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ABSTRACT

INVESTIGATING THE SEMILEPTONIC B TO K;(1270, 1400) DECAYS IN QCD SUM
RULES

Dag, Hiiseyin
Ph.D., Department of Physics

Supervisor : Prof. Dr. Mehmet T. Zeyrek

February 2010, 83 pages

Quantum Chromodynamics(QCD) is part of the Standard Model(SM) that describes the in-
teraction of fundamental particles. In QCD, due to the fact that strong coupling constant is
large at low energies, perturbative approaches do not work. For this reason, non-perturbative
approaches have to be used for studying the properties of hadrons. Among several non-
perturbative approaches, QCD sum rules is one of the reliable methods which is applied to

understand the properties of hadrons and their interactions.

In this thesis, the semileptonic rare decays of B meson to K;(1270) and K;(1400) are analyzed
in the framework of three point QCD sum rules approach. The B — K;(1270, 1400)¢* ¢~ de-
cays are significant flavor changing neutral current (FCNC) decays of the B meson, since
FCNC processes are forbidden at tree level at SM. These decays are sensitive to the new
physics beyond SM. The radiative B — K;(1270)y decay is observed experimentally. Al-
though semileptonic B — K;(1270, 1400) decays are still not observed, they are expected to

be observed at future B factories. These decays happens at the quark level with b — s€*¢~
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transition, providing new opportunities for calculating CKM matrix elements: V;, and Vi;.

Applying three point QCD sum rules to B — K;(1270, 1400)¢*¢~ decays is tricky, due
to the fact that the K;(1270) and K;(1400) states are the mixtures of ideal 3PI(K’I“) and
'P(K f) orbital angular momentum states. First, by taking axial vector and tensor current
definitions for K; mesons, the transition form factors of B — Kjaft¢~ and B — Kipltt{~
are calculated. Then using the definitions for K| mixing, the transition form factors of
B — K;(1270,1400)¢* ¢~ decays are obtained. The results of these form factors are used
to estimate the branching ratio of B meson into K;(1270) and K;(1400). The results obtained

for form factors and branching fractions are also compared with the ones in the literature.

Keywords: Non-perturbative approaches, QCD sum rules, form factors, B meson.
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QCD TOPLAMA KURALLARI CERCEVESINDE B MEZONUNUN YARI LEPTONIK
K (1270, 1400) GECISLERININ INCELENMESI

Dag, Hiiseyin
Doktora, Fizik Bolimi

Tez Yoneticisi : Prof. Dr. Mehmet Zeyrek

Subat 2010, 83 sayfa

Kuvantum Renk Dinamigi(KRD), temel pargacik etkiesmelerini agiklayan Standart Model’in(SM)
bir parcasidir. KRD’de kuvvetli etkilesim kuplaj sabitinin diisiik enerjilerde biiyiik olmasindan
dolayi, hadronlar ve 6zellikleri tedirgemeli yaklasimlar ile calisilamamaktadir. Bu sebe-
ple hadronlar incelenirken tedirgemesiz yaklagimlar kullanilmalidir. Kuantum renk dinamigi
(KRD) toplam kurallari, diger tedirgemesiz yaklagimlar arasinda giivenilirligi olan bir metod

olarak, hadronlarin 6zellikleri ve etkilesmelerinin ¢aligilmasinda kullanilmaktadir.

Bu tezde B mesonunun yari leptonik ve nadir gorulen K;(1270) ve K;(1400) gecisleri, iic
nokta KRD toplama kurallar1 yaklagimi kullanilarak hesaplandi. B — K;(1270, 1400)¢* ¢~
gecisleri, B mezonun ¢esni degistiren notiir akimlar vasitasiyla gerceklestirdigi gegisler arasin-
da 6nemli bir yer tutar ve standart model 6tesi teorilerin etkilerinin gdzlemlenmesi agisindan
onem arzetmektedir. Ayrica bu gegisler KRD de agag seviyesinde goriilmemektedirler. Tiim
bunlara ilave olarak, B — K;(1270)y gecisleri deneysel olarak gézlemlenmis olmasina rag-

men B — K (1270)¢*¢~ ve B — K;(1400)¢* ¢~ heniiz gbzlemlenmemislerdir. Bu gegisleri
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gelecekteki B mezon iireteclerinde gozlemlenmeleri beklenmektedir. Bu gegisler kuark se-
viyesinde b — s¢*¢~ gegisi ile agiklanmakta olup, CKM matrix elemanlarindan Vi, ve Vi,

nin anlagilmalar1 agisindan da 6nem arz etmektedirler.

KRD toplama kurallar1 kullanilarak B — K;(1270, 1400)¢*¢~ bozunumlarini ¢alismak in-
celikli bir uygulamadir. Ciinkii K1(1270) ve K;(1400) aksiyel vektor mezonlar1 aslinda ideal
3Py (Kf‘) ve lP|(K f ) acisal momentum durumlarinin karigimlarindan olugsmaktadirlar. Dolayisi
ile KRD toplama kurallarinda aksiyel vector ve tensor akimlar1 kullamilarak iki ayn iligkilen-
dirici fonksiyonu hesaplanmalidir. Bu hesaplar sonucunda 6nce B — Kia{*{~ ve B —
K1pt* ¢~ bozunumlarinin bozunum katsayilar1 ve ardindan karigim tanimi kullanilarak B —
K, (1270, 1400)¢* ¢~ gegislerinin bozunum katsayilari bulunmustur. Bu bozunum katsayilar

kullanilarak bu gecislerin oranlar1 hesaplanmis ve literatiirdeki degerlerle karsilastirilmisgtir.

Anahtar Kelimeler: tedirgemesiz yaklagimlar, KRD toplama kurallari, yapi faktorleri, B mezonu.
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CHAPTER 1

INTRODUCTION

The Standard Model (SM), whichisaSU3).® S U(2)L ® U(1)y gauge theory of electroweak
and the strong interactions, explains the experimental data with a good consistency. However
it should be extended to explain problems like unification, hierarchy problem, origin of matter
in the universe, and so on. In SM, fundamental particles are leptons and quarks which interact
through the exchange of gauge bosons. These gauge bosons are: gluons mediating strong
force, W* and Z° bosons mediating weak force and the photon A, mediating electromagnetic

force.

Quantum chromodynamics (QCD) is the theory of the strong interactions and it describes
the strong interactions of quarks and gluons. In QCD, it is believed that the potential energy
between quarks does not vanish when the distance between them is increased, the energy re-
quired to separate them also increases, due to the gluons connecting them. This phenomena is
called confinement. Due to confinement, quarks are bound into hadrons. On the other hand,
for very high energies, or very short distances, quarks move almost free. This phenomena is
called as asymptotic freedom. These two phenomenons characterize the behavior of QCD.
At large energies (or short distances) perturbation theory can be used. On the other hand,
for low energies (or large separations), such as the hadronic scales, due to the value of the
effective strong coupling constant, perturbation theory does not work. In this regime, a non-

perturbative approach is needed.

Some non-perturbative methods can be listed as: QCD sum rules and light cone QCD sum

rules(LCQSR)[1, 2, 3, 4, 5, 6], the lattice QCDI[7], heavy quark effective theory(HQET)[8],



covariant light-front quark model[9], QCD factorization[10], low energy effective theory(LEET)[11],
chiral perturbation theory(ChPT)[12], and AdS-QCD or the so called holographic QCD[13].
Among these methods, the main advantage of QCD sum rules is that it is based on fundamen-
tal QCD lagrangian. In QCD sum rules, hadrons are interpreted by their model independent
interpolating currents. The QCD sum rules are discussed in many reviews [4, 5, 6, 14, 15, 16,

17, 18, 19, 20, 21, 22, 23] emphasizing the various aspects of the method.

In this thesis, the semileptonic B — K;(1270, 1400)(*¢~ decays are analyzed. These
decays are characteristic flavor changing neutral current (FCNC) decays of B meson which
are forbidden at tree level and occur only at loop level. These decays are good candidates
for searching new physics (NP) beyond SM or the modifications on the SM. Some of these
rare FCNC decays of B meson; radiative and semileptonic decays into a vector or an axial
vector meson, such as B — K*(892)y [24, 25, 26], B — K;(1270,1400)y[27] and B —
K% (892)e*e™(ut )28, 29] have been observed. For the channel B — K*(892)¢*¢~, the
measurement of isospin and forward backward asymmetries at BaBar are also reported[30,
31, 32]. The radiative decays of B meson to K;(1270, 1400) axial vector meson states are also
observed at Belle[33]. The semileptonic decay modes B — K;(1270, 1400){* ¢~ have not
been observed yet, but are expected to be observed in forthcoming pp and e*e™ accelerators,
such as LHC[34, 35] and SuperB[36]. Recently, some studies on B — K;(1270, 1400)¢*¢~
decays have been made[37, 38, 39, 40, 41, 42, 43, 44, 45].

In chapter 2, the QCD sum rules method is reviewed following Refs. [20, 21, 22]. First
a general derivation for QCD sum rules is discussed using a two point correlator function.

Then, three point QCD sum rules is discussed.

In chapter 3, the properties of axial vector K; mesons are analyzed. In section 2.1, the
classification of mesons in terms of their quantum numbers is reviewed. In section 2.2, the
mixing between K states is described. And also in this section, application of QCD sum rules

to K; mesons is discussed.

In chapter 4, the semileptonic B — K;(1270, 1400)¢(* ¢~ decays are examined in the
framework of three-point QCD sum rules. Since, the K;(1270, 1400) states are combination
of Kj(a,p) states, firstly, sum rules for the form factors of B — K4 ) {*¢~ decays are derived.

From these sum rules, the > dependance of form factors of B — K;(1270, 1400)¢*¢~ decays



are obtained. Using these results, the branching fractions to e*e™, u*u~ and 777~ leptonic

final states are estimated. Chapter 5 includes the summary and conclusions.



CHAPTER 2

QCD SUM RULES

2.1 Introduction

The QCD sum rules, proposed in 1979 by Shifman, Vainsthein and Zakharov (SVZ)[1], is
one of the most applicable tools in studying the properties of hadrons. Among other non-
perturbative methods, the main power of QCD sum rules approach and its extensions is the
analyticity of the methods. In this method a connection between the low energy processes
and the non-trivial QCD vacuum via quark ((g¢)), quark-gluon ({(goGg)), gluon ({(g*>G?)) and

other higher order condensates is established.

In QCD sum rules approach, hadrons are represented by their interpolating quark cur-
rents. The main object of QCDSR is the correlation of these interpolating currents. This
correlator is calculated both in terms of hadronic properties and also using operator product

expansion(OPE), where the short and long distance quark gluon interactions are separated.

The short distance interactions are calculated using QCD perturbation theory and the long
distance interactions are parameterized in terms of vacuum condensates. In general, calculat-
ing the correlation function within the framework of OPE is called the QCD or the theoretical

side of the correlation function.

In this method, the correlation function is also calculated by inserting a complete set of
hadronic states, where hadrons are treated as point-like objects characterized by their hadronic
properties such as leptonic decay constants and masses. This hadronic approach in calculating
the correlation function is commonly named as the phenomenological or physical side of the

calculations.

The results of these two representations of the correlation function, i.e., the QCD side and

4



the phenomenological side, is matched via dispersion relation and the sum rules are found.
From these sum rules, the physical quantities of the hadrons such as form factors, decay
constants and the masses can be achieved.

In this chapter, the basics of the QCD sum rules approach are reviewed following refer-
ences [20, 21, 22]. Some missing intermediate steps and detailed calculations can be found in

[22].

2.2 The QCD Sum Rules Approach

2.2.1 The Correlation Function

In studying QCD, it is commonly believed that the QCD lagrangian explains properties of

hadrons and hadronic processes and is given by

1 _
Loc = =G G + 3 gli D = my)ly. 2.1)
q

where Gy, is the gluon field-strength tensor and y, are the quark fields with different flavors
q = u,d,c,s,t,b. The QCD lagrangian in Eq.2.1 is applicable either within the frame work of
perturbation theory or some non-perturbative approaches. The perturbation theory is applica-
ble only when the effective quark-gluon coupling @ = g2/4n is small. For studying the QCD
dynamics at distances of the order of hadron size, i.e., Rpqqr ~ 1/Agcp, an expansion in terms
of @, and so the perturbation theory is not applicable. Calculation in these large separations
are done by non-perturbative approaches like QCD sum rules.

