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ABSTRACT 
 

DEVELOPMENT OF A CLOSELY COUPLED APPROACH FOR SOLUTION OF 

STATIC AND DYNAMIC AEROELASTIC PROBLEMS 

 

Başkut, Erkut 

M.S., Department of Aerospace Engineering 

Supervisor : Asst. Prof. Dr. Güçlü Seber 

Co-Supervisor : Assoc. Prof. Dr. Altan Kayran 

June 2010, 136 pages 

 

In this thesis a fluid-structure coupling procedure which consists of a commercial flow 

solver, FLUENT, a finite element structural solver, MSC/NASTRAN, and the coupling 

interface between the two disciplines is developed in order to solve static and dynamic 

aeroelastic problems. The flow solver relies on inviscid Euler equations with finite volume 

discretization. In order to perform faster computations, multiple processors are parallelized. 

Closely coupled approach is used to solve the coupled field aeroelastic problems. For static 

aeroelastic analysis Euler equations and elastic linear structural equations are coupled to 

predict deformations under aerodynamic loads. Linear interpolation using Alternating 

Digital Tree data structure is performed in order to exchange the data between structural and 

aerodynamic grid. Likewise for dynamic aeroelastic analysis, a numerical method is 

developed to predict the aeroelastic response and flutter boundary. Modal approach is used 

for structural response and Newmark algorithm is used for time-marching. Infinite spline 

method is used to exchange displacement and pressure data between structural and 

aerodynamic grid. In order to adapt the new shape of the aerodynamic surface at each 

aeroelastic iteration, Computational Fluid Dynamic mesh is moved based on spring based 

smoothing and local remeshing method provided by FLUENT User Defined Function. 

AGARD Wing 445.6 and a generic slender missile are modeled and solved with the 
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developed procedure and obtained results are compared with numerical and experimental 

data available in literature.  

 

Keywords: Computational Aeroelasticity, Closely Coupled Approach, Computational Fluid 

Dynamics, Finite Element Analysis, Flutter, AGARD Wing 445.6, Slender Missile 
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ÖZ 
 

STATİK VE DİNAMİK AEROELASTİK PROBLEMLERİN ÇÖZÜMÜ İÇİN SIKI 

BAĞLI YAKLAŞIM METODU GELİŞTİRME 

 

Başkut, Erkut 

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü 

Tez Yöneticisi : Asst. Prof. Dr. Güçlü Seber 

Ortak Tez Yöneticisi : Assoc. Prof. Dr. Altan Kayran 

Haziran 2010, 136 sayfa 

 

Bu tezde, statik ve dinamik aeroelastik problemlerin incelenmesi için, ticari akış çözücüsü 

FLUENT, sonlu elemanlar yapısal çözücüsü NASTRAN ve bu iki disiplini birbirine 

bağlayan arayüzü içeren bir yöntem geliştirilmiştir. Akış, viskozitenin ihmal edildiği Euler 

denklemleri ve sonlu hacim methodu kullanılarak çözülmüştür. Çözüm süresini kısaltmak 

için paralel işlemciler kullanılmıştır. Eşleştirilmiş alan aeroelastik problemler sıkı bağlı 

yaklaşım ile çözülmüştür. Statik aeroelastik analizde, aerodinamik yükler altında oluşan 

yapısal bozulmaların hesaplanmasında, Euler denklemleri ile elastik doğrusal yapısal 

denklemler eşleştirilerek beraber çözülmüştür. Yapısal ve aerodinamik çözüm ağlarında 

bilgi alışverişini sağlamak için, doğrusal interpolasyon kullanan Alternating Digital Tree 

veri yapısı kullanılmıştır. Dinamik aeroelastik analizler için de, aeroelastik tepkileri ve 

flutter sınırlarını öngörebilmek için bir sayısal yöntem geliştirilmiştir. Yapısal tepki için 

modal yaklaşımı, zaman ilermesi için Newmark algoritması kullanılmıştır. Aerodinamik ve 

yapısal çözüm ağları arasındaki deplasman ve basınç veri alışverişi sonsuz eğri cetveli 

metodu kullanılarak gerçekleştirilmiştir. Hesaplamalı Akışkanlar Dinamiği çözüm ağı, 

FLUENT Kullanıcı Tanımlı Fonksiyon Modulü kullanılarak yay prensibi ve yerel çözüm 

ağları oluşturma yöntemi ile her bir aeroelastik hesaplama adımında, aerodinamik yüzeyin 

yeni şekline uyacak şekilde hareket ettirilmiştir.  AGARD 445.6 kanadı ve narinlik oranı 
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yüksek bir füze geometrisi modellenmiş, geliştirilen yöntem ile çözülerek, sonuçlar deney 

verileri ve literatürde bulunan sayısal çözümler ile karşılaştırılmıştır.  

 

Anahtar Kelimeler: Hesaplamalı Aeroelastisite, Sıkı Bağlı Yaklaşım, Hesaplamalı 

Akışkanlar Dinamiği, Sonlu Elemanlar Analizi, AGARD 445.6 Kanadı, Narinlik Oranı 

Yüksek Füze 
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CHAPTER 1 

INTRODUCTION 
 

Aeroelasticity is the study which considers the interaction of inertial, structural and 

aerodynamic forces for elastic structures. Air-vehicle is usually susceptible to serious 

aeroelastic problems when light weight and low stiffness structures are used. Increasing 

rigidity does not necessarily avoid catastrophic failure when sudden atmospheric 

disturbances, gusts, moving shock waves, etc. occur during the flight. Aeroelastic 

problems should be considered in the early phase of the air-vehicle structural design 

since any unstable response to aerodynamic loading may rapidly lead to disastrous 

structural failure, which may only be treated by major and usually expensive 

modifications. Wind-tunnel or flight tests are two expensive ways which are performed 

in the late phase of the design. Therefore, computational aeroelasticity methods are used 

in order to determine aeroelastic characteristics of the air-vehicle during its development 

stages. 

Collar’s aeroelastic triangle (Figure 1.1) shows the interaction of the inertial, structural 

and aerodynamic forces. Static aeroelasticity studies the interaction of aerodynamic and 

elastic forces, whereas dynamic aeroelasticity requires all of the three forces to interact. 

The interaction between these forces may cause several undesirable phenomena which 

can be grouped into two main categories as static and dynamic aeroelasticity. 

Static aeroelasticity considers the non-oscillatory effects of aerodynamic forces acting 

on the elastic structure [41].  Because of the flexible nature of the structure, 

aerodynamic forces acting on the structure give rise to structural deformation. This 
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deflection of the structure tends to redistribute the aerodynamic forces acting on the 

structure and this interaction continues by leading to each other. Calculated load 

distribution may be significantly different from that is computed for rigid structure. The 

effectiveness of the control surfaces is also reduced due to the static aeroelastic effects 

and it eventually leads to the phenomenon of control reversal which is the loss of the 

response of a control surface because of the structural deformations. Divergence is 

another disastrous phenomenon where the aerodynamic moments due to elastic 

deformations overpower the elastic moments of the structure, bringing the structure to 

the limit loads and eventually structural failure.  

Dynamic aeroelasticity is concerned with the oscillatory effects of the aerodynamic 

forces [41]. Flutter is the main area of interest of the dynamic aeroelasticity. This 

dynamic instability involves the interaction of aeroelastic modes of the structure leading 

to unfavorable coupling of inertial, aerodynamic and elastic forces. Flutter can be 

defined as the unstable self-excited oscillation in which the structure gains energy from 

the air-stream and leads to catastrophic structural failure. Because of the unsteady 

aerodynamics when the air-vehicle oscillates particularly in the transonic regime, 

prediction of flutter is one of the most complicated issues in computational 

aeroelasticity. 

Buffeting, dynamic response and dynamic stability are the other phenomena covered by 

dynamic aeroelasticity. Buffeting can be defined as the transient vibration of the aircraft 

components due to aerodynamic impulses produced by the wake behind wings, nacelles, 

fuselage pods or other components of the airplane [42].  Transient response of the 

structure due to impulsive loads (gusts, etc.) can be defined as the dynamic response. 

Dynamic stability of an air-vehicle may also be affected by the change in the shape of 

the structure due to unsteady aerodynamic forces. 
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Figure 1.1 Collar’s Aeroelastic Triangle 

 

Different levels of complexity may be used in order to model the fluid and structure in 

computational aeroelasticity as can be seen in Figure 1.2.  In general, as the complexity 

in physics and geometry increases, so does the accuracy of the obtained results and 

computational time. 

Linear analytical methods, which are used in aeroelastic problems, give insufficient 

results, particularly in the transonic regime where the aerodynamic flow displays highly 

non-linear behavior. These methods cannot predict the non-linear characteristics and 

instabilities correctly because of the nonlinear effects arising from oscillating shock 

waves at this flight regime.  Linear theories, which are commonly used in aeroelasticity, 

are based upon small perturbation theory and thin airfoil theory where the effect of 

compressibility is introduced in a limited fashion using simple corrections. Transonic 

small disturbance theory is proved to be an effective method to predict the flutter 

boundaries accurately at subsonic and supersonic flight regime. However, it cannot 

predict the dip accurately at transonic flight regime where significantly higher flutter 
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speed is predicted [36]. Most of the commercial codes such as the aeroelastic module of 

NASTRAN utilize these linear aerodynamic theories to predict the aeroelastic behavior. 

Accuracy of aeroelastic modeling can be improved by using high level aerodynamic 

models based on the conservation laws and finite element formulation of the structure. 

These methods fully account for nonlinear effects during aeroelastic analysis, which 

results in more accurate prediction of aeroelastic response and instabilities. Continuity, 

momentum and energy conservation laws together with the equation of state are 

generally utilized by CFD methods in order to solve the flow around air-vehicles. The 

Navier-Stokes equations may also be solved for viscous flows. Euler equations, which 

assumes inviscid flow is reduced form of Navier-Stokes equations and gives acceptable 

results in the transonic regime excluding the region of transonic dip [36].  Transonic dip 

is important, because it shows the minimum velocity at which flutter may occur across 

the flight envelope. The flow may be assumed to be inviscid or viscous effects may be 

included in order to determine the aeroelastic characteristics when these nonlinear 

models are used. Coupling Euler equations and normal modes of the structure is found 

to be over-conservative and significantly lower flutter speed is predicted [36]. Including 

the viscous effects is found to improve the prediction of transonic dip [44]. 
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Figure 1.2 Varying Levels of Complexity in Modeling for Fluids and Structures [12] 

 

The main objective of this thesis is to develop an interference between the two 

disciplines, namely the structural dynamics and aerodynamics, in order to determine 

static and dynamic aeroelastic properties of air-vehicles. 

The most of the structural deformation on the body takes place because of pressure 

forces on the body rather than friction forces. In order to decrease the computational 

cost, Euler equations are used for CFD, whereas 3-D finite element method is used for 

the structural analysis.  
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1.1 LITERATURE REVIEW 

 

In this part of the dissertation, details and literature review of time advancing schemes, 

mesh deformation methods, and interference methods which are commonly used in 

computational aeroelasticity are given.  

 

1.1.1 Time Advancing Schemes 

 

There are three major methods which are used to advance in time for fluid-structure 

simulation: monolithic approach, closely coupled approach, and loosely coupled 

approach [28].  

In the monolithic approach, fluid and structure governing equations are combined into 

one single equation set and these equations are solved using a unified solver 

simultaneously. The main advantage of this approach is that fluid and structure are 

synchronized while advancing a single time step so that fully consistent coupling is 

preserved. This leads to robustness and stability and allows large time steps to be 

chosen.  

When loosely and closely coupled approach is used, the structural and fluid equations 

are solved by using separate solvers. 

In the closely coupled approach, fluid and structure systems are also synchronized at 

each time step. A partitioned scheme is used for synchronization where fluid and 

structure solvers are separate. Fluid loads and structural displacements are exchanged 

within a single time step. In this approach, sub-iterations are performed until the fluid 

and structure systems are fully converged at each time step. The main advantages of the 
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closely coupled approach are synchronicity property and algorithmic flexibility for 

physically different systems. 

The loosely coupled approach is also a partitioned scheme. But, the fluid-structure 

system is not sub-iterated to full convergence at each time step. The main disadvantage 

of this method is that the fluid and structure solution updates are lagged. This method is 

usually used for the aeroelastic problems with moderate nonlinearity. The two systems 

are never fully in phase. This introduces a temporal error in addition to the truncation 

error of the fluid and structure interference schemes. Partitioned approach and small 

computational expense per time step are the advantages of the loosely coupled approach 

[28].  

Liu et al. [4] presented a fluid-structure code, which is based on Euler/Navier-Stokes 

equations, in order to determine the flutter characteristics. The flow solver and structural 

modal equations are strongly coupled with each other. In order to avoid time delay 

between flow and structural system, a dual time stepping scheme was used.  

Schuster [33] coupled the linear structural model with the 3-D flow solver in order to 

solve the aeroelastic problems of an aircraft. The linear generalized mode shapes for 

structural model and thin layer approximations to the RANS equations were used. 

Melville et al. [39] presented a fully coupled approach, which modal structural equations 

are coupled with a flow solver using an approximate factorization scheme.  

Lee-Rausch and Batina [34] coupled implicit, Euler and Navier-Stokes equations with a 

modal structure solver.  

Guruswamy and Byun coupled Euler equations with finite element structures which is 

modeled by using plate elements; and Navier Stokes equations with finite element 

structure which is modeled by using shell elements to solve dynamic aeroelasticity 

problems [15], [48]. 
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Doi [40] coupled an explicit fluid solver (TFLO) with the finite element structure solver 

(MSC/NASTRAN) to predict the aeroelastic characteristics of a rotor blade. 

