

these steps are done, the time between two control loops is treated by the controller

as if it is equal to the sampling time and all calculations are executed accordingly.

90

Figure 6.3: Operation timeline for microprocessor-based solution

6.2 Modeling

A 3-axis CNC vertical milling center is selected as the simulated plant for the case

study. The dynamics of the three axes, including friction forces, backlash and

forces generated due to cutting process are the focus of this simulation application.

On the other hand, spindle and thermal dynamics, as well as other systems such as

coolant/lubricant pumps and chip removal mechanism are excluded.

The following sections discuss the details of the system model and implementation

of this solution.

6.2.1 Plant Model

For the purposes of modeling, a CNC machining center available at the machine

shop located in Mechanical Engineering department of Middle East Technical

University is taken as reference. It is a First MCV-1100 3-Axis CNC Machining

Center by Long Chang Machinery Ltd. Co., equipped with automatic tool changer,

coolant and chip removal systems.

91

The axes of the machine are all mounted on friction (hydrostatic) guideways, and

are driven by servomotors via ball screws. The x-axis carrying the cart (a.k.a.

“table”) on which the workpiece is mounted is illustrated in Figure 6.4 and the y-

axis carries the entire x-axis assembly. Housed on the column is the z-axis

assembly, carrying the entire headstock (main spindle shaft, motor and tool

changing mechanism) (Figure 6.5).

The equation of motion for the x-axis cart can be written as

 ()
1

, , sgn()x w s x x f xx m m F F F x
−
 = + − − �� � (6.1)

where mw stands for the mass of the workpiece, mx is the mass of the cart, Fx is the

cutting force on the axis, Ff,x is the friction force (dry) and Fs,x is the force exerted

on the table by the ball screw nut. The equation of motion for the ball screw is

 () ()
2

1 , 3
, , ,

,

sgn
2

s x

x x m x s x x x f x x

s x

h
J T F b Tθ θ θ

πη

−   
= − − +  

   

�� � � (6.2)

where Jx is the total moment of inertia of the ball screw and rotor, Tm,x is the torque

applied by the motor, Tf,x is the dry friction torque on the ball screw and rotor, hs,x

is the screw lead and ηs,x is the ball screw efficiency. When backlash exists in the

ball screw assembly, equations (6.1) and (6.2) are coupled together with the

equation

 ,

,
2 2

0 ,
2

,
2 2

x x
x x x

x
s x x

x x
x x x

D D
k d d

D
F d

D D
k d d

  
− > 

 


= <

  

+ < −  
 

 (6.3)

92

Figure 6.4: X-axis feed drive for CNC machining center

Figure 6.5: Z-axis feed drive for CNC machining center

93

where

2x x x

h
d xθ

π
= − (6.4)

as explained in Section 3.2.1.3. If the ball screw is assumed to be backlash-free,

however, these equations can be reduced to a single equation of motion that uses an

equivalent set of parameters. Using (6.1) and (6.2) one gets

 () ()
2

1 , 3
, , , ,

,

sgn
2

s x

x eq x m x x x x f eq x x

s x

h
J T F b Tθ θ θ

πη

−   
= − − +  

   

�� � � (6.5)

Here, the equivalent inertia Jeq,x is defined as

 ()
2

, 24
s

eq x x x w

s

h
J J m m

π η
= + + (6.6)

Figure 6.6: First MCV-1100 3-Axis CNC Machining Center

94

Since the table’s position is linearly dependent on the angular position of the ball

screw under no-backlash condition, it immediately follows that the velocities are

also linearly dependent and sgn() sgn()x θ= �� holds. Hence, utilizing equations (6.1)

and (6.2), the equivalent dry friction Tf,eq,x can be simply written as

 ,
, , , ,

,2
s x

f eq x f x f x

s x

h
T F T

πη
= + (6.7)

The equations of motion regarding the y- and z-axes can be similarly obtained as

 ()
1

, , sgn()
y x w s y y f y

y m m m F F F y
−
 = + + − − �� � (6.8)

 () ()
2

1 , 3
, , ,

,

sgn
2

s y

y y m y s y y y f y y

s y

h
J T F b Tθ θ θ

πη

−   
= − − +  

   

�� � � (6.9)

Figure 6.7: Horizontal axes of the CNC machining center

95

 ()
1

, , sgn()z s z z f zz m F F F z W
−
 = + − − �� � (6.10)

 () ()
2

1 , 3
, , ,

,

sgn
2

s z

z z m z s z z z f z z

s z

h
J T F b Tθ θ θ

πη

−   
= − − +  

   

�� � � (6.11)

Under no-backlash condition, these can be expressed in a simpler form similar to

(6.5) as

 () ()
2

1 , 3
, , , ,

,

sgn
2

s y

y eq y m y y y y f eq y y

s y

h
J T F b Tθ θ θ

πη

−   
= − − +  

   

�� � � (6.12)

 () () ()
2

1 , 3
, , , ,

,

sgn
2

s z

z eq z m z z z z f eq z z

s z

h
J T F W b Tθ θ θ

πη

−   
= + − − +  

   

�� � � (6.13)

Figure 6.8: Vertical axis of the CNC machining center

96

Note that in equation (6.13) regarding the z-axis drive, the weight of the headstock

assembly (W) is also included. The feed-drive axes are driven by Fanuc α Series

AC Servo Motors, while the spindle motor is a Fanuc α Series AC Spindle

(Induction) Motor. As specified in the descriptions manual [104], the speed-torque

characteristics of the servo motors have a linearly decreasing tendency in the torque

region up to the rated speed. Beyond this point, the motor enters the constant power

region, similar to the model explained in Section 3.2.2 (Figure 6.9). The torque

envelope of the motor, Tmax, is then

,

,

r T r

max r
r

T m

T P

ω ω ω

ω ω
ω

 + <


= 
≥



 (6.14)

where Tr and ωr represent the rated torque and rated speed, respectively. Tr´ is the

torque produced by the motor and Pr is the power output, both at the rated speed,

while mT = (Tr - Tr´) / ωr and Pr = Tr´ωr. Torque applied by the motor as response

to a torque command T
* is calculated from equation (3.23). Finally, Table 6.1

shows the numerical values of the parameters defining the plant collected from the

machine and motor operating manuals.

Figure 6.9: Torque capability curve for CNC machining center axis motors

97

Table 6.1: Plant parameters for CNC machining center

Parameter Symbol Unit x y z

Mass m kg 130 331.97 260
Dry friction force Ff N 200 200 200
Moment of inertia J kg m2 7.9941×10-3 16.4838×10-3 19.7446×10-3
Dry friction torque Tf N 1.1 1.5 2.1

Viscous friction
coefficient

b Nms/rad 0.0005 0.0005 0.0005

Equivalent moment
of inertia Jeq kg m2 0.00834 0.01737 0.02044

Equivalent dry
friction

Tf,eq N m 1.435 1.835 2.435

Ball screw lead hs m 0.010 0.010 0.010
Ball screw efficiency ηs - 0.95 0.95 0.95

Rated torque Tr N m 12 22 30
Rated speed ωr rad/s 209.44 209.44 209.44
Rated power Pr W 2,094.4 3,769.9 4,398.2

Torque-speed slope mT Nms/rad -0.00955 -0.01910 -0.04297
Encoder resolution - pulses/rev 10,000 10,000 10,000

6.2.2 Disturbance Model

The disturbance in a machining center can be attributed mainly to the cutting forces

generated during the machining process. These forces originate from the feed

motion on the axes, chip removal by the tool cutter edges and eccentricity of the

tool axis. In the ideal case, these forces must be derived based on a simulation of

the actual cutting process. However, such a simulation would involve not only the

dynamics of the chip removal process, but also a complete solid model of the

workpiece in order to track the removed and remaining material. In addition to the

tremendous computational resources needed for such a simulation, modeling of the

removal process is out of the scope of this thesis and is not included in the studies.

Instead of the actual disturbance model, an approximate model that generates a

typical disturbance force for the cutting process is used. Based on the provided

information, form can be composed using a mean value and a higher harmonic

component of the spindle rotation, reflecting the feed and chip removal, and the

first harmonic component of the spindle rotation, reflecting the eccentricity. The

actual frequency of the higher harmonic component depends on the number of

98

cutting edges on the tool, Nc. During each revolution of the spindle, every edge

engages and disengages the workpiece once; generating force with frequency Nc

times that of the spindle revolution. The disturbance force as a function of

simulation time can then be written as follows:

 *
,max 1 2 3

sin() 1 sin() 1
()

2 2
f

d d

N t t
F t F c c c

ω ω φ+ + +
= + + 

 
 (6.15)

where Fd,max is the maximum disturbance, ω is the spindle speed and ϕ is the

angular difference between the first tool edge and spindle eccentricity. Coefficients

c1, c2 and c3 are selected to adjust the weight of the mean and two harmonic

components and satisfy the following conditions:

 1 2 3 1c c c+ + = (6.16)

 10 1c≤ ≤ , 20 1c≤ ≤ , 30 1c≤ ≤ (6.17)

After the form of the disturbance force is known, the direction in which it is

applied needs to be determined. Furthermore, in an actual process, the disturbance

is only observed during chip removal. However, this is not included in the

simulation. Instead, the reference trajectory for the simulated process is used to

determine the direction and existence of disturbance. For any axis, the disturbance

Fd is

* *

*

sgn() ,sgn()sgn() 1

0 ,sgn()sgn() 1
d

d

F v v v
F

v v

− =
= 

≠
 (6.18)

where v is the plant velocity and v* is the reference velocity. The above equation

ensures that the disturbance is always in the opposite direction of the feed

99

movement and feed is in the direction of the uncut material. When the directions of

the plant and reference command do not match, the disturbance force becomes zero

as no cutting is expected to occur in this case. This model also prevents the

disturbance from banging between extremes in two directions in cases where the

velocity fluctuates around zero due to controller effort or numerical errors.

For the application, three sets of disturbance forces are used for different scenarios:

light, medium and heavy machining. The forces in each axis are selected such that

for these machining types, the maximum resultant force is 1kN, 2.5kN and 4kN,

respectively. Figure 6.10 shows an example disturbance form for a single axis,

generated for 1kN resultant force.

Figure 6.10: Example of light cutting force disturbance on single axis

100

6.3 Implementation

The implementation of the proposed solution involves the development of

necessary codes for the PC, NGW100 and FPGA platforms. In addition to their

defined duties, these codes are also required to perform necessary communication

and remain synchronized for successfully performing the simulation. The following

sections explain the details of these codes, discussing the primary features required

from each platform and methods for meeting these requirements.

6.3.1 PC Software

The PC software package aims to provide the user with the tools they will directly

interact with in order to design and execute an HILS. Two programs are contained

in this package: System Maker and System Monitor.

The System Maker program allows the user to design the plant to be simulated. The

program’s GUI presents the user with a tree view displaying the states, inputs,

disturbances, constants and other intermediate variables of the plant; as well as its

state equations and other settings related to the simulation process (Figure 6.11). A

tabbed document interface provides the editing area for the selected properties.

The user may start the design from scratch or open an existing System Maker file

for modification. In any case, as many states as desired can be added, existing

states may be removed or renamed from the interface. Inputs, disturbances, and

other parameters can be similarly edited. The user is able to select the sources of

the inputs, i.e. what type of command receiver (digital, PWM, etc.) will be

employed to obtain a certain input. Likewise, the disturbance sources can also be

specified as mathematical functions (which can be evaluated on the NGW100

during run-time or on the PC and then transferred via Ethernet), pre-generated

patterns (saved in binary files and read from NGW100 storage) or pseudo-random

101

Figure 6.11: Screenshot from the System Maker tool

generators with specified mean, minimum, maximum and distribution properties.

States, inputs and disturbances are fixed to non-array, single-precision floating

point data types. On the other hand, constants and intermediate variables can be

declared as single- or double-precision floating point values, bytes or short, normal

and long integers. They can also be declared as arrays of any length. Additionally,

all the parameters except inputs and disturbances can be assigned with the desired

initial values.

The definition of the plant’s state equations is made by expressing them using the

C++ programming language. The user is presented with a formatted text box and

simply needs to type in the equations for the derivatives of each plant state. These

equations are encapsulated inside function that the NGW100 can use. Although the

function header is pre-defined, the user is free to use the names they specified for

states or other parameters as aliases.

102

Aside from the state equation, it is possible to specify pre-solve and post-solve

functions. Unlike the state equation, these functions are not passed to the solver

routine, which may call the function more than once due to its algorithm. These

functions allow the user to specify linear relations between states, perform logical

operations, store past state values and such tasks that need not or should not be

passed to the solver. An even greater flexibility in plant definitions is thus

provided.

After the plant design is complete, System Maker generates the necessary source

files from the provided information. These are combined with other source files for

the NGW100 platform for cross-compilation, which is explained in the following

chapter. Once compiled, the binary files are transferred to the NGW100, ready to

perform the simulation.

The System Monitor is a tool for displaying the state variables in the simulation as

well as initiating and stopping the process. During the simulation, the NGW100

reports the state, input and disturbance values are received via Ethernet. The

Monitor holds the value history in the computer memory, plotting their change over

time using on-screen graphs (Figure 6.12). If desired by the user, these values can

be stored in a file using a format suitable for importing into other software

packages. The Monitor is further capable of sending the necessary commands to

start and stop the simulator to the NGW100 over serial port and Ethernet.

The plant definition file generated using the System Maker is also used by the

System Monitor to determine the variables in the plant and whether each one of

them is reported by the NGW100 or not. Based on this information, the user is

presented with a display setting window, using which the placement of individual

plots on the screen, as well as trace colors can be adjusted. With these settings, the

user can adjust the screen layout to their convenience.

103

Figure 6.12: Screenshot from the System Monitor tool

The entire PC software package is developed using the C# programming language,

dependent on the Microsoft .NET Framework. It can run on Windows XP, Vista

and 7 operating systems. The System Monitor also uses the NPlot Charting

Library [105] to draw the graphs.

6.3.2 NGW100 Software

Since the NGW100 is the main workhorse of the simulator, it is the most essential

one of the hardware platforms used. In addition to the simulation calculations

themselves, its tasks include transfer of data to and from the FPGA in order to

receive the inputs coming from the controller and emulate the sensor outputs, as

well as reporting of the state variables that belong to the simulated plant. The

104

software developed for NGW100 in order to accomplish said tasks can be separated

into two main parts: simulator program and FPGA interface driver module.

After the simulated plant is defined by the user and necessary sources and/or

executables are placed on the NGW100, the simulator program is started via

commands received from the RS-232 port. The start-up process involves the

opening of the FPGA interface driver, initialization SPI module on the board,

setting of the initial values of the state variables, calculation of derived constants

and finally establishing socket connection to the user’s PC over Ethernet cable.

