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ABSTRACT

FEDERATED SIMULATION OF NETWORK PERFORMANCE USING PACKET FLOW
MODELING

Demirci, Turan

Ph.D., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Semih Bilgen

February 2010, 103 pages

Federated approach for the distributed simulation of a network, is an alternative method that

aims to combine existing simulation models and software together using a Run Time In-

frastructure (RTI), rather than building the whole simulation from scratch. In this study, an

approach that significantly reduces the inter-federate communication load in federated sim-

ulation of communication networks is proposed. Rather than communicating packet-level

information among federates, characteristics of packet flows in individual federates are dy-

namically identified and communicated. Flow characterization is done with the Gaussian

Mixtures Algorithm (GMA) using a Self Organizing Mixture Network (SOMN) technique.

In simulations of a network partitioned into eight federates in space parallel manner, it is

shown that significant speedups are achieved with the proposed approach without unduly

compromising accuracy.

Keywords: federated communication network simulation, discrete event simulation, federated

simulation, packet flow modeling, gaussian mixtures
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ÖZ

BİLGİSAYAR AĞLARININ PAKET AKIŞ MODELLEMESİ İLE FEDERELİ
BENZETİMİ

Demirci, Turan

Doktora, Elekrik Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Semih Bilgen

Şubat 2010, 103 sayfa

Haberleşme ağlarının dağınık benzetimi için federeli yaklaşım, benzetim yazılımının sıfırdan

geliştirilmesi yerine, halihazırda bulunan benzetim modellerinin ve yazılımlarının bir alt yapı

ile bir araya getirilerek tüm benzetim yazılımının oluşturulduğu alternatif bir yaklaşımdır.

Bu çalışmada, haberleşme ağlarının federeli benzetim yoluyla çözümlenmesi esnasında fed-

ereler arası haberleşme yükünü önemli düzeyde azaltacak bir yöntem önerilmiştir. Bu yöntem

federeler arasında paket düzeyinde konuşmak yerine, paket akışlarının ayırıcı özelliklerinin

dinamik olarak bulunarak haberleşilmesi esasına dayanmaktadır. Akışların ayırıcı özellikleri

Gauss karışımı algoritmasının kendinden organizeli karışım ağları methoduyla çözümlenmesiyle

bulunmuştur. Benzetimlerde ağ yapısı uzay ekseninde sekize bölünmüş ve benzetim sonuçlarında

çok az hata ile ciddi hız kazanımları gösterilmiştir.

Anahtar Kelimeler: Federeli Haberleşme ağları benzetimi, ayrık olay benzetimi, federeli ben-

zetim, paket akış modellemesi, Gauss karışımı
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CHAPTER 1

INTRODUCTION

1.1 Background

Simulation is a widely used technique which provides to researchers and developers a fast,

inexpensive, controlled and reproducible environment to analyze performance of communi-

cation networks under different conditions. It is extensively used by researchers while de-

veloping and testing new protocols or improving existing ones. Simulation is also used by

network developers for comparison of different alternative topologies or technologies and test

their performance under different traffic conditions without sizeable investment. Network

operators and maintainers can also use simulation for identifying problems and for finding

appropriate solutions for their networks without interfering with the operation of the live net-

work.

In the context of packet networks, although there exist different approaches for network sim-

ulation, only packet level simulation enables detailed protocol modeling and performance in-

vestigation while providing good accuracy as the simulation objects such as packets, queues,

buffer locations, communication links, etc. can be modeled as they were in operation in the

real network. Because of the level of detail, packet level simulation may require much pro-

cessing power and memory space. It is well known that processing power required for packet

level network simulation increases more than linearly with the intensity of packet traffic to be

simulated (e.g. [1],[2],[5]). So problems may arise when the number of simulated nodes, the

simulated traffic volume or both get large. On the other hand, memory required for keeping

routing information and keeping objects’ state information increases at least linearly with the

number of nodes to be simulated. So for a large scale network (e.g. more than 1000 nodes),

1



these requirements can not be practically met using a single board computer for which re-

sources are limited.[1]

A logical way for gaining required processing power and memory for a large scale packet

level simulation is to partition the simulation in space parallel manner (i.e. partition the topol-

ogy) and simulate each partition, on a different computer on a different logical process (LP).

There exist two main approaches while building such a distributed simulation, namely tra-

ditional parallel distributed simulation and federated distributed simulation[2][6][14]. Tradi-

tional simulation approach creates optimized simulations built for a specific aim from scratch,

where federated approach mainly aims to increase code reuse by combining readily built sim-

ulators together to form whole simulation. Time and effort required for traditional approach

is much higher than federated approach so that federated approach is usually preferred when

models are available in a different simulator.

When a simulation model is partitioned and processed on different LPs, called federates in

the federated simulation case, on different machines, it is obvious that some coordination

in simulation time becomes necessary between submodels to satisfy the causality constraint.

This constraint stipulates that in a distributed simulation, LPs should process all the events

in increasing time order. Without compromising causality, LPs have to process local events

and foreign events generated by other federates. Local events that occur in individual LPs are

stored in event queues and can be processed in time order, but any time during the simulation

it is possible that a foreign event can be generated with a time stamp earlier than an LP’s

local time, thus violating the causality constraint. So a time management policy should be

agreed and used between LPs[13][6]. In the literature different time management policies

have been proposed such as time driven, event driven, conservative, optimistic etc. for the

time synchronization of LPs but as it is easy to realize and implement, most of the network

simulators have chosen to use conservative time management policy which strictly avoids

causality violation.

Optimistic time management algorithm relaxes the constraints on LPs by allowing increasing

their times independently but it is required that a violation of causality should be detected and

repaired in terms of rollback operations. So realization and implementation of such a time

management approach is harder than conservative time management approach. Also extra

memory space required to save multiple of old object states for rollback operations, may in-
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crease the memory requirements in the orders of sequential counterpart, that makes optimistic

time management approach unpreferred for large scale packet level network simulation. Op-

timistic time management approach is more suitable for the cases where infrequent commu-

nication is required between LPs. For such a case, optimistic time management approach

possibly require less rollback operations and achieves high parallelism. But in the case of

distributed packet level simulation of network, LPs are packet level dependent on each other.

So highly number of violation of causality may occur and lots of rollback operations might

be required with optimistic time management approach. These rollback operations may de-

crease simulation performance significantly. This is another reason why conservative time

management approach is usually chosen over optimistic time management.

Conservative time management approach has also one major drawback. When an LP reaches

a synchronization point, that is the time up to which it is safe to process local events without

violating causality, it waits for other LPs to reach the same point. The problem is, if the

mean time between synchronization points decreases, LPs get tightly coupled, decreasing

the parallelism. This is exactly the case for network simulation in space parallel distributed

manner where it is usual that some of the packet flows being simulated will have routes that

are simulated in different LPs. So when a packet belonging to such a flow finishes its part

of the route in one LP, some communication and synchronization is required between LPs so

that the packet will continue the remaining part of its path in the next LP. When the number of

such packets increases, very tight coupling of LPs occurs, decreasing parallelism drastically.

A further source of overhead for federated simulation is the highly renowned High Level

Architecture (HLA) which is a general purpose architecture for distributed computer simu-

lation systems. Using HLA, computer simulations can communicate with other computer

simulations regardless of the computing platforms. Communication between simulations is

managed by Run Time Infrastructure (RTI). The RTI provides a programming library and

an application programming interface (API) compliant to the interface specification [10][21].

While HLA and RTI provide powerful standards and facilities for distributed simulation, all

communication between federates must be realized through RTI mechanisms, requiring sig-

nificant overheads if invoked at a packet level.
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1.2 Thesis Objective and Scope

In this study a novel approach for distributed simulation of a network is proposed, based on

packet level flow modeling that loosens LPs by reducing communication and synchronization

requirements. The idea is, instead of performing the necessary synchronization for each of

these packets, obtain characterizing parameters for each flow and send these characteristics to

the receiving LP. At the receiving LP side, a packet flow that possesses the same characteris-

tics as the original flow will be generated and simulation will continue. This would drastically

reduce the overhead incurred by synchronizing individual packets between different federates.

So an accurate and time efficient way should be found to represent these packets at the sender

side and a way to generate packets similar to the original ones using these parameters at the

receiver side.

The Gaussian Mixtures Algorithm (GMA), which is used for capturing packet flow character-

istics in this study, is a popular method that is used for probability density function estimation

of a given sample set[29][35]. As the aim in this study is to achieve speed up without unduly

sacrificing simulation accuracy, GMA must be implemented to operate in a fast and accurate

manner. In the literature different methods for solving GMA are proposed. Within the scope

of the present study, Expectation Maximization (EM)[34] and Self Organizing Mixture Net-

work (SOMN)[31] approaches for GMA implementation were investigated and a comparison

was made on their accuracy and time performance. As SOMN algorithm was seen to have

important advantages over EM on both time and accuracy, it is chosen as the method to be

implemented in the simulation. Studies on SOMN showed that learning rate methodology

and determining a stopping condition have great effects on SOMN accuracy and time re-

sults[32][36]. In this study, a novel learning rate methodology and stop condition for SOMN

training that provides more accurate results without increasing computation time much are

also proposed and are shown to perform better than other tested approaches.

In short the major contribution of this study is packet flow modeling for inter-federate packets.

A lesser contribution is enhancing SOMN with a novel learning rate adaptation mechanism.

Although flow modeling can be applied to the traditional approach of distributed simulation

which aims to speed up simulation by developing optimized models from scratch and using

fast communication libraries, in the present study, we preferred to use the federated approach

4



which has the significant benefit of providing a high level of interoperability among existing

simulations and possibly live actual systems. In general, it is accepted that federated simula-

tion greatly reduces the cost, time and effort of large scale simulation development[16].

To see the accuracy and time performance of the proposed flow modeling approach, three

fundamental approaches to the simulation of a packet network were compared. These were

(i) classical sequential simulation, (ii) federated simulation with each inter-federate packet

being synchronized between federates, and (iii) federated simulation with the proposed ap-

proach that computes and communicates per-flow characteristics between federates. Correct

representation of inter-federate packet characteristics is critical as it directly affects packet

drop rates and packet inter-arrival characteristics. To be accurate and fast, flow characteristics

were modeled using GMA whose parameters were estimated with SOMN method using the

new learning rate methodology and stop condition proposed.

To show that the proposed approach works correctly and accurately for different traffic types

under different network conditions, first, a UDP-like non-feedback protocol has been im-

plemented and a group of simulations were compared with sequential simulation for various

packet traffic characteristics (Exponential, Pareto, Hyper-exponential) and network conditions

(i.e. limited/unlimited router buffers). It is shown that the proposed flow modeling approach

highly reduces the inter-LP synchronization and communication overhead and significantly

speeds up simulation, without unduly compromising per flow packet interarrival mean and

standard deviation (STD) accuracy. Next, a TCP-like feedback based protocol is simulated

where data packet flows are modeled with GMA and protocol packets (i.e. ACKs) are sent

individually between federates. Comparison of the three fundamental simulation approaches

(sequential simulation, federated simulation without flow modeling, federated simulation with

flow modeling) on per flow packet interarrival mean and STD, show that federated simulation

with flow modeling achieves comparable accuracy to classical federated simulation in much

shorter time, especially as the network size increases. Further speed up was shown to be

achieved by also modeling ACK packet flows.
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1.3 Thesis Organization

This thesis is organized as follows: In chapter 2, fundamental concepts and the relevant lit-

erature on communication network simulation, packet level simulation, large scale network

simulation, distributed simulation and also time management algorithms for distributed sim-

ulation are reviewed. In Chapter 3, federated network simulation developed using HLA is

summarized. An overview of the RTI mechanism and functions are given and their usage in

a federation life cycle are presented. Also the kernel of the federated simulator developed

within the scope of this study is presented. Chapter 4 presents the proposed novel approach

and its evaluation. First the problem of tight synchronization is introduced and resulting issues

are illustrated on a two-federate network simulation. Next, the novel idea of flow modeling is

presented and the possible different approaches that can be used for flow modeling, namely,

modeling by a simple mean, modeling according to the distribution type and general packet

modeling are investigated. A group of simulations are presented based on these approaches.

Simulation results, especially the ones where routers have limited memory, show that for the

purposes of simulation accuracy, a method that can model a general distribution should be de-

ployed. Next, GMA and the two methods EM and SOMN for evaluating GMA parameters are

summarized. The chapter continues by presenting the accuracy and speed up obtained with

the proposed modeling approach with the SOMN training method. Next, flow modeling for a

TCP-like feedback protocol is investigated. The chapter ends by presenting the accuracy and

speed up obtained for the proposed modeling approach for TCP-like feedback based protocol

and comparing the achievements with both sequential and packet level federated simulation

without flow modeling. Chapter 5 concludes the thesis, summarizing the contributions of

the study and its limitations. Suggestions for future work on this subject complete this final

chapter.
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CHAPTER 2

COMMUNICATION NETWORK SIMULATION

2.1 Packet Level Simulation

Simulation is a widely used technique for modeling a physical system and investigate its

behaviour characteristics for various scenarios. In a simulation, the physical system that is

under investigation is represented in terms of a set of states and its behavior is predicted from

the behavior of the modeled (simulated) system as the states change over time. As such,

simulation has to model the states and state changes through state transitions over time for

the physical system and also should have a representation of time. As an example, from

the simulation of a communication network, the number of packets waiting in a router can be

selected as the state where a packet arriving to that router can be defined as a state transition by

simply increasing the state value by one at time t. Time can be represented at any convenient

level of detail starting at zero to the end of simulation time.

Two main approaches prevail in network simulation. The first approach is based on queuing

theory that may yield fast solution of network states in a memoryless fashion. But the com-

plexity of modern networks combined with the inability to apply simplifying assumptions in

many situations (e.g., it is well known that Markovian traffic assumptions are often inappro-

priate and can lead to misleading results) makes it usually less detailed, less accurate and less

flexible than packet level simulation, rendering it useless for many practical protocol level

analyses.[22][23]

The second approach, packet level discrete event simulation that is used by most popular

network simulators (i.e. Ns2[7], Glomosim, Omnet++, Opnet, Qualnet,PDNS[8]), fit well for

simulation of communication networks. In this approach communication protocols, network

7



entities are modeled by state machines in packet level detail. Network traffic is generated as

packets and simulated packet by packet along the route from source to destination according

to the modeled protocols under investigation. In packet level discrete event simulation, state

changes related to the network traffic like packet formations, packet movements, packet drops

are represented as a sequence of events occurring at discrete points in simulation time and

stored in a time ordered event queue. The simulator engine selects the event with earliest

timestamp and removes it from the event queue. Next, it advances simulation local time to the

timestamp of the event and processes the event. This processing may cause one or more state

changes, generation of new events or cancellation/postponing of future events. Simulation

continues to process the events until predefined simulation time is achieved or there is no

event to be processed in the event queue. Figure 2.1. shows a schematic for a simple discrete

event simulator.

While ( ( simulation_time < simulation_end_time )

&& ( event_queue.size() > 0 ) )

{

Event event;

event = Remove_earliest_event_from_event_queue();

Update_simulation_time(event.timestamp);

Process_the_event(event)

Change_states_of_appropriate_objects;

Schedule_new_events_if_required;

Cancel_future_events_if_required;

Postpone_future_events_if_required;

}

Figure 2.1: Discrete Event Simulator Engine

In Figure 2.2, a simple diagram that represents a typical life cycle of a packet from generation

to the arrival to the destination in a packet level discrete event simulation is demonstrated.

If we briefly explain Figure 2.2 in time sequence:

1. At time t, a packet is generated at the source and an arrival event to the intermediate

node N1 at time t + td1 ( td1 refers to link delay from source to intermediate node ) is

scheduled.

2. At time t+td1 , N1 makes required processing for the protocols under simulation, makes

appropriate state changes and schedules a departure event for time t + td1 + tp1 ( tp1 to
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queuing and processing delay in the source node ).

3. At time t + td1 + tp1 + d2 N2 receives the packet and makes required processing.

4. Packet traverses route to the destination as described in 2-3 until it reaches the destina-

tion. And finally, destination produces an appropriate response packet to be forwarded

to the receiver or other destination.

Figure 2.2: Typical Life Cycle of a Packet in Packet Level Network Simulation

During simulation, some statistics about flows ( i.e. number of packet arrived, number of

packets dropped, throughput, packet interarrival variances) or about router buffer utilizations,

etc. should be collected as results while packets traverse intermediate nodes or when they

reach the destination.

Looking at the above discussion, modeling and implementation of packet level discrete event

simulation for a communication network is not so difficult. One only needs to

1. model the network protocols,

2. model the behavior of the network entities,

3. find a way to represent network topology under simulation,

4. develop a simulator engine to process the generated events,

5. develop some observing mechanisms to get simulation results.
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2.2 Large Scale Network Simulation

It is usually enough to simulate for small to medium network sizes to get familiar with the

behavior of most network protocols. But to investigate the performance and problems of

the protocols that may operate on an actual existing network, the number of network nodes

that must be considered easily run in the thousands or possibly more. There is also a need for

simulating large number of network nodes for special cases like investigation of a virus attack,

simulation of peer to peer networks or investigating the effect of enabling multicast traffic in

an Internet Service Provider (ISP)[4]. Furthermore, statistics about network capacities show

that used bandwidth tends to double approximately every two years [1][3]. Together with

the increase of network nodes and bandwidth to be simulated, large numbers of packets must

be simulated in typical simulation. This leads to large-scale simulations that require high

processing power and memory resources.

It is well known that the execution time of a packet level network simulation grows faster than

linearly with the network size [2][5]. Theoretical studies show that for a network size of order

O(n), the sequential discrete event simulation time includes terms which are of order O(n .

log(n)), that corresponds to keeping the event queue of the simulator sorted in time so that the

order of processing of events corresponds to their simulation time[2][5].

Also memory requirement increases at least linearly with the number of simulated nodes. The

memory size is mainly defined by centralized network configuration and routing information

required during construction of the simulated network. Additionally, the needed memory

increases also with the intensity of traffic flows that dictate the size of the event list of the

simulator. As the network size increases, after some point, processing power and memory

requirements increase to a great extent so that it becomes impossible to achieve required

memory for the simulation using a single board computer for which memory capacities can

be increased up to some fixed point [2][8][12]. E.g., for the simulation of a campus network

having 3000 nodes connected together with 100Mb/s connection using ns-2 may require more

than one hour to simulate one minute of operation on a powerful computer [1]. Also even

on a simulation system with large amounts of physical memory (2 GBytes for example), the

maximum size of the network that can be represented is usually on the order of a few thousand

nodes for famous simulators such as ns-2. [1]

10



Efficient simulation techniques for such networking models have become an important issue.

Many methods have been proposed to speed up network simulation. These methodologies can

be categorized into three different types: computational power; simulation technology; and

simulation model[22]. In the direction of computational power, simulations can be speeded

up by using faster and more powerful machines. Trend in this way is to increase the number

of CPU cores rather than increase processor speeds because of the limitations on the hardware

manufacturing technology. So for a simulation that is developed to be run on a single CPU

could not be speeded up much using this approach.

In the simulation technology direction, new enhanced algorithms for implementing the simu-

lation can further speedup simulation. Algorithms such as the calendar queue algorithm[28],

which is used in ns-2 [7], and splay tree algorithm have been proposed in order to improve the

efficiency of event list manipulation. It is very well known that such algorithms are enhanced

for specific assumptions. They will speed up the simulation for the case they are developed

for, but may perform worse for different scenarios. An example, a calendar queue’s perfor-

mance depends on how evenly events are distributed across its buckets. If the bucket width is

too big comparing to the average inter-event gap, many events fall into few buckets. On the

other hand, if the bucket width is too small, events are sparsely populated and finding the next

event requires scanning many buckets. [23].

