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Psychology, Bilkent University

Date:



I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: HACER YALIM KELEŞ
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ABSTRACT

PART EMBEDDING FOR SHAPE GRAMMARS

Yalım Keleş, Hacer

Ph.D., Department of Computer Engineering

Supervisor : Prof. Dr. Sibel Tarı

Co-Supervisor : Assoc. Prof. Dr. Mine Özkâr

July 2010, 132 pages

Computational modeling of part relations of shapes is a challenging problem that has been

addressed by many researchers since sixties. The most important source of the difficulty is

the continuous nature of shapes, which makes the expression of shape very difficult in terms

of discrete parts. When discrete parts are combined, they fuse and yield new parts, i.e. parts

emerge. There is a number of methods that support emergent part detection. However all of

these methods are based on strong assumptions in terms of what constitute a part. There is a

need for a generic solution that treats a shape independently of any restriction resulting from

analytical, geometrical, or logical abstractions. To this end, we have developed two novel

strategies, which can be used both separately and jointly. Both strategies are relatable to the

algebraic formalization of shape grammars (by Stiny). In the course of this thesis work, we

have introduced a novel data structure called Over-Complete Graph to address the problem

of part embedding in the existence of discrete registration marks; and we have developed a

novel and robust method for the automatic selection of registration marks. Both developments

are certainly useful for other visual problems. On the application side, we have tested our

techniques on puzzling Seljuk patterns (from Kayseri) to demonstrate how the developed

techniques give way to computational creativity.
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Apart from the techniques we have developed, the most important contribution of our work

is that shapes are treated as perceived wholes rather than composed, as compellingly demon-

strated by Seljuk pattern experiments.

Keywords: part relations of shapes, emergent part detection, shape grammars, computation

with shapes, shape algebras.
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ÖZ

ŞEKİL GRAMERLERİ İÇİN PARÇA GÖMME

Yalım Keleş, Hacer

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Sibel Tarı

Ortak Tez Yöneticisi : Doç. Dr. Mine Özkâr

Temmuz 2010, 132 sayfa

Parça ilişkilerinin hesaplamalı modellenmesi, altmışlardan bu yana birçok araştırmacının ele

aldığı zorlu bir problemdir. Zorluğun ana kaynağı şeklin devamlılık gösteren yapısıdır; bu

yapı, şekli ayrık parçalar cinsinden ifade etmeyi zorlaştırır. Ayrık parçalar birleştirildiğinde

kaynaşır ve yeni parçalar açığa çıkar, yani parçalar belirir. Beliren parçaları saptama desteği

veren az sayıda metot vardır. Fakat bunların hepsi bir parçayı ne oluşturur konusunda güçlü

varsayımlara dayanır. Bir şekle tüm analitiksel, geometrik veya mantıksal soyutlamalardan

kaynaklanan kısıtlardan arınmış olarak yaklaşan, genel bir çözüme ihtiyaç vardır. Bu amaçla,

hem ayrı olarak hem de bir arada kullanılabilecek iki yeni yaklaşım geliştirmiş durumdayız.

Her iki yaklaşım da (Stiny’nin tanımladığı) şekil gramerlerindeki cebirsel biçimlendirmelerle

ilişkilendirilebilir. Bu tez çalışması kapsamında, Aşırı-Tam Çizge adını verdiğimiz yeni bir

veri yapısını ayrık kayıt işaretlerinin varlığında parça gömmeyi ele almak üzere tanımladık ve

kayıt işaretlerinin otomatik seçimi için yeni ve güçlü bir yöntem geliştirdik. Her iki yöntem

de diğer görsel problemler için kuşkusuz kullanışlıdır. Uygulama tarafında, tekniklerimizi

(Kayseri’den) karışık Selçuklu desenleri ile test ettik ve geliştirdiğimiz tekniklerin hesapla-

malı yaratıcılığa nasıl olanak sağlayacağını gösterdik.

Geliştirdiğimiz tekniklerin yanı sıra, bu çalışmamızın en önemli katkısı şekillere, zorlu Selçuklu
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motifleri deneyleri ile gösterildiği gibi, bileşimler olarak değil algılanan bütünler olarak muamele

edilmesidir.

Anahtar Kelimeler: şekillerde parça ilişkisi, beliren parça tespiti, şekil gramerleri, şekil ile

hesaplama, şekil cebirleri.
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(drawn by Assoc. Prof. Dr. Mine Özkâr). . . . . . . . . . . . . . . . . . . . . . . 75

Figure 3.21 The Seljuk pattern in Figure 3.20 is redrawn with thick lines which are

generated considering the weaving of the stripes. . . . . . . . . . . . . . . . . . . 76

Figure 3.22 (top) Embedding results of 100 distinct GA runs are aggregated, where

the searched part is a one pixel-wide quadrilateral shape, (bottom) Embedding

results of 30 distinct GA runs are aggregated, where the searched part is a six

pixel-wide quadrilateral shape. The initial shape in both experiments is the planar

representation of the Seljuk pattern depicted in Figure 3.21. . . . . . . . . . . . . 77

Figure 3.23 Each figure is formed by aggregating the embeddings of multiple runs. The

number that is shown below each sub-figure stands for the index of the number of

aggregated embeddings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Figure 3.24 Aggregate embeddings of 100 runs for embedding a rhombus shape within

the initial Seljuk pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 3.25 Aggregate embeddings of 20 runs for embedding a pentagram shape within

the initial Seljuk pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Figure 3.26 Sample implicit part embeddings. . . . . . . . . . . . . . . . . . . . . . . 81

Figure 3.27 Sample part embeddings. . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Figure 3.28 Sample star-shape embeddings within the tile. The obtained embedding

result on the right-most window of the GUI is the result of 25 different GA it-

erations. GA parameters: number of population=100, scale range=[0.95, 1.1],

position range = [-200,+200], orientation range=[0,359], number of generations 30.. 83

Figure 3.29 (left) Embedding a thin ten-legged star shape of one pixel-width; (right)

Embedding a thick ten-legged star shape of six pixel-width. The initial shape is a

part of the resultant shape obtained after the experiment shown in Figure 3.28. . . 84

xvii



Figure 4.1 Selected set of shapes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Figure 4.2 Corresponding edge strength functions of the shapes in Figure 4.1. . . . . . 90

Figure 4.3 Sample ellipse window alignments . . . . . . . . . . . . . . . . . . . . . 91

Figure 4.4 Gradient direction (dg) and the ellipse alignment direction (da) for a sample

ellipse window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Figure 4.5 The reference shape and ellipse windows in different dimensions (KMV:

window mean value): (a) ellipse minor ax. dim.: 15 px; major ax. dim: 30 px;

KMV: 0.5087, (b) minor a.d.: 20 px; major a.d.: 40 px; KMV: 0.4239, (c) minor

a.d.: 30 px; major a.d.: 60 px; KMV: 0.3121, (d) minor a.d.: 40 px; major a.d.: 80

px, KMV: 0.2433. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Figure 4.6 Distribution of the Reference Window Mean Values. . . . . . . . . . . . . 93

Figure 4.7 Sample critical regions with different intrinsic properties. . . . . . . . . . . 94

Figure 4.8 Effective range of ellipse axis dimensions and the reference window mean

distribution, which is computed with rho=8. . . . . . . . . . . . . . . . . . . . . 95

Figure 4.9 (a) Critical regions, (b) Merged critical regions. . . . . . . . . . . . . . . . 98

Figure 4.10 Distribution of the field mean values over varying disc dimensions. . . . . 99

Figure 4.11 Sample shapes for the experiments. . . . . . . . . . . . . . . . . . . . . . 102

Figure 4.12 The candidate critical regions, shown in bold lines, are determined after the

first phase of the analysis. The number below each shape stands for the iteration

index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Figure 4.13 The merged critical regions obtained after the second phase of the analy-

sis. The numbers stand for the iteration indices. The result depicted as the 13’th

iteration is the converged result. . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Figure 4.14 The candidate critical regions determined after the first phase of the analy-

sis. This sample is converged after 4 iterations. . . . . . . . . . . . . . . . . . . . 104

Figure 4.15 The merged critical regions obtained after the second phase of the analysis. 104

Figure 4.16 The candidate critical regions determined after the first phase of the analy-

sis. This sample is converged after 7 iterations. . . . . . . . . . . . . . . . . . . . 105

Figure 4.17 The merged critical regions obtained in the second phase of the analysis. . 105

Figure 4.18 A different reference shape. . . . . . . . . . . . . . . . . . . . . . . . . . 106

xviii



Figure 4.19 The shape in Figure 4.1-(a) is redrawn with the same brush that is used in

constructing the reference shape in Figure 4.18. . . . . . . . . . . . . . . . . . . 106

Figure 4.20 The first 4 iterations of the analysis for the shape in Figure 4.19. . . . . . . 107

Figure 4.21 Critical regions determined for the cluttered image shown in Figure 4.20. . 108

Figure 4.22 Critical regions depicted with circles. The field is computed with (ρ=8). . . 108

Figure 4.23 Critical regions depicted with circles. The field is computed with (ρ=8). . . 109

Figure 4.24 Data set created similar to the ones in ([73]). (a) Semicircle-shaped curve,

(b) Chromosome-shaped curve, (c) Infinity-shaped curve. . . . . . . . . . . . . . 109

Figure 4.25 Approximation of the chromosome data with the proposed method. . . . . 110

Figure 4.26 (a) The proposed method, (b) Rosenfeld-Johnston algorithm, (c) Rosenfeld-

Weszka algorithm, (d) Freeman-Davis algorithm, (e) Sankar-Sharma algorithm,

(f) Anderson-Bezdek algorithm, (g) Teh-Chin algorithm (k-cosine), (h) Teh-Chin

algorithm (k-curvature),(i) Tel-chin algorithm (1-curvature). All the sample re-

sults from (b) to (i) are copied directly from [73]. . . . . . . . . . . . . . . . . . . 111

Figure A.1 One of the four embedding results for the examplary case in Figure 2.17-(a). 122

Figure A.2 One of the two embedding results for the examplary case in Figure 2.17-(b). 123

Figure A.3 One of the two embedding results for the examplary case in Figure 2.17-(b). 123

Figure A.4 One of the four embedding results for the examplary case in Figure 2.17-(c). 124

Figure A.5 One of the four embedding results for the examplary case in Figure 2.17-(c). 125

Figure A.6 One of the eight embedding results for the examplary case in Figure 2.17-

(d), with the user defined constraint. . . . . . . . . . . . . . . . . . . . . . . . . . 125

Figure A.7 One of the eight embedding results for the examplary case in Figure 2.17-

(d), with a different user defined constraint. . . . . . . . . . . . . . . . . . . . . . 126

Figure A.8 One of the eight embedding results for a sample shape. . . . . . . . . . . . 127

Figure A.9 One of the eight embedding results for a sample shape. . . . . . . . . . . . 127

Figure A.10One embedding results for a sample shape. . . . . . . . . . . . . . . . . . 128

Figure A.11One embedding results for a sample shape. . . . . . . . . . . . . . . . . . 129

xix



CHAPTER 1

INTRODUCTION

In conventional shape recognition approaches, for representation purposes, shapes are decom-

posed into parts according to some rules. In their seminal paper, Hoffman and Richards argue

that in the visual system a shape is decomposed into a hierarchy of parts and this decompo-

sition is based on the regularity of nature ([24]). For this purpose, the regularity is defined

with the well known minima rule on the boundaries of parts. Accordingly, a plane curve is

decomposed at points of the negative curvature minima. When the problem is the recognition

or the matching of shapes, standardization of the representations of shapes and hence fixing

the definitions of part boundaries is necessary and beneficial. However, in design activity such

restrictions in the representation of shapes - sticking to predefined decomposition of shapes

- may inhibit creativity. In this domain, instead of eliminating ambiguities within shapes via

unique interpretations of shapes, exploiting them to their limit is considered as real sources

of creation. As a result, different computational approaches are necessary for representing

shapes to support creative design activities.

In creative thinking, regularities within forms are not usually the preferred sources of creation.

Most of the creative works/arts are being generated by destroying the rules/biases imposed on

the relevant subject. The shape grammar formalism which was first introduced by Stiny and

Gips in 70’s ([59]), provide the necessary formal devices for this purpose when the relevant

subject is a shape. The formal way of pictorially modifying shapes as a method of exploiting

the ambiguity is established via well defined algebras. The formalism has been developed

significantly by George Stiny since its introduction. A recently published book of Stiny ([69])

presents the shape grammar formalism both with respect to its philosophical and formal as-

pects. The work inspired us while pursuing the computational problem we argue in this thesis.

In the shape grammar formalism, shapes are operated via visual rules. The philosophy behind
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the rule application is modifying a given shape pictorially. The grammars in this context are

not symbolic as opposed to the other grammar systems, like grammars defined in Chomsky

hierarchy in formal language theory. A sample shape rule is specified pictorially in the form

of A → B as shown in Figure 1.1.

Figure 1.1: A sample visual rule [69].

In the rule A → B, A stands for the left hand side shape of the rule and B represents the right

hand side of the rule. Any given left hand side shape of a rule can act either as a non-terminal

or a terminal symbol. The shape acts as a non-terminal when an occurrence of it in the initial

shape is replaced with the right hand side shape, on the other hand the same shape acts as a

terminal when it is left unchanged in the resultant/terminated shape. Although a shape can

be interpreted either as a terminal or a non-terminal, shapes are not symbols which stand for

some entities. Instead they are composed of geometric entities like points, lines, planes, and

so on.

Assume that an initial shape is created with two overlapping squares as shown in Figure

1.2. In most computer aided design tools or vector supported drawing tools, when a shape is

created with such (predefined) primitives, a commitment has already been made on the parts

of the shape. Such a commitment restricts the kind of modifications applicable to the shape.

For the given initial shape only the two squares are accessible using these tools although there

are many other parts that can be perceived within the shape.

Figure 1.2: A sample shape ([64]).
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In the shape grammar formalism, parts of shapes are not predefined. What one can see in a

shape is accessible through visual rules, independent of how the shape is created/defined. The

decomposition of a shape is not fixed in advance which would otherwise restrict the selectable

parts within the shape. For the initial shape in Figure 1.2, the application of the sample rule

in Figure 1.1 may result in a shape as shown in Figure 1.3-(b). This new shape is obtained

by embedding the left hand side of the rule to the small square that emerges as a result of the

geometric arrangement of the two big squares (Figure 1.3-(a)). Although this small square is

not made on purpose, the shape grammar formalism allows us to access such emergent parts.

Figure 1.3: (a) The embedded small square is shown with bold lines, (b) The rule in Figure

1.1 is applied.

Rule application process in shape grammars is recursive. Each rule application results in a

new shape to work with. The dynamics of the selection of a part (e.g. the square drawn

bolder in (a) above) to apply a rule is another research topic that is left beyond the scope of

this thesis. In this work, it is assumed that an external subject decides about the specific part

to apply a rule to. Any such decision creates a new way while working with shapes. For

example, application of the same rule to the same initial shape, while embedding a different

part this time, (which is shown with bold lines in Figure 1.4-(a)) results in a totally different

shape (Figure 1.4-(b)).
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Figure 1.4: (a) The embedded part is depicted with bold lines. (b) The resultant shape after

the application of the same visual rule.

If we continue to apply the same rule to the resultant shape, while embedding the square

shown in bold lines in Figure 1.5-(a), we would obtain the shape in Figure 1.5-(b).

Figure 1.5: (a) The embedded part is depicted with bold lines. (b) The resultant shape after

the application of the same visual rule.

In summary, visual rules are utilized for acting on shapes in the shape grammar formalism.

A shape is not composed of predefined units but is temporarily decomposed into some parts

according to the desired action via visual rules. Since rules are visually defined, any perceived

part of a shape is accessible. The recognition of any part within a given shape without a

predefined decomposition is a fundamental problem to be resolved for the implementation of

the visual computing.

Most of the existing computer implementations of shape grammars focus on the rule-based

recursion and overlook the notion of part relations and embedding problem. The ones which

deal with the embedding problem provide partial solutions by making predefined geometrical

abstractions related with the primitives within shapes in advance. Based on these observa-

tions the fundamental problem of handling part relations of shapes coherent with the shape

grammar formalism initiated the basis of the research provided in this thesis.
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Before going into the detailed discussion about the proposed solutions for this problem, let

us give the outline for the rest of this chapter. The introductory material that are necessary to

follow the work defined in the context of this research is provided in the upcoming section.

Following that, the summary of the related literature is provided. Next, the motivation and

contributions of this research is discussed. Finally, an overview of this document is provided

in the last section.

1.1 Background

The shape grammar formalism provides all the necessary tools for any kind of modifications

like decomposition of shapes or generation of new shapes. The formal devices for any kind

of modifications through visual rules are characterized by George Stiny with shape algebras.

In this section, a very brief introductory material is provided about shape algebras with em-

bedding and part relations of shapes.

Algebras of shapes1 have three main constituents: shapes (the basic elements of shapes and

the space they are represented in), part relations for shapes that include Boolean operations

and Euclidean transformations.

Shapes are composed of basic elements of different dimensions, i.e. points, lines, planes

and solids, or any combination of these. They are represented in Euclidean space. Each

Ui j algebra is defined according to the dimension of the basic elements in a shape and the

dimension of the Euclidean space they are represented in. In this representation, i stands

for the dimension of the basic elements of shapes and j is for the dimension of the space in

which basic elements are combined. For example, U12 contains shapes of lines (i=1) in two

dimensional Euclidean Space (j=2).

In order to understand the properties of each algebra, embedding properties of the basic ele-

ments should be understood.

1 Reader may refer to [69] to deeply elaborate the subjects summarized in this section.
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1.1.1 Embedding Relation

Embedding relation is defined in shape grammar formalism as a partial order which has the

following properties:

1. reflexive: every basic element is embedded within itself,

2. antisymmetric: two basic elements are identical whenever first is embedded in the sec-

ond and the second is also embedded in the first,

3. transitive: for three basic elements a,b and c, if a is embedded in b and b is embedded

in c, then a is embedded in c.

Embedding relation is identity for the basic elements of type points. In other words, a point is

embedded within another point as an atomic unit in a unique way. On the other hand, only the

same kind of basic elements can be embedded within another basic element that has dimension

greater than zero. For example, only lines can be embedded within lines or only planes can

be embedded within planes, and so on. In contrast to points, embedding is not identity for

these basic elements; there are infinitely many possible embedding options. This is the result

of avoiding predefinitions for shapes. In other words, shapes with these basic elements are

not defined with fixed units which otherwise would limit the number of parts that can be

embedded in visual computations. In all geometric modeling tools such as computer-aided

design (CAD) tools or vectorial drawing tools, shapes/forms are defined using some set of

primitives. For example, when a rectangle shape is drawn with a rectangle primitive provided

in the tool set, accessing the individual lines of the rectangle is not possible. Embedding

relation defined in the shape grammar formalism is free from such restrictions. Any part of a

given shape is accessible regardless of the shape’s creation history.

