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ABSTRACT 

MAGNETIC RESONANCE CURRENT DENSITY IMAGING USING ONE 
COMPONENT OF MAGNETIC FLUX DENSITY 

 

Ersöz, Ali 

MSc., Department of Electrical and Electronics Engineering 

Supervisor : Prof. Dr. B. Murat Eyüboğlu 

 

July 2010, 96 pages 

 

Magnetic Resonance Electrical Impedance Tomography (MREIT) algorithms using 

current density distribution have been proposed in the literature. The current density 

distribution, J
�

, can be determined by using Magnetic Resonance Current Density 

Imaging (MRCDI) technique. In MRCDI technique, all three components of 

magnetic flux density, B
�

, should be measured. Hence, object should be rotated 

inside the magnet which is not trivial even for small size objects and remains as a 

strong limitation to clinical applicability of the technique. In this thesis, 2D MRCDI 

problem is investigated in detail and an analytical relation is found between Bz, Jx 

and Jy. This study makes it easy to understand the behavior of Bz due to changes in Jx 

and Jy. Furthermore, a novel 2D MRCDI reconstruction algorithm using one 

component of B
�

 is proposed. Iterative FT-MRCDI algorithm is also implemented. 

The algorithms are tested with simulation and experimental models. In simulations, 

error in the reconstructed current density changes between 0.27% - 23.00% using the 

proposed algorithm and 7.41% - 37.45% using the iterative FT-MRCDI algorithm for 
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various SNR levels. The proposed algorithm is superior to the iterative FT-MRCDI 

algorithm in reconstruction time comparison. In experimental models, the classical 

MRCDI algorithm has the best reconstruction performance when the algorithms are 

compared by evaluating the reconstructed current density images perceptually. 

However, the J-substitution algorithm reconstructs the best conductivity image by 

using J
�

 obtained from the proposed algorithm. Finally, the iterative FT-MRCDI 

algorithm shows the best performance when the reconstructed current density images 

are verified by using divergence theorem. 

Keywords: electrical impedance tomography, magnetic resonance imaging, current 

density imaging 
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ÖZ 

TEK YÖNDEKĐ MANYETĐK AKI YOĞUNLUĞU KULLANARAK MANYET ĐK 
REZONANS AKIM YOĞUNLUĞU GÖRÜNTÜLEME 

 

Ersöz, Ali 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez yöneticisi : Prof. Dr. B. Murat Eyüboğlu 

 

Temmuz 2010, 96 sayfa 

 

Bir cismin elektriksel iletkenlik dağılımını hesaplamak için akım tabanlı Manyetik 

Rezonans Elektriksel Empedans Tomografi (MREIT) algoritmaları literatürde 

önerilmiştir. Akım yoğunluğu dağılımı, J
�

, Manyetik Rezonans Akım Yoğunluğu 

Görüntüleme (MRCDI) tekniği kullanılarak bulunabilir. MRCDI tekniğinde,  

manyetik akı yoğunluğunun, B
�

, üç yöndeki bileşkesinin de ölçülmesi 

gerekmektedir. Bu nedenle, cismin cihaz içinde döndürülmesi gerekmektedir. Cismin 

küçük olduğu durumlarda bile cismin cihaz içinde döndürülmesi kolay bir işlem 

değildir ve bu tekniğin klinik uygulamalarda kullanılmasını engelleyen en önemli 

etkenlerden biridir.  Bu tez çalışmasında, 2 boyutlu MRCDI problem detaylı bir 

şekilde incelenmiş ve Bz, Jx ve Jy ifadeleri arasında analitik bir ilişki kurulmuştur. Bu 

çalışma Bz’ nin Jx ve Jy’deki değişimlere göstediği duyarlılığın anlaşılmasını daha 

kolay hale getirmiştir. Diğer bir yandan, tek yöndeki manyetik akı yoğunluğunu 

kullanan yeni bir MRCDI geriçatım algoritması da bu tez kapsamında önerilmiştir. 

Literatürdeki tekrarlamalı FT-MRCDI algoritması bu çalışmada gerçekleştirilmi ştir. 

Önerilen algoritma ve tekrarlamalı FT-MRCDI algoritması benzetim modelleri ve 
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deneysel modeller ile sınanmıştır. Benzetim modellerinde, önerilen algoritma 

kullanılarak elde edilen akım yoğunluğu görüntülerindeki hata değişik SNR 

seviyeleri için 0.27% ve 23.00% arasında bulunmuştur. Bu hata oranları tekrarlamalı 

FT-MRCDI algoritması için ise 7.41% ve 37.45% arasında değişmektedir. Önerilen 

algoritma geriçatım süresi bakımından tekrarlamalı FT-MRCDI algoritmasına önemli 

bir üstünlük kurmuştur. Deneysel modellerde ise, klasik MRCDI algoritması, 

geriçatılmış akım yoğunlukları görsel olarak karşılaştırıldığında en iyi sonucu 

vermiştir. Geriçatılmış akım yoğunluklarının J-substitution algoritmasında 

kullanılması sonucu elde edilen iletkenlik dağılımları karşılaştırıldığında ise, önerilen 

algoritma en iyi sonucu veren algoritma olmuştur. Son olarak elde edilen akım 

yoğunluğu görüntüleri ıraksama teoremi kullanılarak doğrulanmış ve tekrarlamalı 

FT-MRCDI algoritmasının üstünlüğü görülmüştür.  

Anahtar Kelimeler: elektriksel empedans tomografi, manyetik rezonans görüntüleme, 

akım yoğunluğu görüntüleme 
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, c) 
Reconstructed Jx (A/m2) using the proposed algorithm, d) Reconstructed Jy (A/m2) 
using the proposed algorithm, e) Reconstructed Jx (A/m2) using Iterative FT-MRCDI 
algorithm, f) Reconstructed Jy (A/m2) using Iterative FT-MRCDI algorithm. .......... 80 
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CHAPTER 1  

INTRODUCTION 

The properties of biological tissues differ among tissues, which make the imaging of 

human body possible. One of these distinctive properties is the electrical 

conductivity of the tissues. Electrical conductivity of the tissues varies among tissues 

and it also changes with physiological and pathological state of a tissue [1], [2]. The 

electrical impedance of a tissue is modeled by Philippson [3] in terms of a resistor-

capacitor pair. Electrical impedance tomography (EIT) is a non-invasive imaging 

technique which is proposed to image electrical conductivity distribution inside a 

volume conductor. 

The idea of generating electrical conductivity distribution images of the body was 

first proposed by Henderson and Webster [4] in 1978. They presented the first 

electrical impedance images. However, the first published tomographic images were 

obtained by Brown and Barber [5]. Interested reader in the history of EIT is 

encouraged to read the review article by Brown [6]. 

Various current injection and voltage measurement schemes for EIT are proposed in 

literature. The most widely used scheme is Sheffield’s scheme [7] where 16 

electrodes are used and 104 independent transfer impedance measurements are made. 

In order to generate different current density distribution inside the volume 

conductor, induced current EIT method is proposed [8]. In this method, the current is 

induced via a coil placed around a body. Gençer et al presented the mathematical 

principles of induced current EIT and extend the studies by introducing contactless 

measurement system [9], [10].  

Brown mentioned the possible applications of EIT in healthcare as gastric 
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measurements (gastric secretion and emptying), pulmonary measurements, head 

imaging, breast imaging [6]. 

Although EIT has several advantages over other methods as it is a relatively cheap 

technique, it has fast data collection procedure and it has no hazards to human body 

[6], EIT has also many drawbacks that limits its use for clinical purposes. The main 

drawback of EIT is low spatial resolution and space-dependent quantitative accuracy 

of reconstructed images [11]. The low spatial resolution is because of the fact that the 

sensitivity of peripheral voltage measurements to conductivity changes in different 

regions is not the same. Therefore, extra information obtained directly from the 

measurements inside the volume conductor is needed to overcome low spatial 

resolution problem of EIT. 

In 1988, Joy et al developed a novel imaging technique to reconstruct current density 

distribution inside a volume conductor containing nuclear magnetic resonance 

(NMR) active nuclei by using Magnetic Resonance Imaging (MRI) system [12]. This 

technique was named as Magnetic Resonance Current Density Imaging (MRCDI). 

This technique enabled the monitoring of current density distribution with high 

resolution. In MRCDI, current is applied to the phantom by the electrodes placed on 

the surface of the phantom and generated magnetic flux density due to externally 

applied currents is measured by MRI scanner. Then, the current density distribution 

is calculated by using the Maxwell equation for the static electric field: 

 0B Jµ∇ × =
� �

                    (1.1) 

As it can be seen in Equation (1.1), all three components of magnetic flux density 

should be measured to calculate current density distribution. Since MRI scanner can 

only measure the component of magnetic flux density parallel with the main 

magnetic field, the phantom should be rotated inside MRI scanner to measure all 

three components.  

The main advantage of MRCDI technique is that it allows to measure magnetic flux 

density at the points where the currents flow. Therefore, the magnetic flux density 

created by small currents can also be measured. As a result, high resolution current 

density images are obtained. The development of MRCDI technique provides 
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valuable information in many biomedical engineering applications as determination 

of hazardous electric currents, electrode design for various applications, calculation 

of lead sensitivity maps of biopotential recording electrodes and improvement of 

spatial resolution of conductivity images in EIT [13]. 

In 1992, Zhang proposed a new algorithm that uses current density distribution 

obtained from MRCDI with conventional EIT voltage measurements to reconstruct 

electrical conductivity distribution inside a volume conductor [14]. In his algorithm, 

Zhang used the fact that potentials on the surface of volume conductor are known 

from conventional EIT measurements. Hence, any potential difference measured on 

the surface can be represented as 

 
C

J dlρ∆Φ = ⋅∫
��

 (1.2) 

where J
�

 is the current density, ρ is the resistivity and ∆Φ is the voltage difference 

between two points on surface. Since voltage difference and current density are 

known, solving the linear inverse problem gives the conductivity distribution. This 

novel algorithm is named as Magnetic Resonance Electrical Impedance Tomography 

(MREIT).  

After Zhang proposed the first MREIT algorithm, MREIT has been studied by many 

research groups. In the literature, MREIT reconstruction algorithms can be classified 

in two groups: algorithms that use magnetic flux density, B
�

, directly and algorithms 

that use current density distribution, J
�

, obtained from measured B
�

.   

Some of the J-based MREIT reconstruction algorithms proposed in the literature are 

Integration along Equipotential Lines, Integration along Cartesian Grid Lines, 

Solution of a Linear Equation System using Finite Differences [15], Equipotential- 

Projection algorithm [16], J-substitution algorithm [17] and J-substitution and 

Filtered Equipotential-Projection Based Hybrid Reconstruction Algorithm [18]. In 

2009, all these J-based MREIT reconstruction algorithms were implemented and 

their performances were evaluated by Boyacıoğlu and Eyüboğlu [18].  

Some of the B-based MREIT reconstruction algorithms proposed in the literature are 

Harmonic Bz algorithm [19], Variational Gradient Bz algorithm [20], Sensitivity 
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matrix algorithm [21], Algebraic Reconstruction algorithm [15]. In 2009, all these B-

based MREIT reconstruction algorithms were implemented and their performances 

were evaluated by Eker and Eyüboğlu [22]. 

As it was mentioned before, the phantom should be rotated inside MRI scanner to 

measure all three components of B
�

 in MRCDI technique since MRI scanner can 

only measure the component of B
�

 parallel with the main magnetic field. However, 

rotating the phantom inside the magnet is not trivial even for small size phantoms. 

This problem is one of the drawbacks of MRCDI that limits its use in clinical 

applications. In 1989, before Joy et al conducted the first MRCDI experiment [12], 

Roth et al showed that the current density distributions restricted to a two 

dimensional plane can be reconstructed by using only the component of B
�

 

perpendicular to the imaging plane, Bz [23]. They assumed that Bz was measured by a 

superconducting quantum interference device (SQUID). First, they obtained the 

Fourier Transform of Bz. Then, by using Biot-Savart law and the fact that the 

divergence of current density vanishes for quasistatic currents, they solved the 

inverse problem which gives Jx and Jy. In 1990, Pesikan et al used the same 

reconstruction technique as Roth et al used to reconstruct 2D current density 

distribution. However, they measured Bz by MRI scanner [24]. In 2003, Seo et al 

proposed a new current density reconstruction algorithm known as Harmonic Bz 

algorithm which also uses only one component of B
�

 [19]. In this algorithm, the 

iterations are started with assuming an initial conductivity distribution. The 

conductivity distribution is updated at the successive iterations by an update equation 

until the error reduces below a predetermined tolerance value. Finally, the current 

density distribution is calculated by solving the boundary value problem. In 2006, 

Đder proposed a novel reconstruction algorithm to reconstruct 2D current density 

distribution [25]. He used the Fourier Transform and spatial filtering techniques as 

Roth et al did. Furthermore, he introduced difference current concept to apply the 

technique on the phantom where current is applied by the electrodes placed on its 

boundaries. Difference currents are obtained by subtracting J
�

 calculated for a 

uniform conductivity by finite element method from actual J
�

. Divergence of the 

difference current vanishes. In this algorithm, first difference magnetic flux density is 
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calculated by subtracting the magnetic flux density for uniform currents from the 

measured magnetic flux density. Then, difference currents are calculated by solving 

inverse problem. Finally, J
�

 is obtained by adding difference currents to the uniform 

currents. 

