
SERVICE DISCOVERY ORIENTED CLUSTERING
FOR MOBILE ADHOC NETWORKS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

GÜLŞAH BULUT

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

MAY 2010

Approval of the thesis

 SERVICE DISCOVERY ORIENTED CLUSTERING FOR ADHOC
NETWORKS

submitted by GÜLŞAH BULUT in partial fulfillment of the requirements for the
degree of Master of Science in Computer Engineering, Middle East Technical
University by,

Prof. Dr. Canan ÖZGEN _______________
Dean, Graduate School of, Natural and Applied Sciences

Prof. Dr. Müslim BOZYİĞİT _______________
Head of Department, Computer Engineering

Dr. Cevat ŞENER _______________
Supervisor, Computer Engineering Dept., METU

Examining Commitee Members:

Prof. Dr. Müslim Bozyiğit ____________________
Computer Engineering Dept., METU

Dr. Cevat ŞENER ____________________
Computer Engineering Dept., METU

Assoc. Prof. Dr. İbrahim Körpeoğlu ____________________
Computer Engineering Dept., Bilkent University

Dr. Attila Özgit ____________________
Computer Engineering Dept., METU

Dr. Sinan Kalkan ____________________

Computer Engineering Dept., METU

 Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced
all material and results that are not original to this work.

 Name, Lastname : Gülşah BULUT

 Signature :

iii

ABSTRACT

SERVICE DISCOVERY ORIENTED CLUSTERING
FOR MOBILE ADHOC NETWORKS

Bulut, Gülşah

M.S., Department of Computer Engineering

Supervisor: Dr. Cevat Şener

May 2010, 64 pages

Adhoc networks do not depend on any fixed infrastructure. The most outstanding

features of adhoc networks are non-centralized structure and dynamic topology

change due to high mobility. Since mentioned dynamics of mobile adhoc networks

complicate reaching the resources in the network, service discovery is significantly

an important part of constructing stand-alone and self-configurable mobile adhoc

networks. The heterogeneity of the devices and limited resources such as battery are

also load up more difficulty to service discovery.

Due to the volatile nature of the adhoc networks, service discovery algorithms

proposed for mobile and adhoc networks suffer from some problems. Scalability

becomes a problem when the service discovery is based on flooding messages over

the network. Furthermore, the high traffic which occurs due to the message

exchange between network nodes makes the communication almost impossible.

Partitioning a network into sub-networks is an efficient way of handling scalability

problem.

In this thesis, a mobility based service discovery algorithm for clustered

MANET is presented. The algorithm has two main parts. First one is for

iv

partitioning the MANET into sub-networks, named “clustering”. Second part is

composed of an efficient discovery of services on overall network. Clustering

algorithm used in this study is enhanced version of DMAC (Distributed Mobility

Adaptive Clustering, which is one of the golden algorithms of the wireless network

clustering area). To be fast and flexible in service discovery layer, a simple and fast-

responding algorithm is implemented. Integration of two algorithms enables devices

to be mobile in the network

Keywords: Adhoc Network, MANET, Clustering Algorithms, Service Discovery,

Distributed Computing.

v

ÖZ

ANLIK KABLOSUZ AĞLARDA SERVİS KEŞFİ TEMELLİ

KÜMELEME

Bulut, Gülşah

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Dr. Cevat Şener

Mayıs 2010, 64 sayfa

Anlık kablosuz ağlar, sabit bir altyapı üzerine kurulmazlar. En göze çarpan

özellikleri ise merkezi olmayan yapıları ve yüksek devinime bağlı dinamik

topolojileridir.Anlık kablosuz ağların bahsedilen dinamikleri, ağ içindeki kaynaklara

erişimi karmaşık hale getirir. Buna bağlı olarak da, servis keşfi; anlık kablosuz

ağların tek başına ayakta durabilmesi ve kendi kendini yapılandırabilmeleri

açısından yapının son derece önemli bir parçasıdır. Ağdaki aygıt çeşitliliği ve

batarya gibi kısıtlı kaynaklar da servis keşfine daha fazla zorluk yükler.

Anlık ağların değişken doğalarına bağlı olarak, sözü edilen ağlar için önerilen

algoritmalar bazı problemlerden muzdariptir. Örneğin servis keşfi, mesajların tüm

ağa yayılması üzerine kurulmuşsa, ölçeklenebilirlik büyük bir problem haline gelir.

Dahası, ağ düğümleri arasında mesaj alışverişine bağlı oluşan yüksek trafik, ağ

içinde iletişimi neredeyse imkansız hale getirir. Sonuç olarak, ölçeklenebilirlik

problemini aşmak için ağı daha küçük alt ağlara bölmek iyi bir yöntem halini alır.

Bu tezde, kümelenmiş anlık ağlar üzerinde devinim temelli servis keşfi algoritması

sunulmuştur. Algoritma iki ana parçadan oluşur. Bunlardan ilki, ağı daha küçük alt

ağlara, yani kümelere ayırır. İkinci parça ise, tüm ağ üzerinde etkili ve verimli bir

servis keşfi yapmak üzere tasarlanmıştır. Kümeleme algoritması olarak, kablosuz ağ

vi

kümeleme alanında altın bir yöntem olan DMAC (Dağıtık ve Devinim Uyarlı

Kümeleme) algoritmasının geliştirilmiş hali kullanılmıştır. Servis keşfi katmanında

hızlı ve esnek olabilmek adına, basit ve sorgulara hızlı cevap veren bir algoritması

gerçekleştirilmiştir. Bu iki algoritmanın entegrasyonu ile ağdaki aygıtlara hareket

özgürlüğü sağlanmaya çalışılmıştır.

Anahtar Kelimeler: Anlık Kablosuz Ağlar, Devinimli Ağlar, Kümeleme

Algoritmaları, Servis keşfi

vii

Çocuk zamanlarımın hayal kahramanı, kızkardeşime...

viii

ACKNOWLEDGMENTS

I would like to first of all thank my supervisor, Dr. Cevat Şener for his warm

encouragement and guidance throughout my research work. He was the one who

supported me when I felt to be unsuccessful. I would like to express my most

heartfelt gratitude to my family, who put up with all my complaints and rants about

everything in these three years of higher education. Mum and dad - this would not

have happened without you.

I have been partially funded by the Turkish Scientific and Technical Council

(TÜBİTAK) BİDEB 2210 National Graduate Scholarship Programme. Thanks goes

to many educational programs I have had chance to attend to provided by

TÜBİTAK and Computer Engineering Department (CENG) at the Middle East

Technical University (METU).

I am grateful to WIMAX workgroup at METU for their seminars which gave

me a good know-how about wireless networks. As a side note, this thesis has been

implemented in OMNET++ with MIXIM plug in and typed in Open Office. Thanks

to MIXIM developers for their fast response on fixing plug in core and best regards

to open source software community!

ix

TABLE OF CONTENTS

ABSTRACT...iv

ÖZ...vi

ACKNOWLEDGEMENTS...viii

DEDICATIONS...ix

TABLE OF CONTENTS..x

LIST OF FIGURE...xii

LIST OF TABLES...xiii

LIST OF ABBREVATIONS..xiv

CHAPTERS

1. INTRODUCTION...1

1.1 Reason and Rationale...1

1.2 Rest of the Thesis...4

2. LITERATURE SURVEY..5

2.1 Scalability..5

2.2 Clustering...6

2.3 Service Discovery..11

2.4 Cluster-Aided Service Discovery..24

3. SERVICE DISCOVERY ORIENTED CLUSTERING............................31

 3.1 Problem Definition and Preliminaries...31

3.2 Design Philosophy...32

3.3 DMAC Algorithm..35

3.3.1 Initialization Method..36

3.3.2 Link Failure Method...37

x

3.3.3 Add New Link Method...38

3.3.4 Clusterhead Receive Method..39

3.3.5 Join Receive Method..40

3.3.6 Resign Receive Method..41

3.4 Service Discovery Algorithm..41

3.4.1 Definitions Used in Service Discovery Algorithm.......42

3.4.2 Service Discovery Algorithm Search Patterns..............43

3.4.3 Core of the Service Discovery Algorithm....................45

3.5 Improved DMAC Algorithm...47

4. SIMULATIONS..51

4.1 Simulation Environments..51

4.2 Simulations..56

4.2.1 Experiments and Results...58

4.3 Observations and Analysis of Experiment Results......................60

5. CONCLUSION and FUTURE WORKS...63

REFERENCES..65

APPENDICES

A. PSEUDO-CODES of SERVICE DISCOVERY ALGORITHM.............70

xi

LIST OF FIGURES

FIGURES

Figure 1 Initialization Method...36

Figure 2 Link Failure Method...37

Figure 3 Add New Link Failure Method...38

Figure 4 Clusterhead Receive Method..39

Figure 5 Join Received Method...40

Figure 6 Resign Received Method...41

Figure 7 A simple clustered network...44

Figure 8 Simulation Screenshot...56

xii

LIST OF TABLES

TABLES

Table 1 Simulation Environments...51

Table 2 Simulation Parameters..57

Table 3 Results of Experiment 1...58

Table 4 Results of Experiment 2...59

Table 5 Results of Experiment 3...60

xiii

LIST OF ABBREVATIONS

MANET Mobile and Ad hoc Network

DMAC Distributed Mobility Adaptive Clustering

DHT Distributed Hash Table

OLSR Optimized Link State Routing

SLE Service Location Extension

SSD Scalable Service Discovery

AODV Ad hoc On Demand Distance Vector

DSR Dynamic Source Routing

DMAC Distributed Mobility Adaptive Clustering

WIMAX Worldwide Interoperability for Microwave Access

P2P Peer to Peer

JXTA Juxtapose (Sun Microsystems)

CAN Coordinated Assistance Network

PDA Personel Digital Assitant

UPnP Universal Plug and Play

SDP Service Discovery Protocol

IETF Internet Engineering Task Force

DHCP Dynamic Host Configuration Protocol

ONC Open Network Computing

RPC Remote Procedure Call

IRDA Infrared Data Association

OLSR Optimized Link State Routing

xiv

CHAPTER 1

 INTRODUCTION

In this chapter, a brief introduction is provided and the reason and rationale behind

service discovery and why clustering of ad hoc network has been added will be

discussed as the first topic. In the following section, overall view of scalability,

clustering and service discovery are presented. The approach taken in our research

will be explored in the third section. Some of the design decisions that had to be

taken will be given briefly and their details are left to the following chapters.

1.1 Reason and Rationale

Widespread availability of wireless communication has rapidly increased the usage

of hand-held devices in the recent years. Such communication environments, named

ad hoc networks which do not require any fixed infrastructure, have triggered

researches on this area. It is obvious that the researches on wireless computing will

make more sense in the future as their usage increases.

Ad hoc networks are described as self-configuring networks that are formed and

deformed on the fly by a collection of nodes without the help of any prior

infrastructure or centralized management in [1]. The definition clearly states that the

nodes of an ad hoc network are mobile. Furthermore, they are free to join / leave the

network at any time. Thanks to mobility for enabling nodes movement-free but,

flexibility and mobility introduce new problems to the communication environment.

Scalability and service discovery are the most challenging issues caused by the

mobility and infra-structreless architecture. Furthermore, limited resources such as

battery, low memory and diversity of these resources among nodes restrict the

solution domain and forces algorithms to consider many other network parameters.

1

The phrase Service discovery is used in a wide meaning in the literature. From any

text file to any executable, any class method which is called remotely, well defined

web servises and sometimes accessing a database may also included as service. The

discovery of any resource in the network is named as service discovery. Another

widely used term during the thesis is word clustering. In many fields of computer

science, clustering is used to group or segment a set of values. In the concept of

mobile and adhoc networks, clustering is used to define segmenting the whole

network in to smaller inter-connected groups. The meaning of clustering is also used

in mentioned context during this thesis. The combination of the two definiton,

totally describe “ providing a service discovery routine over a clustered network”.

To use the network efficiently, scalability and service discovery problems have to be

solved. How will a node reach a service or a resource? When and on what route?

Furthermore, assuming the node finds the correct service, should it store the way to

the service provider? In another words, should the node “cache” the route to the

provider? At first glance, caching seems a bright idea. However, mobility factor

influences caching. What if the provider moves and the route to the provider

changes? More severely, what if it disconnects from network? If a node can not find

a needed service, then it is not logical to be included in that network.

Furthermore, finding a service is not enough; the node must be able to communicate

to the provider node without any interrupt due to high message traffic or high cost of

message overhead. Think of a node, trying to find what it needs by flooding its

request to every node in the network. This may not seem as a significant problem,

even not a problem at all. But the traffic will rapidly increase if all nodes try to find

a service by message flooding and in some time none of the nodes will be able to

discover services. Additionally, any two nodes, communicating on that time will be

affected from high traffic. Neither requester nor provider will be able to send

messages to the destination. If we discard flooding and focus on locality, how many

hops should be taken account to search for a service? And if the node can not find

the service in that particular area, how should it search the rest of the network

2

without affecting the overall communication? As easily suggested by the questions

above, service discovery is indeed a challenging task.

Although being a challenging task, the service discovery and service usage is an

vital need in SAR groups, in sensor network application and in other groups or

applications where a stable and predefined networking infrastructure is not

available. Not only mentioned groups, also a group of people visiting an exhibiton

area or in a conference may need such service discovery and service usage

availability.