Bendiksen [31] used the ‘Arbitrary Lagrangian Eulerian formulation’ to solve the wing 

flutter problem of an airfoil in the transonic regime. Interference between two systems is 

performed by switching from Euler description to Lagrangian description at fluid-

structure interface. 

Alonso and Jameson [30] coupled Euler code with a modal pitch-plunge structural 

model of an airfoil. Information between CFD and CSD domains was exchanged at the 

each pseudo time integration and the entire system was fully converged at each physical 

time-step.  

Luca et al. [32] presented a loosely coupled approach where aerodynamic and structural 

systems are integrated with an implicit algorithm. An implicit Euler flow solver was 

used for the aerodynamics and the structure was represented by a modal description. 

Predictor and corrector steps based on Crank-Nicholson algorithm were used at each 

time step. Displacement values, which are predicted in the first step, corrected with the 

new unsteady aerodynamic loads in the second step of the procedure. 

 

1.1.2 Mesh Deformation Methods 

 

Mesh deformation in computational aeroelasticity applications is one of the important 

aspects and therefore it must be handled carefully. In order to represent the deformation 

of the structure during the aeroelastic simulation, aerodynamic grid must be deformed 

consistently and mesh quality must be maintained to avoid any numerical problem. 

Simply deforming the CFD grid is considerably cheaper and more convenient than 
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remeshing of the entire CFD domain; therefore it is commonly used in computational 

aeroelasticity.  

In literature, several techniques exist in order to apply mesh deformations consistent 

with the motion of the structure in the CFD domain.  

Batina [7] proposed a method, which is based on the spring analogy, for unstructured 

grids. In this method, spring stiffness of an element edge is assigned to be inversely 

proportional to the edge length. Spring analogy is implemented easily but it is not robust 

since especially under large deformations cells collapse in the computational domain 

resulting in singularities in the flow solution.  

Farhat et al. [8] proposed a modification to the spring analogy for 2-D meshes by 

including additional torsional springs in order to control mesh skewness. This method 

offers many advantages in terms increased robustness and performance.  

Murayamai Nakahashi and Matsushima [9] expanded the use of torsional springs for 3-

D unstructured meshes.  

Robinson et al. [10] presented an extension of the spring analogy for structured grids. 

The deformation algorithm was based on a network of interconnected springs in edges 

of the hexahedral cell. However, it was concluded that this method was computationally 

expensive.  

Zhang and Belegungu [11] calculated the spring stiffness using the ratio of the cell 

Jacobian to the cell volume. They concluded that this algorithm can handle large mesh 

deformation.  

Löhner and Yang [19] proposed a method based on Laplacian smoothing with variable 

diffusivity according to distance from surface. 

Tezduyar and Behr [13] proposed a mesh deformation algorithm based on linear 

elasticity. Cavallo et al. [14] included additional stress terms and use minimal residual 

algorithm to solve equations of linear elasticity and concluded that their approach can 
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preserve mesh quality for large boundary deformations. Stein et al. [16] used this 

method with varying elastic stiffness which is proportional to cell volumes. They 

concluded that mesh quality in boundary-layers and regions of high resolution is 

preserved.  

For the aerodynamic shape optimization study, Nielsen and Anderson [27] also applied 

the linear elastic analogy. They defined the mesh material stiffness according to the cell 

aspect ratio so that mesh is not deformed near the moving boundary as much as cells 

farther away from the boundary. 

 

1.1.3 Interference between CFD and CSD Grids 

 

Computational aeroelasticity requires a fluid-structure interface to transfer the 

aerodynamic loads and structural displacements at this common boundary, which is 

usually the wetted surface on the structure. The aerodynamic and structural grids 

generally do not coincide and not lie on the same surface since the requirements are 

different for the corresponding systems. Therefore, interpolation of aerodynamic 

pressure loads and displacements must be implemented between the two systems by a 

carefully implemented method. The performance of such a method depends on the 

accuracy and robustness of the interpolation scheme. Several studies in the literature 

raised the importance of conservation of momentum and energy in the transfer of loads 

and displacements [28]. If the transfer of structural grid displacements to the fluid grid is 

defined as:  

[ ] [ ][ ]sa S δδ =  (1.1)

The force transformation from the aerodynamic to structural grid uses the virtual work 

principle [47]. In order to transfer aerodynamic pressure loads from the CFD grid points 
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to the CSD grid points, transpose of the displacement transformation matrix, which 

ensures a conservative transfer of energy between the two systems, is used. 

[ ] [ ] [ ]a
T

s FSF =  (1.2)

Prediction of complex dynamic aeroelastic phenomena such as flutter and limit cycle 

oscillation is sensitive to the conservation properties. An imbalance in energy transfer 

between the fluid and structure systems causes instability and must be avoided [28]. 

There are also some studies which does not need any interference algorithm between the 

two different disciplines. The nodes at the surface of the CFD are also the elements of 

structural finite element model. Thus, same surface grid may be used for the flow and 

structural analyses. Data exchange between the two systems is performed at this 

matching discrete interface without using any interpolation algorithm. Bendiksen and 

Hwang [29] proposed a finite element algorithm for both CFD and CSD equations and 

used the same surface grids for the flow and structural analyses. 

The infinite plate spline method which is commonly used in aeroelasticity was firstly 

proposed by Harder and Desmarais [22].  This method is suitable for displacement and 

force transfer of wing-like components which is modeled by plate or shell elements.  

Duchon [17] presented thin plate spline method for interpolation of displacements and 

forces at 3-D structural grid points. Only difference from the infinite spline method is 

the addition of the out of plane component.  

The beam spline method is used for body-like components or high aspect ratio wing 

structures which are modeled by beam elements. The beam spline method solves the 

partial differential equation of equilibrium for an infinite beam with uniform bending 

and torsion stiffness [20]. 

Luca et al. [32] proposed an interfacing method based on least square method which 

ensures the conservation of energy and momentum transfer between the structure and 

fluid systems. 
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CHAPTER 2 

COMPUTATIONAL AEROELASTICITY 
 

Computational Aeroelasticity (CAE) may be defined as the coupling of CFD methods 

with structural dynamics formulations in order to model an aeroelastic system and 

perform analysis. Accuracy of the aeroelastic analysis depends on the selection of 

computational methods, interpolation schemes, and mesh deformation methods. In this 

part, some details of the interaction between the two disciplines, the flow and the 

structural finite element solvers, mesh deformation techniques, and interpolation 

methods that have been investigated as a part of this research are presented.   

 

2.1 TIME ADVANCEMENT SCHEME 

 

In the present study, a closely coupled approach is used for time advancing as illustrated 

in Figure 2.1. In this approach, at each time step corrective sub-iterations are performed 

until the fluid and structure are synchronized and the entire aeroelastic system is fully 

converged. Then, new unsteady aerodynamic loads and corresponding structural 

displacements are calculated for the next time step. This process is repeated until a 

specified flow time is reached.  
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Figure 2.1 Closely Coupled Approach 

 

2.2 MESH DEFORMATION METHODS 

 

In this part, details of mesh deformation methods based on FLUENT mesh deformation 

algorithm and linear elastic finite element based deformation method which can be 

implemented by using any structural finite element program are given and some test 

cases are presented.  

 

2.2.1 FLUENT MOVING MESH ALGORITHM 

 

FLUENT consists of three mesh deformation methods which can be used to update the 

volume mesh in the deforming regions at the boundaries subject to the motion [6]. These 

methods are called as spring-based smoothing, dynamic layering and local remeshing. 

In the spring-based smoothing method, the edges between any two mesh nodes are 

idealized as an interconnected springs which form a network. A displacement at a given 
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boundary node will generate a force proportional to the displacement along all the 

springs connected to the node [6]. Spring-based method preserves mesh connectivity but 

needs large amount of CPU time and memory. It is also limited to relatively small 

deformations when it is used as a standalone mesh deformation scheme. The spring-

based smoothing, of which details are given in [6], is shown in Figure 2.2 for a 

cylindrical cell zone where one end of the cylinder is moving.  

 

 

Start 

 

End 

 
Figure 2.2 Spring Based Smoothing on Interior [6] 

 

The second method, dynamic-layering, can be used in prismatic (hexahedral or wedge) 

mesh zones in order to add or remove layers of cells adjacent to a moving boundary, 

based on the height of the layer adjacent to the moving surface [6]. 

The third method is remeshing. The cell quality may deteriorate and cells may become 

degenerate if the boundary displacement is large compared to the local cell sizes. This 

leads to negative cell volumes which results in convergence problems in flow solution 

[6]. Remeshing can eliminate the collapsed cells, but adds extra computational costs. 
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FLUENT locally replaces the degenerated cells until the new cells or faces satisfy the 

size and skewness criterions [6]. FLUENT includes several remeshing methods. These 

include local remeshing, local face remeshing, face region remeshing and 2.5 D surface 

remeshing [6]. The available remeshing methods in FLUENT work for triangular or 

tetrahedral zones. As cells are added or removed, connectivity changes during the 

deformation process.  

The two-dimensional mesh, which is used for a test case, has a total of 7,364 triangular 

elements and 37,688 nodes. The grid density is high near to the airfoil leading and 

trailing edges. The baseline mesh with unstructured triangular elements is shown in 

Figure 2.4. The chord of the airfoil NACA0010 (Figure 2.3) has a length of 40 units. In 

order to determine proper mesh deformation parameters which allow maintaining mesh 

quality and representing the structural deformation correctly, 2-D mesh is deformed in 

two different ways. Firstly, airfoil is translated by chord/2 in the x direction. Secondly, 

airfoil is rotated 45° about the leading edge.  

 

 
NACA 0010 

 
Figure 2.3 3-D Wing Planform and Airfoil Cross-section Used for Mesh Deformation 

Studies 
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Figure 2.4 Two-Dimensional Triangular Mesh Used as a Test Case for Deformation 
Studies 

 

Figures 2.5 and 2.6 show the mesh patterns obtained from the FLUENT mesh deforming 

process for the two deformation cases, respectively. Since FLUENT deforms the mesh 

according to the pre-defined parameters, skewness and cell size of the grids are kept 

under control during the deforming process. As can be seen in Table 2.1, mesh quality is 

preserved almost completely after the deformation process.  
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Figure 2.5 Translation of airfoil by chord/2 unit in the x-direction (blue: initial position 
of the airfoil) 

 
 
 

 
 

Figure 2.6 Rotation of airfoil by 45° about leading edge (blue: initial position of the 
airfoil) 
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Table 2.1 FLUENT 2-D Mesh Deformation Test Case Results 

 

Number 

of 

Triangular 

Cells 

Maximum 

Cell 

Equiangle 

Skew 

Maximum 

Cell 

Equisize 

Skew 

Maximum 

Cell 

Aspect 

Ratio 

Base Grid 7364 0.434 0.467 1.562 

0.5*chord Translation 7364 0.434 0.465 1.558 

45° Rotation About 

Leading Edge 
7758 0.584 0.450 1.540 

 

The three-dimensional mesh, which is used for a test case, has a total of 833,772 

tetrahedral elements. The baseline mesh with unstructured tetrahedral elements and 

created planes which help to observe the grid quality during deformation process are 

shown in Figure 2.7 and 2.8, respectively. Mid-plane is located at the middle of the root 

chord location of the swept wing. Geometrical properties of the wing are shown in 

Figure 2.3.  

 

 
 

Figure 2.7 Three-Dimensional Triangular Mesh Used as 3-D Test Case for Deformation 
Studies 

mid-plane 

symmetry-plane 
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In order to determine proper mesh deformation parameters, which allow maintaining 

mesh quality and representing the structural deformation correctly, wing is deformed in-

z-direction with varying magnitudes. The magnitude of the deflection at the wing tip is 

3% of the wingspan. It linearly decreases towards to the wing root, up to zero value.  

 

 
Figure 2.8 Initial Mesh Patterns at Symmetry and Mid Planes of the 3-D Test Case for 

Deformation Studies  
 
 
 
 

 
Figure 2.9 Initial and Final Position of the 3-D Test Case Wing and Mesh Patterns at the 

Mid-Plane 
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As can be seen from Figures 2.9 and results shown in Table 2.2, deformed grid has good 

quality that may avoid any numerical problems during the CFD simulation. Cell 

skewness and aspect ratio values are almost preserved during the deforming process. 

Number of element increases, since FLUENT replaces the collapsed or deteriorated cells 

with new cells in order to maintain the quality of the mesh. 

 

Table 2.2 FLUENT 3-D Mesh Deformation Test Case Results 

 
Number of 
Tetrahedral 

Cells 

Maximum 
Cell 

Equiangle 
Skew 

Maximum 
Cell 

Equisize 
Skew 

Maximum 
Cell 

Aspect 
Ratio 

Base Grid 833772 0.814 0.785 3.452 

Maximum tip deflection 
(3 % of the Wingspan) 855625 0.813 0.765 3.440 

 

2.2.2 LINEAR ELASTIC FINITE ELEMENT BASED MESH DEFORMATION 

METHOD 

 

In this method, an analogy is used and the CFD computational domain is defined as a 

finite element mesh for a domain of an isotropic linear elastic continuum with a local 

Young modulus inversely proportional to the cell volume of each element. In order to 

obtain the deformed CFD mesh, the outer boundaries of the CFD domain are held fixed. 

And structural displacements at each boundary node are used as the boundary condition 

for the finite element analysis. The resulting equations are then solved using 

MSC/NASTRAN finite element program. Main objective of this method is to use of the 

available finite element based structural solver. This method preserves mesh 

connectivity and allows fixed outer boundary of the computational domain which can be 

easily implemented for deforming-boundary CFD calculations. In this method, cell 
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skewness and size parameters cannot be controlled during the deformation in order to 

preserve or improve mesh quality. This is the main disadvantage of linear elastic finite 

element based mesh deformation method. 

