
 

 

 

 

ONTOLOGY DRIVEN DEVELOPMENT FOR HLA FEDERATES 

 

 

A THESIS SUBMITTED TO 

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 

MIDDLE EAST TECHNICAL UNIVERSITY 

 

 

BY 

 

CEREN FATMA KÖKSAL ALGIN 

 

 

 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS  

FOR  

THE DEGREE OF MASTER OF SCIENCE 

IN 

COMPUTER ENGINEERING 

 
 

APRIL 2010 

 



 
 
 
 

Approval of the thesis: 
 
 

ONTOLOGY DRIVEN DEVELOPMENT FOR HLA FEDERATES 
 

 

submitted by CEREN FATMA KÖKSAL ALGIN in partial fulfillment of the requirements 

for the degree of Master in Computer Engineering Department, Middle East Technical 

University by, 

Prof. Dr. Canan Özgen 

Dean, Graduate School of Natural and Applied Sciences 

 

───────────── 

Prof. Dr. Adnan Yazıcı 

Head of Department, Computer Engineering 

 

───────────── 

Assoc. Prof. Dr. Halit Oğuztüzün 

Supervisor, Computer Engineering Dept., METU 

 

───────────── 

Dr. Umut Durak 

Co-Supervisor, TÜBİTAK, SAGE 

 

───────────── 

 

Examining Committee Members:  
 
Prof. Dr. Adnan Yazıcı 

Computer Engineering Dept., METU 

 

───────────── 

Assoc. Prof. Dr. Halit Oğuztüzün 

Computer Engineering Dept., METU 

 

───────────── 

Assoc. Prof. Dr. Ahmet Coşar 

Computer Engineering Dept., METU 

 

───────────── 

Asst. Prof. Dr. Pınar Şenkul 

Computer Engineering Dept., METU 

 

───────────── 

Dr. Umut Durak 

TÜBİTAK, SAGE 

 

───────────── 

 

Date:

 
 

───────────── 



 iii

 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I hereby declare that all information in this document has been obtained and 
presented in accordance with academic rules and ethical conduct. I also declare 
that, as required by these rules and conduct, I have fully cited and referenced 
all material and results that are not original to this work. 
 
 

 
Name, Last name: Ceren Fatma KÖKSAL ALGIN 

 
Signature     : 



 iv

 

ABSTRACT 

 

 

ONTOLOGY DRIVEN DEVELOPMENT FOR HLA FEDERATES 

 

 

Köksal Algın, Ceren Fatma 

M.Sc., Department of Computer Engineering 

Supervisor: Assoc. Prof. Dr. Halit Oğuztüzün 

Co-Supervisor: Dr. Umut Durak 

 

April 2010, 66 pages 

 

This thesis puts forth a process for ontology driven distributed simulation through a case 

study. Ontology is regarded as a domain model, including objects, attributes, methods and 

object relations. The case study involves trajectory simulation. A trajectory simulation is a 

piece of software that calculates the flight path and other parameters of a munition, such as 

its orientation and angular rates, from launch to impact. Formal specification of trajectory 

simulation domain is available as a domain model in the form of an ontology, called 

Trajectory Simulation ONTology (TSONT). Ontology driven federation development 

process proposed in this thesis is executed in three steps. The first step is to analyze the 

TSONT and to create instances of individuals guided by the requirements of the targeted 

simulation application, called Puma Trajectory Simulation. Puma is the simulation of a 

ficticious air-to-ground guided bomb. The second step is to create the High Level 

Architecture(HLA) Federation Object Model (FOM) using Puma Simulation individuals. 

FOM will include the required object and interaction definitions to enable information 

exchange among federation members, including the Puma federate and the Exercise 

Manager federate. Transformation from the ontology to FOM is realized in two ways: 

manually, and by using a tool called OWL2OMT. The third step is to implement the 

Trajectory Simulation federation based on the constructed FOM. Thus, the applicability of 

developing HLA federates and the federation under the guidance of ontology is 

demonstrated.  

Keywords: Trajectory Simulation Ontology, High Level Architecture, Federation Object 

Model, Interoperability 
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ÖZ 

 

 

YÜKSEK SEVİYE MİMARİ FEDERELERİ İÇİN ONTOLOJİYE DAYALI GELİŞTİRME 

 

 

Köksal Algın, Ceren Fatma 

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Halit Oğuztüzün 

Ortak Tez Yöneticisi: Dr. Umut Durak 

 

Nisan 2010, 66 sayfa 

 

Bu tez, ontolojiye dayalı dağıtık benzetim geliştirmek için örnek bir olay incelemesi yoluyla 

bir süreç ortaya koymaktadır. Ontoloji, nesneler, nitelikler, yöntemler ve nesneler arası 

ilişkileri içeren bir ilgi alanı modelidir. Buradaki örnek olay incelemesi yörünge 

benzetimidir. Yörünge benzetimi, bir mühimmata ait uçuş rotasını, fırlatılmadan etki anına 

kadar, ilgili parametreleriyle hesaplayan bir yazılım parçasıdır. Kurallarla tanımlanmış 

yörünge benzetim ilgi alan modeli, bir ontoloji biçiminde Yörünge Benzetim Ontolojisi 

(TSONT) adıyla hazır bulunmaktadır. Ontolojiye dayalı federasyon geliştirme süreci, bu 

tezde üç adımda gerçekleştirilecektir. İlk adım TSONT’u analiz etmek ve “Puma Yörünge 

Benzetimi” adındaki hedef benzetim uygulamasının gereksinimleriyle yönlendirerek, 

ontolojiye ait fertlerin benzetim örneklerini yaratmak olacaktır. Puma, kurgusal bir havadan 

yere güdümlü bombanın benzetimidir. İkinci adım Puma Benzetimi fertlerine ait Yüksek 

Seviye Mimari(HLA) standardında Federasyon Nesne Modeli(FOM) oluşturmaktır. FOM, 

nesne ve etkileşim tanımları gibi gerekli olan bilgileri içererek, Puma federe ve Exercise 

Manager federe gibi federasyon üyeleri arasında bilginin paylaşılabilmesini sağlar. 

Ontolojiden FOM’a geçiş iki yolla uygulanacaktır: elle ve OWL2OMT adında bir araç 

kullanılarak. Üçüncü adım ise Yörünge Benzetim Federasyonunu üretilmiş olan FOM’a 

dayalı olarak geliştirmek olacaktır. Böylece, HLA federeleri ve federasyonunun ontolojinin 

rehberliği ile geliştirilmesinin uygulanabilirliği gösterilmiş olacaktır. 

 

Anahtar Kelimeler: Yörünge Benzetimi Ontolojisi, Yüksek Seviye Mimari, Federasyon 

Nesne Modeli, Birlikte işlerlik 



 vi

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To My Family 

 

 

 

 

 

 

 

 

 

 

 

 



 vii

 

 

ACKNOWLEDGEMENTS 
 

 

 

I especially thank to my supervisors, Assoc. Prof. Dr. Halit Oğuztüzün for supervising and 

guiding me, providing resources, subjects, and for also offering direction and insight 

throughout the research, and to Dr. Umut Durak for his valuable supervision, suggestions 

and comments during my thesis.  

I would like to thank to collaborative work with the Özer Özdikiş, who developed the 

OWL2UML and OWL2OMT tools.  

I also thank Havelsan Inc. for providing a supportive environment to study for the degree of 

master. 

Finally, I would like to thank my husband, my brother and my parents, for their support 

against all the difficulties that I met. 



 viii

 

 

TABLE OF CONTENTS 
 

 
 

 

ABSTRACT........................................................................................................................... iv 

ÖZ............................................................................................................................................ v 

ACKNOWLEDGEMENTS ................................................................................................ vii 

LIST OF TABLES ................................................................................................................. x 

LIST OF FIGURES .............................................................................................................. xi 

LIST OF ABBREVIATIONS ............................................................................................ xiii 

CHAPTER 

   1. INTRODUCTION........................................................................................................... 1 

1.1 Motivation and Scope ........................................................................................... 1 

1.2 TSONT to HLA .................................................................................................... 2 

1.3 Organization of the Thesis .................................................................................... 3 

   2. BACKGROUND ............................................................................................................. 5 

2.1 Usage of Ontology in Modeling & Simulation..................................................... 5 

2.2 Trajectory Simulation ONTology (TSONT)......................................................... 8 

2.2.1 Overview of TSONT .................................................................................... 8 

2.2.2 Trajectory Simulation Objects ...................................................................... 9 

2.2.3 Trajectory Simulation Classes ...................................................................... 9 

2.2.4 Trajectory Simulation Functions................................................................. 11 

2.2.5 Trajectory Simulation Quantities ................................................................ 11 

2.2.6 Trajectory Simulation Attributes ................................................................ 12 

2.2.7 Trajectory Simulation Composite Data ...................................................... 13 

2.3 PUMA Trajectory Simulation............................................................................. 13 

2.4 High Level Architecture (HLA).......................................................................... 14 

2.5 HLA Programming in Java ................................................................................. 16 

   3. TSONT TO FEDERATION OBJECT MODEL........................................................ 22 

3.1 Analyzing TSONT.............................................................................................. 22 

3.2 Creating Individuals............................................................................................ 25 

3.3 TSONT Classes through TSONT Individuals .................................................... 26 

3.4 Developing the FOM .......................................................................................... 27 

3.4.1 Developing the FOM Manually .................................................................. 29 

3.4.2 Developing the FOM with OWL2OMT ..................................................... 32 



 ix

   4. FEDERATION OBJECT MODEL TO DISTRIBUTED SIMULATION............... 43 

4.1 Overview of Trajectory Simulation Federation .................................................. 43 

4.2 Federates and Relations ...................................................................................... 44 

4.3 Incorporating FOM into Simulation Application Code ...................................... 45 

4.4 Execution of Federation:  Trajectory Simulation Federation.............................. 48 

   5. CONCLUSION ............................................................................................................. 51 

REFERENCES..................................................................................................................... 52 
 