In QCD sum rules, the processes are considered with no initial and final hadrons, i.e.,
quarks are injected in QCD vacuum at the space time point x = 0 and their space-time evolu-
tion is studied. This is described by the main object of the QCD sum rules approach, which

is the correlation function (or alternatively correlator):

M(g*) =i f d*x 0] T{j(x)j(0)} 10, 2.2

where ¢ is the momentum of the quarks, j(x) is the quark current that injects quarks into the

QCD vacuum at point x and 7~ is the time ordering operator which acts as

T{j(x)j(0)} = O(x = 0),(x)j(0) + COO - x)j(0),(x) (2.3)



where O(x) is the unit step function and C = +1(—1) for bosonic(fermionic) operators. The
correlation function in Eq. 2.2 is called the two point correlation function and leads to the
mass sum rules.

The ¢* behavior of the correlator is the starting point of the QCD sum rules. The cor-
relator in Eq.2.2 is an analytic function of ¢> defined at both positive(timelike) and nega-
tive(spacelike) values of ¢>. For ¢*> > 0, the quarks move to larger spatial distances and for
sufficiently large positive values of ¢ they start to form hadrons. In this regime, the corre-
lator in Eq. 2.2 is calculated in terms of hadron language. These calculations are called the

phenomenological or the physical part of the QCD sum rules. For large and negative values

2

ocp << Q? = —¢?, the main contribution to correlator comes from short spatial

of ¢?ie., A
distances and short times[20]. Therefore, in this regime the correlator can be calculated in

terms of quarks and gluons interacting with QCD vacuum.

Figure 2.1: The quark-antiquark creation and annihilation at electron scattering processes.
This propagation can be considered as a representation for the propagator I1,,, .

The correlator functions are not completely hypothetical configurations. They are realized
in nature when a quark-antiquark pair is produced and absorbed by an external source[20]. For
instance, at an electron electron scattering process, such quark-antiquark pairs are produced
and absorbed by a virtual photon. The intermediate propagation of the quark antiquark pair
may be considered as the correlation function, when it is taken separately as in Fig.2.1. In this

case the correlator function should carry the Lorentz indices of the incoming and outgoing



virtual photon.

2.2.2 The Phenomenological Side

In this subsection, the representation of the correlator function in terms of hadronic states in
the g> > 0 regime will be analyzed. The correlator function in Eq. 2.2, can be saturated
by inserting the complete set of hadronic states which has the same quantum numbers of the

interpolating currents. The correlator can be written as

(g% =i f d*x 40| T{j(x) 17(0)} |0), (2.4)

where the unitary operator can be written as

=
Il

Z I (2.5)
h

4
10)€0] + Z f (;ﬂ’; 218(k* — mp)|h(k))h(k)| + higher states,
h

where h(k) is the hadron with mass m;, and momentum k. Inserting Eq.2.5 in 2.4 gives

O(g?) = i f d*x €17
(01(x)10)¢01j(0)]0yB(xo) + (01j(0)|0)(0] j(x)|0YO(—x0)

d*k -
+ f (W;®<ko>2n6(k2—m,%)[<0|j<x>|h<k>><h<k>|j(0)|0>®<xo>

+OL(O)AK)) (k)| j(x)0)B(=x0)1}- (2.6)

The first two terms in Eq.2.6 vanish since the matrix elements (0[j(x)|0) and (0| j(0)|0)
are zero'. The matrix elements (0]j(x)|h(k)y and (h(k)|j(x)|0) are calculated by inserting the

evolution of the operator j(x) as

LIy = (0le™** j(0)e*|h(k))
= (0j(0)e™ k) = (0] j(0)lh(k)),
hOI(0I0) = e *(h(k)](0)|0), 2.7)

' If the current j(x) has the quantum numbers of the vacuum, then these matrix elements might not be zero.
But in this case, the integral will be proportional to (2pi)>delta*(gq) which is zero if ¢ is different from zero.



the correlator takes the form

. wone [ dYk
(g?) = i f d*x €] f P Zh:®(ko)2n5(k2—m,§)

[ (0Lj(O)IA(K)) (k)| (0)|0YO(x0)

+e~ (01O (k) (k)L j(0)]0YO(—x0)1}. (2.8)

When the integrals with respect to 7<> and X are evaluated, Eq.2.8 becomes

M) = iz fo wdkoa(kg—Eﬁ) f dx
h
[0tk 0] i(0) ko, —q ) ) h(ko, — ¢ ) J(0)I0YO(xo)

e M=P001j(0) ko, ) (ko DFONOO(-30)].  (2.9)

The last two integrals in Eq. 2.9 are taken as follows. The integral with respect to ko is simply

handled by using the delta function property

o —
NGOEDY ﬁ 2.10)

where f(xp) = 0 and f' = g. The second integral with respect to xp is taken by adding a

small imaginary part to £}, to assure convergence, i.e., £, — Ej, +ie. These calculations yield

. W2 . 2
) = ion Y | —LWOICDIE KOO o1

[ 2En(—¢q) (610 + Epn(=q) + if) 2E1(q) (610 - En(q) - iE) .

For ¢ > 0, there exist a frame in which§ = 0. So the numerators of the two terms in Eq.

2.11 are equal and can be added. Finally, by taking € — 0, the correlator is found as

01 (0| 2
H(q2)=z|<|’(2)l—(?2’»|+.... (2.12)
7 qg-—m

h

In Eq. 2.12, the sum goes over all possible hadronic states, i.e. the full hadronic tower, and
each individual state 4 contributes to the correlation function. In terms of these states a more

compact and useful notation can be introduced as

f2
(g*) = qz—Hz + 1), (2.13)

H



where H is the ground state hadron (or hadron with the smallest mass that can be created by
current j), fg = (0]j(0)|H(g)) is the leptonic decay constant, Hh(qz) denotes the contributions

of the higher states and continuum.

2.2.3 The QCD side and the Operator Product Expansion

The correlation function in Eq. 2.2 can also be calculated in terms of quarks, gluons and
their interactions with QCD vacuum in the region: —¢> = Q° >> A2QC p» the so called deep
Euclidean region. This is done by using operator product expansion (OPE) which states that
the time ordered product of two currents at different points can be expanded as the sum of

local operators with space time coeflicients as

T{j(x)jO)} = )" Cax*)0u, (2.14)
d

where, C;(x?) are Wilson coefficients and Oy are a set of local operators ordered according
to their dimensions(d). In QCD sum rules, the vacuum expectation value of Eq. 2.14 is
needed. Since vacuum is colorless, gauge and Lorentz invariant, only colorless, gauge and
Lorentz invariant operators can contribute. In QCD there are no colorless, gauge and Lorentz

invariant operators with dimensions d = 1,2. The operators up to d = 6 can be listed as

Oy = 1,

03 = Yy,
0y = GLG™,

a

- A
Os = ‘/’O_uv_Gaﬂvl//’

2
Of = @TYETY),
0% = fucGlGhGH, (2.15)

where i is the wave function of any quark field, I and I'"” denote the various combinations of

Lorentz and color matrices. In terms of OPE, the correlator in Eq. 2.2 takes the form

MPE(g%) = 3" Ca(®X0a). (2.16)
d

For d = 0, the coefficient Co(x?) associated with the perturbative contributions to the correla-

tor. For d = 3,4, ..., the operators (O;) = (0]04|0) form a set of vacuum condensates which



parameterize the non-perturbative effects.
In order to calculate the Wilson coefficients, the current j(x) in the definition of the corre-

lation function in Eq. 2.2 should be known. For a general current of the form

J(x) = g'(0)ilg(x) (2.17)

where g = u, d, s is one of the light quarks, ¢’ = b, c, t is one of the heavy quarks, and I is the
matrix carrying Lorentz indices. The current defined in Eq. 2.17 creates the hadron H = g¢’

and the excited states carrying the same quantum numbers of H.

T e[| T
i

S S0 Slag) <SG

Figure 2.2: Diagrammatic representation of the full quark propagator. For ¢ = b,c,t, the
second term S 99 vanish.
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Figure 2.3: The Feynman diagram representations of the operators contributing the correlator
I1(¢%). The dashed lines denote the currents, thin(thick) solid lines denote the light(heavy)
quark, and the spirals correspond to soft gluons.

11



The Wilson coefficients in Eq. 2.16 can be calculated either one-by-one, or more ele-
gantly, by introducing the full quark propagator with both perturbative and non-perturbative

contributions which is defined as

iS4 (x - y) = (OIT " (x)g" )10y 2.18)

where a, b are the color indices. The full quark propagator can be written in terms of pertur-

bative and non-perturbative contributions as

S8 (x) = SO (x) + S TP (x) + S G (x), (2.19)

where

4
ab d’k —ikx/k+mq

Sy = : 2.20
. o e m =
— : 2.2/= .
(Gq).ab b [ 49D img i\  myx=(qq) img fx
= 1- 1- 221
Sy (x) i0 [ > ( 1 )+ 9 < , 2.21)
d*k _. k+m 1
SG,ab ) —ikx q Gaba_uv _ xyGab v , 2.22
=8 | e ((k2 —mZ)? 20—y .

for light quarks(q = u,d, s). The full propagator for the heavy quarks does not have quark
condensate terms, so for heavy quarks S ;‘?q’>’ab(x) = 0. Here the propagator in position space
is given as the Fourier transform of the propagator in momentum space(Eqs. 2.20 and 2.22).
The explicit expressions in position space are given and discussed in Ref. [21]. In Eq. 2.21,
my is defined through the relation (GoGgq) = m(z)(c‘]q). The diagrammatic representation of Eq.
2.19 is depicted in figure 2.2.

In Fig. 2.3, the OPE contributions to the correlator function is represented in a diagram-
matic form. Diagrams 2.3-a and 2.3-b are perturbative contributions to the correlator, corre-
sponding to the identity operator with d = 0 in the OPE. The non-perturbative contributions to
the correlator are depicted in diagrams 2.3-c to 2.3-f. Diagram 2.3-c correspond to the d = 3
operator {gq), quark condensate for the light quark. Diagrams 2.3-d to 2.3-f represents the
contributions of the d = 5 operator (goGg). There are no diagrams for d = 3 contributions of
the condensate (¢’q’), because the heavy quarks do not develop a condensate in vacuum due
to their large mass.

Inserting the definition of the current given in Eq. 2.17, and using the Wick theorem, the

correlator function in Eq. 2.2 can be written in terms of propagators as

12



MOPE (%) = —i f d*xe ™ Tr{['S ,(X)T'S y (—x)}, (2.23)

where color indices are not written for simplicity. The correlator in QCD side can now be

written in terms of perturbative(p) and non-perturbative(n) contributions as

HOPE(qZ) — HOPE(p)(qZ) + HOPE(}’L)(QZ) (224)

The perturbative contributions to the correlator can easily be obtained by inserting only
the free quark propagators in Eq. 2.23. The perturbative part of the correlation function is

found as

HOPED(?) = —i f d4xei‘1xTr{FS2(x)FSg,(—x)},

fd4 iax f d4kqe_i(k‘f+q)x fd4kq,eiqux
e Qn) Qn)

[Tr{F( kgt hg +m)T( kg + mq,)}]
(kg + @)% — m2)(kZ — mj,)
y fd4kq (Tr{r(/kq+ g+ mgU(ky + mq,)})’

(kg + g = m3)(kZ = ni2)

(2.25)

where first x and then k, integrals are handled. The result in Eq. 2.25 corresponds to the
contributions coming from diagram 2.3-a. The contribution of diagram 2.3-b is an O(«;) cor-
rection to the Wilson coefficient of the identity operator in OPE. It is numerically suppressed
due to additional loop, so it is neglected as general.

The non-perturbative contributions to correlator can be calculated in two steps. The con-

tributions of diagrams 2.3-c, 2.3-e and 2.3-f are simply

NOPEI(g?) = f d*xe ™ Tr{LS 19 (S Y, (—x)}. (2.26)

Eq. 2.26 contains both d = 3({(@g)) and d = 5(goGq) = mg((}q)) contributions coming
from the non-perturbative corrections to the light quark propagator.

The contribution of the diagram 2.3-d also corresponds to the d = 5 quark gluon mixed
operator and calculating this contribution is not straight forward. To obtain this contribution
to the non-perturbative part, S g should be inserted into the matrix element defining the {(gq)

condensate. Aforementioned contribution is obtained by

13



TOPEM) (2) = ifd4xeiqx(0|c"1(x)l"S3,(—X)rq|0>- (2.27)

After inserting the definitions of the propagators given in Eq. 2.22 into Eq. 2.27 one

obtains

HOPE(nZ)(qZ) = fd4xeiqx<0|@a(x)r

d4k/ 2 /k/ + my , 1
E ik’ x Gty _ xyGab v
[g f (27[)46 {(kfz _ mZ,)Z v 2(1(’2 _ m[Z]/) w?Y

I'q”|0y, (2.28)

where a, b are color indices. When calculating IT°P£(")(4?), an expression for a matrix el-
ement of the form (()Iq“(x)GZ’jqb |0) is necessary. To obtain an expression for this matrix

element, the quark field is expanded around x = 0 as

q(x) = q(0) + x,D"q(x)lx=0 + ... , (2.29)
where D¥ is the covariant derivative. Here, Fock-Schwinger gauge is used to write x,0"u =
x,DH.

