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ABSTRACT

INVESTIGATING THE SEMILEPTONIC B TO K1(1270, 1400) DECAYS IN QCD SUM
RULES

Dağ, Hüseyin

Ph.D., Department of Physics

Supervisor : Prof. Dr. Mehmet T. Zeyrek

February 2010, 83 pages

Quantum Chromodynamics(QCD) is part of the Standard Model(SM) that describes the in-

teraction of fundamental particles. In QCD, due to the fact that strong coupling constant is

large at low energies, perturbative approaches do not work. For this reason, non-perturbative

approaches have to be used for studying the properties of hadrons. Among several non-

perturbative approaches, QCD sum rules is one of the reliable methods which is applied to

understand the properties of hadrons and their interactions.

In this thesis, the semileptonic rare decays of B meson to K1(1270) and K1(1400) are analyzed

in the framework of three point QCD sum rules approach. The B→ K1(1270, 1400)`+`− de-

cays are significant flavor changing neutral current (FCNC) decays of the B meson, since

FCNC processes are forbidden at tree level at SM. These decays are sensitive to the new

physics beyond SM. The radiative B → K1(1270)γ decay is observed experimentally. Al-

though semileptonic B → K1(1270, 1400) decays are still not observed, they are expected to

be observed at future B factories. These decays happens at the quark level with b → s`+`−
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transition, providing new opportunities for calculating CKM matrix elements: Vtb and Vts.

Applying three point QCD sum rules to B → K1(1270, 1400)`+`− decays is tricky, due

to the fact that the K1(1270) and K1(1400) states are the mixtures of ideal 3P1(KA
1 ) and

1P1(KB
1 ) orbital angular momentum states. First, by taking axial vector and tensor current

definitions for K1 mesons, the transition form factors of B → K1A`
+`− and B → K1B`

+`−

are calculated. Then using the definitions for K1 mixing, the transition form factors of

B → K1(1270, 1400)`+`− decays are obtained. The results of these form factors are used

to estimate the branching ratio of B meson into K1(1270) and K1(1400). The results obtained

for form factors and branching fractions are also compared with the ones in the literature.

Keywords: Non-perturbative approaches, QCD sum rules, form factors, B meson.
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ÖZ

QCD TOPLAMA KURALLARI ÇERÇEVESİNDE B MEZONUNUN YARI LEPTONİK
K1(1270, 1400) GEÇİŞLERİNİN İNCELENMESİ

Dağ, Hüseyin

Doktora, Fizik Bölümü

Tez Yöneticisi : Prof. Dr. Mehmet Zeyrek

Şubat 2010, 83 sayfa

Kuvantum Renk Dinamiği(KRD), temel parçacık etkieşmelerini açıklayan Standart Model’in(SM)

bir parçasıdır. KRD’de kuvvetli etkileşim kuplaj sabitinin düşük enerjilerde büyük olmasından

dolayı, hadronlar ve özellikleri tedirgemeli yaklaşımlar ile çalışılamamaktadır. Bu sebe-

ple hadronlar incelenirken tedirgemesiz yaklaşımlar kullanılmalıdır. Kuantum renk dinamiği

(KRD) toplam kuralları, diğer tedirgemesiz yaklaşımlar arasında güvenilirliği olan bir metod

olarak, hadronların özellikleri ve etkileşmelerinin çalışılmasında kullanılmaktadır.

Bu tezde B mesonunun yarı leptonik ve nadir gorulen K1(1270) ve K1(1400) geçişleri, üç

nokta KRD toplama kuralları yaklaşımı kullanılarak hesaplandı. B → K1(1270, 1400)`+`−

geçişleri, B mezonun çeşni değiştiren nötür akımlar vasıtasıyla gerçekleştirdiği geçişler arasın-

da önemli bir yer tutar ve standart model ötesi teorilerin etkilerinin gözlemlenmesi açısından

önem arzetmektedir. Ayrıca bu geçişler KRD de ağaç seviyesinde görülmemektedirler. Tüm

bunlara ilave olarak, B → K1(1270)γ geçişleri deneysel olarak gözlemlenmiş olmasına rağ-

men B → K1(1270)`+`− ve B → K1(1400)`+`− henüz gözlemlenmemişlerdir. Bu geçişleri
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gelecekteki B mezon üreteçlerinde gözlemlenmeleri beklenmektedir. Bu geçişler kuark se-

viyesinde b → s`+`− geçişi ile açıklanmakta olup, CKM matrix elemanlarından Vtb ve Vts

nin anlaşılmaları açısından da önem arz etmektedirler.

KRD toplama kuralları kullanılarak B → K1(1270, 1400)`+`− bozunumlarını çalışmak in-

celikli bir uygulamadır. Çünkü K1(1270) ve K1(1400) aksiyel vektör mezonları aslında ideal
3P1(KA

1 ) ve 1P1(KB
1 ) açısal momentum durumlarının karışımlarından oluşmaktadırlar. Dolayısı

ile KRD toplama kurallarında aksiyel vector ve tensör akımları kullanılarak iki ayrı ilişkilen-

dirici fonksiyonu hesaplanmalıdır. Bu hesaplar sonucunda önce B → K1A`
+`− ve B →

K1B`
+`− bozunumlarının bozunum katsayıları ve ardından karışım tanımı kullanılarak B →

K1 (1270, 1400)`+`− geçişlerinin bozunum katsayıları bulunmuştur. Bu bozunum katsayıları

kullanılarak bu geçişlerin oranları hesaplanmış ve literatürdeki değerlerle karşılaştırılmıştır.

Anahtar Kelimeler: tedirgemesiz yaklaşımlar, KRD toplama kuralları, yapı faktörleri, B mezonu.
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CHAPTER 1

INTRODUCTION

The Standard Model (SM), which is a S U(3)c ⊗ S U(2)L ⊗U(1)Y gauge theory of electroweak

and the strong interactions, explains the experimental data with a good consistency. However

it should be extended to explain problems like unification, hierarchy problem, origin of matter

in the universe, and so on. In SM, fundamental particles are leptons and quarks which interact

through the exchange of gauge bosons. These gauge bosons are: gluons mediating strong

force, W± and Z0 bosons mediating weak force and the photon Aµ mediating electromagnetic

force.

Quantum chromodynamics (QCD) is the theory of the strong interactions and it describes

the strong interactions of quarks and gluons. In QCD, it is believed that the potential energy

between quarks does not vanish when the distance between them is increased, the energy re-

quired to separate them also increases, due to the gluons connecting them. This phenomena is

called confinement. Due to confinement, quarks are bound into hadrons. On the other hand,

for very high energies, or very short distances, quarks move almost free. This phenomena is

called as asymptotic freedom. These two phenomenons characterize the behavior of QCD.

At large energies (or short distances) perturbation theory can be used. On the other hand,

for low energies (or large separations), such as the hadronic scales, due to the value of the

effective strong coupling constant, perturbation theory does not work. In this regime, a non-

perturbative approach is needed.

Some non-perturbative methods can be listed as: QCD sum rules and light cone QCD sum

rules(LCQSR)[1, 2, 3, 4, 5, 6], the lattice QCD[7], heavy quark effective theory(HQET)[8],
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covariant light-front quark model[9], QCD factorization[10], low energy effective theory(LEET)[11],

chiral perturbation theory(ChPT)[12], and AdS-QCD or the so called holographic QCD[13].

Among these methods, the main advantage of QCD sum rules is that it is based on fundamen-

tal QCD lagrangian. In QCD sum rules, hadrons are interpreted by their model independent

interpolating currents. The QCD sum rules are discussed in many reviews [4, 5, 6, 14, 15, 16,

17, 18, 19, 20, 21, 22, 23] emphasizing the various aspects of the method.

In this thesis, the semileptonic B → K1(1270, 1400)`+`− decays are analyzed. These

decays are characteristic flavor changing neutral current (FCNC) decays of B meson which

are forbidden at tree level and occur only at loop level. These decays are good candidates

for searching new physics (NP) beyond SM or the modifications on the SM. Some of these

rare FCNC decays of B meson; radiative and semileptonic decays into a vector or an axial

vector meson, such as B → K∗(892)γ [24, 25, 26], B → K1(1270, 1400)γ[27] and B →
K0∗(892)e+e−(µ+µ−)[28, 29] have been observed. For the channel B → K∗(892)`+`−, the

measurement of isospin and forward backward asymmetries at BaBar are also reported[30,

31, 32]. The radiative decays of B meson to K1(1270, 1400) axial vector meson states are also

observed at Belle[33]. The semileptonic decay modes B → K1(1270, 1400)`+`− have not

been observed yet, but are expected to be observed in forthcoming pp and e+e− accelerators,

such as LHC[34, 35] and SuperB[36]. Recently, some studies on B → K1(1270, 1400)`+`−

decays have been made[37, 38, 39, 40, 41, 42, 43, 44, 45].

In chapter 2, the QCD sum rules method is reviewed following Refs. [20, 21, 22]. First

a general derivation for QCD sum rules is discussed using a two point correlator function.

Then, three point QCD sum rules is discussed.

In chapter 3, the properties of axial vector K1 mesons are analyzed. In section 2.1, the

classification of mesons in terms of their quantum numbers is reviewed. In section 2.2, the

mixing between K1 states is described. And also in this section, application of QCD sum rules

to K1 mesons is discussed.

In chapter 4, the semileptonic B → K1(1270, 1400)`+`− decays are examined in the

framework of three-point QCD sum rules. Since, the K1(1270, 1400) states are combination

of K1(A,B) states, firstly, sum rules for the form factors of B→ K1(A,B)`
+`− decays are derived.

From these sum rules, the q2 dependance of form factors of B→ K1(1270, 1400)`+`− decays

2



are obtained. Using these results, the branching fractions to e+e−, µ+µ− and τ+τ− leptonic

final states are estimated. Chapter 5 includes the summary and conclusions.
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CHAPTER 2

QCD SUM RULES

2.1 Introduction

The QCD sum rules, proposed in 1979 by Shifman, Vainsthein and Zakharov (SVZ)[1], is

one of the most applicable tools in studying the properties of hadrons. Among other non-

perturbative methods, the main power of QCD sum rules approach and its extensions is the

analyticity of the methods. In this method a connection between the low energy processes

and the non-trivial QCD vacuum via quark (〈q̄q〉), quark-gluon (〈q̄σGq〉), gluon (〈g2G2〉) and

other higher order condensates is established.

In QCD sum rules approach, hadrons are represented by their interpolating quark cur-

rents. The main object of QCDSR is the correlation of these interpolating currents. This

correlator is calculated both in terms of hadronic properties and also using operator product

expansion(OPE), where the short and long distance quark gluon interactions are separated.

The short distance interactions are calculated using QCD perturbation theory and the long

distance interactions are parameterized in terms of vacuum condensates. In general, calculat-

ing the correlation function within the framework of OPE is called the QCD or the theoretical

side of the correlation function.

In this method, the correlation function is also calculated by inserting a complete set of

hadronic states, where hadrons are treated as point-like objects characterized by their hadronic

properties such as leptonic decay constants and masses. This hadronic approach in calculating

the correlation function is commonly named as the phenomenological or physical side of the

calculations.

The results of these two representations of the correlation function, i.e., the QCD side and
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the phenomenological side, is matched via dispersion relation and the sum rules are found.

From these sum rules, the physical quantities of the hadrons such as form factors, decay

constants and the masses can be achieved.

In this chapter, the basics of the QCD sum rules approach are reviewed following refer-

ences [20, 21, 22]. Some missing intermediate steps and detailed calculations can be found in

[22].

2.2 The QCD Sum Rules Approach

2.2.1 The Correlation Function

In studying QCD, it is commonly believed that the QCD lagrangian explains properties of

hadrons and hadronic processes and is given by

LQCD = −1
4

Ga
µνG

aµν +
∑

q

ψ̄q(i 6D − mq)ψq, (2.1)

where Ga
µν is the gluon field-strength tensor and ψq are the quark fields with different flavors

q = u, d, c, s, t, b. The QCD lagrangian in Eq.2.1 is applicable either within the frame work of

perturbation theory or some non-perturbative approaches. The perturbation theory is applica-

ble only when the effective quark-gluon coupling αs = g2
s/4π is small. For studying the QCD

dynamics at distances of the order of hadron size, i.e., Rhadr ∼ 1/ΛQCD, an expansion in terms

of αs and so the perturbation theory is not applicable. Calculation in these large separations

are done by non-perturbative approaches like QCD sum rules.

In QCD sum rules, the processes are considered with no initial and final hadrons, i.e.,

quarks are injected in QCD vacuum at the space time point x = 0 and their space-time evolu-

tion is studied. This is described by the main object of the QCD sum rules approach, which

is the correlation function (or alternatively correlator):

Π(q2) = i
∫

d4x eiq·x〈0 | T { j(x) j̄(0)} |0〉, (2.2)

where q is the momentum of the quarks, j(x) is the quark current that injects quarks into the

QCD vacuum at point x and T is the time ordering operator which acts as

T { j(x) j̄(0)} = Θ(x − 0) j(x) j̄(0) + CΘ(0 − x) j̄(0) j(x) (2.3)
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where Θ(x) is the unit step function and C = +1(−1) for bosonic(fermionic) operators. The

correlation function in Eq. 2.2 is called the two point correlation function and leads to the

mass sum rules.

The q2 behavior of the correlator is the starting point of the QCD sum rules. The cor-

relator in Eq.2.2 is an analytic function of q2 defined at both positive(timelike) and nega-

tive(spacelike) values of q2. For q2 > 0, the quarks move to larger spatial distances and for

sufficiently large positive values of q2 they start to form hadrons. In this regime, the corre-

lator in Eq. 2.2 is calculated in terms of hadron language. These calculations are called the

phenomenological or the physical part of the QCD sum rules. For large and negative values

of q2 i.e., Λ2
QCD << Q2 ≡ −q2, the main contribution to correlator comes from short spatial

distances and short times[20]. Therefore, in this regime the correlator can be calculated in

terms of quarks and gluons interacting with QCD vacuum.

e
−

e
+

e
+

e
−

γγ

q

q̄

Πµν

Figure 2.1: The quark-antiquark creation and annihilation at electron scattering processes.
This propagation can be considered as a representation for the propagator Πµν.

The correlator functions are not completely hypothetical configurations. They are realized

in nature when a quark-antiquark pair is produced and absorbed by an external source[20]. For

instance, at an electron electron scattering process, such quark-antiquark pairs are produced

and absorbed by a virtual photon. The intermediate propagation of the quark antiquark pair

may be considered as the correlation function, when it is taken separately as in Fig.2.1. In this

case the correlator function should carry the Lorentz indices of the incoming and outgoing
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virtual photon.

