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ABSTRACT 

 

REAL TIME 3D SURFACE FEATURE EXTRACTION ON FPGA 

 

 

TELLİOĞLU, Zafer Haşim 

M.Sc. Department of Electrical and Electronics Engineering 

                  Supervisor: Assist. Prof. İlkay ULUSOY 

 

June 2010, 108 pages 

 

Three dimensional (3D) surface feature extractions based on mean (H) and 

Gaussian (K) curvature analysis of range maps, also known as depth maps, is an 

important tool for machine vision applications such as object detection, 

registration and recognition. Mean and Gaussian curvature calculation algorithms 

have already been implemented and examined as software. In this thesis, 

hardware based digital curvature processors are designed. Two types of real time 

surface feature extraction and classification hardware are developed which 

perform mean and Gaussian curvature analysis at different scale levels. The 

techniques use different gradient approximations. A fast square root algorithm 

using both LUT (look up table) and linear fitting technique is developed to 

calculate H and K values of the surface described by the 3D Range Map formed 

by fixed point numbers. The proposed methods are simulated in MatLab software 

and implemented on different FPGAs using VHDL hardware language.  

Calculation times, outputs and power analysis of these techniques are compared to 

CPU based 64 bit float data type calculations. 

 

Keywords: FPGA, Scale Space, Gaussian curvature, Mean curvature, HK 

segmentation, hardware gradient approximation, feature, fast square root 

calculation 
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ÖZ 

 

FPGA KULLANARAK 3B YÜZEYLERİN ÖZNİTELİKLERİNİN 
GERÇEK ZAMANLI OLARAK ÇIKARTILMASI 

 

TELLİOĞLU, Zafer Haşim 

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü 

                    Tez Yöneticisi: Yrd. Doç. İlkay ULUSOY 

 

Haziran 2010, 108 sayfa 

 

Uzaklık haritaları ile ifade edilen üç boyutlu (3B) yüzeylerin, ortalama (H) ve 

Gaussian (K) eğrilik analizleri kullanılarak özniteliklerinin çıkartılması, nesne 

algılamadan tanımaya kadar olan birçok bilgisayar görüntü işleme algoritması için 

önemli bir teknik olarak görülmektedir. Ortalama ve Gaussian eğrilik analizleri 

bilgisayarlar üzerinde yazılım tabanlı olarak geliştirilmiş ve uygulanmıştır. Bu 

çalışmada, FPGA üzerinde gerçek zamanlı çalışan sayısal eğrilik işlemcisi 

tasarlanmıştır. Hız bakımından yazılım tabanlı uygulamalara alternatif olarak, 

çoklu ölçekler üzerinde H ve K analizlerine göre yüzey sınıflandırması yapabilen, 

iki adet farklı sayısal eğrilik işlemcisi geliştirilmiştir. Bu iki işlemci farklı türev 

hesaplama yaklaşımları kullanmaktadır. İşlemciler içerisinde, analizler için 

gerekli olan gerçek zamanlı karekök hesaplama devresi tasarlanmıştır. Bu devre, 

giriş sayılarının olasılıklarını göz önünde tutarak, hatanın en az olması için gerekli 

bölgelerde RAM kullanan yada doğrusal tahmin yapan bir yapıdır. Analiz edilen 

yüzeyler sabit noktalı sayı temsilleri ile ifade edilmektedir. İşlemciler MatLab 

üzerinde tasarlanmış ve test edilmiş, VHDL donanım dili ile iki farklı FPGA 

üzerinde çalıştırılmıştır. Donanım, simülasyon ve yazılım sonuçları birbirleri ile 

kıyaslanmıştır. Ayrıca hız sonuçları ve güç tüketimleri de verilmiştir. 

 

Anahtar Kelimeler: Ortalama eğrilik, Gaussian eğrilik, FPGA, hızlı karekök  
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CHAPTER 1 

1 INTRODUCTION 

 

1.1 Motivation 
 

Processing image texture and range maps to extract features has been very 

popular approach for the past years. Usually, the extracted features are used by 

different applications, such as object recognition. Feature extraction enables faster 

processing for computers to evaluate desired algorithms. Without feature 

extraction, to have a valid output, for example face recognition, it is required to 

make the same calculations in the whole image again and again. Therefore 

extracting the key points, which are meaningful properties for the algorithm, is a 

more preferred technique. In range map processing, one of the commonly used 

feature type is surface classification. Different approaches are proposed for 

classification of surfaces until now. Edge and corner detection algorithms have 

been very popular in recent years. Texture based surface analysis is performed in 

[1]. In [2], Photometric stereo with frequency domain analysis has been proposed 

to extract surface texture information especially considering surface-rotation 

invariance. These algorithms are texture based and also applicable to range data. 

Behind these algorithms, curvature based approaches are started to be used 

widely. Curvature analysis does not only provide edge and corner information, but 

also classifies any discrete point (or pixel) in the real range data into a variety of 

categories. This categorization makes curvature analysis more powerful in digital 

image and video processing. However, complexity and computational load is very 

high in curvature based surface classification algorithms.  

Although feature extraction provides less computational cost for higher 

level algorithms, processing the range data or an image to extract features requires 
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many computations. If both feature extraction and feature processing are 

implemented in software, the speed of whole algorithm can be worse than direct 

analyzing. Therefore software and hardware partitioning is used for system 

design. High computational task can be integrated into hardware while complex 

algorithms are implemented in software. Curvature extraction from range map 

using hardware will provide higher performance for surface classification based 

higher level algorithms. 

  

1.2 Background and Literature 
 

There are two different types of curvature analysis methods widely used in 

literature. First one is Mean, abbreviated as H, and Gaussian, abbreviated as K, 

curvature classification. This method is known as HK segmentation [3] and 

proposed by Besl in 1986. In this method, principle curvatures are used to 

calculate H and K values in each point in image or range data. According to signs 

of these values one of 8 possible classifications is assigned to the point. The 

second method is shape index, S, and curvature magnitude, curvedness, C, based 

classification method, which is proposed by Koenderink [4]. Again, principle 

curvatures determine S and C values. Both techniques are examined and 

compared previously [5, 6]. In [5], Cantzler and Fisher conclude that SC 

segmentation method is slightly better to noise than HK segmentation is. 

However, when multiple scale spaces are used, HK segmentation is more 

successful [6].  

 Another important analysis tool in digital image and video processing 

world is scale space construction and running the desired algorithm in each scale 

level. This is a very useful approach to convert scale dependent algorithms to 

scale invariant. Many algorithms, like SIFT [7], use scale space technique. Scale 

space is also used in curvature analysis previously in [8, 6]. Classification types 

applied to all points in the surface may make it hard to extract actual surface type. 

In most cases, analyzing next scale space makes large areas, i.e. relevant features, 

more visible. This study has been performed in [6]. 
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 HK based surface classification is researched and implemented in software 

by different authors for different purposes. Processing of laser points, range map 

generated by laser range device, is performed in [9]. Object recognition purposed 

classification is researched in [10,11]. An interesting study is performed in 

medical science in [12], aiming finding of airway lesions. None of these works are 

time critical applications.  

 

1.3 Thesis Objective and Outline 
 

Throughout this thesis, the main purpose is to develop a new hardware 

based real time digital curvature processor which is capable of classifying surface 

curvature by using HK segmentation technique in multiple scale space levels. 

Comparison of hardware based classification with the software ones is also aimed. 

The input of digital curvature processor, DCP, is real time serial 3D range map 

vectors. The algorithms use fixed point data format. We aim to use parallel 

processing and hardware acceleration. Two different design techniques are 

developed for DCPs. Both techniques are simulated in MatLab and implemented 

in two different XILINX FPGAs. The outputs of the two design approaches are 

compared with each other and both outputs are compared with the outputs of 

software based available techniques. Speed performance of the software and the 

developed hardware implementations are also compared. 

The outline of the thesis is as follows; Chapter 2 includes a brief 

introduction to range maps, mathematical description of curves, surfaces, 

curvature, H and K. Also FPGA based design strategies and SoC design approach 

are explained in this chapter. In Chapter 3, digital curvature processing in 

hardware is developed. Derivative approximations, HK classifications and fast 

square root logic, considering input distribution and nonlinearity of square root 

line, are developed in this chapter. Chapter 4 includes embedded computer design 

and software. Detailed results and comparisons are given in Chapter 5. Chapter 6 

is the conclusion part and presents possible future works. 
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CHAPTER 2 

2 PRELIMINARIES 

 

2.1 Range Map 
 

2-D images can not express real surfaces very well, because they are 

intensity based and this limits expression of surface geometry. To overcome the 

problem, range maps are developed. Range maps include positions of all points 

with respect to a reference point. It can be thought as a real position image. A 

variety of range maps is available. A range map may include x, y and z values of 

points in the scene, or it might just contain z values. If only z values are available, 

range map is considered as a range image or z-buffering.  

 Range maps are also known as depth maps, depth images, range buffers 

and depth buffers. 

2.1.1 Range Map Generation 

Range map generation requires special techniques and devices. Different 

techniques are available in literature. Laser scanners are one of the mostly used 

types of devices. Stereo camera based approaches are also very common.  

Human vision takes depth information by exploiting stereo vision 

approach, we have two eyes and this provides depth and approximate range 

information of the scene. Based on this idea, range maps are calculated by using 

stereo camera.  

Laser scanner scans the scene using a laser beam and measures the 

distance. Laser distance measurement is very sensitive and may produce noisy 

maps. Therefore a post processing, smoothing filter, is required.  

Range image construction has been researched in many universities. 

University of South Florida Computer Vision and Pattern Recognition Group 
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generated real range images using laser scanners and structured light method [13]. 

Ohio State University Signal Analysis and Machine Perception Laboratory group 

have many laser based range images. They also keep some other universities’ 

range image data base [14]. Stanford University Computer Science department 

has real and synthetic range images [15]. Synthetic data is useful for testing the 

algorithms. Also, Stuttgart University synthetic range image database is very 

useful [16]. 

Besides software, range map construction has been implemented in 

hardware. Harlan Hile and Colin Zheng have generated range map by using stereo 

video processing in FPGAs [17]. Their data 512x480 pixels and representation is 

5bit. Another work is performed by Ahmad Darabiha, Jonathan Rose and James 

MacLean [18]. This work produces 256x360 maps with 8bit resolution in FPGAs. 

The speed is 30 frames sec.  

 

2.1.2 Range Map Precision & Data Formats 

A range map is shown in Figure 1 below. The representation format of 

data is important especially for higher level algorithms. Data format defines 

precision of distance measurements, x, y and z. A high precision defines surface 

more accurately. On the other hand, high precision range map data requires more 

space since more bits used.  

 

  
 

(xyz)0,0 (xyz)1,0 … (xyz)127,0 

(xyz)0,1 … … … 

… … … … 

… … … … 

(xyz)0,127   (xyz)127,127 

a b c 

Figure 1 - Intensity image and range map of a real scene [13] are shown in (a) and (b), 

respectively. In (c) the map values are represented in matrix format. In each cell, x, y and z values 

are stored with desired representation format. The image and map are 128x128 pixel size. 

In software based applications, 32bit floating point representation is 

usually used. Today’s computer architectures are mostly 32bit and hard floating 
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point unit is available in many processors. Using 32bit range map data is preferred 

in both representation precision and computer architecture aspects. Others formats 

may also be used. 

In hardware processing, floating point approach is not so preferred. Fixed 

point numbers are more useful, because multiplication, summation and 

subtraction operations are easier. However, more bits can be required to provide 

enough precision in fixed point data representation. Therefore, while range map is 

being generated, resolution of measurements should already be determined. 

According to the resolution, fixed point word and fraction lengths should also be 

selected accordingly. 

 

2.1.3 Quantization Effect on Range Map 

If fixed point fraction length is not enough to represent a scene, an 

excessive quantization error occurs. The quantization error in the range map may 

cause artificial edges, peaks or corners on the surface. An example is shown in 

Figure 2 below.  In the figure, the range map includes a peak. Using enough 

precision, the peak is shown in (a). However, using the 1bit fraction length 

precision, the peak has some distortions as shown in (b). The real values are 

shown in (c) and (d). Obviously, 1bit precision is not enough for this range map. 

 Quantization of a surface data directly affects the quality of curvature 

analysis. As shown in Figure 2 (b), the corners of the peak are distorted. 

Curvature analysis of the corners on this data can not give actual description of 

the surface, the peak in the map. Most of the time, higher level algorithms put a 

smoothing filter to deal with surface roughness. If the roughness is due to 

quantization, the filtering can not solve the problem unless precision is increased 

at least in filtering stage. Therefore a valid range map must have enough precision 

to represent surface and scene in desired resolution. 
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a b 

 

0 0 0 … 

0 1.4644 1.7984 … 

0 1.7984 2.1716 … 

… … … … 

c 

0 0 0 … 

0 1.5 2 … 

0 2 2 … 

… … … … 

d 

Figure 2 - A peak is shown in the range map. The precision is enough in (a), but in (b) 1bit 

fraction length causes artificial edges and corners. The real values are shown in (c) and (d). 