A third approach is to use models with a higher level of abstraction, simplifying the simu-

lation and improving its efficiency. The tradeoff in this case, is the accuracy of the desired

measures of interest obtained by the more abstract model. For example, the packet-train sim-

ulation technique models a cluster of closely-spaced packets as a single ”packet-train” [23].

The cost reduction comes at the price of introducing a measurable degree of approximation

into the resulting metrics. Such coarse grain simulators run quickly, as it deals with packet-

trains instead of individual packets, but cannot represent the details of the underlying physical

system.[22]

Another modeling technique making simplified assumptions about the real system is the fluid

model, which was first proposed by Anick et al. in [39] to model data network traffic. In

the fluid simulation paradigm, network traffic is modeled in terms of a continuous fluid flow,

rather than discrete packet instances. A cluster of closely-spaced packets may be modeled as

a single fluid chunk with a constant fluid rate, with small time-scale variations in the packet
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stream being abstracted out of the model.

A fluid simulator keeps track of the fluid rate changes at traffic sources and network queues.

An equivalent packet-level simulator would keep track of all individual packets in the net-

work. In fluid simulation, the higher level of abstraction suggests that less processing might

be needed to simulate network traffic. This is not surprising as a large number of packets can

be represented by a single fluid chunk[24][27]. For simple network components, where traffic

flows do not compete for resources, the fluid simulator outperforms the packet-level simu-

lator. An example would be a link that connects two nodes and never experiences queuing;

this component only introduces a constant propagation delay. The major drawback of a fluid

model is that the accuracy of the interest measures is compromised due to the abstraction.[22]

Under light or moderate traffic conditions, the number of events raised in flow-level simulators

is typically much less compared to packet-level simulators. However, it has been shown that

under heavy traffic conditions and when several flows share the same available resources, one

change in the sending rate of a single flow may influence the sending rate of many other flows.

This can cause an avalanche of sending rate updates with a dramatic impact on the running

time of the simulation. This effect is known as the ”ripple effect” [40], and may lead to

drastic performance degradation, such that packet-level simulation will outperform flow-level

simulation.

A high precision, fast and logical way of achieving the required computational power and

large memory is to partition the network into small sub-networks, and then simulate each

partition on a different computer in a coordinated fashion. In the literature numerous studies

have been devoted to this subject and the solutions are centered under two approaches, namely,

traditional and federated simulation.

The traditional approach to distributed simulation is already used by well known simulators

like TeD, SSFNet, GloMoSim, TaskKit, and ROSSNet [1]. In this approach, the simulation

model is partitioned into small models and each partition is simulated by a copy of the same

process in coordination with the others. Here, simulation components are designed and im-

plemented to be optimized with the rest of the simulation and communicate through special

fast communication libraries to achieve information update and time synchronization. The

main advantage of this approach is the simulation speed achieved as the simulation kernel

and simulation models are specifically developed and optimized. The main drawback of the
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approach is the enormous level of effort required to develop the simulation system (i.e. Sim-

ulation engine, simulation models, development and analysis tools) from scratch. Also the

effort required to validate and verify the whole simulation system is usually prohibitively

high.

The second approach, federated simulation, aims to combine readily built simulation sys-

tems together to maximize code reuse. High Level Architecture (HLA) is a widely adopted

international standard that defines the principles of distributed simulation and the interfaces

among different partitions. The simulation model is partitioned into small parts and each

sub-model is simulated by a different simulator, called a federate, that has proficiency for the

sub-model it is assigned. The resulting simulation system is called a federation. Federates do

not communicate or synchronize directly but all the communication and synchronization be-

tween federates are realized by the Run Time Infrastructure (RTI). The main advantage of this

approach is, if a property (i.e. Network protocol) is unimplemented for some simulator but

implemented in the other one, one can federate these simulators to form a complete simula-

tion for the desired properties. As the approach combines simulators that are readily available,

tested and validated, the effort required to form the simulation is drastically decreased.

The concept of federated simulation in not new. It has been successfully applied especially

for the case of military simulation applications. The SIMNET project and the Distributed In-

teractive Simulation (DIS) protocols, Aggregate Level Simulation Protocol (ALSP) are some

examples of the use of this approach. The parallel simulation community has also applied this

technique to parallel queuing network simulations [1][14][18].

2.2.1 Model Partitioning

While developing a distributed/federated simulation, an important issue to be resolved is how

to partition the simulation model into subparts and assign them to the processes. Here we will

summarize three partitioning approaches, namely space parallel, time parallel and space-time

parallel partitioning. [6]

In Space-parallel approach, state variables are partitioned and assigned to the LPs for the

whole simulation duration. Each LP is responsible for computing the values of the assigned

state variables during whole simulation in time and information parallel with other LPs. Dis-
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tributed simulation of a communication network is a good case to apply space parallel par-

titioning approach as the network topology can easily be divided into small parts. Each LP

will calculate the states of the subnetwork (i.e. Queue lengths of nodes, average bandwidth

achieved for the flows) it owns in parallel from start to the end of simulation. As the topol-

ogy is divided and each part is assigned to a LP, obviously some state information should

be exchanged between LP‘s and also some time synchronization mechanism should be im-

plemented to achieve causality. The advantage of using space parallel approach for parallel

simulation of a network is the ease of realization and implementation. The main drawback

of the approach is, depending on the model under simulation, tight synchronization of LPs

may be required to achieve causality. This results in LPs to wait for each other, decreasing

the speed up advantage of parallelism.

Time parallel partitioning approach divides the simulation time axis into non overlapping

simulation time intervals. Each time window is assigned to a LP which has to compute all

the state variables of the simulation in that duration. At each pass, LPs exchange final values

of the state variables achieved at the end of the period they simulate and start a new pass.

Iterations continue until a fixed point is reached. The benefit of the time parallel approach is

its massively parallel nature of execution because of loose synchronization between LPs. But,

it is harder to realize and implement the simulation, and accuracy of results may depend on

the initial values guessed. Furthermore, all LPs have to store whole state variables making it

useless for large scale simulations where memory requirements may become formidable.

Space-time parallel partitioning can be thought as a combination of space and time parallel

approaches. In this approach space-time domain is divided into non-overlapping regions and

each region is assigned to a logical process. In this approach as state variables can be divided

between LPs, larger memory for the whole simulation can possibly be achieved. Furthermore,

this approach enables a relaxation in time synchronization, at the cost of number of iterations.

To list the disadvantages, it is harder to realize and implement the simulation and similar to

the time parallel approach to distributed simulation, accuracy of results may depend on the

initial values guessed.
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2.2.2 Time Management in Parallel Simulations

Causality constraint stipulates that, ”a discrete-event simulation, consisting of logical pro-

cesses (LPs) that interact exclusively by exchanging time stamped messages obeys the local

causality constraint if and only if each LP processes events in non-decreasing time stamp

order.” [6]

If LPs process local events independently of other LPs, a violation of causality constraint may

arise as late or early foreign events from other LPs can possibly be delivered. This kind of

a violation may change the course of events and bring forth invalid simulation results that

are different from sequential counterpart. In addition, if local times of LPs‘ are incremented

independently, there can also be deadlocks in the system that may arise if objects that are

simulated in different LPs wait for each other for inputs before producing an output. So some

time management should be done between LPs to avoid violation of causality and deadlocks.

Figure 2.3 shows a classification of approaches that have been proposed to manage time for

distributed simulation to address these problems. [6][9][13]

Figure 2.3: Classification of Time Management Algorithms[9]

Synchronous algorithms use a global timing mechanism to manage time and event delivery.
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LPs are allowed to advance their times up to the global time. Here no deadlock can occur

as global timing mechanism is used. In the time driven case, global time is advanced by

constant time intervals and all objects‘ inputs, outputs and new states are computed at each

time advance. Computed state variables are exchanged at the end of each time advance. In

the event driven case global time is advanced to the time of the next event with the smallest

time. State variables are again updated at every global time advancement. The event driven

scheme reduces the need of computing objects‘ state and number of synchronization messages

compared to the time driven scheme as it omits calculation and synchronization for the time

intervals between two events in which no change occurs in objects’ inputs, outputs and states.

Asynchronous algorithms are developed to achieve better parallelism than synchronous ones

by allowing LPs to process local events without computing a global time. A synchronization

of the local clocks of the LPs is required whenever inter-LP communication occurs. In the

conservative case, the main idea is avoiding violation of the causality constraint by guarantee-

ing that no foreign event will arrive having time less than local time of the LP. So processing

of local events and foreign events in proper time sequence is achieved.

Unlike the conservative case, optimistic synchronization does not guarantee causality. LPs

process local events as if no foreign event would arrive. When a foreign event having a

time earlier than local simulation time arrives, it is named a straggler event, and must be

detected and repaired by using a ”rollback” operation. So the LPs should remember all the

state changes that occurred after a safe point and also should annihilate any outputs sent from

the straggler event‘s time to its local simulation time. Annihilation of the messages is done by

sending anti-messages to the corresponding formerly sent messages. When a message and its

anti-message are found in the same queue, they cancel each other. If a message corresponding

to the anti-message has already been processed, the station should also rollback to that time.

So a rollback operation can result in cascade rollbacks.

Because of the ease of realization and implementation, most distributed simulations use the

conservative time management approach. For the simulation of a network, the conservative

approach performs better than synchronous approaches and also, implementation is relatively

simple in comparison to optimistic approaches. For this reason, in the scope of this study, the

conservative approach to time management has been preferred.
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CHAPTER 3

FEDERATED NETWORK SIMULATION USING HIGH

LEVEL ARCHITECTURE

The High Level Architecture (HLA) is a general purpose architecture for distributed com-

puter simulation systems[19]. HLA provides a common architecture supporting reuse and

interoperation of simulations regardless of the computing platforms.

The first key components of the system are the simulations themselves, or more generally,

the federates. A federate can be a computer simulation, or a supporting utility (such as a

viewer or data collector). All modeling and computation is in the federates. HLA imposes

no constraints on what is represented in the federates or how it is represented, but it does

require that all federates incorporate specified capabilities to allow the objects in the simula-

tion to interact with objects in other simulations through the exchange of data supported by

services in the Run Time Infrastructure (RTI). The second functional component of HLA is

RTI. RTI provides a set of services that support the simulations in carrying out these federate

to federate interactions and federation management support functions. These services will be

discussed later. All interactions among the federates flow through the RTI. The third func-

tional component is the runtime interface. The HLA runtime interface specification provides

a standard way for federates to interact with the RTI, to invoke the RTI services to support

runtime interactions among federates, and to respond to requests from the RTI. This inter-

face is implementation independent and is independent of the specific object models and data

exchange requirements of any federation.[41]
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3.1 Run-Time Infrastructure (RTI) Overview

RTI is a software that provides common services to federates in the HLA standard [19][20][21].

RTI supports many types of functions that are required for operating federates having different

simulation architectures (i.e. time management, object management) in parallel. RTI handles

federate to federate communication over TCP/IP network so federates can be executed on a

standalone workstation or over an arbitrarily complex network. This allows federates to be

run from arbitrary geographic places where it may be impossible or too costly to bring sim-

ulation components together (i.e. A battlefield training simulation whose components are in

two or more countries).

RTI software is currently composed of the RTI Executive process (RtiExec), the Federation

Executive process (FedExec) and the libRTI library [19][21] as shown in figure 3.1

Figure 3.1: View of an HLA Federation[21]
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3.1.1 RtiExec

The RtiExec is a globally known process. Each federate communicates with RtiExec to initial-

ize RTI components. The RtiExec’s primary purpose is to manage creation and destruction of

FedExecs for each federation and also manage multiple federation runs in the same network.

3.1.2 FedExec

When the first federate connects to RtiExec process, a FedExec process that is unique for

each federation is created and federation is formed. FedExec manages all the federates’ join

and resign actions to the federation, and facilitates time synchronization and data exchange

between participating federates.

3.1.3 libRTI

libRTI is the C++ library [18][21] provided for developers that implements RTI services spec-

ified in the HLA Interface Specification document [19]. Federates includes this library to han-

dle all the communication required for achieving HLA services that take place in a federation

through LibRTI. LibRTI provides two classes to the developers namely RTIAmbassador and

FederateAmbassador. The services provided by the RTI to the federates are provided under

the class RTIAmbassador. RTIAmbassador class implements all the requests (i.e. sign/resign

from federation, data exchange, time synchronization etc.) made by a federate through its

life cycle in the federation. FederateAmbassador is an abstract class that implements callback

functions used for passing RTIs messages to federate. An important point to underline is

that FederateAmbassador is an abstract class; developers should implement the internal of the

functions declared in FederateAmbassador class.

3.1.4 RTI Management Functions

There are six main classes of operations defined between federates and RTI.

Federation Management: implements support for creating and operating federations. HLA

defines join/resign methods for the federates to be used while joining to or resigning from a
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Figure 3.2: RTI Components

available federation. Also methods for creation/destruction of a federation. Federation Man-

agement also implements methods for coordination of federation checkpoint (saves) among

federates.

Declaration Management: implements services for declaring and registering data to be ex-

changed between the federates. At any time during the federation execution, a federate can

declare it’s willing to produce data for an object or generate an interaction of a kind. It can

also declare it’s interested in getting data for an object or getting interaction of a kind. RTI

will handle the data updates or interaction deliveries according to these declarations.

Object Management: implements services for exchanging data and interactions, which are

declared by federates using declaration management functions. Using services defined in Ob-

ject Management, federates register and update their own data objects, send/get interactions

to/from other federates, discover and get updates of newly registered object instances. Two

types of data exchange mechanism are present in HLA. First, data can be exchanged in terms

of objects having attributes. Whenever an attribute change occurs, updateAttributeValues()

function is called to inform federates who has registered for data delivery of the object that

attribute belongs to. Alternatively data can be exchanged using interactions with parameters.

Whenever an event which should be informed to another federate who is in interest occurs,

an interaction that represents the event with appropriate parameters is send using sendInter-
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action() function. Upon receiving the interaction with receiveInteraction() callback function,

federates will do the required local processing. The difference between objects and interac-

tions is, objects are persistent where interactions are one timed.

Ownership Management: In HLA architecture, every object instance should be owned by a

single federate to guarantee a consistent operation. Only the owner can update the attributes

of the object. When needed, Ownership Management functions provide dynamic change

of ownership of objects between federates to support updating of the attributes by different

federates during the execution.

Data Distribution Management: provides delivery of the correct message to the intended

receiver at the correct time. It also provides efficient routing of data among federates by

defining regions. Using the information gathered from declaration management functions,

Data Distribution Management aims to reduce bandwidth required for data exchange between

federates by delivering the information only to the intended federates. For example in a

network simulation of wireless network, geographic partitions can be defined and assigned

to the federates. As the network nodes can only hear the nodes in the same partition and

some of the nodes from the neighboring partitions, each federate may request available data

within its own and neighboring partitions. Only object updates or interactions of the objects

in the interested regions will be delivered to the federates minimizing the data delivery in the

federation.

Time Management: The focus of time management is to implement time management poli-

cies and data delivery policy between federates. RTI has support for federates with different

time management policies together to form the federation. Time management plays a vital

role while running federates concurrently. Time advances must be coordinated with object

management services so that information is delivered to each federate in a causally correct

and ordered fashion. If time advances between federates are not negotiated correctly, incon-

sistent simulation results may occur.

Because of its importance, next we will look into time and data delivery mechanisms in more

detail.
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3.1.5 RTI Time Management and Event Delivering Mechanisms in Detail

It is important to understand time management and message delivering mechanisms of RTI

and select appropriate functions for correct operation of federates.

RTI has support for various time management and data delivery services that are supplied

to the developers to combine federates with different requirements together. For example,

a federate can increase its local time either in coordination with federation or totally freely.

It can also either generate or be willing to receive foreign events with or without timestamp

information. That is only related with the implementation of the federate. At the beginning of

the federation execution, federates declare their interest on how they will increase their local

times and how they will sent/receive foreign events.

Time-stamp-ordered (TSO) event is an event that has a time-stamp information and occurs at

some time in federation time frame. A federate that generates TSO events is called regulating.

As event times are related with federation time, regulating federates should increase their local

time in coordination with RTI. A federate need not be regulating if it does not produce TSO

events. Events generated by a non-regulating federate are delivered to the other federates in

receive-order.

A federate that wants to receive TSO events is called constrained. There are two queues

maintained for each constrained federate. The first one stores TSO events, and the second

is used to keep non-TSO events. A non TSO event is available to the federate as soon as it

enters the queue where TSO events are available to the federate as soon as its timestamp is

less than the time requested by the federate. When a federate requests time advance, it is not

given time advance grant until all the TSO events before the requested time are delivered.

A federate can be unconstrained if it is not interested in receiving TSO events. Events are

delivered to the unconstrained federates in receive order and they are free to increase local

time without any constraint.[15][21] A federate can be regulating, constrained, regulating-

constrained or neither regulating nor constrained. This depends on the design of the federates.

Regulating and constrained federates advance their local time and data delivery in the super-

vision of RTI. Not to violate causality, RTI has to give time advance grant to the federates

correctly and coordinate in time order data delivery. Federates are given time advance grant
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by RTI using two parameters, federates local time and lookahead. These parameters should

be declared by each regulating federate. Lookahead is defined as the time duration that is

promised by the regulating federate, in which no event will be delivered to RTI. Using these

parameters, RTI computes a lower bound time stamp (LBTS) for each constrained federate.

LBTS is the earliest time stamped event that constrained federate can receive. It is determined

by RTI looking at three parameters, the federation-wide available TSO events, regulating fed-

erates local times and their lookahead values. A constrained federate can not advance time

beyond its LBTS. That is because RTI only guarantees that no TSO event will come until

LBTS violating causality. A higher lookahead value results in a higher LBTS. So paral-

lelism increases with the increase of lookahead. But lookahead should be chosen such that no

causality violation occurs.

3.1.6 Federated Simulation of a Network Using RTI

To get familiar with the RTI functions which can be used while developing a federated simu-

lation of a network, a two federate, event-based simulation of a wired network was developed.

The routes for the individual flows is partitioned between the federates. That is every flow has

some part of its route in both federates. So communication between federates should occur

when a packet traverses the part of route in the first federate and should continue to the next

part of the route in the second federate. This kind of packets, called inter-federate packets, are

represented as interactions between federates. In this architecture, as each federate will have

some TSO messages to be delivered and received to/from the other one, the federates were

designed and developed as regulating and constrained.

RTI is developed to support different kinds of simulations, it has more facilities than needed in

this particular example. We need to chose the functions to be used for creating the federation,

joining a federation, publishing interaction classes, registering for interaction classes, time

management, resigning from the federation and destroying the federation for event based

regulating and constrained federates.

Figure 3.3 shows the kernel of the conservative federated simulation developed in this study.

The sequence of events in federated simulation over RTI are shown in Figure 3.4.