1.1 Objectives of the Thesis 

MREIT has been studied by many research groups since Zhang proposed the first 

MREIT algorithm in 1992 [14]. As it was mentioned before, J
�

 must be calculated 

from measured B
�

 for J-based MREIT reconstruction algorithms. In classical 

MRCDI technique, all three components of B
��

 are used to reconstruct J
�

. Hence, 

object rotation is necessary to measure all three components of B
�

. The algorithms 

that eliminate the need for object rotation were given in previous section. In 

Harmonic Bz algorithm, noise performance of the algorithm is poor since the 

algorithm calculates Laplacian of measured Bz. Therefore, performance of the 

algorithm on experimental phantoms is poor for low SNR MRI Systems. The 

MRCDI algorithms, which use Fourier Transform, require the measurement of B
�

 

outside of the phantom to obtain a well-defined Fourier Transform. However, 

measuring magnetic flux density outside the phantom is not possible in an MRI 

scanner. Hence, post-processing of measured Bz data is required.  As a result, there is 

a need for novel MRCDI reconstruction algorithms that use only one component of 

measured B
�

 directly. Also, performance of these algorithms on experimental data is 

essential for the improvement of MRCDI technique. Hence, objectives of this thesis 

are: 

• To analyze the relation between one component of magnetic flux density and 

current density distribution orthogonal to that component of magnetic flux 

density, 

• To develop novel reconstruction algorithm using one component of magnetic 

flux density for MRCDI, 

• To evaluate the performance of the developed algorithms on both simulated 

and experimental data, 
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• To compare the performance of the developed algorithm with other 

algorithms proposed in literature, 

 

In order to compare the performance of the proposed algorithm, the iterative FT-

MRCDI algorithm is also implemented in this thesis. This algorithm is chosen since 

the experiments are conducted in a low SNR MRI System and the iterative FT-

MRCDI has a better noise performance compared to other reconstruction algorithms.  

1.2 Outline of the Thesis 

In Chapter 2, the forward and inverse problems of MREIT are explained. Moreover, 

the extraction of magnetic flux density from MR images and the classical MRCDI 

procedure to obtain current density distribution by using three components of 

magnetic flux density are given in detail in this chapter. Then, the experimental setup 

in 0.15T METU-EE MRI System is explained. In Chapter 3, the inverse problem of 

Magnetic Resonance Current Density Imaging (MRCDI), which relates magnetic 

flux density to current density, will be investigated in detail. The reconstruction 

algorithms are also explained with their formulations in this chapter. In Chapter 4, 

simulation and experimental models used to evaluate reconstruction performance of 

the MRCDI algorithms are given. The error calculation method for both models is 

also formulated.  In Chapter 5, simulation and experimental results for reconstruction 

algorithms are given. Furthermore, the comparison of performance of the 

reconstruction algorithms is carried out in this chapter. Finally, Chapter 6 includes 

the conclusion and future works. 
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CHAPTER 2  

THEORY 

2.1 Introduction  

In this chapter, the forward problem of MREIT, which includes the definition and 

governing equations, is explained in detail. Inverse problem of MREIT is explained 

afterwards. The extraction of magnetic flux density from MR images and the 

classical MRCDI procedure to obtain current density distribution by using three 

components of magnetic flux density are also given in detail in this chapter. Finally, 

experimental setup in 0.15 T METU-EE MRI System is explained.  

2.2 Forward Problem of MREIT 

The forward problem of MREIT consists of the calculation of peripheral surface 

voltages and magnetic flux density distribution for a subject to be imaged. The 

relation between the conductivity, σ, and the potential field, Φ, is defined by 

Poisson’s equation as: 

 ( ) 0σ∇ ⋅ ∇Φ =  (2.1) 

The electric current on the boundary of the imaging region is represented with the 

Neumann boundary conditions: 

 

       

    

0    

J on positive current electrode

J on negative current electrode
n

elsewhere

σ


∂Φ = −∂ 


 (2.2) 

where n is the outward normal at the outer boundary. The electrical field distribution 
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can be calculated from potential distribution as 

 E = −∇Φ
�

 (2.3) 

and the corresponding current density distribution is obtained as 

 J Eσ=
� �

 (2.4) 

The relation between J
�

 and magnetic flux density, B
�

, is given by Biot-Savart 

equation as 

 
3

0µ ( JdV)×r
B =

4π r∫
� �

�
 (2.5) 

where 0µ is the permeability of free space, r  is the distance between field and source 

points, r
�

 is the unit vector pointing from source to field point. The Biot-Savart law 

enables the calculation of magnetic flux density generated due to current density 

distribution on any slice. Equations (2.1)-(2.5) describe the relation between the 

conductivity distribution and magnetic flux density. 

Analytical solution of the forward problem is restricted to problems with special 

geometries. Hence, finite element or boundary element methods are used generally 

for the solution of the forward problem. 

2.3 Inverse Problem of MREIT 

The inverse problem of MREIT includes reconstruction of the conductivity 

distribution inside a volume conductor by using measured magnetic flux density and 

peripheral surface measurements. Solution of the MREIT inverse problem was first 

proposed by Zhang [14]. In his algorithm, Zhang used the fact that potentials on the 

surface of a volume conductor are known from conventional EIT measurements. 

Hence, any potential difference measured on the surface can be represented as  

 
C

J dlρ∆Φ = ⋅∫
��

 (2.6) 

where J
�

 is the current density, ρ is the resistivity and ∆Φ is the potential difference 
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between two points on surface. Since potential difference and current density 

distribution are known, the conductivity distribution is obtained by solving the linear 

inverse problem. 

MREIT reconstruction algorithms can be grouped in two categories: 

1. B
�

-based algorithms (Algorithms that use B
�

 directly), 

2. J
�

-based algorithms (Algorithms that use J
�

 obtained from B
�

) 

The J
�

-based MREIT reconstruction algorithms proposed in the literature were 

implemented and their performances were evaluated by Boyacıoğlu and Eyüboğlu 

[18]. The B
�

-based MREIT reconstruction algorithms proposed in the literature were 

implemented and their performances were evaluated by Eker and Eyüboğlu [22]. 

2.4 Extraction of Magnetic Flux Density from MR Images and 

Classical MRCDI Procedure 

It is known that the currents flowing in a volume conductor generates a magnetic 

flux density. The generated magnetic flux density can be measured by using 

magnetic resonance imaging techniques if the conductor region contains NMR active 

nuclei. The magnetic flux density is extracted from the MR images that are obtained 

by using appropriate pulse sequences. However, the component of magnetic flux 

density parallel with the main magnetic field of MRI system can be measured only. 

Because, only the component of magnetic flux density, which is in the same direction 

with the main magnetic field, accumulates a phase in the acquired MRI signal [26].  

If a noise free MRI data without spin relaxation is assumed, the acquired MRI signal 

in a spin echo imaging experiment with pulse sequence shown in Figure 2.1 can be 

expressed as 

 ( ) { }, , ( , )x y x y c
x y

S k k t M x y exp j Bt k x k y dxdyθ = γ + + + ∫ ∫  (2.7) 

where M(x,y) is the continuous real transverse magnetization, B is the inhomogeneity 

component of the main magnetic field and cθ is a constant phase due to 
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instrumentation and receiver circuits, x xk G tγ= and y y yk G tγ= , where Gx and Gy are 

the frequency and phase encoding gradient strengths, respectively. t is the data 

acquisition time and ty is the duration of Gy gradient pulse and γ  is the gyromagnetic 

ratio. 

 

 

Figure 2.1 Spin echo pulse sequence. 

 

When current synchronized with spin echo pulse sequence is applied to the 

conductor region, the component of magnetic flux density parallel with the main 

magnetic field of MRI system accumulates a phase in the acquired signal as 

mentioned before. The acquired signal can be expressed as 

 ( ) ( ){ }, , ( , ) ,x y x y c j c
x y

S k k t M x y exp j Bt k x k y B x y T dxdyθ γ = γ + + + + ∫ ∫  (2.8) 

Here, ( ),jB x y  is the component of magnetic flux density parallel with the main 
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magnetic field and cT  is the duration of the applied current. Complex MR images for 

current applied case and no-current case can be calculated by Fourier transforming 

the acquired signal. The complex MR images are obtained as 

 ( ) ( ) ( ), ,c cM x y M x y exp j Bt jγ θ= +  (2.9) 

 ( ) ( ) ( )( ), , ,cj j c cM x y M x y exp j Bt B x y T jγ θ = + +   (2.10) 

In these equations, ( ),cM x y  and ( ),cjM x y  are the complex MR images for no-

current and current applied cases, respectively. Dividing the complex image for 

current applied case, by the complex image for no-current case, a resultant phase 

term is obtained as 

( )
( )

( ) ( )( )
( ) ( ) ( )( )

, ,,
,

, ,

j c ccj
j c

c c

M x y exp j Bt B x y T jM x y
exp j B x y T

M x y M x y exp j Bt j

γ θ
γ

γ θ

 + + = =
+

 (2.11) 

Finally, ( ),jB x y  is extracted by dividing the phase term in Equation (2.11) by 

gyromagnetic ratio, γ , and the duration of the applied current, cT . 
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Figure 2.2 The placement of object inside MRI scanner for measuring all three 
components of magnetic flux density, a) measuring Bz, b) measuring Bx, c) measuring 

By 

In classical MRCDI technique, all three components of magnetic flux density are 

required to reconstruct current density distribution. Therefore, the object must be 

rotated and the experiment must be repeated for three different placement of the 

object. The placement of the object inside MRI scanner for different experiments is 

given in Figure 2.2. The primed coordinate system ( )', ', 'x y z  is the coordinate 

system of the MRI system and ( ), ,x y z  is the coordinate system of the object. The 

main magnetic field of MRI system is in the 'z  direction. In Figure 2.2(a), the z axis 

of the object is aligned with'z , hence, Bz is measured. Similarly, in Figure 2.2(b) and 

Figure 2.2(c), Bx and By are measured, respectively. 
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The relation between current density and magnetic flux density is defined by 

Maxwell’s equation as 

 0B Jµ∇ × =
� �

 (2.12) 

By using the curl operator, Equation (2.12) can be written in open form as 

 
0

1
ˆ ˆ ˆy yx xz z

x y z

B BB BB B
J a a a

y z z x x yµ
 ∂ ∂    ∂ ∂∂ ∂  = − + − + −     ∂ ∂ ∂ ∂ ∂ ∂      

�
 (2.13) 

In 2D applications, where current is confined in a plane, J
�

 is composed of two 

components, Jx and Jy, which create a magnetic flux density only in z direction, Bz. 

Hence, Bx and By are equal to zero in 0z  plane and yB

x

∂
∂

, xB

y

∂
∂

 vanish on that plane. 

However, the derivatives of Bx and By with respect to z are not zero. In order to 

calculate these derivatives, Bx and By should be measured on 0z z+ ∆ and 0z z− ∆

planes. So, their derivatives can be calculated as 

 0 0

0 2

x z z z x z z zx
z z

B BB

z z

= +∆ = −∆
=

−∂ =
∂ ∆

 (2.14) 

 0 0

0 2

y z z z y z z zy
z z

B BB

z z

= +∆ = −∆
=

−∂
=

∂ ∆
 (2.15) 

After calculating all the derivatives in Equation (2.13), the current density 

distribution can be reconstructed.   

2.5 Experimental Setup in 0.15 T METU-EE MRI System 

The extraction of magnetic flux density from MR images is mentioned in Section 

2.4. In this section, experimental setup and procedure used in METU-EE MRI 

System will be given in detail. 

The METU-EE MRI System is shown in Figure 2.3. The experimental setup consists 

of a main magnet, RF coil, current source, and the experimental phantom.  
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Figure 2.3 The experimental setup in METU MRI System. 

The main magnet of this system is a resistive air core magnet with a bore diameter of 

80 cm. The resistance of the magnet is approximately 300 mΩ and it is fed by a DC 

current source operating at 272A to generate field strength of 0.15 T [27].  

Designed RF coil shown in Figure 2.4 is a transceiver type of coil which can be used 

as both a transmitter and receiver coil. The RF coil is tuned before the experiments.  

The current source is based on the design of Özbek [28] with some improvements. 

First of all, fiber optic transmitter and receiver units are added to the design. By these 

new units, the triggering pulse for current injection is transmitted from computer to 

the current source via fiber optic cables. The purpose of these units is to eliminate 

noise on triggering pulse. Detailed information about the current source design can 

be found in Değirmenci [29]. 

Current 
Source 

Magnet 

Fiber 
optic 
cables 

RF Coil 
and 
Phantom 

Current 
Injection 
Cables 
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Figure 2.4 RF coil. 

METU-EE MRI System is controlled by a software program which was developed 

by Özsüt [30]. In this software, desired pulse sequence can be designed as well as 

amplitude and duration of the applied current can be modified.  

The experimental procedure for a MRCDI experiment in METU-EE MRI System is 

as follows: 

• The pulse sequence is designed in the software. 

• Amplitude and duration of the applied current is adjusted. 

• Electrodes are connected to the experimental phantom. 