2.1.4 Valid and Invalid Points of Range Maps  

Range generating algorithms may not distinguish all points in the scene. In 

this case, the range map algorithm must sign these points. Usually another data in 

the range map is provided with x, y and z. The data is called by valid flags. This 

flag map explains which points in the range map are valid and invalid. 

Unfortunately, this technique increases the size of the map, even though 1bit is 

used for the flag. For a 128x128 map, extra 2K bytes are required. The problem is 

important especially for small embedded computers since they may not have 

enough memory. Another disadvantage of invalid points in curvature analysis 

may appear in surface classification. An invalid point causes misclassification of 

its neighbor points, even they are valid. 
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2.1.5 3D Range Map 

As already mentioned, a range map does not only include depth, z, 

information. x and y values are also important to represent surface accurately. In 

differential geometry, a surface is represented by: 

),( yxfz   

 

 

Figure 3 - Graphical visualization of a 3-D (2.5D) range map. The map has 4 2-D layers. 

 

 Therefore z is a function of x and y. Indeed, what a perfect range map is 

the function f. Another parameter of range map is its pixels. Conventionally u and 

v are used for range map pixel notation. In 2-D representation, i.e. matrix form, u 

refers to columns and v refers to rows of the range map. A complete range map 

contains 4 2-D maps. The fourth is valid/invalid map. In some resources, these 

types of range maps are called by 2.5D maps. Indeed, the map does not have all 

point information in 3D, it has only x, y and z values of a point of view. In this 

work, we prefer to use “3D map” term. A graphical representation is shown in 

Figure 3. Using new u and v variables, we may define the surface equation as; 
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 By these definitions, we can extract curvature structure of the range map. 

For a suitable range map, x and y values are monotone increasing with u and v 

values, respectively. A perfect range map has a relation between x and u, y and v 

values.  
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 X  and Y  values are desired horizontal and vertical resolutions of the 

range map. The precision of data type used in range map must cover these values. 

Most of the time, range maps, unfortunately, can not hold these relations exactly. 

Especially in hardware, providing a perfect range map is very difficult. Therefore 

we express the relations with using an error term; 
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 In this case, the fix point resolution must be enough to express X  and Y . 

These error terms depend on range map generation hardware, and they should be 

in a defined range. We may define the error ranges in worst case, 
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 Of course the range can be narrower, or zero, and range map generation 

algorithms should keep the errors in the ranges. If the errors excess defined ranges 

in a pixel, it is a definitely invalid point for upper level algorithm, curvature 

analysis in this case. 

 Also we may define instantaneous sampling errors as, 
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 According to these definitions we may calculate mean sampling error in a 

single row; 

 

Here we define that the mean error for a single row must be zero. If this 

equation is not satisfied for a row, then we conclude that the row is shifted and the 

map is not valid. However, inverse of the assumption does not imply that the map 

is valid. Also, if the mean errors are equal for all rows, the assumption fails again 

because in that case the map has a phase shift and it does not affect the analysis. 

The assumption is also applicable to columns of range map.  
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Figure 4 – Shifting in range data, in (b), causes damaging surface representation. In a good range 

data, in (a), mean error in each rows or columns should be zero. 

 

A synthetic example is given in Figure 4. A cylindrical surface is shown in 

(a). One of the rows is shifted in x-direction and mean error for that row is greater 

than zero in (b). If all rows were shifted in the same amount, the cylindrical 

surface would be still valid. 
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N: width of the map 

(Eq. 2.1)

 



 

 11

An erroneous range map may be transformed into a zero erroneous map, 

i.e. 0 YX  . Basically, this is an interpolation process, bilinear or bicubic. In 

Figure 5, a noisy map and its zero error transform are shown. At top, some 

measurement errors in X and Y effect the Z values. The transform hinders 

measurement error in Z. Desired sampling distances are 1 YX .  

 

1 2.2 3.1 

0.8 2.1 3.2 

1 1.8 2.9 

X Map (Measurement) 

1.3 1.1 0.8 

2.2 1.8 2.1 

3.1 3 3.2 
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Z Map (Measurement) 
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X Map (Expected) 

1 1 1 
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Y Map (Expected) 

  0.823 
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Z Map (bilinear) 

Figure 5 – Bilinear transformation example of an erroneous range map 

 

In Figure 6, a synthetic perfect range map is shown.  

0

5

10

15

20

25

30

0
5

10
15

20
25

30

-10

-5

0

5

10

 

x

y

 

z

 

Figure 6 – A synthetic equally sampled range map. 
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2.2 Scale Space 
 

Scale space provides scale invariant analysis for image processing. The 

concept has been analyzed by Tony Lindeberg [19]. Scale space is widely used in 

feature extraction, as well. In the same scene, there can be different size of 

features or a feature may contain many small features. Scale space technique is 

very helpful when the small features hide large features.  

In curvature analysis, surface classification suffers from too detailed 

outputs. In a real range map data, surfaces are usually very rough, therefore 

outputs contain many different features, i.e. different classifications, on the same 

surface. Also, we may want to see only large surfaces and we may discard the 

small areas. Scale spaces of range maps provide these benefits in curvature 

analysis. 

Scale space technique in curvature analysis is already used by many authors 

[6, 8].  

In this work, we generate scale spaces by using Gaussian pyramids method, 

width and height of the map reduced by half in each scale using a 2-D Gaussian 

kernel. A scale space example of synthetic data is given in Figure 7. As going to 

next scale, details of surfaces disappear and only peaks stay visible. 
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Figure 7 – Scale space representations of a synthetic range map. 0th scale space, the source data, is 

in (a). 1st scale is in (b) and 2nd is in (c).  
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2.3 HK Segmentation 
 

Mean and Gaussian curvature based range map segmentation is basically a 

differential geometry operation. In this chapter, a mathematical description of HK 

analysis will be provided. The content can be found in an elementary differential 

geometry book. 

 

2.3.1 Curves, Tangent and Normal Vectors 

A differentiable curve in 3-D,  , is expressed by 

 

Ittztytxt

RI

RbabaI






))(),(),(()(

:

,,
3


  

The function above is called by plane curve in 3-D. If third component, z, is 

always zero, the curve is in 2-D and its representation; 

 

Ittytxt

RI

RbabaI






))(),(()(

:

,,
2


  

Differentiable condition implies x, y and z functions to be differentiable. 

Therefore derivative of vector function  ; 

))(),(()( tytxt   

The tangent vector is also given by the formula above. Tangent vector 

contains direction of the curve at t instant. The unit tangent vector or direction 

vector, T, is calculated by; 

)(

)(
)(

t

t
tT






  
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Figure 8 – A Curve and its tangent normal vectors.  

 

 Derivative of unit tangent vector is orthogonal to itself and it gives 

direction of normal vector. Unit normal vector, N, is expressed by; 
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

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(Eq. 2.2)

 

The unit tangent and unit normal vectors are shown in Figure 8 for different 

t instants. The orthonormal vectors N and T construct a basis set for 2-D space. 

 

2.3.2 Curvature 

Curvature,  , is a measurement of how much the curve is bended. 

Intuitively, it is a quantity of direction change while moving along the curve.  For 

a straight line, direction, unit tangent vector, does not change while moving on the 

x 

y 

T1 

T2 

)(t

N1 

N3 
T3 T4 )(t  

0

Convex

0

Concave 

s
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line. Therefore, a normal vector has zero length and the curvature is also zero. 

Referring to Figure 8, the infinite small length of the curve, arch length, is 

represented by s . We already define direction change by taking derivative of 

tangent vector. According to the definition, curvature; 

s

t

t

T

s

T












  

 The unit arch length is derivative of the vector function; 

tts  )(  

 The curvature; 

N
t

T

t
t

s
t

T

s

t

t

T 






















)(

1
 

Any regular parameterized curve can be re-parameterized by arch length 

[20]. Therefore arch length, s, is a parameterization parameter. The curvature for 

arch-length parameterized curves can be expressed by; 

)(

)(
)(

sN

sT
s


  

 Therefore, if T is the twisting counterclockwise, curvature is greater than 

zero, 0 and the curve is convex. If T is twisting clockwise, curvature is 

negative and curve is concave [21]. In Figure 8, near t=1 point, the curve is 

convex and around t=3, it is concave. 

 

2.3.3 Surface Representation 

We may write a surface, S, in terms of its three components x, y and z;  

  ),(,,

3

yxZzzyxS

RS




 

The range map, R, is a parametric representation of the components x, y, z.   

),(

),(

vuYy

vuXx


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Considering our range map definitions; 
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uvuX





),(

),(
 

 There is a unique linear mapping between X and u values. Therefore we 

may use the following notation to represent surface S, 

UvuZvuvur

UvuYXZYXvur

SUr

SUr

IIU

vuYX

vuvuvuvu








,),,(),(

,)),(,,(),(

)(

:

numbersinteger :

),(

),(),(),(),(

2

 

In differential geometry, a defined one-to-one mapping between x and u 

components represented by; 

                           
),,(),(

),(),(),(

),( vuZvuvur

yxZvuZyxfz




 (Eq. 2.3)

 This convention is known as graph surface representation and the surface 

is called Monge patch. The range map provides representation of surfaces with 

two variables, u and v, according to the assumptions. There exists a similarity 

between our range map and graph surface. In 3D range map, x and y values are 

depends on u and v values.  

2.3.4 Surface Tangent Plane and Normal Vector 

As in the curves, the surfaces also have normal vector for a given point. 

Directional derivatives, gradient, gives the normal vector of the surface at any 

point. For the surface U, unit normal vector [22], N, is; 
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U
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xyxU
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xyxU

x
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
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










 )
),,(

,
),,(

,
),,(

(

                  

(Eq. 2.4)

 

The gradient, i.e. unit normal vector, is orthogonal to tangent vector of all 

level curves of the surface at any point on the surface. On a continuous surface in 

3-D, there are infinitely many curves passing through a point on the surface. 
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These curves are known as geodesic in differential geometry. In Figure 9 below, 

one of the curves, ))(),(),(()( tztytxtr  , gradient vector, U , and the tangent 

vector of the curve, v, is shown. 

 

Figure 9 – Tangent vector, Normal Vector and tangent plane of a surface [22] 

 

The tangent vector of any curves on the surface is orthogonal to normal 

vector of the surface; 

0 vU  

 A plane can be expressed by its normal and a point on it. The normal 

vector is known and taking a point on the surface, we may express tangent plane 

of the surface at that point. Tangent plane of the surface U is also shown in Figure 

9. 

 For parametric surfaces, another possible normal vector calculation is 

cross product of tangent vectors along principle directions of parameterizations. A 

parameterized surface r(u,v) has tangent vectors along u and v directions.  

 

Figure 10 – Tangent vectors, tangent plane and normal vector of a parametric surface [22] 
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A parameterized surface r is given by 

                 )),(),,(),,((),( vuzvuyvuxvur                          (Eq. 2.5)

 

 

The tangent vectors along u and v directions; 
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 The unit surface normal vector can be expressed by; 

                   
vu

vu

rr

rr
N




                (Eq. 2.6)

 ur and ur  vectors construct a basis set for tangent plane of the surface. The 

normal vector, tangent plane and basis vectors are shown in Figure 10. The 

tangent vectors are orthogonal to both each other and normal vector. 

 

2.3.5 Surface Curvature 

Curvature is already defined in previous sections as direction change while 

moving on a curve within unit step. To achieve curvature of surface at a point, we 

should consider lines on the surface, i.e. geodesics. There are many different 

approaches in literature to define curvature of a surface. Shape operator, i.e. 

Weingarten Map, is commonly used in many resources. Here, mathematical 

approach is preferred and all content is based on works of Kevin Shirley and Jeff 

Knisley in [23]. More details can be found in this source. 

 

The curvature of a curve is calculated using unit arch length function of 

the curve. Remember 
t

s




 is a parameter for curvature. Assume r(u,v) is a surface 

and ( t) is a geodesic on it. The arch length [23] 
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 Remember that ’(t) is tangent vector of the curve and its normalized 

version gives direction vector T. Considering ''  = N; normal curvature n in 

the direction of n given by 

                   n = '' · n (Eq. 2.7)
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Curvature along normal direction; 
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ru and rv are orthogonal to n; 
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Referring to Figure 11; du/dt = cos() ru1 and dv/dt = sin() rv1. Here, 

 is the angle between ru and tangent vector, '. 
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Figure 11 – Tangent vector of (t) and its angle with ru [23] 

 

 After substituting, the curvature along surface normal; 
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    (Eq. 2.8)

 

 Obviously, curvature of a surface depends on the angle . This angle is 

between tangent vector of a geodesic and û direction. In other words, angle of the 

curve to û direction. For a continuous surface, there are infinitely many curves, 

geodesics, and the curvature changes continuously while   is changing. 

 Meaning of changing   is selecting another curve on the surface. Actually 

different curves cause different  but thinking as changing the angle causes 

different curve selection is also meaningful approach to understand relationships 
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between the angle and the curvature. As we select different curve, i.e. different 

angle, we will have different curvature. In Figure 12 below, different selections of 

curves on the surface and their normal planes are shown. As mentioned, all of the 

curves have different curvature at the point on the surface.  