At the start of operation first federate creates federation execution by calling createFedera-
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Main()

{

if (!Federation exists)

{

createFederationExecution;

}

else

{

joinFederationExecution;

}

getInteractionClassHandles;

getParameterHandles;

subscribeInteractionClasses;

publishInteractionClasses;

enableAsynchronousDelivery;

enableTimeConstrained;

setLookahead;

enableTimeRegulation;

granted_time=0;

while(!granted_time<end of simulation

{

get event from event queue

if (event_time>granted_time+Lookahead)

{

Next_Event_Request(event_time);

while(granted_time<event_time)

{

RTI_Tick();

}

Process the event;

sent_interaction_if_required;

}

else

{

Process the event

sent_interaction_if_required;

}

}

}

Figure 3.3: Kernel of the Conservative Federated Simulation

tionExecution()function. Once the federation is created, other federates joins this execution

by calling joinFederationExecution(). Next, federates use publishInteractionClass() and sub-

scribeInteractionClass() functions to declare interests in getting and generating the specified

type of interaction. Then RTI is informed about the time management policies of the fed-
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Figure 3.4: Usage of RTI Functions in federate Life Cycle

erates by calling enableTimeConstrained() function, which enables advancement of federate

time with federation time and enables delivery of timestamp ordered events to the federate,

and by calling enableTimeRegulation() function to informs federation to take federate time in-

formation into account while managing federation time. Also lookahead value of the federate

is informed by calling setLookahead() method. After these settings made between federate

and RTI, until the end of simulation, the event having the earlier timestamp is taken from

federate’s event queue. If its time is larger than f ederate time + lookahead, not to violate

causality, federate requests federate time to the next available event time in the federation by

calling nextEventRequest(). tick() function is called by federate to supply required time for

Local RTI Component(LRC). During tick LRC delivers messages to the federate maintains

time and various RTI internal functions. Time advance grant is given when all TSO events

less than requested time are released for the federate. Then federate is free to process the local

event surely that violation of causality is avoided. During the simulation, if a communication

is required between federates, sendInteraction() functions is used to inform RTI about the

message. It is RTI‘s responsibility that correct message is delivered to the correct federate at

the correct time. When the federate reaches the end of simulation, it calls disableTimeCon-
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strained(), disableTimeRegulation(), resignFederationExecution() methods to end its relation

with RTI. The last federate calls destroyFederationExecution() to completely remove the fed-

eration execution.
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CHAPTER 4

FEDERATED SIMULATION OF NETWORK PERFORMANCE

USING PACKET FLOW MODELING

This study deals with the tight synchronization problem of a federated simulation of a large

scale network at packet level of detail. A method that loosens federate coupling using flow

modeling is proposed. Although the proposal is applicable to both traditional and federated

simulation approaches, the scope of this study is limited to conservative federated packet level

simulation only.

4.1 Problem Definition

As discussed extensively in chapters 2 and 3, an efficient and simple way of achieving pro-

cessing and memory resource effectiveness for large scale network simulation is to partition

the simulation model in a space-parallel manner and distribute and compute sub models on

different computers in a coordinated fashion. This approach has three advantages over se-

quential simulation:

1. Larger memory can be used than a single board computer. So larger topologies can be

simulated.

2. Processing power of more than one CPU can be used to speed up simulation.

3. More interestingly, as event queues are divided into smaller ones, overall processing

power required for keeping event queues in time order is reduced compared to main-

taining a single event queue.
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It is obvious that if the network to be simulated is partitioned into sub-networks, some com-

municating node pairs will be simulated in different federates. A simple two-federate network

simulation configuration is depicted in Figure 4.1. Inter-federate packets should be commu-

nicated through RTI. These packets can be represented by interactions. So federates will

generate TSO interactions to be delivered to other federates and also will receive TSO inter-

actions from others. Hence, federates must be both regulating and constrained. This means,

for each inter-federate packet that has event time > ( f ederate time + lookahead), a time

advance request and time advance grant should be issued between RTI and federates [17].

The main problem here is that the frequent exchange of inter-federate packets forces to set a

small lookahead value to avoid violation of causality. So intervals between synchronization

points decreases, resulting in federates waiting for each other until they reach the requested

time, decreasing parallelism. Additively, time advance requests and grants introduce commu-

nication overhead between federates and RTI that is handled over network interface, which

is quite slow in comparison to processor-memory communication, as well as computational

overhead to compute LBTS in RTI. So if we can find a way to avoid frequent inter-federate

messages, lookahead value can be set to a higher value and a relaxation can be introduced

between federates, decreasing communication and RTI computation overheads.

Figure 4.1: A Simple Space Parallel Federated Network Simulation

4.2 Time Performance of Federated Network Simulation

First, the performance of a space-parallel federated simulation of a network without flow mod-

eling for UDP-like non-feedback based traffic was investigated. As a representative example,

an eight federate network simulation (Figure 4.2) without flow modeling that sends an inter-
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action for every inter-federate packet and its sequential counterpart have been implemented.

Packet traffic characteristics obtained with sequential and federated simulation without flow

modeling have been compared, as well as elapsed simulation times for different numbers of

nodes. Simulated network topology consists of nodes each serving as a source for one flow

and destination for another flow. A flow traverses a static route of 8 hops in the source feder-

ate and another static 8 hops in the destination federate resulting in 16 hops as in the case of

sequential counterpart. A sample path for a flow is given in figure 4.2.

Figure 4.2: Network Topology simulated for Federated Approach

At the source, packets are generated according to exponential distribution having a mean of

200msec. A constant processing and communication delay of 20msec was used at each in-

termediate node. Lookahead value was chosen to be 10msec. Accuracy results were nearly

same as that of sequential simulation as expected. Here a lookahead value of 10msec was

chosen carefully so that it will result in fast simulation without decreasing simulation accu-

racy much. For the simulation of UDP-like non-feedback based traffic, choosing a wrong

lookahead value would not have a serious effect on the error of number of packets. But this

will have a bigger effect on the error of STD of packet interarrival times. In example, if

lookahead value is chosen unacceptably large, the packet interarrival time between some of

the two consecutive packets of the same flow will be smaller than lookahead value. So these

packets will be delivered to the receiving federate as they were generated at the same time.

Here packet interarrival time information is lost, resulting in large error in STD of interarrival

packets. Because of the wrong timing of these inter-federate packets, some packet drops may

occur that will introduce error on the error of number of packets, but will not be so much.

Results in Table 4.1 show the simulation times required to complete the sequential and fed-
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erated simulation without flow modeling for the simulation of 900 seconds of the network

described above for different number of nodes. Looking at the column corresponding to se-

quential simulation, computational requirement increases more than linearly with network

size, as expected. After 800 nodes it is not feasible to simulate the topology in a sequential

way as simulation time becomes prohibitive. The second column presents the time required

for federated simulation without flow modeling. As expected, when the network size in-

creases, federated simulation finishes simulation faster than its sequential counterpart.

Table 4.1: Simulation time (sec.) Sequential vs. Federated Simulation
No of. Sequential Simulation Federated Simulation (without flow modeling)
Nodes Time (sec.) Time (sec.)

80 39 193
200 201 477
400 831 940
600 2015 1809
800 5174 5969
1200 89965 35621
1600 226842 134221
2400 539500 398400

Simulation results also show an interesting phenomenon. Federated simulation without flow

modeling, which communicates interactions for each inter-federate packet, is slower than se-

quential simulation for small network sizes because of the extra cost of RTI communication

and synchronization, as expected. When number of nodes increases beyond 400 nodes, it per-

forms better than sequential version showing the advantage of space parallel simulation. After

this point on we expect it would perform better than sequential simulation. However, there is

a region between 700 and 900 nodes, in which the sequential version performs better again.

As the number of inter-federate packets increases with number of nodes, in this region the

cost of communicating for each inter-federate packet is increased extremely, resulting in high

RTI load and poor parallelism and federated simulation looses its advantage over sequential

simulation. Again after 900 nodes, processing power required for keeping event queue in time

order dominates and federated simulation without flow modeling performs better than the se-

quential counterpart, as expected. Although with the increase of number of nodes federated

simulation without flow modeling performs better than sequential simulation, the speed up

achieved is not even close to the number of CPUs used.
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4.3 Proposed Method: Flow Modeling

The simulation results presented in Table 4.1 clearly show that when federates get frequently

synchronized, desired speed up can not be achieved even when the number of CPUs are in-

creased. So if one can find a way to decrease the inter-federate communication, this will

achieve significant simulation speedups. In many network simulation applications, rather

than individual packet behavior, one is more interested in some aggregate metrics, for exam-

ple, traffic throughput, end-to-end packet delay, packet lost rate, etc. A simulation system

only needs to produce these metrics accurately, or with approximations within a satisfactory

range, instead of guaranteeing the correct behavior of each individual packet. With this view

of network simulation, a distributed simulation system can be considered as a loosely coupled

distributed computing system. For flow modeling approach, each federate runs separately

performing local computation (simulating the domain assigned to it) with all the information

of the network it has at that time, to produce local results as accurately as possible. Federates

exchange computation results and update network information among them as soon as a pre-

defined number of packets arrive at federate boundaries and flow characteristic information

is extracted. Each federate uses this ”fresh” information to update its own computation and

information base. In this way, there is no need to synchronize and exchange packet-level data

among simulators.

The available flow modeling literature mainly deals with fluid model simulation. ”Genesis: A

Scalable Distributed System for Large-scale Parallel Network Simulation” [5] is a study that

applies flow modeling to packet level simulation successfully. It was a long-term research by

Yu Liu, Boleslaw K. Szymanski and Adnan Saifee at Department of Computer Science, RPI,

supported by DARPA and CISCO Systems Inc.

In Genesis, a large network is decomposed into parts and each part is simulated independently

from and simultaneously with the others. Each part represents a subnet or a subdomain of

the entire network. These parts are connected to each other through edges that represent

communication links existing in the simulated network. In addition, the total simulation time

was partitioned into separate simulation time intervals selected in such a way that the traffic

characteristics change slowly during most of the time intervals. Each domain is simulated by

a separate simulator which has a full description of the flows whose sources are within the

domain. This simulator also needs to simulate and estimate flows whose sources are external
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to the domain but will be routed to or through the domain. The flow delay and the packet

drop rate experienced by the flows outside the domain are simulated by the random delay

and probabilistic loss applied to each packet traversing simulator boundary. These values are

generated according to the average packet delay as well as observed packet loss frequency

communicated to the simulator by its peers at the end of simulation of each time interval.

Every domain simulator stops its simulation at pre-defined checkpoints, and exchanges data

with all the other domain simulators. In the initial (zero) iteration of the simulation process,

each part assumes on its external in-links either no traffic, if this is the first simulated interval,

or the traffic defined by the packet delays and drop rate defined in the previous simulation

time interval for external domains. Then, each part simulates its internal traffic, and computes

the resulting outflow of packets through its out-links. In the subsequent k > 0 iteration, the

in-flows into each part from the other parts will be generated based on the out-flows measured

by each part in the iteration k−1. Once the in-flows to each part in iteration k are close enough

to their counterparts (i.e. based on some pre-defined metrics (end-to-end packet delay, packet

loss rate, etc.) and parameters (e.g. Precision threshold) ) in the iteration k − 1, the iteration

stops and the simulation either progresses to the next simulation time interval or completes

execution and produces the final results. Global process collects convergence information

from all domain simulators and makes global convergence decisions. If some convergence

condition is not satisfied, this process will inform some or all domain simulators to roll back

and re-iterate. Those simulators which need to roll back will go back to the last checkpoint

and re-simulate the last time interval, however, utilizing the data received during the current

checkpoint. When all the domain simulators converge, a global convergence is reached and a

global process will inform all the domain simulators to go on to the next time interval.

In Genesis, the convergence for UDP traffic was reported to be achieved in 2 to 3 iterations,

while for TCP or mixed UDP/TCP traffic the reported convergence was in 5-10 iterations.

Simulation accuracy metric was chosen to be the utilization of the routers, which was re-

ported to deviate about %2 from the sequential counterpart only. No investigation was made

in that study about the second order moment (variance) of the utilization. Speedup of ˜18

is achieved comparing to sequential counterpart for the simulation of 1024 nodes for non-

feedback based protocol where ˜6 of speedup is achieved for a feedback based protocol using

16 CPUs. Although this method performs well in both accuracy and simulation time manner,

it has a major drawback: The need for modifying the kernel of a readily built simulation to
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make it work in an iterative manner is difficult or sometimes even impossible.

In the present study, we propose a solution to the tight synchronization problem, as depicted

in Figure 4.3, that can be applied to any simulation easily without modifying the simula-

tion kernel[42]. The idea is refraining from sending an interaction whenever a packet passes

though the federate boundary, and instead, profiling these inter-federate packets for each flow

individually and sending their characteristics to the receiving federate. Whenever a prede-

fined number of packets arrive at the flow boundary, new characteristics are computed and

sent to the receiving federate. At the receiving federate side, packets similar to the original

ones will be generated using these characteristics, which is valid for this particular number of

packets. This can be thought as an abstraction like using the dead reckoning model for object

movement modeling [6]. This approach highly reduces the synchronization and communica-

tion required between federates and also gives opportunity to set lookahead to a larger value

which increases parallelism. Here we should mention that in a network simulation, packets

can belong to two classes: The first class of packets contain important content that affects

network traffic, like protocol control information, while the second class of packets carry less

important payload like data. Flow modeling is only meaningful for data packets whose con-

tent is not important on the protocol’s operation. Packets that carry control information should

be processed individually[42].

Figure 4.3: Proposed Abstraction Method

There may be different methods for capturing the characteristics of the packet interarrivals

at the egress federate boundary. In the sections 4.3.1-4.3.3 three possible methods will be

investigated and their accuracy and time performance will be discussed.

Accuracy performance of the methods will be tested for 4 different cases where Exponen-
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tial and Pareto traffic is simulated with intermediate routers having unlimited/limited buffer

space. Exponential distribution was chosen for its smooth nature while Pareto distribution was

chosen as a representative of bursty traffic. The characteristic of Exponential distribution is

controlled simply by its mean m. It has a variance m ∗m. Pareto distribution has two parame-

ters, location parameter xm and shape parameter k. Mean and variance of the random numbers

generated by Pareto distribution can be modified using these parameters. Mean of Pareto dis-

tribution is formulated as k∗xm
k−1 for k > 1 where variance is formulated as x2

m∗k
(k−1)2∗(k−2) If

k < 2 , the variance is infinite.

There is always a trade of between speed and accuracy. In this study, accuracy is investigated

for a two federate simulation that uses the topology presented in Figure 4.2, having 20 nodes in

each federate, with a total of 40 flows. In this study accuracy was operationally investigated in

terms of per flow error of number of packets received during the simulation (directly yielding

mean interarrival time) and the error of STD of packet interarrivals compared to the sequential

simulation. Per flow error of number of packets received during the simulation (directly

yielding mean interarrival time) and the error of STD of packet interarrivals compared to

the sequential simulation were the investigated indicators of accuracy. Besides the error of

number of packets, the error of packet interarrival STD should also be investigated as real time

traffics like voice and video streaming strictly depends on the link delay and delay variances.

The acceptable error on the simulation accuracy may change with the traffic under simulation.

As an example, for the simulation of a file transfer more error on STD of packet interarrivals

can be tolerated comparing with the case of a video streaming.

One thing to mention here without going any further on the concept of simulation with packet

times that are generated using a random number generator is the need for repeating the simu-

lation with different seeds. That is because actually random number generators are not fully

random. Random numbers are known series generated using a seed that repeats itself after a

point. Simulation results may vary according to random series generated by different seeds.

So simulations should be repeated with different seeds until simulation results are stabilized.

In our case, as the flows and routes are identical and equally distributed, results for each flow

can be thought as the results obtained by a single simulation run. So instead of repeating the

same simulation scenario with different random seeds until a confidence interval is achieved,

percent error of flows with the sequential counterpart are found for each flow and the errors for

number of packets received and standard deviation (STD) of packets for %95 confidence in-
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terval was calculated using the values obtained from single simulation run using the following

relationship[38].

yn − 1.96 ∗ sn√
n

< µ < yn +
1.96 ∗ sn√

n
(4.1)

where µ is the real average of the samples, yn is the mean and sn the standard deviation of n

samples for n > 30

4.3.1 Packets modeled by simply a mean

The simplest form of flow modeling can be done using the first moment of the packet interar-

rival times. At the federate boundary, mean of the interarrival times of inter-federate packets

for each individual flow can be calculated and at the receiver side, packets with constant in-

terarrival times can be generated using this parameter. New parameters for each flow are

exchanged at every new 200 inter-federate packets.

Table 4.2 and Table 4.4 present the simulation results obtained for Exponential and Pareto

traffic with unlimited router buffer, that is no packet loss. Looking at the error of number of

packets received, it is quite same as the sequential. But that is not case for STD. As the packet

interarrivals are averaged and new packets are generated at constant interarrival times using

this mean, a smoothing effect on the traffic is seen in the receiver federate. This results in

serious deviation from the original flow characteristics so that in the simulations more than

%20 error of STD occurred for Exponential case and nearly %10 error of STD for Pareto

case, as seen in Table 4.3.

Deviation of flows‘ dynamic characteristics affects only STD error of the received packets at

the receiver if the routers have unlimited buffer which is impractical for the realistic networks.

But if one limits the router buffers, the importance of the burstiness of the flows increases.

That is because bursty traffic can easily fill the router buffers in a short duration and the

succeeding packets will be dropped. If a smoothing is applied on the traffic fewer packet

drops will occur, affecting the simulation accuracy. This can clearly be seen in the case where

bursty Pareto traffic is simulated over routers with limited buffer, as shown in Table 4.5. As the

Pareto traffic has bursty nature and router buffers are limited, when a burst of packets arrive,
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a group of packets are dropped in the sequential simulation. But if inter-federate packets

are simply represented by a mean, the resulting smoothened traffic will have smaller drop

rate in the receiver federate showing the importance of correct flow characterization on the

simulation results. Results show that ˜%10 error occurs for the number of packets simulated

in sequential and federated simulations.

Table 4.2: Results for Modeling by a mean, Exponential traffic with unlimited router
buffers

Exponential Distribution Difference with Sequential Simulation
% # of Packets error 0.44 < %Error < 0.5

% Variance error 26.25 < %Error < 31.89

Table 4.3: Results for Modeling by a mean, Exponential traffic with limited router
buffers ˜%20 packet drop

Exponential Distribution Difference with Sequential Simulation
% # of Packets error 3.73 < %Error < 4.05

% Variance error 22.05 < %Error < 26.57

Table 4.4: Results for Modeling by a mean, Pareto traffic with unlimited router buffers
Pareto Distribution Difference with Sequential Simulation

% # of Packets error 0.17 < %Error < 0.31
% Variance error 6.7 < %Error < 9.91

Table 4.5: Results for Modeling by a mean, Pareto traffic with limited router buffers
˜%30 packet drop

Pareto Distribution Difference with Sequential Simulation
% # of Packets error 9.58 < %Error < 9.92

% Variance error 4.47 < %Error < 6.9

To see the need for better flow modeling, consider a new scenario where routers in the sender

federate have unlimited memory and routers in the receiver federate have limited router mem-

ory. Traffic type was Pareto. Table 4.6 shows the error results obtained with federated simu-

lation with flow modeling using flow means and sequential simulation. It is seen that in this

case, the % error of the number of packets and % error of STD of packets are unacceptably

high. This is because, if routers in the first federate were limited, packet drops in the first

federate would smooth inter-federate packets, so fewer packet drops would occur in the sec-

ond federate. But if the routers in first federate have unlimited buffer capacity, inter-federate

packets would have the bursty nature of Pareto and more packet drops would occur in the

second federate. So the overall error is larger for this special case, showing the importance of

accurate flow modeling.

Last thing to mention before going the next section, is that STD errors of limited router buffer
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Table 4.6: Results for Modeling by a mean, Pareto traffic with federate 1 unlimited
federate2 limited router buffers

Pareto Distribution Difference with Sequential Simulation
% # of Packets error 18.65 < %Error < 20.43

% Variance error 33.93 < %Error < 45.92

cases for both exponential and Pareto traffic are less than those of unlimited router buffer

cases. This again results from the shaping of inter-federate packet traffics by packet drops in

the sender federate having a smoothing effect. But if no drop occurs in the sender federate,

inter-federate packets will have exponential or Pareto characteristics which differ significantly

from constant packet generation.