The first term in the expansion is proportional to o since it is anti symmetric, and can be

written as

(0lg"(0)sG5G410) = A(0 1y )pars (2.30)

where a, 8 are spinor and u, v are Lorentz indices. By multiplying both sides with ("), and

taking the trace it is obtained that

484 = (0lg"(0)pG.0gal0),

= —(017“(0)sGirg510,

—m2Ga). (2.31)

To obtain the second term in the expansion, the matrix element (Olqa(O)ﬁGZ{’,EquO) should

be written as

(_
(0lg*(0)5G4o DyG5)0Y = B(gnyYv = 8pYu)aps (2.32)

14



where (g, ¥y — &pYy) 18 a third rank tensor antisymmetric in u, v. By multiplying both sides

of the Eq. 2.32 with (y7)g,, and using equations of motion and Eq. 2.31 we get

img(0lg* (0)sGogb)0) = =2iB(0)pas
mgmg(gq)
i%(aﬂv)ﬁa. (2.33)
Collecting all terms, one gets
ar b b mg(Gq) mymg(q)
017" ()G yq"10) = g T T e Yy — 1. (2.34)

For u and d quarks, the second term in this matrix element can be neglected.

The contribution of the diagram 2.3-d in Eq. 2.28 is also a matrix element of the form
(Olq“(x)GZfiqh |0, and is obtained in a similar manner. To obtain the result of Eq. 2.28, first x,,
is replaced with —i %. Then integrations with respect to x which gives 6(g + k'), and k" are

evaluated in order. These calculations yield

MOPE(g?) = i0lg" ()T

—Atmy g ( 0 ) 1 b
Gt — i Gy
(@ —m2 2 " 0g") 2q> — m2) "

I'q"|0). (2.35)

8s

Following the steps from Eq. 2.29 to 2.34, the matrix elements appearing in Eq. 2.35 are

calculated. Then Eq. 2.35 gives

,—m%(ch) TrI(= g4 +my)ot'To,,}
i

moPEegh) = i @ —m2 )
q/
. —mym2(Gq) THT()y"y Tou) (2.36)
48 (q* —m)? '

In calculating the last step, only the first term in the expansion given in Eq. 2.29 is taken

for simplicity. We have also used

o)
o)t - e
l—

_l—
| 2 2 2 _ 12 )2
9q" | q* —my, (q¢° —mg,)
2q,
= i (2.37)
(q* = m3,)?
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Finally, the non-perturbative contributions to the correlator can be written as

HOPE(n)( qz) — HOPE(nl)( qz) + HOPE(nz)(qZ)’

which is the sum of the contributions in Eqgs. 2.26 and 2.36.

2.2.4 Dispersion Relation

Up to this point, the correlation function in Eq. 2.2, is calculated in the region ¢> > 0, in

terms of hadrons (Eq. 2.13), and it is also calculated in the region —¢> = Q> >> AZQCD, in

terms of quarks and gluons, with perturbative and non-perturbative contributions (Egs. 2.25,
2.26 and 2.27). Since the correlator is an analytic function of its argument ¢> everywhere in
the complex plane except than on some parts of the positive real axis, it is possible to link the

values of I(g?) at positive values of ¢ to its values at negative values of ¢°.

Yo

Cy q

Figure 2.4: The contours in the plane of the complex variable g*> = z. The contour C; repre-
sents the ¢g° < 0 reference point where OPE is applied. For ¢*> > t,,, real hadronic states are
formed, which are indicated by dots.

Using the Cauchy formula for analytic functions, for the contours shown in figure 2.4,

one can write
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M) = 5o dints = o dn
Cy

2imr C, Z—qZ_ﬂ

7—q
1 I 1 (R Tiz+ie)-TI(z—i

= — ¢ & (Z)2+—.f AL Ik CInkL2 SO T
2in Jy=k 2—¢ 2ir J,, 7—q

where #,, is the threshold for creation of real states, and eventually the radius of the circular
part of the contour C, will be sent to infinity, i.e., R — oo.
The integral over the circular part of the contour C; vanishes, if [1(z) vanishes sufficiently

fast at |z7] = oo. On the other hand, if I1(z) does not vanish, by expanding the denominator

2
in terms of %’ the integrand can be written as % = @(1 -

(¢?)
7V

é + ...). And eventually for

some power 7’ in the expansion, would vanish sufficiently fast and the remaining terms
in the expansion (n > n’) do not contribute. In this case, the terms with n < n’ reduces to a

polynomial in ¢? in the limit R — co. So in the limit R — oo, Eq. 2.38 reduces to

(g% = ng FRELC f R0 bt (Cud PR (2.39)
Cy

2ir —q* 2in J, 7—¢q>
where P%(¢?) is a polynomial in ¢ which is called the subtraction terms.

Using the Schwartz reflection principle which states that if TI(z) is analytic and real over

some region including the real axis when z = ¢? is real, then

I1(z") = IT*(z) = Rell(z) — iImI1(z), (2.40)

the numerator of the integrand in Eq. 2.39 can be written as

[(z + ie) — I1(z — i€) (z') - T1(z")
= II(Z)-II"(7)
= (Rell(z") + iImII(z")) — (Rell(z") — iImII(z"))

= 2Imll(Z") = 2ilmlII(z + ie). (2.41)

The condition to apply Eq. 2.40 is satisfied in the region z = ¢° < t,,. After inserting the

result of Eq. 2.41 and setting € — 0, Eq. 2.39 can be written as

(g% = f " ds Sp_(s;Z + P, (2.42)

17



which is called the dispersion relation, and

(2.43)

is the spectral density.
Using the dispersion relation derived in Eq. 2.43, one can link the values of I1(¢?) for the
negative values of ¢ to the I1(¢?) for positive values of ¢>. For ¢*> > 0, using the result of Eq.

2.13, the spectral density can be written as

_ ImIl(g?)

(%) = f56(q* — m3) + p" (gD, (2.44)

where p’(¢?) = w. Inserting this relation in Eq. 2.42, one gets

c _OPE 2 o0 h
f as? W _ _Ji ~+ f asZ S sy, (2.45)
0 st

s—q? _qz—mH 7

h —_

where sg is the threshold for creation of excited states.

2.2.5 Quark Hadron Duality

In the final expression of the dispersion relation (Eq. 2.45), there is not much known about
0"(¢?), which contains the contribution of excited states and continuum for ¢g*> > 0. Although
it can not be calculated explicitly, one can approximate it by using the quark hadron dual-
ity assumption. In the deep Euclidean region, i.e., g¢> — —oo, the non-perturbative effects
are suppressed and can safely be neglected. So, T1(¢>) — TI°PE(P)(g?) is valid yielding an

approximation

00 h 00 OPE
f PRLACRE f ds2—), (2.46)
g 5= Jy  s—gq

where 59, which is called the continuum threshold, is a parameter to be fitted[20, 21]. After
applying the quark hadron duality assumption, dispersion relation in Eq. 2.45 can be written

as

50 OPE (¢ f2
fo ds? (2) = PP, (2.47)
H

s—q q-—m
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2.2.6 Borel Transformations

There still exists one more step to achieve the sum rules for the physical quantities of the
hadron H. In Eq. 2.47, there exist one last unknown term, which is the subtraction polynomial,
that one should get rid of. Since P*(¢?) is a polynomial in ¢?, by taking infinitely many times
derivatives with respect to ¢, the subtraction terms would be eliminated. More formally, by
applying Borel transformation with respect to Q%> = —¢> to both sides of Eq. 2.47, the final

form of the sum rules is found. The Borel transformation is defined as

(—g*)"
n—1)!

By f(g) = lim .,

d ,_
()" (gD, (2.48)
Q_2 =M? dq
where M? is the Borel transformation parameter with mass dimensions and it is usually called
as the Borel mass. Any polynomial gives zero after Borel transformation. Borel transforma-

tions of some important functions are

Bp(@* = 0, k>0
1 1 eI
e T G Rk -1y
2 1
Byp(e?) = 5(W—a). (2.49)

Borel transformations of more complicated functions an be found in literature[3, 19].

2.2.7 Physical Applications of QCD Sum Rules

After applying Borel transformation to Eq. 2.47, one obtains the following sum rules:

fge‘% = f ! dspPPE(s)e w2 (2.50)
Sim

where the lower limit of the integral is s, = (m, + mq/)2[20]. In Eq. 2.50, there are two
unknown parameters: the Borel mass parameter, M?, and the continuum threshold, sy. The
continuum threshold is not completely arbitrary, being related to the energy of the excited
states. The sum rules should be stable with respect to small oscillations of sy and in general
it is taken as (mg + 0.3 ~ 0.7GeV)?[20, 21]. On the other hand, the Borel mass parameter,
M? is completely arbitrary. It is restricted above, due to the reason that the contributions

of the continuum and the contributions of the neglected higher dimensional operators stays
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suppressed. And also for large values of M2, the quark hadron duality can not be trusted and
exponential suppression of the higher states is reduced. The upper limit on M? is determined
by demanding that the contributions of excited states to the sum rules remains small compared
to the total dispersion integral. It is also restricted below, due to the contributions of the higher
dimensional operators which are inversely proportional to the powers of M2, should stay
negligible. The lower limit on M? is commonly obtained by demanding that the contributions
of the highest dimensional operator in the expansion is not more than a small fraction of the
total result. Practically, to determine the working region of Borel parameters, one plots the
desired results with respect to M? and searches for a region in which sum rules results are

stable.

The sum rules derived in Eq. 2.50 are called the mass sum rules. In literature they are
successfully applied to many problems. Given the mass m;, the matrix element (0| j(x)|H(g))

of the hadron H, can be directly obtained from the sum rules in Eq. 2.50.

Using the sum rules derived in Eq. 2.50, the mass my of the hadron H can also be
obtained. To get this, one should take the derivative of Eq. 2.50 with respect to 1/M?, and

divide it to original equation as follows:

_my
d| fhe M?

~—

d(1/M?
m
> __H
fe
5
d(j;;? dspOPE (s)e Mz)
d(1/M?)

[ dspOPE(s)e” e

L7 ds(=spOPE(syye” e
-l — 2.51)
fS dspOPE(s)e 72

It should be noted that, although the mass can be obtained by taking derivatives, such
manipulations usually reduce the precision of sum rules (see e.g.[49, 50]). For applications
of mass sum rules to real hadrons, see e.g. [21, 46, 47, 48]. The sum rules in Eq. 2.50 is also

useful to determine the value of the continuum threshold when my and fy are known.
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2.3 Three-Point QCD Sum Rules

The sum rules derived in previous section are called the two-point QCD or alternatively mass
sum rules, and by applying them the mass and leptonic decay constant of a given hadron H
can be found. On the other hand to study and obtain further properties of hadrons such as
transition form factors, transition amplitudes, decay widths and branching ratios, the mass
sum rules should be generalized in order to calculate hadronic matrix elements of electro-
magnetic and weak transitions. In this case one starts with a three-point correlator and uses

double dispersion relation. For a generic decay of the form

H\(p) » Hy(p') + X, (2.52)

where X can be any hadron, can be £*¢~, ¥ or v for semileptonic decays, and is vy for
radiative decays, Hi(p) and Hy(p’) are initial and final hadronic states, and ¢ = p — p’ is
the momentum transferred to X. To study the transition amplitude of the decay Hi(p) —

H>(p’) + X, the three-point correlator can be written as

(p?, p°; ¢%) = i f f d*xd*ye P* P OIT { j2(3) j3(0) j(x)}10), (2.53)

where j3 is the operator responsible for the transition.

For positive values of p? and p’?, like two-point correlators, the correlation function can
be calculated by inserting complete sets of hadronic states in between the currents. Doing the
straight forward calculations as described in section 2.2.2, the three-point correlator in Eq.

2.53 can be written as

(p*, p'*: ¢*)

Z 0L Ol PP j3O) 1 (p")) (P j2 ()10

ij (p2 - m/%l)(P/z - miz)

O )IH1 ()Y H1(p)]j3(0) Ha(p' )X Ha(p")] j2(0)I0)
(p? = my (P = mpy)

+IT"(p%, p'%; %), (2.54)

where H(H>) is the hadron with the lowest mass that can be created by the interpolating
current j1(j2) and mp, (mp,) is its mass, and j3 is the transition current responsable for H; —

H, transition. The second term in Eq. 2.54 is the contributions of the higher states and
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the continuum, and p/(s, s’) is the spectral density. In contrary to Eq. 2.13, in Eq. 2.54
the imaginary part of the correlator is taken twice, first while taking the yq integral a small
complex part is given to Ej,(,), and then while taking the xo integral a small complex part is
given to Ej,(,), as described in section 2.2.2.