• Current is applied and phase image is obtained. 

• Current polarity is changed and phase image is obtained. 

• The above steps are repeated for different current injection patterns. 

After having phase images, magnetic flux density can be extracted as explained in 

Section 2.4. The screenshot of the software used in METU-EE MRI System for 

imaging Bz is shown in Figure 2.5. 
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Figure 2.5 Screenshot of MRI software to image Bz. 

In order to image Bx and By, phantom orientation is changed depending on the 

magnetic flux density component to be imaged. Slice selection, frequency encoding 

and phase encoding gradients are adjusted accordingly. To image Bx, slice selection, 

frequency encoding and phase encoding gradients are in x, y, z directions, 

respectively. Similarly, slice selection, frequency encoding and phase encoding 

gradients are in y, z, x directions to image By.  

It is stated in Section 2.4 that Bx and By should be measured on 0z z+ ∆ and 0z z− ∆

planes to calculate the derivatives of Bx and By with respect to z. Therefore, in 

imaging Bx and By, slice position is adjusted to z∆  above the center of imaging slice,

0z , and the phase image on that slice is obtained. Then, slice position is adjusted to 

z∆  below the center of imaging slice,0z , and the phase image is obtained once again. 

Finally, current density distribution is calculated using Equation (2.13). The 

screenshots of the software used in METU-EE MRI System for imaging Bx and By 

are shown in Figure 2.6 and Figure 2.7, respectively. 
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Figure 2.6 Screenshot of MRI software to image Bx. 

 

 

Figure 2.7 Screenshot of MRI software to image By. 
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CHAPTER 3  

MAGNETIC RESONANCE CURRENT DENSITY 
IMAGING USING ONE COMPONENT OF MAGNETIC 

FLUX DENSITY 

3.1 Introduction  

In this chapter, the inverse problem of Magnetic Resonance Current Density Imaging 

(MRCDI), which relates magnetic flux density to current density, will be investigated 

in detail. The theory and mathematical derivation of the proposed algorithm and the 

iterative FT-MRCDI algorithm will be also given in this chapter. 

3.2 Analysis of 2D MRCDI Problem  

In this section, 2D MRCDI inverse problem, which relates magnetic flux density to 

current density, will be analyzed in detail. First, the mathematical analysis of the 

problem will be given. Then, the sensitivity of magnetic flux density to current 

density as well as to the changes in conductivity will be investigated.  

3.2.1 Mathematical Analysis 

In MRCDI, the current density is calculated by measuring the magnetic flux density 

induced by current flow. The relation between quasi-static current density and 

magnetic flux density generated by this current is defined by Maxwell’s equations as 

 
0

B
J

µ
∇ ×=
�

�
 (3.1) 

where 



19 

 

J
�

: current density 

B
�

: magnetic flux density 

0µ : permeability of free space 

B
�

 can be calculated by using Biot-Savart law as 

 
3

0µ ( JdV)×r
B =

4π r∫
� �

�
 (3.2) 

where 

r: distance between field and source points 

r
�

: vector from source to field point 

dV : differential volume element 

 

The equations (3.1) and (3.2) are defined for 3D problems. In a 2D subject, Ω, where 

currents flow in x-y plane, J
�

 has only two components, Jx and Jy, which generate B
�

 

only in z direction, Bz. The z-component of B
�

, Bz, is given as 

 0
3

2 2 2

( , )( ) ( ) ( , )
( , )

4
[( ) ( ) ]

x y
z

J x y y y x x J x y
B x y dx dy

x x y y

µ
π Ω

′ ′ ′ ′ ′ ′− − −
′ ′=

′ ′− + −
∫  (3.3) 

in z=0 plane. The equation (3.3) is valid for the cases where the subject is infinitely 

long along the longitudinal direction. Now, consider a circular slice of a conductor 

region having a conductivity distribution σ, radius a and thickness d as shown in 

Figure 3.1. The circular geometry is chosen in order to simplify analytical 

derivations.  

Let σ be the conductivity distribution as 

 1

2

,  for 0

,  for b

r b

r a

σ
σ

σ
< <

=  < <
 (3.4) 



20 

 

The electrodes having width δ and height d are placed at the sides of the conductor 

region at the angular positions θ1 and θ2. 

              

 

Figure 3.1 The geometry of the conductor region used for analytical derivations. 

The current applied on the boundaries can be expressed by an infinite summation of 

circular harmonics as 

 
1

( ) cos( ) sin( )n n
n

j C n S nϕ ϕ ϕ
∞

=
= +∑  (3.5) 

where 

 
2

0

1
( )cos( )nC j n d

π

ϕ ϕ ϕ
π

= ∫  (3.6) 

and 

 
2

0

1
( )sin( )nS j n d

π

ϕ ϕ ϕ
π

= ∫  (3.7) 

Assume that a current, I, is applied from the electrodes as 

b 
a 

θ1 θ2 

σ1 

σ2 

d 

δ 
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I

dj
I

d

β βθ ϕ θ
δϕ

β βθ ϕ θ
δ

 − ≤ ≤ += 
− − ≤ ≤ +


 (3.8) 

where β=δ/a is the angle covered by an electrode. Then, the voltage distribution 

inside the conductor region can be expressed by Laplace’s equation. Note that, the 

voltage distribution, Φ(r,φ,z), is invariant in z direction. The solution of Laplace’s 

equation can be represented by an infinite sum of circular harmonics as 

 1

2

( , ) if 0
( , )

( , ) if 

r r b
r

r b r a

ϕ
ϕ

ϕ
Φ ≤ ≤

Φ = Φ ≤ ≤
 (3.9) 

where 

 1
1

( , ) [ cos( ) sin( )]  n
n n

n

r r A n B nϕ ϕ ϕ
∞

=
Φ = +∑  (3.10) 

and 

 
1

2

1

[ cos( ) sin( )]

( , )  

[ cos( ) sin( )]

                  

n
n n

n

n
n n

n

r E n F n

r

r G n H n

ϕ ϕ
ϕ

ϕ ϕ

∞

=
∞

−

=

 
+ 

 Φ =  
 + +
  

∑

∑
  (3.11) 

Boundary conditions are given as 

 1 2( , ) ( , )b bϕ ϕΦ = Φ  (3.12) 

 1 2
1 2

( , ) ( , )

r b r b

r r

r r

ϕ ϕσ σ
= =

∂Φ ∂Φ− = −
∂ ∂

 (3.13) 

 2
2

( , )
( )

r a

r
j

r

ϕσ ϕ
=

∂Φ− =
∂

 (3.14) 

The coefficients Cn and Sn can be calculated by evaluating the integrals in Equations 

(3.6) and (3.7). Also, the coefficients An, Bn, En, Fn, Gn, Hn in Equations (3.10) and 

(3.11) can be calculated by solving these equations with boundary conditions in 
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Equations (3.12), (3.13) and (3.14). The coefficients are found as: 
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 (3.22) 

The details of the solution are given in appendix A. After finding the voltage 

distribution inside the conductor region, the current density distribution can be 

evaluated. It is known that 

 J σ= − ∇Φ
�

 (3.23) 

and 

 
1

ˆ ˆr φa a
r r ϕ

∂ ∂∇ = +
∂ ∂

 (3.24) 
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Hence, the current density distribution is found as follows 
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 (3.26) 

Since the current density distribution is expressed in cylindrical coordinates, the 

Biot-Savart equation should also be written in cylindrical coordinates to obtain a 

relation between magnetic flux density and current density distribution. As it was 

mentioned, Equation (3.3) is valid for the cases where the conductor region is 

infinitely long along the longitudinal direction. However, in this case, the conductor 

region has a finite thickness, d. If it is assumed that the thickness of the conductor 

region is too small compared to its radius, the Equation (3.3) becomes 

 0
3

2 2 2 2

( , )( ) ( ) ( , )
( , , )

4
[( ) ( ) ]

x y
z

J x y y y x x J x yd
B x y z dx dy

x x y y z

µ
π Ω

′ ′ ′ ′ ′ ′− − −
′ ′=

′ ′− + − +
∫  (3.27) 

Jx and Jy in Equation (3.27) can be transformed into cylindrical coordinates by using 

 

( , ) ( , )cos ( , )sin

( , ) ( , )sin ( , ) cos

cos                 cos

sin                 sin

x r

y r

J x y J r J r
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x r x r

y r y r

ϕ

ϕ

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ

ϕ ϕ
ϕ ϕ

′ ′ ′ ′ ′ ′ ′ ′= −
′ ′ ′ ′ ′ ′ ′ ′= +

′ ′ ′= =
′ ′ ′= =

 (3.28) 

Then, Equation (3.27) becomes 
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(3.29) 

Reorganizing the terms in Equation (3.29) gives 

 0
3

2 2 2 2

( , ) sin( ) ( , )[ cos( )]
( , , )

4
[ 2 cos( ) ]

r
z

J r r J r r rd
B r z ds

r r rr z

ϕϕ ϕ ϕ ϕ ϕ ϕµϕ
π

ϕ ϕΩ

′ ′ ′ ′ ′ ′ ′− + − −
′=

′ ′ ′+ − − +
∫  (3.30) 

Calculating Bz, Jr and Jφ analytically makes it possible to obtain the sensitivity of Bz, 

Jr, Jφ to the changes in conductivity and the radius of the concentric inhomogeneity. 

3.2.2 Sensitivity Plots for Bz, Jx and Jy 

In Section 3.2.1, the relation between Bz, Jx, Jy and σ is obtained analytically. Now, 

the sensitivity of Bz, Jx, Jy to the changes in both conductivity and the radius of the 

concentric inhomogeneity will be analyzed. For this purpose, the geometry used for 

analytical derivations shown in Figure 3.1 is implemented in MATLAB.  

In the previous subsection, the current applied on the boundaries was expressed by 

an infinite summation of circular harmonics as in Equation (3.5). However, infinite 

summation is not possible in applications. Therefore, Equation (3.5) is modified as a 

finite summation: 

 
1

( ) cos( ) sin( )
N

n n
n

j C n S nϕ ϕ ϕ
=

= +∑  (3.31) 

Here, N is increased until the change in the applied current, ( )j ϕ , between 

successive N values reduces below a predetermined value. 

Another important parameter is the electrode size and its placement on the simulation 

model. The electrodes are placed on the top and the bottom as well as on the left and 

right side of the conductor region. However, only horizontal current injection pattern 

is used in analytical solution because of the symmetry in the geometry of the model. 
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The electrode size is chosen one-tenth of the perimeter of the conductor region. The 

model prepared in MATLAB is shown in Figure 3.2. In this figure, σ1 is the 

conductivity of the concentric inhomogeneity, σ2 is the conductivity of the 

background, b is the radius of the concentric inhomogeneity and a is the radius of the 

conductor region. 

 

Figure 3.2 The geometry of the conductor region prepared in MATLAB. 

Sample analytical solution result obtained from the prepared model is shown in 

Figure 3.3. It is important to note that the magnetic flux density outside the 

conductor region is zero in Figure 3.3d since the area outside the conductor region is 

masked. The reason of masking is that the magnetic flux density outside the 

conductor region can’t be measured by using an MRI scanner in real applications.  

To analyze the relation between Bz, Jx and Jy, it is convenient to define the sensitivity 

as 

 
uniform uniform

z z x
z x uniform uniform

z x x

B B J
SB J

B J J

−
= ⋅

−
 (3.32) 

 
uniform uniform

z z y
z y uniform uniform

z y y

B B J
SB J

B J J

−
= ⋅

−
 (3.33) 

Here, ||.|| is the Frobenius norm which is defined as 
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2

1 1

m n

ij
i j

A a
= =

= ∑∑  (3.34) 

z xSB J  is the change of Bz from Bz
uniform for a change of Jx from Jx

uniform. Similarly, 

z ySB J  is the change of Bz from Bz
uniform for a change of Jy from Jy

uniform. Here, 

Jx
uniform and Jy

uniform are the currents for uniform conductivity distribution and Bz
uniform 

is generated by using uniform currents. 

 

(a) 
 

(b) 

 

(c) 
 

(d) 

Figure 3.3 Analytical solution results of the model for σ1= 1 S/m, σ2= 0.2 S/m, b= 3 
cm, a= 9 cm and 20 mA current is applied from the electrode on the left and sunk 
from the electrode on the right, a) The amplitude of the applied current, b) Jx (A/m2) 
image for vertical current injection, c) Jy (A/m2) image for vertical current injection, 
d) Bz (T) image for vertical current injection. 
 
 

Some new terms are defined in order to simplify the variables used in the plots. The 

first term is sigma_ratio which is the ratio of conductivity of the inhomogeneity to 

conductivity of the background. The other one is radius_ratio which is defined as the 
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ratio of radius of the inhomogeneity to radius of the conductor region. In this study, 

the radius of the conductor region, a, is set to 9 cm and the conductivity of 

background, σ2, is set to 1 S/m.  

Before starting the analysis of SBzJx and SBzJy, it will be helpful to see the behavior 

of uniform
x xJ J− , uniform

y yJ J−  and uniform
z zB B−  with respect to sigma_ratio and 

radius_ratio. These plots are given in Figure 3.4, Figure 3.5, Figure 3.6, Figure 3.7, 

Figure 3.8 and Figure 3.9. 