Apart from the studies conducted in related field, this thesis provides a solution

where mobility is highly supported while discovering the requested services over

clustered network structure. In other words, the point of view in the thesis is

enabling the devices to be movement-free while discovering the services. As a rule

of thumb, assumption or prediction about mobility is avoided for the sake of the

algorithm. The reason behind the idea is keeping the service discovery and

clustering algorithms uneffected from the mobility parameters such as speed,

direction and acceleration. Since the change in mentioned parameters are

undeterministic, assumption on mobility is avoided.

Another distinct property of the proposed solution in this thesis is mobility

parameters of the nodes are different from each other. In other words, the simulation

tests are run in different node speeds in order to approximate the real world

scenarios. Not only approximating real world, also a stress test is conducted to

check stability of the proposed solution.

In this thesis, the proposed solution is splited in to two main sections. In the first

section, a clustering algorithm, named DMAC is applied and the network is

partitioned in to clusters. After core implementation of DMAC, the service

discovery algorithm is implemented over clustered structure. In the second section,

the DMAC algorithm is improved in order to form more stable clusters. Service

popularity is also added as another parameter to the cluster head election criterion.

3

By the help of mentioned parameter, the clustering algorithm is improved to be

adaptive to the needs of service discovery algorithm. The combination of both

algorithms perform better traversals while a service is searched among clusters. As

time passes and a provided service of node becomes popular, the provider itself or

the neighbor of the provider that is on the path of the service is promoted to head

role in order to shorten traversal and hit paths. Caching is applied on clusterheads in

order to aid shortening the mentioned paths. In other words, the head nodes stores

the services provided by their cluster members.

The next chapter presents a wide summary of solutions previously studied in the

related field. The flow of the whole thesis is provided in section 1.2

1.2 Rest of the Thesis

In the next chapter, a background information is represented in order to examine

solutions that are studied in the field previously. In the third chapter, the solution

proposed for the given problem set is provided in details. After discussing

implementation and design details in third chapter; the simulation environment,

experiments that are executed on the solution and the results are discussed in chapter

four. Finally, a conclusion is represented in chapter five. Possible improvements and

ideas that could be studied in the thesis are also provided in final chapter.

4

CHAPTER 2

 LITERATURE SURVEY

In this chapter, a detailed background information which is reviewed from the

studies done in this is represented. The chapter is divided in to four sub-sections.

The first section is a review about scalability while the second section presents a

summary on clustering. The chapter continues with the review about service

discovery and cluster aided service discovery sections.

2.1 Scalability

For scalability problem of ad hoc networks, DHT based P2P solutions such as Pastry

[2], JXTA [4], CAN [3], Chord [5], Tapestry[6] are proposed. Pastry is a generic

peer-to-peer object location and routing scheme, based on a self-organizing overlay

network of nodes connected to the Internet [2]. In the design of CAN, a virtual d-

dimensional Cartesian coordinate space on a d-torus is used. But, the given

coordinate space is completely logical and does not depend on the physical structure

of the network. At any time, the whole network is dynamically partitioned among all

the nodes in which every node owns its individual, distinct zone within the overall

space [3]. Every node in the network stores the information of the nodes which lies

in its zone in a hash table. As a result, whole system constructs a DHT architecture

since every node has its own hash table. The state maintained by a CAN node does

not depend on the network size N, but the lookup cost increases faster than logN [5].

JXTA is P2P solution of SUN, and JXTA technology is a set of open protocols

where cell phones, wireless PDAs, PCs and servers on the network are enabled to

communicate and interact in a peer-to-peer standarts [4]. JXTA members constitute

a virtual network and in the network; members can communicate to other peers

5

directly, even when some of the members may be behind firewalls and network

address translations (NATs) or on different network transports [4]. Chord, which

was proposed in 2001, argues that the scalability of consistent hashing is improved

by avoiding the need of knowledge of all other network members. A member of

Chord system needs particular routing information about the network. Since

aforementioned routing information is distributed, a network member resolves the

hash function by communicating with other network members. In a network with N-

nodes, each member maintains information about O(logN) other nodes and a routing

table lookup needs O(logN) messages [5]. Tapestry mainly focuses on the locality

information of the nodes in order to minimize message latency and maximize

message throughput. As CAN maps the physical network layer onto a logical virtual

d-dimension space, it does not take network distance to account when constructing

the overlay. Therefore, a given overlay hop may span the diameter of the network.

Similar to CAN, Chord approach is also not interested in distances. So, it faces the

mentioned case of CAN.

There have been so many solutions proposed for the scalability problem which we

will not mention here. But roughly, these solutions are composition of DHT and

clustering, adjusting some other network parameters such as hop count of clustering

neighborhood or number of layers in the cluster. We will continue our survey with

the clustering approaches in ad hoc networks.

2.2 Clustering

The concept of dividing the geographical region to be covered into small zones has

been presented implicitly as clustering in the literature. Choosing cluster head

optimally is an NP-hard problem and existing solutions to this problem are based on

heuristic approaches [22]. The heuristic approaches used in clustering are highest

degree heuristic, lowest-id heuristic and node weight heuristic. In the first one, the

degree of a node is computed according to the distance from others. The latter

method assigns a unique id to each node and the node with minimum id is chosen as

6

cluster head. The last one uses a set of parameters to compose the total weight. Total

weight is used to choose the cluster head. Since simulation experiments show that

the first and second approaches do not perform well on ad hoc networks, we will not

examine them deeply.

Hence, for the efficient management and avoiding effects of flooding, clustering

approach is proposed in some papers. Many techniques are used in clustering and

every study takes account different parameters. The important questions that should

be asked while clustering are;

•How should the cluster head be elected?

•How large will be the cluster size?

•How will the nodes detect the cluster head failure?

•How many clusters should be formed?

As an answer to the first question, several parameters such as battery power,

mobility ratio, processing power, distance of nodes to each other are evaluated. By

weighting those parameters, a final value is assigned to each node. The node with

minimum or maximum criterion value becomes the cluster head. For the second

question, number of hop count between nodes is the main criterion. N-hop

neighborhood information is used for cluster construction where N>0. The final

question is solved by periodically checking whether the head is alive or not. This

might be done by non-head nodes or the head itself may advertise its existence

periodically.

The clustering study in [21] is a gold algorithm which is referenced in many service

discovery and clustering proposals. First of all, the algorithm permits nodes to move

even in cluster set up phase. It is fully distributed, every node decides its own role

according to the information of one hop neighbors. If a node is not a cluster head, it

should be only one hop away from its cluster head. Therefore, the algorithm uses

one hop neighborhood information to form the clusters. Cluster head is elected

according to weight based criterion including node speed, transmission power.

7

Once the clusters are formed, the rest of the algorithm operates in message driven

format. The system has 3 types of messages used in communication between nodes:

CH (node1), which is invoked by a node that will advertises itself as the cluster

head. JOIN(node1, node2) is the message where node1 uses when it is going to be

part of the cluster whose cluster head is node2. RESIGN(w) is invoked only by

cluster heads who are going to switch to ordinary node role since its weight is

smaller than the threshold w. The simulation results of the algorithm shows a good

performance when compared to “lowest id first” algorithm

The second study on clustering is [22], in which for an N node complete network, it

proposes 2 stage distributed O(N) randomized algorithm that always finds the

minimum number of star-shaped clusters having maximum size. Actually, the

algorithm is aimed to apply to Bluetooth based application. The algorithm has some

interesting assumptions. For instance, every node knows total number of nodes in

the entire network, the maximum number of nodes that a single cluster can handle.

Furthermore, the architecture forces clusters to be star shaped and at the end of the

cluster organization process, a single node to have complete information about all

clusters. The details of the algorithm can be obtained in [22]. For large scale ad hoc

networks, it is obvious that the proposal by [22] will suffer from the assumption that

every node have to know total node number. Furthermore, the shape of the clusters

is not a matter at all; any shape functioning efficiently is enough for clustering.

Thus, cluster shape is not a parameter for clustering process.

In [23], the study takes into account the number of nodes that a cluster head can

optimally handle, transmission power, mobility and battery power. For load balance

among cluster heads, a predefined threshold value is used. More precisely, the node

count a cluster head can manage is a system constant. The solution forces network

to invoke the cluster head election procedure as rare as possible. The reason behind

the idea is minimizing communication and computation cost. The algorithm also

claims that if a cluster head is forced to serve more than the cluster node threshold,

8

the system will suffer in the sense that the nodes incur more delay because they have

to wait longer than usual.

Battery power is an important issue since cluster heads have to consume more

battery due to the fact they have to do some extra computation. To help minimizing

the cluster head election procedure, relatively less mobile nodes are considered good

candidates. When the cluster head moves fast, the nodes may be detached from the

cluster head and as a result, re-affiliation occurs. It takes place when one of the

ordinary nodes moves out of a cluster and joins another existing cluster. Hence, the

amount of information exchange between the node and the corresponding cluster

head is local and relatively small. On the other hand, the information update in the

event of a change in the dominant set is much more than a re-affiliation. The

election procedure is invoked when system initially set activated or the current

cluster head nodes can not cover all of the network nodes. Mentioned is a good

example of node weight based clustering.

The study in [24] gives a good overview for cluster sizing and hierarchical

clustering. K-hop clustering is favored to one hop clustering for efficient scalability.

Furthermore, [24] claims that maintenance multilevel clustering requires heavy

communication overheads due to the random change of multilevel topology. On the

other hand, as we agree with this study, the maintenance of single level clustering is

simple since it only manages local topology changes caused by node mobility. But

the algorithm implements an interesting idea, which should be questioned: When a

new cluster is created, the head broadcasts a cluster state packet to all other cluster

heads in the network. We are in doubt whether the head state message should

traverse all network. It may not be a vital need for the network. Furthermore, this

packet is periodically traversed if;

•members leaves or joins the cluster.

•new neighboring cluster is connected or a current neighboring cluster is

disconnected.

9

•cluster topology changes as a result of cluster creation, removal or head

election.

The second and third events are rational reasons to flood the cluster head state

message but first reason might be eliminated since it is an intra-cluster event. The

study also supports our idea about proactive routing by the claim that packets of

proactive routing protocols must carry complete routing list from source to

destination which causes high overhead in long multi-hop routes. In contrast to its

proposal of k-hop neighborhood clustering, we believe that one-hop neighborhood

information is more adequate for ad hoc networks in order to manage high mobility.

Another study worth mentioning in this thesis is [25], which responds efficiently

against mobility issue. The most outstanding feature of the proposal is that it does

not trigger cluster reorganization procedure if the relative mobility is zero or

approximately zero. To achieve such property, mobility patterns of the groups are

extracted and applied as parameter in clustering procedure. As being a very recent

paper, it also points that lowest id algorithm can not perform expected result in

mobility aspect.

Furthermore, the study targets some real time scenarios for the proposal it claims.

For instance, a group of rescuers who occasionally concentrate their searching in a

specific area, a group of people staying together during a networking session in a

conference or engaging in a discussion while visiting in an exhibition hall. In fact,

for the success of the proposed method, the nodes in the same group, in other words

the cluster members, should be moving in same direction with same speed. Any

nodes that do not move in group mobility design have dramatic increase on the

variance. Thus, mobility pattern should be used carefully. Nevertheless, taking

relative mobility in to account while developing a mobility based clustering should

be kept in mind and can be tried. Among all clsuering proposals, dealing with

relative speed is distinct idea. For the details of the study, [25] can be revived.

10

As a final sentence about clustering, it should be noted that there have been many

papers on clustering for ad hoc networks but some of them focus on wireless sensor

networks or peer to peer structures. Those studies are out of the scope of this thesis

but to have a general perspective; researchers interested on clustering can examine

them. Next section presents the survey on service discovery proposals.

2.3 Service Discovery

Service discovery problem is firstly addressed in SLP [7], Jini [10], UPnP [8],

Salutation [10] and SDP [11]. SLP is an IETF standard and works in centralized

manner. It has User Agent (UA), Service Agent (SA) and Directory Agent (DA).

UA performs service discovery, on behalf of the client (user or application). SA

advertise the location and characteristics of services on behalf of services and DA

collects service addresses and information received from SAs in their database and

respond to service requests from UAs. When a new service connects to the network,

the SA contacts the DA in order to advertise its existence [10]. This is called service

registration. When a node needs a service, the UA asks the available services in the

network from DA. This process is called service request [10]. But before requesting

or advertising a service, UA or SA should discover DA. SLP uses three types of DA

discovery: Static, dynamic and passive discovery.

In the first one, the SLP agents get the address of DA from DHCP. In active

discovery, UA and SA sends requests to the SLP multicast group address. DA,

listening to this address, gets the requests and responds via unicast. In passive

discovery, DA periodically send multicast advertisements of their services. UAs and

SAs learn the address of DA from advertisements and connects to DA via unicast.

DA is usually required in large networks but not a must in overall design. Therefore,

SLP operates in two modes: Centralized and decentralized modes. Needless to say,

centralized version of SLP is not adequate for ad hoc networks since they do not

have fixed infrastructure. Furthermore, non-centralized version of SLP suffers from

high message traffic since UAs periodically send out their service request to the

11

SLP multicast address. All of the SAs listen to multicast address and if they have

any service requested from any UA, they respond to the corresponding node via

unicast. As a result, non-centralized version of SLP is a typical example of flooding

based discovery.

Jini is developed by Sun and describes the problem of how devices connect with

each other in order to form a network, called “jini community”. Jini consists of an

architecture and programming model and describes how the devices provide

services to other devices in the network.