To investigate the decay H(p) — H»(p’)+X more deeply, one can introduce the following

definitions:

1 = Qilg, (2.55)
2 = qil>g, (2.56)
3 = 0y, (2.57)

where I'; carry Lorentz indices and can be any of the matrices: scalar( 1), pseudoscalar(ys),
vector(y,), axial vector(y,ys) and tensor(c,,). After these definitions, the hadrons are identi-
fied as: H; = Qg and H> = ¢’g. In this section ¢, ¢’ are assumed to be light quarks and Q is
assumed to be heavy for pedagogical reasons. The transition H(p) — H,(p’) + X is defined
to be occur via Q — ¢’ + X transition at quark level, and it can be described by an effective

Hamiltonian. The vacuum to hadron matrix elements can be parameterized as

fi = (hi(pil jil0), (2.58)

where f; are called the decay constant of /; and they are parameterized in terms of masses and
momentums, and also polarizations(e,) of hadrons, with the same Lorentz indices and parity
of I';. In terms of these definitions the phenomenological side of the correlator can be written

as

FLAH I (P) 20 Ha(p))
(p? —my N(p™? —m,)

(%, p'% ).

(p*, p'*; ¢%)

+

In calculating the first term of Eq. 2.59, if necessary, one should consider the sum over

polarizations which is defined as

kyuk,

o (2.59)

D aub)ek) = —gu +

€
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In Eq. 2.59, the only unknown matrix element is (H(p)|j2(0)|H>(p")), and it is necessary
for calculating the transition properties of the decay H;(p) — H(p') + X , and it can be
parameterized in terms of transition form factors.

The QCD side of the correlator can be calculated in terms of these definitions. When
p? << 0 and p’? << 0, one can calculate the correlator in terms of perturbative and non-
perturbative parts as described in section 2.2.3. The diagrammatic representation of perturba-
tive and non-perturbative contributions to correlator at p?> << 0 and p’?> << 0 are depicted in
Fig. 2.5. The perturbative contribution comes from diagram 2.5-a, and it can be calculated

following section 2.2.3 from

HOPE(p)(pZ’ pr2, q2) — 12 f fd4xd4ye—ipxeipry
Tr{T'1S (x = Y)T28 0 (T3S H(—x)). (2.60)
The non-perturbative contributions to the correlator due to (gg) condensate contributions

to the g quark propagator comes from the diagrams 2.5-b, 2.5-c and 2.5-d, and they can be

calculated from

HOPE(HI)(pZ, plz’ qQ,) — 12 ffd4xd4ye—ipxeiply

Tr{1S {9 (x = 28 ()38 G(—)). (2.61)

The contribution of diagrams 2.5-e and 2.5-f can be calculated following section 2.2.3 as

HOPE(nz)(pZ,p/Z;QZ) — l-2 ffd4xd4ye—ipxejp’y
(0Ig(T28 & (T3S Y(~x)ql0)

H0Ig(OT2S ) ()38 G(~x)ql0)). (2.62)

The contributions of the diagrams 2.5-g and 2.5-k can also be calculated from

HOPE("I)(pZ, plz; q2) — l-2 f fd4xd4ye—ipxeip’y

Tr([18 §(x = y)T28 (938 (=)}
72

~ P (2.63)

p2_M2'
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Since the result is a polynomial in p’2, these contributions in terms of the operator (7’¢q’)
vanish after Borel transformation.

After calculating these contributions, the correlator in deep Euclidean region is found as

no%e(p?, p%q®) = NOPED(p? p2i %)

HIIOPEm (p2, 2 ) + TIOPEMD (2 % gP). (2.64)

After calculating the correlator function in both p?> << 0 and p’> << 0 region, and
p? > 0and p’* > 0, following the steps described in section 2.2.4, one can get the following

dispersion relation:

OPE(S 1) FLAHE (D) 20 Ha(p))
f dsf ds’ 3 = 2
(S— (S _mHz) P —mHl)(Pl Hz)
h r. 2
f s f P'(s.5':q%)
s (s - mz] )(s” = my )
+P° (0%, '), (2.65)

where the spectral density is defined as

OPE(S J qz) ImImg (s, 57; q)

> (2.66)
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Figure 2.5: The Feynman diagram representations of the operators contributing the correlator
H(qz) of the decay Hi(p) — H»(p’) + X . The dashed lines denote the currents, thin(thick)
solid lines denote the light(heavy) quarks, and the spirals correspond to soft gluons.
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In the case of three-point correlators, the local quark hadron duality in Eq. 2.46 is modified

as

00 00 OPE r. 2 00 00 h r. 2
f dsf dg P 2(s,s,q )2 :f dsf ds pgs,s,q ) — 2.67)
50 50 (s— mHl)(S' - mHz) st st (s - mHl)(s’ - mHz)

where s¢ and s, are the continuum thresholds in p? and p’? channels. Since the subtraction
terms P*(p?, p’?) are polynomials in p? and p’?, to get rid of them one should apply double
Borel transformation with respect to the variables p? and p’?> (p*> — M?,p"> — Mg) which is

given as

R 1 1 (_l)m+ne—m%/Mlze—m%/M%

B - '
(P> =y (p? —mdy' | Taman(My= (M2

(2.68)

Using quark hadron duality approximation and applying double Borel transformation one
ends with the following sum rules:
my M} /M3

2
1M,

fIAHI(P)RONH(p)) = e

S0 S0 ,
f s f ds' pOPE(s, ' e M o= M (2.60)
Sm Shy

where the continuum thresholds sy and s, and the Borel mass parameters M f and M% are four
auxiliary parameters. Their values can be determined as discussed in two-point QCD sum
rules. Once the matrix element (H;(p)|j3|H2(p’)) is found, it can be used to study H(p) —
H>(p’) + X transition. In general the matrix element (H,(p)|j3|H2(p’)) can be written as the

sum of some Lorentz structures. In such cases, one should calculate the expansion

F AEPI2ONH (P = ) FaTa, (2.70)
A

where T4 are Lorentz structures, and F4 are the called transition form factors. In this case,
instead of equating the whole sum rule in Eq. 2.69, sum rules for transition form factors can
be found by equating the coefficients of the Lorentz structures T4 on both sides of Eq. 2.69.
In applying the three-point sum rules one confronts the following problems. In the deep
Euclidean region, higher dimensional operators receive multiplicative factors proportional to

QZ

47> hence they become more important. Thus three point sum rules are reliable when g is

small. Also for the decays like Hi(p) — Ha(p’) + X , instead of the whole physical region

0 < ¢* < (mpy, — mp,)?, the three point QCD sum rules work in some region 0 < ¢*> < ¢,
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where ¢ = (m, + my)*. To over come this problem, the results obtained from three point
QCD sum rules are plotted with respect to ¢> in the working region, i.e. ¢> < g2, and a
suitable function is fitted to sum rules results in the working region.

The second problem in applying three point QCD sum rules arises in calculating the
perturbative contributions to correlator function when calculating TI°?E(®)(p?, p'?; %) in Eq.
2.60. In calculating TIPEP) (p2, p'2; ¢?) (or p@PEP)(s, s'; %) ), one has to calculate the fol-

lowing integral:

d*k 1
Q@0 (k= p)? = m2)(k = p')? = m2)(K2 = m2)’

I(p%p?d?) =i (2.71)

where mgp, my and m, are the quark masses, and the terms in the denominator comes
from quark propagators. By applying Cutkovsky rules, which states that for ¢g> < 0 the
contributions to the integral in Eq. 2.71 comes from Landau type singularities, hence the
terms in the denominator can be replaced by delta functions, i.e.

/<2—1W - 27ri6(p2 - m?).

Using Cutkovsky rules, Eq. 2.71 becomes

d*k
(2m)*

L(p*,p*q’ <0) =i Qri)’6((k = p)* = mps((k = p')* = mg)6(k* —mg), (2.72)

which can be calculated straight forward. But the results of the sum rules are needed in the
region 0 < ¢*> < (my, — my,)>. However the Iy integral in Eq. 2.71 receives contributions
from non-Landau type singularities when g*> > 0[51]. Even if these contributions are small,
they reduces the reliability of the QCD sum rules results.

One alternative way to solve this problem is using the analyticity of the correlation func-
tion. Instead of finding a fit function in the region 0 < ¢> < g2, one can plot the results
of the sum rules in the region ¢> < 0, and finds a fit function coinciding with the sum
rules results where there are no additional contributions to the integral in Eq. 2.72. Then,
this fit function can be extrapolated to the physical region. In calculating the sum rules for

B — K1(1270, 1400)¢* ¢~ decays, this method is used.
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CHAPTER 3

PROPERTIES OF AXIAL VECTOR K; MESONS

In this chapter, the properties of the K; axial vector mesons are analyzed. To understand the
behaviors of light axial vector mesons, first the quark model is reviewed following references[52,
53]. The quantum numbers and classifications of the mesons are then summarized. Then the
axial vector K(1270) and K;(1400) states, and their mixings in terms of G-parity eigenstates,

which are also orbital angular momentum eigen states are analyzed.

3.1 The Quark Model

According to quark model, all hadrons are formed of more basic entities, called quarks, bound
together in different ways. In the fundamental representation of S U(3), all multiplets can be
formed from a triplet. Basic quark multiplet is a triplet formed from light quarks, i.e. u, d, s.
The basic quark and anti-quark multiplet are presented in figure 3.1. All of the quarks in
figure 3.1 have spin s = % and baryon number B = % The quantum numbers of u, d, s quarks

are listed in table 3.1. The hypercharge is used rather then strangeness and it is defined as

Y=B+S. 3.1

This choice is made to center the triplet in figure 3.1 to origin. The charge is

Y
0=5L+ 5 (3.2)

In quark model, mesons are gg states and baryons are gqq states bound together. In QCD,
nuclear interaction does not distinguish neutron and proton, so isospin symmetry (S U(2)
symmetry as the carbon copy of spin) is introduced as intrinsic symmetry of nucleon. For gg

states,the wave functions for isospin triplet and singlet states can be written as:
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Figure 3.1: S U(3) quark and anti-quark triplets in Y-/3 plane[52].

Table 3.1: The quantum numbers of the members of basic quark triplet.

Quark || Spin(s) | Baryon(B) | Charge (Q) | Strangeness(S) | Isospin(/3) | Hypercharge(Y)
u 3 3 : 0 3 3
d 3 3 5 0 3 3
s 3 3 3 -1 0 5
I=1,=1)=-ud
triplet — =0 = Lun —dd
P [I=1,1=0)= ﬁ(uu dd)
[I=1,13=-1)=du
inglet [I=0,1I5 =0) 1('+dc7) (3.3)
single =0,I3=0) = —(uit . .
V2

For three flavors of quarks (u, d, s), the nine gq’ states divide into an S U(3) octet and an

S U(3) singlet. The S U(3) representation of meson nonet is given in figure 3.2.

In quark model, besides isospin symmetry, there are other three S U(2) subgroups, in

which the doublets are:
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Figure 3.2: S U(3) decomposition of meson nonet, where A = \/g (uit+dd+ss), B = \/g (uin—
dd)and C = \/g(uﬁ +dd - 2s5) are Y = I3 = 0 states.[52].

R and . (3.4)

The symmetry due to first S U(2) doublet in Eq. 3.4 is called I-spin, due to second S U(2)
doublet in Eq. 3.4 is called U-spin, and third S U(2) doublet in Eq. 3.4 is called V-spin. These

symmetries are important when considering hadrons. The wave functions of the I-spin triplet

and singlet states can be written as

[I=1,I3 =1) = uu

triplet I=1,13=0)= %(ud + du)

I=1,=-1)=dd

1
singlet I =0,1z=0)= $(ua’ — du). (3.5)

The wave functions of the U-spin triplet and singlet states can be written as
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|lU=1U;=1)=dd

triplet U=1,U; =0) = %(ds + sd)

|U=1,U3 = —1)=ss

1
singlet  |U=0,U; =0) = $(ds — sd). (3.6)

The wave functions of the V-spin triplet and singlet states can be written as

[V=1,Vz3=1) = uu

triplet V=1V;=0)= %(us + su)

[V=1V3=-1)=ss

1
singlet [V=0,V3 =0) = —(us — su). 3.7
V2

The generators of both § U(2) subgroups are the usual Pauli matrices, satisfying the com-

mutation relation

[oi, 0] = i€ ko (3.8)

In addition to symmetries mentioned, there is an additional symmetry for the gg meson
states, i.e. for the mesons which have anti-quark pair of same quark. These states are the

eigen states of the charge conjugation (alternatively C-parity) operator C which is defined as

Cq=4q. 3.9

In other words charge conjugation takes the particle to its anti-particle. So the gg states

are the eigen states of C. Thus

Cqq(1-x = £q1-v9(x)» (3.10)

where the subscripts x and 1 — x denote the momentum fractions carried by each quark. For

instance, for the pion triplet
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Cl 20 = C %(uﬁ—dcz)
n diu
dii
= %(uﬁ—d&)
I/téz
-
= | o0 | (3.11)
ot

Notice that while 7° remains same under C, 7* and 7~ are exchanged among themselves.
Therefore all members of the the pion triplet are not C-parity eigen states.