2.2.2 The Phenomenological Side

In this subsection, the representation of the correlator function in terms of hadronic states in

the q2 > 0 regime will be analyzed. The correlator function in Eq. 2.2, can be saturated

by inserting the complete set of hadronic states which has the same quantum numbers of the

interpolating currents. The correlator can be written as

Π(q2) = i
∫

d4x eiq·x〈0 | T { j(x) 11 j̄(0)} |0〉, (2.4)

where the unitary operator can be written as

11 =
∑

h

|h〉〈h| (2.5)

= |0〉〈0| +
∑

h

∫
d4k

(2π)4 2πδ(k2 − m2
h)|h(k)〉〈h(k)| + higher states,

where h(k) is the hadron with mass mh and momentum k. Inserting Eq.2.5 in 2.4 gives

Π(q2) = i
∫

d4x eiq·x{

〈0| j(x)|0〉〈0| j̄(0)|0〉Θ(x0) + 〈0| j̄(0)|0〉〈0| j(x)|0〉Θ(−x0)

+

∫
d4k

(2π)4

∑

h

Θ(k0)2πδ(k2 − m2
h)[〈0| j(x)|h(k)〉〈h(k)| j̄(0)|0〉Θ(x0)

+〈0| j̄(0)|h(k)〉〈h(k)| j(x)|0〉Θ(−x0)]}. (2.6)

The first two terms in Eq.2.6 vanish since the matrix elements 〈0| j(x)|0〉 and 〈0| j̄(0)|0〉
are zero1. The matrix elements 〈0| j̄(x)|h(k)〉 and 〈h(k)| j(x)|0〉 are calculated by inserting the

evolution of the operator j(x) as

〈0| j(x)|h(k)〉 = 〈0|e−iPx j(0)eiPx|h(k)〉

= 〈0| j(0)eikx|h(k)〉 = eikx〈0| j(0)|h(k)〉,

〈h(k)| j(x)|0〉 = e−ikx〈h(k)| j(0)|0〉, (2.7)

1 If the current j(x) has the quantum numbers of the vacuum, then these matrix elements might not be zero.
But in this case, the integral will be proportional to (2pi)2delta4(q) which is zero if q is different from zero.
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the correlator takes the form

Π(q2) = i
∫

d4x eiq·x{
∫

d4k
(2π)4

∑

h

Θ(k0)2πδ(k2 − m2
h)

[eikx〈0| j(0)|h(k)〉〈h(k)| j̄(0)|0〉Θ(x0)

+e−ikx〈0| j̄(0)|h(k)〉〈h(k)| j(0)|0〉Θ(−x0)]}. (2.8)

When the integrals with respect to
−→
k and −→x are evaluated, Eq.2.8 becomes

Π(q2) = i
∑

h

∫ ∞

0
dk0δ(k2

0 − E2
h)

∫
dx0

[ei(q0+k0)x0〈0| j(0)|h(k0,−−→q )〉〈h(k0,−−→q )| j̄(0)|0〉Θ(x0)

+e−i(k0−p0)x0〈0| j̄(0)|h(k0,
−→q )〉〈h(k0,

−→q )| j(0)|0〉Θ(−x0)]. (2.9)

The last two integrals in Eq. 2.9 are taken as follows. The integral with respect to k0 is simply

handled by using the delta function property

δ( f (x)) =
∑

x0

δ(x − x0)
| f ′(x0)| , (2.10)

where f (x0) = 0 and f ′ =
d f
dx . The second integral with respect to x0 is taken by adding a

small imaginary part to Eh to assure convergence, i.e., Eh → Eh + iε. These calculations yield

Π(q2) = i2π
∑

h


|〈0| j(0)|h(−−→q )〉|2

2Eh(−−→q )
(
q0 + Eh(−−→q ) + iε

) +
|〈0| j(0)|h(−→q )〉|2

2Eh(−→q )
(
q0 − Eh(−→q ) − iε

)
 . (2.11)

For q2 > 0, there exist a frame in which −→q = 0. So the numerators of the two terms in Eq.

2.11 are equal and can be added. Finally, by taking ε → 0, the correlator is found as

Π(q2) =
∑

h

|〈0| j(0)|h(−→q )〉|2
q2 − m2

h

+ ... . (2.12)

In Eq. 2.12, the sum goes over all possible hadronic states, i.e. the full hadronic tower, and

each individual state h contributes to the correlation function. In terms of these states a more

compact and useful notation can be introduced as

Π(q2) =
f 2
H

q2 − m2
H

+ Πh(q2), (2.13)
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where H is the ground state hadron (or hadron with the smallest mass that can be created by

current j), fH ≡ 〈0| j(0)|H(q)〉 is the leptonic decay constant, Πh(q2) denotes the contributions

of the higher states and continuum.

2.2.3 The QCD side and the Operator Product Expansion

The correlation function in Eq. 2.2 can also be calculated in terms of quarks, gluons and

their interactions with QCD vacuum in the region: −q2 = Q2 >> Λ2
QCD, the so called deep

Euclidean region. This is done by using operator product expansion (OPE) which states that

the time ordered product of two currents at different points can be expanded as the sum of

local operators with space time coefficients as

T { j(x) j̄(0)} =
∑

d

Cd(x2)Od, (2.14)

where, Cd(x2) are Wilson coefficients and Od are a set of local operators ordered according

to their dimensions(d). In QCD sum rules, the vacuum expectation value of Eq. 2.14 is

needed. Since vacuum is colorless, gauge and Lorentz invariant, only colorless, gauge and

Lorentz invariant operators can contribute. In QCD there are no colorless, gauge and Lorentz

invariant operators with dimensions d = 1, 2. The operators up to d = 6 can be listed as

O0 = 11,

O3 = ψ̄ψ,

O4 = Ga
µνG

aµν,

O5 = ψ̄σµν
λa

2
Gaµνψ ,

Oψ
6 = (ψ̄Γψ)(ψ̄Γψ) ,

OG
6 = fabcGa

µνG
b ν
σ Gcσµ, (2.15)

where ψ is the wave function of any quark field, Γ and Γ′ denote the various combinations of

Lorentz and color matrices. In terms of OPE, the correlator in Eq. 2.2 takes the form

ΠOPE(q2) =
∑

d

Cd(x2)〈Od〉. (2.16)

For d = 0, the coefficient C0(x2) associated with the perturbative contributions to the correla-

tor. For d = 3, 4, ..., the operators 〈Od〉 ≡ 〈0|Od |0〉 form a set of vacuum condensates which
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parameterize the non-perturbative effects.

In order to calculate the Wilson coefficients, the current j(x) in the definition of the corre-

lation function in Eq. 2.2 should be known. For a general current of the form

j(x) = q̄′(x)iΓq(x) (2.17)

where q = u, d, s is one of the light quarks, q′ = b, c, t is one of the heavy quarks, and Γ is the

matrix carrying Lorentz indices. The current defined in Eq. 2.17 creates the hadron H ≡ q̄q′

and the excited states carrying the same quantum numbers of H.

S
0

S
〈q̄q〉

S
GS

Figure 2.2: Diagrammatic representation of the full quark propagator. For q = b, c, t, the
second term S 〈q̄q〉 vanish.
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a b

c d

e f

Figure 2.3: The Feynman diagram representations of the operators contributing the correlator
Π(q2). The dashed lines denote the currents, thin(thick) solid lines denote the light(heavy)
quark, and the spirals correspond to soft gluons.
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The Wilson coefficients in Eq. 2.16 can be calculated either one-by-one, or more ele-

gantly, by introducing the full quark propagator with both perturbative and non-perturbative

contributions which is defined as

iS ab
q (x − y) = 〈0|T q̄a(x)qb(y)|0〉 (2.18)

where a, b are the color indices. The full quark propagator can be written in terms of pertur-

bative and non-perturbative contributions as

S ab
q (x) = S 0,ab

q (x) + S 〈q̄q〉,ab
q (x) + S G,ab

q (x), (2.19)

where

S 0,ab
q (x) = δab

∫
d4k

(2π)4 e−ikx 6 k + mq

k2 − m2
q
, (2.20)

S 〈q̄q〉,ab
q (x) = iδab


〈q̄q〉
12

(
1 − imq 6 x

4

)
+

m2
0x2〈q̄q〉
192

(
1 − imq 6 x

6

) , (2.21)

S G,ab
q (x) = gs

∫
d4k

(2π)4 e−ikx

6 k + mq

(k2 − m2
q)2

Gab
µνσ

µν − 1
2(k2 − m2

q)
xµGab

µνγ
ν

 , (2.22)

for light quarks(q = u, d, s). The full propagator for the heavy quarks does not have quark

condensate terms, so for heavy quarks S 〈q̄
′q′〉,ab

q′ (x) = 0. Here the propagator in position space

is given as the Fourier transform of the propagator in momentum space(Eqs. 2.20 and 2.22).

The explicit expressions in position space are given and discussed in Ref. [21]. In Eq. 2.21,

m0 is defined through the relation 〈q̄σGq〉 = m2
0〈q̄q〉. The diagrammatic representation of Eq.

2.19 is depicted in figure 2.2.

In Fig. 2.3, the OPE contributions to the correlator function is represented in a diagram-

matic form. Diagrams 2.3-a and 2.3-b are perturbative contributions to the correlator, corre-

sponding to the identity operator with d = 0 in the OPE. The non-perturbative contributions to

the correlator are depicted in diagrams 2.3-c to 2.3-f. Diagram 2.3-c correspond to the d = 3

operator 〈q̄q〉, quark condensate for the light quark. Diagrams 2.3-d to 2.3-f represents the

contributions of the d = 5 operator 〈q̄σGq〉. There are no diagrams for d = 3 contributions of

the condensate 〈q̄′q′〉, because the heavy quarks do not develop a condensate in vacuum due

to their large mass.

Inserting the definition of the current given in Eq. 2.17, and using the Wick theorem, the

correlator function in Eq. 2.2 can be written in terms of propagators as
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ΠOPE(q2) = −i
∫

d4xeiqxTr{ΓS q(x)ΓS q′(−x)}, (2.23)

where color indices are not written for simplicity. The correlator in QCD side can now be

written in terms of perturbative(p) and non-perturbative(n) contributions as

ΠOPE(q2) = ΠOPE(p)(q2) + ΠOPE(n)(q2). (2.24)

The perturbative contributions to the correlator can easily be obtained by inserting only

the free quark propagators in Eq. 2.23. The perturbative part of the correlation function is

found as

ΠOPE(p)(q2) = −i
∫

d4xeiqxTr{ΓS 0
q(x)ΓS 0

q′(−x)},

= −i
∫

d4xeiqx
∫

d4kqe−i(kq+q)x

(2π)4

∫
d4kq′eikq′ x

(2π)4


Tr{Γ(6 kq+ 6 q + mq)Γ(6 kq + mq′)}
((kq + q)2 − m2

q)(k2
q − m2

q′)



= −i
∫

d4kq


Tr{Γ(6 kq+ 6 q + mq)Γ(6 kq + mq′)}

((kq + q)2 − m2
q)(k2

q − m2
q′)

 , (2.25)

where first x and then kq′ integrals are handled. The result in Eq. 2.25 corresponds to the

contributions coming from diagram 2.3-a. The contribution of diagram 2.3-b is an O(αs) cor-

rection to the Wilson coefficient of the identity operator in OPE. It is numerically suppressed

due to additional loop, so it is neglected as general.

The non-perturbative contributions to correlator can be calculated in two steps. The con-

tributions of diagrams 2.3-c, 2.3-e and 2.3-f are simply

ΠOPE(n1)(q2) = i
∫

d4xeiqxTr{ΓS 〈q̄q〉
q (x)ΓS 0

q′(−x)}. (2.26)

Eq. 2.26 contains both d = 3(〈q̄q〉) and d = 5(〈q̄σGq〉 = m2
0〈q̄q〉) contributions coming

from the non-perturbative corrections to the light quark propagator.

The contribution of the diagram 2.3-d also corresponds to the d = 5 quark gluon mixed

operator and calculating this contribution is not straight forward. To obtain this contribution

to the non-perturbative part, S G
q′ should be inserted into the matrix element defining the 〈q̄q〉

condensate. Aforementioned contribution is obtained by
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ΠOPE(n2)(q2) = i
∫

d4xeiqx〈0|q̄(x)ΓS G
q′(−x)Γq|0〉. (2.27)

After inserting the definitions of the propagators given in Eq. 2.22 into Eq. 2.27 one

obtains

ΠOPE(n2)(q2) = i
∫

d4xeiqx〈0|q̄a(x)Γ
[
gs

∫
d4k′

(2π)4 eik′x


6 k′ + mq′

(k′2 − m2
q′)

2
Gab
µνσ

µν − 1
2(k′2 − m2

q′)
xµGab

µνγ
ν


]

Γqb|0〉, (2.28)

where a, b are color indices. When calculating ΠOPE(n2)(q2), an expression for a matrix el-

ement of the form 〈0|q̄a(x)Gab
µνq

b|0〉 is necessary. To obtain an expression for this matrix

element, the quark field is expanded around x = 0 as

q(x) = q(0) + xµDµq(x)|x=0 + ... , (2.29)

where Dµ is the covariant derivative. Here, Fock-Schwinger gauge is used to write xµ∂mu =

xµDµ.

The first term in the expansion is proportional to σ since it is anti symmetric, and can be

written as

〈0|qb(0)βGab
µνq̄

a
α|0〉 = A(σµν)βα, (2.30)

where α, β are spinor and µ, ν are Lorentz indices. By multiplying both sides with (σµν)αβ and

taking the trace it is obtained that

48A = 〈0|qb(0)βGab
µνq̄

a
α|0〉,

= −〈0|q̄a(0)βGab
µνq

b
α|0〉,

= −m2
0〈q̄q〉. (2.31)

To obtain the second term in the expansion, the matrix element 〈0|qa(0)βGab
µν

←−
Dηq̄b

α|0〉 should

be written as

〈0|qa(0)βGab
µν

←−
Dηq̄b

α|0〉 = B(gηµγν − gηνγµ)αβ, (2.32)
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where (gηµγν − gηνγµ) is a third rank tensor antisymmetric in µ, ν. By multiplying both sides

of the Eq. 2.32 with (γη)βα, and using equations of motion and Eq. 2.31 we get

imq〈0|q̄a(0)βGab
µνq

b
α|0〉 = −2iB(σµν)βα,

= i
mqm2

0〈q̄q〉
48

(σµν)βα. (2.33)

Collecting all terms, one gets

〈0|q̄a(x)Gab
µνq

b|0〉 = −m2
0〈q̄q〉
48

σµν −
mqm2

0〈q̄q〉
96

(xµγν − xνγµ). (2.34)

For u and d quarks, the second term in this matrix element can be neglected.