The solution process is triggered by an interrupt signal originating from the write

operation of the tested controller. Passing through the FPGA interface, this signal

tells the NGW100 to acquire the inputs from the FPGA on which they are

registered. Using the I/O pins on the NGW100 board, the FPGA is put into “read”

mode and the inputs are received via high-speed (10Mbit/s) SPI protocol. The

disturbance inputs to the plant, if any, are also generated, read from storage or

obtained from buffers that are filled by the user’s PC. All the inputs and plant states

are then used to solve for the state variables for the next time step. An

implementation of the 4th order Runge-Kutta solver method is then employed to

solve for the state variables for the next time step, using the inputs and current

states. After the calculation, commands for the sensor emulators on the FPGA

board are generated and sent, this time putting it in “write” mode and again sending

the data over SPI. Finally, the inputs and state variables are written into a buffer to

be sent to the PC for display and recording. The NGW100 then returns to a waiting

state, ready to receive the next interrupt signal from the FPGA.

To increase the responsiveness and performance of the simulator, multiple

execution threads are used. The main process responsible for initialization of the

program components is the first thread. Handling the commands that can be

received over the RS-232 is also done here. The second thread performs the

105

solution of the state equations and the read/write operations to the FPGA board, as

well as filling the buffer containing the state values to be sent to the PC. Its

operation is triggered by the driver module. The last thread takes care of the

communications with the PC. Its operation is interrupted and blocked by the

simulator thread whenever necessary, only to be resumed when CPU time is

available again, ensuring the simulation has the highest priority.

In order to accomplish its tasks, the simulator program also utilizes the FPGA

interface driver; a loadable Linux kernel module which provides low-level access

to the system resources without the need to recompile the kernel [106]. The

NGW100 is set up to automatically load this module on startup, which calls the

necessary routines that enable the use of the GPIO chip. Since CPU interrupts are

only available to code executing in the kernel space in Linux, it also registers itself

to receive interrupts coming from GPIO pins. Thus, when the simulator program is

launched, it can register itself with the driver to be notified of these interrupts,

allowing the simulation loop to be initiated when they occur. The module also

drives the necessary I/O pins for putting the FPGA board into “read” or “write”

states.

The programming tasks for NGW100 are done using the AVR32 Studio IDE [107].

The tools contained in the IDE are capable of interfacing with the board using

relevant interfaces for debugging purposes. The main programming language used

is C/C++, providing all the facilities of the standard libraries developed for the

language as well as those for the Linux operating system. The libraries, executables

and other resources developed by the user are cross-compiled for the NGW100

platform and can be easily downloaded via FTP or transferred by means of an SD-

Card. Furthermore, since AVR32 Studio is built on top of the Eclipse IDE [108],

any plug-ins written for Eclipse are compatible, providing a more user friendly

environment to the developer. The code developed on the IDE is cross-compiled

106

for the NGW100 using the tools contained in AVR32 Buildroot [109-110] (a set of

compilation tools and utilities for embedded Linux systems).

The source code of the simulator program is prepared in an object-oriented fashion

and it is functionally divided into a multitude of classes for better organization and

reusability. In addition to these classes, the libraries stdc++ (C++ standard

libraries), pthread (POSIX threads library) and rt (real-time library) are also

employed. The interface driver is written in C language and only uses the Linux

kernel libraries.

6.3.3 FPGA Design

The FPGA board serves as the interface between the entire simulation and the

controller being tested. Therefore its duties are basically the notification of the

simulation of the received commands and emulation of the sensors existing in the

plant. The realized digital circuit consists of a communicator/manager module,

input reception signaler, data and configuration registers and finally, the receivers

and emulators themselves.

The manager module serves as the center of operations on the FPGA. When

manipulation commands are received from the controller, they are collected from

the relevant registers and the NGW100 is notified by sending an interrupt signal.

The commands are then sent over SPI upon the reception of the read instruction

from the NGW100. After the simulation calculations are completed, the commands

necessary to generate signals at the sensor emulators are received via SPI. These

are written into the appropriate registers and the operation loop is thus completed.

When the controller sends manipulation commands, each receiver block raises a

signal indicating it has received data. Signals from all the blocks are monitored by

the input reception signaler module. When a signal is received, a corresponding

flag is raised in an internal register. When all the flags belonging to the receiver

107

blocks used in the simulation are raised, i.e. each block used has received a

command; the signaler triggers the manager module and resets the flags. This way,

reception of commands on every available receiver block is marked as the initiation

of simulation calculations, realizing the “timing master is the controller” scheme.

All the receiver and emulator blocks are connected to two register blocks: data and

configuration. While data obviously serve for the storage of input and output data,

configuration registers hold information necessary for proper and compatible

operation of these blocks if necessary. Such information may include, but is not

limited to, PWM periods, encoder pulse per revolution counts, sampling time and

so on.

The FPGA would ideally contain multiple instances of various receiver and sensor

emulator blocks. The configuration registers can then be used to enable the blocks

that are required for the execution of the desired plant simulation. The

implementation here, however, only contains the ones necessary to simulate the

CNC machining center and does not go into a completely flexible design.

6.4 Results

The functionality of the developed implementation is first performed by connecting

constant command generators to the receivers inside the FPGA board. Using digital

oscilloscopes and timers available on the platforms, various measurements

regarding calculation and communication times were made.

Once correct operation of all hardware platforms is observed, the simulator is

connected to a controller also developed on an FPGA platform. The controller is

the result of a root locus design procedure and it is loaded with command

references for the machining operation for one part an injection mold of a bottle.

The simulation of this operation is repeated for different disturbance force

magnitudes, as well as under backlash and no-backlash conditions. The results are

108

successfully used both in debugging of the simulator software and optimization of

the said controller. Figures 6.14 through 6.21 present samples from the command

references and error data gathered during the test processes.

Interrupt Service
Routine

Read Inputs
Simulation
Calculations

Write Emulator
Data

Controller
Command

Emulator
Output

3.58ms

Send to
PC

21.38µs

701.39µs

797.01ms

Figure 6.13: Mean times for sub-processes within the NGW100

Figure 6.14: Cutting tool trajectory for bottle injection mold

109

Figure 6.15: Section of axis references for bottle injection mold

Figure 6.16: Section of x-axis motor position error for bottle injection mold

110

Figure 6.17: Section of y-axis motor position error for bottle injection mold

Figure 6.18: Section of z-axis motor position error for bottle injection mold

111

Figure 6.19: Section of x-axis cart position error due to backlash for bottle injection

mold

Figure 6.20: Section of x-axis cart position error due to backlash for bottle injection

mold

112

Figure 6.21: Section of x-axis cart position error due to backlash for bottle injection

mold

113

Fi
gu

re
 6

.2
2:

 H
yb

ri
d

so
lu

tio
n

FP
G

A
 u

til
iz

at
io

n
fl

oo
r

pl
an

114

Finally, the resource usage of the software developed for each piece of hardware is

investigated. The System Maker and System Monitor applications take up 83kB

and 207kB in binaries. When launched, these report 20.5MB and 11.8MB of total

memory usage. Saved plant designs take up no more than 5kB, although the size of

saved plant designs exact size is dependent on the plant itself. The size of the

recorded states depends on the number of states and inputs to the plant, as well as

the simulation duration. For the CNC machining center, the recording for a 15-

minute cutting operation (including all states, torque commands and disturbances

for a total of 18 variables) occupies up to 62MB of storage when saved in binary

form or up to ~150MB in text form. These are obviously insignificant memory and

storage capacities for today’s computers. With all the statically linked libraries, the

simulator program and interface driver for the NGW100 are 32.5kB and 5.8kB in

size, respectively. The total memory allocated by the simulation processed is

limited by 2MB. Taking into consideration the specs of the NGW100 and that an

SD-Card with 256MB of storage capacity is used, the platform easily handles the

application. Finally, the resource usage on the FPGA is presented in Table 6.2 and

Figure 6.22 shows the chip utilization floor plan.

Table 6.2: Hybrid solution FPGA resource usage

Total logic elements 924 (5%)
Total combinatorial functions 591 (3%)
Dedicated logic registers 704 (4%)

6.5 Closure

The CNC machining center application presented here constitutes a full-feature

HILS system, complete with controller interfacing, simulation and data recording.

Performing all the desired tasks and providing a test bed for development of an

actual controller, it demonstrates successful implementation of the techniques

discussed in this thesis.

115

Timings of the various tasks within the implementation show that simulation

speeds up to 300Hz are possible, which is unsuitable for real-time applications.

Scaled-time operation with the controller as timing master, however, is possible.

Upon inspection, it is observed that an important proportion of the calculation

durations is spent between the reception of the interrupt signal from the FPGA and

initiation of calculations on the NGW100. This delay is caused by the interrupt

handling and kernel-to-user space signaling mechanism inside the Linux operating

system. Unfortunately, this mechanism cannot be modified by the simulation. In

order to minimize this delay, a real-time Linux kernel or another real-time

operating system needs to be employed on the simulator platform. At the extreme,

it is possible to completely get rid of an “operating system” and run stand-alone

simulation calculations. However, the task of including appropriate hardware and

communication drivers in the code for such a complicated hardware platform is

extremely difficult.

The high deviations in simulation calculation durations make it difficult to emulate

sensor signals that are dependent on time, such as the encoder generator. Owing to

the specific controller used, which is capable of handling ill-delayed encoder

signals, the emulators are configured with lower sampling times in this specific

application. This enables the encoder signals to be sent without losing pulses.

However, periods during which the pulse generator stops working are also

introduced by this modification. The timing of the pulses is also no longer proper.

These side effects may cause problems with other controllers, where the

measurement of the signal timings is meaningful. While it is true that the use of a

real-time operating system will improve the calculation durations, methods for

minimizing their effect on signal emulation need to be investigated, perhaps

leading to a revised emulator implementation.

Despite the use of a separate processor platform, it is always possible to employ an

embedded microprocessor design (such as Nios II) on the FPGA board and

116

eliminate the actual processor. In such a substitution, improved coupling of the

simulation with the interface emulators becomes possible. This enables the removal

of some additional management modules and relevant code, eliminating a

significant portion of the computational delays as well as resulting in a more

compact solution. However, there are certain downsides to this change. First of all,

even the most basic microprocessor design takes up an important portion of the

available resources on the FPGA board (e.g. Nios II uses up to %30 of the logic

elements on the DE1 board). Addition of communication interfaces (Ethernet, USB

etc.) and an FPU to this design further increase the usage, leaving even less room

for the interface emulators. If one further attempts to implement multiple FPUs

(commonly utilized via DSP- and SIMD-specific instructions on microprocessors),

the resources on the FPGA are rapidly consumed and the advantages of using an

embedded processor design are lost. The use of a stand-alone microprocessor

platform is therefore more feasible. On the other hand, design of a board which

accommodates the microprocessor and the FPGA chip together, as well as all other

external resources, is a possibility.

117

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

This thesis is aimed at developing an integrated, self-contained and user-friendly

solution to perform HIL simulations. This solution is desired to contain the

necessary tools for designing and implementing simulation processes, interfacing

the controller hardware at hand with the simulator and also the viewing and

recording of the data generated during the simulation for analysis. For this purpose,

it proposes the use of a number of hardware platforms that specially designed to

perform the simulations and interface with controllers. It also presents numerous

software packages that allow the user to define the plant to be simulated, generate

the necessary machine codes to realize that simulation and finally execute it.

The first work done is the development of mathematical models of common

elements found in dynamical systems. After this, methods for solving these

mathematical models (and plants composed of these) numerically in a simulation

application are presented.

With the required techniques at hand, an initial attempt at creating an integrated

HILS solution is made with the aim of providing an educational tool is made. This

tool allows control engineering students to conduct extensive laboratory-like work

with the aid of a simple development board and a software package. This facilitates

the reinforcement of the material covered in the courses by introducing visual

118

elements and making it easier to understand the controller and plant within cause-

effect relationship. The Cadmus package developed during two applications of this

concept clearly shows via student feedback that it successfully fulfills its purpose.

With certain elements of an integrated HILS solution provided by the educational

solution, the focus is shifted to the performance and connectivity aspects of the

simulation. An FPGA chip with its host development board is employed to

implement a high-speed solver for simulations. It was demonstrated that although

such an approach results in a very fast simulator, it suffers from a trade-off between

speed and flexibility. As the simulation of more complex system models involving

various mathematical functions and conditional statements are desired, the

proposed solver becomes incapable of handling these equations and the need for

utilization of a processor unit emerges. On the other hand, the developed system

contains sensor emulators and command receivers that enable the interfacing of the

simulator with any external controller hardware. This successfully fulfills the

connectivity required from such a simulator system.

As the final stage of the studies, a complete HILS system utilizing the successful

elements of the previous works is developed. Employing a combination of different

hardware platforms with appropriate communication interfaces, this system

exhibits all the desired features: flexible controller interfacing, the capability of

solving almost any given set of plant equations, display and recording of system

states during run-time and all the software tools that the user will need during

design and execution of the simulation. Although the resulting system lacks real-

time simulation performance, it well demonstrates the working of the proposed

setup. With the necessary optimizations and modifications to both hardware and

software, it is evident that building a high performance simulator is possible.

One might suggest the use of a personal computer, supported by an I/O card for

controller interfacing, in order to perform HIL simulations. Via the use of a real-

119

time operating system, such a platform would have a high computational power

owing to modern CPUs (and as of the latest trend, computational use of GPUs). As

a matter of fact, such setups are already being used in various HILS applications.

However, this approach contradicts with certain goals of the studies of this thesis.

First of all installation of a real-time OS on the user’s PC is quite intrusive. During

the execution of the simulation, all other work on the computer must be ceased;

otherwise the user’s activity will negatively impact the computational performance.

This has a negative impact on the user-friendliness aspect of the solution.

Furthermore, modern PC designs utilize many advanced hardware components and

interfaces. Typically hidden below several abstraction layers in user applications,

high-performance using these components in a real-time application requires

careful low-level code design. Also, in contrast to high-performance yet simple

board designs, there may be many delay sources and other bottlenecks that cannot

be bypassed by any means. Despite the high computational capabilities of the

platform, these effects may prevent the realization of a real-time general-purpose

simulator. Therefore, a smaller-scale platform similar to the NGW100 remains as a

feasible and much simpler solution to the problem.

7.2 Future work

The results obtained from the different solutions proposed in this thesis point out to

a number of future work opportunities, some specific to themselves and some that

can be generalized to the whole concept.

The results of the educational package show that in order to maximize the

efficiency of the application, extensive testing and debugging of such an

application is necessary. It is also desirable to have a design tool to be provided to

the course instructor or assistants, who may wish to modify certain parameters of

the simulated plant or design an entirely new application. This will increase the

reusability of the package over successive semesters, also giving the student to

explore other systems and test their knowledge.

120

Attempts at developing a high performance simulator show that in order to achieve

a fast yet flexible solver, utilization of a processor-like device is required. For this

purpose, it may be beneficial to explore a customized processor designed to handle

equations governing dynamical systems. Such a design will be able to exhibit both

the flexibility of a processor and the speed of hardware-accelerated arithmetic.

More detailed inspection and revised design of interface emulators is also advisable

in order to decrease dependency on simulator speed and provide a more realistic

interface.