1.1.2 Properties of Ui j Algebra

Ui j algebras carry most of the properties of a Boolean algebra, but except from U00, all fail to

be one due to the nonexistence of a unit and complement. These algebras carry the properties

of a Boolean ring with an empty shape and no unit. The only Boolean algebra of shapes is

U00. In U00 there are exactly two shapes, namely the empty shape and the shape with just one

point, corresponding to false and true in the Boolean algebra respectively.
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In the shape grammar formalism, in addition to the simple shape algebras, composite alge-

bras can be defined as the Cartesian products of different Ui j algebras. In composite shape

algebras, basic elements of different types are arranged in multiple spatial dimensions. In that

case, each type of basic element is treated as if it exists in a different operational layer. For

example U02.U12 algebra is a composite algebra which contains shapes of points and lines

together in the two dimensional Euclidean space. All the Boolean operations (sum, differ-

ence and products) between two shapes - both belonging to the same composite algebra - are

performed among the same type of shape elements of the two shapes.

The Ui j algebra is extended with the label and weight algebras, Vi j and Wi j respectively [64].

Basic elements in Ui j algebra are associated with labels selected from a vocabulary and form

the corresponding Vi j algebra. Labeling shape elements may serve to different purposes.

For example, one such usage could assign certain semantic meanings to the associated shape

elements. Similarly, basic elements of a shape in Ui j algebra can be assigned some weights

and corresponding shape is then operated in the weight algebra (Wi j). For example, in W12,

lines may have thickness or in W02, points may have areas as weights. Both label and weight

algebras keep the Boolean properties of the corresponding Ui j algebra. Composite algebras

can also be formed with the Cartesian products of different Ui j, Vi j or Wi j algebras.

1.1.3 Shape Rule Application

In the shape grammar formalism, any action on shapes is defined by means of shape rules.

Shape rules provide a general mechanism to operate with shapes independent of the algebra

they belong to. The rules are applied recursively regarding the part relation, the Boolean

operations and Euclidean transformations. Given an initial shape C and a set of shape rules in

the A → B form (Figure 1.1), the application of a rule is done by these three steps:

1. Find a Euclidean transformation Γ so that Γ(A) is equivalent to a part of C

2. Define a new shape C′, by C′ = C − Γ(A),

3. Obtain the final shape C′′, by C′′ = C′ + Γ(B)

As a result, the final shape after applying the rule A → B to the shape C is C′′ = C − Γ(A) +

Γ(B).
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1.1.4 Part Relation

Before defining the part relation, let us mention the maximal representations of shapes in the

shape grammar formalism. As it is stated before, shapes with basic elements of dimension

greater than zero can be represented in infinitely many different ways each corresponding

to a different decomposition. Many different representations of such shapes may belong to

the same shape. In order to identify distinct shapes and explain the spatial properties in an

unambiguous fashion, the maximal representation provides a unique canonical way.

A maximal element in a shape is the basic element in the finite set of basic elements of the

shape, that can only be embedded within itself. Accordingly, a maximal representation of a

shape is the set of smallest number of basic elements that combine to form the shape.

A shape A is part of another shape, let us call it B, if every maximal element of the shape A is

embedded in a maximal element of B. Part relation is also a partial order on shapes. It can be

used to form lattices for shapes. A sample distributive lattice for a shape composed of three

points shown in Figure 1.6 depicts the partial order of part relations.

Figure 1.6: Partial order in part relation is depicted for a shape in U02 [69].

The lattice in Figure 1.6 shows the eight possible parts of a shape with three isolated points

together with how the parts are related. This diagram also displays that a shape and its parts

in U02 form a complete Boolean algebra of a finite set and its subsets.
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A shape in U0 j algebra contains discrete elements, hence its possible decompositions are finite

and countable. However, for shapes in the Ui j algebras, where i is different from zero, possible

decompositions are infinitely many. For example, a line in finite length can be decomposed

into a finite number of line segments; each can also be decomposed into a finite number of

sub-segments within itself. In this way, a line can be decomposed into lines in infinitely many

different ways. For the U12 shape given in Figure 1.7 which is composed of eight maximal

lines as its basic elements, a subset of its parts is shown in Figure 1.8. This set, however, does

not exhaust all parts of this shape. There are infinitely many of them.

Figure 1.7: A sample U12 shape ([64]).

Figure 1.8: Some parts of the shape given in Figure 1.7 ([64]).

Similarly, for a shape in U22 shown in Figure 1.9, a subset of its parts are depicted in Figure

1.10.

Figure 1.9: A sample shape in U22 ([64]).
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Figure 1.10: Some parts of the shape given in Figure 1.9 ([64]).

Any particular decomposition for such shapes can also be represented with the distributive

lattice to resolve the parts and the relations of parts by Boolean sums and products.

For shapes which belong to Ui j algebra (i, j � 0), possible decompositions are not predefined.

In the shape grammar formalism, each decomposition reveals different parts of shapes that

would be useful for visual computations via shape rules. Independent from distinct creation

histories, a shape can be decomposed into parts in many different ways according to what

one wants to see within a shape. By this way, different reinterpretations of shapes become

possible which is the power behind the shape grammar formalism.

1.2 Previous Works

The pioneering work of George Stiny and James Gips [59] initiated a new research field re-

ferred to as shape grammars. The shape grammar formalism is then extended substantially

by Stiny [62], [63], [64], [65], [66], [68]. Numerous other shape grammars and their imple-

mentations also made important contributions to the field that is of significant interest to the

computational design community. Stiny recently reinstated the philosophical and technical

characteristics of the theory of shape grammars providing a renewed reference point for this

field [69].

As it is emphasized in the previous section, the power of shape grammar formalism comes

from its ability to provide reinterpretation of shapes. It is possible only if shapes are repre-

sented in such a way that any decomposition is made possible. Although it is straightforward

with pencil and paper, computationally this is a challenging problem. It is due to the fact

that computational platforms work with symbol manipulation. Yet, a good shape grammar

interpreter should be deprived of symbols or at least, it must behave like that.
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Early shape grammars were defined for analyzing arts on paper [59],[67],[21]. Following

these initial works, shape grammars are widely used in architectural plans and some historical

structures. Contributing largely to the design research, many of these works in the literature

used shape grammars to identify and formalize the design styles of the previously generated

designs and generate new designs with the same style. One of the first examples of shape rules

for generating designs of a given style is Stiny’s Chinese ice-ray lattices [60]. Following that,

in architecture Palladian style villas [61], Frank Lloyd Wright’s Prairie Houses [33], Queen

Anne Houses [19]; in furniture design Hepple-white style chair backs [29]; in art work on

deStijl trend [30] may be given as examples to the use of shape grammars in this respect.

Many of these shape grammars are not computationally implemented while the existing im-

plementations are hard-coded set grammars. In set grammars, discrete symbols, like labels,

are used to locate parts in an initial shape with some combinatorial methods, in which case

the advantage of emergent part detection is lost.

Later, the potential of shape grammars in the field of engineering design is realized by many

researchers and many different shape grammars are developed in this field even in some com-

mercial product designs. Although a subset of these works is implemented, the existing im-

plementations are mostly application specific set grammars and provide partial solutions to

the more general problem of computational part embedding.

Many of the engineering shape grammars are equipped with a set of parametric attributed

labeled shapes to grasp the interaction between function and form (i.e. Lathe Grammar [10]

and Robot Arm Grammar [76]). The Coffeemaker grammar [1] is an example to consumer

product design, which is implemented as a web-based Java applet, is hard-coded according to

the specified rules. It does not operate considering the geometry for embedding but depends

on extensive usage of labels. Other similarly hard-coded grammars are MEMS grammar [2],

which is based on labels, and space truss grammar [58] in which only triangles are used.

Neither of these grammars takes advantage of emergent parts. Similarly, Pugilese and Cagan

employed symbols in matching parts in their implementation of the motorcycle grammar [53].

All these works are implemented as set grammars in which part matching is performed by

comparing the labels common in both shapes rather than considering the geometric properties

of shapes. A broad summary of the shape grammars in engineering design can be found in

[11].
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There are some implementations for a class of shape grammars referred to as basic shape

grammars ([32]). These types of grammars focus on addition rules, and their sequences, but

not the technicalities of emergent shapes ([46], [75]). The purpose of developing Shaper2D

[46] is to facilitate shape grammar learning. This tool is not designed for professional design

generation; it provides an alternative method to encourage students to learn basic concepts of

the shape grammar theory. The set of shapes is limited to a palette of pre-programmed shapes:

squares, rectangles and triangles. Similarly, 3DShaper [75] is restricted to shapes of pillars,

oblongs or cubes.

Heisserman developed a solid grammar interpreter, named Genesis, which represents solid

shapes as graphs and used it in a generative grammar for Queen Anne houses [23]. In this

interpreter a solid rule is specified with a set of match conditions and a sequence of operations.

A logical reasoning mechanism is exploited to express complex geometric conditions and

operations. In a rule application, a graph is modified only if it satisfies the conditions defined

in the rule. In other words, part matching depends on the predefined constraints within the

rules such as labels and some topological parameters rather than the geometry itself. The

emergent part detection problem is not the issue of this work.

On the other hand, there are a few works that directly address the computational aspects of the

part relations of shapes. These approaches define algorithms and data structures suitable for

part embedding problem that could be used in the development of shape grammar interpreters.

McCormack and Cagan [44], [45], propose a parametric part detection method pointing out

that the existing implementations for rule application are limited to certain rule sets in given

engineering or design problems. Moreover, they also point out that the existing solutions to

the part embedding problem transform the entire shape rather than its parts while embedding.

They decompose shapes into parts which are hierarchically ordered based on their constrain-

ing relations with other parts [44]. Recognition is then performed by matching the shapes

within the same subset and their combinations. Parametric shape recognition is especially

useful for engineering shape grammars with well-defined problems. If the default hierarchy

is not desired, the hierarchic grouping of parts can be constructed with the designer’s in-

tention. However, for each different hierarchy, the set of embedded parts would change; in

which case the designer should be aware of which parts are missed and take the responsibility.

Moreover, for the proposed solution for curved shapes [45], since the matching of the curves
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depends on the computed transformations in the first pass via straight line representation of

the shape, this may result in losing some emergent parts even with the default hierarchy.

Ramesh Krishnamurti focused on the development of suitable data structures and algorithms

to solve the computational part embedding problem for line shapes [35] which is the most

prominent approach that is proposed for line shapes. It is based on the maximal element

representation. In this representation, a shape is defined by a set of maximal lines each of

which is described by its carrier and the boundary points [34]. Carrier of a line is the infinite

line that the line is embedded in. In the provided solution, shapes are represented by ordered

lists such that the set of maximal elements with the same carriers are put in the same list. As

a result, sets of co-linear maximal lines are constructed and the lines in each set are ordered

according to their boundaries.

Utilizing this maximal representation, all possible parts of an initial shape that is similar to a

left hand side shape of a visual rule is computed via the distinguishable points together with

the given labeled points. These points serve as reference points in matching and necessary,

because there are infinitely many different transformations that embed a line segment into

another under Euclidean transformations. Distinguishable points in a shape are defined as

the intersection points of the maximal lines and their extensions. For each possible mapping

of the distinguished points of the two shapes, a transformation is computed. Following that

the descriptors and the boundaries of the two shapes are compared to validate the embedding

relation between the two shapes. This representation is general enough to represent shapes

which allow detection of parts within a shape, even the emergent parts.

There are three well known shape grammar implementations based on the maximal repre-

sentation proposed by Krishnamurti that support emergent part detection [36], [12], [70].

Although the solution provided by Krishnamurti for part detection is a generic solution for

shapes with straight lines, all these implementations work with rectilinear shapes. Tapia’s im-

plementation, GEdit, is the most advanced one which provides a graphical user interface for

defining and applying visual rules. However, this application is also restricted to work only

with the orthogonal shapes.

Apart from the solutions for line shapes, there are a few works that focus on defining part

relations of shapes with curved elements [45], [14], [26], [27]. It is widely accepted that

computationally defining the part relations of curved shapes are more challenging than that of
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line shapes. Some of the previous approaches explored the part detection problem considering

some constraints related with the form of the shapes. Hence, with these constrained forms,

they are far from providing a general solution for curved shapes.

Chau et al.’s shape grammar implementation is based on maximal representation which con-

siders maximal circular arcs in planes (2D) and space (3D) under Euclidean transformation

[14]. However, apart from the circular arcs, their solution does not include the shapes which

contain more general free-form elements.

McCormack and Cagan’s implementation supports free-form curves by converting freeform

curves to the shapes composed of straight line segments [45]. As we mentioned in engineering

shape grammars above, some of the embedding properties of the free-form curves are not

considered in this work. Hence, this may result in losing some emergent parts.

In Jower’s thesis, the shape grammar formalism is extended with new algebras that contain

curves with more free-form nature [26]. A theoretical framework is constructed coherent with

the George Stiny’s shape algebra definitions and conventions. However, a general mechanism

to define shape grammars for all types of free-form curves is not given. This is due to the

reason that the properties of different types of curves is very different to generalize. Two

example types of curves are selected to validate the theoretical construction proposed in his

thesis; one for quadratic curves and the other is for cubic Bezier curves in the planar domain.

Recently, Jowers and Earl [27] have proposed an intrinsic matching algorithm for develop-

ing a shape grammar interpreter for shapes composed of parametric curve segments. Their

method is based on the comparison of the intrinsic properties of two space curves which serve

as descriptors of curve segments. This is analogous to the infinite lines that are used as de-

scriptors of maximal line segments proposed by Krishnamurti. They pointed out however that

intrinsic matching is not unique for shapes composed of geometric elements with constant

intrinsic properties, such as circular arcs. For such shapes, it is necessary to find alternative

methods for determining embedding properties, such as using Krishnamurti’s distinct points.

Again in this work, they have pointed out that providing a general method to be used for any

types of curves is not easy. Actually, the parameters, λ and u, which are used for determin-

ing embedding relations of curve segments are dependent on the particular parametric curves

used to compose a shape (i.e. Bezier curves).
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Computational modeling of the part embedding problem is very challenging especially when

(ambiguity rich) shapes are considered. As it is summarized above, there are only a few

approaches that focus on solving this problem.

The solutions provided so far either assumed that (1) shapes are composed of straight line

segments, so that the only shapes that are allowed in a shape grammar would be rectilinear

shapes or (2) shapes are composed of curved elements which can be defined by fitting a

higher order function. Each of these assumptions is restrictive in the sense that it forces a

user/designer to work with pre-specified type of shapes.

Shapes are continuous entities and a generic solution to the part detection problem should

be able to work with any shape without the need to define the shape with certain analytic

abstractions. Fitting a linear form to a line segment and assuming that the shape is composed

of linear shape elements everywhere is such an analytic abstraction. Any solution coherent

with the shape grammar formalism should be capable of finding any occurrence of a given

shape within another regardless of the types of basic elements it possesses. What we believe

the most fundamental element of the shape grammar formalism is respecting the continuous

nature of shapes by treating a shape as it is. Hence, a general solution should be free from such

presumptions about shapes. In view of these, the works proposed in the context of this thesis

provide two novel approaches to define generic solutions to the problem of part embedding.

1.3 Motivation and Contributions

The research on the problem of part embedding up until now has been directed with assigning

some analytic abstractions to the basic elements of shapes. We think this is problematic

since making presumptions related with the basic element types of shapes directly limits the

allowed set of shapes that can be utilized in part embeddings. That is any shape that has a part

violating the assumed form can not be used in part searches. We believe that, such restrictions

contradict with the philosophy behind the shape grammar formalism.

The motivation of this work is providing a generic solution for the part embedding problem

for line shapes of any kind in two dimensional Euclidean space. In this principle, two differ-

ent approaches are proposed in the context of this study. Both approaches provide a pictorial

solution to the problem considering the perceptual wholes instead of making analytical ab-

15



stractions for shapes. This is consistent with the nature of shape modifications in the shape

grammar formalism. In both solutions a set of constraints which are inherent in the given

shapes are utilized via the well defined mappings to different algebraic levels.

In the first approach, a shape is mapped to a lower algebraic level so that a set of discrete

points serves as registration marks and is utilized in the identification of possible embed-

dings. These points are the external constraints that are defined temporarily and imposed on

a shape in order to utilize in part matching. As a generic case these constraints can be defined

automatically by considering the intrinsic properties of shapes together with the shape’s topo-

logical properties. In addition to this default set, additional external constraints can always be

defined by a user/designer. The major contributions of this method can be listed as follows:

• A generic solution to emergent part detection problem is developed which works for

any type of line shapes.

• Instead of an assumed geometric notion or symbolic representation, the proposed solu-

tion works with perceptual wholes.

• A new graph data structure, which we call over-complete graph, is proposed as a means

for temporarily representing shapes. This data structure is equipped with the useful

tools and algorithms to effectively traverse a shape during part searches and very suit-

able to represent shapes as a composition of perceived wholes.

• The notion of the reference shape is introduced to the literature to solve the nondeter-

ministic type searches.

• In addition to the constraints that are inherent within the shapes, the user/designer is

given the opportunity to constrain the part searches.

In the second approach, the set of constraints which determine the embedding properties of

a shape is obtained from modeling the interactions inherent in the shape in a higher level

algebra via weights. The contributions of this approach can be summarizes as:

• A generic solution to emergent part detection problem is developed which is based on

an evolutionary approach.
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• Weighted shapes in a higher level algebra is utilized to enable them as registration

marks in part embedding rather than some external or abstract references.

• Perceived wholes are considered during part searches rather than predefined categories

of shapes such as line, plane and so on. Similarly, any distinction between line shapes

and curved shapes disappeared in terms of part embeddings.

• The method also introduces emergence based on designer defined constraints, like em-

bedding wholes as parts although some parts of the initial shape are missing.

In addition to the proposed solutions to the part embedding problem, a novel critical point de-

tection method is developed as a supplementary method to determine the internal constraints

within shapes. The motivation of this method was to find a robust method to automatically

extract critical points within complex line drawings - like Seljuk patterns - that can serve

as registration marks during part searches. This aim is achieved by the development of the

novel iterative method which successfully identifies a set of critical points after a two-phased

analysis.

1.4 Thesis Overview

In this chapter, the reader is provided the necessary background information related with

the shape algebras, part and embedding relations and the current state of the literature. The

methods that are original to this thesis are discussed in Chapters 2, 3 and 4.