The mesh deformation is obtained by a single linear elastic finite element analysis with 

fictitious non-uniform elastic properties. In order to control the mesh movement, the 

Young’s modulus E is defined as Eqn 2.1. Poisson’s ratio ν, is assumed to be zero for 

convenience. Large cells far from moving boundary are intentionally softened. 

)(. KfcE =  (2.1)

Where; K is a function which decreases with the cell volume in CFD domain and c is a 

constant parameter which controls the stiffness level of the cells.  In this study, choosing 

c value as 104 gives satisfactory results.  

In order to examine deformed mesh quality after deformation process, a 2-D mesh 

(Figure 2.4) is deformed in two different ways. Firstly, airfoil is translated by chord/2 

unit in the x direction. Secondly, airfoil is rotated 45° about the mid-chord. Figures 2.10 

and 2.11 show the mesh patterns obtained from the finite element based mesh deforming 

process for the two deformation cases.  

It can be concluded that, artificial material stiffness property created in finite element 

based deformation method with varying elastic properties according to the cell volume 

can be implemented for mesh deformation problems. As can be seen, no overspill is 

observed in the results. But, since cell skewness and cell size parameters cannot be 

controlled, mesh quality decreases especially for large boundary deformations during 

the deformation process (Table 2.3). On the other hand, number of triangular elements 

and cell connectivity does not change during the deformation process since no mesh is 

removed or added to the domain.  
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Figure 2.10 Translation of airfoil by chord//2 unit in the x direction 
 
 
 
 
 

 
Figure 2.11 Rotation of airfoil by 45° about the mid-chord (blue: initial position of the 

airfoil) 
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Table 2.3 Linear Elastic Finite Element Based Method 2-D Mesh Deformation Test 
Case Results 

 

 

Number 

of 

Triangular 

Cells 

Maximum 

Cell 

Equiangle 

Skew 

Maximum 

Cell 

Equisize 

Skew 

Maximum 

Cell 

Aspect 

Ratio 

Base Grid 7364 0.434 0.467 1.562 

0.5*chord Translation 7364 0.462 0.486 1.600 

45° Rotation About Mid-chord 7364 0.531 0.700 2.310 

 

Since quality of the mesh can be easily controlled and preserved according to the pre-

defined parameters, FLUENT moving mesh algorithm will be used for the further static 

and dynamic aeroelastic analyses.  

 

2.3 INTERFERENCE BETWEEN CFD and CSD GRIDS 

 

In this part, three interpolation techniques are described: Linear Interpolation Method 

using Alternating Digital Tree (ADT) geometric search algorithm, which is used in 

static aeroelastic analysis, thin plate spline method and infinite spline method, which is 

used in the dynamic aeroelastic analysis. 
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2.3.1 Linear Interpolation using Alternating Digital Tree Data Structure 

 

Data structures such as binary tree, quad tree, oc tree, etc., convert the unstructured form 

of data into structured form in order to speed up the search process. These algorithms 

impressively decrease the searching and sorting time when they are used for mapping 

applications in computational aeroelasticity.  

Alternating Digital Tree (ADT) is a spatial binary tree data structure used for searching 

and sorting data operations.  In order to construct ADT, firstly a root domain is defined. 

An element is assigned to one of two branches based upon the geometric conditions 

which are satisfied by the bounding box of that element. This procedure is repeated for 

all the elements in the domain and finally an Alternating Digital Tree is built up.   

 

  

 

a

a
b

b

c

c

d

d

 

  

 
Figure 2.12 Alternating Digital Tree Construction 
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Mesh data is stored in a form of Alternating Digital Tree and used for interpolation 

procedure. In Figure 2.12, the first point “a” is the root of the binary tree and the whole 

domain. Point “b” is the in the region that is on the right half of “a”’s domain. 

Therefore, “b” is placed as the right child of “a” that is it is on the right side of the 

bisector of the region. Point “c” is on the right side of the domain. But point “b” is 

already been assigned to this region, thus point “c” is tested for whether it is on the left 

or right of the new bisector of “b”’s region. These steps are repeated for the all points in 

the domain. 

 

 
Figure 2.13 Alternating Digital Tree Search 

 

In Figure 2.13, a sample ADT search steps are shown. In order to search the points lying 

within the rectangular shaded region, firstly, the whole domain (a) is tested whether it 

lies within the rectangular region. The regions corresponding to its left and right son (b 

and f) are tested whether they overlap with rectangular region. The region which 

overlaps the rectangular region is tested if associated point lies within the rectangular 

region. Then, its own left and right sub-regions are tested for intersection. These steps 

are repeated until all nodes have been tested.   
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The sub-regions of the right son of  “a” does not overlap with the rectangular region. 

Therefore, it is unnecessary to search the test points “g” and “h” since their sub-regions 

lie within their parent’s region. By this method, each search step impressively reduces 

the number of points to be checked by a factor of two, resulting in reduced search time 

by amount of the logarithm of the number of points. 

In the present static aeroelastic analyses, Alternating Digital Tree (ADT) geometric 

search algorithm (ADTSearchIn) and linear interpolation method developed in [25] is 

used to transfer displacement and pressure data between the two grid systems.  This 

study [25] creates ADT for a given region described by its points (source), searches for 

surface elements which enclose the specified points (target), and evaluates values of 

variable by linear interpolation.  

In Figures 2.14 and 2.15, examples of building up ADT for AGARD Wing 445.6 and 

Basic Finner Rocket are shown, respectively. As can be seen, generated digital trees are 

concentrated near to the grid boundaries of the structure.  
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Figure 2.14 Building up Alternating Digital Tree Search for AGARD Wing 445.6 

Structural Model (left: CSD grid, right: overall ADT brick) 

 

 

 

 
 

Figure 2.15 Example of ADT Built with the Points of the Grid Boundaries for 3-

Dimensional Basic Finner Rocket [25] 
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Linear interpolation is conducted using the Inverse Distance Weighting (IDW) method. 

Aerodynamic grid points are projected on the structure surface as shown in Figure 2.16. 

Then, structural element which aerodynamic grid point lies within is defined for each 

aerodynamic node. The degree of influence of the each structural grid of the 

corresponding element is calculated by Eqn 2.2, which is based upon the weighted 

distance of the aerodynamic grid node from the grid points of the structural element. In 

other words, points that are closer to the node will have greater degree of influence on 

the calculated value than those that are farther away. 
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where n represents the aerodynamic grid point and δ is the variable that is interpolated 

from CSD grid nodes to CFD grid nodes. 

 

 
Figure 2.16  Illustration of Projections of CFD Grid Points on the CSD Surface and 

Linear Interpolation 
 

Similarly, linear interpolation from CSD grid to CFD grid is used by Eqn 2.3 and 

illustrated in Figure 2.17.  
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Figure 2.17  Illustration of Projections of CSD Grid Points on the CFD Surface and 
Linear Interpolation 

 

Results of linear interpolation using ADT data structure are shown in Figures 2.18-2.20. 

It can be concluded that, using linear interpolation gives admissible results and ADT 

search algorithm dramatically reduces the interpolation time. 

 

 
Figure 2.18 Out-of-Plane Deformation Interpolated from CSD (left) Grid to CFD (right) 

Grid (Linear Interpolation Method using ADT Algorithm) 
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Figure 2.19 Pressure Interpolation from CFD (left) Grid to CSD (right) Grid (Linear 

Interpolation Method using ADT Algorithm) 

 
 
 
 

 

Y X

ZBasic Finner - Model-1 - (Triangular Surface Mesh) - For CFD
contour levels from CFD results

 

 

Y X

ZBasic Finner - Model-2 - (Quadrilateral Surface Mesh) - for CSD
interpolated contour levels from Model-1

 

 
Figure 2.20 Application of AdtSearchIn to Non-matching Discrete Interfaces between 

Fluid and Structure Mesh of Basic Finner Rocket [25] 
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2.3.2 Spline Methods 

 

Computational aeroelasticty needs coupling of the aerodynamic force and structural 

response. Spline methods provide a spline matrix which relates the displacements of the 

structural grids to the aerodynamic grids. Once the spline matrix is generated, the force 

can be transferred from aerodynamic grids to the structural finite element grids by the 

transpose of the same spline matrix.  

 

2.3.2.1 Infinite Spline Method 

 

The Infinite spline method was firstly proposed by Harder and Desmarais [22], [20], 

which is based upon the small deflection equation of an infinite plate. Consider N 

discrete structural grid points (xi,yi), for i=1,2,…,N lying within a 2-D domain. Vertical 

position of the deformed surface is defined at each grid points. Infinite plane spline 

method solves the partial differential equation of equilibrium for an infinite plate with 

uniform thickness. The deformation of the infinite plate satisfies the given deflection 

wi(xi,yi) at the N structural grid points. Once the partial differential equation is solved, 

the deflection at other points, for instance the aerodynamic points, on the plate can be 

determined [20]. 

The governing equation of an infinite plate with bending stiffness is: 

qWD =∇ 4

 (2.4)
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where W is the plate deflection, D is the plate bending rigidity, and q is the distributed 

load on the plate. Introducing polar coordinates, θθ sin,cos ryrx ==  so that 4∇  in 

polar coordinates is given by [20]: 

⎭
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⎩
⎨
⎧
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⎤
⎢⎣

⎡
⎟
⎠
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⎜
⎝
⎛=∇

dr
dwr

dr
d

rdr
dr

dr
d

r
114

 
(2.5)

Considering the deflection due to a point load P at the origin of the coordinate system, a 

solution of Eqn 2.4 can be written as [20]: 

222 ln
16

)( rr
D

PBrArW ⎟
⎠
⎞

⎜
⎝
⎛++=

π  
(2.6)

where A and B are the undetermined coefficients. 

For N point loads at the given location (xi,yi), for i=1,2,,…,N in the 2-D space, the total 

deflection can be obtained by superimposing the fundamental solution of Eqn 2.4 such 

that [20]: 

( )∑
=

++=
N

i
iiiiii rrrBAyxW

1

222 ln),( λ
 

(2.7)

where:  

D
PandBA i

iii π
λ

16
,, =

 
(2.8)

are undetermined coefficients,                      

and  

222 )()( iii yyxxr −+−=  (2.9)
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For the purpose of determining these undetermined coefficients one needs to use certain 

information about the solution. For large values of r, one obtains terms of order r2, r, 1, 

1/r, etc., along with terms of order r2 ln r2, r lnr, ln r2, etc. [20]: 
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For removing the singularity at r=∞, coefficients of the terms of order r2, r2 ln r2, and r 

ln r2 must vanish. This gives [20]: 
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0λ  (2.11)
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iix
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iiy

1
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∑
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=
N

i
iB

1
0  (2.14)

Here equation 2.11 can be recognized as the discrete force equilibrium equation that 

eliminates terms of order r2ln r2. Eqns 2.12 and 2.13 are discrete moment equilibrium 

equations and eliminate terms of order r ln r. Finally, Eqn 2.14 serves to eliminate terms 

of order r2.  

Linear deflection of the aerodynamic points occurs only if they are located far from the 

domain of the structural grid points. A solution to the general spline problem, formed by 

superimposing solutions of Eq 2.4, is given by [20]: 
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∑
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where : 

22 ln),( iii rryxK =  (2.16)

222 )()( iii yyxxr −+−=  (2.17)

where : 
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N+3 unknowns in Eqn 2.15 can be determined from application of side conditions found 

in Eqns 2.11-2.14 along with setting the deflection at the ith point to its known value W 

[20]. 

NiforKyaxaaW
N

i
jijiii ,...,2,1

1
210 =+++= ∑

=

λ  (2.21)

where : 

22 ln ijjiij rrK =  (2.22)

222 )()( jijiij yyxxr −+−=  (2.23)

Equation 2.21 and the side conditions found in Eqn 2.11-2.14 can now be expressed in 

matrix form as [20]: 
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{ } [ ]{ } [ ]{ }λijKaRW +=  (2.24)

[ ] { } 0=λTR  (2.25)

where: 
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Solving equations 2.24 and 2.25 for { }λ  and { }a  gives [21]:  

{ } [ ] [ ] [ ] [ ] [ ] [ ][ ] [ ] [ ][ ]{ }WKRRKRRKK TT 11111 −−−−− −=λ  (2.28)

{ } [ ] [ ] [ ][ ] [ ] [ ] { }WKRRKRa TT 111 −−−=  (2.29)

Letting subscript ‘s’ represents the structural grid and subscript ‘a’ represents the 

aerodynamic grid, equation 2.29 can be written as: 

{ } [ ]{ } [ ]{ }sasasa aRKW += λ  (2.30)

The transformation spline matrix [ ]S  is needed in the form:  

{ } [ ]{ }sa WSW =  (2.31)
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Therefore, { }sW  can be factored out of equation 2.29 and the equations can be solved 

for [ ]S [21], 

[ ] [ ][ ] [ ] [ ][ ] [ ] [ ][ ] [ ] [ ][ ]
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KRRKRR
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The elements of [ ]asK  and [ ]sK are defined as: 

)ln( 22

ijij asasijas rrK =  (2.33)

)ln( 22

ijij ssijs rrK =  (2.34)

where: 

222 )()(
jijiij sasaas yyxxr −+−=  (2.35)

222 )()(
jijiij sssss yyxxr −+−=  (2.36)

[ ]aR  and [ ]sR  are defined by equation 2.27. Displacements and coordinates of the 

aerodynamic grid points can be computed from displacements of the structural grid 

points with the following: 

[ ] [ ][ ]sa S δδ =  (2.37)

[ ] [ ] [ ]δ+= 0qq  (2.38)

where [ ]0q  is the original undeformed grid. The grid coordinate matrices are defined as: 
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Transformation of the forces from the aerodynamic grid to the structural grid can be 

performed by the transpose of [ ]S .  Eqn 2.39 ensures the conservative transfer of energy 

between the flow and the structural systems [28]. 