As for the hybrid solution, although the capability of handling almost any plant is

demonstrated, the delays in the microprocessor platform deteriorate the

performance of the overall system. Methods of code optimization, as well as the

use of real-time operating systems or stand-alone executables are definitely to be

beneficial at this point. Exploration of distributed and/or hardware accelerated

calculations is also an open end.

121

REFERENCES

[1] Maxwell, J. C., "On Governors," Proceedings of the Royal Society of

London, vol. 16, no. ArticleType: primary_article / Full publication date:

1867 - 1868 / Copyright © 1867 The Royal Society, pp. 270-283, 1867.

[2] Routh, E. J., Stability of motion, Taylor & Francis ; Halsted Press, London :

New York :, 1975.

[3] Li, Y., Ang, K., Chong, G., Feng, W., Tan, K., and Kashiwagi, H.,

"CAutoCSD-evolutionary search and optimisation enabled computer

automated control system design," International Journal of Automation and

Computing, vol. 1, no. 1, pp. 76-88, 2004.

[4] Sisle, M. E., and McCarthy, E. D., "Hardware-in-the-loop simulation for an

active missile," SIMULATION, vol. 39, no. 5, pp. 159-167, 1982.

[5] Bailey, M., and Doerr, J., "Contributions of hardware-in-the-loop

simulations to Navy test and evaluation," Proceedings pp. 33-43, Orlando,

FL, USA, 1996.

[6] Cole, J. J. S., and Jolly, A. C., "Hardware-in-the-loop simulation at the U.S.

Army Missile Command," Proceedings pp. 14-19, Orlando, FL, USA, 1996.

[7] Eguchi, H., and Yamashita, T., "Benefits of HWIL simulation to develop

guidance and control systems for missiles," Proceedings pp. 66-73,

Orlando, FL, USA, 2000.

[8] Evans, M. B., and Scholing, L. J., "The role of simulation in the

development and flight test of the HiMAT vehicle," Technical Report No.

H-1190; NAS 1.15:84912; NASA-TM-84912 NASA, 1984.

[9] Badaruddin, K. S., Hernandez, J. C., and Brown, J. M., "The importance of

hardware-in-the-loop testing to the Cassini mission to Saturn," Proceedings

of Aerospace Conference, 2007 IEEE, pp. 1-9, 2007.

122

[10] de Carufel, J., Martin, E., and Piedboeuf, J. C., "Control strategies for

hardware-in-the-loop simulation of flexible space robots," Control Theory

and Applications, IEE Proceedings -, vol. 147, no. 6, pp. 569-579, 2000.

[11] Wei, R., Jin, M. H., Xia, J. J., Xie, Z. W., Shi, J. X., and Liu, H., "High

fidelity distributed hardware-in-the-loop simulation for space robot,"

Proceedings of Mechatronics and Automation, Proceedings of the 2006

IEEE International Conference on, pp. 2150-2155, 2006.

[12] Leitner, J., "A hardware-in-the-loop testbed for spacecraft formation flying

applications," Proceedings of Aerospace Conference, 2001, IEEE

Proceedings., pp. 2/615-2/620 vol.2, 2001.

[13] Xiaofeng, W., and Vladimirova, T., "Hardware-in-loop simulation of a

satellite sensor network for distributed space applications," Proceedings of

Adaptive Hardware and Systems, 2008. AHS '08. NASA/ESA Conference on,

pp. 424-431, 2008.

[14] Devie, F., and Lemaire, J., "A flexible hardware in the loop simulator for a

long range autonomous underwater vehicle," Proceedings of OCEANS '98

Conference Proceedings, pp. 1359-1363 vol.3, 1998.

[15] Hwang, A., Seonil, Y., Tae-Yeong, K., Dae-Yong, K., Chulho, C., and

Hyeonjin, C., "Verification of unmanned underwater vehicle with velocity

over 10 knots guidance control system based on hardware in the loop

simulation," Proceedings of OCEANS 2009, MTS/IEEE Biloxi - Marine

Technology for Our Future: Global and Local Challenges, pp. 1-5, 2009.

[16] Krishnamurthy, P., Khorrami, F., and Ng, T. L., "Control design for

unmanned sea surface vehicles: hardware-in-the-loop simulator and

experimental results," Proceedings of Intelligent Robots and Systems, 2007.

IROS 2007. IEEE/RSJ International Conference on, pp. 3660-3665, 2007.

[17] Parodi, O., Lapierre, L., and Jouvencel, B., "Hardware-in-the-loop

simulators for multi-vehicles scenarios: survey on existing solutions and

proposal of a new architecture," Proceedings of Intelligent Robots and

123

Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, pp. 225-

230, 2009.

[18] Baracos, P., Murere, G., Rabbath, C. A., and Jin, W., "Enabling PC-based

HIL simulation for automotive applications," Proceedings of Electric

Machines and Drives Conference, 2001. IEMDC 2001. IEEE International,

pp. 721-729, 2001.

[19] Brennan, S., and Alleyne, A., "Using a scale testbed: Controller design and

evaluation," Control Systems Magazine, IEEE, vol. 21, no. 3, pp. 15-26,

2001.

[20] Brennan, S., Alleyne, A., and DePoorter, M., "The Illinois Roadway

Simulator-a hardware-in-the-loop testbed for vehicle dynamics and control,"

Proceedings of American Control Conference, 1998. Proceedings of the

1998, pp. 493-497 vol.1, 1998.

[21] Choi, S.-B., Lee, H., Hong, S.-R., and Cheong, C., "Control and response

characteristics of a magnetorheological fluid damper for passenger

vehicles," Proceedings pp. 438-443, Newport Beach, CA, USA, 2000.

[22] Kendall, I. R., and Jones, R. P., "An investigation into the use of hardware-

in-the-loop simulation testing for automotive electronic control systems,"

Control Engineering Practice, vol. 7, no. 11, pp. 1343-1356, 1999.

[23] King, P. J., and Copp, D. G., "Hardware in the loop for automotive vehicle

control systems development," Proceedings of UKACC Control 2004 Mini

Symposia, pp. 75-78, 2004.

[24] Short, M., and Pont, M. J., "Hardware in the loop simulation of embedded

automotive control system," Proceedings of Intelligent Transportation

Systems, 2005. Proceedings. 2005 IEEE, pp. 426-431, 2005.

[25] Jae-Cheon, L., and Myuug-Won, S., "Hardware-in-the loop simulator for

ABS/TCS," Proceedings of Control Applications, 1999. Proceedings of the

1999 IEEE International Conference on, pp. 652-657 vol. 1, 1999.

[26] Ki-Chang, L., jeong-Woo, J., Don-Ha, H., Se-Han, L., and Yong-Joo, K.,

"Development of antilock braking controller using hardware in-the-loop

124

simulation and field test," Proceedings of Industrial Electronics Society,

2004. IECON 2004. 30th Annual Conference of IEEE, pp. 2137-2141 Vol.

3, 2004.

[27] Boot, R., Richert, J., Schutte, H., and Rukgauer, A., "Automated test of

ECUs in a hardware-in-the-loop simulation environment," Proceedings of

Computer Aided Control System Design, 1999. Proceedings of the 1999

IEEE International Symposium on, pp. 587-594, 1999.

[28] Reorda, M. S., and Violante, M., "Hardware-in-the-loop-based

dependability analysis of automotive systems," Proceedings of On-Line

Testing Symposium, 2006. IOLTS 2006. 12th IEEE International, pp. 6 pp.,

2006.

[29] Bahri, I., Naouar, M. W., Monmasson, E., Slama-Belkhodja, I., and

Charaabi, L., "Design of an FPGA-based real-rime simulator for electrical

systems," Proceedings of Power Electronics and Motion Control

Conference, 2008. EPE-PEMC 2008. 13th, pp. 1365-1370, 2008.

[30] Jayalakshmi, K., and Ramanarayanan, V., "Real-time simulation of

electrical machines on FPGA platform," Proceedings of Power Electronics,

2006. IICPE 2006. India International Conference on, pp. 259-263, 2006.

[31] Crosbie, R., Zenor, J., Bednar, R., Word, D., Hingorani, N., and Ericsen, T.,

"High-Speed, scalable, real-time simulation using DSP arrays," Proceedings

of Parallel and Distributed Simulation, 2004. PADS 2004. 18th Workshop

on, pp. 52-59, 2004.

[32] Karimi, S., Poure, P., and Saadate, S., "FPGA-based hardware in the loop

validation for fault tolerant three-phase active filter," Proceedings of

Industrial Electronics, 2008. ISIE 2008. IEEE International Symposium on,

pp. 2189-2194, 2008.

[33] Le-Huy, P., Guerette, S., Dessaint, L. A., and Hoang, L.-H., "Dual-step real-

time simulation of power electronic converters using an FPGA,"

Proceedings of Industrial Electronics, 2006 IEEE International Symposium

on, pp. 1548-1553, 2006.

125

[34] Abourida, S., Bélanger, J., and Dufour, C., "Real-time HIL simulation of a

complete PMSM drive at 10 µs time step," Proceedings 2005.

[35] Dufour, C., Belanger, J., Lapointe, V., and Abourida, S., "Real-time

simulation on FPGA of a permanent magnet synchronous machine drive

using a finite-element based model," Proceedings of Power Electronics,

Electrical Drives, Automation and Motion, 2008. SPEEDAM 2008.

International Symposium on, pp. 19-25, 2008.

[36] Bonney, J., Bowering, G., Marotz, R., and Swanson, K., "Hardware-in-the-

loop emulation of mobile wireless communication environments,"

Proceedings of Aerospace Conference, 2008 IEEE, pp. 1-9, 2008.

[37] Carter, L., Dyal, J., Doshi, S., and Bagrodia, R., "A hardware-in-the-loop

(HWIL) network simulator for analysis and evaluation of large-scale

military wireless communication systems," Proceedings of Military

Communications Conference, 2008. MILCOM 2008. IEEE, pp. 1-8, 2008.

[38] Clark, A. M., Kocak, D. M., Martindale, K., and Woodroffe, A., "Numerical

modeling and hardware-in-the-Loop simulation of undersea networks,

ocean observatories and offshore communications backbones," Proceedings

of OCEANS 2009, MTS/IEEE Biloxi - Marine Technology for Our Future:

Global and Local Challenges, pp. 1-11, 2009.

[39] Bullock, D., Johnson, B., Wells, R. B., Kyte, M., and Li, Z., "Hardware-in-

the-loop simulation," Transportation Research Part C: Emerging

Technologies, vol. 12, no. 1, pp. 73-89, 2004.

[40] Eil, K., Sangho, K., and Taek Mu, K., "Pseudo real-time evaluation of

adaptive traffic control strategies using hardware-in-loop simulation,"

Proceedings of Industrial Electronics Society, 2001. IECON '01. The 27th

Annual Conference of the IEEE, pp. 1910-1914 vol.3, 2001.

[41] Engelbrecht, R., "Using hardware-in-the-loop traffic simulation to evaluate

traffic signal controller features," Proceedings of Industrial Electronics

Society, 2001. IECON '01. The 27th Annual Conference of the IEEE, pp.

1920-1925 vol.3, 2001.

126

[42] Yan, L., Yaping, D., Lingling, M., and Liang, M., "Design and

Implementation of traffic signal optimization hardware-in-loop simulation

system," Proceedings of Intelligent Computation Technology and

Automation, 2009. ICICTA '09. Second International Conference on, pp.

550-553, 2009.

[43] Grega, W., "Hardware-in-the-loop simulation and its application in control

education," Proceedings of Frontiers in Education Conference, 1999. FIE

'99. 29th Annual, pp. 12B6/7-12B612 vol.2, 1999.

[44] Shiakolas, P. S., and Piyabongkarn, D., "Development of a real-time digital

control system with a hardware-in-the-loop magnetic levitation device for

reinforcement of controls education," Education, IEEE Transactions on,

vol. 46, no. 1, pp. 79-87, 2003.

[45] Tarte, Y., YangQuan, C., Wei, R., and Moore, K., "Fractional horsepower

dynamometer - A general purpose hardware-in-the-loop real-time

simulation platform for nonlinear control research and education,"

Proceedings of Decision and Control, 2006 45th IEEE Conference on, pp.

3912-3917, 2006.

[46] Speedgoat GmbH, Last accessed 02.06.2010, http://www.speedgoat.ch

[47] dSPACE GmbH, Last accessed 05.06.2010,

http://www.dspaceinc.com/ww/en/inc/home.cfm

[48] Opal-RT Technologies Inc., Last accessed 02.06.2010, http://www.opal-

rt.com

[49] Applied Dynamics International Inc., Last accessed 02.06.2010,

http://www.adi.com

[50] National Instruments Inc. - Hardware-in-the-Loop Testing, Last accessed

05.06.2010, http://www.ni.com/hil/

[51] The MathWorks - xPC Target, Last accessed 05.06.2010,

http://www.mathworks.com/products/xpctarget/

[52] Reynolds, O., "On the theory of lubrication and its application to Mr.

Beauchamp Tower's experiments, including and experimental determination

127

of the viscosity of olive oil," Philosophical Transactions of the Royal

Society, vol. 177, pp. 157-234, 1886.

[53] Stribeck, R., "Die wesentlichen Eigenschaften der Gleit- und Rollenlager,"

Zeitschrift des Vereines Deutscher Ingenieure, vol. 46, no. 38, 39, pp. 1342-

48, 1432-37, 1902.

[54] Morin, A. J., "New friction experiments carried out at Metz in 1831-1833,"

Proceedings of the French Royal Academy of Sciences, vol. 4, pp. 1-128,

1833.

[55] Rabinowicz, E., "The nature of the static and kinetic coefficients of

friction," Journal of Applied Physics, vol. 22, no. 11, pp. 1373-79, 1951.

[56] Johannes, V. I., Green, M. A., and Brockley, C. A., "The role of the rate of

application of the tangential force in determining the static friction

coefficient," Wear, vol. 24, pp. 381-385, 1973.

[57] Richardson, R. S. H., and Nolle, H., "Surface friction under time-dependent

loads," Wear, vol. 37, no. 1, pp. 87-101, 1976.

[58] Courtney-Pratt, J., and Eisner, E., "The effect of a tangential force on the

contact of metallic bodies," Proceedings of the Royal Society of London,

vol. A238, pp. 529-550, 1957.

[59] Karnopp, D., "Computer Simulation of Stick-Slip Friction in Mechanical

Dynamic Systems," Journal of Dynamic Systems, Measurement, and

Control, vol. 107, no. 1, pp. 100-103, 1985.

[60] Armstrong-Helouvry, B., Dupont, P., and Canudas de Wit, C., "A survey of

models, analysis tools and compensation methods for the control of

machines with friction," Automatica, vol. 30, no. 7, pp. 1083-1138, 1994.

[61] Dahl, P., "A solid friction model," Technical Report No. TOR-0158(3107-

18)-1, The Aerospace Corporation, El Segundo, CA, 1968.

[62] Bliman, P.-A., "Mathematical study of the Dahl's friction model," European

Journal of Mechnics. A / Solids, vol. 11, no. 6, pp. 835-848, 1992.

