

A VARIABLE NEIGHBORHOOD SEARCH PROCEDURE FOR THE

COMBINED LOCATION WITH PARTIAL COVERAGE AND SELECTIVE

TRAVELING SALESMAN PROBLEM

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

FATĠH RAHĠM

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

INDUSTRIAL ENGINEERING

MAY 2010

ii

Approval of the thesis:

A VARIABLE NEIGHBORHOOD SEARCH PROCEDURE FOR THE

COMBINED LOCATION WITH PARTIAL COVERAGE AND

SELECTIVE TRAVELING SALESMAN PROBLEM

submitted by FATİH RAHİM in partial fulfillment of the requirements for the

degree of Master of Science in Industrial Engineering Department, Middle

East Technical University by,

Prof. Dr. Canan Özgen

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Nur Evin Özdemirel

Head of Department, Industrial Engineering

Assoc. Prof. Dr. Canan Sepil

Supervisor, Industrial Engineering Dept., METU

Examining Committee Members:

Assoc. Prof. Dr. Haldun Süral

Industrial Engineering Dept., METU

Assoc. Prof. Dr. Canan Sepil

Industrial Engineering Dept., METU

Assoc. Prof. Dr. Yasemin Serin

Industrial Engineering Dept., METU

Assist. Prof. Dr. Sedef Meral

Industrial Engineering Dept., METU

Prof. Dr. Levent Kandiller

Industrial Engineering Dept., Çankaya University

Date: 05.05.2010

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

 Name, Last name : FATĠH RAHĠM

 Signature :

iv

ABSTRACT

A VARIABLE NEIGHBORHOOD SEARCH PROCEDURE FOR THE

COMBINED LOCATION WITH PARTIAL COVERAGE AND SELECTIVE

TRAVELING SALESMAN PROBLEM

Rahim, Fatih

M.S., Department of Industrial Engineering

Supervisor: Assoc. Prof. Dr. Canan Sepil

May 2010, 122 pages

In this study, a metaheuristic procedure, particularly a variable neighborhood

search procedure, is proposed to solve the combined location and selective

traveling salesman problem in glass recycling. The collection of used glass is

done by a collecting vehicle that visits a number of predefined collection centers,

like restaurants and hospitals that are going to be referred to as compulsory points.

Meanwhile, it is desired to locate a predetermined number of bottle banks to

residential areas. The aim is to determine the location of these bottle banks and

the route of the collecting vehicle so that all compulsory points and all bottle

banks are visited and the maximum profit is obtained. Population zones are

defined in residential areas and it is assumed that the people in a particular

population zone will recycle their used glass to the closest bottle bank that fully or

partially covers their zone. A Variable Neighborhood Search algorithm and its

variant have been utilized for the solution of the problem. Computational

experiments have been made on small and medium scale test problems, randomly

generated and adapted from the literature.

Keywords: Neighborhood search, location-routing, traveling salesman problem,

maximal covering problem

v

ÖZ

BĠRLEġĠK KISMĠ KAPSAMALI YERLEġĠM VE SEÇMELĠ GEZGĠN SATICI

PROBLEMĠ ĠÇĠN BĠR DEĞĠġKEN KOMġULUK ARAMA YÖNTEMĠ

Rahim, Fatih

Y. Lisans, Endüstri Mühendisliği

Tez Yöneticisi: Doç. Dr. Canan Sepil

Mayıs 2010, 122 sayfa

Bu çalıĢmada, cam geri dönüĢümündeki birleĢik yerleĢim ve seçmeli gezgin satıcı

problemini çözmek için bir metasezgizel yöntem, değiĢken komĢuluk arama

yöntemi önerildi. KullanılmıĢ camların toplanması, restoran, hastane gibi önceden

tanımlanmıĢ, zorunlu nokta olarak değinilecek toplama merkezlerinden geçen bir

toplama aracı tarafından yapılır. Bu sırada, yerleĢim bölgelerine, önceden

belirlenmiĢ sayıdaki geri dönüĢüm kumbaralarının yerleĢtirilmesi istenmektedir.

Amaç, bu geri dönüĢüm kumbaralarının yerini ve toplama aracının rotasını

belirleyerek ve bütün zorunlu nokta ve geri dönüĢüm kumbaralarına uğrayarak en

yüksek kazancın elde edilmesidir. YerleĢim yerlerindeki nüfus bölgeleri, belli

nüfus bölgesindeki insanların kullanılmıĢ camlarını kendi bölgelerini kısmi ya da

parçalı olarak kapsayan en yakın geri dönüĢüm kumbarasına bırakacakları Ģekilde

tanımlanmıĢtır. Problemin çözümünde bir değiĢken komĢuluk arama algoritması

ile farklı bir varyasyonu kullanılmıĢtır. Sayısal deneyler, küçük ve orta

büyüklükteki, raslantısal oluĢturulmuĢ ya da kaynaklardan uyarlanmıĢ problemler

üzerinde yapılmıĢtır.

Anahtar Kelimeler: KomĢuluk tarama, yerleĢim-rotalama, gezgin satıcı problemi,

maksimum kapsama problemi

vi

To My Family

vii

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my supervisor Assoc. Prof. Dr.

Canan Sepil for her guidance, advice, criticism and insight throughout this study. I

am very grateful to her for introducing me the subject and for her positive attitude

all the time.

I want to thank Assoc. Prof. Dr. Haldun Süral, Assoc. Prof. Dr. Yasemin Serin,

Assist. Prof. Dr. Sedef Meral and Prof. Dr. Levent Kandiller for their comments

and suggestions that have provided valuable enhancements for my thesis. I want

to thank Assist. Prof. Dr. Sedef Meral again for her encouraging me to pursue my

master’s studies.

I am very grateful to my sister Fethiye Rahim and my mother Yüksel Rahim who

are always supporting and motivating me. It would not be possible to carry out

this study without their love and encouragement.

viii

TABLE OF CONTENTS

ABSTRACT ... iv

ÖZ ... v

ACKNOWLEDGEMENTS .. vii

TABLE OF CONTENTS... viii

LIST OF TABLES .. x

LIST OF FIGURES... xii

CHAPTERS

1. INTRODUCTION... 1

2. MATHEMATICAL MODELLING AND LITERATURE REVIEW 3

2.1 Mathematical Model for MCLPP-STSP ... 3

2.2 MCLP Related Literature Review... 8
2.2.1 MCLP with coverage over critical distance 10
2.2.2 Solution Algorithms for MCLP ... 12

2.3 Traveling Salesman Problem with Profits Related Literature Review ... 12
2.3.1 Exact Solution Procedures for OP ... 15
2.3.2 Classical Heuristic Solution Procedures for OP 15

2.3.3 Metaheuristic Solution Procedures for OP 16
2.3.4 Other Studies Related to Selective Traveling Salesman Problem ... 17

3. VARIABLE NEIGHBORHOOD SEARCH ... 19

3.1 Initialization .. 21
3.1.1 Neighborhood structures .. 21

3.1.2 Finding an initial solution .. 22
3.1.3 Stopping condition ... 23

3.2 Main Step .. 23

3.2.1 Shaking .. 23
3.2.2 Local search .. 25

3.3 Intensification and diversification ... 26

3.4 Parallelization in VNS ... 28
3.5 Variants of Variable Neighborhood Search ... 29
3.6 Use of VNS in Location Problems .. 31

3.7 Use of VNS in Vehicle Routing Problems ... 32
3.8 Use of VNS in variants of TSP ... 33

4. PROPOSED ALGORITHM ... 34

4.1 Neighborhood structure ... 37
4.2 The initial solution ... 38

ix

4.3 Stopping condition ... 38
4.4 Main step .. 38
4.5 A greedy heuristic procedure .. 39

5. COMPUTATIONAL RESULTS ... 42

5.1 Problem Sets ... 42

5.1.1 Type 1 Instance Set .. 42
5.1.2 Type 2 Instance Set .. 44
5.1.3 Type 3 Instance Set .. 45

5.2 TSP Algorithms .. 45
5.3 Parameter Setting for VNS using Linkern .. 49
5.4 Parameter Setting for VNS using Cheapest Insertion Heuristic 54

5.5 Computational Results ... 55
5.5.1 Results for TSP instances... 56
5.5.2 Results for VRP instances .. 58

5.5.3 Results for Random Instances ... 60
5.5.4 Results for Large Instances .. 62
5.5.5 A detailed study on profits ... 62

6. CONCLUSION AND RECOMMENDATIONS .. 67

REFERENCES .. 70

APPENDICES

A. STEPS OF VND, VNDS AND SVNS ... 77

B. COMPARISON OF CONCORDE, LINKERN AND LKH ALGORITHMS . 78

C. COMPARISON OF THE PERFORMANCE OF VNS WITH ALTERNATIVE

TSP SOLUTION PROCEDURES .. 81

D. COMPUTATIONAL RESULTS FOR TSP INSTANCES 82

E. COMPUTATIONAL RESULTS FOR VRP INSTANCES 91

F. COMPUTATIONAL RESULTS FOR RANDOM INSTANCES 99

G. COMPUTATIONAL RESULTS FOR LARGE INSTANCES 104

H. THE EFFECT OF THE NUMBER OF BOTTLE BANKS AND UNIT COST

 ... 108

x

LIST OF TABLES

TABLES

Table 1. Value of step for different p values. .. 50

Table 2. Minimum CPU required to find the best objective for different kmax

values. .. 51

Table 3. Alternative methods used for the solution of TSP in VNS. 52

Table 4. CPU Time and % Error of VNS with alternative TSP solution procedures

for the random instances ran20, ran50 and ran100. 53

Table 5. Value of step for different kmax-kmin values. .. 54

Table 6. Summary of computational results for TSP Instances. 57

Table 7. Summary of computational results for VRP Instances. 59

Table 8. Summary of computational results for Random Instances 61

Table 9. Revenues and costs for all possible p values for the problem ran20 63

Table B-1. CPU Time and % Error of TSP Algorithms for TSP instances. 78

Table B-2. CPU Time and % Error of TSP Algorithms for VRP instances. 78

Table B-3. CPU Time and % Error of TSP Algorithms for TSPs generated

fromVRP instances. .. 79

Table C-1. CPU Time and % Error of VNS with alternative TSP solution

procedures for TSP instance eil101. .. 81

Table C-2. CPU Time and % Error of VNS with alternative TSP solution

procedures for VRP instance eil101. ... 81

Table D-1. Computational Results for the TSP instance, burma14. 83

Table D-2. Computational Results for the TSP instance, bayg29. 84

Table D-3. Computational Results for the TSP instance, dantzig42...................... 86

Table D-4. Computational Results for the TSP instance, eil51. 87

Table D-5. Computational Results for the TSP instance, eil101............................ 89

Table E-1. Computational Results for the VRP instance, eil22. 92

Table E-2. Computational Results for the VRP instance, eil23. 93

Table E-3. Computational Results for the VRP instance, eil30. 94

xi

Table E-4. Computational Results for the VRP instance, eil33. 95

Table E-5. Computational Results for the VRP instance, att48. 96

Table E-6. Computational Results for the VRP instance, eil76. 97

Table E-7. Computational Results for the VRP instance, eil101. 98

Table F-1. Computational Results for Random instances, ran20, ran30, ran40,

ran50. ... 100

Table F-2. Computational Results for Random instances, ran60, ran80, ran100..

 .. 102

Table G-1. Computational Results for the large instance gil262. 105

Table G-2. Computational Results for the large instance KroA200. 106

Table H-1. Revenues and costs for all possible p for the problem ran50. 109

Table H-2. Revenues and costs for all possible p for the problem ran100. 111

Table H-3. Revenues and costs for all possible p for the problem bayg29-29. ... 113

Table H-4. Revenues and costs for all possible p for the problem eil51-51........ 115

Table H-5. Revenues and costs for all possible p for the problem att48-5... 117

Table H-6. Revenues and costs for all possible p for the problem eil76-8. 119

Table H-7. Revenues and costs for all possible p for the problem kroA200. 121

xii

LIST OF FIGURES

FIGURES

Figure 1. Samples of possible coverage functions. ... 10

Figure 2. Basic steps of the VNS algorithm proposed by Hansen and Mladenović

(2001)... 20

Figure 3. 2-opt and 3-opt moves for TSP. ... 22

Figure 4. Role of shaking on escaping from local minimum. 25

Figure 5. Basic steps of the Local Search algorithm for minimization problem... 26

Figure 6. Two search landscapes defined by two different neighborhoods. Blum

and Roli (2003). .. 27

Figure 7. Pseudo code of VNS applied to MCLPP-STSP. 36

Figure 8. A greedy heuristic procedure to construct initial solution. 41

Figure 9. Graph of kij with linear partial coverage function. 43

Figure 10. CPU times of TSP Algorithms for 13 TSP problems of TSPlib. 46

Figure 11. CPU times of TSP Algorithms for 9 VRP problems of TSPlib. 47

Figure 12. Average CPU times of TSP Algorithms for problems generated from

VRP instances. .. 48

Figure 13. Progress of VNS algorithm with different kmax values, for ran100,

p=15. .. 50

Figure 14. Revenue and cost components for the problem ran20. 64

Figure 15. The best number of bottle banks to locate for the problem ran20. 65

Figure 16. Amount of profit for different unit cost, ran20. 66

Figure H-1. Revenue and cost components for the problem ran50. 109

Figure H-2. The best number of bottle banks to locate for ran50. 110

Figure H-3. Amount of profit for different unit cost, ran50. 110

Figure H-4. Revenue and cost components for the problem ran100.................... 111

Figure H-5. The best number of bottle banks to locate for ran100. 112

Figure H-6. Amount of profit for different unit cost, ran100. 112

Figure H-7. Revenue and cost components for the problem bayg29-29. 113

xiii

Figure H-8. The best number of bottle banks to locate for bayg29-29 114

Figure H-9. Amount of profit for different unit cost, bayg29-29. 114

Figure H-10. Revenue and cost components for the problem eil51-51 115

Figure H-11. The best number of bottle banks to locate for eil51-51 116

Figure H-12. Amount of profit for different unit cost, eil51-51 116

Figure H-13. Revenue and cost components for the problem att48-5 117

Figure H-14. The best number of bottle banks to locate for att48-5 118

Figure H-15. Amount of profit for different unit cost, att48-5 118

Figure H-16. Revenue and cost components for the problem eil76-8. 119

Figure H-17. The best number of bottle banks to locate for eil76-8. 120

Figure H-18. Amount of profit for different unit cost, eil76-8. 120

Figure H-19. Revenue and cost components for the problem kroA200. 121

Figure H-20. The best number of bottle banks to locate for kroA200. 122

Figure H-21. Amount of profit for different unit cost, kroA200 122

1

CHAPTER 1

INTRODUCTION

In this study, our aim is to determine the locations of bottle banks used in

collecting recycled glass. In Ankara, currently glass recycling is performed via a

limited number of bottle banks provided by ÇEVKO, which is a non-

governmental organization established to manage recycling activities. ÇEVKO

has worked with the Ministry of Environment and Forestry and located the bottle

banks considering the properties of the areas in terms of population and closeness

to the industry. Recently, ÇEVKO handed over the possession of the bottle banks

to a collecting company in Ankara. The glass collected with the given number of

bottle banks, cannot provide satisfactory revenues for the collecting company to

compensate for their expenses. The company wants to determine new locations

for the bottle banks, with the aim of collecting the maximum amount of glass

considering the changes in the population of the residential areas. The company

also has some customers, mostly hospitals, restaurants, bars and schools with

whom it has made contracts to collect glass on a regular basis. We will refer to

these customers as compulsory points that have to be visited every day.

We assume that the company has a fixed number, p, of bottle banks. A limited

number of bottle banks are provided by ÇEVKO to the company for free, and the

company does not have a control on the number to be located. Currently, because

of its financial situation, it does not have the financial means to purchase

additional bottle banks and it has to find the best place for these limited resources.

There are a number of potential sites to locate these p banks. There are two main

factors that affect the desirability of locating a bottle bank in a potential site:

closeness of the site to the route of the vehicle that serves the customers and the

amount of glass that can be collected in that site. It is required that the vehicle will

be routed daily to serve all of the customers and the sites where the bottle banks

2

are located. The routing part of the problem is the selective traveling salesman

problem (STSP) as defined by Gendreau et al. (1998). STSP is defined as the

traveling salesman problem (TSP) where the aim is to find a tour of maximal

profit that includes all compulsory points. The revenue that will be obtained from

a potential site is related with the proximity of the bottle banks to the residences

of the droppers. The people will recycle bottles to a bottle bank if it is convenient

for them. Therefore, the location part of our problem can be seen as the maximal

coverage location problem (MCLP) in the sense that a potential site will cover a

population zone, if the proximity to the nearest bank is convenient. Moreover we

can include partial coverage as well, and consider the problem as a maximal

coverage location problem in the presence of partial coverage (MCLPP), see

Karasakal and Karasakal (2004). Considering the two aspects, the problem of

determination of the location of bottle banks is done by a special type of the

location-routing problem which is a combined selective traveling salesman

problem (STSP) and MCLP in the presence of partial coverage MCLPP, i.e.

combined MCLPP-STSP.

In Chapter 2, mathematical formulation of the problem and its relation to the

MCLPP and STSP are given. In addition, the related literature on location

problems and traveling salesman problem is summarized. In Chapter 3, variable

neighborhood search (VNS) algorithm is discussed in detail with its literature

review. Proposed VNS algorithm and a greedy heuristic are explained in Chapter

4. Computational experiments including the generated problems and experimental

results are reported in Chapter 5. Chapter 6 is the conclusion chapter.

3

CHAPTER 2

MATHEMATICAL MODELLING AND LITERATURE REVIEW

In this chapter, we provide a mathematical model for the combined Maximal

Coverage Location Problem with Partial Coverage and Selective Traveling

Salesman Problem, MCLPP-STSP. Moreover, the related literature on location

problems and TSP problems are reviewed in this chapter.

2.1 Mathematical Model for MCLPP-STSP

Polat (2008) has formulated the MCLPP-STSP for the case when a fleet of

vehicles are available to collect recycled glass from the compulsory points and the

bottle banks. Here we provide a simpler formulation of the problem for a single

vehicle.

Assumptions:

 There are p bottle banks to locate.

 There is no fixed cost of locating a bottle bank.

 The bottle banks are assumed to be uncapacitated.

 There are n population zones.

 In a population zone, people are assumed to be homogenous in terms of

their willingness to recycle glass.

 There are s alternative sites to locate the bottle banks and the alternative

sites may or may not coincide with the population zones.

 An alternative site (fully or partially) covers a population zone if the zone

is within critical distances from the site, or it does not cover the zone

outside the critical distances.

 There is a single uncapacitated vehicle.

 There are m compulsory points which the vehicle is obliged to visit.

4

Let N be the set of population zones, K be the set of alternative sites and Li be the

set of alternative sites that can either fully or partially cover zone i. Moreover let

M be the set of compulsory points. Thus we can define H = K U M as the set of all

points that are to be, and can be, visited in a tour. Note that n = N , s = K and m =

M . Since p sites will be selected among s alternative sites to locate the bottle

banks, the number of points in a tour of the vehicle will be f = p + m.

Parameters:

dij: distance between points i and j.

c: cost for unit distance traveled.

q: daily expected amount (kg) of recyclable glass that a person can recycle.

ri: number of residents in the population zone i.

R: unit revenue of glass recycled.

kij: coverage level (%) defining the rate of recycling in population

zone i using alternative site j, 0 kij 1.

wij: coverage coefficient denoting the total revenue obtained when alternative

 site j provides coverage to population zone i.

ij ij iw k r q R

p: number of bottle banks to be located.

f: number of points visited by the vehicle.

The coverage level kij can be determined by using a coverage function as in

Karasakal and Karasakal (2004). Hence a population zone i is fully covered by

alternative site j if the distance between them is less than distance S, and is

partially covered by alternative site j if the distance between them is greater than

distance S but less than distance T. In other words, an alternative site can fully

5

cover zones within the circular field with radius S where it is centered and

partially cover zones between the circular fields with radius S and T (S<T).

Coverage level provided by alternative site j to a population zone i, defined as the

parameter kij, for Ni , Kj , is given by

 1 if dij S,

kij = f(dij) if S < dij T,

 0 otherwise.

Variables:

 1 if the vehicle visits point j after point i

xij =

 0 otherwise

 1 if a bottle bank is located at alternative site j

yj =

 0 otherwise

 1 if population zone i is fully or partially covered by alternative site j

zij =

 0 otherwise

ui = label of point i

Min z = ij ij ij ij

i H j H i N j Li

c d x w z

Subject to

1
Hi

ijx Mj (1)

j

Hi

ij yx Kj (2)

0
Hk

jk

Hi

ij xx Hj (3)

6

ui-uj + fxij f 1 ,i H j H ji (4)

zij yj ij L , i N (5)

1ij

j Li

z i N (6)

j

j K

y p (7)

xij {0,1} ,i H j H ji (8)

yj {0,1} j K (9)

zij {0,1} ij L , i N (10)

0iu Hi (11)

The objective function maximizes profit which is composed of revenue gained

from the population zones through located bottle banks minus the transportation

cost. Since it is a fixed amount, the revenue from the compulsory collection

centers is not included in the objective function. Constraints (1) guarantee that the

vehicle passes through each compulsory collection point exactly once.

Constraints (2) ensure that the vehicle passes through each alternative collection

point where a bottle bank is located exactly once and it skips the rest. Constraints

(3) ensure that the vehicle leaves the nodes that it visits. Constraints (4) are the

Miller-Tucker-Zemlin sub-tour elimination constraints; see Miller et al. (1960).

Constraints (5) ensure that if the population zone i is fully or partially covered by

alternative site j, a bottle bank is located there. Constraints (6) ensure that a

population zone is covered by at most one alternative point. Constraint (7) ensures

that exactly p bottle banks are located. While constraints (8), (9), (10) are the

integrality constraints, constraints (11) are the non-negativity constraints.

7

Observe that our model is a combination of two other well known problems:

selective traveling salesman problem (STSP) and maximal covering location

problem with partial coverage (MCLP-P). Using our notation, Karasakal and

Karasakal’s (2004) formulation of MCLP-P is as follows:

Maximize z =
Ni Lj

ijij

i

zw

Subject to

zij ≤ yj iLj , Ni

1
iLj

ijz Ni

py
Kj

j

yj {0,1} Kj

zij {0,1} iLj , Ni

The remaining of our mathematical model is as follows:

Minimize z =
Hi Hj

c ijij xd

Subject to

1
Hi

ijx Mj

j

Hi

ij yx Kj

0
Hk

jk

Hi

ij xx Hj

ui-uj + fxij f 1 ,i H j H ji

xij {0,1} ,i H j H ji

yj {0,1} Kj

8

ui ≥ 0 Hi

Note that our constraints (5), (6), (7) belong to MCLP-P and constraints (1), (2),

(3), and (4) belong to STSP. Variables of type yj are common to both of the

formulations and provide the link between them. In the case where the daily

expected amount of recyclable glass that a person can recycle is zero, since there

is no possible profit gained from the alternative sites, our problem reduces to the

TSP composed of only the compulsory collection centers. Then, our problem is

NP-hard.

Polat (2008), while modeling the multi vehicle version of the problem, has made

computational experiments on single vehicle version, the same as ours. She has

developed three greedy heuristic procedures. She has generated problems

randomly where the maximum number of population zones is 45 for the normal

instances and 200 for the large instances. In addition to that she has held a case

study for Yenimahalle district in Ankara, Turkey and proposed locations to place

bottle banks. Even if her proposed algorithms run very fast, the average percent

deviation from optimal for her best algorithm ranges between 1.6 and 5.9 percent

and for the worst it is as high as 24.4 percent. However, the performance could be

improved by utilizing metaheuristics.

2.2 MCLP Related Literature Review

In the maximal covering location problem, proposed by Church and ReVelle

(1974), there are predetermined number of facilities that are going to serve the

population within a given distance or time limit from the closest facility. The

objective is to maximize the population covered by finding the optimum location

for the facilities. The difference from set covering location problem is that, in the

set covering problem the aim is to find the minimum number of facilities to locate

while all the population is covered. While in MCLP, the goal is to cover the

population as much as possible with a given set of facilities. The mathematical

formulation of the MCLP is as follows:

9

Maximize z=
Ii

ii ya

Subject to

iNj
ij yx Ii Ii

Jj
j px

xj {0,1} Jj Jj

yi {0,1} Ii Ii

where I is the set of demand nodes, J is the set of facility sites, ai is the population

at node i and p is the number of facilities to locate. Ni is the set of sites that can

serve demand point i, Ni={ SdJj ij SJ } where S is the maximum distance for a

facility to cover a node and dij is the distance between node i and j. The decision

variables are yi that represents the coverage of demand point i and xj represents the

location of a facility at node j. The first type of constraints forces a facility located

at a site which can serve node i if it is covered. The second type of constraints

ensures exactly p facilities are located. The rest are integrality constraints. And the

objective is the maximization of the population covered. Another version of

MCLP was introduced by Church and ReVelle (1974) that includes the mandatory

closeness constraints that forces all the demand points are within a distance, T of

the closest facility (T>S).

Church and ReVelle (1974) proposed two heuristic algorithms for the solution of

MCLP which are called Greedy Adding (GA) and Greedy Adding with

Substitution (GAS). In GA, at each iteration a site that covers the highest

population that is not covered yet by sites selected in the previous iterations is

picked. The algorithm terminates when p facilities are located. The difference of

GAS from GA is that at each iteration a substitution move is made by removing a

site from the current solution and selecting a new one if it increases the objective.

10

They have also solved the problem with linear programming, and utilized branch

and bound method where necessary.

2.2.1 MCLP with coverage over critical distance

In MCLP, it is assumed that a demand node is covered fully if it is within a

distance, S of the closest facility or it is not covered at all it the distance is longer.

Karasakal and Karasakal (2004) have realized the need for partial coverage for the

problems where only full coverage is not sufficient for modeling. They have

introduced the notion of partial coverage where a demand point is partially

covered by a site if the distance between them is within a minimum (S) and

maximum critical distance (T). If the distance is larger than maximum critical, the

demand is not covered at all. In the other case, where the distance is less than the

minimum critical distance the demand is fully covered. Note that this problem

will reduce to a basic MCLP if S=T. Samples of possible coverage functions from

Karasakal and Karasakal (2004) are given in Figure 1.