 

Figure 12 - Different curves on surface and principle curvature geodesics. 

 

2.3.6 Principle Curvatures 

Selecting different geodesic causes different curvatures. The angle is 

changing between [0~]. Observe that, curvature is periodic with [0~]. Let 

revise the formula [23]; 

 

Max Curvature geodesic 

Min Curvature geodesic (Line) 

Other geodesic 

Point on the Surface 
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 The curvature function is a sinusoidal wave with a phase shift. Its dc 

(mean) and ac components are n  and mA , respectively.  

If we plot the curvature values in the range; 

 

Figure 13 – Changing of Curvature with  

 

 The peak values of the wave; 

mnmn

mnpeak

AA

A









21

 

 Two peaks of the wave, 1  and 2 , are known as principle curvature of 

the surface and, they are considered as an intrinsic property of surfaces in 

differential geometry. Indeed, if we consider Figure 12 again, it is shown that the 

one of the curve has maximum curvature, it is along x direction, and one of them 

is just a straight line, i.e. 0 curvature, it is along y direction. These two values 

provide an important clue about shape of the surfaces.  
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2.3.7 Mean and Gaussian Curvature Based Surface Classification 

Johann Carl Friedrich Gauss (1777-1855) has proposed Gaussian curvature, 

K, to have information about a point on the surface just existence of knowledge 

1  and 2 . The Gaussian curvature; 

                   21  K   (Eq. 2.9)

 

 Gauss classified the points on the surface as flat, elliptical and hyperbolic. 

If principle curvatures are zero, K=0, no change occurs near the point and 

obviously the plane shaped surface exists at the point. If both have the same sign, 

positive or negative, then K>0 and point is spherical. If K<0, i.e. different signed 

principle curvatures, the point is hyperbolic. The classifications are summarized in 

Table 1. 

 

Table 1 – Gaussian classification of surfaces. 

Plane K~=0 

 

Elliptical 

K>0 

Both principle 

curvatures have the 

same sign. 
 

Hyperbolic 

K<0 

Principle curvatures 

have opposite signs. 

 

 

 Behind Gauss Classification, mean of the principle curvatures, H, provides 

some information about point on the patch. If mean curvature is positive, the 
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tangent vector turns clockwise and concave shape occurs at that point. Otherwise 

convex curvature is present.  

                     
2

21  
H  (Eq. 2.10)

  

Using both H and K in surface classification is proposed by P.J. Besl [3]. 

This approach is better way for classification and it is widely used. For example, 

usage of only Gaussian curvature can not provide recognition of cylindrical 

surface as in Figure 12, because one of the curvatures, also K, is zero. Mean 

curvature together with Gaussian curvature provide more types for classification. 

The available types and their visualizations are shown in Table 2. 

 

2.3.8 Derivation of K and H 

For a surface, defined by ),( vur , Gaussian curvature, K, value [23]; 
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Table 2 – Available classifications in HK segmentation. 

Sign of H Sign of K 
Local (around the point) 

Surface Shape 
Visualization [24] 

0 0 Plane 

 

+ 0 
Concave Cylindrical 

(Valley) 
 

- 0 
Convex Cylindrical 

(Ridge) 
 

+ + 
Concave Elliptical 

(Pit) 
 

- + 
Convex Elliptical 

(Peak) 
 

0 - 
Hyperbolic 

(Minimal Surface) 
 

- - 
Hyperbolic 

(Saddle Ridge) 
 

+ - 
Hyperbolic 

(Saddle Valley) 
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Unit Normal vector, n; 
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 The formulas above are extracted for any parametric surface. In our 3D 

range map definition, surface points are represented by; 
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 Note that, surfaces depth value, z, is actually a function of x and y. The 

parameterization by u and v defines the x, y and indirectly z values. For defined 

range map; 
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Second derivatives; 
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Unit normal vector, n, in our parameterization is ru×rv; 
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Then K; 
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Similarly H; 
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These two formulas can be revisited by defining common variables; 
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 These notations will be very useful for implementation process. 

 

2.4 Real Time Concept 
 

Digital signal processing has been very popular for past years. The DSP 

algorithms are designed by mathematical tools in computers and usually 

implemented using software in computers again. Most of the case, output validity 
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is already known and it is the first verification test for both design and 

implementation time. This approach is meaningful because beginning of the 

project, the output accuracy is the most wanted requirement. If the 

implementation provides somehow necessary speed in software or in hardware, 

the design seems to meet all criteria. Indeed, algorithm designers usually do not 

consider implementation platform while designing. However, most of the time, 

especially in software implementations, the platform is very important, because 

computer architectures may differ from platforms to platforms. Speeds of RAMs, 

CPU frequency, main bus architecture, cache size etc… are very significant 

quantities for speed requirements. Also, in multi threaded environments, operating 

system and other running processes affect performance of algorithms. Therefore, 

before starting to implement an algorithm, it is very essential to know the speed 

requirements. If a real time running prerequisite exists, the algorithm 

implementation is changed according to the target requirements, both output 

validity and speed.  

Basically, there is no exact definition of real time concept. The condition is 

given by the target algorithm. For example, a person tracker system in a garden 

may process at the rate of 1 frame/sec. On the other hand, for a vehicle tracker, 

this is very slow rate, since the vehicles move much faster than people. Therefore 

real time criteria and the expected outputs of system should be decided together at 

the beginning of the project. 

The next step of real time design, after the requirements are decided, is 

algorithm development according to target platform. During design time, if the 

speed requirement is discarded and only providing a valid output is considered, it 

is very hard to achieve real time processing at the end of system realization. In 

this case, changing the target platform according to developed algorithm is usually 

used. Unfortunately, this approach does not work always. Finding very fast 

processors or hardware may be impossible or it can be very expensive. Therefore 

the best way of a system design is deciding both output and timing criteria 

altogether and then starting to development considering both criteria together.  
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2.4.1 Hardware & Software Partitioning 

According to requirements, hardware/software partitioning should be 

determined. Software and hardware partitioning is a very meaningful approach for 

complex system design. Cost of developing all algorithms in software can be too 

much, or it can be impossible. One processor makes one computation at a time. 

The increasing of clock frequency may not enough to deal with timing 

requirement. Increasing processor count also increases both money and power 

costs. Also, parallel programming in software is not an easy approach. On the 

other hand, using only hardware to realize an algorithm would be a very heuristic 

try. Digital design is much harder than software and it is not useful way for 

algorithm developing. The algorithm should be already confirmed and it must be 

developed according to hardware facts. An untested algorithm can not be 

successful in hardware. Another hardware design struggle is required design time. 

Hardware designs take much more time than software designs. 

The first key point of partitioning is parallelism. Trying to implement a 

sequential algorithm in hardware, even using pipelined architecture, may not be 

useful when considering design time and output accuracy. For these types of 

algorithms CPUs are more useful. Before starting hardware design, the parallel 

running stages should be constructed and these stages should be designed 

according to hardware facts. Another key point is recursive callings. A pure 

recursive algorithm should not be implemented in hardware. The recursive 

algorithms are fit to software; they are not so suitable for hardware design. If the 

hardware stages of the algorithm contain a recursive case, the stages should be 

revised and the algorithm should be changed. Thirdly, control of algorithms and 

systems should be kept in software. One of the main advantages of software is its 

flexibility. Changing software code is easy, so using state machines in hardware 

for algorithm control is not a good approach. 

The partitioning approach has been researched and many algorithms have 

been implemented in this way by many researchers. An example of fixed point co-

processor for floating point conversion has been performed in [25], and the 

researches continue in this science.  
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2.4.2 Real Time Criteria in HK Analysis 

In feature extraction, time requirements depend on what purpose the 

features are used for. For an elementary object recognition, 100 msec processing 

time for a single frame is sufficient. Humans can not recognize object in 100 

msec, therefore it is enough to have a valid output in curvature analysis for object 

recognition in this aspect. Of course, for different purposes, 100 msec. may not be 

adequate. In this thesis, we use 100msec/frame limit for real time curvature 

analysis. According to timing condition and speed measurements of software 

based curvature feature extraction, it is very useful to develop a hardware 

curvature processor. As already mentioned, real range maps are generated in 

hardware [17, 18]. The next step is processing the maps in hardware and 

providing features to software to decrease the processing load. 

 

2.4.3 Real Time Hardware Platforms 

Hardware design can be implemented in many platforms, such as ASICs, 

CPLDs, FPGAs etc... Today, the most preferred hardware design realization 

platform for testing purpose is reconfigurable FPGAs. Reconfigurable FPGAs are 

not one time programmable lgogic devices and their logics are designed by higher 

level hardware description languages, HDL. Also the designs can be converted to 

other platforms, supporting HDL. ASICs are application specific and they are not 

a programmable device. They are a custom logic device, but faster than FPGAs. 

Also ASIC design requires much more time than FPGA design. Therefore we 

prefer to use reconfigurable FPGAs to realize the hardware algorithms. The used 

HDL is VHDL.  

 

2.5 FPGA Basics 
 

Field programmable gate arrays, FPGAs, consist of configurable logic 

blocks (CLB), clock managers (PLL, DCM), on chip memory (BRAM), hard 

multipliers, summers and a matrix formed interconnection grids. Also modern 
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FPGAs have hard Ethernet MAC, PCI-E and hard processors etc… CLBs are 

configured according to desired application and logic elements of the design are 

constructed. These logics are connected via programmable interconnection lines. 

Therefore a high flexibility is achieved on a single device. Also FPGAs have 

dedicated memories and FIFO elements. Merely all logic designs require small 

memories or FIFOs. These elements are connected to designed logics (CLB) again 

via interconnection lines. Also, for signal processing application, FPGAs have 

hard DSP chips, providing fast multiply and accumulate logics. Moreover, the 

next generation FPGAs have hard processors. The processors and logic circuits in 

a single chip open System on Chip, SOC, era in electronics science. With these 

advantages, FPGAs are starting to be a very powerful hardware implementation 

platform.  

 

 

 

Figure 14  – FPGA design flow. 

 

 A typical FPGA design flow is shown in Figure 14. The algorithm is 

developed by mathematical tools, simulated in higher level software, MatLab for 

example. The algorithms should be in, of course, hardware sense. Then the HDL 

is prepared. Using schematic, Verilog or VHDL is possible. The next step is 

Hardware Design in 
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MAP 

Synthesis 

Download and 

Verification 

Place & Route 

Algorithm Behavioral 

Simulation 
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behavioral simulation. In this step, the outputs of behavioral simulation of the 

HDL code should be match with outputs of the algorithm. Otherwise the revising 

is required. When the behavioral simulation is finished, hardware realization can 

be started. The first stage is synthesis. In this stage, the HDL code is converted 

into logic components, gates flip-flops etc… Sometimes HDL may contain non- 

synthesizable codes or synthezing may not be possible for the codes. In this case 

HDL is revised again. If synthesis is finished successfully, the logic design can be 

transferred to the target FPGA. For this purpose, a mapping is started; elements of 

the logic circuit are mapped to target FPGA’s elements. Unfortunately, if the 

design has too much elements for target FPGA, mapping fails. The design must be 

revised to have lower logic elements or the FPGA must be changed with a higher 

density chip. The last realization step is place and route. Here, the mapped logic 

elements are placed according to the required frequency of design and then they 

are routed, connected. The CLBs are static in the chip, therefore putting which 

logic circuits into which CLB to achieve desired frequency as the result of 

connections requires a brilliant algorithm and it takes time. Sometimes, designed 

circuits can not reach the required clock frequency and place and routing fail for 

target FPGA. Again, the failed connection has to be revised and the timing 

problem must be solved. After hardware realization is completed, the chip is 

programmed and output verification is made. The outputs may not match with 

behavioral simulation. Usually it is due to clock latency of used hard logic 

elements in FPGAs. Using internal signal browsers in the chip, the problem can 

be solved. 

 Obviously, any problem in any stage causes restart of the whole design 

flow, again. This time consuming process is one of the biggest disadvantage of the 

hardware implementation.  

 

2.5.1 Used FPGAs 

Implementation of digital curvature processor has been performed in two 

different FPGAs on two development boards, XILINX ml403 and ml505. 

Performance of the design is measured on these two boards. ml403 has DDR 
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SDRAM at 200MHz and ml505 has DDR2 SDRAM at 400MHz. ml403 has less 

on chip memory than ml505. The first version of DCP implemented on ml403 and 

the second version, which requires more on chip memory, is implemented on 

ml505.  

 

2.6 System on Chip (SoC) Design 
 

System on Chip design strategy has started to be a popular system building 

approach recently. Especially, both increasing importance of hardware software 

partitioning and improvements in FPGA technology boost SoC design strategy. In 

this approach, the software and hardware are integrated into a single chip. One or 

more processor implemented in FPGA provides software realization while 

hardware logics are running in the same chip. The FPGAs having dedicated hard 

processors provides faster processing speed in software. Also HDL based 

processors, known as soft-processors, are also very useful because there is no 

limitation of CPU count. Multi processor based single on chip designs in FPGAs 

has been researched by many scientists and many design have been proposed for 

different image and video applications [26, 27].  