[ ] [ ] [ ]a
T

s FSF =  (2.40)

where the force matrix is defined as: 
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Aerodynamic grid, which is used in CFD calculations, is three-dimensional. In order to 

perform the infinite spline method, it is required that all structural grid points and 

aerodynamic grid points are located on the same plane. Therefore, aerodynamic grid 

points are projected to the spline plane on which the structural grid points lie, in order to 

create the [ ]aR  matrix. For the infinite spline method, two or more than two structural 

grid points can not be located at the same x and y location. Another important is that for 

a given set of normal displacements at the structural grid points, the infinite spline 

method gives the displacements at the aerodynamic points only in the normal direction 

of the spline plane [20]. 

In Figure 2.21, splined out-of-plane deflection of the first mode from CSD grid to CFD 

grid using the spline matrix [S] is showed.  The calculated force on the aerodynamic 

grid is similarly splined to the structural grid using the transverse of the same spline 
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matrix. Total force is calculated for both grids by summing up the forces on the 

aerodynamic grid and on the structural grid, respectively. Resulting total forces are the 

same for both grids. Also, moments about a point are same for both grids. It can be 

concluded that spline conserves the total force and moments on each system [21].  

 

   
 

Figure 2.21 Out-of-Plane Deformation of the AGARD Wing 445.6 Splined from CSD 

(left) Grid to CFD (right) Grid (Infinite Spline Method) 

 

2.3.2.2 Thin Plate Spline Method 

 

Thin plate spline method is a three-dimensional implementation of the infinite-spline 

method. The derivation is entirely analogous with the infinite spline method with the 

addition of the third coordinate [20].  Equation 2.7 becomes:  
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2222 )()()( iiii zzyyxxr −+−+−=   (2.43)

Boundary conditions at infinity are the same with those of infinite spline method except 

the additional moment in the third axis that is presented in the equations. 
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Applying boundary conditions to eliminate the terms of order r2, r2 ln r2, and r ln r2, 

gives [20]: 
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where: 

22 ln),,( iii rrzyxK =   (2.50)

Eqns 2.49 and 2.44-48 can be expressed in matrix form:  

{ } [ ]{ } [ ]{ }λijKaRW +=  (2.51)
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[ ] { } 0=λTR  (2.52)

where: 
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The remaining equations are exactly the same as formulated in infinite spline method.  

Once the spline transformation matrix [ ]S  is generated, displacements and coordinates 

of the displaced aerodynamic grid can be computed from displacements of the structural 

grid with the Eqns 2.37 and 2.38. Transformation of the forces from the aerodynamic 

grid to the structural grid can be performed by using Eqn 2.40. 

In order to perform interpolation of displacements at 3-D structural grid points, there is 

no requirement of spline plane. It is not required that all structural grid points and 

aerodynamic grid points are located on the same plane. For the thin spline method, two 

or more than two structural grid points can not be located at the location and structural 

grid points can not be on the same plane. [20].   In Figure 2.22, an example of splined z-

direction displacement values of a generic missile body from CSD grid to CFD grid 

using the spline matrix [S] is showed.   
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Figure 2.22 z-direction Displacement Values of the Slender Missile Body Splined from 

CSD Grid to CFD Grid (Thin Plate Spline Method) 

 

2.4 FLOW SOLVER - FLUENT 

 

FLUENT being a commercial computer program for modeling fluid flow and heat 

transfer for complex geometries, offers general-purpose CFD software for a wide range 

of industrial applications including highly automated, specific packages [6]. 

FLUENT offers complete flexibility in analyses owing to its capability, in solution of 

flow problems, to integrate unstructured meshes which can be created easily in complex 

geometries. It is a useful tool both in 2-D and 3-D analyses in which various types of 

meshes are utilized such as 2-D triangular / quadrilateral, 3-D tetrahedral / hexahedral / 

pyramidal / wedge-shaped or a combination of various polyhedral meshes at the same 

time in hybrid form. 

FLUENT also allows refining or coarsening the grid which is based on the gradient of 

the flow variables. FLUENT is written in C language providing the programmer and the 

user with the full flexibility and the control of true dynamic memory allocation, efficient 

data structure and a rich library of routines. 

CFD

CSD
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Furthermore, FLUENT may be run on powerful computer workstations as a separate 

simultaneous process. The client/server architecture offers interactive control, efficient 

execution and complete flexibility between various types of machines or operating 

systems. In this part, the fundamental transport equations and numerical methods which 

are used to solve the governing equations in FLUENT are introduced.  

FLUENT uses finite volume method in which the transport equations are written in 

integral form and the integral form of the governing equations are solved for each finite 

volume cell within the domain. The flux values at the cell surfaces are calculated using 

surface integrals by applying the discretization. The discretized system of equations are 

linearized and solved by using Gauss-Seidel method which requires less CPU memory 

and is faster than that used in direct solution method [6].   

User has an option to select between the numerical methods: pressure-based and density 

based. Formerly, the pressure based method was used for low speed flows, while the 

density based method was mainly developed for high speed flows. Recently, both 

methods have been extended and reformulated to solve for a wide range of flow 

regimes. In both methods, the momentum equations are used to obtain the velocity field.  

In the density based method, the density field is obtained from continuity equation while 

pressure field is obtained from the equation of state. In the case of the pressure based 

method, the pressure field is obtained by solving a pressure or pressure correction 

equation which is obtained by using continuity and momentum equations in such a way 

that the velocity field is corrected by the pressure and continuity is preserved [6]. 

FLUENT solves the governing integral equations for the conservation of mass, 

momentum, energy and other scalars such as turbulence. The pressure based method 

linearizes the governing equations and solves the flow variables implicitly. In the 

density based method, system of equations (continuity, momentum and energy) can be 

solved simultaneously using either implicit or explicit formulation. Iteration steps are 

illustrated in Figure 2.23. Several iterations are performed before the solution is 

convergent as the governing equations are nonlinear and coupled together.  
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Figure 2.23 Overview of the Density Based Solution Method [6]  
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Two pressure based solver algorithms are available in FLUENT: a segregated algorithm, 

and a coupled algorithm.  

 

The Pressure-Based Segregated Algorithm 

 

The pressure based algorithm uses a solution algorithm where the governing equations 

are solved sequentially. Because the governing equations are coupled and nonlinear, the 

solution must be carried out iteratively to obtain a converged numerical solution.  

The governing equations are solved in a decoupled manner in pressure based segregated 

algorithm. Since equations are stored in the memory one at a time, the segregated 

algorithm uses the memory efficiently, but solution convergence is relatively slow [6]. 

Iteration steps which are used in segregated algorithm are illustrated in Figure 2.24. 

 

The Pressure-Based Coupled Algorithm  

 

The pressure based coupled algorithm comprise the momentum equations and the 

pressure based continuity equations in order to solve the coupled system of equations. 

The rate of solution convergence significantly improves as compared to the segregated 

algorithm because of the closely coupled manner which is used to solve the momentum 

and continuity equations. The system of all equations is stored in the memory during the 

solution of velocity and pressure fields rather than just a single equation, as in the case 

with the pressure based segregated algorithm. Thus, the memory requirement increases 

by 1.5 or 2 times that of the segregated algorithm [6].  
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Figure 2.24 Overview of the Pressure-Based Solution Method [6]  
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Pressure-Velocity Coupling 

 

The Pressure-Implicit with Splitting of Operators (PISO), pressure velocity coupling 

scheme is based on the higher degree of the approximate relation between the 

corrections for velocity and pressure. The PISO algorithm requires high CPU time per 

iteration, but it impressively decreases the number of iterations which is required for 

convergence. Thus, PISO algorithm is commonly used for transient problems [6].  

PISO divides the pressure correction scheme into predictor and corrector steps. In the 

first step, velocity field is predicted by using the momentum equation which does not 

necessarily satisfy the continuity equation. Thus, a corrector step is used to calculate 

pressure field which is used to recalculate velocity field that satisfies the continuity 

equation. For a given time step, equations are solved iteratively until the convergence 

criteria is met. Therefore, advancing the solutions by one time step needs outer iterations 

as shown in Figure 2.25. PISO algorithm is used to obtain time accurate solutions 

without changing physical time step which is used for advancing the solution. 
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Figure 2.25 Overview of the Iterative Time Advancement Solution Method for the 

Pressure Based Solver [6]  
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2.5 STRUCTURAL SOLVER - MSC/NASTRAN 

 

MSC/NASTRAN is a commercial finite element analysis program which consists of 

several modules designed for specific tasks such as processing model geometry,  

assembling matrices, applying constraints, solving matrix problems, calculating output 

quantities, conversing with the database, and printing the solution. It is commonly used 

in the industry for the analysis of stress, structural failure, vibration, structural 

durability, heat transfer, flutter and aeroelasticity.  

In this study, linear static analysis (101) is used for static aeroelastic analysis and Modal 

analysis (103) is performed to determine mode shapes and corresponding natural 

frequencies which are used as input for dynamic aeroelastic analyses. 

Figure 2.26 shows the basic steps that MSC/NASTRAN follows when solving a linear 

statics analysis.  

In static analysis, adequate boundary conditions must be applied to the model in order to 

prevent any rigid body motion of the structure. If the specified boundary conditions do 

not adequately constrain the model in all directions, the structure’s stiffness matrix 

remains singular and the run terminates with an error message. Once the boundary 

conditions are applied to the model appropriately, the global stiffness matrix is reduced 

to a nonsingular stiffness matrix representing the constrained structure. All of the loads 

that are applied to the model are combined to form the load vector. These applied loads 

can be in the form of point forces and moments applied directly to the grid points, line 

loads applied along the length of one-dimensional elements, surface loads applied to 

two- and three-dimensional elements, or body loads such as gravity. These different load 

types may be combined to form a single load vector, which is the same as saying that the 

loads are applied simultaneously. There is also the option of applying multiple load 

vectors within a single run. After the constrained stiffness matrix and the load vector are 
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generated, the static equilibrium matrix equation given by Eqn 2.58 is solved as follows 

[45]: 

[ ]{ } { }puK =  (2.58)

where; 

[ ] =K  system stiffness 

{ }=u  grid point displacements 

{ }=p  applied load vector 

 
The unknowns in Eqn 2.58 are the displacements at the grid points in the model. 

Determining the displacements involves the equivalent of inverting the stiffness matrix 

and multiplying it by the force vector. Actually, the process of inverting a matrix is too 

time consuming; therefore, a process based on the Gauss elimination method is used. 

Once the displacements at the grid points are known, any desired outputs, such as 

element forces, strains, and stresses, are computed using those displacements on an 

element-by-element basis. It can be controlled what type of output is generated and 

whether the output is printed, punched to a file, or plotted [45]. 
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Figure 2.26 Linear Static Analysis in MSC. NASTRAN [45]  

 

The usual first step in performing the dynamic analysis is determining the mode shapes 

and the natural frequencies without damping. These results show the dynamic behavior 

of the structure and indicate how the structure will respond to dynamic loading [46]. The 

natural frequencies represent the neutral tendency of the structure to vibrate when it is 
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subjected to a disturbance. Computation of the natural frequencies and mode shapes is 

performed by solving an eigenvalue problem. Each mode shape is associated with a 

specific natural frequency. 

The equation of motion for normal modes and natural frequencies are solved by using a 

special reduced form of the equation, assuming no applied loading and damping. The 

reduced form of the equation of motion can be shown in matrix form as follows:  

[ ]{ } [ ]{ } 0=+ uKuM &&  (2.59)

This is the equation of motion for undamped free vibration. To solve Eqn 2.59, it is 

assumed a harmonic solution of the form:  

{ } { } tu ωφ sin=  (2.60)

where: 

φ :eigenvector or mode shape        

ω : natural frequency 

If differentiation of the assumed harmonic solution is performed and substituted into the 

equation of motion, the following is obtained: 

[ ] [ ]( ){ } 02 =− φω MK  (2.61)

This equation is called the eigen equation, which is a set of homogeneous algebraic 

equations for the components of the eigenvector and forms the basis for the eigenvalue 

problem. 

The determinant is zero only at a set of discrete eigenvalues iλ or 2
iω . There is an 

eigenvector which satisfies Eqn 2.61 and corresponds to each eigenvalue. Therefore, 

Eqn 2.61 can be rewritten as:  
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[ ] [ ]( ){ } 02 =− ii MK φω  ,   i = 1,2,3… (2.62)

 

Each eigenvalue and eigenvector define a free vibration mode of the structure. The ith 

eigenvalue iλ  is related to the ith natural frequency as: 

π
ω
2

i
if =      , ith natural frequency 

ii λω =  

The number of eigenvectors and eigenvectors is equal to the number of degrees-of- 

freedom. In addition, a natural mode of the structure can be represented by using its 

generalized mass and generalized stiffness. An important characteristic of normal modes 

is that the scaling or magnitude of the eigenvectors is arbitrary. Mode shapes are 

fundamental characteristic shapes of the structure and are therefore relative quantities. In 

the solution of the equation of motion, the form of the solution is represented as a shape 

with time-varying amplitude. Therefore, the basic mode shape of the structure does not 

change while it is vibrating; only its amplitude changes [46]. 

 

Mode Shape Normalization 

 

Although the scaling of normal modes is arbitrary, for practical considerations mode 

shapes should be scaled (i.e., normalized) by a chosen convention. In MSC/NASTRAN, 

there are three normalization choices, MASS, MAX, and POINT normalization [46]. 