The solution for the part detection problem for line shapes is introduced in Chapter 2. The

work offers a simple and practically available algorithm to the problem utilizing two different

algebraic levels. A mapping to the lower level algebra introduces the set of registration points

that are utilized to constrain the combinatorial searches during part embeddings. Representa-

tion of shapes is based on a novel data structure called over-complete graphs. Over-complete

graphs are suitable for representing the perceived holes and operating on them effectively. The

proposed solution is discussed utilizing four sample shapes each corresponding to a different

case in this problem. The samples altogether represent all possible cases in the problem do-

main. The proposed method provides a novel solution for the nondeterministic type searches

with the notion of reference shapes. All the algorithmic details of the solution is included in

this chapter.
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Our second approach to the part detection problem is introduced in Chapter 3. The solution

is based on weighted shapes obtained from mapping line shapes to a higher level algebra.

Weights define the necessary constraints for aligning two shapes in an evolutionary approach

implemented as a genetic algorithm. In this solution, instead of the analytic abstractions to

represent shapes, the perceptual wholes are utilized. By this way the distinction between lin-

ear or curved shapes and between line shapes and planar shapes disappeared. The additional

benefits of the method are discussed by providing many visual results that belong to some

experiments performed with the developed implementation in the last part of the chapter.

Chapter 4 introduces a novel method in order to locate the critical points of line drawings. The

necessary background information for this work is provided in the introductory section of this

Chapter. The method is based on the idea that any point that is located in a neighborhood

where the mean intrinsic properties deviate significantly from that of a straight line is critical.

In order to determine the deviation, any mathematical abstractions to widely accepted signif-

icance measures are avoided. Instead, a field based analysis for digital curves is performed

which is true to the continuous nature of curves. In this respect, the solution provided for this

method is also coherent with the solutions provided for the part detection problem. A simple

to implement two-phased iterative algorithm is provided in detail. The experimental results

of the method are depicted for a set of representative shapes.

The final chapter concludes the work discussing the possible future directions of this research.

18



CHAPTER 2

EMBEDDING SHAPES WITHOUT PREDEFINED PARTS

Embedding a shape within another is a challenging problem in digital computers especially

when shapes should be treated continuous as how they are in shape grammars. This is

achieved by allowing different interpretations of shapes via their projections to a lower al-

gebraic level. Continuity in the representation is achieved with the over-complete character

of the proposed representation, which depends on perceptual wholes1 obtained from the in-

terpretations of these projections, rather than some geometric notions or symbolic interpre-

tations. This representation provides necessary tools to make part embeddings true to the

continuous nature of the shapes and to the shape grammar formalism.

The chapter begins with an introduction to the proposed shape representation which is suit-

able for part embeddings. In this representation, two different algebraic levels of the shape

grammar formalism is utilized. The analysis in the two algebraic levels is achieved via the

projections of the shapes from one level to the other. Each projection identifies different parts

of a shape by means of their boundaries. Hence, each such projection is actually a different

decomposition of a shape, serving for a temporary representation. In these representations,

the boundary elements that define the parts of a shape, hence the set of constraints within the

shape, are not abstract or external to the user. Their definitions within the initial shape can

change as visual rules are applied or as the process which defines the constraints change.

Following the details of the representation, the technical framework which implements the

part embedding problem is provided in detail. The method which is easy to grasp and imple-

ment, interprets part relations true to visual thinking.

1 Perceptual wholes are discussed in Section 2.3
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2.1 Shape Representation

The most crucial part of the part embedding problem is determining a good representation

of shapes, yet it determines the range and affect of the operations on shapes. The proposed

representation respects the continuous nature of the shapes and is appropriate for any type

of part searches2. This is made possible by considering shapes as a composition of parts

temporarily defined by a set of boundary points. Part boundaries are exploited to define a set

of possibly overlapping perceptual wholes considering the intrinsic properties of shapes.

A process, whether automated or defined according to the user/designer’s selections, deter-

mines the part boundaries in a consistent manner. Accordingly, the proposed representation

decomposes shapes and redefines the relations among the parts that assemble to form them.

The important property of this representation is that nothing new is added to or deleted from

the original shape.

Figure 2.1: A sample line shape.

Let us explain the core idea related with the representation using a sample shape depicted

in Figure 2.1. Assume that a process extracts some topological descriptions that incorporate

some parts and their boundaries to define the shape3. According to this description, a set of

points as the boundaries of shape parts are highlighted. Let these points consistently be either

the intersection points or the boundary points of the maximal lines4 of a shape .

2 The nondeterministic type embeddings are included with a novel mechanism that is made clear in Section

2.6.
3 Each such description is a set of assumed primary features and how they are assembled which is arbitrary,

temporary and disputable.
4 Refer to Chapter 1 for the definition of maximal element representation.
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According to the defined process, the intersection points and the boundary points of the four

maximal lines in Figure 2.1, are identified as the critical points (Figure 2.2). Then, some line

segments are implicitly pointed out as being bounded by these points. It is wise to restate here

that these points are selected by the defined automated process which considers a perceived

topology to illustrate the solution for a generic case. They can be assigned in other cases even

manually, in many different ways depending on what is intended with the choice of the set

of critical points. Since, part definitions are not regularized in this approach, the regularity

should be imposed on the part boundaries in order to assure the consistency between the key

features of the two shapes that are utilized during matching.

Figure 2.2: Topologically critical points are labeled. Apart from the two intersection points

{p3 and p7}, all the remaining points are the boundary points of the maximal lines.

All these critical points are utilized to analyze a given shape in a different algebraic level to

extract the relations about the embedded parts of a shape. For the given example shape, which

is in U12, the projection of the shape to one step lower level, to U02, and attributing that shape

with labels so as to encode some relations, in V02, results in an efficient representation for

embedding parts5.

2.1.1 Mapping U12 to V02

Let us define a shape in U12 with non-overlapping line segments which are bounded by a set

of critical points as:

5 For the generic case a shape can be considered in U00 algebra and be projected into V02
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S U12
= {l1, l2, ..., ln} where, li is a line segment.

In this case, the definition of the critical points of a shape can be unified to a class of bound-

ary points of the said line segments instead of the two classes we defined previously as the

intersection and boundary points. A shift from U12 to U02 can be defined as a mapping M for

any shape using the boundary relation for each line segment designated in that shape:

M : U12 → U02

M(S U12) = {b(l1), b(l2), ...b(ln)}

where b is the boundary operator:

b(li) = {pi1 , pi2} , where pi1 and pi2 are the boundary points of the line segment li.

This operator generates a mapping of a shape from U12 to U02 where only the topologically

critical points are visible. In order to constrain the interpretation of this new point shape, we

extend the shift between algebras to the label algebra V02 in order to include a set of labels

for each point.

M : U12 → V02

M(S U12
) = {(p11, L(p11)), (p12, L(p12)), (p21, L(p21)), ..., (pn1

, L(pn1
)), (pn2

, L(pn2
))},where L(p)

is the list of labels for point p.

The labels encode the relations between the points in U02 and refer to the line segments in

U12. As a result, for each point, a set of line segments that the point is coincident with is

stored in a list of labels.
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Figure 2.3: (a)Shape in U12.V02 with labels for line segments and points shown for illustrative

purpose, (b)The corresponding shape in V02 obtained with a particular mapping.

The shape obtained after this mapping contains a finite number of points and associated labels

(Figure 2.3)-(b). Labels encode the information of how a point connects to the other points.

Labels can be changed, altering the connection information for alternative readings of the

shape in V02 without altering the shape. A shape can also be represented with different V02

mappings as dictated by the selection of the critical points. All these V02 representations can

be added together to get a new V02 representation, all without altering the shape.

2.1.2 Attributed Undirected Graph Representation

In the proposed solution, shapes are represented as attributed undirected graphs. Attributed

undirected graphs are very suitable data structures to represent V02 shapes which are com-

puted, in the context of this work, with a particular mapping M as the projections of the U12

shapes (Section 2.1.1). The nodes (vertices) of the graphs refer to the points in V02 and the

edges which code the connection relations between the nodes are inferred from the labels.

Graph node attributes are extracted from the line segments (in U12), which are inferred from

the labels (in V02). From here on, attributed undirected graphs will be referred as shape

graphs.

Formally, a shape in V02 is represented as a shape graph G = (N, E), where N is the set of

points (nodes) of the shape in V02 and E is a Boolean relation such that there is an edge from

node ni to n j if (ni, n j) ∈ E. E is defined below:
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• if L(ni) ∩ L(n j) � ∅ then (ni, n j) ∈ E. (L(n): set of labels associated with node n).

Graph attributes should be set in a way to keep the necessary information for the efficient

computations with shapes. In the proposed representation, graph attributes are set for each

graph nodes to store some information about the line segments corresponding to the labels

and the related boundary points. For each node ni, the attributes are :

1. Node position: Local image space coordinates of the corresponding boundary point,

2. Edge information: Necessary information about the line segments that a node has a

relation (defined in V02).

In the sample implementation that we explain in the Section 2.7 briefly, the edge information

attributes of a node ni is set for each connected node (n j) of (ni) as:

(a) Node-to-node connection angle: The angle with the positive x-direction when a line

drawn from node ni to the node n j. (Figure 2.4)

(b) Node-to-node connecting line segment: The line segment in U12 that is bounded by the

nodes ni and n j.

Figure 2.4: Sample node-to-node connection angles between the nodes (ni,n j) and (ni,nk):

α1 and α2. (b) The edge connection angles between the edges connecting (ni,nk) and (ni,n j):

(α2 − α1). It is computed via node-to-node connection angles when necessary.

Let us refer to the shapes that are composed of a finite number of straight lines, such as the one

in Figure 2.1, as linear shapes from here on. For efficiency reasons, if it is known that a given
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shape is a linear shape, it is sufficient to set a flag to imply this property instead of keeping

node-to-node connecting line segments as the graph attribute that we mentioned above, in the

item (b). For a more general case, like the one shown in Figure 2.5, where no presumption

could be made about a given shape, the line segments within the shape should be kept as the

graph attributes to validate part embeddings.

Figure 2.5: Sample shape for a generalized case. Linear or not, segments of U12 elements,

have a boundary elements set in V02.

2.2 Shape Graphs

2.2.1 Equivalence Relations

A shape can occur in different instances in a digital medium where its scale, orientation and

position change (Figure 2.6). Although the perceived images for each instances are different,

the shapes in all these instances are equivalent under some Euclidean transformations. In

this section, we develop the equivalence relation between two shape graphs that are shape

equivalent under some Euclidean transformations.
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Figure 2.6: Three different instances that are shape equivalent under Euclidean transforma-

tions.

The mapping function, M, described in Section 2.1.1 is not a one-to-one relation when shapes

are considered. Each of the different instances of a shape is mapped to a different graph.

Therefore, two different graphs may actually refer to the same shape.

The graph representations show the assumed topologically critical points and relations be-

tween these points. For a given shape, the relations between the nodes in the graph represen-

tations do not change when shapes go under Euclidean transformations. Only, the attributes

of the graphs, namely absolute positions of the points and scales and orientations of node-to-

node connecting lines may change. For seeking an equivalence relation between two linear

shapes (like the shapes in Figure 2.6), we define a constrained structural isomorphism be-

tween their representative graphs to preserve edge connection angles and edge length ratios in

addition to the adjacency relations. This is a bijection between the node sets of two exemplary

graphs G1 and G2,

f : N(G1) → N(G2)

such that any two nodes ni and n j of G1 are adjacent in G1 if and only if f (ni) and f (n j)

are adjacent in G2. Moreover, for any two nodes n j and nk of G1 where the node ni has an

adjacency relation:

1. Edge connection angle between < n j, ni, nk > nodes of G1 centered at ni and corre-

sponding to angle centered at f (ni) in G2, < f (n j), f (ni), f (nk) > should be equal;

2. The edge length ratios:

rG1
=
‖P(n j)−P(ni)‖
‖P(nk)−P(ni)‖ , (where 0 < rG1

≤ 1) of G1

and
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rG2
=
‖P( f (n j))−P( f (ni))‖
‖P( f (nk))−P( f (ni))‖ , (where 0 < rG2

≤ 1) of G2

should be equivalent. Note that P(n) is the local coordinates of a node n.

For a generalized version of the equivalence relation6, an additional constraint should be

satisfied to validate the equivalence relations of two shape graphs, which is stated below.

3. In addition to validating the constrained structural isomorphism, all pairs of node-to-

node connecting line segments in two graphs should be equivalent.

The shape equivalence relation partitions the set of graphs into equivalence classes. These

classes are subsets of the structural isomorphism classes of graphs. In other words, being

in the same isomorphism class for two graphs is a necessary condition but not sufficient for

being in the same shape equivalence class. The two graphs should also satisfy the constraints

defined in (1), (2) and (3).

2.2.2 Part Relations

Let us assume that we are to detect shape (a) as a part of shape (b) in Figure 2.7.

Figure 2.7: Sample shape (a) to be detected in shape (b)

There are more than one occurrences of (a) within (b) in different scales and orientations.

When the shape graph of (b) is traversed to obtain the sub-shapes which are shape equivalent

6 What is meant by a generalized version of identity relation is an identity relation that applies to any kind of

shapes; not limited to the shapes with straight lines.
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to (a), there are two simple7 subgraphs for which nodes and node connections are shown in

Figure 2.8.

Figure 2.8: Two subgraphs for the shape graph of the Figure 2.7

Although both (Figure 2.8-(a) and (b)) are shape equivalent to Figure 2.7-(a) under some

Euclidean transformations, Figure 2.8-(b) is not graph equivalent to Figure 2.7-(a) as it has

more nodes than the boundaries of its maximal lines.

Instead, the corresponding subgraph representation of Figure 2.7 (b) should be as in Figure

2.9 where the only nodes that define the subgraph are topologically critical points.

Figure 2.9: A subgraph of the graph of the shape in Figure 2.7-(b)

As it is exemplified here, such cases may usually be the case when all possible parts of a

given shape is searched for, which is the problem that we are pursuing in this thesis. To

overcome this problem, where the graph representation for the embedded part is not com-

7 A simple shape graph is any ordinary attributed undirected shape graph that we have mentioned so far in

this document. This tag is used here to differentiate it from over-complete graphs (Section 2.3)
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pletely a subgraph of the graph representation of the shape it is a part of, the definition of

simple graph is extended to obtain a new graph representation for shapes that we refer to as

over-complete graph representation. In an over-complete graph, for every possible traversal

of the target graph there exists a subgraph which is shape equivalent to the traversed subgraph

and the nodes of which conform to be topologically critical. This is achieved by using the

relations between the points which have implicit connections in addition to direct (explicit)

connections.

2.3 Over-Complete Graph Representation

As seen in Figure 2.8-(b), the criticality of a point depends on the context. If two edges

connecting through a node have similar attributes as co-linearity or continuity, we can choose

not to perceive the point at the node as a critical point and perceive the concatanation of

two edges as a whole, calling it a perceptual whole. Each perceptual whole creates a new

connection between the two previously unconnected nodes that are located at the other ends

of these two edges and leads to an alternative traversal of the simple shape graph. In other

words, we perceive the points in U02 and V02 in an alternative way, without altering the

U12 shape. Over-complete graph representation is an extension to the simple shape graph

representation such that in addition to the simple node connections, all the nodes that are at

the boundaries of the perceptual wholes have connections. By means of this extension all

implicit connections are made explicit, and the subgraph shown in Figure 2.9 become a valid

subgraph of the graph in Figure 2.7-(b).

Perceptual wholes could be defined in different ways. Any particular definition of the per-

ceptual wholes will not change the method we define here for extracting over-complete graph

representations of shapes. The crucial thing is being consistent in the definition of the percep-

tual wholes within the shapes that are the subjects of a visual computation. In our particular

implementation, we preferred to define perceptual wholes from the segments that have the

first order parametric continuity (C1). In C1 continuity, the tangents of the segments at the

vicinity of their connecting points are equal.

Let us call a graph G′ = (N′, E′) an over-complete graph where N′ is the accepted set of points

of the shape in V02 and E′ is a Boolean relation such that there is an edge from ni to n j, if
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the line, boundary points of which are coincident with these nodes, forms a perceptual whole.

In the case of linear shapes, we assumed that the line segment between each pair of points

which are coincident with the same straight line forms a perceptual whole. Hence, there is

a connection between each pair of such points. For these cases, connection angles between

nodes in a simple graph facilitate the identification of a set of nodes which are coincident

with the same straight line (Figure 2.10). In an over-complete graph representation, all of the

nodes in this set are shown to have a direct connection with each other.

Figure 2.10: The implicit connection between the nodes ni and n j are made explicit in the

over-complete representation of this shape.

As the definition of this extension implies, a simple graph G = (N, E) of a shape S is a

subgraph of an over-complete graph G′ = (N′, E′) of that shape. E′covers both direct and

indirect connections, while E covers only direct connections. Since, for a given shape E ⊆ E′

and N = N′, we can infer that G ⊆ G′, where ′ ⊆′ denotes subgraph relation.

Let us explain the V02 interpretation of a shape in an over-complete graph representation for

a more general case. Assume that a part of a shape is given as in Figure 2.11-(a) with the line

fragments connecting through the critical points are labelled as shown. Mapping of the shape

to V02 domain is as shown in Figure 2.11-(b). This is the simple mapping that we utilized

during constructing the simple shape graph of the shape.
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Figure 2.11: (a) Sample shape with labelled fragments. (b) Corresponding V02 shape

The two line fragments f1 and f2 meet at the center node with a smooth and continuous

connection (satisfying the C1 continuity) (Figure 2.12-(a)). Therefore, we can choose not

to see the center node and perceive the concatanation of f1 and f2 as a whole ( f1 f2). In

the V02 shape, which will eventually be used to construct the over-complete graph, the label

corresponding to this whole is associated with the boundary points of the whole (Figure 2.12-

(b)).

Figure 2.12: (a) Concatanation of f1 and f2 forms a perceptual whole. (b) Node relations

through f1 f2 segment is reflected to V02 shape.

Similarly, concatenation of the two line fragments f3 and f4 can be perceived as a whole

when we choose not to see the center node. In that case, the label ( f4 f3) corresponding to the

concatanated lines is assoicated with the nodes that are coincident with the boundary points

of that whole (Figure 2.13).
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Figure 2.13: (a) Concatanation of f4 and f3 forms a perceptual whole. (b) Node relations

through f4 f3 segment is reflected to V02 shape.

The V02 shape in Figure 2.10-(b) is mapped to a simple graph as shown in Figure 2.14-(a).

On the other hand, the new interpretation of the same shape which considers the perceptual

wholes introduces new connections when V02 shape shown in Figure 2.13-(b) is mapped to a

graph (Figure 2.14-(b)).