Figure 1. Samples of possible coverage functions.

Then, coverage of a demand point by a site takes the values between 0 and 1 and

depends on the distance between them and coverage is higher by the sites closer to

the demand point. Karasakal and Karasakal (2004) haven given a new formulation

to the MCLP that includes partial coverage and it was depicted in Section 2.1.

They have checked the effect of partial coverage by solving the generated

11

problems optimally for MCLP with and without partial coverage. They have also

developed a Lagrangian Relaxation based solution algorithm for large problems

and tested it on randomly generated problems.

For better modeling of emergency service facility location problem, Pirkul and

Schilling (1989) have made some modifications to the basic MCLP. They have

put workload capacities for facilities to prevent excessive workload and

introduced the back up service where a demand point should be covered by two

facilities, one of which is the back up facility. This way, when the first facility is

busy, the demand point will be served by the back up facility. They have also used

a service function which is linearly decreasing beyond S with increasing distance

between demand point and facility, so they have also allowed partial coverage

over critical distance. Level of service for the uncovered demand points is

depending on the maximum distance between the facility sites and demand points.

In order to solve the problem, they have also used a method based on Lagrangian

relaxation. They have made a similar study in Pirkul and Schilling (1991) where

only workload capacities are considered. Another study where a partial coverage

is allowed is by Church and Roberts (1983) and they have used a piecewise linear

step function.

Chung (1986) has given the formulation of capacitated MCLP and shown the

formulations of different problems as an MCLP model such as data abstraction,

cluster analysis, discriminant analysis, etc. so that the algorithms of MCLP can be

used to solve them.

Schilling et al. (1993) have made an extensive survey on covering problems in

facility location. They have formed two broad categories which include

mandatory coverage models like set covering problem and coverage maximizing

models like maximal covering location problem.

12

Berman and Krass (2002) have introduced a generalized MCLP model where

partial coverage is allowed. They have used a decreasing step function of the

distance to the closest facility to specify the coverage level. A set of coverage

levels and coverage radii have been defined for each demand point. They have

developed a greedy heuristic and integer programming formulations and shown its

equivalence to the uncapacitated facility location problem without fixed costs.

Batta and Mannur (1990) have formulated a MCLP that includes an importance

weight for each demand node and multiple response units required for coverage in

order for better modeling of emergency situations.

2.2.2 Solution Algorithms for MCLP

A greedy randomized adaptive search procedure has been proposed by Resende

(1998) for the solution of MCLP. He has applied the procedure to a real world

problem that is a large telecommunications facility location problem. Galvao et al.

(2000) have compared two heuristics based on the relaxation of MCLP,

Lagrangean and surrogate relaxations where surrogate relaxation reduces to a 0-1

knapsack problem and the other has the integrality property. Lorena and Pereira

(2002) has made a transformation between MCLP and p-median problem utilizing

Unified Linear Model and applied a Lagrangean/surrogate heuristic method to

solve the MCLP which was originally developed for p-median problem.

Arakaki and Lorena (2001) have applied the constructive genetic algorithm to the

MCLP and have made computational experiments on real world and randomly

generated problems. Pereira et al. (2007) has formulated MCLP as p-median

problem and used a column generation method in order to solve the problem.

2.3 Traveling Salesman Problem with Profits Related Literature Review

Traveling salesman problem (TSP) is one of the most widely studied

combinatorial optimization problems. It is to find the shortest route of a salesman

who, starting from a home location visits a given set of cities and returns to the

13

original city given that each city should be visited exactly once. No profit or cost

is associated with the cities and the objective is to minimize distance traveled by

the salesman. In some variants of the classical TSP, the constraint of visiting all

cities is removed and a profit is associated with each city. Then, the salesman can

choose the cities that it is going to visit depending on their profit values. Feillet et

al. (2005) have named such kind of problems as traveling salesman problems with

profits (TSPs with profits). There are two opposing objectives that shape the route

of the salesman, to collect profit and to minimize travel costs. While one is

forcing to visit more cities the other is pushing to travel less number of cities.

They have classified TSPs with profits to three different groups depending on how

the two objectives are handled. In the first group, the two objectives are combined

in the objective function which is the difference of travel costs and profit

collected. DellAmico et al. (1995) has defined this group as the profitable tour

problem (PTP). The second group of TSP with profits is called the orienteering

problem (OP) where the collected profit is maximized while there is a maximum

limit on the total travel cost. In general, the goal in OP is finding a path between

two predefined nodes instead of a circuit. The same problem is also named as

selective TSP or maximum collection problem. In the third group, there is a

minimum limit on the collected profit and the goal is minimizing the travel costs.

This problem is called the prize-collecting TSP.

In their formulation of TSP with profits, Feillet et al. (2005) have defined G =

(V,A) as a graph where V={v1,…, vn} is a set of n vertices and A is a set of edges.

A profit pi is associated with each vertex vi V and a distance cij is associated

with each edge (vi, vj) A. Then, TSP with profits consists of finding a tour where

each vertex is visited at most once while both the travel cost and the collected

profit are taken into account. v1 is defined as the depot and it has to be included in

the tour. They have formulated the set of constraints common to TSPs with profits

as follows:

14

i

vVv

ij yx
ij }{\

 (vi V), (1)

j

vVv

ij yx
ji }{\

 (vj V), (2)

Subtour elimination constraints, (3)

y1 = 1 (4)

xij {0,1} ((vi,vj) A), (5)

yi {0,1} (vi V), (6)

where xij is the binary variable corresponding to each arc (vi, vj) A and yi is the

binary variable corresponding to every vertex vi V. xij is equal to 1 if the

corresponding arc is used in the solution and yi is equal to 1 if the corresponding

vertex is visited. Otherwise, they take the value 0. The first two constraints (1)

and (2) are the assignment constraints and the next are the subtour elimination

constraints (3). Constraint (4) assures that the depot is included in the tour.

The same constraints apply to PTP and its objective function is

Minimize
Vv

ii

Avv

ijij

iji

ypxc
),(

.

In the OP, there are additional constraints as follows:

),(

max

Avv

ijij

ji

cxc ,

where the objective function is

Maximize
Vv

ii

i

yp .

In the PCTSP, the additional constraints are

minpyp
Vv

ii

i

,

where the objective function is

Minimize
),(Avv

ijij

ji

xc .

Now we will review the studies made for the solution of OP in the literature.

15

2.3.1 Exact Solution Procedures for OP

Millar and Kiragu (1997) have proposed an alternative integer-linear formulation

of selective TSP which combines permutation variables with flow variables in

order to reduce the number of constraints and facilitate the solution of the

problems. The proposed method was shown by means of a fisheries patrol

problem.

Gendreau et al. (1998) considered the selective TSP where there exist a set of

compulsory vertices, T (T V, v1 T) that has to be included in the tour. Normally,

there is only the depot node {v1} which is compulsory. They have proposed two

heuristics in order to construct initial feasible solution. In addition to that, they

have developed several classes of valid inequalities and used them in a branch-

and-cut algorithm.

A similar study was made for OP by Fischetti et al. (1998). They have also

proposed a branch-and-cut algorithm based on several families of valid

inequalities. They have developed heuristic algorithms to find near-optimal

solutions and improve the efficiency of branch-and-cut algorithm.

Righini, Matteo Salani (2006) have addressed a different version of OP which is

the OP with time windows (OPTW). In OPTW, a time window and a service time

is associated with each vertex. Arrival time to a vertex should be within the time

interval and service time is the time spent at the vertex. They have presented a

dynamic programming algorithm with decremental state space relaxation for

solving the OPTW.

2.3.2 Classical Heuristic Solution Procedures for OP

Tsiligirides (1984) has used the name Score Orienteering Event instead of OP. He

has developed a stochastic, a deterministic and a route-improvement algorithms

16

and compared the performance of the pure stochastic and deterministic heuristics

with their combination with improvement heuristic.

Kantor and Rosenwein (1992) have studied the version of OPTW without service

time. They have proposed a heuristic method called the 'tree' heuristic which

systematically generates a list of feasible paths and then selects the most

profitable path.

Chao et al. (1996) has proposed a fast and effective heuristic method based on the

notion of record-to-record improvement. It is composed of initialization and

improvement steps. Initialization is based on a greedy cheapest insertion method

and during the improvement step two point exchange, one point movement and 2-

opt procedures are utilized.

2.3.3 Metaheuristic Solution Procedures for OP

Wang et al. (1995) have developed an effective energy function and learning

algorithm and based on it they have proposed a modified continuous Hopfield’s

neural network for OP. The use of traditional heuristics, cheapest insertion and

especially 2-opt heuristics considerably improved the performance of the

algorithm.

A tabu search heuristic was proposed by Gendreau et al. (1998) for the undirected

selective travelling salesman problem. Vertices are inserted to the current tour in

clusters and chains of vertices are removed at each iteration. They have used a

heuristic which they call Insert and Shake, used to generate the initial solution.

A genetic algorithm has been proposed by Tasgetiren and Smith (2000) for OP.

They have compared their algorithm with problem specific heuristics and an

artificial neural network. Liang et al. (2002) have applied ant colony optimization

which uses local search at each iteration and tabu search algorithm with dynamic

17

penalty function to search the near-feasible region. Liang and Smith (2006) have

also employed an ant colony optimization (ACO) approach for the solution of OP.

They have hybridized ACO with VNS, where they have used VNS as a local

search procedure at each iteration. It has shown to dominate the heuristics yet

proposed.

One should consult to Vansteenwegena et al. (2010) for a recent survey on OP. In

the survey, the problem has been classified into four main groups: OP with and

without time windows and Team OP with and without time windows.

Mathematical formulation, benchmark instances, heuristic and exact solution

methods are given for each group. Finally, variants of OP are revised.

2.3.4 Other Studies Related to Selective Traveling Salesman Problem

The main difference of selective TSP from TSP is that it is not required to visit all

the cities. There are some other studies that address similar type of problems.

Süral and Bookbinder (2003) have first introduced the Single-Vehicle Routing

Problem with Unrestricted Backhauls. The problem includes two types of

customers: The delivery customers and the collection customers. While the

delivery customers receive goods from a depot and have to be visited by a vehicle,

the collection customers have to send goods to the depot and it is not required to

include them in the tour. The incentive to visit the collection customers is the

avoidance of the cost that will be incurred if the goods would be carried to the

depot by another means. The aim is to find a route, starting at the depot, visits all

delivery customers and selected collection customers and ends at the depot so that

the net transportation costs that take into account the cost savings from visiting

collection customers are minimized. There is a single vehicle which is capacitated.

Süral and Bookbinder (2003) have modeled the problem using the Miller–Tucker–

Zemlin (MTZ) subtour elimination constraints. They have studied some

techniques for the tight LP relaxations of the model and made it possible to solve

medium-sized problems with general-purpose commercial solvers that use branch-

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VCT-4YRXD2K-2&_user=691352&_coverDate=04%2F02%2F2010&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1312829054&_rerunOrigin=scholar.google&_acct=C000038698&_version=1&_urlVersion=0&_userid=691352&md5=2670895515d2a91662b823d2d1f0b400#aff1

18

and-bound method. Gutierrez-Jarpa et al. (2009) has addressed the same problem

and proposed a branch-and-cut procedure. They have developed two new cuts that

handle compulsory and optional customers together, and a new separation

algorithm. They have tested their algorithm with the instances of Süral and

Bookbinder (2003) and found the results in shorter time. They solved problems

with up to 90 customers.

Gribkovskaia et al. (2008) have studied a similar problem, the Single Vehicle

Routing Problem with Deliveries and Selective Pickups. In their problem each

customer has both delivery and pickup demand instead of only one of them. While

the deliveries are mandatory, pickups are optional. A second visit to a customer is

allowed so that in case there is not enough space for pickup in the first visit, the

vehicle can make a second visit to a customer. The authors have developed a

number of construction and improvement heuristics and proposed a Tabu Search

algorithm for the problem. The algorithms have been tested on the problems

generate from VRPLIB problems.

19

CHAPTER 3

VARIABLE NEIGHBORHOOD SEARCH

Heuristic search methods are utilized whenever it is not convenient to solve the

problems optimally or efficiently with exact algorithms considering the size of the

problem. When we have limited time and the problem at hand is NP-hard, it is a

good option to use the heuristics that will provide us with near optimal solutions

in much shorter time. The most basic of those are the local search algorithms.

Local search algorithms, starting from an initial solution, proceed by making local

changes to it each time with an improvement in the objective function value.

Eventually, the algorithm terminates when there is no possible enhancement by

local changes. The solution found is local optimal but is not necessarily global

optimal. In order not to got stuck in a local optimal solution, various

metaheuristics have been developed such as simulated annealing, tabu search,

GRASP, genetic algorithms, ant colonies, etc. One more recently proposed

metaheuristic is the Variable Neighborhood Search (VNS) technique of

Mladenović and Hansen (1997). VNS is a simple and effective metaheuristic for

combinatorial and global optimization problems that uses systematic change of

neighborhood within a possibly randomized local search algorithm.

“Contrary to other metaheuristics based on local search VNS does not follow a

trajectory but explores increasingly distant neighborhoods of the current

incumbent solution and jumps from this solution to a new one if and only if an

improvement has been made. In this way, often favorable characteristics of the

incumbent solution, e.g., many variables are already at their optimal value, will

be kept and used to obtain promising neighboring solutions. Moreover, a local

search routine is applied repeatedly to get from these neighboring solutions to

local optima. To construct different neighborhood structures and to perform a

20

systematic search, one needs to have a way for finding the distance between any

two solutions and then induce neighborhoods from it.” Hansen and Mladenović

(2001).

In this chapter, we give the related literature on the VNS procedure, a detailed

description of the procedure, comparison of the method with other metaheuristics

and the extensions of the VNS procedure.

Hansen and Mladenović (2001) have provided the details of VNS, which they

have developed by combining the idea of changing the neighborhoods in the

search with a local search routine. They have listed the rules of the basic VNS,

which include developing a neighborhood structure, shaking, local search and

move decision. Basic steps of the VNS algorithm can be seen in Figure 2.

Different steps of the VNS algorithm are going to be summarized in the following

subsections.

Figure 2. Basic steps of the VNS algorithm proposed by Hansen and Mladenović

(2001).

Initialization

 (1) Select the set of neighborhood structures Nk, for k=1,...,kmax

 (2) Find an initial solution x;

 (3) Select a stopping condition;

Repeat Main step until stopping condition is met

 Main Step:

(1) Set k ←1 ;

(2) Repeat the following until k=kmax

(a) Shaking: Generate a solution x’ at random from the

k
th
 neighborhood of x

 (x’ Nk(x));

(b) Local Search: Apply local search method with x’ as

initial solution;

 Denote x” as the obtained local optimum

(c) Move or not: If this local optimum is better than the

incumbent, move there (x←x‖) and go to Step 1;

Otherwise, set k←k+1.

21

3.1 Initialization

In the initialization part of the algorithm one has to decide on the neighborhood

structure that will be used in the shaking part of the main step. In addition, an

initial solution is needed in order to apply the shaking and local search in the main

step. The initial solution can either be generated randomly or a good starting

solution that will affect the performance of the algorithm positively can be

utilized. Finally, a stopping condition should be set so that the search algorithm

terminates in a reasonable time. In the following sections, these decisions made in

the initialization part are described in more detail.

3.1.1 Neighborhood structures

While most local search heuristics use one, VNS utilize different neighborhood

structures. Hansen and Mladenović (2001) has denoted the neighborhood

structures as: Nk (k=1,...,kmax), a finite set of pre-selected neighborhood structures,

and Nk(x), the set of solutions in the kth
 neighborhood of x. The neighborhood

structures are often chosen such that they have higher cardinality as k gets higher.

Another way of choosing neighborhoods is that they are successively nested,

which means that neighborhood structures with lower index are a subset of the

higher ones, N1 N2 … Nkmax. However, according to Blum and Roli (2003),

this will decrease efficiency since it may result in revisit of large number of

solutions.

In order to define the neighborhood structures we need to measure the distance

between two solutions somehow. Let d(x,x’) denote the distance function that

measures the difference between the solutions x and x’. Then, all x’ that satisfy

d(x,x’)=k, i.e. the solutions that are k distant from x, comprise the Nk(x).

Below an example is given for the distance function and neighborhood structures

in TSP. The distance between two TSP tours can be calculated by the cardinality

of their symmetric difference. K-opt neighborhoods by Lin (1965) use this

22

function. The k-opt neighborhood of a solution x is composed of all the solutions

that differs in k links from x. In Figure 3, solutions obtained from 2-opt and 3-opt

moves of a given tour is shown. Initial solution, x is composed of a tour of 6

cities. By removing the links between cities 2, 3 and 1, 6 and reconnecting them,

we get the solution x1. Since x and x1 differs in 2 links, d(x,x1)=2 and all the xi

satisfying this equation compose N2(x), the 2-opt neighborhood. A 3-opt move is

also shown in the figure where three of the links are removed and new ones are

constructed.

Figure 3. 2-opt and 3-opt moves for TSP.

Observe that maximum number of links to break is 3 if we use non consecutive

edges to be broken. And the minimum number of links that will produce a new

tour is 2. So the neighborhood structure can be constructed as Nk (k=2,3).

3.1.2 Finding an initial solution

An initial solution of the problem is one of the inputs to the main step of the

algorithm. This initial solution can be generated randomly or by a construction

3-opt

2-opt
2

1
3

4

5
6

1

2
5

6

4
3

1

2
3

4

5
6

1

2
3

4

5
6

1

2
3

4

5
6

1

2
3

4

5
6

x

 x

x1

x2

23

heuristic if it is expected to positively affect the main step so that better solutions

can be obtained in shorter time.

3.1.3 Stopping condition

In order to utilize the available time efficiently, a stopping condition should be set

with care. The algorithm should run long enough to create near optimal solutions

but at the same time it should not continue unnecessarily without making any

improvements. In general, the following stopping conditions are used: Maximum

CPU time allowed, maximum total number of iterations, maximum number of

iterations between two improvements. We can either use one of those conditions

solely or we can utilize two or more of them together. For example the algorithm

can stop when a preset time limit is reached or if there has been no improvement

since a number of iterations determined earlier. Considering the problem structure

and availability of time, other stopping conditions can also be developed.

3.2 Main Step

3.2.1 Shaking

Shaking is the stage where neighborhood structure that was defined during

initialization is explored. According to the current value of k, the index of the

neighborhood, a solution x’ is randomly chosen from the Nk(x). If x’ is not

selected randomly but with a deterministic rule, cycling may occur. The main

purpose of shaking is to make perturbations in the incumbent solution so as to

escape from local minimum and to provide a good starting point for the local

search. The starting point, x’, should belong to the basin of attraction of a different

local minimum but it should not be too far from x, since otherwise it will be

reduced to a random multi-start stated Blum and Roli (2003). Since x’ is in the

neighborhood of x, some good features x will be kept.

Whenever the local search in the main step does not result in solutions better than

the incumbent, the value of k is increased. This helps the algorithm to escape from

24

the stronger local optimum solutions by making bigger changes in the incumbent

solution. So each time local search cannot enhance the incumbent, it has a

stronger effect. However, if the local search results in a better solution than the

incumbent, then k is set to 1 and search is intensified around the incumbent

solution and local search is applied to closest solutions to the incumbent. So

regions close to the incumbent solution are explored.

In Figure 4 we can see the effect of shaking and change of neighborhood more

clearly. Suppose that we have the objective function graph of a minimization

problem and after some runs of the VNS algorithm we have reached the solution

x’. There is no chance to escape from that solution by solely local searching since

it is a local minimum. In shaking step, perturbations to the current solution is

made so that the search is directed to new promising regions while some good

features of the current solution is kept. However, at the beginning, since k is

small, the perturbations may not suffice to escape from basin of the local

minimum, region II, and local search algorithm will find the same local minimum.

For example, if x1 is the result of shaking, then local search will produce the same

local optimal x. Any starting solution within the region II will result in x. That is

why k is incremented each time local search algorithm cannot find a better

solution and larger number of changes are made. Suppose the algorithm has

reached x2 after shaking. Since it is in region I, the local search will produce x’’, a

local optimal better than x’ but still not the global optimal. In the solution space,

global optimal is situated far away from x’’ and in order to find the optimal

solution, shaking should make enough changes to x’’ so that local search should

start from the basin of the global optimal, region III. This is possible when k is

incremented adequately. And if shaking results in a solution like x3, the algorithm

will eventually find global optimal after local search.

25

Figure 4. Role of shaking on escaping from local minimum.

3.2.2 Local search

A local search algorithm is applied to the solution generated randomly during the

shaking phase. Local search can be based on the neighborhood structure that was

defined in the initialization, see Figure 5. The value of k is set to one of the

smallest possible values like 1 or 2. Then, the objective function value is

calculated for all of the solutions x’’ in the neighborhood of x’ (x’’ Nk(x’)). x’’

with the lowest objective function value (for minimization problem) is chosen. If

it is lower than the objective function value of x’, the solutions in the

neighborhood of new solution are evaluated and the procedure is repeated until no

better solution can be found (All of the solutions in the neighborhood have higher

objective function values than the incumbent). x’’ is set to the best solution and it

is the result of local search.

26

Figure 5. Basic steps of the Local Search algorithm for minimization problem.

This is the simplest local search algorithm that can be used. Considering the

problem at hand, more complex and efficient local search algorithms or

neighborhood structures different than the one in shaking can be used in order to

speed up the overall algorithm.

3.3 Intensification and diversification

Whenever local search cannot make an improvement on the incumbent solution,

the neighborhood is changed. This is the source of diversification in VNS, in

addition to the shaking itself. Blum and Roli (2003) stated that the choice of

neighborhoods of increasing cardinality yields a progressive diversification. As

local search does not produce good solutions and k is incremented, in shaking

step, x’ is selected from neighborhoods of x with higher cardinality and so

diversification is increased. In the opposite case, k gets the value 1 and

diversification is reduced.

Blum and Roli (2003) explained the effectiveness of changing neighborhoods.

They stated that a solution that is locally optimal with respect to a neighborhood is

probably not locally optimal with respect to another. The effect of using different

Set x’’←x’ ;

improvement← yes;

Repeat the following until improvement= no

Calculate objective function value, f(x’’’), for all x’’’ N1(x’’);

Set x’’’←x’’’ with smallest objective function;

If f(x’’)>f(x’’’)

 Set x’’←x’’’;

If f(x’’)≤f(x’’’)

 improvement← no;

Denote x‖as the obtained local optimum

27

neighborhoods can be seen on Figure 6. Two landscapes defined by two different

neighborhoods have been shown. On the landscape on the left local search has

stopped at the local minimum 1 while it has found a better local minimum 2 on

the landscape on the right.

Figure 6. Two search landscapes defined by two different neighborhoods. Blum

and Roli (2003).

Hansen and Mladenović (2001) have mentioned achieving intensification and

diversification by introducing kmin and kstep that control change of neighborhoods.

In the VNS algorithm, k←1 should be replaced with k←kmin and k←k+1 with

k←k+kstep. Then, diversification is provided by setting kmin and/or kstep to quite

large numbers since the search will continue to regions far from incumbent. In

other case, if kmin is set to a small integer and kstep= +1, search will stay longer

in regions near to incumbent and intensification is achieved.

In order to demonstrate the application and effectiveness of their new algorithm

on different problems, Hansen and Mladenović (2001) have solved the traveling

salesman problem, the p-median problem, the multi-source Weber problem, the

minimum sum-of-squares clustering problem and the bilinear programming

problem with bilinear constraints. In order to increase the efficiency and

effectiveness of the algorithm in solving large problems, they have proposed three

extensions to the basic VNS which are reduced VNS, variable neighborhood

decomposition search, and the skewed VNS.

28

3.4 Parallelization in VNS

In order to increase the speed of the algorithms parallel processing is made where

a number of computers are utilized at the same time instead of one. This will

provide larger sized problems to be handled and better exploration of the solution

space. García-López et al (2002) has studied three different parallel processing for

VNS algorithm for the solution of p-median problem. The first one is the

synchronous parallel VNS where in the local search, neighborhood is partitioned

between the processors and the best solution of all the processors is the result of

the local search. The aim here is increased speed. In Replicated VNS, where the

aim is to explore larger portion of the solution space, each processor solves the

problem independently by VNS. And finally in the Replicated Shaking VNS,

shaking and local search are performed independently and the best of all results is

taken as the new starting point by all the processors. Again, the goal is higher

exploration of the solution space. Crainic et al. (2004) applied another parallel

processing for VNS which they call cooperative parallel VNS. Here, there is a

master process that keeps the overall best solution, starts and ends the algorithm.

Each processor executes VNS independently and whenever there is no

improvement they continue with the overall best solution received from master

process. Again, they have solved the p-median problem. Pérez et al. (2004)

summarized the same strategies together.

There are applications of parallel VNS to other problems as well. Polacek et al.

(2008) have proposed two new cooperation methods for the parallelization in

VNS which includes a self-adapting mechanism for the search parameters. The

new methods have been applied to the Multi Depot Vehicle Routing Problem with

Time Windows. Sevkli and Aydin (2007) have considered four different strategies

for the parallelization of VNS for job shop scheduling problems. They concluded

that a noncentral parallelization method with the unilateral-ring topology is the

most efficient for the problem considered. Another scheduling problem, Flexible

job-shop scheduling with minimizing makespan was addressed by Yazdani et al.

29

(2010). They have used parallel VNS and different neighborhood structures for a

better exploration of the search space.

3.5 Variants of Variable Neighborhood Search

Hansen and Mladenović (2001) proposed some modifications to basic VNS. The

first one is to use the notion of simulated annealing. In basic VNS, in step 2c, a

move is made only if x’’ is better than the incumbent. Like in simulated annealing,

we can also accept x’’ that is worse than the incumbent with some probability.

Then, the new VNS will be a descent-ascent method. Another modification will

be moving to the best neighborhood among all. This change will transform the

basic VNS to a best improvement method. Three other improvements have been

suggested for basic VNS.

Hansen et al. (2001), in order to improve the effectiveness of VNS on solving

large problems, have proposed Variable Neighborhood Decomposition Search

(VNDS) by integrating basic VNS with successive approximations decomposition

method. VNDS is different from basic VNS in the local search phase where a

subproblem is solved instead of the whole problem. This new variant of VNS has

been applied to the p-median problem and compared mainly with basic VNS, Fast

Interchange and Reduced VNS algorithms where it outperformed all in very large

instances.

