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ABSTRACT

DEVELOPMENT OF A CLOSELY COUPLED APPROACH FOR SOLUTION OF
STATIC AND DYNAMIC AEROELASTIC PROBLEMS

Baskut, Erkut
M.S., Department of Aerospace Engineering
Supervisor : Asst. Prof. Dr. Gli¢lii Seber
Co-Supervisor : Assoc. Prof. Dr. Altan Kayran
June 2010, 136 pages

In this thesis a fluid-structure coupling procedure which consists of a commercial flow
solver, FLUENT, a finite element structural solver, MSC/NASTRAN, and the coupling
interface between the two disciplines is developed in order to solve static and dynamic
aeroelastic problems. The flow solver relies on inviscid Euler equations with finite volume
discretization. In order to perform faster computations, multiple processors are parallelized.
Closely coupled approach is used to solve the coupled field aeroelastic problems. For static
aeroelastic analysis Euler equations and elastic linear structural equations are coupled to
predict deformations under aerodynamic loads. Linear interpolation using Alternating
Digital Tree data structure is performed in order to exchange the data between structural and
aerodynamic grid. Likewise for dynamic aeroelastic analysis, a numerical method is
developed to predict the aeroelastic response and flutter boundary. Modal approach is used
for structural response and Newmark algorithm is used for time-marching. Infinite spline
method is used to exchange displacement and pressure data between structural and
aerodynamic grid. In order to adapt the new shape of the aerodynamic surface at each
aeroelastic iteration, Computational Fluid Dynamic mesh is moved based on spring based
smoothing and local remeshing method provided by FLUENT User Defined Function.
AGARD Wing 445.6 and a generic slender missile are modeled and solved with the
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developed procedure and obtained results are compared with numerical and experimental

data available in literature.

Keywords: Computational Aeroelasticity, Closely Coupled Approach, Computational Fluid
Dynamics, Finite Element Analysis, Flutter, AGARD Wing 445.6, Slender Missile
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STATIK VE DINAMIK AEROELASTIK PROBLEMLERIN COZUMU iICIN SIKI
BAGLI YAKLASIM METODU GELISTIRME

Baskut, Erkut
Yiiksek Lisans, Havacilik ve Uzay Miihendisligi Bolimii
Tez Yoneticisi : Asst. Prof. Dr. Giiglii Seber
Ortak Tez Yoneticisi : Assoc. Prof. Dr. Altan Kayran
Haziran 2010, 136 sayfa

Bu tezde, statik ve dinamik aeroelastik problemlerin incelenmesi igin, ticari akis ¢oziiclisii
FLUENT, sonlu elemanlar yapisal ¢oziiclisi NASTRAN ve bu iki disiplini birbirine
baglayan arayiizii i¢eren bir yontem gelistirilmistir. Akis, viskozitenin ihmal edildigi Euler
denklemleri ve sonlu hacim methodu kullanilarak ¢6ziilmiistiir. Coziim siiresini kisaltmak
icin paralel islemciler kullanilmistir. Eslestirilmis alan aeroelastik problemler siki bagh
yaklagim ile ¢Oziilmiistlir. Statik aeroelastik analizde, aerodinamik yiikler altinda olusan
yapisal bozulmalarin hesaplanmasinda, Euler denklemleri ile elastik dogrusal yapisal
denklemler eslestirilerek beraber ¢oziilmiistiir. Yapisal ve aerodinamik ¢oziim aglarinda
bilgi aligverisini saglamak i¢in, dogrusal interpolasyon kullanan Alternating Digital Tree
veri yapist kullamilmistir. Dinamik aeroelastik analizler icin de, aeroelastik tepkileri ve
flutter siirlarin1 ongorebilmek icin bir sayisal yontem gelistirilmistir. Yapisal tepki icin
modal yaklagimi, zaman ilermesi i¢in Newmark algoritmasi kullanilmistir. Aerodinamik ve
yapisal ¢oziim aglar arasindaki deplasman ve basing veri aligverisi sonsuz egri cetveli
metodu kullanilarak gerceklestirilmistir. Hesaplamali Akigkanlar Dinamigi ¢oziim ag;,
FLUENT Kullanic1 Tanimli Fonksiyon Modulii kullanilarak yay prensibi ve yerel ¢oziim
aglar1 olusturma yontemi ile her bir aeroelastik hesaplama adiminda, aerodinamik yiizeyin

yeni sekline uyacak sekilde hareket ettirilmistir. AGARD 445.6 kanadi ve narinlik orani
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yiiksek bir fiize geometrisi modellenmis, gelistirilen yontem ile ¢oziilerek, sonuglar deney

verileri ve literatiirde bulunan sayisal ¢oztimler ile karsilastiriimistir.
Anahtar Kelimeler: Hesaplamali Aeroelastisite, Siki Bagli Yaklasim, Hesaplamali

Akigkanlar Dinamigi, Sonlu Elemanlar Analizi, AGARD 445.6 Kanadi, Narinlik Orani
Yiksek Fiize
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CHAPTER 1

INTRODUCTION

Aeroelasticity is the study which considers the interaction of inertial, structural and
aerodynamic forces for elastic structures. Air-vehicle is usually susceptible to serious
aeroelastic problems when light weight and low stiffness structures are used. Increasing
rigidity does not necessarily avoid catastrophic failure when sudden atmospheric
disturbances, gusts, moving shock waves, etc. occur during the flight. Aeroelastic
problems should be considered in the early phase of the air-vehicle structural design
since any unstable response to aerodynamic loading may rapidly lead to disastrous
structural failure, which may only be treated by major and usually expensive
modifications. Wind-tunnel or flight tests are two expensive ways which are performed
in the late phase of the design. Therefore, computational aeroelasticity methods are used
in order to determine aeroelastic characteristics of the air-vehicle during its development

stages.

Collar’s aeroelastic triangle (Figure 1.1) shows the interaction of the inertial, structural
and aerodynamic forces. Static aeroelasticity studies the interaction of aerodynamic and
elastic forces, whereas dynamic aeroelasticity requires all of the three forces to interact.
The interaction between these forces may cause several undesirable phenomena which

can be grouped into two main categories as static and dynamic aeroelasticity.

Static aeroelasticity considers the non-oscillatory effects of aerodynamic forces acting
on the elastic structure [41]. Because of the flexible nature of the structure,

aerodynamic forces acting on the structure give rise to structural deformation. This



deflection of the structure tends to redistribute the aerodynamic forces acting on the
structure and this interaction continues by leading to each other. Calculated load
distribution may be significantly different from that is computed for rigid structure. The
effectiveness of the control surfaces is also reduced due to the static aeroelastic effects
and it eventually leads to the phenomenon of control reversal which is the loss of the
response of a control surface because of the structural deformations. Divergence is
another disastrous phenomenon where the aerodynamic moments due to elastic
deformations overpower the elastic moments of the structure, bringing the structure to

the limit loads and eventually structural failure.

Dynamic aeroelasticity is concerned with the oscillatory effects of the aerodynamic
forces [41]. Flutter is the main area of interest of the dynamic aeroelasticity. This
dynamic instability involves the interaction of aeroelastic modes of the structure leading
to unfavorable coupling of inertial, aerodynamic and elastic forces. Flutter can be
defined as the unstable self-excited oscillation in which the structure gains energy from
the air-stream and leads to catastrophic structural failure. Because of the unsteady
aerodynamics when the air-vehicle oscillates particularly in the transonic regime,
prediction of flutter is one of the most complicated issues in computational

aeroelasticity.

Buffeting, dynamic response and dynamic stability are the other phenomena covered by
dynamic aeroelasticity. Buffeting can be defined as the transient vibration of the aircraft
components due to aerodynamic impulses produced by the wake behind wings, nacelles,
fuselage pods or other components of the airplane [42]. Transient response of the
structure due to impulsive loads (gusts, etc.) can be defined as the dynamic response.
Dynamic stability of an air-vehicle may also be affected by the change in the shape of

the structure due to unsteady aecrodynamic forces.
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Figure 1.1 Collar’s Aeroelastic Triangle

Different levels of complexity may be used in order to model the fluid and structure in
computational aeroelasticity as can be seen in Figure 1.2. In general, as the complexity
in physics and geometry increases, so does the accuracy of the obtained results and

computational time.

Linear analytical methods, which are used in aeroelastic problems, give insufficient
results, particularly in the transonic regime where the aerodynamic flow displays highly
non-linear behavior. These methods cannot predict the non-linear characteristics and
instabilities correctly because of the nonlinear effects arising from oscillating shock
waves at this flight regime. Linear theories, which are commonly used in aeroelasticity,
are based upon small perturbation theory and thin airfoil theory where the effect of
compressibility is introduced in a limited fashion using simple corrections. Transonic
small disturbance theory is proved to be an effective method to predict the flutter
boundaries accurately at subsonic and supersonic flight regime. However, it cannot

predict the dip accurately at transonic flight regime where significantly higher flutter



speed is predicted [36]. Most of the commercial codes such as the aeroelastic module of

NASTRAN utilize these linear acrodynamic theories to predict the aeroelastic behavior.

Accuracy of aeroelastic modeling can be improved by using high level aerodynamic
models based on the conservation laws and finite element formulation of the structure.
These methods fully account for nonlinear effects during aeroelastic analysis, which
results in more accurate prediction of aeroelastic response and instabilities. Continuity,
momentum and energy conservation laws together with the equation of state are
generally utilized by CFD methods in order to solve the flow around air-vehicles. The
Navier-Stokes equations may also be solved for viscous flows. Euler equations, which
assumes inviscid flow is reduced form of Navier-Stokes equations and gives acceptable
results in the transonic regime excluding the region of transonic dip [36]. Transonic dip
is important, because it shows the minimum velocity at which flutter may occur across
the flight envelope. The flow may be assumed to be inviscid or viscous effects may be
included in order to determine the aeroelastic characteristics when these nonlinear
models are used. Coupling Euler equations and normal modes of the structure is found
to be over-conservative and significantly lower flutter speed is predicted [36]. Including

the viscous effects is found to improve the prediction of transonic dip [44].
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Figure 1.2 Varying Levels of Complexity in Modeling for Fluids and Structures [12]

The main objective of this thesis is to develop an interference between the two
disciplines, namely the structural dynamics and aerodynamics, in order to determine

static and dynamic aeroelastic properties of air-vehicles.

The most of the structural deformation on the body takes place because of pressure
forces on the body rather than friction forces. In order to decrease the computational
cost, Euler equations are used for CFD, whereas 3-D finite element method is used for

the structural analysis.



1.1 LITERATURE REVIEW

In this part of the dissertation, details and literature review of time advancing schemes,
mesh deformation methods, and interference methods which are commonly used in

computational aeroelasticity are given.

1.1.1 Time Advancing Schemes

There are three major methods which are used to advance in time for fluid-structure
simulation: monolithic approach, closely coupled approach, and loosely coupled

approach [28].

In the monolithic approach, fluid and structure governing equations are combined into
one single equation set and these equations are solved using a unified solver
simultaneously. The main advantage of this approach is that fluid and structure are
synchronized while advancing a single time step so that fully consistent coupling is
preserved. This leads to robustness and stability and allows large time steps to be

chosen.

When loosely and closely coupled approach is used, the structural and fluid equations

are solved by using separate solvers.

In the closely coupled approach, fluid and structure systems are also synchronized at
each time step. A partitioned scheme is used for synchronization where fluid and
structure solvers are separate. Fluid loads and structural displacements are exchanged
within a single time step. In this approach, sub-iterations are performed until the fluid

and structure systems are fully converged at each time step. The main advantages of the



closely coupled approach are synchronicity property and algorithmic flexibility for

physically different systems.

The loosely coupled approach is also a partitioned scheme. But, the fluid-structure
system is not sub-iterated to full convergence at each time step. The main disadvantage
of this method is that the fluid and structure solution updates are lagged. This method is
usually used for the aeroelastic problems with moderate nonlinearity. The two systems
are never fully in phase. This introduces a temporal error in addition to the truncation
error of the fluid and structure interference schemes. Partitioned approach and small
computational expense per time step are the advantages of the loosely coupled approach

[28].

Liu et al. [4] presented a fluid-structure code, which is based on Euler/Navier-Stokes
equations, in order to determine the flutter characteristics. The flow solver and structural
modal equations are strongly coupled with each other. In order to avoid time delay

between flow and structural system, a dual time stepping scheme was used.

Schuster [33] coupled the linear structural model with the 3-D flow solver in order to
solve the aeroelastic problems of an aircraft. The linear generalized mode shapes for

structural model and thin layer approximations to the RANS equations were used.

Melville et al. [39] presented a fully coupled approach, which modal structural equations

are coupled with a flow solver using an approximate factorization scheme.

Lee-Rausch and Batina [34] coupled implicit, Euler and Navier-Stokes equations with a

modal structure solver.

Guruswamy and Byun coupled Euler equations with finite element structures which is
modeled by using plate elements; and Navier Stokes equations with finite element
structure which is modeled by using shell elements to solve dynamic aeroelasticity

problems [15], [48].