Figure 2.14: (a) Simple shape graph of the shape in Figure 2.11-(a). (b) Over-complete graph

of the same shape

Accordingly, the simple graph and the over-complete graph of the curvilinear shape in Figure

2.5 are depicted in Figure 2.15-(a) and (b) respectively. Notice the additional connection rela-

tions in the over-complete representation. These connections help extending the search space

when part relation is asked for two shapes. This extended structure makes graphs suitable to

locate every possible (if required) occurrence of a given shape within another.
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Figure 2.15: (a) Simple graph of the shape in Figure 2.5. (b) Over-complete graph of the same

shape.

2.4 Embedding Parts

For being able to detect any and if necessary every defined occurrence of the left hand side

of a given rule (source shape) within the given initial shape (target shape), a Euclidean trans-

formation of the source shape is to be found identical to a part of the target shape. Assume

that GS = (NS , ES ), as the graph representation of the left hand side of the rule, is the source

graph and GT = (NT , ET ), as the over-complete graph representation of the initial shape,

where each node has an explicit connection with the nodes that are coincident with the same

maximal lines.

Before going into the details of the sub-shape embedding algorithm, let us make some defini-

tions related with the node types, which will guide the explanation of the proposed algorithm

in the next section. Nodes in a given source graph can be categorized as free or non-free. A

node which is connected to more than one node is a non-free node, whereas a node which is

connected to just one other node can be a free node or non-free node according to the con-

straints defined externally for that node. When no external constraints are defined, a node with

just one connection is treated as a free node. Free nodes are never located at an intersection

point while non-free nodes are. Therefore, non-free nodes play an important role in finding

the corresponding nodes of two shape graphs in the problem of searching for parts.

Sub-shape embedding is handled in two steps. In the first, Euclidean transformations of the

selected source subgraph are matched to the target graph in V02. These transformations deter-
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mine all candidate parts of the initial shape which may match the source shape. In the second,

the part relation validation is performed. Considering the source graph attributes, either a full

graph matching or a subgraph matching is performed where necessary. If there are free nodes

in the source graph a simple graph search is not sufficient to validate part relation. This is

due to the fact that when a shape is transformed and embedded within an initial shape, the

free nodes of the corresponding source graph may or may not be coincident with a node of

the corresponding target graph (Figure 2.16). For this reason, in the second step, the shape

algebra extends to include the line segments in U12.V02.

Figure 2.16: Source graph: free node points are shown in grey color, (b) Target graph, (c)

Free nodes are not coincident with any node of the target graph.

If the source shape is a part of the initial shape, a free node of the source graph is either

coincident with a node of the target graph or coincident with a boundary point of a sub part

embedded in a line connecting two target nodes. In the latter case, the free node introduces

a new critical point in the target shape, in the scope of that particular embedding (Figure

2.16-(c).

If a free source node is not coincident with a target node in V02, then the point corresponding

to the free source node must be coincident with a line in U12 that connects two target nodes,

since the source shape is assumed to be a part of the target shape. For embedding such a

shape, that point of the initial shape is named as a critical point. During shape embedding in

U12.V02 algebra, the critical point set of the target shape is dynamically extended depending

on the position, orientation and scale of the source shape. In this respect, the proposed method

dynamically decomposes a given initial shape depending on the source shape for each possible

mapping.
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2.5 The Two Step Part Embedding Algorithm

In this section, a two step part embedding algorithm is provided referring to the four exem-

plary cases that are illustrated in Figure 2.17. Each case is a sample for a different problem in

part embedding when their representative graphs are considered. Altogether they represent all

the possible cases, hence the proposed algorithm provides solutions for each of them. Note

that the Second Pass of the algorithm provided in this section is an optimized version of a gen-

eral solution to make it more efficient for the linear shapes like the selected exemplary cases.

Extension of this algorithm for a generalized solution, which additionally requires matching

any kind of line segments (i.e. curves, arcs, etc.) in the Second Pass, is discussed in Section

2.7.

Figure 2.17: Four exemplary cases to discuss the part embedding algorithm

The initial shape selected for the exemplary cases is already given in Figure 2.1.

2.5.1 First Pass

1. Construct the source graph GS = (NS , ES ) and over-complete target graph GT =

(NT , ET ).

2. Enumerate the nodes in the target graph (n1
T , n2

T , ..., nk
T ), where k is the total number

of nodes in the over-complete target graph.

3. From the source graph, select a subset of the non-free (NF) source nodes in order to

compute the candidate transformations that transform the source graph nodes into the

target graph domain to detect embedded parts. There are four different cases for select-

ing this subset regarding the number of NF nodes in the source graph.

(a) Case 1: There are three or more NF nodes in the source graph such that at least
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three of them are non-collinear (Figure 2.17-(a) and 2.18)

i. Select three NF source nodes S NF3 = {n1
S , n2

S , n3
S } and construct the cor-

responding 3-node vertex-induced subgraph of the source graph GS [S NF3] =

(NS 3, ES 3).

ii. Create a set of candidate node mappings π by generating all three-node per-

mutations of the target nodes. There are k.(k − 1).(k − 2) number of permuta-

tions. Four sample mappings are shown in the first row of Figure 2.18.

iii. Construct three-node vertex-induced subgraph of the target graph for each

permutation TN3 = {ni
T , n j

T , nm
T } as GT [TN3] = (NT3, ET3), where 1 ≤

i, j,m ≤ k.

iv. For each node mapping, μ(n1
S , n2

S , n3
S ) = (ni

T , n j
T , nm

T ), (μ ∈ π):
A. Compare the subgraph relation between GS [S NF3] and GT [TN3]. GS [S NF3]

must be a subgraph of GT [TN3] according to the particular node mapping

μ.

B. Node distance ratios among the source nodes in NS 3 must be compatible

with the node distance ratios among the mapped target nodes in NT3.

C. Edge connection angles (as illustrated in Figure 2.4) among the source

nodes in NS 3 must be compatible with the ones among the mapped target

nodes in NT3.

D. List every mapping which satisfies these three conditions.

v. For each compatible mapping in the list, compute the transformation matrix

Γ. Since the source node coordinates and the corresponding target node coor-

dinates are known for three non-linear points, the transformation matrix can

be computed uniquely.
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Figure 2.18: Example rule for Case 1 is displayed for four sample mappings (1 − 4). The

candidate mappings are displayed in the first row. A 3-node source subgraph is selected from

the source graph and shown on the left column of the first row. In the second pass, illustrated

in the second row, the source graph is matched according to the transformation computed in

the first pass. Transformations in the second pass can be followed easily by tracing the node

correspondences between the graphs used in the first and second passes with the indices.

(b) Case 2: There are exactly two NF nodes in the source graph (Figure 2.17-(b) and

Figure 2.19)

i. Select two NF source nodes S NF2 = {n1
S , n2

S } and construct the corre-

sponding 2-node vertex-induced subgraph of the source graph GS [S NF2] =

(NS 2, ES 2). (Selected NF source graph nodes are depicted with the indexes 1

and 2 in the left column of the first row in Figure 2.19.)

ii. Create a set of candidate mappings π by computing all two-node permuta-

tions of the target nodes. (Four sample mappings are displayed in the right

column of the first row in Figure 2.19.)

iii. Construct two-node vertex-induced subgraph of the target graph for each per-

mutation TN2 = {ni
T , n j

T } as GT [TN2] = (NT2, ET2), where 1 ≤ i, j ≤ k.

iv. There are two node mappings between the source graph and the target graph.

Therefore, a unique transformation matrix can not be computed. Two artifi-

cial reference points can be introduced to compute the transformation matri-

ces uniquely for both source and target node pairs. Assume that an external
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line passes through one of the two non-free source nodes, say n2
S , perpen-

dicular to the line connecting two non-free source nodes. The length of the

external line is equal to the line connecting two non-free source nodes and

the selected non-free node is coincident with the external line at the line mid-

point. The boundary points of this newly created external line are the external

reference points for the source nodes:{r1
S , r2

S } (as shown in the source graph

of the first row in Figure 2.19). Similarly, an external line is drawn which

passes through the target node corresponding to the selected non-free source

node, say n j
T , according to the particular mapping. The line length is equal

to the length of the line which connects the two target nodes and the se-

lected target node coincides with the external line at the line midpoint. The

boundary points of this line are the reference points for the target node pairs

(r1
T , r2

T ).

v. There are two possible transformations that map the source graph nodes to the

target subgraph nodes. One of the transformations is reflection of the other

about the axis that passes through the line connecting the two source/target

nodes. Construct these mappings as μ1(n1
S , r1

S , r2
S ) = (ni

T , r1
T , r2

T ) and

μ2(n1
S , r1

S , r2
S ) = (ni

T , r2
T , r1

T ).

vi. For each mapping μ1 and μ2, compute a unique transformation matrix Γ.
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Figure 2.19: Example rule for Case 2 is displayed for four sample mappings in (1-4). The

graph displayed with dashed lines in the first row contains nodes that are constructed with

external reference points explained in Case 2-4. In the figure above, the source graph nodes

n1
S , r1

S , r2
S are labeled as ns1, rs1, rs2 respectively.

(c) Case 3: There are more than two NF nodes in the source graph all of which are

collinear (coincident with the same line) (Figure 2.17-(c) and Figure 2.20):

i. Select 2 NF source nodes randomly and compute the transformation matrices

following the algorithmic steps described for Case 2.
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Figure 2.20: Example rule for Case 3 is displayed for four sample mappings in (1-4). The

mappings in (1) and (2) are acceptable mappings for which the source shape is a part of the

target shape, while (3) and (4) are rejected mappings in the second pass of the algorithm. In

the figure above, the source graph nodes n1
S , r1

S , r2
S are labeled as nS 1, rS 1, rS 2 respectively.

(d) Case 4: There are less than two NF nodes in the source graph (Figure 2.17-(d)

and Figure 2.21):

i. If a reference shape is provided (see the discussion related with the reference

shapes in Section 2.6):

A. Compute the reference shape graph GR = (NR, ER).

B. Compute the transformation matrix as in Case 1 or Case 2 depending on

the number of reference nodes. Note that all the reference graph nodes

are of type non-free by the definition of the reference graphs.

ii. If there is no reference shape, Assume that all nodes of the source shape is of

type non-free. Compute the transformation matrices as in Case 1 or Case 2

depending on the number of source nodes.
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Figure 2.21: Example rule for Case 4 is displayed for four sample mappings in (1-4). A

user defined reference shape is introduced along with the left hand side of the rule, which is

displayed with light-weighted lines in the rule definition. Since all the nodes in a reference

shape graph is of type NF, each critical point of the reference shape is coincident with a critical

point of the target shape during the computation of candidate mappings in the first pass.

2.5.2 Second Pass

1. For each possible mapping computed in the first step, find node associations among the

source nodes and the target nodes as:

(a) Transform all the nodes (free and non-free nodes) of the source graph using the

transformation matrix (Γ) computed in the first step.

(b) Compute the node correspondences, μ for all the transformed non-free source

nodes with the target graph nodes comparing their coordinates. If there is any

non-free source node which does not correspond to any target node, discard this

mapping from the candidate mapping list, e.g. in Figure 2.20, NF node indexed

as 3 in the sample mapping (4).

(c) Compute the node correspondences, μ for all free source nodes:

i. If transformed free source node is coincident with a node of the target graph,

associate the target node index with the corresponding free source node, i.e.

in Figure 2.20, free node indexed as 4 in the sample mapping (4).
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ii. If transformed free source node is not coincident with a node of the target

graph, but coincident with a line segment that connects two target nodes, as-

sociate the free source node with the set of target nodes which are coincident

with the boundary points of the corresponding line segment, i.e.: in Figure

2.21, all free nodes coincide with a line for the displayed sample mappings.

iii. If the transformed free source node is not coincident with a target node or

with a line segment that connects two target nodes, discard this mapping

from the candidate mapping list, i.e. in Figure 2.20, nodes indexed as 4, 5

and 6 in sample mapping (3).

2. Check the node connection relations to validate each mapping, μ:

(a) If each source node is associated with just one target node, then check for each

(ni
S , n j

S ) ∈ ES , whether there exists a relation (μ(ni
S , n j

S )) ∈ ET or not. If there

exists any (ni
S , n j

S ) ∈ ES such that (μ(ni
S , n j

S )) � ET , this mapping is deleted

from the candidate mapping list.

(b) If for some of the free source nodes, there are more than one associated target

nodes (see 1.c.ii). Assume that (ni
S , n j

S ) ∈ ES and μ(n j
S ) = {na

T , nb
T , }.

i. If na
T � μ(ni

S ) and nb
T � μ(ni

S ), there must be (μ(ni
S ), na

T ) ∈ ET and

(μ(ni
S ), nb

T ) ∈ ET with the same connection angles. Otherwise discard this

mapping.

ii. If na
T = μ(ni

S ) and nb
T � μ(ni

S ), then there must be (μ(ni
S ), nb

T ) ∈ ET .

Otherwise, discard this mapping.

iii. nb
T = μ(ni

S ) and na
T � μ(ni

S ), then there must be (μ(ni
S ), na

T ) ∈ ET .

Otherwise, discard this mapping.

(c) For each valid candidate mapping remained in the list, the source shape is ac-

cepted as a part of the target shape with respect to the corresponding transforma-

tion.

2.6 The Reference Shape

According to the proposed part embedding algorithm (Section 2.5), if the source graph con-

tains less than two non-free nodes, there will be infinitely many transformation possibilities.
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We refer to the searches with this type of source graphs as the nondeterministic type searches,

since embedding the part in a unique way is not possible. Producing all possible solutions is

not feasible both for time and storage limitations of the computing medium. Hence, a novel

visual communication system is introduced in this section which defines necessary constraints

for mapping a given source shape to a part of a given target shape based on user(/designer)’s

intentions.

In this system, the communication between the computing machine and the user is achieved

by means of a visual rule definition in U12. However, the left hand side of the rule is defined in

a particular way (Figure 2.21). The original left hand side of the rule is defined in relation with

another shape, called the reference shape, which is labeled differently, i.e. lies in a different

layer. During the operations, the user defined reference shape is mapped to V02 domain while

the original shape (corresponding to the left hand side of the rule) is in U12.V02 composite

domain. The reference shape is transformed to the V02 domain to construct the graph of the

reference shape in the usual way. However, the graph node types are modified to be of non-

free typed even for the free nodes of the original reference graph. The reference shape, as

its name implies, acts like a reference to compute the candidate transformations in the fist

place. These candidate transformations are directly utilized to generate the set of successful

embeddings of the source shape according to the relations between the source shape and the

reference shape.

There is no predefined restriction on the definition of a reference shape. It can be defined in

any way that is meaningful for a user. For example, in Figure 2.22, a change in the scale of the

reference shape without changing the visual rule applied in Figure 2.21 significantly changes

the parts detected in the initial shape.
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Figure 2.22: Application of the same rule in Figure 2.21 with a different reference shape.

The solution proposed for this type of searches enables the user for embedding any source

shape to a target shape by specifying a proper reference shape (Figure 2.23).

Figure 2.23: Reference shapes can be defined in any desired way. Some sample reference

shapes for the same rule in Figure 2.21 are displayed with bolder lines.

The notion of the reference shape relaxes the predefined constraints for embedding nondeter-

ministic type shapes. Such a fixed solution would contradict with the philosophy of visual

computation.
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2.7 Sample Implementation

In order to complement the solution we provided for the part embedding problem, the pro-

posed algorithm is integrated into a sample shape grammar interpreter implementation. Con-

sidering that there is no practically accessible application in the literature that solved part

embedding problem supporting any type of line shapes, releasing a working application with

the proposed structures and the algorithm has a practical value. Not concentrating on all the

implementation details, here only certain technical aspects of the approach will be discussed.

The implementation is developed in MATLAB (7.0) environment and supported with a graph-

ical user interface (GUI) via which the shape rules can be introduced to the system directly

with image files. When an image file is loaded through the GUI, the following computations

are performed in that order to construct the proposed representation:

1. Extract a set of critical points (CP) to transform the given shape to a U02 shape (Chapter

4). The set of critical points partitions the original shape into a set of line segments

(fragments) which are connected to some other through these points to form the original

shape.

2. Find the relations among CP set and the set of line segments to construct the V02 shape.

3. Construct the corresponding shape graph.

After the construction of the simple shape graphs, over-complete graph representation is con-

structed by evaluating the connections in the vicinity of the nodes to determine possible per-

ceptual wholes. For the linear cases, over-complete graph is constructed only for the target

(initial) shapes, while the source shapes are represented with simple graphs. The reason can be

explained as follows. In order to embed a shape within the other a set of points are utilized as

registration points while determining possible correspondences. Let us refer to these points as

registration marks from here on. In the proposed approach, the set of critical points extracted

from shapes serve as the registration marks in embedding one shape within the other. In order

this idea be effective, the registration marks should be extracted in the same way from both the

source and the target shapes, in other words they should all carry the same logical meanings.

For linear cases, all the registration points that correspond to the non-free nodes in the source

shape graph is equally important for that shape with respect to matching. This is due to the
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fact that, the process which determines the critical points from the shapes (source or target

shape) guarantees to mark any intersection point as the critical point. Therefore, any critical

point, corresponding to a non-free node, in a simple source graph would exist in the target

graph if the source shape is a part of the target shape. Hence, representation of the source

shape as a simple graph is sufficient to determine three (most probably connected) non-free

nodes to initiate the search in the First Pass.

On the other hand, when the shape has curved components, there are different types of critical

points in addition to the intersection points. Leaving the extraction of the CPs to Chapter 4, a

critical point comes with a weight that shows the strength of that point as a registration mark

for a more general shape. From a set of such critical points for a source shape, the strongest

three of them would serve better to find the possible transformations in the First Pass of

the proposed algorithm. While selecting three strongest nodes, selecting a set of internally-

connected ones would constrain the search space more than an unconnected set (due to the

pruning during subgraph searches) and as a result would be more time efficient. In an over-

complete graph representation, many nodes which are not immediate neighbors have direct

connections due to the perceptual wholes. Hence, the probability of finding three strongly

weighted points that are connected in that representation is higher than the simple graphs. For

this purpose representing the source shapes as an over-complete graph is more suitable for the

generalized solution.

As it is stated in Section 2.1.2, the implementation can be optimized for the linear shapes

if the time efficiency in part matching is desired, yet the edge information for any linear

shape is the same; straight lines. The only difference between such an implementation and a

generalized solution would be in the Second Pass of the given algorithm (Section 2.5). For

the linear shapes, the part relation validation for the two shape graphs would be sufficient to

decide about matching, while in the generalized solution, in addition to that, node-to-node

connecting line segments should also be matched for the corresponding nodes in both shapes.

In the generalized solution, Second Pass of the given algorithm is extended to include a few

more steps to compare a set of line segments for the corresponding nodes of the two graphs

in order to eliminate the effort for unmatching candidates beforehand. For this purpose, in

the generalized GUI, all the line segment indexes that have relations with a node are kept

as node-to-node connecting line segments attribute in the graph structures. There is a buffer
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which keeps the line segments in a canonical form as shown in (Figure 2.24) to filter out

position and scale effects during comparisons.