 



 x

 
 

LIST OF TABLES 
 
 
 
TABLES 
 
Table 1  TSONT Classes – Individuals Traceability Matrix.................................................. 27 
Table 2  Individuals – FOM Traceability Matrix................................................................... 28 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



 xi

 
 

LIST OF FIGURES 
 
 
 
 

FIGURES 

Figure 1 Ontology Based Trajectory Simulation Development............................................... 3 
Figure 2 Ontology driven model development and use ........................................................... 7 
Figure 3 TSONT Domain Model Elements ............................................................................. 9 
Figure 4 Trajectory Simulation Objects................................................................................... 9 
Figure 5 Trajectory Simulation Classes ................................................................................. 10 
Figure 6 Trajectory Simulation Functions ............................................................................. 11 
Figure 7 Trajectory Simulation Quantities............................................................................. 12 
Figure 8 Trajectory Simulation Attributes ............................................................................. 12 
Figure 9 Puma Trajectory Simulation Development Process ................................................ 13 
Figure 10 HLA Federation..................................................................................................... 14 
Figure 11 Trajectory Simulation Class .................................................................................. 23 
Figure 12 Guided Bomb......................................................................................................... 23 
Figure 13 Body Fixed Six DOF Dynamics Model State........................................................ 24 
Figure 14 Second Order CAS Model State ............................................................................ 24 
Figure 15 Puma Simulation Individual .................................................................................. 25 
Figure 16 Puma_Unguided_Simulation_Phase Object Class in FOM .................................. 29 
Figure 17 Puma_Guided_Simulation_Phase Object Class in FOM ...................................... 30 
Figure 18 Initialize_Puma_Simulation Interaction Class in FOM......................................... 30 
Figure 19 Puma_Check_UnguidedPhase_Termination Interaction Class in FOM ............... 31 
Figure 20 Puma_Check_GuidedPhase_Termination Interaction Class in FOM ................... 31 
Figure 21 Configuration Loaded State................................................................................... 32 
Figure 22 Changing a Setting in Configuration ..................................................................... 33 
Figure 23 Generating FOM - hasPhase.................................................................................. 34 
Figure 24 Generating FOM – hasDynamicsModel................................................................ 35 
Figure 25 Generating FOM - Setting Attributes of Object Class........................................... 36 
Figure 26 Generating FOM - Setting Parameters of Interaction Class .................................. 37 
Figure 27 Generating FOM – Puma_Check_UnguidedPhase_Termination.......................... 37 
Figure 28 Generating FOM – Termination Status from Unguided Phase.............................. 38 
Figure 29 Generating FOM – Run Transformation ............................................................... 39 
Figure 30 Generating FOM – Sequence Diagram.................................................................. 40 



 xii

Figure 33 pRTI view of Federation........................................................................................ 43 
Figure 34 Federates and Relations in Unguided Phase.......................................................... 44 
Figure 35 Federates and Relations in Guided Phase.............................................................. 45 
Figure 36 Functions in Puma Class........................................................................................ 46 
Figure 37 Functions in Exercise Manager Class.................................................................... 46 
Figure 38 Execution of Federation - 1 ................................................................................... 48 
Figure 39 Execution of Federation – 2................................................................................... 49 
Figure 40 Time Management................................................................................................. 50 

 



 xiii

 
 

LIST OF ABBREVIATIONS 
 
 
 
 
 

FOM  Federation Object Model 

HLA  High Level Architecture 

IEEE  Institute of Electrical and Electronic Engineers 

METU Middle East Technical University 

OMT  Object Model Template 

OWL Web Ontology Language 

pRTI  Portable Runtime Infrastructure 

RTI  Runtime Infrastructure 

SOM Simulation Object Model 

TSONT Trajectory Simulation Ontology 

UML  Unified Modeling Language 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 1

 
 

CHAPTER 1 
 
 
 

INTRODUCTION 
 
 
 

 

This chapter introduces the motivation and scope of the study, summarizes the path from 

ontology to HLA and then outlines the organization of the thesis. 

1.1 Motivation and Scope 

We propose a process for developing a kind of trajectory simulation which begins at TSONT 

and ends at an HLA federate. Trajectory simulation, in the present context, means computing 

the flight path and other parameters, such as orientation, and angular rates, of the munition 

from the start to the end of its motion [1]. Munition’s and its subsystems’ behavior during 

the flight are subjects of Trajectory simulation domain. Mathematical models are constructed 

and then computed to determine the acceleration, velocity, position and attitude of the 

munition.  

Several trajectory simulations have been developed for different purposes and usage areas. 

Their performance and characteristics differ widely from each other. Trajectory simulation 

ontology comprises the fundamental knowledge in trajectory simulation domain and makes it 

available for human understanding and machine processing. The process we define for 

developing trajectory simulations aims to enhance interoperability and composability. 

Interoperability and composability are critical issues in distributed simulation development. 

While interoperability can be defined as the capability of simulations in exchanging 

information [2], composability is defined as the capability that enables selecting and 

assembling components in various combinations [3]. 

Main objective in this thesis is to investigate the applicability of an ontology driven federate 

development process through a case study in which a Federation Object Model (FOM) is 

derived from TSONT. We demonstrate the process through an example of an air to ground 

guided bomb simulation. First and foremost, TSONT has been analyzed according to the 

requirements of the simulation. Individuals which will be the facilitators of developing the  

FOM were created in TSONT.  
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Properties of the individuals are examined to decide the level of detail which will be 

important during Federation Object Model generation.  

FOM is constructed in two ways, first manually and then by using the OWL2OMT tool. 

Puma Trajectory Simulation is the module which computes the trajectory of the guided 

bomb. An HLA wrapper is developed to incorporate the Puma Trajectory Simulation into the 

application. Using FOM, Puma Federate code is written in accordance with  pRTI’s library 

[24] and HLA IEEE 1516.1-2000 standard. Thus, Puma federate that calls a 6DOF trajectory 

simulation and Exercise Manager federate that tracks the trajectory information updates, 

were developed and made available to join any federation that requires trajectory simulation 

of munitions. In this case study the federation is called Trajectory Simulation federation.  

1.2  TSONT to HLA 

Ontology based trajectory simulation is the output of the transition from TSONT to HLA 

OMT. This idea was first presented at [4]. Ontology Based Trajectory Reuse Infrastructure 

aimed at enabling reuse from knowledge to code. In this work we utilized the practices 

presented in the Ontology Based Trajectory Reuse Infrastructure for developing an 

interoperable and composable trajectory simulation that will be available for reuse. Ontology 

based trajectory simulation development process is presented in Figure 1. This figure 

consists of two transformations. Upper part starts with Web Ontology Language (OWL) to 

OMT transformation and the lower part starts with OWL to UML transformation.  

Platform Independent Framework Architecture is constructed by using model transformation 

supported by a tool named OWL2UML [5].  This is the UML related phase of the trajectory 

simulation. OWL2UML enables user guided transformations from OWL ontology to a UML 

class diagram. Then Platform Independent Framework Architecture derives the MATSIX – 

MATLAB 6DOF Trajectory Simulation Framework which implements the architecture.  

“Framework architecture is designed specifically for MATLAB six Degrees Of Freedom 

(6DOF) simulations. MATSIX, the simulation framework is implemented in MATLAB. In 

this effort we utilized MATSIX for computing the trajectory of the guided bomb”[25]. 
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Figure 1 Ontology Based Trajectory Simulation Development  

 

Trajectory simulation domain model is transformed to OMT as a FOM for Trajectory 

Simulation Federation. Federation Object Model is composed of the objects, their attributes 

and the interactions, their parameters which will be used in the federation to achieve 

interoperability. Conversion from the domain model to the Federation Object Model is 

substantiated in two approaches: The first one is manually analyzing the domain and the 

requirements of the simulation and writing the rules of FOM. The second one is converting 

by a tool named OWL2OMT. The OWL2OMT tool enables user guided extraction of 

Simulation Object Models from OWL ontology [6]. By using and obeying the HLA OMT, 

Puma Federate and Exercise Manager Federate (which tracks the trajectory) are implemented 

in Java programming language. This is the HLA wrapper for Puma Trajectory Simulation. 

The MATLAB executable which is mentioned in the paragraph before is wrapped with Java 

code that links to Runtime Infrastructures API. 

This thesis benefits from some practices reported in the thesis by Umut Durak [11] which 

were formerly completed. Analyzing the domain and composing the FOM, implementing the 

federates and the federation based on the FOM are the originally developed parts of the 

present thesis. 

1.3 Organization of the Thesis 

The preceding sections of this chapter introduce the motivation and scope of the study and 

present the summary of the thesis application. The remaining chapters are broken down as 

follows: 



 4

• Chapter 2 provides related literature and background information required to easily 

understand the subsequent chapters.  

• Chapter 3 explains how to generate models of the exchanged objects from the 

trajectory simulation ontology TSONT. 

• Chapter 4 describes developing the application, namely federates which wrap Puma 

Trajectory Simulation. 

• Finally, Chapter 5 discusses the accomplishments and draws conclusions. 
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CHAPTER 2 

 
 
 

BACKGROUND 
 
 
 
 
 

In this chapter, the background information is summarized from the related literature which 

guides the reader to follow the details in the subsequent chapters. First, usage of ontology in 

Modeling & Simulation up to present is reviewed. Second, Trajectory Simulation 

ONTology, the domain model of the Puma Trajectory Simulation, is discussed. Third, Puma 

Trajectory Simulation is outlined. Fourth, High Level Architecture, which is the standard 

Puma Trajectory Simulation conforms to is introduced. Finally, HLA Programming in Java 

is described with its rules and primary methods which constitute the HLA wrapper code for 

Puma. 

2.1 Usage of Ontology in Modeling & Simulation 

Before discussing the usage of ontology in modeling and simulation, we define what 

ontology is. Neches gives a description of  ontology as “An ontology defines the basic terms 

and relations comprising the vocabulary of a topic area as well as the rules for combining 

terms and relations to define extensions to the vocabulary”[7].  