For qg’ states, the C-parity is generalized to G-parity. Under G-parity, the wave functions
of the gg’ states is either symmetric or anti-symmetric under the exchange of momentum

fractions carried by each quark, thus they have either +1 or —1 eigenvalues respectively. G-

parity operator(G) is defined due to ¢g’ structure of the mesons as

G =0U"?¢C (3.12)

where 09290 = ¢ is the operator interchanging ¢ and ¢’ quarks, and it is formulated as 7

radian of rotation about 2 axis of I(U)[V]-spin space for ud(sd)[us] quarks, and I,(U)[V>] =
AU

25— are the generators of SU(2) subgroups. In SU(3) symmetry, m, = my = my, thus

G-parity is conserved.

3.2 C(lassification of Mesons

In quark model[53], mesons are valence quark anti-quark pairs, i.e., |¢’g) states, and they are
classified according to their quantum numbers. Some of these quantum numbers can be listed

as
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S - Sy +S; : spin,

L : orbital angular momentum,

J = L+S : total angular momentum,

n : radial quantum number,

P (=i : parity number(for mesons),

C (=DE*S : charge conjugation(for neutral mesons),
I(U)[V] — spin : S U(2) symmetries,

G (=S C = (=1)+SH : G-parity number,

where the values of spin for mesons are either of 0, 1, due to the half integer spin of quarks,
and the value of total angular momentum number lay in the region: L - S < J < L+ S. The
parity number depends on the spatial wave function of the meson and so on the orbital angular
momentum, and (—=1)*! in the definition of parity number comes from the intrinsic properties
of the quark anti-quark pair, i.e., due to Dirac equation they should have opposite intrinsic
parities. In the previous listing C denotes the charge conjugation and [ is the isospin.

In terms of J¥ notation, mesons are classified as

ot : scalar mesons,

0~ :  pseudoscalar mesons,

1~ : vector mesons, (3.13)
1* : axial vector mesons ,

2 :  pseudotensor mesons .

On the other hand mesons can also be classified in terms of spectroscopic notation, i.e.,
n2S+ j» in terms of orbital momentum eigenstates, where L = §, P, D, F, ... are the names
given to orbits with L = 0, 1,2, 3, ... respectively. The classification of mesons in terms of

spectroscopic notation are given in table 3.2.
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From the mesons listed in table 3.2, states ! P, and 3P; will be analyzed, since they are

axial vector states with J©¢ = 17~ and JFC€ = 1+,

3.3 Properties of K; Mesons

In QCD, two lowest nonets of axial vector mesons J© = 1% are expected as the orbitally
excited ¢’g states. As summarized in table 3.2, there are two types of P-wave axial vector
mesons, namely 13P; and 1'P;, which are G-even and G-odd respectively. The 1BP(1th)
states are: a1(1260), f1(1285), f1(1420) and K4, and the 1'P;(1%7) states are b;(1235),
h1(1170), h1(1380) and K. Among those states, a;(1260) and b;(1235) are pure mass eigen-
states. The 13P; states f1(1285) and f;(1420), and the 1P, states h1(1170) and h;(1380) are
mixed among themselves in terms of pure singlet and octet states like 7 — 7 mixing[54]. For
K14 and K g states, the situation is more complicated. In QCD language, a real hadron should
be represented in terms of mass eigen states. K4 and K p are not mass eigen states, however
they mix to form K;(1270) and K;(1400) states which are physical[37, 38]. Although K4
and K;p are not physical, while studying any process involving K;(1270) and K;(1400), one
might consider K14 and K p and their properties.

The K;(1270) and K;(1400) states can be written in terms of 13P{(K14) and 1'P{(K/5)

orbital angular momentum (G-parity) eigen states as follows:

|K1(1270)) IK14)
= My , (3.14)
|K1(1400)) K1)
where
Table 3.2: Quantum numbers of mesons.
L singlet triplet

s-wave 0 1So (07) 381 (17)

p-wave 1 P (1) 3Po1a (0FF,1%F, 24

d-wave 2 'Dy 27%) 3Di23 (177,277,377)

f-wave 3 'F3 (37) 3Fys4 (271,371,441
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sinfk, cosbk,
My = (3.15)

cosfk, —sinfg,

is the mixing matrix, and 6k, is the mixing angle[55, 56]. The magnitude of the mixing angle
is estimated to be 34° < |0k | < 58° [55, 56, 57, 58]. To estimate the sign of the 6k, the
following analysis is performed[38]. In the covariant light front approach, the ratio of the

branching fractions of radiative B decays to K;(1270) and K;(1400) are calculated as

10.1 £ 6.2 : for Ok, = -58°,
B(B — K(1270)y) _ 280 + 200 . for Ok, = =37°, (3.16)
B(B — K(1400)y) ’
0.02 +0.02 : for 6k, =58°,
0.05 + 0.05 ;. for6g, =37°.

Since for the radiative decays of B meson into K;(1270, 1400) axial vector meson states, Belle

reported the following branching fractions[33, 27]:

BB — K (1270)"y) = (4.28 +£0.94 +0.43) x 107,

BB — K(1400)"y) < 1.44x107°, (3.17)

the negative values for 0, are favored. The window for 6k, is determined as[38]

Ok, = —(34 £ 13)°. (3.18)

When the interpolating currents of K states are considered, the K;4 and Kp can be dis-
tinguished using G-parity. While the wave function of K4 state is G-even, the wave function
of Kjp state is G-odd. Due to G-parity, K4 and Kjp states couple to different interpolating

currents. These currents are given as

J/f = Syuysd
Iy, = Sowysd, (3.19)
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where J/’? is the G-even axial vector current, and JZV is the G-odd tensor current. These
currents are used in studying QCD sum rules analysis of B — K;(1270, 1400)¢{*¢~ decays in

the next chapter.
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CHAPTER 4

SUM RULES ANALYSIS OF B — K;(1270, 1400)(*¢~ DECAYS

4.1 Introduction

In this chapter, semileptonic B — K(1270)¢*¢~ and B — K;(1400)¢*¢~ decays are an-
alyzed in the frame work of QCD sum rules reviewed in chapter 2. Considering the K;
mixing, the sum rules for B — K;(1270, 1400)¢* ¢~ transitions are found as explained in
chapter 3. From the result of these sum rules, the form factors of B — Kj p¢*¢™ and

B — K;(1270, 1400)¢* ¢~ transitions are obtained.

4.2 Defining B — K,(1270, 1400){* ¢~ transitions

In SM the B — K {*¢™ transitions occur via b — s¢*¢~ loop transition, due to penguin
and box diagrams shown in Fig. 4.1. The effective Hamiltonian for b — s£*¢~ transition is

written as[39]

Gra , . { eff < -
= ViV, X C7 5y, (1 —ys)bly,l
2 \/Eﬂ' wVts 9 M H
+  Cro8yu(1 —ys5)bly,ysl
b B
20/ ’;izscrqua + ys)bly,,l}, @.1)
where C;f U ', Cgf T and C 10 are the Wilson coeflicients, G is the Fermi constant, « is the fine

structure constant at the Z scale, V;; are the elements of the CKM matrix and ¢ = p — p’ is

the momentum transferred to leptons. By sandwiching the effective Hamiltonian in Eq. 4.1
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between initial and final meson states, the transition amplitude for B — K;{*{~ decays is

obtained as

GFa
= ‘/ b ‘/ *
2V2n v

X

{cgf TP, 1571 = y5)bIB(p) Tyl
Cro(K1(p', ©)l5yu(1 = y5)bIB(p))ly,ys!

e mP ’ 2
2051 K DN (1 + mblB(p»ml}, “2)

+

where p(p’) is the momentum of the B(K) meson, and € is the polarization vector of the axial
vector K; meson. In order to calculate the amplitude, the matrix elements in Eq. 4.2 should

be found. These matrix elements are parameterized in terms of the form factors as

2iA(4%)
M+m

Va(g?) |, Vi(g?) , .
szm(e PP+ M3fm(e Py (4.3)

(Ki(p', €)|5yu(1 = y5)bIB(p))

sﬂmﬁe*vpap"g - Vig? (M + m)e,

*v_a I3

2T1(q2)gyva,85 pp
iT2(q")(M? = m*)e; - (€7.p)P,]

quu
M?2 — m2 ’

(Ki(p', ©)l50,q" (1 + v5)b|B(p))

iT3(q*)(€" -p)[qu - (4.4)

where P = p + p’, M = Mp, the mass of the B meson and m = mg, is the mass of the K
meson. The Dirac identity
—i

OuwYs = Egpvaﬁa-aﬂ 4.5)

with the convention ys = ygy1Y2y3 and €9123 = —1 requires that 71(0) = T»(0). The relation
of the chosen form factors with the ones in the literature [38, 39, 55] are presented in table

4.1.

4.3 Sum rules for B — K;(1270, 1400)(* ¢~ transitions

In this section the sum rules for the form factors of B — K;(1270, 1400){* ¢~ transitions are
found. In QCD sum rules approach, to obtain the matrix elements in Eqs. 4.3 and 4.4, one

should calculate the three-point correlation functions
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Figure 4.1: The loop penguin and box diagrams contributing to semileptonic B to K transi-
tions.

I (p*, p?) = & | dxtdye PP OIT[J} () 5(0)5()110),

mapp? = & f dx*dy*e™P* 'Y OIT [J] (1) 40T H(x)110), (4.6)

where J4 = 5y,ysd and JVTp = 3o,,ysd are axial vector and tensor interpolating currents
creating K states, Jg = bysd is the interpolating current of B mesons, and Ji = J/‘j ~AT+PT

are the vector and tensor parts of the transition currents with J X A= by,(1-ys)sand J T+PT

l_)(rﬂgqg(l +ys5)s.

The correlators in the phenomenological side are calculated in terms of the matrix ele-
ments of K;(1270) and K;(1400) states. The phenomenological parts of the correlators (Eq.

2.54) can be written as
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Table 4.1: The relation of form factors used in this work, and used in literature[38, 39, 55].

this work [38] [39] [55]
A A g(M + m)
Vi Vi SI(M +m)
Vs %3 —a,(M + m)
Vs (V3 = Vo) —a-(M +m)
T, T, -8+ -Y1/2
T, T, —8+— &- Mq—jm )
T3 T3 g— + h(M + m) Ys

(OITHK1(1270)(p’, )K1(1270)(p’, )1 B(p))XB(p)IJ510)
- RiR
(017 1K1(1400)(p’, ©))K1(1400)(p’, €)lJ5IB(p)){B(p)IJ5I0)
RyR
+ higher resonances and continuum states,
(O}, IK1(1270)(p", €))(K1(1270)(p", )11 B(p)){B(p)IJ50)

e(p?, p?) =

e (p?, p'?) =

R(R
(017, 1K1 (1400)(p", €))(K1(1400)(p’, )lJ2IB(p)){B(p)IJ 50}
R>R
+ higher resonances and continuum states, “4.7)
where R = p> — M*, R, = p’? - m?ﬁ(1270) and Rg = p’* - m%(](l 400 The matrix elements for
the B meson is defined as
. FpM?
(B(p)lJBl0) = —i . (4.8)
mp + mgy

In QCD sum rules, each correlator function has its own continuum. Due to this fact, ob-
taining the matrix elements (K (1270)(p’, €)|J;|B(p)) and (K (1400)(p’, €)|J;|B(p)) from two
correlator reduces the reliability of the sum rules. An alternative way to obtain the transition
matrix elements is to express K(1400) and K;(1400) states in terms of K14 and Kz which

are G-parity eigenstates as defined in Eq. 3.14[37, 38].
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The matrix elements (K;(1270)|J,|B) and (K;(1400)|J,|B) in Eq. 4.2 can be written in
terms of matrix elements (K4|J,|B) and (K;(1400)|J,|B) states as[59]

(K1(1270)J,B) (KialJu|B)
=My (4.9)