Each device in Jini network is assumed to have a Java Virtual Machine running on

it. The basis of Jini architecture is similar to basis of SLP. To join a Jini network, a

device or application registers itself to the Lookup Table on a lookup server. A

lookup table is a database for all services on the network. Devices and applications

register with a Jini network using a process called Discovery and Join. Not only

pointers to services, the Lookup Table may keep Java-based program code. Hence,

services may upload device drivers, interfaces and other programs to enable the

client to use the service. The code mobility replaces the requirement of pre-

installing drivers on the requester [10]. When a requester needs to take advantage of

the service, the related code is downloaded from the requester's Lookup Table. In

contrast to SLP, the Jini object code introduces direct access to the service using an

interface known to the client. (In SLP, service request returns a Service URL instead

of direct access.)

Salutation is developed by the Salutation Consortium, which is an open industry

consortium. The architecture includes Salutation Manager (SLM) and Transport

Layer as two major components. SLM is the basis of the architecture. It serves as a

service broker. Any device advertising its services registers to the SLM. When a

client ask its local SLM for a service search, the search is performed by coordinating

among SLMs [12]. The SLMs operate on the Transport Manager which gives a way

12

of communication facility independent from underlying network transport layer. It

functions as reliable communication layer.

The SLM interfaces contain service discovery, service registration and service

access facilities. In service discovery procedure, the SLM discovers other SLMs and

the services contained in that SLM. The communication protocol between the SLMs

is done using Sun’s ONC RPC. This feature is called capability exchange. Its main

duty is connecting the SLM for service exchange which is a must in the overall

architecture. The SLM holds a registry in order to keep service informations. A

client registers its services to SLM registry by itself. A client application can ask the

local SLM to periodically check the availability of services. This checking is done

between the local manager and the corresponding manager.[12] The communication

protocol independence of Salutation architecture is achieved by the interface (SLM-

TI) between Transport Manager and SLM [12]. Transport Manager itself is

dependent to the network transport it supports. Therefore, a SLM may have more

than one Transport Manager, in case it is attached to multiple, physically different

networks. But the SLM sees its underlying transport through the transport-

independent interface (SLM-TI) [12].

UpnP (Universal Plag and Play) is an architecture for peer-to-peer communication

which is introduced as an extension to plag and play peripheral model, it is more

than that. In UpnP, a device can join to the network dynamically, get an IP address

and discover other devices and services and send out its services upon request. Any

device can disconnect the network silently without any inconsistent state. UPnP

leverages TCP/IP and the Web technologies, including IP, TCP, UDP, HTTP and

XML, to enable seamless proximity networking in addition to control and data

transfer among networked devices in the home and office [12].

For the service discovery issue, UPnP uses Simple Service Discovery Protocol

(SSDP). This protocol uses HTTp over multicast and unicast UDP which are

referred to as HTTPMU and HTTPU, respectively [12]. When a device wants to join

13

the network, it advertises (sddp:alive) multicast message to advertise its services to

control points. In contrast to other protocols, UPnP does not have a central service

repository. To seek for a desired service, a device sends out sddp:discover multicast

message when a new device is added to the network. Any device that hears

multicast message should respond to it with a unicast response message [12].

UPnP uses XML to describe device features. For instance, the advertisement

message includes a URL which addresses a XML file in the network that explains

the device resources and services. Since XML is a simple and powerful way of

constructing text-based resources, it gives the opportinity of being extensibility and

flexibility properties to UPnP. The operational steps of UPnP can be listed as

discovery, description, control, eventing and presentation. Briefly, in discovery step,

a newly joining device multicasts its services to the control points. If a control point

is added, it can search for desired services. In description process, the service

requester gets the details of the service from the XML file which is pointed by the

URL given in the multicast message. The control step is the duration of interaction

of requester and provider. Messages are constructed in SOAP format when a service

is called or result of a service is returned to the requester. This is very likely to web

service method calls. The eventing step is designed for notification of variable

service parameters to the potential clients of the services.

Up to this point, brief discussion of first generation service discovery protocols are

presented. Before starting to examine combined solutions, comparisons and

vulnerable points of protocols will be discussed.

First generation algorithms were mainly constructed on IP protocol and assumed

that devices are communicating over Internet. Some of them have central directory

as a service registry which is almost impossible in ad hoc networks. They usually

assume peer to peer communication either via sending service request service

broker, service registry, lookup directory or via flooding service request message to

overall network Not only central service directory mechanism, but also flooding is

14

not adequate for service discovery in ad hoc network. Basically, all of these

solutions address similar aspects but in different perspectives and weights.

Therefore, an absolute comparison is not rational.

Although, a rough summary is presented on these algorithms, they have significant

differences from each other. For instance, Jini is tightly coupled with Java

programming language and requires JVM for each device to run needed code and

uses RMI mechanism to invoke services on remote devices. This property of Jini

makes it independent from operating system and hardware but forces every device

to run JVM on it. In contrast to Jini, Salutation and SLP protocols are not dependent

on a programming language. Furthermore, it is defined as an upper layer on

transport layer and independent from any transport protocol. It is not limited to

HTTP over UDP over IP unlike UPnP and SLP. One drawback of UPnP and SLP is

being designed on TCP/IP protocol. Jini and UPnP envision pervasive computing

environments being enabled by their solutions, whereas Salutation and SLP are

primarily dealing with the service discovery problem [12]. UPnP is the only solution

using XML based communication which is an important point for being flexible and

extensible. Because XML allows for powerful description of device capability,

control command issued to the device, event from it.

For second generation service discovery algorithms, we will first look at Konark

[13], which was developed in 2004. Although it is a relatively old study, it gives the

outline of the ad hoc service discovery in optimal borders. Konark defines itself as

service discovery and delivery protocol designed for specifically for ad hoc, peer-to

peer networks, and targeted towards device independent services in general and m-

commerce oriented software services in particular [13].

For service discovery part, Konark uses fully distributed, peer to peer approach to

enable each device to publish and discover services in the network. To be flexible

and extensible, service description and meta data description of services are XML

based. Since the architecture is peer to peer based, each device in the network acts

15

as both micro HTTP server and client. To support device and operating system

diversity, messaging between nodes are SOAP-based. Konark is neither network

layer solution nor application layer solution. Hence, it is a middle-ware solution

which designed to close the gap between the two layers. We believe that, such

hybrid solutions perform better than solutions which are focused on one layer. The

solution assumes IP level connectivity and nothing more on it. Any protocol

implemented on IP level, such as 802.11, IrDA, Bluetooth can operate under

Konark. Thus, solution is network layer independent which we believe, a positive

property for service discovery solutions.

As each device is a local server, it has a service registry which is constructed in a

tree structure. The deeper the tree is Last accessed, the more specific services are

achieved. In another words, services are grouped according to their properties. For

instance, entertainment node in the tree branches in to two deeper branches such as

“music” and “game”. Game node may include final leaves such as chess, snake etc.

This mechanism resembles an ontology like structure where services are grouped in

semantic manner.

A second outstanding study done in 2003 is [14] by U. C. Kozat and L. Tassiulas.

The proposed solution is a distributed service discovery architecture that relies on a

virtual backbone for locating and registering available services. The proposal

consists of two independent components. The first component is formation of a

virtual backbone and the second one is distribution of service registrations, requests

and replies. In their network model, partitioning is not allowed for the sake of

generality; since each partition may be treated as an independent network. The

proposal supports directory architecture and for this purpose, the network level

solution is built up in two parts. First one is the BBM (Backbone Management)

phase where a subset of relatively stable network nodes are selected as the

dominating set and adapting this dominating set to the topology changes by adding

or removing nodes into / from the set. BBM uses only 1-hop local broadcast control

message which are called “hello beacons” in order to from backbone set, create

16

virtual link between backbone nodes and maintain the backbone. When the BBM

phase is successfully completed, the network will have a mesh structured virtual

backbone which are named as “black nodes”.

As expected result, every node in the network can not be a member of the

dominating set. The nodes only 1-hop away from the a dominating set member is

called as “green nodes”. The backbone neighbor of any green node is called Virtual

Access Point (VAP) of that node. Hence, if a green node is acting as a server in the

network, then it should register all of its services to the directory agent residing on

VAP. The rest of the nodes which are neither in dominating set nor 1-hop neighbor

of any dominating set member are called as “white nodes”. White nodes should

communicate to the backbone member over green nodes.

To elect the dominating set, initially, every node is assumed as white nodes and

starts to propagate hello beacons. Any node receiving a hello beacon starts to

construct its own NIT (neighborhood information table) and routing table using

beacons. Nodes also calculates its total number of neighbors, total number of white

neighbors and NNLF (normalized link failure frequency). At the end of waiting

period, any white node k,

 which complies with the stability constraint, which is highly dependent on NNLF,

joins

the virtual backbone and becomes a black node [14].

To maintain the dominating set effectively, three main issues are argued to be solved

in the proposal. These issues can be listed as; a green node losing its VAP node, a

black node deserted by their green nodes and a black node which is overpopulated.

For the first problem, new nodes are forced to join to dominating set. Hence, some

of the green nodes with highest stability are selected as blacknodes such that no

nodes remain without a VAP node. In the second situation, deserted black nodes

leave the dominating set by themselves. Desertion may happen because of a black

node may migrate to a location where none of green nodes have this node as their

17

VAP node (or equivalently all green nodes associated with the same black node may

move out of range or have failed to communicate). Therefore, when a black node

figures out to be deserted, it should turn itself to a green node. At that time, the issue

degrades first situation where a green node loses its VAP node. The solution to the

last issue is grouping some of the black nodes in same location in order to balance

the load on the overpopulated black node.

After the BBM phase, relatively stable backbone is constructed but there is no

mechanism for service discovery to let servers register their services with one or

more directory agents and clients request for services. When a server registers with a

directory agent, then its registry information should be distributed to the other

directory agents located on other VAPs. To do this, a multicast or broadcast

messaging is needed. Additionally, every server should keep registration

information scope locally by bounding the number of black nodes that the

registration message could traverse [14]. So when a node request for a service, the

request is forwarded to VAP node of that node. If the request has a valid service

entry in directory agent of VAP, then related information is sent back to the

requester. But if a valid entry could not be found, then the request is forwarded to

other directory agents by multicasting or broadcasting. To avoid too much

broadcasting and multicasting in a wireless environment, the proposal uses source

based multicast tree algorithm. Shortly, the algorithm avoids the duplicate request

messages caused by flooding. Briefly we give the overall perspective of the proposal

and for further details of the study, [14] can be examined.

We will continue to examine previous studies with a proposal based on caching

which is done by S. Motegi et al [17]. The study is an enhancement on the proposal

of “Arguments for cross layer optimization in Bluetooth scatternets” by S. Sesha et

al. Simply, the solution uses broadcasting for service discovery messages and

response of the service request is turned to the client by unicast. The intermediate

nodes which the request and response messages pass cache, the service replies.

Additionally, the requester node also caches its own service requests. Furthermore,

18

if an intermediate node does not have a definition for the requested service in its

cache, it simply rebroadcasts the request message. This broadcasting of the node that

provides the service makes it possible to find services which are provided behind the

node. On the implementation phase, comparison of the enhanced version of

algorithm to original one is done. In our opinion, results are not as expected from

the enhancement. We will briefly look at the caching issue and why it does not work

properly on ad hoc networks in discussion section. For the original and the enhanced

version of the study can be found at [17].

We will continue our survey with a study that uses proactive routing principle while

helping service discovery. The solution proposed in [20] operates both in peer to

peer mode and directory based mode. To remember, in directory based architectures,

a client registers its services to the directory and queries the directory in need of

service request. If the system is working on directory based mode, the directories

should periodically advertises itself. If a service node can not hear from directory,

then it explicitly broadcasts a query requesting for the directory information. If there

is no directory in the system, nodes simply reply to the queries matching their

services which corresponds to peer to peer communication. Hence, the service

requester nodes have to flood their request queries to the entire network. The

switching between two modes are provided by marking a request with a flag if it is

not replied by a directory and resending it to the entire network. By this action,

system switches from directory mode to peer –to- peer mode. Actually, paper claims

that property of supporting both modes and switching between them is done in order

to adapt the dynamics of the ad hoc networks. We will leave this claim in discussion

part in more detail.

In [18], IETF standard OLSR protocol is embedded to the service discovery

algorithm. Shortly in OLSR, hello messages are periodically sent to sense and

establish the sender’s neighbors. Topology control messages are flooded

periodically via the multipoint relay nodes throughout the entire network to

19

advertise the topology information of each node. Importance of topology messages

arises in building up the routing table locally at each node.

To manage the service discovery issue, the solution adds a new message type which

is names as SLE. Mentioned messages perform service advertising, query, response

and register functions and they are flooded to the entire network by topology control

messages (multipoint relay forwarding). When the location of the service directory

is known, the query SLE is unicasted to the service directory. A response SLE may

be sent using unicast, although it may be sent using multipoint relay so that other

nodes interested in that service may cache the information.

For the scalability problem, proactive routing mechanism uses clustering in order to

limit the message traffic which arises due to SLE and multipoint relay forwarding

messages. Briefly, cluster heads receives the multipoint relay forwarding messages

and summarizes them on behalf of the cluster it is elected by. However in general,

SLE messages can not be summarized by cluster heads and have to flooded with

full content

to entire network. The study chooses and recommends to work without a

service

directory under clustered architecture.