128

[63] Haessig, D. A., and Friedland, B., "On the modeling and simulation of

friction," Journal of Dynamic Systems, Measurement and Control, vol. 113,

no. 3, pp. 354-362, 1991.

[64] Bliman, P.-A., and Sorine, M., "Friction modeling by hysteresis operators:

Application to Dahl, stiction and Stribeck effects.," Proceedings of Models

of Hysteresis, Trento, Italy, 1991.

[65] Bliman, P.-A., and Sorine, M., "A system-theoretic approach of systems

with hysteresis: Application to friction modeling and compensation,"

Proceedings of Second European Control Conference, pp. 1844-49,

Groningen, The Netherlands, 1993.

[66] Bliman, P.-A., and Sorine, M., "Easy-to-use realistic dry friction models for

automatic control," Proceedings of Third European Control Conference, pp.

3788-3794, Rome, Italy, 1995.

[67] Canudas de Wit, C., Olsson, H., Åström, K. J., and Lischinsky, P., "A new

model for control of systems with friction," Automatic Control, IEEE

Transactions on, vol. 40, no. 3, pp. 419-425, 1995.

[68] Reynolds, O., "Creep theory of belt drive mechanics," The Engineer, vol.

38, no. 396, 1847.

[69] Swift, H. W., "Power transmission by belts: An investigation of

fundamentals," Proceedings of the Institution of Mechanical Engineers, vol.

2, no. 659, 1928.

[70] Abrate, S., "Vibrations of belts and belt drives," Mechanism and Machine

Theory, vol. 27, no. 6, pp. 645-659, 1992.

[71] Hace, A., Jezernik, K., and Sabanovic, A., "SMC with disturbance observer

for a linear nelt drive," Industrial Electronics, IEEE Transactions on, vol.

54, no. 6, pp. 3402-3412, 2007.

[72] Bechtel, S. E., Vohra, S., Jacob, K. I., and Carlson, C. D., "The Stretching

and Slipping of Belts and Fibers on Pulleys," Journal of Applied Mechanics,

vol. 67, no. 1, pp. 197-206, 2000.

129

[73] Rubin, M. B., "An exact solution for steady motion of an extensible eelt in

multipulley belt drive systems," Journal of Mechanical Design, vol. 122,

no. 3, pp. 311-316, 2000.

[74] Firbank, T. C., "Mechanics of the Belt Drive," International Journal of

Mechanical Science, vol. 12, no. 12, 1970.

[75] Childs, T. H., and Parker, J. E., "Power transmission by flat, V and timing

belts," Proceedings of 15th Leeds-Lyon Symposium on Tribology, pp. 133-

142, 1989.

[76] Alciatore, D. G., and Traver, A. E., "Multipulley belt drive mechanics:

Creep theory vs shear theory," Journal of Mechanical Design, vol. 117, no.

4, pp. 506-511, 1995.

[77] Gerbert, G., "Belt Slip---A Unified Approach," Journal of Mechanical

Design, vol. 118, no. 3, pp. 432-438, 1996.

[78] Gerbert, G., "On flat belt slip," Proceedings of 17th Leeds-Lyon Symposium

on Tribology, pp. 333-339, 1996.

[79] Slotine, J. J. E., and Weiping, L., Applied Nonlinear Control, Prentice-Hall,

Englewood Cliff, New Jersey, 1991.

[80] Sarkar, N., Ellis, R. E., and Moore, T. N., "Backlash detection in geared

mechanisms: Modeling, simulation and experimentation," Mechanical

Systems and Signal Processing, vol. 11, pp. 391-408, 1997.

[81] Nordin, M., and Gutman, P.-O., "Controlling mechanical systems with

backlash--a survey," Automatica, vol. 38, no. 10, pp. 1633-1649, 2002.

[82] Yamamura, S., and Nakagawa, T., "Transient phenomena and control of ac

servomotor-proposal of field acceleration method," Electrical Engineering

in Japan, vol. 101, no. 5, pp. 69-75, 1981.

[83] Depenbrock, M., "Direct self-control (DSC) of inverter-fed induction

machine," Power Electronics, IEEE Transactions on, vol. 3, no. 4, pp. 420-

429, 1988.

130

[84] French, C., and Acarnley, P., "Direct torque control of permanent magnet

drives," Industry Applications, IEEE Transactions on, vol. 32, no. 5, pp.

1080-1088, 1996.

[85] Mir, S., Elbuluk, M. E., and Zinger, D. S., "PI and fuzzy estimators for

tuning the stator resistance in direct torque control of induction machines,"

Proceedings of Power Electronics Specialists Conference, PESC '94

Record., 25th Annual IEEE, pp. 744-751 vol.1, 1994.

[86] Behera, R., and Das, S., "Improved direct torque control of induction motor

with dither injection," Sadhana, vol. 33, no. 5, pp. 551-564, 2008.

[87] Soong, W. L., and Miller, T. J. E., "Field-weakening performance of

brushless synchronous AC motor drives," Electric Power Applications, IEE

Proceedings -, vol. 141, no. 6, pp. 331-340, 1994.

[88] Moore, S., and Ehsani, M., "Effect on vehicle performance of extending the

constant power region of electric drive motors," Proceedings of

International Congress & Exposition, Detroit, MI, USA, 1999.

[89] Wright, D., Notes on Design and Analysis of Machine Elements, Last

accessed 25.06.2010, http://school.mech.uwa.edu.au/~dwright/DANotes/

[90] Grimheden, M., and Törngren, M., "How should embedded systems be

taught?: Experiences and snapshots from Swedish higher engineering

education," SIGBED Rev., vol. 2, no. 4, pp. 34-39, 2005.

[91] Microsoft XNA, Last accessed http://www.xna.com/

[92] Yen-Ju, L., Chen-Tung, L., Chi-Feng, W., Shih-Arn, H., and Ying-Hsi, L.,

"Microprocessor modeling and simulation with SystemC," Proceedings of

VLSI Design, Automation and Test, 2007. VLSI-DAT 2007. International

Symposium on, pp. 1-4, 2007.

[93] Gorton, I., Kerridge, J., and Jervis, B., "Simulating microprocessor systems

using occam and a network of transputers," Computers and Digital

Techniques, IEE Proceedings E, vol. 136, no. 1, pp. 22-28, 1989.

[94] Munson, B. R., Young, D. F., and Okiishi, T. H., Fundamentals of Fluid

Mechanics, 3rd Ed., John Wiley, New York, 1998.

131

[95] Peterka, J. A., Tan, Z., Bienkiwicz, B., and Cermak, J. E., "Wind loads on

heliostats and parabolic dish collectors," Colorado State University, Fort

Collins, Colorado, 1988.

[96] Custom Computer Services Inc., Last accessed 03.06.2010,

http://www.ccsinfo.com

[97] Özsipahi, M., "ME534 Final project report: Design of a satellite-antenna

tracking controller," 2010.

[98] Usenmez, S., Dilan, R. A., Yaman, U., Mutlu, B. R., Dolen, M., and Koku,

A. B., "Çevrimiçi donanım benzetimi için yeni bir yazılım paketi: Cadmus,"

Proceedings of Turkish National Committee of Automatic Control, 2008.

[99] Woorim t&i Terasic Altera DE1 Product Page, Last accessed 24.06.2010,

http://www.woorimtni.co.kr/terasic/terasic_fpga_06_view.jsp

[100] Usselmann, R., "Open Floating Point Unit Manual," 2005.

[101] Usenmez, S., Dilan, R. A., Dolen, M., and Koku, A. B., "Bir doğru akım

motorunun FPGA üzerinde gerçek zamanlı benzetiminin

gerçekleştirilmesi," Proceedings of Turkish National Committee of

Automatic Control, 2009.

[102] Usenmez, S., Dilan, R. A., Dolen, M., and Koku, A. B., "Real-time

hardware-in-the-loop simulation of electrical machine systems using

FPGAs," Proceedings of Electrical Machines and Systems, 2009. ICEMS

2009. International Conference on, pp. 1-6, Tokyo, Japan, 2009.

[103] Atmel AT32AP7000 AVR32 32-bit Microcontroller Datasheet, Last

accessed 29.05.2010,

http://www.atmel.com/dyn/resources/prod_documents/32003S.pdf

[104] GE-Fanuc, "α Series AC Servo Motor Descriptions Manual," 1995.

[105] NPlot Charting Library Project Page, Last accessed

http://live.xbox.com/en-GB/profile/profile.aspx?pp=0&GamerTag=ilkekaya

[106] Corbet, J., Rubini, A., and Kroah-Hartman, G., Linux Device Drivers, Third

Ed., O'Reilly Media, 2005.

132

[107] AVR32 Studio Product Page, Last accessed

http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4116

[108] Eclipse Foundation Home Page, Last accessed http://www.eclipse.org/

[109] Atmel Buildroot for AVR32 Home Page, Last accessed

http://www.atmel.no/buildroot/

[110] Krosgaard, P., Buildroot Project Page, Last accessed

http://buildroot.uclibc.org/

[111] Microchip Inc. PIC18F4520 Product Page, Last accessed 03.06.2010,

http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en010

297

[112] Microchip PIC18F4520 Datasheet, Last accessed 03.06.2010,

http://ww1.microchip.com/downloads/en/DeviceDoc/39631E.pdf

[113] AVRfreaks Wiki NGW/NGW100 Features Page, Last accessed 03.06.2010,

http://www.avrfreaks.net/wiki/index.php/Documentation:NGW/NGW100_

Features

[114] Altera DE1 Development and Education Board Product Page, Last

accessed 29.05.2010,

http://university.altera.com/materials/boards/de1/?board=DE1

[115] Altera Cyclone II Device Family Datasheet, Last accessed 29.05.2010,

http://www.altera.com/literature/hb/cyc2/cyc2_cii5v1_01.pdf

[116] Altera Nios II Embedded Evaluation Kit Product Page, Last accessed

29.05.2010, http://www.altera.com/products/devkits/altera/kit-cyc3-

embedded.html

[117] Altera Cyclone III Device Handbook, Last accessed 29.05.2010,

http://www.altera.com/literature/hb/cyc3/cyc3_ciii5v1.pdf

133

APPENDIX A

HARDWARE SPECIFICATIONS

A.1 PIC Development Board and Microchip PIC Microcontrollers

This section provides specifications for the PIC Development Board and its

components. The board itself accommodates:

• Microchip PIC18F4520 microcontroller

• 20 MHz crystal oscillator

• Two 0-20kΩ potentiometers (connected to pins configurable as D/A

converter)

• Push button (connected to pin configurable as external interrupt)

• Three LEDs

• Serial port with MAX232 TTL – RS-232 converter IC

• Female sockets connected to all unused pins on the microcontroller (5V and

ground wires also provided)

• Reset push button

• On-off switch

134

Table A.1: Microchip PIC18F4520 microcontroller specifications [111-112]

Operating Frequency 40 MHz
CPU Speed 10 MIPS
SRAM Memory 1,536
Program Memory 16,384
EEPROM Memory 256
Interrupts 20
I/O Pins 36
Timers 1 × 8-bit, 3 × 16-bit
A/D Converters 13 × 10-bit channels
Capture/Compare/PWM 1 × CCP, 1 × ECCP modules
Serial Communications 1 × SSP (SPI/I2C), 1 × EUSART
Parallel Communications PSP
Analog Comparators 2

A.2 NGW100 Network Gateway Kit and AT32AP7000 Microprocessor

This section provides specifications for the NGW100 Network Gateway Kit and its
components. The NGW100 itself accommodates [113]:

• Atmel AT32AP7000 CPU

• 32 MB SDRAM

• 16 MB on-board flash

• SD-Card/MMC slot

• ATtiny24 board controller & ISP interface for board identification

• JTAG & Nexus programming/debugging interface

• RS-232 port

• Two Ethernet ports

• USB port

• 63 expansion pins for general purpose I/O and AT32AP7000 peripheral

modules

• Power & status LEDs

• Two user controllable LEDs

135

• Reset push button

• Boot select jumper

The specifications of the AT32AP7000 microprocessor are [103]:

• AVR32 32-bit Microcontroller

o 210 DMIPS throughput at 150 MHz

o 16 KB instruction cache and 16 KB data cache

o MMU

o Single-cycle RISC instruction set including SIMD and DSP

instructions

o Java hardware acceleration

• Pixel coprocessor for video acceleration

• Multi-hierarchy bus system

• 32 KB SRAM data memory

• External SDRAM, DataFlash, SRAM, MMC, SD, Compact Flash, Smart

Media, NAND Flash memory interfaces

• DMA Controller

• Interrupt Controller

• System Functions

o Power and clock manager

o Crystal oscillator with PLL

o Watchdog timer

o Real-time clock

• 6 × multifunction timer/counters

o Three external clock inputs, I/O pins, PWM, capture and various

counting capabilities

• 4 × USART

o 115.2 kbps IrDA Modulation and Demodulation

136

o Hardware and software handshaking

• 3 × SSP controllers

o Supports I2S, SPI and generic frame-based protocols

• Two-wire interface

o Sequential read/write operations, I2C compliant

• LCD interface

o Supports TFT displays

o Configurable pixel resolution supporting QCIF/QVGA/VGA/SVGA

configurations

• 12-bit image sensor interface for CMOS cameras

• USB 2.0 high speed (480 Mbps) device

• 2 × 802.3 Ethernet MAC 10/100 Mbps interfaces

o Supports MII and RMII

• 16-bit stereo audio bit stream DAC with sample rates up to 50 kHz

• On-chip debug system

o Nexus class 3

o Full speed, non-intrusive data and program trace

o Runtime control and JTAG interface

• Package/Pins

o AT32AP7000: 256-ball CTBGA 1.0 mm pitch/160 GPIO pins

• Power supplies

o 1.65V to1.95V VDDCORE

o 3.0V to 3.6V VDDIO

A.3 Terasic Altera DE1 Cyclone II FPGA Starter Kit

This section provides specifications for the DE1 Cyclone II FPGA Starter Kit and

its components. The DE1 itself accommodates [114]:

• Altera Cyclone II EP2C20F484C7 FPGA Chip

137

• Built-in USB-Blaster chip for FPGA configuration

• 8 MB SDRAM

• 512 kB SRAM

• 4 MB flash memory

• 10 × toggle switches

• 4 × push buttons

• 18 × LEDs

• 4 × 7-segment digit display

• 50 MHz and 27 MHz clock sources, SMA external clock input

• 24-bit audio codec chip with line in, line out and microphone in jacks

• VGA video output with 4-bit resistor array DAC

• RS-232 serial port

• PS/2 mouse/keyboard port

• 2 × 40-pin expansion headers

• SD-Card slot

Table A.2: Specifications of Cyclone II EP2C20F484C7 FPGA chip [115]

Logic Elements 18,752
M4K RAM blocks (4 Kbits + 512 parity bits) 52
Total RAM bits 239,616
Embedded multipliers (9-bit) 52
PLLs 4
User I/O pins 315

A.4 Terasic Altera Nios II Embedded Evaluation Kit

This section provides specifications for the Nios II Embedded Evaluation Kit and

its components. The boards making up the kit accommodate [116]:

• Altera Cyclone II EP3C25F324 FPGA Chip

• Built-in USB-Blaster chip for FPGA configuration

• 32 MB DDR SDRAM

138

• 1 MB SSRAM

• 16 MB flash memory

• 4 × push buttons

• 4 × LEDs

• 50 MHz clock source

• 24-bit audio codec chip with line in, line out and microphone in jacks

• VGA video output with 4-bit resistor array DAC

• Composite TV-in

• RS-232 serial port

• PS/2 mouse/keyboard port

• Ethernet connector

• JTAG connector

• SD-Card slot

Table A.3: Specifications of Cyclone III EP3C25F324 FPGA chip [117]

Logic Elements 26,624
M9K RAM blocks (9 Kbits) 66
Total RAM bits 608,256
Embedded multipliers (9-bit) 132
PLLs 4
User I/O pins 215

139

APPENDIX B

SOURCE CODE LISTINGS

B.1 Introduction

The listing of source code developed during the thesis studies is presented in this

appendix for completeness. Table B.1 provides a list of the included source files,

while the following sections document certain important sections of these files.