(K1(1400)|J,|B) (K1|Ju|B)
where J, is any of the transition currents. Due to this relation, the form factors parameter-
izing (K(1270, 1400)|J,|B) matrix elements can be expressed in terms of the form factors

parameterizing (K4 p)|J,|B) matrix elements as follows

é:f;-1270 gfi,A
=My (4.10)

& fil400 ' fis
where f; is defined as the form factors {A, V1, V», V3, Ty, T», T3} respectively fori = 1,2, ..., 7,
and f1279, f1490 £\ and f; p denotes the form factors parameterizing (K (1270)|J,,|B), (K (1400)|J,,|B),
(K1lJy|B) and (K p|J,|B) matrix elements respectively. The values for factors ¢, £’, ¢ and ¢’
are given in table 4.2, where m; = mg, 1270y, m2 = mg,(1400), Mma = mg,, and mp = mg,,. The

masses of Kj4 and K g states are defined as[38]

2 _ 2 2 2 )
My, = Mg (1400) €08~ Ok + My, (1270, sin” Ok
2 _ 2 ) 2 2
My, = Mg (1400) S 9K+mK1(1270) cos” k. 4.11)

Table 4.2: The values for factors &, &, ¢ and ¢’ for the form factors.

fi & & S s
A Vo,V 1/ (M+m) 1/(M+m) 1/(M+ms) 1/(M+mp)
Vi M+m)  (M+mp)  (M+my)  (M+mp)
T1,Ts 1 1 1 1
o (MP-my) (MP-m3)  (MP-my)  (MP-mp)
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Inserting Egs. 3.14 and 4.9 in Eq. 4.7, and applying double Borel transformations(Eq.
2.68) with respect to the variables p? and p’? (p*> — M?,p’*> — M%), the phenomenological

parts of the correlators are found in terms of G-parity eigen states as

M2 ﬂn%

A (php?) = e eM_%{wué[sﬂKm(p',e>><K1A<p’,e)|+c2|K13<p’,e)><K13(p',e>|

+SC(|K1A(p', OXKip(p', )l + |Kip(p', )X Kia(p', e)l)]JZIB(p)><B(p)|JB|0>}

_M? ﬂn%

—e e {<0|Jé[c2|1<m(p', ONKia(p', O + SIK1p(p', XK 15(p', €)|

—SC(IKlA(P', OXKip(p', )l +|Kip(p', )} Kia(p', é)l)]JZIB(P)XB(P)IJBIO)}

_ M2 m%

e p?) = —e'e 2{<0| [SlelA(p',€)>(K1A(P',E)|+62|K1B(p',€)><K1B(P',€)I

+SC(IK1A(P OXKip(p', )l + |Kip(p', )X Kia(p', €)|)]J“IB(P)>(B(P)|JB|0>}

—e'”_ _%{<0| [ 2K, OXK 1A, O + S IK 5, OXK 151, €|

_SC(|K1A(P,’ OXKip(p', )l + |Kip(p', )X Kia(p', é)l)]JZIB(P)>(B(P)|JB|0>},

(4.12)

where s = sinfk, and ¢ = cos¥bk,. Ml2 and M% appearing in Eq. 4.12 are Borel mass
parameters and IT denotes the Borel transformation of IT.

The matrix elements (K4 p)|Ju|B) of Ky p) states are defined in terms of both G parity
conserving and violating decay constants discussed in [59]. The G parity conserving decay

constants are given as

(K1a(p', €)I5y,7y5dl0)

(Kip(p', Ol50,y5dl0) = [z [€.p), — € pl, (4.13)

ileAmAG*,

and the G parity violating decay constants are given as

(K1a(p', ©)1507,y5d|0)

(K1g(p’, €)I5y,:y5d|0)

1K
lleA 0 lA[ py_epﬂ]

ifg mp(1GeVa) "€, (4.14)
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where fk,,(= fa) and fK (= fp) are the decay constants of K4 and K;p mesons, and alK‘A

1K1

and a,, " are the zeroth Gagenbauer moments. Since the Gagenbauer moments are zero in

SU@3) limit[37], the G parity violating matrix elements are expected to be small. In [59],

their values are predicted as

ay¥" = 0.08+0.09

K18

0.14+0.15 , (4.15)

Q
=)
|

which are consistent with zero. In this thesis, they are neglected. After defining the matrix

elements (K p)|J,|B) and inserting in Eq. 4.12 the following assumptions are made.

=1

2

—m

SPIK1a(p', ©XKia(p', )| + e 2C2|K1A(P NKia(p', el ~ e ™2 [Kia(p', ©))XKia(p', €|

2

—m -

ClK1s(p', OXKis(p' O + ¢ 2 K150, OXK1p(p )] ~

2

NNl
NNLN

& |
=t
“R""oasw

IK15(p", ©XK1p(p’, €)|

_m2

1 )

(e"2 —e™ )sc(mm(p', ONKip(p', Ol + Kip(p', OXKia(p', €)l| ~ 0.

(4.16)

The numerical values of the masses of K; states given in numerical discussions satisfy

my < my < mp < mp. And also the minimum value of the Borel mass parameter M%
o
2 . . . . .
guarantees ¢ "2 > 0.94. Due to this considerations the assumptions made in Eq. 4.16

effects the results of the form factors by less than 5%. After employing the assumptions
defined in Eq. 4.16, the phenomenological parts of the correlators are written in terms of

G-parity eigenstates as

A2 p?) = —e " e OUAKIA(P, OXK (P, OB B(P)I510)
fLap? p?) = —e™ e (WL IKip(p', ©XK1s(p', OB B30,

4.17)

Using equations 4.8, 4.13 and 4.17 and summing over the polarizations of the K4 p) mesons,

the so called phenomenological parts of the correlation functions are found and expressed in
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terms of selected structures as

VA FyM? 2 o4
Hﬂ‘(,v_ ) = ————— famye M1 e M2 8uvAA(M + my)
myp + mg
1 ,
+§V2A(M +ma)(pupy + Pupv)
1 ,
+§V3A(M +ma)(pupy — Pubv) (4.18)
+iV1Agyvappp,Q
(M + mA)
. FpM? 2 =4
A(T+PT)  _ B 2 02 . /
1L ' o omp+ meAmAe e "2 | iT a8uypop” P
TZAg/lv ’
+sz‘ + T34(pupv + Pupv)/2|,
and
F M2 _M2 ﬂn%
~AT(V-A) _ . I'B ST ,
H,uvp = lmb n mche e 2 |:AB(M + mB)g}lep
1 ,
+§V23(M +mp)(puPy + PuPv)Pp
1 ,
+§V33(M +mp)(puPy = PuPv)Pp
; Vlngvafgpap/Qpp
(M + mB)
2
, FpM? | % B[
T(T+PT) _ B T 02 | r0
H#VP = WfBe M e M2 [lETlBsuva@pap £Pp
TZBg,uvpp
(M? - m3,
1

X (4.19)

+5T38(Puby + PuPvIPp

In QCD sum rules, the correlation functions are also calculated theoretically using the
operator product expansion (OPE) in the space-like region where p’> < (my + mg)* and
p? < (mp + my)? in the so called deep Euclidean region as described in chapter 2. The
contributions to the correlation functions in the QCD side of sum rules come from bare-loop
(perturbative) diagrams and also quark condensates (nonperturbative).

The correlators in the QCD side are obtained by taking I'y — 5, [ — 7v,ys for K14 and
I’ = oy,ys for Ky, '3 — y,(1 —ys) for V-A interpolating currents, I's — o,,¢°(1 + ys) for
T+PT interpolating currents, (Q,q’,q) — (b, s,d), H — B and H, — K;4(K;p) in equations
2.60, 2.61 and 2.62 given in section 2.3.

In QCD side of the calculations, in terms of the selected Lorentz structures, the correlators
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are written as

A A(V-A ~
H/,n(/ ) = HAAguv
+HV2A (P/tpv + p;’lpv) N HV3A (pppv - p;lpv)
2 2
+iﬁV1A8ﬂprppp,Q’ (420)
A A(T+PT - o B
Hu5 AL 7y, Euvpol” P’ + s, 8y
. (pupv + p,pv)
T3A f’
and
. ~ (pupv + PuPV)P
T(V-A . HEY ur’vJrp
+ﬁv33(pupv - PLp)Pp
2
+ﬁABgIJVp,,D + iﬁVnsguanPaP,Qva
[L@+PT)  _ 71,0000 P Pp
uvp =1 >
+ﬁngg/.lep
M7y, (pupy + PLPVP
2k Vz neR 4.21)

Each of 11 fiap are expressed in terms of perturbative and nonperturbative contributions as

2 _ fypert Anonpert
Upyp = Hfi(A,B) + Hfi(A,B) . (4.22)

The perturbative parts of the correlators are written in terms of double dispersion relation for

the coefficients of the selected Lorentz structures, as

f[[;": fdsfds’pﬁ(s, s’,qz)eM_%eM_g, (4.23)

where pf.(s, s, q?) are the spectral densities defined as

Imslms/ngE(s, s'3q%)

p5(s,8":¢%) = ", (4.24)

The spectral densities in Eq. 4.23 are calculated by using the usual Feynman integral for
the loop diagrams, with the help of Cutkovsky rules as discussed in chapter 2. The physical

region in s, s” plane is described by the following inequality

2ss" + (mz —5— mfl)(s +5 —¢H)+ 2s(m127 - mﬁ,) -

A2(my, s, m)AV2(s, 5", %)

-1<f(s,8") =

+1, (4.25)
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where A(a, b, ¢) = a* + b* + ¢* — 2(ab + bc + ca).

The calculations lead to the following results for the spectral densities. For the (K4|J/,|B)

matrix elements, the spectral densities are calculated as

par = 2MM +m)lo{mg + (=myp + mg)Ay + (mg + my)B1}, (4.26)
2 /
pvin = g lolmalima = mp)ma +m) = g* + s+ 5] (4.27)

+[2mgs + mp(q® — s — ) + ma(—q* + 35 + s)A| + 4(mp — mg)A,
+[(ma + my)(s — ¢*) + (m + 3mg — 2my)] By},

ova = 2M +m)lo{mg — (mp — 3mg)A; + (my + ms)By (4.28)
—=2(mp — mg)(Bz + D7)},

pvs, = —2M +m)lo{mg — (mp + ma)Ay + (mg + ms)B) (4.29)
+2(myp — ’,ﬂd)(BZ - Dy)},

PTiy = —46“;_% e% lo{ma(ms — mp) + 6A; (4.30)
+[s + (mg — my)(mg + mg)lAy + [s" + (mg — my)(mgs + my)1 B,
+25B> — (¢* — $)(Ca + Dy) + 5'(Cy + D> + 2F»)}

PT = ﬁlo{_md[zmd(s -5 (4.31)
+my(q® + s — ")+ mp(g® — s+ 5]
+[—mfl(q2 +5—5) —mamy(q* + 5 — 5) + mp(mg + mg)(g* +s—5) + s(g> — s+ 5)A
+2(q% + 5 = DAy + [(mg — mp)(mg + m)(q* = s+ 5') = (q* + s — §')s'1By),

prsy = 2loima2mg — mp + my) + [s + (mg — mp)(mg + my)]A, (4.32)

—2A5 + [s" + (mg — mp)(mg + my)|By + 2¢°D»).
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For the (K 3|J,|B) matrix elements, the spectral densities are calculated as

where

PAp

PVig

PVag
PVsp
PTp

PTsp

PTsp

Io(s, s, q%)

Ay

B,

Ay

—8(M + m)Iy(s, ', g*)By + Dy + Fa},

M+

mlo(s, s, g (my — ma)mg — sA;

+[(my, — mg)(mg + my) + ¢* — s — 5'1B

25Dy + (¢* — s — §')Fa},

~4(M + m)Io(s, ', "By + Dy + Fa},

4M +m)lo(s, s',q*)B1 — Dy + Fa},

810(s, s, g ) (mp — mg)(By + Dy + F)),

—4
—51o(s, 5", NS + (ma = mp)ma + ms) = 40my = ma)Ao]

]VfZ —
+[sm + §'myp + md(q2 - 25HA1 + s’ (my, — 2my + my) By

+(mg — mp)(q® + s — s")Bay + (my — mg)(g* — s + 5 )Ca),

~41o(s, 8, q*)ima — (mp — 2mg)A1 — 2(mp — 2mg)B;

—(mp —mg)(By + 2D> + F?)},

1

A3(s, 8 )

S(@P+s—5 — Zmi) + mfl(q2 —s+5)+ m?(s +5 —q%
gt = (s =5 =24 (s + 5") ’

s(g® — s+ 5" —2m?) + mfl(q2 +s—-5)+ mi(—s -5 +¢%)
g* = (s =5 =24 (s + &)
1

2 — (5 52— 2425 + 5)

{mj,q2 + mis’ + s(m‘s1 +q%s - m?(q2 —-s5+5)

—m2[s(@* + s — )+ miqE — s+ ) +mi(s+ 5 —q*)]

—mglmi(q® + 5= 5) + P (=¢* + 5+ 5]}
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4.37)

(4.38)

(4.39)

(4.40)
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(4.42)
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G

D,

1
(q* = (s = )% = 2¢%(s + 5))?
{m‘;[q4 + 57 +4ss’ + 57 = 2¢%(s + )]

+52[6m) + g* + 4sq” + s

—6m[27(q2 +5—5)=2(q" + 5)s" + 5%
+m§[(q2 —5)? +4g°s’ — 255" + 5%
—Zm?s’ [¢* = 25 + ¢*(s = 25)

+s5 + sPrime2 4 3m12)(s +5 — ¢
—2m3[m%((s — )+ (s+¢2)s —25)
+5'(=2¢" + (s = 5)*

+3mi(q> — s+ 5) + (s + s},
1
(g* = (s = )2 = 2¢%(s + 5))?