In Figure 3.4, uniform
x xJ J−  increases as the conductivity of the inhomogeneity 

diverges from the conductivity of the background. This situation is expected since 

more current flows through the inhomogeneity in conductive case and more current 

flows around the inhomogeneity in insulating case. However, its value decreases 

after the radius_ratio is equal to 0.65. This is because of the fact that the radius of 

the inhomogeneity becomes comparable to the radius of the conductor region and the 

current density distribution in the inhomogeneity becomes similar to the current 

density distribution in uniform conductivity case. The same situations can be seen in 

Figure 3.6 and Figure 3.8. Figure 3.8 also gives valuable information about the 

distinguishability of the inhomogeneities placed on the background. If the precision 

of the magnetic flux density measurements is defined as ε, then it can be said that an 

inhomogeneity placed on the center of the conductor region can be distinguished if 

 uniform
z zB B ε− >  (3.35) 

It can be concluded from Figure 3.8 that the distinguishability of an inhomogeneity 

depends on its radius and its conductivity. 
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Figure 3.4 uniform
x xJ J−  vs. sigma_ratio plot for various radius_ratio values. 

 

 

Figure 3.5 uniform
x xJ J−  vs. radius_ratio plot for various sigma_ratio values. 
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Figure 3.6 uniform
y yJ J−  vs. sigma_ratio plot for various radius_ratio values. 

 

 

Figure 3.7 uniform
y yJ J−  vs. radius_ratio plot for various sigma_ratio values. 
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Figure 3.8 uniform
z zB B−  vs. sigma_ratio plot for various radius_ratio values. 

 

 

Figure 3.9 uniform
z zB B−  vs. radius_ratio plot for various sigma_ratio values. 
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The behaviors of uniform
x xJ J− , uniform

y yJ J−  and uniform
z zB B−  with respect to 

radius_ratio show more complex structure. In Figure 3.5, uniform
x xJ J−  increases 

with the increasing radius_ratio all the time in the insulating case since the current 

path becomes more distinctive than the current path in uniform conductivity. The 

same behavior is seen in Figure 3.7 and Figure 3.9. However, in Figure 3.9, a 

decrease in uniform
z zB B−  is observed as the radius_ratio reaches to 0.85. This is 

because a significant part of the magnetic flux density is generated outside the 

conductor region by the currents flowing on the boundaries of the conductor region 

and Bz outside the conductor region is masked because of the reason mentioned 

before. Therefore, uniform
z zB B−  decreases after radius_ratio reaches to 0.85. For 

the conductive case in Figure 3.5, uniform
x xJ J−  decreases after radius_ratio reaches 

to 0.65. This is because of the fact that the radius of the inhomogeneity becomes 

comparable to the radius of the conductor region and the current density distribution 

in the inhomogeneity becomes similar to the current density distribution in uniform 

conductivity. The same structure can be seen for uniform
z zB B−  . However, 

uniform
y yJ J−  is always increasing as radius_ratio increases. This is because the 

currents flowing on the boundaries of the conductor region begin to flow into the 

inhomogeneity as the radius_ratio increases and this current flow orthogonal to the 

current injection pattern increases uniform
y yJ J− . 

z xSB J  and z ySB J  plots are given in Figure 3.10 and Figure 3.11. z xSB J  and z ySB J  

are plotted with respect to the radius_ratio. z xSB J  and z ySB J  plots with respect to 

the sigma_ratio are linear as uniform
x xJ J− , uniform

y yJ J−  and uniform
z zB B−  show 

similar behaviours against the change in conductivity.   
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Figure 3.10 z xSB J  vs. radius_ratio plot for various sigma_ratio values. 

 

 

Figure 3.11 z ySB J  vs. radius_ratio plot for various sigma_ratio values. 

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

radius-ratio

||S
B

z
J x|

|

 

 

sigma-ratio = 0.1

sigma-ratio = 0.56

sigma-ratio = 1.01

sigma-ratio = 4

sigma-ratio = 8

sigma-ratio = 10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

radius-ratio

||S
B

z
J y|

|

 

 

sigma-ratio = 0.1

sigma-ratio = 0.56

sigma-ratio = 1.01

sigma-ratio = 4

sigma-ratio = 8

sigma-ratio = 10



33 

 

In Figure 3.10, z xSB J  increases without any dependency on conductivity for the 

radius_ratio values up to 0.45. The reason is that Bz changes due to changes in Jx and 

Jy. Therefore, the rate of change in Bz is bigger until the radius_ratio reaches to 0.45. 

As it was shown in Figure 3.5, uniform
x xJ J−  begins to decrease with increasing 

radius_ratio after a point for conductive inhomogeneity and increases further for 

insulating inhomogeneity. However, uniform
y yJ J−  is always increasing with 

increasing radius_ratio. This effect can be clearly seen in the above figures. For 

z xSB J , the plots for various sigma_ratio begin to diverge from each other and 

increases for conductive inhomogeneity and decreases for insulating inhomogeneity. 

But, z ySB J  decreases for all sigma_ratio values. The sharp decrease at the end of 

both plots is possibly because of the masking of Bz. 

3.3 The Proposed Algorithm 

In this section, a novel current density reconstruction algorithm using only the z-

component of B
�

, Bz, is proposed. The Biot-Savart integral given in Section 3.2.1 is 

the main part of this algorithm. Hence, discretization of Biot-Savart integral, which 

will be carried out in Section 3.3.1, is the starting point.  

3.3.1 Discretization of Biot-Savart Integral 

In this section, a matrix relating current density and magnetic flux density is derived 

by using Biot-Savart law. Biot-Savart law in Equation (3.2) can be written as 

 0
34

I dl r
dB

r

µ
π
 ′×=  
 

� �
�

 (3.35) 

which is the magnetic flux density due to a current element Idl′
�

. Primed variables 

indicate the source points. Assume that for each element, current is localized at the 

center of corresponding element. Then, current element can be written in terms of 

current density and the area of corresponding element as 

 ˆ ˆ ˆ( )x x y y z zIdl A J a J a J a′ = + +
�

 (3.36) 
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Also, the vector between the source and the field points, r
�

, can be written as 

 ˆ ˆ ˆ( ) ( ) ( )x y zr x x a y y a z z a′ ′ ′= − + − + −�
 (3.37) 

The orthogonal components of magnetic flux density can be written as 

 
( ) ( )

( ) ( ) ( )

0
3

2 2 2 2
4
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z z J y y JA
dB

x x y y z z
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π
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 (3.38) 
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 (3.39) 
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4

x y
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y y J x x JA
dB

x x y y z z

µ
π

′ ′− − −
=

 ′ ′ ′− + − + −
 

 (3.40) 

Evaluation of the above integrals gives the desired magnetic flux density 

distributions. Note that the effect of each current element on itself is neglected to 

overcome the singularity problem in evaluating the integrals. For our problem, we 

will deal with Equation (3.40) since current flowing in a plane (in our case x-y plane) 

creates a magnetic flux density only in the direction that is orthogonal to the plane (in 

our case z-direction). Now, assume that 2D conductor region, Ω, is divided into N 

finite element. Hence, bz can be written in matrix form as 

 [ ]  
    

 

x
z y x

y

j
b = C    -C

j
 (3.41) 

where bz, j x and j y are Nx1 vectors and Cx, Cy are NxN matrices. Cx and Cy matrices 

only depend on the vector between source and field points, r
�

. Hence, these matrices 

are constant for a given subject geometry. 

3.3.2 Difference Currents Concept 

If the current is applied to the 2D conductor region, Ω, through the electrodes placed 

on each side, the current density distribution can be expressed as 
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0   

( , )

J in

J
g x y

n

∇ ⋅ = Ω
∂ =
∂

�

 (3.42) 

where g(x,y) is the applied current and it satisfies 

 
( , ) 0  

( , ) 0

g x y in

g x y ds
∂Ω

= Ω

=∫  (3.43) 

If J(x,y) is assumed to be solenoidal, a differential equation relating Jx and Jy can be 

obtained. However, this assumption is not valid on boundaries since current is 

applied to the region. Difference currents concept is introduced to overcome this 

problem [25]. Difference currents are defined as 

 

diff uniform
x x x

diff uniform
y y y

J J J

J J J

= −

= −
 (3.44) 

Here, Jx
uniform and Jy

uniform are the currents for uniform conductivity distribution. In 

order to obtain these currents, a simulation model, which has the same geometry with 

the 2D conductor region, is prepared and its conductivity is chosen as uniform. Then, 

finite element method is used to obtain Jx
uniform and Jy

uniform. Note that the distribution 

of J
�

 is independent from the chosen uniform conductivity value. The divergences of 

total current density distribution and uniform current density distribution are the 

same. Hence, the difference current density distribution is solenoidal and a relation 

between Jx
diff and Jy

diff can be obtained as 

 0
diffdiff
yx

JJ

x y

∂∂ + =
∂ ∂

 (3.45) 

The derivatives in Equation (3.45) can be approximated by using finite difference 

methods. In this study, central difference method is used as it yields a more accurate 

approximation than forward and backward difference methods. The discretization of 

Equation (3.45) shows that each element of j y
diff  vector can be expressed in terms of 

the elements of j x
diff  vector. Hence, an NxN matrix relating the elements of j x

diff  and 

j y
diff  vectors is formed as 
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           (3.46) 

The elements of this A matrix is either zero or one depending on which elements of 

j x
diff  vector are related with the elements of j y

diff  vector. Also, the elements of A 

matrix depend on the subject geometry and number of finite elements, N. Equation 

(3.41) can be written for difference currents as 

 diff diff diff
z y x x yb = C j - C j  (3.47) 

Using Equation (3.46) and (3.47) together, the relation between Bz
diff and Jx

diff is 

obtained as 

 diff diff
z y x xb = (C - C A)j  (3.48) 

 diff diff
z t xb = C j  (3.49) 

bz
diff  is the difference magnetic flux density vector which is calculated by subtracting 

bz
uniform  from the measured magnetic flux density vector, bz. bz

uniform  is generated by 

using uniform currents which are obtained from the simulation model. j x
diff  is 

calculated by using Equation (3.49) and then solution of j x
diff  is trivial. At last, j x and 

j y are obtained by adding difference currents and uniform currents. To summarize, 

the proposed algorithm has the following steps: 

Step-1: Determine the subject geometry and number of finite elements, N, 

Step-2: Calculate Cx, Cy and A matrices, 

Step-3: Calculate Ct, 

Step-4: Compute j x
diff  using Equation (3.49), and then compute j y

diff . 

The flowchart of the proposed algorithm is shown in Figure 3.12. 
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Figure 3.12 Flowchart of the proposed algorithm. 

3.4 Iterative FT-MRCDI Algorithm  

Ider (2006) proposed FT-MRCDI algorithm to reconstruct current density 

distribution using one component of magnetic flux density [25]. In this algorithm, 

Fourier Transform of Bz is required to calculate Fourier Transforms of Jx and Jy. 

Then Jx and Jy are calculated using inverse FT. In order to have a well-defined FT of 

Bz, Bz must approach to zero at the boundaries of the conductor region. Since current 

flows at the boundaries of the conductor region, Bz doesn’t approach to zero at the 

boundaries. Hence, Bz should be measured outside the conductor region to obtain a 

well-defined FT. It is known that measuring magnetic flux density outside the subject 

is not possible in MRI scanner.  This is one of the major drawbacks of this algorithm. 

Ider et al proposed a novel algorithm named Iterative FT-MRCDI to overcome this 

problem [31]. In the iterative FT-MRCDI algorithm, Bz outside the conductor region 

is found iteratively and Jx and Jy are calculated afterwards. 