Ontology which Trajectory Simulation Ontology is based on is OWL. “OWL, Web Ontology 

Language, is designed for use by applications that need to process the content of 

information. OWL facilitates greater machine interpretability of Web content than that 

supported by XML, RDF, and RDF Schema (RDF-S) by providing additional vocabulary 

along with a formal semantics.”[ http://www.w3.org/2004/OWL/] 

Importance of using Ontology in Modeling and Simulation has been recognized in 

simulation world. If we glance at Turnitsa and Tolk their observation is, “Ontology produces 

a representation of the world that a machine can process. In the case of most application 

domains, that world can be tested and verified outside of the system – it is just a 

representation. However, in the field of simulations, the synthetic environment of a 

simulation has reality only within the system. In the case of a simulation, the ontology 

doesn’t just serve to describe the representation of the world; it serves to describe the 
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(simulated) world itself. Appreciating this leads us to see how ontological representation is 

important for design, validation, interoperability and other tasks.” [16]. 

An ontological description of a domain space can make it much easier for design, 

architecture, verification, validation, and interoperation of systems within that domain [17]. 

These are valuable goals, and certainly of great interest to the modeling and simulation 

community [16]. 

Usage of ontology in modeling and simulation can be divided into two categories referring to 

Tolk and Turnitsa: Static information models, and dynamic information systems. 

In Static Information Models, static ontological representation is a key part. C-BML, MSDL 

and SEDRIS are examples to static information models. 

C-BML (Coalition Battle Management Language) is a project that has the aim of 

unambiguously conveying information between a C2 system as a source, and either another 

C2 system, M&S system or robotic system as a target. Interest to us here is the connection 

between meaning and terms (or between Doctrine and Representation), which has been 

identified as the Ontology Layer [18]. 

MSDL (Military Scenario Definition Language) is an effort to describe all of the aspects that 

are part of a military scenario [19]. This includes the environment, entities, orders, and 

effects. Migrating to either the taxonomy or ontology strata of the spectrum would require 

basing the elements of MSDL on concepts, rather than just terms [16]. 

SEDRIS (the Synthetic Environment Data Representation and Interchange Specification) has 

been the object of interest of a group that is representing the domain ontological meaning 

that is shown through the SEDRIS data representation formats. This group has presented a 

view of how an ontology could be developed to support making that ontological meaning 

known and portable between applications [20]. Relying on this research, Turnitsa and Tolk 

believe that as more applications can make use of ontological data during their exchange, 

either a Neutral Authoring or Common Access to Information method might arise [16]. 

The second category is Dynamic Information Systems. One of the aspects of M&S that 

makes applying ontological representation both crucial, as well as difficult, is that a 

simulated environment is a dynamic world. In order to support such a dynamic domain view, 

an ontological representation must be able to adapt. It should be based on concepts, as they 

are universal and won’t frequently change, yet the relations between various terms that those 

concepts give meaning to will shift as time changes within the simulated environment [16].  
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There is also another usage of ontology in modeling as the subject of some other papers. 

DeMO(Discrete-event Modeling Ontology) is a Web-accessible ontology for discrete-event 

modeling (DEM). DeMO has four main abstract classes representing main concepts in the 

knowledge domain: DeModel, ModelConcepts, Model-Components and ModelMechanisms 

[21]. 

DeMO specifies the knowledge concepts about different existing formalisms and the 

relations between those concepts. Any discrete-event modeling formalism may, in principle, 

be inserted in this repository and the relations to other formalisms and the underlying 

concepts may be represented as well. Making ontology accessible from Web is an efficient 

way for modelers and computer applications to utilize and follow up that knowledge 

repository. The presence of this explicit knowledge on the Web organized in such a fashion 

is regarded as a useful step in the evolution of Web-based modeling and simulation [22]. 

Ontology driven model development and use, specific for DeMO can be seen in Figure 2. 

 
Figure 2 Ontology driven model development and use [22] 
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OWL is also beginning to be used in the United States in military applications such as: 

• Joint Explosive Ordnance Disposal (JEOD) Decision Support System (DSS) 

• Foreign Clearance Guide (FCG) 

• Computer Generated Forces (CFG) Human Behavior Representation (HBR) [23] 

There is currently no real agreement over whether a dynamic domain would be best served 

by an ontological representation that is large enough to encompass all of the changes within 

a static structure, or if the ontological representation would have to be dynamic. In the 

present thesis, our position is to employ a static structure which is large enough to 

encompass all of the changes in the domain. 

2.2 Trajectory Simulation ONTology (TSONT) 

Following Gruber [8], knowledge in ontologies can be defined with the components: 

concepts, relations, functions, axioms and instances. Some of these components will be 

presented specifically for TSONT in the further paragraphs. 

The basic idea behind developing an ontology as the domain model of the trajectory 

simulation domain is first to establish a common vocabulary that is agreed among people 

working on trajectory simulations. Another main consideration is to create a backbone for 

systematization of knowledge on how to build a trajectory simulation [9].Potential benefits 

of this approach include documentation, maintenance, reliability, knowledge reuse and 

interoperability of the developed applications [10]. 

Engineering knowledge, used to simulate the trajectory of a munition from launch to impact 

is stored in an ontology called Trajectory Simulation ONTology (TSONT). Concepts of 

trajectory simulation and the relation among these concepts are captured by using Web 

Ontology Language and presented as a domain model that is available for reuse [11]. 

2.2.1 Overview of TSONT 

As we mentioned earlier TSONT is a domain model which contains the information to 

simulate a munition’s flight path from leaving a launcher till engaging a target. TSONT was 

developed by Durak as a part of his Ph.D. thesis “Ontology Based Reuse Infrastructure For 

Trajectory Simulation” [11]. Elements of TSONT can be outlined as attributes, classes, 

composite data, functions, objects and quantities as seen in Figure 3. 
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Figure 3 TSONT Domain Model Elements 

 
 
2.2.2 Trajectory Simulation Objects 

Trajectory Simulation Objects can be readily described in physical terms. Munition, 

munition subsystem and weapon are the elements of the Trajectory Simulation Objects as 

seen in Figure 4.  Munition is comprised of ammunition, bomb and missile. The munition 

which is simulated in this thesis is a type of Guided bomb, which is under Bomb in the 

hierarchy. 

 

Figure 4 Trajectory Simulation Objects 
 
 
2.2.3 Trajectory Simulation Classes 

A class is defined as an implicit collection of individuals that belong together because they 

share some properties. Coordinate System, Model, Parameter, Solver, Trajectory Simulation 

and Trajectory Simulation Phase are the classes of the TSONT domain as seen in Figure 5. 
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Figure 5 Trajectory Simulation Classes 

 

Dynamics Model employ the equations of motion, which describe the relationships between 

the forces acting on the munition and the resulting motion [1]. In the model hierarchy 

TSONT has a dynamics model named Body Fixed Six DOF Dynamics Model, which is the 

model we used in Puma Trajectory Simulation. It implements equations of motion for a six 

degrees of freedom simulation, is classified under Six DOF Dynamic Models, which is a 

type of Rigid Body Dynamic Model. 
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2.2.4 Trajectory Simulation Functions 

Functions that we use to compute a trajectory are also specified in TSONT. Trajectory 

Simulation Functions are seen in Figure 6. The functions which we have created the 

individuals of them to be used in Trajectory Simulation Federation are; ‘Initialize 

Simulation’, “Check Termination”. The relation between functions and classes can be 

summarized as functions providing services to the classes. 

 

Figure 6 Trajectory Simulation Functions 
 
 
2.2.5 Trajectory Simulation Quantities 

Trajectory Simulation Quantities are assembled in two groups. In Body Fixed Six DOF 

Dynamics Model, which is used in Puma Trajectory Simulation, there are four types of 

Record Elements. These Record Elements are in the type of Vectoral Quantity. They are 
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‘Translational Velocity in Body Coordinate System’, ‘Angular Rates in Body Coordinate 

System’, ‘Three Dimensional Position’ and ‘Euler Angles’. 

 

Figure 7 Trajectory Simulation Quantities 
 
2.2.6 Trajectory Simulation Attributes 

Trajectory Simulation Attribute defines a set of qualities of Trajectory Simulation Classes 

and Trajectory Simulation Objects such as the termination status of a trajectory or the 

ellipsoid of a location [11]. 

  
Figure 8 Trajectory Simulation Attributes 
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2.2.7 Trajectory Simulation Composite Data 

Composite types are types whose values are composed or structured from simpler values 

[12]. They are used to group some data that forms a coherent construct. In developing 

trajectory simulation software, composite data types are widely used. TSONT tries to capture 

the composite data types that are used in the target reuse community. Trajectory Simulation 

Record and Trajectory Simulation Sequence are base Trajectory Simulation Composite Data 

types. 

2.3 PUMA Trajectory Simulation 

Puma Trajectory Simulation simulates the behavior and states of an air to ground guided 

bomb which has two flight phases, namely, unguided and guided. The bomb starts to flight 

in unguided phase and when safe separation is ensured phase changes to guided phase. In 

guided phase, the bomb flies to engage the target, so this phase is named guided. 

Development process of Puma Trajectory Simulation is visualized in Figure 9.  

TSONT is transformed into UML by a model transformation tool OWL2UML [5], it is 

developed by Özdikiş. This transformation constitutes a platform independent framework 

architecture which includes class and sequence diagrams. Using this architecture, another 

architecture has been developed MATSIX – MATLAB 6DOF Trajectory Simulation 

Framework Architecture. Platform properties of MATLAB and its support for object 

oriented programming are reflected to the platform dependent framework architecture [25]. 

In Figure 9, this architecture is the output of “Infrastructure Specification” process. Then 

MATLAB 6 DOF Trajectory Simulation Framework has been developed, as “Infrastructure 

Implementation” part. Finally, by providing Puma-specific classes, Puma Trajectory 

Simulation is developed. 