Doi [40] coupled an explicit fluid solver (TFLO) with the finite element structure solver

(MSC/NASTRAN) to predict the aeroelastic characteristics of a rotor blade.

Bendiksen [31] used the ‘Arbitrary Lagrangian Eulerian formulation’ to solve the wing
flutter problem of an airfoil in the transonic regime. Interference between two systems is
performed by switching from Euler description to Lagrangian description at fluid-

structure interface.

Alonso and Jameson [30] coupled Euler code with a modal pitch-plunge structural
model of an airfoil. Information between CFD and CSD domains was exchanged at the
each pseudo time integration and the entire system was fully converged at each physical

time-step.

Luca et al. [32] presented a loosely coupled approach where aerodynamic and structural
systems are integrated with an implicit algorithm. An implicit Euler flow solver was
used for the aerodynamics and the structure was represented by a modal description.
Predictor and corrector steps based on Crank-Nicholson algorithm were used at each
time step. Displacement values, which are predicted in the first step, corrected with the

new unsteady aerodynamic loads in the second step of the procedure.

1.1.2 Mesh Deformation Methods

Mesh deformation in computational aeroelasticity applications is one of the important
aspects and therefore it must be handled carefully. In order to represent the deformation
of the structure during the aeroelastic simulation, aerodynamic grid must be deformed
consistently and mesh quality must be maintained to avoid any numerical problem.

Simply deforming the CFD grid is considerably cheaper and more convenient than



remeshing of the entire CFD domain; therefore it is commonly used in computational

aeroelasticity.

In literature, several techniques exist in order to apply mesh deformations consistent

with the motion of the structure in the CFD domain.

Batina [7] proposed a method, which is based on the spring analogy, for unstructured
grids. In this method, spring stiffness of an element edge is assigned to be inversely
proportional to the edge length. Spring analogy is implemented easily but it is not robust
since especially under large deformations cells collapse in the computational domain

resulting in singularities in the flow solution.

Farhat et al. [8] proposed a modification to the spring analogy for 2-D meshes by
including additional torsional springs in order to control mesh skewness. This method

offers many advantages in terms increased robustness and performance.

Murayamai Nakahashi and Matsushima [9] expanded the use of torsional springs for 3-

D unstructured meshes.

Robinson et al. [10] presented an extension of the spring analogy for structured grids.
The deformation algorithm was based on a network of interconnected springs in edges
of the hexahedral cell. However, it was concluded that this method was computationally

expensive.

Zhang and Belegungu [11] calculated the spring stiffness using the ratio of the cell
Jacobian to the cell volume. They concluded that this algorithm can handle large mesh

deformation.

Lohner and Yang [19] proposed a method based on Laplacian smoothing with variable

diffusivity according to distance from surface.

Tezduyar and Behr [13] proposed a mesh deformation algorithm based on linear
elasticity. Cavallo et al. [14] included additional stress terms and use minimal residual

algorithm to solve equations of linear elasticity and concluded that their approach can



preserve mesh quality for large boundary deformations. Stein et al. [16] used this
method with varying elastic stiffness which is proportional to cell volumes. They
concluded that mesh quality in boundary-layers and regions of high resolution is

preserved.

For the aerodynamic shape optimization study, Nielsen and Anderson [27] also applied
the linear elastic analogy. They defined the mesh material stiffness according to the cell
aspect ratio so that mesh is not deformed near the moving boundary as much as cells

farther away from the boundary.

1.1.3 Interference between CFD and CSD Grids

Computational aeroelasticity requires a fluid-structure interface to transfer the
aerodynamic loads and structural displacements at this common boundary, which is
usually the wetted surface on the structure. The aerodynamic and structural grids
generally do not coincide and not lie on the same surface since the requirements are
different for the corresponding systems. Therefore, interpolation of aerodynamic
pressure loads and displacements must be implemented between the two systems by a
carefully implemented method. The performance of such a method depends on the
accuracy and robustness of the interpolation scheme. Several studies in the literature
raised the importance of conservation of momentum and energy in the transfer of loads
and displacements [28]. If the transfer of structural grid displacements to the fluid grid is

defined as:

[5,1=[s]5.] (1.0

The force transformation from the aerodynamic to structural grid uses the virtual work

principle [47]. In order to transfer aerodynamic pressure loads from the CFD grid points
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to the CSD grid points, transpose of the displacement transformation matrix, which

ensures a conservative transfer of energy between the two systems, is used.

7 ]=[sT{F.] (12)

Prediction of complex dynamic aeroelastic phenomena such as flutter and limit cycle
oscillation is sensitive to the conservation properties. An imbalance in energy transfer

between the fluid and structure systems causes instability and must be avoided [28].

There are also some studies which does not need any interference algorithm between the
two different disciplines. The nodes at the surface of the CFD are also the elements of
structural finite element model. Thus, same surface grid may be used for the flow and
structural analyses. Data exchange between the two systems is performed at this
matching discrete interface without using any interpolation algorithm. Bendiksen and
Hwang [29] proposed a finite element algorithm for both CFD and CSD equations and

used the same surface grids for the flow and structural analyses.

The infinite plate spline method which is commonly used in aeroelasticity was firstly
proposed by Harder and Desmarais [22]. This method is suitable for displacement and

force transfer of wing-like components which is modeled by plate or shell elements.

Duchon [17] presented thin plate spline method for interpolation of displacements and
forces at 3-D structural grid points. Only difference from the infinite spline method is

the addition of the out of plane component.

The beam spline method is used for body-like components or high aspect ratio wing
structures which are modeled by beam elements. The beam spline method solves the
partial differential equation of equilibrium for an infinite beam with uniform bending

and torsion stiffness [20].

Luca et al. [32] proposed an interfacing method based on least square method which
ensures the conservation of energy and momentum transfer between the structure and

fluid systems.

11



CHAPTER 2

COMPUTATIONAL AEROELASTICITY

Computational Aeroelasticity (CAE) may be defined as the coupling of CFD methods
with structural dynamics formulations in order to model an aeroelastic system and
perform analysis. Accuracy of the aeroelastic analysis depends on the selection of
computational methods, interpolation schemes, and mesh deformation methods. In this
part, some details of the interaction between the two disciplines, the flow and the
structural finite element solvers, mesh deformation techniques, and interpolation

methods that have been investigated as a part of this research are presented.

2.1 TIME ADVANCEMENT SCHEME

In the present study, a closely coupled approach is used for time advancing as illustrated
in Figure 2.1. In this approach, at each time step corrective sub-iterations are performed
until the fluid and structure are synchronized and the entire aeroelastic system is fully
converged. Then, new unsteady aerodynamic loads and corresponding structural
displacements are calculated for the next time step. This process is repeated until a

specified flow time is reached.

12
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Figure 2.1 Closely Coupled Approach

2.2 MESH DEFORMATION METHODS

In this part, details of mesh deformation methods based on FLUENT mesh deformation
algorithm and linear elastic finite element based deformation method which can be
implemented by using any structural finite element program are given and some test

cases are presented.

2.2.1 FLUENT MOVING MESH ALGORITHM

FLUENT consists of three mesh deformation methods which can be used to update the
volume mesh in the deforming regions at the boundaries subject to the motion [6]. These

methods are called as spring-based smoothing, dynamic layering and local remeshing.

In the spring-based smoothing method, the edges between any two mesh nodes are

idealized as an interconnected springs which form a network. A displacement at a given

13



boundary node will generate a force proportional to the displacement along all the
springs connected to the node [6]. Spring-based method preserves mesh connectivity but
needs large amount of CPU time and memory. It is also limited to relatively small
deformations when it is used as a standalone mesh deformation scheme. The spring-
based smoothing, of which details are given in [6], is shown in Figure 2.2 for a

cylindrical cell zone where one end of the cylinder is moving.

Figure 2.2 Spring Based Smoothing on Interior [6]

The second method, dynamic-layering, can be used in prismatic (hexahedral or wedge)
mesh zones in order to add or remove layers of cells adjacent to a moving boundary,

based on the height of the layer adjacent to the moving surface [6].

The third method is remeshing. The cell quality may deteriorate and cells may become
degenerate if the boundary displacement is large compared to the local cell sizes. This
leads to negative cell volumes which results in convergence problems in flow solution

[6]. Remeshing can eliminate the collapsed cells, but adds extra computational costs.

14



FLUENT locally replaces the degenerated cells until the new cells or faces satisfy the
size and skewness criterions [6]. FLUENT includes several remeshing methods. These
include local remeshing, local face remeshing, face region remeshing and 2.5 D surface
remeshing [6]. The available remeshing methods in FLUENT work for triangular or
tetrahedral zones. As cells are added or removed, connectivity changes during the

deformation process.

The two-dimensional mesh, which is used for a test case, has a total of 7,364 triangular
elements and 37,688 nodes. The grid density is high near to the airfoil leading and
trailing edges. The baseline mesh with unstructured triangular elements is shown in
Figure 2.4. The chord of the airfoil NACAO0010 (Figure 2.3) has a length of 40 units. In
order to determine proper mesh deformation parameters which allow maintaining mesh
quality and representing the structural deformation correctly, 2-D mesh is deformed in
two different ways. Firstly, airfoil is translated by chord/2 in the x direction. Secondly,

airfoil is rotated 45° about the leading edge.

A
(@]
S | T
=
NACA 0010
4
< 40 >

Figure 2.3 3-D Wing Planform and Airfoil Cross-section Used for Mesh Deformation
Studies
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Figure 2.4 Two-Dimensional Triangular Mesh Used as a Test Case for Deformation
Studies

Figures 2.5 and 2.6 show the mesh patterns obtained from the FLUENT mesh deforming
process for the two deformation cases, respectively. Since FLUENT deforms the mesh
according to the pre-defined parameters, skewness and cell size of the grids are kept
under control during the deforming process. As can be seen in Table 2.1, mesh quality is

preserved almost completely after the deformation process.
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Figure 2.5 Translation of airfoil by chord/2 unit in the x-direction (blue: initial position
of the airfoil)
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airfoil)

17



Table 2.1 FLUENT 2-D Mesh Deformation Test Case Results

Number | Maximum Maximum | Maximum

of Cell Cell Cell

Triangular | Equiangle Equisize Aspect

Cells Skew Skew Ratio

Base Grid 7364 0.434 0.467 1.562
0.5*chord Translation 7364 0.434 0.465 1.558

45° Rotation About

Leading Edge 7758 0.584 0.450 1.540

The three-dimensional mesh, which is used for a test case, has a total of 833,772
tetrahedral elements. The baseline mesh with unstructured tetrahedral elements and
created planes which help to observe the grid quality during deformation process are
shown in Figure 2.7 and 2.8, respectively. Mid-plane is located at the middle of the root

chord location of the swept wing. Geometrical properties of the wing are shown in

Figure 2.3.

symmetry-plane

mid-plane

Figure 2.7 Three-Dimensional Triangular Mesh Used as 3-D Test Case for Deformation
Studies
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In order to determine proper mesh deformation parameters, which allow maintaining
mesh quality and representing the structural deformation correctly, wing is deformed in-
z-direction with varying magnitudes. The magnitude of the deflection at the wing tip is

3% of the wingspan. It linearly decreases towards to the wing root, up to zero value.
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Figure 2.8 Initial Mesh Patterns at Symmetry and Mid Planes of the 3-D Test Case for
Deformation Studies
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Figure 2.9 Initial and Final Position of the 3-D Test Case Wing and Mesh Patterns at the
Mid-Plane
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As can be seen from Figures 2.9 and results shown in Table 2.2, deformed grid has good
quality that may avoid any numerical problems during the CFD simulation. Cell
skewness and aspect ratio values are almost preserved during the deforming process.
Number of element increases, since FLUENT replaces the collapsed or deteriorated cells

with new cells in order to maintain the quality of the mesh.

Table 2.2 FLUENT 3-D Mesh Deformation Test Case Results

Maximum Maximum | Maximum
Number of
Cell Cell Cell
Tetrahedral . -
Cells Equiangle Equisize Aspect
Skew Skew Ratio
Base Grid 833772 0.814 0.785 3.452
Maximum tip deflection
(3 % of the Wingspan) 855625 0.813 0.765 3.440

2.2.2 LINEAR ELASTIC FINITE ELEMENT BASED MESH DEFORMATION
METHOD

In this method, an analogy is used and the CFD computational domain is defined as a
finite element mesh for a domain of an isotropic linear elastic continuum with a local
Young modulus inversely proportional to the cell volume of each element. In order to
obtain the deformed CFD mesh, the outer boundaries of the CFD domain are held fixed.
And structural displacements at each boundary node are used as the boundary condition
for the finite element analysis. The resulting equations are then solved using
MSC/NASTRAN finite element program. Main objective of this method is to use of the
available finite element based structural solver. This method preserves mesh
connectivity and allows fixed outer boundary of the computational domain which can be

easily implemented for deforming-boundary CFD calculations. In this method, cell
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skewness and size parameters cannot be controlled during the deformation in order to
preserve or improve mesh quality. This is the main disadvantage of linear elastic finite

element based mesh deformation method.