Figure 2.24: Sample Canonical representations for the curved line segments s2, s4 and s6 of

the shape in Figure 2.5 and the straight line segment l4 in Figure 2.3. All canonical represen-

tations of straight line segments are similar. The only difference between two such represen-

tations may be in the density of the plotted points.

The nodal position of ni is mapped to (0,0) and the nodal position of n j is mapped to (1,1) in

the canonical representation of a line segment bounded by ni and n j. The crucial point here is

to make the node order compatible for the node pairs of both graphs during the matching of

two graph line segments.

Accordingly, for a generalized solution, the Second Pass of the proposed algorithm is ex-

tended as follows:

1. For each possible mapping computed in the first step, find the node associations among

the selected NF source nodes and the target nodes as:

(a) Transform the selected non-free nodes of the source graph using the transforma-

tion matrix (Γ) computed in the first step.

(b) Compute the node correspondences, μ for the transformed non-free source nodes

with the target graph nodes comparing their coordinates (considering the allowed

tolerance range). If there is any non-free source node which does not correspond

to any target node, discard this mapping from the candidate mapping list.

2. For each selected source node ni
S and associated target node n j

T :

(a) For each line segment attribute of the node ni
S , say lim

S , there exists a line segment

attribute, say l jk
T associated with the target node n j

T in the over-complete target

graph equivalent to lim
S . If not, eliminate this mapping from the list.
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3. Transform the source image with the computed transformation matrix Γ.

4. Match target image with the transformed source image by simple binary image oper-

ations considering some user defined error tolerance. if for some parts of the source

image, there is no overlapping target image when the two are aligned, discard this map-

ping from the list.

5. Accept the remaining list of transformations as the valid set of mappings.

The GUI of the implementation, provides a generalized solution for any line shapes, like the

curvilinear shape shown in Figure 2.25. Some sample part embeddings with this GUI with

the generalized solution can be found in Appendix A.2.

Figure 2.25: Screenshot of a sample embedding within a shape with curved components.

In this implementation, part matching is optimized for linear shapes as we proposed. A sample

part matching with this implementation for the example case depicted in Figure 2.17-(a), is

shown in Figure 2.26.
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Figure 2.26: Screenshot of a sample embedding within a linear shape.

In the GUI, the alignment of the source shape with the matching part of the target shape is

displayed in the left most window with the red color. The displayed sample in Figure 2.26

is one of the four possible embedding results that are detected by the application. Because

of the discretization errors, we need to put some error tolerance in order to decide the node

correspondences. All these parameters can be determined and changed by the user through

the GUI. The results of the part embeddings with this GUI for all the exemplary cases that are

shown in Figure 2.17 are provided in the Appendix A.1.

Aligning Arbitrary Line Shapes

Part embedding problem, in the context of the shape grammars, requires finding some Eu-

clidean transformations of a shape within the other. Hence, in theory, finding a rigid trans-

formation is sufficient to locate a part in matching. However, in the digital representation of

images two different transformations of a shape may not align perfectly when one is trans-

formed on top of the other, due to the discretization. Locating exactly the same pixels as

critical points in both transformations of the same shape may not be possible all the time, al-

though the critical point positions will be in close neighborhoods. For all these reasons, in the

provided implementation, some acceptable tolerance range is defined and allowed in aligning

two shapes. Considering this, in addition to the rigid transformation that align two shapes
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with some error tolerance, a non-rigid transformation is computed to reduce the alignment

errors as much as possible.

Initially computed Euclidean transformation, which defines a rough correspondence of the

two images in the allowed tolerance range, is utilized to initiate another process which com-

putes the non-rigid transformation to find a more accurate alignment. That process uses the

thin plate spline mapping algorithm to parameterize the non-rigid spatial mapping in the align-

ment of the two shapes. This type of non-rigid point matching requires finding a good initial

alignment of the two point sets in order to map one to the other.

In the implementation, in the first phase of the method proposed in this work, a set of crit-

ical point correspondences of the two shapes is determined after the combinatorial search

performed with the graph nodes. As a result, a set of candidate Euclidean transformations

are determined. In the second phase, the source shape is transformed to the target shape’s

image domain using these transformations. Following that the alignment of the two images is

checked for the acceptable tolerance range. For the set of transformations which yield the de-

sired alignment, a rough correspondence is obtained for initiating the TPS-RPM method [15].

The true transformation which ensures the alignment of a given source shape with a given tar-

get shape is then obtained as a combination of the two transformations, namely the Euclidean

transformation and the transformation obtained with the TPS-RPM method. This combined

transformation should be applied to the right hand side shape when a shape grammar rule is

applied.

2.8 Summary

In this chapter, a novel part embedding approach is introduced based on the temporary repre-

sentations of shapes. The over-complete graph structure is suitable for this representation and

for effective part searches. Graph nodes are determined according to a mapping to a lower

level algebra, which is defined externally either by a user/designer or by an automated pro-

cess. In that algebra points are attributed with labels to encode the relations among the shape

points. During the construction of the relations, the perceptual wholes within the shapes are

considered. This provides a more comprehensive way to encode the relations among the parts

of the shape.
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The problem space is divided into four cases and the solution for each case is discussed in

detail. For the nondeterministic type searches, the notion of the reference shape is introduced

a means for the communication between the user and the computing medium. This way,

embedding is performed according to the user defined constraints, instead of the predefined

biases.
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CHAPTER 3

WEIGHTED SHAPES FOR EMBEDDING PERCEIVED

WHOLES

The key idea of the proposed method of part embedding in Chapter 2 is the concept of a

perceptual whole which replaces analytic abstractions (lines, parametric curves) and symbolic

abstractions (predefined parts) [28]. The boundaries of perceptual wholes are determined

according to a mapping to the lower level label algebra and wholes are extracted accordingly

and represented temporarily with over-complete graphs.

The boundaries of the perceptual wholes are utilized as registration marks during the part

searches. For the registration marks to be effective in the searches, both the whole shape and

the searched part should agree in the manner registration marks are picked. Since no regu-

larity is being imposed on the nature of parts, regularity should be imposed on the nature of

boundaries. In perception science, these two main approaches to shape are exemplified by the

seminal works of Biederman ([7]) in which the regularity is imposed on the parts and Hoffman

and Richards ([24]) in which the regularity is imposed on part boundaries. Although a de-

fault marking mechanism is provided for determining the registration marks in Chapter 4 for

a generic solution, the idea depends on respecting and supporting the user’s/designer’s choice

for the registration marks to merely reflect the intention of the user/designer. In practice, this

puts an additional burden on the designer, forcing his or her to imagine better towards the

finished product.

In this chapter, a new approach to the part embedding is presented in order to eliminate the

tedious procedure of marking. The key idea is letting all of the points coincident with the

design plane - even the ones which are not on the design - serve as registration marks. To

this end, the proposal is based on transforming a U12 shape to a weighted U22 shape where

the weights indirectly capture the interaction among shape parts. The idea extends to U33
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as well when not only the design plane but the design volume is taken into consideration

as a weighted shape. In this set-up, distinctions between curved or line shapes also become

irrelevant.

The proposed method in this chapter for embedding parts has two main contributions. The first

contribution is the representation of the drawings with the weight functions where the weights

indirectly capture the interaction among shape parts during the embedding computations. In

this way, we defer from relying solely on the boundaries in algebra U(i−1) j and implement

the algebraic formalization using algebra U(i+1) j. The key idea is that we let not just the

boundaries of the design but the entire design plane to serve as a registration mark. The

second contribution is the utilization of a genetic algorithm to compute a transformation that

embeds a given part within a given whole.

3.1 Mapping U12 to Weighted U22

Let Ω be an open, connected, bounded set representing the canvas on which a U12 shape, S ,

has been drawn. Let Is be the indicator function whose value at a point is either one or zero

depending on whether the point is on the shape S . Naturally, Ω ⊃ S = {p : Is(p) = 1} . We

remark that the set Ω is another representation for the shape which may be thought as a dense

U02 form.

Let us define a U22 shape which coincides with the set Ω. It is assumed here that the canvas is

isolated and a weight is assigned to every point on it according to the edge strength function

([71]), which is obtained by solving the following reaction-diffusion equation. In this context,

we will refer to the edge strength function as the weight function.

(
∇2 − 1

ρ2

)
ωs(

→
p) = 0 (3.1)

where ∇2 is the Laplace operator and ρ is a constant. This equation is subject to the following

boundary conditions:
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∂ωs(
→
p)

∂n
= 0, f or

→
p∈ ∂Ω (3.2)

and

ωs(
→
p) = 1, f or

→
p∈ S . (3.3)

The weight function ωs is one along the shape boundary. On the rest of the canvas it rapidly

decays as a function of the distance from shape points. It is a smoothed version of the distance

transformation. It is precisely this nature that captures a global percept of the shape as it im-

plies strong interaction among shape points. This equation is implemented using the standard

finite difference approximations (Appendix-B).

Figure 3.1 illustrates a sample U12 shape and its corresponding weighted U22 shape.

Figure 3.1: (a) A U12 shape, (b) Corresponding weighted U22 shape.

Both the original drawing S on the digital canvas Ω and the function ω on Ω can be thought

as dense U02 shapes. Since the number of points is not critical in the proposed method, it is

considered here as a continuum of infinitely many points.

The parameter ρ controls the amount of smoothing in the reaction diffusion equation. Its value

is set considering the shape size and line characteristics of the shapes. The images that are

used during the experiments in the context of this study have dimensions in the range of 400
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by 400 and 600 by 600 pixels. In general, if the smoothing factor, ρ, is set to a too large value

in these image dimensions, i.e. more than 16, the dominant features along the lines would

fade away. Especially for the images which are composed of lines located very close to one

another there would be too much interference of the weights in the regions that fall among

these lines. All these factors affect the alignment precision of the lines during embedding. For

these types of images ρ is set to 4 in order to avoid such interference. For the images which

has wide empty spaces among the lines, ρ is initialized as 8.

3.2 Embedding In Weighted U22

After mapping the shape from U12 to the weighted U22, the embedding problem can be rede-

fined as that of finding the transformation T that minimizes the function given below:

∫
Ω

α(
→
p)[ωW(

→
p) − (T ◦ ωS )(

→
p)]2d(

→
p) (3.4)

Where ωW and ωS are the weight functions for the whole shape and the part, respectively;

T ◦ ωS is the transformed weight function of the part. In this formulation α is a threshold

function which in the cost calculation eliminates the contribution from far away points where

the weight values are below a certain threshold. In all the experiments we provide in this

chapter, the threshold value is selected as 0.5.

In this work, it is assumed that the transformation is global and can be parameterized by scale,

position and orientation which are computed as minimizers of the cost function given in 3.4.

In the discrete case, this energy can be expressed in terms of the transformation parameters as

follows:

minE(h, tx, ty, θ) =
∑
i, j∈Ω
αi, j[ω

W
i, j − (Th,tx,ty,θ ◦ ωS ))i, j]

2 (3.5)

where h, tx, ty, θ are the transformation parameters for scale, position in x coordinates, po-

sition in y coordinates and orientation, respectively. In this formulation (Th,tx,ty,θ ◦ ωS )i, j is

the value of the transformed weight function of the sub-shape at (i, j). Assuming that each

point on the canvas Ω which is coincident with ωS is represented in the column vector form,

the transformation T can be represented in the matrix form in homogeneous coordinates as
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follows:

Th,tx,ty,θ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hcosθ −hsinθ tx

hsinθ hcosθ ty

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3.3 The Genetic Algorithm Implementation using MATLAB Toolbox

The minimization of the energy given in the equation 3.5 is performed using the Genetic

Algorithm (GA) with some constraints defined for each optimization parameter. Each run of

the GA operates on this set and range of parameters. It produces a possible embedding when

ranges are determined in advance to limit the search space.

The GA is constructed to run on a population consisting of a finite number of individuals each

of which is a candidate solution for the minimization problem. Each individual is represented

with a genotype of four parameters in the chromosome structure. A genotype is mapped to a

phenotype during the evaluation of the individuals. In this implementation a phenotype con-

tains four decision parameters, one stands for scale, two for position and one for orientation.

During the minimization, an objective function is used to evaluate the performance of the

individuals (or phenotypes). The objective function, in the course of this work is inversely

proportional to the cost function given in the equation (3.4). The fitness values are derived

form this objective function values according to a rank based scaling.

At each evolution step, parents are selected for mating using a stochastic uniform sampling

(SUS). SUS is a fitness proportionate (or a roulette wheel) selection where several solutions

from the existing population are selected by repeated random sampling. In all the experiments

provided in this chapter, parents are selected using SUS, thus using a roulette wheel algorithm

and uniform sampling.

Following the mating, information is exchanged between potential individuals to generate

offsprings by means of cross-overs. In the experiments, the cross-over rate is set as 0.6 to

increase the diversity of the population at each evolution. In the part embedding problem,

there may be multiple solutions, hence there are usually more than one local minima. This is
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the case especially when the shape is composed of repeated occurrences of some geometric

primitives. This cross-over rate makes it possible to identify different local minima for differ-

ent iterations. During the cross-overs, the parameters of the offsprings are set by a heuristic

method. In this method, each parameter is computed by moving in the direction from worst

parent’s parameter to the best parent’s parameter and set to a value which slightly passes the

best parent’s.

After the cross-over, the parameter values are modified with mutations with a probability of

0.4. Since this is a constrained GA, during the mutations, the parameters are guaranteed to be

within the defined boundaries.

The part embedding application with the genetic algorithm is implemented using MATLAB

v7.8 on Windows OS with a graphical user interface (GUI) support. A snapshot of the appli-

cation GUI is as shown in Figure 3.2.

Figure 3.2: Part Embedding GUI

The initial shape which is introduced by the user in bitmap form is loaded into the left-most

window of the GUI. The part shape which will be embedded within the initial shape using

this application is shown in the middle window. The implementation supports single run as

well as multiple runs all started at once. After the evolution of the GA is completed, the
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embedding of the part shape within the initial shape is shown in the right-most window of the

GUI. The embedded part is depicted in bolder lines with respect to the initial shape as shown

in the right-most window of the Figure 3.2.

In part embedding, the GA implementation considers the parameters specified via a GUI

which we referred to as the GA Profiler. This GUI is embedded within the main application

GUI and provides some options for many GA functions and parameters as shown in Figure

3.3.

Figure 3.3: GA Profiler GUI

Not only the parameters with scalar values, but also the functions which directly influence

the evolution like the selection, mutation and cross-over can be set per experiment basis using

this GUI. A sample option set for the cross-over function provided with the GA Profiler is

shown in Figure 3.4. The other GA functions can be set in similar fashion.
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Figure 3.4: The options provided with the GA Profiler GUI for the cross-over function in ad-

dition to the Heuristic method are Two-Point, Scattered, Intermediate and Single-Point cross-

over functions.

In the experiments, the number of individuals in a population for the runs is typically set to

100. Individuals of the population are represented with four parameters, two parameters for

transformation (in x and y axes), one for orientation and one for scale. In this constrained GA

implementation, the constraints for the parameters can be defined by the user via GA Profiler

GUI. The constraints pre-defined for the scale parameter is crucial. Unless a lower bound to

the scale parameter is given, the best alignment for any run would be obtained when the shape

is scaled down until it fits to one or a couple of pixels. The embedding cost becomes small

enough for the shape to be aligned with any part of the initial shape. In our experiments the

lower bound for the scale parameter is set as 0.7.

3.4 Advantages of Using Weights In Embedding

In [28], points serve as registration marks in mapping and they are all identical except for the

attributes assigned for matching. In this approach, however, points are not identical any more,

since each point has a corresponding weight value which makes it unique. The relations of

a point with its surrounding points encode the properties of that neighborhood and mark the

unique location of that point within the shape. The weight function, in this respect, provides

underlying biases within a shape that come in handy when matching two shapes through

alignment.

Assume that in the equation (3.5), instead of the weight functions ωW
i, j and ωS

i, j, we use the
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drawings represented with the indicator functions IW
i, j and IS

i, j, respectively. In that case, align-

ing two line shapes - two sets of pixels in the discrete domain - by minimizing the equation

3.5 with GA is prone to be trapped in the false local minima. This can be overcome by uti-

lizing the supplementary information provided by the weight function which implicitly codes

the local characteristic of a shape.

The role of the weight function for successful part alignments becomes obvious when we

make some experiments using weighted shapes instead of the given initial shapes. For this

purpose, a number of experiments are performed to make sure that embedding with weighted

shapes give better results than embedding with the given shapes. For a selected initial shape

and a part shape, we depict here the embedding results of each experiment sets. Both of

these sets of experiments are performed for 10 successive iterations of the GA using exactly

the same configuration settings. In the experiment set where we used the indication function

directly for embedding, the resultant part alignments show that only 20% of the alignments

are close to one of the expected solutions (Figure 3.5).

Figure 3.5: Part alignments of 10 successive iterations of the GA without using weights.

Except for the iterations (5) and (7), the alignments are far from expected results. In these

experiments the following GA parameters are used: population size = 150, number of gener-

ations = 70, scale range = 0.9-1.4, transformation range = [-70,70], rotation range = [0,359],

cross-over fraction= 0.6, elite count = 2.

The same algorithm is run for 10 successive iterations, with the same configuration settings

for the GA, using the weighted shapes and the resultant embedded part alignments are as

shown in Figure 3.6. In these experiments, the weight function is computed with ρ = 8

and the algorithm successfully aligns the part within the given initial shape with a rate of 90
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percent. When the number of successive experiments is increased to 50, the success of the

algorithm is approximately around 85%.

Figure 3.6: Part alignments of 10 successive iterations of the algorithm with weighted images.

Except from experiment (5), all the alignments are very close to the one of the expected

solutions. In these experiments the following parameters are used in GA: population size

= 150, number of generations = 70, scale range = 0.9-1.4, transformation range = [-70,70],

rotation range = [0,359], cross-over fraction= 0.6, elite count = 2.

These experiments show that, the weight functions provide significant information to embed

one shape within another by using the constraints within the shapes. This is advantageous

since there is no need to define external constraints for matching. At the same time, the

weight functions avoid pre-defined decompositions and stay true to the continuous nature of

shapes.

3.5 No Presumptions About Shapes

In the shape grammar literature, curved and linear shapes technically call for different mea-

sures in implementation. The work of Chau et. al. [14] is based on maximal representation

which considers maximal circular arcs in planes and space under Euclidean transformation.