SoC design architecture adds another design flow into FPGA design steps. 

In Figure 15, a SoC design steps are shown. The new flow includes both hardware 

and software development phases. The generated software codes can be 

downloaded into memories in FPGA or the external memories, SRAM, DDR 

etc…  

In digital curvature processor, SoC design has been used. In the following 

chapters, the design and its realization are explained. 
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Figure 15 – Hardware software partitioning and System on Chip design flow in FPGAs. 
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CHAPTER 3 

3 DIGITAL PROCESSING & 

HARDWARE IMPLEMENTATION 

 

 

In this chapter, the requirements of hard curvature processor are decided and 

design strategies for these requirements are explained. The design steps are 

compared with software based approaches. Details of expected errors resulting 

from approximations are also given.  

 

3.1 Mean and Gaussian Curvature Computation in 
Discrete Domain 

 

In previous sections, continuous time principle curvature calculations are 

explained. Mean and Gaussian curvatures depend on principle curvatures and 

their derivation are already given. Digital processing, on the other hand, involves 

discrete samples and discrete computations. Therefore the derivations in 

continuous domain, for H and K, should be considered in discrete sense. 

 

3.1.1 Estimation Techniques 

In discrete domain, two basic approaches for calculation are available. The 

process may contain estimation of differential arguments in the H and K formulas, 

Eq. 2.11Hata! Başvuru kaynağı bulunamadı.. In this case a surface fitting 

approach, Spline based estimation or other techniques provide differential 

arguments. The second way is directly estimation of principle curvatures and then 



 

 37

calculating mean and Gaussian curvatures. Remember that Gaussian curvature is 

product of minimum and maximum curvatures, Eq. 2.9 and Eq. 2.10. 

Flynn and Jain [28] have already worked on digital estimation of curvatures. 

Their research is very helpful for comparing the estimation techniques. In digital 

curvature calculation, the most preferred and good technique is surface fitting and 

it is also proven at that work. One usage of surface fitting is available in [6]. 

However these types of techniques, surface fitting or Splines etc… require too 

much computation and involve inverse matrix operations. These computations are 

not proper in hardware design. To overcome the disadvantage, we prefer 

numerical approximation techniques. Searching in different angles to determine 

principle curvatures can be used or directly approximation of first and second 

derivatives can be possible. The former, again, contains more computations than 

the latter. Also, in this work, we are using a Monga patch, graph surface range 

map, therefore we prefer to use directly estimation of differential arguments. H 

and K formulas in Eq. 2.11, derived in the previous chapter; 
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Note that, the curvature depends on only differential arguments. The 

required estimations are; 

xyyyyxxx ZZZZZ  
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3.1.2 Noise on Surfaces and Definition of Classification Type Ranges 

As we deal with real surfaces, we have to face some noise on the patch. 

Even on a plane, we have some roughness. Actually, in real life, the plane 

definition disappears, because all surfaces, and planes, are constructed by other 

small surfaces. The definition of plane, in this context, depends on how much 

irregularities you accept for flatness.   

More obvious explanation can be given by a straight line in 2-D domain. In 

Figure 16 below, a perfect line is shown in (a), and a noisy line is in (b). It is still 

a straight line because it is in the defined ranges, dashed thresholds. The ranges 

are bending limits, i.e. curvature, which is convexity or concavity information, for 

straightness. In (c) the curve exceeds the thresholds therefore it is not a line. 

 

 

Figure 16 – Bending thresholds in 2-D. 

 

The appearance of a real surface, in discrete domain, is shown in Figure 17. 

The closer appearance is also given in (b). Obviously, a close looking to the plane 

makes visible the roughness on the surface.  

a b c 
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a 

 
b 

Figure 17 – A closer look to a planar surface makes irregularities more visible 
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 Reason for roughness can be shape of the surface, i.e. the surface is not 

flat, or it might be due to measurement errors at range map generation step. To 

deal with these noises, usually a low pass filtering applied and some thresholds 

are defined. 

 

3.1.3 Filtering Range Data 

A low pass, smoothing, 2-D filter may help us to overcome large 

irregularities on the range map. However, filtering suppresses the details and 

smoother the edges. Also, filter size and coefficients depend on application and a 

general purpose filtering is not helpful in real curvature analysis. Therefore 

filtering hardware is outside of curvature processor and it is a separate logic, 

depending on application. The curvature processor accepts smooth enough range 

data as input signal. It applies thresholds to overcome the noises. The block 

diagram of the architecture is shown in Figure 18. 

 

Figure 18 – DCP and Range Map Generator connectivity 
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3.1.4 Thresholds 

Mean curvature, H, is used to decide concavity of the curve. Therefore a 

threshold for H determines straightness ranges. In Table 2, effects of H on surface 

classification can be easily seen. Defining thresholds and a new H, sign of H; 

 

                       


 


otherwiseHsign

ThHTh
H

)(

0
 (Eq. 3.1)

 

 Using 2 different thresholds, for positive and negative H, can be possible. 

In that case, convex and concave decision limits are independent. In this work, a 

single threshold is used. 

 As the same manner, Gaussian curvature decides whether surface is 

bended in two directions or not.  The thresholds for K, therefore, acceptance limits 

of curvature along both principle directions. New K definition;  

 

                    


 


otherwiseKsign

TkKTk
K

)(

0
 (Eq. 3.2)

 

 In different sources, some relations are found between Tk and Th values. 

The relation arises from the mathematical relationship between H and K values. 

However, using a static relation reduces flexibility of design. Therefore in 

curvature processor, two independent thresholds are available as it is seen in 

Figure 18. The upper level algorithm, user of the processor, can change the 

thresholds independently. 
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3.2 Hardware Based Digital Curvature Processor 
Proposal 

 

3.2.1 Real Time Requirements 

As in all designs, the first requirement is output validity. Digital curvature 

processor should provide a valid, expected, output. For the same inputs, hardware 

outputs of the algorithm should match with its simulation outputs.  

The second requirement is speed. To provide a real time running for object 

recognition, 100msec/frame is enough, where analysis and generations of all scale 

spaces are included. 

 One of the important requirements is stability in timing. The DCP, digital 

curvature processor, should provide its outputs always in the same time spans. In 

other words it should have the same speed in each running, independent from 

input signals.  

 Additional hardware requirement is maximum running frequency in 

FPGA. In our design, two different DCPs are designed and their running 

frequencies are; 

FPGAs 

DCP Type 

xc4vfx12-10ff668 

(XILINX ml403 board) 

xc5vlx50t-1ff1136 

(XILINX ml505 board) 

DCP 1 100MHz 
100MHz (Implemented) 

110MHz Max. 

DCP 2 - 
75MHz (Implemented) 

89MHz Max. 

 

3.2.2 Control of Parameters 

Another facility of digital hardware can be its flexibility, reconfiguration 

while running. The hardware should provide changing its parameters to its owner. 

A block representation is shown in Figure 19. Start and reset, of course, is one of 

the basic controls. The important parameters, thresholds and scale space count, are 

also provided as inputs.  
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Figure 19 – Configuration of DCP by upper level user. 

 

 The thresholds are configurable while DCP is running. As we are 

proceeding with the chapters, we will provide details of parameters and signals.  

3.2.3 Range Map Data Format and Quantization 

Range map contains 4 fields, as shown in Figure 3. Three of them, x, y and 

z, are range information. In software applications, these fields are usually floating 

point, IEEE 754, representations. However using floating point units for all 

calculations utilizes too much logic unit in FPGA. Therefore it is preferable to use 

fixed-point representations. Multiplication and summation is much easy in fixed-

point numbers. Also any standard VHDL synthesizers deal automatically with 

design of these arithmetic units. They use embedded DSP slices in the FPGA, so 

without worrying about too much detail, designers can realize the algorithms.  

As already mentioned in the previous chapter, fixed-point number may 

cause quantization errors in range data. In this work, range data fixed-point word 

length is 10, fraction length is 3. The numbers are unsigned. An example 

representation of 65,125 is; 

 

Word Length (Wl=10) 

1 0 0 0 0 0 1 0 0 1 

 Fraction Length  (Fl=3) 

 

DCP 

Upper Level User 

Range Data 

Generator

Controls 

  -Thresholds 

  -Scale Space Count 

  -Start/Stop 

Stream 
Data 

Flows 
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 The ranges of the representation is [0~127.875]. Note that in decimal 

numbers a 10 bit unsigned number can represent [0~1023]. 

 The range map is a graph surface and it is; 

),(),(

),(

),(

),(),( vuvu YXZyxZz

vuYy

vuXx





 

 We already defined unit steps of x and y as X  and Y . The sampling 

errors are X  and Y . 
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 In our hardware implementation, unit steps of range map are defined as; 

1 YX  

 In this thesis, we assume that 0x  condition is always ensured. In other 

words, we do not accept error in sampling. Assumption of 1 YX  converts 

the range map to a graph surface, as in Eq. 2.3.  

)),(,,(),(
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vuZvuvur

vuZzvyux

yxZzyvvuyxuvux
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


 

 Range map data cells, x, y, z and valid/invalid flags, are merged into a 32 

bit big-endian word. The word format is; 

32 bit big-endian 

Empty Valid/Invalid Z Y X 

1 bit 1 bit 10 bit 10 bit 10 bit 

 

 By this way, in a 32bit CPU containing design, SoC design, the CPU and 

DCP may access the range data via multi user access memory. This approach is 

used in this design. 
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 If graph surface condition is not satisfied in the range map, bilinear or 

bicubic interpolation techniques can be used to eliminate error in x and y data, as 

already mentioned in Figure 5 in Introduction chapter. 

3.2.4 Real Time Stream Signal Input and Parallelism 

Real time processing requires streaming analysis. Software based 

curvature algorithms use chunk of range map data, i.e. they need whole of range 

data. On the other hand, in hardware we prefer to use signal vectors, including 

consecutive samples. Using chunk of data in hardware is still possible, but in this 

case real time operation can not be possible. Implementation of mass data 

processor may be still faster than software approach, but it is not a desired way of 

hardware implementation at all. 

Parallelism is the most important benefit of hardware design, and FPGAs. 

Therefore, digital signal processing in hardware, the algorithms, naturally, must 

be able to be partitioned into parallel sections. Also some sequential sections can 

be parallelized. The DCP processes 8 consecutive samples in parallel. We define 

input signal, vector, R, as; 
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 Graphical demonstration of the collection of all vectors is shown in Figure 

20. This demonstration explains how a range map stays in a computer memory. 

The organization is an example illustration and it may change in different 

applications. Obviously, in Figure 20, all vectors, i.e. chunk of data, are available. 

Conversely, DCP use only one vector at a time. Size of the vector, R, is 256bit, 

32x8. In Figure 21, input versus time graphic is given. DCP accepts input samples 

as stream vectors. 
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Figure 20 – 128x128 range map organization in a RAM 

 

 

Figure 21 – Vector flow between Range map generator and DCP 
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Stream data input in DCP also forces range map generator to obey stream 

data timing scheme. Therefore a proper interface is required between range map 

generator and DCP. To keep synchronization in input, DCP provides a few control 

signals to range map generator. Also an address decoder is added into DCP. With 

the help of the addressing decoder and a RAM controller, DCP can be used on 

chunk of data in RAM. Two different possible usage of DCP is shown in Figure 

22. In both applications, DCP takes sample vectors as shown in Figure 21, 

streaming vectors.  

Figure 22 – DCP application with range map generator (top) or a RAM (bottom)  

 

 

Figure 23 – Timing diagram of interface signals 
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 Timing of synchronization signals are given in Figure 23. Once 

Read_Cmd signal is asserted, DCP is ready to accept R vector. A ram controller 

or a range generator puts R and asserts Read_Done. Address signal is for RAM 

controllers and it is synchronized with Read_Cmd signal. Also a Frame_Done 

signal is available for frame synchronization. All signals are active-high. 

 

 

Figure 24 – Control signals for synchronization between DCP logics. 

 

3.2.5 Pipeline Scale Space Analysis 

It is desired to analyze curvatures of surface in multiple scale space levels in 

this project. Achievement of multiple scale space analysis in DCP has been 

designed as follows;  

One instance of DCP analyzes only one scale space. The desired scale space level, 

i.e. scale space no, should be provided to DCP, as an input parameter. Also input 

vectors should be proper for the scale space level. Generation of the scale space 

range map vectors, therefore, must be generated by another DCP.  As a result, 
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each DCP processes its scale spaces vectors and also it generates vectors of next 

scale space level at the same time. Obviously, this approach differs from usual 

scale space analysis techniques.  

 

Figure 25 – Pipeline usage of DCP for scale space analysis 

 

Almost all applications using scale space technique, like SIFT, SURF, first 

generates all scale spaces, and then processes them. Here a different approach has 

been proposed. Required new signals and new appearance of DCP is shown in 

Figure 24. Note that, the synchronization between DCP logics is also a new 

requirement. Synchronization is the same as in range map generator interface. 
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Example of multiple instance of DCP is shown in Figure 25. Number of 

DCP is scale space level count, depending on range map size. Each DCP 

generates its outputs independently with a small phase difference, which will be 

explained later. 