The mesh deformation is obtained by a single linear elastic finite element analysis with
fictitious non-uniform elastic properties. In order to control the mesh movement, the
Young’s modulus E is defined as Eqn 2.1. Poisson’s ratio v, is assumed to be zero for

convenience. Large cells far from moving boundary are intentionally softened.
E=cf(K) (2.1)

Where; K is a function which decreases with the cell volume in CFD domain and c is a
constant parameter which controls the stiffness level of the cells. In this study, choosing

c value as 10* gives satisfactory results.

In order to examine deformed mesh quality after deformation process, a 2-D mesh
(Figure 2.4) is deformed in two different ways. Firstly, airfoil is translated by chord/2
unit in the x direction. Secondly, airfoil is rotated 45° about the mid-chord. Figures 2.10
and 2.11 show the mesh patterns obtained from the finite element based mesh deforming

process for the two deformation cases.

It can be concluded that, artificial material stiffness property created in finite element
based deformation method with varying elastic properties according to the cell volume
can be implemented for mesh deformation problems. As can be seen, no overspill is
observed in the results. But, since cell skewness and cell size parameters cannot be
controlled, mesh quality decreases especially for large boundary deformations during
the deformation process (Table 2.3). On the other hand, number of triangular elements
and cell connectivity does not change during the deformation process since no mesh is

removed or added to the domain.
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Figure 2.10 Translation of airfoil by chord//2 unit in the x direction
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Figure 2.11 Rotation of airfoil by 45° about the mid-chord (blue: initial position of the
airfoil)
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Table 2.3 Linear Elastic Finite Element Based Method 2-D Mesh Deformation Test
Case Results

Number | Maximum | Maximum | Maximum
of Cell Cell Cell
Triangular | Equiangle Equisize Aspect
Cells Skew Skew Ratio
Base Grid 7364 0.434 0.467 1.562
0.5*chord Translation 7364 0.462 0.486 1.600
45° Rotation About Mid-chord 7364 0.531 0.700 2.310

Since quality of the mesh can be easily controlled and preserved according to the pre-

defined parameters, FLUENT moving mesh algorithm will be used for the further static

and dynamic aeroelastic analyses.

2.3 INTERFERENCE BETWEEN CFD and CSD GRIDS

In this part, three interpolation techniques are described: Linear Interpolation Method

using Alternating Digital Tree (ADT) geometric search algorithm, which is used in

static aeroelastic analysis, thin plate spline method and infinite spline method, which is

used in the dynamic aeroelastic analysis.
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2.3.1 Linear Interpolation using Alternating Digital Tree Data Structure

Data structures such as binary tree, quad tree, oc tree, etc., convert the unstructured form
of data into structured form in order to speed up the search process. These algorithms
impressively decrease the searching and sorting time when they are used for mapping

applications in computational aeroelasticity.

Alternating Digital Tree (ADT) is a spatial binary tree data structure used for searching
and sorting data operations. In order to construct ADT, firstly a root domain is defined.
An element is assigned to one of two branches based upon the geometric conditions
which are satisfied by the bounding box of that element. This procedure is repeated for

all the elements in the domain and finally an Alternating Digital Tree is built up.
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Figure 2.12 Alternating Digital Tree Construction
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Mesh data is stored in a form of Alternating Digital Tree and used for interpolation
procedure. In Figure 2.12, the first point “a” is the root of the binary tree and the whole
domain. Point “b” is the in the region that is on the right half of “a”’s domain.
Therefore, “b” is placed as the right child of “a” that is it is on the right side of the
bisector of the region. Point “c” is on the right side of the domain. But point “b” is
already been assigned to this region, thus point “c” is tested for whether it is on the left
or right of the new bisector of “b’’s region. These steps are repeated for the all points in

the domain.

Figure 2.13 Alternating Digital Tree Search

In Figure 2.13, a sample ADT search steps are shown. In order to search the points lying
within the rectangular shaded region, firstly, the whole domain (a) is tested whether it
lies within the rectangular region. The regions corresponding to its left and right son (b
and f) are tested whether they overlap with rectangular region. The region which
overlaps the rectangular region is tested if associated point lies within the rectangular
region. Then, its own left and right sub-regions are tested for intersection. These steps

are repeated until all nodes have been tested.
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The sub-regions of the right son of “a” does not overlap with the rectangular region.
Therefore, it is unnecessary to search the test points “g” and “h” since their sub-regions
lie within their parent’s region. By this method, each search step impressively reduces
the number of points to be checked by a factor of two, resulting in reduced search time

by amount of the logarithm of the number of points.

In the present static aeroelastic analyses, Alternating Digital Tree (ADT) geometric
search algorithm (ADTSearchln) and linear interpolation method developed in [25] is
used to transfer displacement and pressure data between the two grid systems. This
study [25] creates ADT for a given region described by its points (source), searches for
surface elements which enclose the specified points (target), and evaluates values of

variable by linear interpolation.

In Figures 2.14 and 2.15, examples of building up ADT for AGARD Wing 445.6 and
Basic Finner Rocket are shown, respectively. As can be seen, generated digital trees are

concentrated near to the grid boundaries of the structure.
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Figure 2.14 Building up Alternating Digital Tree Search for AGARD Wing 445.6
Structural Model (left: CSD grid, right: overall ADT brick)

1
[T

Figure 2.15 Example of ADT Built with the Points of the Grid Boundaries for 3-

Dimensional Basic Finner Rocket [25]
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Linear interpolation is conducted using the Inverse Distance Weighting (IDW) method.
Aerodynamic grid points are projected on the structure surface as shown in Figure 2.16.
Then, structural element which aerodynamic grid point lies within is defined for each
aerodynamic node. The degree of influence of the each structural grid of the
corresponding element is calculated by Eqn 2.2, which is based upon the weighted
distance of the aerodynamic grid node from the grid points of the structural element. In
other words, points that are closer to the node will have greater degree of influence on

the calculated value than those that are farther away.

5, = (51 Lististas, ij( AkElELE J (2.2)

n
4 r, r, r, \n.r.r, +n.r.r, +r.r,.r,

where n represents the aerodynamic grid point and o is the variable that is interpolated

from CSD grid nodes to CFD grid nodes.

CFD Mesh

Figure 2.16 Illustration of Projections of CFD Grid Points on the CSD Surface and
Linear Interpolation

Similarly, linear interpolation from CSD grid to CFD grid is used by Eqn 2.3 and
illustrated in Figure 2.17.
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Figure 2.17 Illustration of Projections of CSD Grid Points on the CFD Surface and
Linear Interpolation

Results of linear interpolation using ADT data structure are shown in Figures 2.18-2.20.
It can be concluded that, using linear interpolation gives admissible results and ADT

search algorithm dramatically reduces the interpolation time.

A A

Figure 2.18 Out-of-Plane Deformation Interpolated from CSD (left) Grid to CFD (right)
Grid (Linear Interpolation Method using ADT Algorithm)

29




Figure 2.19 Pressure Interpolation from CFD (left) Grid to CSD (right) Grid (Linear
Interpolation Method using ADT Algorithm)

Basic Finner - Model-1 - (Triangular Surface Mesh) - For CFD H Basic Finner - Model-1 - (Triangular Surface Mesh) - For CFD
contour levels from CFD results

Basic Finner - Model-2 - (Quadrilateral Surface Mesh) - for CSD B er - Model-2 - (Quadrilateral Surface Mesh) - for CSD
1

asic Finny
interpolated contour levels from Model-:

Figure 2.20 Application of AdtSearchln to Non-matching Discrete Interfaces between
Fluid and Structure Mesh of Basic Finner Rocket [25]
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2.3.2 Spline Methods

Computational aeroelasticty needs coupling of the aerodynamic force and structural
response. Spline methods provide a spline matrix which relates the displacements of the
structural grids to the aerodynamic grids. Once the spline matrix is generated, the force
can be transferred from aerodynamic grids to the structural finite element grids by the

transpose of the same spline matrix.

2.3.2.1 Infinite Spline Method

The Infinite spline method was firstly proposed by Harder and Desmarais [22], [20],
which is based upon the small deflection equation of an infinite plate. Consider N
discrete structural grid points (x;,yi), for i=1,2,...,N lying within a 2-D domain. Vertical
position of the deformed surface is defined at each grid points. Infinite plane spline
method solves the partial differential equation of equilibrium for an infinite plate with
uniform thickness. The deformation of the infinite plate satisfies the given deflection
wi(X,yi) at the N structural grid points. Once the partial differential equation is solved,
the deflection at other points, for instance the aerodynamic points, on the plate can be

determined [20].

The governing equation of an infinite plate with bending stiffness is:

DV*W =g¢q (2.4)
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where W is the plate deflection, D is the plate bending rigidity, and q is the distributed
load on the plate. Introducing polar coordinates, x = 7 cos@, y = rsin@ so that V* in

polar coordinates is given by [20]:

, 1d| d|1d(| dw
Vi | ——| r—= (2.5)
rdr{ dr{rdr( drﬂ}

Considering the deflection due to a point load P at the origin of the coordinate system, a

solution of Eqn 2.4 can be written as [20]:

W(r)y=A+Br’ + P r’Inr’ (2.6)
162D

where A and B are the undetermined coefficients.

For N point loads at the given location (x;,yi), for i=1,2,,...,N in the 2-D space, the total
deflection can be obtained by superimposing the fundamental solution of Eqn 2.4 such

that [20]:

N
W(x,y)=(4,+Br' + A5 Inr’) 2.7)
i=1
where:
P
A,B,and A, = —— (2.8)
167D

are undetermined coefficients,

and

2

P=(x-x)+(-y) (2.9)
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For the purpose of determining these undetermined coefficients one needs to use certain
information about the solution. For large values of r, one obtains terms of order 77, 7, 1,

1/r, etc., along with terms of order ¥ In r2, rinr, In rz, etc. [20]:

N N N
W(r,0)=rInr*Y. A +r*Y. B —2rinr’> (x,cosd + y, sin@)A,
i=1 i=1 i=1

. (2.10)
—2rY (x,cosO+ y sin@)A + B )+1Inr>> (x> = y? )4, +...

i=1

For removing the singularity at r=o0, coefficients of the terms of order rz, ¥ In rz, and r

In ¥’ must vanish. This gives [20]:

> 2,=0 (2.11)
N

> x4 =0 (2.12)
i=1

N
>y A, =0 (2.13)
i=1

> B =0 (2.14)

Here equation 2.11 can be recognized as the discrete force equilibrium equation that
eliminates terms of order #’In #”. Eqns 2.12 and 2.13 are discrete moment equilibrium
equations and eliminate terms of order » /n r. Finally, Eqn 2.14 serves to eliminate terms

2
of order 7~.

Linear deflection of the aerodynamic points occurs only if they are located far from the
domain of the structural grid points. A solution to the general spline problem, formed by

superimposing solutions of Eq 2.4, is given by [20]:
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N
w(x,y)=a, +ax+a,y+ . K (x4 (2.15)
i=1

where :
K.(x,y)=r’Inr’ (2.16)
”iz:(x_x,-)z"‘(y_yi)z (2.17)
where :
N
a, =>4 +B (x> + )] (2.18)
i=1
N
a,=-2) Bx, (2.19)
i=l1
N
a,=-2> By, (2.20)

N+3 unknowns in Eqn 2.15 can be determined from application of side conditions found
in Eqns 2.11-2.14 along with setting the deflection at the it point to its known value W
[20].

W =a,+ax, +a,y + ﬁ:KUﬂj fori=12,...N (2.21)
p
where :
K, =rllnr (2.22)
r=x-x)+-y) (2.23)

Equation 2.21 and the side conditions found in Eqn 2.11-2.14 can now be expressed in

matrix form as [20]:
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wi=[Rla}+ |k, {2} (224)

[R] {A}=0 (2.25)
where:
/4 4
W A
wi=< 2 af=17 (2.26)
W, A,
(0 () (7] ]
“ If|x, ||y
{a}=1a, ¢, {R}=]1 KK (2.27)
‘. e
) s ) (s ]

Solving equations 2.24 and 2.25 for {l} and {a} gives [21]:

(h=[kT" - KT RIIRY (KT R [RY [T Jir) 09

a}=[RT [&]'[R]]'[RT [K]" 7} (229)

Letting subscript ‘s’ represents the structural grid and subscript ‘a’ represents the

aerodynamic grid, equation 2.29 can be written as:
.=l f2}+[R, Ka } (2.30)
The transformation spline matrix [S] is needed in the form:

wi=[slw.} (2.31)
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Therefore, {VK} can be factored out of equation 2.29 and the equations can be solved

for [S][21],

SHICR (RN (AN CAN

rJrT R Iy
The elements of [K | and [K_]are defined as:
K,, =7, () (2.33)
K., =r; In(;) (2.34)
where:
re =, =x )+, -»,) (2.35)
re=(x, —x, ) + (v, -y, (2.36)

[Ra] and [RS] are defined by equation 2.27. Displacements and coordinates of the

aerodynamic grid points can be computed from displacements of the structural grid

points with the following:

[5,]1=[s]5.] 2.37)
la]=[q], +[5] (2.38)

where [q]o is the original undeformed grid. The grid coordinate matrices are defined as:
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_Qxl qyl |
9., 4
lq]=] 7 77 (2.39)
_qu qu_

Transformation of the forces from the aerodynamic grid to the structural grid can be
performed by the transpose of [S ] Eqn 2.39 ensures the conservative transfer of energy

between the flow and the structural systems [28].
7 ]=[sTF,] (2.40)

where the force matrix is defined as:

i x1 yl_
F F

[Fl=| = 7~ (2.41)
_FxN F;N_

Aerodynamic grid, which is used in CFD calculations, is three-dimensional. In order to
perform the infinite spline method, it is required that all structural grid points and
aerodynamic grid points are located on the same plane. Therefore, aerodynamic grid

points are projected to the spline plane on which the structural grid points lie, in order to

create the [Ra] matrix. For the infinite spline method, two or more than two structural

grid points can not be located at the same x and y location. Another important is that for
a given set of normal displacements at the structural grid points, the infinite spline
method gives the displacements at the aerodynamic points only in the normal direction

of the spline plane [20].