4.3.2 Packets modeled according to a specific distribution

A better way of flow modeling can be estimating parameters of the flow if the probability

distribution type of the flow is known (i.e. Exponential/Pareto). This method enables to

characterize the packets more precisely than modeling by a mean. We will investigate the pros

and cons of the approach for flows whose packets are generated according to Exponential and

Pareto distributions.

Scenarios simulated in part 4.3.1 were repeated and compared with their sequential counter-

parts. Exponential inter-federate packets were modeled by calculating interarrival means of

packets for each flow. Calculated mean is sent for every new 200 packets. At the receiver

federate using this mean, Exponentially distributed packets similar to the original ones are

generated. Both unlimited router buffer and limited router buffer cases were simulated. Re-

sults are presented in Table 4.7 and Table 4.8.

Table 4.7: Exponential modeling results for Exponential traffic with unlimited router
buffers

Exponential Distribution Difference with Sequential Simulation
% # of Packets error 0.145 < %Error < 0.25

% Variance error 9.6 < %Error < 13.29

Table 4.8: Exponential modeling results for exponential traffic with limited router
buffers ˜%26 packet drop

Exponential Distribution Difference with Sequential Simulation
% # of Packets error 4.56 < %Error < 4.9

% Variance error 17.55 < %Error < 22.31

From the Table 4.7 it is seen that if router buffers are not limited, Exponential modeling
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gives very close results to the sequential one. There exists an error on the STD. of packets

that mainly originates from intermediate silences between two successive computations and

transmissions of characteristics. Intermediate silences occur between two characteristics sent

if the mean of the inter-federate packet is calculated a bit smaller than the actual value. This

error will sum up for 200 packet generations and results in STD error.

Results shown in Table 4.8 show that if router buffers are limited and ˜%26 drop occurs,

the packet interarrival characteristics at the boundary of the federate differ from exponential

distribution due to packet drops. So the model accuracy reduces and simulation results differ

from sequential simulation more than the error achieved for unlimited router memory case.

Next the packet generation distribution was changed to Pareto and approximation is tried

on packets generated by using Pareto distribution with parameter of location xm = 60 and

parameter of shape k = 1.5.At the boundary of the federates, Pareto parameters of the flows

are calculated for every 200 new inter-federate packets and at the receiving federate similar

packets to the original ones are generated using this xm and k parameters. Equations 4.2-4.3

shows algorithm for estimating xm and k.

xm(n) = min(xm(n − 1), sample[n]) (4.2)

k =
(n)∑

(ln(sample[n]) − ln(xm))
(4.3)

From the Table 4.9 it is seen that if router buffers are not limited Pareto modeling gives very

close results to the sequential one for both number of packets generated and STD. of packet

interarrivals. So flow modeling using Pareto estimation works accurately when router buffers

are not limited.

Table 4.9: Pareto modeling results for Pareto traffic with unlimited router buffers
Pareto Distribution Difference with Sequential Simulation

% # of Packets error 0.18 < %Error < 0.29
% Variance error 4.52 < %Error < 7.07

But if router buffers are limited and ˜%24.5 drop occurs, Table 4.10 shows that, the packet

interarrival characteristics at the boundary of the federate differ much from the Pareto distri-

bution due to packet drops, decreasing model efficiency. Both % Error of number of packets

and STD of packet interarrivals are unacceptably high making Pareto approximation useless
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for such a scenario.

Table 4.10: Pareto modeling results for Pareto traffic with limited router buffers ˜%24.5
packet drop

Pareto Distribution Difference with Sequential Simulation
% # of Packets error 11.58 < %Error < 13.5

% Variance error 36.96 < %Error < 48.04

From the results presented in 4.3.1 and 4.3.2, we can conclude that modeling inter-federate

packets by a mean or trying to fit them to a specific distribution is not appropriate to be used as

they can not give enough accuracy for some simulation scenarios. A better modeling approach

that would give accurate results regardless of the scenario is required that flow modeling

method can be applicable practically.

4.3.3 General Packet modeling

Given a packet stream for training purposes, hereafter called the training set, one can find

parameters of the distribution from which samples are generated if the distribution is well-

known like Exponential, Pareto etc. as discussed in 4.3.2. But because of random packet

service times and packet drops due to insufficient node buffers, traffic that is generated at the

source of the flow using a specific distribution differs much at the destination. Also different

applications (Video on demand, VOIP, Telnet, FTP, surfing on the Internet, etc.) display

different traffic characteristics that should be modeled and approximated individually. So a

way of accurately fitting inter-federate packets to a general distribution for individual flow

should be found so that flow modeling approach can be applicable for any type of traffic for

any network configuration.

A popular method of fitting a set of data to a general probability density function (PDF) is

the Gaussian Mixtures Algorithm (GMA)[31][34][37]. GMA represents a general PDF as

a weighted sum of positive Gaussian-shaped functions called modes or kernels, each with a

different mean, variance and weight and tries to find appropriate values for these variables

that represent the training set. An illustration of how a PDF is represented by GMA is shown

in Equation 4.4 and Figure 4.5.

f (x) =

n∑

i=1

ai fi(x) 0 ≤ ai ≤ 1 (4.4)
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where a1 + · · · + an = 1 and fi(x) = 1
σi
√

2π
exp(−(x−µi)2

2σ2
i

)

One can consider this approach as a classification problem where each sample in the training

set is assumed to be generated from a kernel in the mixture. The problem is to find the correct

number of the kernels which neither overestimates nor underestimates the training set and to

estimate their parameters that best fit the training set.

Figure 4.4: Illustration of GMA

GMA only presents the concept of the formulation of a general PDF in terms of Gaussian

functions, so one should find a way to solve for GMA parameters. Below, two possible meth-

ods, namely, Expectation Maximization and Self Organizing Mixture Networks, for GMA

parameter estimation will be presented and compared in terms of time and accuracy perfor-

mance.

4.3.3.1 Expectation Maximization Method

The most commonly used method for finding GMA parameters from a training set is Expecta-

tion Maximization (EM) method [34][37]. As its name implies, EM is a two phase algorithm.

The expectation step computes the average of the log likelihood function using current esti-
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mated (or initial) model parameters, while the maximization step maximizes this likelihood

with respect to each learning parameter by updating them according to the new estimates. It-

erations of an Expectation step followed by a Maximization step are made until a convergence

is achieved. Figure 4.5 presents the EM algorithm.

1. Compute data weights for i=1,....,L:

ωi,k =
αiN(zk ,µi

∑
i)γk∑L

i=1 αiN(zk,µi
∑

i)

2. For i=1,...,L Let:

α
′
i =

N∑

k=1

ωi,k

3. Update means. For i=1,...,L

µi = 1
α
′
i

N∑

k=1

ωi,kzk

4. Update covariances. For i=1,...,L

∑

i

=
1
α
′
i

N∑

k=1

ωi,k(zk − µi)(zk − µi)
′

5. Update mode weights: For i=1,...,L:

αi =
α
′
i

N∑

k=1

γk

Figure 4.5: EM algorithm for GMA

EM algorithm was implemented and its time and accuracy performance was investigated over

training sets of Exponential and Pareto numbers. Simulation results presented in Tables 4.11

and 4.12 show that that EM algorithm fits both distributions quite well.

Table 4.11: Accuracy and time results for GMA with EM modeling for Exponential
Distribution

Exponential Distribution GMA with EM
% Mean error 0,42

% Variance error 1,63

The main problem with EM algorithm was seen to be its slow convergence and required

memory space especially when number of kernels or number of samples are large. Also

41



Table 4.12: Accuracy and time results for GMA with EM modeling for Pareto Distribu-
tion

Exponential Distribution GMA with EM
% Mean error 1,4

% Variance error 1,97

there is no well defined procedure for finding number of kernels to be used and their initial

parameters. Some proposed methods[34] insert a new kernel when needed or eliminate the

unnecessary kernels dynamically, but they are more complex to implement. Furthermore, it

would be unduly hard to coordinate exchanges between federates if the number of kernels are

variable.

4.3.3.2 Self Organizing Mixture Networks Method

The problems related with EM method have motivated us to study new algorithms for GMA

solution. Self-organizing mixture network (SOMN), which is a variant of classical self or-

ganizing maps, can be an alternative method for learning arbitrary density functions using

GMA [31][32][35]. The SOMN structure is illustrated in Fig. 4.6. For a mixture of finite

components, the network places nodes (kernels) which do not need to be exactly equal to

the underlying components, if is not known a priori in the input space. The kernel parame-

ters, e.g., mean vectors, and covariance matrices are the learning parameters. The output of

a kernel is the conditional density of that component in the mixture. The upper layer, or the

network output, sums the responses of these kernels weighted by the prior probabilities or

mixing parameters.

At each time step, a sample point is randomly taken from a finite data set. Conditional prob-

abilities of each kernel are calculated. A winner kernel, from which the sample seems to

be generated from, is chosen according to its conditional probability output multiplied by its

mixing parameter. Within a neighborhood of the winner, the kernel parameters are updated.

The pseudo code for SOMN is given in Figure 4.7.

For SOMN, the number of nodes, however, needs not to be known a priori, but should be equal

to or larger than the number of underlying components in the mixture to avoid the under-

representation problem. That is, one can always use a large number of nodes to learn the

mixture, and only the significant ones will remain. For an accurate estimation of an arbitrary
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Figure 4.6: The structure of the self-organizing mixture network (SOMN).[31]

density, operation can be started with a large number of nodes. Only significant ones will

have affect in the mixture while others will diminish having nearly zero mixing parameter.

SOMN algorithm with inverse learning rate methodology was implemented and its time and

accuracy performance was investigated over training sets of Exponential and Pareto numbers.

Simulation results presented in Tables 4.13 and 4.14 show that that SOMN algorithm fits both

distributions quite well.

Table 4.13: Accuracy and time results for GMA with SOMN modeling for Exponential
Distribution

Exponential Distribution SOMN
% Mean error 1,19

% Variance error 0,62
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1. Init the kernels randomly

2. While αk > 0.001 repeat steps 3-8.

3. Calculate learning rate using αk =
Cαinitial

C+k

4. Choose a sample from dataset randomly

5. Calculate conditional probability of the sample for each kernel.

6. Find the best matching unit having the biggest conditional probability.

7. Update best matching unit and its two near neighbors according to the formulas
given below

∆µi = Piαk(sample − µi)
∆σi = Piαk((sample − µi)2 − σi)
µi = µi + ∆µi

σi = σi + ∆σi

8. Update kernel‘s probability using formula

ai = ai + αk ∗ (Pi − ai)
where ai stands for mixture weight µi stands for mean ψ stands for variance of the kernel

Figure 4.7: Pseudo Code for SOMN.

Table 4.14: Accuracy and time results for GMA with SOMN modeling for Pareto Dis-
tribution

Pareto Distribution SOMN
% Mean error 4,9

% Variance error 9,44

4.3.3.3 Comparison of SOMN and EM Algorithms

Although both algorithms can achieve similar final results, it is found that the SOMN al-

gorithm has three advantages over the EM algorithm: Firstly, the stochastic-gradient-based

SOMN algorithm converges much faster than the deterministic gradient-based EM (batch)

algorithm. Second, it is observed that the initial conditions have a greater influence on the

convergence of the EM algorithm. The SOMN, however, is more robust when random initial

values are used. Third, the EM algorithm can be trapped in local optima as it is an exact

gradient ascent/descent algorithm. The SOMN, being a stochastic gradient based algorithm,

can escape shallow local minima. In SOMN, learning is limited to a small neighborhood of
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the winner only rather than to the entire network as the EM does - this is computationally

advantageous especially when the number of kernels and/or size of training set are large. Ta-

bles 4.15-4.16 show the performance of 100 runs for both SOMN and EM where densities

are Exponential with mean 200 and Pareto with xm = 60,k = 1.5.It is seen that SOMN with

inversely decreasing learning rate performs faster than EM in the order of 10 for estimating

Exponential and in the order of 4 for estimating Pareto. Although accuracy results of SOMN

with inversely decreasing learning rate for estimating Exponential distribution are quite ac-

ceptable, higher error rates achieved for estimating Pareto distribution give uncomfortable

feeling with the method. That is if an error of ˜%5 for mean error and ˜%10 for variance error

are incurred at the stage of modeling, summing up with other assumptions and inaccuracies,

one will end up with larger final errors.

Table 4.15: Performance comparison of SOMN and EM for Exponential Distribution
Exponential Distribution SOMN EM

% Mean error 1,19 0,42
% Variance error 0,62 1,63

Time 2,8 sec 33,5 sec

Table 4.16: Performance comparison of SOMN and EM for Pareto Distribution
Exponential Distribution SOMN EM

% Mean error 4,9 1,4
% Variance error 9,44 1,97

Time 2,8 sec 12,6 sec

4.3.3.4 A Fast and Accurate Learning Algorithm Proposed for SOMN Training

Learning rate (αk),has significant effect on the convergence of SOMN [32]. There are different

learning parameter methods proposed in the literature for SOM training. The most widely

used learning rate parameters are

Exponentially decreasing learning rate:αk = αinitial(
α f inal

αinitial
)

k
kmax

Inversely decreasing learning rate:αk =
Cαinitial

C + k

Linearly decreasing learning rate:αk = αinitial
kmax − k

kmax

etc.
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For the usual methods there is no well defined method for choosing αinitial, α f inal and number

of iterations which effect convergence time and accuracy significantly. In the present study

a novel learning rate and stop condition for SOMN training that significantly affects learning

accuracy and speed is proposed. Unlike previous approaches, from the experience on trials

to find a better learning rate methodology, it is seen that SOMN performs better if mean and

variance of the kernels are trained with different learning rates. Two learning parameters αmean

for learning mean parameter of the kernels and αvariance for learning variance parameter of the

kernels are defined. The proposed learning method, shown in Equation 4.5 and Equation 4.6,

associates the shape for αmean with the variance of the mixture mean error and αvariance with

the variance of the mixture variance error. The idea was if the variance of mixture mean is

high, this means kernels are far away from the training set, large values of αmean is used for

quickly bring the kernels to a better location. Conversely, if mixture mean is stabilized, i.e.

smaller mean error variance, smaller αmean should be applied to achieve fine tuning. Same

approach is also used for αvariance. Stop condition for training is reached when mean error and

variance error is below a predefined threshold.

Calculation for αmean and αvariance at step k.

αmean(k) =


0.5 if mean error variance

k > 0.5;
mean error variance

k otherwise .
(4.5)

αvariance(k) =


0.01 if variance error variance

k > 0.01;
variance error variance

k otherwise .
(4.6)

At the start of the training, mean and variance of the set is computed. At each step, mean

and variance of the trained Gaussian Mixture is computed according to the formulas given in

Figure 4.8.

for(int s=0;s<no_modes;s++)

{

mean=mean+mode[s].weight*mode[s].mean;

variance_temp=variance_temp + mode[s].weight * ( mode[s].variance

+ mode[s].mean * mode[s].mean );

}

variance=variance_temp-mean*mean;

Figure 4.8: Computation of Mean and Variance for a Gaussian Mixture
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For the investigation of accuracy and time performance of proposed learning rate algorithm

and to compare them with the EM method, the experiments in part 4.3.4.3 were repeated.

Results are presented in Tables 4.17-4.19 for Exponential, Pareto and Gaussian Distributions.

Table 4.17: Performance comparison of SOMN and EM for Exponential Distribution
Exponential SOMN with EM
Distribution proposed approach

% Mean error 0,2 0,42
% Variance error 0,8 1,63

Time 4,1 sec 33,5 sec

Table 4.18: Performance comparison of SOMN and EM for Pareto Distribution
Pareto SOMN with EM

Distribution proposed approach
% Mean error 2,5 1,4

% Variance error 1,9 1,97
Time 3,5 sec 12,6 sec

Table 4.19: Performance comparison of SOMN and EM for Gaussian Distribution
Gaussian SOMN with EM

Distribution proposed approach
% Mean error 2,9 6,1

% Variance error 2,5 28,4
Time 24,2 sec 43,9 sec

With a quick look at the results, it is easily seen that for Exponential and Pareto distribution,

proposed learning algorithm can converge to the training sets more accurately and much faster

than EM. The Gaussian distribution is much harder as all the GMA will converge to one

kernel from which the set is formed, other kernels will be diminished. So it takes longer time

to converge for Gaussian Distribution than Exponential or Pareto Distribution. The method

proposed here performs better than EM for Gaussian Distribution in both time and accuracy.

EM even seems to produce unacceptably inaccurate results for Gaussian Distribution.

At this point, a fast and accurate method for modeling inter-federate flows has been obtained.

The next part will present the accuracy and speedup performance of the proposed flow mod-

eling approach implemented with SOMN, using the proposed learning rate methodology for

a non-feedback based protocol.
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4.3.4 Federated Simulation of Network Using GMA with SOMN for a Non-Feedback

Based Protocol

To see the time and accuracy performance of the proposed SOMN training method in a feder-

ated network simulation, an 8 federate simulation was developed where inter-federate packets

were modeled for each flow individually, independently, with GMA using the proposed learn-

ing mechanism. Simulations were done for the same scenario as in part 4.2 and speedup and

accuracy results were investigated.

4.3.4.1 Speedup Results

Table 4.20: Simulation time (sec.) Sequential vs. Federated Simulation (flow modeling)
No of. Sequential Simulation Federated Simulation
Nodes

Time (sec.) Time (sec.)
(Flow modeling)

80 39 52
200 201 76
400 831 134
600 2015 188
800 5174 264

2400 539500 2487

Results in Table 4.20 show that when the number of nodes is as small as 80, because of extra

costs for communication and synchronization of federates, sequential simulation is faster. As

network size increases beyond 80, flow modeling with GMA method performs better than

sequential simulation. That is because for the sequential case, computational requirement in-

creases more than linearly with network size, as expected. It is seen that in case of a 2400

node network, flow modeling with GMA approach achieves a speedup factor of 217 over se-

quential simulation which is larger than the number of CPUs used in the simulation. That is

because as the event queue that was maintained by the sequential simulation has been divided

among 8 federates, overall computation required to keep event list in time order is reduced

significantly. Comparing speedup results with that of Federated simulation without flow mod-

eling case, it is seen that flow modeling approach loosens the federates, reducing inter-federate

communication, CPU’s are better utilized that increases parallelism. Flow modeling approach

achieves a speedup level of ˜160 over federated simulation without flow modeling when the

no of simulated network nodes is 2400.
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4.3.4.2 Accuracy Results Obtained for the Simulation of Flows with Different Traffic

and Network Characteristics

In part 4.3.5.1 it is shown that federated simulation with flow modeling can achieve significant

speedup results which make it a promising candidate to be applied in distributed simulation.

Although in part 4.3.4.4, it was shown that SOMN with the proposed learning method con-

verges fast and accurately for different packet distributions, it is also required to show that this

approach works accurately in the context of federated simulation in a time efficient manner.