Measure Bz 

Bz
diff 

Obtain Bz
uniform 

 
(Simulation model) 

+ - 

Compute Cy 

x 

Compute Cx 

Compute A 

+ 

- 
 Ct 

Calculate j x
diff  and j y

diff  
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The mathematical derivation of FT-MRCDI starts with the Biot-Savart integral. The 

Biot-Savart integral for the currents flowing in a 2D conductor region having a 

thickness, d, is given as 

 0
3

2 2 2 2

( , )( ) ( ) ( , )
( , , )

4
[( ) ( ) ]

x y
z

J x y y y x x J x yd
B x y z dx dy

x x y y z

µ
π Ω

′ ′ ′ ′ ′ ′− − −
′ ′=

′ ′− + − +
∫  (3.50) 

The Fourier Transform of Bz(x,y,z) in z=0 plane is given as 

 ( ) ( ) ( )0, , ,
2

y x
z x y x x y y x y

jkd jk
B k k J k k J k k

k k

µ  
= − 

 

ɶ ɶ ɶ  (3.51) 

where ( ),z x yB k kɶ , ( ),x x yJ k kɶ , ( ),y x yJ k kɶ  are the 2D Fourier Transforms of Bz(x,y), 

Jx(x,y) and Jy(x,y), respectively. Here, kx and ky are the components of spatial 

frequency, k, which is defined as 

 2 2
x yk k k= +  (3.52) 

If the current is applied to the 2D conductor region, Ω, through the electrodes placed 

on each side, the current density distribution can be written as 

 
0   

( , )

J in

J
g x y

n

∇ ⋅ = Ω
∂ =
∂

�

 (3.53) 

where g(x,y) is the applied current satisfying 

 
( , ) 0  

( , ) 0

g x y in

g x y ds
∂Ω

= Ω

=∫  (3.54) 

The Fourier Transform of Equation (3.53) is given as 

 ( ) ( ) ( )2 , 2 , ,x x x y y y x y x yjk J k k jk J k k g k kπ π+ =ɶ ɶ ɶ  (3.55) 

Solving Equations (3.51) and (3.55) together, one can obtain 
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2
y x
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k d kµ π
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If the difference currents concept stated in Section 3.3.2 is applied to this problem, 

Equations (3.56) and (3.57) will become 

 ( ) ( )
0

2
, ,ydiff diff

x x y z x y

jk
J k k B k k

k dµ
= −ɶ ɶ  (3.58) 

 ( ) ( )
0

2
, ,diff diffx

y x y z x y
jk

J k k B k k
k dµ

=ɶ ɶ  (3.59) 

Taking inverse FT of ( ),diff
x x yJ k kɶ  and ( ),diff

y x yJ k kɶ  gives the Jx
diff and Jy

diff. Then, Jx 

and Jy are obtained by adding difference currents and uniform currents. As it was 

mentioned before, Bz
diff should be measured outside the conductor region to obtain a 

well-defined FT. In the iterative FT-MRCDI algorithm, Bz
diff outside the conductor 

region is calculated iteratively. The iterative FT-MRCDI has the following steps: 

Step-1: Let mΩ ⊃ Ω  be a region where Bz
diff can’t be neglected, 

Step-2: Take Bz
diff as zero in Ωm\Ω, and calculate ( ),diff

z x yB k kɶ  

Step-3: Calculate ( ),diff
x x yJ k kɶ  and ( ),diff

y x yJ k kɶ  using Equations (3.58) and (3.59), 

Step-4: Find Jx
diff and Jy

diff by taking inverse FT, multiply with a supporting function 

that is one in Ω and zero in Ωm\Ω so that currents are restricted inside the conductor 

region, 

Step-5: Calculate a new Bz
diff, 

Step-6: Store Bz
diff values in Ωm\Ω and change the values in Ω with measured ones, 

Step-7: Return to Step-3 until the change in Bz
diff between successive iterations 

reduces below a predetermined error value. 
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The flowchart of FT-MRCDI algorithm is shown in Figure 3.13. 

 

Figure 3.13 Flowchart of FT-MRCDI algorithm. 
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CHAPTER 4  

SIMULATION AND EXPERIMENTAL MODELS 

4.1 Introduction 

In this chapter, simulation and experimental models, which are prepared to evaluate 

the performance of the algorithms given in Chapter 3, will be explained. In the first 

part, three simulation and three experimental models will be presented. The 

procedure followed in preparing experimental phantom will be given afterwards. In 

the last part, error calculation in simulation and experimental models will be given. 

4.2 Models 

There are some important factors affecting the preparation of both simulation and 

experimental models. First of all, the experiments are performed in 0.15 T METU-

EE MRI System and the bore of this system is 80 cm. Hence, sizes of RF coil and 

experimental phantom are restricted by the diameter of the bore. By taking this 

limitation into account, a new RF coil and experimental phantom were designed as 

big as possible. As a result, the experimental phantom was constructed with size of 

9x9x9 cm3 and simulation phantoms were chosen the same as experimental phantom 

for consistency. 

The MRCDI algorithms given in the previous chapter are 2D algorithms. However, 

the constructed experimental phantom has a 3D geometry. The 2D geometry is 

obtained with additional Plexiglas® walls which force the applied current to flow in a 

volume of 9x9x2 cm3. Electrodes are placed in the middle of each side and their 

dimensions are 2x2 cm2 for both experimental and simulation phantoms except 
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simulation model 1. In simulation model 1, the electrode size is chosen as the length 

of the phantom. For most cases, two current injection patterns are used. The first 

current injection pattern is vertical current injection pattern where current is injected 

from upside electrode and sunk from downside electrode. The other one is horizontal 

current injection pattern where current is injected from the electrode on the left and 

sunk from the electrode on the right. 20 mA current is injected to the phantom in all 

experiments.   

Another important factor is the pixel size. The resolution of METU-EE MRI System 

limits the pixel size. Since the resolution of the system is 2 mm, experimental 

phantoms are discretized into 44x44 pixels. In order to minimize the contribution of 

numerical error to the overall reconstruction error of the algorithms, simulation 

phantoms are discretized into 100x100 pixels. Hence, reconstruction performances of 

the algorithms can be evaluated more accurately. 

4.2.1 Simulation Models 

4.2.1.1 Simulation Model 1 

The first simulation model is shown in Figure 4.1.  

 

Figure 4.1 The geometry of Simulation Model 1. 
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This model has a simple geometry with one circular object. The circular object has a 

conductivity of 1 S/m. It is placed on a background with a conductivity of 0.2 S/m. In 

this model, the conductivity transition between the background and the object is 

smoothened. The distinctive property of this simulation model is that large electrodes 

are used in this phantom. Therefore, the effect of electrode size in reconstruction 

performance can be investigated.   

4.2.1.2 Simulation Model 2 

The second simulation model is shown in Figure 4.2. This model contains two 

objects: a circular object having a conductivity of 2 S/m and a square object prepared 

as a pure insulator. They are placed on a background with a conductivity of 0.2 S/m. 

The conductivity transition between the background and the object is also 

smoothened. This model has a more complex geometry than the first simulation 

model. It is designed to see the current paths for the cases where both conductive and 

insulating objects exist. 

 

 

Figure 4.2 The geometry of Simulation Model 2. 

Lelectrode= 2cm 

Lphantom= 9cm 

Rcircle= 3cm 
Lsquare= 3cm 
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4.2.1.3 Simulation Model 3 

This model has a square object placed at the center of the phantom as seen in Figure 

4.3. The square object has a conductivity of 2 S/m and the background has a 

conductivity of 0.2 S/m. The insulating walls are placed at the top and bottom side of 

the square object so that in vertical current injection pattern, the current density will 

be distributed as if the object is a pure insulator. For horizontal current injection 

pattern, the insulating slices won’t affect the current density distribution 

significantly. Note that the conductivity transition between the background and the 

object cannot be smoothened in this model because of the insulating walls. 

 

 

Figure 4.3 The geometry of Simulation Model 3. 

 

4.2.2 Experimental Models 

All the experimental models are prepared by using the experimental phantom. The 

experimental phantom has important features. First of all, recessed electrodes are 

used to eliminate the effect of high current density near the electrodes. Also, a table 

mechanism is designed in addition to the phantom to image exactly the same slice 

Insulating walls 

Lphantom= 9cm 

Lsquare= 3cm 

Lelectrode= 2cm 
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when the phantom is rotated. Two oblique CAD views of the phantom and the table 

mechanism are shown in Figure 4.4. 

 

 

 

 

Figure 4.4 Two oblique views of CAD simulations of experimental phantom. 

 

The constructed experimental phantom is shown in Figure 4.5. 

 

Figure 4.5 The experimental phantom. 

 

In experimental models, the phantom elements and background are prepared by 

using solidifying materials, Agar-Agar, TX-150, TX-151. Also, NaCl is used to 

adjust conductivity values of elements and CuSO4 is used to fix T1 relaxation time. 

4.2.2.1 Experimental Model 1 

Experimental model 1 is the physical realization of the simulation model 2. As it was 

stated before, the model contains two objects: a circular object having a conductivity 

of 2 S/m and a square object prepared as a pure insulator and they are placed on a 
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background with a conductivity of 0.2 S/m. Composition of materials used to prepare 

the phantom elements are given in Table 4.1. 

 

Table 4.1 Composition of phantom elements. 

 
Square object 

(~0 S/m) 

Circular object 

(2 S/m) 

Background 

(0.2 S/m) 

Distilled Water 100 ml 100 ml 100 ml 

Agar-Agar 1 g 1 g - 

TX-150 - - 0.2 g 

TX-151 1 g 1 g 2 g 

NaCl - 1.75 g - 

CuSO4 0.1 g 0.1 g 0.1 g 

 

Preparation procedure for circular object is as follows: 

• Add NaCl to the distilled water and stir the solution, 

• Add TX-151 and Agar-Agar and heat up the solution until it boils, 

• Pour the solution to the circle mold. 

The preparation procedure for square object is the same as the circle object but no 

NaCl is added to the solution. Also, stretch film is wrapped around the square object 

to adjust the conductivity of square element to ~0 S/m. The preparation procedure for 

background is as follows: 

• Add TX-150 and TX-151 to the distilled water, 

• Stir the solution for ten minutes, 

• Fill up the phantom with the prepared solution after placing the objects. 

The phantom with all elements and MR magnitude image of the phantom are shown 

in Figure 4.6. 
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(a) (b) 

Figure 4.6 a) Top view of the phantom, b) MR magnitude image of the phantom. 

 

4.2.2.2 Experimental Model 2 

Experimental model 2 is the physical realization of the simulation model 3. As it was 

mentioned before, the model has a square object placed at the center of the phantom. 

The square object has a conductivity of 2 S/m and the background has a conductivity 

of 0.2 S/m. The Plexiglas® walls are placed at the top and bottom side of the square 

object so that in vertical current injection pattern, the current density will be 

distributed as if the object is a pure insulator. The square object is prepared by using 

100 ml distilled water, 1 g Agar-Agar, 1 g TX-151, 1.75 g NaCl, 0.1 g CuSO4. The 

preparation procedure for circle object in experimental model 1 is followed while 

preparing the square object. The background in experimental model 1 is also used in 

this model. The phantom and its MR magnitude image are shown in Figure 4.7. 
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(a)                                                              (b) 

Figure 4.7 a) Experimental phantom, b) MR magnitude image of the phantom. 

 

4.2.2.3 Experimental Model 3 

In this model, 7 Plexiglas® slices are placed so that successive slices are separated by 

8 mm distances. The dimensions of the Plexiglas® slices are 5.4x2x0.1 cm3. The first, 

third, fifth and seventh slices have 4 holes on them whereas the others have 3 holes. 

The diameter of the holes is 5 mm. The phantom is filled with a solution having a 

conductivity of 2 S/m. 0.1 g CuSO4 and 0.145 g NaCl are used while preparing the 

solution.  The geometry of experimental model 3 is shown in Figure 4.8. 

 

 

(a)                                                     (b) 

Figure 4.8 The geometry of Experimental Model 3, a) cross sectional view, b) 3D 
view. 
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The aim of this model is to create an object that forces the current to flow between 

holes in vertical current injection pattern and image the different current paths 

occurred due to these holes. On the other hand, the insulating slices won’t restrict the 

current density distribution significantly in horizontal current injection pattern. 

Hence, these insulating slices create local anistropic regions around the holes such 

that current flow in vertical direction is allowed whereas current flow in horizontal 

direction is not allowed. The phantom and its MR magnitude image are shown 

Figure 4.9. 

 

        

(a)                                                          (b) 

Figure 4.9 a) Top view of the phantom, b) MR magnitude image of the phantom. 

4.3 Noise Model for Computer Simulations 

A noise model is prepared in order to evaluate the performance of the algorithms on 

noisy data. In this study, random Gaussian noise model is used for noise simulations 

[32]. This noise model only depends on signal-to-noise ratio (SNR) of imaging 

system where magnetic flux density is measured. In this thesis, SNR 30 and SNR 13 

levels are used in simulations since SNR 30 corresponds to a MRI system with 2T 

magnet and SNR value of 0.15 T METU-EE MRI system is around 13 [33]. 

The procedure of noisy data generation is as follows. First current density 

distribution is obtained by using Finite Element Method (FEM). Then, magnetic flux 

density is calculated by Biot-Savart law. Random Gaussian noise is added to 
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magnetic flux density based on the SNR level of MRI System. Finally, noisy 

magnetic flux density is used in the MRCDI reconstruction algorithms. It is 

important to note that same Gaussian noise is added in all simulations for 

consistency. 

4.4 Error Calculation for Simulation Models 

Error calculation is carried out to evaluate the performances of the algorithms 

quantitatively. The error of reconstructed current density distribution is calculated 

using the following formula 

 
|| ||

|| ||
r c

j
r

J J

J

−ε =  (4.1) 

Here, Jr and Jc represent the real and calculated values of current density distribution 

respectively. 

4.5 Error Calculation for Experimental Models 

The error calculation for experimental models is not straightforward. It is known that 

the object to be imaged should be rotated inside the MRI scanner to measure all three 

components of B
�

. The phantom rotation causes artifacts in the reconstructed J
�

 due 

to variations in the internal geometry during rotation. Hence, J
�

 obtained by using 

three components of B
�

 deviates from the true current density. Therefore, quantitative 

evaluation of the reconstruction performance of the proposed algorithms on 

measured data, relative to the performance of the algorithms using all component of 

B
�

, is not possible. However, the reconstructed J
�

 can be verified by using 

divergence theorem and performance of the proposed algorithm can be evaluated in 

terms of error in the reconstructed MREIT conductivities, utilizing J-based MREIT 

algorithms on the reconstructed current density distributions. 