MASS normalization scales each eigenvector to result in a unit value of generalized 

mass.   
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{ } [ ]{ } 0.1=j
T

j M φφ  (2.63)

By using this method, a modal mass matrix becomes an identity matrix and since it 

decreases the requirements of the computational data storage, mass normalization 

approach is appropriate for modal dynamic response analyses.  

In MAX normalization, each eigenvector is normalized with respect to the largest a-set 

component. This normalization results in the largest a-set displacement value being set 

to a unit value. This normalization approach can be very useful in the determination of 

the relative participation of an individual mode. 

POINT normalization of eigenvectors allows choosing a specific displacement 

component at which the modal displacement is set to 1 or -1. 

 

Inertia Relief 

 

MSC/NASTRAN provides an advanced option, inertia relief, which allows simulating 

unconstrained structures in a static analysis. In static analysis by finite element method, 

model is assumed to have no mechanism and not to move as a rigid body. The stiffness 

matrix becomes singular if any of these conditions exists in a conventional finite 

element analysis. Decomposition of a singular matrix in MSC/NASTRAN leads to 

unreasonable answers or a fatal message. As a result, conventional finite element static 

analysis cannot be performed on unconstrained structures. However, MSC/NASTRAN 

provides a method, inertia relief, in order to analyze these conditions [45]. By using 

inertia relief method, the inertia of the structure is used to resist the applied loadings 

assuming that the structure is in state of static equilibrium even though it is not 

constrained. A spacecraft in orbit or an aircraft in flight are two examples of these 
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conditions. In these cases, although the structure is capable of unconstrained motion, it 

is in state of static equilibrium. 

 

2.6 STRUCTURAL MODAL APPROACH 

 

Aeroelastic simulation consisting of non-linear CFD analysis coupled to a dynamic 

structural model is performed in order to investigate the structural deformation under an 

unsteady aerodynamic loading. This method allows time-accurate non-linear analysis of 

dynamic behavior, leading to much more accurate investigation of flutter [24]. The 

majority of such methods rely on the prediction of structural response by a summation 

of limited number of modes derived from modal analysis using a commercial finite 

element solver. 

The governing equation of motion of a structure can be written as: 

[ ] [ ] [ ] { })(2

2

tFwK
dt
dwC

dt
wdM =++  (2.64)

where  

w: Displacement vector, 

[ ]C : Damping matrix, 

[ ]K : Stiffness matrix, 

[ ]M : Mass matrix, 

F(t): Vector of  forces exerted on the nodes of the structure 
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where N is the total number of the structural node. iw  and iF  are expressed as: 

( )iziyixi wwww =  (2.66)

( )iziyixi FFFF =  (2.67)

The displacement and force vectors at node point i, have three components in 3-D space. 

Using modal analysis, the dependent variables are expanded in terms of the natural free 

vibration modes as: 

( ){ } ( ) ( ){ }zyxtqtzyxw i

N

i
i ,,,,,

1
φ∑

=

=  (2.68) 

where ( )tqi  and ( ){ }zyxi ,,φ  are the generalized displacement vector and mode shape 

matrix, respectively. The mode shape matrices are obtained by solving for the 

eigenvalues of the free vibration problem. The modal decomposition of the structure 

motion is expressed as: 

Λ= φφ MK  (2.69) 

or 

jjj MK φλφ =  (2.70)

A finite element structural solver may be used to solve Eqn 2.69 and obtain the mode 

shapes. Modal matrix and eigenvalue matrix Λ  is expressed as: 
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[ ]Ni 31 ,...,,..., φφφφ =  (2.71)

[ ]Nidiag 31 ,...,,..., λλλ=Λ  (2.72)

jth eigenvalue can be defined by the natural frequency (ω ) as: 

2
jj ωλ =  (2.73)

Mode shape matrix is normalized with respect to the mass matrix and substituting Eqn 

2.73 into Eqn 2.70 and then multiplying by Tφ  yields: 

[ ] [ ] Qqqq =++ ωξ &&&  (2.74)

where  

[ ] [ ]φφξ CT=   (2.75)

[ ] [ ]φφω KT=   (2.76)

[ ]FQ Tφ=   (2.77)

[ ]ω  and [ ]ξ  matrices are diagonal and their terms are iω  and iiωξ2 , respectively. Q  

is the generalized unsteady aerodynamic forces.  The coupled system of equation can be 

rewritten as:  

iiiiiii Qqqq =++ ωωξ &&& 2 ,   i=1,2,...,N (2.78)

where iξ  and iω  are the modal damping and the natural frequency for the ith mode, 

respectively. In this initial value problem, Newmark algorithm [21] is used to solve Eqn 

2.78 for 1, +niq  with the following set of equations: 
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( ){ } { } { } { } ( ){ } ⎟
⎠

⎞
⎜
⎝

⎛ −
Δ

+Δ+−=Δ+ ++ nnninni qtqtqQqt &&&&& βωωβ 21
2

1
2

2
11

22  (2.79)

{ } { } ( ){ } { }( )11 1 ++ +−Δ+= nnnn qqtqq &&&&&& γγ  (2.80)

{ } { } { } ( ){ } { }( )1

2

1 221
2 ++ −−
Δ

Δ+= nnnnn qqtqtqq &&&&& ββ  (2.81)

If  
2
1

=γ , this implicit method is second order accurate. This method is stable if 

ω
Ω

=Δt  , where ω  is the maximum natural frequency. If a linear acceleration is 

assumed, 
6
1

=β  and 464.3=Ω  [21].  Assuming a linear acceleration and no 

structural damping, Eqns 2.79-2.81 simplify to:  

{ } { } { } { } { } ⎟
⎠
⎞

⎜
⎝
⎛ Δ

+Δ+−=⎟
⎠

⎞
⎜
⎝

⎛ Δ
+ ++ nnninni qtqtqQqt

&&&&&
36

1 2
11

2
2

ωω  (2.82)

{ } { } { } { }( )11 2 ++ +
Δ

+= nnnn qqtqq &&&&&&  (2.83)

{ } { } { } { } { }( )1

2

1 2
6 ++ +
Δ

Δ+= nnnnn qqtqtqq &&&&&  (2.84)

where  n is the time step.  
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2.7 STATIC AEROELASTICITY 

 

To conduct static aeroelastic analysis, CFD solver, FLUENT is coupled with finite 

element structural solver MSC/NASTRAN. To achieve this, a code is developed in 

FORTRAN language to automate the entire procedure. The overall computational 

aeroeastic procedure developed for static aeroelastic analysis may be divided into the 

following steps.   

 

Static Aeroelastic Analysis Computational Procedure  

 
1. Geometry construction, mesh generation, application of appropriate boundary 

conditions, initializing the solution. 

2. Steady state CFD analysis to calculate aerodynamic forces on the structure. 

3. Interpolation of forces onto the structural mesh. 

4. Structural finite element analysis to calculate displacements of the structure. 

5. Interpolation of the displacements onto the aerodynamic surface mesh. 

6. Mesh deformation according to the displacements obtained from the CSD 

calculations. 

7. Repeat steps 2-6 until difference of structural displacements between two consecutive 

iterations is less than prescribed tolerance 

The flow chart of the iterative procedure is given in Figure 2.27. 
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Figure 2.27 Flow Chart of the Static Aeroelastic Procedure  
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2.8 DYNAMIC AEROELASTICITY 

 

For the dynamic aeroelastic analysis, CFD solver, FLUENT is coupled to governing 

equations of motion of the structure that are presented in modal coordinates. Mode 

shapes and corresponding natural frequencies are obtained by using MSC/NASTRAN 

and used as input for this approach. A FORTRAN code is developed in order to perform 

the entire computational procedure which is developed for dynamic analysis and divided 

into the following major steps.  

1. Geometry construction, mesh generation, application of appropriate boundary 

conditions, initializing the solution. 

2. Steady state CFD analysis for the undeformed structure which is used as the starting 

point of the dynamic aeroelastic computations. 

3. Unsteady CFD computations to calculate aerodynamic loads on the structure. 

4. Spline pressure forces from aerodynamic cell centered points to the structural grid 

nodes. 

5. Solve linear modal structural model in order to calculate the displacements of the 

structure by using mode shapes and natural frequencies as input. 

6. Structural displacements are splined to the aerodynamic grid nodes. 

7. Mesh deformation according to the obtained displacements.  

8. Repeat steps 3-7 using current solution for the following steps until a specified flow 

time is reached. 

The flow chart of the iterative procedure is given in Figure 2.28. 
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Figure 2.28 Flow Chart of the Dynamic Aeroelastic Procedure 
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CHAPTER 3 

TEST CASES 
 

3.1 TEST CASE 1 - AGARD WING 445.6 

 

3.1.1 INTRODUCTION 

 

In this chapter, present method is applied to solve static and dynamic aeroelastic 

characteristics of AGARD Wing 445.6, which is a well known test case for aeroelastic 

problems. Wind tunnel experiments have been conducted on AGARD Wing 445.6 in 

order to predict the dynamic response characteristics and the flutter boundary in the 

Langley Transonic Dynamics Tunnel [1].  

The AGARD 445.6 Wing has taper ratio of 0.66, aspect ratio of 1.65 and wing swept of 

45° at the quarter chord. It has root and tip chords of 0.558m and 0.368m, and a semi 

span of 0.762m. The airfoil section in the stream-wise direction is a NACA 65A004 

airfoil, which is a symmetric airfoil with a maximum thickness of 4 % of the local 

chord.  The wing planform is shown in Figure 3.1. 
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Figure 3.1 AGARD Wing 445.6 Planform 
 

AGARD Wing 445.6 which was used in an experimental study [1] was constructed by 

laminated mahogany, which can be assumed as an orthotropic material of which material 

properties are unique and independent in three dimensional.  The solid model of the wing 

which is tested in wind tunnel is shown in Figure 3.2.  

 

 

Figure 3.2 Solid Model of AGARD Wing 445.6 Used in Wind Tunnel Test [1] 

NACA 65A004 
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The AGARD Wing 445.6 had holes drilled on it to make it weaker and to reduce the 

structural stiffness to obtain flutter at the test mach numbers in the wind tunnel 

experiments. In order to maintain the correct aerodynamic shape, holes were filled with 

rigid foam plastic. This weakened model is shown in Figure 3.3.  The material 

properties for weakened AGARD wing was taken from model parameters in the 

aeroelastic optimization study by Kolonay [2] and shown in Table 3.1. In the present 

study, weakened model will be used to validate developed procedure for static and 

dynamic aeroelastic problems.  

 

 
 

Figure 3.3 Weakened model of AGARD Wing 445.6 used in wind tunnel test [1] 
 

Table 3.1 Mechanical Properties for the Weakened AGARD Wing 445.6 
 

Material Property Value [Gpa] 
E1 3.1511 
E2 0.4162 
G 0.4392 

Material Property Value [kg/m3] 
ρ 381.98 

Material Property Value 
ν 0.31 
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E1 and E2 are the modulus of elasticity in the longitudinal and lateral directions, ν is 

Poisson's ratio, G is the shear modulus in each plane and ρ is the wing density. 

 

3.1.2 AGARD WING 445.6 CFD ANALYSIS 

 

3.1.2.1 Grid Sensitivity Study 

 

In this part, the details of the Computational Fluid Dynamics grids and the results of the 

rigid wing analyses are given. For grid sensitivity analysis, four unstructured grids with 

varying surface and volume densities are examined. These four different grids are tested 

in different flow conditions in order to determine minimum grid size which captures the 

physics of the flow. Coarse and medium grids have the minimum number of surface 

triangular elements. Medium grid has more tetrahedral cells than coarse grid. Fine and 

very fine grids have finest surface resolution and very fine grid has maximum number of 

tetrahedral cells. In this study, CFD analyses are performed for the flow conditions 

shown in Table 3.2.   

 

Table 3.2 Free stream Flow Conditions for the Grid Sensitivity Study 
 

Mach α [°] 

0.499 0 

0.85 5 

0.960 0 

1.141 0 
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The dimensions of computational domain are given in Figure 3.4. The isometric view of 

the half cylinder computational domain and defined boundary conditions are shown in 

Figure 3.5.  Aerodynamic surface is defined as wall boundary conditions. Flow 

conditions such as Mach number, operating pressure, temperature and angle of attack 

are defined in far-field boundary condition.  

 
 

Figure 3.4 Dimensions of the Computational Fluid Dynamics Domain 
 

 

Figure 3.5 Half Cylinder Computational Fluid Dynamics Domain 

Pressure far-fieldSymmetry 

Wall
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The surface grid for coarse and fine CFD grids are given in Figure 3.6, and the number 

of surface triangular elements and volume tetrahedral elements are shown in Table 3.3  

 

 

a 

 

b 

Figure 3.6 Wing Surface Triangular Elements    a) Coarse b) Fine 

 

Table 3.3 Number of Surface Triangular and Volume Tetrahedral Elements 
 

Mesh 

Number of 

Surface 

Triangular 

Elements 

Number of 

Tetrahedral 

Elements 

Coarse Mesh 1,468 79,503 

Medium Mesh 1,468 110,229 

Fine Mesh 3,798 158,161 

Very Fine Mesh 3,798 211,360 

 

Calculated pressure coefficient distributions over the bottom and top surface wing for 

M= 0.499 and α=0o for two different spanwise locations are shown in Figures 3.7-3.8. 
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Figure 3.7 Wing Cp Distribution at 34 % Semispan (M=0.499 α=0o) 
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Figure 3.8 Wing Cp Distribution at 67 % Semispan (M=0.499 α=0o) 
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At 34 % semispan of the wing, coarse, medium, fine and very fine grids predict the 

maximum Cp value (Cpmax) of 0.0796, 0.0857, 0.140, and 0.141, respectively. Flow 

solution with coarse grid predicts 44 % lower Cpmax value as compared to very fine grid.  