In Figure 2.21, splined out-of-plane deflection of the first mode from CSD grid to CFD
grid using the spline matrix [S] is showed. The calculated force on the aerodynamic

grid is similarly splined to the structural grid using the transverse of the same spline
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matrix. Total force is calculated for both grids by summing up the forces on the
aerodynamic grid and on the structural grid, respectively. Resulting total forces are the
same for both grids. Also, moments about a point are same for both grids. It can be

concluded that spline conserves the total force and moments on each system [21].

A N

Figure 2.21 Out-of-Plane Deformation of the AGARD Wing 445.6 Splined from CSD
(left) Grid to CFD (right) Grid (Infinite Spline Method)

2.3.2.2 Thin Plate Spline Method

Thin plate spline method is a three-dimensional implementation of the infinite-spline
method. The derivation is entirely analogous with the infinite spline method with the

addition of the third coordinate [20]. Equation 2.7 becomes:

W(x,y,z)=> (4 +Br’ + A’ Inr?) (2.42)

i=1

where:
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RE(x-x) +(y=-y) +(z-z) (2.43)

Boundary conditions at infinity are the same with those of infinite spline method except

the additional moment in the third axis that is presented in the equations.

24,=0 (2.44)
lZi:xiﬂ,[ =0 (2.45)
IZNlly/L =0 (2.46)
iz]:“ziii =0 (2.47)
ZN: B =0 (2.48)

Applying boundary conditions to eliminate the terms of order , #* In /°, and r In r*

gives [20]:
N
w(x,y,z)=a,+ax+a,y+a,z+ ZKi (x,y,2)4, (2.49)
i=1

where:
K. (x,y,z)=r’Inr’ (2.50)
Eqns 2.49 and 2.44-48 can be expressed in matrix form:

wi=[Rla}+|&, |2} (251)
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[R]'{A}=0 (2.52)

where:

/4 4
W A
Wi=1"1 a)=1"" (2.53)
WN ZN
a, BRIERIEAREAR
1
e R ) I B S (2.54)
a2
a, B 1 X)) (% N

The remaining equations are exactly the same as formulated in infinite spline method.
Once the spline transformation matrix [S ] is generated, displacements and coordinates

of the displaced aerodynamic grid can be computed from displacements of the structural
grid with the Eqns 2.37 and 2.38. Transformation of the forces from the aerodynamic

grid to the structural grid can be performed by using Eqn 2.40.

In order to perform interpolation of displacements at 3-D structural grid points, there is
no requirement of spline plane. It is not required that all structural grid points and
aerodynamic grid points are located on the same plane. For the thin spline method, two
or more than two structural grid points can not be located at the location and structural
grid points can not be on the same plane. [20]. In Figure 2.22, an example of splined z-
direction displacement values of a generic missile body from CSD grid to CFD grid

using the spline matrix [S] is showed.
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Figure 2.22 z-direction Displacement Values of the Slender Missile Body Splined from
CSD Grid to CFD Grid (Thin Plate Spline Method)

2.4 FLOW SOLVER - FLUENT

FLUENT being a commercial computer program for modeling fluid flow and heat
transfer for complex geometries, offers general-purpose CFD software for a wide range

of industrial applications including highly automated, specific packages [6].

FLUENT offers complete flexibility in analyses owing to its capability, in solution of
flow problems, to integrate unstructured meshes which can be created easily in complex
geometries. It is a useful tool both in 2-D and 3-D analyses in which various types of
meshes are utilized such as 2-D triangular / quadrilateral, 3-D tetrahedral / hexahedral /
pyramidal / wedge-shaped or a combination of various polyhedral meshes at the same

time in hybrid form.

FLUENT also allows refining or coarsening the grid which is based on the gradient of
the flow variables. FLUENT is written in C language providing the programmer and the
user with the full flexibility and the control of true dynamic memory allocation, efficient

data structure and a rich library of routines.

41



Furthermore, FLUENT may be run on powerful computer workstations as a separate
simultaneous process. The client/server architecture offers interactive control, efficient
execution and complete flexibility between various types of machines or operating
systems. In this part, the fundamental transport equations and numerical methods which

are used to solve the governing equations in FLUENT are introduced.

FLUENT uses finite volume method in which the transport equations are written in
integral form and the integral form of the governing equations are solved for each finite
volume cell within the domain. The flux values at the cell surfaces are calculated using
surface integrals by applying the discretization. The discretized system of equations are
linearized and solved by using Gauss-Seidel method which requires less CPU memory

and is faster than that used in direct solution method [6].

User has an option to select between the numerical methods: pressure-based and density
based. Formerly, the pressure based method was used for low speed flows, while the
density based method was mainly developed for high speed flows. Recently, both
methods have been extended and reformulated to solve for a wide range of flow

regimes. In both methods, the momentum equations are used to obtain the velocity field.

In the density based method, the density field is obtained from continuity equation while
pressure field is obtained from the equation of state. In the case of the pressure based
method, the pressure field is obtained by solving a pressure or pressure correction
equation which is obtained by using continuity and momentum equations in such a way

that the velocity field is corrected by the pressure and continuity is preserved [6].

FLUENT solves the governing integral equations for the conservation of mass,
momentum, energy and other scalars such as turbulence. The pressure based method
linearizes the governing equations and solves the flow variables implicitly. In the
density based method, system of equations (continuity, momentum and energy) can be
solved simultaneously using either implicit or explicit formulation. Iteration steps are
illustrated in Figure 2.23. Several iterations are performed before the solution is

convergent as the governing equations are nonlinear and coupled together.
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Continuity: %Lpdﬂ + imp(\?.ﬁ)dS =0 (2.55)

0 ~ L -
ajgpv dQ+§_pv(vii)dS =] pf.dQ

Momentum: (2.56)
—§_piidS +§_(Fii)ds
0 Ny (7=
bneras. EIQ pE dQ + jSGQ pH (v.n)dS —IQ (pfe V+q, )dQ .57

+§_x(VTii)dS +§_(F5)iids

> Update properties

Y

Solve continuity, momentum, energy,
and species equations simultaneously

Y

Solve turbulance and other scalar
equations

STOP

Figure 2.23 Overview of the Density Based Solution Method [6]
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Two pressure based solver algorithms are available in FLUENT: a segregated algorithm,

and a coupled algorithm.

The Pressure-Based Segregated Algorithm

The pressure based algorithm uses a solution algorithm where the governing equations
are solved sequentially. Because the governing equations are coupled and nonlinear, the

solution must be carried out iteratively to obtain a converged numerical solution.

The governing equations are solved in a decoupled manner in pressure based segregated
algorithm. Since equations are stored in the memory one at a time, the segregated
algorithm uses the memory efficiently, but solution convergence is relatively slow [6].

Iteration steps which are used in segregated algorithm are illustrated in Figure 2.24.

The Pressure-Based Coupled Algorithm

The pressure based coupled algorithm comprise the momentum equations and the
pressure based continuity equations in order to solve the coupled system of equations.
The rate of solution convergence significantly improves as compared to the segregated
algorithm because of the closely coupled manner which is used to solve the momentum
and continuity equations. The system of all equations is stored in the memory during the
solution of velocity and pressure fields rather than just a single equation, as in the case
with the pressure based segregated algorithm. Thus, the memory requirement increases

by 1.5 or 2 times that of the segregated algorithm [6].
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Pressure Based Segregated Algorithm Pressure Based Coupled Algorithm

—> Update properties > Update properties

Y

. 4
Solve sequentially:
Usel Vaet Waat Solve simultaneously:

system of momentum and
pressure-based continuity
equations

Y

Solve pressure-correction
(continuity) equation

Y Update mass flux,

Update mass flux,
pressure, and velocity

Y

Y Solve energy, species,
Solve energy, species, turbulence, and other
turbulence, and other scalar equations

scalar equations

STOP

Converged?

STOP

Converged?

Figure 2.24 Overview of the Pressure-Based Solution Method [6]
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Pressure-Velocity Coupling

The Pressure-Implicit with Splitting of Operators (PISO), pressure velocity coupling
scheme is based on the higher degree of the approximate relation between the
corrections for velocity and pressure. The PISO algorithm requires high CPU time per
iteration, but it impressively decreases the number of iterations which is required for

convergence. Thus, PISO algorithm is commonly used for transient problems [6].

PISO divides the pressure correction scheme into predictor and corrector steps. In the
first step, velocity field is predicted by using the momentum equation which does not
necessarily satisfy the continuity equation. Thus, a corrector step is used to calculate
pressure field which is used to recalculate velocity field that satisfies the continuity
equation. For a given time step, equations are solved iteratively until the convergence
criteria is met. Therefore, advancing the solutions by one time step needs outer iterations
as shown in Figure 2.25. PISO algorithm is used to obtain time accurate solutions

without changing physical time step which is used for advancing the solution.
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Figure 2.25 Overview of the Iterative Time Advancement Solution Method for the

Pressure Based Solver [6]
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2.5 STRUCTURAL SOLVER - MSC/NASTRAN

MSC/NASTRAN is a commercial finite element analysis program which consists of
several modules designed for specific tasks such as processing model geometry,
assembling matrices, applying constraints, solving matrix problems, calculating output
quantities, conversing with the database, and printing the solution. It is commonly used
in the industry for the analysis of stress, structural failure, vibration, structural

durability, heat transfer, flutter and aeroelasticity.

In this study, linear static analysis (101) is used for static aeroelastic analysis and Modal
analysis (103) is performed to determine mode shapes and corresponding natural

frequencies which are used as input for dynamic aeroelastic analyses.

Figure 2.26 shows the basic steps that MSC/NASTRAN follows when solving a linear

statics analysis.

In static analysis, adequate boundary conditions must be applied to the model in order to
prevent any rigid body motion of the structure. If the specified boundary conditions do
not adequately constrain the model in all directions, the structure’s stiffness matrix
remains singular and the run terminates with an error message. Once the boundary
conditions are applied to the model appropriately, the global stiffness matrix is reduced
to a nonsingular stiffness matrix representing the constrained structure. All of the loads
that are applied to the model are combined to form the load vector. These applied loads
can be in the form of point forces and moments applied directly to the grid points, line
loads applied along the length of one-dimensional elements, surface loads applied to
two- and three-dimensional elements, or body loads such as gravity. These different load
types may be combined to form a single load vector, which is the same as saying that the
loads are applied simultaneously. There is also the option of applying multiple load

vectors within a single run. After the constrained stiffness matrix and the load vector are
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generated, the static equilibrium matrix equation given by Eqn 2.58 is solved as follows

[45]:
K Jue}={p} (2.58)
where;

[K]= system stiffness
{u} = grid point displacements

{p} = applied load vector

The unknowns in Eqn 2.58 are the displacements at the grid points in the model.
Determining the displacements involves the equivalent of inverting the stiffness matrix
and multiplying it by the force vector. Actually, the process of inverting a matrix is too
time consuming; therefore, a process based on the Gauss elimination method is used.
Once the displacements at the grid points are known, any desired outputs, such as
element forces, strains, and stresses, are computed using those displacements on an
element-by-element basis. It can be controlled what type of output is generated and

whether the output is printed, punched to a file, or plotted [45].
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Represent continuous structure as a
collection of grid points connected by
discrete elements

Y

Formulate element stiffness matrices
from element properties, geometry, and
material

Y

Assemble all element stiffness matrices
into global stiffness matrix

Y

Apply boundary conditions to constrain
model (i.e., remove certain degrees of
freedom)

Y

Generate load vector (forces, moments,
pressure, etc.)

Y

Solve matrix equation [K]{u}={p} for
displacements {u}

Y

Calculate element forces and stresses
from displacement results

Figure 2.26 Linear Static Analysis in MSC. NASTRAN [45]

The usual first step in performing the dynamic analysis is determining the mode shapes
and the natural frequencies without damping. These results show the dynamic behavior
of the structure and indicate how the structure will respond to dynamic loading [46]. The

natural frequencies represent the neutral tendency of the structure to vibrate when it is
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subjected to a disturbance. Computation of the natural frequencies and mode shapes is
performed by solving an eigenvalue problem. Each mode shape is associated with a

specific natural frequency.