’

{31712((,12 —-s—8)s
—2m2[(m? — m2)(q* — $)* + 2m>5' (g% — 25)
+5my(q” + )+ (¢ = $)(g” +25))
— 52Qm3 + m; +2¢* — 5) + 5]
+m3[2q4 —(s— 8 =g s+ )]
—mfl[—q6 + gt s+ )= (s— ) s+ 5) + ¢ (s* — 655" + 5%
+ 2m?(q4 —252 + ¢*(s = 25") + 55" + 5]
—s[3m§(s +5 —¢H)+ 2m,27((q2 -2 +(g> - 9)s -25%)
+ s’(—2q4 ys—s57+ qz(s + SN,

G,

1
(q* = (s — ) = 2¢%(s + 5))?
{m;[q4 + s+ 52 =25 —5)+s

2)

+52[6m? + (¢ — 5)* + 4¢>s’ — 255’

+52 —6m2(q* — s + 5')]

+m;47[q4 + 5% +4ss’ + 57 =2¢%(s + 5]

—2m§s[—2q4 +(s—5)+ 3m?(q2 +5—5)+q s+ )]
—2m2[m(q* = 25 + ¢*(s = 25") + 55" + 5%)

+ s((¢* - )% + (q2 +8)g° — 257 + 3m§(s +5 - qz))]}.
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The nonperturbative contributions to the correlators are calculated by taking the operators
with dimensions d = 3({g@q)), d = 4(mg{gq)) and d = S(m%(EIq)) into account. For the

(K14lJ,|B) matrix elements nonperturbative parts of the correlators are calculated as

2

s (4.48)
8rr'2  2rr3 '

1
My, = (M+m)ggl—}+ mi(M + m){Gg){

2 2 2_ 2
mb 1 mb+md q

213y * 8r2r r2r2 ’
My, = a0 m-m)’-g
M+m 2rr’
maqy (q* — (my —mg>)m®  (q* — (mp — mg)*)m;
M+m 4rr’3 4r3r
+m127 + Tmpmy — ¢ m% + Tmymy — g*
8rr’? 8rr
L (Omy —my)* = )y + m3 — q°)

} (4.49)

bl

r2r12

1
My = (M +m@5—

—m(M + m){gg){

1 np

b— o+ ——
16r'r2 413

2 2
1,

} (4.50)

myg 1
4rr’3 16112

2
q - —mg —my
167212

Iy, = —-(M+m)ggX

1
4.51
2rr! } ( )
1 3

- +
16r72 16772

2 2 2
mp q —mg—my

+ +
43y 1672772

_ m
(M + m)@gi =

> 2
_ mp — myg) o omA(mp —my)  mi(mp — my)
Mr, = @20y 2y T =) Tyt )y s
16 rr rr
_(mb + 8myg)  (my + my) B (myp, — ms)(mlz, + mtzi - qz)}
8rr'? 8r2r 8r2r2 ’
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Gq)y  (mp +mg)Bm? —9m? + 8my(my, — 2my) — 847)

I, Ry R pw } (4.53)
migq) my(my + mg)(m; +m3 - 2mpms — g*)
M2 —m? 4r3r
[2m2 + 7mims - ms(7ml2) -2m? +7¢%) + 2mb(mL21 -m? - g*)]
- 16712
. [9m13) - 2ms(m§ - qz) + mb(7m?l - 14m? + 7q2)]
16727
(my, + ms)(m}z) + mfi - qz)(mi + mfl - 2mpmyg — qz)
- 1612172
+m§(mb + ms)(mi + mi — 2mpmy — q%)
4rr’3 ’
2 20
7, = <éq>{%} + mg(Gg) mS(’Zfr,3 ) | T (’Z’S ” ) (4.54)
Smyp + my)  (mp — ms)(mi + mfl -q%) N (my, + 8my)
16721 1672172 8rr'’2

For the (K3|J,|B) matrix elements the nonperturbative parts of the correlators are calculated

as
Iy, = 0O, (4.55)
Gq) my, miaq) mim, mgm;
I1 = —1 - + 4.56
Vig M+m{rr’} M+m{2r’3r 2r3r (4.56)
(my + mg)  Tmy mb(q2 - mi - m?)
8r2r 8r'r2 81212 ’
Iy,, = 0, (4.57)
My, = 0, (4.58)
7, = 0, (4.59)
_ 2/= 3
I, _ (qq) {ms(mb + ms)} + m0<qq> {m?(mb + my) + mb(mb + my) (4.60)
8 M? — m? rr’ M2 —m? 2¢3r 2r3r!
my(my + m)(m; +m3—q*)  Tmymg  m;, +m; — Tmpm
8r2r2 8r'2r 8r'r2 ’

1

8r2r  8rr?

M7, = migg) (4.61)

In the expressions of non-perturbative contributions to correlator (Egs. 4.48 to 4.61), the first
terms in brackets which are proportional to (gg) are d = 3 dimensional, and the second terms
in brackets which are proportional to m(z)(c']q) are d = 5 dimensional contributions correspond-
ing to operators (gq) and (goGq).

To obtain the final expression for the sum rules of the form factors, the quark hadron
duality assumption, which states that the phenomenological and perturbative spectral densities

give the same result when integrated over an appropriate interval, is used. The quark hadron
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duality is expressed as[66]

0 b 00 R S0 o)
[f f T f f K f f }des'{p]};(s’ @) = ps(s. s, gD} = 0, (4.62)
so. /s so 0 0 Js

where sp and s, are the continuum thresholds in s and s” channels, and ol (s, s, q%) is the
spectral density of the continuum in the phenomenological part.

After calculating all spectral densities and nonperturbative contributions to correlators,
by equating the coeflicients of the selected structures from the phenomenological side (Egs.
4.18 and 4.19) and the theoretical side (Egs. 4.20 and 4.21), the QCD sum rules for the form

factors parameterizing (Kj,p)|J,|B) matrix elements are found as

@ = J% e (4.63)
47Tf dsf ds' Opy; (s, s qz)e Te's +H;O:pert}’
and
Sl = iR (4.64)
’ fB(lGeV)FBMz

f dsf ds'®py (5,5, q )e Te's +H;’f'”pm}

where ©® = O(1 — f(s, §")?) is the unit step function determining the integration region and
f(s,s") is the function defined in Eq. 4.25. The expressions for the form factors of B —
K1(1270, 1400)¢* ¢~ transitions are obtained by using Eq. 4.10.

In this thesis the branching fractions of B — K;(1270, 1400)¢*¢~ transitions are also
estimated. The partial decay width of the B meson is found by squaring the amplitude in Eq.

4.2, and by multiplying with the phase space factors as

dr G%azM

i s VeVl gvA@) (4.65)

where § = g>/M? and
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A(G =
(@ 3%

| - 120%gA1. 7, 9){(E3 — D - D3)E]

- &+ 83— 1)3)1)7} + 12M*iug(1 = DAL, 7, §)(Er — D2)(E} — DY)

+ 48 ig(38, D] + 2M AL, 7, ED;| — 16M* #g(ing — AL, 7, {10l + Dol

= 6M A1, 7, {22 + 27 - DED; - 4I(E3 - D)

= AMPAL R 2 = 20 + §) + §(1 - 7 - PYEIE; + D1D3)

+4{67q(3 +v?) + A1, 7, 9B - )18 + D1}

- 2M* AL A AL, 7,9) = 3(1 = 771 - gl{IEaP + 1DaP)]

and 7 = m? /M2, iy =

definitions are also used.

2
eff A(q ) eff Tl(q )
= + (2m,
Do Gy + Clo)M o +(C2mpCy ) ——5—
eff 2 effv a2 Ta(d?)
D1 = Gy +Cio)(M +mVi(q7) + CmpCy - YM™ —m™)—5—,
c7 Cio 1 2
_ 9 2 eff 2 q 2
D, = WVZ(Q )+(2mbC7 )? T>(q") + mTS(C] )
e o T3(q%
Dy = (€ i) 3(61n)1 (2mbc7ff)& ,
2
e eff T
& = (cgff—cm)M(‘“ + CmyceH L2 3(‘“
4 e T 2
& = (€ - Clo)M+mVi(g) + <2mbc7ff o -t 2D
Ceff_ 10 1 2
_ 9 2 eff 2 q 2
& = Y Va(q”) + CmypC )—2 T2 (q°) + st(q )
\% T
& = (Ceff c 0) 3(61 ) —Qm Ceff) %(6] )

4.4 Numerical results and discussions

(4.66)

ml2 /M? and v = /1 — 4ii;/§ is the final lepton velocity. The following

(4.67)

In this section, the numerical results for the B — K {*¢~ transitions are presented. The

expressions of form factors and the effective Hamiltonian depend on the parameters M2, M%,

S0, 56, on the masses and decay constants of the K| and B states, on the values of V;;, and on

the values of the Wilson coefficients C;f ! , C;f /and C 10- The values of the input parameters

are presented in table 4.3.
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The explicit expressions of the form factors in Eqs. 4.63 and 4.64 contain four auxiliary
parameters: Borel parameters M% and M%, as well as the continuum thresholds so and s;,.
These are not physical quantities, hence the physical quantities , form factors, must be inde-
pendent of these auxiliary parameters. The working region of M12 and M% is determined by
requiring that the higher state and continuum contributions are suppressed and the contribu-
tion of the highest order operator must be small. These conditions are both satisfied in the
following regions; 12 GeV? < M12 <20 GeV? and 4 GeV? < M% < 8 GeV?. The dependence
of form factors T4 and T;p on Borel masses at q2 = 0 are plotted in figures 4.2 and 4.3.
From the figures it is found that the results are stable in the working region of Borel mass
parameters.

The continuum thresholds sp and s, are determined by two-point QCD sum rules and re-
lated to the energy of the excited states. The form factors which are the physical quantities
defining the transitions, should be stable with respect to the small variations of these param-
eters. In general, the continuum thresholds are taken to be (mpag4ron + 0.5)2 [64, 65, 1]. The
dependence of form factors T4 and 75 on continuum thresholds at q2 = 0 are plotted in
figures 4.4 and 4.5. From the figures it is found that the results are stable for variations of s

’
and 50
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Figure 4.2: The dependence of the form factor 714 on Borel mass parameters M12 and M% at
q* = 0 for 5o = 34GeV? and s, = 4GeV? .
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Figure 4.3: The dependence of the form factor 713 on Borel mass parameters Mf and M% at
g% = 0 for 5o = 34GeV? and 5o = 4GeV? .
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Figure 4.4: The dependence of the form factor 7j4 on continuum thresholds sy and s(’) at
q* = 0 for M7 = 16GeV?* and M3 = 6GeV?.
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Figure 4.5: The dependence of the form factor 75 on continuum thresholds so and s{, at
q* = 0 for M} = 16GeV?* and M3 = 6GeV?.
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The sum rules expressions for the form factors are truncated at 7 GeV?2. In order to extend
our results to the whole physical region, i.e., 0 < g* < (mp — mg,)* and for the reliability of
the sum rules in the full physical region, a fit parametrization is applied such that in the region
~10GeV? < ¢* < =2 GeV?, where the spectral integrals can be handled safely by applying
Cutkovsky rules as discussed at the end of chapter 2, and this parametrization coincides with
the sum rules predictions. To find the extrapolation of the form factors in the whole physical

region, the fit function is chosen as

fi(@*) = 1 L) (4.68)

The values for a, b and f;(0) are given in Table 4.4 and 4.5 for the form factors of B —
Kial*¢™ and B — K pt*{™ transitions respectively. The errors in the values of f;(0) in tables
4.4 and 4.5 are due to uncertainties in sum rule calculations and also due to errors in input

parameters.
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Table 4.4: The fit parameters and coupling constants of B — Kj4£*¢~ decay.