4.5.1 Verification Using Divergence Theorem 

From the divergence theorem, it is known that the integral of J
�

 in each slice which 



51 

 

is selected orthogonal to the current injection pattern, should be the same and equal 

to the externally applied current. Hence, standard deviation of the integrals of J
�

 in 

the orthogonal slices should be zero. The standard deviations of the integrals of J
�

 

for the algorithms give valuable information about the reconstruction performances 

of the algorithms. 

4.5.2 Evaluation in terms of Error in the Reconstructed MREIT Conductivities   

The performances of the MRCDI reconstruction algorithms are evaluated in terms of 

error in the reconstructed MREIT conductivities, utilizing J-substitution algorithm. J-

substitution algorithm is chosen as it yields higher quality conductivity images 

compared to other reconstruction algorithms [18]. The J-substitution algorithm is 

proposed by Kwon et al [17]. The algorithm is an iterative algorithm which uses only 

the magnitude of current density inside the field of view. The algorithm tries to 

minimize a cost function which is defined as the difference between calculated and 

measured current density distributions.  

Error for the reconstructed conductivity images are calculated as 

 
( )2

2
1

1
100

N
ir ic

i irNσ
σ σ

ε
σ=

−
= ×∑  (4.2) 

where N, σir and σic are number of pixels, real and calculated conductivity values, 

respectively.  
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CHAPTER 5  

RESULTS AND COMPARISON 

5.1 Introduction 

In this chapter, reconstruction performances of the proposed algorithm and the 

iterative FT-MRCDI algorithm will be tested on both simulated and experimental 

data. In the first part, the reconstructed current density images will be presented with 

reconstruction errors for simulated data. In the second part, experimental results will 

be presented and conductivity images will be obtained from the reconstructed current 

density distributions, utilizing J-substitution algorithm. Then, reconstruction 

performance of the algorithms on experimental data will be evaluated in terms of 

error in the reconstructed conductivity images. 

5.2 Simulation Results 

5.2.1 Results for Simulation Model 1 

The results obtained from simulation model 1 are presented in this subsection. The 

geometry and conductivity distribution of simulation model 1 was shown in Figure 

4.1. As it was mentioned before, two noise levels, SNR 30 and SNR 13, were used in 

simulations. The procedure of generating noise levels and using them in simulations 

was discussed in Section 4.3.  

In Figure 5.1, results, which are obtained by using the proposed algorithm and the 

iterative FT-MRCDI algorithm for noise-free case, are shown. Furthermore, 

reconstructed current density distributions for noise levels of SNR 30 and SNR 13 

are shown in Figure 5.2 and Figure 5.3, respectively. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

Figure 5.1 Results for noise-free case (horizontal 20 mA  current injection)              
a) Bz (T), b) Original Jx (A/m2) distribution, c) Original Jy (A/m2) distribution,         
d) Reconstructed Jx (A/m2) using the proposed algorithm, e) Reconstructed Jy (A/m2) 
using the proposed algorithm, f) Reconstructed Jx (A/m2) using Iterative FT-MRCDI 
algorithm, g) Reconstructed Jy (A/m2) using Iterative FT-MRCDI algorithm. 
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(a) 

 

(b) 

 

(c) 

 

(d) 
 

(e) 

 

(f) 

 

(g) 

Figure 5.2 Results for SNR 30 case (horizontal 20mA current injection)                    
a) Bz (T), b) Original Jx (A/m2) distribution, c) Original Jy (A/m2) distribution,d) 
Reconstructed Jx (A/m2) using the proposed algorithm, e) Reconstructed Jy (A/m2) 
using the proposed algorithm, f) Reconstructed Jx (A/m2) using Iterative FT-MRCDI 
algorithm, g) Reconstructed Jy (A/m2) using Iterative FT-MRCDI algorithm. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 
 

(g) 

Figure 5.3 Results for SNR 13 case (horizontal 20 mA current injection)                         
a) Bz (T), b) Original Jx (A/m2) distribution, c) Original Jy (A/m2) distribution, d) 
Reconstructed Jx (A/m2) using the proposed algorithm, e) Reconstructed Jy (A/m2) 
using the proposed algorithm, f) Reconstructed Jx (A/m2) using Iterative FT-MRCDI 
algorithm, g) Reconstructed Jy (A/m2) using Iterative FT-MRCDI algorithm. 
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Although the reconstructed current density images give a perceptual idea on the 

reconstruction performance of both algorithms, quantitative evaluation of the 

reconstruction performances of the algorithms are listed in Table 5.1. The error 

calculation in reconstructed current density is carried out by using the error definition 

stated in Section 4.4 throughout this study.  

When reconstruction performances of the algorithms are compared by evaluating the 

reconstructed current density images perceptually, it is seen that both algorithms 

have good reconstruction performances for noise-free case. For noisy cases, the 

effect of filtering is obvious in the iterative FT-MRCDI algorithm. Because of this 

filtering effect, it can be said that the performance of the iterative FT-MRCDI 

algorithm is not influenced much by the noise. In the proposed algorithm, the effect 

of noise is more apparent. However, quality of the reconstructed current density 

images is good.  

 

Table 5.1 Errors in the reconstructed current density for simulation model 1. 

 
Horizontal Current Injection Vertical Current Injection 

Jx Jy J Jx Jy J 

The Proposed Algorithm 

Noise-free 0.27% 2.44% 0.30% 2.44% 0.27% 0.30% 

SNR 30 1.35% 9.57% 1.35% 10.14% 1.38% 1.36% 

SNR 13 3.09% 21.47% 3.06% 23.00% 3.33% 3.27% 

Iterative FT-MRCDI Algorithm  

Noise-free 7.41% 32.67% 7.45% 32.67% 7.41% 7.45% 

SNR 30 7.44% 32.92% 7.48% 32.90% 7.43% 7.48% 

SNR 13 7.53% 34.18% 7.57% 34.05% 7.52% 7.56% 

 

Quantitative evaluation of the reconstruction performances of the algorithms shows 

that the proposed algorithm reconstructs with less error. It can be seen from Table 

5.1 that the reconstruction performances of the algorithms for the component of 

current density orthogonal to the current injection pattern is poorer. This is expected 

since the component of current density in the direction of injected current is stronger. 
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When the algorithms are compared according to the reconstruction time, the 

proposed algorithm has a shorter reconstruction time. This is an expected fact since 

the matrices used in the proposed algorithm are calculated once and stored for a 

subject with a specific geometry. However, the iterative FT-MRCDI algorithm 

calculates the difference magnetic flux density iteratively, which causes longer 

reconstruction time.  

5.2.2 Results for Simulation Model 2 

The results obtained from simulation model 2 are presented in this subsection. The 

geometry and conductivity distribution of simulation model 2 was shown in Figure 

4.2. Two noise levels, SNR 30 and SNR 13, were also used in these simulations.  

Z-component of magnetic flux density, Bz, obtained from horizontal and vertical 

current injection patterns are shown in Figure 5.4. 

Reconstructed Jx and Jy for different noise levels for horizontal current injection 

pattern are shown in Figure 5.5 and Figure 5.6, respectively. For vertical current 

injection pattern, reconstructed Jx and Jy for different noise levels are shown in 

Figure 5.7 and Figure 5.8, respectively. Note that, the direction of positive y-axis is 

taken as negative in Jy for vertical current injection to make the images consistent 

with Jx images for horizontal current injection pattern. 

 

(a) 

 

(b) 

Figure 5.4 z-component of magnetic flux density, Bz (T) a) For horizontal current 
injection pattern, b) For vertical current injection pattern. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

Figure 5.5 Reconstructed Jx for different noise levels (horizontal 20 mA current 
injection) a) Original Jx (A/m2) distribution, b) Reconstructed Jx (A/m2) using the 
proposed algorithm for noise-free case, c) Reconstructed Jx (A/m2) using Iterative 
FT-MRCDI algorithm for noise-free case, d) Reconstructed Jx (A/m2) using the 
proposed algorithm for SNR30 case, e) Reconstructed Jx (A/m2) using Iterative FT-
MRCDI algorithm for SNR 30 case, f) Reconstructed Jx (A/m2) using the proposed 
algorithm for SNR13 case, g) Reconstructed Jx (A/m2) using Iterative FT-MRCDI 
algorithm for SNR 13 case. 
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(a) 

 

(b) 

 

(c) 

 

(d) 
 

(e) 

 

(f) 

 

(g) 

Figure 5.6 Reconstructed Jy for different noise levels (horizontal 20mA current 
injection) a) Original Jy (A/m2) distribution, b) Reconstructed Jy (A/m2) using the 
proposed algorithm for noise-free case, c) Reconstructed Jy (A/m2) using Iterative 
FT-MRCDI algorithm for noise-free case, d) Reconstructed Jy (A/m2) using the 
proposed algorithm for SNR30 case, e) Reconstructed Jy (A/m2) using Iterative FT-
MRCDI algorithm for SNR 30 case, f) Reconstructed Jy (A/m2) using the proposed 
algorithm for SNR13 case, g) Reconstructed Jy (A/m2) using Iterative FT-MRCDI 
algorithm for SNR 13 case. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

Figure 5.7 Reconstructed Jx for different noise levels (vertical 20 mA current 
injection) a) Original Jx (A/m2) distribution, b) Reconstructed Jx (A/m2) using the 
proposed algorithm for noise-free case, c) Reconstructed Jx (A/m2) using Iterative 
FT-MRCDI algorithm for noise-free case, d) Reconstructed Jx (A/m2) using the 
proposed algorithm for SNR30 case, e) Reconstructed Jx (A/m2) using Iterative FT-
MRCDI algorithm for SNR 30 case, f) Reconstructed Jx (A/m2) using the proposed 
algorithm for SNR13 case, g) Reconstructed Jx (A/m2) using Iterative FT-MRCDI 
algorithm for SNR 13 case. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 
 

(g) 

Figure 5.8 Reconstructed Jy for different noise levels (20 mA current is injected 
vertically and note that direction of positive y-axis is taken as negative) a) Original Jy 
(A/m2) distribution, b) Reconstructed Jy (A/m2) using the proposed algorithm for 
noise-free case, c) Reconstructed Jy (A/m2) using Iterative FT-MRCDI algorithm for 
noise-free case, d) Reconstructed Jy (A/m2) using the proposed algorithm for SNR30 
case, e) Reconstructed Jy (A/m2) using Iterative FT-MRCDI algorithm for SNR 30 
case, f) Reconstructed Jy (A/m2) using the proposed algorithm for SNR13 case, g) 
Reconstructed Jy (A/m2) using Iterative FT-MRCDI algorithm for SNR 13 case. 
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When the reconstruction performances of algorithms are compared by evaluating the 

reconstructed current density images perceptually, it is seen that the proposed 

algorithm is better in reconstructing current density for this model. As it can be seen 

from the above figures, some reconstruction artifacts occur at the corners of the 

square object in the reconstructed current density using the iterative FT-MRCDI 

algorithm. This is due to the assumption of solenoidal current flow. In reality, it is 

known that divergence of difference currents are zero. However, in simulations, the 

divergence of difference current density is not exactly zero in the regions where the 

conductivity does not change smoothly because of the discretization error. For this 

reason, undesired reconstruction artifacts may be introduced in the reconstructed 

image. These artifacts can be reduced by increasing the number of finite elements.  

The quantitative evaluation of the reconstruction performances of the algorithms are 

listed in Table 5.2. 

 

Table 5.2 Errors in the reconstructed current density for simulation model 2. 

 
Horizontal Current Injection Vertical Current Injection 

Jx Jy J Jx Jy J 

The Proposed Algorithm 

Noise-free 0.34% 1.34% 0.69% 1.25% 0.89% 0.86% 

SNR 30 1.11% 2.14% 1.18% 2.49% 1.49% 1.40% 

SNR 13 2.48% 3.80% 2.19% 4.98% 2.85% 2.60% 

Iterative FT-MRCDI Algorithm  

Noise-free 15.15% 19.92% 13.49% 18.37% 12.74% 12.41% 

SNR 30 15.16% 19.93% 13.49% 18.39% 12.75% 12.42% 

SNR 13 15.18% 20.00% 13.52% 18.47% 12.80% 12.47% 

 

Quantitative evaluation of the reconstruction performances of the algorithms shows 

that the proposed algorithm reconstructs with less error. It can be seen from Table 

5.2 that the reconstruction performances of the algorithms for the component of 

current density orthogonal to the current injection pattern is poorer. 
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5.2.3 Results for Simulation Model 3 

The results obtained from simulation model 3 are presented in this subsection. The 

geometry and conductivity distribution of simulation model 3 was shown in Figure 

4.3. Two noise levels, SNR 30 and SNR 13, were also used in these simulations.  

Z-component of magnetic flux density, Bz, obtained from horizontal and vertical 

current injection patterns are shown in Figure 5.9. 

 

 

(a) 

 

(b) 

Figure 5.9 z-component of magnetic flux density, Bz (T) a) For horizontal current 
injection pattern, b) For vertical current injection pattern. 