The contribution of the diagram 2.3-d in Eq. 2.28 is also a matrix element of the form

〈0|q̄a(x)Gab
µνq

b|0〉, and is obtained in a similar manner. To obtain the result of Eq. 2.28, first xµ

is replaced with −i ∂
∂qµ . Then integrations with respect to x which gives δ(q + k′), and k′ are

evaluated in order. These calculations yield

ΠOPE(n2)(q2) = i〈0|q̄a(x)Γ

gs

[ − 6 q + mq′

(q2 − m2
q′)

2
Gab
µνσ

µν −
(
−i

∂

∂qµ

)
1

2(q2 − m2
q′)

Gab
µνγ

ν

]

Γqb|0〉. (2.35)

Following the steps from Eq. 2.29 to 2.34, the matrix elements appearing in Eq. 2.35 are

calculated. Then Eq. 2.35 gives

ΠOPE(n2)(q2) = i
−m2

o〈q̄q〉
48

Tr{Γ(− 6 q + mq′)σµνΓσµν}
(q2 − m2

q′)
2

+
−mq′m2

o〈q̄q〉
48

Tr{Γ(6 q)γµγνΓσµν}
(q2 − m2

q′)
2

. (2.36)

In calculating the last step, only the first term in the expansion given in Eq. 2.29 is taken

for simplicity. We have also used

(
−i

∂

∂qµ

)
1

q2 − m2
q′

= i

(
∂(q2−m2

q′ )
∂qµ

)

(q2 − m2
q′)

2

= i
2qµ

(q2 − m2
q′)

2
. (2.37)
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Finally, the non-perturbative contributions to the correlator can be written as

ΠOPE(n)(q2) = ΠOPE(n1)(q2) + ΠOPE(n2)(q2),

which is the sum of the contributions in Eqs. 2.26 and 2.36.

2.2.4 Dispersion Relation

Up to this point, the correlation function in Eq. 2.2, is calculated in the region q2 > 0, in

terms of hadrons (Eq. 2.13), and it is also calculated in the region −q2 = Q2 >> Λ2
QCD, in

terms of quarks and gluons, with perturbative and non-perturbative contributions (Eqs. 2.25,

2.26 and 2.27). Since the correlator is an analytic function of its argument q2 everywhere in

the complex plane except than on some parts of the positive real axis, it is possible to link the

values of Π(q2) at positive values of q2 to its values at negative values of q2.

z

q2

C1

C2

Figure 2.4: The contours in the plane of the complex variable q2 = z. The contour C1 repre-
sents the q2 < 0 reference point where OPE is applied. For q2 > tm, real hadronic states are
formed, which are indicated by dots.

Using the Cauchy formula for analytic functions, for the contours shown in figure 2.4,

one can write
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Π(q2) =
1

2iπ

∮

C1

dz
Π(z)

z − q2 =
1

2iπ

∮

C2

dz
Π(z)

z − q2

=
1

2iπ

∮

|z|=R
dz

Π(z)
z − q2 +

1
2iπ

∫ R

tm
dz

Π(z + iε) − Π(z − iε)
z − q2 , (2.38)

where tm is the threshold for creation of real states, and eventually the radius of the circular

part of the contour C2 will be sent to infinity, i.e., R→ ∞.

The integral over the circular part of the contour C2 vanishes, if Π(z) vanishes sufficiently

fast at |z| → ∞. On the other hand, if Π(z) does not vanish, by expanding the denominator

in terms of q2

z , the integrand can be written as Π(z)
z−q2 =

Π(z)
z (1 − q2

z + ...). And eventually for

some power n′ in the expansion, Π(q2)
zn′ would vanish sufficiently fast and the remaining terms

in the expansion (n ≥ n′) do not contribute. In this case, the terms with n < n′ reduces to a

polynomial in q2 in the limit R→ ∞. So in the limit R→ ∞, Eq. 2.38 reduces to

Π(q2) =
1

2iπ

∮

C1

dz
Π(z)

z − q2 =
1

2iπ

∫ ∞

tm
dz

Π(z + iε) − Π(z − iε)
z − q2 + Ps(q2), (2.39)

where Ps(q2) is a polynomial in q2 which is called the subtraction terms.

Using the Schwartz reflection principle which states that if Π(z) is analytic and real over

some region including the real axis when z = q2 is real, then

Π(z∗) = Π∗(z) = ReΠ(z) − iImΠ(z), (2.40)

the numerator of the integrand in Eq. 2.39 can be written as

Π(z + iε) − Π(z − iε) = Π(z′) − Π(z′∗)

= Π(z′) − Π∗(z′)

= (ReΠ(z′) + iImΠ(z′)) − (ReΠ(z′) − iImΠ(z′))

= 2iImΠ(z′) = 2iImΠ(z + iε). (2.41)

The condition to apply Eq. 2.40 is satisfied in the region z = q2 < tm. After inserting the

result of Eq. 2.41 and setting ε → 0, Eq. 2.39 can be written as

Π(q2) =

∫ ∞

tm
ds

ρ(s)
s − q2 + Ps(q2), (2.42)
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which is called the dispersion relation, and

ρ(s) =
ImΠ(s)
π

(2.43)

is the spectral density.

Using the dispersion relation derived in Eq. 2.43, one can link the values of Π(q2) for the

negative values of q2 to the Π(q2) for positive values of q2. For q2 > 0, using the result of Eq.

2.13, the spectral density can be written as

ρ(q2) =
ImΠ(q2)

π
= f 2

Hδ(q
2 − m2

H) + ρh(q2), (2.44)

where ρh(q2) =
ImΠh(q2)

π . Inserting this relation in Eq. 2.42, one gets

∫ ∞

0
ds
ρOPE(s)
s − q2 =

f 2
H

q2 − m2
H

+

∫ ∞

sh
0

ds
ρh(s)
s − q2 + Ps(q2), (2.45)

where sh
0 is the threshold for creation of excited states.

2.2.5 Quark Hadron Duality

In the final expression of the dispersion relation (Eq. 2.45), there is not much known about

ρh(q2), which contains the contribution of excited states and continuum for q2 > 0. Although

it can not be calculated explicitly, one can approximate it by using the quark hadron dual-

ity assumption. In the deep Euclidean region, i.e., q2 → −∞, the non-perturbative effects

are suppressed and can safely be neglected. So, Π(q2) → ΠOPE(p)(q2) is valid yielding an

approximation

∫ ∞

sh
0

ds
ρh(s)
s − q2 =

∫ ∞

s0

ds
ρOPE(s)
s − q2 , (2.46)

where s0, which is called the continuum threshold, is a parameter to be fitted[20, 21]. After

applying the quark hadron duality assumption, dispersion relation in Eq. 2.45 can be written

as

∫ s0

0
ds
ρOPE(s)
s − q2 =

f 2
H

q2 − m2
H

+ Ps(q2). (2.47)
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2.2.6 Borel Transformations

There still exists one more step to achieve the sum rules for the physical quantities of the

hadron H. In Eq. 2.47, there exist one last unknown term, which is the subtraction polynomial,

that one should get rid of. Since Ps(q2) is a polynomial in q2, by taking infinitely many times

derivatives with respect to q2, the subtraction terms would be eliminated. More formally, by

applying Borel transformation with respect to Q2 = −q2 to both sides of Eq. 2.47, the final

form of the sum rules is found. The Borel transformation is defined as

BM2 f (q2) = lim Q2 ,n→∞
Q2
n =M2

(−q2)n

(n − 1)!
(

d
dq2 )n−1 f (q2), (2.48)

where M2 is the Borel transformation parameter with mass dimensions and it is usually called

as the Borel mass. Any polynomial gives zero after Borel transformation. Borel transforma-

tions of some important functions are

BM2(q2)k = 0, k ≥ 0

BM2(
1

(m2[s] − q2)k ) =
1

(k − 1)!
e−m2[s]/M2

(M2)(k − 1)
,

BM2(e−αQ2
) = δ(

1
M2 − α). (2.49)

Borel transformations of more complicated functions an be found in literature[3, 19].

2.2.7 Physical Applications of QCD Sum Rules

After applying Borel transformation to Eq. 2.47, one obtains the following sum rules:

f 2
He−

m2
H

M2 =

∫ s0

sm

dsρOPE(s)e−
s

M2 , (2.50)

where the lower limit of the integral is sm = (mq + mq′)2[20]. In Eq. 2.50, there are two

unknown parameters: the Borel mass parameter, M2, and the continuum threshold, s0. The

continuum threshold is not completely arbitrary, being related to the energy of the excited

states. The sum rules should be stable with respect to small oscillations of s0 and in general

it is taken as (mH + 0.3 ∼ 0.7GeV)2[20, 21]. On the other hand, the Borel mass parameter,

M2 is completely arbitrary. It is restricted above, due to the reason that the contributions

of the continuum and the contributions of the neglected higher dimensional operators stays
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suppressed. And also for large values of M2, the quark hadron duality can not be trusted and

exponential suppression of the higher states is reduced. The upper limit on M2 is determined

by demanding that the contributions of excited states to the sum rules remains small compared

to the total dispersion integral. It is also restricted below, due to the contributions of the higher

dimensional operators which are inversely proportional to the powers of M2, should stay

negligible. The lower limit on M2 is commonly obtained by demanding that the contributions

of the highest dimensional operator in the expansion is not more than a small fraction of the

total result. Practically, to determine the working region of Borel parameters, one plots the

desired results with respect to M2 and searches for a region in which sum rules results are

stable.

The sum rules derived in Eq. 2.50 are called the mass sum rules. In literature they are

successfully applied to many problems. Given the mass mh, the matrix element 〈0| j(x)|H(q)〉
of the hadron H, can be directly obtained from the sum rules in Eq. 2.50.

Using the sum rules derived in Eq. 2.50, the mass mH of the hadron H can also be

obtained. To get this, one should take the derivative of Eq. 2.50 with respect to 1/M2, and

divide it to original equation as follows:

−m2
H =

d

 f 2
He
−

m2
H

M2


d(1/M2)

f 2
He−

m2
H

M2

=

d
(∫ s0

sm
dsρOPE(s)e

− s
M2

)

d(1/M2)∫ s0

sm
dsρOPE(s)e−

s
M2

=

∫ s0

sm
ds(−sρOPE(s))e−

s
M2

∫ s0

sm
dsρOPE(s)e−

s
M2

. (2.51)

It should be noted that, although the mass can be obtained by taking derivatives, such

manipulations usually reduce the precision of sum rules (see e.g.[49, 50]). For applications

of mass sum rules to real hadrons, see e.g. [21, 46, 47, 48]. The sum rules in Eq. 2.50 is also

useful to determine the value of the continuum threshold when mH and fH are known.
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2.3 Three-Point QCD Sum Rules

The sum rules derived in previous section are called the two-point QCD or alternatively mass

sum rules, and by applying them the mass and leptonic decay constant of a given hadron H

can be found. On the other hand to study and obtain further properties of hadrons such as

transition form factors, transition amplitudes, decay widths and branching ratios, the mass

sum rules should be generalized in order to calculate hadronic matrix elements of electro-

magnetic and weak transitions. In this case one starts with a three-point correlator and uses

double dispersion relation. For a generic decay of the form

H1(p)→ H2(p′) + X, (2.52)

where X can be any hadron, can be `+`−, `ν̄ or νν̄ for semileptonic decays, and is γ for

radiative decays, H1(p) and H2(p′) are initial and final hadronic states, and q = p − p′ is

the momentum transferred to X. To study the transition amplitude of the decay H1(p) →
H2(p′) + X, the three-point correlator can be written as

Π(p2, p′2; q2) = i2
∫ ∫

d4xd4ye−ipxeip′y〈0|T { j2(y) j3(0) j†1(x)}|0〉, (2.53)

where j3 is the operator responsible for the transition.

For positive values of p2 and p′2, like two-point correlators, the correlation function can

be calculated by inserting complete sets of hadronic states in between the currents. Doing the

straight forward calculations as described in section 2.2.2, the three-point correlator in Eq.

2.53 can be written as

Π(p2, p′2; q2) =
∑

i, j

〈0| j†1(x)|hi(p)〉〈hi(p)| j3(0)|h j(p′)〉〈h j(p′)| j2(y)|0〉
(p2 − m2

h1
)(p′2 − m2

h2
)

=
〈0| j†1(x)|H1(p)〉〈H1(p)| j3(0)|H2(p′)〉〈H2(p′)| j2(y)|0〉

(p2 − m2
H1

)(p′2 − m2
H2

)

+Πh(p2, p′2; q2), (2.54)

where H1(H2) is the hadron with the lowest mass that can be created by the interpolating

current j1( j2) and mH1(mH2) is its mass, and j3 is the transition current responsable for H1 →
H2 transition. The second term in Eq. 2.54 is the contributions of the higher states and
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the continuum, and ρh(s, s′) is the spectral density. In contrary to Eq. 2.13, in Eq. 2.54

the imaginary part of the correlator is taken twice, first while taking the y0 integral a small

complex part is given to Eh j(p′), and then while taking the x0 integral a small complex part is

given to Ehi(p), as described in section 2.2.2.

To investigate the decay H1(p)→ H2(p′)+Xmore deeply, one can introduce the following

definitions:

j1 = QiΓ1q̄, (2.55)

j2 = qiΓ2q̄′, (2.56)

j3 = QiΓ3q̄′, (2.57)

where Γi carry Lorentz indices and can be any of the matrices: scalar( 11), pseudoscalar(γ5),

vector(γµ), axial vector(γµγ5) and tensor(σµν). After these definitions, the hadrons are identi-

fied as: H1 ≡ Qq̄ and H2 ≡ q′q̄. In this section q, q′ are assumed to be light quarks and Q is

assumed to be heavy for pedagogical reasons. The transition H1(p) → H2(p′) + X is defined

to be occur via Q → q′ + X transition at quark level, and it can be described by an effective

Hamiltonian. The vacuum to hadron matrix elements can be parameterized as

fi = 〈hi(pi)| ji|0〉, (2.58)

where fi are called the decay constant of hi and they are parameterized in terms of masses and

momentums, and also polarizations(εµ) of hadrons, with the same Lorentz indices and parity

of Γi. In terms of these definitions the phenomenological side of the correlator can be written

as

Π(p2, p′2; q2) =
f †1 f2〈H1(p)| j2(0)|H2(p′)〉
(p2 − m2

H1
)(p′2 − m2

H2
)

+ Πh(p2, p′2; q2).

In calculating the first term of Eq. 2.59, if necessary, one should consider the sum over

polarizations which is defined as

∑

ε

εµ(k)εν(k) = −gµν +
kµkν
k2 . (2.59)
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In Eq. 2.59, the only unknown matrix element is 〈H1(p)| j2(0)|H2(p′)〉, and it is necessary

for calculating the transition properties of the decay H1(p) → H2(p′) + X , and it can be

parameterized in terms of transition form factors.