McCormack and Cagan’s implementation [45] on the other hand supports free-form curves

by converting freeform curves to the shapes composed of straight line segments. The recent

work of Jowers and Earl [27] for developing a shape grammar interpreter is based on an in-

trinsic matching algorithm for shapes composed of parametric curve segments. Each of these

works relies on distinct notions of curved lines. The advantage of the proposed approach here
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is that shapes are treated as they are so that any presumed analytic abstractions related with

shapes, like curved shapes or linear shapes, are avoided.

The presented method is indifferent to such abstract representations. Hence, any distinctions

among them become irrelevant. Shapes that combine different type lines are easily handled as

all are treated as perceived wholes (Figure 3.7 and 3.8). The matching applies to all shapes.

Figure 3.7: For a shape which is composed of a curve with a highly free-form nature and a

straight line, the proposed algorithm makes successful embeddings regardless of the types of

its basic elements (i.e. line or curve).

62



Figure 3.8: The sample shapes are composed of straight lines and curves connected end to

end. The estimated four transformation parameters, one for orientation, one scale, two for

transformations (in x and y coordinates) with the GA for (a) is (330, 1.25, -1.7, 34.2); for (b)

is (300, 0.98, 13.4, 11.7) and for (c) is (329,0.99,-2.16,19.4).

The success of the proposed method for any shape is visible as we make some experiments

with shapes in different characteristics. For an initial shape which is composed of curved

lines, the proposed algorithm detects all possible embeddings for the given part shapes under

the Euclidean transformations as shown in Figure 3.9.
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Figure 3.9: All different part embeddings that are obtained with the proposed algorithm is

depicted for two sample curved part shapes.

Similarly, for an initial shape that has many symmetry axes and hence contains recurrent

structures inside, all possible parts under the Euclidean transformations are easily detected

(Figure 3.10). This time, the shapes used in the experiments are composed of straight lines.
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Figure 3.10: All different part embeddings that are obtained with our method is depicted for

four sample part shapes with straight lines.
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These sample runs show that the performance of the proposed algorithm for embedding parts

is indifferent whether the shapes are of straight or curved lines.

Since the shapes are not interpreted in a predefined manner, there is no restriction in the

definition of the part shapes in this method. This implies that, the left hand side shapes

of possible visual rules - shown in the tables as parts searched in the initial shape - can be

defined in any desired way (Figure 3.11). All these parts can easily be detected within the

initial shape.
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Figure 3.11: Sample embeddings of a set of different parts within the same initial shape.
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3.6 Experiments And Discussion

For the experiments provided in this section, geometric line drawings are employed in the

style of Seljuk patterns. These patterns contain repetition of abstract line configurations de-

rived by transforming the various grids underlying the design. There are various reasons why

we have chosen these patterns. One reason is that this particular pattern building process con-

tains emergent shapes as the shape context and perception constraints change along the way

[5]. Another reason is that understanding the visual computations behind the style relies on

understanding the perceived wholes that guide the construction of the next step. Moreover,

understanding such patterns as a visual rule based construction could be generalized to many

other traditional productions as suggested by Knight [31]. Ozkar and Lefford have already

partially addressed the process based assessment of Seljuk and Celtic pattern styles [48].

The method allows for part matching in a variety of ways as discussed in the upcoming sub-

sections.

3.6.1 Embedding for Visual Rule Based Construction

For the experiments in this part, we use a set of visual rules. The work presented in Chapter 2

which is based on points as registration marks is advantageous when shapes are decomposed

from their intersecting points. In such cases, the proposed approach in this chapter also allows

for the detection of points for the purpose of picking out such parts. The reference shape

concept [28] is still very useful in this approach too, to embed ambiguous parts like points in

an unambiguous fashion according to the given reference shape/context. Hence, any point we

want to see within a shape may be specified with the help of a proper reference shape and in

a context-based search. For example, in Figure 3.12, a part of the two curve crossings is used

as a reference shape to embed a point that is located at the intersection of these two curves.
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Figure 3.12: Embedding a point using a reference shape

In order to embed a point in this way, the embedding parameters estimated with the GA for

the reference shape is used. Two samples are displayed in detail in Figure 3.13. In (a), the

point in the central region of the shape is embedded according to the embedded reference

shape displayed on the left. Similarly, in (b) another point of intersection is embedded owing

to the embedded reference shape. As it is seen from these samples, the exact position of the

embedded point is directly related with the position of the embedded reference shape. The

reference shape provides an interface to the user to define the context easily as in [28].
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Figure 3.13: Two sample embeddings.

Assume that in a visual rule, we define the left hand side shape as a point with a reference

shape as shown in the GUI in Figure 3.12 and embed some of the points in the initial shape

(Figure 3.1-(a)).

Figure 3.14: The visual rule which when applied combines two points with a line.

Using the embedded points, when we apply the visual rule shown in Figure 3.14, we can

obtain new shapes which are composed of basic elements of both lines and curves. One such

shape is depicted in (Figure 3.15-(a)). The corresponding weighted U22 shape which is used

in the embedding computations when the shape in Figure 3.15-(a) is given as the initial shape

is depicted in Figure 3.15-(b).
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Figure 3.15: (a)The shape obtained after a number of rule applications to the shape in Figure

3.1, (b) Corresponding weighted U22 shape.

As it is mentioned in an earlier section, in this approach any distinctions between line and

curve shapes disappear. Using the shape in Figure 3.15-(b), regardless of how the shape in

Figure 3.15-(a) is created, we can now embed new parts which can be composed of basic

elements of any type. Two such embeddings are depicted in Figure 3.16.
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Figure 3.16: Sample part embeddings.

The construction of new shapes using some visual rules and using these newly generated

shapes in embedding can go on this way forever. The proposed method requires no interven-

tion or intermediate representation of the generated shapes except for the computation of the

weights. Hence, the method is useful for visual rule based constructions for shape grammar

interpreters.

3.6.2 Embedding within Planes

It is important to note that any distinctions between the abstract shape categories of line and

plane also go away. The technique works well in picking out parts in crowded line drawings

(Figure 3.17) or within planes (Figure 3.18 and 3.19). Notice that the embedding algorithm

may reveal parts that are not drawn explicitly on the canvas as the one shown in Figure 3.18.
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Figure 3.17: Embedding a shape that is composed of parts of triangles into the line crowded

Seljuk pattern.

Figure 3.18: A sample part embedding where the initial shape is composed of planar elements

in addition to lines.
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When the algorithm is run on the same initial shape shown in Figure 3.18, each run results in

a different alignment. Some of these align the triangles in a similar way with the one shown

in Figure 3.18, such as those in the top left and top right images of Figure 3.19. In all of these

embeddings the part shape is aligned with the part of the initial shape in which some parts of

the alignments are overlapping with the plane regions instead of the boundaries. For example

in Figure 3.18, no line from the triangle corresponds to a boundary of the planar triangular

shape on the canvas that it is picked out in. Such an embedding may be handy for a designer

in the design process. It is because while working with the design sketches designers may

prefer picking out emerging line shapes out of shaded areas or vice versa.

Figure 3.19: Sample part embeddings.

Consider the Seljuk pattern shown in Figure 3.20. Although at a first glance we see that

the pattern is composed of lines, interpretation of this pattern with lines is difficult. This

is because a line in this pattern has a neighboring line following it in parallel and the two

together are actually the boundaries of a planar stripe.

74



Figure 3.20: A Seljuk pattern from Huand Hatun Tomb (1237,1238), Kayseri, Turkey (drawn

by Assoc. Prof. Dr. Mine Özkâr).

The artisan, on the original work in Kayseri, formed this craft by carving the stone throughout

the surface with an apparatus of a specific width at its carving edge. The work appears as a

composition of planar stripes in three-dimensions by going below/above of the other stripes

all over the surface extending to infinity. This is more evident in Figure 3.21.
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Figure 3.21: The Seljuk pattern in Figure 3.20 is redrawn with thick lines which are generated

considering the weaving of the stripes.

This planar form represents the original work better. In this representation, the way stripes are

woven makes interpretation of this pattern complicated. The weaving of the stripes introduces

a depth to this pattern and projection of it on a planar surface results in broken lines 1, although

they are parts of continuous stripes. This is why embedding within such shapes becomes

challenging. This process requires a high-level interpretation of the shape, which would relate

the broken lines as parts of a continuous stripe. It would probably be a custom solution for

each such pattern, since most of the Seljuk patterns are rich in ambiguity. The approach

proposed in this work, however, has no difficulty with working such patterns.

In an example, a quadrilateral shape is searched as a part of this shape. Whether the quadri-

lateral is drawn with thin lines or thick lines, the embedding succeeds (Figure 3.22).

1 lines in the context of this pattern refer to parts of planar stripes which can be interpreted as thick lines.
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Figure 3.22: (top) Embedding results of 100 distinct GA runs are aggregated, where the

searched part is a one pixel-wide quadrilateral shape, (bottom) Embedding results of 30 dis-

tinct GA runs are aggregated, where the searched part is a six pixel-wide quadrilateral shape.

The initial shape in both experiments is the planar representation of the Seljuk pattern depicted

in Figure 3.21.
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In the samples given above, notice the embedded parts of the initial shape. Although the

stripes are broken in two-dimensional planar domain due to the crossing of another stripe

along the way, these cuts become invisible and the part is embedded to reveal that part as a

whole within the initial shape. This is very similar to how we perceive a continuous stripe

instead of broken ones when we want to embed the quadrilateral shape there with our eyes.

The bottom figure in Figure 3.22 shows the aggregation of the 30 different runs. The aggrega-

tion steps for some selected runs are depicted in Figure 3.23. In each run, although the same

GA configuration is used, different parts of the initial shape are embedded.

Figure 3.23: Each figure is formed by aggregating the embeddings of multiple runs. The

number that is shown below each sub-figure stands for the index of the number of aggregated

embeddings.

Similarly, when we aggregate multiple embedding results for the parts of the same Seljuk

pattern with a rhombus, we obtain the shape shown below. This aggregation shows that the

rhombus shape spans the central part of the Seljuk pattern completely. It is rather difficult

to notice this at first when the initial shape is examined with bare eyes. In this respect, the

algorithm may help analyzing the recursive patterns as this one.
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Figure 3.24: Aggregate embeddings of 100 runs for embedding a rhombus shape within the

initial Seljuk pattern.

In another experiment, when we aggregate multiple embeddings of a pentagram shape within

the extended Seljuk pattern, we obtain two ten-legged star shapes at the center of the weaves

(Figure 3.25).
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Figure 3.25: Aggregate embeddings of 20 runs for embedding a pentagram shape within the

initial Seljuk pattern.

These examples show that the algorithm has no difficulty in embedding lines or planar shapes

within planes.

3.6.3 Embedding Implicit Parts

It is best to remark here again that in the proposed method, embedding is performed utilizing

the weighted canvas instead of the original shapes. As a result of the interaction among the

neighboring pixels within the canvas and the GA that utilizes them to locate a best alignment

in a run, part embedding algorithm may reveal some implicit parts where originally there is

no part drawn explicitly on the canvas.

In an example, the application is able to embed many triangles within a shape (Figure 3.26)

where it may be difficult to recognize the triangles in it. However, the application works in

such a way that it is as if the missing parts are completed.
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Figure 3.26: Sample implicit part embeddings.

The variety of the embeddings in this Seljuk pattern can be increased by running the algorithm

with more simple geometric forms as parts to be detected. For a triangle shape as the part

shape, the algorithm embeds various instances of it in the pattern. Three of such embeddings

are depicted in Figure 3.27. In all of these embeddings, some of the embedded parts can not

be matched to any part of the initial shape on the canvas. These embeddings are similar to the

implicit embeddings displayed in the Figures 3.26 in the way that as if the missing parts of the

initial shape are completed. We consider this as a potential in creative designs as it implies

picking out parts that do not actually exist but belong to perceived wholes. This is consistent

with Gestalt rules of visual and spatial perception.
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Figure 3.27: Sample part embeddings.

We interpret such embeddings provided by the proposed method as an opportunity to realize

implicit shapes within a given shape. In other words, it reflects the power behind the proposed

algorithm that insists upon searching through the canvas to make best alignment using the

given shapes. Such alignments, if not preferred, may easily be avoided simply checking the

overlapping parts of the two shapes.

Similarly, iterations of the embedding may help us perceive shapes or shape relations that are

not visible the first time around. In the Seljuk pattern considered, the areas between the lines

are similar in size and the number of repeating shapes is high. Although the eye groups certain

parts at times, any hierarchies in the pattern are not imminent. When we iteratively embed a

star shape of a particular size within the pattern, we obtain a cluster of symmetrically located

star alignments that are close to one another on the canvas (Figure 3.28). The algorithm

matches the star to all of the relevant line clusters in the crowd. When we look back to

the original canvas, a configuration of four nodes, which we may not be aware of before,

becomes apparent in the center of these implicit embeddings. The star shape acts as a probe

for the exploration of the pattern and makes certain implicit geometric relations explicit. Such

embeddings within a tile may be visually helpful for the analysis of the line crowded images.
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Figure 3.28: Sample star-shape embeddings within the tile. The obtained embedding result on

the right-most window of the GUI is the result of 25 different GA iterations. GA parameters:

number of population=100, scale range=[0.95, 1.1], position range = [-200,+200], orientation

range=[0,359], number of generations 30..

In Seljuk geometric pattern analysis, this trait of picking out emerging parts is invaluable in

order to decipher which possible visual rules may have been applied in its construction. The

example in Figure 3.28 is significant as it helps the eye detect some repeating nodes in the

infinite pattern towards understanding the geometric relations underlying it.

As already implied in the sections above, the proposed method is indifferent to shape history

or composition and it allows for computing with emerging shapes which we show by embed-

ding a new shape in the product of Figure 3.28. Figure 3.29 shows that the algorithm detects

a ten-legged star in the canvas that was previously constructed out of five-legged stars and

other lines. Moreover, in correlation with those illustrated in Figure 3.22 above, the algorithm

detects line shapes of different widths in the planar shape formed by overlapping stars very

much like in design sketches when scribbled lines overlap. This is a good showcase for how

the implementation of embedding parts across shape algebras is relevant to computing design

sketches where seeing planar marks or new lines in line scribbles is the practice.

83



Figure 3.29: (left) Embedding a thin ten-legged star shape of one pixel-width; (right) Embed-

ding a thick ten-legged star shape of six pixel-width. The initial shape is a part of the resultant

shape obtained after the experiment shown in Figure 3.28.

3.7 Summary

The part embedding method discussed in this chapter has two main components. The primary

component is the representation of the shapes in Ui j algebra in the weighted U(i+1) j algebra

for the examination of part relations. This way, any external biases for representing shapes

are avoided. Weights extracted from a shape code the interaction among the shape parts and

implicitly define the necessary constraints for embedding parts. The secondary component is

the utilization of an evolutionary approach via a genetic algorithm for computing the possible

transformations for aligning shapes. Evolutionary approach is advantageous for these types

of problems where there are more than one solutions in the solution space and all are equally

important. Starting with the same configuration settings, at each run possibly a different

solution can be identified for part embedding. It is this dynamic property that makes GA

suitable for solving this problem. With these two components, the proposed method provides

a simple but an elegant solution to the part embedding problem.

The proposed approach is in many ways different from the previous approaches. It provides

a solution to part relations of shapes staying true to their continuous nature. Moreover, it

considers perceived wholes rather than defined categories of shapes such as line, plane, etc. In

addition, the weighted representations of shapes in a higher algebra are utilized as registration

marks in matching parts rather than external references.

The implementation of this method with the GUI provides necessary tools for experimenting

with various type shapes. The experiments with the line drawings such as Seljuk patterns

show that, the parts used for embedding can be defined in any desired way. Moreover, the
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distinction between line shapes and curved shapes are eliminated. The experiments also show

that the method is effective for crowded line drawings. For the analysis of such drawings, the

method provides some opportunities like implicit embeddings, where the part shape is aligned

with the whole in a way completing the missing parts. As a final remark, the method is also

effective with drawings simultaneously containing both lines and planes.
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CHAPTER 4

CRITICAL POINT DETECTION IN DIGITAL LINE

DRAWINGS

In Chapter 2, our first part embedding method is introduced. The method utilizes externally

defined constraints in order to map a given shape to a lower level algebra. The labeled shape

which is obtained as a result of this mapping is used to obtain temporary representation of

the shape via an over-complete shape graph. These constraints are not strictly defined but

depend on the user (/designer)’s intentions. Yet, in the absence of external constraints, a

generic mapping can be defined in order to obtain default representations for shapes. In

the implementation discussed in Chapter 2, this generic mapping is defined according to an

analysis method which determines a set of critical points from a shape considering its intrinsic

properties. The analysis method developed for this purpose is a novel method which can be

used in the domains where critical point analysis is required. The details of this method will

be clarified in this chapter.

This chapter is organized as follows. In the first section the problem is introduced together

with a summary of the related literature. Following that, the smooth and continuous field that

is utilized during the analysis of shapes is introduced. In the next section, the analysis method

is introduced in detail. In the last section, some experimental results are discussed for the

selected set of shapes.

4.1 Introduction

In computer vision, many researchers have dealt with the problem of locating points of dis-

continuities which are commonly called as critical points. Excluding the works which impose

regularity on the shapes of parts ([7]), most of the works, in parallel with the idea stated in the
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famous work of Attneave ([4]), regularized the partitioning at the part boundaries. Attneave

stated that the information on a curve is concentrated at the points of high curvatures. This

definition is narrowed in the seminal work of Hoffman and Richards ([24]) by specifying the

part boundaries as the points of negative minima of curvature. Since then, most of the research

efforts for representing digital curves focused on the computation of curvatures for each point

on the curves.

For a continuous curve, the curvature at a point has an exact mathematical definition and is

computed considering the data in an arbitrarily small region around the point. However -

unlike the continuous curves - the region of the analysis is not well defined in digital/discrete

curves and the exact mathematical definition of curvature does not exist. For these reasons,

curvature can only be approximated for digital curves. The approximation depends on the

size of the analysis region, which is usually referred in the literature as the region of support.

Majority of the works which deal with curve partitioning via critical points focused on the

development of good approximations to the curvature for digital curves. These works are

usually classified into one of the three categories: (1) the ones which compute direct curva-

ture using the spatial coordinates, (2) the ones which estimate curvature after smoothing by

filtering techniques (i.e Gaussian filtering), and (3) the ones which estimate curvature using

scale space procedures.

Most of the direct curvature estimation based algorithms compute a significance measure for

each point pi along the curve boundary using some mathematical constructions that involve

the set of points in the k-neighborhood of the point represented as an ordered set of points as

{pi−k, pi−k+1..., pi, ..., pi+k−1, pi+k}, where k is the region of support parameter. Hence direct

curvature computations require a previously determined support region size. (An extensive

survey on the direct curvature computations can be found in [73]) Unfortunately, a constant

predefined region of support does not work properly since there may be features of different

sizes on a curve. Some works in the related literature provide algorithms to automate the

computation of a local region of support at each point by considering local properties in the

vicinity of the point ([73], [74], [13], [55], [41], [54], [3], [77]). These algorithms do not

require any input parameters from outside and thus called non-parametric methods.