Experiments were done for various network traffic configurations and accuracy results were

compared with sequential simulation for the same configurations to show that the flow mod-

eling approach can be used with any type of traffic for lossless as well as lossy networks. As

mentioned before, Exponential traffic was chosen for its smooth nature whereas Pareto traffic

was chosen for its bursty character. Also, performance of the approach for a mixed traffic like

Hyper-exponential, which is a mixture of two exponentials, was investigated. A two-federate

simulation, with each federate having 20 nodes was developed and the same network topology

that was presented in part 4.2 was used. GMA pool size was 200 and number of GMA modes

was 7. GMA parameters were calculated for every 50 new inter-federate packets and sent to

the receiving federate. Simulated time interval was 900 sec. The scenarios and corresponding

accuracy results are summarized in Tables 4.21 through 4.27:

Table 4.21: GMA modeling accuracy results for Exponential traffic with mean=200,
unlimited router buffers

Exponential Distribution Difference with Sequential Simulation
% Mean error 0, 17 < %Error < 0, 34

% Variance error 5, 66 < %Error < 9, 41

Table 4.21 shows that accuracy results for both % error of number of packets and % error

of STD of packet interarrivals are quite acceptable. So proposed flow modeling approach

was seen to successfully parameterize the inter-federate packets for Exponentially traffic with

mean interarrival times of 200msec and intermediate routers having unlimited buffer space.

Table 4.22: GMA modeling results for Exponential traffic with mean=200 limited router
buffers ˜%26 packet drop

Exponential Distribution Difference with Sequential Simulation
% Mean error 5.24 < %Error < 7.66

% Variance error 4.08 < %Error < 4.44

From Table 4.22, it is seen that the accuracy results for both % error of number of packets and
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% error of STD of packet interarrivals are quite acceptable for exponential traffic with limited

router buffers where ˜%26 packet drop occurs. So GMA modeling successfully modeled a

smooth traffic with packet losses.

Table 4.23: Pareto modeling results for Pareto traffic with xm = 60 k = 1.5 unlimited
router buffers

Pareto Distribution Difference with Sequential Simulation
% Mean error 0, 12 < %Error < 0, 29

% Variance error 5, 29 < %Error < 6, 68

In Table 4.23, it is seen that accuracy results for both % error of number of packets and %

error of STD of packet interarrivals are quite acceptable. So proposed flow modeling approach

was seen to successfully parameterize the inter-federate packets for a bursty traffic like Pareto

traffic with xm = 60 and k = 1.5 and intermediate routers having unlimited buffer space.

Table 4.24: Pareto modeling results for Pareto traffic with xm = 60 k = 1.5 limited router
buffers ˜%24,5 packet drop

Pareto Distribution Difference with Sequential Simulation
% Mean error 5.0 < %Error < 5.45

% Variance error 4.21 < %Error < 6.79

Table 4.24 shows that accuracy results for both % error of number of packets and % error of

STD of packet interarrivals are quite acceptable for Pareto traffic with limited router buffer

case as well, where ˜%24.5 packet drop occurs. So GMA modeling successfully modeled a

bursty traffic with packet losses.

In the next experiment, first only the mean of the packets arriving at the boundary of federate 2

from federate 1 were transmitted to federate 2, as the model of the traffic exiting federate 1 and

entering federate 2. Table 4.25 shows the discrepancy between the two-federate simulation

with this flow approximation and the sequential classical simulation.

Table 4.25: Mean sent results for Pareto traffic with xm = 60 k = 1.5; federate 1 unlim-
ited, federate2 limited router buffers.

Pareto Distribution Difference with Sequential Simulation
% Mean error 1.56 < %Error < 3.38

% Variance error 7.72 < %Error < 14.8

In Table 4.6, it is seen that modeling using only the mean gives unacceptably inaccurate

results. The same experiment was repeated for proposed flow modeling with GMA. Accuracy

results presented in Table 4.25, for both % error of number of packets and % error of STD of

packet interarrivals are acceptable for this scenario. This case shows the importance of correct
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characterization of the inter-federate flows.

Table 4.26: GMA sent results for Hyper-exponential traffic with unlimited router buffers
Hyper-exponential Distribution Difference with Sequential Simulation

% Mean error 0.32 < %Error < 0.52
% Variance error 3.04 < %Error < 5.6

Table 4.27: GMA sent results for Hyper-exponential traffic with limited router buffers
Hyper-exponential Distribution Difference with Sequential Simulation

% Mean error 0.53 < %Error < 0.93
% Variance error 2.55 < %Error < 4.08

After the exponential and Pareto traffic experiments, simulation of hyper-exponential traffic

was investigated. Accuracy results for both % Error of number of packets and % error of STD

of packet interarrivals are quite acceptable. So GMA modeling successfully parameterized

the inter-federate packets for a mixed traffic like hyper-exponential where intermediate routers

have unlimited buffer space.

The next simulation was with hyper-exponential traffic and limited router buffers, causing

packet losses. Accuracy results for both % error of number of packets and % error of STD

of packet interarrivals are quite acceptable for hyper-exponential traffic with limited router

buffers case where ˜%22 packet drop occurs. So GMA modeling was also successful with a

mixed traffic with packet losses.

Results presented in Table 4.21-4.27 show that flow modeling with GMA approach results in

acceptable accuracy for different kinds of lossless and lossy traffic.

Next, the effect of Pareto shape parameter, which controls the level of burst, on the accuracy

of proposed method was investigated. Simulations were done for xm = 60 and different k

values changing between 1.2 to 2.0 with routers having unlimited buffer space. The value

k = 1.2 was selected as the lower bound. That is because beyond this point, Pareto traffic

becomes so bursty that it generates some large interarrival times for the packets that are even

larger than simulation end time, so some of the flows would have no packets to be simulated.

k = 1.8 was selected as the higher bound. This is because beyond these values of k, traffic

becomes smoother, a case which has already been sufficiently explored.

Simulation results presented in Table 4.28 show that the proposed flow modeling approach

works accurately for smooth traffics as in the case of k = 1.8 as well as for highly bursty

traffic as in the case of k = 1.2.
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Table 4.28: Error vs. Pareto Shape Parameter
k % Error of # of Packets % Error STD. Of Packet Interarrivals

1.2 0.29 < %Error < 0.568 4.35 < %Error < 7.56
1.3 0.18 < %Error < 0.31 5.5 < %Error < 8.78
1.4 0.21 < %Error < 0.32 5.79 < %Error < 8.52
1.5 0.13 < %Error < 0.23 6.1 < %Error < 9.67
1.6 0.127 < %Error < 0.22 4.82 < %Error < 7.71
1.7 0.11 < %Error < 0.18 5.53 < %Error < 8.25
1.8 0.09 < %Error < 0.16 6.15 < %Error < 9.83

Using the results presented in tables 4.20 to 4.28, the conclusion can be reached that,

flow modeling with GMA solved with the proposed learning rate methodology provides

accurate modeling for different kinds of flows under different network conditions.

4.3.4.3 Flow Modeling Pool Size

To investigate the effect of GMA pool size on the simulation accuracy and time, some simu-

lations were done for Pareto traffic with xm = 60 and k = 1.5 where routers have unlimited

buffers. The effect of pool size on the accuracy can best be observed using a bursty traffic

like Pareto. That is because bursty traffic will show different characteristics that change with

the size of the window under view, where a smooth traffic would show similar characteristics

for the windows having different size. For the simulations, GMA parameters are exchanged

between federates for every new set of packet arrivals that fill up the selected pool size. A

common lookahead value was chosen to be 10msec for all cases. Table 4.29 presents accuracy

results and simulation times vs. pool size.

Table 4.29: Error vs. GMA Pool Size
Pool Simulation % Error of % Error STD. Of
Size Time # of Packets Packet Interarrivals
50 1925 0.12 < %Error < 0.18 2.87 < %Error < 5.96
100 1530 0.18 < %Error < 0.169 4.53 < %Error < 7.11
150 1402 0.21 < %Error < 0.264 4.73 < %Error < 7.79
200 1253 0.13 < %Error < 0.3 5.42 < %Error < 9.65

Table 4.29 shows that as the GMA pool size increases, % error of number of packets does

not change much, so the convergence accuracy of GMA method does not change much either

with pool size. But % error STD of packet interarrivals seems to get worse with increasing

pool size. The reason for this behaviour is, when the GMA pool is large, the time between

two consecutive characteristics being sent increases. So a small error on the estimation mean
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of the GMA with respect to the original flow adds up for larger packets and results in a large

error for the first packet of the newly generated window at the receiving federate side. This

one large packet error increases the % error STD of packet interarrivals. But as GMA pool size

is reduced, this error will end up with smaller value, so % error STD of packet interarrivals

will improve.

The last comment is about the change of simulation time with the GMA pool size. Results

presented in the second column of Table 4.29 show that smaller the pool size, larger the simu-

lation time. Conversely larger the pool size, smaller the time required to finish the simulation.

It is obvious that for small pool size, number of GMA computations held in the federates, the

number of messaging and synchronization required between federates and RTI load increases,

adding up to a larger simulation time.

4.3.5 Federated Simulation of Network Using GMA with SOMN for a TCP-like Feed-

back Based Protocol

While introducing the method of flow modeling, it was mentioned that modeling can only be

applicable to the data packets whose content is not important or can be modeled. The packets

whose content is important or can not be modeled, like packets that carry protocol control

information, should be passed between federates as they are. For a UDP-like non-feedback

based protocol, every packet can be modeled. For a TCP-like feedback based protocol, mod-

eling can be done for data packets while ACK packets that carry protocol control information

can be passed without modeling. In this section, validity of the proposed flow modeling

approach and its accuracy and time performance will be investigated for a feedback based

protocol. A TCP-like protocol, that implements flow and bandwidth control according to the

ACK packets received, is simulated. This TCP-like protocol is summarized below:

1. At the sender, data packets are generated at constant inter-arrival times until Congestion

Window Size (CWND) is reached. Then a timeout event is registered

at (last sent packet time + 2 ∗ Round Trip T ime(RTT )).

2. At the receiver side an acknowledgement (ACK) is sent for every two packets received.

3. At the sender, if an ACK is received for all the packets until the last packet sent, CWND

is increased by two and a set of CWND new number of data packets is sent. CWND
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can be increased up to 64.

4. But if a timeout has occurred, CWND is halved and a set of CWND new packets is sent

packet id starting from last received ack.

The state diagram for the sequential simulation is presented in Figure 4.9.

Figure 4.9: State Diagram of TCP-LIKE protocol for Sequential Simulation

Looking at the diagram for the sequential case, it is easy to implement such a protocol for

sequential simulation. But as data packets and ACK packets carry packet id information,

which is required for flow control, some extra information exchange should be introduced for

the correct operation of the protocol in a federated simulation.

For each flow, flow modeling is applied at the sender federate boundary to the CWND number

of packets, which is variable in time. Then an interaction with the GMA parameters, the

start id of packets to be generated and CWND is exchanged between federates. At the receiver

federate side a new set of CWND packets starting with start id are generated using the GMA

parameters received. Whenever a packet drop occurs at the first federate, its packet id is

conveyed to the second federate by an interaction so that no packets with that packet id will

be generated. ACK packets are generated for every two packets at the receiver and routed

through the receiver federate boundary from where they are sent to the sender federate in
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terms of an interaction. When such an interaction is received in the sender federate, an ACK

packet for the flow is generated and routed until it reaches the source of the flow it belongs to.

Other protocol behavior is implemented identically as for sequential simulation.

The state diagram for the TCP-like protocol designed for federated simulation is given in

Figure 4.10.

Figure 4.10: State Diagram of TCP-LIKE protocol for Federated Simulation

Now to show that flow modeling with GMA works accurately for a feedback based protocol,

federated simulation that deploys flow modeling and its sequential counterpart are imple-

mented. Accuracy results are investigated for both a lossless network where intermediate

routers have unlimited buffer space and for a network with limited buffers causing packet

loss. Packet interarrival time was chosen as 20msec. That is, the source generates a packet

every 20msec until CWND is reached. Simulations were also done for both constant service

time (st=10 msec) and random service times (st=rand () %10) in the routers.

Unlike the case with non-feedback based protocol, where it is possible to compare sequen-

tial and federated simulation with flow modeling in a flow by flow fashion, in the case of

a feedback based protocol, flow by flow comparison is impossible. That is because, for a
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TCP-like feedback based protocol, when the network gets congested and a packet is lost, the

flow control mechanism will halve the CWND of the flow to which the dropped packet be-

longs to. Then the network becomes less congested and not as frequent consecutive drops

will occur. But at the end of the simulation, the flow that halved its CWND will have fewer

packets received at the receiver. So any small difference on the generation time of packets

and/or service times changes the order of packet drops and the throughput of the flows are

altered. This is the case even for the repeated runs of sequential simulation with different

random number generation seeds. Although throughputs of individual flows are altered, the

overall network throughput will be the same when averaged over flows. So accuracy results

are compared in terms of the throughput of the network and the standard deviation (STD) of

packet interarrivals at the receivers. Throughput of the network is calculated per flow, by the

sum of number of packets carried for the simulated flows divided by the number of flows and

the STD is calculated in the same way.

Accuracy results achieved for per flow throughput and STD of packet interarrivals for se-

quential simulation and 2 federate simulation for 40 flows are presented below. Simulated

time duration was 900sec. Simulations are repeated for different scenarios.

Table 4.30: GMA modeling results for TCP-like protocol, constant service time, unlim-
ited router buffers

Number of Packets / flow Packet Interarrival STD.
Sequential 3637,6 1462,675

Federated with flow modeling 3643,5 1465,625
% Error between sequential and 0,16 0,2
federated with flow modeling

Table 4.31: GMA modeling results for TCP-like protocol, constant service time, limited
router buffers

Number of Packets / flow Packet Interarrival STD.
Sequential 2659,55 2337,925

Federated with flow modeling 2677,75 2305,7
% Error between sequential and 0,68 -1,38
federated with flow modeling

Table 4.32: GMA modeling results for TCP-like protocol, random service time, unlim-
ited router buffers

Number of Packets / flow Packet Interarrival STD.
Sequential 6577,6 796,15

Federated with flow modeling 6607,55 803,6
% Error between sequential and -0,45 0,93
federated with flow modeling
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Table 4.33: GMA modeling results for TCP-like protocol, random service time, limited
router buffers

Number of Packets / flow Packet Interarrival STD.
Sequential 4285,25 1951,075

Federated with flow modeling 4239,6 1957,925
% Error between sequential and -1,065 0,35
federated with flow modeling

Results presented in Tables 4.30 through 4.33 show that the proposed flow modeling approach

successfully models inter-federate packets so that results compared with sequential counter-

part are acceptably close. Hence, it has been shown that the flow modeling approach can

safely be used for a feedback based protocol where data packets are modeled with GMA and

protocol packets are sent as they are. The errors achieved for the simulation of a feedback

based protocol using flow modeling are less than that of the non-feedback based protocol.

That is because in feedback based protocol more control information is sent between feder-

ates, this makes the packets generated at the receiver federate more controllable resulting in

smaller errors.

To investigate the speedup performance of the proposed method, a series of simulations were

done for different numbers of flows for a sequential case and federated case with flow model-

ing using 8 federates. Lookahead value has to chosen as small as 2msec, otherwise protocol

violation occurs. That is, protocol state machine relies on in order delivery of data packets.

If lookahead is chosen to a larger value, two packets may possibly have the same timestamp.

Then, RTI may change the order of packets, so out of order delivery of the packets to the

receiving federate occurs. Although none of the packets are dropped, a timeout event will be

raised and a serious error both in the number of packets and STD of interarrival packets will

occur. The time required to finish the simulations are noted. Results are given in Table 4.34:

Table 4.34: Simulation time (sec.) of Sequential and Federated Simulation with flow
modeling for TCP-like Protocol vs. # of Flows

Number of Time required to simulate Time required to simulate for
flows for Federated Simulation Sequential Simulation (sec.)

with flow modeling (sec.)
160 717 1002
400 1423 34460
600 2255 95345

1000 5133 357800
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Table 4.34 shows that the flow modeling approach performs better than sequential simulation

even for a small number of flows like 160. More impressive speedup results are achieved for

larger values. It is seen that in the case of 1000 flows, flow modeling with GMA approach

achieves a speedup factor of 40 over sequential simulation which is larger than the number

of CPUs used in the simulation. As the event queue was divided into 8, overall computation

required to keep event list in time order is reduced significantly, that was the same case with

the simulation of non-feedback based traffic.

Next the performance difference of federated simulation with flow modeling in comparison to

that of federated simulation without flow modeling is investigated. Time results are presented

in Table 4.35.

Table 4.35: Simulation time (sec.) Federated simulation without flow modeling vs. Fed-
erated Simulation with flow modeling for TCP-like Protocol

Number of Time required to simulate Time required to simulate
flows for Federated Simulation for Federated Simulation

with flow modeling (sec.) without flow modeling (sec.)
160 717 1172
400 1423 2161
600 2255 3325

1000 5133 7882

Surprisingly, for the feedback based TCP-like protocol, flow modeling approach seems un-

able to achieve significant speedups over federated simulation without flow modeling. As

flow modeling is applied only to the data packets, the intensity and number of ACK packets

communicated through RTI in terms of interaction makes federates tightly coupled again. In

this case, the lookahead value had to be chosen as small as 2msec again, to achieve acceptable

simulation accuracy.

But if flow modeling is applied to both data and ACK packets, the frequency of information

exchange is significantly reduced. Hence, a larger lookahead value (i.e. 10msec) could be

chosen for this case. Also, we should note that the timing error between information ex-

changes does not cause protocol error as in the former cases, federated simulation without

flow modeling or flow modeling applied to data packets only. That is because as packets and

ACKs are regenerated at the correct order at the receiver federate, timing errors can not cause

protocol errors, may only affect the number of packets or STD of flows. So for the case of

flow modeling applied to both data and ACK packets, a larger lookahead can be comfortably

chosen.
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Table 4.36: GMA modeling for both data and ACK packets, results for TCP-like proto-
col, constant service time, unlimited router buffers

Number of Packets / flow Packet Interarrival STD.
Sequential 3637,6 1462,67

Federated with flow modeling 3585,5 1477,95
% Error between sequential 1,43 -1,044

and federated with flow
modeling applied to both

data and ACK packets

Table 4.37: Simulation time (sec.) Federated simulation with flow modeling data packet
only vs. Federated Simulation with flow modeling data and ACK packets for TCP-like
Protocol

Number of Time required to simulate Time required to simulate
flows for Federated Simulation for Federated Simulation

with flow modeling, without flow modeling (sec.)
ACK modeled also (sec.)

160 286 1172
400 371 2161
600 684 3325

1000 1020 7882

While the accuracy obtained is close to that of the case with flow modeling applied exclusively

to data packets, time results for the federated simulation without flow modeling and with flow

modeling applied to both data and ACK packets are shown in Table 4.37.

Results in Table 4.37 show that in this case better speedups are achieved comparing with

the case of flow modeling with only data packets. An approximate speedup of 8 has been

achieved for the simulation of 1000 flows over simulation with flow modeling applied to the

data packets only. It seems that better speedup is achieved with increasing numbers of flows.

This again shows the importance of loosening inter-federate coupling by flow modeling on

the time performance.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Discussion and Conclusions

For the distributed packet level simulation of a large scale communication network, it is pos-

sible that different parts of a flow path will be simulated in different LPs. So communication

and synchronization is required for each packet that finishes its part in a LP and will be sim-

ulated along its remaining route in an other LP. It is well known that frequent information

exchange and tight synchronization of LPs decrease parallelism, resulting in wasted compu-

tational power.