Fine grid predicts Cpmax value almost same as very fine grid. 

At 67 % semispan of the wing, coarse grid predicts 32 % lower Cpmax value whereas 

medium grid predicts 36 % lower Cpmax value as compared to fine and very fine grids.  

Contours of pressure coefficient over the top and bottom surfaces of the wing are shown 

in Figure 3.9. 
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Figure 3.9 Pressure Coefficient Contours over Top and Bottom Surfaces of AGARD 

Wing 445.6 (M=0.499 α=0o) 
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The pressure coefficient distributions over the wing for M= 0.85 and α=5o are similarly 

shown in Figures 3.10-3.11 at two different spanwise locations. 
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Figure 3.10 Wing Cp Distribution at 34 % Semispan (M=0.85 α=5o) 
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Figure 3.11 Wing Cp Distribution at 67 % Semispan (M=0.85 α=5o) 
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As can be seen from Figure 3.10 and 3.11, pressure coefficient distributions over the 

leading edge are different for coarse, mesh and fine grids. At 34 % semispan of the 

wing, coarse grid predicts the minimum Cp value (Cpmin) of -0.553, medium grid 

predicts Cpmin of -0.574, fine grid predicts Cpmin of -0.733 and very fine predicts Cpmin 

of -0764. Flow solution with coarse grids predicts 28 % higher Cpmin value and medium 

grid predicts 25 % higher Cpmin value and fine grid predicts 4 % higher Cpmin value as 

compared to very fine grid. These minimum values occur at 3.8% chord location for fine 

and very fine grids whereas for medium and coarse grid it occurs at 5.7 % chord 

location.  

At 67 % semispan of the wing, coarse and medium grids predict 19.4 % and 20.5 % 

higher Cpmin value as compared to very fine grids, respectively. For fine grids these 

values occur at 4.8 % chord location and for medium and coarse grids, it occurs at 8 % 

chord locations. 

Contours of pressure coefficient over the top and bottom surfaces of the wing are shown 

in Figure 3.12. 
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Figure 3.12 Pressure Coefficient Contours over Top and Bottom Surfaces of AGARD 

Wing 445.6 (M=0.85 α=5o) 
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The pressure coefficient distributions over the wing for M= 0.96 and α=0o are similarly 

shown in Figures 3.13-3.14 at two different spanwise locations. 
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Figure 3.13 Wing Cp Distribution at 26 % Semispan (M=0.96 α=0o) 
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Figure 3.14 Wing Cp Distribution at 75.5 % Semispan (M=0.96 α=0o) 
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At 26 % semispan of the wing, coarse and medium grids predict the maximum Cp value 

of 0.120 and 116, fine and very fine grids predict Cpmax of 0.188. Flow solution with 

coarse and medium grids predicts 36.2 % and 38.3 % lower Cpmax value as compared to 

fine grids.  

At 75.5 % semispan of the wing, coarse, medium, fine and very fine grids predict Cpmax 

of 0.068, 0.056, 0.121 and 0.116, respectively.  

Contours of pressure coefficient over the top and bottom surfaces of the wing are shown 

in Figure 3.15. 
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Figure 3.15 Pressure Coefficient Contours over Top and Bottom Surfaces of AGARD 

Wing 445.6 (M=0.96 α=0o) 
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The pressure coefficient distributions over the wing for M= 1.141 and α=0o are similarly 

shown in Figures 3.16-3.17 at two different spanwise locations. 
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Figure 3.16 Wing Cp Distribution at 26 % Semispan (M=1.141 α=0o) 
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Figure 3.17 Wing Cp Distribution at 75.5 % Semispan (M=1.141 α=0o) 
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At 26 % semispan of the wing, coarse grid predicts the maximum Cp value of 0.179, 

medium grid predicts Cpmax of 0.177, fine grid predicts Cpmax of 0.259 and very fine 

grid predicts Cpmax of 0.263.  Flow solution with coarse and medium grids predicts 32 % 

lower Cpmax value as compared to fine grids.  

At 75.5 % semispan of the wing, coarse, medium, fine and very fine grids predict Cpmax 

of 0.128, 0.117, 0.183 and 0.178, respectively.  

Contours of pressure coefficient over the top and bottom surfaces of the wing are shown 

in Figure 3.18. 
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Figure 3.18 Pressure Coefficient Contours over Top and Bottom Surfaces of AGARD 

Wing 445.6 (M=1.141 α=0o) 
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For the flow conditions at which grid sensitivity analysis conducted, it can be concluded 

that flow solution with coarse and medium grid, which have coarsest surface grid 

density give grid dependent results.  Flow solution with fine and very fine grids give 

similar results. Since fine grid has less number of tetrahedral elements, for the further 

studies fine grid will be used.  In the next section, flow solution calculated with fine grid 

is compared with numerical results conducted by Cai [4], Lee and Batina [3]. 

 

3.1.2.2 Comparison with Numerical Results 

 

In this part, pressure coefficient distribution over the AGARD Wing 445.6 is compared 

with the study of Cai [4]. Cai conducted static aeroelastic analysis of AGARD Wing 

445.6 at flow condition M=0.85 α=5°. Pressure coefficient distributions over the wing at 

% 34 spanwise locations for this flow condition are shown in Figure 3.19. Results 

appear to agree well except for leading edge.  This difference may be attributed to the 

meshing technique. Cai [4] uses O-Type structured grid which captures leading edge 

radius accurately and gives better resolution of the leading edge radius. In the present 

work unstructured grid and limited number of triangular mesh is used, and hence leading 

edge radius of the wing cannot be modeled correctly.  

At 67 % semispan of the wing, Cai [4] predicts higher Cp values between 10% and 50% 

local chord locations (Figure 3.20). This may be attributed to difference between the 

flow solvers.  

  



 

 81

chord

C
p

0 0.2 0.4 0.6 0.8 1

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

fine grid
Cai Euler [4]

Mach=0.85 α=5o

μ=0.34

 
 

Figure 3.19 Comparison of Cp Distribution at 34% Semispan (M=0.85 α=5o) 
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Figure 3.20 Comparison of Cp Distribution at 67% Semispan (M=0.85 α=5o) 
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The pressure coefficient distribution over the AGARD Wing 445.6 is compared with the 

study of Lee and Batina [3]. Lee and Batina conducted dynamic aeroelastic analysis of 

AGARD Wing 445.6 at flow conditions M=1.141 and α=0°. Pressure coefficient 

distributions over the wing at 26% and 75.5 % spanwise locations are shown in Figure 

3.21 and 3.22, respectively. 
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Figure 3.21 Comparison of Cp Distribution at 26% Semispan (M=1.141 α=0o) 
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Figure 3.22 Comparison of Cp Distribution at 75.5% Semispan (M=1.141 α=0o) 
 

Pressure coefficient distributions over the wing at two spanwise locations for this flow 

condition appear to agree well except for leading and trailing edges. This difference may 

be attributed to the meshing technique. Lee and Batina [3] use C-H type of grid which 

provides better resolution at the leading and trailing edge as compared to the present 

study.  
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3.1.3 AGARD WING 445.6 STRUCTURAL ANALYSIS 

 

3.1.3.1 Grid Sensitivity Study and Validation of Structural Model 

 

In this part, the details of the finite element analyses and the results of the modal 

analyses are given.  Modal frequencies of the AGARD Wing 445.6 are compared with 

experimental data [1] in order to validate structural finite element model, which is used 

in static and dynamic calculations in the following sections. In addition to the calculated 

modal frequencies, mode shapes of the structure are also compared with the 

experimental study [1].  

 

Weakened AGARD Wing 445.6 is modeled with plate elements as a single layer 

orthotropic material of which property is given in Table 3.1. The rotations and 

translations of the nodes at the root section of the finite element model are fixed. Other 

nodes are allowed to translate in out-of-plane direction. In order to perform grid 

sensitivity analysis for the structural grids, results of the modal analysis which are 

conducted with three different structured grids with varying density, are compared with 

experimental and numerical data. CQUAD4 type of element is used for the finite 

element discretization.  The numbers of nodes for the spanwise and chordwise directions 

for each finite element model are shown in Table 3.4. Finite element models and 

corresponding thickness distribution which are used for finite element modal analysis 

are shown in Figure 3.23. 
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 Table 3.4 Number of Elements Used in Finite Element Model 
 

Mesh 
Number of Nodes 
for the Spanwise 

Direction 

Number of Nodes 
for the Chordwise 

Direction 

Total number of 
Structured 

Element 
Coarse Mesh 6 5 20 

Medium Mesh 12 12 121 

Fine Mesh 51 41 2000 

 

 

a b 

thickness

0.022
0.02
0.018
0.016
0.014
0.012
0.01
0.008
0.006
0.004
0.002

[m]

 

c 

 
Figure 3.23 Structural Finite Element Models and Thickness Distribution  

a) Coarse Mesh b) Medium Mesh c) Fine Mesh 
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For each finite element models, modal analysis of weakened AGARD Wing 445.6 is 

performed using MSC/NASTRAN. The first four natural frequencies are given in Table 

3.5 for the three different finite element models along with the experimental results [1] 

and those computed by Kolonay [2], Lee and Batina [3].  

 

Table 3.5 Calculated Natural Frequencies for Weakened AGARD Wing 445.6 
 

 Mode 1 [Hz] Mode 2[Hz] Mode 3 [Hz] Mode 4 [Hz] 

Coarse Mesh 8.72 34.85 41.43 70.65 

Medium Mesh 9.41 39.46 48.96 94.35 

Fine Mesh 9.62 39.75 50.85 95.38 

Exp. (Yates) [1] 9.60 38.10 50.70 98.50 

Kolonay [2] 9.63 37.12 50.50 89.94 

Lee and Batina [3] 9.60 38.17 48.35 91.54 

 

Percent error values in natural frequencies increase with decreasing element number. 

Percent errors in first natural frequency for coarse, medium and fine grids are 9.17, 1.98 

and 0.21, respectively. Error values for four natural frequencies are summarized in 

Table 3.6 

 

Table 3.6 Percent Error Values in Natural Frequencies 
 

Natural Frequency [Hz] 

Grid Mode 1 Mode 2 Mode 3 Mode 4 

Coarse (% Error) 9.17 8.53 18.28 28.27 

Medium (% Error) 1.98 4.22 3.43 4.21 

Fine (% Error) 0.21 4.33 0.3 3.17 
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The percent error values of coarse grid are very high as compared to medium and fine 

grids. Medium grid predicts natural frequency values very close to the values that fine 

grid predict. Considering the number of elements, medium grid is selected for the 

following studies in order to decrease computational effort. The mode shapes are mainly 

based on wing out-of-plane deflection values. Calculated natural frequencies and mode 

shapes of the structure using medium grid are shown in Figure 3.24. 

 

f1=9.41 Hz   f2=39.46 Hz

f3=48.96 Hz f4=94.35 Hz  

 
Figure 3.24 Mode Shapes of Medium Grid Structural Finite Element Model  

 

Mode shapes obtained from finite element analysis of the weakened wing are scaled up 

so that maximum and minimum values are same that of experiments. Out of plane 

deflection contours are compared in Figure 3.25. It can be concluded that results 

obtained from finite element model with medium grid appear to agree well with 

experimental results and hence medium grid can be used for the further static and 

dynamic aeroelastic analyses. 
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Figure 3.25 Comparison of Calculated Mode Shapes of AGARD Wing 445.6 (left) with 

Experiments (right) 
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3.1.4 STATIC AEROELASTIC ANALYSIS of the AGARD WING 445.6 

 

In this part, details of static aeroelastic analysis of AGARD Wing 445.6 are given and 

results are compared with numerical values [4].  

Static aeroelastic analyses are initiated by computing an initial steady-state solution for 

the rigid AGARD Wing 445.6. This converged flow solution is used as a starting point 

for static aeroelastic iterations. Aeroelastic iterations continue until the difference of the 

root mean square values of structural displacements between two consecutive iterations 

is less than the prescribed tolerance (10-6). The change of the root mean square of out-

of-plane deformation and lift coefficient during the aeroelastic simulation are shown in 

Figures 3.26 and 3.27, respectively.  

In this study, pressure-velocity coupling algorithm of PISO is applied with the second 

order upwinding scheme for density, momentum and energy equations. Since FLUENT 

calculates pressures at the cell centers, for every time step, surface loads, P, should be 

mapped from the face centroids of the aerodynamic grid onto structural grid. 