Mladenović et al. (2008) developed a general VNS heuristic for solving

continuous global (nonlinear) optimization problems which they call continuous

general VNS (CGVNS). They have used different metric functions in the

neighborhoods instead of one in addition to the use of different local minimizers.

Their main focus is on solving general constrained nonlinear programming

problem and to investigate its potential. They have compared CGVNS with

GENOCOP III heuristic based on genetic search and other approaches and found

that it gives more favorable results.

30

Puchinger and Raidl (2008) have proposed Relaxation Guided Variable

Neighborhood Search which is based on the VNS and VND algorithms. Different

than VND, the neighborhoods are changed dynamically instead of having a fixed

order. This new variant of VNS has been applied to multidimensional knapsack

problem.

Reduced Variable Neighborhood Search (RVNS)

RVNS was proposed in order to get good solutions in short time. The most time

consuming part of basic VNS is the local search part. So, local search routine is

completely removed and the move step is applied to the solution obtained from

shaking step. Each time a solution is randomly picked from the neighborhood and

if it is better than the incumbent, search moves to the new solution. Whenever the

solution is rejected, k is incremented and the search is continued in larger

neighborhoods.

Variable Neighborhood Decomposition Search (VNDS)

Using decomposition with VNS generates VNDS. The difference between basic

VNS and VNDS is in step 2b. In the local search step, a subproblem is solved by a

local search or other methods instead of solving the whole problem by local

search. The subproblem is obtained by fixing all but k attributes of a solution in

the shaking step. If the objective function value of the whole solution including

the fixed variables and new values of unfixed variables is better than incumbent,

we set k=1. Otherwise k is incremented which means the method in 2b is applied

to higher number of unfixed variables.

Skewed Variable Neighborhood search (SVNS)

SVNS was proposed to solve the problems where it is necessary to move regions

of search space very far from the incumbent. In this kind of cases VNS behaves

like multi-start search which is not a very efficient method. In SVNS not only the

objective function value of x’’ but also its distance from the incumbent is

31

evaluated when moving to a new solution. A new step is added to the main step of

basic VNS that will make use of the distance function. An improvement is made

only if f(x’’) < f(x) and a move is made only if f(x’’)-α d(x,x’’)<f(x) where d(x,x’’)

is a distance function and α is a parameter that is used to control the rate of

acceptance of a move when f(x’’) is greater than f(x). This way the search can also

move to solutions that have higher objective value than incumbent but enough

distant from it so that the regions far from the incumbent are explored.

Variable Neighborhood Descent (VND)

VND rely on the property that different neighborhoods may have different local

optima. Whenever a local optimal solution is found within a neighborhood, local

search proceeds from a different neighborhood. In VNS, one neighborhood is

used in the local search, but several neighborhoods are used in VND. VND does

not include shaking phase. Each time, the best solution in the neighborhood of x is

found. If it is better than x, the search continues with the new solution within the

same neighborhood. Otherwise, the neighborhood is changed and the local search

proceeds with the same solution. See Appendix A for the steps of VNDS, SVNS

and VND.

3.6 Use of VNS in Location Problems

Mladenović et al. (2003) addressed the solution of p-center problem using Tabu

Search and VNS. They have first introduced the vertex substitution method,

followed by a Tabu Search where chain-substitution move is utilized. They have

developed a VNS algorithm that uses k-interchange move in the shaking step and

1-interchange descent in the local search phase. In the computational runs, it has

been shown that in general VNS outperforms Tabu Search and Multi-start

Interchange is inferior.

Hansen and Mladenović (1997) have applied the VNS algorithm to another

location problem, p-median problem that uses fast 1-interchange moves in the

32

local search phase. They have compared the performance of VNS with Greedy

plus interchange and Tabu Search Algorithms and VNS gave better results for

average and large problems. They have also made sensitivity analysis for the

effect of different values of kmax, number of random solutions chosen in the

shaking step and kl and kstep that control the change of neighborhoods.

Harm and Hentenryck (2005) has applied VNS to the uncapacitated facility

location problem, where a subset of warehouses has to be chosen and assigned to

stores so that the fixed costs and the transporation costs are minimized. They have

transformed the Tabu Search algorithm with a simple modification to VNS for

better diversification. The application of multi-start VNS with 5 replications has

produced solutions very close to optimal in short time. Hansen et al. (2007) have

addressed the same problem which is also called simple plant location problem.

They have used VNDS to solve the primal problem and they have also focused on

solving the relaxed dual problem exactly. In order to accomplish that, they have

applied VNS to unconstrained dual and then used customized sliding simplex

algorithm. In the next phase they have applied branch and bound algorithm that

has lead them to find optimal solutions to some large problems.

3.7 Use of VNS in Vehicle Routing Problems

After the development of VNS it has been applied to several different Vehicle

Routing Problems recently. Braysy (2003) has used VND in the improvement

steps of his four phase solution approach to the vehicle-routing problem with time

windows. It was called reactive VNS since it uses the information gathered during

the search. Paraskevopoulos et al. (2008) have addressed the Heterogeneous Fleet

Vehicle Routing Problem with Time Windows and proposed a Reactive VNS

algorithm which is hybridized by Tabu search. Tabu search is used instead of

local search which is specially adjusted for intensification. Another VRP with

time windows was studied by Polacek et al. (2004). They have applied VNS to

33

multi depot vehicle routing problem with Time Windows and compared its

efficiency with Tabu Search.

Kytöjoki et al. (2007) have focused on solving very large scale vehicle routing

problems. They called their proposed algorithm as guided VNS since they have

adapted some features of guided local search on VNS. They have used 7

improvement heuristics applied within VND algorithm. Open vehicle routing

problem where the vehicles do not return to the depot was addressed by Fleszar et

al. (2009) utilizing VNS. Hemmelmayr et al. (2009) have proposed a VNS

algorithm for periodic VRP which is the extension of classical VRP for a planning

horizon. They have used the same approach for periodic TSP. Finally, a real life

case study was made by Wen et al. (2009). The problem includes vehicle routing

and driver scheduling in a one week planning horizon. Daily planning problems

are solved by VNS after the decomposition of weekly plans.

3.8 Use of VNS in variants of TSP

Three applications of VNS to variants of TSP problem have been found in the

literature. Carrabs et al. (2007) have addressed the solution of Pickup and

Delivery Traveling Salesman Problem with LIFO Loading using VNS. They have

proposed three efficient local search operators with maximum complexity O(n
3
) in

order to use in VNS. Burke et al. (2001) have proposed a VNS algorithm for

Asymmetric Travelling Salesman Problem and used a combination of HyperOpt

and 3-opt heuristics in the local search of VNS. In addition to that, they have used

which they call ―guided shake‖ in order to prevent the randomness in the shaking

phase.

Another application of VNS to TSP variants is by Sevkli and Sevilgen (2006).

They have used three different VNS algorithms for the orienteering problem. Two

of them are hybridization strategies where RVNS and VND have been used in the

local search phase of VNS, and the last is the RVNS.

34

CHAPTER 4

PROPOSED ALGORITHM

We are going to solve our problem based on the Variable Neighborhood Search

(VNS) technique. VNS is a relatively new metaheuristic approach and it has been

applied to different combinatorial optimization problems recently. Its application

to location problems like, p-center and p-median have given very good results

(see Mladenović et al. (2003) and Hansen and Mladenović (1997)) and we expect

to get similar outcome for our problem. We should choose the best alternative

locations to place bottle banks and the best route that will pass through both

alternative locations chosen and the compulsory collection centers so as to

maximize the revenue. When the locations of the bottle banks are given, we can

easily find the coverage coefficients or the locations, and determine the revenue

from those bottle banks. Then the problem reduces to a TSP. As a consequence, a

nested procedure can be applied for the solution of MCLPP-STSP. In the nested

procedure, the outer loop should search in the space of alternative sites for

locations for the bottle banks, and the inner loop should carry out searches to find

the route of the vehicle that will visit all compulsory points and the located bottle

banks.

In the outer loop we employ VNS in the space of alternative location sites. While

the outer loop of our algorithm implements VNS in order to solve the location

problem, in the inner loop, TSP corresponding to each solution to location

problem generated by VNS, is solved using Concorde or Linkern, the TSP Solvers

by DL Applegate et al. (2006) or using the cheapest insertion heuristic proposed

by Rosenkrantz et al. (1977). Now we have to make some definitions before

describing our algorithm:

L : Set of alternative collection points where a bottle bank is located.

NL : Set of alternative collection points where there is no bottle bank yet.

35

x: Solution created in initialization step.

x’: Solution obtained in the shaking step.

x’’: Solution obtained in the local search.

Noimp: number of iterations without improvement

In order to utilize VNS algorithm we have to find a way to represent a solution.

We know that K is the set of alternative locations for bottle banks. Then, we

divide K into two different sets L and NL. L is the set of alternative locations

where a bottle bank is located whereas NL is composed of the rest of alternative

sites in the set K. Then, it is clear that the union of L and NL is equal to K (LU

NL=K). Any subset L of the set K with the cardinality p represents a feasible

solution for the location problem and its element represent the sites to locate

bottle banks. The number of such subsets is calculated by the combination of p in

s, where s is the number of alternative collection sites. As the number of

bottle banks to locate and the number of alternative locations increase, the number

of such subsets, so the number of feasible solutions to the location problem

increases very rapidly. For example when s=20 and p=10, total number of feasible

solutions is 184,756. For the problem with s=40 and p=20, the number of feasible

solutions is 1.37847E+11. There is a 746,100 times increase in the size of feasible

solution space when the number of alternative sites and bottle banks are doubled.

Now we can explain how we have applied VNS to our problem. While the pseudo

code of our algorithm can be seen in Figure 7, the algorithm is described in more

detail in the following sections.

36

Figure 7. Pseudo code of VNS applied to MCLPP-STSP.

Initialization

(1) The set of neighborhood structures Nk k=1,...,kmax generated by p function

p(x1,x2)=|x1\x2|=|x2\x1|, for x1,x2 ∈ X

x’ ∈ Nk(x) p(x’,x) = k

(2) L := Ø, NL:= composed of all the alternative collection points

For i :=1 to p do

g ← pick an alternative collection point from NL randomly

 L := L U{g}, NL := NL-{g}

Return x: initial solution

(3) Noimp:=0, Calculate f(x) solving the corresponding TSP.

Repeat Main Step until time>tmax, or noimp >noimpmax

 Main Step

(1) k:=1; noimp := noimp + 1

(2) Repeat following until k= kmax

(a) Shaking

{ l1,...,lk} ← pick randomly k elements from L

{ nl1,...,nlk} ← pick randomly k elements from NL

Exhange the elements between L and NL

L := L U{nl1,...,nlk} - {l1,...,lk}

NL := NL U{l1,...,lk} - {nl1,...,nlk}

x’←solution composed of locating bottle banks to sites in L

Solve the TSP corresponding to each x’

(b) Local Search

Repeat the following until improvement= no

 improvement := no

 For all x” ∈ N1(x’) do

 Solve the TSP corresponding to each x”

 Calculate f(x”)

 If f(x”)>f(x’)

 x’:=x”, improvement:= yes

 End if

 End for

(c) Move or not

If f(x’) f(x) then

 k:=1; x:=x’

Else

 k:=k+1

37

4.1 Neighborhood structure

In order to define the neighborhood structure, we need to have a distance function

first. Suppose a feasible solution, x, is represented by the locations in L. The

difference between two solutions x1 and x2 is the number of different locations in

each solution from the other, which is the Hamming distance. So it is the

cardinality of the difference of two sets and represented as follows:

p(x1,x2)=|x1\x2|=|x2\x1|, for x1, x2 ∈ X,

where X is the solution space composed of all possible subsets of K with

cardinality p. Then, a neighborhood of a solution x, Nk(x) is composed of all the

solutions that differ in k locations from x. A solution is in Nk(x) if it satisfies the

following:

x’ ∈ Nk(x) p(x’,x) = k.

The solutions in the kth
 neighborhood of a solution, x is reached by replacing k

locations in x by k locations in NL set corresponding to x. These moves are called

k-substitution move by Mladenovic et al. (1996). Suppose we have a problem with

10 alternative collection points, K={1,2,3,4,5,6,7,8,9,10} and we have 4 bottle

banks to locate, p=4. Then, any subset of K with cardinality 4 will represent a

feasible solution. A possible feasible solution is, x={1,2,3,4}, and corresponding

NL={5,6,7,8,9,10}. N1(x) is composed of all x’ that differs in one location from x.

If we substitute ―2‖and ―8‖ between two sets then we will obtain x’={1,3,4,8} and

corresponding NL={2,5,6,7,9,10} which is a 1-substitution move. Observe that

p(x,x’)=1 so x’ N1(x). If we substitute 2 locations between L and NL, then we

will get a solution from N2(x), so on so forth. Keep in mind that kmax cannot take a

value greater than p since substitutions are not possible and we can simply set kmax

as p.

38

4.2 The initial solution

We have constructed the initial solutions randomly. At first we have an empty L

set and NL is composed of all alternative collection points. Each time a collection

point is chosen and deleted from the NL set and added to the set L until the

cardinality of L is p. If one wants to start with a better starting point, the greedy

construction heuristic that is proposed at the end of the chapter can be used to

generate an initial solution.

4.3 Stopping condition

We have employed two stopping conditions. The first one is the iteration limit.

The number of iterations of the main step is counted every time kmax is reached

and it does not produce a better solution than the incumbent. The second stopping

condition is the time limit. In order to prevent our algorithm run longer than

expected and prevent inefficiency, we have also utilized a time limit. According to

the size of the problem and the algorithm, one or both of the strategies have been

employed. In the computational experiments section, one can see the stopping

condition in more detail.

4.4 Main step

As explained before, the main step is composed of three parts, shaking, local

search and move/not move decision. In shaking, the neighborhoods that have

defined by k-substitution moves will be used. Each time algorithm executes the

shaking step, k locations in set L are randomly picked and replaced by k other

randomly picked from the set NL. The solution we get as a result of shaking is x’.

In the local search, we have used the neighborhood N1. We calculate the objective

function values of all the solutions in the neighborhood, N1 of x’. These

neighborhood solutions are obtained by substituting one location between L and

NL. The search continues starting with the best solution found in the

neighborhood. If the best solution found is worse than the new starting solution,

the procedure terminates. The newly found solution is x’’. Now the move decision

39

is made. If x’’ is better than x, the incumbent solution, x is assigned the value of

x’’ and k is set to 1. So the search is intensified around the new best solution since

there will be small perturbations made in shaking. If x’’ is worse than x, k is

incremented and the search is diversified. In the following section, a greedy

construction heuristic is proposed that will be compared with VNS in the

computational experiments.

4.5 A greedy heuristic procedure

There are different ways of constructing initial solutions. The simplest of all is

choosing the locations to place bottle banks randomly from alternative collection

points. However, it is not very likely to get good solutions since the solution space

is very large. In order to have a good solution in short time, we have proposed a

greedy construction heuristic. The heuristic starts from an empty set of locations

to place bottle banks, which is denoted by L. In each step, a location is chosen

from a set of locations, NL, that are not selected for placing bottle banks yet. The

algorithm terminates until p locations have been selected. A similar algorithm was

proposed by Church, ReVelle (1974) for the maximal covering location problem.

The flow of the proposed greedy heuristic is given in Figure 8. In the initialization

step, L, NL, Q and ProfitL are assigned their initial values. Since there are no

bottle banks assigned yet, L is an empty set and NL is composed of all alternative

collection points. Since initially the set L is empty ProfitL is equal to total profit

from compulsory collection centers ProfitM. None of the population zones are

fully or partially covered yet, so all elements of array Q have the value 0. In each

run of the main part, all the locations in NL are evaluated according to their

contribution to the overall revenue. The coverage levels of each location for the

population zones that it can serve is compared with the coverage levels already

assigned to the population zones and kept in array Q. If the location has higher

coverage levels than the value in Q, the difference is added to the ProfitLU{g} after

multiplied by required coefficients. We also have to calculate the cost incurred

because of the transportation. Each time we have a new location to add, we have

40

to solve a new TSP since the new node may change the route previously

constructed. So, we solve the TSP that is composed of the locations in L,

compulsory collection centers and the alternative point that we are currently

evaluating, LUMU{g}. The total revenue we get after the inclusion of location {g}

is denoted by f(xLU{g}) and the location that gives the highest revenue after

insertion to set L is denoted by g*. At the end of each run, L, NL, K and ProfitL are

updated. {g} is moved from set NL to set L. The coverage levels of zones that

have higher rates of coverage by g* than alternative locations in previous L set are

replaced with the new levels. ProfitL is assigned the value ProfitLU{g*}. After all

the bottle banks are assigned, the procedure terminates and L is composed of the

locations where the bottle banks will be located.

In the first run of the main step, there are s locations to evaluate, so s different

TSPs are solved. In the second run s-1 TSPs are solved and in the last run, s-(p-1).

Total number of TSPs solved is s+s-1+…+s-(p-1) which is equal to p (s-(p-1)/2).

In the local search, minimum number of TSPs to solve is p (s-p). However, it is

the minimum and even if it is smaller than for the greedy heuristic, the main step

in local search is repeated several times and in general, it solves more TSPs and

run longer than greedy heuristic. The running times and total number of TSPs

solved are summarized in Chapter 5.

41

Figure 8. A greedy heuristic procedure to construct initial solution.

Let Q, array of size n that keeps coverage levels for each population zone.

Let Jg, set of population zones that are fully or partially covered by alternative

collection point g

Let XL is the solution composed of alternative collection points in L

Let ProfitL, profit for set L that is composed of the profit from population zones

when they are served by locations in L and the profit from compulsory

collection centers.

Initialize L, NL, K and ProfitL

(1) L := Ø, NL:= composed of all alternative collection points.

(2) For i :=1 to |N| do

 Q[i] ← 0

(3) ProfitL ← ProfitM

Repeat main step until p number of bottle banks are located:

Main Step

(1) For all g NL do

(a) ProfitLU{g}←ProfitL

(b) For all n Jg do

 If kng > Q[n]

 ProfitLU{g}← ProfitLU{g} + (kng -K[n]) hn qperson R

(c) Solve TSP for LU{g}UM

 (d) Calculate objective function value for XL U{g}

 f(XL U{g})= ProfitLU{g} - DistanceTSPLU{g}UM c

(e)If f(XL U{g})> f(XL U{g*})

 g*←g

(2) Update L, NL, Q and ProfitL

(a) L ←L U g*

(b) NL←NL\ g*

(c) For all n Jg* do

 If kng* > Q[n]

 Q[n] ←kng*

(d) ProfitL← ProfitLU{g*}

L is the set of alternative collection points where a bottle bank should be
located.

42

CHAPTER 5

COMPUTATIONAL RESULTS

5.1 Problem Sets

In order to test our algorithm, three different sets of problem instances have been

utilized. The first and the second sets have been created using the data of TSP

and VRP instances reported in TSP Library, TSPlib. The third set of instances has

been generated randomly. All three different sets are described in detail in the

following sections.

5.1.1 Type 1 Instance Set

These instances are constructed using the problem sets given in TSPlib. Each

instance set in TSPlib is specified by the x and y coordinates of the cities and/or

the distance matrix. We have chosen burma14, bayg29, dantzig42, eil51, eil101

and KroA200 as our instances. The numbers in these instances indicate the

number of cities. We have taken the cities in these instances as the compulsory

points of our problem. The additional characteristics of the instances are generated

as described in the following paragraphs.

The number of population zones, n, in each instance is determined in accordance

with the number of compulsory points, m, in the problem. Thus given m, n is set

to three levels of 0.5 m, m and 1.5 m for all problem instances other than eil100

and kroA200. For eil100, n is set to 20, 40, 60, 80 and 100 while for kroA200 to

30, 60, 90, 120 and 150. The coordinates of population zones in each instance

have been generated independently from a uniform distribution in the ranges

defined by each specific problem. The alternative sites coincide with the

population zones. The number of bottle banks to locate, p, is determined in

43

accordance with the size of the problem. Each instance has been solved for

different values of p.

S and T values, that define the critical distances for total and partial coverage,

affect the solutions considerably. If they are set too high, all alternative collection

points will serve almost all population zones and as a result all population zones

will be covered 100%. In the other case, total rate of coverage will be too low. In

order to prevent both of the extreme cases, S and T values have been set such that

in the optimum solution for the problem with highest p value, the ratio of profit

gained from alternative collection centers to total possible revenue from

population zones is around 90%. This has been achieved by setting S and T, a

multiple of the average distance between alternative collection points and

population zones. The ratio of S to T has been set as ¾. Using the S and T values,

the following function has been used to calculate the coverage level. Coverage

level kij provided by alternative site j to a population zone i, for i N , Kj ,

is given by

 1 if dij S,

kij = f(dij) if S < dij T,

 0 otherwise,

where f(dij) =
ST

dT ij
for S < dij T.

Figure 9 shows the coverage level as a function of the distance.

Figure 9. Graph of kij with linear partial coverage function.

0
T

dij
S

1

kij

44

Daily amount of recyclable glass that a person can leave, q, is set to 0.05 kg and

revenue, R, gained from 1 kg of recycled glass has been set to 0.1. Since the

distances differ greatly from instance to instance, using the same cost coefficient

for all problems will cause unstable results. In order to make profits and costs

consistent with each other, different cost coefficients have been calculated for

different problems. TSPs composed of only the compulsory collection centers

have been solved for each problem and cost coefficient is set so that the

transportation cost is half of the average total revenue from compulsory collection

centers. Thus, following equation has been used in order to calculate cost per unit

distance, c, where A is the set of pairs (i,j) that belongs to the optimum TSP tour

of compulsory collection centers.

c=

Aji

ijd

Rmq

),(

2

Finally, the amount of glass to be picked up daily from compulsory collection

centers, qj, j M, have been generated randomly from a discrete uniform

distribution between 100 and 200, and the population in each residential zone has

been generated randomly from a discrete uniform distribution between 400 and

800.

5.1.2 Type 2 Instance Set

Type 2 instance set is constructed using the VRP instances in TSPlib. Instances

named eil22, eil23, eil30, eil33, att48, eil76, eil101 and gil262 are considered.

For each of the instances, three different problems have been generated. In the

first problem, there is only one compulsory point, which is the depot in the

corresponding VRP instance. The second and third kind of problems are generated

such that the first 15% and 30% of the nodes of VRP instance are assigned as the

compulsory collection points in our problem and the rest are assigned as

alternative collection centers that will serve the population zones. Therefore, the

coordinates of compulsory collection points and alternative collection points are

45

taken from the VRP instances. n is set as 3 s. The coordinates of population zones

are generated from a uniform distribution in the coordinates range of alternative

collection centers. Consequently, the population zones are close to alternative

collection points regardless of the location of compulsory collection points. The

rest of the parameters are generated as in the first type of instance set.

The difference between Type 1 and Type 2 instance sets is that in Type 2

problems not all the points of the VRP instance are included in TSP tour while in

Type 1 problems all the cities of TSP instance are visited in addition to the

alternative collection points where a bottle bank is located. Moreover, the ratio of

the number of alternative collection points to compulsory collection centers is

different. While in Type 1 problem sets this ratio differs between 0.5 and 1.5, in

Type 2 sets it is between around 2.3 and 5.7.

5.1.3 Type 3 Instance Set

In this set, the coordinates of the population zones have been generated randomly

from the uniform between 0 and 1000 and the collection points, both compulsory

and alternative, coincide with the population zones. s is selected as 20, 30, 40, 50,

60, 80 and 100 while m is set to s/2, and n is set to 3 s. The rest of the parameters

have been set as in Type 1 instances.

5.2 TSP Algorithms

Each time we have a solution to the outer problem, we have to solve a TSP that

includes both bottle bank locations and compulsory collection points. It is vital to

employ an efficient algorithm that will solve the TSP near to optimal quickly

since it will be called as many times as the VNS algorithm creates solutions to the

location problem. Three of the state of the art algorithms that were developed for

TSP are Concorde TSP solver, Linkern and LKH.

46

LKH algorithm is based on an effective implementation of, Lin-Kernighan

heuristic developed by Helsgaun (2000). Its main difference from basic Lin-

Kernighan heuristic by Lin (1973) is the use of more complex search steps and

sensitivity analysis to control the search. The Chained-Lin-Kernighan heuristic

which was proposed by Applegate et al. (2003) has been utilized in Linkern

algorithm. Concorde is an exact TSP solver based on a cutting-plane method, see

Applegate et al. (2000).

In order to test their efficiency in solving our generated problems and decide on

which one to use, preliminary runs have been made using problems from TSPlib.

CPU times are plotted in Figure 10. As can been seen, Concorde Algorithm has

much higher CPU times than the other two, and Linkern algorithm runs slightly

faster than LKH. The differences in running times are getting larger with

increasing number of cities and for the largest problem, kroA200, CPU time of

Concorde is 4.9 times that of Linkern and 2.7 times of LKH. If we compare the

lengths of the routes found by Linkern and LKH with the tour length of Concorde,

we see that both of them have found optimum tours for all of the problems except

ch150 and percent error for this instance is less than 0.02.

Figure 10. CPU times of TSP Algorithms for 13 TSP problems of TSPlib.

47

We have made higher number of experiments with VRP instances. First, the TSP

Algorithms have been tested with the original VRP problems. 9 of the VRP

problems of TSPlib ranging from 22 to 262 cities have been solved and run times

have been given in Figure 11. Once again, since it is the only exact algorithm we

have tested, Concorde Algorithm has the highest running times. In the largest

instance, gil262, it runs 6 times longer than LKH and 2.3 times longer than

Linkern. And Linkern runs slightly faster than LKH Algorithm for VRP instances

as well. If we check the distances obtained, it is seen that both Linkern and LKH

Algorithms have solved the TSPs with VRP data optimally.

Figure 11. CPU times of TSP Algorithms for 9 VRP problems of TSPlib.

However, in our original problem, we make some modifications to the TSP and

VRP instances of TSPlib. We solve TSP problems created by adding some

randomly generated cities to the original problem and excluding some of cities in

it. In order to check the performance of the TSP Algorithms in our original

problem, we have solved 100 TSPs for each problem we have generated from

VRP instances. These TSPs have been created considering the highest number of

bottle banks to locate for the corresponding problem. For example, for the

instance, eil22, m=2, s=20, and p=4, 6, 8, 10, there are 2 compulsory collection

48

points. Minimum and maximum numbers of bottle banks to locate are 4 and 10.