In this study a novel approach for distributed simulation of a network, based on packet level

flow modeling that reduces synchronization requirements between LP‘s was proposed. The

idea was, instead of tracing individual packets across federate boundaries, modeling the flows

and conveying flow characteristics only. The Gaussian Mixtures Algorithm (GMA) is used for

flow modeling. Collected characteristics are sent across federate boundaries for a predefined

number of packets. At the receiving LP side, packets that constitute a flow with the same

characteristics as the one in the sending LP are generated. GMA models a probability density

function in terms of sums of Gaussian functions. So a time efficient and accurate way should

be found for finding the correct parameters of GMA. Expectation Maximization (EM) and

Self Organizing Mixture Network (SOMN) approaches for solving GMA were implemented

and compared. Although EM and SOMN were successful in capturing traffic characteristics,

SOMN is observed to have three advantages over EM: First, SOMN is more robust to initial

points, second, it has computational advantages, and lastly, SOMN converges to global optima

due to its stochastic behaviour. The simulation experiments on solving GMA with SOMN for
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different distributions showed that the accuracy achieved and the time required for SOMN

depend on how the GMA is trained. In the literature some methods were proposed on the

learning parameter with the number of steps as stop condition, but their performance changes

with the distribution of the samples. So a novel learning method and a stop condition is

proposed for SOMN training that models a variety of distributions accurately and in a time

efficient manner. The idea was to get a feedback from the variance of error of mean and

variance of the training set with the GMA parameters estimated. It was observed that applying

two different learning rate parameters for mean and variance of the Gaussian kernels in the

GMA lead to faster and more accurate convergence. If the variance of the error is large, larger

learning rates are used to quickly stabilize the GMA kernels. Conversely, when the variance

of the error is small, this means kernels are near the correct point so a fine tuning is realized

by applying small learning rates. Stop condition for training was proposed to be the point

when the mean and variance error between the training set and GMA estimated drops under

some value. This method was shown to work faster and more accurately than EM and SOMN

with traditional learning rate methods.

In short the major contribution of this study is packet flow modeling for inter-federate packets.

A lesser contribution is enhancing SOMN with a novel learning rate adaptation mechanism.

Although the flow modeling idea can be used for any kind of parallel simulation, federated ar-

chitecture was chosen to investigate the achievements. To make a comparison, a packet based

discrete event sequential simulation and its federated counterpart was developed. First for a

UDP-like non-feedback based protocol, a set of simulations were done for packets generated

from different distributions including Exponential, Hyper-exponential and Pareto on the net-

work having unlimited and limited buffer cases. Exponential traffic was chosen for its smooth

nature while Pareto was chosen for its burstiness controllable using the shape parameter k.

The Hyper-exponential traffic was chosen to see the performance on a mixed traffic. Simu-

lation results have shown that flow modeling leads to acceptable accuracy for all the cases,

including highly bursty Pareto traffic. Next, Pareto traffic was simulated for different values

of the shape parameter and behavior of the flow modeling approach was investigated for dif-

ferent burst characteristics. Results show that the proposed approach works well for a wide

range of characteristics from highly bursty traffic to smooth traffic. Also the dependence of

model accuracy on the number of packets registered as training set was investigated. Results

show that for smaller training sets, although accuracy results for % error of number of packets
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does not change much, the % error of STD of interarrival of packets gets better at the cost of

increased simulation time.

To see the time performance of the proposed approach for a non-feedback protocol, three

simulations, namely, sequential simulation, 8 federate simulation without flow modeling and

8 federate simulation with flow modeling were developed. Simulations were repeated for var-

ious numbers of nodes and the simulation durations were recorded. Results show that for the

sequential simulation, computational requirement increases more than linearly with network

size, as expected. Federated simulation without flow modeling is seen to be slower than se-

quential simulation for small networks because of the extra cost of RTI communication and

synchronization. When the number of nodes increases to around 400, it performs better than

sequential showing the advantage of parallelism. It was expected that for increasing number

of nodes, federated simulation without flow modeling would consistently perform better than

sequential. However, there is a region in which the sequential version performs better again.

In this region the cost of communication and synchronization dominates the advantage of di-

viding event queue between federates so federated simulation without flow modeling looses

its advantage over sequential simulation. After ˜900 nodes, federated simulation without flow

modeling performs better than sequential simulation again. But speed up results were not

so bright. For the simulation of 2400 nodes, a speed up factor of only 1.35 is achieved us-

ing 8 CPUs. This shows clearly the need for flow modeling to loosen the coupling between

federates.

For the proposed approach, federated simulation with flow modeling, the simulations were

repeated. Results show that when the number of nodes is very small, because of extra costs

for communication and synchronization of federates, sequential simulation is faster. As the

network size increases beyond 80 nodes, the proposed flow modeling method performs better

than sequential simulation. It is seen that in case of a 2400 node network, the proposed ap-

proach achieves a speedup factor of 217 over sequential simulation which is larger than the

number of CPUs used in the simulation. Larger speedup values would be achieved for the

simulation of larger number of nodes. It is seen that the flow modeling approach highly re-

duces the communication and synchronization requirements between federates so that better

utilization of CPUs are achieved. Simulation results also verified that federated simulation

with flow modeling has two main speedup advantages over sequential simulation. First, fed-

erated approach uses more than one CPU, second, as the network is divided into sub-networks
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and is assigned to the federates, smaller event lists are managed in each federate. So overall

computational power used for maintaining event list comparing to the sequential simulation

is reduced.

Next, applicability of flow modeling to a TCP-like feedback based protocol is investigated.

The idea was that flow modeling can be used to model the data packets whereas packets that

carry critical information like protocol information can be communicated as they are. So, for

the simulation of TCP-like feedback based protocol, data packets were modeled for each flow

using GMA, and ACK packets are conveyed individually between federates. Accuracy results

show that federated simulation with flow modeling applied exclusively to data packets per-

forms quite accurately for all the cases where network has limited or unlimited router buffers

and packets are served with constant or random service times at the routers. To compare the

speedup performance of the approach two comparisons were made. Firstly, simulation results

were compared with sequential simulation and it was seen that a speed up factor of ˜70 was

achieved over sequential simulation. Secondly, federated simulation with flow modeling ap-

plied exclusively to data packets was compared with the federated simulation without flow

modeling and it was seen that the speed up factor was only ˜1.5, which was much less than

expected. This was due to the intensity of ACK packets communicated between federates.

As the next step, flows of ACK packets were also modeled with GMA. In this case, commu-

nication between federates was reduced significantly and larger lookahead values could be

used without corrupting the correct operation of the protocol. Time results show that a speed

up factor of ˜8 was achieved over federated simulation with flow modeling applied to data

packets only, and the speed up factor in comparison to sequential simulation was ˜358 for a

network size of 1000 nodes.

The proposed approach, flow modeling with GMA, is a straightforward method which can

easily be applied to any available simulator as it does not interfere with the simulator kernel.

One only has to implement a proxy node which stores and models the inter-federate packets

at the sender federate side and another proxy node at the receiving federate that generates

packets according to these computed GMA parameters. Extra storage is only required for

keeping GMA pool size of packet interarrivals, which is usually represented by a data type

long int. No extra space is required for keeping multiple copies of former states as in the

case of optimistic approaches. For example for a federate that simulates for 100 flows having

GMA pool size of 50, will require only 100 ∗ 50 ∗ 4 = 20kBs of memory.
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The proposed approach has two main advantages over the iterative method proposed in GEN-

ESIS: First of all, GENESIS requires major changes in the kernel of the simulator. GENESIS

requires that simulators work iteratively over predefined time intervals in a time driven man-

ner. Simulators that are designed to work on a single CPU, are usually implemented as a

single run, event driven simulations. So modifications that will make them work with GEN-

ESIS seem to require lots of time and effort or may even be impossible to achieve because

of the simulator structure. The proposed approach does not require iteration mechanism, can

also be applied to both event driven or time driven simulators without any modifications in

the simulation kernel.

As the second advantage, proposed approach achieves better speedup results over sequential

simulation for both non-feedback based traffic and feedback based traffic. Although it is not

fair to compare the speedup results between approaches as simulation implementations are

different, iterative structure of GENESIS requires 2 to 3 iterations for UDP traffic and 5 to 10

iterations for TCP traffic, leading to the expectation that the proposed approach would achieve

a better speedup performance than GENESIS.

GENESIS’s performance may strictly depend on the chosen simulation step interval. No

investigation was done for the effect of this parameter on speedup and accuracy. For our case,

as we have continuously running models and the times between information exchanges are

high, once a precise modeling is achieved for the flows, timing errors do not bring much error

on accuracy.

Last comment is about the accuracy results. GENESIS has not reported any results on the

STD of the buffer utilizations, which is an important accuracy metric that should be inves-

tigated. Simulation experiences presented in parts 4.3.2-4.3.3 show that accurate modeling

of inter-federate packets has great importance on STD error. As GENESIS represents flow

characteristics simply with the mean of inter-federate packets and drop probability, STD er-

ror achieved with the GENESIS approach will be large. For the proposed flow modeling

approach, inter-federate packet characteristics are modeled with GMA which was shown to

characterize different flows accurately.
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5.2 Future Work

Although the flow modeling approach was shown to work for both feedback-based and non-

feedback based protocols on networks with static routes, its performance can be investigated

on networks where the routes are dynamic.

In this study, simulated flows were partitioned to two federates only. Both accuracy and speed

up performance of the approach can be investigated on networks where flows are partitioned

over more than two federates.

It was observed that the accuracy and time performance of the EM algorithm was strictly

dependent on the initial values. But as EM is a gradient based algorithm, if a good starting

point is given, it will reach the optima quickly and with a small error where it would take

longer for SOMN due to its stochastic nature. A hybrid algorithm that uses both SOMN and

EM can be proposed. At the first phase, initial values for EM can be found by SOMN quickly

then EM can be used to fine tune the accuracy.

A dynamic lookahead estimation method that monitors inter-federate communication inter-

vals and change lookahead value during the simulation execution can be developed. Effect of

this approach on accuracy and time performance of the simulations can be investigated.

Recent usage of communications networks have demonstrated trends towards peer-to-peer

and multicast traffic. Simulation of large scale networks with such traffic characteristics would

possibly benefit to a great extent from the proposed flow modeling approach, but this also

remains to be extensively studied on concrete examples.

An alternative way of decreasing the communication required between federates can be achieved

by dividing the network topology between federates in a optimized manner, so that most of

the communicating node pairs will be simulated in the same federate. In this way biggest

part of the traffic will be simulated inside the federate boundary, so less inter-federate packets

should be communicated between federates. This method will reduce the communication and

synchronization requirements so that better parallelism will be achieved. The problems that

can be investigated in this area is to find an optimal way of partitioning the network at the start

of the simulation and find a way of keeping it optimized when communicating pairs changes

in time during the simulation.
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APPENDIX A

SIMULATION RESULTS

Table A.1: Non-Feedback Based Traffic, Flow Modeling with mean, Results for Expo-
nential traffic with unlimited router buffers

Federated Sequential
# of STD. of # of STD. of % Packet Error % STD Error

Packets Packets Packets Packets
16470 137 16382 203 0,54 32,51
16489 135 16404 200 0,52 32,50
16477 157 16398 199 0,48 21,11
16471 162 16403 202 0,41 19,80
16642 153 16529 198 0,68 22,73
16842 150 16767 196 0,45 23,47
16492 99 16441 198 0,31 50,00
16567 153 16495 201 0,44 23,88
16702 167 16585 196 0,71 14,80
16857 115 16794 195 0,38 41,03
16596 135 16505 199 0,55 32,16
16529 143 16474 200 0,33 28,50
16804 140 16712 196 0,55 28,57
16483 150 16391 202 0,56 25,74
16674 132 16600 198 0,45 33,33
16612 124 16552 198 0,36 37,37
16447 97 16381 201 0,40 51,74
16728 161 16643 198 0,51 18,69
16270 139 16208 201 0,38 30,85
16425 175 16337 199 0,54 12,06
16673 137 16606 200 0,40 31,50
16692 132 16604 197 0,53 32,99
16454 138 16413 201 0,25 31,34
16578 137 16498 199 0,48 31,16
16690 139 16601 198 0,54 29,80
16555 127 16452 203 0,63 37,44
16446 173 16343 202 0,63 14,36
16460 146 16377 198 0,51 26,26
16691 154 16612 198 0,48 22,22
16603 155 16520 199 0,50 22,11
16512 140 16465 201 0,29 30,35
16680 107 16594 199 0,52 46,23
16535 146 16480 199 0,33 26,63
16286 142 16220 203 0,41 30,05
16370 126 16312 205 0,36 38,54
16592 141 16527 195 0,39 27,69
16458 165 16358 202 0,61 18,32
16436 135 16358 201 0,48 32,84
16527 129 16462 200 0,39 35,50
16513 165 16434 198 0,48 16,67
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Table A.2: Non-Feedback Based Traffic, Flow Modeling with mean, Results for Expo-
nential traffic with limited router buffers ˜%20 packet drop

Federated Sequential
# of STD. of # of STD. of % Packet Error % STD Error

Packets Packets Packets Packets
13369 194 12781 254 4,60 23,62
13262 183 12607 255 5,20 28,24
13147 204 12731 247 3,27 17,41
13265 170 12738 250 4,14 32,00
13240 195 12747 247 3,87 21,05
13459 168 13001 242 3,52 30,58
13179 164 12718 247 3,62 33,60
13248 199 12747 249 3,93 20,08
13363 198 12825 244 4,19 18,85
13408 197 12929 244 3,70 19,26
13239 179 12699 246 4,25 27,24
13194 224 12662 247 4,20 9,31
13422 178 12983 243 3,38 26,75
13206 189 12648 254 4,41 25,59
13395 198 12980 244 3,20 18,85
13295 174 12814 244 3,75 28,69
13174 135 12695 250 3,77 46,00
13383 194 12988 243 3,04 20,16
13099 198 12603 252 3,94 21,43
13099 196 12672 249 3,37 21,29
13193 175 12836 247 2,78 29,15
13344 219 12763 249 4,55 12,05
13135 212 12668 253 3,69 16,21
13181 197 12691 250 3,86 21,20
13367 180 12887 246 3,72 26,83
13160 195 12668 253 3,88 22,92
13155 188 12643 251 4,05 25,10
13132 209 12680 249 3,56 16,06
13286 214 12879 246 3,16 13,01
13379 151 12854 245 4,08 38,37
13234 180 12817 249 3,25 27,71
13434 160 12858 246 4,48 34,96
13268 172 12826 249 3,45 30,92
13159 207 12563 252 4,74 17,86
13162 188 12650 252 4,05 25,40
13336 178 12832 242 3,93 26,45
13178 184 12577 252 4,78 26,98
13255 173 12717 249 4,23 30,52
13245 199 12783 249 3,61 20,08
13246 196 12683 247 4,44 20,65
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Table A.3: Non-Feedback Based Traffic, Flow Modeling with mean, Results for Pareto
traffic with unlimited router buffers

Federated Sequential
# of STD. of # of STD. of % Packet Error % STD Error

Packets Packets Packets Packets
18688 672 18653 648 0,19 3,70
18130 1071 18135 929 0,03 15,29
16537 2505 16426 2424 0,68 3,34
18620 648 18621 663 0,01 2,26
19124 518 19063 469 0,32 10,45
19271 359 19282 412 0,06 12,86
19426 405 19379 410 0,24 1,22
18765 603 18711 552 0,29 9,24
18609 624 18633 643 0,13 2,95
14789 4582 14791 4434 0,01 3,34
18824 611 18831 553 0,04 10,49
19657 319 19561 389 0,49 17,99
18949 650 18901 576 0,25 12,85
19555 418 19422 422 0,68 0,95
17644 1642 17591 1547 0,30 6,14
19039 599 19054 624 0,08 4,01
18624 612 18510 668 0,62 8,38
18524 624 18596 599 0,39 4,17
18834 622 18846 577 0,06 7,80
18553 835 18529 795 0,13 5,03
18582 442 18598 430 0,09 2,79
19355 1120 19357 1028 0,01 8,95
18936 562 18906 511 0,16 9,98
19260 613 19253 544 0,04 12,68
19074 1076 19064 946 0,05 13,74
18489 501 18514 537 0,14 6,70
18325 637 18177 649 0,81 1,85
16660 511 16626 548 0,20 6,75
19436 408 19384 474 0,27 13,92
18568 693 18468 727 0,54 4,68
17594 1090 17593 989 0,01 10,21
19058 779 18968 798 0,47 2,38
17776 1295 17783 1243 0,04 4,18
19001 612 18932 549 0,36 11,48
19319 382 19228 372 0,47 2,69
19777 305 19747 347 0,15 12,10
19656 298 19564 348 0,47 14,37
19175 367 19168 424 0,04 13,44
19270 365 19256 440 0,07 17,05
19728 323 19686 403 0,21 19,85

72



Table A.4: Non-Feedback Based Traffic, Flow Modeling with mean, Results for Pareto
traffic with limited router buffers ˜%30 packet drop

Federated Sequential
# of STD. of # of STD. of % Packet Error % STD Error

Packets Packets Packets Packets
12973 820 14153 791 8,34 3,67
12564 1278 13795 1211 8,92 5,53
12395 1592 13607 1507 8,91 5,64
12765 746 14166 808 9,89 7,67
13102 648 14589 680 10,19 4,71
13198 466 14622 505 9,74 7,72
13316 466 14737 563 9,64 17,23
12764 798 14172 762 9,94 4,72
12472 853 13846 886 9,92 3,72
12793 589 14271 659 10,36 10,62
12618 788 13975 796 9,71 1,01
13098 466 14707 509 10,94 8,45
12632 863 14129 808 10,60 6,81
13116 490 14525 510 9,70 3,92
11716 1994 12991 1898 9,81 5,06
12782 773 14165 753 9,76 2,66
12522 778 13831 797 9,46 2,38
12498 748 13785 808 9,34 7,43
12867 783 14199 780 9,38 0,38
12633 1046 13940 1009 9,38 3,67
12402 614 13803 616 10,15 0,32
13030 1229 14434 1247 9,73 1,44
12698 713 13999 684 9,29 4,24
12960 795 14393 727 9,96 9,35
12790 1283 14341 1249 10,82 2,72
12500 619 13798 681 9,41 9,10
12528 784 13959 820 10,25 4,39
12662 681 13948 734 9,22 7,22
13423 538 14755 527 9,03 2,09
12632 839 14106 836 10,45 0,36
11951 1377 13363 1219 10,57 12,96
13129 912 14492 924 9,41 1,30
12131 1664 13551 1548 10,48 7,49
12896 843 14361 785 10,20 7,39
13205 434 14645 498 9,83 12,85
13450 403 14846 462 9,40 12,77
13350 460 14713 485 9,26 5,15
12945 524 14298 568 9,46 7,75
13043 584 14414 592 9,51 1,35
13344 474 14767 494 9,64 4,05
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Table A.5: Non-Feedback Based Traffic, Flow Modeling with mean, Results for Pareto
traffic with federate 1 has unlimited, federate2 has limited router buffers