The alternative to direct curvature computation is smoothing the contour curve by linear fil-

tering before computing the curvature ([3],[55]). Gaussian filtering is the most widely used

87



filter in the critical point detection algorithms. In these methods, determination of the stan-

dard deviation, σ, of the Gaussian filter is critical. The value of the σ depends on different

factors such as the noise level and scale of relevant features. Since feature size may vary

within a curve, multiple values of the standard deviation are often needed to detect features of

different scales reliably. In order to solve this problem, the scale space procedures emerged.

These methods generate a set of parametrized curves in different scales each obtained with a

Gaussian of different standard deviation ([6], [57], [50], [47], [56]).

All of the aforementioned approaches provide solution for simple closed curves. In most of

the methods, which compute curvature directly, it is assumed that each point on the curve

has exactly two neighboring points. This is the case, since the curves are obtained from

the contours of some physical objects. When the curves are not created this way, they are

created with certain curve creation algorithms which provide a series of ordered points. These

assumptions make the utilization of these methods for the complex line drawings that we

handle in this work (such as Seljuk patterns) impossible. Thus, the details of the curvature

based approaches mentioned above will be not be discussed in depth here.

In the context of this study, a novel critical point detection method is developed in which any

mathematical approximation to the curvature computation is avoided as to determine critical

points. It is based on the analysis of the deviation of a curve from a straight line.

The content of this chapter is prepared to introduce the novel approach that is suitable for

detecting critical regions in complex digital line drawings. After the critical regions are deter-

mined, finding the critical points within these regions is the easy part of this problem and can

be implemented specific to the needs of the application. The proposed method for critical re-

gion detection works efficiently for any type of planar curves, including the ones with discon-

tinuities or self-intersections. The novelty is in that during the computations, any geometrical

notion related with the images is avoided. Instead, the intrinsic properties of planar curves

are analyzed using a smooth and continuous field extracted from the curve images. This field,

which codes the interactions among the pixels, is analyzed using ellipse shaped kernels. The

statistical analysis of the field within a kernel window gives the distinguished/critical regions

when a proper reference kernel, which is actually a kernel belonging to a straight line, is taken

into consideration.

The proposed approach provides a fully automated iterative mechanism to determine the set
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of critical regions within line images. For each determined critical region, the analysis is

repeated at different resolutions, depending on the properties of the region. Starting from a

low resolution analysis, the approach increases the analysis resolution at each iteration step

considering the field encapsulated within the regions.

Throughout the chapter, a set of line drawings each with different intrinsic properties will be

utilized to discuss the details of the proposed method. These shapes are depicted below. In

(a), the shape is a composition of a curve with a highly free-form character and a straight

line, while (b) is a composition of five perfect circles and (c) is a composition of straight line

segments. Each of these three samples may be considered as a representive for a class of

similar shapes.

Figure 4.1: Selected set of shapes.

4.2 The Edge Strength Function ([71])

The edge strength function, w, which we have utilized as the weight function in Chapter 3-

equation (3.1), provides a smooth and continuous field by modeling the interaction among

the boundary pixels of an image. This function is crucial for the proposed analysis method,

because during the analysis, the criticality of a pixel is judged considering the interaction of

the pixel with its surroundings. The field wp at a well defined local neighborhood of a pixel

p provides the information related with the intrinsic properties of that region. What we mean

by a well defined local neighborhood of a pixel will be clarified in the upcoming sections.

The edge strength functions corresponding to the sample shapes in Figure 4.1 are as shown
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below.

Figure 4.2: Corresponding edge strength functions of the shapes in Figure 4.1.

4.3 Detection of Critical Regions

The critical region detection method is based on a simple idea: a point is an ordinary point if

it is located in a neighborhood in which shape pattern in that neighborhood does not deviate

much from a straight line. According to this idea, the characteristic properties of a close

neighborhood of a point are used to determine the criticality of the point. In the proposed

approach, the analysis is based on the field occurred around a point, which implicitly models

the interaction of the pixel with its local neighborhood. In this section the details of the

analysis of this field is explained in order to decide the critical regions within a shape.

4.3.1 Ellipse Shaped Analysis Windows

The analysis of the local properties of a point is carried out considering the properties of the

continuous field in a close neighborhood of that point. This is achieved by analyzing the

field using ellipse shaped analysis windows (or elliptic windows in short) which are aligned

through the flow of the field considering the gradient values. By means of the elliptic windows

the local neighborhood of the point in both sides of the line pattern is symmetrically evaluated

in equal weights. Some sample window alignments are depicted in Figure 4.3.
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Figure 4.3: Sample ellipse window alignments

During the analysis, for each boundary point of a shape, elliptic windows are aligned con-

sidering the gradient direction at that point. The gradient direction and the ellipse alignment

direction are displayed in Figure 4.4.

Figure 4.4: Gradient direction (dg) and the ellipse alignment direction (da) for a sample ellipse

window.

The details of how we utilize these windows as features in our analysis will be made clear

after the discussion related with the reference analysis windows.
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4.3.2 Reference Analysis Windows

In order to design an automated system, there is a need to find an independent evaluation

mechanism for judging the feature values at the analysis windows. This can be achieved

based on the idea that the deviation of the field around a point from that of a straight line

determines the criticality of the point. Accordingly, an infinite length straight line can be

utilized as the reference shape and the reference window values can be computed from the

field induced from the reference shape. An infinite length straight line is the proper choice in

this approach since the curvature can be defined intuitively as the amount of deviation from

being flat/straight in the case of a line ( this is in accordance with Attneave’s observation ([4])

that critical information on a curve is located at the areas of high curvatures ).

The proposed method determines proper ellipse dimensions at each analyzed point by con-

sidering the window mean values for that point for a range of ellipse dimensions. In order to

judge the criticality of the points based on the window mean values, a range of reference win-

dow mean values are pre-computed with changing ellipse dimensions over the field induced

from an infinite length straight line. An arbitrary point on this line is selected as the center for

the ellipse windows (Figure 4.5).

Figure 4.5: The reference shape and ellipse windows in different dimensions (KMV: window

mean value): (a) ellipse minor ax. dim.: 15 px; major ax. dim: 30 px; KMV: 0.5087, (b)

minor a.d.: 20 px; major a.d.: 40 px; KMV: 0.4239, (c) minor a.d.: 30 px; major a.d.: 60 px;

KMV: 0.3121, (d) minor a.d.: 40 px; major a.d.: 80 px, KMV: 0.2433.

For a range of different ellipse windows which are centered at the selected reference point, the

reference window mean distribution is computed. This distribution is utilized as a reference

in order to evaluate the criticality of a point for a range of window dimensions (Figure 4.6).
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The axis labeled as window size in the depicted distribution corresponds to the minor axis

dimension of the ellipse windows. We set the major axis dimension in our experiments to

two times the size of the minor axis in this implementation. Although this is not a strict

requirement, for the experiments provided in this chapter, this setting works well.
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Figure 4.6: Distribution of the Reference Window Mean Values.

As the ellipse dimensions become larger the window mean values decreases. This is expected

when the field around the reference shape is considered. The field of the reference shape is

computed by setting the smoothness parameter, ρ, to 8. For different ρ values, the reference

window mean distribution values would change, although the character of the distribution

would be similar. The change in smoothness parameter affects the scale of the analysis, hence

the accuracy of the analysis changes. For a specific shape, if we increase ρ while computing

the fields - for both the analyzed shape and the reference shape - some of the previously deter-

mined critical regions might fade away depending on the amount of increase in smoothness.

This effect is analogous to increasing the dimension of support regions in discrete curvature

computations.

It is important to compute the fields for both the analyzed shape and the reference shape

with the same diffusion parameters. Hence, if the scale of the analysis is to be changed, the

reference window mean distribution should be adapted accordingly.
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4.3.3 Critical Regions

The aim of detecting the critical regions is to find the set of regions in the image that contain

structurally important parts which can be used to represent a shape. The analysis is performed

over the field induced from the image boundaries. Depending on the intrinsic properties of the

regions in the image, the distribution of the field will differ. In order to capture critical regions,

a two phase analysis is made. In the first phase, a local evaluation of the field around the shape

points is performed with the elliptic windows. In the second phase, the identified regions in

the first phase are merged according to their proximities and a merged region analysis is

performed considering the field distribution in the merged regions.

The most important part of this analysis is determining the true size of the ellipses for the iden-

tification of the regions with different intrinsic properties. Consider the four sample regions

depicted in Figure 4.7. In the analysis of this shape, a predefined and fixed ellipse dimension

can not capture all these regions. For example, if the ellipse dimension were set to a proper

size to capture the region labeled as (d), the region around label (b) would be missed.

Figure 4.7: Sample critical regions with different intrinsic properties.

In fact, with no previous knowledge about the shape, the proper size of the ellipse for the

region labeled as (b) is not easy to guess. It is due to the reason that, the feature around that

region is not as sharp as the one around the region labeled as (d). In order to avoid predeter-

mination of the ellipse dimensions and capture varying size features in the same image, an

adaptive method is necessary. For this reason, an iterative method is developed to adapt the
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ellipse dimensions considering the field properties of distinct regions within a shape.

4.3.3.1 Region Analysis: First Phase

The analysis starts from the coarsest level in which the ellipse dimension is set to its maximum

allowed sizes for each and every image pixel/point. This maximum size is determined in

proportion with the bounding box of the shape within the image. The dimension of the major

axis for the ellipse is computed as half of the diagonal line of the shape bounding box in the

implementation used in all the experiments provided in this section. The ellipse in this big

proportion is selected to initiate a conservative analysis.

Depending on the smoothness parameter (ρ) of the field, the effective ellipse window dimen-

sions are implicitly defined. When the ellipse dimension is lower than the effective minimum

size, the mean field value within the window will tend to be close to 1. On the other hand,

if the ellipse dimension is greater than the effective maximum size, the mean field value will

tend to be close to 0. In order to illustrate this, let us re-consider the reference window mean

distribution shown in Figure 4.6 for rho set to 8. A limited range of ellipse dimensions can

be effective for evaluating the windows during the analysis in this distribution. The effective

range is depicted in Figure 4.8 with a rectangular region.
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Figure 4.8: Effective range of ellipse axis dimensions and the reference window mean distri-

bution, which is computed with rho=8.
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When the window size is less than 10 pixels, the mean value within the reference window,

which goes above 0.6, is too high to discriminate the high intensity regions from the average

intensity regions. Similarly, when the window size is greater than 30 pixels, the intensity of

the field encapsulated within the reference window reduces below 0.3. Above this dimension

resolution of the analysis reduces and the field becomes no different than a line. Therefore, at

its coarsest level the maximum allowed ellipse dimension for the minor axis is 30 pixels for

this reference mean distribution. In other words, if the bounding box analysis results in an

ellipse dimension more than this allowed size, it is reset as the allowed maximum size.

Let us restate here that, the smoothness parameter of the edge strength function determines the

resolution of the analysis by implicitly influencing the effective window sizes for the mean

reference window distribution. As a result of that, the intrinsic properties of the identified

regions change. In all the experiments we provided in this chapter, the smoothness parameter

is set to 8.

At the start of the analysis, each of the points on the shape boundary is treated as a candidate

critical point. For each ellipse window alignment at a point, the mean value of the field encap-

sulated within the window is stored as the feature of that point. The computed window mean

values at varying ellipse dimensions are interpreted as a sign of criticality depending on the

deviation from the reference window mean values of the corresponding ellipse dimensions. In

the ideal case if the deviation from the reference window mean value is close to zero, the point

is considered as an ordinary point, hence not critical. If the deviation of the window mean

of the point from the reference window value is higher than some predetermined degree, than

the point is marked as a candidate for being critical.

Assume that Me
p is the mean window value for the ellipse dimension e at the analyzed point

p, and Re is the reference window mean value for the same ellipse dimension e. Assume that

Ne
p is the normalized window mean value of the point with the reference window mean value

as:

Ne
p =

Me
p

Re

,

the function fc which determines the criticality of a point can be defined as:
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fc =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if Ne

p > 0.9 and Ne
p < 1.1

0 otherwise

As its definition implies, the function fc returns 1 for a point which is assumed to be critical

and 0 otherwise. The predefined parameters [0.9,1.1] works conservatively as we desired for

our experiments. In order to detect only sharp features for example, this range should be

reduced vice versa.

Each region depicted with circles in Figure 4.7, contain many points marked as critical points

due to the fact that the deviation of the field in the neighborhood of the points in that region

is high from that of the reference shape. Hence, a set of points appears as critical in the

proximity of these regions. The non-uniform interactions of the points within these regions

cause strong deviation of the fields from that of the straight lines. After determining the set

of candidate critical points in an image, a second phase of evaluation is required around the

neighboring regions of these points to increase the accuracy of the critical region analysis in

each iteration. The aim is reducing the dimensions of the candidate critical regions until a

minimum region is obtained which still deviates sufficiently from the reference/straight line.

Assume that Pc is the set of points that are marked as critical in the first step of the evalua-

tion. For each point p in Pc, a circular disk of radius equal to the minor axis of the ellipse

dimension, which is used to identify that point, is put around that point. This is performed for

each point in Pc so that image is partitioned into two types of regions as critical or not (Figure

4.9-a). The overlapping critical regions (including the touching regions) in this partitioned

image is merged to obtain one well defined region. Merge operation is designed to consider

the total region area enclosed in these regions and the weighted centroid of the field within

the regions. A disc whose area is equivalent to the enclosed area of the overlapping/connected

regions is placed to the computed centroid of those regions (Figure 4.9-b). This region merg-

ing is necessary to determine the most suitable ellipse dimension for each region in the next

iteration step.
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Figure 4.9: (a) Critical regions, (b) Merged critical regions.

4.3.3.2 Region Analysis: Second Phase

In the first phase of the analysis, a set of candidate critical regions are obtained by merging

connected regions to obtain one region that statistically summarizes the contents of those

merged regions. Each merged region is represented with a window mean value obtained from

the field encapsulated within the merged region. This value is a key to evaluate the criticality

of that region and to determine the proper size of the ellipses for the points in that region for

the next iteration. Let us restate here that the analysis goes from coarser to finer so that at

each iteration the analysis window sizes are reduced considering the distribution of the fields

within the considered regions.

In this phase, once again the same reference shape (infinite length straight line) is used as the

reference for evaluation of the the merged critical regions. This time, instead of the elliptic

windows, disc-shaped windows are used to extract the reference distributions from the field

induced by the reference shape for varying dimensions of discs (Figure 4.10).
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Figure 4.10: Distribution of the field mean values over varying disc dimensions.

Assume that Md
r is the mean value of the disc with radius d for the region r, and Rd is the

reference disc mean value for the same dimension d. For each merged critical region, r, the

function g in (4.1) gives the scale coefficient for that particular region that will be used to

redefine the ellipse dimension for that region for the next iteration.

g(D) = e−D/2 (4.1)

Where D is the normalized deviation of the region disc mean value from the reference disc

mean value:

D =

∣∣∣Md
r − Rd

∣∣∣
Rd

The higher the normalized disc deviation within a region the faster the reduction of the ellipse

dimension according to the scale coefficient returned by the function g. As the disc mean

value approaches closer to the reference mean value, the reduction in the ellipse dimension is

lessened.
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4.3.4 Convergence Criteria

The aim of each iteration in the proposed method is to define the boundaries of critical regions

as accurate as possible. In that sense, from a coarse to fine resolution analysis is performed

via ellipse shaped windows and disc-shaped windows in a two phase analysis. The second

phase of the analysis determines the proper ellipse dimension for each region for the next

iteration. The reduction rate of the ellipse dimension is lessened as the deviation from the

reference disc mean value is lessened. The reduction in the ellipse dimensions however has

a lower limit due to the reasons we discussed in Section 4.3.3.1. The reduction of the ellipse

dimension for a region is stopped when the ellipse dimension reached to a value less than or

equal to the minimum allowed window size. For the particular case, in which rho is 8, the

minimum allowed window size is 10 for example. If a region is still a candidate even for that

small ellipse dimension, it is accepted as the critical region.

Another stopping condition is based on the degree of deviations in successive steps. The key

idea behind this criteria can be stated as follows. If after the first phase of a coarser analysis a

region is marked as a candidate region, there is at least one critical region that causes the high

deviation to make this coarser level region a candidate. Assume that there is no critical region

within the region that is determined as a candidate in the first phase. In that case, the deviation

of the mean value of this region should be very close to that of the reference shape (assuming

that the analysis window sizes obey to the predefined minimum and maximum constraints).

In that case, however, the deviation of this region would be small and would not be marked

as a candidate region. However, it is marked as a candidate, so this assumption results in

a contradiction, which has a meaning that the candidate region is composed of at least one

sub-region that has a field distribution which causes the high deviation from the reference

shape.

According to this assumption the second stopping criteria can be explained as follows. For

some regions, as the analysis window size is reduced, the deviation degree of the region

gets smaller and smaller. At some point, if the ellipse dimension keeps reducing, the critical

region disappears. However, according to the assumption we stated above there must be a

critical region which disappears for a smaller analysis window (as the green region depicted

in Figure 4.7). In order not to miss such regions, the reduction of the window size is stopped

when the mean value within the disc approaches very close to the reference value, i.e. the
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deviation approaches to zero. The method is designed not to miss any regions that are marked

as critical regions in the first phase.

The iterations are halted when the critical regions determined by two successive iterations do

not change any more. The algorithm is guaranteed to converge since at each step the ellipse

dimensions are either reduced or stabilized. For the stabilized ellipse dimensions, the field

discs generated in the successive iteration steps do not change. The discs are continuously

shrink in each iteration due to the increased accuracy of the boundaries of critical regions. At

a point, since the ellipse dimensions have a lower limit in size, the discs are guaranteed to

be stabilized. As a result, after some finite number of iterations, the algorithm successfully

produces the set of critical regions.

4.4 Critical Point Detection

After the critical regions are detected (as explained in Section 4.3), the critical points within

these regions can be detected in various ways, depending on the accuracy requirements of an

application.

A pixel based analysis within these regions provides us the critical points of interest. In the

context of this work, critical regions are examined to determine the points/pixels located at the

topologically important points. These points are utilized to structurally represent shapes with

the over-complete shape graphs. The pixel based analysis marks the pixels that are located

at the discontinuities as critical pixels. Those pixels are the ones that are either located at

junctions, at corners or at the boundaries, which can easily be determined by structural image

analysis methods. For some regions, none of these types of the pixels exist. Those regions are

composed of pixels which form a smooth and continuous line some degree of bending. For

those regions, the closest pixel to the weighted field centroid of the region is assumed to be

critical in our analysis.