Table B.1: Source files developed for the applications

File name Lang. Description
Related
Chapter

MainForm.cs C# Main application and GUI routines 4
Antenna.cs C# Equations governing antenna behavior 4
Environment.cs C# Variables regarding wind properties 4
Satellite.cs C# Equations governing satellite motion 4
Simulation.cs C# Primary simulation routines 4
StateSolver.cs C# 4th order Runge-Kutta solver routine 4
Protoc16.h C 16-bit communication protocol header 4
PWM_Receive.v Verilog Modified (synced) PWM receiver 5, 6
Encoder.vhd VHDL Time-scalable encoder emulator 5, 6
main.cpp C++ Main simulation process 6
CadmusDevice.h, .cpp C++ FPGA board management class 6
CadmusManager.h, .cpp C++ PC communication management class 6
DisturbanceSource.h, .cpp C++ Generated/pre-recorded disturbance provider 6
EncoderCommander.h, .cpp C++ Command generator for encoder emulator 6
Solver_RK4.h, .cpp C++ 4th order Runge-Kutta solver routine 6
NGW_Interface.vhd VHDL FPGA manager and NGW100 interface 6
InputSignaller.vhd VHDL Multiple input command detection module 6
hils_milling_distgen.m m-file Machining center disturbance generation 6

140

B.2 Source code – MainForm.cs

using System;

using System.Collections.Generic;

using System.Drawing;

using System.IO;

using System.Windows.Forms;

namespace SatelliteAntenna

{

 public partial class MainForm : Form

 {

 public MainForm()

 {

 InitializeComponent();

 }

 // On launch

 private void Form1_Load(object sender, EventArgs e)

 {

 // Setup scopes on view tab – grids, colors etc.

 #region Scopes

 // ...

 #endregion

 // Print parameters in settings tab for user convenience

 #region System Parameters

 // ...

 #endregion

 // Enumerate serial ports on the computer

 string[] PortNames =

System.IO.Ports.SerialPort.GetPortNames();

 if (PortNames.Length > 0)

 cmbSettings_SerialComm_Port.Items.AddRange(PortNames);

 else

 MessageBox.Show("No COM ports were found. Please check

your hardware connections and settings.", "Error", MessageBoxButtons.OK,

MessageBoxIcon.Error);

 // Reload settings from the previous run of the program,

 // the user won't have to re-adjust everything

 bool SettingsLoaded = false;

 if (File.Exists("Settings.dat"))

 {

 try

 {

 // Read and apply settings from file

 // ...

 SettingsLoaded = true;

 }

 catch

 {

 // Corrupted settings file, delete it

 File.Delete("Settings.dat");

 }

 }

 // Default settings if no record exists or it exists but is

 // corrupted

 if (!SettingsLoaded)

 {

 // ...

 }

 Initialized = true;

 }

141

 // User changes sampling time

 private void

cmbSettings_Simulation_SamplingTime_SelectedIndexChanged(object sender, EventArgs

e)

 {

 // Assign sampling time ts

 int SamplingTime =

Convert.ToInt32(cmbSettings_Simulation_SamplingTime.Text);

 Simulation.SamplingTime = (float)SamplingTime / 1000;

 // Populate data recording intervals, starting at ts/2

 // down to 0.25ms

 List<int> Items = new List<int>();

 for (int i = SamplingTime - 1; i > 0; i--)

 if (((SamplingTime / i) * i) == SamplingTime)

 Items.Add(i);

 cmbSettings_Simulation_LogInterval.Items.Clear();

 foreach (int i in Items)

 cmbSettings_Simulation_LogInterval.Items.Add(i);

 cmbSettings_Simulation_LogInterval.Items.Add(0.5);

 cmbSettings_Simulation_LogInterval.Items.Add(0.25);

 cmbSettings_Simulation_LogInterval.SelectedIndex = 0;

 }

 // At program exit

 private void MainForm_FormClosing(object sender, FormClosingEventArgs

e)

 {

 Simulation.Stop();

 // Record application settings

 StreamWriter Writer = new

System.IO.StreamWriter("Settings.dat", false);

 Writer.WriteLine("// Do not modify the contents of this file

manually. Delete the file if you wish to reset your settings. #21");

 // ...

 // ...

 // ...

 Writer.Flush();

 Writer.Close();

 }

 // Record mouse button press for adjusting antenna angles

 // Only works when simulation is not running

 private void satelliteGraphicsDeviceControl_MouseDown(object sender,

MouseEventArgs e)

 {

 if (Simulation.State == RunState.Stopped)

 {

 if (e.Button == MouseButtons.Left)

 {

 m_CursorPosition = Cursor.Position;

 Cursor = Cursors.SizeAll;

 }

 }

 }

 // Rotate antenna when the user drags the mouse

 // This is for setting intial position

 private void satelliteGraphicsDeviceControl_MouseMove(object sender,

MouseEventArgs e)

 {

 if (!m_CursorPosition.IsEmpty)

 {

142

 Program.Antenna.Azimuth +=

Angle.ToRadian(Cursor.Position.X - m_CursorPosition.X) /

Microsoft.Xna.Framework.MathHelper.Pi;

 float newElevation = Program.Antenna.Elevation -

Angle.ToRadian(Cursor.Position.Y - m_CursorPosition.Y) /

Microsoft.Xna.Framework.MathHelper.Pi;

 newElevation =

Microsoft.Xna.Framework.MathHelper.Clamp(newElevation, 0f,

Microsoft.Xna.Framework.MathHelper.Pi);

 Program.Antenna.Elevation = newElevation;

 m_CursorPosition = Cursor.Position;

 }

 }

 // Record mouse button release after adjusting antenna angles

 private void satelliteGraphicsDeviceControl_MouseUp(object sender,

MouseEventArgs e)

 {

 m_CursorPosition = Point.Empty;

 Cursor = Cursors.Default;

 }

 private bool Initialized = false;

 private Point m_CursorPosition = Point.Empty;

 }

}

B.3 Source code – Antenna.cs

using System;

using Microsoft.Xna.Framework;

namespace SatelliteAntenna

{

 public class Antenna

 {

 public Antenna()

 {

 m_Latitude = 0; // float.ToRadian(39.892365f); //

39°53'32.51"N

 m_Longitude = 0; // float.ToRadian(32.783357f); //

32°47'0.09"E

 }

 public void Think()

 {

 float x1, x2, dx;

 float[] States;

 #region Wind

 float CosElevation = (float)Math.Cos(Elevation);

 Vector3 Facing = new Vector3();

 Facing.X = (float)Math.Cos(Azimuth) * CosElevation;

 Facing.Y = (float)Math.Sin(Azimuth) * CosElevation;

 Facing.Z = (float)Math.Sin(Elevation);

 float CosGamma = Vector3.Dot(Facing,

Program.Environment.WindDirection);

 float Gamma = (float)Math.Acos(CosGamma);

143

 float Area = (0.55f + (0.45f * Math.Abs(CosGamma))) *

0.636173f;

 float DragCoefficient;

 if (CosGamma < 0)

 DragCoefficient = 0.4f + 0.51f * (1 +

(float)Math.Cos(2 * Gamma));

 else

 DragCoefficient = 0.4f + 0.275f * (1 +

(float)Math.Cos(2 * Gamma));

 float Force = 0.602f * Program.Environment.WindSpeed *

Program.Environment.WindSpeed * DragCoefficient * Area;

 m_Azimuth_WindTorque = Force *

(float)Math.Sin(Program.Environment.WindYaw - Azimuth);

 m_Elevation_WindTorque = Force *

(float)Math.Sin(Program.Environment.WindPitch - Elevation);

 #endregion

 #region Azimuth

 if (!Program.MainForm.rbMain_ControlAxes_Elevation.Checked)

 {

 // Torque capability

 if (Math.Abs(m_Azimuth_Omega1) <=

m_Azimuth_MaximumSpeed)

 m_Azimuth_Torque1A = m_Azimuth_TorqueCommand;

 else

 m_Azimuth_Torque1A = m_Azimuth_TorqueCommand *

m_Azimuth_MaximumSpeed / Math.Abs(m_Azimuth_Omega1);

 // Backlash

 x1 = m_Azimuth_Theta1;

 x2 = m_Azimuth_Theta2 * m_Azimuth_Radius2 /

m_Azimuth_Radius1;

 dx = x1 + x2;

 m_Azimuth_Torque1B = StateEquation_g(dx,

m_Azimuth_Backlash, m_Azimuth_TorsionConstant);

 m_Azimuth_Torque2 = -(m_Azimuth_Radius2 /

m_Azimuth_Radius1) * m_Azimuth_Torque1B;

 States = new float[] { m_Azimuth_Theta1,

m_Azimuth_Omega1, m_Azimuth_Theta2, m_Azimuth_Omega2 };

 // Apply RK4

 States =

StateSolver.RungeKutta4(StateEquation_Azimuth, States, new float[] {

m_Azimuth_Torque1A, m_Azimuth_Torque1B, m_Azimuth_Torque2, m_Azimuth_WindTorque },

Simulation.Time, Simulation.Step);

 m_Azimuth_Theta1 = States[0];

 m_Azimuth_Omega1 = States[1];

 m_Azimuth_Theta2 = States[2];

 m_Azimuth_Omega2 = States[3];

 }

 else

 {

 // No control will be done for azimuth

 m_Azimuth_Omega1 = 0;

 m_Azimuth_Omega2 = 0;

 Azimuth = Program.Satellite.Azimuth;

 }

 #endregion

 #region Elevation

144

 if (!Program.MainForm.rbMain_ControlAxes_Azimuth.Checked)

 {

 // Torque capability

 if (Math.Abs(m_Elevation_Omega1) <=

m_Elevation_MaximumSpeed)

 m_Elevation_Torque1A =

m_Elevation_TorqueCommand;

 else

 m_Elevation_Torque1A =

m_Elevation_TorqueCommand * m_Elevation_MaximumSpeed /

Math.Abs(m_Elevation_Omega1);

 // Backlash

 x1 = m_Elevation_Theta1;

 x2 = m_Elevation_Theta2 * m_Elevation_Radius2 /

m_Elevation_Radius1;

 dx = x1 + x2;

 m_Elevation_Torque1B = StateEquation_g(dx,

m_Elevation_Backlash, m_Elevation_TorsionConstant);

 m_Elevation_Torque2 = -(m_Elevation_Radius2 /

m_Elevation_Radius1) * m_Elevation_Torque1B;

 float ConstraintTorque =

StateEquation_ElevationConstraintTorque();

 States = new float[] { m_Elevation_Theta1,

m_Elevation_Omega1, m_Elevation_Theta2, m_Elevation_Omega2 };

 // Apply RK4

 States =

StateSolver.RungeKutta4(StateEquation_Elevation, States, new float[] {

m_Elevation_Torque1A, m_Elevation_Torque1B, m_Elevation_Torque2,

m_Elevation_WindTorque, ConstraintTorque }, Simulation.Time, Simulation.Step);

 m_Elevation_Theta1 = States[0];

 m_Elevation_Omega1 = States[1];

 m_Elevation_Theta2 = States[2];

 m_Elevation_Omega2 = States[3];

 }

 else

 {

 // No control will be done for elevation

 m_Elevation_Omega1 = 0;

 m_Elevation_Omega2 = 0;

 Elevation = Program.Satellite.Elevation;

 }

 #endregion

 #region Signal

 float AzimuthError = Program.Satellite.Azimuth - Azimuth;

 while (AzimuthError > Mathematics.PI)

 AzimuthError -= Mathematics.TwoPI;

 while (AzimuthError < -Mathematics.PI)

 AzimuthError += Mathematics.TwoPI;

 float ElevationError = Program.Satellite.Elevation -

Elevation;

 AzimuthError = AzimuthError * AzimuthError;

 ElevationError = ElevationError * ElevationError;

 m_SignalStrength = 10 * (float)Math.Exp(-625 * (AzimuthError

+ ElevationError));

 #endregion

145

 }

 private float[] StateEquation_Azimuth(float[] X, float[] U, float

Time)

 {

 float[] Result = new float[X.Length];

 float NetTorque1 = U[0] - U[1];

 if (m_Azimuth_Omega1 > 0)

 NetTorque1 -= m_Azimuth_CoulombFriction1;

 else if (m_Azimuth_Omega1 < 0)

 NetTorque1 += m_Azimuth_CoulombFriction1;

 else

 {

 // Static friction

 if (Math.Abs(NetTorque1) < m_Azimuth_CoulombFriction1)

 NetTorque1 = 0f;

 else

 {

 if (NetTorque1 > 0)

 NetTorque1 -=

m_Azimuth_CoulombFriction1;

 else

 NetTorque1 +=

m_Azimuth_CoulombFriction1;

 }

 }

 float NetTorque2 = U[2] + U[3];

 if (m_Azimuth_Omega2 > 0)

 NetTorque2 -= m_Azimuth_CoulombFriction2;

 else if (m_Azimuth_Omega2 < 0)

 NetTorque2 += m_Azimuth_CoulombFriction2;

 else

 {

 // Static friction

 if (Math.Abs(NetTorque2) < m_Azimuth_CoulombFriction2)

 NetTorque2 = 0f;

 else

 {

 if (NetTorque2 > 0)

 NetTorque2 -=

m_Azimuth_CoulombFriction2;

 else

 NetTorque2 +=

m_Azimuth_CoulombFriction2;

 }

 }

 Result[0] = X[1];

 Result[1] = -(m_Azimuth_ViscousFriction1 /

m_Azimuth_Inertia1) * X[1] + (1 / m_Azimuth_Inertia1) * (NetTorque1);

 Result[2] = X[3];

 Result[3] = -(m_Azimuth_ViscousFriction2 /

m_Azimuth_Inertia2) * X[3] + (1 / m_Azimuth_Inertia2) * (NetTorque2);

 return Result;

 }

 private float[] StateEquation_Elevation(float[] X, float[] U, float

Time)

 {

 float[] Result = new float[X.Length];

 float NetTorque1 = U[0] - U[1];

 if (m_Elevation_Omega1 > 0)