The equation of motion for normal modes and natural frequencies are solved by using a
special reduced form of the equation, assuming no applied loading and damping. The

reduced form of the equation of motion can be shown in matrix form as follows:
[M Jiii}+ [K Ju} =0 (2.59)

This is the equation of motion for undamped free vibration. To solve Eqn 2.59, it is

assumed a harmonic solution of the form:
{u}={p}sin ot (2.60)
where:

¢ :eigenvector or mode shape

@ : natural frequency

If differentiation of the assumed harmonic solution is performed and substituted into the

equation of motion, the following is obtained:

(&1~ w*[M])g} =0 .61

This equation is called the eigen equation, which is a set of homogeneous algebraic
equations for the components of the eigenvector and forms the basis for the eigenvalue

problem.

The determinant is zero only at a set of discrete eigenvalues A, or @]. There is an

eigenvector which satisfies Eqn 2.61 and corresponds to each eigenvalue. Therefore,

Eqn 2.61 can be rewritten as:
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(K- [M)fg)=0, i=123.. (2.62)

Each eigenvalue and eigenvector define a free vibration mode of the structure. The i™

eigenvalue A, is related to the i™ natural frequency as:

o .
f,=——, i" natural frequency

The number of eigenvectors and eigenvectors is equal to the number of degrees-of-
freedom. In addition, a natural mode of the structure can be represented by using its
generalized mass and generalized stiffness. An important characteristic of normal modes
is that the scaling or magnitude of the eigenvectors is arbitrary. Mode shapes are
fundamental characteristic shapes of the structure and are therefore relative quantities. In
the solution of the equation of motion, the form of the solution is represented as a shape
with time-varying amplitude. Therefore, the basic mode shape of the structure does not

change while it is vibrating; only its amplitude changes [46].

Mode Shape Normalization

Although the scaling of normal modes is arbitrary, for practical considerations mode
shapes should be scaled (i.e., normalized) by a chosen convention. In MSC/NASTRAN,
there are three normalization choices, MASS, MAX, and POINT normalization [46].

MASS normalization scales each eigenvector to result in a unit value of generalized

mass.
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o,/ Mg, =10 (2.63)

By using this method, a modal mass matrix becomes an identity matrix and since it
decreases the requirements of the computational data storage, mass normalization

approach is appropriate for modal dynamic response analyses.

In MAX normalization, each eigenvector is normalized with respect to the largest a-set
component. This normalization results in the largest a-set displacement value being set
to a unit value. This normalization approach can be very useful in the determination of

the relative participation of an individual mode.

POINT normalization of eigenvectors allows choosing a specific displacement

component at which the modal displacement is set to 1 or -1.

Inertia Relief

MSC/NASTRAN provides an advanced option, inertia relief, which allows simulating
unconstrained structures in a static analysis. In static analysis by finite element method,
model is assumed to have no mechanism and not to move as a rigid body. The stiffness
matrix becomes singular if any of these conditions exists in a conventional finite
element analysis. Decomposition of a singular matrix in MSC/NASTRAN leads to
unreasonable answers or a fatal message. As a result, conventional finite element static
analysis cannot be performed on unconstrained structures. However, MSC/NASTRAN
provides a method, inertia relief, in order to analyze these conditions [45]. By using
inertia relief method, the inertia of the structure is used to resist the applied loadings
assuming that the structure is in state of static equilibrium even though it is not

constrained. A spacecraft in orbit or an aircraft in flight are two examples of these
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conditions. In these cases, although the structure is capable of unconstrained motion, it

is in state of static equilibrium.

2.6 STRUCTURAL MODAL APPROACH

Aeroelastic simulation consisting of non-linear CFD analysis coupled to a dynamic
structural model is performed in order to investigate the structural deformation under an
unsteady aerodynamic loading. This method allows time-accurate non-linear analysis of
dynamic behavior, leading to much more accurate investigation of flutter [24]. The
majority of such methods rely on the prediction of structural response by a summation
of limited number of modes derived from modal analysis using a commercial finite

element solver.

The governing equation of motion of a structure can be written as:

d’w dw
el K= {F )] (.64

7]

where

w: Displacement vector,
[C ]: Damping matrix,
[K ]: Stiffness matrix,
[M ]: Mass matrix,

F(t): Vector of forces exerted on the nodes of the structure
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W F,
W, F

w=| F=|" (2.65)
WN FN

w=(w, w, w,) (2.66)
F=(F F, F.) (2.67)

The displacement and force vectors at node point i, have three components in 3-D space.
Using modal analysis, the dependent variables are expanded in terms of the natural free

vibration modes as:

e, y.z.00} = 3,0 (x.0.2) 2.68)

i=1

where ¢, (t ) and {¢, (x, Y,z )} are the generalized displacement vector and mode shape

matrix, respectively. The mode shape matrices are obtained by solving for the
eigenvalues of the free vibration problem. The modal decomposition of the structure

motion is expressed as:
Ko =M¢pA (2.69)
or

K¢, =A.Mp, (2.70)

A finite element structural solver may be used to solve Eqn 2.69 and obtain the mode

shapes. Modal matrix and eigenvalue matrix A is expressed as:
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6=[d,..d,...0..] Q2.71)

A =diag[A, ... 7 s A, ] (2.72)

773N

™ eigenvalue can be defined by the natural frequency (@) as:

A = (2.73)

J J

Mode shape matrix is normalized with respect to the mass matrix and substituting Eqn

2.73 into Eqn 2.70 and then multiplying by ¢’ yields:
j+¢l+[olg=0 (2.74)
where
[£]=¢"[Clp (2.75)
[0]=¢"[K]p (2.76)
0=¢"[F] 2.77)

[a)] and [§ ] matrices are diagonal and their terms are @, and 2& @, respectively. Q

is the generalized unsteady aerodynamic forces. The coupled system of equation can be

rewritten as:
g, +2¢lwq +wq, =0, i=12..,N (2.78)

where & and @, are the modal damping and the natural frequency for the i™ mode,
respectively. In this initial value problem, Newmark algorithm [21] is used to solve Eqn

2.78 for ¢, ,,, with the following set of equations:
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A; (1- 2ﬂ){é}nj 2.79)

(1+ pacar Vi), =10}, - wf({q},, v adg) +

1}, =1g}, + M- NG}, +7id},.) (2.80)

laho =lab, + adda}, S (0-20)a). - 250a}.) es

1
If y ZE, this implicit method is second order accurate. This method is stable if

At =— , where @ is the maximum natural frequency. If a linear acceleration is
w

1
assumed, [ =g and Q=3.464 [21]. Assuming a linear acceleration and no

structural damping, Eqns 2.79-2.81 simplify to:

e N L R 1 BCY

(h =) + 220}, + (b)) 2.83)

)+ a).) 28

where n is the time step.
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2.7 STATIC AEROELASTICITY

To conduct static aeroelastic analysis, CFD solver, FLUENT is coupled with finite
element structural solver MSC/NASTRAN. To achieve this, a code is developed in
FORTRAN language to automate the entire procedure. The overall computational
aeroeastic procedure developed for static aeroelastic analysis may be divided into the

following steps.

Static Aeroelastic Analysis Computational Procedure

1. Geometry construction, mesh generation, application of appropriate boundary

conditions, initializing the solution.

2. Steady state CFD analysis to calculate aerodynamic forces on the structure.
3. Interpolation of forces onto the structural mesh.

4. Structural finite element analysis to calculate displacements of the structure.
5. Interpolation of the displacements onto the aerodynamic surface mesh.

6. Mesh deformation according to the displacements obtained from the CSD

calculations.

7. Repeat steps 2-6 until difference of structural displacements between two consecutive

iterations is less than prescribed tolerance

The flow chart of the iterative procedure is given in Figure 2.27.
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STOP

Figure 2.27 Flow Chart of the Static Aeroelastic Procedure
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2.8 DYNAMIC AEROELASTICITY

For the dynamic aeroelastic analysis, CFD solver, FLUENT is coupled to governing
equations of motion of the structure that are presented in modal coordinates. Mode
shapes and corresponding natural frequencies are obtained by using MSC/NASTRAN
and used as input for this approach. A FORTRAN code is developed in order to perform
the entire computational procedure which is developed for dynamic analysis and divided

into the following major steps.

1. Geometry construction, mesh generation, application of appropriate boundary

conditions, initializing the solution.

2. Steady state CFD analysis for the undeformed structure which is used as the starting

point of the dynamic aeroelastic computations.
3. Unsteady CFD computations to calculate aerodynamic loads on the structure.

4. Spline pressure forces from aerodynamic cell centered points to the structural grid

nodes.

5. Solve linear modal structural model in order to calculate the displacements of the

structure by using mode shapes and natural frequencies as input.
6. Structural displacements are splined to the aerodynamic grid nodes.
7. Mesh deformation according to the obtained displacements.

8. Repeat steps 3-7 using current solution for the following steps until a specified flow

time is reached.

The flow chart of the iterative procedure is given in Figure 2.28.
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Figure 2.28 Flow Chart of the Dynamic Aeroelastic Procedure

61



CHAPTER 33

TEST CASES

3.1 TEST CASE 1 - AGARD WING 445.6

3.1.1 INTRODUCTION

In this chapter, present method is applied to solve static and dynamic aeroelastic
characteristics of AGARD Wing 445.6, which is a well known test case for aeroelastic
problems. Wind tunnel experiments have been conducted on AGARD Wing 445.6 in
order to predict the dynamic response characteristics and the flutter boundary in the

Langley Transonic Dynamics Tunnel [1].

The AGARD 445.6 Wing has taper ratio of 0.66, aspect ratio of 1.65 and wing swept of
45° at the quarter chord. It has root and tip chords of 0.558m and 0.368m, and a semi
span of 0.762m. The airfoil section in the stream-wise direction is a NACA 65A004
airfoil, which is a symmetric airfoil with a maximum thickness of 4 % of the local

chord. The wing planform is shown in Figure 3.1.
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[0.762 [m]

Figure 3.1 AGARD Wing 445.6 Planform

AGARD Wing 445.6 which was used in an experimental study [1] was constructed by
laminated mahogany, which can be assumed as an orthotropic material of which material
properties are unique and independent in three dimensional. The solid model of the wing

which is tested in wind tunnel is shown in Figure 3.2.

Figure 3.2 Solid Model of AGARD Wing 445.6 Used in Wind Tunnel Test [1]
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The AGARD Wing 445.6 had holes drilled on it to make it weaker and to reduce the
structural stiffness to obtain flutter at the test mach numbers in the wind tunnel
experiments. In order to maintain the correct acrodynamic shape, holes were filled with
rigid foam plastic. This weakened model is shown in Figure 3.3. The material
properties for weakened AGARD wing was taken from model parameters in the
aeroelastic optimization study by Kolonay [2] and shown in Table 3.1. In the present
study, weakened model will be used to validate developed procedure for static and

dynamic aeroelastic problems.

Figure 3.3 Weakened model of AGARD Wing 445.6 used in wind tunnel test [1]

Table 3.1 Mechanical Properties for the Weakened AGARD Wing 445.6

Material Property Value [Gpa]
E 3.1511
E, 0.4162
G 0.4392
Material Property | Value [kg/m’]
p 381.98
Material Property Value
\ 0.31
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E; and E, are the modulus of elasticity in the longitudinal and lateral directions, v is

Poisson's ratio, G is the shear modulus in each plane and p is the wing density.

3.1.2 AGARD WING 445.6 CFD ANALYSIS

3.1.2.1 Grid Sensitivity Study

In this part, the details of the Computational Fluid Dynamics grids and the results of the
rigid wing analyses are given. For grid sensitivity analysis, four unstructured grids with
varying surface and volume densities are examined. These four different grids are tested
in different flow conditions in order to determine minimum grid size which captures the
physics of the flow. Coarse and medium grids have the minimum number of surface
triangular elements. Medium grid has more tetrahedral cells than coarse grid. Fine and
very fine grids have finest surface resolution and very fine grid has maximum number of
tetrahedral cells. In this study, CFD analyses are performed for the flow conditions

shown in Table 3.2.

Table 3.2 Free stream Flow Conditions for the Grid Sensitivity Study

Mach a [°]
0.499 0
0.85 5
0.960 0
1.141 0
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The dimensions of computational domain are given in Figure 3.4. The isometric view of
the half cylinder computational domain and defined boundary conditions are shown in
Figure 3.5. Aerodynamic surface is defined as wall boundary conditions. Flow

conditions such as Mach number, operating pressure, temperature and angle of attack

are defined in far-field boundary condition.
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Figure 3.4 Dimensions of the Computational Fluid Dynamics Domain
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Figure 3.5 Half Cylinder Computational Fluid Dynamics Domain
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The surface grid for coarse and fine CFD grids are given in Figure 3.6, and the number

of surface triangular elements and volume tetrahedral elements are shown in Table 3.3
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Figure 3.6 Wing Surface Triangular Elements a) Coarse b) Fine

Table 3.3 Number of Surface Triangular and Volume Tetrahedral Elements

Number of
Number of
Surface
Mesh Tetrahedral
Triangular
Elements
Elements
Coarse Mesh 1,468 79,503
Medium Mesh 1,468 110,229
Fine Mesh 3,798 158,161
Very Fine Mesh 3,798 211,360

Calculated pressure coefficient distributions over the bottom and top surface wing for

M= 0.499 and a=0° for two different spanwise locations are shown in Figures 3.7-3.8.
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Figure 3.7 Wing C,, Distribution at 34 % Semispan (M=0.499 a=0°)
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Figure 3.8 Wing C,, Distribution at 67 % Semispan (M=0.499 a=0°)
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At 34 % semispan of the wing, coarse, medium, fine and very fine grids predict the
maximum Cp value (Cpmax) of 0.0796, 0.0857, 0.140, and 0.141, respectively. Flow
solution with coarse grid predicts 44 % lower Cpmax value as compared to very fine grid.