So we have constructed 100 TSPs by choosing each time 10 locations from 20

possible in addition to two compulsory nodes. In Figure 12 Average CPU time of

each 100 TSPs with same length is summarized. The results are similar to the

ones we got for original TSP and VRP problems, Concorde is the slowest and

Linkern is the fastest algorithm once again. LKH runs slower than Concorde for

the small TSPs but the problems greater than 30 cities run time of Concorde is

higher than the other two. 2,700 different TSP problems have been generated and

run by each of the Algorithm and Linkern has found the optimum for all except 7

of them and LKH found all but 14 of them. Maximum average errors in 27

different problems are 0.0084 and 0.0096 for Linkern and LKH, respectively. The

CPU times and percent errors of three different algorithms can be found in

Appendix B for the solution of TSP and VRP from TSPlib and the generated

problems from VRP data.

Figure 12. Average CPU times of TSP Algorithms for problems generated from

VRP instances.

Considering both running times and quality of solutions found together, Linkern

Algorithm outperforms the other two since it finds optimal or near optimal

49

solutions faster than both of them. From now on, Concorde TSP solver will be

used for exhaustive search where optimum solution is found. For greedy heuristic

and local search algorithms, Linkern will be utilized with TSPs greater than 8

cities. We have also used Concorde in the heuristics where the size of

corresponding TSP is less than 8 since Linkern does not solve very small

instances. For VNS, we will first utilize the Concorde and Linkern TSP solvers

like in the heuristic algorithms and we will compare their efficiency with the

cheapest insertion and 2-opt heuristics.

5.3 Parameter Setting for VNS using Linkern

VNS is a metaheuristic that has very few parameters to set and it is very

straightforward to start implementation. We have already decided on

neighborhood structure to be used in the shaking step and local search. Now we

have to decide on kmax and stopping condition. In our problem, kmax and stopping

condition is critical, since each time an objective function is calculated, we also

have to solve a TSP problem and running the algorithm unnecessarily without any

improvement will make it inefficient. As a stopping condition we will use an

iteration limit. The aim is not stop the algorithm with a time limit whenever it is

possible to make more improvements. We could also use maximum number of

iterations without improvement. In order to decide on the maximum iteration

number and value of kmax, preliminary runs have been made.

Preliminary runs have been made for type 3 problems, ran50 and ran100. kmax has

been given 3 different values, 3, p and p/2. In addition to that, one more run has

been made with kmax=p and using a step greater than 1. The step values used for

different p can been seen in Table 1. Since we do not have p values much greater

than 20, we did not set higher values for step. Setting step greater than 1 will

increase the diversification since it will make larger perturbations to the current

solution more frequently and will make the main step execute faster.

50

Table 1. Value of step for different p values.

p step

p<10 1

10≤p<15 2

15≤p<20 3

20≤p 4

We have made runs long enough for each kmax value and p combination so that the

algorithm converges. Figure 13 shows the evolution of the algorithm for different

kmax values during the solution of the problem ran100 with 15 bottle banks to

locate. Eventually, all of the runs converged to the same number. While kmax=3

was the fastest, kmax=p was the slowest of all to converge to the best solution

found.

Figure 13. Progress of VNS algorithm with different kmax values, for ran100,

p=15.

After evaluating the results we got the Table 2 that shows the CPU time at which

each combination reaches the overall best solution. ―*‖ indicates that the

algorithm did not converge to the best solution found in the set time limit.

51

Highlighted CPU shows the kmax value that reaches the best solution in shortest

time. So in half of the instances, algorithm was fastest when kmax is 3 and in 2 of

the instances, it was fastest when kmax is p and step is used and for one instance it

was fastest when kmax is p/2.

Table 2. Minimum CPU required to find the best objective for different kmax

values.

 ran50 ran100

 10 15 20 10 15 20

kmax=3 2075 7178 626 1097 3904 *

kmax =p/2 521 2548 2657 1976 8287 30966

kmax =p 2171 5142 10853 4839 15291 55605

kmax =p,step 854 2051 4426 2481 22160 12599
 * not converged

The reason for the speed of the algorithm with kmax=3, and p/2 maybe the strength

of the local search itself. However, setting kmax these values may not provide

enough diversification for larger problems and may cause longer runs or worse

results in the same time limit. In addition to that, setting kmax=p will substantially

increase the running time even if it will eventually give good results.

Consequently, we have adopted the last strategy where kmax=p and step is greater

than 1 for the VNS algorithm that uses Linkern to solve TSPs generated.

However, even for the best parameters we have adapted, the CPU times are very

high for a heuristic algorithm that does not guarantee optimality. The CPU time

for the problem ran100 with 20 bottle banks is 9.5 hours and around 6 hours for

the VRP instance eil101 with 25 bottle banks. The most time consuming part of

our algorithm is the solution of the TSP problems generated. There are two main

steps where TSP problems are created, shaking step and local search. Each time

the shaking step is executed, k alternative sites are removed from the current

solution and k new sites are introduced to place bottle banks. Then, k nodes are

removed from the current vertex set of TSP and k new nodes are introduced. The

52

rest of the vertices stay unchanged. In the local search step, there is only one node

deleted and a new one added to the vertex set since each time a substitution of

sites is made. So instead of using Linkern and Concorde each time there is a

change in TSP tour, we could utilize construction and improvement heuristics to

shorten the CPU time. We have evaluated three different alternatives as in Table 3

and compared them with the use of Linkern.

Table 3. Alternative methods used for the solution of TSP in VNS.

VNS-L VNS-L-I VNS-I-I VNS-I-2-I

Shaking Linkern Linkern Cheapest Insertion
Cheapest Insertion

+ 2 opt

Local Search Linkern Cheapest Insertion Cheapest Insertion Cheapest Insertion

Cheapest insertion is a construction heuristic and it requires a subtour for the

insertion of new nodes to the tour. In the shaking step, subtour is obtained using

the TSP tour of the current solution. The sites deleted from the solution of

location problem are removed one by one from the TSP tour by connecting the

adjacent nodes of the deleted node each time. A total of k nodes are excluded from

the tour and the subtour is obtained. In the local search, only one node is deleted

from the tour. After the subtour is obtained, newly chosen sites to locate bottle

banks are inserted between the nodes that will cause the smallest increase in the

TSP tour distance as in the cheapest insertion heuristic. While in shaking step k

new nodes are added to the subtour, in local search only one is added. Because of

the larger change in the TSP tour in shaking step, and cheapest insertion may not

suffice to produce good results, we have also tried to improve the tour obtained as

a result of cheapest insertion by using 2-opt heuristic. 2-opt is an improvement

heuristic proposed by Croes (1958) that finds the best tour by breaking two edges

at a time and generating a new tour by connecting the resulting paths in opposite

way. A move is made if a shorter tour is found and the search continues with the

new tour. The algorithm terminates when there is no more possible improvement.

53

The performance of VNS algorithm that only uses Linkern and Concorde has been

compared with the three new alternatives by solving problems from each instance

set. In Table 4, percent deviation from best solution and CPU values are given for

three randomly generated problems. If we consider the solution quality, VNS-L-I

and VNS-L have produced the same results, finding the best solution for all of 12

problems. The other two alternatives have worse solution results, finding only 2

and 3 of the best solutions with maximum error 7.96 and 1.93. If we look at the

CPU times, VNS-L, runs much slower than the alternative methods. For the

largest problem, ran100 with 20 bottle banks, CPU time is around 9.5 hours for

VNS-L, while it is only 109.22 seconds for VNS-L-I and 16.13 seconds for VNS-

I-2-I. The reason for the better performance of VNS-L-I than VNS-I-I and VNS-I-

2-I is its use of Linkern in shaking step instead of the cheapest insertion and 2-opt

heuristics. Since there is a larger change in the TSP tour in shaking step, those two

heuristics does not suffice to produce as good TSP tours as Linkern. And the

reason for slowness of VNS-L is its use of Linkern also in local search. Even if

there is only one node change in the TSP tour, it solves the problem from scratch.

However, insertion heuristic is able to produce the same tour in much shorter

time.

Table 4. CPU Time and % Error of VNS with alternative TSP solution procedures

for the random instances ran20, ran50 and ran100.

Problem set m-n-s p f(best) VNS-L VNS-L-I VNS-I-I VNS-I-2-I VNS-L VNS-L-I VNS-I-I VNS-I-2-I

ran20 10 60 20 4* 50.54 0.00 0.00 2.01 0.00 26 0.31 0.09 0.03

6* 76.23 0.00 0.00 1.71 0.00 46 0.44 0.05 0.05

8* 88.97 0.00 0.00 7.96 1.22 64 0.95 0.06 0.05

10* 94.20 0.00 0.00 0.00 1.52 113 0.59 0.06 0.06

ran50 25 150 50 5* 329.28 0.00 0.00 0.97 0.00 129 0.33 0.08 0.08

10 442.02 0.00 0.00 1.09 0.14 1122 2.14 0.47 0.45

15 502.63 0.00 0.00 1.30 0.67 4498 3.28 2.39 1.80

20 529.08 0.00 0.00 0.37 0.93 2225 3.67 2.86 4.36

ran100 50 300 100 5 490.17 0.00 0.00 0.00 0.51 675 0.89 0.27 0.27

10 708.82 0.00 0.00 1.35 0.56 2693 9.67 6.63 1.77

15 865.23 0.00 0.00 2.78 1.50 4963 31.27 11.25 32.78

20 952.92 0.00 0.00 1.72 1.93 34460 109.22 17.70 16.13

Average 0.00 0.00 1.77 0.75 4251.17 13.56 3.49 4.82

Maximum 0.00 0.00 7.96 1.93 34460.00 109.22 17.70 32.78

Best 12 12 2 3

Total 12

% Deviation from Best CPU (seconds)

54

The results are similar for the TSP and VRP instance sets, see Appendix C. VNS-

L-I produces as good results as VNS-L in much shorter time and gives better

results than the other two alternatives in comparable time. So we have adapted

using the first alternative we have proposed, using Linkern in shaking step and

cheapest insertion heuristic in local search step. If not stated explicitly, from now

on VNS will represent this new combination of heuristics.

5.4 Parameter Setting for VNS using Cheapest Insertion Heuristic

We have used p as kmax, 1 as kmin and 1 as kstep in the previous comparisons for

VNS-L-I. In order to increase the performance of our new algorithm we have

made a more extensive study for parameter setting for VNS-L-I than for VNS-L.

We have tried p/2, 3×p/4 and p for kmax and 1, p/4 and p/2 for kmin. We have also

tried similar values for kstep like in VNS-L, where kstep is a bit higher for smaller

kmax-kmin values, see Table 5.

Table 5. Value of step for different kmax-kmin values.

k max -k min k step

 ≤ 5 1

 5 < ≤ 10 2

10 < ≤ 20 3

20 < 4

A total of 13 alternatives have been evaluated by solving 18 problems and each

alternative has been run with an iteration limit of 100 for the main step. The

iteration number of main step at which the best solution found is counted in order

to calculate the iteration limit. If we choose three standard deviations from the

average iteration limit, the best solution is found for almost all the alternatives.

When the CPU times are evaluated, the alternative with kmax=3×p/4, kmin=1 and

kstep>1 has been found out to be the fastest one to give best results. So we have

adopted this strategy with an iteration limit for the main step set to 40.

55

5.5 Computational Results

The proposed algorithm has been coded in C programming language and it has

been run on computers with Intel Core 2 Duo 3.00 GHz CPU processor and 3.49

GB of RAM. In this section, first the computational results for the three different

problem sets have been discussed. The performance of VNS algorithm has been

compared with pure local search algorithm, proposed Greedy Heuristic and where

applicable, with the optimal solutions obtained by exhaustive search. Later, the

results for the large instances have been given. RVNS algorithm has also been

applied to large instances as it was proposed to get good results in short time. In

order to compare the performance we have used the following performance

measures: CPU Time, percent deviation from optimum or best and percent of all

TSPs solved. Percent deviation is calculated as follows:

% Devopt = ,

% Devbest = ,

where fopt indicates the objective function value of the optimum solution, fbest is the

objective function value of the best found solution and fcur is the objective

function value of the current solution found. Note that in some of the problems

since the ratio of the revenue obtained from the compulsory collection points to

the maximum possible revenue that can be obtained with a given number of bottle

banks is high, the solution results may be overrated if we use the profits that

include revenue from both collection points. In order to prevent that we subtract

the profit obtained from the solution of the problem with no bottle banks, from

overall profit and use it in calculation of % deviation.

Percent of TSP solved is calculated with the following formula:

% TSP solved =

Total number of TSPs is all possible selection of locations from alternative

collection points in order to locate the bottle banks. It is the combination of p in s.

56

The following notation has been used in the tables of solution results:

GH: Greedy Heuristic Algorithm

LS: Local Search Algorithm

VNS: Variable Neighborhood Search Algorithm

ES: Exhaustive Search

L: Linkern TSP solver

C: Concorde TSP solver

I: Cheapest Insertion Heuristic

Profit(0): Profit gained from only compulsory collection points

Profit(p): Contribution of locating p bottle banks to the overall profit

(Profit(p)= Overall Profit-Profit(0))

Linkern TSP solver has been used for the solution of TSPs generated by LS, GH

and shaking step of VNS in order to calculate the objective function value.

However, for the TSPs with less than 9 cities, Concorde TSP solver has been

utilized since Linkern is not designed to solve small instances. It has been stated

in the tables in the appendices which ones have been used. Whenever possible,

optimum solutions have been found for evaluation of the proposed algorithms by

ES which evaluates all the possible combinations and uses Concorde TSP solver.

A time limit of 40 hours has been set for ES. Now we can discuss the results

obtained for different set of problems.

5.5.1 Results for TSP instances

In Table 6 computational results for the TSP instances are summarized. In the first

column, the name of the problem instance is stated. In the next column the

number of compulsory collection points, population zones and alternative sites are

given. Each problem has been solved with several different number of bottle

banks and these numbers are listed in the column p. Then, comparison of different

algorithms with respect to percent deviation from the best found solution, the

computation time and percentage of all possible TSPs solved are given. Note that

these numbers are the average of the solutions of a problem with different p.

57

Table 6. Summary of computational results for TSP Instances.

T
a

b
le

 6
.

S
u

m
m

ar
y

 o
f

co
m

p
u

ta
ti

o
n

al
 r

es
u

lt
s

fo
r

T
S

P
 I

n
st

an
ce

s.

58

VNS algorithm has found the best solutions for all the TSP instances. While the

maximum percent deviation is similar for LS and GH, LS algorithm performs

better in general than GH, if we look at the average percent deviation from the

best solution. When % TSP solved is considered, it is seen that as the problem

size decreases, the efficiency also decreases for greedy heuristic and local search.

For the smallest problem, burma14 with 7 alternative sites, GH and LS has solved

51% and 69% of all possible TSPs respectively. As the problem size increases this

ratio decreases dramatically. VNS is the fastest of the three algorithms while LS is

the slowest. In average VNS is 13.5 times faster than GH and GH is 9 times faster

than LS. The reason is that GH is an insertion heuristic where exactly p

evaluations are made to construct the final solution and iteration proceeds in LS

while there is progress in the objective value. The reason for VNS being fast is

that even if it solves much higher number of TSPs, it uses cheapest insertion

heuristic instead of Linkern in the local search.

The objective function values, computation times and percent deviation from

optimum and best found solutions for each problem instance are given in

Appendix D. There are a total of 71 solutions for TSP instances that includes

different number of bottle banks. VNS algorithm has given the best results for all

of them while it is 30 for GH and 47 for LS. Both GH and LS also performed well

even if they do not always find optimum solutions. The maximum deviation from

the best is 6.74 for GH and 12.11 for LS considering all 71 problems.

5.5.2 Results for VRP instances

In Table 7, the results for the VRP instances are summarized. While VNS has

found the best solutions for all problems, the performance of GH and LS has

decreased substantially. The maximum of average deviations is 50.60% for GH

and 15.58% for LS. If we omit 15.58%, LS has found solutions deviating not

more than 7.36% of the best solution in average and the average percent error for

all problems is 2.29%.

59

Table 7. Summary of computational results for VRP Instances.

T
a

b
le

 7
.

S
u

m
m

ar
y

 o
f

co
m

p
u

ta
ti

o
n

al
 r

es
u

lt
s

fo
r

V
R

P
 I

n
st

an
ce

s.

60

The reason for worse solutions may be the higher complexity generated by the

higher number of population zones. In TSP instances each population zone is

considered as an alternative collection point, while in VRP instances the number

of population zones is three times the number of alternative collection points and

they do not necessarily coincide. The maximum of percentage of TSPs solved is

less than 4% for LS and less than 1% for GH. This is because of the larger

solution space for problems generated from VRP instances. Even if the original

problems have the same number of nodes, there are higher number of alternative

sites in Type 2 problem sets which makes the solution space larger.

More detailed results can be found in Appendix E for VRP instances. A total of 78

problems have been solved and VNS has found the best solutions of all. While

GH has found 17 of the best solutions, it is 45 for LS. The worst performance of

LS and GH has been encountered in the third problem instance of eil23, see Table

E2. In the case with 8 bottle banks, the deviation of the solution of GH is 76.16%.

In the case with 6 bottle banks, the deviation of the solution of LS is 62.31%.

5.5.3 Results for Random Instances

The number of problems is rather small compared to Type 1 and Type 2 problem

sets in random instances. Summary of computational results for random instances

is given in Table 8. Once again, % Error is low like in the Type 1 instances. While

VNS has solved all the problems optimally, average error is 0.96 % for GH and

0.39 % for LS. The reason for good results for GH and LS may be the location of

alternative and compulsory sites at population zones. The relation between the

average CPU times is similar to previous ones as VNS runs the fastest and LS the

slowest. GH is around 12 times faster than LS while VNS runs 4 times faster than

GH. In Appendix F, the details of the computational runs are summarized for

Random Instances.

61

Table 8. Summary of computational results for Random Instances

T
a

b
le

 8
.

S
u

m
m

ar
y

 o
f

co
m

p
u

ta
ti

o
n

al
 r

es
u

lt
s

fo
r

R
an

d
o

m
 I

n
st

an
ce

s.

62

LS has found 18 out of 28 of the best solutions while GH found 12 of them. VNS

has found all the best solutions. The maximum percent deviation from the best

solution is 5.11 for GH for the solution of ran100 with 20 bottle banks and 3.60

for LS for the solution of ran60 with 5 bottle banks.

5.5.4 Results for Large Instances

For the solution of large instances in addition to the algorithms we have already

used, we have also utilized the RVNS algorithm in which the local search routine

is omitted. We used two different time limits for RVNS: run time of GH and run

time of LS in order to compare their efficiency. Two problems have been

addressed, gil262 from VRP instances and kroA200 from TSP instances. The

detailed computational results are given in Appendix G. GH, LS next to RVNS in

the first row represents the time limit of the RVNS algorithm. VNS has found the

best solutions for all the problems. RVNS is outperformed by LS and GH since it

has higher percent error when run with the same time limit. The percent error of

RVNS is as high as 13.14 when run with the time limit of GH. GH has found 4 of

the best solutions out of 32, while LS has found 17. The maximum percent error is

4.37 for GH and 2.45 for LS and average error is 2.95 and 0.84 for gil262. The

average error is even lower for kroA200, so these heuristics also produce

acceptable results. LS algorithm runs far more slower than the other two, the

maximum, more than 3 hours for one of gil262 instances. While VNS has run

faster in kroA200 instances on average, it was slower for gil262 instances.

5.5.5 A detailed study on profits

Use of cheapest insertion heuristic instead of Linkern has substantially reduced

the computation time. This has let us evaluate the results of locating different

number of bottle banks. As the number of bottle banks to locate increased, the

total number of possible combinations of locating them increases very rapidly and

reaches its peak when the number of bottle banks to locate is half of the number of

alternative sites. Hopefully, we could have run the algorithm for all possible p

63

values despite the complexity of the problem. In Table 9, the results for the

random instance ran20 are summarized. Revenue(M) is the revenue obtained from

compulsory collection points, which is a fixed amount. Revenue(K) is the revenue

gained from alternative sites through bottle banks. Observe that in this problem

instance the company has a loss when there is no bottle banks located and it has to

locate at least 2 bottle banks in order to make profits.

Table 9. Revenues and costs for all possible p values for the problem ran20.

p Profit Revenue (M) Revenue (K)

Transportation

Cost

0 -24.85 127.70 0.00 152.55

1 -0.44 127.70 24.61 152.75

2 18.05 127.70 43.15 152.80

3 36.35 127.70 61.45 152.80

4 50.54 127.70 76.24 153.40

5 63.71 127.70 93.76 157.75

6 76.23 127.70 106.33 157.80

7 85.74 127.70 116.09 158.05

8 88.97 127.70 119.02 157.75

9 91.92 127.70 122.57 158.35

10 94.20 127.70 125.20 158.70

11 94.61 127.70 132.36 165.45

12 94.26 127.70 132.36 165.80

13 93.15 127.70 136.35 170.90

14 92.70 127.70 136.35 171.35

15 90.16 127.70 136.96 174.50

16 88.31 127.70 136.96 176.35

17 86.05 127.70 138.00 179.65

18 83.20 127.70 138.65 183.15

19 78.65 127.70 139.05 188.10

20 71.82 127.70 151.97 207.85

In Figure 14, one can see the change on revenues and costs with increasing

number of bottle banks. As expected, the revenue from bottle banks increases

rapidly with increasing number of bottle banks in the beginning. The reason is

that, few of the population zones are covered because of inadequate number of

bottle banks. Most of the population zones are covered with 11 bottle banks and

addition of new bottle banks does not make much contribution to the profit. Best

64

number of bottle banks to locate is 11 which produce a profit of 94.61. If we

locate additional bottle banks, the profits decrease. The reason is that the increase

in transportation costs is higher than the increase in the revenues. When most of

the alternative sites are occupied, there are few empty sites left, most probably the

ones far away from the current tour. Then, locating additional bottle banks causes

higher increase in the transportation costs with inadequate increase in the

revenues.

Figure 14. Revenue and cost components for the problem ran20.

When we have defined our problem, we have assumed that there is no cost of

locating a bottle bank, except the tranportation cost. In case there is a fixed cost

for each bottle bank located, we have calculated the optimum number of bottle

banks to locate and the revenue obtained for different amount of unit cost. For a

given fixed cost, the unit cost should be calculated by converting the fixed cost to

daily amounts. In Figure 15, the best number of bottle banks to locate is given for

the change in unit costs. When there is no unit cost, as expected, it is the best to

locate 11 bottle banks which will produce the profit of 94.61. As the amount of

unit cost increases, achieving high number of bottle banks become more costly, so

it is more profitable to keep less number of bottle banks. Eventually, location of

-50

0

50

100

150

200

250

0 5 10 15 20 25

p

Profit

Revenue (M)

Revenue (K)

Transportation Cost

65

any bottle banks will not make any contribution to the profit and it is better to

operate only with the compulsory collection centers.

Figure 15. The best number of bottle banks to locate for the problem ran20.

In Figure 16, the profit obtained when the best number of bottle banks are located

for a given unit cost is presented. As expected, when there is 0 unit cost, it is

possible to earn the maximum profit of 94.61 by locating 11 bottle banks. Profits

decrease with increasing unit cost, and eventually since it is not profitable to

locate any bottle banks, only profits from compulsory centers are realized. In the

Appendix H, similar results have been given for the randomly generated

problems, ran50 and 100, TSP problem instances bayg29 and eil51, VRP problem

instances att48 and eil76, and finally one of the large instances, kroA200.

0

2

4

6

8

10

12

0 5 10 15 20 25 30

o

f
b

o
tt

le
 b

an
ks

Unit Cost

66

Figure 16. Amount of profit for different unit cost, ran20.

-40

-20

0

20

40

60

80

100

120

0 5 10 15 20 25 30

P
ro

fi
t

Unit Cost

67

CHAPTER 6

CONCLUSION AND RECOMMENDATIONS

In this thesis, a problem that was faced by a recycling company in Ankara in the

collection of used glass is addressed. ÇEVKO, a non-governmental organization

established to arrange recycling activities, has located a number of bottle banks to

a number of districts according to the proximity to both residential zones and the

recycling industry. Recently, ÇEVKO has handed over the possession of the

bottle banks to a collecting company. However, with the given location of bottle

banks, the company incurs loss. There are two sources of revenue for the

company. The first one is a group of customers that it has made contract to collect

glass in a regular basis, mostly hospitals, restaurants, bars and schools, which are

defined as compulsory collection centers. The other source of revenue is the

located bottle banks. The residents in the population zones drop their used glass to

the nearby bottle banks and their willingness to return the glass depends on the

closeness to the bottle bank. It is assumed that all the population is covered within

some distance of a bottle bank. If this limit is exceeded, there is partial coverage

of the population, and there is no coverage beyond the higher limit. The main cost

of the company is the transportation cost which is incurred in the daily activity of

collecting the recycled glass from both bottle banks and compulsory collection

centers. Now, in order to increase its profits, the company has to locate a given

number of bottle banks to some alternative collection points and find a new route

for its collecting vehicle. The closeness to the potential population zones and the

distance of the tour should be considered together so as the profit is maximized.

The problem has been modeled as a combination of two well known problems in

the literature, the selective traveling salesman problem and maximal coverage

location problem in the presence of partial coverage. The problem was handled by

solving two nested problems: location of bottle banks and routing of a vehicle

68

through these locations and compulsory centers. Mainly three different methods

have been used for the solution of the problem. Since it is a relatively new

Metaheuristic approach and has given very good results for a number of location

problems, we have used variable neighborhood search (VNS) algorithm by

Mladenović and Hansen (1997) for the solution of location part of the problem.

The second method is a greedy heuristic (GH) that locates one bottle bank at a

time considering its contribution to both revenues and costs. The third method is

the local search (LS) algorithm itself, which is one of the steps of the VNS. In

order to obtain the optimum solutions, exhaustive enumeration has also been

utilized where applicable that evaluates all possible combination of locations.