 NetTorque1 -= m_Elevation_CoulombFriction1;

 else if (m_Elevation_Omega1 < 0)

146

 NetTorque1 += m_Elevation_CoulombFriction1;

 else

 {

 // Static friction

 if (Math.Abs(NetTorque1) <

m_Elevation_CoulombFriction1)

 NetTorque1 = 0f;

 else

 {

 if (NetTorque1 > 0)

 NetTorque1 -=

m_Elevation_CoulombFriction1;

 else

 NetTorque1 +=

m_Elevation_CoulombFriction1;

 }

 }

 float NetTorque2 = U[2] + U[3] + U[4];

 if (m_Elevation_Omega2 > 0)

 NetTorque2 -= m_Elevation_CoulombFriction2;

 else if (m_Elevation_Omega2 < 0)

 NetTorque2 += m_Elevation_CoulombFriction2;

 else

 {

 // Static friction

 if (Math.Abs(NetTorque2) <

m_Elevation_CoulombFriction2)

 NetTorque2 = 0f;

 else

 {

 if (NetTorque2 > 0)

 NetTorque2 -=

m_Elevation_CoulombFriction2;

 else

 NetTorque2 +=

m_Elevation_CoulombFriction2;

 }

 }

 Result[0] = X[1];

 Result[1] = -(m_Elevation_ViscousFriction1 /

m_Elevation_Inertia1) * X[1] + (1 / m_Elevation_Inertia1) * (NetTorque1);

 Result[2] = X[3];

 Result[3] = -(m_Elevation_ViscousFriction2 /

m_Elevation_Inertia2) * X[3] + (1 / m_Elevation_Inertia2) * (NetTorque2);

 return Result;

 }

 private float StateEquation_g(float Difference, float Backlash, float

Constant)

 {

 float HalfLash = Backlash / 2;

 if (Difference >= HalfLash)

 return ((Difference - HalfLash) * Constant);

 else if (Difference <= -HalfLash)

 return ((Difference + HalfLash) * Constant);

 else

 return 0;

 }

 private float StateEquation_ElevationConstraintTorque()

 {

 if (Elevation < 0)

 return Elevation * -2500;

 else if (Elevation > Math.PI)

 return ((float)Math.PI - Elevation) * 2500;

147

 else

 return 0;

 }

 public float SignalStrength { get { return m_SignalStrength; } }

 // Outputs

 private float m_SignalStrength;

 // Inputs

 private float m_Azimuth_TorqueCommand;

 private float m_Elevation_TorqueCommand;

 // States

 private float m_Azimuth_Theta1;

 public float m_Azimuth_Omega1;

 private float m_Azimuth_Theta2;

 private float m_Azimuth_Omega2;

 private float m_Elevation_Theta1;

 private float m_Elevation_Omega1;

 private float m_Elevation_Theta2;

 private float m_Elevation_Omega2;

 // Internals

 private float m_Azimuth_Torque1A;

 private float m_Azimuth_Torque1B;

 private float m_Azimuth_Torque2;

 private float m_Azimuth_WindTorque;

 private float m_Elevation_Torque1A;

 private float m_Elevation_Torque1B;

 private float m_Elevation_Torque2;

 private float m_Elevation_WindTorque;

 // Parameters

 public const float m_Elevation_Radius1 = 0.005f;

 // m

 public const float m_Elevation_Radius2 = 0.150f;

 // m

 public const float m_Elevation_GearRatio = m_Elevation_Radius2 /

m_Elevation_Radius1;

 public const float m_Elevation_InertiaTotal = 0.00015f;

 // kg * m^2

 public const float m_Elevation_Inertia1 = m_Elevation_InertiaTotal /

2f; //

kg * m^2

 public const float m_Elevation_Inertia2 = m_Elevation_Inertia1 *

(m_Elevation_GearRatio * m_Elevation_GearRatio); // kg * m^2

 public const float m_Elevation_ViscousFriction2 = 0.003f;

 // N * m / (rad / s)

 public const float m_Elevation_ViscousFriction1 =

m_Elevation_ViscousFriction2 * ((m_Elevation_GearRatio - 1) /

m_Elevation_GearRatio); // N * m / (rad / s)

 public const float m_Elevation_CoulombFriction1 = 0.1f; // N * m

 public const float m_Elevation_CoulombFriction2 = 18f; // N * m

 public const float m_Elevation_MaximumTorque = 30f;

 // N * m

 public const float m_Elevation_MaximumSpeed = (1200f / 60f) *

MathHelper.TwoPi; // rad / s

 public const float m_Elevation_TorsionConstant = 10f;

 // N * m / rad

148

 private float m_Elevation_Backlash = 0.000070f;

 // rad

 public const float m_Azimuth_Radius1 = 0.005f;

 // m

 public const float m_Azimuth_Radius2 = 0.150f;

 // m

 public const float m_Azimuth_GearRatio = m_Azimuth_Radius2 /

m_Azimuth_Radius1;

 public const float m_Azimuth_InertiaTotal = 0.00017f;

 // kg * m^2

 public const float m_Azimuth_Inertia1 = m_Azimuth_InertiaTotal / 2f;

 // kg *

m^2

 public const float m_Azimuth_Inertia2 = m_Azimuth_Inertia1 *

(m_Azimuth_GearRatio * m_Azimuth_GearRatio); // kg * m^2

 public const float m_Azimuth_ViscousFriction2 = 0.0026f;

 // N * m / (rad / s)

 public const float m_Azimuth_ViscousFriction1 =

m_Azimuth_ViscousFriction2 * ((m_Azimuth_GearRatio - 1) / m_Azimuth_GearRatio); //

N * m / (rad / s)

 public const float m_Azimuth_CoulombFriction1 = 0.1f; // N * m

 public const float m_Azimuth_CoulombFriction2 = 36f; // N * m

 public const float m_Azimuth_MaximumTorque = 30f;

 // N * m

 public const float m_Azimuth_MaximumSpeed = (1200f / 60f) *

MathHelper.TwoPi; // rad / s

 public const float m_Azimuth_TorsionConstant = 10f;

 // N * m / rad

 private float m_Azimuth_Backlash = 0.000070f;

 // rad

 // Position

 private float m_Latitude;

 private float m_Longitude;

 }

}

B.4 Source code – Environment.cs

using System;

using Microsoft.Xna.Framework;

namespace SatelliteAntenna

{

 public class Environment

 {

 public Environment()

 {

 m_Random = new Random();

 m_WindDirection = new Vector3();

 }

 public void Think()

 {

 if (Simulation.Time >= m_WindThink)

 {

 // Select time for next wind property change

 m_WindThink = Simulation.Time + 10 + (m_WindStrength /

6);

149

 // Select new pseudo-random direction

 float DirChangeCoeff = (float)m_Random.NextDouble() *

2 - 1;

 m_WindYawTarget += ((float)Math.PI + (m_WindStrength *

0.05f)) * DirChangeCoeff * DirChangeCoeff * DirChangeCoeff * 0.25f;

 m_WindPitchTarget = DirChangeCoeff * 0.03f;

 m_WindSpeedTarget = m_WindStrength;

 }

 // Change wind direction gradually

 m_WindYaw += ((m_WindYawTarget - m_WindYaw) * Simulation.Step

* 0.3f);

 m_WindPitch += ((m_WindPitchTarget - m_WindPitch) *

Simulation.Step * 0.3f);

 m_WindSpeed += ((m_WindSpeedTarget - m_WindSpeed) *

Simulation.Step * 0.4f);

 float CosPitch = (float)Math.Cos(m_WindPitch);

 m_WindDirection.X = (float)Math.Cos(m_WindYaw) * CosPitch;

 m_WindDirection.Y = (float)Math.Sin(m_WindYaw) * CosPitch;

 m_WindDirection.Z = (float)Math.Sin(m_WindPitch);

 }

 public const float Radius = 6371000;

 public const float Period = 86164.091f; // 23 hours 56 minutes 4.091

seconds

 private Random m_Random;

 private float m_WindStrength;

 private float m_WindThink;

 private float m_WindYaw;

 private float m_WindPitch;

 private float m_WindSpeed;

 private Vector3 m_WindDirection;

 private float m_WindYawTarget;

 private float m_WindPitchTarget;

 private float m_WindSpeedTarget;

 }

}

B.5 Source code – Satellite.cs

using System;

using Microsoft.Xna.Framework;

namespace SatelliteAntenna

{

 public class Satellite

 {

 public Satellite()

 {

 m_Inclination = Angle.ToRadian(15);

 m_Altitude = 200000;

 m_Radius = Environment.Radius + m_Altitude;

 m_Period = 1800;

 m_Longitude = Angle.ToRadian(90);

 }

 public void Think()

 {

 // Pre-multiplied rotation matrices used to calculate

 // the position of satellite w.r.t. the antenna

150

 float Phase = m_PhaseShift + 2 * (float)Math.PI *

Simulation.Time / m_Period;

 float PhaseEarth = -0.01f + 2 * (float)Math.PI *

Simulation.Time / Environment.Period;

 float SinLatitudeAnt = (float)Math.Sin(-

Program.Antenna.Latitude);

 float CosLatitudeAnt = (float)Math.Cos(-

Program.Antenna.Latitude);

 float SinPhaseEarth = (float)Math.Sin(PhaseEarth +

Program.Antenna.Longitude - m_Longitude);

 float CosPhaseEarth = (float)Math.Cos(PhaseEarth +

Program.Antenna.Longitude - m_Longitude);

 float SinInclinationSat = (float)Math.Sin(m_Inclination);

 float CosInclinationSat = (float)Math.Cos(m_Inclination);

 float SinPhaseSat = (float)Math.Sin(Phase);

 float CosPhaseSat = (float)Math.Cos(Phase);

 m_Position.X = (CosLatitudeAnt * CosPhaseEarth *

CosInclinationSat + SinLatitudeAnt * SinInclinationSat) * CosPhaseSat +

CosLatitudeAnt * SinPhaseEarth * SinPhaseSat;

 m_Position.Y = -SinPhaseEarth * CosInclinationSat *

CosPhaseSat + CosPhaseEarth * SinPhaseSat;

 m_Position.Z = (SinLatitudeAnt * CosPhaseEarth *

CosInclinationSat - CosLatitudeAnt * SinInclinationSat) * CosPhaseSat +

SinLatitudeAnt * SinPhaseEarth * SinPhaseSat;

 m_Position *= m_Radius;

 Vector3 V = m_Position - new Vector3(Environment.Radius, 0,

0);

 if ((V.Y == 0) && (V.Z == 0))

 {

 m_Azimuth = 0;

 m_Elevation = (float)Math.PI / 2;

 }

 else

 {

 Vector3 VProj = new Vector3(0, V.Y, V.Z);

 m_Azimuth = (float)Math.Atan2(VProj.Z, VProj.Y);

 float Cosine = Vector3.Dot(V, VProj) / (V.Length() *

VProj.Length());

 if (Cosine > 1)

 Cosine = 1;

 float Acos = (float)Math.Acos(Cosine);

 m_Elevation = Acos * Math.Sign(V.X);

 }

 m_MeasuredAzimuth = m_Azimuth;

 m_MeasuredElevation = m_Elevation;

 }

 // Orbit

 // http://www.lns.cornell.edu/~seb/celestia/orbital-parameters.html

 // Apocenter distance = Pericenter distance

 // Time of pericenter passage = irrelevant

 private float m_Altitude;

 private float m_Inclination; // Angle of inclination

 private float m_Longitude; // Longitude of ascending node

 private float m_Period; // Period of orbital motion in seconds

 private Vector3 m_Position;

151

 private float m_Radius; // Radius of orbit in meters

 private float m_PhaseShift;

 // Calculated

 private float m_Azimuth;

 private float m_Elevation;

 private float m_MeasuredAzimuth;

 private float m_MeasuredElevation;

 #endregion

 }

}

B.6 Source code – Simulation.cs

using System;

using System.IO;

using System.IO.Ports;

using System.Windows.Forms;

using System.Text;

namespace SatelliteAntenna

{

 public static class Simulation

 {

 #region Constructors

 static Simulation()

 {

 m_Time = 0;

 m_Step = 0.0001f;

 m_SamplingSteps = 1;

 }

 #endregion

 #region Methods

 public static void Start()

 {

 if (m_State != RunState.Stopped)

 return;

 if (Program.MainForm.cmbSettings_SerialComm_Port.SelectedItem

== null)

 {

 MessageBox.Show("Please select a COM port for the

serial communication port.", "Error", MessageBoxButtons.OK, MessageBoxIcon.Error);

 return;

 }

 m_Time = 0;

 m_TimeIndex = 0;

 m_LogIndex = 0;

 m_ScopeRefresh = 0;

 m_SatelliteRisen = false;

 // Calculate the rising and setting times of the satellite.

 // This ensures that a simulation run will always last

 // for one full flight, regardless of orbit parameters.

 float Shift;

 Shift = 0;

 Program.Satellite.PhaseShift = Shift;

 Program.Satellite.Think();

152

 bool Was = (Program.Satellite.Elevation > -0.017);

 int i;

 for (i = 1; i < 10010; i++)

 {

 Shift = (float)Math.PI * i / 5000;

 Program.Satellite.PhaseShift = Shift;

 Program.Satellite.Think();

 if ((Program.Satellite.Elevation > -0.017) && !Was)

 break;

 Was = (Program.Satellite.Elevation > -0.017);

 }

 if (i == 10010)

 {

 if (!Was)

 {

 MessageBox.Show("Satellite will never be

visible. Change orbit parameters.", "Error", MessageBoxButtons.OK,

MessageBoxIcon.Error);

 return;

 }

 else

 {

 MessageBox.Show("Satellite will always be

visible. Simulation will not be automatically completed.", "Warning",

MessageBoxButtons.OK, MessageBoxIcon.Warning);

 }

 }

 m_TimeIndex =

(int)((float)Program.MainForm.nudMain_Time_Start.Value / m_Step);

 m_Time = m_TimeIndex * m_Step;

 Program.Satellite.Think();

 try

 {

 m_Writer = new

StreamWriter(Program.MainForm.txtSettings_DataFile_Name.Text, true);

 m_Writer.WriteLine("*** Satellite Tracking - Cadmus -

v" + Program.Version.ToString() + " ***");

 m_Writer.WriteLine("*** Logging started at " +

DateTime.Now.ToString());

 string LogLine = m_Time.ToString("Time");

 // Create header line based on which variables

 // will be recorded

 // ...

 // ...

 // ...

 m_Writer.WriteLine(LogLine);

 m_Writer.Flush();

 }

 catch (Exception ex)

 {

 MessageBox.Show(ex.Message, "Error",

MessageBoxButtons.OK, MessageBoxIcon.Error);

 return;

 }

 try

 {

 //Program.SerialPort.ReadBufferSize = 16384;

153

 Program.SerialPort.PortName =

Program.MainForm.cmbSettings_SerialComm_Port.Text;

 Program.SerialPort.DataBits = 8;

 Program.SerialPort.StopBits = StopBits.One;

 Program.SerialPort.BaudRate =

Convert.ToInt32(Program.MainForm.cmbSettings_SerialComm_BaudRate.Text);

 Program.SerialPort.Parity =

(Parity)Enum.Parse(typeof(Parity),

Program.MainForm.cmbSettings_SerialComm_Parity.Text);

 Program.SerialPort.Open();

 }

 catch (Exception ex)

 {

 MessageBox.Show(ex.Message, "Error",

MessageBoxButtons.OK, MessageBoxIcon.Error);

 return;

 }

 // Disable GUI controls for the duration of simulation

 // ...