Fine grid predicts Cpmax value almost same as very fine grid.

At 67 % semispan of the wing, coarse grid predicts 32 % lower Cpmax value whereas

medium grid predicts 36 % lower Cpmax value as compared to fine and very fine grids.

Contours of pressure coefficient over the top and bottom surfaces of the wing are shown

in Figure 3.9.
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Figure 3.9 Pressure Coefficient Contours over Top and Bottom Surfaces of AGARD
Wing 445.6 (M=0.499 0=0°)
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The pressure coefficient distributions over the wing for M= 0.85 and 0=5° are similarly

shown in Figures 3.10-3.11 at two different spanwise locations.
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Figure 3.10 Wing C, Distribution at 34 % Semispan (M=0.85 0=5°)
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Figure 3.11 Wing C,, Distribution at 67 % Semispan (M=0.85 0=5°)
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As can be seen from Figure 3.10 and 3.11, pressure coefficient distributions over the
leading edge are different for coarse, mesh and fine grids. At 34 % semispan of the
wing, coarse grid predicts the minimum Cp value (Cppin) of -0.553, medium grid
predicts Cpmin of -0.574, fine grid predicts Cpmin 0f -0.733 and very fine predicts Cpmin
of -0764. Flow solution with coarse grids predicts 28 % higher Cpmin value and medium
grid predicts 25 % higher Cppin value and fine grid predicts 4 % higher Cppi, value as
compared to very fine grid. These minimum values occur at 3.8% chord location for fine
and very fine grids whereas for medium and coarse grid it occurs at 5.7 % chord

location.

At 67 % semispan of the wing, coarse and medium grids predict 19.4 % and 20.5 %
higher Cpmin value as compared to very fine grids, respectively. For fine grids these
values occur at 4.8 % chord location and for medium and coarse grids, it occurs at 8 %

chord locations.

Contours of pressure coefficient over the top and bottom surfaces of the wing are shown

in Figure 3.12.
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Figure 3.12 Pressure Coefficient Contours over Top and Bottom Surfaces of AGARD
Wing 445.6 (M=0.85 a=5°)
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The pressure coefficient distributions over the wing for M= 0.96 and 0=0° are similarly

shown in Figures 3.13-3.14 at two different spanwise locations.
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Figure 3.13 Wing C, Distribution at 26 % Semispan (M=0.96 0=0°)
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Figure 3.14 Wing C,, Distribution at 75.5 % Semispan (M=0.96 a=0°)
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At 26 % semispan of the wing, coarse and medium grids predict the maximum Cp value
of 0.120 and 116, fine and very fine grids predict Cpmax of 0.188. Flow solution with
coarse and medium grids predicts 36.2 % and 38.3 % lower Cpmax value as compared to

fine grids.

At 75.5 % semispan of the wing, coarse, medium, fine and very fine grids predict Cpmax

of 0.068, 0.056, 0.121 and 0.116, respectively.

Contours of pressure coefficient over the top and bottom surfaces of the wing are shown

in Figure 3.15.
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Figure 3.15 Pressure Coefficient Contours over Top and Bottom Surfaces of AGARD
Wing 445.6 (M=0.96 a=0°)
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The pressure coefficient distributions over the wing for M= 1.141 and a=0° are similarly

shown in Figures 3.16-3.17 at two different spanwise locations.
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Figure 3.16 Wing C, Distribution at 26 % Semispan (M=1.141 a=0°)
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Figure 3.17 Wing C,, Distribution at 75.5 % Semispan (M=1.141 a=0°)
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At 26 % semispan of the wing, coarse grid predicts the maximum Cp value of 0.179,
medium grid predicts Cpmax of 0.177, fine grid predicts Cpmax of 0.259 and very fine
grid predicts Cpmax 0f 0.263. Flow solution with coarse and medium grids predicts 32 %

lower Cpmax value as compared to fine grids.

At 75.5 % semispan of the wing, coarse, medium, fine and very fine grids predict Cpmax

0f0.128,0.117, 0.183 and 0.178, respectively.

Contours of pressure coefficient over the top and bottom surfaces of the wing are shown

in Figure 3.18.
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Figure 3.18 Pressure Coefficient Contours over Top and Bottom Surfaces of AGARD
Wing 445.6 (M=1.141 a=0°)
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For the flow conditions at which grid sensitivity analysis conducted, it can be concluded
that flow solution with coarse and medium grid, which have coarsest surface grid
density give grid dependent results. Flow solution with fine and very fine grids give
similar results. Since fine grid has less number of tetrahedral elements, for the further
studies fine grid will be used. In the next section, flow solution calculated with fine grid

is compared with numerical results conducted by Cai [4], Lee and Batina [3].

3.1.2.2 Comparison with Numerical Results

In this part, pressure coefficient distribution over the AGARD Wing 445.6 is compared
with the study of Cai [4]. Cai conducted static aeroelastic analysis of AGARD Wing
445.6 at flow condition M=0.85 a=5°. Pressure coefficient distributions over the wing at
% 34 spanwise locations for this flow condition are shown in Figure 3.19. Results
appear to agree well except for leading edge. This difference may be attributed to the
meshing technique. Cai [4] uses O-Type structured grid which captures leading edge
radius accurately and gives better resolution of the leading edge radius. In the present
work unstructured grid and limited number of triangular mesh is used, and hence leading

edge radius of the wing cannot be modeled correctly.

At 67 % semispan of the wing, Cai [4] predicts higher Cp values between 10% and 50%
local chord locations (Figure 3.20). This may be attributed to difference between the

flow solvers.
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Figure 3.19 Comparison of C, Distribution at 34% Semispan (M=0.85 a=5°)
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Figure 3.20 Comparison of C, Distribution at 67% Semispan (M=0.85 0=5°)
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The pressure coefficient distribution over the AGARD Wing 445.6 is compared with the
study of Lee and Batina [3]. Lee and Batina conducted dynamic aeroelastic analysis of
AGARD Wing 445.6 at flow conditions M=1.141 and oa=0°. Pressure coefficient
distributions over the wing at 26% and 75.5 % spanwise locations are shown in Figure

3.21 and 3.22, respectively.
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Figure 3.21 Comparison of C, Distribution at 26% Semispan (M=1.141 a=0°)
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Figure 3.22 Comparison of C, Distribution at 75.5% Semispan (M=1.141 a=0°)

Pressure coefficient distributions over the wing at two spanwise locations for this flow
condition appear to agree well except for leading and trailing edges. This difference may
be attributed to the meshing technique. Lee and Batina [3] use C-H type of grid which

provides better resolution at the leading and trailing edge as compared to the present

study.
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3.1.3 AGARD WING 445.6 STRUCTURAL ANALYSIS

3.1.3.1 Grid Sensitivity Study and Validation of Structural Model

In this part, the details of the finite element analyses and the results of the modal
analyses are given. Modal frequencies of the AGARD Wing 445.6 are compared with
experimental data [1] in order to validate structural finite element model, which is used
in static and dynamic calculations in the following sections. In addition to the calculated
modal frequencies, mode shapes of the structure are also compared with the

experimental study [1].

Weakened AGARD Wing 445.6 is modeled with plate elements as a single layer
orthotropic material of which property is given in Table 3.1. The rotations and
translations of the nodes at the root section of the finite element model are fixed. Other
nodes are allowed to translate in out-of-plane direction. In order to perform grid
sensitivity analysis for the structural grids, results of the modal analysis which are
conducted with three different structured grids with varying density, are compared with
experimental and numerical data. CQUAD4 type of element is used for the finite
element discretization. The numbers of nodes for the spanwise and chordwise directions
for each finite element model are shown in Table 3.4. Finite element models and
corresponding thickness distribution which are used for finite element modal analysis

are shown in Figure 3.23.
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Table 3.4 Number of Elements Used in Finite Element Model

Number of Nodes Number of Nodes Total number of
Mesh for the Spanwise | for the Chordwise Structured
Direction Direction Element
Coarse Mesh 6 5 20
Medium Mesh 12 12 121
Fine Mesh 51 41 2000

UNNNNNY

thickness[m] N

0.022
0.02

0.018
0.016
0.014
0.012
0.01

0.008
0.006
0.004
0.002

Figure 3.23 Structural Finite Element Models and Thickness Distribution
a) Coarse Mesh b) Medium Mesh c¢) Fine Mesh
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For each finite element models, modal analysis of weakened AGARD Wing 445.6 is
performed using MSC/NASTRAN. The first four natural frequencies are given in Table
3.5 for the three different finite element models along with the experimental results [1]

and those computed by Kolonay [2], Lee and Batina [3].

Table 3.5 Calculated Natural Frequencies for Weakened AGARD Wing 445.6

Mode 1 [Hz] | Mode 2[Hz] | Mode 3 [Hz] | Mode 4 [Hz]
Coarse Mesh 8.72 34.85 41.43 70.65
Medium Mesh 9.41 39.46 48.96 94.35
Fine Mesh 9.62 39.75 50.85 95.38
Exp. (Yates) [1] 9.60 38.10 50.70 98.50
Kolonay [2] 9.63 37.12 50.50 89.94
Lee and Batina [3] 9.60 38.17 48.35 91.54

Percent error values in natural frequencies increase with decreasing element number.
Percent errors in first natural frequency for coarse, medium and fine grids are 9.17, 1.98

and 0.21, respectively. Error values for four natural frequencies are summarized in

Table 3.6

Table 3.6 Percent Error Values in Natural Frequencies

Natural Frequency [Hz]
Grid Mode 1 Mode 2 | Mode 3 Mode 4
Coarse (% Error) 9.17 8.53 18.28 28.27
Medium (% Error) 1.98 4.22 3.43 4.21
Fine (% Error) 0.21 4.33 0.3 3.17
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The percent error values of coarse grid are very high as compared to medium and fine
grids. Medium grid predicts natural frequency values very close to the values that fine
grid predict. Considering the number of elements, medium grid is selected for the
following studies in order to decrease computational effort. The mode shapes are mainly
based on wing out-of-plane deflection values. Calculated natural frequencies and mode

shapes of the structure using medium grid are shown in Figure 3.24.

£=39.46 Hz —

£=9.41 Hz

£;=48.96 Hz £,=94.35 Hz

Figure 3.24 Mode Shapes of Medium Grid Structural Finite Element Model

Mode shapes obtained from finite element analysis of the weakened wing are scaled up
so that maximum and minimum values are same that of experiments. Out of plane
deflection contours are compared in Figure 3.25. It can be concluded that results
obtained from finite element model with medium grid appear to agree well with
experimental results and hence medium grid can be used for the further static and

dynamic aeroelastic analyses.
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Mode 1, tl = 9.5992 Hz

Mode 2, 52 = 38.1650 Hz

0.

Mode 4, f4 = 91.5448 Hz

Figure 3.25 Comparison of Calculated Mode Shapes of AGARD Wing 445.6 (left) with
Experiments (right)
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3.1.4 STATIC AEROELASTIC ANALYSIS of the AGARD WING 445.6

In this part, details of static aeroelastic analysis of AGARD Wing 445.6 are given and

results are compared with numerical values [4].

Static aeroelastic analyses are initiated by computing an initial steady-state solution for
the rigid AGARD Wing 445.6. This converged flow solution is used as a starting point
for static aeroelastic iterations. Aeroelastic iterations continue until the difference of the
root mean square values of structural displacements between two consecutive iterations
is less than the prescribed tolerance (10°°). The change of the root mean square of out-
of-plane deformation and lift coefficient during the aeroelastic simulation are shown in

Figures 3.26 and 3.27, respectively.