MSC/NASTRAN, finite element commercial software is used for static structural 

analysis in order to solve the displacements associated with the aerodynamic pressure 

loads calculated by FLUENT. These displacements also need to be interpolated onto 

CFD grid in order to obtain new CFD surface grid. For static aeroelastic analyses, linear 

interpolation method using ADT, which was explained in Chapter 2.3.1, is performed to 

transfer displacements and pressure loads between the structural and aerodynamic grid 

points. The aerodynamic mesh must be modified in order to adapt the new shape of the 

aerodynamic surface, representing the structural deformation at each aeroelastic time 

step. In this study, FLUENT moving mesh algorithm is used for deforming process 

without generating a new grid at each time step. To achieve this, a user defined function 

is created and implemented in a code which deforms the mesh according to structural 

finite element analysis. FLUENT mesh deforming parameters, which are used in this 

study, are shown in Table 3.7.  
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Table 3.7 FLUENT Mesh Deformation Algorithm Parameters 
 

Smoothing 

Spring Constant Factor 1e-4 

Convergence Tolerance 1e-5 

Number of Iteration 100 

Remeshing 

Maximum Cell Skewness 0.78 

Size Remesh Interval 10 
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0.028

0.029

0.03

0.031

0.032

0.033

0.034

0.035
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0.037

0.038
Root Mean Square of out-of-plane Deformation

 
 

Figure 3.26 The Root Mean Square of out-of- plane Deformation at Each Aeroelastic 
Time-step 
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Figure 3.27 Lift Coefficient Value at Each Aeroelastic Time-step 
 

The convergence history of lift coefficient for rigid and elastic wings during aeroelastic 

simulation is shown in Figure 3.28. Each iteration step continues until constant lift and 

drag coefficient values are obtained and nodal grid point locations in the flow domain 

are updated based on the results of static structural finite element analyses.  
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Figure 3.28  Lift Coefficient Convergency during Aeroelastic Simulation 
 

Rigid and elastic wing pressure coefficient distributions calculated in the present study 

are given in Figures 3.29 and 3.30 at two different spanwise locations. Cp values on the 

surface decreases in elastic wing due to decreased pressure values. The lift coefficient of 

the elastic wing is reduced by 22 % as compared to rigid wing case. 

Elastic Case Rigid Case 
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Figure 3.29 Elastic and Rigid Wing Cp Distribution at 34 % Semispan (M=0.85 α=5o) 
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Figure 3.30 Elastic and Rigid Wing Cp Distribution at 67 % Semispan (M=0.85 α=5o) 
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Out-of-plane deformations of AGARD Wing 445.6 at leading and trailing edges are 

compared with the results of Cai [4] in Figures 3.31 and 3.32. It can be concluded that, 

results of present study appear to agree well with the results of Cai [4]. Maximum 

difference occurs at the wing tip. At the leading edge of the wing tip, Cai calculates 

2.181 inch deflection whereas it is calculated as 2.176 inch in the present study.  At the 

trailing edge, Cai calculates 2.418 whereas it is calculated as 2.591 inch in the present 

study. This difference diminishes towards the root of the wing.  

It should be considered that in the present study, finite element model of the AGARD 

Wing 445.6 consists of plate elements. Structural analyses are performed with 

MSC/NASTRAN by allowing only out-of-plane deformation of the structural grid nodes 

in order to simplify the calculations. In the present static aeroelastic calculations, closely 

coupled approach is used, whereas Cai [4] uses monolithic approach which fluid and 

structure equations are combined in one single system in order to calculate the 

deformation of the wing under the aerodynamic loading.   
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Figure 3.31 Leading Edge Out-of-Plane Deformation 
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Figure 3.32 Trailing Edge Out-of-Plane Deformation 
 

Elastic wing pressure coefficient distributions at 34 % and 67 % spanwise locations are 

compared with the results of Cai [4] in Figures 3.33 and 3.34.  
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Figure 3.33 Comparison of Elastic Wing Cp Distribution at 34 % Semispan 
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Figure 3.34 Comparison of Elastic Wing Cp Distribution at 67 % Semispan 
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Equilibrium position for elastic wing is compared with rigid wing is given in Figure 

3.35. 

 

 
 

Figure 3.35 Rigid (red) and Elastic (blue) Position of AGARD Wing 445.6 
 

3.1.5 DYNAMIC AEROELASTIC ANALYSIS of the AGARD WING 445.6 

 

In this part, details of dynamic aeroelastic analysis of AGARD Wing 445.6 and 

developed coupling scheme are given, and results are compared with experimental [1] 

and numerical values [3] [35]. The purpose of the dynamic analyses is to determine the 

Flutter Speed Index (FSI) at different Mach numbers.  

In the present dynamic aeroelastic study, a coupling scheme is developed around a 

commercial CFD code, namely FLUENT, and a linear modal structural model of which 

details are given in Chapter 2.6. Dynamic analyses are performed in time domain by 

closely coupled manner. 

FLUENT has the capability to interact with user written programs, which allows a 

structural model to be coupled with it. FLUENT also has deforming mesh capabilities 

that can be controlled though a user written subroutine referred to as a user-defined-

function (UDF) in order to simulate the flow around a moving structure.  In order to 

deform the CFD mesh using the results of the modal structural solution, UDF code is 

developed. 

Elastic Wing 

Rigid Wing 
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For the unsteady flow calculations, pressure-velocity coupling algorithm, PISO is used 

with the second order upwinding scheme for density, momentum and energy equations. 

MSC/NASTRAN finite element program is used to get the modal matrix and the 

corresponding natural frequencies, which are the main inputs of the coupling scheme.  

FSI represents the condition where the magnitudes of the oscillations neither decrease 

nor increase, and is given by Equation 3.1: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∞

υωα ..b
UVf  (3.1)

where b is half chord length at wing root, αω  is the first torsion frequency and υ  is 

mass ratio described as Equation 3.2.  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

coneair

wingwing

V
V

.
.

ρ
ρ

υ  (3.2)

where Vwing=0.0043584 m3 and Vcone=0.13054 m3, which is the volume of truncated 

right cone enclosing wing. 

 

From the measured ρ∞ and V∞ values from experiment [1], taking gas constant of R = 

287.05 Ks2/m2 and specific heat constant of γ = 1.4 from gas dynamics and ideal gas 

assumption, one may obtain temperature value of T∞ and P∞. Experimental flutter data is 

shown in Table 3.8 for the AGARD Wing 445.6 at several points between Mach 0.499 

and Mach 1.141.  
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Table 3.8 Experimental Flutter Data for Weakened AGARD Wing 445.6 
 

Mach ρf [kg/m3] Vf [m/s] FSI αωω /  

0.499 0.42770 172.5 0.4459 0.5353 

0.678 0.20818 231.4 0.4174 0.4722 

0.960 0.06338 309.0 0.3076 0.3648 

1.072 0.05512 344.7 0.3201 0.3617 

1.141 0.07883 364.3 0.4031 0.4593 

 

In the developed coupling scheme, the dynamic aeroelastic simulation is started by 

computing an initial, steady-state solution for the undeformed wing which is used as the 

starting point of the unsteady dynamic aeroelastic computations. At the start of the 

unsteady run, the pressure forces which are calculated at the wall-face centroids are 

splined to the structural grid nodes using infinite spline method. Pressures that are 

calculated at cell centers using FLUENT, are used with the cell wall-face area vectors in 

order to calculate the pressure forces. Since the forces are at the cell centroids and not at 

the aerodynamic grid points, a spline matrix [S1] is created to spline forces between the 

wall-face centroids on the aerodynamic grid and the structural grid points using the 

transpose of the created spline matrix. 

New deformed structural grid coordinates are then calculated in modal coordinates using 

the linear modal structural model which is time marched using the Newmark method. In 

order to obtain the new coordinates of the aerodynamic grid, structural displacements 

are transformed to the physical coordinates and splined using a second spline matrix [S2] 

between the structural grid points and the aerodynamic grid points. Then computational 

fluid dynamic mesh is deformed by using FLUENT moving mesh algorithm. FLUENT 

mesh deforming parameters used in dynamic analysis are given in Table 3.7. Finally, 

new flow variables are calculated for the next time-step. This process is repeated until a 

specified flow time is reached.   
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In the dynamic analyses, fine CFD grid and medium CSD grid, which are discussed in 

grid sensitivity analyses, are chosen. Then, flutter point is calculated using the 

aeroelastic model. At a selected dynamic pressure, the solution is computed for four 

cycles of response. If the oscillations in the cycles are growing, a lower dynamic 

pressure is chosen and the solution is recomputed. If the oscillations are convergent, a 

higher dynamic pressure is chosen. This procedure is continued until the oscillations are 

neither decaying nor growing. Then, a dynamic pressure is determined which leads to 

neutral oscillations. This point of neutral oscillations is defined as the flutter point.   

It may be possible to estimate the damping ratio, ζ, which yields positive value for a 

stable solution, and negative value for an unstable solution from a single response. For 

the dynamic aeroelastic calculations performed in this study, the structural damping was 

set to be zero, so calculated damping ratio is purely of aerodynamic origin. For a free-

decaying, damped oscillation, the aerodynamic damping can be derived from the 

logarithmic decrement which is shown in Equations 3.3 and 3.4.  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

+1

ln1

i

i
n x

x
n

δ  
(3.3)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

− +1
2

ln1
1
2

i

i

x
x

nξ
πξ

 (3.4)

 

where ix  and nix +  are the peak amplitudes at a certain instant of time and taken after n 

cycles of vibration, respectively.  

 

Damping values are estimated for large set of test points at constant Mach numbers for 

varying dynamic pressure values. The flutter boundary can then be determined using 

linear interpolation in order to determine the dynamic pressure which yields zero 

damping ratio. Accuracy of this method is dependent of the test points near to ζ=0, thus 

flutter boundary estimation is improved by refining the study with more test points. 
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In order to determine the optimum time interval size, it is reduced until the aeroelastic 

simulation does not change by further decrease in the interval size. To achieve this, four 

different time interval sizes are examined. As can be seen in Figure 3.36, solution is 

affected by decreasing the time interval size up to the value of 0.001. Further decrease in 

time interval size does not change the solution significantly. In this test case, wing 

motion is mostly dominated by the first bending and first torsion modes, which have 

natural frequencies of 9.6 Hz and 38.10 Hz, respectively [1]. Total time of a single 

period for these modes shall be 0.104 s and 0.025 s. These frequencies may change due 

to the unsteady aerodynamic forces. As a first estimate, choosing a time interval size of 

Δt = 0.001 will resolve these modes at 104 and 25 time steps, respectively. Time 

increment in the present study is same on both aerodynamic and structural analyses. 
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Figure 3.36 Time History of the first Four Generalized Coordinates (M=0.499, FSI=0.4527) 
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Since the AGARD Wing 445.6 has a symmetric NACA 65A004 airfoil, and the angle of 

attack is zero degree, an initial perturbation must be given in order to start the 

oscillations. One can use an initial force applied at some area of the wing, or can use an 

initial condition in the form of a velocity distribution. In the present study, the first 

mode shape of the structural model is used to create a sinusoidal velocity variation for 

one cycle with amplitude of 0.5 m/s for the first mode frequency of the wing. 

Afterwards, unsteady coupled calculations are continued by removing the excitation and 

the wing is allowed to respond to the unsteady aeroelastic loads.  

The time histories of the first four generalized coordinates at FSI=0.4527, 0.4541, and 

0.4557, M=0.499 are shown in Figures 3.37-3.39. The amplitude of the motion reduces 

at FSI=0.4527, when the flutter speed index is less than the flutter critical speed. The 

amplitude of the motion is constant at FSI=0.4541, when the flutter speed index is equal 

to the flutter critical speed. The amplitude of the motion is growing at FSI=0.4557. It 

can be concluded that at M=0.499, the AGARD wing 445.6 has flutter conditions with 

FSI=0.4541. 
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Figure 3.37 Time History of the first Four Generalized Coordinates (M=0.499, FSI=0.4527) 
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Figure 3.38 Time History of the first Four Generalized Coordinates (M=0.499, FSI=0.4541) 
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Figure 3.39 Time History of the first Four Generalized Coordinates (M=0.499, FSI=0.4557) 

 

In order to determine the flutter boundary, damping estimations are collected for large 

set of test points at M=0.499 for varying dynamic pressure values. For these test points, 

estimated damping coefficients and time histories of the first four generalized 

coordinates are given in Figure 3.40. Critical flutter speed can be determined from the 

flight conditions at where damping coefficient is zero. At this Mach number, static 

pressure is 36230.5 Pa, and the corresponding flutter speed is calculated as 171.84 m/s, 

which is very close to the experimental value of 172.46 m/s. 
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Figure 3.40 Flutter Boundary Test Points Estimated Damping Coefficients and 

Generalized Displacements (M=0.499) 



 

 107

time [s]

G
en

er
al

iz
ed

Fo
rc

e

0 0.1 0.2 0.3 0.4 0.5

-40

-20

0

20

40
Mode 1
Mode 2
Mode 3
Mode 4

Mach=0.499
FSI=0.440

 
 

Figure 3.41 Time History of the first Four Generalized Forces (M=0.499, FSI=0.440) 

 

Time history of the generalized forces for the first four modes at FSI=0.440, M=0.499 

are shown in Figure 3.41.  

Work is calculated by taking the dot product of the displacement and force of each node. 

Then, results are summed to calculate a total work.  Work is compared at each time step 

for both aerodynamic and structural grids in Figure 3.42. It can be concluded that work 

done on each system is almost equal at any instantaneous time step. The difference 

between the total works calculated on the each grid varied from 1E-7 to 5E-6 N.m.  



 

 108

Number of Iteration

W
or

k
do

ne
on

th
e

sy
st

em
[N

.m
]

100 200 300 400 500
-0.015

-0.01

-0.005

0

0.005

0.01 CFD
CSD

Mach=0.499
FSI=0.440

 
 

Figure 3.42 Time History of Work Done on Each System (M=0.499, FSI=0.440) 
 

The time histories of the first four generalized coordinates at FSI=0.4205, 0.426, and 

0.4337, M=0.678 are shown in Figures 3.43-3.45. It can be concluded that at M=0.678, 

the AGARD Wing 445.6 has flutter conditions with FSI=0.426. Test points and 

corresponding estimated damping coefficients are given in Figure 3.46. Flutter speed is 

calculated as 231.08 m/s, which is very close to the experimental value of 231.37 m/s. 