 // Write initial data to registers

 // ...

 m_State = RunState.Running;

 }

 public static void Stop()

 {

 if (m_State == RunState.Stopped)

 return;

 // Re-enable GUI controls

// ...

 m_Writer.WriteLine("*** Logging finished at " +

DateTime.Now.ToString());

 m_Writer.WriteLine();

 m_Writer.WriteLine();

 m_Writer.Flush();

 m_Writer.Close();

 if (Program.SerialPort.IsOpen)

 Program.SerialPort.Close();

 m_State = RunState.Stopped;

 }

 public static void AdvanceTime()

 {

 m_TimeIndex++;

 m_Time = m_TimeIndex * m_Step;

 // Update scopes

 // ...

 // Redraw scopes every second (a slow operation)

 if (m_Time >= m_ScopeRefresh)

 {

 // ...

 m_ScopeRefresh = m_Time + 1;

 }

 m_LogIndex++;

 if (!m_SatelliteRisen)

 if (Program.Satellite.Elevation >= 0.0175f)

 m_SatelliteRisen = true;

154

 if (Program.MainForm.cbMain_Record.Checked)

 WriteLogLine();

 }

 }

 private static RunState m_State;

 private static float m_Time;

 private static int m_TimeIndex;

 private static float m_Step;

 private static int m_LogIndex;

 private static float m_ScopeRefresh;

 private static float m_SamplingTime;

 private static int m_SamplingSteps;

 private static float m_LogInterval;

 private static int m_LogSteps;

 private static StreamWriter m_Writer;

 private static string m_LogDelimiter;

 private static bool m_SatelliteRisen;

 #endregion

 }

 public enum RunState

 {

 Stopped,

 Running,

 }

}

B.7 Source code – StateSolver.cs

using System;

namespace SatelliteAntenna

{

 public static class StateSolver

 {

 public static float[] RungeKutta4(StateEquationDelegate

StateEquation, float[] X, float[] U, float Time, float Step)

 {

 float[] Result = new float[X.Length];

 float HalfStep = Step / 2;

 float[] k1 = new float[X.Length];

 float[] k2 = new float[X.Length];

 float[] k3 = new float[X.Length];

 float[] k4 = new float[X.Length];

 float[] ModX = new float[X.Length];

 for (int i = 0; i < X.Length; i++)

 ModX[i] = X[i];

 k1 = StateEquation(ModX, U, Time);

 for (int i = 0; i < X.Length; i++)

 {

 k1[i] *= Step;

 ModX[i] = X[i] + k1[i] / 2;

 }

 k2 = StateEquation(ModX, U, Time + HalfStep);

 for (int i = 0; i < X.Length; i++)

 {

155

 k2[i] *= Step;

 ModX[i] = X[i] + k2[i] / 2;

 }

 k3 = StateEquation(ModX, U, Time + HalfStep);

 for (int i = 0; i < X.Length; i++)

 {

 k3[i] *= Step;

 ModX[i] = X[i] + k3[i];

 }

 k4 = StateEquation(ModX, U, Time + Step);

 for (int i = 0; i < X.Length; i++)

 {

 k4[i] *= Step;

 Result[i] = X[i] + ((k1[i] + (2 * k2[i]) + (2 * k3[i])

+ k4[i]) / 6);

 }

 return Result;

 }

 public delegate float[] StateEquationDelegate(float[] X, float[] U,

float Time);

 }

}

B.8 Source code – Protoc16.h

void SA_ReadRegister(int8 id, int16 *data)

{

 putc(97 + id);

 *data = getc();

 *data <<= 8;

 *data += getc();

}

void SA_WriteRegister(int8 id, int16 *data)

{

 putc(65 + id);

 putc((int8)(*data >> 8));

 putc((int8)(*data));

}

B.9 Definition and pseudocode – PWM_Receive.v

module PWM_Receive (

 input clk,

 input PWM_clk,

 input PWM_data,

 output reg[9:0] PWM_recv_data,

 output PWM_OK);

// Pseudocode

On each clock cycle

 If sync signal is high then

 Reset width counter

 If PWM signal is high and width counter is below maximum value then

 Increment width counter

 If PWM signal falls or width counter reaches maximum value then

 Latch width counter value

 Raise data received signal

156

B.10 Definition and pseudocode – Encoder.vhd

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.numeric_std.all;

entity Encoder2 is

 port (

 clock: in std_logic;

 input: in std_logic_vector(31 downto 0);

 trigger: in std_logic;

 chan_A: out std_logic;

 chan_B: out std_logic

);

end Encoder2;

-- Pseudocode

On each clock cycle

 If trigger signal is high then

 Latch number of edges to be sent

 Latch rotation direction

 Latch delay counter value

 If number of edges to be sent is nonzero then

 Increment delay counter

 If delay counter value is reached then

 If rotation direction is clockwise then

 Increment edge counter

 Else

 Decrement edge counter

 Reset delay counter

Always

 Assign to Channel A: (edge counter bit 0) xor (edge counter bit 1

 Assign to Channel B: edge counter bit 1

B.11 Source code – main.cpp

#include <fcntl.h>

#include <math.h>

#include <memory.h>

#include <unistd.h>

#include <signal.h>

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

#include "CadmusDevice.h"

#include "CadmusManager.h"

#include "EncoderCommander.h"

#include "Solver_RK4.h"

#include "DisturbanceSource.h"

#include "simdecl.h"

int k = 0;

float step = 0.001f;

float t;

float x[SYSTEM_NUMSTATES] = INITIAL_STATES;

float u[SYSTEM_NUMINPUTS];

float x_new[SYSTEM_NUMSTATES];

157

char tx[40] = { 0, };

char rx[40] = { 0, };

CadmusDevice* g_Device;

CadmusManager* g_Manager;

EncoderCommander* g_Encoder;

Solver_RK4* g_Solver;

DisturbanceSource *g_Disturbance_x;

DisturbanceSource *g_Disturbance_y;

DisturbanceSource *g_Disturbance_z;

extern void stateEquation(float* x, float* u, float time, float* dx);

void simStep()

{

 k++;

 t = step * k;

 g_Solver->Step(x, u, t, x_new);

 for (int i = 0; i < SYSTEM_NUMSTATES; i++)

 x[i] = x_new[i];

}

void *signal_thread(void *p)

{

 while(k < 40500)

 {

 g_Device->WaitInterrupt();

 // Receive inputs

 g_Device->Receive((uint8_t*)rx, 6);

 u[0] = ((float)(*(unsigned short*)&rx[0]) - 512.0f) * 0.0625f;

 u[1] = ((float)(*(unsigned short*)&rx[2]) - 512.0f) * 0.0625f;

 u[2] = ((float)(*(unsigned short*)&rx[4]) - 512.0f) * 0.0625f;

 u[3] = g_Disturbance_x->GetValue(k);

 u[4] = g_Disturbance_y->GetValue(k);

 u[5] = g_Disturbance_z->GetValue(k);

 // Step

 simStep();

 // Calculate encoder information

 g_Encoder->SetPosition(0, x[3]);

 g_Encoder->SetPosition(1, x[7]);

 g_Encoder->SetPosition(2, x[11]);

 ((unsigned int)&tx[8]) = g_Encoder->GetCommand(0);

 ((unsigned int)&tx[4]) = g_Encoder->GetCommand(1);

 ((unsigned int)&tx[0]) = g_Encoder->GetCommand(2);

 g_Encoder->Advance();

 // Write outputs

 g_Device->Send((uint8_t*)tx, 12);

 }

 pthread_exit(NULL);

}

int main(int argc, char** argv)

158

{

 g_Device = new CadmusDevice();

 g_Device->Open();

 g_Solver = new Solver_RK4(stateEquation, SYSTEM_NUMSTATES, SYSTEM_NUMINPUTS,

step);

 g_Manager = new CadmusManager();

 g_Manager->SetServer("10.0.0.50", 5202);

 g_Manager->Prepare((1 + SYSTEM_NUMSTATES + SYSTEM_NUMINPUTS) *

sizeof(float), 1500);

 g_Manager->Connect();

 g_Manager->Start();

 g_Encoder = new EncoderCommander();

 g_Encoder->SetSamplingTime(0.001);

 g_Encoder->SetEdgesPerRev(0, 40000);

 g_Encoder->SetEdgesPerRev(1, 40000);

 g_Encoder->SetEdgesPerRev(2, 40000);

 g_Encoder->SetPosition(0, x[3]);

 g_Encoder->SetPosition(1, x[7]);

 g_Encoder->SetPosition(2, x[11]);

 g_Encoder->Advance();

 g_Disturbance_x = new DisturbanceSource();

 g_Disturbance_x->LoadDatFile("/cadmus/heavy_full_150_Fx.dat", 30000);

 g_Disturbance_y = new DisturbanceSource();

 g_Disturbance_y->LoadDatFile("/cadmus/heavy_full_150_Fy.dat", 30000);

 g_Disturbance_z = new DisturbanceSource();

 g_Disturbance_z->LoadDatFile("/cadmus/heavy_full_150_Fz.dat", 30000);

 pthread_t sigthr;

 pthread_create(&sigthr, NULL, signal_thread, NULL);

 timespec timeOut, remains;

 int nsret;

 while (k < 40500)

 {

 timeOut.tv_sec = 0;

 timeOut.tv_nsec = 200000000;

 do

 {

 nsret = nanosleep(&timeOut, &remains);

 timeOut.tv_sec = remains.tv_sec;

 timeOut.tv_nsec = remains.tv_nsec;

 } while (nsret == -1);

 }

 g_Device->Close();

 g_Manager->Stop();

 g_Manager->Disconnect();

 return 0;

}

159

B.12 Source codes for NGW100 platform – CadmusDevice.h

#include <stdint.h>

#include <pthread.h>

#include <semaphore.h>

#include <linux/types.h>

#include <linux/spi/spidev.h>

class CadmusDevice

{

private:

 int fileDesc;

 bool isOpen;

 sem_t intSem;

 static const char *spiDevice;

 uint8_t spiMode;

 uint8_t spiBits;

 uint32_t spiSpeed;

 uint16_t spiDelay;

 int spiFileDesc;

 spi_ioc_transfer spiXfer;

 void SetSignalHandler(void (*sigHandler)(int));

 static CadmusDevice *mainDevice;

 static void SignalHandler(int signo);

public:

 CadmusDevice();

 ~CadmusDevice();

 bool Open();

 void Close();

 const char* GetDeviceName();

 const int GetMajorNumber();

 const int GetFileDesc();

 bool IsOpen();

 bool Send(uint8_t *data, int length);

 bool Receive(uint8_t *data, int length);

 void WaitInterrupt();

};

B.13 Source code – CadmusDevice.cpp

#include "CadmusDevice.h"

#include "cadmusio.h"

#include <errno.h>

#include <fcntl.h>

#include <memory.h>

#include <unistd.h>

#include <signal.h>

#include <stdlib.h>

#include <sys/ioctl.h>

#include <linux/spi/spidev.h>

160

const char* CadmusDevice::spiDevice = "/dev/spidev1.1";

CadmusDevice *CadmusDevice::mainDevice = NULL;

void CadmusDevice::SignalHandler(int signo)

{

 if (signo == SIGIO)

 sem_post(&mainDevice->intSem);

}

CadmusDevice::CadmusDevice()

{

 fileDesc = -1;

 isOpen = false;

 spiMode = 0;

 spiBits = 8;

 spiSpeed = 10000000;

 spiDelay = 0;

 spiXfer = *(new spi_ioc_transfer());

}

CadmusDevice::~CadmusDevice()

{

}

void CadmusDevice::SetSignalHandler(void (*sigHandler)(int))

{

 if (sigHandler != NULL)

 {

 struct sigaction action;

 memset(&action, 0, sizeof(action));

 action.sa_handler = sigHandler;

 action.sa_flags = 0;

 sigaction(SIGIO, &action, NULL);

 fcntl(fileDesc, F_SETOWN, getpid());

 fcntl(fileDesc, F_SETFL, fcntl(fileDesc, F_GETFL) | FASYNC);

 }

 else

 {

 fcntl(fileDesc, F_SETFL, fcntl(fileDesc, F_GETFL) &~ FASYNC);

 fcntl(fileDesc, F_SETOWN, -1);

 }

}

bool CadmusDevice::Open()

{

 fileDesc = open(CADMUSIO_DEVICE_NAME, 0);

 if (fileDesc < 0)

 return false;

 // *******

 // * SPI *

 // *******

 int retval;

 spiFileDesc = open(spiDevice, O_RDWR);

 // Mode

161

 retval = ioctl(spiFileDesc, SPI_IOC_WR_MODE, &spiMode);

 if (retval == -1)

 return false;

 retval = ioctl(spiFileDesc, SPI_IOC_RD_MODE, &spiMode);

 if (retval == -1)

 return false;

 // Bits per word

 retval = ioctl(spiFileDesc, SPI_IOC_WR_BITS_PER_WORD, &spiBits);

 if (retval == -1)

 return false;

 retval = ioctl(spiFileDesc, SPI_IOC_RD_BITS_PER_WORD, &spiBits);

 if (retval == -1)

 return false;

 // Max speed Hz

 retval = ioctl(spiFileDesc, SPI_IOC_WR_MAX_SPEED_HZ, &spiSpeed);

 if (retval == -1)

 return false;

 retval = ioctl(spiFileDesc, SPI_IOC_RD_MAX_SPEED_HZ, &spiSpeed);

 if (retval == -1)

 return false;

 sem_init(&intSem, 0, 0);

 mainDevice = this;

 SetSignalHandler(CadmusDevice::SignalHandler);

 isOpen = true;

 return true;

}

void CadmusDevice::Close()

{

 isOpen = false;

 SetSignalHandler(NULL);

 sem_post(&intSem);

 mainDevice = NULL;

 close(fileDesc);

 close(spiFileDesc);

}

const char* CadmusDevice::GetDeviceName()

{

 return CADMUSIO_DEVICE_NAME;

}

const int CadmusDevice::GetMajorNumber()

{

 return CADMUSIO_MAJOR_NUM;

}

const int CadmusDevice::GetFileDesc()

{

 return fileDesc;

}

162

bool CadmusDevice::IsOpen()

{

 return isOpen;

}

bool CadmusDevice::Send(uint8_t *data, int length)

{

 ioctl(fileDesc, CADMUSIO_SET_MODE, 2);

 spiXfer.tx_buf = (unsigned long)data;

 spiXfer.rx_buf = (unsigned long)NULL;

 spiXfer.len = length;

 spiXfer.delay_usecs = spiDelay;

 spiXfer.speed_hz = spiSpeed;

 spiXfer.bits_per_word = spiBits;

 if(ioctl(spiFileDesc, SPI_IOC_MESSAGE(1), &spiXfer) == 1)

 return false;

 else

 return true;