 
Figure 9 Puma Trajectory Simulation Development Process 
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2.4 High Level Architecture (HLA) 

HLA is a component architecture which defines a component model. HLA combines 

simulations (federates) into a larger simulation (federation). Federates are components and 

federations are component based distributed applications. 

HLA is architecture for distributed computer simulation systems. Different computer 

simulation systems can communicate via HLA at different platforms. This communication is 

managed and provided by Run Time Infrastructure (RTI).  

In this thesis, HLA Standard that HLA Wrapper is based on is an international standard, 

IEEE 1516 HLA standard.  

 

Figure 10 HLA Federation [http://www.cc.gatech.edu] 
 

Object Model Template (OMT) 

OMT is the Object Model Template, which provides a common framework for the 

communication between different HLA simulation applications. Federation Object Model 

(FOM) and Simulation Object Model (SOM) must comply with OMT. 

Federation Object Model (FOM) 

FOM is the HLA Federation Object Model, defines the model of the exchanged objects. An 

object is defined via its object class, attributes and its relation with the other objects in the 

federation. 

Simulation Object Model (SOM) 

SOM is the HLA Simulation Object Model. An object is defined via its object class, 

attributes and its relations. This shared object is used for a single federate. 
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Run-Time Infrastructure (RTI) 

RTI is the Run-Time Infrastructure. It is the supporting middleware that manages the 

execution of the federation. 

HLA Rules 
These rules are extracted from IEEE Standard for Modeling and Simulation (M&S) High 

Level Architecture (HLA) - Framework and Rules[15]. The HLA rules describe the 

responsibilities of federations and the federates that join. 

• Federations shall have an HLA Federation Object Model (FOM), documented in 

accordance with the HLA Object Model Template (OMT).  

• In a federation, all representation of objects in the FOM shall be in the federates, not 

in the run-time infrastructure (RTI).  

• During a federation execution, all exchange of FOM data among federates shall 

occur via the RTI.  

• During a federation execution, federates shall interact with the run-time 

infrastructure (RTI) in accordance with the HLA interface specification.  

• During a federation execution, an attribute of an instance of an object shall be owned 

by only one federate at any given time. 

• Federates shall have an HLA Simulation Object Model (SOM), documented in 

accordance with the HLA Object Model Template.  

• Federates shall be able to update and/or reflect any attributes of objects in their SOM 

and send and/or receive SOM object interactions externally, as specified in their 

SOM.  

• Federates shall be able to transfer and/or accept ownership of an attribute 

dynamically during a federation execution, as specified in their SOM.  

• Federates shall be able to vary the conditions under which they provide updates of 

attributes of objects, as specified in their SOM.  

• Federates shall be able to manage local time in a way that will allow them to 

coordinate data exchange with other members of a federation.  

 
Federation Execution Process (FEDEP) 

Federation Development and Execution Process(FEDEP) IEEE 1516.3-2003, is a 

standardized and recommended process for developing interoperable HLA based federations. 

FEDEP defines the steps which will be followed while creating the federations. 
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FEDEP steps can be handled in four groups; initialization, declaration of objects and 

interests,  information exchanging, terminating execution. 

Initialization 

• Create Federation Execution (Federation management) 

• Join Federation Execution (Federation management) 

Declaration of Objects and Interests 

• Publish Object Class Attributes (Declaration management) 

• Subscribe Object Class Attributes (Declaration management) 

Information exchanging 

• Update/Reflect Attribute Values (Object Management) 

• Send/Receive Interaction (Object Management) 

• Time Advance Request, Time Advance Grant (Time Management) 

• Request Attribute Ownership Assumption (Ownership Management) 

• Send Interaction with Regions (Data Distribution Management) 

Terminating execution 

• Resign Federation Execution (Federation Management) 

• Destroy Federation Execution (Federation Management) 
 
2.5 HLA Programming in Java 

HLA may be programmed in many different programming languages. Regarding pRTI, these 

languages can be as following:  

• C++ 

•  Any computer language with an interface module written in C++ 

•  Java 

•  Any computer language, wrapped in Java 

Some parts of the information, which will be represented in this section are extracted from 

pRTI1516 Users Guide [24] and the code examples are derived from Puma and Exercise 

Manager federate code. 

The FederateAmbassador and the RTIAmbassador 

There are two main Java interfaces to deal with developing a federate, FederateAmbassador 

and RTIAmbassador. The FederateAmbassador interface is the interface through which the 

RTI communicates with the federate. The pRTI 1516 provides the convenience class 

FederateAmbassadorImpl which simply provides empty implementations of all the callback 

methods in the FederateAmbassador interface. When you develop your own federate you can 
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simply subclass FederateAmbassadorImpl and implement (override) the callbacks that you 

are interested in. RTIambassador is the class through which the federate communicates with 

RTI. 

rti = RTI.getRTIambassador(hostName , portNumber); 

hostName is the address of machine that Central RTI Component(CRC) is executed on, 

portNumber is the communicated port number on that machine. All communication between 

the federate and the RTI must go through the FederateAmbassador and the RTIambassador 

interfaces. 

The Federation Object Model 

The first thing that needs to be done is to create the federation execution. The Create 

Federation Execution service takes a FOM file as an argument.  
    try { 

 final File fddFile; 
      fddFile = new File("TrajectorySim.xml"); 

rti.createFederationExecution(federationExecutionName,     
fddFile.toURI().toURL()); 

    } catch (FederationExecutionAlreadyExists ignored) { 
    }//end of try/catch 

The parameters are the name of the federation (federationExecutionName) and the URL 

representation of the FOM file to use (TrajectorySim.xml). When the federation is created 

the federate has to join the federation.  
 FederateHandle federateHandle; 
 String federateType = "ExerciseManagerFederate"; 

rti.joinFederationExecution(federateType, 

federationExecutionName, this, null); 

The first two parameters are the names of the federate and the federation to join, 

respectively. The third parameter is a reference to the FederateAmbassador to join. The last 

parameter is used to indicate which time representation you are using in your federation 

execution. In this case, we are using the default time representation. 

Objects and interactions are used to exchange data between federates in the federation. 

Objects have attributes, and interactions have parameters, to describe their characteristics. 

Each object and attribute is represented by a handle. 

private ObjectClassHandle UnguidedPhaseClassHandle ; 
 private AttributeHandle TransVelocityHandle; 
 private AttributeHandle AngularRatesHandle; 
 private AttributeHandle ThreeDPositionHandle; 

 private AttributeHandle EulerAnglesHandle; 
 

UnguidedPhaseClassHandle = 
rti.getObjectClassHandle("Puma_Unguided_Simulation_Phase"); 
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TransVelocityHandle = 
rti.getAttributeHandle(UnguidedPhaseClassHandle, 
"Puma_Translational_Velocity_in_Body_Coordinate_System"); 
 
AngularRatesHandle = 
rti.getAttributeHandle(UnguidedPhaseClassHandle, 
"Puma_Angular_Rates_in_Body_Coordinate_System"); 
 
ThreeDPositionHandle = 
rti.getAttributeHandle(UnguidedPhaseClassHandle, 
"Puma_Three_Dimensional_Position"); 
 
EulerAnglesHandle = 
rti.getAttributeHandle(UnguidedPhaseClassHandle, 
"Puma_Euler_Angles"); 
 
private ObjectClassHandle GuidedPhaseClassHandle ; 

 private AttributeHandle PCanardDefHandle ; 
private AttributeHandle PCanardDefRatesHandle ; 
 
GuidedPhaseClassHandle = 
rti.getObjectClassHandle("Puma_Guided_Simulation_Phase"); 
 
TransVelocityHandle = 
rti.getAttributeHandle(GuidedPhaseClassHandle, 
"Puma_Translational_Velocity_in_Body_Coordinate_System"); 
 
AngularRatesHandle = 
rti.getAttributeHandle(GuidedPhaseClassHandle, 
"Puma_Angular_Rates_in_Body_Coordinate_System"); 
 
ThreeDPositionHandle = 
rti.getAttributeHandle(GuidedPhaseClassHandle, 
"Puma_Three_Dimensional_Position"); 
 
EulerAnglesHandle = 
rti.getAttributeHandle(GuidedPhaseClassHandle, 
"Puma_Euler_Angles"); 
 
PCanardDefHandle = 
rti.getAttributeHandle(GuidedPhaseClassHandle, 
"Puma_Physical_Canard_Deflections"); 
 
PCanardDefRatesHandle = 
rti.getAttributeHandle(GuidedPhaseClassHandle, 
"Puma_Physical_Canard_Deflection_Rates"); 
                     

The parameter of  the getObjectClassHandle is the name of object class as specified in the 

FOM file. The first parameter in the getAttributeHandle is the object to which the parameter 

belongs and the second one is the name of the attribute as specified in the FOM file. 

Each interaction and parameter is represented by a handle.  

     InteractionClassHandle interactioninitHandle; 
     ParameterHandle TransVelHandle ; 
     ParameterHandle ThreeDimHandle ;    
     ParameterHandle EulerAngHandle ;    
     ParameterHandle AngRateHandle ; 
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interactioninitHandle = rti.getInteractionClassHandle(    
"Initialize_Puma_Simulation" );    
TransVelHandle = rti.getParameterHandle( interactioninitHandle, 
"Puma_Translational_Velocity_in_Body_Coordinate_System" ); 
ThreeDimHandle = rti.getParameterHandle( interactioninitHandle, 
"Puma_Three_Dimensional_Position" );    
EulerAngHandle = rti.getParameterHandle( interactioninitHandle,  
"Puma_Euler_Angles" );    
AngRateHandle = rti.getParameterHandle( interactioninitHandle, 
"Puma_Angular_Rates_in_Body_Coordinate_System" );    

 
 

InteractionClassHandle unguidedphasetermHandle; 
ParameterHandle phasetermHandle ; 
unguidedphasetermHandle = rti.getInteractionClassHandle( 
"Puma_Check_UnguidedPhase_Termination" );    
phasetermHandle = rti.getParameterHandle( 
unguidedphasetermHandle, "Puma_Phase_Termination_Status" ); 

       
InteractionClassHandle guidedphasetermHandle; 
ParameterHandle trajectorytermHandle ; 
guidedphasetermHandle = rti.getInteractionClassHandle( 
"Puma_Check_GuidedPhase_Termination" );    
trajectorytermHandle = rti.getParameterHandle( 
guidedphasetermHandle, "Puma_Trajectory_Termination_Status" ); 
              

The parameter of the getInteractionClassHandle call is the name of the interaction as 

specified in the FOM file. The first parameter in the getParameterHandle call is the 

interaction to which the parameter belongs and the second one is the name of the 

parameter.The handles are the federate’s representation of interactions and parameters.These 

handles are used to send/receive interactions and to request/provide updates for objects. 