Federated Sequential
# of STD. of # of STD. of % Packet Error % STD Error

Packets Packets Packets Packets
8248 77 6984 123 18,10 37,40
8323 112 7089 119 17,41 5,88
8277 83 7058 121 17,27 31,40
8331 88 7081 121 17,65 27,27
8420 89 7191 116 17,09 23,28
8276 110 7121 117 16,22 5,98
8288 82 6950 119 19,25 31,09
8337 69 7119 120 17,11 42,50
8375 76 7107 121 17,84 37,19
8404 73 7138 119 17,74 38,66
8304 88 7001 122 18,61 27,87
8289 93 7027 120 17,96 22,50
8486 62 7170 117 18,35 47,01
8242 81 6949 124 18,61 34,68
8341 83 7106 122 17,38 31,97
8289 89 7125 118 16,34 24,58
8250 82 7030 121 17,35 32,23
8474 101 7149 122 18,53 17,21
8311 91 7142 118 16,37 22,88
8271 95 7108 118 16,36 19,49
907 589 751 1121 20,77 47,46
1005 515 874 982 14,99 47,56
953 1145 780 1098 22,18 4,28
992 297 823 1081 20,53 72,53
989 300 798 1121 23,93 73,24
952 587 754 1205 26,26 51,29
985 318 822 1037 19,83 69,33
979 656 812 1023 20,57 35,87
1017 424 845 1060 20,36 60,00
969 455 786 1207 23,28 62,30
947 363 799 1111 18,52 67,33
972 360 795 1138 22,26 68,37
983 365 823 1082 19,44 66,27
978 666 808 1077 21,04 38,16
940 637 740 1230 27,03 48,21
988 398 808 1135 22,28 64,93
954 1497 805 1082 18,51 38,35
943 866 757 1240 24,57 30,16
1020 336 854 1034 19,44 67,50
1008 834 812 1081 24,14 22,85
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Table A.6: Non-Feedback Based Traffic, Flow Modeling with Exponential modeling,
Results for Exponential traffic with unlimited router buffers

Federated Sequential
# of STD. of # of STD. of % Packet Error % STD Error

Packets Packets Packets Packets
16400 222 16382 203 0,11 9,36
16400 235 16404 200 0,02 17,50
16365 240 16398 199 0,20 20,60
16339 215 16403 202 0,39 6,44
16455 210 16529 198 0,45 6,06
16764 237 16767 196 0,02 20,92
16423 235 16441 198 0,11 18,69
16564 207 16495 201 0,42 2,99
16627 226 16585 196 0,25 15,31
16700 211 16794 195 0,56 8,21
16534 226 16505 199 0,18 13,57
16473 251 16474 200 0,01 25,50
16699 213 16712 196 0,08 8,67
16380 203 16391 202 0,07 0,50
16592 242 16600 198 0,05 22,22
16449 209 16552 198 0,62 5,56
16360 210 16381 201 0,13 4,48
16650 233 16643 198 0,04 17,68
16187 212 16208 201 0,13 5,47
16318 222 16337 199 0,12 11,56
16614 215 16606 200 0,05 7,50
16612 212 16604 197 0,05 7,61
16413 237 16413 201 0,00 17,91
16539 209 16498 199 0,25 5,03
16583 220 16601 198 0,11 11,11
16414 222 16452 203 0,23 9,36
16315 217 16343 202 0,17 7,43
16348 221 16377 198 0,18 11,62
16626 211 16612 198 0,08 6,57
16514 231 16520 199 0,04 16,08
16375 221 16465 201 0,55 9,95
16635 203 16594 199 0,25 2,01
16430 219 16480 199 0,30 10,05
16201 235 16220 203 0,12 15,76
16300 221 16312 205 0,07 7,80
16585 222 16527 195 0,35 13,85
16326 233 16358 202 0,20 15,35
16281 235 16358 201 0,47 16,92
16393 222 16462 200 0,42 11,00
16443 225 16434 198 0,05 13,64
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Table A.7: Non-Feedback Based Traffic, Flow Modeling with Exponential modeling,
Results for Exponential traffic with limited router buffers ˜%26 packet drop

Federated Sequential
# of STD. of # of STD. of % Packet Error % STD Error

Packets Packets Packets Packets
12054 308 12781 254 5,69 21,26
12159 312 12607 255 3,55 22,35
12161 291 12731 247 4,48 17,81
12068 313 12738 250 5,26 25,20
12315 301 12747 247 3,39 21,86
12340 307 13001 242 5,08 26,86
12050 332 12718 247 5,25 34,41
12121 318 12747 249 4,91 27,71
12178 312 12825 244 5,04 27,87
12412 302 12929 244 4,00 23,77
12111 307 12699 246 4,63 24,80
12048 346 12662 247 4,85 40,08
12380 280 12983 243 4,64 15,23
12036 305 12648 254 4,84 20,08
12293 306 12980 244 5,29 25,41
12185 340 12814 244 4,91 39,34
12094 293 12695 250 4,73 17,20
12217 305 12988 243 5,94 25,51
11928 313 12603 252 5,36 24,21
12132 290 12672 249 4,26 16,47
12240 276 12836 247 4,64 11,74
12173 289 12763 249 4,62 16,06
12031 286 12668 253 5,03 13,04
12035 289 12691 250 5,17 15,60
12288 303 12887 246 4,65 23,17
12101 300 12668 253 4,48 18,58
12089 283 12643 251 4,38 12,75
12112 283 12680 249 4,48 13,65
12255 272 12879 246 4,85 10,57
12314 270 12854 245 4,20 10,20
12170 274 12817 249 5,05 10,04
12218 287 12858 246 4,98 16,67
12271 276 12826 249 4,33 10,84
12041 274 12563 252 4,16 8,73
11944 293 12650 252 5,58 16,27
12230 302 12832 242 4,69 24,79
12097 273 12577 252 3,82 8,33
12172 293 12717 249 4,29 17,67
12186 303 12783 249 4,67 21,69
12035 295 12683 247 5,11 19,43
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Table A.8: Non-Feedback Based Traffic, Flow Modeling with Pareto modeling, Results
for Pareto traffic with unlimited router buffers

Federated Sequential
# of STD. of # of STD. of % Packet Error % STD Error

Packets Packets Packets Packets
18640 647 18590 685 0,27 5,55
18059 1025 18106 1054 0,26 2,75
17950 1301 17882 1312 0,38 0,84
18561 641 18550 700 0,06 8,43
19037 524 19054 590 0,09 11,19
19192 392 19204 434 0,06 9,68
19292 452 19336 483 0,23 6,42
18669 583 18709 657 0,21 11,26
18520 689 18468 763 0,28 9,70
18942 506 18987 565 0,24 10,44
18659 634 18714 679 0,29 6,63
19552 393 19515 432 0,19 9,03
18790 656 18882 695 0,49 5,61
19414 428 19425 433 0,06 1,15
17522 1624 17475 1633 0,27 0,55
18965 643 18971 645 0,03 0,31
18594 660 18559 682 0,19 3,23
18441 616 18356 694 0,46 11,24
18788 635 18777 673 0,06 5,65
18464 850 18456 873 0,04 2,63
18559 468 18478 522 0,44 10,34
19222 1015 19281 1076 0,31 5,67
18895 567 18881 582 0,07 2,58
19190 599 19208 622 0,09 3,70
18988 1073 18974 1084 0,07 1,01
18367 537 18370 584 0,02 8,05
18250 667 18308 711 0,32 6,19
18496 620 18431 629 0,35 1,43
19270 403 19380 453 0,57 11,04
18432 603 18501 725 0,37 16,83
17476 1061 17584 1061 0,61 0,00
18932 780 18963 805 0,16 3,11
17697 1336 17724 1351 0,15 1,11
18789 636 18931 676 0,75 5,92
19180 420 19226 425 0,24 1,18
19716 357 19677 393 0,20 9,16
19534 406 19553 412 0,10 1,46
19047 434 19076 485 0,15 10,52
19162 482 19149 507 0,07 4,93
19586 396 19629 418 0,22 5,26
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Table A.9: Non-Feedback Based Traffic, Flow Modeling with Pareto modeling, Results
for Pareto traffic with limited router buffers ˜%24.5 packet drop

Federated Sequential
# of STD. of # of STD. of % Packet Error % STD Error

Packets Packets Packets Packets
12695 419 14153 791 10,30 47,03
12587 397 13795 1211 8,76 67,22
12234 424 13607 1507 10,09 71,86
12864 385 14166 808 9,19 52,35
13009 378 14589 680 10,83 44,41
12494 411 14622 505 14,55 18,61
12340 411 14737 563 16,27 27,00
12224 443 14172 762 13,75 41,86
12428 401 13846 886 10,24 54,74
12204 432 14271 659 14,48 34,45
12319 410 13975 796 11,85 48,49
12043 428 14707 509 18,11 15,91
12340 423 14129 808 12,66 47,65
12601 418 14525 510 13,25 18,04
12526 410 12991 1898 3,58 78,40
12523 405 14165 753 11,59 46,22
12179 418 13831 797 11,94 47,55
12400 419 13785 808 10,05 48,14
12249 441 14199 780 13,73 43,46
11898 446 13940 1009 14,65 55,80
12626 432 13803 616 8,53 29,87
12513 402 14434 1247 13,31 67,76
12504 414 13999 684 10,68 39,47
12106 427 14393 727 15,89 41,27
12217 529 14341 1249 14,81 57,65
12352 397 13798 681 10,48 41,70
12377 404 13959 820 11,33 50,73
12500 424 13948 734 10,38 42,23
12607 409 14755 527 14,56 22,39
12200 437 14106 836 13,51 47,73
12401 428 13363 1219 7,20 64,89
12585 418 14492 924 13,16 54,76
12366 429 13551 1548 8,74 72,29
12393 412 14361 785 13,70 47,52
12089 430 14645 498 17,45 13,65
12384 424 14846 462 16,58 8,23
12376 405 14713 485 15,88 16,49
12260 423 14298 568 14,25 25,53
12445 405 14414 592 13,66 31,59
12177 419 14767 494 17,54 15,18
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Table A.10: Non-Feedback Based Traffic, Flow Modeling with GMA, Results for Expo-
nential traffic with mean=200 unlimited router buffers

Federated Sequential
# of STD. of # of STD. of % Packet Error % STD Error

Packets Packets Packets Packets
16330 202 16382 203 0,32 0,49
16220 212 16404 200 1,12 6,00
16343 215 16398 199 0,34 8,04
16335 207 16403 202 0,41 2,48
16475 201 16529 198 0,33 1,52
16766 200 16767 196 0,01 2,04
16385 209 16441 198 0,34 5,56
16493 199 16495 201 0,01 1,00
16576 208 16585 196 0,05 6,12
16624 192 16794 195 1,01 1,54
16455 199 16505 199 0,30 0,00
16312 197 16474 200 0,98 1,50
16641 195 16712 196 0,42 0,51
16385 217 16391 202 0,04 7,43
16637 199 16600 198 0,22 0,51
16579 210 16552 198 0,16 6,06
16306 208 16381 201 0,46 3,48
16694 195 16643 198 0,31 1,52
16230 224 16208 201 0,14 11,44
16336 223 16337 199 0,01 12,06
16635 230 16606 200 0,17 15,00
16566 214 16604 197 0,23 8,63
16397 222 16413 201 0,10 10,45
16495 222 16498 199 0,02 11,56
16609 209 16601 198 0,05 5,56
16432 209 16452 203 0,12 2,96
16317 225 16343 202 0,16 11,39
16379 243 16377 198 0,01 22,73
16653 238 16612 198 0,25 20,20
16443 227 16520 199 0,47 14,07
16324 208 16465 201 0,86 3,48
16606 220 16594 199 0,07 10,55
16462 239 16480 199 0,11 20,10
16208 233 16220 203 0,07 14,78
16305 235 16312 205 0,04 14,63
16507 196 16527 195 0,12 0,51
16349 218 16358 202 0,06 7,92
16380 213 16358 201 0,13 5,97
16438 222 16462 200 0,15 11,00
16425 219 16434 198 0,05 10,61
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Table A.11: Non-Feedback Based Traffic, Flow Modeling with GMA, Results for Expo-
nential traffic with mean=200 limited router buffers ˜%26 packet drop

Federated Sequential
# of STD. of # of STD. of % Packet Error % STD Error

Packets Packets Packets Packets
12152 279 12781 254 4,92 9,84
12140 266 12607 255 3,70 4,31
12232 265 12731 247 3,92 7,29
12201 263 12738 250 4,22 5,20
12270 253 12747 247 3,74 2,43
12377 277 13001 242 4,80 14,46
12171 272 12718 247 4,30 10,12
12079 261 12747 249 5,24 4,82
12358 263 12825 244 3,64 7,79
12406 267 12929 244 4,05 9,43
12159 270 12699 246 4,25 9,76
12080 266 12662 247 4,60 7,69
12345 262 12983 243 4,91 7,82
12163 260 12648 254 3,83 2,36
12353 256 12980 244 4,83 4,92
12196 249 12814 244 4,82 2,05
12157 257 12695 250 4,24 2,80
12479 253 12988 243 3,92 4,12
12110 257 12603 252 3,91 1,98
12213 255 12672 249 3,62 2,41
12434 255 12836 247 3,13 3,24
12223 266 12763 249 4,23 6,83
12073 283 12668 253 4,70 11,86
12213 276 12691 250 3,77 10,40
12217 251 12887 246 5,20 2,03
12149 282 12668 253 4,10 11,46
11907 268 12643 251 5,82 6,77
12100 273 12680 249 4,57 9,64
12328 256 12879 246 4,28 4,07
12298 254 12854 245 4,33 3,67
12383 272 12817 249 3,39 9,24
12321 251 12858 246 4,18 2,03
12251 260 12826 249 4,48 4,42
12048 270 12563 252 4,10 7,14
12126 301 12650 252 4,14 19,44
12349 250 12832 242 3,76 3,31
12153 260 12577 252 3,37 3,17
12068 257 12717 249 5,10 3,21
12232 271 12783 249 4,31 8,84
12184 261 12683 247 3,93 5,67
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Table A.12: Non-Feedback Based Traffic, Flow Modeling with GMA, Results for Pareto
traffic with xm = 60,k = 1.5 unlimited router buffers

Federated Sequential
# of STD. of # of STD. of % Packet Error % STD Error

Packets Packets Packets Packets
18562 647 18590 685 0,15 5,55
18046 979 18106 1054 0,33 7,12
16376 2438 16459 2476 0,50 1,53
18523 630 18559 700 0,19 10,00
19065 492 19050 590 0,08 16,61
19322 409 19194 434 0,67 5,76
19341 401 19335 483 0,03 16,98
18675 556 18698 657 0,12 15,37
18545 613 18477 763 0,37 19,66
14534 4464 14766 4488 1,57 0,53
18714 503 18712 679 0,01 25,92
19588 389 19520 432 0,35 9,95
18897 584 18885 695 0,06 15,97
19507 423 19432 432 0,39 2,08
17553 1512 17491 1632 0,35 7,35
18924 559 18966 645 0,22 13,33
18509 530 18551 682 0,23 22,29
18456 615 18362 694 0,51 11,38
18773 551 18781 673 0,04 18,13
18496 805 18449 873 0,25 7,79
18527 569 18485 522 0,23 9,00
19300 1081 19284 1076 0,08 0,46
18925 623 18877 582 0,25 7,04
19200 618 19209 622 0,05 0,64
18962 1116 18966 1084 0,02 2,95
18413 640 18376 584 0,20 9,59
18281 743 18294 711 0,07 4,50
16600 652 16615 653 0,09 0,15
19382 506 19376 453 0,03 11,70
18500 760 18503 725 0,02 4,83
17549 1152 17562 1061 0,07 8,58
18959 800 18962 805 0,02 0,62
17715 1363 17730 1351 0,08 0,89
18945 670 18926 676 0,10 0,89
19238 466 19227 425 0,06 9,65
19684 416 19689 393 0,03 5,85
19557 441 19555 412 0,01 7,04
19075 525 19091 485 0,08 8,25
19183 483 19157 464 0,14 4,09
19643 446 19628 418 0,08 6,70
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Table A.13: Non-Feedback Based Traffic, Flow Modeling with GMA, Results for Pareto
traffic with xm = 60,k = 1.5 limited router buffers ˜%24.5 packet drop

Federated Sequential
# of STD. of # of STD. of % Packet Error % STD Error

Packets Packets Packets Packets
13549 858 14153 791 4,27 8,47
13031 1104 13795 1211 5,54 8,84
13002 1374 13607 1507 4,45 8,83
13323 746 14166 808 5,95 7,67
13778 661 14589 680 5,56 2,79
13957 479 14622 505 4,55 5,15
13854 529 14737 563 5,99 6,04
13349 747 14172 762 5,81 1,97
13154 820 13846 886 5,00 7,45
13370 634 14271 659 6,31 3,79
13194 776 13975 796 5,59 2,51
13857 481 14707 509 5,78 5,50
13328 696 14129 808 5,67 13,86
13762 507 14525 510 5,25 0,59
12410 1925 12991 1898 4,47 1,42
13427 717 14165 753 5,21 4,78
13175 819 13831 797 4,74 2,76
13144 798 13785 808 4,65 1,24
13256 724 14199 780 6,64 7,18
13336 1011 13940 1009 4,33 0,20
13097 557 13803 616 5,11 9,58
13848 1223 14434 1247 4,06 1,92
13224 635 13999 684 5,54 7,16
13586 633 14393 727 5,61 12,93
13407 1267 14341 1249 6,51 1,44
13220 663 13798 681 4,19 2,64
13012 852 13959 820 6,78 3,90
13209 624 13948 734 5,30 14,99
13933 535 14755 527 5,57 1,52
13354 850 14106 836 5,33 1,67
12639 1227 13363 1219 5,42 0,66
13785 848 14492 924 4,88 8,23
12740 1526 13551 1548 5,98 1,42
13672 724 14361 785 4,80 7,77
13941 570 14645 498 4,81 14,46
14101 455 14846 462 5,02 1,52
14094 536 14713 485 4,21 10,52
13754 586 14298 568 3,80 3,17
13707 571 14414 592 4,90 3,55
13968 445 14767 494 5,41 9,92
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Table A.14: Non-Feedback Based Traffic, Flow Modeling with GMA, Results for Pareto
traffic with xm = 60,k = 1.5 federate 1 unlimited federate2 limited router buffers

Federated Sequential
# of STD. of # of STD. of % Packet Error % STD Error

Packets Packets Packets Packets
7021 119 6984 123 0,53 3,25
7136 123 7089 119 0,66 3,36
7051 125 7058 121 0,10 3,31
7068 126 7081 121 0,18 4,13
7250 113 7191 116 0,82 2,59
7084 122 7121 117 0,52 4,27
7036 131 6950 119 1,24 10,08
7104 128 7119 120 0,21 6,67
6922 133 7107 121 2,60 9,92
7190 121 7138 119 0,73 1,68
7079 136 7001 122 1,11 11,48
7073 126 7027 120 0,65 5,00
7191 122 7170 117 0,29 4,27
6993 126 6949 124 0,63 1,61
7096 126 7106 122 0,14 3,28
7046 118 7125 118 1,11 0,00
7047 118 7030 121 0,24 2,48
7046 121 7149 122 1,44 0,82
7057 120 7142 118 1,19 1,69
7044 125 7108 118 0,90 5,93
747 1365 751 1121 0,53 21,77
775 1361 874 982 11,33 38,59
752 1483 780 1098 3,59 35,06
761 1550 823 1081 7,53 43,39
799 1166 798 1121 0,13 4,01
715 1569 754 1205 5,17 30,21
759 1168 822 1037 7,66 12,63
741 1277 812 1023 8,74 24,83
821 1073 845 1060 2,84 1,23
735 1148 786 1207 6,49 4,89
783 1306 799 1111 2,00 17,55
789 1283 795 1138 0,75 12,74
814 1152 823 1082 1,09 6,47
793 1191 808 1077 1,86 10,58
753 1441 740 1230 1,76 17,15
738 1487 808 1135 8,66 31,01
752 1295 805 1082 6,58 19,69
762 1253 757 1240 0,66 1,05
819 1156 854 1034 4,10 11,80
829 1295 812 1081 2,09 19,80
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Table A.15: Non-Feedback Based Traffic, Flow Modeling with GMA, Results for Hyper-
exponential traffic with unlimited router buffers