Each time a given location of bottle banks is evaluated, we have to find the

corresponding route of the collecting vehicle. In order to find the best routes

possible, three state of the art TSP solvers have been used, which are, Linkern,

Concorde and LKH, among which Concorde is the one that uses an exact solution

procedure. These three algorithms have been compared on some of the problems

that have been generated for our problem. It has been found out that Linkern is the

most efficient among all three for our problems, it has been selected for the

solution of TSPs generated by GH, LS and VNS. Concorde solver has also been

utilized for the smallest problems where Linkern does not work, in addition to the

exhaustive search procedure that requires optimum solutions to generated TSPs.

Since during the execution of VNS algorithm there is a great number of TSPs to

solve, the combination of VNS with Linkern becomes inefficient. In order to

overcome this problem, we have tried the algorithms, cheapest insertion and 2-opt

in the place of Linkern. These algorithms run faster but does not give as good

results as Linkern. We have found out that, VNS combined with Linkern in

shaking step and cheapest insertion in local search runs for some instances more

than 1000 times faster than VNS combined with only Linkern. So we have

adopted this last strategy.

69

In order to compare our algorithms, we have generated problems using the

original TSP and VRP instances from TSPlib, in addition to the ones created

randomly. The problems differ from each other with respect to the ratio between

the number of compulsory collection centers, alternative sites and population

zones. For each of TSP and VRP instance 3 different problems have been

generated. Both considering the solution quality and CPU time, VNS-L-I is the

best of the three algorithms. It has found all the best solutions and all the known

optimum solutions. Reduced VNS, which is a variant of VNS that was developed

for solving large problems in shorter time, has also been used for our two large

instances. However, VNS was more successful, as once again finding all the best

results, better than RVNS, in comparable CPU time.

Since our algorithm became very efficient with the use of cheapest insertion

heuristic, it was possible to solve the problems for all possible p values. This way

we were able to find the best number of bottle banks to locate to maximize the

profit of the company. More important than that, in case there is a fixed cost of a

bottle bank, we could calculate the best number of bottle banks to locate and the

resulting profit. Some of the curves for the best number of bottle banks to locate

and the profits versus unit cost have also been given.

As a future work, one can study exact solution approaches to find optimum

results. In addition to that, by assuming that the company has a freedom of

deciding the number of bottle banks to locate, one can address the problem of

finding the optimum number of bottle banks, their location and routing, which is a

similar problem to selective TSP. It is also possible to study the effect of the

change of unit transportation cost to the location of bottle banks and the overall

profits since it is considered to be the main source of costs and fuel prices are

increasing continuously. For large problems, multivehicle version of the same

problem can be addressed with the inclusion of capacity and time limits, since one

vehicle will not be sufficient to serve every collection point in a daily basis.

70

 REFERENCES

1. Applegate D., Bixby R., Chvatal V., Cook W. (2000), ―TSP cuts which do

not conform to the template paradigm‖, Lecture Notes In Computer

Science, Volume 2241, Pages 261-304

2. Applegate D., Cook W., Rohe A. (2003), ―Chained Lin-Kernighan for

large traveling salesman problems‖, INFORMS Journal on Computing,

Volume 15, Issue 1, Pages 82-92

3. Arakaki R.G.I., Lorena L.A.N. (2001), ―A constructive genetic algorithm

for the maximal covering location problem‖, Proceedings of

Metaheuristics International Conference, Porto, Portugal

4. Batta R., Mannur N.R. (1990), ―Covering-location models for emergency

situations that require multiple response units‖, Management Science,

Volume 36, No 1, Pages 16-23

5. Berman O., Krass D. (2002), ―The generalized maximal covering location

problem‖, Computers & operations research, Volume 29, Issue 6, Pages

563–581

6. Blum C., Roli A. (2003), ―Metaheuristics in combinatorial

optimization: Overview and conceptual comparison‖, ACM Computing

Surveys (CSUR) Archive, Volume 35 , Issue 3, Pages 268 – 308

7. Braysy, O. (2003), ―A reactive variable neighborhood search for the

vehicle-routing problem with time windows‖, INFORMS Journal on

Computing, Volume 15, Issue 4, Pages 347-368

8. Burke E.K., Cowling P.I., Keuthen R. (2001), ―Effective local and guided

variable neighbourhood search methods for the asymmetric travelling

salesman problem‖, Lecture Notes in Computer Science, Volume 2037,

Pages 203-212

9. Carrabs F., Cordeau J. F., Laporte G. (2007), ―Variable neighborhood

search for the pickup and delivery traveling salesman problem with LIFO

loading‖, INFORMS Journal on Computing, Volume 19, Issue 4, Pages

618-648

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.4.2151&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.4.2151&rep=rep1&type=pdf
http://portal.acm.org/toc.cfm?id=J204&type=periodical&coll=GUIDE&dl=GUIDE,&CFID=73719590&CFTOKEN=23437661

71

10. Chao I.M., Golden B.L., Wasil E.A. (1996), ―A fast and effective heuristic

for the orienteering problem‖, European Journal of Operational Research,

Volume 88, Pages 475-489

11. Chung C. (1986), ―Recent applications of the maximal covering location

planning (M.C.L.P.) model‖, The Journal of the Operational Research

Society, Volume 37, No. 8, Pages 735-746

12. Church R., ReVelle C. (1974), ―The maximal covering location problem‖,

Papers of the Regional Science Association, Volume 32, Pages 101-118

13. Church R.L., Roberts K.L. (1983), ―Generalized coverage models and

public facility location‖, Papers in Regional Science, Volume 53, Pages

117-135

14. Crainic T.G., Gendreau M., Hansen P., Mladenović N. (2004),

―Cooperative parallel variable neighborhood search for the p-median‖,

Journal of Heuristics, Volume 10, Number 3, Pages 293-314

15. Croes G. A. (1958), ―A method for solving traveling salesman problems‖,

Operations Research, Volume 6, Pages 791-812

16. DellAmico M., Maffioli F., Varbrand P. (1995), ―On prize-collecting tours

and the asymmetric travelling salesman problem‖, International

Transactions in Operational Research, Volume 2, Issue 3, Pages 297-308

17. Feillet D., Dejax P., Gendreau M. (2005), ―Traveling salesman problems

with profits‖, Transportation Science, Volume 39, Issue 2, Pages 188-205

18. Fischetti M., Gonzalez J.J. S., Toth P. (1998), ―Solving the orienteering

problem through branch-and-cut‖, INFORMS Journal on Computing,

Volume 10, No 2, Pages 133-148

19. Fleszar K., Osman I.H., Hindi K.S. (2009) ―A variable neighbourhood

search algorithm for the open vehicle routing problem‖, European Journal

of Operational Research, Volume 195, Issue 3, Pages 803–809

20. Galvao R.D., Espejo L.G.A., Boffey B. (2000), ―A comparison of

Lagrangean and surrogate relaxations for the maximal covering location

problem‖, European Journal of Operational Research, Volume 124, Issue

2, Pages 377-389

http://linkinghub.elsevier.com/retrieve/pii/0377221795000356
http://linkinghub.elsevier.com/retrieve/pii/0377221795000356
http://www.jstor.org/action/showPublication?journalCode=joperresesoci
http://www.jstor.org/action/showPublication?journalCode=joperresesoci
http://www.springerlink.com/index/MV2XWN2384862022.pdf
http://www.springerlink.com/index/MV2XWN2384862022.pdf
http://www.springerlink.com/content/fteapac5mgc0/?p=448e47c412b845a892a5cf2084fe0f65&pi=0
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.88.5086&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.88.5086&rep=rep1&type=pdf
http://webpages.ull.es/users/jjsalaza/curriculum/articles/JOC98otsp.pdf
http://webpages.ull.es/users/jjsalaza/curriculum/articles/JOC98otsp.pdf

72

21. García-López F., Melián-Batista B., Moreno-Pérez J.A. (2002), ―The

parallel variable neighborhood search for the p-median problem‖, Journal

of Heuristics, Volume 8, Number 3, Pages 375-388

22. Gendreau M., Laporte G., Semet F. (1998), ―A branch-and-cut algorithm

for the undirected selective traveling salesman problem‖, Networks,

Volume 32, Issue 4, Pages 263-273

23. Gendreau M., Laporte G., Semet F. (1998), ―A tabu search heuristic for

the undirected selective travelling salesman problem‖, European Journal

of Operational Research, Volume 106, Pages 539-545

24. Gribkovskaia I., Laporte G., Shyshou A. (2008), ―The single vehicle

routing problem with deliveries and selective pickups‖, Computers &

Operations Research, Volume 35, Issue 9, Pages 2908-2924

25. Gutierrez-Jarpa, G., Marianov V., Obreque C. (2009), ―A single vehicle

routing problem with fixed delivery and optional collections ‖, IIE

Transactions, Volume 41, Issue 12, pages 1067-1079

26. Hansen P., Brimberg J., Urosević D., Mladenović N. (2007), ―Primal-dual

variable neighborhood search for the simple plant-location problem‖,

INFORMS Journal on Computing, Volume 19, Issue 4, Pages 552-564

27. Hansen P., Mladenović N. (1997), ―Variable neighborhood search for the

p-median‖, Location Science, Volume 5, Issue 4, Pages 207-226

28. Hansen P., Mladenović N. (2001), ―Variable neighborhood search:

Principles and applications‖, European Journal of Operational Research,

Volume 130, Issue 3, Pages 449-467

29. Hansen P., Mladenović N., Perez-Britos D. (2001), ―Variable

neighborhood decomposition search‖, Journal of Heuristics, Volume 7,

Issue 4, Pages 335-350

30. Harm G., Hentenryck P. V. (2005), ―A multistart variable neighborhood

search for uncapacitated facility location‖, Proceedings of the 6th

Metaheuristics International Conference, Vienna, Austria

http://www.springerlink.com/content/102935/?p=547105b0acc141fcb37c5276eff04a18&pi=0
http://www.springerlink.com/content/102935/?p=547105b0acc141fcb37c5276eff04a18&pi=0
http://www.springerlink.com/content/ed4r0y0le7gw/?p=547105b0acc141fcb37c5276eff04a18&pi=0
http://linkinghub.elsevier.com/retrieve/pii/S0377221797002890
http://linkinghub.elsevier.com/retrieve/pii/S0377221797002890
http://www.sciencedirect.com/science/journal/03050548
http://www.sciencedirect.com/science/journal/03050548
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235945%232008%23999649990%23679882%23FLA%23&_cdi=5945&_pubType=J&view=c&_auth=y&_acct=C000038698&_version=1&_urlVersion=0&_userid=691352&md5=7bd9910e21d9e485a522778dcd1aaf8a
http://linkinghub.elsevier.com/retrieve/pii/S0377221700001004
http://linkinghub.elsevier.com/retrieve/pii/S0377221700001004
http://www.sciencedirect.com/science/journal/03772217
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235963%232001%23998699996%23230359%23FLA%23&_cdi=5963&_pubType=J&view=c&_auth=y&_acct=C000038698&_version=1&_urlVersion=0&_userid=691352&md5=5678bc0c679470adb5d9fcfb2f0bc7da
http://www.springerlink.com/content/b4nwjftrfapf/?p=730add33004145b6a82c989512ace2ef&pi=0
http://www.springerlink.com/content/b4nwjftrfapf/?p=730add33004145b6a82c989512ace2ef&pi=0

73

31. Helsgaun, K. (2000), ―An effective implementation of the Lin–Kernighan

traveling salesman heuristic‖, European Journal of Operational Research,

Volume 126, Issue , Pages 106-130

32. Hemmelmayr V.C., Doerner K.F., Hartl R.F. (2009), ―A variable

neighborhood search heuristic for periodic routing problems‖, European

Journal of Operational, Volume 195, Issue 3, Pages 791–802

33. Kantor M.G., Rosenwein M.B. (1992), ―The orienteering problem with

time windows‖, The Journal of the Operational Research Society, Volume

43, No. 6, Pages 629- 635

34. Karasakal O., Karasakal E. K. (2004), ―A maximal covering location

model in the presence of partial coverage‖, Computers & Operations

Research, Volume 31, Issue 9, Pages 1515-1526

35. Kytöjoki J., Nuortio T., Bräysy O., Gendreau M. (2007), ―An efficient

variable neighborhood search heuristic for very large scale vehicle routing

problems‖, Computers and Operations Research, Volume 34, Issue 9,

Pages 2743 – 2757

36. Laporte G., Martello S. (1990), ―The selective travelling salesman

problem‖, Discrete Applied Mathematics, Volume 26, Issue 2-3, Pages

193-207

37. Liang Y.C., Kulturel-Konak S., Smith A.E. (2002), ―Meta heuristics for

the orienteering problem‖, Evolutionary Computation, Volume 1, Pages

384-389

38. Liang Y.C., Smith A.E. (2006), ―An ant colony approach to the

orienteering problem‖, Journal of the Chinese Institute of Industrial

Engineers, Volume 23, Pages 403-414

39. Lin S., Kernighan B.W. (1973), ―An effective heuristic algorithm for the

traveling-salesman problem‖, Operations Research, Volume 21, Issue 2,

Pages 498-516

40. Lorena L.A.N., Pereira M.A. (2002), ―A Lagrangean/surrogate heuristic

for the maximal covering location problem using Hillsman’s edition‖,

International Journal of Industrial Engineering, Volume 9, Issue 1, Pages

57-67

http://www.sciencedirect.com/science/journal/03050548
http://www.sciencedirect.com/science/journal/03050548
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235945%232004%23999689990%23486090%23FLA%23&_cdi=5945&_pubType=J&view=c&_auth=y&_acct=C000038698&_version=1&_urlVersion=0&_userid=691352&md5=14e4d3557fa12698f679d688b57a6992
http://doi.ieeecomputersociety.org/10.1109/CEC.2002.1006265
http://doi.ieeecomputersociety.org/10.1109/CEC.2002.1006265
http://www.jciie.ciie.org.tw/
http://www.jciie.ciie.org.tw/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.26.4638&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.26.4638&rep=rep1&type=pdf

74

41. Millar H.H., Kiragu M. (1997), ―A time-based formulation and upper

bounding scheme for the selective travelling salesperson problem‖, The

Journal of the Operational Research Society, Volume 48, Issue 5, Pages

511-518

42. Miller C.E., Tucker A.W., Zemlin R.A. (1960), ―Integer programming

formulation of traveling salesman problems‖, Journal of the ACM

(JACM), Volume 7, Issue 4, Pages 326 - 329

43. Mladenović N., Dražić M., Kovačevic-Vujčić V., Čangalović M. (2008),

―General variable neighborhood search for the continuous optimization‖,

European Journal of Operational Research, Volume 191, Issue 3, Pages

753-770

44. Mladenović N., Hansen P. (1997), ―Variable neighborhood search‖,

Computers & Operations Research, Volume 24, Issue 11, Pages 1097-

1100

45. Mladenović N., Labbé M., Hansen P. (2003), ―Solving the p-center

problem with tabu search and variable Neighborhood Search‖, Networks,

Volume 42, Issue 1, Pages 48–64

46. Mladenović N., Moreno J.P., Moreno-Vega J. (1996), ―A chain-

interchange heuristic method‖, Yugoslav Journal of Operational Research,

Volume 6, Issue 1, Pages 41-54

47. Paraskevopoulos D.C., Repoussis P.P., Tarantilis C.D., Ioannou G.,

Prastacos G.P. (2008), ―A reactive variable neighborhood tabu search for

the heterogeneous fleet vehicle routing problem with time windows‖,

Journal of Heuristics, Volume 14, Issue 5, Pages 425–455

48. Pereira M.A., Lorena L., Senne E. (2007), ―A column generation approach

for the maximal covering location problem‖ , International Transactions in

Operational Research, Volume 14, Issue 4, Pages 349-364

49. Pérez J.A.M., Hansen P., Mladenovic N. (2004), ―Parallel variable

neighborhood search‖, Les Cahiers du GERAD, Group for Research in

Decision Analysis, Montréal, Canada , Reference no: G–2004–92

http://portal.acm.org/citation.cfm?id=321046
http://portal.acm.org/citation.cfm?id=321046
http://www.sciencedirect.com/science/journal/03772217
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235963%232008%23998089996%23691867%23FLA%23&_cdi=5963&_pubType=J&view=c&_auth=y&_acct=C000038698&_version=1&_urlVersion=0&_userid=691352&md5=a1c9b99f08185460f65fcd5346086224
http://www.sciencedirect.com/science/journal/03050548
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235945%231997%23999759988%2312738%23FLP%23&_cdi=5945&_pubType=J&view=c&_auth=y&_acct=C000038698&_version=1&_urlVersion=0&_userid=691352&md5=8e07f8bb360ee57cb05f7c3e21167981
http://linkinghub.elsevier.com/retrieve/pii/S0377221700001004

75

50. Pirkul H., Schilling D. (1989), ―The capacitated maximal covering

location problem with backup service‖, Annals of Operations Research,

Volume 18, Issue 1, Pages 141-154

51. Pirkul H., Schilling D. (1991), ―The maximal covering location problem

with capacities on total workload‖, Management Science, Volume 37,

Issue 2, Pages 233-248

52. Polacek M., Benkner S., Doerner K. F., Hartl R. F (2008), ―A cooperative

and adaptive variable neighborhood search for the multi depot vehicle

routing problem with time windows‖, Official Open Access Journal of

VHB, Volume 1, Issue 2, Pages 207—218

53. Polacek M., Hartl R.F., Doerner K., Reimann M. (2004), ―A variable

neighborhood search for the multi depot vehicle routing problem with time

windows‖, Journal of Heuristics, Volume 10, Issue 6, Pages 613–627

54. Polat E. (2008), ―A location and routing-with-profit problem in glass

recycling‖, Thesis (M.S.), Middle East Technical University

55. Puchinger J. Raidl G. R. (2008), ―Bringing order into the neighborhoods:

relaxation guided variable neighborhood search‖, Journal of Heuristics,

Volume 14, Issue 5, Pages 457–472

56. Resende M.G.C. (1998), ―Computing approximate solutions of the

maximum covering problem with GRASP‖, Journal of Heuristics, Volume

4, Issue 2, Pages 161-177

57. Righini G., Salani M. (2006), ―Dynamic programming for the orienteering

problem with time windows‖, Technical report, Department of

Information Technology, The University of Milan, Crema, Italy

58. Rosenkrantz D.J., Stearns R.E., Lewis M. (1977), ―Approximate

algorithms for the traveling salesperson problem‖, SIAM Journal on

Computing, Volume 6, Issue 3

59. Schilling D.A., Jayaraman V., Barkhi R. (1993), ―A review of covering

problems in facility location‖, Location Science, Volume 1, Issue 1, Pages

25-55

http://www.springerlink.com/content/102935/?p=0a5aa32f9667407185c6a4fb96e71e3f&pi=0
http://www.springerlink.com/content/x0v7lx5tna3q/?p=0a5aa32f9667407185c6a4fb96e71e3f&pi=0
http://www.springerlink.com/content/x0v7lx5tna3q/?p=0a5aa32f9667407185c6a4fb96e71e3f&pi=0
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.106.574&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.106.574&rep=rep1&type=pdf
http://fisher.osu.edu/~schilling_1/pub/ReviewOfCoveringProblems_LSV1N11993bw.pdf
http://fisher.osu.edu/~schilling_1/pub/ReviewOfCoveringProblems_LSV1N11993bw.pdf

76

60. Sevkli M., Aydin M.E. (2007), ―Parallel variable neighbourhood search

algorithms for job shop scheduling problems‖, IMA Journal of

Management Mathematics, Volume 18, Pages 117−133

61. Sevkli Z., Sevilgen F. E. (2006), ―Variable Neighborhood Search for the

Orienteering Problem‖, Lecture notes in computer science, Volume 4263,

Pages 134-143

62. Süral H., Bookbinder J.H. (2003), ―The single-vehicle routing problem

with unrestricted backhauls‖, Networks, Volume 41 Issue 3, Pages 127-

136

63. Tasgetiren M.F., Smith A.E. (2000), ―A genetic algorithm for the

orienteering problem‖, Evolutionary Computation, Volume 2, Pages 910-

915

64. Tsiligirides T. (1984), ―Heuristic methods applied to orienteering‖, The

Journal of the Operational Research Society, Volume 35, Issue 9, Pages

797-809

65. Vansteenwegena P., Souffriaua W., Van Oudheusdena D. (2010), ―The

orienteering problem: A survey‖, European Journal of Operational

Research, Article in Press

66. Wang Q., Sun X., Golden B.L., Jia J. (1995), ―Using artificial neural

networks to solve the orienteering problem‖, Annals of Operations

Research, Volume 61, Pages 111-120

67. Wen M., Krapper E., Larsen J., Stidsen T. K. (2009), ―A multi-level

variable neighborhood search heuristic for a practical vehicle routing and

driver scheduling problem‖, DTU Management 2009, pages 1-31

68. Yazdani M., Amiri M., Zandieh M. (2010), ―Flexible job-shop scheduling

with parallel variable neighborhood search algorithm‖, Expert Systems

with Applications, Volume 37, Pages 678–687

http://www3.interscience.wiley.com/journal/32046/home
http://www3.interscience.wiley.com/journal/103520609/issue
http://www.jstor.org/action/showPublication?journalCode=joperresesoci
http://www.jstor.org/action/showPublication?journalCode=joperresesoci
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VCT-4YRXD2K-2&_user=691352&_coverDate=04%2F02%2F2010&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1312829054&_rerunOrigin=scholar.google&_acct=C000038698&_version=1&_urlVersion=0&_userid=691352&md5=2670895515d2a91662b823d2d1f0b400#aff1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VCT-4YRXD2K-2&_user=691352&_coverDate=04%2F02%2F2010&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1312829054&_rerunOrigin=scholar.google&_acct=C000038698&_version=1&_urlVersion=0&_userid=691352&md5=2670895515d2a91662b823d2d1f0b400#aff1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VCT-4YRXD2K-2&_user=691352&_coverDate=04%2F02%2F2010&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1312829054&_rerunOrigin=scholar.google&_acct=C000038698&_version=1&_urlVersion=0&_userid=691352&md5=2670895515d2a91662b823d2d1f0b400#aff1
http://www.sciencedirect.com/science/journal/03772217
http://www.sciencedirect.com/science/journal/03772217
http://www.springerlink.com/index/K1710442381X87M3.pdf
http://www.springerlink.com/index/K1710442381X87M3.pdf

77

APPENDIX A

STEPS OF VND, VNDS AND SVNS

Steps of the basic VND:

Steps of the basic VNDS:

Steps of the SVNS:

78

APPENDIX B

COMPARISON OF CONCORDE, LINKERN AND LKH ALGORITHMS

Table B-1. CPU Time and % Error of TSP Algorithms for TSP instances.

 CPU (seconds) % Error

Name
TSP

length Concorde Linkern LKH Linkern LKH

burma14 14 0.063 0.031 0.046 0 0

ulysses16 16 0.093 0.046 0.078 0 0

ulysses22 22 0.109 0.078 0.078 0 0

bayg29 29 0.187 0.046 0.062 0 0

dantzig42 42 0.108 0.046 0.062 0 0

att48 48 0.141 0.078 0.093 0 0

eil51 51 0.326 0.062 0.062 0 0

st70 70 0.14 0.078 0.093 0 0

pr76 76 0.421 0.141 0.156 0 0

eil101 101 0.234 0.093 0.094 0 0

pr124 124 0.655 0.171 0.171 0 0

ch150 150 0.684 0.125 0.171 0.18 0.05

kroA200 200 0.999 0.203 0.375 0 0

Table B-2. CPU Time and % Error of TSP Algorithms for VRP instances.

 CPU (seconds) % Error

Name
TSP

length Concorde Linkern LKH Linkern LKH

eil22 22 0.078 0.031 0.062 0 0

eil23 23 0.063 0.046 0.078 0 0

eil30 30 0.093 0.078 0.078 0 0

eil33 33 0.14 0.062 0.078 0 0

att48 48 0.187 0.063 0.093 0 0

eil51 51 0.312 0.047 0.078 0 0

eilA76 76 0.124 0.063 0.078 0 0

eilA101 101 0.141 0.078 0.094 0 0

gil262 262 1.406 0.234 0.625 0 0

0

Table B-3. CPU Time and % Error of TSP Algorithms for TSPs generated fromVRP instances.

Name # of cities m s n p TSP length Concorde Linkern LKH Linkern LKH Linkern LKH

eil22 22 1 21 63 10 11 0.046 0.034 0.072 0 0 0 0

2 20 60 10 12 0.047 0.034 0.072 0 0 0 0

4 18 54 8 12 0.048 0.033 0.067 0 0 0 0

eil23 23 1 22 66 10 11 0.046 0.035 0.068 0 0 0 0

2 21 63 10 12 0.047 0.034 0.068 0 0 0 0

5 18 54 8 13 0.047 0.035 0.068 0 0 0 0

eil30 30 1 29 87 14 15 0.055 0.037 0.068 0 0 0 0

3 27 81 12 15 0.054 0.038 0.068 0 0 0 0

6 24 72 12 18 0.061 0.042 0.068 2 0 0.0084 0

eil33 33 1 32 96 16 17 0.058 0.038 0.068 0 0 0 0

3 30 90 14 17 0.057 0.037 0.068 0 0 0 0

7 26 78 12 19 0.063 0.04 0.068 0 0 0 0

att48 48 1 47 141 20 21 0.064 0.041 0.068 0 0 0 0

5 43 129 20 25 0.067 0.042 0.068 0 0 0 0

10 38 114 15 25 0.069 0.044 0.068 0 0 0 0

Average CPU (seconds)
of times not

optimal
Average % Error

7
9

1

Table B-3. CPU Time and % Error of TSP Algorithms for TSPs generated fromVRP instances. (cont’d).