Publishing Information and Subscribing to Information 
The exchange of data is controlled by publishing of data and subscribing to data. For an 

interaction or for attributes of an object class; the sending federate must first publish it, 

which means that it tells everyone that it has some information and that it wants to share it. 

For a federate to receive interactions of a certain class or to receive attribute updates for an 

object class; it must subscribe to that interaction class or to attributes of that object class.  

rti.subscribeInteractionClass( interactioninitHandle ); 
rti.subscribeObjectClassAttributes(UnguidedPhaseClassHandle, 
unguidedAttributes); 
 
rti.publishInteractionClass( interactioninitHandle ); 
rti.publishObjectClassAttributes(UnguidedPhaseClassHandle, 
unguidedAttributes); 
 

Other federates will now able to receive interactions or attribute updates sent by you , if they 

have already subscribed to. 
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Sending and Receiving Interactions 

ParameterHandleValueMap should be created before sending interactions, and interaction’s 

parameters and the values of them should be added to this map. 

ParameterHandleValueMap parametermap = 
rti.getParameterHandleValueMapFactory().create(15); 

          
   parametermap.put(TransVelHandle, (TVelocity.toString()). 

getBytes()); 
parametermap.put(ThreeDimHandle, (TDPosition.toString()). 
getBytes()); 
parametermap.put(AngRateHandle, (ARates.toString()). 
getBytes()); 

parametermap.put(EulerAngHandle,(EAngles.toString()). 
getBytes()); 

First parameter of put method is the handle of the interaction parameter and the second 

parameter is the up to date value of that parameter which you want to send within the 

interaction (must be converted to byte[]).  

To send the interaction the following call is made:  

  rti.sendInteraction( interactioninitHandle, parametermap , null );  

The first parameter is the interaction class handle, the second is the 

ParameterHandleValueMap, holding the parameter values of the interaction and the third is a 

user-supplied tag, in this case set to null. 

ReceiveInteraction is called by the RTI when an interaction sent by another federate is to be 

delivered to your federate. 

public void receiveInteraction(InteractionClassHandle 
interactionClass, ParameterHandleValueMap parametermap, byte[] 
tag, OrderType arg3, TransportationType arg4) 

The first parameter is the class handle of the received interaction and the second one is the 

interaction’s parameters. To get the parameter values out of the ParameterHandleValueMap 

you can for example go through the map using a for loop like this: 

String newMember = new String((byte[])parametermap. 
get(TransVelHandle)); 

  StringTokenizer str = new StringTokenizer(newMember , ",[] "); 
     while (str.hasMoreElements()) {  
      String token = str.nextToken(); 
      Double d = Double.parseDouble(token); 
      TVelocity.addElement(d.intValue()); 

    } 
 
Updating Attribute Values 

AttributeHandleSet should be created first, then attribute handles are added to that attribute 

handle set as seen in the following. 
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AttributeHandleSetFactory guidedFactory = rti. 
getAttributeHandleSetFactory(); 
AttributeHandleSet guidedAttributes = guidedFactory.create(); 

              
  guidedAttributes.add(TransVelocityHandle); 
  guidedAttributes.add(AngularRatesHandle); 
  guidedAttributes.add(ThreeDPositionHandle); 
  guidedAttributes.add(EulerAnglesHandle); 
  guidedAttributes.add(PCanardDefHandle); 
  guidedAttributes.add(PCanardDefRatesHandle); 

Then federate requests update for the attributes of the object class that is the first parameter 

of requestAttributeValueUpdate. Second parameter is the attribute handle set, it handles just 

the attributes added to this handle set. Federate requests update for the attributes handles of 

which are added to the attribute handle set. By this way, federate may request update for 

some of the attributes or for all of them. 

rti.requestAttributeValueUpdate(GuidedPhaseClassHandle, 
guidedAttributes, null); 

AttributeHandleValueMap should be created before sending updates for attribute values. 

Attribute handles and the attribute values are added to this map.  

AttributeHandleValueMap _attributeValues; 
_attributeValues = rti.getAttributeHandleValueMapFactory(). 
create(1); 
_attributeValues.put(TransVelocityHandle, TVelocity.toString(). 
getBytes()); 
_attributeValues.put(AngularRatesHandle, ARates.toString(). 
getBytes()); 
_attributeValues.put(ThreeDPositionHandle, TDPosition.toString(). 
getBytes()); 
_attributeValues.put(EulerAnglesHandle, EAngles.toString(). 
getBytes()); 
_attributeValues.put(PCanardDefHandle, PCanardDef.toString(). 
getBytes()); 
_attributeValues.put(PCanardDefRatesHandle, PCanardDefRates. 
toString().getBytes()); 

                    
rti.updateAttributeValues(guidedInstance, _attributeValues, null); 

 

When requestAttibuteValueUpdate method of RTI is called at the federate, 

provideAttributeValueUpdate method of the other federate is called. 

ProvideAttributeValueUpdate method updates the attribute values and federate calls 

updateAttributeValues method of RTI. With this call, RTI calls reflectAttributeValues 

method of the federate which has sent the update request. In this manner, process of updating 

attribute values finishes. 
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CHAPTER 3 
 
 
 

   TSONT TO FEDERATION OBJECT MODEL 
 
 
 
 
 

This chapter presents TSONT from the perspective of an HLA developer. First, we look into 

TSONT in detail to discover the objects, their attributes and relations which we will simulate 

in the application. We investigate TSONT using an ontology editor named Protégé [26]. 

Then we deal with the individuals in Protégé. Individuals are created depending upon the 

Puma Trajectory Simulation requirements. Individuals are the exchanged objects and 

interactions of the federation from the simulation application point of view. When we 

simulate the ontology in the HLA application, we look into the ontology down to a certain 

depth. This depth is defined by the object attributes. Finally, we have the FOM, which 

defines the object classes, their attributes, and interactions which are exchanged by the 

federates in the federation. The attributes we put into the FOM are updated and exchanged in 

the federate code. 

3.1 Analyzing TSONT  

TSONT has a hierarchy which is composed of the high level entities Attribute, Class, 

Composite Data, Function, Object and Quantity as described in Section 2.2 . While 

developing and analyzing TSONT a tool called Protégé is used. 

Protégé is a tool developed by Stanford University. It provides a graphical environment to 

facilitate the communication with the domain experts besides enabling an integrated 

formalization of the captured conceptualization while constructing graphical representation 

of ontology [14]. 

Aim of analyzing TSONT is to be familiarized with the functions, objects and the relations 

for being able to create the individuals according to the requirements of Puma Federate. 

Trajectory Simulation Class has a view as shown in Figure 11.  
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Figure 11 Trajectory Simulation Class 

Trajectory Simulation Class is composed of an object of type Munition, a phase of type 

Trajectory Simulation Phase, a function of type Compute Trajectory and a function of type 

Initialize Simulation. 

In our simulation the subtype of the Munition is Bomb and the subtype of the Bomb is 

Guided Bomb. Guided bombs have a two-phased flight profile. The first phase is the 

unguided flight that is for safe separation. The second phase is the guided flight directed to 

the target. Guided Bomb is seen in Figure 12. The phases are defined in detail in the next 

section. 

 
Figure 12 Guided Bomb 

Dynamics models in trajectory simulations are classified either as point mass dynamics 

models or as rigid body dynamics models. A dynamics model that implements equations of 

motion for a six degrees of freedom simulation, namely Body Fixed Six DOF Dynamics 

Model, is classified under Six DOF Dynamic Models, which is a type of Rigid Body 



 24

Dynamics Model. Body Fixed Six DOF Dynamics Model State that is seen in Figure 13 is 

the model state which is exchanged among federates in the Unguided phase of the flight.  

 
Figure 13 Body Fixed Six DOF Dynamics Model State 

Body Fixed Six DOF Dynamics Model State has four Record Elements as listed below:  

• Translational Velocity in Body Coordinate System is a vector with 3 records which 

are in the type of Velocity. 

• Angular Rates in Body Coordinate System is a vector with 3 records which are  in 

the type of Angular Velocity. 

• Three Dimensional Position is a vector with 3 records which are in the type of 

Length.  

• Euler Angles is a vector with 3 records which are in the type of Plane Angle. 

Second Order CAS Model State that is seen in Figure 14 is the model state which is 

exchanged among federates in the Guided phase of the flight. 

 

Figure 14 Second Order CAS Model State 
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3.2 Creating Individuals 

Creating individuals is the part of TSONT specific to the Puma Federate. In the previous 

sections we overviewed TSONT. In this section, creation of the individuals is outlined by 

taking the Puma Federate requirements into consideration. 

First, Puma Simulation is introduced and we go deeply into the other levels. As we said 

before there is a class Trajectory Simulation in type of Trajectory Simulation Class. While 

starting the creation of individuals, the first individual we create is Puma Simulation, which 

is a type of Trajectory Simulation as seen in Figure 15. 

 
Figure 15 Puma Simulation Individual 

 

Then the sub entities of Puma Simulation are created such as its objects, functions and 

phases. All individuals will be listed in detail in the next section. 
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3.3 TSONT Classes through TSONT Individuals 

We have defined TSONT Classes in Section 3.1 and TSONT Individuals in Section 3.2. In 

this section  we will detail the relation between OWL Classes and Individuals. 