The QCD side of the correlator can be calculated in terms of these definitions. When

p2 << 0 and p′2 << 0, one can calculate the correlator in terms of perturbative and non-

perturbative parts as described in section 2.2.3. The diagrammatic representation of perturba-

tive and non-perturbative contributions to correlator at p2 << 0 and p′2 << 0 are depicted in

Fig. 2.5. The perturbative contribution comes from diagram 2.5-a, and it can be calculated

following section 2.2.3 from

ΠOPE(p)(p2, p′2; q2) = i2
∫ ∫

d4xd4ye−ipxeip′y

Tr{Γ1S 0
q(x − y)Γ2S 0

q′(y)Γ3S 0
Q(−x)}. (2.60)

The non-perturbative contributions to the correlator due to 〈q̄q〉 condensate contributions

to the q quark propagator comes from the diagrams 2.5-b, 2.5-c and 2.5-d, and they can be

calculated from

ΠOPE(n1)(p2, p′2; q2) = i2
∫ ∫

d4xd4ye−ipxeip′y

Tr{Γ1S 〈q̄q〉
q (x − y)Γ2S 0

q′(y)Γ3S 0
Q(−x)}. (2.61)

The contribution of diagrams 2.5-e and 2.5-f can be calculated following section 2.2.3 as

ΠOPE(n2)(p2, p′2; q2) = i2
∫ ∫

d4xd4ye−ipxeip′y

(
〈0|q̄(x)Γ2S G

q′(y)Γ3S 0
Q(−x)q|0〉

+〈0|q̄(x)Γ2S 0
q′(y)Γ3S G

Q(−x)q|0〉
)
. (2.62)

The contributions of the diagrams 2.5-g and 2.5-k can also be calculated from

ΠOPE(n1)(p2, p′2; q2) = i2
∫ ∫

d4xd4ye−ipxeip′y

Tr{Γ1S 0
q(x − y)Γ2S 〈q̄

′q′〉
q′ (y)Γ3S 0

Q(−x)}

∼ p′2

p2 − M2 . (2.63)
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Since the result is a polynomial in p′2, these contributions in terms of the operator 〈q̄′q′〉
vanish after Borel transformation.

After calculating these contributions, the correlator in deep Euclidean region is found as

ΠOPE(p2, p′2; q2) = ΠOPE(p)(p2, p′2; q2)

+ΠOPE(n1)(p2, p′2; q2) + ΠOPE(n2)(p2, p′2; q2). (2.64)

After calculating the correlator function in both p2 << 0 and p′2 << 0 region, and

p2 > 0 and p′2 > 0, following the steps described in section 2.2.4, one can get the following

dispersion relation:

∫ ∞

0
ds

∫ ∞

0
ds′

ρOPE(s, s′; q2)
(s − m2

H1
)(s′ − m2

H2
)

=
f †1 f2〈H1(p)| j2(0)|H2(p′)〉
(p2 − m2

H1
)(p′2 − m2

H2
)

+

∫ ∞

sh
0

ds
∫ ∞

s′h0
ds′

ρh(s, s′; q2)
(s − m2

H1
)(s′ − m2

H2
)

+Ps(p2, p′2), (2.65)

where the spectral density is defined as

ρOPE(s, s′; q2) =
ImsIms′Π(s, s′; q2)

π2 . (2.66)
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Figure 2.5: The Feynman diagram representations of the operators contributing the correlator
Π(q2) of the decay H1(p) → H2(p′) + X . The dashed lines denote the currents, thin(thick)
solid lines denote the light(heavy) quarks, and the spirals correspond to soft gluons.
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In the case of three-point correlators, the local quark hadron duality in Eq. 2.46 is modified

as

∫ ∞

s0

ds
∫ ∞

s′0
ds′

ρOPE(s, s′; q2)
(s − m2

H1
)(s′ − m2

H2
)

=

∫ ∞

sh
0

ds
∫ ∞

s′h0
ds′

ρh(s, s′; q2)
(s − m2

H1
)(s′ − m2

H2
)
, (2.67)

where s0 and s′0 are the continuum thresholds in p2 and p′2 channels. Since the subtraction

terms Ps(p2, p′2) are polynomials in p2 and p′2, to get rid of them one should apply double

Borel transformation with respect to the variables p2 and p′2 (p2 → M2
1 , p′2 → M2

2) which is

given as

B̂
[

1
(p2 − m2

1)m

1
(p′2 − m2

2)n

]
→ (−1)m+ne−m2

1/M
2
1 e−m2

2/M
2
2

Γ(m)Γ(n)(M2
1)m−1(M2

2)n−1
. (2.68)

Using quark hadron duality approximation and applying double Borel transformation one

ends with the following sum rules:

f †1 f2〈H1(p)| j2(0)|H2(p′)〉 = em2
H1
/M2

1 em2
H2
/M2

2

∫ s0

sm

ds
∫ s′0

s′m
ds′ρOPE(s, s′; q2)e−s/M2

1 e−s′/M2
2 , (2.69)

where the continuum thresholds s0 and s′0, and the Borel mass parameters M2
1 and M2

2 are four

auxiliary parameters. Their values can be determined as discussed in two-point QCD sum

rules. Once the matrix element 〈H1(p)| j3|H2(p′)〉 is found, it can be used to study H1(p) →
H2(p′) + X transition. In general the matrix element 〈H1(p)| j3|H2(p′)〉 can be written as the

sum of some Lorentz structures. In such cases, one should calculate the expansion

f †1 f2〈H1(p)| j2(0)|H2(p′)〉 =
∑

A

FATA, (2.70)

where TA are Lorentz structures, and FA are the called transition form factors. In this case,

instead of equating the whole sum rule in Eq. 2.69, sum rules for transition form factors can

be found by equating the coefficients of the Lorentz structures TA on both sides of Eq. 2.69.

In applying the three-point sum rules one confronts the following problems. In the deep

Euclidean region, higher dimensional operators receive multiplicative factors proportional to
Q2

M2 , hence they become more important. Thus three point sum rules are reliable when q2 is

small. Also for the decays like H1(p) → H2(p′) + X , instead of the whole physical region

0 < q2 < (mH1 − mH2)2, the three point QCD sum rules work in some region 0 < q2 < q2
c ,
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where q2
c = (mq + mq′)2. To over come this problem, the results obtained from three point

QCD sum rules are plotted with respect to q2 in the working region, i.e. q2 < q2
c , and a

suitable function is fitted to sum rules results in the working region.

The second problem in applying three point QCD sum rules arises in calculating the

perturbative contributions to correlator function when calculating ΠOPE(p)(p2, p′2; q2) in Eq.

2.60. In calculating ΠOPE(p)(p2, p′2; q2) (or ρOPE(p)(s, s′; q2) ), one has to calculate the fol-

lowing integral:

I0(p2, p′2; q2) = i
∫

d4k
(2π)4

1
((k − p)2 − m2

Q)((k − p′)2 − m2
q′)(k

2 − m2
q)
, (2.71)

where mQ, mq′ and mq are the quark masses, and the terms in the denominator comes

from quark propagators. By applying Cutkovsky rules, which states that for q2 ≤ 0 the

contributions to the integral in Eq. 2.71 comes from Landau type singularities, hence the

terms in the denominator can be replaced by delta functions, i.e. 1
k2−m2 → 2πiδ(p2 − m2).

Using Cutkovsky rules, Eq. 2.71 becomes

I0(p2, p′2; q2 ≤ 0) = i
∫

d4k
(2π)4 (2πi)3δ((k − p)2 − m2

Q)δ((k − p′)2 − m2
q′)δ(k

2 − m2
q), (2.72)

which can be calculated straight forward. But the results of the sum rules are needed in the

region 0 < q2 < (mH1 − mH2)2. However the I0 integral in Eq. 2.71 receives contributions

from non-Landau type singularities when q2 > 0[51]. Even if these contributions are small,

they reduces the reliability of the QCD sum rules results.

One alternative way to solve this problem is using the analyticity of the correlation func-

tion. Instead of finding a fit function in the region 0 < q2 < q2
c , one can plot the results

of the sum rules in the region q2 < 0, and finds a fit function coinciding with the sum

rules results where there are no additional contributions to the integral in Eq. 2.72. Then,

this fit function can be extrapolated to the physical region. In calculating the sum rules for

B→ K1(1270, 1400)`+`− decays, this method is used.
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CHAPTER 3

PROPERTIES OF AXIAL VECTOR K1 MESONS

In this chapter, the properties of the K1 axial vector mesons are analyzed. To understand the

behaviors of light axial vector mesons, first the quark model is reviewed following references[52,

53]. The quantum numbers and classifications of the mesons are then summarized. Then the

axial vector K1(1270) and K1(1400) states, and their mixings in terms of G-parity eigenstates,

which are also orbital angular momentum eigen states are analyzed.

3.1 The Quark Model

According to quark model, all hadrons are formed of more basic entities, called quarks, bound

together in different ways. In the fundamental representation of S U(3), all multiplets can be

formed from a triplet. Basic quark multiplet is a triplet formed from light quarks, i.e. u, d, s.

The basic quark and anti-quark multiplet are presented in figure 3.1. All of the quarks in

figure 3.1 have spin s = 1
2 and baryon number B = 1

3 . The quantum numbers of u, d, s quarks

are listed in table 3.1. The hypercharge is used rather then strangeness and it is defined as

Y ≡ B + S . (3.1)

This choice is made to center the triplet in figure 3.1 to origin. The charge is

Q = I3 +
Y
2
. (3.2)

In quark model, mesons are qq̄ states and baryons are qqq states bound together. In QCD,

nuclear interaction does not distinguish neutron and proton, so isospin symmetry (S U(2)

symmetry as the carbon copy of spin) is introduced as intrinsic symmetry of nucleon. For qq̄

states,the wave functions for isospin triplet and singlet states can be written as:
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Figure 3.1: S U(3) quark and anti-quark triplets in Y-I3 plane[52].

Table 3.1: The quantum numbers of the members of basic quark triplet.

Quark Spin(s) Baryon(B) Charge (Q) Strangeness(S ) Isospin(I3) Hypercharge(Y)

u 1
2

1
3

2
3 0 1

2
1
3

d 1
2

1
3

−1
3 0 −1

2
1
3

s 1
2

1
3

−1
3 −1 0 −2

3

triplet



|I = 1, I3 = 1〉 = −ud̄

|I = 1, I3 = 0〉 = 1√
2
(uū − dd̄)

|I = 1, I3 = −1〉 = dū

singlet |I = 0, I3 = 0〉 =
1√
2

(uū + dd̄). (3.3)

For three flavors of quarks (u, d, s), the nine qq̄′ states divide into an S U(3) octet and an

S U(3) singlet. The S U(3) representation of meson nonet is given in figure 3.2.

In quark model, besides isospin symmetry, there are other three S U(2) subgroups, in

which the doublets are:
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Figure 3.2: S U(3) decomposition of meson nonet, where A =

√
1
3 (uū+dd̄+ s̄s), B =

√
1
2 (uū−

dd̄) and C =

√
1
6 (uū + dd̄ − 2ss̄) are Y = I3 = 0 states.[52].



u

d


,



d

s


and



u

s


. (3.4)

The symmetry due to first S U(2) doublet in Eq. 3.4 is called I-spin, due to second S U(2)

doublet in Eq. 3.4 is called U-spin, and third S U(2) doublet in Eq. 3.4 is called V-spin. These

symmetries are important when considering hadrons. The wave functions of the I-spin triplet

and singlet states can be written as

triplet



|I = 1, I3 = 1〉 = uu

|I = 1, I3 = 0〉 = 1√
2
(ud + du)

|I = 1, I3 = −1〉 = dd

singlet |I = 0, I3 = 0〉 =
1√
2

(ud − du). (3.5)

The wave functions of the U-spin triplet and singlet states can be written as
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triplet



|U = 1,U3 = 1〉 = dd

|U = 1,U3 = 0〉 = 1√
2
(ds + sd)

|U = 1,U3 = −1〉 = ss

singlet |U = 0,U3 = 0〉 =
1√
2

(ds − sd). (3.6)

The wave functions of the V-spin triplet and singlet states can be written as

triplet



|V = 1,V3 = 1〉 = uu

|V = 1,V3 = 0〉 = 1√
2
(us + su)

|V = 1,V3 = −1〉 = ss

singlet |V = 0,V3 = 0〉 =
1√
2

(us − su). (3.7)

The generators of both S U(2) subgroups are the usual Pauli matrices, satisfying the com-

mutation relation

[σi, σ j] = iεi jkσk. (3.8)

In addition to symmetries mentioned, there is an additional symmetry for the qq̄ meson

states, i.e. for the mesons which have anti-quark pair of same quark. These states are the

eigen states of the charge conjugation (alternatively C-parity) operator C which is defined as

Cq = q̄. (3.9)

In other words charge conjugation takes the particle to its anti-particle. So the qq̄ states

are the eigen states of C. Thus

Cq(x)q̄(1−x) = ±q(1−x)q̄(x), (3.10)

where the subscripts x and 1 − x denote the momentum fractions carried by each quark. For

instance, for the pion triplet
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C



π+

π0

π−



= C



ud̄

1√
2
(uū − dd̄)

dū



=



dū

1√
2
(uū − dd̄)

ud̄



=



π−

π0

π+



. (3.11)

Notice that while π0 remains same under C, π+ and π− are exchanged among themselves.

Therefore all members of the the pion triplet are not C-parity eigen states.

For qq̄′ states, the C-parity is generalized to G-parity. Under G-parity, the wave functions

of the qq̄′ states is either symmetric or anti-symmetric under the exchange of momentum

fractions carried by each quark, thus they have either +1 or −1 eigenvalues respectively. G-

parity operator(G) is defined due to qq̄′ structure of the mesons as

G ≡ O(q↔q′)C (3.12)

where O(q↔q′) = eiπI2 is the operator interchanging q and q′ quarks, and it is formulated as π

radian of rotation about 2 axis of I(U)[V]-spin space for ud(sd)[us] quarks, and I2(U2)[V2] =

σI(U)[V]
2

2 are the generators of S U(2) subgroups. In S U(3) symmetry, mu = md = ms, thus

G-parity is conserved.