In contrast to [18], [19] favors reactive routing and it is inspired from on demand

routing protocols such as AODV and DSR. For service discovery issue, the study

extends the routing message format. So it attaches service discovery header to

control packets used by routing. In a reactive routing protocol, a route request

packet containing the sought destination is broadcast and is replied by a node

knowing a route to destination. The service request packet contains a route request

packet and an additional header describing the needed service, which is named as

service request extension. Briefly, the extension part contains some information

such as service selector or any semantics used for service discovery. As a reply to

the service request packet, a service reply packet is prepared including service rely

20

extension and standard routing packet. Similar to service request extension, it

contains information about the service such as lifetime and other parameters.

When a client requests a service, it creates a service request packet and sets

destination address to zero. The packet is propagated through the network as an

ordinary route request packet. Any node receiving this packet fills the address if it

knows a matching provider or if it is a provider for that service. Hence, each node

stores service bindings which contains an association of a service type to addresses

of provider nodes. To keep the system up to date, providers update their bindings

locally and other nodes will cache services with a lifetime indicator from service

reply packets which pass over them. If there are multiple services bound under same

type, the closest provider to the requester is chosen and its address is sent back to

the requester. To avoid incorrect replies due to cache inconsistency, the service with

the largest lifetime is selected to sent back.

Using a reactive routing protocol in basis, however, the study also adds some

proactive enhancements to its solution. This is done for the sake of caching

consistency. Generally, pro-activity is activated by a provider becoming just

available or vice verse. Hence, caching mechanism explicitly removes cached

entries by negative announcements for maintain caching benefits. However, the

result of this decision is not reflected as a parameter the simulation results. This is

just an assumption in the study.

As a final study in this category, we will examine [29]. Briefly, the study is based on

the integration of service discovery with network layer. The motivation behind the

idea is efficiency of cross layer service discovery methods in energy constraint

mobile devices. Because putting service discovery at the network layer reduces the

control messages overhead and as a result, less number of messages are exchanged

among devices. The study uses AODV routing protocol and strictly dependent to it.

In other words, the method can be used only with AODV since the request and reply

messages of AODV is extended for service discovery purpose. Furthermore, the

21

study believes that in a cross layer service discovery architecture, periodic

advertisement of services does not cause to much traffic overhead since the service

discovery parameters are embedded in routing protocol messages.

Since it is based on routing protocol, ever node in the network maintains a routing

table and a service table. Each node advertises its services periodically and nodes

receiving the advertisement updates its service table. The node is also free to select

interested services among received service advertisement. If a node hears an

advertisement, it reschedules its broadcasts at a later time to avoid network

congestion. This is an interesting feature of the study. In the simulation studies, 50

nodes with 25 services are tested against 174 requests. In our opinion, large scale

network concept must have more than 50 nodes. Furthermore, there is nothing

special to mobility issue.

Before introducing the world of clustering and service discovery, we will briefly

discuss the pros and cons of the aforementioned techniques. The study done in

Konark [13] is peer to peer and inadequate for large scale networks. It is

independent from network layer routing protocol and assumes IP level connectivity.

Furthermore every node in the network have to maintain a micro-HTTP server.

These properties of Konark forces clients to obtain an IP and set up HTTP server.

On the other hand, for any place peer to peer communication is available, Konark is

suitable.

Proposal in [14] uses virtual backbone mechanism and the stability ratio of virtual

backbone nodes are not questioned for real life scenarios. The idea behind the

proposal seems like adapting backbone structures of fixed networks in to ad hoc

networks. Since the proposal is mainly a network layer solution, broadcasting and

multicasting features are used for query and response issues. To decrease the effect

of high message overhead, the solution uses source based multicast tree algorithm

but the efficiency of this algorithm for reducing message overhead is not clear. The

algorithm itself also burdens extra overhead to the system. But the overall system

22

has the advantage of little extra service discovery effort since the service discovery

messages are embedded in network layer routing messages.

The study [17] uses improved version of caching and the simulation results seems to

perform better than standard caching used in the study it is compared to. In general,

the bare caching fails in mobile and ad hoc environments since intermediate nodes

respond with configuration information on services from the cache and do not

rebroadcast the request message. Hence, this method has the drawback of lowering

the number of discoverable services since the clients can not discover other services

whose configuration is not cached at the responding nodes [17].

Proposal in [20] favors DHT against directory based architecture depending on the

simulation results they obtain. But the directory based architecture used in the

simulations periodically advertises itself and this means extra message overhead. In

architectures where such messaging is tuned, the results may change.

In [18], network layer support is used for service discovery. Routing messages are

extended for this purpose. But all messaging depends on broadcasting, which simply

means flooding To control and tune messaging overhead, a cluster based routing is

added to the solution. However, clustering can limit and reduce the multipoint relay

message but SRE messages ca not be summarized by cluster heads and have to be

flooded.

Study of [19] consolidates our idea on proactive routing and caching. The

simulation results show that caching with reactive routing performs poorly against

reactive routing without caching on invoking valid services. Furthermore, the study

states that proactive routing with full caching fails since nodes will maintain a route

to a matching provider whenever possible, nodes do not incorporate new

information. If a new, relatively remote provider becomes available and a route to

another provider exists, the node will never learn the new provider, as no state

change of the node is required. Therefore, in our idea, if caching will be used, it

should not be in entire network layer and should not depend on flooding messages

23

over the nodes. Instead, a relatively local and highly communicated hosts may be

cached.

2.4 Cluster-Aided Service Discovery

The first study we will mention in this category is multi-layer cluster based service

discovery [16]. As the name explains, the solution consists of two parts. In first part,

the nodes of the network are partitioned into clusters. Furthermore, the selected

cluster heads are again subject to head election procedure. Election process

continues recursively until a fully hierarchical structure is obtained. The second part

of the solution constructs service descriptions by an ontology which are also in tree

structure. Mainly, the solution is based on mapping these two trees on each other.

One important issue that should be pointed out is that the proposal assumes that

services are described by an ontology common to all nodes. To combine the two

layers, a set of devices forms the first level clusters if and only if all offered

services are described by the same leaf concept and every two devices from this set

are mutually reachable via that set of devices. The clustering policy does not restrict

the schema by any parameter such as cluster size or cluster shape. On the next layer,

clusters that offer services described by the same layer in the ontology are combined

and a connected graph from a cluster view is formed. The architecture consists of n

+1 layers where n corresponds ontology tree depth and 1 corresponds to device level

which is named as leaves. On the upper layer of the ontology, service descriptions

become more general. If desired service can not be found in layer m, then it is

forwarded to the layer m+1. On the upper layers, as the service description becomes

more general, the search scope gets larger.

The proposal claims that it allows to find services without relying on a centralized

directory server, minimizes message overhead and welcomes the high dynamics and

ever changing topology of ad hoc networks gracefully. We will briefly discuss this

claim at the end of this section. For the lemmas and theoretical proofs, [16] can be

consulted.

24

Another study worth mentioning is “Lanes” [15] by M. Klein et al. The basic idea of

Lanes is to define a two dimensional overlay structure, called lanes, which is similar

to, but less strict than the one implemented in the approach of the CAN that is

mentioned in section 1.2. One dimension of the overlay is used to propagate service

advertisements, the other one to distribute service requests. The authors claim that

the lane architecture is fault-resilient, efficient structure that can be used in

semantic based service discovery.

The proposal claims that strict grid architecture of CAN should be weakened in

order to satisfy the bottleneck of the ad hoc network such as limited sources etc. The

Lane design uses the special case of CAN where d=2. In standard CAN, every node

have to maintain 4 neighbors where dimension is 2. In Lane proposal, nodes are

loosely coupled such that Y interval is not important in two dimensional overlay.

Hence; only X interval is a matter, now the grid structure degrades to lane structure.

Within a lane, nodes are fixedly ordered and each of them knows its predecessor and

its successor [15]. Nodes in the same lane share the same anycast addresses which

help to use anycast routing for sending messages from lane to lane [15].

Lanes solution builds up service discovery and service announcement functions over

lightweight CAN architecture. Actually, the service discovery mechanism is similar

to original CAN’s. But CAN’s hashing mechanism could not be directly used in

Lanes since simple hashing can not handle rich semantic service description. Hence,

service discovery is highly separated from overlay structure of the network. It is

built up by exclusively using the fundamental semantic of service trading. Since

there are two orthogonal dimensions, one of them is used for announcing offered

services and the other is used for searching suitable services. The solution uses

combination of a proactive structure within one lane and a reactive structure

between the lanes which leads to anycasts to reach an arbitrary node in neighboring

lanes. To give an idea about lanes, we summarized general view. Broken connection

handling, node addition / removal issues of Lanes is not mentioned here. For further

information, [15] can be reviewed.

25

Multi layer clustering approach of [16] has two main drawbacks. First one is, the

idea of hierarchical clustering in a highly dynamic environment. Since the nodes are

mobile, it may not be possible to maintain such an architecture with little effort,

messaging and computational overhead. Another drawback is mapping a semantic

structure on to this architecture for the mobility reason. In our idea, using semantics

in such an environment is also not very efficient since every node in the network

have to know the semantics of how organizing its services. A newly joining node

can not advertise its services in such an ad hoc network if it has no idea of the of the

service description semantics.

Lanes architecture also suffers from semantic idea. Furthermore, it uses a light

version

of CAN, which constructs a virtual overlay over the physical network structure.

Thus, location information can not be used efficiently in such architectures since it

sees the network in virtual manner. Therefore, we believe that using both semantics

and virtual network overlay might add some extra computation burden to the nodes.

In [26], cluster-based peer to peer service discovery is proposed. The study aims low

message overhead, scalability and robustness. Nodes in a MANET that run this

algorithm will form dynamic clusters and service information is cached in clusters

by DHTs. For the clustering process, every node is assumed to have a unique

identifier. At the initialization phase, all nodes are in unknown phase and broadcasts

hello messages periodically. The periods of broadcasting is a system parameter and

can be adaptively changed according to the mobility patterns of the nodes.

In a hello message, the unique id and state of the sender node, neighborhood and

cluster information that sender knows are set. The cluster has a radius, which is

measured by hop counts, called csize. To adjust the communication, the radius of

cluster heads are set to (2*csize+1). If a node with an unknown state hears a hello

message from a head, it changes ist state to member mode. If the node can not hear

26

any hello message in a time interval, it switches to head mode since it has locally

minimum unique id.

For the service discovery and caching, service information is subject to a hashing

function. The extracted hash value is used by consistent hashing to distribute the it

among the unique ids of cluster members. When a node wants to find a specific

service, it puts the service description hash value and its own unique id in a packet

and sends it to its cluster head. cluster head first checks intra-cluster sources by

mapping the hash value of the desired service to the node ids. If a matching node is

found, the information is returned to sender in a service reply packet. In case cluster

head can not find it in the cluster, it sends out the request to other cluster heads in

the network.

The algorithm [26] has a very simple clustering algorithm but it uses lowest id

heuristic unfortunately. It does not take into account node capabilities. It should be

improved by node weight heuristic. Furthermore, the radius between two cluster is

(2*csize+1). However, the motivation behind this assignment is not very clear. Brief

explanation claims that cluster heads can know how and where to contact their

neighbor clusters but pseudo-code of clustering algorithm does not use the

mentioned value. Such hop count limit can be used but (2*csize+1) is fixed value

and the motivation behind the decision is not described. Furthermore, this value is

not changed in the simulation experiments and its default value is not given in the

system parameters table. Thus, it should be a system parameter and its effect to

simulation result should be traced.

There are also studies which utilize the advantages of directory based mechanisms

and P2P technologies. A good example is [27]. The architecture basically relies on

P2P overlay network which is constructed by couples of directories. Similar to the

previous study, it also stores service information in DHTs. In the architecture, the

directory nodes construct a cluster layer and serve ordinary nodes. An ordinary node

is only one hop away from any directory node in the cluster. In the cluster layer,

27

each member node owns a database for cache of the service information. The idea

behind this approach is to avoid flooded advertisement or request within the

network.

The cluster formation is based on node weight heuristic. As similar to other studies;

transmission power, mobility factor, energy factor and processing capability are the

parameters used for assigning a node's weight. When every node calculates its own

weight, neighbor nodes compare their values with each other. The nodes with

minimum weight are elected as directory of the cluster. The processing power is a

distinguishing factor if any equality occurs between nodes. The elected directory

multicasts a piece of cluster information within the cluster announcing its existence.

Then the node begins to listen to the messages from the member nodes. The

neighbor nodes hearing this message changes its state to member mode and send its

existence to the cluster periodically and observe the message density from the

directory to estimate the degree of separation. If the message density is high, the

member nodes sends a message to the cluster stating that it is going to leave.

Similarly, if directory node can not hear any heartbeat from member node for a time

interval, that node is removed from the list.For the service discovery, a typical DHT

implementation is used. Since we have mentioned it in the previous studies, we will

not repeat it here.

To compare the results, [27] chooses SSD by F. Sailhan et al. The simulation results

show that they have better results in message overhead issue, service discovery

success rate and average delay rate. But it is questionable whether 80 nodes are

enough to prove this algorithm works in large scale networks. For 80 nodes, simple

flooding may perform similar results and it has not been discussed in paper.