An OWL ontology includes descriptions of classes, properties and their instances [26]. 

According to this definition, classes in the ontology are called as OWL Classes and the 

instances are called as the Individuals. OWL Classes have been defined in the phase of 

ontology(TSONT) creation. Individuals are created in the present work because of building 

and running simulations. OWL Classes includes a variety of attributes, classes, composite 

data, functions, objects and quantities as mentioned in the Section 2.2 TSONT.  

 

Individuals are generated using OWL Classes specifically for a work. For understanding the 

relation between OWL Classes and Individuals clearly, it will be beneficial to take a look at 

this thesis work.  An air to ground bomb simulation is represented here. There is a munition 

with initial values. These values change by time till the munition reaches the target. 

Munition starts a free flight, named Unguided Phase and then the phase switches Guided 

Phase. Unguided Phase has Dynamics_Model, and Guided Phase has Dynamics_Model and 

CAS_Model. Munition has two interactions named Initialize_Simulation and 

Check_Termination which are in the type of Trajectory_Simulation_Function. Necessary 

OWL Classes for the present thesis and TSONT Classes – Individuals relation can also be 

seen in Table 1 . 

 

 

 

 

 

 

 

 

   OWL CLASSES   INDIVIDUALS Requirements of Project 

Individuals are created from OWL Classes according to the requirements of the Project. 
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Table 1  TSONT Classes – Individuals Traceability Matrix 

OWL Classes Individuals 

Trajectory_Simulation Puma_Simulation 

GPS_Guided_Bomb Puma 

Trajectory_Simulation_Phase Puma_Unguided_Simulation_Phase 

Guided_Phase Puma_Guided_Simulation_Phase 

Body_Fixed_Six_DOF_Dynamics_Model Puma_Dynamics_Model 

Body_Fixed_Six_DOF_Dynamics_Model_ 

State 

Puma_DM_State 

Angular_Rates_in_Body_Coordinate_ 

System 

Puma_Angular_Rates_in_Body_Coordinate_ 

System 

Euler_Angles Puma_Euler_Angles 

Three_Dimensional_Position Puma_Three_Dimensional_Position 

Translational_Velocity_in_Body_ 

Coordinate_System 

Puma_Translational_Velocity_in_Body_ 

Coordinate_System 

Second_Order_CAS_Model Puma_CAS_Model 

CAS_Model_State Puma_Second_Order_CAS_Model_State 

Physical_Canard_Deflections Puma_ Physical_Canard_Deflections 

Physical_Canard_Deflection_Rates Puma_ Physical_Canard_Deflection_Rates 

Initialize_Simulation Initialize_Puma_Simulation 

Phase_State Puma_Unguided_Phase_State 

Check_Termination Puma_Check_UnguidedPhase_Termination 

Check_Termination Puma_Check_GuidedPhase_Termination 

Phase_Termination_Status Puma_Phase_Termination_Status 

Trajectory_Termination_Status Puma_Trajectory_Termination_Status 

 

3.4 Developing the FOM 

As  we introduced in Section 2.4 FOM part, FOM is the HLA Federation Object Model, and 

it defines the models of the exchanged objects. In this study, we have created an individual 

called Puma Simulation which is an instance of the OWL Class Trajectory Simulation. 

Counterpart of Puma Simulation in the application development process, is thought of as the 

Trajectory Simulation Federation. This federation includes two federates, Puma Federate and 

Exercise Manager Federate. Objects, attributes, interactions and interaction parameters 

which are exchanged by Puma Federate and Exercise Manager Federate are defined in FOM. 

In Table 2, Individuals created in TSONT and their counterparts in FOM are summarized. 
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Table 2  Individuals – FOM Traceability Matrix 

Individuals FOM Counterparts 

Puma_Unguided_Simulation_Phase Puma_Unguided_Simulation_Phase ObjectClass 

Puma_Guided_Simulation_Phase Puma_Guided_Simulation_Phase  ObjectClass 

Puma_Angular_Rates_in_Body_ 

Coordinate_System 

Attribute of  

Puma_Unguided_Simulation_Phase Class and 

Puma_Guided_Simulation_Phase Class 

Puma_Euler_Angles Attribute of  

Puma_Unguided_Simulation_Phase Class and 

Puma_Guided_Simulation_Phase Class 

Puma_Three_Dimensional_Position Attribute of  

Puma_Unguided_Simulation_Phase Class and 

Puma_Guided_Simulation_Phase Class 

Puma_Translational_Velocity_in_ 

Body_Coordinate_System 

Attribute of  

Puma_Unguided_Simulation_Phase Class and 

Puma_Guided_Simulation_Phase Class 

Puma_ Physical_Canard_Deflections Attribute of Puma_Guided_Simulation_Phase 

Class 

Puma_ Physical_Canard_Deflection_ 

Rates 

Attribute of Puma_Guided_Simulation_Phase 

Class 

Initialize_Puma_Simulation Initialize_Puma_Simulation InteractionClass 

Puma_Unguided_Phase_State Parameter of Initialize_Puma_Simulation Class 

Puma_Check_UnguidedPhase_ 

Termination 

Puma_Check_UnguidedPhase_Termination 

InteractionClass 

Puma_Phase_Termination_Status Parameter of 

Puma_Check_UnguidedPhase_Termination 

Class 

Puma_Check_GuidedPhase_ 

Termination 

Puma_Check_GuidedPhase_Termination 

InteractionClass 

Puma_Trajectory_Termination_Status Parameter of 

Puma_Check_GuidedPhase_Termination Class 

There are two ways of developing FOM, one is manually, and the other is by using the 

OWL2OMT tool. 
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3.4.1 Developing the FOM Manually 

There has to be two object classes in the FOM which are derived from the phases of the 

Puma Simulation individual. These object classes are Unguided and Guided Simulation 

Phase object classes. When Puma Federate is launched it starts a free flight, named 

Unguided Phase of the Puma Federate. This phase is simulated with an object class named 

Puma_Unguided_ Simulation Phase which is derived from an individual with the same 

name; the attributes of this object class are obtained from Puma_DM_State individual. 

Attributes of Puma_Unguided_Simulation_Phase can be seen in FOM Counterpart column 

of Table 2. 

To develop the FOM manually, first, Puma_Unguided_Simulation_Phase is written in FOM 

between “objectClass” tags and the attributes Puma_Angular_Rates_in_Body_ 

Coordinate_System, Puma_Euler_Angles, Puma_Three_Dimensional_Position, and 

Puma_Translational_Velocity_in_Body_Coordinate_System are written under “attribute” 

tag. 

Figure 16 Puma_Unguided_Simulation_Phase Object Class in FOM 

Second, object class simulates the Guided Phase of the Puma Federate; in this phase object 

class is Puma_Guided_Simulation_Phase and has the attributes which are also in 

Puma_Unguided_Simulation_Phase. In addition to these attributes, Puma_Guided_ 

Simulation_Phase has two more attributes, Puma_Physical_Canard_Deflections and 

Puma_Physical_Canard_Deflection_Rates, which are RecordElements of 

Puma_Second_Order_CAS_Model_State individual. Object class name is written between 

“objectClass” tags and attributes are written under “attribute” tag. 

 

 

 

<objectClass name="Puma_Unguided_Simulation_Phase" 
sharing="Neither"> 
<attribute name="Puma_Angular_Rates_in_Body_Coordinate_System" 
dataType="HLAvariableArray" dimensions="NA" 
transportation="HLAreliable" order="Receive"/> 
<attribute name="Puma_Three_Dimensional_Position" 
dataType="HLAvariableArray" dimensions="NA" 
transportation="HLAreliable" order="Receive"/> 
<attribute name="Puma_Euler_Angles" dataType="HLAvariableArray" 
dimensions="NA" transportation="HLAreliable" order="Receive"/> 
<attribute name="Puma_Translational_Velocity_in_Body_Coordinate_ 
System" dataType="HLAvariableArray" dimensions="NA" 
transportation="HLAreliable" order="Receive"/> 
</objectClass> 
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Figure 17 Puma_Guided_Simulation_Phase Object Class in FOM 

Besides Puma Federate, in the Trajectory Simulation federation there is another federate 

named Exercise Manager. This federate initializes the flight simulation by sending an 

interaction named Initialize_Puma_Simulation. Parameters of this interaction are 

RecordElements of Puma_Unguided_Phase_State. These parameters are received by Puma 

Federate and are used to calculate the trajectory from launch to impact. Interaction name is 

written between “interactionClass” tags and parameters are written under “parameter” tag. 

Figure 18 Initialize_Puma_Simulation Interaction Class in FOM 

Puma_Check_UnguidedPhase_Termination interaction is an interaction that is sent from 

Puma Federate to Exercise Manager Federate. It has a parameter named 

“Puma_Phase_Termination_Status” which is derived from the individual with the same 

name. Puma Federate sends this interaction when it will destroy the 

Puma_Unguided_Simulation_Phase object. When Unguided Phase finishes and federate 

passes through the Guided Phase, it publishes Puma_Guided_Simulation_Phase object and 

Exercise Manager Federate subscribes to Puma_Guided_Simulation_Phase object. 