Similarly, flutter speed indexes, which lead to neutral oscillations, are determined for 

Mach numbers 0.960, 1.072 and 1.141. Figures 3.47-3.58 show the test points and 

estimated damping coefficients. 
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Figure 3.43 Time History of the first Four Generalized Coordinates (M=0.678, FSI=0.4205) 
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Figure 3.44 Time History of the first Four Generalized Coordinates (M=0.678, FSI=0.426) 
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Figure 3.45 Time History of the first Four Generalized Coordinates ( 
M=0.678, FSI=0.4337) 
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Figure 3.46 Flutter Boundary Test Points Estimated Damping Coefficients and 
Generalized Displacements (M=0.678) 
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Figure 3.47 Time History of the first Four Generalized Coordinates (M=0.960, FSI=0.2725) 
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Figure 3.48 Time History of the first Four Generalized Coordinates (M=0.960, FSI=0.2811) 
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Figure 3.49 Time History of the first Four Generalized Coordinates (M=0.960, FSI=0.2975) 
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Figure 3.50 Flutter Boundary Test Points Estimated Damping Coefficients and 
Generalized Displacements (M=0.960) 
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Figure 3.51 Time History of the first Four Generalized Coordinates (M=1.072, FSI=0.3811) 
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Figure 3.52 Time History of the first Four Generalized Coordinates (M=1.072, FSI=0.3970) 
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Figure 3.53 Time History of the first Four Generalized Coordinates (M=1.072, FSI=0.4132) 
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Figure 3.54 Flutter Boundary Test Points Estimated Damping Coefficients and 
Generalized Displacements (M=1.072) 
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Figure 3.55 Time History of the first Four Generalized Coordinates (M=1.141, FSI=0.5455) 
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Figure 3.56 Time History of the first Four Generalized Coordinates (M=1.141, FSI=0.5589) 
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Figure 3.57 Time History of the first Four Generalized Coordinates (M=1.141, FSI=0.5679) 
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Figure 3.58 Flutter Boundary Test Points Estimated Damping Coefficients and 
Generalized Displacements (M=1.141) 
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The results of the flutter analysis of AGARD Wing 445.6 are compared with the 

experimental data and results of the previous studies in Figures 3.59-3.60 and 3.61 

respectively. It can be concluded that the results of the flutter boundary and flutter 

frequency of AGARD Wing 445.6 for Mach numbers ranging from 0.499 to 1.141 are 

good agreement with the experimental results except the region of transonic dip where 

lower flutter speed is predicted. This can be attributed to the inviscid flow assumption. 

Including the viscous effects may improve the prediction of FSI at this regime. 
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Figure 3.59  Comparison of Computed Flutter Speed Index Values and Experimental 
Data of AGARD Wing 445.6 
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Figure 3.60 Comparison of Computed Flutter Frequency Ratio with Experimental Data 
of AGARD Wing 445.6 
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Figure 3.61 Comparison of Computed Flutter Speed Index Values, Numerical Data, and 
Experimental Data of AGARD Wing 445.6 
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Deflected wing positions at some time instances during the aeroelastic simulation are 

shown in Figure 3.62. 

 

 
Figure 3.62 Deflected Wing Positions at Different Time Instances 
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3.2 TEST CASE 2 - GENERIC SLENDER MISSILE 

 

3.2.1 INTRODUCTION 

 

Missile body is a slender, elastic structure. Thus, aerodynamic and dynamic forces 

acting on the missile at high speeds lead to deformation of the body. The elastic 

deformation on the missile body also results in a variation of the aerodynamic loads. 

This affects the missile aerodynamic performance in terms of stability and control 

effectiveness. The objective of the present work is to determine static aeroelastic 

properties for a canard controlled supersonic slender missile shown in Figure 3.63. The 

missile has blunted ogive nose with fineness ratio 1. Total length of the missile is 28 

calibers. Control surfaces are deflected as 10° in both pitch and yaw plane to determine 

aeroelastic characteristics of the missile at drastic flight conditions during maneuver of 

the missile at Mach number 1.85.  

 

 
Figure 3.63 Generic Canard Controlled Slender Missile 

 

Material of the missile body is chosen as aluminum whereas canards and tails are 

modeled as steel. Mechanical properties are shown in Table 3.9. 
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Table 3.9 Mechanical Properties for the Generic Canard Controlled Slender Missile 
 

 Missile Body (aluminum) Canards and Tails (steel) 

Material Property Value [GPa] Value [GPa] 

E 70 200 

Material Property Value [kg/m3] Value [kg/m3] 

ρ 2700 7750 

Material Property Value Value 

ν 0.35 0.3 

 

Where, E is the modulus of elasticity, ν is Poisson's ratio, and ρ is the density of the 

material. 

 

3.2.1.1 Static Aeroelastic Analysis of the Slender Missile 

 

In this part, details of static aeroelastic analysis of the slender missile are given. The 

objective of the static aeroelastic analysis is to determine the aeroelastic effects on 

stability and control effectiveness of the missile. 

Static aeroelastic analyses are initiated by computing an initial steady-state solution. 

This converged flow solution is used as a starting point for static aeroelastic iterations 

and aeroelastic iterations continue until the difference of the root mean square values of 

structural displacements between two consecutive iterations is less than the prescribed 

tolerance (10-7).  
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The CFD analysis in this study is carried out using density based with second order 

upwinding discretization flow solver, FLUENT. In the CFD model, missile is meshed 

using unstructured tetrahedral meshes. The model’s grid size is about 2,291,346 cells 

(Figure 3.67).  For structural analysis, MSC/NASTRAN finite element commercial 

software is used. The model consists of shell (CQUAD4) type of element for the finite 

element discretization. Wings are attached to the missile body with rigid RBE2 

elements. This connection may be modified to search for aeroservoelastic effects in the 

future. Finite element model of the missile is shown in Figure 3.66. In order to calculate 

the deformations of the missile in flight, Inertia Relief module of MSC/NASTRAN is 

used. Support point is chosen as the center of gravity location and relative displacements 

are calculated with respect to this point.  

Linear interpolation using Alternating Digital Tree data structure is performed to 

transfer displacements and pressure loads between the structural and aerodynamic grid 

points. An example of building up ADT for the slender missile and application of linear 

interpolation of pressure distribution from CFD surface mesh to CSD surface mesh are 

shown in Figures 3.64 and 3.65, respectively. FLUENT moving mesh algorithm is used 

to deform the CFD grid and FLUENT mesh deforming parameters used in this study are 

shown in Table 3.7.  

 

 

 
Figure 3.64 ADT Built with the Points of the Grid Boundaries of the Generic Slender 

Missile  
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Generic Canard Controlled Slender Missile (Triangular Surface Mesh) -For CFD
Generic Canard Controlled Slender Missile (Triangular Surface Mesh) - For CFD
contour levels from CFD results

Generic Canard Controlled Slender Missile (Quadrilateral Surface Mesh) - For CSD
Generic Canard Controlled Slender Missile (Quadrilateral Surface Mesh) - For CSD
interpolated contour levels from CFD Model

 
Figure 3.65  Application of AdtSearchIn to Non-matching Discrete Interfaces between 

Fluid and Structure Mesh of the Generic Slender Missile 

 

XY

Z

 
Figure 3.66 Finite Element Model of the Missile for Structural Analysis  
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Figure 3.67 Unstructured CFD Grid for the Canard Controlled Generic Slender Missile 
 

The root mean square of the z-direction displacement is shown in Figure 3.68. Each 

iteration step continues until constant lift and drag coefficient values are obtained and 

CFD grid point locations are updated based on the structural finite element analyses. 
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Figure 3.68 The Root Mean Square of z-direction Displacement at Each Aeroelastic 
Time-step 
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Equilibrium position for elastic missile is compared with rigid missile is given in Figure 

3.69. 

 

XY

Z

Elastic Missile

Rigid Missile

Mach=1.85 α=15o

 

 
Figure 3.69 Rigid (red) and Elastic (green) Position of Slender Missile 

 

The deformations due to elasticity of the structure have an influence on the aerodynamic 

loads on the missile. In Figures 3.70 and 3.71, normal force and pitching moment 

coefficients are given for elastic and rigid missiles. As can be seen, at 10° angle of 

attack, the normal force coefficient of the elastic missile is reduced by 2 %. As body 

bends about the center of gravity, the equivalent angle of attack of the canards increases 

and that of tails decreases. On the other hand, the pitching moment coefficient about the 

missile nose tip changes about 6 % as compared to the rigid missile.  
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Figure 3.70 Elastic and Rigid Missile Normal Force Coefficient 
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Figure 3.71 Elastic and Rigid Missile Pitching Moment Coefficient about the Nose Tip 
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The center of pressure of the missile changes by amount of 0.45 caliber of the missile at 

10° angle of attack. Since stability of the missile changes, control effectiveness of the 

missile also changes by amount of 15 % as can be seen from Figure 3.72. For the rigid 

case, 10° elevator deflection angle gets the missile in trim condition at 12.1° angle of 

attack, whereas it gets the missile in trim condition at 14.2° angle of attack for the 

elastic case.  
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Figure 3.72 Elastic and Rigid Missile Pitching Moment Coefficient about cg 
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CHAPTER 4 

CONCLUSIONS AND RECOMMENDATIONS  
 

In this thesis, a closely coupled approach is developed in order to solve the static and 

dynamic aeroelastic problems. Since this approach gives the variability in choosing 

different solvers depending on the complexity of the applications, it is an efficient way 

to couple CFD and CSD solvers. 

To conduct static aeroelastic analysis, three dimensional, inviscid CFD solver, FLUENT 

is coupled with finite element structural solver, MSC/NASTRAN, that is used to solve 

the displacements associated with the aerodynamic pressure loading. Likewise for 

dynamic aeroelastic analysis, a numerical method is developed to predict the aeroelastic 

response and flutter boundary. Modal approach is used for structural response and 

Newmark algorithm is used for time-marching. Mode shapes and corresponding natural 

frequencies are obtained by using MSC/NASTRAN and used as input for this approach. 

Unsteady flow field is solved using commercial CFD solver, FLUENT, in a parallel 

computing environment. 

Mesh deformation techniques, which have been investigated as a part of this research, 

are presented. In this study, details of mesh deformation methods based on FLUENT 

mesh deformation algorithm and linear elastic finite element based deformation method 

are given. It can be concluded that, artificial material stiffness property created in finite 

element based deformation method with varying elastic properties according to the cell 

volume can be implemented for mesh deformation problems. But, since cell skewness 

and cell size parameters cannot be controlled, mesh quality decreases especially for 
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large boundary deformations during the deformation process. Since FLUENT replaces 

the collapsed or deteriorated cells with new cells, quality of the mesh can be easily 

controlled and preserved during the deformation of the aerodynamic grid. 

Interference techniques between CFD and CSD grid are also investigated in this study. 

Predictions of complex dynamic aeroelastic phenomena such as flutter are sensitive to 

the energy conservation at the fluid-structure interface. An imbalance in energy transfer 

between the CFD and the CSD systems cause instabilities and incorrect prediction of the 

aeroelastic behavior. Spline methods conserve the total force and moments on each 

system and applicable to the dynamic aeroelastic problems. For static aeroelastic 

problems, linear interpolation method using ADT is applied successfully to transfer 

displacements and pressure loads between the structural and aerodynamic grid points. 

ADT reduces the interpolation time by amount of the logarithm of the number of points. 

Static and dynamic aeroelastic problems of the AGARD Wing 445.6 are solved with the 

developed procedure and obtained results are compared with numerical and 

experimental data available in literature.  

For the static aeroelastic analyses, out-of-plane deformations of AGARD Wing 445.6 at 

leading and trailing edges are compared with the results of Cai [4]. The results of the 

present study appear to agree well with the results of Cai [4] except for the small 

differences at the leading and trailing edges of the wing tip. These differences may be 

attributed to the different flow solvers, meshing technique, and coupling approach. 

Rigid and elastic wing pressure coefficient distributions calculated in the present study 

are compared to each other. Cp values on the surface decreases in elastic wing due to 

decreased pressure values. The lift coefficient of the elastic wing is reduced by 22 % as 

compared to rigid wing.  

For the dynamic aeroelastic analyses, FSI is determined for the AGARD Wing 445.6 at 

different Mach numbers ranging from 0.499 to 1.141. The flutter points are determined 

by running a solution for a significantly long period of time to arrive at a neutrally stable 
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solution. Damping estimations are collected for large set of test points at constant Mach 

numbers for varying dynamic pressure values. Then, the flutter boundary is determined 

which yields zero damping ratio, ζ=0, where the amplitude of oscillations of the 

generalized displacement is neither decaying nor growing. The results of the present 

study are good agreement with the experimental results except the region of transonic 

dip. Coupling unsteady Euler equations to the linear modal structural model predicts a 

lower flutter speed at the transonic dip. Viscous effects are important factors in 

determining the transonic dip accurately. Thus, including the viscous effects may 

improve the prediction of FSI at this regime. 

As another test case, static aeroelastic problem of the canard controlled slender missile 

is solved using the developed procedure. For structural analysis, MSC/NASTRAN 

inertia relief option, which is used to simulate unconstrained structures in flight, is used 

with linear elastic solver. The displacements of the structure under the aerodynamic 

loading are calculated with respect to the center of gravity of the missile. The normal 

force and pitching moment coefficients of the rigid and elastic missile are calculated in 

the present study and compared to each other. Normal force coefficient does not change 

significantly. The pitching moment coefficient about the nose tip of the missile changes 

by amount of 6 %, as center of pressure changes due to bending of the missile. This 

affects the aerodynamic performance of the missile in terms of stability and control 

effectiveness. Control effectiveness changes about 15 % as compared to the rigid 

missile. For the further studies, dynamic aeroelastic characteristics of the slender 

missile, which is more critical especially in the transonic region of the flight regime, 

will be investigated. 
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