Using only one instance of DCP can also be used to process all scale spaces. 

This approach requires a RAM Interface and a small controller, provides a 

multiplexer, run and scale space number signals. The usage example is given in 

Figure 26. 

 The reason for using only one DCP may be logic utilization in FPGA chip. 

If the chip is small, only one instance can be used. For large chips, using multiple 

DCP is more meaningful. In demo boards, FPGAs are small and therefore one 

instance is used. 

 

Figure 26 – Single DCP usage for scale space analysis 

 



 

 51

3.2.6 Gradient Outputs 

DCP can also provide gradient outputs, if it is programmed. There are two 

reasons of serving gradient vectors at output. Gradient vectors can be used for 

debugging. While developing, seeing values of gradient vectors are very helpful. 

Another reason is that upper level algorithm can use these vectors whenever it 

needs.  

If the gradient outputs are written into a RAM, the processing takes more 

time, of course. Also, providing these values at output uses more logics in FPGA. 

Therefore, two different DCP versions are available, gradients available or not. 

One more address logic is added into DCP for addressing of output vectors into 

RAM. Of course these signals are just for RAM controller. Static asserting of 

these signals converts DCP to stream running mode. 

 

Figure 27 – Gradient output and address decoder supported DCP and IO signals 
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 New address and control signals of outputs are shown in Figure 27. 

Timing diagrams of the signals are also given in Figure 28. Two different versions 

of DCP have different signals and timings at outputs. The gradient vector 

providing DCP is slower. 

 The overall IO signals of proposed DCP are shown in Figure 27. This 

logic, or IP Core, is used for analyze surfaces. 

Figure 28 – Output signal flows of two different DCP, gradients available in top design. 

 

3.3 Non-Causality Problem in Range Map Processing 
 

Curvature analysis of a graph surface requires calculation of following 

quantities, in Eq. 2.11; 

xyyyyxxx ZZZZZ  

 These values are derivatives of a discrete point in range map. Also 

generating scale space levels requires a 2-D kernel. For a 2D 2x2 kernel, the filter 

equation; 
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Whichever sample is current input, the filter will always require future 

sample of range map, because the samples come along û direction. Therefore the 

filter equation is not causal. As shown in Figure 29, if samples come along v 

direction, we still have non-causal system. In that case u samples will be future 

samples.  
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Range Map in  
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Figure 29 – Scale space kernel. 

Derivative of a discrete function, f, at sample n can be approximated as 

follows; 

     
2

11 
 nfnf

nf  

Obviously, derivative functions also require future samples. Therefore they 

are non-causal.  

For scale space generation, using delay lines helps us to deal with the non-c 

causality. The detailed solutions of this problem have been proposed in following 

sections. 

 

Sample 

direction 
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3.4 Digital Curvature Processor Type 1 
 

As mentioned previously, two different digital curvature processors have 

been developed. In this section, the first type is explained.  

 

Figure 30 – Logic architecture of DCP type 1 
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In this DCP, less BRAM and logic utilization is aimed. Its implementation 

is easier and it requires less logic than DCP type 2. However, its output is less 

accurate than the other. Also, this DCP has no latency between its input and 

output. 

The logic design of DCP type 1 is shown in Figure 30. The address 

decoders are for RAM controllers and they are not useful for Range Map 

generators. System controller checks input signals, run, reset etc… and generates 

synchronization signals for range generator or next scale space DCP. Debug ports 

are demonstrated as independent parallel outputs but they are serialized in the 

logic and served in a single port as already shown in Figure 28.  

 

3.4.1 Derivative Approximations in Hardware 

In this type of DCP, the first and second derivatives of a discreet point, say 

u and v, with respect to x and y, is approximated as follows; 
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(Eq. 3.3)

 Remember, already define x=u, y=v. This approach is not an exact 

approximation of derivatives. Indeed, the first derivatives are a noisy sub-pixel 

derivative approximation. And then, second derivatives are much noisier. 

However, as seen, causality has been provided in these equations.  

 Let’s visualize the derivatives in hardware; 

 

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9      0,15 0,16  

1,0 1,1 1,2 1,3    1,7 1,8          

                  

                  

Figure 31 – Input vectors used for derivatives 

 

R8 
R1,0=R128 R0,0=R0 
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 DCP takes 8 consecutive samples in an R vector. Therefore du calculation 

is easy. Only requirement in du is keeping last sample in R. Because derivative of 

flowing vector requires the last sample of previous vector, the dark gray samples. 

Therefore the Du logic in Figure 30 has a register to keep least sample. As new 

vectors coming, first derivative is calculated and then the register is updated. 

When u=0, the register is cleared. The first derivative, the left border, is always 

equal to input signal. The derivative of 8 samples is calculated at the same time, in 

parallel. Note that input vector is unsigned 10bit and output is signed 11bit. 

 Taking dv is not easy because the equation need previous samples in the 

previous row. Therefore a delay line, light gray in Figure 31, is required. 

Registering, delaying, whole row is not a good approach. The row contains 

256x128 bits. Therefore a Block Memory, BRAM, in FPGA is allocated in Dv 

logic, as seen in Figure 30. Detailed diagram of Dv logic is given in Figure 32. 

When a new vector arrived, the logic first calculates address of BRAM using u 

value, then reads the vector in the previous row. Under knowledge of current and 

previous rows, following calculation is made in Parallel Substractors; 

        BRAM from read:,1,,1,, uvRuvRuvRuvRv   

 For example, following equation gives    1280,1 vv RR   as shown in 

Figure 31; 

     0128128 RRRv   

 After the derivative calculated, the logic writes current vector into BRAM. 

Again input vector is unsigned 10bit and output is signed 11bit. 

 Dvv, Duu and Dvu logic are designed as the same manner. The input and 

output signal lengths are increased by 1 bit. 
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Figure 32 – Dv derivative and scale space block logic diagram 

 

 In this design only one row is saved into BRAM. Therefore BRAM 

utilization is not so much. Also we do not use any dividers or multipliers. We 

require only 8 subtractors in each of derivative logics. 

 As already mentioned, one disadvantage of this approach is the 

approximations cause noisy estimations, derivatives of sub-pixels. Another 

disadvantage is derivatives of first two rows and columns of range map, i.e. left 

and top borders, are not calculated. 

 Scale space calculation also requires the previous rows. Therefore scale 

space calculation core is embedded into Dv logic, as seen in Figure 32. 

3.4.2 Hardware Scale Space Technique 

DCP scale space algorithm uses a 2x2 kernel and decreases size of the 

input by half. Graphical view can be seen in Figure 29. The following filter 

equation is used for scale space generation; 

Block Memory 
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 All of the coefficients, k, is selected 0.25. Multiplication with this number 

is actually division by 4. An easy and fast implementation of this equation is 

designed as follows; 

 Convert the equation to; 

4/)( 12,122,1212,22,2
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n

uv
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uv
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uv
n

uv
n

uv RRRRR 
   

 Summation of four 10 bit signals can be maximum 12 bit.  The samples of 

scale space output are unsigned 10 bit. The logic diagram is available in Figure 

33. 

 One vector along û direction, contains 8 samples, provides 4 samples of 

the output. Therefore, the next vector is required to generate 8 samples at output. 

Second bit of u gives position of current 4 samples at output signal. The selection 

logic puts 4 samples to first or last 4 signals of output vector according to u(2). 

 

 

Figure 33 – Scale Space generation logic 

 

 Using the signal connection technique, ignoring first 2 bits of 12bit signal, 

division by 4 is achieved. By this way, no division logic is used. Also one clock 

cycle, just for summations, is enough to generate output for the next level DCP. 
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 Scale space generator requires previous row vectors. Scale space generator 

is embedded into Dv logic because we already write the same row into BRAM in 

Dv. Using the integration, unnecessary BRAM utilization is avoided.  

 

3.4.3 HK Calculation 

After the derivatives are calculated, HK analysis logic generates desired 

surface classification types using the derivatives, as seen in Figure 30. Indeed the 

only requirement for curvature calculation is knowledge of partial derivatives, in 

Eq. 2.11; 

xyyyyxxx ZZZZZ  

 Referring the Table 2, classification depends on only sign of H’ and K’ 

values. Remember that using threshold ranges, H is converted to H’ and K is 

converted to K’.  The summary of the equations is; 
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 Using fixed-point numbers, here, causes a disadvantage. Unlike floating 

number representation, multiplying the fixed-point numbers increases output bit 

length. Length of the output is sum of bit length of multiplied numbers, without 

sign bit. In the formulas, both H and K calculation includes a division. If we 
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design divider logic, we utilize too much logic cells in FPGA due to too much 

divisor and dividend bit length. Also, providing a fast division speed is not easy. 

On the other hand, if we can use embedded DSP cells, including hard multipliers, 

in the FPGA, we can achieve more performance and we can utilize less logic 

components. For this purpose we should revise the formulas. What we need is, 

actually, sign of H and K. Considering Eq. 3.1 and Eq. 3.2, following formulas are 

used to get the signs; 
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 These equations are proper for hardware implementation. HK logic first 

generates e, g, f, E, G, F and norm variables using DSP48 logics in FPGA 

according to fixed-point length and signs as seen in Figure 34. Then, pipelined 

architecture calculates other variables, defined the formula above. 

Table 3 – Sign representation in 2’s complement form 

Sign Number (2 bit) 

0 00 

+ 10 

- 11 

(Eq.3.4) 

(Eq.3.5) 



 

 61

 

In last step, signs are extracted. Signs are 2 bit numbers and they are given 

in Table 3. 2 bit signed number in 2-complemet format is used and, in 2-

complement format, -1 is ‘11’. 

In this design approach, H and K values are never calculated. Only signs 

are extracted and this can be seen as a disadvantage. 

 Thresholds are directly related with H and K values. To determine the 

required thresholds, we should know these H and K values. For this purpose, 

using a special range map, including test pattern, we can extract H and K map on 

computer software. We test and simulate all equations, considering fixed-point 

representation, in MatLab software. In MatLab, generating H and K maps are 

possible. By help of the simulations, the threshold values can be easily determined 

on the maps.  
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Figure 34 – H and K sign extraction logic architecture. 

 

 The HK logic core utilize significant amount of DSP48 and logic cells in 

the FPGA. Beside of processing 8 samples in parallel, we may also use just one 

instance of this logic, and we can process the vector input sequentially using a 
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serializer and de-serializer, as seen in Figure 35. This approach is proper when 

less logic utilization is required. On the other hand, speed decreases significantly, 

8 of the previous case. 

 

 

Figure 35 – One instance usage example of HK Logic. 
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3.5 Digital Curvature Processor Type 2 
 

Second type of digital curvature processors, basically, deals with the 

problem of noisy derivative estimation. Here, another approach has been proposed 

for calculating the derivatives.  

In this DCP, more BRAM and logic elements are required. On the other 

hand, the output is more accurate than output of DCP type 1. 

 

 

Figure 36 - Logic architecture of DCP type 2 
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The block diagram of DCP type 2 is shown in Figure 36. The differences 

are in derivative calculations and in scale space generation logics. Here, a 

controller reads and writes to on-chip memories and it provides required signals 

for derivative and scale space generation.  

3.5.1 Gradient Approximations in Hardware 

Following discrete derivative approximations are used in this DCP; 
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 Obviously, to calculate current first and second derivatives, some samples 

in 2 rows later are required. Again, delay lines using registers are not proper for 

huge amount of data. Therefore we utilize some on-chip memory in the FPGA. To 

visualize situation, we may follow Figure 37. Required samples for derivatives of 

R2,8 and R2,15 are dark gray samples. In this application, the derivatives calculated 

belong to 2 rows before from current input R. Therefore a delay, about 2 rows, 

exists in this technique. Also, there is a latency of 5 rows. In other words, to get a 

valid output, first 4 rows must be stored and data of 5th row should be come. 

Another disadvantage is invalid approximations are generated for first and last 

two rows and columns.  

0,0 0,1 0,2 0,3    0,7        0,15 0,16  

1,0 1,1 1,2 1,3               

2,0        2,8       2,15   

3,0                  

4,0                  

Figure 37 – Required samples to calculate derivatives in DCP2 

Current Range Data Vector R 

(Eq.3.6) 
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 One advantage of this approach is accuracy of derivatives. They are 

reliable than the previous application. Also, note that, we generate the derivatives 

in a few clock and second derivatives are not dependent to first derivatives as in 

the previous approach, shown in Figure 30. Therefore, without pipelining, we 

generate derivatives at the same moment.  

 Another important point, here, is rounding operation in calculations. 

Discarding of beginning bits to divide the numbers by some powers of 2 causes 

floor operation in fixed-point number space. For example; 3.2 unsigned fix point 

number say ‘101’b is 5 in decimal and 1.25 in fixed point space. Let’s divide it by 

2; 

  5.0'010'1010
2

'101'

2

25.1
 b

b
drop  

 The division is 0.5 but actual division is 0.75. Clearly bit dropping causes 

a floor operation. If we design the logic considers dropped bit; 

  75.0'011''001''010''1''00'01000
2

'101'

2

25.1
 bbbBITFIRST

b
 

 Now, the output is more accurate, but a summer logic is required and the 

output has one clock latency. The rounding has a drastic effect at classification 

process. We have provided the outputs without rounding logic at “Rounding 

Operator Effect in DCP2” in “RESULTS & COMPARISONS” chapter. 