3.2 Classification of Mesons

In quark model[53], mesons are valence quark anti-quark pairs, i.e., |q′q̄〉 states, and they are

classified according to their quantum numbers. Some of these quantum numbers can be listed

as
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S = Sq′ + Sq̄ : spin,

L : orbital angular momentum,

J = L + S : total angular momentum,

n : radial quantum number,

P (−1)L+1 : parity number(for mesons),

C (−1)L+S : charge conjugation(for neutral mesons),

I(U)[V] − spin : S U(2) symmetries,

G (−1)L+S C = (−1)L+S +I : G-parity number,

where the values of spin for mesons are either of 0, 1, due to the half integer spin of quarks,

and the value of total angular momentum number lay in the region: L − S ≤ J ≤ L + S . The

parity number depends on the spatial wave function of the meson and so on the orbital angular

momentum, and (−1)+1 in the definition of parity number comes from the intrinsic properties

of the quark anti-quark pair, i.e., due to Dirac equation they should have opposite intrinsic

parities. In the previous listing C denotes the charge conjugation and I is the isospin.

In terms of JP notation, mesons are classified as

0+ : scalar mesons,

0− : pseudoscalar mesons,

1− : vector mesons,

1+ : axial vector mesons ,

2− : pseudotensor mesons .

(3.13)

On the other hand mesons can also be classified in terms of spectroscopic notation, i.e.,

n2S +1L j, in terms of orbital momentum eigenstates, where L = S , P,D, F, ... are the names

given to orbits with L = 0, 1, 2, 3, ... respectively. The classification of mesons in terms of

spectroscopic notation are given in table 3.2.
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From the mesons listed in table 3.2, states 1P1 and 3P1 will be analyzed, since they are

axial vector states with JPC = 1+− and JPC = 1++.

3.3 Properties of K1 Mesons

In QCD, two lowest nonets of axial vector mesons JP = 1+ are expected as the orbitally

excited q′q̄ states. As summarized in table 3.2, there are two types of P-wave axial vector

mesons, namely 13P1 and 11P1, which are G-even and G-odd respectively. The 13P1(1++)

states are: a1(1260), f1(1285), f1(1420) and K1A, and the 11P1(1+−) states are b1(1235),

h1(1170), h1(1380) and K1B. Among those states, a1(1260) and b1(1235) are pure mass eigen-

states. The 13P1 states f1(1285) and f1(1420), and the 11P1 states h1(1170) and h1(1380) are

mixed among themselves in terms of pure singlet and octet states like η − η′ mixing[54]. For

K1A and K1B states, the situation is more complicated. In QCD language, a real hadron should

be represented in terms of mass eigen states. K1A and K1B are not mass eigen states, however

they mix to form K1(1270) and K1(1400) states which are physical[37, 38]. Although K1A

and K1B are not physical, while studying any process involving K1(1270) and K1(1400), one

might consider K1A and K1B and their properties.

The K1(1270) and K1(1400) states can be written in terms of 13P1(K1A) and 11P1(K1B)

orbital angular momentum (G-parity) eigen states as follows:



|K1(1270)〉

|K1(1400)〉


=Mθ



|K1A〉

|K1B〉


, (3.14)

where

Table 3.2: Quantum numbers of mesons.

L singlet triplet

s-wave 0 1S 0 (0−+) 3S 1 (1−−)

p-wave 1 1P1 (1+−) 3P0,1,2 (0++, 1++, 2++)

d-wave 2 1D2 (2−+) 3D1,2,3 (1−−, 2−−, 3−−)

f-wave 3 1F3 (3+−) 3F2,3,4 (2++, 3++, 4++)
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Mθ =



sin θK1 cos θK1

cos θK1 − sin θK1


(3.15)

is the mixing matrix, and θK1 is the mixing angle[55, 56]. The magnitude of the mixing angle

is estimated to be 34◦ ≤ |θK1 | ≤ 58◦ [55, 56, 57, 58]. To estimate the sign of the θK1 the

following analysis is performed[38]. In the covariant light front approach, the ratio of the

branching fractions of radiative B decays to K1(1270) and K1(1400) are calculated as

B(B→ K1(1270)γ)
B(B→ K1(1400)γ)

=

{

10.1 ± 6.2 : for θK1 = −58◦ ,

280 ± 200 : for θK1 = −37◦ ,

0.02 ± 0.02 : for θK1 = 58◦ ,

0.05 ± 0.05 : for θK1 = 37◦ .

(3.16)

Since for the radiative decays of B meson into K1(1270, 1400) axial vector meson states, Belle

reported the following branching fractions[33, 27]:

B(B+ → K1(1270)+γ) = (4.28 ± 0.94 ± 0.43) × 10−5,

B(B+ → K1(1400)+γ) < 1.44 × 10−5, (3.17)

the negative values for θK1 are favored. The window for θK1 is determined as[38]

θK1 = −(34 ± 13)◦. (3.18)

When the interpolating currents of K1 states are considered, the K1A and K1B can be dis-

tinguished using G-parity. While the wave function of K1A state is G-even, the wave function

of K1B state is G-odd. Due to G-parity, K1A and K1B states couple to different interpolating

currents. These currents are given as

JA
µ = s̄γµγ5d

JT
µν = s̄σµνγ5d, (3.19)
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where JA
µ is the G-even axial vector current, and JT

µν is the G-odd tensor current. These

currents are used in studying QCD sum rules analysis of B→ K1(1270, 1400)`+`− decays in

the next chapter.
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CHAPTER 4

SUM RULES ANALYSIS OF B→ K1(1270, 1400)`+`− DECAYS

4.1 Introduction

In this chapter, semileptonic B → K1(1270)`+`− and B → K1(1400)`+`− decays are an-

alyzed in the frame work of QCD sum rules reviewed in chapter 2. Considering the K1

mixing, the sum rules for B → K1(1270, 1400)`+`− transitions are found as explained in

chapter 3. From the result of these sum rules, the form factors of B → K1(A,B)`
+`− and

B→ K1(1270, 1400)`+`− transitions are obtained.

4.2 Defining B→ K1(1270, 1400)`+`− transitions

In SM the B → K1`
+`− transitions occur via b → s`+`− loop transition, due to penguin

and box diagrams shown in Fig. 4.1. The effective Hamiltonian for b → s`+`− transition is

written as[39]

H =
GFα

2
√

2π
VtbV∗ts ×

{
Ce f f

9 s̄γµ(1 − γ5)bl̄γµl

+ C10 s̄γµ(1 − γ5)bl̄γµγ5l

− 2Ce f f
7

mb

q2 s̄σµνqν(1 + γ5)bl̄γµl
}
, (4.1)

where Ce f f
7 , Ce f f

9 and C10 are the Wilson coefficients, GF is the Fermi constant, α is the fine

structure constant at the Z scale, Vi j are the elements of the CKM matrix and q = p − p′ is

the momentum transferred to leptons. By sandwiching the effective Hamiltonian in Eq. 4.1
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between initial and final meson states, the transition amplitude for B → K1`
+`− decays is

obtained as

M =
GFα

2
√

2π
VtbV∗ts ×

{
Ce f f

9 〈K1(p′, ε)|s̄γµ(1 − γ5)b|B(p)〉l̄γµl

+ C10〈K1(p′, ε)|s̄γµ(1 − γ5)b|B(p)〉l̄γµγ5l

− 2Ce f f
7

mb

q2 〈K1(p′, ε)|s̄σµνqν(1 + γ5)b|B(p)〉l̄γµl
}
, (4.2)

where p(p′) is the momentum of the B(K1) meson, and ε is the polarization vector of the axial

vector K1 meson. In order to calculate the amplitude, the matrix elements in Eq. 4.2 should

be found. These matrix elements are parameterized in terms of the form factors as

〈K1(p′, ε)|s̄γµ(1 − γ5)b|B(p)〉 =
2iA(q2)
M + m

εµναβε
∗νpαp′β − V1q2(M + m)ε∗µ

+
V2(q2)
M + m

(ε∗.p)Pµ +
V3(q2)
M + m

(ε∗.p)qµ , (4.3)

〈K1(p′, ε)|s̄σµνqν(1 + γ5)b|B(p)〉 = 2T1(q2)εµναβε∗νpαp′β

− iT2(q2)[(M2 − m2)ε∗µ − (ε∗.p)Pµ]

− iT3(q2)(ε∗.p)
[
qµ −

q2Pµ
M2 − m2

]
, (4.4)

where P = p + p′, M ≡ MB, the mass of the B meson and m ≡ mK1 is the mass of the K1

meson. The Dirac identity

σµνγ5 =
−i
2
εµναβσαβ (4.5)

with the convention γ5 = γ0γ1γ2γ3 and ε0123 = −1 requires that T1(0) = T2(0). The relation

of the chosen form factors with the ones in the literature [38, 39, 55] are presented in table

4.1.

4.3 Sum rules for B→ K1(1270, 1400)`+`− transitions

In this section the sum rules for the form factors of B → K1(1270, 1400)`+`− transitions are

found. In QCD sum rules approach, to obtain the matrix elements in Eqs. 4.3 and 4.4, one

should calculate the three-point correlation functions
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d

b̄ s̄ b̄ s̄

d

W

u, c, t

l− l+
l+ l−

γ, Z

Figure 4.1: The loop penguin and box diagrams contributing to semileptonic B to K1 transi-
tions.

ΠA,a
µν (p2, p′2) = i2

∫
dx4dy4e−ipxeip′y〈0|T [JA

ν (y)Ja
µ(0)J†B(x)]|0〉,

ΠT,a
µνρ(p2, p′2) = i2

∫
dx4dy4e−ipxeip′y〈0|T [JT

νρ(y)Ja
µ(0)J†B(x)]|0〉, (4.6)

where JA
ν = s̄γνγ5d and JT

νρ = s̄σνργ5d are axial vector and tensor interpolating currents

creating K1 states, JB = b̄γ5d is the interpolating current of B mesons, and Ja
µ = JV−A,T+PT

µ

are the vector and tensor parts of the transition currents with JV−A
µ = b̄γµ(1−γ5)s and JT+PT =

b̄σµ%q%(1 + γ5)s.

The correlators in the phenomenological side are calculated in terms of the matrix ele-

ments of K1(1270) and K1(1400) states. The phenomenological parts of the correlators (Eq.

2.54) can be written as
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Table 4.1: The relation of form factors used in this work, and used in literature[38, 39, 55].

this work [38] [39] [55]

A A g(M + m)

V1 V1 f /(M + m)

V2 V2 −a+(M + m)

V3
−2m(M+m)

q2 (V3 − V0) −a−(M + m)

T1 T1 −g+ −Y1/2

T2 T2 −g+ − g−
q2

M+m Y2

T3 T3 g− + h(M + m) Y2

ΠA,a
µν (p2, p′2) = −〈0|J

A
ν |K1(1270)(p′, ε)〉〈K1(1270)(p′, ε)|Ja

µ |B(p)〉〈B(p)|JB|0〉
R1R

− 〈0|JA
ν |K1(1400)(p′, ε)〉〈K1(1400)(p′, ε)|Ja

µ |B(p)〉〈B(p)|JB|0〉
R2R

+ higher resonances and continuum states,

ΠT,a
µνρ(p2, p′2) = −

〈0|JT
νρ|K1(1270)(p′, ε)〉〈K1(1270)(p′, ε)|Ja

µ |B(p)〉〈B(p)|JB|0〉
R1R

−
〈0|JT

νρ|K1(1400)(p′, ε)〉〈K1(1400)(p′, ε)|Ja
µ |B(p)〉〈B(p)|JB|0〉

R2R
+ higher resonances and continuum states, (4.7)

where R = p2 − M2, R1 = p′2 − m2
K1(1270) and RB = p′2 − m2

K1(1400). The matrix elements for

the B meson is defined as

〈B(p)|JB|0〉 = −i
FBM2

mb + md
. (4.8)

In QCD sum rules, each correlator function has its own continuum. Due to this fact, ob-

taining the matrix elements 〈K1(1270)(p′, ε)|Ja
µ |B(p)〉 and 〈K1(1400)(p′, ε)|Ja

µ |B(p)〉 from two

correlator reduces the reliability of the sum rules. An alternative way to obtain the transition

matrix elements is to express K1(1400) and K1(1400) states in terms of K1A and K1B which

are G-parity eigenstates as defined in Eq. 3.14[37, 38].
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The matrix elements 〈K1(1270)|Jµ|B〉 and 〈K1(1400)|Jµ|B〉 in Eq. 4.2 can be written in

terms of matrix elements 〈K1A|Jµ|B〉 and 〈K1(1400)|Jµ|B〉 states as[59]



〈K1(1270)|Jµ|B〉

〈K1(1400)|Jµ|B〉


=Mθ



〈K1A|Jµ|B〉

〈K1B|Jµ|B〉


(4.9)

where Jµ is any of the transition currents. Due to this relation, the form factors parameter-

izing 〈K1(1270, 1400)|Jµ|B〉 matrix elements can be expressed in terms of the form factors

parameterizing 〈K1(A,B)|Jµ|B〉 matrix elements as follows



ξ f 1270
i

ξ′ f 1400
i


=Mθ



ς fi,A

ς′ fi,B


(4.10)

where fi is defined as the form factors {A,V1,V2,V3, T1,T2,T3} respectively for i = 1, 2, ..., 7,

and f 1270
i , f 1400

i , fi,A and fi,B denotes the form factors parameterizing 〈K1(1270)|Jµ|B〉, 〈K1(1400)|Jµ|B〉,
〈K1A|Jµ|B〉 and 〈K1B|Jµ|B〉 matrix elements respectively. The values for factors ξ, ξ′, ς and ς′

are given in table 4.2, where m1 ≡ mK1(1270), m2 ≡ mK1(1400), mA ≡ mK1A and mB ≡ mK1B . The

masses of K1A and K1B states are defined as[38]

m2
K1A

= m2
K1(1400) cos2 θK + m2

K1(1270) sin2 θK

m2
K1B

= m2
K1(1400) sin2 θK + m2

K1(1270) cos2 θK . (4.11)

Table 4.2: The values for factors ξ, ξ′, ς and ς′ for the form factors.

fi ξ ξ′ ς ς′

A,V2,V3 1/(M + m1) 1/(M + m2) 1/(M + mA) 1/(M + mB)

V1 (M + m1) (M + m2) (M + mA) (M + mB)

T1, T3 1 1 1 1

T2 (M2 − m2
1) (M2 − m2

2) (M2 − m2
A) (M2 − m2

B)
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Inserting Eqs. 3.14 and 4.9 in Eq. 4.7, and applying double Borel transformations(Eq.