Name # of cities m s n p TSP length Concorde Linkern LKH Linkern LKH Linkern LKH

eil51 51 1 50 150 25 26 0.062 0.038 0.068 0 0 0 0

5 46 138 20 25 0.061 0.037 0.068 0 0 0 0

10 41 123 20 30 0.067 0.039 0.068 1 0 0.0016 0

eilA76 76 1 75 225 25 26 0.12 0.038 0.068 0 0 0 0

8 68 204 25 33 0.081 0.042 0.068 0 0 0 0

15 61 183 25 40 0.111 0.045 0.068 0 1 0 0.0014

eilA101 101 1 100 300 25 26 0.064 0.038 0.068 0 1 0 0.0008

10 91 273 25 35 0.091 0.043 0.068 0 0 0 0

20 81 243 25 45 0.146 0.048 0.071 2 3 0.002 0.0049

gil262 262 1 261 783 20 21 0.055 0.036 0.067 0 0 0 0

26 236 708 20 46 0.113 0.053 0.068 1 2 0.0018 0.0011

52 210 630 20 72 0.312 0.068 0.099 1 7 0.0021 0.0096

Total 7 14

Average CPU (seconds)
of times not

optimal
Average % Error

8
0

81

APPENDIX C

COMPARISON OF THE PERFORMANCE OF VNS WITH

ALTERNATIVE TSP SOLUTION PROCEDURES

Table C-1. CPU Time and % Error of VNS with alternative TSP solution

procedures for TSP instance eil101.

m-n-s p f(best) VNS+L VNS-L-I VNS-I-I VNS-I-2-I VNS+L VNS-L-I VNS-I-I VNS-I-2-I

101-20-20 4 731.69 0.00 0.00 0.85 0.37 98 0.64 0.09 0.34

6 739.84 0.00 0.00 0.62 0.21 273 0.95 0.11 0.11

8 742.19 0.00 0.00 0.16 0.86 429 1.08 0.11 0.11

10 740.63 0.00 0.00 0.00 0.62 701 1.48 0.13 0.11

101-40-40 4 767.94 0.00 0.00 0.12 0.62 394 0.72 0.11 0.17

8 794.42 0.00 0.00 0.28 0.00 1241 0.97 0.13 0.19

12 805.03 0.00 0.00 1.34 0.00 3551 6.45 0.30 0.25

16 812.89 0.00 0.00 0.37 0.82 6490 8.69 0.39 0.53

20 814.20 0.00 0.00 2.12 1.38 9889 5.45 0.69 0.80

101-60-60 4 843.63 0.00 0.00 1.46 0.52 387 0.59 0.13 0.11

8 886.40 0.00 0.00 0.76 0.00 2064 1.19 0.23 0.20

12 910.85 0.00 0.00 1.23 0.84 6976 1.81 0.44 0.92

16 921.43 0.00 0.00 0.85 1.34 22905 2.99 1.03 0.92

20 922.68 0.00 0.00 2.13 0.46 22529 7.20 2.03 1.75

101-80-80 4 932.04 0.00 0.00 0.15 0.45 512 0.69 0.13 0.13

8 990.69 0.00 0.04 0.05 0.73 3342 1.95 0.45 0.41

12 1023.00 0.02 0.00 0.29 0.42 14859 8.22 1.59 1.06

16 1041.57 0.00 0.03 0.01 0.28 19185 5.39 1.92 3.17

Average 0.00 0.00 0.71 0.55 6434.72 3.14 0.56 0.63

Maximum 0.02 0.04 2.13 1.38 22905.00 8.69 2.03 3.17

Best 17 16 1 2

Total 18

% Deviation from Best CPU (seconds)

Table C-2. CPU Time and % Error of VNS with alternative TSP solution

procedures for VRP instance eil101.

m-n-s p f(best) VNS-L VNS-L-I VNS-I-I VNS-I-2-I VNS-L VNS-L-I VNS-I-I VNS-I-2-I

20 243 81 10 487.89 0.00 0.00 2.27 0.00 1949 4.47 2.03 1.06

15 576.53 0.00 0.00 6.00 1.37 3980 4.81 3.97 16.26

20 622.36 0.00 0.00 4.24 0.42 3394 10.14 52.73 11.33

25 642.79 0.00 0.00 1.91 1.56 8451 77.20 18.88 292.48

10 273 91 10 457.63 0.00 0.00 3.88 0.00 1668 1.95 2.09 1.42

15 574.93 0.00 0.00 4.17 2.08 3019 9.52 7.56 23.28

20 623.46 0.00 0.00 1.58 0.00 4894 15.06 40.64 33.83

25 640.74 0.00 0.00 3.63 0.24 21647 46.42 113.15 34.94

1 300 100 10 384.52 0.00 0.00 0.00 0.00 1430 9.95 2.84 2.86

15 488.06 0.00 0.00 0.00 0.00 2974 9.81 6.56 21.89

20 550.19 0.00 0.00 0.00 0.00 11296 20.03 43.12 16.49

25 576.64 0.00 0.00 0.00 0.00 7868 172.64 69.88 125.37

Average 0.00 0.00 2.31 0.47 6047.50 31.83 30.29 48.43

Maximum 0.00 0.00 6.00 2.08 21647.00 172.64 113.15 292.48

Best 12 12 4 7

Total 12

% Deviation from Best CPU (seconds)

8
1

APPENDIX D

D. ffger

COMPUTATIONAL RESULTS FOR TSP INSTANCES

In this appendix, computational results for all TSP instances that comprise burma14,

bayg29, dantzig42, eil51 and eil101 are given in detail. All of the instances except

eil101 are composed of 3 different problems and each problem has been solved for

different number of bottle banks except the smallest problem, burma14. CPU time,

percent deviation from the best solution and percentage of all possible TSPs solved

are presented for each p. The results are given for VNS, Local Search and Greedy

Heuristic algorithms and where applicable, solution results for Exhaustive Search are

also provided.

82

8
3

Table D-1. Computational Results for the TSP instance, burma14.

Problem set m-n-s p Profit(0) Profit(P) CPU (s)
of TSP

solved
Profit(P) CPU (s)

of TSP

solved
Profit(P) CPU (s)

main

step

Optimal

Profit(P)
CPU (s)

Total # of

TSPs

burma14 14-7-7 3 111.20 13.69 1 18 13.90 1 24 13.90 0.80 9 13.90 2 35

14-14-14 4 113.00 25.42 2 50 27.11 8 200 27.11 0.17 1 27.11 57 1001

5 113.00 27.03 2 60 28.52 14 360 28.52 0.22 1 28.52 116 2002

6 113.00 28.44 3 69 29.71 11 288 29.71 0.52 2 29.71 187 3003

7 113.00 27.83 3 77 25.84 7 196 29.40 0.31 1 29.40 214 3432

14-21-21 4 95.90 52.10 3 78 55.87 8 204 55.87 0.44 2 55.87 359 5985

6 95.90 59.05 4 111 59.05 14 360 60.07 0.23 1 60.07 3416 54264

8 95.90 57.96 5 140 59.12 17 416 59.12 0.64 1 59.12 13262 203490

10 95.90 55.74 6 165 56.27 32 770 56.60 0.97 4 56.60 23869 352716

Problem set m-n-s p f(best) GH LS VNS GH LS VNS ES GH LS

burma14 14-7-7 3* 13.90 1.51 0.00 0.00 1 1 0.80 2 51.43 68.57

14-14-14 4* 27.11 6.22 0.00 0.00 2 8 0.17 57 5.00 19.98

5* 28.52 5.22 0.00 0.00 2 14 0.22 116 3.00 17.98

6* 29.71 4.27 0.00 0.00 3 11 0.52 187 2.30 9.59

7* 29.40 5.35 12.11 0.00 3 7 0.31 214 2.24 5.71

14-21-21 4* 55.87 6.74 0.00 0.00 3 8 0.44 359 1.30 3.41

6* 60.07 1.70 1.70 0.00 4 14 0.23 3416 0.20 0.66

8* 59.12 1.96 0.00 0.00 5 17 0.64 13262 0.07 0.20

10* 56.60 1.50 0.58 0.00 6 32 0.97 23869 0.05 0.22

Average 3.83 1.60 0.00 3 12 0.48 4609 7.29 14.04

Maximum 6.74 12.11 0.00 6 32 0.97 23869 51.43 68.57

Best 0 6 9

Total 9

ES+C

CPU (seconds)

GH+L LS+L

% Deviation from Best

VNS+L+I

% TSP Solved

8
4

Table D-2. Computational Results for the TSP instance, bayg29.

Problem set m-n-s p Profit(0) Profit(P) CPU (s)
of TSP

solved
Profit(P) CPU (s)

of TSP

solved
Profit(P) CPU (s)

main

step

Optimal

Profit(P)
CPU (s)

Total # of

TSPs

bayg29 29-15-15 4 220.20 25.36 2.33 54 25.36 8 176 25.36 0.41 2 25.36 139 1365

5 220.20 26.53 2.80 65 26.53 9 200 26.53 0.36 1 26.53 310 3003

6 220.20 27.66 3.23 75 27.66 15 324 27.66 0.97 3 27.66 516 5005

7 220.20 27.61 3.61 84 27.61 10 224 27.61 0.69 2 27.61 671 6435

29-29-29 4 226.50 44.73 4.66 110 44.73 17 400 44.73 0.25 1 44.73 2509 23751

6 226.50 52.52 6.72 159 52.52 31 690 52.91 0.55 2 52.91 54701 475020

8 226.50 57.76 8.70 204 59.37 69 1512 59.37 0.52 1 4292145

10 226.50 59.52 10.77 245 60.82 79 1710 60.82 0.31 1 20030010

12 226.50 59.98 12.45 282 60.70 75 1632 60.70 4.62 17 51895935

14 226.50 59.64 14.06 315 55.80 63 1260 60.02 1.13 3 77558760

29-45-45 4 213.50 65.24 7.58 174 65.24 38 820 65.24 0.61 3 65.24 14781 148995

8 213.50 91.48 14.95 332 91.48 127 2664 91.48 1.47 3 2.16E+08

12 213.50 98.67 22.28 474 99.09 246 4752 99.09 5.02 15 2.88E+10

16 213.50 99.09 29.37 600 98.99 204 3712 99.70 0.42 1 6.47E+11

20 213.50 97.27 35.67 710 97.96 438 8000 98.22 2.59 5 3.17E+12

ES+CGH+L LS+L VNS+L+I

8
5

Table D-2. Computational Results for the TSP instance, bayg29. (cont’d)

Problem set m-n-s p f(best) GH LS VNS GH LS VNS ES GH LS

bayg29 29-15-15 4* 25.36 0.00 0.00 0.00 2 8 0.41 139 3.96 12.89

5* 26.53 0.00 0.00 0.00 3 9 0.36 310 2.16 6.66

6* 27.66 0.00 0.00 0.00 3 15 0.97 516 1.50 6.47

7* 27.61 0.00 0.00 0.00 4 10 0.69 671 1.31 3.48

29-29-29 4* 44.73 0.00 0.00 0.00 5 17 0.25 2509 0.46 1.68

6* 52.91 0.75 0.75 0.00 7 31 0.55 54701 0.03 0.15

8 59.37 2.71 0.00 0.00 9 69 0.52 0.00 0.04

10 60.82 2.15 0.00 0.00 11 79 0.31 0.00 0.01

12 60.70 1.19 0.00 0.00 12 75 4.62 0.00 0.00

14 60.02 0.64 7.03 0.00 14 63 1.13 0.00 0.00

29-45-45 4* 65.24 0.00 0.00 0.00 8 38 0.61 14781 0.12 0.55

8 91.48 0.00 0.00 0.00 15 127 1.47 0.00 0.00

12 99.09 0.42 0.00 0.00 22 246 5.02 0.00 0.00

16 99.70 0.61 0.71 0.00 29 204 0.42 0.00 0.00

20 98.22 0.97 0.27 0.00 36 438 2.59 0.00 0.00

* f(best) is the optimum. Average 0.63 0.58 0.00 12 95 1.33 10518 0.64 2.13

Maximum 2.71 7.03 0.00 36 438 5.02 54701 3.96 12.89

Best 7 11 15

Total 15

CPU (seconds)% Deviation from Best % TSP Solved

8
6

Table D-3. Computational Results for the TSP instance, dantzig42.

Problem set m-n-s p Profit(0) Profit(P) CPU (s)
of TSP

solved
Profit(P) CPU (s)

of TSP

solved
Profit(P) CPU (s)

main

step

Optimal

Profit(P)
CPU (s)

Total # of

TSPs

dantzig42 42-21-21 4 306.40 34.77 4 78 34.77 13 272 34.77 0.28 1 34.77 643 5985

6 306.40 42.61 5 111 42.61 28 540 42.61 0.30 1 42.61 6287 54264

8 306.40 47.96 7 140 46.23 32 624 47.96 0.88 1 47.96 26075 203490

10 306.40 47.49 8 165 47.49 44 770 47.49 1.64 5 47.49 50842 352716

42-42-42 4 327.50 49.18 8 162 49.18 36 760 49.18 0.27 1 49.18 10786 111930

8 327.50 82.91 15 308 82.91 68 1360 82.91 0.50 1 1.18E+08

12 327.50 101.37 21 438 99.90 130 2520 101.37 0.53 1 1.11E+10

16 327.50 103.96 27 552 103.96 198 3744 103.96 0.47 1 1.67E+11

20 327.50 102.42 32 650 102.42 273 4840 102.42 0.69 1 5.14E+11

42-63-63 4 331.50 73.55 12 246 73.55 60 1180 73.55 0.48 2 73.55 69081 595665

8 331.50 112.46 24 476 111.79 232 3960 112.71 2.59 5 3.87E+09

12 331.50 127.87 36 690 129.72 337 6120 129.72 2.14 4 2.67E+12

16 331.50 138.86 47 888 141.58 450 8272 141.58 0.58 1 3.66E+14

20 331.50 142.43 57 1070 143.81 676 11180 144.67 1.17 1 1.35E+16

Problem set m-n-s p f(best) GH LS VNS GH LS VNS ES GH LS

dantzig42 42-21-21 4* 34.77 0.00 0.00 0.00 4 13 0.28 643 1.30 4.54

6* 42.61 0.00 0.00 0.00 5 28 0.30 6287 0.20 1.00

8* 47.96 0.00 3.60 0.00 7 32 0.88 26075 0.07 0.31

10* 47.49 0.00 0.00 0.00 8 44 1.64 50842 0.05 0.22

42-42-42 4* 49.18 0.00 0.00 0.00 8 36 0.27 10786 0.14 0.68

8 82.91 0.00 0.00 0.00 15 68 0.50 0.00 0.00

12 101.37 0.00 1.45 0.00 21 130 0.53 0.00 0.00

16 103.96 0.00 0.00 0.00 27 198 0.47 0.00 0.00

20 102.42 0.00 0.00 0.00 32 273 0.69 0.00 0.00

42-63-63 4* 73.55 0.00 0.00 0.00 12 60 0.48 69081 0.04 0.20

8 112.71 0.22 0.82 0.00 24 232 2.59 0.00 0.00

12 129.72 1.43 0.00 0.00 36 337 2.14 0.00 0.00

16 141.58 1.92 0.00 0.00 47 450 0.58 0.00 0.00

20 144.67 1.55 0.60 0.00 57 676 1.17 0.00 0.00

* f(best) is the optimum. Average 0.37 0.46 0.00 22 184 0.89 27286 0.13 0.50

Maximum 1.92 3.60 0.00 57 676 2.59 69081 1.30 4.54

Best 10 10 14

Total 14

ES+C

CPU (seconds)

GH+L LS+L

% Deviation from Best

VNS+L+I

% TSP Solved

8
7

Table D-4. Computational Results for the TSP instance, eil51.

Problem set m-n-s p Profit(0) Profit(P) CPU (s)
of TSP

solved
Profit(P) CPU (s)

of TSP

solved
Profit(P) CPU (s)

main

step

Optimal

Profit
CPU (s)

Total # of

TSPs

eil51 51-25-25 4 366.61 46.20 5 94 46.20 22 420 46.20 0.45 2 46.20 3285 12650

6 366.61 58.89 7 135 55.96 31 570 58.89 0.44 1 58.89 54533 177100

8 366.61 66.31 8 172 66.31 80 1360 66.31 0.73 1 1081575

10 366.61 70.13 10 205 69.26 46 750 70.13 0.44 1 3268760

12 366.61 69.82 12 234 69.56 66 1092 69.87 2.23 6 5200300

51-51-51 4 400.81 53.42 10 198 53.42 40 752 53.42 0.45 2 53.42 71859.00 249900

8 400.81 86.26 20 380 86.26 179 3440 86.26 0.80 1 6.37E+08

12 400.81 106.64 30 546 106.30 301 5616 107.14 0.98 2 1.59E+11

16 400.81 116.96 38 696 120.08 238 4480 120.08 0.66 1 7.17E+12

20 400.81 124.12 46 830 127.33 412 7440 127.33 0.95 1 7.75E+13

24 400.81 125.05 53 948 126.86 454 7776 126.86 2.33 3 2.3E+14

51-75-75 4 375.01 90.59 15 294 90.59 79 1420 91.99 0.81 2 1215450

8 375.01 144.53 31 572 145.90 216 3752 149.87 3.41 6 1.69E+10

12 375.01 178.17 50 834 188.43 586 10584 188.43 4.99 9 2.61E+13

16 375.01 190.51 63 1080 200.16 759 13216 202.47 3.75 7 8.55E+15

ES+CVNS+L+IGH+L LS+L

8
8

Table D-4. Computational Results for the TSP instance, eil51. (cont’d)

Problem set m-n-s p f(best) GH LS VNS GH LS VNS ES GH LS

eil51 51-25-25 4* 46.20 0.00 0.00 0.00 5 22 0.45 3285 0.74 3.32

6* 58.89 0.00 4.97 0.00 7 31 0.44 54533 0.08 0.32

8 66.31 0.00 0.00 0.00 8 80 0.73 0.02 0.13

10 70.13 0.00 1.25 0.00 10 46 0.44 0.01 0.02

12 69.87 0.06 0.44 0.00 12 66 2.23 0.00 0.02

51-51-51 4* 53.42 0.00 0.00 0.00 10 40 0.45 71859.00 0.08 0.30

8 86.26 0.00 0.00 0.00 20 179 0.80 0.00 0.00

12 107.14 0.47 0.78 0.00 30 301 0.98 0.00 0.00

16 120.08 2.60 0.00 0.00 38 238 0.66 0.00 0.00

20 127.33 2.53 0.00 0.00 46 412 0.95 0.00 0.00

24 126.86 1.42 0.00 0.00 53 454 2.33 0.00 0.00

51-75-75 4 91.99 1.53 1.53 0.00 15 79 0.81 0.02 0.12

8 149.87 3.57 2.65 0.00 31 216 3.41 0.00 0.00

12 188.43 5.45 0.00 0.00 50 586 4.99 0.00 0.00

16 202.47 5.91 1.14 0.00 63 759 3.75 0.00 0.00

* f(best) is the optimum. Average 1.57 0.85 0.00 27 234 1.56 43226 0.06 0.28

Maximum 5.91 4.97 0.00 63 759 4.99 71859 0.74 3.32

Best 6 8 15

Total 15

% Deviation from Best CPU (seconds) % TSP Solved

8
9

Table D-5. Computational Results for the TSP instance, eil101.

Problem set m-n-s p Profit(0) Profit(P) CPU (s)
of TSP

solved
Profit(P) CPU (s)

of TSP

solved
Profit(P) CPU (s)

main

step

Optimal

Profit(P)
CPU (s)

Total # of

TSPs

eil101 101-20-20 4 692.57 39.12 6.7 74 39.12 17 192 39.12 0.44 1 39.12 1340 4845

6 692.57 47.27 9.5 105 47.27 31 336 47.27 0.75 1 47.27 11685 38760

8 692.57 49.62 12.0 132 49.62 75 768 49.62 0.81 1 49.62 42879 125970

10 692.57 48.06 14.1 155 48.06 38 400 48.06 0.69 1 48.06 74922 184756

101-40-40 4 717.97 49.55 13.5 154 49.55 52 576 49.97 1.22 2 49.97 39287 91390

8 717.97 75.20 25.6 292 75.20 113 1280 76.45 0.95 1 76904685

12 717.97 87.02 36.1 414 87.06 335 3696 87.06 0.99 1 5.59E+09

16 717.97 94.87 45.8 520 94.92 372 3840 94.92 2.92 5 6.29E+10

20 717.97 96.23 55.4 610 96.23 349 3600 96.23 1.33 1 1.38E+11

101-60-60 4 771.67 71.96 21.0 234 71.96 103 1120 71.96 0.45 1 487635

8 771.67 113.93 40.7 452 114.73 441 4576 114.73 0.84 1 2.56E+09

12 771.67 137.85 59.7 654 139.18 604 6336 139.18 0.83 1 1.4E+12

16 771.67 147.53 77.5 840 149.76 981 9856 149.76 11.62 20 1.5E+14

20 771.67 149.83 93.8 1010 148.09 1298 12800 151.01 3.48 2 4.19E+15

101-80-80 4 821.77 110.27 27.1 314 110.27 164 1824 110.27 0.55 1 1581580

8 821.77 165.90 53.5 612 165.90 467 5184 168.92 5.72 8 2.9E+10

12 821.77 196.70 79.2 894 198.64 998 10608 200.85 5.25 6 6.02E+13

16 821.77 216.76 103.1 1160 218.21 1571 16384 219.80 10.56 15 2.7E+16

GH+L LS+L VNS+L+I ES+C

9
0

Table D-5. Computational Results for the TSP instance, eil101. (cont’d)

Problem set m-n-s p f(best) GH LS VNS GH LS VNS ES GH LS

eil101 101-20-20 4* 39.12 0.00 0.00 0.00 6.7 17 0.44 1340 1.53 3.96

6* 47.27 0.00 0.00 0.00 9.5 31 0.75 11685 0.27 0.87

8* 49.62 0.00 0.00 0.00 12.0 75 0.81 42879 0.10 0.61

10* 48.06 0.00 0.00 0.00 14.1 38 0.69 74922 0.08 0.22

101-40-40 4* 49.97 0.83 0.83 0.00 13.5 52 1.22 39287 0.17 0.63

8 76.45 1.63 1.63 0.00 25.6 113 0.95 0.00 0.00

12 87.06 0.05 0.00 0.00 36.1 335 0.99 0.00 0.00

16 94.92 0.05 0.00 0.00 45.8 372 2.92 0.00 0.00

20 96.23 0.00 0.00 0.00 55.4 349 1.33 0.00 0.00

101-60-60 4 71.96 0.00 0.00 0.00 21.0 103 0.45 0.05 0.23

8 114.73 0.70 0.00 0.00 40.7 441 0.84 0.00 0.00

12 139.18 0.96 0.00 0.00 59.7 604 0.83 0.00 0.00

16 149.76 1.49 0.00 0.00 77.5 981 11.62 0.00 0.00

20 151.01 0.78 1.94 0.00 93.8 1298 3.48 0.00 0.00

101-80-80 4 110.27 0.00 0.00 0.00 27.1 164 0.55 0.02 0.12

8 168.92 1.79 1.79 0.00 53.5 467 5.72 0.00 0.00

12 200.85 2.07 1.10 0.00 79.2 998 5.25 0.00 0.00

16 219.80 1.38 0.72 0.00 103.1 1571 10.56 0.00 0.00

* f(best) is the optimum. Average 0.65 0.44 0.00 43 445 2.74 34023 0.12 0.37

Maximum 2.07 1.94 0.00 103 1571 11.62 74922 1.53 3.96

Best 7 12 18

Total 18

% Deviation from Best CPU (seconds) % TSP Solved

8
1

APPENDIX E

E. fg

COMPUTATIONAL RESULTS FOR VRP INSTANCES

In this appendix, computational results for all VRP instances that comprise eil22,

eil23, eil30, eil33, att48, eil76 and eil101 are given in detail. All of the instances are

composed of 3 different problems and each problem has been solved for different

number of bottle banks with the maximum number of 25 for eil76 and eil101. CPU

time, percent deviation from the best solution and percentage of all possible TSPs

solved are presented for each p. The results are given for VNS, Local Search and

Greedy Heuristic algorithms and where applicable, solution results for Exhaustive

Search are also provided.

91

9
2

Table E-1. Computational Results for the VRP instance, eil22.

Problem set m-n-s p Profit(0) Profit(P) CPU (s)
of TSP

solved
Profit(P) CPU (s)

of TSP

solved
Profit(P) CPU (s)

main

step

Optimal

Profit(P)
CPU (s)

Total # of

TSPs

eil22 4 54 18 4* 4.78 99.56 2 66 102.75 8 224 102.75 0.22 1 102.75 100 3060

6 4.78 110.22 3 93 103.80 5 144 113.46 0.31 1 113.46 967 18564

8 4.78 114.22 4 116 114.43 17 480 114.43 0.27 1 114.43 2518 43758

2 60 20 4* -15.36 74.82 2 74 74.81 9 256 80.06 0.22 1 80.06 164 4845

6* -15.36 92.24 4 105 98.16 8 252 101.22 0.19 1 101.22 1352 38760

8 -15.36 104.37 5 132 111.01 13 384 111.01 0.30 1 111.01 8871 125970

10 -15.36 110.35 6 155 111.01 18 500 111.01 0.22 1 111.01 10023 184756

1 63 21 4* 11.50 64.81 3 78 64.81 10 340 64.81 0.28 1 64.81 198 5985

6* 11.50 69.66 4 111 70.34 12 360 70.34 0.28 1 70.34 1846 54264

8 11.50 74.43 5 140 74.99 21 624 74.99 0.31 1 74.99 6901 203490

10 11.50 74.06 6 165 77.48 34 990 77.48 0.28 1 77.48 19014 352716

* In the Local Search, Concorde has been used instead of Linkern.

Problem set m-n-s p f(best) GH LS VNS GH LS VNS ES GH LS

eil22 4 54 18 4* 102.75 3.11 0.00 0.00 2 8 0.22 100 2.16 7.32

6* 113.46 2.86 8.52 0.00 3 5 0.31 967 0.50 0.78

8* 114.43 0.18 0.00 0.00 4 17 0.27 2518 0.27 1.10

2 60 20 4* 80.06 6.55 6.57 0.00 2 9 0.22 164 1.53 5.28

6* 101.22 8.88 3.02 0.00 4 8 0.19 1352 0.27 0.65

8* 111.01 5.98 0.00 0.00 5 13 0.30 8871 0.10 0.30

10* 111.01 0.60 0.00 0.00 6 18 0.22 10023 0.08 0.27

1 63 21 4* 64.81 0.00 0.00 0.00 3 10 0.28 198 1.30 5.68

6* 70.34 0.97 0.00 0.00 4 12 0.28 1846 0.20 0.66

8* 74.99 0.75 0.00 0.00 5 21 0.31 6901 0.07 0.31

10* 77.48 4.41 0.00 0.00 6 34 0.28 19014 0.05 0.28

* f(best) is the optimum. Average 3.12 1.65 0.00 4 14 0.26 4723 0.59 2.06

Maximum 8.88 8.52 0.00 6 34 0.31 19014 2.16 7.32

Best 1 8 11

Total 11

ES+C

CPU (seconds)

LS+LGH+C

% Deviation from Best

VNS+L+I

% TSP Solved

9
3

Table E-2. Computational Results for the VRP instance, eil23.