In this study, pressure-velocity coupling algorithm of PISO is applied with the second
order upwinding scheme for density, momentum and energy equations. Since FLUENT
calculates pressures at the cell centers, for every time step, surface loads, P, should be
mapped from the face centroids of the aerodynamic grid onto structural grid.
MSC/NASTRAN, finite element commercial software is used for static structural
analysis in order to solve the displacements associated with the aerodynamic pressure
loads calculated by FLUENT. These displacements also need to be interpolated onto
CFD grid in order to obtain new CFD surface grid. For static aeroelastic analyses, linear
interpolation method using ADT, which was explained in Chapter 2.3.1, is performed to
transfer displacements and pressure loads between the structural and aerodynamic grid
points. The aerodynamic mesh must be modified in order to adapt the new shape of the
aerodynamic surface, representing the structural deformation at each aeroelastic time
step. In this study, FLUENT moving mesh algorithm is used for deforming process
without generating a new grid at each time step. To achieve this, a user defined function
is created and implemented in a code which deforms the mesh according to structural
finite element analysis. FLUENT mesh deforming parameters, which are used in this

study, are shown in Table 3.7.
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Table 3.7 FLUENT Mesh Deformation Algorithm Parameters

Smoothing
Spring Constant Factor le-4
Convergence Tolerance le-5
Number of Iteration 100
Remeshing
Maximum Cell Skewness 0.78
Size Remesh Interval 10

0038 |Root Mean Square of out-of-plane Deformation
0.037
0.036
0.035

0.034

Rms
o
o
w
w

0.032

0.031

0.03

0.029

AN A NN N WIS SIS Ny Ny N
2 3 4 5 6 7 8 9 10
Number of Iteration

0.028

’_‘JH‘l‘H‘l”"l‘H‘l‘”‘l‘H‘l””l””l””l”‘

Figure 3.26 The Root Mean Square of out-of- plane Deformation at Each Aeroelastic
Time-step
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[Lift Coefficient during Aeroelastic Simulation |

0.34 -

0.32

0.3

0.28

0.26

0.24

NEERINE INENINANE ESRIATS NANSTATE IAANATE INANATAE IVANAATE IANATA W
0.22 4 5 6 7 8 9 10

Number of Iteration

=
N
w

Figure 3.27 Lift Coefficient Value at Each Aeroelastic Time-step

The convergence history of lift coefficient for rigid and elastic wings during aeroelastic
simulation is shown in Figure 3.28. Each iteration step continues until constant lift and
drag coefficient values are obtained and nodal grid point locations in the flow domain

are updated based on the results of static structural finite element analyses.
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Figure 3.28 Lift Coefficient Convergency during Aeroelastic Simulation

Rigid and elastic wing pressure coefficient distributions calculated in the present study
are given in Figures 3.29 and 3.30 at two different spanwise locations. C, values on the
surface decreases in elastic wing due to decreased pressure values. The lift coefficient of

the elastic wing is reduced by 22 % as compared to rigid wing case.
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Figure 3.29 Elastic and Rigid Wing Cp Distribution at 34 % Semispan (M=0.85 a=5°)
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Figure 3.30 Elastic and Rigid Wing Cp Distribution at 67 % Semispan (M=0.85 a=5°)
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Out-of-plane deformations of AGARD Wing 445.6 at leading and trailing edges are
compared with the results of Cai [4] in Figures 3.31 and 3.32. It can be concluded that,
results of present study appear to agree well with the results of Cai [4]. Maximum
difference occurs at the wing tip. At the leading edge of the wing tip, Cai calculates
2.181 inch deflection whereas it is calculated as 2.176 inch in the present study. At the
trailing edge, Cai calculates 2.418 whereas it is calculated as 2.591 inch in the present

study. This difference diminishes towards the root of the wing.

It should be considered that in the present study, finite element model of the AGARD
Wing 445.6 consists of plate elements. Structural analyses are performed with
MSC/NASTRAN by allowing only out-of-plane deformation of the structural grid nodes
in order to simplify the calculations. In the present static aeroelastic calculations, closely
coupled approach is used, whereas Cai [4] uses monolithic approach which fluid and
structure equations are combined in one single system in order to calculate the

deformation of the wing under the aerodynamic loading.
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Figure 3.31 Leading Edge Out-of-Plane Deformation
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AGARD Wing 445.6
Trailing Edge Displacement
Mach=0.85, a=5°
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Figure 3.32 Trailing Edge Out-of-Plane Deformation

Elastic wing pressure coefficient distributions at 34 % and 67 % spanwise locations are

compared with the results of Cai [4] in Figures 3.33 and 3.34.
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Figure 3.33 Comparison of Elastic Wing Cp Distribution at 34 % Semispan
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Figure 3.34 Comparison of Elastic Wing Cp Distribution at 67 % Semispan
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Equilibrium position for elastic wing is compared with rigid wing is given in Figure

3.35.

Elastic Wing

Rigid Wing

Figure 3.35 Rigid (red) and Elastic (blue) Position of AGARD Wing 445.6

3.1.5 DYNAMIC AEROELASTIC ANALYSIS of the AGARD WING 445.6

In this part, details of dynamic aeroelastic analysis of AGARD Wing 445.6 and
developed coupling scheme are given, and results are compared with experimental [1]
and numerical values [3] [35]. The purpose of the dynamic analyses is to determine the

Flutter Speed Index (FSI) at different Mach numbers.

In the present dynamic aeroelastic study, a coupling scheme is developed around a
commercial CFD code, namely FLUENT, and a linear modal structural model of which
details are given in Chapter 2.6. Dynamic analyses are performed in time domain by

closely coupled manner.

FLUENT has the capability to interact with user written programs, which allows a
structural model to be coupled with it. FLUENT also has deforming mesh capabilities
that can be controlled though a user written subroutine referred to as a user-defined-
function (UDF) in order to simulate the flow around a moving structure. In order to
deform the CFD mesh using the results of the modal structural solution, UDF code is

developed.
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For the unsteady flow calculations, pressure-velocity coupling algorithm, PISO is used
with the second order upwinding scheme for density, momentum and energy equations.
MSC/NASTRAN finite element program is used to get the modal matrix and the

corresponding natural frequencies, which are the main inputs of the coupling scheme.

FSI represents the condition where the magnitudes of the oscillations neither decrease

nor increase, and is given by Equation 3.1:

v, =| Ye (3.1)
! b, NG '

where b is half chord length at wing root, @_ is the first torsion frequency and U is

mass ratio described as Equation 3.2.
pwin 'Vwin
v= (#] (3.2)
pair 'Vcnne
where Viying=0.0043584 m’ and Vone=0.13054 m’, which is the volume of truncated

right cone enclosing wing.

From the measured p,, and V. values from experiment [1], taking gas constant of R =
287.05 Ks*/m? and specific heat constant of y = 1.4 from gas dynamics and ideal gas
assumption, one may obtain temperature value of T, and P,.. Experimental flutter data is
shown in Table 3.8 for the AGARD Wing 445.6 at several points between Mach 0.499
and Mach 1.141.
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Table 3.8 Experimental Flutter Data for Weakened AGARD Wing 445.6

Mach pr [kg/m’] Vi [m/s] FSI wla,
0.499 0.42770 172.5 0.4459 0.5353
0.678 0.20818 231.4 0.4174 0.4722
0.960 0.06338 309.0 0.3076 0.3648
1.072 0.05512 344.7 0.3201 0.3617
1.141 0.07883 364.3 0.4031 0.4593

In the developed coupling scheme, the dynamic aeroelastic simulation is started by
computing an initial, steady-state solution for the undeformed wing which is used as the
starting point of the unsteady dynamic aeroelastic computations. At the start of the
unsteady run, the pressure forces which are calculated at the wall-face centroids are
splined to the structural grid nodes using infinite spline method. Pressures that are
calculated at cell centers using FLUENT, are used with the cell wall-face area vectors in
order to calculate the pressure forces. Since the forces are at the cell centroids and not at
the aerodynamic grid points, a spline matrix [S;] is created to spline forces between the
wall-face centroids on the aerodynamic grid and the structural grid points using the

transpose of the created spline matrix.

New deformed structural grid coordinates are then calculated in modal coordinates using
the linear modal structural model which is time marched using the Newmark method. In
order to obtain the new coordinates of the aerodynamic grid, structural displacements
are transformed to the physical coordinates and splined using a second spline matrix [S;]
between the structural grid points and the aerodynamic grid points. Then computational
fluid dynamic mesh is deformed by using FLUENT moving mesh algorithm. FLUENT
mesh deforming parameters used in dynamic analysis are given in Table 3.7. Finally,
new flow variables are calculated for the next time-step. This process is repeated until a

specified flow time is reached.
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In the dynamic analyses, fine CFD grid and medium CSD grid, which are discussed in
grid sensitivity analyses, are chosen. Then, flutter point is calculated using the
aeroelastic model. At a selected dynamic pressure, the solution is computed for four
cycles of response. If the oscillations in the cycles are growing, a lower dynamic
pressure is chosen and the solution is recomputed. If the oscillations are convergent, a
higher dynamic pressure is chosen. This procedure is continued until the oscillations are
neither decaying nor growing. Then, a dynamic pressure is determined which leads to

neutral oscillations. This point of neutral oscillations is defined as the flutter point.

It may be possible to estimate the damping ratio, {, which yields positive value for a
stable solution, and negative value for an unstable solution from a single response. For
the dynamic aeroelastic calculations performed in this study, the structural damping was
set to be zero, so calculated damping ratio is purely of aerodynamic origin. For a free-
decaying, damped oscillation, the aerodynamic damping can be derived from the

logarithmic decrement which is shown in Equations 3.3 and 3.4.

A 33
0, =lln K -3)
n ‘xi+1
1_ §2 n xH—l

where X, and x,  are the peak amplitudes at a certain instant of time and taken after n

cycles of vibration, respectively.

Damping values are estimated for large set of test points at constant Mach numbers for
varying dynamic pressure values. The flutter boundary can then be determined using
linear interpolation in order to determine the dynamic pressure which yields zero
damping ratio. Accuracy of this method is dependent of the test points near to (=0, thus

flutter boundary estimation is improved by refining the study with more test points.
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In order to determine the optimum time interval size, it is reduced until the aeroelastic
simulation does not change by further decrease in the interval size. To achieve this, four
different time interval sizes are examined. As can be seen in Figure 3.36, solution is
affected by decreasing the time interval size up to the value of 0.001. Further decrease in
time interval size does not change the solution significantly. In this test case, wing
motion is mostly dominated by the first bending and first torsion modes, which have
natural frequencies of 9.6 Hz and 38.10 Hz, respectively [1]. Total time of a single
period for these modes shall be 0.104 s and 0.025 s. These frequencies may change due
to the unsteady aerodynamic forces. As a first estimate, choosing a time interval size of
At = 0.001 will resolve these modes at 104 and 25 time steps, respectively. Time

increment in the present study is same on both aerodynamic and structural analyses.
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Figure 3.36 Time History of the first Four Generalized Coordinates (M=0.499, FSI=0.4527)
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Since the AGARD Wing 445.6 has a symmetric NACA 65A004 airfoil, and the angle of
attack is zero degree, an initial perturbation must be given in order to start the
oscillations. One can use an initial force applied at some area of the wing, or can use an
initial condition in the form of a velocity distribution. In the present study, the first
mode shape of the structural model is used to create a sinusoidal velocity variation for
one cycle with amplitude of 0.5 m/s for the first mode frequency of the wing.
Afterwards, unsteady coupled calculations are continued by removing the excitation and

the wing is allowed to respond to the unsteady aeroelastic loads.

The time histories of the first four generalized coordinates at FSI=0.4527, 0.4541, and
0.4557, M=0.499 are shown in Figures 3.37-3.39. The amplitude of the motion reduces
at FSI=0.4527, when the flutter speed index is less than the flutter critical speed. The
amplitude of the motion is constant at FSI=0.4541, when the flutter speed index is equal
to the flutter critical speed. The amplitude of the motion is growing at FSI=0.4557. It
can be concluded that at M=0.499, the AGARD wing 445.6 has flutter conditions with
FSI=0.4541.
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Figure 3.37 Time History of the first Four Generalized Coordinates (M=0.499, FSI=0.4527)
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Figure 3.38 Time History of the first Four Generalized Coordinates (M=0.499, FSI=0.4541)
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Figure 3.39 Time History of the first Four Generalized Coordinates (M=0.499, FSI=0.4557)

In order to determine the flutter boundary, damping estimations are collected for large
set of test points at M=0.499 for varying dynamic pressure values. For these test points,
estimated damping coefficients and time histories of the first four generalized
coordinates are given in Figure 3.40. Critical flutter speed can be determined from the
flight conditions at where damping coefficient is zero. At this Mach number, static
pressure is 36230.5 Pa, and the corresponding flutter speed is calculated as 171.84 m/s,

which is very close to the experimental value of 172.46 m/s.
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Figure 3.40 Flutter Boundary Test Points Estimated Damping Coefficients and

Generalized Displacements (M=0.499)
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Figure 3.41 Time History of the first Four Generalized Forces (M=0.499, FSI1=0.440)

Time history of the generalized forces for the first four modes at FSI=0.440, M=0.499

are shown in Figure 3.41.

Work is calculated by taking the dot product of the displacement and force of each node.
Then, results are summed to calculate a total work. Work is compared at each time step
for both aerodynamic and structural grids in Figure 3.42. It can be concluded that work
done on each system is almost equal at any instantaneous time step. The difference

between the total works calculated on the each grid varied from 1E-7 to 5E-6 N.m.
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Figure 3.42 Time History of Work Done on Each System (M=0.499, FSI=0.440)

The time histories of the first four generalized coordinates at FSI=0.4205, 0.426, and
0.4337, M=0.678 are shown in Figures 3.43-3.45. It can be concluded that at M=0.678,
the AGARD Wing 445.6 has flutter conditions with FSI=0.426. Test points and
corresponding estimated damping coefficients are given in Figure 3.46. Flutter speed is
calculated as 231.08 m/s, which is very close to the experimental value of 231.37 m/s.