4.5 Experiments and Discussions

This section provides the results of the critical region detection method for the set of sam-

ple shapes that are depicted in Figure 4.11. For each sample shape, the candidate regions
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determined after some iterations are displayed.

Figure 4.11: Sample shapes for the experiments.

The first sample shape is composed of a closed curve in a highly free-form nature and a

straight line passing through that curve (Figure 4.11-(a)). The image size is 587x491 pixels.

The size of the bounding box of this image is very large so that the initial ellipse dimension

is automatically set to the maximum allowed size: 30 pixels (for the field with rho = 8). As

the number of iterations increases, the analysis resolution increases automatically according

to the method that is explained in the first phase of the analysis. The set of candidate critical

regions as a result of the analysis is depicted in Figure 4.12.

Figure 4.12: The candidate critical regions, shown in bold lines, are determined after the first

phase of the analysis. The number below each shape stands for the iteration index.
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After only a few iterations, the analysis window decreases considerably fast. For the sample

shape shown above, after the fourth iteration, the decrease in the dimensions of the critical

regions slows down. This is due to the reason that the analysis window size is decreased

according to the exponential function parameterized by the deviation from the reference win-

dow. Deviation at each region decreases, hence accordingly, the rate of change in the critical

region dimension decreases as the analysis evolves. The corresponding merged regions that

are obtained in the second phase of the analysis are depicted in Figure 4.13.

Figure 4.13: The merged critical regions obtained after the second phase of the analysis.

The numbers stand for the iteration indices. The result depicted as the 13’th iteration is the

converged result.

The regions determined in the intermediate iterations show that, the accuracy of the analysis

increases at each successive step. It is visible from the marked regions that the dimensions of

the critical regions and their evolution speed change for the regions according to their intrinsic

properties.

The second sample shape is composed of five intersecting circles (Figure 4.11-(b)). The

image dimension for the corresponding sample image is 539x538 pixels. The critical regions

as a result of the proposed analysis method after the first phase is depicted for some selected

iterations in Figure 4.14.
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Figure 4.14: The candidate critical regions determined after the first phase of the analysis.

This sample is converged after 4 iterations.

In the first iteration, the ellipse dimension is proportional to the bounding box of the image.

As a result of that many points in the image are marked as critical points. Therefore, the

first iteration results in a very large disc that approximately includes the whole image (Figure

4.15-(1)). However, since the deviation of this disc from the reference shape is high, its size

is reduced very fast to converge in three more iteration steps. The resultant critical region is

shown in Figure 4.15-(4).

Figure 4.15: The merged critical regions obtained after the second phase of the analysis.

The third sample shape is composed of only straight lines (Figure 4.11-(c)). The regions deter-

mined after the first phase are displayed in Figure 4.16. The dimension of the corresponding

image is 471x523 pixels.
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Figure 4.16: The candidate critical regions determined after the first phase of the analysis.

This sample is converged after 7 iterations.

The merged critical regions obtained after the second phase is depicted in Figure 4.17.

Figure 4.17: The merged critical regions obtained in the second phase of the analysis.

The sample shapes are selected in such a way to include lines with different intrinsic proper-

ties. In that respect, the first sample is a hybrid shape that is composed of curved and straight

line segments; the second sample is composed of curved lines and the last sample is composed

of straight lines only. The results of the analysis for these data show that the proposed method

is effective to detect structurally critical regions in line images with different characteristics.

In the proposed method, data is not processed considering the pixel coordinate values as it is

in the direct curvature based methods. This approach considers the field distribution within

a well defined window which makes it robust to discretization noise. Moreover, changing

the reference shape of the analysis helps extraction of the critical regions from the shapes

which are created using different brush types. For example, a brush type whose lines highly

deviate from straight lines can be used to construct shapes. A sample reference shape that is

constructed with such a brush is depicted in Figure 4.18).
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Figure 4.18: A different reference shape.

The original shape in Figure 4.11-(b) is modified using the same brush with Photoshop. The

obtained image is shown in Figure 4.19. It is visible in the magnified window on the left that

this modified version of the shape is quite challenging to analyze since the pixels are sprayed

all around the line that appears in the original drawing, like pixel clouds in a noisy manner.

Although, human vision can perceive the whole from these cluttered particles/pixels, it is very

difficult for the computer implementations that make pixel based analysis.

Figure 4.19: The shape in Figure 4.1-(a) is redrawn with the same brush that is used in con-

structing the reference shape in Figure 4.18.

The proposed approach has no difficulty in determining the critical regions. The regions

marked by the method in the first few iterations prove this (Figure 4.20).
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Figure 4.20: The first 4 iterations of the analysis for the shape in Figure 4.19.

The result obtained after the final iteration is shown in Figure 4.21. Marked critical regions,

which are obtained for this cluttered drawing, is consistent with the ones obtained from the

original drawing (Figure 4.13). The image size in this experiment is 1252x1031, which is

approximately two times larger than the original image. Although the scale is doubled, the

marked critical regions is still coherent with the original drawing. This is achieved by setting

the diffusivity parameter to a larger value. In this experiment ρ is set to 16.
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Figure 4.21: Critical regions determined for the cluttered image shown in Figure 4.20.

The approach is effective not only in line drawings but also in the contours obtained from the

real image objects. The critical regions of the two sample shapes, fish and bear, obtained from

the snapshots of the digital copy of the paper of Latecki and Lakamper [40] are displayed in

Figure 4.22 and 4.23. Although, the contour of the fish is very noisy, the marked regions are

located very close to the structurally critical regions of the shape.

Figure 4.22: Critical regions depicted with circles. The field is computed with (ρ=8).

Similarly, for the bear data (Figure 4.23), the key regions are marked in the regions that

correspond to some body parts, like edge of the legs, arms, neck etc. These results show that

the method may have a potential usage in representing the object contours for shape analysis

and matching applications. Being out of the scope of this work, as a future direction, the

infrastructure developed in this research may be adapted to pattern classification and shape
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analysis applications.

Figure 4.23: Critical regions depicted with circles. The field is computed with (ρ=8).

In addition to these experiments, another set of experiments are performed with the famous

three data of Teh and Chin ([73]). These data set is used in many curvature based dominant

point detection works to asses the performance of their methods. Most of these methods aim

to approximate the curves with polygons. Although, the method proposed in this chapter has

no intention of polygonal approximation, the set of the detected critical regions of each curve

are depicted below for the sake of completeness.

Figure 4.24: Data set created similar to the ones in ([73]). (a) Semicircle-shaped curve, (b)

Chromosome-shaped curve, (c) Infinity-shaped curve.

It should be stated here that, the data set is not the exact data that appear in [73]. Except for

the semicircle-shaped curve, they are created from the snapshot images of the digital copies

obtained from that paper. The semicircle-shaped curve (Figure 4.24-(a)) is reconstructed
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with parts of high resolution circles in proportion with the original shape. The pixel based

applications process the data pixel by pixel, hence the position of each pixel, hence the size

of the images, is critical for assessing their methods. On the other hand, the proposed method

is not pixel based, and what is important for the method discussed here is not the positions of

the individual pixels but the interactions among them. Hence, the reconstruction of this data

set does not influence what we discuss in the context of this Chapter.

The semicircle-shaped curve used in our experiments is very smooth and continuous com-

pared to the original one in [73]. There are four regions that violates the continuous nature

of this shape. The proposed method identifies all these regions as critical (Figure 4.24-(a)).

Other points that lie along the circular arcs are evaluated as uninteresting.

As for the chromosome-shaped data (b) and the infinity-shaped data (c), both has many dis-

continuities. The identified critical regions in (b) and (c) is comparable with the curvature

based methods discussed in [73]. For example, if we approximate the chromosome-shaped

data with straight lines utilizing the center of the critical regions as the critical points, we

obtain the shape in Figure 4.25.

Figure 4.25: Approximation of the chromosome data with the proposed method.

This approximation is comparable with the the results discussed in [73] (Figure 4.26).
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Figure 4.26: (a) The proposed method, (b) Rosenfeld-Johnston algorithm, (c) Rosenfeld-

Weszka algorithm, (d) Freeman-Davis algorithm, (e) Sankar-Sharma algorithm, (f)

Anderson-Bezdek algorithm, (g) Teh-Chin algorithm (k-cosine), (h) Teh-Chin algorithm (k-

curvature),(i) Tel-chin algorithm (1-curvature). All the sample results from (b) to (i) are

copied directly from [73].

We used the center of each critical region as the critical points that are used to polygonally

approximate the chromosome data. The approximation results for the chromosome-shaped

curve that belong to the other eight methods are taken directly from the digital copy of the

paper [73] in order to visually compare the approximations1. Although, in our method, no

mathematical approximation is implemented to find high curvature points, the result we ob-

tained - shown in (a)- is visually similar to the results that belong to well known Teh-Chin

algorithms, depicted in (g),(h) and (i). In all these three implementations, first the region of

support for each pixels are computed, following that one of the three different approximations

to the curvature is implemented.

1 Let us restate again here that, the method proposed in this work has no intension to polygonally approximate

the given shapes. The data set we used in these experiments are visually similar to the original digital curves, but

not exactly the same. Therefore, comparing the approximation errors numerically does not make sense in the

context of this discussion.
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In their pioneering paper [73], Teh and Chin argue that the detection of dominant points

relies not only on the accuracy of the measures of significance, but primarily on the precise

determination of the region of support. The results we depicted in Figure 4.26 actually support

this argument. It is due to the fact that after the computation of critical regions, we do nothing

but select the center of these regions as the critical points to obtain the approximation shown

in (a). No measure of significance is computed at all.

4.6 Summary

In this Chapter, a novel approach to the critical region detection problem is introduced. The

novelty of this approach is in its measurement of the significance of points where instead

of pixel based analysis and using mathematical abstractions for widely accepted significance

measure as curvature; a field based analysis is performed. This measure provides a number

of advantages; it is (1) closely related with the approximations to mathematical curvature, (2)

an easily measured quantity, (3) robust to noisy boundaries, (4) useful to detect features in

varying sizes.

It is an iterative approach where at each iteration a two phased analysis is performed. Starting

the analysis at a coarser level of resolution, the method increases the analysis resolution at

each iteration step considering the field distribution within the determined candidate regions.

The reference for evaluating the field mean values within the regions is the distributions ob-

tained from an infinite-length straight line. By means of the reference shape, features in dif-

ferent size in the same image can easily be identified automatically, requiring no user based

intervention. The proposed method is utilized in determining the registration points which

are used in over-complete graph representations of line drawings used in the solution of part

embedding problem discussed in Chapter 2. In addition to that, the preliminary experiments

on some contour shapes show that the method has a high potential to be useful in pattern

classification and shape matching.
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CHAPTER 5

CONCLUSION

The motivation behind the research described in this thesis was finding a generic computa-

tional solution for part relations of shapes in coherence with the philosophy of the shape gram-

mar formalism, mostly missing in the existing part embedding solutions. Previous solutions

to the part embedding problem either assumed that the shapes are composed of rectilinear

spatial elements such as points, straight lines, or that they can be represented in a specific

parametric form such as cubic or quadratic Bezier curves. Although the existing solutions

are inspiring for the assumed parametric forms, we believe that making such presumptions

about spatial primitives of shapes is as restrictive as defining shapes with some predefined set

of parts. Both presumptions similarly harm the part embedding idea in rule applications in

the shape grammar formalism. Instead, the research developed in the context of this study is

concerned about exploring a generic computational solution for the part embedding problem

which will be free from either predefined analytic abstractions related with shape primitives

or predefined decompositions of shapes.

Two generic solutions are developed considering these issues. In the first solution, which is

provided in Chapter 2, a novel graph data structure is explored to temporarily represent the

boundary elements of shapes with the relations among them. Equipped with the associated

algorithms, this data structure enables a systematic search for parts. The part detection is

based on the over-complete character of the shape graph representation as well as the user-

defined/external constraints. The decomposition of an initial shape is not fixed but alternates

depending on the applied rules and externally provided constraints. Boundary elements of

the perceived wholes are the key elements for representing shapes and defining the relations

among the temporary parts. These points belong to a lower level algebra which serve as the

registration points in part searches. In this way, shape is considered as it is, while - when

necessary - only the mapping function to the lower level algebra is modified.
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The over-complete graph is constructed by operating on multiple but temporary representa-

tions in the label algebra. It facilitates the passage between the image representations and

shapes by means of its attributes. The structure of an over-complete graph is also appropri-

ate for defining a number of different perceptual wholes together, in addition to the maximal

elements.

The approach presented in the first solution utilizes shape algebras and part relations true to

visual thinking. It does not rely on any geometric notion or symbolic representation. It works

with perceptual wholes and without fixed primary features unless specified by the user. In

the implementation of the method, as a default case, the critical points are utilized to define

boundaries of parts; however, they may always be changed according to the user/designer

intentions.

While searching for the first solution to the part embedding problem, a novel approach is de-

veloped to identify the critical points for the line drawings. Such points have helped defining

a generic mechanism to map a given shape to a lower level algebra to determine the set of

registration points for the part searches. The novelty of this method is in its utilization of the

continuous field for evaluating criticality of the points instead of the widely used measures of

criticality such as extrema of curvature. The method can detect the critical features in different

sizes in an automatic manner with a two phased iterative analysis. This method proved itself

useful in the part embeddings when these points are used as the default set of part boundaries

in representing the perceptual wholes. Moreover, a set of initial experiments show the poten-

tial of this method in representing shape contours for the more general shape matching and

pattern classification applications.

Consistent with the principles of the first solution, an alternative solution is explored during

the course of this study, which supports the creative design processes. This solution is dis-

cussed in Chapter 3. The second method explores the search space which is induced by an

initial shape for embedding a part into it with an evolutionary approach. Staying true to the

continuous nature of shapes, representation is carried out in a higher level algebra this time,

with weighted shapes in the planar domain. This representation provides many advantages:

(1) the continuous character of the weights help defining part embedding operations true to

the continuous character of shapes more naturally, (2) any distinction between line shapes

and curve shapes disappeared in this representation, (3) instead of the external or abstract
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constraints, the weight values are utilized as registration marks.

Being an alternative solution to the first one, the part embedding problem is approached in the

second solution with an evolutionary method via an implementation of the genetic algorithm.

The approach is unique in that a part searched within an initial shape is considered as a whole,

rather than a composition of parts. This representation enabled working with any categories of

shapes such as lines, curves, etc., making the distinction among them irrelevant. Various runs

of the implementation on line drawings such as Seljuk patterns show that parts are perceived

without predefinitions. In addition to this, wholes that are perceived by the eye despite some

missing parts can also be detected as parts and hence, the method introduces emergence based

on designer defined constraints.

It is widely accepted that human vision processes the visual data by parts and many previous

conjectures in cognitive vision support part based representations of objects ([8], [22], [42],

[43], [9]). In this respect, different approaches impose different regularities on determining

parts: some impose regularity on the shapes of parts ([7]), while most others, in parallel with

the idea stated in the seminal work of Attneave ([4]), impose regularity on the part boundaries

([24]). Different from the previous approaches, the proposed methods in this research bring

out two insights to the representation of shapes: (1) a pragmatic way of defining boundaries of

parts, which depends on user defined constraints and is temporary, (2) considering the shape

as a whole, where there are no predefined part boundaries. The representation of shapes with

perceptual wholes is common in both of the approaches which makes them coherent with the

philosophy of the shape grammar formalism. Intriguingly, recent evidence from neuroscience

([49]) and psychophysics ([16]) support our approaches by their implication that parts are not

defined with strict boundaries but are represented in a continuous manner.

5.1 Future Works

As a future work, a general purpose shape grammar interpreter can be developed utilizing the

solutions provided for part embedding. Considering the need for a general solution for shape

grammar interpreters, the solutions provided for part embedding could reinitiate the research

in the field.

Specifically, the evolutionary approach introduced as the second solution is very suitable for

115



the analysis of the complex line drawings, like Seljuk tiles. We believe that development of

an analysis system supporting the designer’s choice of constraints using this solution would

support creative thinking and hence help the creative design process a lot.

Another research direction would be utilization of the critical region analysis method in a

shape matching framework and improve the method further according to the needs that are

specific to that problem domain. Initial experiments with the real object boundaries show

that the method has a high potential to be useful in shape matching and pattern recognition

applications.

An alternative research direction is the parallelization of the critical point detection method.

Since the analysis is performed for each pixel/point of an image, the execution time is propor-

tional to the number of pixels within an image and hence costly for complex line drawings.

The nature of the developed solution is very suitable to parallelization, because each analy-

sis window works in a local neighborhood independently. Considering the power of parallel

processors available within the commodity graphics processing units today, the parallel solu-

tion to the critical point detection would be more time efficient and be available for ordinary

desktop computers.
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APPENDIX A

Sample Shape Embeddings

A.1 Linear Sub-shape Embedding GUI Samples

Figure A.1: One of the four embedding results for the examplary case in Figure 2.17-(a).
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Figure A.2: One of the two embedding results for the examplary case in Figure 2.17-(b).

Figure A.3: One of the two embedding results for the examplary case in Figure 2.17-(b).
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Figure A.4: One of the four embedding results for the examplary case in Figure 2.17-(c).
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Figure A.5: One of the four embedding results for the examplary case in Figure 2.17-(c).

Figure A.6: One of the eight embedding results for the examplary case in Figure 2.17-(d),

with the user defined constraint.
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Figure A.7: One of the eight embedding results for the examplary case in Figure 2.17-(d),

with a different user defined constraint.

A.2 Generalized Sub-shape Embedding GUI Samples
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Figure A.8: One of the eight embedding results for a sample shape.

Figure A.9: One of the eight embedding results for a sample shape.
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Figure A.10: One embedding results for a sample shape.
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Figure A.11: One embedding results for a sample shape.
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APPENDIX B

Implementation of the Edge Strength Function

The edge strength function, w, given in Chapter 3-equation 3.1 is computed by the following

equation:

∂w
∂t

= (∇2 − λ)w,

where,

λ =
1

ρ2

In the discrete case this equation is solved using the finite difference approximations. For

the space derivative, central differences are used. Forward differencing is used for the time

derivative. As a result of the discretization of this equation, we obtain the following equation:

wk+1
i, j − wk

i, j

Δt
= wk

i+1, j + wk
i−1, j + wk

i, j+1 + wk
i, j−1 − 4wk

i, j − λwk
i, j

where, i and j are the space indices and k is the iteration number.

The diffusion process starts with the given initial image, which is used as w0 in the equation

above. In the image, the pixels belonging to the shape S is set to 1 and kept constant during

the iterations. At the image boundaries, the function values are assumed to equal to the

nearest image border value. Δt should be less than 0.25 for this equation to converge. In our

experiments we set Δt to 0.2.
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