Problem set m-n-s p Profit(0) Profit(P) CPU (s)
of TSP

solved
Profit(P) CPU (s)

of TSP

solved
Profit(P) CPU (s)

main

step

Optimal

Profit(P)
CPU (s)

Total # of

TSPs

eil23 5 54 18 4 -26.90 73.37 2 66 73.37 10 280 73.37 0.16 1 73.37 103 3060

6 -26.90 85.17 4 93 85.17 10 288 85.27 0.22 1 85.27 944 18564

8 -26.90 89.39 5 116 89.42 16 480 89.42 0.31 1 89.42 2654 43758

2 63 21 4* -17.01 72.32 3 78 74.91 13 408 74.91 0.16 1 74.91 220 5985

6* -17.01 79.77 4 111 79.77 15 450 79.77 0.19 1 79.77 2258 54264

8 -17.01 74.88 5 140 74.88 25 728 74.88 0.28 1 74.88 10171 203490

10 -17.01 68.00 7 165 68.00 27 770 68.00 0.53 2 68.00 18072 352716

1 66 22 4* 15.60 20.48 3 82 29.58 12 360 29.58 0.16 1 29.58 244 7315

6* 15.60 16.20 4 117 16.20 13 384 42.97 0.22 1 42.97 2664 74613

8 15.60 10.30 5 148 43.21 26 784 43.21 0.28 1 43.21 10875 319770

10 15.60 26.83 6 175 40.14 26 720 40.14 0.22 1 40.14 32422 646646

* In the Local Search, Concorde has been used instead of Linkern.

Problem set m-n-s p f(best) GH LS VNS GH LS VNS ES GH LS

eil23 5 54 18 4* 73.37 0.00 0.00 0.00 2 10 0.16 103 2.16 9.15

6* 85.27 0.12 0.12 0.00 4 10 0.22 944 0.50 1.55

8* 89.42 0.03 0.00 0.00 5 16 0.31 2654 0.27 1.10

2 63 21 4* 74.91 3.46 0.00 0.00 3 13 0.16 220 1.30 6.82

6* 79.77 0.00 0.00 0.00 4 15 0.19 2258 0.20 0.83

8* 74.88 0.00 0.00 0.00 5 25 0.28 10171 0.07 0.36

10* 68.00 0.00 0.00 0.00 7 27 0.53 18072 0.05 0.22

1 66 22 4* 29.58 30.77 0.00 0.00 3 12 0.16 244 1.12 4.92

6* 42.97 62.31 62.31 0.00 4 13 0.22 2664 0.16 0.51

8* 43.21 76.16 0.00 0.00 5 26 0.28 10875 0.05 0.25

10* 40.14 33.17 0.00 0.00 6 26 0.22 32422 0.03 0.11

* f(best) is the optimum. Average 18.73 5.67 0.00 4 18 0.25 7330 0.54 2.35

Maximum 76.16 62.31 0.00 7 27 0.53 32422 2.16 9.15

Best 4 9 11

Total 11

ES+C

CPU (seconds)

LS+LGH+C

% Deviation from Best

VNS+L+I

% TSP Solved

9
4

Table E-3. Computational Results for the VRP instance, eil30.

Problem set m-n-s p Profit(0) Profit(P) CPU (s)
of TSP

solved
Profit(P) CPU (s)

of TSP

solved
Profit(P) CPU (s)

main

step

Optimal

Profit(P)
CPU (s)

Total # of

TSPs

eil30 6 72 24 4 13.58 53.10 3 90 53.10 8 240 53.10 0.17 1 53.10 649 10626

8 13.58 54.72 7 164 54.72 19 512 54.72 0.48 1 54.72 53754 735471

12 13.58 53.39 10 222 53.85 45 1008 53.85 0.49 1 2704156

3 81 27 4* -23.97 93.51 3 102 93.51 21 644 93.51 0.20 1 93.51 752 17550

8 -23.97 112.46 7 188 115.59 37 1064 115.59 0.34 1 2220075

12 -23.97 111.12 10 258 114.48 68 1800 114.48 0.53 1 17383860

1 87 29 4* 10.10 27.83 4 110 21.67 16 500 27.83 0.17 1 27.83 1084 23751

8 10.10 29.01 7 204 36.37 46 1344 36.37 0.41 1 4292145

12 10.10 27.33 11 282 35.12 52 1428 35.12 0.61 1 51895935

14 10.10 31.77 13 315 31.77 65 1680 34.28 0.34 1 77558760

* In the Local Search, Concorde has been used instead of Linkern.

Problem set m-n-s p f(best) GH LS VNS GH LS VNS ES GH LS

eil30 6 72 24 4* 53.10 0.00 0.00 0.00 3 8 0.17 649 0.85 2.26

8* 54.72 0.00 0.00 0.00 7 19 0.48 53754 0.02 0.07

12 53.85 0.85 0.00 0.00 10 45 0.49 0.01 0.04

3 81 27 4* 93.51 0.00 0.00 0.00 3 21 0.20 752 0.58 3.67

8 115.59 2.71 0.00 0.00 7 37 0.34 0.01 0.05

12 114.48 2.94 0.00 0.00 10 68 0.53 0.00 0.01

1 87 29 4* 27.83 0.00 22.11 0.00 4 16 0.17 1084 0.46 2.11

8 36.37 20.26 0.00 0.00 7 46 0.41 0.00 0.03

12 35.12 22.16 0.00 0.00 11 52 0.61 0.00 0.00

14 34.28 7.33 7.33 0.00 13 65 0.34 0.00 0.00

* f(best) is the optimum. Average 5.62 2.94 0.00 8 38 0.38 14060 0.19 0.82

Maximum 22.16 22.11 0.00 13 68 0.61 53754 0.85 3.67

Best 4 8 10

Total 10

% Deviation from Best CPU (seconds)

ES+CVNS+L+ILS+LGH+C

% TSP Solved

9
5

Table E-4. Computational Results for the VRP instance, eil33.

Problem set m-n-s p Profit(0) Profit(P) CPU (s)
of TSP

solved
Profit(P) CPU (s)

of TSP

solved
Profit(P) CPU (s)

main

step

Optimal

Profit(P)
CPU (s)

Total # of

TSPs

eil33 7 78 26 4 4.88 83.29 4 98 83.29 13 352 83.29 0.24 1 83.29 814 14950

8 4.88 107.92 8 180 108.28 37 1008 108.28 0.52 1 1562275

12 4.88 107.65 12 246 117.28 67 1680 117.28 0.45 1 9657700

3 90 30 4* -24.18 81.50 4 114 81.50 14 416 81.50 0.16 1 81.50 1949 27405

8 -24.18 101.51 7 212 101.51 56 1584 101.51 0.33 1 5852925

12 -24.18 102.74 11 294 102.46 70 1944 102.74 1.45 5 86493225

14 -24.18 100.46 13 329 82.84 50 1344 101.98 0.47 1 1.45E+08

1 96 32 4* 13.40 14.88 4 122 16.33 18 560 16.52 0.19 1 16.52 3496 35960

8 13.40 29.91 7 228 35.89 58 1728 35.89 0.30 1 10518300

12 13.40 28.55 12 318 33.21 74 2160 35.28 0.50 1 2.26E+08

16 13.40 28.25 16 392 33.68 68 1792 33.68 0.89 2 6.01E+08

* In the Local Search, Concorde has been used instead of Linkern.

Problem set m-n-s p f(best) GH LS VNS GH LS VNS ES GH LS

eil33 7 78 26 4* 83.29 0.00 0.00 0.00 4 13 0.24 814 0.66 2.35

8 108.28 0.34 0.00 0.00 8 37 0.52 0.01 0.06

12 117.28 8.21 0.00 0.00 12 67 0.45 0.00 0.02

3 90 30 4* 81.50 0.00 0.00 0.00 4 14 0.16 1949 0.42 1.52

8 101.51 0.00 0.00 0.00 7 56 0.33 0.00 0.03

12 102.74 0.00 0.27 0.00 11 70 1.45 0.00 0.00

14 101.98 1.50 18.77 0.00 13 50 0.47 0.00 0.00

1 96 32 4* 16.52 9.91 1.17 0.00 4 18 0.19 3496 0.34 1.56

8 35.89 16.65 0.00 0.00 7 58 0.30 0.00 0.02

12 35.28 19.06 5.85 0.00 12 74 0.50 0.00 0.00

16 33.68 16.14 0.00 0.00 16 68 0.89 0.00 0.00

* f(best) is the optimum. Average 6.53 2.37 0.00 9 48 0.50 2086 0.13 0.51

Maximum 19.06 18.77 0.00 16 74 1.45 3496 0.66 2.35

Best 4 7 11

Total 11

ES+C

CPU (seconds)

LS+LGH+C

% Deviation from Best

VNS+L+I

% TSP Solved

9
6

Table E-5. Computational Results for the VRP instance, att48.

Problem set m-n-s p Profit(0) Profit(P) CPU (s)
of TSP

solved
Profit(P) CPU (s)

of TSP

solved
Profit(P) CPU (s)

main

step

Optimal

Profit(P)
CPU (s)

Total # of

TSPs

att48 10 114 38 5* -24.03 165.24 7 180 165.24 36 990 165.24 0.19 1 165.24 28821 501942

10* -24.03 218.24 13 335 222.43 66 1680 225.62 2.17 8 4.73E+08

15* -24.03 224.71 17 465 228.96 142 3795 229.93 1.22 2 1.55E+10

5 129 43 5 -62.26 118.40 8 205 121.68 40 1140 121.68 0.19 1 121.68 50596 962598

10 -62.26 167.14 17 385 175.79 81 2310 178.57 0.31 1 1.92E+09

15 -62.26 178.03 24 540 186.45 167 4620 186.45 3.25 6 1.52E+11

20 -62.26 169.92 33 670 178.63 119 3220 178.63 0.73 1 9.61E+11

1 141 47 5** 17 60.40 8 225 75.90 35 1050 75.90 0.22 1 75.90 76593 1533939

10 17 84.07 16 425 93.89 130 3700 104.64 0.98 3 5.18E+09

15 17 85.19 24 600 118.02 213 5760 120.38 0.83 1 7.52E+11

20 17 108.23 33 750 114.29 276 7560 114.29 2.42 2 9.76E+12

* In the Greedy Heuristic, Linkern has been used instead of Concorde.

** In the Local Search, Concorde has been used instead of Linkern.

Problem set m-n-s p f(best) GH LS VNS GH LS VNS ES GH LS

att48 10 114 38 5* 165.24 0.00 0.00 0.00 7 36 0.19 28821 0.04 0.20

10 225.62 3.27 1.41 0.00 13 66 2.17 0.00 0.00

15 229.93 2.27 0.42 0.00 17 142 1.22 0.00 0.00

5 129 43 5* 121.68 2.69 0.00 0.00 8 40 0.19 50596 0.02 0.12

10 178.57 6.40 1.56 0.00 17 81 0.31 0.00 0.00

15 186.45 4.52 0.00 0.00 24 167 3.25 0.00 0.00

20 178.63 4.88 0.00 0.00 33 119 0.73 0.00 0.00

1 141 47 5* 75.90 20.42 0.00 0.00 8 35 0.22 76593 0.01 0.07

10 104.64 19.66 10.28 0.00 16 130 0.98 0.00 0.00

15 120.38 29.23 1.96 0.00 24 213 0.83 0.00 0.00

20 114.29 5.30 0.00 0.00 33 276 2.42 0.00 0.00

* f(best) is the optimum. Average 8.97 1.42 0.00 18 119 1.14 52003 0.01 0.03

Maximum 29.23 10.28 0.00 33 276 3.25 76593 0.04 0.20

Best 1 6 11

Total 11

ES+C

CPU (seconds)

LS+LGH+C

% Deviation from Best

VNS+L+I

% TSP Solved

9
7

Table E-6. Computational Results for the VRP instance, eil76.

Problem set m-n-s p Profit(0) Profit(P) CPU (s)
of TSP

solved
Profit(P) CPU (s)

of TSP

solved
Profit(P) CPU (s)

main

step

Total #

of TSPs

eil76 15 183 61 10 36.10 253.09 21 565 254.39 132 3570 254.39 0.42 1 9E+10

15 36.10 308.95 30 810 304.92 261 6900 314.72 0.98 1 7.1E+13

20 36.10 335.35 39 1030 337.21 566 13940 341.66 12.16 7 6.2E+15

25 36.10 343.59 47 1225 352.17 619 14400 352.17 3.29 1 8.8E+16

8 204 68 10 -19.75 280.65 22 635 280.65 247 6960 280.65 0.59 1 2.9E+11

15 -19.75 340.54 33 915 340.52 475 12720 340.54 1.61 1 4.4E+14

20 -19.75 365.97 42 1170 361.72 642 16320 367.74 2.64 1 8.2E+16

25 -19.75 370.65 51 1400 366.86 713 18275 371.02 27.53 7 2.6E+18

1 225 75 10* 17.30 165.74 26 705 177.49 269 7800 185.66 0.75 1 8.3E+11

15* 17.30 238.40 41 1020 245.55 437 12600 245.55 9.66 8 2.3E+15

20* 17.30 272.06 57 1310 277.02 401 11000 285.59 2.02 1 8E+17

25* 17.30 295.15 74 1575 299.23 652 17500 303.27 20.20 6 5.3E+19

* In the Greedy Heuristic Concorde has been used instead of Linkern.

Problem set m-n-s p f(best) GH LS VNS GH LS VNS GH LS

eil76 15 183 61 10 254.39 0.51 0.00 0.00 21 132 0.42 0.00 0.00

15 314.72 1.84 3.11 0.00 30 261 0.98 0.00 0.00

20 341.66 1.85 1.30 0.00 39 566 12.16 0.00 0.00

25 352.17 2.44 0.00 0.00 47 619 3.29 0.00 0.00

8 204 68 10 280.65 0.00 0.00 0.00 22 247 0.59 0.00 0.00

15 340.54 0.00 0.00 0.00 33 475 1.61 0.00 0.00

20 367.74 0.48 1.64 0.00 42 642 2.64 0.00 0.00

25 371.02 0.10 1.12 0.00 51 713 27.53 0.00 0.00

1 225 75 10 185.66 10.73 4.40 0.00 26 269 0.75 0.00 0.00

15 245.55 2.91 0.00 0.00 41 437 9.66 0.00 0.00

20 285.59 4.74 3.00 0.00 57 401 2.02 0.00 0.00

25 303.27 2.68 1.33 0.00 74 652 20.20 0.00 0.00

Average 2.36 1.33 0.00 40 451 6.82 0.00 0.00

Maximum 10.73 4.40 0.00 74 713 27.53 0.00 0.00

Best 2 4 12

Total 12

VNS+L+ILS+LGH+L

% Deviation from Best CPU (seconds) % TSP Solved

9
8

Table E-7. Computational Results for the VRP instance, eil101.

Problem set m-n-s p Profit(0) Profit(P) CPU (s)
of TSP

solved
Profit(P) CPU (s)

of TSP

solved
Profit(P) CPU (s)

main

step

Total # of

TSPs

eil101 20 243 81 10 57.36 430.53 28 765 406.46 353 9230 430.53 2.13 3 1.88E+12

15 57.36 509.72 42 1110 501.21 443 10890 519.17 2.33 1 8.14E+15

20 57.36 548.11 54 1430 552.67 574 13420 565.00 5.18 2 4.69E+18

25 57.36 562.87 67 1725 583.40 1265 29400 585.43 39.37 11 5.26E+20

10 273 91 10 7.96 441.94 31 865 449.67 310 8910 449.67 1.34 1 6.43E+12

15 7.96 547.35 45 1260 544.23 411 11400 566.97 3.59 1 5.48E+16

20 7.96 605.52 59 1630 602.84 1097 28400 615.50 4.81 1 6.53E+19

25 7.96 621.23 72 1975 628.36 1490 37950 632.78 9.88 1 1.6E+22

1 300 100 10* 14.90 355.43 34 955 360.26 274 8100 369.62 1.39 1 1.92E+13

15* 14.90 446.15 58 1395 473.16 786 22950 473.16 28.24 10 2.98E+17

20* 14.90 516.63 78 1810 535.29 1136 32000 535.29 13.67 3 6.68E+20

25* 14.90 546.53 103 2200 557.32 1082 30000 561.74 80.28 13 3.22E+23

* In the Greedy Heuristic Concorde has been used instead of Linkern.

Problem set m-n-s p f(best) GH LS VNS GH LS VNS GH LS

eil101 20 243 81 10 430.53 0.00 5.59 0.00 28 353 2.13 0.00 0.00

15 519.17 1.82 3.46 0.00 42 443 2.33 0.00 0.00

20 565.00 2.99 2.18 0.00 54 574 5.18 0.00 0.00

25 585.43 3.85 0.35 0.00 67 1265 39.37 0.00 0.00

10 273 91 10 449.67 1.72 0.00 0.00 31 310 1.34 0.00 0.00

15 566.97 3.46 4.01 0.00 45 411 3.59 0.00 0.00

20 615.50 1.62 2.06 0.00 59 1097 4.81 0.00 0.00

25 632.78 1.82 0.70 0.00 72 1490 9.88 0.00 0.00

1 300 100 10 369.62 3.84 2.53 0.00 34 274 1.39 0.00 0.00

15 473.16 5.71 0.00 0.00 58 786 28.24 0.00 0.00

20 535.29 3.49 0.00 0.00 78 1136 13.67 0.00 0.00

25 561.74 2.71 0.79 0.00 103 1082 80.28 0.00 0.00

Average 2.75 1.81 0.00 56 768 16.02 0.00 0.00

Maximum 5.71 5.59 0.00 103 1490 80.28 0.00 0.00

Best 1 3 12

Total 12

VNS+L+ILS+LGH+L

% Deviation from Best CPU (seconds) % TSP Solved

9
2

APPENDIX F

F. fgh

COMPUTATIONAL RESULTS FOR RANDOM INSTANCES

In this appendix, computational results for all random instances that comprise ran20,

ran30, ran40, ran50, ran60, ran80 and ran100 are given in detail. There is one

problem for each instance and each problem has been solved for four different

number of bottle banks. CPU time, percent deviation from the best solution and

percentage of all possible TSPs solved are presented for each p. The results are given

for VNS, Local Search and Greedy Heuristic algorithms and where applicable,

solution results for Exhaustive Search are also provided.

99

1
0
0

Table F-1. Computational Results for Random instances, ran20, ran30, ran40, ran50.

Problem set m-n-s p Profit(0) Profit(P) CPU (s)
of TSP

solved
Profit(P) CPU (s)

of TSP

solved
Profit(P) CPU (s)

main

step

Optimal

Profit(P)
CPU (s)

Total # of

TSPs

ran20 10 60 20 4 -24.85 75.39 3 74 74.20 8 256 75.39 0.39 2 75.39 242 4845

6 -24.85 101.08 4 105 101.08 17 504 101.08 0.28 1 101.08 2080 38760

8 -24.85 113.54 5 132 113.82 17 480 113.82 1.02 2 113.82 7187 125970

10 -24.85 118.75 6 155 118.04 18 500 119.05 0.27 1 119.05 10984 184756

ran30 15 90 30 4 41.55 126.75 4 114 126.75 15 416 126.75 0.25 1 126.75 1732 27405

8 41.55 194.11 8 212 194.11 46 1232 194.11 0.38 1 5852925

12 41.55 208.15 11 294 209.80 74 1944 210.73 0.38 1 86493225

15 41.55 207.38 13 345 208.73 80 2025 208.73 0.42 1 1.55E+08

ran40 20 120 40 5 118.25 137.02 7 190 137.02 39 1050 137.02 0.20 1 137.02 38348 658008

10 118.25 199.86 13 355 201.44 105 2700 201.44 0.44 1 8.48E+08

15 118.25 216.56 18 495 218.35 137 3375 218.35 0.88 1 4.02E+10

20 118.25 217.29 23 610 217.19 192 4400 217.29 14.97 33 1.38E+11

ran50 25 150 50 5 141.35 187.93 10 240 187.93 59 1350 187.93 0.48 1 187.93 206371 2118760

10 141.35 300.67 20 455 300.19 131 2800 300.67 2.55 7 1.03E+10

15 141.35 357.13 32 645 356.18 278 5775 361.28 1.03 1 2.25E+12

20 141.35 383.98 36 810 386.05 360 6600 387.73 3.23 3 4.71E+13

GH+L LS+L ES+CVNS+L+I

1
0
1

Table F-1. Computational Results for Random instances, ran20, ran30, ran40, ran50. (cont’d)

Problem set m-n-s p f(best) GH LS VNS GH LS VNS ES GH LS

ran20 10 60 20 4* 75.39 0.00 1.57 0.00 3 8 0.39 242 1.53 5.28

6* 101.08 0.00 0.00 0.00 4 17 0.28 2080 0.27 1.30

8* 113.82 0.24 0.00 0.00 5 17 1.02 7187 0.10 0.38

10* 119.05 0.25 0.85 0.00 6 18 0.27 10984 0.08 0.27

ran30 15 90 30 4* 126.75 0.00 0.00 0.00 4 15 0.25 1732 0.42 1.52

8 194.11 0.00 0.00 0.00 8 46 0.38 0.00 0.02

12 210.73 1.22 0.44 0.00 11 74 0.38 0.00 0.00

15 208.73 0.65 0.00 0.00 13 80 0.42 0.00 0.00

ran40 20 120 40 5* 137.02 0.00 0.00 0.00 7 39 0.20 38348 0.03 0.16

10 201.44 0.79 0.00 0.00 13 105 0.44 0.00 0.00

15 218.35 0.82 0.00 0.00 18 137 0.88 0.00 0.00

20 217.29 0.00 0.05 0.00 23 192 14.97 0.00 0.00

ran50 25 150 50 5* 187.93 0.00 0.00 0.00 10 59 0.48 206371 0.01 0.06

10 300.67 0.00 0.16 0.00 20 131 2.55 0.00 0.00

15 361.28 1.15 1.41 0.00 32 278 1.03 0.00 0.00

20 387.73 0.97 0.43 0.00 36 360 3.23 0.00 0.00

* f(best) is the optimum. Average 0.38 0.31 0.00 13 99 1.70 38135 0.15 0.56

Maximum 1.22 1.57 0.00 36 360 14.97 206371 1.53 5.28

Best 8 9 16

Total 16

% Deviation from Best CPU (seconds) % TSP Solved

1
0
2

Table F-2. Computational Results for Random instances, ran60, ran80, ran100.

Problem set m-n-s p Profit(0) Profit(P) CPU (s)
of TSP

solved
Profit(P) CPU (s)

of TSP

solved
Profit(P) CPU (s)

main

step

ran60 30 180 60 5 -12.80 200.20 11 290 200.20 54 1375 207.67 0.266 1

10 -12.80 333.48 22 555 344.64 183 4500 344.64 1.641 3

15 -12.80 402.61 32 795 415.85 393 9450 415.85 1.046 1

20 -12.80 441.80 41 1010 444.11 496 12000 444.11 1.515 1

ran80 40 240 80 5 92.30 261.86 17 390 261.86 107 2250 261.86 0.422 1

10 92.30 440.97 35 755 440.97 527 11200 440.97 0.75 1

15 92.30 541.59 49 1095 541.59 483 10725 541.59 2 1

20 92.30 580.53 61 1410 583.12 1020 20400 583.12 21.53 10

ran100 50 300 100 5 180.70 309.47 24 490 309.47 155 2850 309.47 1 2

10 180.70 518.07 48 955 523.83 561 9000 528.12 3.094 1

15 180.70 665.02 73 1395 684.53 1092 17850 684.53 14.407 4

20 180.70 734.02 97 1810 761.91 2030 32000 773.51 113.441 35

VNS+L+IGH+LLS+L

1
0
3

Table F2. Computational Results for Random instances, ran60, ran80, ran100. (cont’d)

Problem set m-n-s p f(best) GH LS VNS GH LS VNS GH LS

ran60 30 180 60 5 207.67 3.60 3.60 0.00 11 54 0.27 0.01 0.03

10 344.64 3.24 0.00 0.00 22 183 1.64 0.00 0.00

15 415.85 3.18 0.00 0.00 32 393 1.05 0.00 0.00

20 444.11 0.52 0.00 0.00 41 496 1.52 0.00 0.00

ran80 40 240 80 5 261.86 0.00 0.00 0.00 17 107 0.42 0.00 0.01

10 440.97 0.00 0.00 0.00 35 527 0.75 0.00 0.00

15 541.59 0.00 0.00 0.00 49 483 2.00 0.00 0.00

20 583.12 0.44 0.00 0.00 61 1020 21.53 0.00 0.00

ran100 50 300 100 5 309.47 0.00 0.00 0.00 24 155 1.00 0.00 0.00

10 528.12 1.90 0.81 0.00 48 561 3.09 0.00 0.00

15 684.53 2.85 0.00 0.00 73 1092 14.41 0.00 0.00

20 773.51 5.11 1.50 0.00 97 2030 113.44 0.00 0.00

Average 1.74 0.49 0.00 42 592 13.43 0.00 0.00

Maximum 5.11 3.60 0.00 97 2030 113.44 0.01 0.03

Best 4 9 12

Total 12

% Deviation from Best CPU (seconds) % TSP Solved

1
0
0

APPENDIX G

G. gh
COMPUTATIONAL RESULTS FOR LARGE INSTANCES

In this appendix, computational results for the large instances, gil262 and KroA200

are given in detail. While gil262 instance set is composed of 3 problems, KroA200

set is composed of 5. The maximum number of bottle banks to locate is 30. CPU time

and percent deviation from the best solution are presented for each p. The results are

given for VNS, RVNS, Local Search and Greedy Heuristic algorithms. The solution

results do not include Exhaustive Search algorithm since the solution space is very

large and it is inappropriate to utilize the algorithm.

104

1
0
5

Table G-1. Computational Results for the large instance gil262.