In [28], DMAC [21] based service discovery is proposed. Although the study

focuses on wireless sensor networks, it takes mobility into account and it is in the

scope of this thesis. As mentioned in the previous section, DMAC uses one-hop

neighborhood information to form clusters. The study of [28] loosens this rule and

28

allows an ordinary node be two or three hops away from cluster head. For the

intermediate hops, “parent” concept is introduced. In the clustering formation phase,

nodes with the highest capability grades among their neighbors announce

themselves cluster heads. The remaining nodes choose as parent the neighbor with

the highest capability grade. Hence, the ordinary nodes hear cluster head

announcement message from their parents.

The clustering structure proposed in this study resembles a forest composed of a set

of trees (or clusters). The height of the cluster is the longest path from the root node

to leaf. Two clusters are said to be adjacent if they have a common node connected

through a link. This common node can be considered as “gateway” node between

the clusters. If these gateway nodes are leaf nodes, they rebroadcast the cluster head

information. Hence adjacent clusters are able to obtain cluster head information of

the neighboring clusters.

If a node discovers a new neighbor with a higher capability grade than its current

parent, it selects the new one as its parent. Failure of parent link also triggers an

ordinary node to search a new parent. Newly discovered parent can be in an adjacent

cluster; as a result, cluster head information is propagated to the leaf. Different from

this algorithm, DMAC imposes maximum cluster height of one; resulting in direct

access to the cluster head instead of parent node. In DMAC, role decision of a node

is dependent on the decision of the neighbors with higher weights. The study claims

that single topology change in DMAC may trigger re-clustering of a whole chain of

dependent nodes.

The service discovery protocol has two main parts: service registration and service

discovery. In the first part, leaf nodes send their services to their parent. Any node

which is not a root also sends its own requests and requests of children to an upper

layer. Hence, every node knows the services of lower layers in the hierarchy. Since

the registration process requires unicast messages to be transmitted from children to

its parents, it can be integrated with the transfer of knowledge on adjacent clusters

29

Thus information update message is used for both service registration and

transferring the knowledge on adjacent clusters.

In the service discovery part, the distributed service directory which is constructed

in registration phase is used. The node sends out its request to its parent. If first level

parent can not find it, the forwarding iterates to upper levels in the hierarchy. If

message reaches the root node and it can not find it in the local directories, the

message is send out the other cluster heads. The next hope on the path leading to the

adjacent cluster is decided by every node that acts as forwarder of the message.

Although the response to the request can be returned by the first node that finds a

match in its registry, it is issued by the providing node itself. Motivation behind the

idea is to avoid matching any non-up to date service descriptions to the requester.

Since some applications may change description or even simpler, some parameters,

it is a good idea.

To improve hit ratio of service discovery, only root nodes caches the requested

services for a limited period of time. To achieve satisfying results, three parts of

work is done. At the first part, original DMAC algorithm is implemented. On the

second part, a simple service discovery algorithm is implemented and original

DMAC algorithm is tested with service discovery algorithm. On the third part,

DMAC algorithm is improved in some manners in order to aid service discovery

which will lead it to cause less message traffic and improved service discovery hit

ratios. The next chapter will start with the presentation of formal definition of

wireless networks and the assumptions done for the sake of the simulation code.

Before the implementation, as a final step and deep understanding of the simulation,

the design philosophy and the architectural key points are given.

30

CHAPTER 3

SERVICE DISCOVERY ORIENTED CLUSTERING

In this chapter, the design and implementation of the algorithms used in thesis is

represented. Before the essentials of the algorithms, it is suitable to give the

definitions, preliminaries.

3.1 Problem Definition and Preliminaries

An ad hoc network is modeled by an undirected graph G=(V,E) where V is the set

of wireless nodes forming wireless network. If u and v∈V can mutually receive

signal from each other, it denotes an edge and presented as {u , v }∈E where E is the

set of all edges in the wireless network. For a wireless node, to communicate each

other, a set of nodes which this node receives signal is called set of neighbors and

denoted as u where u∈V . Since nodes might be mobile in a wireless network,

the graph G and u can change. Generally, a node belonging to V will be denoted

as u.

A node in the network has a unique identifier called nodeId in the rest of the thesis.

Furthermore, every node has a weight which indicates its appropriateness to be a

clusterhead. The weight of u is denoted as wu . It is the sum of some attributes of u

such as remaining battery power, mobility ratio, CPU and memory capacity. For

simplicity in simulation, it is a real number assigned randomly when u powers up.

The word clustering in this context means partitioning the graph G into sub-graphs

such as C i where i>0. The node set of C i is represented as V C i . C i has a clusterhead

c satisfying w c > wu where u∈V C i and c∈V C i . The nodes except c are called

31

ordinary nodes in cluster C. There are some assumptions used in simulation

implementation:

•If u can hear v, then v can hear u.

•The packet queue of u is large enough to handle messages.

•The messages sent by u is received correctly by u

3.2 Design Philosophy

To improve service discovery in ad hoc networks, either service discovery itself

should be improved or the underlying structure should be improved in order to aid

and support service discovery algorithm. An important point that should be kept in

mind is not to separate both of two from each other. This will result in more

communication cost between the two. For this purpose, some studies mentioned in

previous chapters decided to embed service request and service response

information into routing messages. In this thesis, the second method is chosen to

improve the overall performance and service discovery is embedded in to clustering

algorithm.

To discover services, an adhoc network can choose two different ways as a

networking infrastructure. The first way is flooding as mentioned in previous

chapters. As it causes too much messaging overhead in some cases, this problem

resulted in sub-partitioning the network to decrease the messaging overhead. Since

simulation results of clustered networks perform better against flooding-type

networks, this thesis chooses to focus on clustering as a networking infrastructure.

Flooding-type networks usually best perform when number of nodes in the network

is relatively small and almost all of the nodes can hear each other. For instance, a

group of students doing team work in a laboratory is a good candidate for flooding

implementation. Furthermore, since the number of nodes in the network is relatively

acceptable to manage in a routing or service table. This fact results in fast response

to any service request and fast sense of service break hosted in any node. But when

32

the network size gets larger, it is very difficult for flooding topology to handle

traffic. In such situation, partitioning the network in to sub-networks, namely

clustering, is a good idea to control the traffic via clusterheads. If each node had

complete view of entire network topology as in flooding, routing table would

explode to an immense size. Clustering is therefore a vital for efficient resource

utilization and load balancing in large-scale dynamic networks.[25]

However, solely clustering can not meet the service discovery requirements of

dynamic ad hoc networks. To get the maximum performance for clustering, there

are some architectural decisions to be highlighted;

•The number of layers that the clustering will be performed.

•The number of hops used for constructing neighborhood.

•The number of directly connected clusterheads in neighborhood of a

clusterhead.

The “layer” problem of clustering is mentioned in details in previous chapters. The

decision for layer problem used in this thesis' clustering algorithm is one-layer

clustering. The fact that any node failure in lower layer causing extra reorganization

on higher layers plays an important role in “one-layer clustering” decision. For

constructing neighborhood list, one hop neighborhood information is used. The

motivation behind this decision is two or three hop neighborhood information

results in slow response to topology changes although the nodes have better

knowledge of surrounding neighbors. The situation where two or three hop

neighborhood best performs is scalability issues of non-mobile nodes.

The discovery phase has also two important design issues to be considered. The

most outstanding and performance critical issue is caching. Unfortunately, caching

mechanism does not have an absolute impact on service discovery. The impact

varies as mobility of the nodes vary. Hence, the caching mechanism must be a

property of the service discovery that is triggered according to the state of the ad hoc

network, mainly depending on the mobility of the nodes. As a supporting property

33

to the caching mechanism, either on demand routing or proactive routing should be

implemented. The natural behavior a caching mechanism shows is proactive routing.

In proactive routing, the path between two node is determined before it is needed.

Hence, a detailed management of routing table is required. For the sake of service

discovery, proactive routing caches the routes used in previous messaging sessions.

On the other hand, on demand routing does not cache any routes belonging to

previous transmissions. The idea behind on demand routing is that caching routes in

ad hoc network is usually results in false paths since nodes move frequently. Not

only failing paths occur, but also it causes extra message traffic and needs one more

path request among nodes to find an alive path to the destination node. Hence, a

second try for a path to the destination will also delay the getting service request

result.

When compared to each other, proactive routing seems to supports caching

mechanism better than on demand routing. On the other hand, it should be kept in

mind that mobility may force ad hoc network clusters to use on demand routing

instead of proactive routing. As in caching mechanism, it should be decided

according to the state of the clusters of network.

Although the service discovery algorithm itself is not the main subject examined in

this thesis, the algorithms supporting service discovery have to be tested against a

service discovery for the sake of performance and reliability. Hence, it should be a

consistent algorithm running in every node to welcome any service request and it

should be able to map any key word to corresponding / related service that the node

hosts. A service discovery entry must store a keyword set each service. Furthermore,

it must enable requesting node to be aware of the required parameters to trigger the

service. Briefly, the two core functionality a service discovery algorithm must

include are ability to map a request extracting it from keyword set and to have

adequate information to be served to the requester in order to start service. In

previous chapters, many service discovery algorithms are discussed in a large range

34

from embedding little information in to routing protocols to highly complex

semantic based algorithms. The simulation results of semantic networks are

satisfactory when the service discovery domain is known to every node. However, it

requires complex algorithms to execute and may result in slow response to the

service requests. On the other hand, embedding discovery on routing, service

discovery is strictly bounded to the routing layer capabilities. The best method is

decoupling service discovery and routing layer without causing extra messaging

overhead between two. In other words, the two components should be in the same

layer with loose coupling.

3.3 DMAC Algorithm

DMAC algorithm is a well-known algorithm for clustering ad hoc networks. It is

simple to implement and it has flexibility property to adapt new situations.

Furthermore, it does not assume stability on the cluster set up. Non-stability

assumption is an important feature for mobile nodes since initialization phase affect

the whole cluster structures, cluster numbers and further communication. It has six

important procedures triggered in particular situations. Pseudo-codes of the

methods will be explained in this thesis. Further information about the algorithm

can be found in [21]. Before explaining the methods, auxiliary methods and

predicates should be presented as a preliminary information.

•Clusterhead: variable where each node stores cluster information it belongs to.

•Ch(u): method returning true if u is a clusterhead, false if u is an ordinary

node.

•Cluster(u): the set of ordinary nodes whose clusterhead is u

Every node acts as an ordinary node when it powers up. Hence, Clusterhead

variable is null, Ch(u) is false, Cluster(u) is empty.

35

3.3.1 Initialization Method

Since simulation environment does not contain physical radio signals, the nodes

periodically send hello messages to inform its neighbors that it is alive and active in

the network. When a node newly joins the network, it does not know its own role.

To decide it, it has to get hello messages from its neighbors. A hello message

contains the weight of the sender node. If node receives at least one hello message

from any neighbor, it immediately executes initialization method to decide its own

role. It may not sound logical to execute cluster initialization on the first hello

message. However, original DMAC implementation executes it in this way. In fact,

the way it executes cluster initialization should be enhanced.

Figure 1 - Initialization Method

Briefly, the node checks the neighbor list to see if there exists any head node. If

such a node exists, the node becomes an ordinary node and sends its join request to

related head node. Otherwise, the node announces itself as head and checks the

count of the cluster head neighbors in its neighbor list. If the count exceeds a

predefined threshold, the head with minimum weight exceeding the threshold is

found. A resign message is send to the network to force head nodes to give up head

role and become an ordinary node. Since the mentioned action will also force the

36

ordinary nodes belonging to resigning head, they will have to find a new head.

Hence, resign messages may invalidate current cluster structures and cause many

ordinary nodes to take additional action.

3.3.2 Link Failure Method

In the link failure situation, there might be two different cases:

•Executing node is a head and failing node belongs to executor's cluster.

•Executing node is an ordinary node and failing node is executor's head.

Figure 2 - Link Failure Method

In the first case, the head node immediately removes failing node from the cluster.

In the second case, the ordinary node has to find a new head to join its cluster.

Mentioned method may result in invalidating the current cluster architecture. If the

failing node is a head node and executor is an ordinary node, it has to find a new

head or announce itself as a clusterhead. An immediate check is executed to figure

out if number of total heads exceed the predefined threshold value.

37

3.3.3 Add New Link Method

Figure 3 - Add New Link Method

The new link method, as clear as its name, executed whenever the executor node

receives hello messages from neighbor nodes. If this new neighbor is a head node,

executor node checks whether its weight is greater than the current head to which

this executor belongs. If this is the case, the executor node joins to the cluster of new

head and moves into an ordinary role.

If the executor is a head node and it has more than k head node neighbors, it decides

the node weight to resign. The node to resign might be in two cases:

•The executor head node might have to resign.

•Another head will have to resign.

38

If the first one is the case, the head node have to be an ordinary node and find a new

head for it self to join its cluster. In the case, an ordinary resign is executed in the

nodes having weight less than the threshold value.

3.3.4 Clusterhead Receive Method

The cluster head receive method is triggered when a node gets a clusterhead

message from a head node when that node announces itself as a head node.

Regardless of being a head node, the executor node checks if the weight of sender

head is greater than the weight of head node that the executor currently belongs to.

If this is the case, the executor node immediately leaves the current head and joins to

new head.

If the executor node is a head node; the set of clusterheads is checked to figure out if

the number of clusterheads exceed the predefined value. In this case, the head node

with minimum weight is found and a resign message is generated including the

weight of the mentioned head node. Any head node having weight smaller than the

minimum weight extracted in previous step has to give up clusterhead node when

resign message is received.