3.5.2 Hardware Scale Space Technique 

The scale space equation in this design is the same as in the previous 

design. The required samples are shown in Figure 37 at first 2x2 cells as heavy 

dark gray. 

 In this design, we do not integrate Dv and scale space logics. We directly 

generate scale space data and the controller provides required samples by reading 

from on-chip memory. Unlike derivative generation, there is no delay in scale 

space calculation, but one row latency exists.  

3.5.3 HK Calculation 

The HK calculation logic is the same in DCP type 1. 
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3.6 Surface Type Classification 
 

Unlike software approach, in hardware, we do not need any computation to 

put classification labels, available in Table 2, to surface points. Defining 2 bit sign 

signals for H and K help us to extract surface type. Again, considering 32 bit 

architecture for upper level system, we use the following word notation for 

surface classification output, C; 

 

Empty Empty Sign H Empty Sign K 

0xXXXX 00b 2bit 00b 2bit 

2 Bytes 1 Byte 1 Byte 

32 bit, 4 bytes (Big Endian) 

 

 As seen, first 2 bytes defines the classification and last bytes have no 

meaning in this context, written as X. Later we will use the last two bytes for 

different purpose. According to these definitions, the meaning of the output, C, is 

shown in Table 4. 

 

Table 4 – DCP Classification outputs 

Sign of H Sign of K C (32bit) 
Local (around the point) 

Surface Shape 

0 (00) 0 (00) 0xXX0000 Plane 

+ (01) 0 (00) 0xXX0100 Concave Cylindrical (Valley) 

- (11) 0 (00) 0xXX1100 Convex Cylindrical (Ridge) 

+ (01) + (01) 0xXX0101 Concave Elliptical (Pit) 

- (11) + (01) 0xXX1101 Convex Elliptical (Peak) 

0 (00) - (11) 0xXX0011 Hyperbolic 

- (11) - (11) 0xXX1111 Hyperbolic 

+ (01) - (11) 0xXX0111 Hyperbolic 
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3.7 Fast Square Root in Hardware 
 

As seen in HK analysis logics, a square root operation is required. In 

hardware, calculating square root is still a popular topic. In this project, we need 

fixed-point square root logic. 

Available square root algorithms are basically two types; iterative 

calculations and polynomial fitting approximations techniques.  

Many FPGA synthesizers provide CORDIC based square root calculation 

logic. However, CORDIC is an iterative computation and it is not so fast [29]. 

Any other iterative approaches, like Newton-Raphson method, can also be 

considered as a slow method. 

Polynomial fitting based solutions are also available. These kinds of 

solutions require many multiplier and adders, which abolish low resource 

requirements. To deal with this problem, multiply and sum method can be used, 

but this converts the algorithm to an iterative solution. 

Look-Up table based solutions are faster but if source number space is 

large, this approach becomes unpractical in today’s FPGA. Also, well known 

linear square root approximation formula, used in [30], is applicable only for 

small numbers. 

 Linear approximation of nonlinear functions allows us to utilize less 

hardware resources. There are some works on literature [31]. Lachowicz and 

Pfleiderer have proposed linear approximation method (first order polynomial) to 

evaluate square root function in hardware. Their implementation mainly deals 

with speed. That implementation calculates square root in 1 clock cycle. They 

used variable step look up tables to construct linear approximation for minimizing 

error. Bajger and Omondi also have worked on square root function [32]. They 

consider relative error using piecewise linear approximation. 
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Figure 38 – Purposed square root logic 

 

 In this thesis, a special least square linear approximation method is used to 

calculate square root of a number. The nonlinear square root function is divided 

into a few non-equal length intervals. The intervals are called as segments and the 

boundaries of the segments are called as nodes. Linear fitting coefficients are 

changed at each node point to minimize error in each nonlinear interval. Position 

of nodes depends on probability distribution of the input of square root logic. In 

HK logic design, we prefer to use this technique. This approach can be called as a 

piecewise linear discontinued fitting in defined intervals of square root line. 

Discontinuities occur at node points due to changing of the fitting coefficients, in 

Eq. 3.7. The plot is shown in Figure 39 and the logic diagram is shown in Figure 

38. Only one multiplier and summer is required for linear fitting and output 

latency is three clocks. Also, a look-up table is added for high accuracy required 

segments in fitting process. 

In this circuit, the square root function is approximated by; 

nosegment :)()()()( xxixix ibxayf   

 An example of discontinued approximation is shown in Figure 39. The 

discontinuities are not problem in HK calculation, because ‘norm1/2’ is multiplied 

with a number and there is no summation in the formula, Eq.3.5.  

 

Look-up table 

coefficient 

‘a’ 

Look-up table 

coefficient 

‘b’ 

Win 
Fin 
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y 
 

multiplier

Selection 

Direct look-up 
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 

summer

(Eq.3.7) 
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Figure 39 – Square root line and its discontinuous approximation 

 

 Remember ‘norm’ variable; 

)1(

)1(

22

22





yx

yx

ZZnorm

ZZnorm
 

 The input, norm, is a fixed point number, word length is 22 and fraction 

length is 6. The square root output is again fixed point, word length is 11 and 

fraction length is 3. 

 The probabilistic model is extracted by using simulations in MatLab 

software. A histograming is performed on enough real range maps and the 

distribution is extracted. Range of 22.6 unsigned fixed-point data is in between 

[0...65535.984375]. In this range, the input distribution is shown in Figure 40. As 

seen, distribution is populated around 500, and the most likely value is 1. This is 

an expected result because for a planar surface norm stays around near 1. First 

derivatives are about zero for a flat surface. Also we have nearly no data after 

8000. Smoothing of range map data makes smaller the first derivatives. Also, note 

that norm can not be less than 1.  

Approximation

Fixed-Point Representation
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Figure 40 – Input distribution of square root function, Wl=22, Fl=6  

 

 According to the distribution, we should divide the range [1…1000] more 

segments. With considering distribution and linearity of square root function, we 

choose 22 node points for linear fitting in square root logic, shown in Table 6. 

Also, plot of node points on square root line is shown in Figure 41. Note that, in 

first segment, i.e. between [0…64), the error is very high. This segment is very 

important, because most of the first derivative values are small and so “norm” is 

small, too. Consider that surfaces in range maps are mostly planes. A high error in 

this range makes threshold limitation useless and causes misclassification. 

Therefore, this segment is written into a look-up table, ROM, as seen in Figure 38. 

When the input is in this range, the output is taken from the LUT. Reason of 

keeping range of this segment is utilizing less on-chip memory of FPGA. 

Using fixed-point number causes a quantization error in representation. In 

Table 5, the quantization error is given for output, 0.0313 with respect to float-64 

format. Also, approximation coefficients, ai and bi, are kept in a look up table in 

fixed point notation and their word and fraction length affect the output accuracy. 

In Table 5, there are measurement of mean error for different selection of word 

length and fraction length of the coefficients. According to the table, 25.18 is the 

most proper selection. Therefore we use this word and fraction length for 

coefficients in square root logic. 
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Table 5 – Effect of coefficient quantization  

 

 

Table 6 – Selected node points for approximation in hardware. 

x y
0 0 

64 8 
128 11.375 
192 13.875 
256 16 
384 19.625 
512 22.625 

1024 32 
2048 45.25 
4096 64 
6144 78.375 
8192 90.5 

12288 110.875 
16384 128 
20480 143.125 
24576 156.75 
32768 181 
38912 197.25 
45056 212.25 
50176 224 
55296 235.125 

65535.9844 255.875 

 

 

Fixed-

Point 

(Wl=10, 

Fl=3) 

Coefficients 

Wl=27, 

Fl=20 

Coefficients 

Wl=25, 

Fl=18 

Coefficients 

Wl=22, 

Fl=15 

Coefficients 

Wl=20, 

Fl=13 

Mean 

Error 
0.0313 0.0742 0.0855 0.2569 0.9807 
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Figure 41 – Overall approximation and error in the first interval. 
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3.8 Thresholds 
 

As already mentioned, we define thresholds for H and K values, Th and Tk 

respectively to deal with surface irregularities.  

We determine the required Th and Tk by considering H and K values at 

desired point. An artificial surface and its H map are given in Figure 42. For the 

same points on a cylindrical surface, where K=0, in both plots, the H values are 

H1= 0.002695 and H2=0.02462. As we know, H represents concavity of the 

surface. A small threshold, i.e. less or equal to H1, provides more details about 

concavity but it may cause a noisy map. A large threshold, for example around 

H2, suppresses elliptical surface classification, as shown in Figure 42. 

 

H Map                                                                     Surface

Th= H2=0.02462                                                               Th= H1=0. 002695

Figure 42 – H and K values and threshold effect 

 

Resolution of Th and Tk are also important. Increasing bit length causes 

more logic utilization, but provides more accuracy in classification process. Bit 

length of Th and Tk is determined in MatLab simulations. After extracting of H 

Threshold 
Effect on 

Cylindrical 
Surface 

H1 

H2 
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and K maps in simulation for real and artificial range maps, constructed by 10.3 

fixed point numbers, we conclude that 11 bit fraction length is pretty enough for 

application. In DCP1, we aim to use low resources and DSP48, so threshold word 

length is 8 bit and fraction length is 6 bit, unsigned. The range and resolution of 

thresholds in DCP1; 

 3.984375...0:68

0.015625
2

1
6

rangeFlWl

resolution




 

In DCP2, thresholds are more sensitive, word length is 12 bit and fraction 

length is 11 bit, unsigned. The range and resolution of thresholds in DCP2; 

 753.99902343...0:1112

1250.00048828
2

1
11

rangeFlWl

resolution




 

 

 

 

 



 

 76

CHAPTER 4 

4 EMBEDDED COMPUTER & 

SOFTWARES 

 

 

In this chapter, it is aimed to explain the designed small computer to control 

DCP logic. Behind controlling of DCP, the computer provides an important 

interface between DCP and PC. A personal computer helps us to see and interpret 

the outputs. Possibility of putting some processing software, for example a 

connected component algorithm, to the embedded computer is another 

advantage. 

4.1 Computer Architecture 
 

XILINX microprocessor, MicroBlaze, is one of the powerful soft-processor 

in FPGA world. It is a 32bit, big-endian, Harvard type, RISC processor. In this 

SoC design we use this processor. The system bus is IBM PLB bus, provided by 

XILINX. Using this bus, the CPU reaches the peripherals, its instructions and data 

sections.  

In Figure 43, the system architecture is shown. The CPU has a bootloader in 

FPGA BRAM, initialized by FPGA bit stream. Required clocks are generated 

using a Digital Clock Manager. The CPU has a debug interface via JTAG 

connection. Another control interface is UART, 115200bps and connected to the 

system bus. We control the system via this UART module. Another UART is 

integrated in MDM JTAG module. We also use this UART as secondary control 

interface. 
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Figure 43 – Top level FPGA design 

 

 The curvature processor has no interface proper to IBM PLB architecture. 

Therefore, a PLB to DCP interface is required. This interface has an address map 

on the system bus and converts CPU signals to DCP parameters, such as run, 

thresholds etc… Also, it has a timer that measures the processing speed of DCP. 

 Another port of DCP is High Speed Memory Interfaces. We already 

design two addressing logics, for source and destination, in the DCP for RAM 
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controllers. We use them for DDR Memory in the computer design. The interface 

between DCP outputs and MPMC, XILINX multi port memory controller, not 

shown in the figure, provides reading and writing range map, scale space, 

derivatives and output data. 

 The missing part of this design is range map generator. Without range map 

generator, we can use DCP by help of this embedded computer design. We send a 

synthetic or real range data via embedded processor and we can download the 

DCP outputs into the PC. DCP can work alone, without CPU, if a range map flow 

is provided, such as using a range map generator in the same chip or via a high 

speed interface, 1Gbit Ethernet, PCI-E etc…  

 

4.2 Software 
 

Memory map is shown in Figure 43. Main software and source range data is 

in DDR memory. Also the scale space levels and outputs of each scale spaces are 

written into DDR by DCP via MPMC.  

A control software is integrated into the embedded system. This software 

provides, memory read, memory write, memory download to PC. It also provides 

Threshold controls, run, reset and scale space count settings of DCP via UART 

modules.  

 

4.2.1 Connected Component and Center of Mass Algorithm 

 Another software in the system is connected component algorithm. A 

basic connected component analysis is developed and integrated into the software. 

It gives labels to surface points. The labels are assigned to last two bytes of C 

vectors, as seen in Figure 44.  