 

Reconstructed Jx and Jy for different noise levels for horizontal current injection 

pattern are shown in Figure 5.10 and Figure 5.11, respectively. For vertical current 

injection pattern, reconstructed Jx and Jy for different noise levels are shown in 

Figure 5.12 and Figure 5.13, respectively. Note that, the direction of positive y-axis 

is taken as negative in Jy for vertical current injection to make the images consistent 

with Jx images for horizontal current injection pattern. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 
 

(g) 

Figure 5.10 Reconstructed Jx for different noise levels (horizontal 20 mA current 
injection) a) Original Jx (A/m2) distribution, b) Reconstructed Jx (A/m2) using the 
proposed algorithm for noise-free case, c) Reconstructed Jx (A/m2) using Iterative 
FT-MRCDI algorithm for noise-free case, d) Reconstructed Jx (A/m2) using the 
proposed algorithm for SNR30 case, e) Reconstructed Jx (A/m2) using Iterative FT-
MRCDI algorithm for SNR 30 case, f) Reconstructed Jx (A/m2) using the proposed 
algorithm for SNR13 case, g) Reconstructed Jx (A/m2) using Iterative FT-MRCDI 
algorithm for SNR 13 case. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

Figure 5.11 Reconstructed Jy for different noise levels (horizontal 20 mA current 
injection) a) Original Jy (A/m2) distribution, b) Reconstructed Jy (A/m2) using the 
proposed algorithm for noise-free case, c) Reconstructed Jy (A/m2) using Iterative 
FT-MRCDI algorithm for noise-free case, d) Reconstructed Jy (A/m2) using the 
proposed algorithm for SNR30 case, e) Reconstructed Jy (A/m2) using Iterative FT-
MRCDI algorithm for SNR 30 case, f) Reconstructed Jy (A/m2) using the proposed 
algorithm for SNR13 case, g) Reconstructed Jy (A/m2) using Iterative FT-MRCDI 
algorithm for SNR 13 case. 
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(a) 

 

(b) 
 

(c) 

 

(d) 
 

(e) 

 

(f) 
 

(g) 

Figure 5.12 Reconstructed Jx for different noise levels (vertical 20 mA current 
injection) a) Original Jx (A/m2) distribution, b) Reconstructed Jx (A/m2) using the 
proposed algorithm for noise-free case, c) Reconstructed Jx (A/m2) using Iterative 
FT-MRCDI algorithm for noise-free case, d) Reconstructed Jx (A/m2) using the 
proposed algorithm for SNR30 case, e) Reconstructed Jx (A/m2) using Iterative FT-
MRCDI algorithm for SNR 30 case, f) Reconstructed Jx (A/m2) using the proposed 
algorithm for SNR13 case, g) Reconstructed Jx (A/m2) using Iterative FT-MRCDI 
algorithm for SNR 13 case. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

Figure 5.13 Reconstructed Jy for different noise levels (20 mA current is injected 
vertically and note that direction of positive y-axis is taken as negative) a) Original Jy 
(A/m2) distribution, b) Reconstructed Jy (A/m2) using the proposed algorithm for 
noise-free case, c) Reconstructed Jy (A/m2) using Iterative FT-MRCDI algorithm for 
noise-free case, d) Reconstructed Jy (A/m2) using the proposed algorithm for SNR30 
case, e) Reconstructed Jy (A/m2) using Iterative FT-MRCDI algorithm for SNR 30 
case, f) Reconstructed Jy (A/m2) using the proposed algorithm for SNR13 case, g) 
Reconstructed Jy (A/m2) using Iterative FT-MRCDI algorithm for SNR 13 case. 
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When the reconstruction performances of algorithms are compared by evaluating the 

reconstructed current density images perceptually, it is seen that both algorithms 

show similar reconstruction performances for this model. In Figure 5.13, there are 

reconstruction artifacts in the images reconstructed by using the proposed algorithm. 

In other figures, these artifacts are relatively small. In the iterative FT-MRCDI 

algorithm, the reconstructed images have lower resolutions due to the low pass filter. 

This filtering effect is more significant on the edges. 

The quantitative evaluation of the reconstruction performances of the algorithms are 

listed in Table 5.3. 

 

Table 5.3 Errors in the reconstructed current density for simulation model 3. 

 
Horizontal Current Injection Vertical Current Injection 

Jx Jy J Jx Jy J 

The Proposed Algorithm 

Noise-free 4.41% 5.11% 3.96% 21.03% 8.76% 11.68% 

SNR 30 4.54% 5.65% 4.08% 21.10% 8.83% 11.71% 

SNR 13 5.07% 7.69% 4.60% 21.37% 9.22% 11.92% 

Iterative FT-MRCDI Algorithm  

Noise-free 10.97% 15.05% 10.18% 37.43% 19.96% 22.71% 

SNR 30 10.99% 15.10% 10.20% 37.44% 19.97% 22.72% 

SNR 13 11.04% 15.24% 10.25% 37.45% 19.99% 22.71% 

 

Quantitative evaluation of the reconstruction performances of the algorithms shows 

that the proposed algorithm reconstructs with less error for this simulation model. 

5.3 Experimental Results 

5.3.1 Results for Experimental Model 1 

The results obtained from experimental model 1 are presented in this subsection. The 

experimental model 1 and its MR magnitude image were given in Figure 4.6. The 
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experimental procedure mentioned in Section 2.5 is followed during this experiment. 

The z component of magnetic flux density for horizontal and vertical current 

injection patterns are shown in Figure 5.14. 

 

(a) 

 

(b) 

Figure 5.14 Magnetic flux density in z direction, Bz (T), a) For horizontal current 
injection pattern, b) For vertical current injection pattern. 

In the experiments, other components of the magnetic flux density, Bx and By, were 

also measured and the classical MRCDI algorithm using three components of B
�

 is 

used to calculate J
�

 as well. Therefore, the algorithms using three components of B
�

 

and one component of B
�

 can be compared. 

The results of experimental model 1 for horizontal and vertical current injection 

patterns are shown in Figure 5.15 and Figure 5.16, respectively. Note that, the 

direction of positive y-axis is taken as negative in Jy for vertical current injection to 

make the images consistent with Jx images for horizontal current injection pattern. 
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(a) 
 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 5.15 Results for horizontal current injection pattern, a) Reconstructed Jx 

(A/m2) using three components of B
�

, b) Reconstructed Jy (A/m2) using three 

components of B
�

, c) Reconstructed Jx (A/m2) using the proposed algorithm, d) 
Reconstructed Jy (A/m2) using the proposed algorithm, e) Reconstructed Jx (A/m2) 
using Iterative FT-MRCDI algorithm, f) Reconstructed Jy (A/m2) using Iterative FT-
MRCDI algorithm. 
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(a) 

 

(b) 

 

(c) 
 

(d) 

 

(e) 
 

(f) 

Figure 5.16 Results for vertical current injection pattern, (note that direction of 
positive y-axis is taken as negative) a) Reconstructed Jx (A/m2) using three 
components of B

�
, b) Reconstructed Jy (A/m2) using three components of B

�
, c) 

Reconstructed Jx (A/m2) using the proposed algorithm, d) Reconstructed Jy (A/m2) 
using the proposed algorithm, e) Reconstructed Jx (A/m2) using Iterative FT-MRCDI 
algorithm, f) Reconstructed Jy (A/m2) using Iterative FT-MRCDI algorithm. 
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The results of experimental model 1 are evaluated in three different aspects. First of 

all, the reconstructed images are evaluated perceptually. From Figure 5.15 and 

Figure 5.16, it can be seen that the classical MRCDI algorithm using three 

components of B
�

 reconstructs Jx  and Jy with higher resolution. One of the reasons 

behind this situation is that low pass filter is applied in the proposed algorithm and in 

the iterative FT-MRCDI algorithm. This low pass filtering effect reduces the 

resolution.  

The reconstruction performance of the proposed algorithm seems a little bit better 

than the iterative FT-MRCDI algorithms. Both algorithms reconstruct Jx for 

horizontal current injection pattern and Jy for vertical current injection pattern well. 

However, the performances of these algorithms in reconstructing Jx for vertical 

current injection pattern and Jy for horizontal current injection pattern are poor. 

Secondly, the reconstructed images are verified by using divergence theorem. The 

details of this verification method were mentioned in Section 4.5.1. Calculated 

standard deviations are listed in Table 5.4. In this table, σ1 is the standard deviation 

of the classical MRCDI algorithm which uses three components of B
�

, σ2 is the 

standard deviation of the proposed algorithm and σ3 is the standard deviation of the 

iterative FT-MRCDI algorithm. 

 

Table 5.4 Calculated standard deviations for experimental model 1. 

 
Jx 

(horizontal current injection) 

Jy 

(vertical current injection) 

σ1 11x10-4 8x10-4 

σ2 8.77x10-4 5.04x10-4 

σ3 3.2x10-4 1.94x10-4 

 

As seen in Table 5.4, the iterative FT-MRCDI algorithm reconstructs the current 

density distribution with the smallest standard deviation. It can be said that the 
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iterative FT-MRCDI algorithm reconstructs the most consistent current density 

images since the deviations of the integrals of J
�

 in each row is small. 

Finally, the reconstructed images are evaluated in terms of the reconstructed MREIT 

conductivities. Hence, J-substitution algorithm is used to reconstruct conductivity 

distribution from the reconstructed J
�

. The reconstructed conductivities are shown in 

Figure 5.17. Note that the J-substitution algorithm is stopped after 5 iterations. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5.17 Reconstructed conductivity images with J-substitution algorithm after 5 
iterations, a) Original distribution, b) Reconstructed conductivity image using J

�
 

obtained from the classical MRCDI algorithm, c) Reconstructed conductivity image 
using J

�
 obtained from the proposed algorithm, d) Reconstructed conductivity image 

using J
�

 obtained from the iterative FT-MRCDI algorithm. 
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terms of error in the reconstructed conductivity images, is not possible due to the 

reconstruction artifacts at the corners of the field of view (FOV). The reconstructed 

conductivity values of these corners are dominating the conductivity of the remaining 

regions. Therefore, the reconstructed conductivity images are only evaluated 

perceptually. The J-substitution algorithm seems to reconstruct the best conductivity 

image by using J
�

 obtained from the proposed algorithm. The circular object can be 

clearly distinguished and it is reconstructed with 26.3% error. The circular object can 

be distinguished in Figure 5.17b and Figure 5.17d as well. In Figure 5.17b, it is 

reconstructed with 43.5% error and in Figure 5.17d, it is reconstructed with 65.6% 

error.  

5.3.2 Results for Experimental Model 2 

The results obtained from experimental model 2 are presented in this subsection. The 

experimental model 2 and its MR magnitude image were given in Figure 4.7. The z 

component of magnetic flux density for horizontal and vertical current injection 

patterns are shown in Figure 5.18. 

 

(a) 

 

(b) 

Figure 5.18 Magnetic flux density in z direction, Bz (T), a) For horizontal current 
injection pattern, b) For vertical current injection pattern. 

The results of experimental model 2 for horizontal and vertical current injection 

patterns are shown in Figure 5.19 and Figure 5.20, respectively. Note that, the 

direction of positive y-axis is taken as negative in Jy for vertical current injection to 

make the images consistent with Jx images for horizontal current injection pattern. 
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(a) 
 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 5.19 Results for horizontal current injection pattern, a) Reconstructed Jx 

(A/m2) using three components of B
�

, b) Reconstructed Jy (A/m2) using three 

components of B
�

, c) Reconstructed Jx (A/m2) using the proposed algorithm, d) 
Reconstructed Jy (A/m2) using the proposed algorithm, e) Reconstructed Jx (A/m2) 
using Iterative FT-MRCDI algorithm, f) Reconstructed Jy (A/m2) using Iterative FT-
MRCDI algorithm. 
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(a) 
 

(b) 

 

(c) 
 

(d) 

 

(e) 
 

(f) 

Figure 5.20 Results for vertical current injection pattern, (note that direction of 
positive y-axis is taken as negative)  a) Reconstructed Jx (A/m2) using three 

components of B
�

, b) Reconstructed Jy (A/m2) using three components of B
�

, c) 
Reconstructed Jx (A/m2) using the proposed algorithm, d) Reconstructed Jy (A/m2) 
using the proposed algorithm, e) Reconstructed Jx (A/m2) using Iterative FT-MRCDI 
algorithm, f) Reconstructed Jy (A/m2) using Iterative FT-MRCDI algorithm. 
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When reconstruction performances of the algorithms are compared by evaluating the 

reconstructed current density images perceptually, it is seen that the classical 

MRCDI algorithm has the best performance. The current paths can be seen in detail 

in the reconstructed current density image obtained by using this algorithm. The 

reconstruction performances of the proposed algorithm and the iterative FT-MRCDI 

algorithm are similar. 

The reconstructed images are also verified by using divergence theorem. Calculated 

standard deviations are listed in Table 5.5. In this table, σ1 is the standard deviation 

of the classical MRCDI algorithm which uses three components of B
�

, σ2 is the 

standard deviation of the proposed algorithm and σ3 is the standard deviation of the 

iterative FT-MRCDI algorithm. 

 

Table 5.5 Calculated standard deviations for experimental model 2. 

 
Jx 

(horizontal current injection) 

Jy 

(vertical current injection) 

σ1 6.86x10-4 7.06x10-4 

σ2 4.58x10-4 4.53x10-4 

σ3 1.52x10-4 1.32x10-4 

 

As seen in Table 5.5, the iterative FT-MRCDI algorithm reconstructs the current 

density distribution with the smallest standard deviation. It can be said that the 

iterative FT-MRCDI algorithm reconstructs the most consistent current density 

images since the deviations of the integrals of J
�

 in each row is small. 