Figure 4 - Clusterhead Receive Method

39

3.3.5 Join Receive Method

Mentioned method has two parameters. It contains both joining ordinary node and

the head node issue to the join action. Apart from the two nodes, every node

receives the message that node is joining to the related head. The reason behind the

idea is informing all nodes for join event since previous head has to remove this

ordinary node.

Figure 5 - Join Receive Method

If the receiving node is a head and the sender is willing to join it, it immediately

adds the sender node to the cluster member list. If the joining node is in its cluster

and joining to another head, current head removes it from the cluster member list.

For another case, a head node may prefer to leave its head role and join to another

cluster. (This may occur when head node receives a resign message.) The nodes

being informed that its cluster head is leaving its role have to find a new cluster to

join. If ordinary nodes can not find a head to join, it simply announces cluster head.

40

3.3.6 Resign Receive Method

When a node receives a resign message and it is a cluster head, it checks its weight

with the threshold weight. If it has a weight smaller than threshold, it finds a new

head to join and moves in to ordinary node role. As it is obvious, the procedures

contain many resign messages which will result in dramatic cluster reorganization.

The idea behind the design of “resign message” is permitting head nodes to be

directly connected to each other. Although this is permitted, it is also restricted by a

predefined threshold value. As a result, to guarantee that a head node is one-hop

neighbor to k head nodes; such message is sent if the number of head nodes exceed

k. Receiving head node immediately resigns if it has weight smaller than the

threshold. By the mentioned method, the head nodes having higher weights remain

in cluster head set of total network and head nodes having weak weights are forced

to give up that role.

Figure 6 - Resign Receive Method

3.4 Service Discovery Algorithm

The service discovery algorithm implemented in this thesis operates over a clustered

network structure. Before introducing the service discovery algorithm in details, it is

appropriate to give the preliminary definitions.

41

3.4.1 Definitions Used in Service Discovery Algorithm

Service: The word service is used in a wide range in this study. Any source residing

in a node that is published to the network nodes is named as a “service”. In the

simulation environment, all services described in XML format with following

structure:

<?xml version="1.0" encoding="UTF-8"?>
<services>

<service>
<id>1</id>
<name>printing</name>
<keywords>

<keyword>color</keyword>
<keyword>print</keyword>

</keywords>
</service>
<service>

<id>2</id>
<name>memberFile</name>
<keywords>

<keyword>employer</keyword>
<keyword>member</keyword>

</keywords>
</service>
….

….
<services>

Each service is owned by a node when the simulation sets up. A node might serve

one or more services at the same time. The id property is preserved for simulator

usage. The name and keyword set are used to query a service in the network.

Service Weight: In the algorithm, each node has a “service weight” which is

increased on each service hit in the node. The service weight definition has an

important role since it plays a connector bridge role between the clustering

algorithm and the service discovery algorithm. Detailed usage of service weight can

be found at section 3.5.2

42

BorderH: After clustering set up or in topology changes, the ordinary nodes sends

the number of heads it is directly connected to its own clusterhead. This value is

described as “BorderH” value.

BorderB: Similar to BorderH, the value is the count of ordinary neighbor nodes

belonging to different clusters.

Intra-cluster Search: The service query process that is performed by the clusterhead

in service repositories of cluster members.

Inter-cluster Search: The service query process that is performed in many clusters

that is trigered by one clusterhead sending the query message to other clusterheads.

PhyToServiceWeight Ratio: Since the service popularity is projected as service

weight and it is used to determine the total weight of the node, a ratio between

two weight

value is needed.

Service Hit Increment: The service weight increment value if a service hit occurs in

any node.

Service One-Hop Increment: The service weight increment value used in one-hop

neighbor of the service provider node.

3.4.2 Service Discovery Algorithm Search Patterns

In Figure 7, a simple clustered network is shown. In the cluster, the clusterheads are

presented by tag “Hi” where i is the head number. Similar to the head nodes, the

ordinary nodes are presented by tag “Bij” where i is the clusterhead number the node

belongs to and j is number showing the node number in the related cluster.

43

Figure 7 – A simple clustered network

To discover a service, four different hop patterns can be traversed. The patterns

depend on reaching a clusterhead of a cluster. Mentioned patterns can be listed as

following:

H1-H2:

In this pattern, a clusterhead is directly connected to another clusterhead. The

example of mentioned pattern is H3-H4 connection in Figure 7.

•H1-B2-H2:

In this pattern, a normal node B2 connects two clusterheads and ordinary node

belongs to H2. The example of the pattern in Figure 7 is H1-B24-H2 connection.

•H1-B1-H2:

The pattern is similar to previous pattern including three hops. Although it seems

similar to H1-B2-H2 pattern, it has different usage in service discovery algorithm.

The example of given pattern in Figure 7 is H2-B24-H1 connection.

•H1-B1-B2-H2:

44

This pattern is the longest pattern in the network that could be used to reach to

another clusterhead. Two heads are connected by two ordinary nodes each

belonging to one of the two clusters. The example of the pattern in Figure 7 is H1-

B21-B43-H4 connection.

3.4.3 Core of the Service Discovery Algorithm

In the clustered network structure, a clusterhead caches the services provided by

each cluster member. Any service request from a cluster member is first queried in

cluster repository. This search is named as “intra-cluster search”. Any service hit is

immediate response is returned to the requester including the unique node number.

If the requested service can not be found by intra-cluster search, a forwarding list

depending on previously mentioned search patterns is constructed. The patterns

have priority one over other. H1-H2 is the most valuable pattern since it enables one

clusterhead to reach the other clusterhead in absolutely one hop. As a result, a

clusterhead checks whether it has another clusterhead among neighbors. In the

second step, H1-B2-H2 pattern is checked. To find this pattern, a clusterhead checks

whether any node belonging to another head is in the neighborhood by looking at

BorderH values. In the next step, H1-B1-H2 pattern is searched by checking any

cluster member has reported that it has clusterhead neighbor.

Although H1-B2-H2 and H1-B1-H2 consist of three hops, former one has priority

over other. The reason is that each node on the pattern checks its local service

repository before forwarding the message to the related head. In this situation, the

local search of B1 in pattern H1-B1-H2 is ambiguous since the H1 has cached the

services of B1 and queried them before starting an inter-cluster search. But in

pattern H1-B2-H2, H1 forwards the query message to B2 and B2 has to start a local

search before forwarding the message to its own head. If node B2 has a service hit,

it will immediately prepare a response message without forwarding the query to

clusterhead H2. Thus, the query will result in two hops instead of three hops query.

45

As a final step, H1-B1-B2-H2 pattern is searched among the BorderB values of

cluster members.

Once the forward list is constructed, patterns are tried according to their priority

starting with H1-H2 pattern in serial manner. In another words, the result of pattern

i is waited before forwarding the query with pattern (i+1) although clustering

algorithm and infrastructure support parallel query pattern. The idea behind this

decision is decreasing message count and message density in unit time in order to

prevent collision, packet drop and high traffic.

For patterns H1-B1-H2 and H1-B1-B2-H2, a forwarding list is constructed by node

B1 since it may have different clusterhead in pattern H1-B1-H2 and many ordinary

nodes belonging to different clusterheads in H1-B1-B2-H2. The response message

of B1 is prepared when all queries in constructed list is done or when the service hit

is found among the forwarding patterns. In H1-B2-H2 and H1-B1-B2-H2 pattern, in

contrast to behavior of B1, the node B2 forwards the query to H2 instead of

preparing a forwarding list. Since patterns can be used recursively in each

clusterhead, a vector data structure which holds the clusterheads visited during the

query traversal is also carried in the forward message as an attachment in order to

prevent duplicate cluster searches for same service request.

When the service hit is achieved in an inter-cluster search, each node on the way

back to the requesting node is pushed into a vector starting from the provider node.

Thus, the provider also gets a path to the provider for further communication in

addition to solely providing node information. Furthermore, if the service hit is

achieved in head node by an intra-cluster search, a message is sent to the provider

node in order to inform it that it will have a requester communication. Apart from

informing the node, receiving provider node also increases its service weight after

getting mentioned message.

46

3.5 Improved DMAC Algorithm

Message (or network traffic) density, which can be described as average message

sent in unit time, is an important measurement in wireless networks since high

message density will interrupt continuous communication between nodes. As a rule

of thumb, the improvement philosophy in DMAC and design philosophy in service

discovery algorithm depend on decreasing the message density to enable service

discovery and further service communication to be fast and continuous.

In original DMAC algorithm, when the network is set up, many nodes may

announce itself as a clusterhead since at the beginning there does not exist any

available clusterhead. Thus, the situation causes many false clusterheads which will

join to another clusterhead in a short period of time. As a result, many cluster

reorganization occurs in the network which invalidates current stable working

clusters. For any other algorithm that will operate on DMAC, the situation may not

cause any problem; but for service discovery algorithm, it is an obvious matter. To

solve the problem, the initialization method and the link failure methods -which is

triggered in ordinary nodes after a head failure is detected- is enhanced.

The init() method in original DMAC algorithm forces the ordinary node to join an

existing cluster. If there does not exist a clusterhead, the node announces itself as a

clusterhead. In the improved algorithm, an ordinary node finds the maximum

weighted node. If this node is a clusterhead having weight greater than its weight,

the ordinary node joins to the existing clusterhead. Otherwise, there are two other

options. First one is the executor node having the maximum weight among

neighbors. The situation results in executor node be a clusterhead. In the latter one,

the node has neither has a clusterhead around nor it has the maximum weight among

neighbors. At this point, the node does not finalize the init() procedure and waits a

clusterhead message from maximum weighted neighbor having no clusterhead. In

theory, the wait situation may lead to an “undefined role” syndrome among nodes if

the weight of the nodes increase / decrease regularly from one side to other side in

47

network layout. But random experimental results with 30 and 50 nodes show that

none of the nodes stay in an undefined role. They are either in head role or ordinary

node role.

link_failure() method is also improved to decrease cluster reorganization or false

clusterhead situation. When a head failure is detected, the members of the same

clusterhead are marked as headless in each node. Every node checks any available

head is around. If any head with greater weight can not be obtained, the node with

maximum weight among others becomes a clusterhead. During this process, any

ordinary node having a neighbor with a better weight waits the neighbor to

announce itself as a clusterhead. If the candidate head joins to another head, re-

election is done among remaining nodes. The procedure is similar to init() method.

In original DMAC algorithm, apart from init() and new_link() methods, the changes

in weight of the nodes are not sensed by the algorithm which may result in

inadequate clusterheads. In the improved algorithm, the dynamic changes in the

weight of nodes are detected and an ordinary node checks whether it is an adequate

node for being a clusterhead. If such situation occurs, the node immediately

announces itself as a clusterhead. The “service weight” property of service

discovery algorithm connects both algorithm and it is considered as another

parameter while calculating the total weight of the nodes. It may change in two

situations:

• A node may have a service hit informed by the message received from

clusterhead or a node may realize that a service hit is occurred in local

search while forwarding the search pattern.

• If the node is just one hop to the provider node and resulting path is passing

over it, the service weight of gate node also increases.

The service weight increase in two scenarios are different from each other. The

increment in first scenario is expected to be greater than the second one but since it

is a parametric value, it could be changed according to the needs of the network.

48

Simulation result section can be reviewed for results of the experiments done by

changing such parametric values.

In the second scenario, the one-hop neighbor of the provider node deletes the head

node from path vector in order to shorten the path and free the head node being on a

service path. The decision behind the idea is relieving the duty of the head nodes.

Since a head node in the cluster has duties such as caching the cluster services,

performing the intra-cluster search, preparing inter-cluster search structures and

managing the inter-cluster search. As a result, the power consumption in head nodes

is obviously higher than normal nodes. To aid the clusterheads and to shorten the

path, one hop neighbor of the provider node discards the head node from the path

vector if it is already passing over itself. Thus, the head nodes are kept out of the

service paths as much as possible.

After a service weight increment either due to first or scenario, the node

immeaditely check if its weight exceeds the weight of its current head. If the

mentioned situation occurs, a reorganization in the cluster is performed. Improved

versions of aforementioned method are as following:

procedure init()
begin

max = MAX(neighbors)
if (max is nil) {

clusterhead:=me
initCompletedFlag:=1

}elseif (totalWeight(me) > totalWeight(max))
begin

clusterhead:=me
initCompletedFlag:=1

end elseif (totalWeight(max) > totalWeight(me) and ch(max))
begin

join(max)
initCompletedFlag:=1

end else
initCompletedFlag:=2

end

49

procedure determineNewHead()
begin

max = MAX_HEAD(neighbors)
if (max not nil and totalWeight(max) > totalWeight(me))

join(max)
else begin

max = MAX(neighbors)
if (max is nil) begin

clusterhead:=me
determinationFlag:=1

end
elseif (totalWeight(max) < totalWeight(me)) begin

clusterhead:=me
determinationFlag:=1

end
else

determinationFlag:=2
end

end

50

CHAPTER 4

SIMULATIONS

In this chapter, various simulation environments are briefly introduced. Reasons

behind selecting OMNET++ environment and features of Mixim are explored. After

the introduction of simulation environment; the simulation parameters used during

the tests, the decision behind selecting mentioned parameters, the experiments run

for the implemented solution and the discussion about the experiment results are

presented.

4.1 Simulation Environments

Before presenting deep information about OMNET++ simulation environment, a

brief research is done about simulation environments. Key points and explanations

are presented at Table 1. Being open source or at least being free, Windows

compatibility, being user friendly and strong wireless networking support are the

important key features while selecting the simulation environment.