The connected component algorithm is given in Flow 1. The algorithm 

searches on WidthHeight, area of scale space 0 surface type output, to find 

unlabeled pixels. If an unlabeled pixel is found, the 3D scale space connected 

component search is called. This function, firstly, learns surface type of sender 
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pixel. Then, it finds the same type of 3D neighbors of the sender pixel and calls 

itself recursively for these pixels. While putting the same label the connected 

pixels, also the area, the center x and y points are also calculated. Lastly, center 

scale, which can be a fractional number, is calculated by help of determined areas 

in each scale space.  

 

Labels Empty Sign H Empty Sign K 

0xXXXX 00b 2bit 00b 2bit 

2 Bytes 1 Byte 1 Byte 

32 bit, 4 bytes (Big Endian) 

Figure 44 – Connected component label assignment 

 

A demonstration is given in Figure 45. The numbers in the cells are 

surface classification types, available in Table 4, and cell colors represent groups, 

connected cells. 

 

4 4 3 0 0    

4 0 3 0 4   Surface 1 

0 0 0 4 4   Surface 2 

0 4 4 4 3   Surface 3 

0 4 3 3 3   Surface 4 

0 4 3 3 3   Surface 5 

0 3 4 4 4   Surface 6 

3 3 3 0 0    

3 3 0 0 0    

Figure 45 – Connected component algorithm output 
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Flow 1 – Connected component algorithm flow diagram. 
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SurfaceInfo.Area(ss) Number of connected the same SurfaceType in the scale space (ss). 

SurfaceInfo.cx(ss) 
sum of x values the same SurfaceType in the scale space(ss). 

(cx/Area is center of mass along x direction) 

SurfaceInfo.cy(ss) 
sum of y values the same SurfaceType in the scale space(ss). 

(cy/Area is center of mass along y direction) 

SurfaceInfo.cs Center of scale space levels. (calculated by areas in each scale) 
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CHAPTER 5 

5 RESULTS & COMPARISONS 

 

 

5.1 Output Validation and Comparisons 
 

In this section result of thesis and comparisons are supplied. Firstly, we will 

compare outputs of two DCP types with their MatLab simulation. In this way, we 

will prove the hardware of implemented algorithms. 

Secondly, we will compare outputs of DCP type1 and DCP type 2. Effect of 

gradient approximations will be examined in both artificial and real range data. 

Besides, we will see effect of quantization on range map, using different 

fixed-point representations. We will compare outputs of quantized range map with 

outputs of the software using float 64 data format. 

Another comparison will be about rotation. We will see whether the 

hardware is rotation invariant or not.  

DCP provides scale space analysis. Therefore, scale space outputs also 

should be considered. We will be interested in both scale space levels and their 

outputs. 

5.1.1 Notation of Classification  

To visualize surface classifications, colorful plots are used. Meanings of 

colors and their visualizations are given in Table 7. 

5.1.2 Simulation and Hardware Outputs 

Simulations of DCPs are implemented in MatLab® software. First, we 

develop hardware algorithm in the software, upon the implementation of it, we 
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compare the outputs, gradient, scale space and classification outputs. Also we 

follow the signals in the FPGA using Chip Scope® signal browser tool. The tool 

provides us instantaneous signal debugging and comparison of values with 

simulation. 

 

Table 7 – Colored representation of surface classification. 

Color Classification Visualization [24] 

 
 

Plane (0) 
 

 
 

Hyperbolic (Any) (1) 
 

 
 

Concave Cylindrical (2) 
 

 
 

Convex Cylindrical (3) 
 

 
 

Concave Elliptical (4) 
 

 
 

Convex Elliptical (5) 
 

 

 

An artificial range map data, shown in Figure 46, is used for testing. The 

map contains all type of surfaces. Simulation and FPGA outputs are shown in 

Figure 47, and they are exactly the same. 
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Figure 46 – Artificial surfaces 

Simulation Output of DCP2      Th=0.00732 Tk=0.0039      FPGA Output of DCP2 

Simulation Output of DCP1        Th=Tk=0.015625       FPGA Output of DCP1 

Figure 47 – Simulation and real hardware outputs of the artificial data 
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5.1.3 Comparison of DCP Outputs 

In the previous section we give outputs of DCP for synthetic range map. A 

real range data taken from USF source [13] is shown in Figure 48.  

 

Intensity Image of the scene 

 
Plot of the real range data 

Figure 48 – Range data of a scene and its 3D plot [13] 

 

 To compare the curvature processors, we use both outputs for artificial and 

real range maps. Real range map outputs are shown in Figure 49 and outputs of 

artificial map are shown in Figure 47. 
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DCP2 Output, Th=Tk=0.018 DCP1 Output, Th=Tk=0.0625 

DCP2 Output, Th=Tk=0.007 DCP1 Output, Th=Tk=0.046875 

Figure 49 – Hardware outputs of the range data in Figure 48 

 

As we see in Figure 47, DCP2 gives very nice output for artificial data. 

DCP1 also provides an acceptable output, but it has some errors especially on 

edges and hyperbolic points. Thin surfaces are also not so good. The noisy output 

on hyperbolic points shows us; DCP1 is more sensitive to noise on the surface. 

Indeed, considering real data outputs, in Figure 49, we see that DCP1 output is 

very noisy and DCP2 output is much better than it. We generate two outputs for 

two different thresholds to show disadvantage of DCP1. Selecting large threshold 

for DCP1, at top, disappear surfaces, i.e. plane classification is given for most of 

the points. However, DCP2 gives very accurate output. When we decrease 

threshold to see surfaces, we face with noisy output in DCP1, but DCP2 still 

provides a good output. Therefore, we conclude that establishing threshold can 

not solve problem of erroneous approximations, in Eq.3.3. Obviously, DCP2 is 

much better than DCP1 in real data analyzing. 
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5.1.4 Fix Point Quantization Effect 

Digital curvature analysis in hardware requires fix point number 

representation. The range resolution has to be in desired fix point quantization and 

the map must be in the range of the selected fix point space. If these conditions 

are not met in the range map, the output can not be a deterministic result. 

In this section, we compare the outputs of software based curvature 

analysis using float64 data type for range data. Then we quantize the data and 

process in again the software. The used data is the same in Figure 48.  

 

Software Output of Fix Point Data Th=Tk=0.045 Software Output of Float64 Data Th=Tk=0.045 

Software Output of Fix Point Data Th=Tk=0.06 Software Output of Float64 Data Th=Tk=0.06 

Figure 50 – Software outputs of float64 and quantized fix-point range data 

 

 In Figure 50, we see the outputs of software for different thresholds for 

quantized (10.3) and float data. Obviously, except small errors, preferred 

quantization is enough to represent surface. In software, we use full precision 

calculations, even if the input is fixed-point. Therefore we see only effect of range 
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map quantization. Comparison of software and hardware implementation is 

another topic. 

 If we decrease resolution of range map, the output will degenerate, 

although we use enough precision in DCP. An example is given in Figure 51. For 

the same thresholds, using DCP2, we use the same range data with different 

resolution. At left, quantization is 0.125 (10.3), the preferred resolution. At right, 

the range data quantized by 0.25 (10.2) and then converted to 10.3 fixed-point 

format again. The output shows that the resolution, 10.2, is not enough for this 

range data, especially in small surface patches. Note that establishing threshold 

may not be so helpful to deal with quantization error around small regions. The 

high thresholds hide both the quantization errors and details of surfaces, as shown 

at the bottom of the figure. 

 

Hardware Output of Fix Point Data (10.3) 
Th=Tk=0.026 

Hardware Output of Fix Point Data (10.2) 
Th=Tk=0.026 

 

 
Hardware Output of Fix Point Data (10.2) 

Th=Tk=0.053 

Figure 51 – Quantization effect 
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5.1.5 Comparison of Software and Hardware Implementations 

In the previous topic, we examine range map quantization effect using 

software based curvature analysis. Here, we will use float data in software 

curvature analysis and quantized data in the hardware, DCP2, for comparisons. 

 

Software Output Th=Tk=0.045 (Float64) Hardware Output Th=Tk=0.045 (Fix Point) 

Software Output Th=Tk=0.028 (Float64) Hardware Output Th=Tk=0.028 (Fix Point) 

Software Output Th=Tk=0.020 (Float64) Hardware Output, Th=Tk=0.020 (Fix Point) 

Figure 52 – Software and hardware outputs 
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 Software application, using double data in calculations, has little better 

outputs than the hardware does, as we expected. The hardware uses fixed point in 

calculations and we also truncate some signals in HK analysis circuit to keep logic 

utilization low. The hardware, DCP2, has acceptable outputs in surface 

classification process. Discarding threshold effect, we now compare mean and 

Gaussian curvature values. Unfortunately, none of DCP implementation generates 

H and K maps, so we will get the values from simulations. Some statistical 

information using the real data is given in below; 

 

 
Software 

H 
DCP2 

H 
DCP1 

H 
Software 

K 
DCP2 

K 
DCP1 

K 
Min. Value -2.04 -1.83 -2.85 -17.25 -17.8 -15.14 
Max. Value 8.28 7.85 7.91 68.34 58.77 24.02 

Mean -0.0081 -0.0116 0.0001 0.0051 0.0047 -0.004 
Variance 0.0471 0.0505 0.0885 0.4531 0.3914 0.1266 

 

 According to the mean and variance, DCP2 is closer to software algorithm 

in H and K map calculation. Remember that DCP2 has more reliable derivative 

calculation logic circuits. In H calculation, square root is used and error in the 

approximation causes dissimilar results, between software and hardware, more 

than in K calculation. Indeed, if we look at mean differences in H and K maps; 

 

mean(| |Ksoftware|-|KDCP2| |) 0.0059 

mean(| |Ksoftware|-|KDCP1| |) 0.0465 

mean(| |Hsoftware|-|HDCP2| |) 0.0326 

mean(| |Hsoftware|-|HDCP1| |) 0.0835 

 

 Obviously, DCP1 generates much noisy H and K values than DCP2 does. 

Also, H calculation is noisier than K calculation, due to linear square root 

approximation. 

 

 

 

 



 

 91

5.1.6 Rounding Operator Effect in DCP2 

As we mentioned in the previous chapter, rounding logic in derivative 

calculation has a very important effect at output accuracy. Miscomputation of first 

and especially second derivatives causes wrong classification, because the 

derivatives are multiplied with each other and these operations increase the error 

drastically. The outputs without rounding logic are shown in Figure 53. 

 

Th=Tk=0.007 Th=0.018 Tk=0.007 

Th=Tk=0.018 Th=Tk=0.04 

Figure 53 – Outputs without rounding operation in DCP2 

  

If we compare the outputs with Figure 49, considering thresholds values, 

we see that rounding operation provides pretty better results. The output noises 

can not be eliminated, even if high thresholds are used, as seen in Figure 53. 
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5.1.7 Rotation and Translation Invariance 

Gaussian and mean curvatures are rotation and translation invariant. In this 

section we will see whether the hardware provides this facility or not. Again, we 

will use the same object in the same scene as seen in Figure 54.  

 

Figure 54 - Intensity image of the rotated object [12] 

 The output of DCP2 for the real range data is shown in Figure 55. The 

rotation invariance is achieved but it is not an excellent result. The software 

output is also similar to hardware result. The weakness results from using 

derivative approximation in calculations. 

  

DCP2 Output Software Output 

Figure 55 – Outputs of the rotated object 

5.1.8 Scale Space Level Outputs 

The curvature processors do not only generate surface type but also 

provide scale space levels. The scale spaces are constructed by using a 2x2 kernel 

and size of each level is half of its previous level. DCP implementations accept 8 

consecutive samples in a vector. Therefore width of the map must be exact 

multiple of 8. For example, scale space levels of a 240x320 map can be 120x160, 
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60x80, but the 30x40 can not be a valid scale space because 30 is not a power of 

8. For a 128x128 map, 64x64, 32x32 and 16x16 are valid scale space level sizes. 

 

 

Source Data (scale space 0) 128x128 DCP2 Output (ss0) 

 

Scale Space 1, 64x64, generated by the FPGA DCP2 Output (ss1) 

 

Scale Space 2, 32x32, generated by the FPGA DCP2 Output (ss2) 

Figure 56 – Scale space levels and their analysis outputs for the artificial data. 
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 In Figure 56, scale spaces constructed by hardware and their surface 

analysis results are given. Scale space analysis is a useful tool for excluding small 

regions in the map. For example, there is a small plane on one of the peaks. Its 

classification result is shown in scale space 0, ss0, analysis output. However, in 

the next scale space, ss1, the plane on the peak disappears and only peak 

classification is generated. Another clear effect is on hyperbolic regions, which is 

more obvious and noiseless in the ss1. Note that establishing thresholds can not 

provide this facility, and using high thresholds also influences other parts of map. 

 In Figure 57, scale space analysis outputs for real data are shown. Again 

small surfaces are not available the ss1 level and also some noise on the closest 

patch disappear. The upper level algorithm can use scale space level outputs to 

take more robust decisions.  

 

 

DCP2 Output, Scale Space 0 (128x128) DCP2 Output, Scale Space 1 (64x64)

Figure 57 – Scale space levels analysis outputs for the real data. 

 

5.2 Software Output 
 

As we already mentioned, a connected component and center of mass 

algorithms are integrated into SoC design. In this section, the outputs of these 

algorithms are given.  