5.3.3 Results for Experimental Model 3 

The results obtained from experimental model 3 are presented in this subsection. The 

experimental model 3 and its MR magnitude image were given in Figure 4.9. The z 

component of magnetic flux density for horizontal and vertical current injection 

patterns are shown in Figure 5.21. 
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(a) 

 

(b) 

Figure 5.21 Magnetic flux density in z direction, Bz (T), a) For horizontal current 
injection pattern, b) For vertical current injection pattern. 

The results of experimental model 3 for horizontal and vertical current injection 

patterns are shown in Figure 5.22 and Figure 5.23, respectively. Note that, the 

direction of positive y-axis is taken as negative in Jy for vertical current injection to 

make the images consistent with Jx images for horizontal current injection pattern. 

When reconstruction performances of the algorithms are compared by evaluating the 

reconstructed current density images perceptually, it is seen that the classical 

MRCDI algorithm has the best performance. As it was stated, the aim of this model 

is to create an object that forces the current to flow between holes in vertical current 

injection pattern. In Figure 5.23b and Figure 5.23d, these current paths can be 

distinguished easily. In Figure 5.23f, the current paths are still visible but the low 

pass filter reduces the resolution. For horizontal current injection pattern, the 

reconstruction performances of the algorithms are not distinctive as in vertical 

current injection pattern, since the current is forced to flow in a less complex 

structure in this pattern. 

Calculated standard deviations are listed in Table 5.6. In this table, σ1 is the standard 

deviation of the classical MRCDI algorithm which uses three components of B
�

, σ2 is 

the standard deviation of the proposed algorithm and σ3 is the standard deviation of 

the iterative FT-MRCDI algorithm. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 5.22 Results for horizontal current injection pattern, a) Reconstructed Jx 

(A/m2) using three components of B
�

, b) Reconstructed Jy (A/m2) using three 

components of B
�

, c) Reconstructed Jx (A/m2) using the proposed algorithm, d) 
Reconstructed Jy (A/m2) using the proposed algorithm, e) Reconstructed Jx (A/m2) 
using Iterative FT-MRCDI algorithm, f) Reconstructed Jy (A/m2) using Iterative FT-
MRCDI algorithm. 
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(a) 

 

(b) 

 

(c) 
 

(d) 

 

(e) 
 

(f) 

Figure 5.23 Results for vertical current injection pattern, (note that direction of 
positive y-axis is taken as negative)  a) Reconstructed Jx (A/m2) using three 

components of B
�

, b) Reconstructed Jy (A/m2) using three components of B
�

, c) 
Reconstructed Jx (A/m2) using the proposed algorithm, d) Reconstructed Jy (A/m2) 
using the proposed algorithm, e) Reconstructed Jx (A/m2) using Iterative FT-MRCDI 
algorithm, f) Reconstructed Jy (A/m2) using Iterative FT-MRCDI algorithm. 
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Table 5.6 Calculated standard deviations for experimental model 3. 

 
Jx 

(horizontal current injection) 

Jy 

(vertical current injection) 

σ1 6.05x10-4 15x10-4 

σ2 2.53x10-4 7.65x10-4 

σ3 7.69x10-4 4.64x10-4 

 

The proposed algorithm reconstructs Jx with smallest standard deviation in horizontal 

current injection pattern, whereas iterative FT-MRCDI algorithm reconstructs Jy with 

the smallest standard deviation in vertical current injection pattern. 
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CHAPTER 6  

CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

In this thesis, 2D MRCDI inverse problem, which relates magnetic flux density to 

current density, is analyzed in detail. The relation between Bz, Jx, Jy and σ is obtained 

analytically and the sensitivity of Bz, Jx, Jy to the changes in both conductivity and 

the radius of the concentric inhomogeneity is analyzed. New sensitivity terms, 

relating the changes of Bz to the changes in current density, are defined. Important 

results are obtained from these sensitivity plots. First of all, the sensitivity of Bz to 

the changes in the component of current density, which is orthogonal to the current 

injection pattern, is plotted against the radius of the inhomogeneity placed at the 

center of the conductor region. From these plots it can be concluded that the 

sensitivity of Bz to the changes in the orthogonal component of current density is 

nearly independent from the changes in the conductivity of the inhomogeneity. 

However, the sensitivity of Bz to the changes in the parallel component of current 

density is dependent to the changes in conductivity and becomes apparent when the 

radius of the inhomogeneity is bigger than half of the conductor region. This 

situation can be explained with the fact that the change of orthogonal component of 

current density distribution from its value for uniform conductivity always increases 

as the radius of the inhomogeneity increases. This increase occurs without any 

dependency on the conductivity of the inhomogeneity. However, the change in 

parallel current density component begins to reduce when the inhomogeneity is more 

conductive than background and the radius of the inhomogeneity exceeds half of the 

size of the inhomogeneity. When the inhomogeneity is more insulating than the 
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background, the change in parallel current density component always increases. 

The change of Bz from its value for uniform conductivity with respect to the changes 

in conductivity of the inhomogeneity also gives valuable information about the 

distinguishability of the inhomogeneity. From these plots, it can be concluded that 

the distinguishability of an object placed on the middle of the conductor region 

depends on its conductivity and size. If the measurement precision of a MRI system 

is known, then the distinguishable objects in MRI can be determined before 

conducting the experiment. 

In this study, a novel 2D MRCDI reconstruction algorithm is proposed in addition to 

analytical studies. The performance of the proposed algorithm is tested with three 

simulation models and three experimental models. It is also compared with the 

iterative FT-MRCDI algorithm. Both algorithms are compared with the classical 

MRCDI algorithm using three components of B
�

in experimental models. 

The aim of first simulation model is to see the effect of large electrodes. The 

obtained results show that reconstruction performances of the algorithms are similar 

when the reconstructed current density images are evaluated perceptually. However, 

the proposed algorithm reconstructs current density with less error. The error in the 

reconstructed current density reaches up to 23.00% for the proposed algorithm 

whereas the iterative FT-MRCDI algorithm reconstructs with a maximum error of 

34.18% in SNR 13 case. 

Simulation model 2 contains two objects: a circular object having a conductivity of 2 

S/m and a square object prepared as a pure insulator. The aim of this model is to see 

the current density distribution when both insulating and conductive objects exist. 

The error in the reconstructed current density reaches up to 4.98% for the proposed 

algorithm and 20.00% for the iterative FT-MRCDI algorithm in SNR 13 case. 

In simulation model 3, it is seen that both algorithms show similar reconstruction 

performances for this model. It is important to note that in the iterative FT-MRCDI 

algorithm, the reconstructed images have lower resolutions due to the low pass filter 

and this filtering effect is more significant on the edges of the object. The error in 

reconstructed current density reaches up to 21.37% and 37.45% for the proposed 
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algorithm and the iterative FT-MRCDI algorithm, respectively. 

When results of the first and second simulation model are compared with results of 

the third simulation models, it can be seen that the error in the reconstructed current 

density is significantly smaller in the first and second model since in these two 

models conductivity transition between the background and the object is 

smoothened. Therefore, discretization errors are lowered providing better 

reconstructed current density images. 

In simulation models, it can be seen that quality of the reconstructed current density 

images obtained by using the proposed algorithm is higher than those obtained by 

using the iterative FT-MRCDI algorithm. This is due to the fact that the iterative FT-

MRCDI algorithm requires the magnetic flux density outside the conductor region 

and calculates it iteratively before solving the current density. Errors in calculated 

magnetic flux density outside the conductor region also cause errors in the 

reconstructed current density. However, measured magnetic flux density inside the 

conductor region is sufficient for the proposed algorithm. Therefore, error in 

reconstructed current density images is smaller in the proposed algorithm. In the 

iterative FT-MRCDI algorithm, error in the calculation of magnetic flux density 

dominates the error due to noise. This is seen in the error tables as the overall error 

does not change significantly with SNR. 

The experimental models are the physical realizations of the simulation models. 

When the results of the experimental models are evaluated together, it can be 

concluded that the classical MRCDI algorithm reconstructs the best images 

perceptually. However, there are no big differences in reconstructed image quality 

between the classical MRCDI algorithm and other algorithms. In fact, the proposed 

algorithm and the iterative FT-MRCDI algorithm can be chosen when the advantages 

of these algorithms are considered.  

The first advantage of the algorithms using one component of B
�

 is that the elapsed 

time in experiments for these algorithms is one-third of the elapsed time for the 

classical MRCDI algorithm. Secondly, the phantom rotation, which is required in 

classical MRCDI algorithm, causes artifacts in the reconstructed J
�

 due to variations 
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in the internal geometry during rotation. Hence, J
�

obtained by using three 

components of B
�

 deviates from the true current density.  

From the experimental models, it can be also concluded that the proposed algorithm 

is more successful when the geometry of the model is complex. For instance, in 

experimental model 3, resolution of the reconstructed image should be high in order 

to image the current paths properly. In the iterative FT-MRCDI algorithm, these 

paths can’t be distinguished. But, these current paths are more visible in the proposed 

algorithm.  

In the proposed algorithm and the iterative FT-MRCDI algorithm, magnetic flux 

density for a uniform conductivity distribution, Bz
uniform, is calculated from 

simulation. Since, subtraction of Bz
uniform from Bz

measured is required, misaligned 

electrode locations may introduce undesirable deformations in reconstructed image 

in experimental studies. This is a disadvantage of the algorithms. By using low pass 

filters, the deformations in the reconstructed current density distribution can be 

suppressed at the expense of reduced resolution. 

In the simulation models, a noise model is prepared in order to evaluate the 

performance of the algorithms on noisy data and random Gaussian noise model is 

used for this purpose [32]. This noise model only depends on signal-to-noise ratio 

(SNR) of imaging system where magnetic flux density is measured. Two noise 

levels, SNR 30 and SNR 13, are used in simulations since SNR 30 corresponds to a 

MRI system with 2 T magnet and SNR value of 0.15 T METU-EE MRI system is 

around 13 [33]. However, the results obtained in SNR 13 case in simulations and the 

results obtained from experimental studies show inconsistencies. In other words, 

noise model in simulations doesn’t reflect the case in real applications. The 

resistance of the receiver coil and magnetic losses caused by the sample conductivity 

are taken into account as the dominant sources of noise while developing noise 

model and this noise is independent from the strength of the acquired signal. 

However, the strength of the acquired signal greatly influences the quality of 

measured magnetic flux density in real applications. Therefore, SNR 13 noise level 

doesn’t represent the noise level in 0.15T METU-EE MRI system exactly. 



86 

 

The reconstruction time is another important criterion in the comparison of 

algorithms. Since the matrices used in the proposed algorithm only depend on the 

geometry of the subject and number of finite elements, these matrices can be 

calculated and stored for a subject with known geometry. Therefore, performing the 

matrix inversion gives the current density. The elapsed time for matrix inversion is in 

the order of seconds. The reconstruction time of the iterative FT-MRCDI algorithm 

is longer since the current density is reconstructed after iterations. 

In 1988, M. Joy et al developed the MRCDI technique and conducted the first 

MRCDI experiment in 1989. In those days, the biggest limitations of MRCDI 

algorithm against the clinical applicability were the requirement for subject rotation 

and the amount of injected current. The requirement for subject rotation has been 

eliminated as reconstruction algorithms using only one component of magnetic flux 

density has been developed. In this thesis study, the satisfactory results of the 

proposed algorithm have proved once again that there is almost no need for subject 

rotation in a MRCDI experiment. However, the amount of injected current hasn’t 

been reduced below the safety limits yet and remains as a strong limitation. 

Therefore, the topic of future studies must be reducing the amount of injected current 

in MRCDI experiments. 

6.2 Future Work 

In this thesis, the inverse problem of Magnetic Resonance Current Density Imaging 

(MRCDI), which relates magnetic flux density to current density, is investigated in 

detail. A novel current density reconstruction algorithm is proposed and its 

performance is tested with both simulated and experimental data. Some of the 

possible future works can be: 

• The experiments can be repeated in an MRI System with higher SNR level, 

• In order to use the developed algorithms on clinical applications, studies for 

reducing the injected current level should be made. 

• Methods for evaluating the performance of the MRCDI reconstruction 
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algorithms on experimental data can be developed. 

• More realistic simulation noise model can be prepared. 
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APPENDIX A 

COMPUTATION OF CIRCULAR HARMONIC 
COEFFICIENTS 

In Appendix A, the calculation of circular harmonic coefficients will be explained in 

detail. In Chapter 3, it was mentioned that the solution of Laplace’s equation could 

be represented by an infinite sum of circular harmonics as 
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and boundary conditions of this problem was given as 
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By using the boundary condition in Equation (A.4) and reorganizing the terms, the 

following equation is obtained: 
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Another equation can be obtained from the boundary condition in Equation (A.5) as 
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Finally, by using Equation (A.6), the following equation is obtained: 
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Then, by solving Equations (A.7) and (A.8), En and Fn are obtained as: 
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Substituting Equation (A.10) in Equation (A.7) gives 
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Finally, by substituting Equation (A.10) and Equation (A.11) in Equation (A.9), the 

coefficients of circular harmonics are calculated as 
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