Table 1 - Simulation Environments

Simulator Brief Description Wind.
Comp.

Linux
Comp

Free Special
Note

Cnet [31] Developed at University
of Australia, event
driven approach, for
simulating point-to-
point and 802.3
Ethernet

No Yes Open
source,
For
academic
use

GloMoSim
[32]

Developed at UCLA,
parallel discrete-event
simulation for wired &

Yes Yes Academic
usage,
restricted

51

Table-1 Continued

GloMoSim
[32]

wireless
networks,
supporting
CSMA and
802.11

Yes Yes university
distributio
n

GTNetS
[30]

Developed
By
GeorgiaTec
h, mostly for
TCP/IP
based
networks, C
++ based.

Yes
(Prerequisite
: Visual
Studio 2005)

Yes Open
source

Claiming
802.11
support but
manual does
not contain
description
(at [30],
page 115)

NCTuns
[33]

Developed
by Network
and System
Laboratory
at NCTU.
For IP based
wired and
wireless
networks.
IEEE 802.3
CSMA/CD
MAC, IEEE
802.11b
support

No Yes
(restriction:
highly
dependent to
fedora kernel)

Free

NetSim [34] Developed
by Tetcoc.
IEEE 802.3,
802.4,
802.5,
802.11b

Yes Yes Commerci
al

Only
academic
demo
available

Developed
by
University
of Southern
California,
C++ based,
discrete
event sim.

Yes Yes Free Very user
unfriendly,
although
open
source,
difficult to
add /change
modules

52

Table-1 Continued

OMNeT++
[36]

Developed
by OMNeT
++
Community
Site.
component-
based,
modular
and open-
architectur
e, C++
based
simulation
environment

Yes Yes Free, open
source

Eclipse
based IDE,
strong and
user friendly
GUI and
interactive
simulation
support,
various
wireless
network
simulation
modules

OPNET [37] Developed
by OPNET
Technologie
s. For design
and study
communicat
ion
networks,de
vices,
protocols,
and
applications

Yes Yes Commercial formal
registration
is required
for academic
use

PARSEC
[38]

Developed
by UCLA
Parallel
Computing
Lab. C-
based
simulation
environment
for
sequential
and parallel
execution of
discrete
event
simulation.

Yes
(Prerequisite
: Visual
Studio 2005)

Yes Free, open
source

Does not
contain clear
information
about
wireless
network
support

53

OMNET++ simulation environment is started to be developed at the end of 1990s. It

is C++ based, component oriented, modular simulation environment and it has

Eclipse based IDE. For researchers who has a knowledge of C++, Java and Object

oriented view of understanding, simulation environment is very easy to adapt.

Unlike ns2, it has very user friendly GUI, simple set up directions for both Linux-

based and Windows based platforms. It is open source, hence it is very easy to

implement own auxiliary code and build the core. Furthermore, there are various

wireless and mobile adhoc networking simulation modules. Some of them can be

listed as following:

•INET Framework

•INETMANET Framework

•MF

•Castalia

•Mixim Framework

Detailed information about first four framework can be found at [36]. The fifth one

is the mobility module used in this thesis. It uses OMNET simulation engine and

adds additional features to simulate mobile and adhoc networks. The Mixim

framework merges ChSim, MacSimulator, Mobility Framework and Positive

Framework.

In Mixim, a network is modeled in layers. At the bottom, Nic layer resides and it

combines MAC and physical modules. On the next layer, network module is

implemented. Finally, application layer is mounted on network layer. Additional to

basic modules; arp, mobility and battery module are combined for specific

implementations. Since this thesis focuses on mobility, various mobility patterns are

tested against clustering algorithms.

Apart from pre-implemented mobility modules such as LinearMobility,

MassMobility, BonnMotionMobility, TurtleMobility, it is easy to implement

specific mobility modules extending from BaseMobility module which defines base

54

mobility features for extender classes. Like in mobility module case, the other

modules such as mac layer, application layer and battery modules have base classes

defining features of mentioned layers and enabling developers to extend Mixim

framework easily for their own simulation purposes. On the run time,

ConnectionManager and -simulation- World modules manages interaction between

aforementioned layers and modules. To give a general view of Mixim and introduce

how this thesis benefits from modules, a brief presentation is done in thesis borders.

Detailed structural and functional information about Mixim can be found at [39].

Furthermore, as a parallel understanding of OMNET++, Mixim Framework has a

good user interface for simulations. Figure 8 shows a start up screen shot for 10

nodes in 400x400 unit playground. To collect statistics, OMNET can log scalar

entities, histograms, vectors and errors. Scalar and vector entities further can be

used in statistical graphing. The IDE has a basic and powerful tool for drawing

graphs, bar charts and collaborating data sets. The common parameters and input

parameters for modules can be set either embedding into code or from omnetpp.ini

files.

55

Figure 8 Simulation Screenshot

4.2 Simulations

In this section, results of simulation are presented. Before exploring results, it is

appropriate to examine simulation parameters. Table-2 shows the mentioned values.

A Cartesian product is done for parameters having multiple values. Thus, for one

main scenario, (P to S) X (H to O) Cartesian results in 4 different sub-scenarios

under main scenario.

56

Table 2 – Simulation Parameters

Playground 1200meters X 660meters
Node count 24
Speed (Spd) double_uniform(1,2) mps
Angle int_uniform(0-360) degrees
Service Provider Node Count 5
Service Requester Node Count 20
Request Interval 4 seconds
Ratio of Physical Weight to Service
Weight (P to S)

(20% to 80%), (80% to 20%)

Service Hit Weight Increment to
Service One-hop Increment (H to O)

 (200-100), (100-200)

Simulation Duration 120 seconds

To examine the impacts of the improvements on DMAC algorithm and the

performance of the service discovery algorithm, both the improved and original

DMAC algorithm are tested against all scenarios and the arguments listed below are

measured:

• Average hop count for total try (HTT)

• Average hop count for hit try (HHT)

• Total join event count (JEC)

• Total clusterhead event count (CEC)

To analyze the behavior of both algorithms, three different main scenarios are run.

In the first scenario, the head nodes appear in the end point of the network and all

other normal nodes belonging to clusters appear in random scenarios. In the second

one, the head nodes mostly appear in middle points with cluster members around.

The third scenario is a free scenario where speed of the nodes, the service request

intervals, the provider and requester nodes are randomly distributed.

57

4.2.1 Experiments and Results

In the first scenario, head nodes appear at the end points after cluster initialization.

The normal cluster members reside in center of the network. In the initial cluster set

up, 4-5 clusters are formed. There does not exist any cluster fully disconnected from

the rest of the network. The maximum hop length is 6-7 from left to right, 3-4 from

up to down. Each head node owns 3,4 or 5 cluster members around. Table 3 shows

the result for both algorithms. To examine the impact of service weight on total

weight, first and second sub-experiments are run under 80% service weight. To

remove the effect of service weight, the ratio is reversed.

The third and fourth sub-scenarios are run to examine the behavior of the

implementation relatively having less service weight. Similar to the service weight

and physical weight ratios; the promotion points of service provider and one-hop

neighbor of provider is 200 and 100 respectively. To figure out the effect of such

promoting, the promotion points are reversed as executed in case of physical and

service weight. In the simulation environment, the total weight of a node may vary

between 1 and 999. The promotion point is 10% or 20% of maximum available total

weight which is 999.

Table 3 – Results of Experiment 1

Experiment -1 Heads appear in the endpoints

DMAC + Service Discovery Improved DMAC + Service Discovery

PtoS HtoO HTT HHT JEC CEC HTT HHT JEC CEC

20-80 200-10
0

21.3 7.0 55 17 17.3 6.2 37 10

20-80 100-20
0

21.3 7.0 55 17 15.8 5.8 41 11

80-20 200-10
0

21.3 7.0 55 17 19.4 6.6 25 7

80-20 100-20
0

21.3 7.0 55 17 19.4 6.6 25 7

58

In the second scenario, head nodes appear mostly at the middle points after cluster

initialization. The members of the clusters surround the head nodes. The idea behind

the scenario is pre-executing the head shift operation which is executed in first

experiment by the simulation code. In main scenario of this experiment, the task that

would be accomplished by the simulation is already defined in the set up. In other

words, the gain that would be obtained by simulation is given in the initialization.

Although significant improvement is not expected, the experiment is run to examine

if the solution invalidates any acceptable cluster organization in the network. In

other words, the experiment is run in order to check that the solution keeps the

network in stable situation if the initial set up is already stable. If the case could not

have been verified, additional improvements should have been designed on the

solution. Similar to first experiment, the impact of service weight and physical

weight on total weight are examined by reversing the ratios. In addition to weight

ratio, promotion points for service provider and one hop neighbor of provider are

also reversed in sub-scenarios. Table 4 shows the result for both algorithms.

Table 4 – Results of Experiment 2

Experiment 2 Heads appear in the middle points

DMAC + Service Discovery Improved DMAC + Service Discovery

PtoS HtoO HTT HHT JEC CEC HTT HHT JEC CEC

20-80 200-10
0

15.9 5.6 47 13 15.2 5.2 32 6

20-80 100-20
0

15.9 5.6 47 13 15.2 5.2 33 6

80-20 200-10
0

15.9 5.6 47 13 15.2 5.2 31 7

80-20 100-20
0

15.9 5.6 47 13 15.2 5.2 35 6

The third scenario is a free scenario where speed of the nodes, the service request

intervals, the provider and requester nodes are randomly distributed. Apart from the

previous scenarios, this scenario is run 7200 seconds with 50 nodes, producing

service requests in interval uniformly distributed between 2 and 4 seconds. The

59

positions of the head nodes and member nodes are not predefined. In other words,

some head nodes appear in end points whereas some of them appear in middle

points. Similar to other parameters, the position of head nodes are also random.

The idea behind the experiment is to examine the behavior of the solution under

random parameters. In addition to random value tests, the solution is also tested

against the heavy load of service request in long run time. By the help of the last

experiment, it is also examined if the solution executes in a stable manner in long

execution time. Te experiment result show that improved DMAC can still execute

with less network reorganization and shorter paths and shorter traversal hops. Table

5 shows the result for both algorithms.

Table 5 – Results of Experiment 3

Experiment 3 Random head occurrence

DMAC + Service Discovery Improved DMAC + Service Discovery

PtoS HtoO HTT HHT JEC CEC HTT HHT JEC CEC

20-80 200-10
0 38.1 15.6 7910 1546 17.8 12.3 7091 1128

20-80 100-20
0 38.1 15.6 7910 1546 19.1 13 7187 1206

80-20 200-10
0 38.1 15.6 7910 1546 20.5 13.7 7003 1098

80-20 100-20
0 38.1 15.6 7910 1546 20.6 13.9 7103 1001

4.3 Observations and Analysis of Experiment Results

In all scenarios, it is obvious that JEC, CEC values of improved DMAC algorithm

are lower than JEC, CEC values original DMAC algorithm. The reason behind the

difference of values between two algorithm is the improvements done in the second

algorithm. The details of the improvements can be found at chapter 3 in section 3.5

In the first experiment, where heads appear at endpoints, the improved algorithm

senses the service weight changes in provider nodes or in one-hop neighbor of

60

provider nodes and after a few hits in same nodes, the head of the cluster is shifted

from endpoint to relatively middle points by clusterhead announcement of one-hop

neighbor of provider nodes. Thus, the provider node which was acting as a gateway

to connect the its cluster to the remaining network, now becomes a clusterhead. As

being the new clusterhead of the cluster, it is able to query the cluster members

when a query is forwarded and immediately return the answer of the query. Since

the query message travels less hops, average query hop (HTT) and hit hop (HHT) of

the improved algorithm are shorter than the original algorithm.

When the numbers of the first algorithm are compared to itself in sub-scenarios of

first experiment, it is observed that there has not been any change. This is an

expected result since the original DMAC algorithm does not senses increase or

decrease in service weights. On the other hand, in the improved algorithm, the

service weight increases when service hit occurs in nodes and the increase is

reflected to the total weight of the nodes resulting new head announcements.

In the first and second sub-scenario of experiment 1, the ratio of the service weight

is extremely higher than the ratio of physical weight. The impact of service hit

weight increment and service one-hop increment come on the seen very fast. The

impact can be understood from the increment in CEC and JEC values. Since the

service weight increases, new head announcements occur in the network resulting

the CEC and JEC value to rise.

In the third and fourth sub-scenario of experiment 1, the ratio of the physical weight

is extremely higher than the ratio of service weight. As a result, the head nodes can

not be shifted to the middle point although the service weights increases in nodes.

The HTT and HHT values of reflect the behavior of the situation. Both values are

higher than the first and second sub-scenario results.

The results of experiment 2 shows that improved algorithm only shifts one or two

head node rather than all head nodes since the clusterheads are already in the

gateway role. Despite a few shifts, HTT and HHT values are still better than the

61

original algorithm. The constant values of original algorithm is another expected

result as in experiment 1.

In the final experiment, in contrast to situation in first experiment, the service

provider nodes are promoted instead of one hop neighbors of the providers. This is

easily understood from HTT and HHT values of first two sub-scenarios. The result

is an expected one in the scope of this study since one-hop neighbors of provider or

provider itself is promoted during service hits.

On the overall view, the results of the experiments are in the expected scope of the

thesis study.