2.68) with respect to the variables p2 and p′2 (p2 → M2
1 , p′2 → M2

2), the phenomenological

parts of the correlators are found in terms of G-parity eigen states as

Π̂A,a
µν (p2, p′2) = −e

−M2

M2
1 e

−m2
1

M2
2

{
〈0|JA

ν

[
s2|K1A(p′, ε)〉〈K1A(p′, ε)| + c2|K1B(p′, ε)〉〈K1B(p′, ε)|

+sc
(
|K1A(p′, ε)〉〈K1B(p′, ε)| + |K1B(p′, ε)〉〈K1A(p′, ε)|

)]
Ja
µ |B(p)〉〈B(p)|JB|0〉

}

−e
−M2

M2
1 e

−m2
2

M2
2

{
〈0|JA

ν

[
c2|K1A(p′, ε)〉〈K1A(p′, ε)| + s2|K1B(p′, ε)〉〈K1B(p′, ε)|

−sc
(
|K1A(p′, ε)〉〈K1B(p′, ε)| + |K1B(p′, ε)〉〈K1A(p′, ε)|

)]
Ja
µ |B(p)〉〈B(p)|JB|0〉

}

Π̂T,a
µνρ(p2, p′2) = −e

−M2

M2
1 e

−m2
1

M2
2

{
〈0|JT

νρ

[
s2|K1A(p′, ε)〉〈K1A(p′, ε)| + c2|K1B(p′, ε)〉〈K1B(p′, ε)|

+sc
(
|K1A(p′, ε)〉〈K1B(p′, ε)| + |K1B(p′, ε)〉〈K1A(p′, ε)|

)]
Ja
µ |B(p)〉〈B(p)|JB|0〉

}

−e
−M2

M2
1 e

−m2
2

M2
2

{
〈0|JT

νρ

[
c2|K1A(p′, ε)〉〈K1A(p′, ε)| + s2|K1B(p′, ε)〉〈K1B(p′, ε)|

−sc
(
|K1A(p′, ε)〉〈K1B(p′, ε)| + |K1B(p′, ε)〉〈K1A(p′, ε)|

)]
Ja
µ |B(p)〉〈B(p)|JB|0〉

}
,

(4.12)

where s ≡ sin θK1 and c ≡ cos θK1 . M2
1 and M2

2 appearing in Eq. 4.12 are Borel mass

parameters and Π̂ denotes the Borel transformation of Π.

The matrix elements 〈K1(A,B)|Jµ|B〉 of K1(A,B) states are defined in terms of both G parity

conserving and violating decay constants discussed in [59]. The G parity conserving decay

constants are given as

〈K1A(p′, ε)|s̄γµγ5d|0〉 = i fK1AmAε
∗
µ,

〈K1B(p′, ε)|s̄σµνγ5d|0〉 = f⊥K1B
[ε∗µp′ν − ε∗ν p′µ], (4.13)

and the G parity violating decay constants are given as

〈K1A(p′, ε)|s̄σµνγ5d|0〉 = i fK1Aa⊥K1A
0 [ε∗µp′ν − ε∗ν p′µ],

〈K1B(p′, ε)|s̄γµγ5d|0〉 = i f⊥K1B
mB(1GeV)a‖K1B

0 ε∗µ, (4.14)
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where fK1A(≡ fA) and f⊥K1B
(≡ fB) are the decay constants of K1A and K1B mesons, and a⊥K1A

0

and a‖K1B
0 are the zeroth Gagenbauer moments. Since the Gagenbauer moments are zero in

S U(3) limit[37], the G parity violating matrix elements are expected to be small. In [59],

their values are predicted as

a⊥K1A
0 = 0.08 ± 0.09 ,

a‖K1B
0 = 0.14 ± 0.15 , (4.15)

which are consistent with zero. In this thesis, they are neglected. After defining the matrix

elements 〈K1(A,B)|Jµ|B〉 and inserting in Eq. 4.12 the following assumptions are made.

e
−m2

1
M2

2 s2|K1A(p′, ε)〉〈K1A(p′, ε)| + e
−m2

2
M2

2 c2|K1A(p′, ε)〉〈K1A(p′, ε)| ∼ e
−m2

A
M2

2 |K1A(p′, ε)〉〈K1A(p′, ε)|

e
−m2

1
M2

2 c2|K1B(p′, ε)〉〈K1B(p′, ε)| + e
−m2

2
M2

2 s2|K1B(p′, ε)〉〈K1B(p′, ε)| ∼ e
−m2

B
M2

2 |K1B(p′, ε)〉〈K1B(p′, ε)|

(e
−m2

1
M2

2 − e
−m2

2
M2

2 )sc
(
|K1A(p′, ε)〉〈K1B(p′, ε)| + |K1B(p′, ε)〉〈K1A(p′, ε)|

)
∼ 0.

(4.16)

The numerical values of the masses of K1 states given in numerical discussions satisfy

m1 < mA < mB < m2. And also the minimum value of the Borel mass parameter M2
2

guarantees e
−m2

1+m2
2

M2
2 > 0.94. Due to this considerations the assumptions made in Eq. 4.16

effects the results of the form factors by less than 5%. After employing the assumptions

defined in Eq. 4.16, the phenomenological parts of the correlators are written in terms of

G-parity eigenstates as

Π̂A,a
µν (p2, p′2) = −e

−M2

M2
1 e

−m2
A

M2
2 〈0|JA

ν |K1A(p′, ε)〉〈K1A(p′, ε)|Ja
µ |B(p)〉〈B(p)|JB|0〉

Π̂T,a
µνρ(p2, p′2) = −e

−M2

M2
1 e

−m2
B

M2
2 〈0|JT

νρ|K1B(p′, ε)〉〈K1B(p′, ε)|Ja
µ |B(p)〉〈B(p)|JB|0〉.

(4.17)

Using equations 4.8, 4.13 and 4.17 and summing over the polarizations of the K1(A,B) mesons,

the so called phenomenological parts of the correlation functions are found and expressed in
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terms of selected structures as

Π̂
A(V−A)
µν =

FBM2

mb + mc
fAmAe

−M2

M2
1 e

−m2
A

M2
2

[
gµνAA(M + mA)

+
1
2

V2A(M + mA)(pµpν + p′µpν)

+
1
2

V3A(M + mA)(pµpν − p′µpν) (4.18)

+i
V1Aεµνρ%pρp′%

(M + mA)

]
,

Π̂
A(T+PT )
µν =

FBM2

mb + mc
fAmAe

−M2

M2
1 e

−m2
A

M2
2

[
iT1Aεµνρ%pρp′%

+
T2Agµν

M2 − m2
A

+ T3A(pµpν + p′µpν)/2
]
,

and

Π̂
T (V−A)
µνρ = i

FBM2

mb + mc
fBe

−M2

M2
1 e

−m2
B

M2
2

[
AB(M + mB)gµνp′ρ

+
1
2

V2B(M + mB)(pµpν + p′µpν)pρ

+
1
2

V3B(M + mB)(pµpν − p′µpν)pρ

+i
V1Bεµνα%pαp′%pρ

(M + mB)

]
,

Π̂
T (T+PT )
µνρ =

FBM2

mb + mc
fBe

−M2

M2
1 e

−m2
B

M2
2

[
i
1
2

T1Bεµνα%pαp′%pρ

+
T2Bgµνpρ

(M2 − m2
B)

+
1
2

T3B(pµpν + p′µpν)pρ

]
. (4.19)

In QCD sum rules, the correlation functions are also calculated theoretically using the

operator product expansion (OPE) in the space-like region where p′2 � (ms + md)2 and

p2 � (mb + md)2 in the so called deep Euclidean region as described in chapter 2. The

contributions to the correlation functions in the QCD side of sum rules come from bare-loop

(perturbative) diagrams and also quark condensates (nonperturbative).

The correlators in the QCD side are obtained by taking Γ1 → γ5, Γ2 → γνγ5 for K1A and

Γ2 → σνργ5 for K1B, Γ3 → γµ(1− γ5) for V-A interpolating currents, Γ3 → σµρqρ(1 + γ5) for

T+PT interpolating currents, (Q, q′, q)→ (b, s, d), H1 → B and H2 → K1A(K1B) in equations

2.60, 2.61 and 2.62 given in section 2.3.

In QCD side of the calculations, in terms of the selected Lorentz structures, the correlators
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are written as

Π̂
A(V−A)
µν = Π̂AAgµν

+
Π̂V2A(pµpν + p′µpν)

2
+

Π̂V3A(pµpν − p′µpν)

2
+iΠ̂V1Aεµνρ%pρp′%, (4.20)

Π̂
A(T+PT )
µν = Π̂T1Aεµνρ%pρp′% + Π̂T2Agµν

+Π̂T3A

(pµpν + p′µpν)

2
,

and

Π̂
T (V−A)
µνρ = iΠ̂V2B

(pµpν + p′µpν)pρ
2

+
Π̂V3B(pµpν − p′µpν)pρ

2
+Π̂ABgµνp′ρ + iΠ̂V1Bεµνα%pαp′%pρ,

Π̂
T (T+PT )
µνρ = i

Π̂T1Bεµνα%pαp′%pρ
2

+Π̂T2Bgµνpρ

+
Π̂T3B(pµpν + p′µpν)pρ

2
. (4.21)

Each of Π̂ fi(A,B) are expressed in terms of perturbative and nonperturbative contributions as

Π̂ fi(A,B) = Π̂
pert
fi(A,B)

+ Π̂
nonpert
fi(A,B)

. (4.22)

The perturbative parts of the correlators are written in terms of double dispersion relation for

the coefficients of the selected Lorentz structures, as

Π̂
per
fi

=

∫
ds

∫
ds′ρ fi(s, s′, q2)e

−s
M2

1 e
−s′
M2

2 , (4.23)

where ρ fi(s, s′, q2) are the spectral densities defined as

ρ fi(s, s′; q2) =
ImsIms′Π

OPE
fi

(s, s′; q2)

π2 . (4.24)

The spectral densities in Eq. 4.23 are calculated by using the usual Feynman integral for

the loop diagrams, with the help of Cutkovsky rules as discussed in chapter 2. The physical

region in s, s′ plane is described by the following inequality

−1 ≤ f (s, s′) =
2ss′ + (m2

b − s − m2
d)(s + s′ − q2) + 2s(m2

b − m2
d)

λ1/2(m2
b, s,m

2
d)λ1/2(s, s′, q2)

≤ +1, (4.25)
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where λ(a, b, c) = a2 + b2 + c2 − 2(ab + bc + ca).

The calculations lead to the following results for the spectral densities. For the 〈K1A|Jµ|B〉
matrix elements, the spectral densities are calculated as

ρAA = 2(M + m)I0{md + (−mb + md)A1 + (md + ms)B1}, (4.26)

ρV1A =
2

M + m
I0{md[(md − mb)(md + ms) − q2 + s + s′] (4.27)

+[2mss + mb(q2 − s − s′) + md(−q2 + 3s + s′)]A1 + 4(mb − md)A2

+[(md + ms)(s − q2) + (ms + 3md − 2mb)]B1},

ρV2A = 2(M + m)I0{md − (mb − 3md)A1 + (md + ms)B1 (4.28)

−2(mb − md)(B2 + D2)},

ρV3A = −2(M + m)I0{md − (mb + md)A1 + (md + ms)B1 (4.29)

+2(mb − md)(B2 − D2)},

ρT1A = −4e
−s
M2

1 e
−s′
M2

2 I0{md(ms − mb) + 6A2 (4.30)

+[s + (md − ms)(ms + md)]A1 + [s′ + (md − ms)(ms + md)]B1

+2sB2 − (q2 − s)(C2 + D2) + s′(C2 + D2 + 2F2)}

ρT2A =
2

M2 − m2 I0{−md[2md(s − s′) (4.31)

+ms(q2 + s − s′) + mb(q2 − s + s′)]

+[−m2
d(q2 + s − s′) − mdms(q2 + s − s′) + mb(md + ms)(q2 + s − s′) + s(q2 − s + s′)]A1

+2(q2 + s − s′)A2 + [(md − mb)(md + ms)(q2 − s + s′) − (q2 + s − s′)s′]B1},

ρT3A = 2I0{md(2md − mb + ms) + [s + (md − mb)(md + ms)]A1 (4.32)

−2A2 + [s′ + (md − mb)(md + ms)]B1 + 2q2D2}.
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For the 〈K1B|Jµ|B〉 matrix elements, the spectral densities are calculated as

ρAB = −8(M + m)I0(s, s′, q2){B1 + D2 + F2}, (4.33)

ρV1B =
4

M + m
I0(s, s′, q2){(mb − md)md − sA1 (4.34)

+[(mb − md)(md + ms) + q2 − s − s′]B1

−2sD2 + (q2 − s − s′)F2},

ρV2B = −4(M + m)I0(s, s′, q2){B1 + D2 + F2}, (4.35)

ρV3B = 4(M + m)I0(s, s′, q2){B1 − D2 + F2}, (4.36)

ρT1B = 8I0(s, s′, q2){(mb − ms)(B1 + D2 + F2)}, (4.37)

ρT2B =
−4

M2 − m2 I0(s, s′, q2){[s′ + (md − mb)(md + ms) − 4(mb − md)A2] (4.38)

+[sms + s′mb + md(q2 − 2s′)]A1 + s′(mb − 2md + ms)B1

+(md − mb)(q2 + s − s′)B2 + (mb − md)(q2 − s + s′)C2},

ρT3B = −4I0(s, s′, q2){md − (mb − 2md)A1 − 2(mb − 2md)B1 (4.39)

−(mb − md)(B2 + 2D2 + F2)},

where

I0(s, s′, q2) =
1

λ
1
2 (s, s′, q2)

, (4.40)

A1 =
s′(q2 + s − s′ − 2m2

b) + m2
d(q2 − s + s′) + m2

s(s + s′ − q2)

q4 − (s − s′)2 − 2q2(s + s′)
, (4.41)

B1 =
s(q2 − s + s′ − 2m2

s) + m2
d(q2 + s − s′) + m2

b(−s − s′ + q2)

q4 − (s − s′)2 − 2q2(s + s′)
, (4.42)

A2 =
1

2(q4 − (s − s′)2 − 2q2(s + s′))
(4.43)

{m4
dq2 + m4

bs′ + s(m4
s + q2s′ − m2

s(q2 − s + s′))

−m2
b[s′(q2 + s − s′) + m2

d(q2 − s + s′) + m2
s(s + s′ − q2)]

−m2
d[m2

s(q2 + s − s′) + q2(−q2 + s + s′)]}
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B2 =
1

(q4 − (s − s′)2 − 2q2(s + s′))2 (4.44)

{m4
s[q4 + s2 + 4ss′ + s′2 − 2q2(s + s′)]

+s′2[6m4
b + q4 + 4sq2 + s2

−6m2
b(q2 + s − s′) − 2(q2 + s)s′ + s′2]

+m4
d[(q2 − s)2 + 4q2s′ − 2ss′ + s′2]

−2m2
s s′[q4 − 2s2 + q2(s − 2s′)

+ss′ + sprime2 + 3m2
b(s + s′ − q2)]

−2m2
d[m2

s((s − q2)2 + (s + q2)s′ − 2s′2)