 In Figure 58, two scale space outputs are given. As talked about in the 

previous scale space output section, the small plane on the biggest peak in scale 0, 

x=26, y=42, is not visible in scale 1, x=13, y=21. In scale 0, 3D connected 
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component algorithm gives ID of ‘47’ for the small plane. Around the plane, there 

is the surface ‘41’, as seen in the figure. On the other hand, surface ‘47’, the 

plane, is not available in scale 1. Surface ‘41’ overlaps the surface ‘47’, which 

affects center of mass and center scale. 

 
Source Data (scale space 0) 128x128 Scale Space 1, 64x64, generated by the FPGA 

DCP2 Output (ss0), generated by the FPGA DCP2 Output (ss1), generated by the FPGA 

Connected Component output (ss0), generated by 
the CPU in the FPGA 

Connected Component output (ss1), generated by 
the CPU in the FPGA 

Figure 58 – Connected component algorithm outputs. 
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The outputs of center of mass algorithms for the examined surfaces are 

given in the following table.  

 

Surface ID Scale No Area Center X Center Y 

41 0 53 24 40 

41 1 76 24 37 

47 0 8 25 40 

47 1 0 X X 

 

 Surface 41 is available in scale 0 and scale 1. Surface 47 does not exist in 

scale 1 and surface 41 overlaps it. Therefore the area of surface 41 is larger in 

scale 1. This means that surface 41 is an important large surface and surface 47 is 

a small region on surface 41. Center scale of surface 41 is 0.6, using the areas (76/ 

(76+53)). Center scale of surface 47 is obviously 0.  

 The connected component algorithm labels all connected surfaces, which 

are not given here. 

 

5.3 Time Measurements and Comparisons 
 

In this section, we will see the speed of proposed curvature processors and 

we will also make a comparison between software and hardware realizations. We 

start with software speeds. 

5.3.1 Software Performance 

The software implementation of curvature analysis is running on 

MatLab® software. Of course, MatLab is not a performance oriented platform, 

but the implementation in MathWorks, given in “appendix a” section, uses only 

matrix calculations and MatLab is very fast in matrix manipulations. Therefore 

the measurements can still give a clue about speed of software implementations. 

We also use quadratic surface fitting approach to calculate H and K in MatLab 

and we measure speed of this approach, too. To minimize effect of cache memory, 
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we measure the speed just after the computers are turned on, and we take two 

measurements to see effect of cache. Also we increase the priority of MatLab 

software in the Microsoft Windows, even we have no idea whether the operating 

system cares the priorities or not. The speeds are shown in Table 8, for two 

different computers. 

Table 8 – Time measurements of software implementations in MatLab 

 

Intel® Centrino® 
T2400@1.83GHz x2Cores 

2GB RAM 
Microsoft Windows XP 

Intel® Xeon® 
X5452@3GHz x8 Cores 

4GBytes RAM 
Microsoft Windows XP 

128x128 Range Map 
3 scale space levels 
(derivative approx.) 

382ms (First Run) 
166ms (Second Run) 

263ms (First Run) 
20ms (Second Run) 

128x128 Range Map 
3 scale space levels 

(3x3 quadratic fitting) 

3181ms (First Run) 
2402ms (Second Run) 

2342ms (First Run) 
1269ms (Second Run) 

  

The high level CPU units, high speed memories and very impressive 

caches in today’s computers provide very fast processing when discrete 

approximations are used to calculate the derivatives, as we can see in the table. 

The quadratic fitting, on the other hand, is very slow. 

 

5.3.2 Hardware Performance 

The implementation techniques of the hardware directly affect the 

performance of system. However, the technique does not affect the pixel speed of 

the processors, which are given in Table 9. The processing speed is also given in 

the table for a suggested implementation, as in Figure 25 and 8 HK Logics in each 

DCP. Note that, using scale space levels do not change the speed. The scale space 

outputs have one row latency, as previously explained. The speed in the table is 

the best performances the processors can achieve. 
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Table 9 – Possible maximum speeds of designed curvature processors. 

 DCP1 DCP2 

Speed of processing the input vector, 
(8 pixels in each vector) 

22 clocks 
(220ns@100MHz) 

32 clocks 
(640ns@50MHz) 

Speed of processing 128x128 map 
(2048 vectors) 

47104 clocks 
(471us@100MHz) 

67584 clocks 
(1.3ms@50MHz) 

 

We use development boards, ml403 and ml505, produced by XILINX, to 

realize the designs. The FPGAs on the boards are not high density chips. 

Therefore the processors are implemented as displayed in Figure 26 and Figure 

35; only one DCP exists to analyze multiple scale spaces and only one HK logic is 

available to process 8 pixels, i.e. parallelism is vanished. The 8 parallel pixels are 

processed by sequentially as shown in Figure 35. Also scale spaces are not 

constructed by parallel; each scale space is generated by the logic and written into 

DDR RAM, than it is processed. Speed measurement of this realization including 

DDR RAM transactions, is given in Table 10.  

Table 10 – Speed measurements of the processor realized on ml403 and ml505 
boards. 

 
DCP1 (100MHz) 

on XILINX ml403 Board 
DCP2 (50MHz) 

on XILINX ml505 Board 
128x128 Range Map 
1 scale space level 

5.1 ms 11ms 

128x128 Range Map 
3 scale space levels 

6 ms 17ms 

 

 Influence of RAM transactions slows down the processing speed; in each 

analysis, DCP reads source map, writes scale space and classifications data. Also, 

RAM frequency is another important parameter. In ml403, DDR is at 100MHz 

and in ml505, DDR2 is at 200MHz. 

 

5.3.3 Hardware and Software Speed Comparison 

 Although the hardware realization technique is not the best approach in the 

demo boards, it is still much faster than the software. Also, if we consider the 
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running frequencies, the hardware is very impressive in speed performance, as we 

aimed in the thesis. In this thesis, real time criteria is determined as 100ms/frame 

for object recognition and the results show that purposed processor is much better 

than the requirement.  

 

5.4 Embedded CPU Connected Component Algorithm 
Speed 

 

The soft CPU, MicroBlaze, is running on 100MHz and the connected 

component is a very massive algorithm. The calculation times are given is 

following table. 

 

 Calculation Time 

Scale Space Count 1 5423ms 

Scale Space Count 2 13749ms 

 

 Obviously connected component and center of mass calculations are very 

slow operations for this system. Optimizing the algorithms may help the timings, 

but providing real time operation is nearly impossible.  

 

5.5 Power Analysis 
 

Last analysis of DCP is about power consumption. The analysis results are 

taken from XILINX Power analysis tool.  

Power analysis of DCP2 on ml505 is given in following table. The logic 

elements, explained in the previous chapters, are also given in the table. As seen, 

the power utilization of the logics is not so much. 
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Logic Power(W) 

DCP2 (Total) 0.064 

Address Decoders 0.00027 

Scale Space Calc. 0.00066 

Derivative Logics 0.00285 

BRAM Modules 0.03384 

HK Surface Classification Logic 0.00978 

Square Root Logic (in HK Logic) 0.0003 

The system has also the CPU and some other interface components. The 

over all system power analysis on ml505 is given following table. 

 

Logic Power(W) 

System Design (Total) 0.413 

DCP2 0.064 

CPU System 0.32 

DCP CPU Interface 0.00089 

DD2 High Band Width Interface 0.005 

 

 Power requirements of DCP, 64mW, is very good result for single use real 

time stand alone applications, without RAM interfaces and CPU. Please note that 

the power requirement of the logic increases if 8 HK logics are used for 

parallelism, which increases the speed drastically as shown in Table 9. Power 

consumption is approximately 0.132W when 8 HK logics are used. Also, an 

individual DCP instance is required for each scale spaces for real time pipeline 

operation. Otherwise a RAM controller must be used.  
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CHAPTER 5 

6 CONCLUSION AND FUTURE WORKS 

 

 

In this thesis, development of the digital hardware making surface 

classification on 3D range maps based on mean, K, and Gaussian, H, curvature is 

aimed. The thesis begins with introduction of range map description, 

mathematical definitions of curves, surfaces and curvature. Then FPGA design 

strategies and SoC design approaches are explained. 

Two digital curvature analysis circuits are developed in FPGAs. The 

algorithms generate directly curvature signs and make classifications; H and K 

values are never calculated. Two implementations, using different derivative 

approximations, have different speed and output accuracies. Both processors use a 

fast square root circuit, designed in the thesis. Multiple scale space levels and 

their analysis outputs are also generated in parallel, unlike software techniques. 

Also, an extra connected component algorithm is added to the embedded 

software. 

The outputs of both curvature processors are compared with traditional 

software implementations. The one of the proposed hardware, called DCP2 in the 

thesis, provides very similar results to software outputs. Its speed, on the other 

hand, is much faster than the software implementations. Other proposed 

technique, DCP1, is less accurate but it is extremely fast in processing of range 

maps. 

Although the outputs of the processors are acceptable, they contain some 

noise. To deal with these irregularities, erosion or dilation based filters can be 

used at output of the processors. These operations are not implemented in the 

thesis and left as a future work. 
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An errorless 3D range map assumption is used in this thesis. A transform is 

required in range map generator hardware if its output is noisy. Derivation of 

curvature algorithms considering noisy range data is left as a future work. 

Although the errorless assumption is used for x and y, their values are integrated 

into input vector to allow the future implementations, considering erroneous 

values of x and y.  

Also the connected component and center of mass algorithms in embedded 

software can be implemented on hardware, which is another future work. 

This thesis gives important results about processing range maps. As we 

mentioned, range maps are already generated on hardware in video-rate. 

Processing the map in software is still using, but we have realized the processing 

in real time sense on hardware. We have seen that curvature analysis on hardware 

is possible and the outputs are very accurate. This work will open the way of real 

time object recognitions implementations for robotics or other standalone low 

power applications. If the connected component algorithm is implemented on 

hardware, leaved as a future work, the output will be a few surface features, which 

include center, area and type of the surface. Processing these features can be very 

easy for any kind of small processors, such as soft processors in FPGAs.  
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APPENDIX A 

 

 MEAN AND GAUSSIAN CURVATURE IN 

MATLAB 

 

 The code below calculates mean and Gaussian curvatures in MatLab software using 

matrix manipulations. Required derivatives are calculated by using discrete approximations, 

available in MatLab. The code is taken from MathWorks; 

http://www.mathworks.com/matlabcentral/fx_files/20208/1/HK.m 

 

%/*********************************************************************** 

% Function Name : HK 

% Author    Alireza Bossaghzadeh 

% PURPOSE:  The Code calculate the Mean and Gaussian Curvature according to 

the method described in 

% Modern Differential Geometry of Curves and Surfaces with Mathematica.2nd 

ed, 1997 (p. 377). 

 

% The method Used in the Code: 

% If x:U->R^3 is a regular patch, then the mean curvature is given by 

%        

%           H = (eG-2fF+gE)/(2(EG-F^2)),  

%           G = (eg-f^2)   /(EG-F^2) 

% where E, F, and G are coefficients of the first fundamental form and 

% e, f, and g are coefficients of the second fundamental form  

% For more information see Links Below 

% http://mathworld.wolfram.com/MeanCurvature.html 

% http://mathworld.wolfram.com/MongePatch.html 

% http://mathworld.wolfram.com/GaussianCurvature.html 

 

% Function Variables: 

% Input             I   mesh contain depth values 

% outputs           H   Contain Mean Curvature of surface 

%                   K   Contain Gaussian Curvature of surface 

% Example           [H K]=HK(I); 

 

% In the case of any problem you can call me by  

% Email:Alibossagh@yahoo.co.uk 

 

% Version:    1.00       Published: 2008 June 07 

 

%This Code was written By Alireza Bossaghzadeh. 

%In the case of any problem you can contact me By 

%Email:Alibossagh@yahooc.o.uk 

 

 

http://www.mathworks.com/matlabcentral/fx_files/20208/1/HK.m
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function [H K]=HK(Z) 

 

% Calculate base parameters 

    Zx  =gradient(Z); 

    Zxx =gradient(Zx); 

    Zy  =gradient(Z')'; 

    Zyy =gradient(Zy')'; 

    Zxy =gradient(Zx')'; 

 

%Calculate First Fundamental Form coefficients 

    E=1+Zx.^2; 

    F=Zx.*Zy; 

    G=1+Zy.^2; 

%Calculate First Fundamental Form coefficients 

    nom=sqrt(1+Zx.^2+Zy.^2); 

    e=Zxx./nom; 

    f=Zxy./nom; 

    g=Zyy./nom; 

     

% Calculate Mean Curvature     

    H=-(e.*G-2*f.*F+g.*E)./(2*(E.*G-F.^2)); 

 

%This code also can be used 

%     H=(1+Zx.^2).*Zyy-2.*Zx.*Zy.*Zxy+(1+Zy.^2).*Zxx; 

%     H=-H./(2.*(1+Zx.^2+Zy.^2).^(3/2)); 

 

% Calculate Gaussian Curvature 

    K=(e.*g-f.^2)./(E.*G-F.^2); 

 

 