<objectClass name="Puma_Guided_Simulation_Phase" sharing="Neither"> 
<attribute name="Puma_Angular_Rates_in_Body_Coordinate_System" 
dataType="HLAvariableArray" dimensions="NA" 
transportation="HLAreliable" order="Receive"/> 
<attribute name="Puma_Three_Dimensional_Position" 
dataType="HLAvariableArray" dimensions="NA" 
transportation="HLAreliable" order="Receive"/> 
<attribute name="Puma_Euler_Angles" dataType="HLAvariableArray" 
dimensions="NA" transportation="HLAreliable" order="Receive"/> 
<attribute name="Puma_Translational_Velocity_in_Body_Coordinate_ 
System" dataType="HLAvariableArray" dimensions="NA" 
transportation="HLAreliable" order="Receive"/> 
<attribute name="Puma_Physical_Canard_Deflections" 
dataType="HLAvariableArray" dimensions="NA" 
transportation="HLAreliable" order="Receive"/> 
<attribute name="Puma_Physical_Canard_Deflection_Rates" 
dataType="HLAvariableArray" dimensions="NA" 
transportation="HLAreliable" order="Receive"/> 
</objectClass> 

<interactionClass name="Initialize_Puma_Simulation" 
sharing="PublishSubscribe" dimensions="NA" 
transportation="HLAreliable" order="TimeStamp" semantics="NA"> 
<parameter name="Puma_Translational_Velocity_in_Body_Coordinate_ 
System" datatype="HLAvariableArray" semantics="NA"/> 
<parameter name="Puma_Three_Dimensional_Position" 
datatype="HLAvariableArray" semantics="NA"/> 
<parameter name="Puma_Euler_Angles" datatype="HLAvariableArray" 
semantics="NA"/> 
<parameter name="Puma_Angular_Rates_in_Body_Coordinate_System" 
datatype="HLAvariableArray" semantics="NA"/> 
</interactionClass> 
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Figure 19 Puma_Check_UnguidedPhase_Termination Interaction Class in FOM 

Then Puma Federate registers this object instance to the federation. When the object is 

registered, it is discovered at Exercise Manager Federate side. So this interaction provides to 

track the trajectory information of Puma_Guided_Simulation_Phase object and besides it 

triggers to give up tracking the trajectory information of Puma_Unguided_Simulation_Phase 

object. 

Last interaction is Puma_Check_GuidedPhase_Termination, when this interaction is sent 

from Puma Federate to Exercise Manager Federate, it means that the munition has reached 

the target, and this is the end of the trajectory. Parameter of this interaction is 

Puma_Trajectory_Termination_Status. 

Figure 20 Puma_Check_GuidedPhase_Termination Interaction Class in FOM 

Puma Trajectory Simulation is linked to RTI’s API by the HLA wrapper conforming to this 

federation object model.  

As we have said in the upper section, there are two ways of developing FOM. First of all, 

object classes and interactions which will be exchanged between federates should be defined. 

According to this definition, as depicted in this section, FOM can be generated manually by 

writing these object classes, their attributes, interaction classes and their parameters into an 

Extensible Markup Language (XML) file. The other way is using OWL2OMT tool, but in 

this method we need to know the definition mentioned above, for being able to use the tool. 

We’ll generate FOM, in conformity with the rules in the definition. 

 

 

 

 

<interactionClass name="Puma_Check_UnguidedPhase_Termination" 
sharing="PublishSubscribe" dimensions="NA" 
transportation="HLAreliable" order="TimeStamp" semantics="NA"> 
<parameter name="Puma_Phase_Termination_Status" 
datatype="HLAboolean" semantics="NA"/> 
</interactionClass>

<interactionClass name="Puma_Check_GuidedPhase_Termination" 
sharing="PublishSubscribe" dimensions="NA" 
transportation="HLAreliable" order="TimeStamp" semantics="NA"> 
<parameter name="Puma_Trajectory_Termination_Status" 
datatype="HLAboolean" semantics="NA"/> 
</interactionClass>
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3.4.2 Developing the FOM with OWL2OMT 

Generating FOM has been semi-automated by using OWL2OMT tool. Definition of the 

individuals is the only necessity, to be able to use the tool. 

General Overview of OWL2OMT 

OWL2OMT tool has a main application window named “OWL2OMT”.  Buttons on this 

frame are in the following order; 

1. Load Configuration 

2. Save Configuration 

3. Add OWLClass Tab 

4. Add OWLDatatypeProperty Tab 

5. Add OWLObjectProperty Tab 

6. Add OWLIndividual Tab 

7. Remove Tab 

8. Run Transformation 

To generate a FOM from individuals, steps below should be followed: 

1. Click “Load Configuration”, select a configuration file and click open. 

 

Figure 21 Configuration Loaded State 
 

2. Except the buttons mentioned above, there is a chance to change configuration or 

other settings, as seen in Figure 22. Right clicking on an icon in the configuration 

area is effectual for this action. 
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Figure 22 Changing a Setting in Configuration 
 

3. If the configuration is sufficient for transformation, click “Run Transformation” 

button. Transformation begins after selecting a “Source OWL file”. When it finishes, 

an information message appears, “Transformation is done”. The application asks for 

a file name to save the result as a FOM document, and displays the information 

message “OMT file saved”. Produced file includes the same format and content with 

the one which we produce manually.  
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Generating FOM for Trajectory Simulation Federation 

In the previous part, usage of OWL2OMT is summarized. In this part of the section, steps of 

generating a FOM particular to Trajectory Simulation Federation will be expressed. 

1. On main window, click “Add OWLIndividual Tab”. First OWL Acessor is created. 

Right click and select “Configure”, configure OWL filter by setting the individual 

name to Puma_Simulation. Right click on the first OWL Accessor, select “Add 

Mapping Group”. In this manner second OWL Accessor is created. 

2. Right click on the second OWL Accessor, confıgure the Accessor by setting the  

property name to “hasPhase”.  

 

Figure 23 Generating FOM - hasPhase  
 

Right click on the second OWL Accessor, and click “Add Object Class”. With this 

action, Puma_Unguided _Simulation_Phase and Puma_Guided _Simulation_Phase 

will be added to FOM as object classes.  

3. Right click on the ObjectClass, select “Add Mapping Group”, right click new OWL 

Accessor, configure property name by setting it to “hasDynamicsModel”.  
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Figure 24 Generating FOM – hasDynamicsModel 
 

Right click, select “Add Mapping Group”, configure the lastly created OWL 

Accessor by setting the property name to “hasState”. Right click this OWL 

Accessor, select “Add Attribute”. Right click Attribute, configure as property name 

equals “RecordElement”. This step provided to set RecordElements of 

Puma_DM_State individual as attributes of Puma_ Unguided_Simulation_Phase and 

Puma_Guided_Simulation_Phase object classes. 

4. Right click on the ObjectClass, select “Add Mapping Group”, right click new OWL 

Accessor, configure it by setting property name to “hasCASModel”. Right click, 

select “Add Mapping Group”, configure the last created OWL Accessor by setting 

the property name to “hasState”. Right click on this OWL Accessor, select “Add 

Attribute”. 
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Figure 25 Generating FOM - Setting Attributes of Object Class 
 

Right click Attribute, configure as property name equals “RecordElement”. This step 

provided to set RecordElements of Puma_Second_Order_CAS_Model_ State 

individual as attributes of  Puma_Guided_Simulation_Phase object class. 

5. Right click on the first OWL Accessor which represents Puma_Simulation 

individual. Select “Add Mapping Group”, configure the last created OWL Accessor 

by setting property name to “servesInitializeSimulation”. Then right click and select 

“Add Interaction Class”.  Accordingly, an interaction class Initialize_Puma_ 

Simulation (an instance of servesInitializeSimulation) will be added to FOM with 

this configuration. 

6. Right click on Interaction Class, select “Add Mapping Group”, configure the last 

created OWL Accessor by setting property name to “inPhaseState”. Right click on 

the OWL Accessor and select “Add Parameter”. Configure the Parameter by setting 

its property name to RecordElement. Thus, RecordElements of 

Puma_Unguided_Phase_State are added to the FOM as parameters of the interaction 

class Initialize_Puma_ Simulation. 
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Figure 26 Generating FOM - Setting Parameters of Interaction Class 
 

7. On main window, click “Add OWLIndividual Tab”. A new group frame is opened 

and first OWL Accessor is created. Right click on the first OWL Accessor, select 

“Configure”, configure OWL filter by setting individual name to 

Puma_Check_UnguidedPhase_Termination.  

 

Figure 27 Generating FOM – Puma_Check_UnguidedPhase_Termination 
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8. Right click on the first OWL Accessor, select “Add Interaction Class”.  According to 

this action, an interaction class Puma_Check_UnguidedPhase_Termination will be 

added to FOM. Right click on the Interaction Class, select “Add Parameter”. Right 

click on the Parameter, configure it by setting the property name to 

“outTerminationStatus”. Instance of outTerminationStatus is Puma_Phase_ 

Termination_Status, so this individual is set as parameter of this interaction class. 

 

Figure 28 Generating FOM – Termination Status from Unguided Phase 

 

9. On main window, click “Add OWLIndividual Tab”. A new group frame is opened 

and first OWL Accessor is created. Right click onthe first OWL Accessor, select 

“Configure”, configure OWL filter by setting individual name to 

Puma_Check_GuidedPhase_Termination in FOM.  

10. Right click on the first OWL Accessor, select “Add Interaction Class”.  As a result 

of this action, an interaction class Puma_Check_GuidedPhase_Termination will be 

added to FOM. Right click on the Interaction Class, select “Add Parameter”. Right 

click on the Parameter, configure its property name by setting to 

“outTerminationStatus”. Instance of outTerminationStatus is Puma_Trajectory_ 

Termination_Status, so this individual is set as parameter of this interaction class in 

FOM.  
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11. Steps thus far, explained preparing the configuration file which is necessary for 

transformation. Save the configuration file and then click “Run Transformation” 

button. 

 

Figure 29 Generating FOM – Run Transformation 
 

12. OWL2OMT asks for a “Source OWL file”, after selecting file, transformation 

begins. When it finishes, an information message appears, “Transformation is done”. 

The application asks for a file name to save the result as a FOM document, and 

displays the information message “OMT file saved”. Open the file, and if there are 

any unnecessary fields delete them. Or if “datatype” or “sharing” fields have to be 

changed, please edit them. Finally, produced file has the same format and content 

with the one which we produce manually.  

Generating the FOM of Trajectory Simulation Federation by OWL2OMT tool is shown 

with the snapshots of OWL2OMT tool in the previous steps. These steps can be also 

figured as a sequence diagram as seen in Figure 30. 
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Figure 30 Generating FOM – Sequence Diagram 
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Figure 30 Generating FOM – Sequence Diagram ( continued ) 
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Figure 30 Generating FOM – Sequence Diagram ( continued ) 
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CHAPTER 4 

 
 
 

FEDERATION OBJECT MODEL TO DISTRIBUTED SIMULATION 
 
 
 
 
 

This chapter depicts the picture of the way from FOM to distributed simulation development. 