+s′(−2q4 + (s − s′)2

+ 3m2
b(q2 − s + s′) + q2(s + s′))]},

C2 =
1

(q4 − (s − s′)2 − 2q2(s + s′))2 (4.45)

{3m4
b(q2 − s − s′)s′

−2m2
b[(m2

d − m2
s)(q2 − s)2 + 2m2

s s′(q2 − 2s)

+s(m2
d(q2 + s) + (q2 − s)(q2 + 2s))

− s′2(2m2
d + m2

s + 2q2 − s) + s′3]

+m4
d[2q4 − (s − s′)2 − q2(s + s′)]

−m2
d[−q6 + q4(s + s′) − (s − s′)2(s + s′) + q2(s2 − 6ss′ + s′2)

+ 2m2
s(q4 − 2s2 + q2(s − 2s′) + ss′ + s′2)]

−s[3m4
s(s + s′ − q2) + 2m2

b((q2 − s)2 + (q2 − s)s′ − 2s′2)

+ s′(−2q4 + s − s′2 + q2(s + s′))]},

D2 = C2, (4.46)

F2 =
1

(q4 − (s − s′)2 − 2q2(s + s′))2 (4.47)

{m4
d[q4 + q2s + s2 − 2s′(q2 − s) + s′2]

+s2[6m4
s + (q2 − s)2 + 4q2s′ − 2ss′

+s′2 − 6m2
s(q2 − s + s′)]

+m4
b[q4 + s2 + 4ss′ + s′2 − 2q2(s + s′)]

−2m2
d s[−2q4 + (s − s′)2 + 3m2

s(q2 + s − s′) + q2(s + s′)]

−2m2
b[m2

d(q4 − 2s2 + q2(s − 2s′) + ss′ + s′2)

+ s((q2 − s)2 + (q2 + s)q2 − 2s′2 + 3m2
s(s + s′ − q2))]}.
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The nonperturbative contributions to the correlators are calculated by taking the operators

with dimensions d = 3(〈q̄q〉), d = 4(md〈q̄q〉) and d = 5(m2
0〈q̄q〉) into account. For the

〈K1A|Jµ|B〉 matrix elements nonperturbative parts of the correlators are calculated as

ΠAA = (M + m)〈q̄q〉{ 1
rr′
} + m2

0(M + m)〈q̄q〉{ 1
8rr′2

− m2
s

2rr′3
(4.48)

− m2
b

2r3r′
+

1
8r2r′

+
m2

b + m2
d − q2

r2r′2
},

ΠV1A =
〈q̄q〉

M + m
{ (mb − ms)2 − q2

2rr′
} (4.49)

+
m2

0〈q̄q〉
M + m

{ (q
2 − (mb − ms)2)m2

s

4rr′3
+

(q2 − (mb − ms)2)m2
b

4r3r′

+
m2

b + 7mbms − q2

8rr′2
+

m2
s + 7mbms − q2

8r2r

+
((mb − ms)2 − q2)(m2

b + m2
s − q2)

r2r′2
},

ΠV2A = (M + m)〈q̄q〉{ 1
2rr′
} (4.50)

−m2
0(M + m)〈q̄q〉{ ms

4rr′3
− 1

16rr′2

+
1

16r′r2 +
mb

4r3r′

+
q2 − m2

s − m2
b

16r2r′2
},

ΠV3A = −(M + m)〈q̄q〉{ 1
2rr′
} (4.51)

m2
0(M + m)〈q̄q〉{ ms

4rr′3
− 1

16rr′2
+

3
16r′r2

+
mb

4r3r′
+

q2 − m2
s − m2

b

16r2r′2
},

ΠT1A = −〈q̄q〉{ (mb − md)
16rr′

} − m2
0〈q̄q〉{m

2
s(mb − ms)

rr′3
+

m2
b(mb − ms)

r3r′
(4.52)

− (mb + 8ms)
8rr′2

+
(mb + ms)

8r2r′
− (mb − ms)(m2

b + m2
d − q2)

8r2r′2
},
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ΠT2A = − 〈q̄q〉
M2 − m2 {

(mb + md)(8m2
b − 9m2

s + 8mb(mb − 2ms) − 8q2)
rr′

} (4.53)

− m2
0〈q̄q〉

M2 − m2 {
m2

b(mb + ms)(m2
b + m2

d − 2mbms − q2)

4r3r′

− [2m3
b + 7m2

bms − ms(7m2
b − 2m2

s + 7q2) + 2mb(m2
d − m2

s − q2)]

16rr′2

+
[9m3

b − 2ms(m2
d − q2) + mb(7m2

d − 14m2
s + 7q2)]

16r2r′

− (mb + ms)(m2
b + m2

d − q2)(m2
b + m2

d − 2mbms − q2)

16r2r′2

+
m2

s(mb + ms)(m2
b + m2

d − 2mbms − q2)

4rr′3
},

ΠT3A = 〈q̄q〉{ (mb − md)
16rr′

} + m2
0〈q̄q〉{m

2
s(mb − ms)

4rr′3
+

m2
b(mb − ms)

4r3r′
(4.54)

+
(8mb + ms)

16r2r′
− (mb − ms)(m2

b + m2
d − q2)

16r2r′2
+ − (mb + 8ms)

8rr′2
}.

For the 〈K1B|Jµ|B〉 matrix elements the nonperturbative parts of the correlators are calculated

as

ΠAB = 0, (4.55)

ΠV1B =
〈q̄q〉

M + m
{mb

rr′
} − m2

0〈q̄q〉
M + m

{m
2
smb

2r′3r
+

msm2
b

2r3r
(4.56)

+
(mb + ms)

8r′2r
+

7mb

8r′r2 +
mb(q2 − m2

b − m2
s)

8r2r′2
},

ΠV2B = 0, (4.57)

ΠV3B = 0, (4.58)

ΠT1B = 0, (4.59)

ΠT2B = − 〈q̄q〉
M2 − m2 {

ms(mb + ms)
rr′

} + m2
0〈q̄q〉

M2 − m2 {
m3

s(mb + ms)
2r′3r

+
m3

b(mb + ms)

2r3r′
(4.60)

−ms(mb + ms)(m2
b + m2

d − q2)

8r2r′2
+

7mbms

8r′2r
− m2

b + m2
s − 7mbms

8r′r2 },

ΠT3B = m2
0〈q̄q〉{ 1

8r2r′
− 1

8rr′2
}. (4.61)

In the expressions of non-perturbative contributions to correlator (Eqs. 4.48 to 4.61), the first

terms in brackets which are proportional to 〈q̄q〉 are d = 3 dimensional, and the second terms

in brackets which are proportional to m2
0〈q̄q〉 are d = 5 dimensional contributions correspond-

ing to operators 〈q̄q〉 and 〈q̄σGq〉.
To obtain the final expression for the sum rules of the form factors, the quark hadron

duality assumption, which states that the phenomenological and perturbative spectral densities

give the same result when integrated over an appropriate interval, is used. The quark hadron
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duality is expressed as[66]


∫ ∞

s0

∫ ∞

s′0
+

∫ ∞

s0

∫ s′0

0
+

∫ s0

0

∫ ∞

s′0

 dsds′{ρh
fi(s, s′, q2) − ρ fi(s, s′, q2)} = 0, (4.62)

where s0 and s′0 are the continuum thresholds in s and s′ channels, and ρh(s, s′, q2) is the

spectral density of the continuum in the phenomenological part.

After calculating all spectral densities and nonperturbative contributions to correlators,

by equating the coefficients of the selected structures from the phenomenological side (Eqs.

4.18 and 4.19) and the theoretical side (Eqs. 4.20 and 4.21), the QCD sum rules for the form

factors parameterizing 〈K1(A,B)|Jµ|B〉 matrix elements are found as

fi,A(q2) =
mb + md

fAmAFBM2 e
M2

M2
1 e

m2

M2
2 (4.63)

{−1
4π

∫ s0

0
ds

∫ s′0

0
ds′Θρ fi,A(s, s′, q2)e

−s
M2

1 e
−s′
M2

2 + Π̂
nonpert
fi,A

},

and

fi,B(q2) = −i
mb + md

fB(1GeV)FBM2 e
M2

M2
1 e

m2

M2
2 (4.64)

{−1
4π

∫ s0

0
ds

∫ s′0

0
ds′Θρ fi,B(s, s′, q2)e

−s
M2

1 e
−s′
M2

2 + Π̂
nonpert
fi,B

}.

where Θ ≡ Θ(1 − f (s, s′)2) is the unit step function determining the integration region and

f (s, s′) is the function defined in Eq. 4.25. The expressions for the form factors of B →
K1(1270, 1400)`+`− transitions are obtained by using Eq. 4.10.

In this thesis the branching fractions of B → K1(1270, 1400)`+`− transitions are also

estimated. The partial decay width of the B meson is found by squaring the amplitude in Eq.

4.2, and by multiplying with the phase space factors as

dΓ

dq̂
=

G2
Fα

2M

214π5 |VtbV∗ts|2λ1/2(1, r̂, q̂)v∆(q̂) , (4.65)

where q̂ = q2/M2 and
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∆(q̂) =
2

3r̂q̂
M2Re

[
− 12M2m̂lq̂λ(1, r̂, q̂)

{
(E3 −D2 −D3)E∗1

− (E2 + E3 −D3)D∗1
}

+ 12M4m̂lq̂(1 − r̂)λ(1, r̂, q̂)(E2 −D2)(E∗3 −D∗3)

+ 48m̂lr̂q̂
{
3E1D∗1 + 2M4λ(1, r̂, q̂)E0D∗0

}
− 16M4r̂q̂(m̂l − q̂)λ(1, r̂, q̂)

{
|E0|2 + |D0|2

}

− 6M4m̂lq̂λ(1, r̂, q̂)
{
2(2 + 2r̂ − q̂)E2D∗2 − q̂|(E3 −D3)|2

}

− 4M2λ(1, r̂, q̂)
{
m̂l(2 − 2r̂ + q̂) + q̂(1 − r̂ − q̂)

}
(E1E∗2 +D1D∗2)

+ q̂
{
6r̂q̂(3 + v2) + λ(1, r̂, q̂)(3 − v2)

}{
|E1|2 + |D1|2

}

− 2M4λ(1, r̂, q̂)
{
m̂l[λ(1, r̂, q̂) − 3(1 − r̂)2] − q̂

}{
|E2|2 + |D2|2

}]
, (4.66)

and r̂ = m2/M2, m̂l = m2
l /M

2 and v =
√

1 − 4m̂l/q̂ is the final lepton velocity. The following

definitions are also used.

D0 = (Ce f f
9 + C10)

A(q2)
M + m

+ (2mbCe f f
7 )

T1(q2)
q2 ,

D1 = (Ce f f
9 + C10)(M + m)V1(q2) + (2mbCe f f

7 )(M2 − m2)
T2(q2)

q2 ,

D2 =
Ce f f

9 + C10

M + m
V2(q2) + (2mbCe f f

7 )
1
q2

[
T2(q2) +

q2

M2 − m2 T3(q2)
]
,

D3 = (Ce f f
9 + C10)

V3(q2)
M + m

− (2mbCe f f
7 )

T3(q2)
q2 ,

E0 = (Ce f f
9 −C10)

A(q2)
M + m

+ (2mbCe f f
7 )

T3(q2)
q2 ,

E1 = (Ce f f
9 −C10)(M + m)V1(q2) + (2mbCe f f

7 )(M2 − m2)
T2(q2)

q2 ,

E2 =
Ce f f

9 −C10

M + m
V2(q2) + (2mbCe f f

7 )
1
q2

[
T2(q2) +

q2

M2 − m2 T3(q2)
]
,

E3 = (Ce f f
9 −C10)

V3(q2)
M + m

− (2mbCe f f
7 )

T3(q2)
q2 .

(4.67)

4.4 Numerical results and discussions

In this section, the numerical results for the B → K1`
+`− transitions are presented. The

expressions of form factors and the effective Hamiltonian depend on the parameters M2
1 , M2

2 ,

s0, s′0, on the masses and decay constants of the K1 and B states, on the values of Vi j, and on

the values of the Wilson coefficients Ce f f
7 , Ce f f

9 and C10. The values of the input parameters

are presented in table 4.3.
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The explicit expressions of the form factors in Eqs. 4.63 and 4.64 contain four auxiliary

parameters: Borel parameters M2
1 and M2

2 , as well as the continuum thresholds s0 and s′0.

These are not physical quantities, hence the physical quantities , form factors, must be inde-

pendent of these auxiliary parameters. The working region of M2
1 and M2

2 is determined by

requiring that the higher state and continuum contributions are suppressed and the contribu-

tion of the highest order operator must be small. These conditions are both satisfied in the

following regions; 12 GeV2 ≤ M2
1 ≤ 20 GeV2 and 4 GeV2 ≤ M2

2 ≤ 8 GeV2. The dependence

of form factors T1A and T1B on Borel masses at q2 = 0 are plotted in figures 4.2 and 4.3.

From the figures it is found that the results are stable in the working region of Borel mass

parameters.