Federated Sequential
# of STD. of # of STD. of % Packet Error % STD Error

Packets Packets Packets Packets
8076 494 8075 502 0,01 1,59
8315 498 8277 488 0,46 2,05
8220 511 8226 488 0,07 4,71
8265 565 8248 491 0,21 15,07
8465 485 8453 471 0,14 2,97
8225 479 8251 478 0,32 0,21
7980 540 7996 494 0,20 9,31
8353 485 8315 478 0,46 1,46
8339 486 8408 478 0,82 1,67
8334 464 8313 487 0,25 4,72
8299 484 8289 484 0,12 0,00
8225 529 8249 486 0,29 8,85
8388 501 8456 479 0,80 4,59
8310 502 8328 490 0,22 2,45
8229 503 8280 492 0,62 2,24
8218 479 8287 483 0,83 0,83
8018 487 8045 500 0,34 2,60
8305 554 8294 483 0,13 14,70
8365 508 8414 480 0,58 5,83
8041 480 8139 489 1,20 1,84
8158 507 8157 499 0,01 1,60
8379 483 8404 470 0,30 2,77
8191 519 8148 498 0,53 4,22
8162 497 8260 480 1,19 3,54
8313 521 8286 483 0,33 7,87
8000 510 8050 505 0,62 0,99
8241 497 8290 482 0,59 3,11
8298 541 8297 488 0,01 10,86
8346 473 8334 472 0,14 0,21
8113 494 8108 491 0,06 0,61
8354 502 8354 489 0,00 2,66
8192 496 8236 494 0,53 0,40
8296 502 8353 477 0,68 5,24
8363 482 8418 473 0,65 1,90
8132 536 8091 496 0,51 8,06
8168 489 8254 479 1,04 2,09
8330 510 8378 489 0,57 4,29
8270 492 8273 491 0,04 0,20
8300 565 8333 497 0,40 13,68
8167 540 8222 488 0,67 10,66
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Table A.16: Non-Feedback Based Traffic, Flow Modeling with GMA, Results for Hyper-
exponential traffic with limited router buffers

Federated Sequential
# of STD. of # of STD. of % Packet Error % STD Error

Packets Packets Packets Packets
8000 528 7981 505 0,24 4,55
8209 484 8205 491 0,05 1,43
8130 532 8132 491 0,02 8,35
8068 519 8160 494 1,13 5,06
8225 487 8344 474 1,43 2,74
8140 521 8153 481 0,16 8,32
7870 499 7878 497 0,10 0,40
8113 471 8221 481 1,31 2,08
8323 488 8301 481 0,27 1,46
8135 507 8217 490 1,00 3,47
8137 499 8173 487 0,44 2,46
8181 492 8156 490 0,31 0,41
8049 487 8352 483 3,63 0,83
8141 484 8239 494 1,19 2,02
8040 484 8181 495 1,72 2,22
8219 502 8187 486 0,39 3,29
7994 548 7931 505 0,79 8,51
8101 472 8194 486 1,13 2,88
8283 494 8316 483 0,40 2,28
7964 493 8057 491 1,15 0,41
7985 511 8052 502 0,83 1,79
8250 495 8296 474 0,55 4,43
8092 516 8036 503 0,70 2,58
8129 493 8162 483 0,40 2,07
8266 485 8198 485 0,83 0,00
7889 518 7967 507 0,98 2,17
8075 488 8191 485 1,42 0,62
8176 508 8193 492 0,21 3,25
8295 490 8258 475 0,45 3,16
7980 527 7988 495 0,10 6,46
8183 499 8256 492 0,88 1,42
8024 529 8122 499 1,21 6,01
8252 483 8260 481 0,10 0,42
8303 505 8331 477 0,34 5,87
7946 530 8001 499 0,69 6,21
8059 506 8140 484 1,00 4,55
8255 494 8311 493 0,67 0,20
8198 526 8185 496 0,16 6,05
8223 521 8243 501 0,24 3,99
8068 530 8124 490 0,69 8,16
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Table A.17: Feedback Based Traffic, Flow Modeling with GMA, Results for constant
service time, unlimited router buffers

Federated Sequential
# of STD. of # of STD. of

Packets Packets
3616 1452 3620 1424
3680 1478 3640 1491
3654 1463 3616 1477
3616 1464 3572 1499
3680 1432 3608 1432
3616 1457 3616 1492
3680 1363 3680 1499
3616 1458 3680 1439
3680 1427 3680 1413
3616 1521 3616 1487
3680 1482 3616 1505
3616 1464 3616 1475
3616 1445 3616 1512
3680 1473 3616 1435
3622 1472 3616 1502
3680 1455 3680 1435
3616 1489 3622 1520
3618 1509 3680 1421
3616 1513 3680 1432
3616 1505 3680 1420
3616 1443 3616 1477
3608 1482 3616 1463
3680 1464 3616 1529
3632 1505 3616 1452
3680 1457 3620 1466
3616 1480 3680 1399
3680 1449 3680 1464
3616 1487 3616 1452
3672 1414 3616 1514
3616 1482 3616 1452
3680 1442 3616 1493
3680 1473 3616 1471
3680 1409 3648 1414
3616 1531 3680 1419
3616 1510 3680 1453
3646 1442 3678 1412
3616 1451 3632 1504
3680 1427 3680 1384
3616 1465 3616 1504
3680 1490 3616 1475
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Table A.18: Feedback Based Traffic, Flow Modeling with GMA, Results for constant
service time, limited router buffers

Federated Sequential
# of STD. of # of STD. of

Packets Packets
2500 2644 2644 2414
2174 3386 3386 1975
2628 3030 3030 2122
2824 2712 2712 2224
3360 3482 3482 1997
2624 2512 2512 2296
3136 2094 2094 2657
2480 1986 1986 2679
2510 3254 3254 2042
2632 3056 3056 2107
2966 3414 3414 1981
2196 2492 2492 2358
3324 2620 2620 2293
2406 2740 2740 2227
2580 2980 2980 2132
2178 3080 3080 2097
2496 2294 2294 2528
2358 1894 1894 2811
2692 2224 2224 2609
2124 2554 2554 2364
1992 2308 2308 2500
3208 3144 3144 2074
2912 2302 2302 2443
2558 1716 1716 2949
2558 2142 2142 2604
2958 2882 2882 2165
2742 3386 3386 2009
2584 1680 1680 2887
2402 2980 2980 2199
2288 2644 2644 2291
2878 1936 1936 2707
2170 2522 2522 2357
2538 2500 2500 2440
4574 2420 2420 2450
2148 3720 3720 1914
2654 1820 1820 2854
3228 3510 3510 1980
3004 3238 3238 2036
2888 2228 2228 2521
2638 2856 2856 2224
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Table A.19: Feedback Based Traffic, Flow Modeling with GMA, Results for random
service time, unlimited router buffers

Federated Sequential
# of STD. of # of STD. of

Packets Packets
6624 803 6612 825
6656 817 6624 758
6620 773 6624 766
6598 794 6688 773
6560 801 6560 829
6598 802 6624 801
6560 803 6560 811
6504 842 6560 824
6560 774 6626 775
6624 819 6624 803
6604 785 6624 819
6520 785 6624 758
6560 814 6624 777
6624 815 6624 826
6624 758 6598 779
6560 810 6624 809
6560 833 6560 780
6576 812 6574 782
6576 798 6560 806
6550 826 6624 759
6560 813 6624 780
6526 842 6624 790
6578 773 6624 800
6560 819 6624 788
6598 786 6678 792
6560 849 6560 823
6496 810 6560 827
6560 813 6624 809
6584 789 6560 813
6560 831 6688 774
6624 748 6624 776
6650 819 6624 795
6560 771 6560 813
6550 845 6624 779
6560 795 6560 812
6584 776 6620 773
6560 846 6560 797
6560 796 6624 811
6592 785 6578 807
6624 774 6624 827
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Table A.20: Feedback Based Traffic, Flow Modeling with GMA, Results for random
service time, unlimited router buffers

Federated Sequential
# of STD. of # of STD. of

Packets Packets
4374 1893 4444 1871
4766 1815 4338 1902
4842 1851 4568 1894
5024 1775 3402 2181
3782 2065 4008 2027
4996 1783 4626 1873
3500 2134 4402 1863
4130 1943 3418 2211
3536 2135 4944 1774
4396 1885 4310 1942
4322 1896 4578 1858
3592 2120 5022 1763
4726 1831 4706 1869
4396 1871 4694 1796
4308 1897 5066 1773
3452 2198 4194 1957
4532 1861 2756 2501
4364 1899 3062 2283
4358 1924 4532 1894
3466 2151 5144 1746
5570 1647 4368 1931
3818 2015 3422 2214
3538 2139 4574 1850
4754 1797 3498 2177
4490 1875 4068 1953
2864 2411 5404 1695
4840 1795 4130 1973
4408 1926 4062 2005
4910 1803 4220 1908
4098 1957 4594 1839
5454 1689 4852 1791
4490 1867 4332 1954
4268 1945 5172 1742
3130 2334 3616 2088
4122 1999 5148 1747
3712 2084 3284 2228
3010 2357 3742 2124
4298 1926 3670 2096
3702 2085 5140 1703
5246 1739 3900 2047
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APPENDIX B

EXPECTATION MAXIMIZATION AND SELF ORGINIZING

MIXTURE NETWORK CODES

B.1 Expectation Maximization Code

void calculate(void)

{

Q_pre=-100000;

int iteration_count=0;

while( 1 )

{

iteration_count++;

for(int r=0;r<no_of_modes;r++)

{

w[r]=lqr_eval(samples,mode[r].mean,mode[r].variance);

w[r]=w[r]+log(mode[r].weight);

}

for(int k=0;k<sample_count;k++)

{

double max=w[0][k];

for(int c=1;c<no_of_modes;c++)

{

if(w[c][k]>max)

{

max=w[c][k];

}

}
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mw[k]=max;

}

nor=0.0;

for(int n=0;n<no_of_modes;n++)

{

w[n]=w[n]-mw;

w[n]=exp(w[n]);

nor=nor+w[n];

}

temp_arr_4=(log(nor)+mw);

Q=temp_arr_4.sum();

if( (Q-Q_pre) < 0.0000001 )

{

break;

average_iteration=average_iteration+iteration_count;

}

double weight_sum=0;

for(int p=0;p<no_of_modes;p++)

{

w[p]=w[p]/nor;

a[p]=w[p].sum();

temp_arr_4=samples*w[p];

mode[p].mean=temp_arr_4.sum()/a[p];

temp_arr_4=(samples-mode[p].mean)*sqrt(w[p]/a[p]);

mode[p].variance=sqrt((temp_arr_4*temp_arr_4).sum());

mode[p].variance=-sqrt(mode[p].variance*mode[p].variance+1);

weight_sum=weight_sum+a[p];

}

for(int d=0;d<no_of_modes;d++)
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{

mode[d].weight=a[d]/weight_sum;

}

Q_pre=Q;

}

void init(void)

{

for(int j=0;j<7;j++)

{

mode[j].weight=0.0;

mode[j].mean=0.0;

mode[j].variance=0.0;

}

for(int i=0;i<no_of_modes;i++)

{

w[i].resize(ARRAY_SIZE);

mode[i].weight=1.0/(double)no_of_modes;

mode[i].mean=samples[rand()%sample_count];

mode[i].variance=(samples.max()-samples.min())/4.0;

}

}

DB_VARRAY lqr_eval(DB_VARRAY &array,double mean,double variance)

{

double logdet=2.0*log(fabs(variance));

DB_VARRAY tmpidx=array-mean;

tmpidx=(tmpidx/variance);

DB_VARRAY result;
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tmpidx=tmpidx*tmpidx;

result=-0.5*tmpidx-0.5*log(6.2832)-0.5*logdet;

return result;

}

B.2 Self Orginizing Mixture Network Code

void calculate(void)

{

long int index=0;

double sample=0;

double l_rate=0;

double l_rate2=0;

double l_rate2_variance=0;

double p_i_x[10];

double P_x[10];

double wm_mean=0;

double wm_variance=0;

double wm_sum_of_squares=0;

double wm_sums=0;

double wm_mean2=0;

double wm_variance2=0;

double wm_sum_of_squares2=0;

double wm_sums2=0;

double wm_variance2_old=0;

double wm_variance2_diff=0;

double a2_old=0;
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double l_rate_mean=0;

double l_rate_variance=0;

double l_rate_sum_of_squares=0;

double l_rate_sums=0;

double l_rate_variance_old=-10;

int counter=0;

for(long int y=0;y<100000;y++)

{

index=rand()%200;

sample=sample_arr[index];

for(int t=0;t<no_modes;t++)

{

p_i_x[t]=(1.0/( sqrt(2.0*3.14*mode[t][2]) )) *

exp( -0.5* (sample-mode[t][1])*(sample-mode[t][1])/mode[t][2]);

if(p_i_x[t]<-1000)

{

p_i_x[t]=0.0005;

}

}

double p_x=0;

for(int w=0;w<no_modes;w++)

{

p_x=p_x+p_i_x[w]*mode[w][0];

}

if(p_x==0)

{

p_x=1;

}

for(int r=0;r<no_modes;r++)
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{

P_x[r]=p_i_x[r]*mode[r][0]/p_x;

}

double max=-1.0;

double min=1000;

int max_index=-1;

int min_index=-1;

for(int e=0;e<no_modes;e++)

{

if(P_x[e]>max)

{

max=P_x[e];

max_index=e;

}

if(P_x[e]<min)

{

min=P_x[e];

min_index=e;

}

}

if(y==0)

{

wm_mean=P_x[min_index];

}

else

{

wm_mean=(1.0/double(y+1))*fabs(sample-mode[min_index][1])

+((double)(y)/(double)(y+1))*wm_mean;

}

double a=0;

double b=0;
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for(int s=0;s<no_modes;s++)

{

if(mode[s][0]>0.05)

{

a=a+mode[s][0]*mode[s][1];

b=b+mode[s][0]*(mode[s][2]+mode[s][1]*mode[s][1]);

}

}

b=b-a*a;

double mean_error=(a-mean_set)/mean_set*100;

double variance_error=(sqrt(b)-variance_set)/variance_set*100;

a=fabs(mean_set-a);

b=fabs(variance_set-sqrt(b));

wm_sum_of_squares=wm_sum_of_squares+a*a;

wm_sums=wm_sums+a;

double temp=( 1.0 / (double)(y+1) ) *

( wm_sum_of_squares - ( ( 1.0 / (double)(y+1) )

* wm_sums * wm_sums ) ) ;

wm_variance=sqrt(temp);

wm_sum_of_squares2=wm_sum_of_squares2+b*b;

wm_sums2=wm_sums2+b;

temp=( 1.0 / (double)(y+1) ) *

( wm_sum_of_squares2 - ( ( 1.0 / (double)(y+1) )

* wm_sums2 * wm_sums2 ) ) ;

wm_variance2=sqrt(temp);

if((wm_variance/double(y+1))>(0.5) || wm_variance==0.0 )

{

l_rate2=(0.5);

}
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else

{

l_rate2=wm_variance/(double)(y+1);

}

if((wm_variance2/double(y+1))>(0.01) || wm_variance2==0.0 )

{

l_rate2_variance=(0.01);

}

else

{

l_rate2_variance=wm_variance2/(double)(y+1);

}

if((l_rate2<0.01)&& (fabs(mean_error)<0.5) && (fabs(variance_error)<1.0) )

{

break;

}

if(max_index==0)

{

delta_m=(l_rate2)*P_x[0]*(sample-mode[0][1]);

delta_var=(l_rate2_variance)*P_x[0]*((sample-mode[0][1])*

(sample-mode[0][1])-mode[0][2]);

mode[0][1]=mode[0][1]+delta_m;

mode[0][2]=mode[0][2]+delta_var;

delta_m=(l_rate2)*P_x[1]*(sample-mode[1][1]);

delta_var=(l_rate2_variance)*P_x[1]*((sample-mode[1][1])*

(sample-mode[1][1])-mode[1][2]);

mode[1][1]=mode[1][1]+delta_m;

mode[1][2]=mode[1][2]+delta_var;

}

else if(max_index==(no_modes-1))

{

delta_m=(l_rate2)*P_x[no_modes-2]*(sample-mode[no_modes-2][1]);

97



delta_var=(l_rate2_variance)*P_x[no_modes-2]*

((sample-mode[no_modes-2][1])*(sample-mode[no_modes-2][1])

-mode[no_modes-2][2]);

mode[no_modes-2][1]=mode[no_modes-2][1]+delta_m;

mode[no_modes-2][2]=mode[no_modes-2][2]+delta_var;

delta_m=(l_rate2)*P_x[no_modes-1]*(sample-mode[no_modes-1][1]);

delta_var=(l_rate2_variance)*P_x[no_modes-1]*

((sample-mode[no_modes-1][1])*(sample-mode[no_modes-1][1])

-mode[no_modes-1][2]);

mode[no_modes-1][1]=mode[no_modes-1][1]+delta_m;

mode[no_modes-1][2]=mode[no_modes-1][2]+delta_var;

}

else

{

delta_m=(l_rate2)*P_x[max_index-1]*(sample-mode[max_index-1][1]);

delta_var=(l_rate2_variance)*P_x[max_index-1]

*((sample-mode[max_index-1][1])*(sample-mode[max_index-1][1])

-mode[max_index-1][2]);

mode[max_index-1][1]=mode[max_index-1][1]+delta_m;

mode[max_index-1][2]=mode[max_index-1][2]+delta_var;

delta_m=(l_rate2)*P_x[max_index]*(sample-mode[max_index][1]);

delta_var=(l_rate2_variance)*P_x[max_index]

*((sample-mode[max_index][1])*(sample-mode[max_index][1])

-mode[max_index][2]);

mode[max_index][1]=mode[max_index][1]+delta_m;

mode[max_index][2]=mode[max_index][2]+delta_var;

delta_m=(l_rate2)*P_x[max_index+1]*(sample-mode[max_index+1][1]);

delta_var=(l_rate2_variance)*P_x[max_index+1]

*((sample-mode[max_index+1][1])*(sample-mode[max_index+1][1])

-mode[max_index+1][2]);

mode[max_index+1][1]=mode[max_index+1][1]+delta_m;

mode[max_index+1][2]=mode[max_index+1][2]+delta_var;

}

98



double p_sum=0;

for (int u=0;u<no_modes;u++)

{

mode[u][0]=mode[u][0]+(l_rate2)*(P_x[u]-mode[u][0]);

p_sum=p_sum+mode[u][0];

}

}

}

void init(void)

{

double sum_of_squares=0;

double sums=0;

double sample=0;

long int max=-10;

long int min=10000000;

for(int u=0;u<200;u++)

{

sample=sample_arr[u];

sum_of_squares=sum_of_squares+sample*sample;

sums=sums+sample;

mean_set=(1.0/double(u+1))*sample+((double)(u)/(double)(u+1))*mean_set;

variance_set=sqrt( ( 1.0 / (double)(u+1) ) *

( sum_of_squares - ( ( 1.0 / (double)(u+1) ) *

sums * sums ) ) );

if(sample<min)

{

min=sample;

}

if(sample>max)
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{

max=sample;

}

}

mode[0][0]=0;

mode[1][0]=0;

mode[2][0]=0;

mode[3][0]=0;

mode[4][0]=0;

mode[5][0]=0;

mode[6][0]=0;

for(int e=0;e<no_modes;e++)

{

mode[e][0]=1.0/((double)no_modes);

mode[e][1]=min+(max-min)/no_modes*(e+1);

}

for(int a=0;a<no_modes;a++)

{

mode[a][2]=variance_set*variance_set*10.0;

}

}
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