First, we will discuss the Trajectory Simulation Federation, the end product, then we will 

investigate federates and relations of them. As the third part, we will look into the 

development process of Simulation Application code, starting from the FOM. In the fourth 

part, we have the application, in other words Trajectory Simulation Federation. Finally, we 

will survey the last subject of this chapter, Execution of Federation. 

4.1 Overview of Trajectory Simulation Federation 

Trajectory Simulation Federation is a federation which is made up of two federates, Puma 

Federate and Exercise Manager Federate. There is an air to ground guided bomb, trajectory 

of this bomb during its flight is produced by Puma Federate and this trajectory information is 

followed by Exercise Manager Federate.  

 

Figure 31 pRTI view of Federation 
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There are two phases of the bomb, so federates will produce and follow the trajectory for two 

different phases sequentially. First Unguided Phase, and then Guided Phase will be tracked. 

Phase transitions will be managed by the interactions,  “Puma_Check_UnguidedPhase_ 

Termination” and “Puma_Check_GuidedPhase_Termination”. 

4.2 Federates and Relations 

In the previous section, we have given a preface about “Federates and Relations”. There are 

two federates, two HLA object classes and three HLA interaction classes which constitute 

the Trajectory Simulation Federation. Relation between federates and the role of interaction 

and object classes is shown in two Figures. Figure 32 represents the relations in the 

Unguided Phase of the flight. 

 

Figure 32 Federates and Relations in Unguided Phase 
 

Exercise Manager federate publishes the Initialize_Puma_Simulation interaction and Puma 

federate subscribes to this interaction.When Puma federate receives that interaction, federate 

executes the Puma Trajectory Simulation executable with the parameters of 

Initialize_Puma_Simulation interaction. By executing Puma Trajectory Simulation, Puma 

federate obtains the trajectory information that Exercise Manager requests. These trajectory 

information depends on time and the phase of the munition. Puma federate publishes 
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Puma_Unguided_Simulation_Phase object and Exercise Manager federate subscribes to it. 

By this way Puma federate sends the trajectory information, Dynamic Model records for 

Unguided phase, to the Exercise Manager federate. When phase passes through 

Puma_Guided_Simulation_Phase, Puma federate sends an interaction  Puma_Check_ 

UnguidedPhase_Termination interaction and Exercise Manager federate begins to receive 

the trajectory updates for Puma_Guided_Simulation_Phase object. At the end of the flight, 

Puma federate publishes another interaction Puma_Check_GuidedPhase_Termination, to 

inform Exercise Manager federate, that the bomb reaches to the target and the simulation is 

finished.  

 

 
Figure 33 Federates and Relations in Guided Phase 

 

4.3 Incorporating FOM into Simulation Application Code 

Application development as a part of this thesis, consists of designing the federation, 

federates and writing the code of federates with Java programming in HLA in addition to 

using formerly developed applications such as Puma Trajectory Simulation. Puma Trajectory 

Simulation was developed using MATSIX as summarized in Section 2.3. 

There are five Java classes; two of them are federate classes which exchange the objects and 

interactions derived from FOM. The other three classes are developed to manage time and 

attribute updates. These classes and their functionalities are summarized below. 
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Puma Class 

Puma class represents the Puma Federate. It also includes Callback and 

ProvideAttributeValueUpdateCallback classes. ProvideAttributeValueUpdateCallback class 

extends from Callback class. 

 
Figure 34 Functions in Puma Class 

 

Functions of Puma Class are seen in Figure 34. Functions which have a blue mark besides 

their names, are imported from se.pitch.prti1516 library and overridden for supporting 

functionality of Puma Federate. 

 

Exercise Manager Class 

Exercise Manager Class represents the Exercise Manager Federate. It also includes Callback, 

ReflectAttributeValuesEvent and ExternalEvent classes. ReflectAttributeValuesEvent class 

extends from ExternalEvent class and ExternalEvent class extends from Callback class. 

 
Figure 35 Functions in Exercise Manager Class 

 

Functions of Exercise Manager Class are given in Figure 35. Functions which have a blue 

mark besides their names are imported from se.pitch.prti1516 library and overridden for 

supporting functionality of Exercise Manager Federate. 
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CallbackQueueProvide Class 

This class is developed to manage the order of updating attributes, namely trajectory values. 

Methods included in this class are enqueue and dequeue methods. Callbacks which are in the 

type of ProvideAttributeValueUpdateCallback are enqueued and dequeued here. 

CallbackQueueReflect Class 

This class is developed to manage the order of updating object class attributes, namely 

trajectory values. Methods included in this class are enqueue and dequeue methods. 

Callbacks which are in the type of ReflectAttributeValuesEvent are enqueued and dequeued 

here. 

Update Process of Attributes 

Process to carry out an attribute update is as follows: Exercise Manager Federate sends a 

requestAttributeValueUpdate(imported from hla.rti1516 library) to Puma Federate and 

PumaFederate executes the provideAttributeValueUpdate method. When this method is 

executed at Puma Federate, RTI calls reflectAttributeValues method at Exercise Manager 

Federate. Federates have to check the queues in order to continue updating attributes. When 

Exercise Manager Federate requests for an update, execution of this federate is locked by 

dequeue method of CallbackQueueReflect class till it receives an update from Puma 

Federate. Puma Federate is locked by dequeue method of CallbackQueueProvide class till its 

time is advanced. 
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4.4 Execution of Federation:  Trajectory Simulation Federation 

In this section, we’ll discuss the execution of the federation, by examining sequence 

diagrams. Execution process will be investigated with two figures. Figure 36 represents the 

first part;  

• Exercise Manager Federate creates the federation and joins it. 

• Puma Federate joins the federation. 

• Exercise Manager Federate gets the object class handle of 

Puma_Unguided_Simulation_Phase object and gets the attribute handles of 

Puma_DM_State records. 

• Puma Federate gets the object class handle of Puma_Unguided_Simulation_Phase 

object and gets the attribute handles of Puma_DM_State records. 

• Puma Federate publishes attributes of Puma_Unguided_Simulation_Phase object. 

• Exercise Manager Federate subscribes to attributes of 

Puma_Unguided_Simulation_Phase object. 
 

 

Figure 36 Execution of Federation - 1 
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• Puma Federate registers an instance of Puma_Unguided_Simulation_Phase object. 

• Exercise Manager Federate discovers the object instance that Puma has registered. 

 

Figure 37 presents the second part; 

• Exercise Manager Federate publishes Initialize_Puma_Simulation interaction class. 

• Puma Federate subscribes that interaction class. 

• Exercise Manager Federate sends Initialize_Puma_Simulation interaction and Puma 

Federate receives it from RTI. 

• When Puma Federate receives that interaction, the federate executes “Puma 

Trajectory Simulation” executable. At the end of execution of “Puma Trajectory 

Simulation”, Puma Federate is able to provide the trajectory values. 

• Exercise Manager requests for attribute updates, to get the Puma_DM_State records. 

 

Figure 37 Execution of Federation – 2 
 

• RTI calls provide attribute value update at Puma Federate and Puma Federate sends 

update for attribute values. 

• RTI reflects the updated values to Exercise Manager Federate. 

• Update – Reflect process continues to execute at every TimeAdvanceGrant. 
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These are the Puma_Unguided_Simulation_Phase part of the execution which provides the 

updates for Unguided Phase of the bomb. 

As we mentioned earlier, when Puma_Unguided_Simulation_Phase finishes, 

Puma_Guided_Simulation_Phase starts. Puma Federate sends an interaction named 

Puma_Check_UnguidedPhase_Termination to inform Exercise Manager Federate about 

phase change. ExerciseManager subscribes to Puma_Guided_Simulation_Phase object and 

begins to receive attribute updates for Puma_Guided_Simulation_Phase from Puma 

Federate. 

 

Time Management in Federation Execution 

Time management in the federation is implemented with the functions 

enableTimeRegulation(), enableTimeConstrained() and timeAdvanceRequest().  

ExerciseManager Federate requests an update for attribute values only once. Then in the 

time loop, advances its logical time, waits for receiving updates from Puma,  when it 

receives a new update, advances its own logical time again. Puma Federate advances its own 

logical time whenever it sends the attribute updates to Exercise Manager Federate. Time 

management is summarized in Figure 38. 

 

Figure 38 Time Management 
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CHAPTER 5 
 
 
 

CONCLUSION 
 
 
 
 

 

The achievement of the thesis is generation of HLA federates based on ontology. Ontology 

driven development of HLA federates offer methodological approach besides 

interoperability and composability. As a core part of this study, starting from analyzing 

TSONT, FOM rules are defined and FOM is developed by manually and by OWL2OMT. 

Secondary acquisition of this thesis is generating HLA federates using the FOM. Java based 

code is implemented to constitute federates, this part is named HLA wrapper.  

The produced FOM file carries out the rules of the Trajectory Simulation Federation. These 

rules are vitally important for federates, because these rules define the communication way 

between the federates. 

OWL2OMT is used to generate the FOM file besides generating manually. OWL2OMT 

provides a methodological approach for transformation from OWL to Object Model 

Template. 

Puma Trajectory Simulation is the core calculation model and implementation part of the 

simulation that produces the trajectory information during the flight of the munition. Puma 

Trajectory Simulation is wrapped by HLA wrapper which is the Java based code of 

federates. Creating the federation, joining the federation, calling Puma Trajectory Simulation 

and tracking the trajectory by requesting/sending attribute updates and sending/receiving 

interactions composes the HLA wrapper  

As a future work, it may be thought that to integrate these ontology driven federates with an 

open source flight simulator, such as Flightgear. Another work to do is elaborating features 

of OWL2OMT such as editing data type or sharing properties. 
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