The continuum thresholds s0 and s′0 are determined by two-point QCD sum rules and re-

lated to the energy of the excited states. The form factors which are the physical quantities

defining the transitions, should be stable with respect to the small variations of these param-

eters. In general, the continuum thresholds are taken to be (mhadron + 0.5)2 [64, 65, 1]. The

dependence of form factors T1A and T1B on continuum thresholds at q2 = 0 are plotted in

figures 4.4 and 4.5. From the figures it is found that the results are stable for variations of s0

and s′0.
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Figure 4.2: The dependence of the form factor T1A on Borel mass parameters M2
1 and M2

2 at
q2 = 0 for s0 = 34GeV2 and s′0 = 4GeV2 .
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Figure 4.3: The dependence of the form factor T1B on Borel mass parameters M2
1 and M2

2 at
q2 = 0 for s0 = 34GeV2 and s′0 = 4GeV2 .
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Figure 4.4: The dependence of the form factor T1A on continuum thresholds s0 and s′0 at
q2 = 0 for M2

1 = 16GeV2 and M2
2 = 6GeV2.
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Figure 4.5: The dependence of the form factor T1B on continuum thresholds s0 and s′0 at
q2 = 0 for M2

1 = 16GeV2 and M2
2 = 6GeV2.
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The sum rules expressions for the form factors are truncated at 7 GeV2. In order to extend

our results to the whole physical region, i.e., 0 ≤ q2 < (mB − mK1)2 and for the reliability of

the sum rules in the full physical region, a fit parametrization is applied such that in the region

−10GeV2 ≤ q2 ≤ −2 GeV2, where the spectral integrals can be handled safely by applying

Cutkovsky rules as discussed at the end of chapter 2, and this parametrization coincides with

the sum rules predictions. To find the extrapolation of the form factors in the whole physical

region, the fit function is chosen as

fi(q2) =
fi(0)

1 − aq̂ + bq̂2 . (4.68)

The values for a, b and fi(0) are given in Table 4.4 and 4.5 for the form factors of B →
K1A`

+`− and B→ K1B`
+`− transitions respectively. The errors in the values of fi(0) in tables

4.4 and 4.5 are due to uncertainties in sum rule calculations and also due to errors in input

parameters.
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Table 4.4: The fit parameters and coupling constants of B→ K1A`
+`− decay.

fi fi(0) a b

AA 0.47 ± 0.08 0.55 −1.3

V1A 0.35 ± 0.07 0.23 −0.80

V2A 0.36 ± 0.07 0.47 −0.28

V3A −(0.39 ± 0.08) 0.39 −0.99

T1A 0.38 ± 0.08 1.4 0.37

T2A 0.38 ± 0.09 0.97 0.14

T3A 0.36 ± 0.07 0.54 −0.18

Table 4.5: The fit parameters and coupling constants of B→ K1B`
+`− decay.

fi fi(0) a b

AB −0.31 ± 0.06 0.19 −0.11

V1B −0.40 ± 0.08 0.11 −0.18

V2B −0.34 ± 0.06 1.3 0.37

V3B 0.39 ± 0.08 1.5 0.46

T1B −0.22 ± 0.05 1.31 0.37

T2B −0.21 ± 0.07 1.3 0.079

T3B −0.26 ± 0.04 1.41 0.41

The q2 dependance of fi,A and fi,B, the sum rules predictions and also the fit results, are

plotted in the range −10 ≤ q2 ≤ M2 − m2 in figures 4.6 to 4.19. It is seen from tables 4.4 and

4.5, and from figures 4.6 to 4.19 that the form factors of B → K1A`
+`− transition, i.e. fi,A,

and the form factors of B→ K1B`
+`− transition, i.e. fi,B are opposite in sign.
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Figure 4.6: The q2 dependence of the form factor AA, sum rules prediction(blue-dashed) and
fitted(red-solid) for M2

1 = 16GeV2, M2
2 = 6GeV2 and s0 = 34GeV2, s′0 = 4GeV2.
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Figure 4.7: The q2 dependence of the form factor AB, sum rules prediction(blue-dashed) and
fitted(red-solid) for M2

1 = 16GeV2, M2
2 = 6GeV2 and s0 = 34GeV2, s′0 = 4GeV2.
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Figure 4.8: The q2 dependence of the form factor V1A, sum rules prediction(blue-dashed) and
fitted(red-solid) for M2

1 = 16GeV2, M2
2 = 6GeV2 and s0 = 34GeV2, s′0 = 4GeV2.
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Figure 4.9: The q2 dependence of the form factor V1B, sum rules prediction(blue-dashed) and
fitted(red-solid) for M2

1 = 16GeV2, M2
2 = 6GeV2 and s0 = 34GeV2, s′0 = 4GeV2.
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Figure 4.10: The q2 dependence of the form factor V2A, sum rules prediction(blue-dashed)
and fitted(red-solid) for M2

1 = 16GeV2, M2
2 = 6GeV2 and s0 = 34GeV2, s′0 = 4GeV2.
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Figure 4.11: The q2 dependence of the form factor V2B, sum rules prediction(blue-dashed)
and fitted(red-solid) for M2

1 = 16GeV2, M2
2 = 6GeV2 and s0 = 34GeV2, s′0 = 4GeV2.
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Figure 4.12: The q2 dependence of the form factor V3A, sum rules prediction(blue-dashed)
and fitted(red-solid) for M2

1 = 16GeV2, M2
2 = 6GeV2 and s0 = 34GeV2, s′0 = 4GeV2.

64



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

-10 -5  0  5  10  15

V
3B

(q
2 )

q2

V3B(q2) 

Figure 4.13: The q2 dependence of the form factor V3B, sum rules prediction(blue-dashed)
and fitted(red-solid) for M2

1 = 16GeV2, M2
2 = 6GeV2 and s0 = 34GeV2, s′0 = 4GeV2.
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Figure 4.14: The q2 dependence of the form factor T1A, sum rules prediction(blue-dashed)
and fitted(red-solid) for M2

1 = 16GeV2, M2
2 = 6GeV2 and s0 = 34GeV2, s′0 = 4GeV2.
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Figure 4.15: The q2 dependence of the form factor T1B, sum rules prediction(blue-dashed)
and fitted(red-solid) for M2

1 = 16GeV2, M2
2 = 6GeV2 and s0 = 34GeV2, s′0 = 4GeV2.
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Figure 4.16: The q2 dependence of the form factor T2A, sum rules prediction(blue-dashed)
and fitted(red-solid) for M2

1 = 16GeV2, M2
2 = 6GeV2 and s0 = 34GeV2, s′0 = 4GeV2.

66



-1

-0.8

-0.6

-0.4

-0.2

 0

-10 -5  0  5  10  15

T
2B

(q
2 )

q2

T2B(q2) 

Figure 4.17: The q2 dependence of the form factor T2B, sum rules prediction(blue-dashed)
and fitted(red-solid) for M2

1 = 16GeV2, M2
2 = 6GeV2 and s0 = 34GeV2, s′0 = 4GeV2.
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Figure 4.18: The q2 dependence of the form factor T3A, sum rules prediction(blue-dashed)
and fitted(red-solid) for M2

1 = 16GeV2, M2
2 = 6GeV2 and s0 = 34GeV2, s′0 = 4GeV2.
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Figure 4.19: The q2 dependence of the form factor T3B, sum rules prediction(blue-dashed)
and fitted(red-solid) for M2

1 = 16GeV2, M2
2 = 6GeV2 and s0 = 34GeV2, s′0 = 4GeV2.
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For the transitions to physical states, i.e. for B → K1(1270, 1400)`+`− transitions, the

dependance of the form factors of B → K1(1270)`+`− on the mixing angle θK1 are plotted

in figures 4.20 and 4.22, and the dependance of form factors of B → K1(1400)`+`− on the

mixing angle θK1 are plotted in figures 4.21 and 4.23 at q2 = 0. The region between two black

dashed vertical lines is the region estimated as θK1 = (−34 ± 13)◦[38]. It is seen from figures

4.20 and 4.22 that the absolute values the form factors of B → K1(1270)`+`− transition are

maximum at θK1 = −(45± 5)◦, and their values are zero at θK1 = 42± 5◦. For the form factors

of B→ K1(1400)`+`− transitions, it is seen from figures 4.21 and 4.23 that the absolute values

of the form factors are maximum at θK1 = 40 ± 5◦, their values are zero at θK1 = −(47 ± 7)◦.

Since the region θK1 = −(47 ± 7)◦ in which form factors are zero coincides with the region

θK1 = (−34 ± 13)◦, to obtain a precise prediction of the form factors, the mixing angle should

be determined more precisely.
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Figure 4.20: The θK1 dependence of the vector form factors of B→ K1(1270)`+`− at q2 = 0.
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Figure 4.21: The θK1 dependence of the vector form factors of B→ K1(1400)`+`− at q2 = 0.
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Figure 4.22: The θK1 dependence of the tensor form factors of B→ K1(1270)`+`− at q2 = 0.
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Figure 4.23: The θK1 dependence of the tensor form factors of B→ K1(1400)`+`− at q2 = 0.
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Finally, the branching fractions to leptonic final states e+e−, µ+µ− and τ+τ− for θK1 =

−34◦ are also estimated by integrating the partial width in Eq. 4.65. The results are presented

in table 4.6 in comparison with the results found in [38]. The first errors in our results are due

to uncertainties from sum rule calculations and input parameters, and the second errors are

due to uncertainty in the mixing angle θK1 . Our results are in good agreement with the results

found in [38].

In table 4.7, the inclusive branching ratios of B → Xs`
+`− channels are presented. The

first values in table 4.7 are the published averages by Heavy Flavor Averaging Group(HFAG)[67],

and the second values are the recent values[68]. The results found in this thesis (table 4.6)

are also in good agreement with this average values. Only when the new averages for the

inclusive branching ratios[68] are considered, for B→ K1(1270)µ+µ− channel, the branching

fraction is about the value inclusive branching ratio of B→ Xsµ
+µ− leaving no room for other

semileptonic decays appearing quark level b → sµ+µ−. But since the other decay channels

have smaller width compared to B → Xsµ
+µ−, and when the errors in the values are consid-

ered, this result can also be acceptable. But this results implies that a new window for the

value of θK1 should be searched.

The θK1 dependance of branching fractions and the ratios

R =
B(B→ K1(1270)`+`−)
B(B→ K1(1270)`+`−)

(4.69)

in e+e− and µ+µ− channels are also plotted in figures 4.24 and 4.25 respectively. According

to our results, the value of θK1 is smaller then zero, but due to new limit from inclusive

B→ Xsµ
+µ−, the recent window for the value of θK1 should be reconsidered. Since the errors

in the values are a bit higher, it is not possible to estimate a new window using branching

ratios.
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Table 4.6: The branching fractions of B→ K1(1270, 1400)`+`− decays for θK1 = −34◦ .

mode this work [38]

B(K1(1270)e+e−) (2.11 ± 0.82+0.42
−0.52) × 10−6 (2.5+1.4+0.0

−1.1−0.3) × 10−6

B(K1(1270)µ+µ−) (2.10 ± 0.81+0.41
−0.49) × 10−6 (2.1+1.2+0.0

−0.9−0.2) × 10−6

B(K1(1270)τ+τ−) (0.42 ± 0.21+0.11
−0.15) × 10−7 (0.8+0.4+0.0

−0.3−0.1) × 10−7

B(K1(1400)e+e−) (1.1 ± 0.4+0.4
−0.5) × 10−7 (0.9+0.3+2.3

−0.3−0.4) × 10−7

B(K1(1400)µ+µ−) (1.0 ± 0.4+0.4
−0.5) × 10−7 (0.6+0.2+1.8

−0.1−0.2) × 10−7

B(K1(1400)τ+τ−) (0.3 ± 0.2+0.1
−0.1) × 10−8 (0.1+0.0+0.5

−0.0−0.1) × 10−8

Table 4.7: Experimental values of the inclusive branching fractions of B → s`+`− obtained
from HFAG. The first values are the published averages from reference [67], and the second
values are the preliminary averages[68].

mode [67] [68]

B(B→ Xse+e−) (4.7 ± 1.3) × 10−6 (4.56 ± 1.15+0.33
−0.40) × 10−6

B(B→ Xsµ
+µ−) (4.3 ± 1.2) × 10−6 (1.91 ± 1.02+0.16

−0.18) × 10−6

B(B→ Xs`
+`−) (4.5 ± 1.0) × 10−6 (3.33 ± 0.80+0.19

−0.24) × 10−6
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Figure 4.24: The θK1 dependence of the branching ratios of B → K1(1270)e+e−(black-
solid), B → K1(1270)µ+µ−(red-solid), B → K1(1400)e+e−(black-dashed) and B →
K1(1270)µ+µ−(red-dashed) channels. The horizontal line at 1.91 is the new average for inclu-
sive B→ Xsµ

+µ− decays[68].
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Figure 4.25: The θK1 dependance of the ratios(R) of branching fractions R =
B(B→K1(1270)e+e−)
B(B→K1(1400)e+e−) (black-dashed) and R =

B(B→K1(1270)µ+µ−)
B(B→K1(1400)µ+µ−) (red-dashed).
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In conclusion, the form factors of 〈K1(A,B)|Jµ|B〉matrix elements are calculated using three

point QCD sum rules approach. The q2 behaviors of the form factors of B → K1(A,B)`
+`−

transitions are analyzed. Considering the axial vector mixing angle θK1 , the form factors of

B → K1(1270, 1400)`+`− transitions, i.e. transitions into physical states are analyzed, and

their dependance on the mixing angle θK1 at q2 = 0 are obtained. Using these results, the

branching fractions into final leptonic states are estimated. It is concluded that the transitions

B→ K1(1270, 1400)`+`− can be observed at LHC and further B factories and measurements

on the mixing angle θK1 can be performed.
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CHAPTER 5

CONCLUSION

In this thesis, the QCD sum rules approach, which is one of the powerful non-perturbative

methods, is discussed and reviewed, and then applied to semileptonic B→ K1(1270)`+`− and

B→ K1(1400)`+`− decays.

To study the semileptonic decay of B meson to K1(1270, 1400) states, using the definition

of K1A(13P1)-K1B(11P1) mixing, or alternatively the so called K1 mixing, the method to apply

sum rules to axial vector K1 states is discussed.

Instead of decays into physical states, starting with the decays into ideal states (G-parity

eiegen states), the form factors of 〈K1(A,B)|Jµ|B〉 matrix elements are defined. The matrix

elements are re parameterized and their connections to the ones in literature are also pre-

sented. Starting with axial vector and tensor interpolating currents, which only couple to K1A

and K1B states respectively in S U(3) limit, the transition form factors of the matrix elements

〈K1A|Jµ|B〉 and 〈K1B|Jµ|B〉 are found. The results for these form factors are fitted to functions

coinciding in the region −10GeV2 ≤ q2 ≤ −2GeV2. The results for form factors are explored

to physical region and their q2 dependencies are shown explicitly. Hence contributions of

non-Landau type singularities in the region q2 > 0 to spectral densities are eliminated. It is

shown that the form factors of 〈K1A|Jµ|B〉 and 〈K1B|Jµ|B〉matrix elements are opposite in sign,

in agreement with the ones found by applying light-cone QCD sum rules in literature.

Then, the form factors of B → K1(1270)`+`− and B → K1(1400)`+`− transitions are

obtained following the definition for Mθ, the K1-mixing matrix. For the form factors of

78



B → K1(1270, 1400)`+`− decays, the θK1 dependance of the form factors are analyzed. It is

shown that for some regions in the predicted θK1 region, some of the form factors are changing

their signs. As a result it is concluded that the mixing angle θK1 should be more investigated.

Finally, the branching fractions B → K1(1270)`+`− transitions with final lepton pairs

being e+e−, µ+µ− and τ+τ− are estimated. It is found that branching fractions of B →
K1(1270)`+`− decays are bigger than B → K1(1400)`+`− decays, as expected. The results

found for branching ratios can be confirmed in forthcoming B experiments like LHCb in LHC

and SuperB in ILC.

The results found in chapter 4 are published in:

• Hüseyin Dağ, Altuğ Özpineci and Mehmet T. Zeyrek, ”The Semileptonic B to K1(1270, 1400)

in QCD Sum Rules”, submitted to PRD, arXiv:1001.0939 [hep-ph].
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