Similarly, flutter speed indexes, which lead to neutral oscillations, are determined for
Mach numbers 0.960, 1.072 and 1.141. Figures 3.47-3.58 show the test points and

estimated damping coefficients.
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Figure 3.44 Time History of the first Four Generalized Coordinates (M=0.678, FSI=0.426)
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Figure 3.47 Time History of the first Four Generalized Coordinates (M=0.960, FSI=0.2725)

Mach=0.960
FSI=0.2811

0.005

Generalized Displacement
o

-0.005

L I L L I L L I L L
0.2 0.3 0.4 0.5

time [s]

Figure 3.48 Time History of the first Four Generalized Coordinates (M=0.960, FSI=0.2811)
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Figure 3.49 Time History of the first Four Generalized Coordinates (M=0.960, FSI=0.2975)
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Figure 3.50 Flutter Boundary Test Points Estimated Damping Coefficients and
Generalized Displacements (M=0.960)
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Figure 3.51 Time History of the first Four Generalized Coordinates (M=1.072, FSI=0.3811)
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Figure 3.53 Time History of the first Four Generalized Coordinates (M=1.072, FSI=0.4132)
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Figure 3.54 Flutter Boundary Test Points Estimated Damping Coefficients and
Generalized Displacements (M=1.072)
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Figure 3.55 Time History of the first Four Generalized Coordinates (M=1.141, FSI=0.5455)
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Figure 3.56 Time History of the first Four Generalized Coordinates (M=1.141, FSI=0.5589)
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Figure 3.57 Time History of the first Four Generalized Coordinates (M=1.141, FSI=0.5679)
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Figure 3.58 Flutter Boundary Test Points Estimated Damping Coefficients and
Generalized Displacements (M=1.141)
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The results of the flutter analysis of AGARD Wing 445.6 are compared with the
experimental data and results of the previous studies in Figures 3.59-3.60 and 3.61
respectively. It can be concluded that the results of the flutter boundary and flutter
frequency of AGARD Wing 445.6 for Mach numbers ranging from 0.499 to 1.141 are
good agreement with the experimental results except the region of transonic dip where
lower flutter speed is predicted. This can be attributed to the inviscid flow assumption.

Including the viscous effects may improve the prediction of FSI at this regime.
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Figure 3.59 Comparison of Computed Flutter Speed Index Values and Experimental
Data of AGARD Wing 445.6
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Deflected wing positions at some time instances during the aeroelastic simulation are

shown in Figure 3.62.
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3.2 TEST CASE 2 - GENERIC SLENDER MISSILE

3.21 INTRODUCTION

Missile body is a slender, elastic structure. Thus, aerodynamic and dynamic forces
acting on the missile at high speeds lead to deformation of the body. The elastic
deformation on the missile body also results in a variation of the aerodynamic loads.
This affects the missile aerodynamic performance in terms of stability and control
effectiveness. The objective of the present work is to determine static aeroelastic
properties for a canard controlled supersonic slender missile shown in Figure 3.63. The
missile has blunted ogive nose with fineness ratio 1. Total length of the missile is 28
calibers. Control surfaces are deflected as 10° in both pitch and yaw plane to determine
aeroelastic characteristics of the missile at drastic flight conditions during maneuver of

the missile at Mach number 1.85.

/=
)

C

Figure 3.63 Generic Canard Controlled Slender Missile

Material of the missile body is chosen as aluminum whereas canards and tails are

modeled as steel. Mechanical properties are shown in Table 3.9.
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Table 3.9 Mechanical Properties for the Generic Canard Controlled Slender Missile

Missile Body (aluminum) | Canards and Tails (steel)
Material Property Value [GPa] Value [GPa]
E 70 200
Material Property Value [kg/m3] Value [kg/m3]
p 2700 7750
Material Property Value Value
v 0.35 0.3

Where, E is the modulus of elasticity, v is Poisson's ratio, and p is the density of the

material.

3.2.1.1 Static Aeroelastic Analysis of the Slender Missile

In this part, details of static aeroelastic analysis of the slender missile are given. The
objective of the static aeroelastic analysis is to determine the aeroelastic effects on

stability and control effectiveness of the missile.

Static aeroelastic analyses are initiated by computing an initial steady-state solution.
This converged flow solution is used as a starting point for static aeroelastic iterations
and aeroelastic iterations continue until the difference of the root mean square values of
structural displacements between two consecutive iterations is less than the prescribed

tolerance (107).
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The CFD analysis in this study is carried out using density based with second order
upwinding discretization flow solver, FLUENT. In the CFD model, missile is meshed
using unstructured tetrahedral meshes. The model’s grid size is about 2,291,346 cells
(Figure 3.67). For structural analysis, MSC/NASTRAN finite element commercial
software is used. The model consists of shell (CQUAD4) type of element for the finite
element discretization. Wings are attached to the missile body with rigid RBE2
elements. This connection may be modified to search for aeroservoelastic effects in the
future. Finite element model of the missile is shown in Figure 3.66. In order to calculate
the deformations of the missile in flight, Inertia Relief module of MSC/NASTRAN is
used. Support point is chosen as the center of gravity location and relative displacements

are calculated with respect to this point.

Linear interpolation using Alternating Digital Tree data structure is performed to
transfer displacements and pressure loads between the structural and aerodynamic grid
points. An example of building up ADT for the slender missile and application of linear
interpolation of pressure distribution from CFD surface mesh to CSD surface mesh are
shown in Figures 3.64 and 3.65, respectively. FLUENT moving mesh algorithm is used
to deform the CFD grid and FLUENT mesh deforming parameters used in this study are
shown in Table 3.7.

d

b

Figure 3.64 ADT Built with the Points of the Grid Boundaries of the Generic Slender
Missile
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Figure 3.65 Application of AdtSearchln to Non-matching Discrete Interfaces between
Fluid and Structure Mesh of the Generic Slender Missile

Figure 3.66 Finite Element Model of the Missile for Structural Analysis
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Figure 3.67 Unstructured CFD Grid for the Canard Controlled Generic Slender Missile

The root mean square of the z-direction displacement is shown in Figure 3.68. Each
iteration step continues until constant lift and drag coefficient values are obtained and

CFD grid point locations are updated based on the structural finite element analyses.

'Root Mean Square of z-direction Displacement

L162E03
1.161E—03:—
T
51.1605-03:—
1.159E-03 |-
115803 it e

Number of Iteration

Figure 3.68 The Root Mean Square of z-direction Displacement at Each Aeroelastic
Time-step
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Equilibrium position for elastic missile is compared with rigid missile is given in Figure

3.69.

Mach=1.85 o=15"

Elastic Missile

Rigid Missile

-

Figure 3.69 Rigid (red) and Elastic (green) Position of Slender Missile

The deformations due to elasticity of the structure have an influence on the aerodynamic
loads on the missile. In Figures 3.70 and 3.71, normal force and pitching moment
coefficients are given for elastic and rigid missiles. As can be seen, at 10° angle of
attack, the normal force coefficient of the elastic missile is reduced by 2 %. As body
bends about the center of gravity, the equivalent angle of attack of the canards increases
and that of tails decreases. On the other hand, the pitching moment coefficient about the

missile nose tip changes about 6 % as compared to the rigid missile.
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Mach=1.85
Elastic and Rigid Missile Normal Force Coefficient
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Figure 3.70 Elastic and Rigid Missile Normal Force Coefficient

Mach=1.85
Elastic and Rigid Missile Pitching Moment Coefficient about Nose Tip
- ——— Rigid Missile
B ——=—— Elastic Missile
20k
40
£ B
O
60
80
\\\\I\\\\I\\\\I\\\\I\\\\I\\\\I\\\\I\\\\
0 2 4 6 8 10 12 14 16

(00

Figure 3.71 Elastic and Rigid Missile Pitching Moment Coefficient about the Nose Tip
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The center of pressure of the missile changes by amount of 0.45 caliber of the missile at
10° angle of attack. Since stability of the missile changes, control effectiveness of the
missile also changes by amount of 15 % as can be seen from Figure 3.72. For the rigid
case, 10° elevator deflection angle gets the missile in trim condition at 12.1° angle of
attack, whereas it gets the missile in trim condition at 14.2° angle of attack for the

elastic case.

Mach=1.85
Elastic and Rigid Missile Pitching Moment Coefficient about cg
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Figure 3.72 Elastic and Rigid Missile Pitching Moment Coefficient about cg
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CHAPTER 4

CONCLUSIONS AND RECOMMENDATIONS

In this thesis, a closely coupled approach is developed in order to solve the static and
dynamic aeroelastic problems. Since this approach gives the variability in choosing
different solvers depending on the complexity of the applications, it is an efficient way

to couple CFD and CSD solvers.

To conduct static aeroelastic analysis, three dimensional, inviscid CFD solver, FLUENT
is coupled with finite element structural solver, MSC/NASTRAN, that is used to solve
the displacements associated with the aerodynamic pressure loading. Likewise for
dynamic aeroelastic analysis, a numerical method is developed to predict the aeroelastic
response and flutter boundary. Modal approach is used for structural response and
Newmark algorithm is used for time-marching. Mode shapes and corresponding natural
frequencies are obtained by using MSC/NASTRAN and used as input for this approach.
Unsteady flow field is solved using commercial CFD solver, FLUENT, in a parallel

computing environment.

Mesh deformation techniques, which have been investigated as a part of this research,
are presented. In this study, details of mesh deformation methods based on FLUENT
mesh deformation algorithm and linear elastic finite element based deformation method
are given. It can be concluded that, artificial material stiffness property created in finite
element based deformation method with varying elastic properties according to the cell
volume can be implemented for mesh deformation problems. But, since cell skewness

and cell size parameters cannot be controlled, mesh quality decreases especially for
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large boundary deformations during the deformation process. Since FLUENT replaces
the collapsed or deteriorated cells with new cells, quality of the mesh can be easily

controlled and preserved during the deformation of the aerodynamic grid.

Interference techniques between CFD and CSD grid are also investigated in this study.
Predictions of complex dynamic aeroelastic phenomena such as flutter are sensitive to
the energy conservation at the fluid-structure interface. An imbalance in energy transfer
between the CFD and the CSD systems cause instabilities and incorrect prediction of the
aeroelastic behavior. Spline methods conserve the total force and moments on each
system and applicable to the dynamic aeroelastic problems. For static aeroelastic
problems, linear interpolation method using ADT is applied successfully to transfer
displacements and pressure loads between the structural and aerodynamic grid points.

ADT reduces the interpolation time by amount of the logarithm of the number of points.

Static and dynamic aeroelastic problems of the AGARD Wing 445.6 are solved with the
developed procedure and obtained results are compared with numerical and

experimental data available in literature.

For the static aeroelastic analyses, out-of-plane deformations of AGARD Wing 445.6 at
leading and trailing edges are compared with the results of Cai [4]. The results of the
present study appear to agree well with the results of Cai [4] except for the small
differences at the leading and trailing edges of the wing tip. These differences may be
attributed to the different flow solvers, meshing technique, and coupling approach.
Rigid and elastic wing pressure coefficient distributions calculated in the present study
are compared to each other. Cp values on the surface decreases in elastic wing due to
decreased pressure values. The lift coefficient of the elastic wing is reduced by 22 % as

compared to rigid wing.

For the dynamic aeroelastic analyses, FSI is determined for the AGARD Wing 445.6 at
different Mach numbers ranging from 0.499 to 1.141. The flutter points are determined

by running a solution for a significantly long period of time to arrive at a neutrally stable
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solution. Damping estimations are collected for large set of test points at constant Mach
numbers for varying dynamic pressure values. Then, the flutter boundary is determined
which yields zero damping ratio, (=0, where the amplitude of oscillations of the
generalized displacement is neither decaying nor growing. The results of the present
study are good agreement with the experimental results except the region of transonic
dip. Coupling unsteady Euler equations to the linear modal structural model predicts a
lower flutter speed at the transonic dip. Viscous effects are important factors in
determining the transonic dip accurately. Thus, including the viscous effects may

improve the prediction of FSI at this regime.

As another test case, static aeroelastic problem of the canard controlled slender missile
is solved using the developed procedure. For structural analysis, MSC/NASTRAN
inertia relief option, which is used to simulate unconstrained structures in flight, is used
with linear elastic solver. The displacements of the structure under the aerodynamic
loading are calculated with respect to the center of gravity of the missile. The normal
force and pitching moment coefficients of the rigid and elastic missile are calculated in
the present study and compared to each other. Normal force coefficient does not change
significantly. The pitching moment coefficient about the nose tip of the missile changes
by amount of 6 %, as center of pressure changes due to bending of the missile. This
affects the aerodynamic performance of the missile in terms of stability and control
effectiveness. Control effectiveness changes about 15 % as compared to the rigid
missile. For the further studies, dynamic aeroelastic characteristics of the slender
missile, which is more critical especially in the transonic region of the flight regime,

will be investigated.
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