fi fi(0) a b
Ay 047+008 055  -13

Via 0.35+0.07 0.23 —-0.80
Voa 0.36 £ 0.07 0.47 —-0.28
Vza  —(0.39+£0.08) 0.39 -0.99

T4 0.38+0.08 1.4 0.37
Toa  0.38+0.09 0.97 0.14
T34 0.36 £ 0.07 0.54 -0.18

Table 4.5: The fit parameters and coupling constants of B — K¢~ decay.

fi Ji(0) a b
Ag  -031+£006 0.19 -0.11

Vip -040+0.08 0.11 -0.18

Vop -034+0.06 1.3 0.37

Vip 0.39 £ 0.08 1.5 0.46

T\pg -022+005 131 0.37

Tog -021+£007 1.3 0.079

T:p -026+£0.04 141 041

The ¢? dependance of f; 4 and f;, the sum rules predictions and also the fit results, are
plotted in the range —10 < ¢*> < M? — m? in figures 4.6 to 4.19. It is seen from tables 4.4 and
4.5, and from figures 4.6 to 4.19 that the form factors of B — Kjo€*{™ transition, i.e. fi4,

and the form factors of B — K;p{*{™ transition, i.e. f;p are opposite in sign.
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Figure 4.6: The ¢ dependence of the form factor A4, sum rules prediction(blue-dashed) and
fitted(red-solid) for M7 = 16GeV?, M3 = 6GeV? and so = 34GeV?, s, = 4GeV?.
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Figure 4.7: The ¢ dependence of the form factor Ap, sum rules prediction(blue-dashed) and
fitted(red-solid) for M7 = 16GeV?, M5 = 6GeV?* and s = 34GeV?, s, = 4GeV?.
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Figure 4.8: The ¢> dependence of the form factor V4, sum rules prediction(blue-dashed) and
fitted(red-solid) for M7 = 16GeV?, M5 = 6GeV? and so = 34GeV?, s, = 4GeV?.
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Figure 4.9: The ¢* dependence of the form factor V3, sum rules prediction(blue-dashed) and
fitted(red-solid) for M} = 16GeV?, M5 = 6GeV?* and s = 34GeV?, s, = 4GeV?.
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Figure 4.10: The ¢> dependence of the form factor V,,, sum rules prediction(blue-dashed)
and fitted(red-solid) for M7 = 16GeV?, M5 = 6GeV?* and sy = 34GeV?, s, = 4GeV?.
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Figure 4.11: The ¢* dependence of the form factor V,p, sum rules prediction(blue-dashed)
and fitted(red-solid) for M} = 16GeV?, M5 = 6GeV? and sy = 34GeV?, 5|, = 4GeV?.
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Figure 4.12: The ¢> dependence of the form factor V3,4, sum rules prediction(blue-dashed)
and fitted(red-solid) for M7 = 16GeV?, M5 = 6GeV?* and sy = 34GeV?, s, = 4GeV?.
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Figure 4.13: The ¢* dependence of the form factor V3p, sum rules prediction(blue-dashed)
and fitted(red-solid) for M} = 16GeV?, M5 = 6GeV? and sy = 34GeV?, 5|, = 4GeV?.
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Figure 4.14: The ¢*> dependence of the form factor T4, sum rules prediction(blue-dashed)
and fitted(red-solid) for M7 = 16GeV?, M5 = 6GeV?* and so = 34GeV?, s, = 4GeV?.
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Figure 4.15: The ¢ dependence of the form factor T, sum rules prediction(blue-dashed)
and fitted(red-solid) for M} = 16GeV?, M5 = 6GeV?* and sy = 34GeV?, 5| = 4GeV?.
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Figure 4.16: The ¢”> dependence of the form factor 754, sum rules prediction(blue-dashed)
and fitted(red-solid) for M7 = 16GeV?, M5 = 6GeV?* and so = 34GeV?, s, = 4GeV?.
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Figure 4.17: The ¢ dependence of the form factor T»p, sum rules prediction(blue-dashed)
and fitted(red-solid) for M} = 16GeV?, M5 = 6GeV?* and sy = 34GeV?, 5| = 4GeV?.
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Figure 4.18: The ¢”> dependence of the form factor T34, sum rules prediction(blue-dashed)
and fitted(red-solid) for M7 = 16GeV?, M5 = 6GeV?* and so = 34GeV?, s, = 4GeV?.
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Figure 4.19: The ¢ dependence of the form factor T3z, sum rules prediction(blue-dashed)
and fitted(red-solid) for M7 = 16GeV?, M5 = 6GeV?* and so = 34GeV?, s, = 4GeV?.
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For the transitions to physical states, i.e. for B — K;(1270, 1400)(* ¢~ transitions, the
dependance of the form factors of B — K;(1270)(*¢~ on the mixing angle 0k, are plotted
in figures 4.20 and 4.22, and the dependance of form factors of B — K;(1400)¢*¢~ on the
mixing angle 0, are plotted in figures 4.21 and 4.23 at ¢> = 0. The region between two black
dashed vertical lines is the region estimated as g, = (=34 + 13)°[38]. It is seen from figures
4.20 and 4.22 that the absolute values the form factors of B — K{(1270)¢* ¢~ transition are
maximum at fg, = —(45 +5)°, and their values are zero at 0k, = 42+ 5°. For the form factors
of B — K(1400){* ¢~ transitions, it is seen from figures 4.21 and 4.23 that the absolute values
of the form factors are maximum at 0, = 40 + 5°, their values are zero at Ok, = —(47 + 7)°.
Since the region 0x, = —(47 + 7)° in which form factors are zero coincides with the region
Ok, = (=34 £ 13)°, to obtain a precise prediction of the form factors, the mixing angle should

be determined more precisely.
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Figure 4.20: The 6k, dependence of the vector form factors of B — K;(1270)¢*¢~ at ¢* = 0.

70



Figure 4.21: The 6k, dependence of the vector form factors of B — K;(1400)¢*¢~ at ¢> = 0.

Figure 4.22: The 6k, dependence of the tensor form factors of B — K;(1270)(* ¢~ at ¢* = 0.
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Figure 4.23: The 6, dependence of the tensor form factors of B — K;(1400)(* ¢~ at g* = 0.
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Finally, the branching fractions to leptonic final states e*e™, u*u~ and t¥7~ for g, =
—34° are also estimated by integrating the partial width in Eq. 4.65. The results are presented
in table 4.6 in comparison with the results found in [38]. The first errors in our results are due
to uncertainties from sum rule calculations and input parameters, and the second errors are
due to uncertainty in the mixing angle 8k,. Our results are in good agreement with the results
found in [38].

In table 4.7, the inclusive branching ratios of B — X "¢~ channels are presented. The
first values in table 4.7 are the published averages by Heavy Flavor Averaging Group(HFAG)[67],
and the second values are the recent values[68]. The results found in this thesis (table 4.6)
are also in good agreement with this average values. Only when the new averages for the
inclusive branching ratios[68] are considered, for B — K;(1270)u*u~ channel, the branching
fraction is about the value inclusive branching ratio of B — X u*u~ leaving no room for other
semileptonic decays appearing quark level b — su*u~. But since the other decay channels
have smaller width compared to B — X u*u~, and when the errors in the values are consid-
ered, this result can also be acceptable. But this results implies that a new window for the
value of 6k, should be searched.

The Ok, dependance of branching fractions and the ratios

_ B(B - K(1270)¢*£7)
" BB - K (1270)¢+(7)

(4.69)

in e"e” and p*u~ channels are also plotted in figures 4.24 and 4.25 respectively. According
to our results, the value of Ok, is smaller then zero, but due to new limit from inclusive
B — X,u*u~, the recent window for the value of 0k, should be reconsidered. Since the errors
in the values are a bit higher, it is not possible to estimate a new window using branching

ratios.
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Table 4.6: The branching fractions of B — K;(1270, 1400)¢* ¢~ decays for Ok, = —34° .

mode this work [38]
B(K(1270)e*e™) (211 £0.82*083)x 1070 (2571109 x 107
BK (1270t ) (2.10£0.81704) x 1070 2.1%5:2+09) x 1070
BK(1270)t%77) (042 £0.21701H) x 107 (0.8*53700) x 1077
B(K,(1400)e*e™) (1.1 £0.4702) x 1077 (09703152 x 1077
BK (1400t ™) (1.0 £ 04703 x 1077 (0.673%08) x 1077
B(K1(1400)r*77) (0.3 02701 x 1078 (0.1730+09) x 1078

Table 4.7: Experimental values of the inclusive branching fractions of B — s¢*¢~ obtained
from HFAG. The first values are the published averages from reference [67], and the second
values are the preliminary averages[68].

mode [67] [68]

BB — Xsete?) (4T7£13)x107° (456 £ 1.15%033) x 107°

BB - Xgutp™) (43+£12)x 107 (1.91+1.02*)1%) x 107

BB — XH) (45+1.0)x107% (333 +0.80%)1) x 107
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BRIO®

Figure 4.24: The 6k, dependence of the branching ratios of B — K;(1270)e*e” (black-
solid), B — K (1270)u*u (red-solid), B — K;(1400)e*e” (black-dashed) and B —
K1(1270)u* u~ (red-dashed) channels. The horizontal line at 1.91 is the new average for inclu-
sive B — X u*u~ decays[68].
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Figure 4.25: The 6k, dependance of the ratios(R) of branching fractions R =

B(B—K;(1270)e"e”) _ B(B—K;(1270)utu™)
m(black—dashed) and R = W(red-daﬂled).
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In conclusion, the form factors of (K4 p)|J/,|B) matrix elements are calculated using three
point QCD sum rules approach. The ¢* behaviors of the form factors of B — Kja.pt+~
transitions are analyzed. Considering the axial vector mixing angle ,, the form factors of
B — K;(1270,1400)¢* ¢~ transitions, i.e. transitions into physical states are analyzed, and
their dependance on the mixing angle 6k, at ¢> = 0 are obtained. Using these results, the
branching fractions into final leptonic states are estimated. It is concluded that the transitions
B — K1(1270, 1400)¢* ¢~ can be observed at LHC and further B factories and measurements

on the mixing angle Ok, can be performed.
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CHAPTER 5

CONCLUSION

In this thesis, the QCD sum rules approach, which is one of the powerful non-perturbative
methods, is discussed and reviewed, and then applied to semileptonic B — K;(1270){*¢~ and

B — K(1400)¢* ¢~ decays.

To study the semileptonic decay of B meson to K;(1270, 1400) states, using the definition
of Ki4(13Py)-K;(1' P) mixing, or alternatively the so called K; mixing, the method to apply

sum rules to axial vector K; states is discussed.

Instead of decays into physical states, starting with the decays into ideal states (G-parity
eiegen states), the form factors of (K p)lJ,|B) matrix elements are defined. The matrix
elements are re parameterized and their connections to the ones in literature are also pre-
sented. Starting with axial vector and tensor interpolating currents, which only couple to K4
and K p states respectively in S U(3) limit, the transition form factors of the matrix elements
(K14lJ,|B) and (K p|J,|B) are found. The results for these form factors are fitted to functions
coinciding in the region —10GeV? < ¢*> < —2GeV?. The results for form factors are explored
to physical region and their ¢*> dependencies are shown explicitly. Hence contributions of
non-Landau type singularities in the region ¢> > 0 to spectral densities are eliminated. It is
shown that the form factors of (K4|J,|B) and (K| g|J,,|B) matrix elements are opposite in sign,

in agreement with the ones found by applying light-cone QCD sum rules in literature.

Then, the form factors of B — K[(1270)(*¢~ and B — K;(1400)£*¢~ transitions are

obtained following the definition for My, the K|-mixing matrix. For the form factors of

78



B — K (1270, 1400)¢* ¢~ decays, the 6k, dependance of the form factors are analyzed. It is
shown that for some regions in the predicted 0, region, some of the form factors are changing

their signs. As a result it is concluded that the mixing angle 6k, should be more investigated.

Finally, the branching fractions B — K;(1270)¢*¢~ transitions with final lepton pairs
being ete”, u*u~ and t7~ are estimated. It is found that branching fractions of B —
K1(1270)¢* ¢~ decays are bigger than B — K;(1400)¢*¢~ decays, as expected. The results
found for branching ratios can be confirmed in forthcoming B experiments like LHCb in LHC

and SuperB in ILC.

The results found in chapter 4 are published in:

e Hiiseyin Dag, Altug Ozpineci and Mehmet T. Zeyrek, " The Semileptonic B to K1(1270, 1400)
in QCD Sum Rules”, submitted to PRD, arXiv:1001.0939 [hep-ph].
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