Problem set m-n-s p Profit(0) Profit(P)
of TSP

solved
Profit(P)

of TSP

solved
Profit(P)

of main

step
Profit(P)

of main

step
Profit(P)

main

step

gil262 52 630 210 10 -26.61 799.95 2055 814.97 24000 798.65 202 816.44 2458 818.70 3

20 -26.61 1340.26 4010 1375.60 98800 1213.07 170 1357.62 4435 1380.25 1

30 -26.61 1575.55 5865 1610.66 178200 1430.84 153 1557.51 4677 1610.66 7

26 708 236 10 -217.82 941.60 2315 947.12 29380 841.93 206 947.12 3044 947.12 11

20 -217.82 1420.88 4530 1452.08 82080 1336.77 176 1420.23 3621 1468.48 8

30 -217.82 1671.00 6645 1718.32 173040 1599.90 165 1687.09 4817 1739.53 32

1 783 261 10* 17.2 656.75 2565 662.61 32630 618.83 356 672.13 4400 679.29 21

20* 17.2 1158.26 5030 1202.34 120500 1061.07 311 1176.90 8695 1207.74 7

30* 17.2 1426.80 7395 1463.92 194040 1362.86 279 1451.40 9535 1486.51 22

* For these instances Concorde.exe has been utilized in Greedy Heuristic Algorithm instead of Linkern.exe.

Problem set m-n-s p f(best) GH LS RVNS-GH RVNS-LS VNS GH LS RVNS-GH RVNS-LS VNS

gil262 52 630 210 10 818.70 2.29 0.46 2.45 0.28 0.00 125 1540 125 1540 10.81

20 1380.25 2.90 0.34 12.11 1.64 0.00 236 6569 237 6569 28.95

30 1610.66 2.18 0.00 11.16 3.30 0.00 351 12051 353 12054 499.94

26 708 236 10 947.12 0.58 0.00 11.11 0.00 0.00 98 1389 98 1389 38.53

20 1468.48 3.24 1.12 8.97 3.29 0.00 198 4091 199 4092 191.20

30 1739.53 3.94 1.22 8.03 3.01 0.00 309 8994 310 8994 2470.58

1 783 261 10* 679.29 3.32 2.45 8.90 1.05 0.00 91 1138 125 1540 85.17

20* 1207.74 4.10 0.45 12.14 2.55 0.00 208 4381 238 6569 253.19

30* 1486.51 4.02 1.52 8.32 2.36 0.00 342 7417 351 12053 2334.69

Average 2.95 0.84 9.24 1.94 0.00 218 5286 226 6089 657.01

Maximum 4.10 2.45 12.14 3.30 0.00 351 12051 353 12054 2470.58

Best 0 2 0 1 9

Total 9

% Deviation from Best CPU (seconds)

GH+L LS+L RVNS+L (GH) RVNS+L (LS) VNS+L+I

1
0
6

Table G-2. Computational Results for the large instance KroA200.

Problem set m-n-s p Profit(0) Profit(P)
of TSP

solved
Profit(P)

of TSP

solved
Profit(P)

of main

step
Profit(P)

of main

step
Profit(P)

main

step

kroA200 200 30 30 4 1513.10 44.73 114 44.89 520 42.97 25 43.75 124 44.89 1

6 1513.10 53.70 165 53.86 720 48.36 23 49.66 112 53.86 2

8 1513.10 59.52 212 60.29 1056 56.78 23 57.66 126 60.29 1

10 1513.10 63.42 255 64.19 1800 58.68 23 64.19 172 64.19 1

12 1513.10 62.50 294 63.27 2160 57.00 22 62.55 174 63.27 1

14 1513.10 60.89 329 61.66 1568 56.28 20 60.23 108 61.66 1

200 60 60 4 1540.50 60.43 234 60.43 1120 54.04 58 60.43 274 60.43 1

8 1540.50 93.67 452 95.08 4160 89.04 57 95.08 538 95.10 10

12 1540.50 117.90 654 123.26 6912 109.05 53 119.41 618 123.26 1

16 1540.50 127.52 840 133.35 7744 116.93 51 128.36 473 133.35 9

20 1540.50 128.43 1010 133.71 13600 126.54 45 132.71 658 133.71 1

200 90 90 4 1436.40 109.51 354 108.93 1032 109.47 74 109.51 275 109.51 1

8 1436.40 186.18 692 186.18 4592 162.68 76 182.76 623 187.28 1

12 1436.40 229.44 1014 226.06 10296 202.32 64 228.24 851 229.55 15

16 1436.40 244.16 1320 245.82 22496 227.77 62 244.45 1449 246.32 6

200 120 120 4 1503.30 148.86 474 148.86 2320 141.88 110 144.40 565 148.86 1

8 1503.30 251.04 932 255.17 8064 226.47 116 245.34 988 255.17 1

12 1503.30 305.01 1374 306.28 15552 273.93 119 303.80 1362 306.45 9

16 1503.30 328.02 1800 331.97 36608 297.31 101 328.36 2106 332.52 13

200 150 150 4 1474.50 179.83 594 179.83 2920 167.85 128 177.95 663 179.83 34

8 1474.50 303.72 1172 306.10 11360 278.58 145 302.07 1424 306.10 8

12 1474.50 370.74 1734 381.06 19872 341.51 153 366.29 1699 381.06 7

16 1474.50 412.63 2280 416.87 49312 371.81 128 403.05 2797 421.40 6

GH+L LS+L RVNS+L (GH) RVNS+L (LS) VNS+L+I

1
0
7

Table G-2. Computational Results for the large instance KroA200. (cont’d)

Problem set m-n-s p f(best) GH LS RVNS-GH RVNS-LS VNS GH LS RVNS-GH RVNS-LS VNS

kroA200 200 30 30 4 44.89 0.34 0.00 4.28 2.53 0.00 23 106 24 106 1.31

6 53.86 0.29 0.00 10.21 7.79 0.00 34 148 34 148 3.69

8 60.29 1.27 0.00 5.82 4.37 0.00 43 222 45 224 2.02

10 64.19 1.20 0.00 8.59 0.00 0.00 53 380 54 381 1.64

12 63.27 1.21 0.00 9.90 1.13 0.00 61 470 63 472 2.81

14 61.66 1.25 0.00 8.72 2.33 0.00 69 349 69 351 2.09

200 60 60 4 60.43 0.00 0.00 10.56 0.00 0.00 47 219 47 220 1.88

8 95.10 1.50 0.02 6.38 0.02 0.00 93 874 95 875 15.06

12 123.26 4.35 0.00 11.52 3.12 0.00 135 1501 137 1502 1.86

16 133.35 4.37 0.00 12.31 3.74 0.00 176 1588 179 1588 12.41

20 133.71 3.95 0.00 5.36 0.75 0.00 213 2938 217 2941 3.69

200 90 90 4 109.51 0.00 0.53 0.04 0.00 0.00 61 207 61 207 1.06

8 187.28 0.59 0.59 13.14 2.41 0.00 112 917 114 918 2.23

12 229.55 0.05 1.52 11.86 0.57 0.00 161 2080 161 2081 20.41

16 246.32 0.87 0.20 7.53 0.76 0.00 209 4490 209 4490 11.78

200 120 120 4 148.86 0.00 0.00 4.68 3.00 0.00 94 458 95 459 1.28

8 255.17 1.62 0.00 11.25 3.85 0.00 188 1617 188 1617 2.19

12 306.45 0.47 0.05 10.61 0.86 0.00 282 3337 282 3337 19.40

16 332.52 1.35 0.17 10.59 1.25 0.00 378 7345 379 7348 22.90

200 150 150 4 179.83 0.00 0.00 6.66 1.05 0.00 116 579 117 579 23.00

8 306.10 0.78 0.00 8.99 1.32 0.00 234 2299 234 2299 20.05

12 381.06 2.71 0.00 10.38 3.88 0.00 356 3993 357 3993 17.12

16 421.40 2.08 1.07 11.77 4.36 0.00 459 10103 461 10104 15.45

Average 1.32 0.18 8.75 2.13 0.00 156 2010 158 2010 8.93

Maximum 4.37 1.52 13.14 7.79 0.00 459 10103 461 10104 23.00

Best 4 15 0 3 23

Total 23

% Deviation from Best CPU (seconds)

108

APPENDIX H

H. hh

THE EFFECT OF THE NUMBER OF BOTTLE BANKS AND UNIT COST

In this appendix, costs and revenues for all possible p values are given for the

problems ran50, ran100, bayg29, eil51, att48, eil76 and kroA200. These

computations have been made assuming that there is no cost of locating a bottle bank.

For the case with unit cost of a bottle bank, the best number of bottle banks to locate

and corresponding profits are given for different cost values.

109

Table H-1. Revenues and costs for all possible p for the problem ran50.

p Profit

Revenue

(M)

Revenue

(K)

Transportation

Cost p Profit

Revenue

(M)

Revenue

(K)

Transportation

Cost

0 141.35 370.10 0.00 228.75 21 531.47 370.10 418.82 257.45

1 184.52 370.10 45.57 231.15 22 532.55 370.10 421.00 258.55

2 224.91 370.10 86.01 231.20 23 532.73 370.10 422.48 259.85

3 262.03 370.10 123.18 231.25 24 532.73 370.10 422.48 259.85

4 296.11 370.10 157.46 231.45 25 532.42 370.10 433.47 271.15

5 329.28 370.10 193.48 234.30 26 532.58 370.10 432.08 269.60

6 360.91 370.10 227.86 237.05 27 532.69 370.10 432.49 269.90

7 385.59 370.10 252.64 237.15 28 532.54 370.10 432.49 270.05

8 407.79 370.10 275.59 237.90 29 531.76 370.10 435.26 273.60

9 425.43 370.10 293.83 238.50 30 530.79 370.10 436.64 275.95

10 442.02 370.10 310.57 238.65 31 529.64 370.10 436.64 277.10

11 458.13 370.10 329.58 241.55 32 527.84 370.10 432.79 275.05

12 470.98 370.10 349.03 248.15 33 525.95 370.10 437.00 281.15

13 483.61 370.10 366.06 252.55 34 524.15 370.10 433.15 279.10

14 494.35 370.10 374.30 250.05 35 522.10 370.10 433.15 281.15

15 502.63 370.10 385.73 253.20 36 519.51 370.10 433.81 284.40

16 510.62 370.10 396.47 255.95 37 516.61 370.10 433.81 287.30

17 516.45 370.10 403.20 256.85 38 513.71 370.10 437.66 294.05

18 521.60 370.10 408.40 256.90 39 510.81 370.10 437.66 296.95

19 525.50 370.10 412.75 257.35 40 507.66 370.10 438.06 300.50

20 529.08 370.10 416.38 257.40

Figure H-1. Revenue and cost components for the problem ran50.

0

100

200

300

400

500

600

0 10 20 30 40 50 60

p

Profit

Revenue (M)

Revenue (K)

Transportation Cost

110

Figure H-2. The best number of bottle banks to locate for ran50.

Figure H-3. Amount of profit for different unit cost, ran50.

0

5

10

15

20

25

0 10 20 30 40 50

#
 o

f
b

o
tt

le
 b

an
ks

Unit Cost

0

100

200

300

400

500

600

0 10 20 30 40 50

P
ro

fi
t

Unit Cost

111

Table H-2. Revenues and costs for all possible p for the problem ran100.

p Profit

Revenue

(M)

Revenue

(K)

Transportation

Cost p Profit

Revenue

(M)

Revenue

(K)

Transportation

Cost

0 180.70 753.50 0.00 572.80 21 965.65 753.50 820.95 608.80

1 247.13 753.50 66.73 573.10 22 975.94 753.50 831.24 608.80

2 313.10 753.50 132.80 573.20 23 981.98 753.50 837.58 609.10

3 377.54 753.50 199.54 575.50 24 985.30 753.50 840.90 609.10

4 435.52 753.50 257.52 575.50 25 988.48 753.50 844.08 609.10

5 490.17 753.50 312.37 575.70 26 989.16 753.50 850.06 614.40

6 540.81 753.50 364.21 576.90 27 991.59 753.50 847.29 609.20

7 586.14 753.50 412.34 579.70 28 992.95 753.50 852.05 612.60

8 630.85 753.50 458.95 581.60 29 992.97 753.50 848.37 608.90

9 668.55 753.50 496.45 581.40 30 995.11 753.50 854.11 612.50

10 708.82 753.50 540.72 585.40 31 994.23 753.50 845.93 605.20

11 746.48 753.50 584.48 591.50 32 995.12 753.50 864.12 622.50

12 778.13 753.50 615.73 591.10 33 995.41 753.50 857.31 615.40

13 807.35 753.50 644.95 591.10 34 995.31 753.50 857.31 615.50

14 833.76 753.50 676.86 596.60 35 995.21 753.50 857.31 615.60

15 865.23 753.50 713.93 602.20 36 994.85 753.50 846.85 605.50

16 893.65 753.50 744.85 604.70 37 994.67 753.50 853.67 612.50

17 913.79 753.50 766.09 605.80 38 994.65 753.50 864.55 623.40

18 927.96 753.50 780.26 605.80 39 994.45 753.50 864.55 623.60

19 940.60 753.50 792.90 605.80 40 994.15 753.50 864.55 623.90

20 954.21 753.50 808.51 607.80

Figure H-4. Revenue and cost components for the problem ran100.

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120

p

Profit

Revenue (M)

Revenue (K)

Transportation Cost

112

Figure H-5. The best number of bottle banks to locate for ran100.

Figure H-6. Amount of profit for different unit cost, ran100.

0

5

10

15

20

25

30

35

0 20 40 60 80

#
 o

f
b

o
tt

le
 b

an
ks

Unit Cost

0

200

400

600

800

1000

1200

0 20 40 60 80

P
ro

fi
t

Unit Cost

113

Table H-3. Revenues and costs for all possible p for the problem bayg29-29.

p Profit

Revenue

(M)

Revenue

(K)

Transportation

Cost p Profit

Revenue

(M)

Revenue

(K)

Transportation

Cost

0 226.50 444.00 0.00 217.50 15 285.75 444.00 76.13 234.37

1 246.52 444.00 20.07 217.55 16 284.09 444.00 72.19 232.09

2 260.61 444.00 34.16 217.55 17 283.50 444.00 76.13 236.63

3 266.80 444.00 43.86 221.05 18 281.87 444.00 76.13 238.26

4 271.23 444.00 49.38 222.16 19 279.77 444.00 76.17 240.40

5 275.49 444.00 53.93 222.45 20 278.52 444.00 76.17 241.65

6 279.41 444.00 60.59 225.18 21 276.75 444.00 76.17 243.42

7 282.94 444.00 64.22 225.28 22 274.24 444.00 82.06 251.82

8 285.86 444.00 67.41 225.54 23 271.57 444.00 82.06 254.49

9 287.17 444.00 70.15 226.98 24 267.31 444.00 88.26 264.95

10 287.32 444.00 70.85 227.53 25 265.86 444.00 84.19 262.33

11 287.30 444.00 70.85 227.56 26 261.55 444.00 90.39 272.84

12 287.19 444.00 76.13 232.93 27 258.57 444.00 90.39 275.82

13 286.91 444.00 76.13 233.22 28 255.07 444.00 90.39 279.32

14 286.52 444.00 76.13 233.61 29 250.35 444.00 90.81 284.46

Figure H-7. Revenue and cost components for the problem bayg29-29.

0

50

100

150

200

250

300

350

400

450

500

0 10 20 30 40

p

Profit

Revenue (M)

Revenue (K)

Transportation Cost

114

Figure H-8. The best number of bottle banks to locate for bayg29-29.

Figure H-9. Amount of profit for different unit cost, bayg29-29.

0

2

4

6

8

10

12

0 5 10 15 20 25

#
 o

f
b

o
tt

le
 b

an
ks

Unit Cost

0

50

100

150

200

250

300

350

0 5 10 15 20 25

P
ro

fi
t

Unit Cost

115

Table H-4. Revenues and costs for all possible p for the problem eil51-51.

p Profit

Revenue

(M)

Revenue

(K)

Transportation

Cost p Profit

Revenue

(M)

Revenue

(K)

Transportation

Cost

0 400.81 783.30 0.00 382.49 21 528.00 783.30 138.72 394.02

1 415.62 783.30 14.89 382.57 22 527.99 783.30 138.72 394.03

2 430.26 783.30 29.55 382.59 23 527.84 783.30 138.72 394.18

3 443.03 783.30 42.65 382.92 24 527.67 783.30 138.72 394.35

4 454.22 783.30 53.95 383.03 25 527.37 783.30 138.72 394.65

5 464.97 783.30 65.06 383.39 26 527.04 783.30 138.72 394.98

6 473.81 783.30 74.04 383.53 27 526.69 783.30 138.72 395.32

7 480.91 783.30 82.73 385.12 28 526.16 783.30 141.75 398.88

8 487.06 783.30 89.36 385.60 29 525.56 783.30 141.75 399.48

9 492.89 783.30 95.54 385.95 30 524.42 783.30 139.49 398.38

10 498.23 783.30 101.29 386.36 31 523.62 783.30 141.75 401.43

11 503.48 783.30 106.55 386.37 32 523.37 783.30 142.52 402.45

12 507.95 783.30 109.88 385.23 33 522.77 783.30 142.52 403.05

13 512.05 783.30 115.34 386.59 34 521.81 783.30 142.52 404.01

14 516.00 783.30 119.54 386.85 35 520.82 783.30 142.52 405.00

15 518.54 783.30 122.53 387.29 36 519.65 783.30 142.83 406.48

16 520.89 783.30 125.68 388.09 37 518.46 783.30 142.83 407.67

17 523.06 783.30 127.84 388.08 38 516.99 783.30 142.83 409.15

18 525.11 783.30 131.10 389.28 39 515.44 783.30 142.83 410.69

19 527.05 783.30 134.39 390.64 40 513.77 783.30 144.03 413.56

20 528.14 783.30 138.72 393.88

Figure H-10. Revenue and cost components for the problem eil51-51.

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40 50 60

p

Profit

Revenue (M)

Revenue (K)

Transportation Cost

116

Figure H-11. The best number of bottle banks to locate for eil51-51.

Figure H-12. Amount of profit for different unit cost, eil51-51.

0

5

10

15

20

25

0 5 10 15

#
 o

f
b

o
tt

le
 b

an
ks

Unit Cost

0

100

200

300

400

500

600

0 5 10 15

P
ro

fi
t

Unit Cost

117

Table H-5. Revenues and costs for all possible p for the problem att48-5.

p Profit

Revenue

(M)

Revenue

(K)

Transportation

Cost p Profit

Revenue

(M)

Revenue

(K)

Transportation

Cost

0 -62.26 73.30 0.00 135.56 21 114.53 73.30 251.04 209.81

1 -31.91 73.30 33.57 138.78 22 113.86 73.30 266.06 225.50

2 -4.64 73.30 66.47 144.41 23 112.02 73.30 266.06 227.34

3 20.76 73.30 91.96 144.50 24 110.32 73.30 264.63 227.61

4 41.76 73.30 121.87 153.41 25 108.48 73.30 264.63 229.45

5 59.42 73.30 139.70 153.58 26 105.63 73.30 267.14 234.81

6 76.39 73.30 159.27 156.18 27 103.34 73.30 264.63 234.59

7 89.66 73.30 174.20 157.84 28 101.97 73.30 264.63 235.96

8 100.61 73.30 185.25 157.94 29 99.41 73.30 265.19 239.08

9 109.06 73.30 195.71 159.95 30 96.56 73.30 267.70 244.44

10 116.31 73.30 218.16 175.15 31 93.51 73.30 268.93 248.72

11 119.81 73.30 222.95 176.44 32 90.16 73.30 268.93 252.07

12 121.90 73.30 224.03 175.43 33 86.45 73.30 268.93 255.78

13 123.77 73.30 222.08 171.61 34 81.26 73.30 268.93 260.97

14 124.05 73.30 230.53 179.78 35 76.04 73.30 273.55 270.81

15 124.19 73.30 242.82 191.93 36 70.85 73.30 273.55 276.00

16 124.16 73.30 244.12 193.26 37 64.84 73.30 274.79 283.25

17 123.77 73.30 246.15 195.68 38 58.51 73.30 279.82 294.61

18 122.16 73.30 248.66 199.80 39 52.62 73.30 279.82 300.50

19 119.57 73.30 248.66 202.39 40 47.02 73.30 279.82 306.10

20 116.37 73.30 251.04 207.97

Figure H-13. Revenue and cost components for the problem att48-5.

-100

-50

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50

p

Profit

Revenue (M)

Revenue (K)

Transportation Cost

118

Figure H-14. The best number of bottle banks to locate for att48-5.

Figure H-15. Amount of profit for different unit cost, att48-5.

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30 35

#
 o

f
b

o
tt

le
 b

an
ks

Unit Cost

-100

-50

0

50

100

150

0 5 10 15 20 25 30 35

P
ro

fi
t

Unit Cost

119

Table H-6. Revenues and costs for all possible p for the problem eil76-8.

p Profit

Revenue

(M)

Revenue

(K)

Transportation

Cost p Profit

Revenue

(M)

Revenue

(K)

Transportation

Cost

0 -19.75 111.20 0.00 130.95 21 350.43 111.20 489.69 250.46

1 31.90 111.20 67.44 146.74 22 351.56 111.20 507.50 267.14

2 69.67 111.20 113.18 154.71 23 351.71 111.20 507.87 267.36

3 103.73 111.20 148.01 155.48 24 351.57 111.20 509.04 268.67

4 133.43 111.20 186.08 163.85 25 351.27 111.20 524.54 284.47

5 158.34 111.20 219.87 172.73 26 351.42 111.20 524.91 284.69

6 181.90 111.20 243.66 172.96 27 351.27 111.20 526.07 286.00

7 205.25 111.20 268.79 174.74 28 350.80 111.20 526.07 286.47

8 225.63 111.20 299.46 185.03 29 349.81 111.20 526.16 287.55

9 244.33 111.20 330.07 196.94 30 348.94 111.20 553.11 315.37

10 260.90 111.20 349.16 199.46 31 347.89 111.20 553.11 316.42

11 276.76 111.20 368.54 202.98 32 346.81 111.20 553.11 317.50

12 292.11 111.20 391.14 210.23 33 345.66 111.20 553.11 318.65

13 302.05 111.20 401.30 210.45 34 344.43 111.20 553.11 319.88

14 311.88 111.20 421.72 221.04 35 342.45 111.20 553.11 321.86

15 320.79 111.20 438.08 228.49 36 339.98 111.20 554.05 325.27

16 329.68 111.20 451.52 233.04 37 337.50 111.20 554.76 328.46

17 337.64 111.20 460.40 233.96 38 334.70 111.20 554.76 331.26

18 341.84 111.20 468.79 238.15 39 331.78 111.20 556.11 335.53

19 345.29 111.20 479.58 245.49 40 328.66 111.20 568.15 350.69

20 347.99 111.20 487.12 250.33

Figure H-16. Revenue and cost components for the problem eil76-8.

-100

0

100

200

300

400

500

600

700

0 20 40 60 80

p

Profit

Revenue (M)

Revenue (K)

Transportation Cost

120

Figure H-17. The best number of bottle banks to locate for eil76-8.

Figure H-18. Amount of profit for different unit cost, eil76-8.

0

5

10

15

20

25

0 10 20 30 40 50

#
 o

f
b

o
tt

le
 b

an
ks

Unit Cost

-50

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50

P
ro

fi
t

Unit Cost

121

Table H-7. Revenues and costs for all possible p for the problem kroA200.

p Profit

Revenue

(M)

Revenue

(K)

Transportation

Cost p Profit

Revenue

(M)

Revenue

(K)

Transportation

Cost

0 1436.40 2936.40 0.00 1500.00 21 1687.98 2936.40 255.53 1503.94

1 1471.10 2936.40 34.75 1500.05 22 1687.98 2936.40 255.53 1503.94

2 1498.77 2936.40 62.68 1500.31 23 1687.83 2936.40 255.53 1504.10

3 1523.13 2936.40 87.50 1500.77 24 1687.62 2936.40 255.53 1504.30

4 1545.91 2936.40 111.51 1502.00 25 1687.37 2936.40 255.53 1504.56

5 1568.66 2936.40 134.25 1502.00 26 1687.11 2936.40 255.53 1504.82

6 1588.16 2936.40 154.48 1502.71 27 1686.85 2936.40 255.53 1505.07

7 1607.14 2936.40 173.81 1503.07 28 1686.60 2936.40 255.53 1505.33

8 1623.68 2936.40 190.61 1503.33 29 1686.34 2936.40 255.53 1505.58

9 1636.29 2936.40 203.22 1503.33 30 1686.09 2936.40 255.53 1505.84

10 1649.58 2936.40 216.92 1503.74 31 1685.68 2936.40 255.53 1506.25

11 1660.56 2936.40 227.95 1503.79 32 1685.27 2936.40 255.53 1506.66

12 1665.95 2936.40 233.04 1503.48 33 1684.81 2936.40 255.53 1507.12

13 1671.74 2936.40 238.87 1503.53 34 1684.29 2936.40 255.53 1507.63

14 1676.24 2936.40 243.58 1503.74 35 1683.83 2936.40 255.53 1508.09

15 1679.86 2936.40 247.35 1503.89 36 1683.27 2936.40 255.53 1508.66

16 1682.72 2936.40 249.95 1503.64 37 1682.28 2936.40 255.71 1509.84

17 1685.42 2936.40 252.66 1503.64 38 1680.84 2936.40 255.71 1511.27

18 1687.79 2936.40 255.03 1503.64 39 1679.36 2936.40 255.71 1512.76

19 1687.95 2936.40 255.44 1503.89 40 1676.74 2936.40 257.24 1516.90

20 1687.98 2936.40 255.53 1503.94

Figure H-19. Revenue and cost components for the problem kroA200.

0

500

1000

1500

2000

2500

3000

3500

0 20 40 60 80 100

p

Profit

Revenue (M)

Revenue (K)

Transportation Cost

122

Figure H-20. The best number of bottle banks to locate for kroA200.

Figure H-21. Amount of profit for different unit cost, kroA200.

0

5

10

15

20

25

0 10 20 30 40

#
 o

f
b

o
tt

le
 b

an
ks

Unit Cost

1400

1450

1500

1550

1600

1650

1700

0 10 20 30 40

P
ro

fi
t

Unit Cost

	Fatih_Rahim_Tez-1.pdf
	Fatih_Rahim_Tez-2.pdf
	Fatih_Rahim_Tez3.pdf