}

bool CadmusDevice::Receive(uint8_t *data, int length)

{

 ioctl(fileDesc, CADMUSIO_SET_MODE, 3);

 spiXfer.tx_buf = (unsigned long)NULL;

 spiXfer.rx_buf = (unsigned long)data;

 spiXfer.len = length;

 spiXfer.delay_usecs = spiDelay;

 spiXfer.speed_hz = spiSpeed;

 spiXfer.bits_per_word = spiBits;

 if(ioctl(spiFileDesc, SPI_IOC_MESSAGE(1), &spiXfer) == 1)

 return false;

 else

 return true;

}

void CadmusDevice::WaitInterrupt()

{

 sem_wait(&intSem);

}

B.14 Source code – CadmusManager.h

#include <netinet/in.h>

#include <pthread.h>

#include <semaphore.h>

struct StateSenderInfo

{

 char* buffer;

 int objectCount;

 size_t objectSize;

 char* fillPtr;

 char* sendPtr;

 char* bufferEnd;

 bool sendEnabled;

 int socketfd;

163

 sem_t* semaphore;

};

class CadmusManager

{

private:

 int socketfd;

 struct sockaddr_in serverAddress;

 bool connected;

 StateSenderInfo stateBuffer;

 pthread_t stateSendThread;

 sem_t stateSemaphore;

public:

 CadmusManager();

 ~CadmusManager();

 void SetServer(const char* address, int port);

 bool Connect();

 bool Disconnect();

 bool Prepare(size_t objectSize, int count);

 bool Start();

 bool Stop();

 bool SendStatePacket(const void* stateObject);

};

void* StateSendLoop(void* arg);

enum PacketType

{

 PACK_PING = 0x00,

 PACK_STATE = 0xff

};

B.15 Source code – CadmusManager.cpp

#include "CadmusManager.h"

#include "Log.h"

#include <arpa/inet.h>

#include <errno.h>

#include <malloc.h>

#include <memory.h>

#include <sys/socket.h>

#include <sys/types.h>

#include <unistd.h>

CadmusManager::CadmusManager()

{

 socketfd = -1;

 connected = false;

}

CadmusManager::~CadmusManager()

{

}

void CadmusManager::SetServer(const char* address, int port)

{

164

 memset(&serverAddress, 0, sizeof(serverAddress));

 serverAddress.sin_family = AF_INET;

 serverAddress.sin_addr.s_addr = inet_addr(address);

 serverAddress.sin_port = htons(port);

}

bool CadmusManager::Connect()

{

 if (!connected)

 {

 socketfd = socket(AF_INET, SOCK_STREAM, 0);

 if (socketfd < 0)

 return false;

 int result = connect(socketfd, (struct sockaddr*)&serverAddress,

sizeof(serverAddress));

 if (result < 0)

 return false;

 stateBuffer.socketfd = socketfd;

 connected = true;

 return true;

 }

 return false;

}

bool CadmusManager::Disconnect()

{

 if (connected)

 {

 int result = shutdown(socketfd, SHUT_RDWR);

 if (result < 0)

 return false;

 result = close(socketfd);

 if (result < 0)

 return false;

 connected = false;

 return true;

 }

 return false;

}

bool CadmusManager::Prepare(size_t objectSize, int count)

{

 int result = sem_init(&stateSemaphore, 0, 1);

 if (result < 0)

 return false;

 stateBuffer.semaphore = &stateSemaphore;

 stateBuffer.objectSize = objectSize;

 stateBuffer.objectCount = count;

 stateBuffer.buffer = (char*)malloc(objectSize * count);

165

 if (stateBuffer.buffer == NULL)

 return false;

 stateBuffer.bufferEnd = stateBuffer.buffer + (objectSize * count);

 stateBuffer.fillPtr = stateBuffer.buffer;

 stateBuffer.sendPtr = stateBuffer.buffer;

 stateBuffer.socketfd = socketfd;

 return true;

}

bool CadmusManager::Start()

{

 stateBuffer.sendEnabled = true;

 int result = pthread_create(&stateSendThread, NULL, StateSendLoop,

(void*)(&stateBuffer));

 if (result != 0)

 return false;

 return true;

}

bool CadmusManager::Stop()

{

 stateBuffer.sendEnabled = false;

 pthread_join(stateSendThread, NULL);

 return true;

}

bool CadmusManager::SendStatePacket(const void* stateObject)

{

 sem_wait(&stateSemaphore);

 memcpy((void*)stateBuffer.fillPtr, stateObject, stateBuffer.objectSize);

 stateBuffer.fillPtr += stateBuffer.objectSize;

 if (stateBuffer.fillPtr >= stateBuffer.bufferEnd)

 stateBuffer.fillPtr = stateBuffer.buffer;

 // Fullcheck

 if (stateBuffer.fillPtr == stateBuffer.sendPtr)

 {

 Log::SetLastError(-1, "CadmusManager::Send(): stateBuffer full");

 return false;

 }

 sem_post(&stateSemaphore);

 return true;

}

void* StateSendLoop(void* arg)

{

 StateSenderInfo *sb = (StateSenderInfo*)arg;

 char* fillPtr;

 int semVal;

 while (sb->sendEnabled)

 {

166

 usleep(1000);

 sem_getvalue(sb->semaphore, &semVal);

 if (semVal > 0)

 {

 fillPtr = sb->fillPtr;

 if (fillPtr > sb->sendPtr)

 {

 send(sb->socketfd, sb->sendPtr, fillPtr - sb->sendPtr,

0);

 sb->sendPtr = fillPtr;

 }

 else if (fillPtr < sb->sendPtr)

 {

 send(sb->socketfd, sb->sendPtr, sb->bufferEnd - sb-

>sendPtr, 0);

 send(sb->socketfd, sb->buffer, fillPtr - sb->buffer,

0);

 sb->sendPtr = fillPtr;

 }

 }

 }

 return 0;

}

B.16 Source code – DisturbanceSource.h

class DisturbanceSource

{

private:

 float* data;

 int length;

 bool repeat;

public:

 void LoadDatFile(const char* fileName, size_t count);

 void LoadDatFile(const char* fileName, long int start, size_t count);

 float GetValue(int index);

};

B.17 Source code – DisturbanceSource.cpp

#include <stdio.h>

#include <malloc.h>

#include "DisturbanceSource.h"

void DisturbanceSource::LoadDatFile(const char *fileName, size_t count)

{

 data = (float*)malloc(count * sizeof(float));

 FILE *fp = fopen(fileName, "rb");

 fread(data, sizeof(float), count, fp);

 fclose(fp);

 length = count;

 repeat = true;

167

}

void DisturbanceSource::LoadDatFile(const char* fileName, long int start, size_t

count)

{

 data = (float*)malloc(count * sizeof(float));

 FILE *fp = fopen(fileName, "rb");

 fseek(fp, start * sizeof(float), SEEK_SET);

 fread(data, sizeof(float), count, fp);

 fclose(fp);

 length = count;

 repeat = true;

}

float DisturbanceSource::GetValue(int index)

{

 if (repeat)

 {

 return data[index % length];

 }

 else

 {

 if (index < length)

 return data[index];

 else

 return data[length - 1];

 }

}

B.18 Source code – EncoderCommander.h

class EncoderCommander

{

private:

 unsigned int delayBase;

 float multiplier[5];

 int oldInt[5];

 int newInt[5];

 unsigned int command;

 unsigned int dir;

 unsigned int count;

 unsigned int delay;

public:

 void SetSamplingTime(float t);

 void SetEdgesPerRev(int i, int edges);

 void SetPosition(int i, float theta);

 int GetIntegerPosition(int i);

 unsigned int GetCommand(int i);

 void Advance();

};

168

B.19 Source code – EncoderCommander.cpp

#include <stdio.h>

#include <math.h>

#include "EncoderCommander.h"

void EncoderCommander::SetSamplingTime(float t)

{

 delayBase = (int)(50000000.0f * t);

}

void EncoderCommander::SetEdgesPerRev(int i, int edges)

{

 multiplier[i] = (float)edges / (2 * M_PI);

}

void EncoderCommander::SetPosition(int i, float theta)

{

 newInt[i] = (int)(theta * multiplier[i]);

}

int EncoderCommander::GetIntegerPosition(int i)

{

 return oldInt[i];

}

unsigned int EncoderCommander::GetCommand(int i)

{

 if (newInt[i] > oldInt[i])

 {

 dir = 0x00000000;

 count = newInt[i] - oldInt[i];

 delay = delayBase / count;

 }

 else if (newInt[i] < oldInt[i])

 {

 dir = 0x80000000;

 count = oldInt[i] - newInt[i];

 delay = delayBase / count;

 }

 else

 {

 dir = 0x80000000;

 count = 0;

 delay = 0xffff;

 }

 command = dir | (count << 16) | delay;

 return command;

}

void EncoderCommander::Advance()

{

 for (int i = 0; i < 5; i++)

 oldInt[i] = newInt[i];

}

169

B.20 Source code – Solver_RK4.h

class Solver_RK4

{

private:

 void (*eqn)(float*, float*, float, float*);

 int xLen;

 int uLen;

 float* k1;

 float* k2;

 float* k3;

 float* k4;

 float* xMod;

 float stepSize;

 float halfStep;

public:

 Solver_RK4(void (*equation)(float*, float*, float, float*), const int x_len,

const int u_Len, const float step_size);

 ~Solver_RK4();

 void Step(float* x, float* u, float time, float* x_new);

};

B.21 Source code – Solver_RK4.cpp

#include "Solver_RK4.h"

#include <stdlib.h>

Solver_RK4::Solver_RK4(

 void (*equation)(float*, float*, float, float*),

 const int x_len, const int u_len, const float step_size)

{

 eqn = equation;

 xLen = x_len;

 uLen = u_len;

 k1 = (float*)malloc(x_len * sizeof(float));

 k2 = (float*)malloc(x_len * sizeof(float));

 k3 = (float*)malloc(x_len * sizeof(float));

 k4 = (float*)malloc(x_len * sizeof(float));

 xMod = (float*)malloc(x_len * sizeof(float));

 stepSize = step_size;

 halfStep = stepSize / 2.0f;

}

Solver_RK4::~Solver_RK4()

{

 free(k1);

 free(k2);

 free(k3);

 free(k4);

 free(xMod);

}

void Solver_RK4::Step(float* x, float* u, float time, float* x_new)

{

 float timePhs = time + halfStep;

 float timePs = time + stepSize;

 int i;

170

 for (i = 0; i < xLen; i++)

 xMod[i] = x[i];

 eqn(xMod, u, time, k1);

 for (i = 0; i < xLen; i++)

 {

 k1[i] *= stepSize;

 xMod[i] = x[i] + (k1[i] / 2.0f);

 }

 eqn(xMod, u, timePhs, k2);

 for (i = 0; i < xLen; i++)

 {

 k2[i] *= stepSize;

 xMod[i] = x[i] + (k2[i] / 2.0f);

 }

 eqn(xMod, u, timePhs, k3);

 for (i = 0; i < xLen; i++)

 {

 k3[i] *= stepSize;

 xMod[i] = x[i] + k3[i];

 }

 eqn(xMod, u, timePs, k4);

 for (i = 0; i < xLen; i++)

 {

 k4[i] *= stepSize;

 x_new[i] = x[i] + ((k1[i] + (2.0f * (k2[i] + k3[i])) + k4[i]) /

6.0f);

 }

}

B.22 Definition and pseudocode – NGW_Interface.vhd

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.numeric_std.all;

entity NGW_Interface is

 port (

 clk: in std_logic;

 spi_sck: in std_logic;

 spi_mosi: in std_logic;

 spi_miso: out std_logic;

 spi_ssel: in std_logic;

 mode: in std_logic_vector(2 downto 0);

 rsignal: in std_logic;

 tsignal: out std_logic;

 data_out: out std_logic_vector(319 downto 0);

 conf_out: out std_logic_vector(319 downto 0);

171

 data_in: in std_logic_vector(319 downto 0);

 conf_in: out std_logic_vector(319 downto 0)

);

end NGW_Interface;

-- Pseudocode

On each clock cycle

 If SPI data is incoming then

 If mode is "write" then

 Bit-shift sensor emulation data into registers

 If mode is "read" then

 Bit-shift input command data through SPI to NGW100

 If SPI data transfer is completed and mode is "write" then

 Initiate sensor emulator operation

 IF signal is received from InputSignaller then

 Read input receiver data into registers

B.23 Definition and pseudocode – InputSignaller.vhd

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.numeric_std.all;

entity InputSignaller is

 port (

 clock: in std_logic;

 input0: in std_logic;

 input1: in std_logic;

 input2: in std_logic;

 collect: out std_logic;

 send: out std_logic

);

end InputSignaller;

-- Pseudocode

On each clock cycle

 For all input modules connected

 If module reception signal is high then raise module flag

 If all module flags are raised then

 Signal manager module to collect input data

 Signal NGW100 to execute simulation

 Reset all flags

B.24 MATLAB script – hils_milling_distgen.m

% Define parameters

t = 0:0.001:30;

Fmax = 1000;

harm = 4;

rpm = 150;

phase = 10;

name = 'light';

% Derived parameters

tm = (rpm/60)*t*2*pi;

Fxy_max = Fmax;

Fz_max = Fmax / 10;

phase1 = phase * (pi/180);

phase2 = phase1 + (pi/2);

% Generate values

172

Fx = (0.5 * Fxy_max) + (0.4 * Fxy_max * ((sin(harm * tm) + 1) / 2)) + (0.1 *

Fxy_max * ((sin(tm + phase1) + 1) / 2));

Fy = (0.5 * Fxy_max) + (0.4 * Fxy_max * ((sin(harm * tm) + 1) / 2)) + (0.1 *

Fxy_max * ((cos(tm + phase1) + 1) / 2));

Fz = (0.5 * Fz_max) + (0.4 * Fz_max * ((sin(harm * tm) + 1) / 2)) + (0.1 * Fz_max

* ((sin(tm + phase2) + 1) / 2));

% Normalize max. value

Fr = (Fx.^2 + Fy.^2 + Fz.^2).^0.5;

scale = Fmax / max(Fr);

Fx = Fx .* scale;

Fy = Fy .* scale;

Fz = Fz .* scale;

Fr = (Fx.^2 + Fy.^2 + Fz.^2).^0.5;

% Save binaries

fname = sprintf('%s_Fx.dat', name);

fid = fopen(fname, 'wb');

fwrite(fid, Fx, 'float32');

fclose(fid);

fname = sprintf('%s_Fy.dat', name);

fid = fopen(fname, 'wb');

fwrite(fid, Fy, 'float32');

fclose(fid);

fname = sprintf('%s_Fz.dat', name);

fid = fopen(fname, 'wb');

fwrite(fid, Fz, 'float32');

fclose(fid);

Denklem 1