62

CHAPTER 5

CONCLUSION and FUTURE WORK

As stated in abstract and introduction section, service discovery in mobile and adhoc

networks is cumbersome and painful process due to the mobility. To accomplish

mentioned task, numerous studies and many protocols have been done in the field.

Each study is worked in a restricted point of view and accomplishes a particular task

solving a restricted set of problem.

The view point in this thesis rely on preventing flooding or flooding-like messaging

among nodes to enable the network communicate in continuous manner. Since the

previous studies show that a heavy caching does not provide expected service hit

rates, a lightweight caching mechanism is used.

To provide a lightweight infrastructure for non-centralized and infra-structureless

MANET architectures; improved version of DMAC, which depends on solely one-

hop neighbor information, highly adaptive to mobility and could reorganize the

network in architecture changes is implemented. On the mentioned clustered

structure, a flexible service discovery algorithm, in which simple forwarding

patterns are used with priority options is integrated. To complete the service

discovery algorithm, lightweight caching mechanism which caching is done only in

clusterheads is integrated.

In order to enable the service discovery algorithm and DMAC algorithm

communicate each other, service popularity is added as a weight parameter. Thus,

the clustering algorithm adapts the changes in service discovery algorithm and

supports it by shifting the clusterhead role to appropriate nodes resulting in shorter

service hit paths and shorter message hop travels.

63

The service request where the requester lefts the cluster is also recovered up to 2

hops to support mobility in service discovery layer. The service requests which stays

in hang situation due to mobility or cluster changes are scanned by a routine and one

more request is done over the current clusterhead.

Unlike traditional wired networks, MANETs have many parameters and restrictions

to accomplish mentioned tasks. It is difficult to fix all parameters to perform best

performance since there exists numerous restrictions. A set of parameters are

improved to enable mobile nodes to benefit from the network resources while

considering the restrictions of the MANETs.

For future work about this thesis subject, particular improvements on caching can be

studied to shorten the HTT and HHT values. In fact, full caching in which every

node caches all request passing over itself does not solve the problem since path of

the service may change due to the mobility. Instead, a study on figuring out the best

performing cache threshold can be done to shorten aforementioned values and

service response times.

As a second step, an estimation mechanism can be constructed in order to predict

whether the reorganization of the clusters in accordance to the service discovery

layer is worth trying it. Hence, total reorganizations in the network is decreased

enabling the network to stay more stable.

64

REFERENCES

[1] Islam N. Shaikh Z.A., A novel approach to service discovery in mobile adhoc

network, IEEE, 2008, pp. 58-62.

[2] Rownston A. Druschel P., Pastry: Scalable, decentralized object location and

routing for large scale peer-to-peer systems, In Proceedings of IFIP/ACM

Middleware 2001, Nov. 2001, pp. 329-350

[3] Ratnasamy S. Francis P. Handley M. Karp R. Schenker S., A Scalable Content –

Addressible Network, In Proceedings of SIGCOMM, Aug. 2001, pp. 161-172

[4] JXTA home page, https://jxta.dev.java.net/, Last accessed on October 2009.

[5] Stoica I. Morris R. Karger D. Kaashoek M.F. Balakrkshnan H., Chord: A

Scalable Peer-to-peer Lookup Service for Internet Applications, In Proceedings of

SIGCOMM, Aug. 2001, pp. 1-14

[6] Zhao B.Y. Kubiatowicz J.D. Joseph A.D., Tapestry: A Resilient Global-scale

Overlay for Service Deployment, IEEE Journal on Selected Areas in

Communications, Vol.22, No.1, January. 2001, pp. 1-15,

[7] Guttman E. Perkins C. Veizades J. Day M., Service Location Protocol, Version

2, IETF RFC 2608, June 1999.

[8] Understanding UpnP: A White Paper,

http://www.upnp.org/resources/whitepapers.asp, Last accessed on 7 October 2009.

[9] Introduction to Jini, http://www.jini.org/wiki/Category:Introduction_to_Jini,

Last accessed on 6 October 2009.

65

https://jxta.dev.java.net/
http://www.jini.org/wiki/Category:Introduction_to_Jini
http://www.upnp.org/resources/whitepapers.asp
https://jxta.dev.java.net/

[10] Bettstetter C. Renner C., A comparison of service discovery protocols and

implementation of the service location protocol, In Proceedings of the 6th EUNICE

Open European Summer School: Innovative Internet Applications, 2000.

[11] SDP document, www.jeyatheepan.com/btsms/documents/sdp.doc, Last

accessed on 27 October 2009.

[12] Lee C. Helal S., Protocols for service discovery in dynamic and mobile

networks, International Journal of Computer Research Volume 11, Number 1, 2002,

pp. 1-12.

[13] Helal S. Desai N. Verma V. Lee C., Konark - A service discovery and delivery

protocol for adhoc networks, IEEE, 2003, pp. 2107-2113.

[14] Kozat C. Tassiulas L., Service discovery in mobile ad hoc networks: an overall

perspective on architectural choices and network layer support issues, Ad Hoc

Networks 2, 2004, pp. 23-44.

[15] Klein M. König-Reis B. Obreiter P., Lanes – A lightweight overlay for service

discovery in mobile ad hoc networks, 3rd Workshop on Applications and Services

in Wireless Networks (ASWN2003), 2003, pp. 1-26.

[16] Klein M. König-Reis B., Multi-layer clusters in ad hoc networks – an approach

to service discovery, Networking 2002 Workshops, LNCS 2376, 2002, pp. 187-201.

[17] Motegi S. Yoshihara K. Horiuchi H., Service discovery for wireless ad hoc

networks, IEEE, 2002, pp. 232-236.

[18] Li L. Lamont L., A lightweight service discovery mechanism for mobile ad hoc

pervasive environment using cross layer design, Proceedings of the 3rd International

Conference on Pervasive Computing and Communications Workshops, IEEE, 2005,

pp. 1-5.

66

http://www.jeyatheepan.com/btsms/documents/sdp.doc
http://www.jeyatheepan.com/btsms/documents/sdp.doc

[19] Frank C. Karl H., Consistency challenges of service discovery in mobile ad hoc

networks, MSWIM, 2004, pp. 105-114.

[20] Engelstad P.E. Zheng Y., Evaluation of service discovery architectures for

mobile ad hoc networks, Proceedings of the second annual conference on wireless

on-demand network systems and services, IEEE, 2005, pp. 1-14.

[21] Basagni S., Distributed and mobility adaptive clustering for ad hoc networks,

Technical report UTD / EE-02-98, 1998, pp. 1-14.

[22] Ramachandran L. Kapoor M. Sarkar A. Aggarwal A., DIAL M Workshop,

2000, pp. 54-63.

[23] Chatterjee M. Das S.K. Turgut D., WCA: A weighted clustering algorithm for

mobile ad hoc networks, Cluster Computing 5, 2002, pp. 193-204.

[24] Leng S. Zhang L. Fu H. Yang J., A novel location-service protocol based on k-

hop clustering for mobile ad hoc networks, IEEE transactions on vehicular

technology, vol. 56, no. 2, March 2007, pp. 810-817.

[25] Zhang Y. Ng J. M. Low C. M., A distributed group mobility adaptive clustering

algorithm for mobile ad hoc networks, Computer Communications 32, 2008, pp.

189-202

[26] Liang J.C. Chen J.C. Zhang T., Mobile service discovery protocol (MSDP) for

mobile ad hoc networks, 8th International Symposium on Autonomous

Decentralized Systems, 2007, pp. 1-8.

[27] Yuhan J. Hui T. Zemin L., Layered service discovery approach for MANETs,

IEEE, 2008, pp. 1-4.

67

[28] Marin-Perianu R.S. Scholten J. Havinga P.J.M. Hartel P.H., Cluster-based

service discovery for heterogeneous wireless sensor networks, International Journal

of Parallel, Emergent and Distributed Systems 23:4, 2008, pp. 325-346.

[29] Islam N. Shaikh Z.A., A novel approach to service discovery in mobile ad hoc

networks, Networking and Communications Conference, IEEE International, 2008,

pp. 58-62.

[30] GTNETS Manual,

http://www.ece.gatech.edu/research/labs/MANIACS/GTNetS/docs/GTNetS_manual

.pdf, Last accessed on 15 December 2009.

[31] CNET home page, http://www.csse.uwa.edu.au/cnet/index.htm l , Last accessed

on 15 December 2009.

[32]GloMoSimManual,

http://pcl.cs.ucla.edu/projects/glomosim/GloMoSimManual.html, Last accessed on

15 December 2009.

[33] NCTUns manual,

http://www.csie.nctu.edu.tw/~shieyuan/publications/AllChapter.pdf, Last accessed

on 15 December 2009.

[34] Netsim manual, http://www.tetcos.com/brochure_av.pdf, Last accessed on 15

December 2009.

[35] NS2 home page, http://www.isi.edu/nsnam/ns/, Last accessed on 15 December

2009.

[36] OMNET++ home page, http://www.omnetpp.org/, Last accessed 16 December

2009.

68

http://www.isi.edu/nsnam/ns/
http://www.tetcos.com/brochure_av.pdf
http://www.csie.nctu.edu.tw/~shieyuan/publications/AllChapter.pdf
http://www.csie.nctu.edu.tw/~shieyuan/publications/AllChapter.pdf
http://pcl.cs.ucla.edu/projects/glomosim/GloMoSimManual.html,Retreived
http://pcl.cs.ucla.edu/projects/glomosim/GloMoSimManual.html,Retreived
http://pcl.cs.ucla.edu/projects/glomosim/GloMoSimManual.html
http://www.csse.uwa.edu.au/cnet/index.html
http://www.csse.uwa.edu.au/cnet/index.html
http://www.ece.gatech.edu/research/labs/MANIACS/GTNetS/docs/GTNetS_manual.pdf
http://www.ece.gatech.edu/research/labs/MANIACS/GTNetS/docs/GTNetS_manual.pdf

[37] OPNET Academic page,

http://www.opnet.com/university_program/research_with_opnet / , Last accessed on

10 December 2009.

[38] PARSEC home page, http://pcl.cs.ucla.edu/projects/parsec/, Last accessed on

16 December 2009.

[39] Köpke A. Swigulski M. Wessel K. Willkomm D. Klein H.P.T. Parker T.E.V.

Visser O.W. Lichte H.S. Valentin S., Simulating Wireless and Mobile Networks in

OMNeT++ : The MiXiM Vision, OMNeT++ 2008, March 2008, pp. 1-8.

69

http://pcl.cs.ucla.edu/projects/parsec/
http://www.opnet.com/university_program/research_with_opnet/
http://www.opnet.com/university_program/research_with_opnet/

Appendix A

PSEUDO-CODES of SERVICE DISCOVERY ALGORITHM

The following procedure is triggered when a head node receives service request

from cluster members.

•procedure memberRequest (member, keyword)
begin
 service:=intraClusterSearch(keyword)
 if (service is nil)
 begin
 service:=interClusterSearch(keyword)
 sendReply(service, member)

end
end

The following procedure is used by head nodes while searching the service

repository of cluster members.

•procedure intraClusterSearch (keyword)
begin
 for all cluster_members do
 begin
 service:=localSearch(member,keyword)
 end
end

The following procedure is triggered when the requested service can not be found in

repository of cluster members.

•procedure interClusterSearch(keyword)

begin
 add(me, visitedList);
 constructForwardSchema(keyword)
 forwardPattern:=getFirstUnforwardedPattern()
 sendMessage(keyword, forwardPattern.node)
end

70

The following procedure is used to built up a forwarding schema when an inter-

cluster search will be started.

•procedure constructForwardSchema(keyword)

begin
for all neighbors do

begin
if isHead(neighbor)
 addToList(neighbor, H1_H2)

end
 for all neighbors do

begin
if (notIsHead(neighbor) and head(neighbor)<>me)
 addToList(neighbor, H1_B2_H2)

end
 for all cluster_members do

begin
if (borderH(member)>0)
 addToList(member, H1_B1_H2)
if (borderH(member)=0 and borderB(member)>0)
 addToList(member, H1_B1_B2_H2)

end

The following procedure is used to forward a service request message to adequate

neighbor.

•procedure forwardMessage(keyword, pattern, requester, visitedList)

begin
 service:=localSearch(keyword)
 if (service is not nil)
 replyMessage(service, requester)
 elseif (pattern=H1_B2_H2 and notVisited(head))
 begin
 add(head,visitedList)
 sendMessage(head, keyword, pattern,visitedList)
 end
 elseif (pattern= H1_B1_B2_H2 and requester<>head)
 begin
 add(head,visitedList)
 sendMessage(head, keyword, pattern,visitedList)
 end
 elseif (pattern=H1_B1_B2_H2 and requester=head)

begin
 list:=getBorderBNodes(me)
 node:=getUnvisitedNode(list.node.head);
 add(list.node.head, visitedList)
 sendMessage(node, keyword, pattern,visitedList)
end
elseif (pattern=H1_B1_H2 and requester=head)

71

begin
 list:=getBorderHNodes(me)
 node:=getUnvisitedNode(list);
 add(node,visitedList)
 sendMessage(node, keyword, pattern,visitedList)
end

end

The following procedure is used when any serach pattern can not find the requested

service. From the previosly constructed forward list, a new serach pattern is

selected.

•procedure replyMessageReceived(service, requester, sender)

begin
 if (service is nil)
 begin
 forwardPattern:=getFirstUnforwardedPattern()
 sendMessage(keyword, forwardPattern.node)
 end
 else
 sendMessage(requester, service)
end

72

